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ABSTRACT
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Modelling Artificial Intelligence  
in Economics

Economists’ two main theoretical approaches to understanding Artificial Intelligence (AI) 

impacts have been the task-approach to labor markets and endogenous growth theory. 

Therefore, the recent integration of the task-approach into an endogenous growth model by 

Acemoglu and Restrepo (AR) is a useful advance. However, it is subject to the shortcoming 

that it does not explicitly model AI and its technological feasibility. The AR model focuses 

on tasks and skills but not on abilities, while abilities better characterize AI services’ nature. 

This paper addresses this shortcoming by elaborating the task-approach with AI abilities for 

use within endogenous growth models. This more ability-sensitive specification of the task-

approach allows for more nuanced and realistic impacts of progress in artificial intelligence 

(AI) on the economy to be captured.
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1 Introduction

Until recently, there was relatively little research in economics on artificial intelligence

(Agrawal et al., 2019). This situation is rapidly changing, however. Most progress so far has

been on understanding the potential labor market implications of AI, in particular through

the task-approach to labor markets (e.g., Autor (2013)). This approach has been used to

evaluate fears that AI-automated job losses would cause mass unemployment, as for instance,

raised by Frey and Osborne (2013).

Acemoglu and Restrepo (2018) incorporated the task-approach into an endogenous growth

model, representing further progress in modelling AI in economics. The Acemoglu-Restrepo

(AR) model, however, lacks adequate modelling of the nature of AI itself, as the task-

approach is, in essence, naive about the nature of AI as automation technology. The AR-

model does not explicitly capture AI and its technological feasibility, and focuses on tasks

and skills but not on abilities, even though abilities may better characterize the nature of

the services that AI provides.

This paper addresses this shortcoming by elaborating the task-approach with AI abilities

for use within endogenous growth models. This more ability-sensitive specification of the

task-approach allows for more nuanced and realistic impacts of AI progress on the economy

to be captured.

The paper will proceed as follows. In section 2, we describe how automation is modelled in

the task-approach to labor economics. In section 3, we present the core of the AR model

which incorporates the task-approach into an endogenous growth setting. In section 4 go

beyond the AR-model, providing a novel re-specification of the task-approach. Section 5

concludes.
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2 The Task-Approach and Automation

The main conceptual approach used by economists to investigate the labor market impacts

of automation has been the task-approach to labor economics, see e.g. Autor (2013) and

Autor and Dorn (2013).

Defining a task as “a unit of work activity that produces output” (Autor and Dorn, 2013,

p.186) a final good or services is produced according to a Constant Elasticity of Substitution

(CES) production function, as in Autor and Dorn (2013, p.187):

Y =

[∫ 1

0

y(i)
η−1
η di

] η
η−1

(1)

Where Y is the output of a final good, y(i) the different tasks needed to produce the output

Y, and η the elasticity of substitution between tasks. Because a task can be produced

or performed by either low (L), medium (M), high-skilled (H) labor or capital (K), the

production function for a task is, following Autor (2013):

y(i) = ALαLl(i) + AMαM(i)m(i) + AHαH(i)h(i) + AKαK(i)k(i) (2)

Where l(i), m(i), h(i) are respectively the number of low, medium and high-skilled laborers

doing task (i), and k(i) the capital used for task (i). The productivity of labor and capital

in a task (i) are expressed by αL, αM , αH and αK . The A represents a factor-augmenting

technology in the carrying out of tasks.

According to Autor and Dorn (2013, pp.188-189) “the most important innovation offered by

this task-based framework is that it can be used to investigate the implications of capital (em-

bodied in machines) directly displacing workers from tasks that they previously performed.”
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If improvements in algorithms (AI) occur (reflected in AK) the αK would improve, not for

all tasks, but for a specific range (i) ⊂ [I ′, I] of tasks - maybe those than can be more easily

codified, such as routine tasks. Then, if some of these tasks are performed by medium-skilled

workers, some of the m(i) will be replaced by machines, robots and computers - i.e. their

tasks will be automated.

The replacement of workers is however not the only consequence of automation in the task-

based approach. A further consequence is that it can lead to creation of new tasks and

jobs, through what has been termed “reinstatement” effects. These are due to the positive

supply-side effect of AI on productivity - which generates higher wages, profits and demand,

and thus new jobs. Autor and Salomons (2018, pp.12-13) decompose these reinstatement

effects into three categories, namely Uber, Walmart, and Costco effects.

A shortcoming of the task-approach is that the extent of the reinstatement effect is funda-

mentally uncertain. This is because it depends on (i) the extent of economic growth created

by AI, and (ii) the extent to which economic growth stimulates the demand for labor, which

in turn depends (iii) on growth in labor productivity, labor wages, and the income share of

labor (Gries and Naudé, 2020).

Because the task-approach is not an economic growth model, it is unable to model these

dynamic aspects. Standard endogenous growth models on the other hand, although capable

of tracking economic dynamics, typically fail to make the distinction between jobs and tasks,

and hence tend towards extreme and unrealistic outcomes, such as infinite (singularity)

growth or a collapse in employment. The evident solution is to incorporate the task-approach,

or something like the task-approach, into endogenous growth models. This is the contribution

of Acemoglu and Restrepo (2018), which will be described in the next section.
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3 The Acemoglu-Restrepo (AR) Growth Model

Acemoglu and Restrepo (2018) (henceforth the AR-model) proposed a production function

(p.1494) similar to that in (1), where β is a constant and y(i) a unit measure of tasks:

Y = β

[∫ N

N−1

y(i)
η−1
η di

] η
η−1

(3)

Whereas Autor and Dorn (2013) specify the production factor of a task incorporating the

automation technology A in (2) as a factor-augmenting technology, Acemoglu and Restrepo

(2018) specify separate production functions for tasks that can be automated, and for tasks

that cannot be automated but provided only with labor. This follows from their indexing

(3) tasks ranging from N − 1 to N so that there can be a point I ∈ [N − 1, N ] with tasks

i ≤ I that can be automated, and tasks i > I that cannot be automated - the assumption is

that labor has a comparative advantage in tasks high up in the index. For tasks i > I they

specify the following CES production function (p.1494):

y(i) = β(ζ)
[
η

1
ζ q(i)

ζ−1
ζ + (1− η)

1
ζ (γ(i)l(i)

ζ−1
ζ

] ζ
ζ−1

(4)

And for tasks i ≤ I a similar specification is used, except with the inclusion now of capital

(k), which is a perfect substitute for labor l with CES elasticity η ∈ (0, 1) :

y(i) = β(ζ)
[
η

1
ζ q(i)

ζ−1
ζ + (1− η)

1
ζ (k(i) + γ(i)l(i)

ζ−1
ζ

] ζ
ζ−1

(5)

Where γ(i) is the productivity of labor in task i, ζ ∈ (0,∞) the elasticity of substitution

between intermediate inputs (q) and labor inputs (l).
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Where is artificial intelligence (AI) in this model?

AI is, as in the task-approach, not explicitly modelled; rather it is firstly contained in q, which

the authors define as “a task-specific intermediate [...] which embodies the technology used

either for automation or for production with labor.” Furthermore, technological progress (e.g.

progress in AI) can be of two kinds: it can either make more tasks amendable to automation

(reflected in a shift of I) or transform old tasks that could be automated into new tasks in

which labor has a comparative advantage, reflected in an increase in N − I and a reduction

in I − (N − 1). In a static version of the AR-model, k is fixed and technology (including

AI) exogenous. As such, technological innovation changes the allocation of tasks between

capital and labor, and this in turn will change relative factor prices - with consequences for

employment and the wage share of labor.

With these production functions for tasks carried over into a dynamic setting, Acemoglu and

Restrepo (2018) endogenize capital and technological progress, and tease out the long-run

implications of automation on jobs and inequality. Now, the price of capital relative to the

wage rate will determine the extent to which new tasks are created, and they show that a

stable balanced growth path is possible if progress in automation and creation of new tasks

are equal. Any deviations from this will set corrective market forces in operation. In other

words, the reinstatement effect (creation of new tasks) of the static task-approach continues

to hold. As they put it (Acemoglu and Restrepo, 2018, p.1491) “This stability result high-

lights a crucial new force: a wave of automation pushes down the effective cost of producing

with labor, discouraging further efforts to automate additional tasks and encouraging the

creation of new tasks.”
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4 Human Service Production

The AR-model, despite being a welcome addition to the economic growth literature con-

cerned with AI, has two shortcomings for present purposes. The first, and more serious

shortcoming, is that it does not take into account the specific nature of AI and its tech-

nological feasibility. A second, but less serious shortcoming, is that it is a rather complex

model. Acemoglu and Restrepo (2018) do not provide a definition of AI, and as was noticed

in the previous section AI is not explicitly modelled. As such, the task-approach as it is

incorporated into the AR-model cannot model some of the distinguishing features of AI as

an automation technology, which is different from the way in which robotics for instance au-

tomate jobs. Moreover, the AR-model seems to be more consistent with pre-AI automation

technologies for which the task-approach to labor markets was initially developed - before

the advent of Machine Learning (ML)-based AI, which started only after 2006/2007 (Naudé,

2021).

The task-approach is useful, but - in the context of the nature of AI - cannot simply trans-

formed 1:1 into an AI-model. It focuses on tasks and skills but not on abilities, while abilities

better characterizes the nature of the services that AI provide (Hernández-Orallo, 2017). Ac-

cording to Tolan et al. (2020, p.6-7) abilities are “a better parameter to evaluate progress in

AI” because ML provide abilities to do tasks, and not skills, which are a human attribute

requiring experience, knowledge, and common sense. Skills are not an attribute of AI. This

means that, with AI providing abilities, such as the ability to understand human language

or recognize objects, it is necessary to go beyond skills and tasks when evaluating any labor

market impacts of AI, because the adoption of AI will ultimately depend on its abilities

relative to the abilities of human labor.

Some abilities may be more (or less) likely to be provided by AI which means that “AI may

cause workplaces to transform the way a task is performed” (Tolan et al., 2020, p.6). In
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other words, the technological feasibility of AI in automation will depend on the extent that

is changes the very nature of tasks. This however cannot be modelled adequately by the task

approach to labor markets and its incorporation into the AR-model. In the remainder of

this section we attempt to address this shortcoming by proposing a model of AI as providing

abilities in line with Tolan et al. (2020).

4.1 Human service as intermediate good

If AI is essentially a technology that provides certain abilities, it will always need to be

combined or used in tandem with skills, which are, as we pointed out above, distinct human

attributes requiring experience, knowledge and common sense. We define this combination of

AI and human skills as human services, H. To be precise, a human service is an intermediate

service good that is generated by variously skilled human labor and AI. Human service

[H = H(Labor, AI)] is produced following the task-approach to labor markets specification;

however it can be easily included in any conventional production function leading to a nested

production process Y = Y (H,K). Due to this nested structure, the human service task-

approach that we propose here allows us to analyze and separately discuss effects specific to

the task-approach, without much increase in model complexity. Thus, a shortcoming of the

AR modeling - its high complexity - is (somewhat) addressed.

The human service production function can be written as H = H(LL, AL, AIT , BIT ). Here

LL is the number of workers each providing given hours of work, AL is an index of human

skills (reflecting experience and human abilities), AIT is the total number of ML abilities (e.g.

algorithms ) in the economy, and BIT are the IT-business owners or experts providing and

running AI services. Hence, our approach enriches and extends the simple task-approach by

integrating human skills with AI abilities, as per the arguments of Hernández-Orallo (2017)

and Tolan et al. (2020).
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The production function for human services can be specified as (note the similarities as well

as the differences with (3) and (4) and (5)):

H =

(∫ N

N−1

h(z)
σ−1
σ dz

) σ
σ−1

(6)

where z denotes each task in a unit interval [N − 1, N ], and h(z) is the output of task z.

As tasks range between N − 1 and N , the total number of tasks is constant. Note that

whereas Acemoglu and Restrepo (2018) define total production as result of N-1 to N tasks,

we propose to define total production as the result of human service inputs and other inputs

like capital or other intermediates, where human service inputs consists of the outputs of

different tasks. Further, with LL and BIT we separate between labor and owners respectively

providers of AI as a more or less disembodied productive technology.

Each task z can either be produced with labor, l(z), or only with AI services provided by

AI-businesses, bIT (z), if the task can be done by AI. Therefore, there are two sets of tasks.

Tasks z ∈ [N − 1, NIT ] can be produced by both labor and AI services [described by process

(a) in (7)], and tasks z ∈ (NIT , N ] can only be produced by labor [process (b) in (7)]. These

tasks can be the niche in which labor can continue to specialize in the presence of AI driven

services or automation, as per Arntz et al. (2017). Thus, the output of a task can be stated

in two ways

h(z) =


γL(z)l(z)AL + γIT (z)bIT (z)AITD process (a) if z ∈ [N − 1, NIT ]

γL(z)l(z)AL process (b) if z ∈ (NIT , N ]

(7)

Note that the production process (a) implies perfect substitution of human labor abilities

by AI, as the human labor ability (ALγL(z)l(z)) is not a necessary input for this task. To

provide further justification for the specification in (7) we can note the following:
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First, while l(z) is the volume of hours employed in the specific task z, AL is a description

of generally available skills, which includes human abilities and experiences. So humans

who are employed, irrespective which tasks they perform, are endowed with AL. Humans

can identify problems, understand social signals and social interactions, detect and handle

positive and negative social externalities in groups, can use common sense, and can think

ahead. These very human skills have emerged over hundreds of thousands of years of biolog-

ical evolution interacting with the environment and culture, including education. As these

human skills indexed by AL are homogeneously related to all human labor LL this endow-

ment is potentially available in each task z without rivalry and similar to a public good,

ALl(z). However, in some tasks these human skills are particular valuable while in others

they are not really needed. This task specific productivity is indicated by γL(z). Thus, in

(7) total human contribution to a task is γL(z)ALl(z).

Second, as far as production with AI is concerned, AIT denotes the total number and quality

of ML algorithms or machine abilities in the economy that can provide a general AI service.

The idea here is that an AI service contains two components. One is a general AI algorithm

or code and the other is specific application of the algorithm based on particular data. For

example, AIT would include various generic Machine Learning (ML) models and techniques,

from logistical regressions to Deep Learning (DL) and Convolutional Neural Networks(CNN).

These algorithms are non-specific with respect to a particular domain of usage. As such

they can be used without rivalry, and to the extent that they may be excludable through

licensing may have the characteristics of a club good. Since ML algorithms are trained on

data (training can be either supervised or unsupervised by a skilled human), data D is the

raw material needed to produce an AI service. Hence, we can denote the complementarity

between data and algorithms as AITD, which is the fundamental infrastructure for specific

AI services. Since the use of data is non-rival, AITD is a club good. Note however that AITD

is yet not an AI service. The AI service is obtained when AITD is applied to a particular task

- where it creates value. This application is facilitated by IT experts bIT (z) who tailor AITD
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for a particular purpose or business opportunity, z, adding up in total to BIT applications.

Finally, AI services that have been tailored to a particular task will be characterised by

different levels of task-specific productivity, γIT (z). In total therefore, AI services production

for a particular task z can be described as γIT (z)bIT (z)AITD in (7a).

If a task z with price ph(z) is produced with pure labor h(z) = ALγL(z)l(z), and labor rewards

are calculated according to marginal productivity, then ph(z)ALγL(z) = wL. Symmetrically,

the same task could be produced with an AI technology so that ph(z)AITγIT (z) = wIT , with

wIT as the reward for the AI supplying expert or business. Given these two conditions, and

given wages in the market, for any particular task the firm will choose the kind of service

composition (AI service/automation or not) that results in the lowest unit labor costs. Thus,

if the following condition holds, the task will be provided by the AI service:

wIT
ph(z)AITγIT (z)

<
wL

ph(z)ALγL(z)

This rule leads to condition (8) which identifies the switching point between automated (AI)

tasks and labor tasks. If tasks are ordered in such a way that ALγL(z)
AIT γIT (z)

is increasing in z

and the tasks with lower numbers z ∈ [N − 1, NIT ] are the automated tasks, task NIT is the

switching point from an automation task to a labor task. NIT is the highest number in this

order for which

ALγL(NIT )

AITγIT (NIT )
<

wL
wIT

(8)

holds. Apart from these automated (AI) tasks [N − 1, NIT ], all other tasks (NIT , N ] are

produced with standard labor. Thus, the costs and respectively the price ph(z) for any task

z is

ph(z) =


wIT

AIT γIT (z)
if z ∈ [N − 1, NIT ]

wL
ALγL(z)

if z ∈ (NIT , N ]

(9)
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We can use this to calculate the endogenous optimal number of tasks provided by AI in an

economy with an efficient supply of the human sevice:1

NIT = NIT (BIT , LL, AIT , ...) , with
dNIT

dBIT

> 0,
dNIT

dLL
< 0,

dNIT

dAIT
> 0 (10)

This result indicates that the number of automated/machine produced tasks crucially de-

pends on the relative availability of various input factors which are important for AI tech-

nologies. The extent of implementation and diffusion of AI technologies and automation of

human services will depend on the relative availability of the specific inputs of the human

service production. In particular we have to look at the relative availability of human skills to

machine abilities AL/AIT ; the relative abundance of the volume of labor to AI-supplying ex-

perts LL/BIT ; the relative task-specific productivity at the switch point γL(NIT )/γIT (NIT );

and the volume and veracity of data available to run all these AI services, D. Thus, our

modelling of AI provides a level of detail of specification that is lacking in the AR-model.

4.2 Optimal human service supply

From the demands for the various tasks, total human service production can be derived.

Aggregating automated tasks and labor, equation (6) leads to

H =

(∫ NIT

N−1

h(z)
σ−1
σ dz +

∫ N

NIT

h(z)
σ−1
σ dz

) σ
σ−1

.

1See the appendix.
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Using (13), (18) and 19), respectively, and re-arranging gives the expression for total pro-

duction of human services as:2

H =

((∫ NIT

N−1

γIT (z)σ−1dz

) 1
σ

(AITLIT )
σ−1
σ +

(∫ N

NIT

γL(z)σ−1dz

) 1
σ

(ALLL)
σ−1
σ

) σ
σ−1

With the definitions ΓIT (NIT , N) =
∫ NIT
N−1

γIT (z)σ−1dz and ΓL (NIT , N) =
∫ N
NIT

γL(z)σ−1dz =

Γ(NIT , N)Π(NIT , N)σ−1 we can rewrite the aggregate optimal human service production as

H =
[
(ΓIT (NIT , N))

1
σ (AITLIT )

σ−1
σ + ΓL (NIT , N)

1
σ (ALLL)

σ−1
σ

] σ
σ−1

. (11)

This expression is similar to the familiar Constant Elasticity of Supply (CES) production

function.

5 Concluding Remarks

In this paper, we contributed to the modeling of Artificial Intelligence (AI) in economics by

adapting the task-approach to labor markets to reflect the distinctiveness of AI not as a task

or skill, but as an ability. Our ability-sensitive specification of the task-approach allowed

us to model in a more detailed and more nuanced manner, the labor market consequences

of AI progress. A critical insight from our reformulation is that an economy will broadly

(large NIT ) utilize AI technologies if (i) the economy is relatively abundant in sophisticated

programs and machine abilities compared to human skills; (ii) the economy hosts a relatively

large number of AI-providing businesses and experts; and (iii) the task-specific productivity

of AI services are relatively high compared to the task-specific productivity of general labor

and labor skills. Further, as access to data is essential for task-specific AI in our model, its

2For details see the Appendix.
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relative abundance will be another determinant the diffusion of AI.

From a country perspective, the comparative abundance of the factors identified in the pre-

vious paragraph will determine the composition of human service in that country. If, for

instance, IT experts or business solutions are widely available, more tasks will be auto-

mated. Similarly, if IT knowledge and AI algorithms are readily available, relative wages

wL
wIT

will increase, and human labor tasks will become relatively more expensive, furthering

automation.

Thus, our modification of the task-approach to labor markets provides not only a more

detailed, but also a more nuanced description of AI automation, by describing how progress

in AI abilities can turn more tasks into tasks that are amenable to automation.
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Appendices

Efficient production of human services

Optimal allocation within the task approach: Human service firms

max : πH = pHH − ph(z)h(z) = pH

(∫ N

N−1

h(z)
σ−1
σ dz

) σ
σ−1

− ph(z)h(z).

F.O.C.

pH
σ

σ − 1

(∫ N

N−1

h(z)
σ−1
σ dz

) σ
σ−1
−1
σ − 1

σ
h(z)

σ−1
σ
−1 − ph(z) = 0

pH

(∫ N

N−1

h(z)
σ−1
σ dz

) σ
σ−1
−1

h(z)
σ−1
σ
−1 = ph(z)

pH

(∫ N

N−1

h(z)
σ−1
σ dz

) 1
σ−1

h(z)−
1
σ = ph(z)

pHH
1
σh(z)−

1
σ = ph(z)

arriving at

h(z) =
H

ph(z)σ
pσH , (12)

see (12).

Demand for task z : Using marginal production and productivity rules

h(zIT ) = AITγIT (z)lIT (z) production (7) h(zL) = ALγL(z)lL(z)

phAITγIT (z)lIT (z) = lIT (z)wIT
marginal productivity

and factor reward
phALγL(z)lL(z) = lL(z)wL

ph (zIT ) = wIT
AIT γIT (zIT )

price = unit labor costs ph (zL) = wL
ALγL(zL)

and plugging in gives (13) as being the optimal demand for h(z),

h(z) = H(
wIT

AIT γIT (z)

)σ pσH , h(z) = H(
wL

ALγL(z)

)σ pσH ,
h(z) = pσHH

(
AIT
wIT

)σ
γIT (z)σ, h(z) = pσHH

(
AL
wL

)σ
γL(z)σ.

(13)
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Demand for each kind of labor in task z : In order to determine the marginal pro-

ductivity for each total labor input, the productivity for each kind of labor is derived from

(13) and (7), and we can obtain the optimal demand for IT labor :

AITγIT (z)lIT (z) = h(z) = pσHH

(
AIT
wIT

)σ
γIT (z)σ,

lIT (z) =


(
pH
wIT

)σ
H (AIT )σ−1 γIT (z)σ−1 if z ∈ [N − 1, NIT ]

0 if z ∈ [NIT , N ]
(14)

and standard labor:

ALγL(z)lL(z) = h(z) = pσHH

(
AL
wL

)σ
γL(z)σ

lL(z) =

0 if z ∈ [N − 1, NIT ](
pH
wL

)σ
H (AL)σ−1 γL(z)σ−1 if z ∈ (NIT , N ]

(15)

Total IT labor is fully employed and allocates to all tasks using IT labor. This holds for

standard labor respectively

LIT =

∫ NIT

N−1

lIT (z)dz, and (16)

LL =

∫ N

NIT

lL(z)dz. (17)

Income of IT expert wIT : expert With the integral in (14) [lIT (z) =
pσH
wσIT

HγIT (z)σ−1 (AIT )σ−1]

we obtain ∫ NIT

N−1

lIT (z)dz =

∫ NIT

N−1

pσH
wσIT

HγIT (z)σ−1 (AIT )σ−1 dz

LIT =
pσH
wσIT

H (AIT )σ−1

∫ NIT

N−1

γIT (z)σ−1dz

wσIT = pσH
H

LIT
(AIT )σ−1

∫ NIT

N−1

γIT (z)σ−1dz

such that with full employed IT labor we can determine the wages of IT labor as

wIT = pH

(
H

LIT

) 1
σ

(AIT )
σ−1
σ

(∫ NIT

N−1

γIT (z)σ−1dz

) 1
σ

, (18)

16



Symmetrically for standard labor,∫ N

NIT

lL(z)dz =

∫ N

NIT

pσH
wσIT

HγIT (z)σ−1 (AIT )σ−1 dz

LIT =
pσH
wσIT

H (AIT )σ−1

∫ N

NIT

γIT (z)σ−1dz

wσIT = pσH
H

LIT
(AIT )σ−1

∫ N

NIT

γIT (z)σ−1dz

wL = pH

(
H

LL

) 1
σ

(AL)
σ−1
σ

(∫ N

NIT

γL(z)σ−1dz

) 1
σ

. (19)

The resulting internal relative factor productivity for labor is:

wL
wIT

=

(
pHH
LL

) 1
σ

(AL)
σ−1
σ

(∫ N
NIT

γL(z)σ−1dz
) 1
σ

(
pHH
LIT

) 1
σ

(AIT )
σ−1
σ

(∫ NIT
N−1

γIT (z)σ−1dz
) 1
σ

wL
wIT

=

(
LIT
LL

) 1
σ
(
AL
AIT

)σ−1
σ

( ∫ N
NIT

γL(z)σ−1dz∫ NIT
N−1

γIT (z)σ−1dz

) 1
σ

Endogenous switch to AI/automated tasks NIT : From the discussion of (8) it is

known that tasks are ordered such that γ (z) = γL(z)
γIT (z)

, and ∂γ(z)
∂z

> 0. If it is assumed that

task NIT is the task that exactly separates the production mode, and if tasks are continues,

the condition (8) can be rewritten as follows:

ALγL(NIT )

AITγIT (NIT )
<

wL
wIT

=

(
LIT
LL

) 1
σ
(
AL
AIT

)σ−1
σ

( ∫ N
NIT

γL(z)σ−1dz∫ NIT
N−1

γIT (z)σ−1dz

) 1
σ

0 = G = γ (NIT )−
(
AITLIT
ALLL

) 1
σ

( ∫ N
NIT

γL(z)σ−1dz∫ NIT
N−1

γIT (z)σ−1dz

) 1
σ

(20)
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If dG
dNIT

6= 0 , G implicitly defines a function NIT = NIT (LIT , LL, AIT , ...).Thus, we need to

calculate the respective interesting derivatives.

dG

dNIT

=
∂γ (NIT )

∂NIT

+

 1
σ

(
AITLIT
ALLL

) 1
σ

( ∫N
NIT

γL(z)σ−1dz∫ I
N−1 γIT (z)σ−1dz

) 1
σ

[
γL(NIT )σ−1∫N

NIT
γL(NIT )σ−1dz

+ γIT (NIT )σ−1∫NIT
N−1 γIT (NIT )σ−1dz

]
 > 0

and defining ΓIT (NIT ) =
∫ NIT
N−1

γIT (z)σ−1dz, dΓIT
dNIT

= γIT (NIT )σ−1; and ΓL (NIT ) =
∫ N
NIT

γL(z)σ−1dz,
dΓL
dNIT

= −γL(NIT )σ−1 we obtain

∂G

∂NIT

=
∂γ (NIT )

∂NIT

+
1

σ

(
AITLIT
ALLL

) 1
σ
(

ΓL (NIT )

ΓIT (NIT )

) 1
σ
[
γL(NIT )σ−1

ΓL (NIT )
+
γIT (NIT )σ−1

ΓIT (NIT )

]
> 0

∂G

∂AIT
= − 1

σ

(
AITLIT
ALLL

) 1
σ
−1(

ΓL (NIT )

ΓIT (NIT )

) 1
σ LIT
ALLL

< 0

and the derivative of the implicit function NIT = NIT (AIT ) is

dNIT

dAIT
= −

∂G
∂AIT
∂G
∂NIT

> 0

More specific:

dNIT

dAIT
=

1
σ

(
AITLIT
ALLL

) 1
σ
(

ΓL(NIT )
ΓIT (NIT )

) 1
σ 1
AIT

∂γ(NIT )
∂NIT

+ 1
σ

(
AITLIT
ALLL

) 1
σ
(

ΓL(NIT )
ΓIT (NIT )

) 1
σ
[
γL(NIT )σ−1

ΓL(NIT )
+ γIT (NIT )σ−1

ΓIT (NIT )

]
ηNIT ,AIT =

dNIT

dAIT

AIT
NIT

=
1

σ ∂γ(NIT )
∂NIT

(
ALLL
AITLIT

ΓIT (NIT )
ΓL(NIT )

) 1
σ

+ γL(NIT )σ−1

ΓL(NIT )
+ γIT (NIT )σ−1

ΓIT (NIT )

1

NIT

Total supply of human service inputs

From (13) it is known that h(z) = pσHH
(
AIT
wIT

)σ
γIT (z)σ for z ∈ [N − 1, NIT ., and h(z) =

pσHH
(
AL
wL

)σ
γL(z)σ for z ∈ [NIT , N ]. Plugging this in (6) generates an expression for the
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total value of H:

H =

(∫ NIT

N−1

h(z)
σ−1
σ dz +

∫ N

NIT

h(z)
σ−1
σ dz

) σ
σ−1

=

(∫ NIT

N−1

(
pσHH

(
AIT
wIT

)σ
γI(z)σ

)σ−1
σ

dz +

∫ N

NIT

(
pσHH

(
AL
wL

)σ
γL(z)σ

)σ−1
σ

dz

) σ
σ−1

.

Using (18) and (19) results in: wIT = pH

(
H
LIT

) 1
σ

(AIT )
σ−1
σ

(∫ NIT
N−1

γIT (z)σ−1dz
) 1
σ

H =

(∫ NIT

N−1

(γIT (z)σ)
σ−1
σ dz

(
pσHH

(
AIT
wIT

)σ)σ−1
σ

+

∫ N

NIT

(γL(z)σ)
σ−1
σ dz

(
pσHH

(
AL
wL

)σ)σ−1
σ

) σ
σ−1

(21)

=

(∫ NIT

N−1

γIT (z)σ−1dzpσ−1
H H

σ−1
σ

(
AIT
wIT

)σ−1

+

∫ N

NIT

γL(z)σ−1dzpσ−1
H H

σ−1
σ

(
AL
wL

)σ−1
) σ

σ−1

=


∫ NIT
N−1

γIT (z)σ−1dzpσ−1
H H

σ−1
σ

(
AIT

pH

(
H
LIT

) 1
σ

(AIT )
σ−1
σ

(∫NIT
N−1 γIT (z)σ−1dz

) 1
σ

)σ−1

+
∫ N
NIT

γL(z)σ−1dzpσ−1
H H

σ−1
σ

(
AL

pH

(
H
LL

) 1
σ

(AL)
σ−1
σ

(∫N
NIT

γL(z)σ−1dz
) 1
σ

)σ−1



σ
σ−1

=


∫ NIT
N−1

γIT (z)σ−1dzpσ−1
H H

σ−1
σ

(
p−1
H H− 1

σ L
1
σ
ITA

1
σ
IT(∫NIT

N−1 γIT (z)σ−1dz
) 1
σ

)σ−1

+
∫ N
NIT

γL(z)σ−1dzpσ−1
H H

σ−1
σ

(
p−1
H H− 1

σ L
1
σ
L A

1
σ
L(∫N

NIT
γL(z)σ−1dz

) 1
σ

)σ−1



σ
σ−1

=


∫ NIT
N−1

γIT (z)σ−1dzpσ−1
H H

σ−1
σ

p
−(σ−1)
H H−σ−1

σ (LITAIT )
σ−1
σ(∫NIT

N−1 γIT (z)σ−1dz
)σ−1

σ

+
∫ N
NIT

γL(z)σ−1dzpσ−1
H H

σ−1
σ

p
−(σ−1)
H H−σ−1

σ (LLAL)
σ−1
σ(∫N

NIT
γL(z)σ−1dz

)σ−1
σ


σ
σ−1

=

∫ NIT

N−1

γIT (z)σ−1dz
(LITAIT )

σ−1
σ(∫ NIT

N−1
γIT (z)σ−1dz

)σ−1
σ

+

∫ N

NIT

γL(z)σ−1d
(LLAL)

σ−1
σ(∫ N

NIT
γL(z)σ−1dz

)σ−1
σ


σ
σ−1

H =

((∫ NIT

N−1

γIT (z)σ−1dz

) 1
σ

(LITAIT )
σ−1
σ +

(∫ N

NIT

γL(z)σ−1dz

) 1
σ

(LLAL)
σ−1
σ

) σ
σ−1
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