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ABSTRACT

Adolescence Development and the Math
Gender Gap

Using different production function models, we study the causal association between
adolescence development and the increase in the gap in math performance between
boys and girls. We use data from the 1958 British National Child Development Study, a
longitudinal survey of all British children born in the first week of March 1958, containing
unique information on puberty development and educational outcomes from childhood into
adolescence. We first document a widening of about 10 percent of a standard deviation
in the gender gap in maths from primary to secondary school in the UK, and show that
adolescent development contributes to explain almost two thirds of the widening of the
math gender gap during the adolescence years. We also explore the mechanisms behind
these effects. Our evidence regarding differences in the impact of puberty development
by age, subject and self-perceived math ability suggests that both social conditions and
biological factors are behind the estimated relationships between adolescent development
and the increase in the gender gap in math in secondary school.
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Introduction

Most countries have witnessed a large increase in female human capital accumulation and labour
force participation. Gender differences in academic attainment and achievement have dramatically
reversed in the last decades in the United States and whereas in the 1960s there were 1.6 males for
every female graduating from four-year colleges, there are now 1.35 females for every male (Goldin et
al. 2006). Similarly, across OECD countries while in 1998 21% of adult men had a college degree vs.
19% of adult women, by 2018 the relative shares had reversed with 40% of women holding a college
degree vs. 34 % of men (OECD, 2019a). However, the literature has consistently documented a
higher academic achievement in mathematics of boys over girls in many countries (Guiso et al 2008,
Kane and Mertz 2012). On average girls’ math results are 9% of a standard deviation lower than
boys’ at 15 years of age, although there is substantial variation across countries (see for instance
Borgonovi et al. 2018 using data on 13 OECD countries) and the gender gap appears to be larger at
the top of the ability distribution (Machin and Pekkarinen 2008, Ellison and Swanson 2010). This
paper explores whether adolescence development can explain the different trends over the lifecycle in

math performance by boys and girls, and the mechanisms underlying this effect.

A Dbetter understanding of the mechanisms that facilitate mathematics performance of boys
and girls is essential from the point of view of equal opportunities policies and gender equality.
Despite the remarkable narrowing differences in educational outcomes, women continue to be a very
low proportion of all graduates in science, technology, engineering and mathematics (STEM). In the
United States, Kahn and Ginther (2017) show that in 2014 women received only 27% of
undergraduate degrees in the math-intensive STEM fields, compared to 69% of undergraduate
degrees in other STEM fields, including social sciences. Across the developed world only 31% of
women graduate in STEM (OECD, 2018). This underrepresentation of women in math intensive
STEM fields has important consequences for gender inequality. Math skills during school years
appear to constitute a good predictor of readiness for STEM programs at university, which offer
higher wages (Black et al. 2008; Blau and Kahn 2017). For instance, students completing at least 3
math and science classes in the last year of high school have an 80% chance of enrolling in STEM
programs at university, while those failing to meet this standard have just a 5% chance of entering
any STEM program (Card and Payne 2017). Mathematics is a valuable skill in and of itself. An

additional course of study in algebra and geometry in high school increases future earnings between



2.5 and 3.2 percent (Rose and Betts 2004). And students induced to take advanced mathematics

courses earn about 3 percent more in Denmark (Joensen and Nielsen 2015).

A series of studies have recently documented a widening of the gender gap in math from
primary into secondary school in Chile, Italy, and the US (Bharadwaj et al. 2016; Contini et al 2017;
Ellison and Swanson 2018). On average the math gender gap more than triples from about 3% of a
standard deviation at age 9/10 to about 9% at age 15/16 (Borgonovi et al. 2018). Using different
cohort-based data sources for the UK spanning over three decades, we also document a widening of
the math gender gap during the adolescence period in the UK that is persistent over time. In
particular, the math gender gap increases from 0.08 standard deviations at 7 years of age to 0.18 at
16 years old for the 1958 cohort of the National Child Development Study (NCDS58). For the 1990
cohort of the Avon Longitudinal Study of Parents and Children (ALSPAC90), the math gender gap
increases from a null figure at age 7 to 0.12 standard deviations at age 14. Similarly, we report
gender gaps in maths over time for later cohorts using available data for England from TIMMS and
PISA (Mullis et al. 2016; OECD, 2010,2014,2019b). We are able to identify gaps for the 1993 cohort,
interviewed at age 9-10 in 2003 TIMMS and at age 15-16 in 2009 PISA; for the 1996-1997 cohort,
interviewed at age 9-10 in 2007 TIMMS and at age 15-16 in 2012 PISA; and for the 2001-2002
cohort, interviewed at age 9-10 in 2011 TIMMS and at age 15-16 in 2018 PISA. For all cohorts, from
non-significant differences in math achievement at age 9, we reach significant positive gaps in favour
of boys at age 15-16. The size of the gap seems to have diminished over time from about 0.21
standard deviations in 2009 to a gap of about 0.12 standard deviations in 2012 and 2018, but it still

remains significant.

The mechanisms behind the increase in the gender gap in mathematics from childhood to
adolescence remain poorly understood. Recent research in neuroscience recognizes now that
adolescents’ brains are physically different from younger children’s brains and adults’ brains
(Blakemore 2018 p.73). Adolescence is a sensitive period, second to early childhood, when connections
between neurons (synapses) can be pruned or strengthened to increase neural efficiency (Blakemore

and Choudhury 2006, Steinberg 2014, Dahl et al. 2018)." The economics literature has also shown a

' In particular during adolescence grey matter diminishes in volume as synapses are pruned, while white matter increases as
axons are myelinated to increase information speed (Giedd et al. 1999, Blakemore et al 2010). These processes are
accompanied by higher efficiency in cognitive function including improvements in intelligence quotient, working memory,
problem solving, executive functioning, and social cognition (Steinberg et al. 2009, Fulrmann et al. 2015). Longitudinal
studies suggest that the physical and hormonal changes during puberty may directly influence the grey matter decreases

and white matter increases taking place during adolescence (Herting et al., 2015; Goddings et al. 2014; Piekarsky et al.
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renewed interest in the adolescence period from studying risky behaviour (Aizer 2017) to the way
adolescence children invest their time (del Boca et al. 2017) to non-cognitive skills (Lundberg 2017
and Schurer 2017). It has documented that gender differences in competitiveness, leadership, and risk
preferences kick in around puberty. For instance, Alan et al (2019) show that, while there is no
gender difference in the willingness to become a leader among young children, a large gap emerges
around puberty. Andersen et al (2013) document a similar finding for competitiveness. Also,
Andreoni et al. (2019) find that while there are no differences in risk taking among children aged 3 to
12, 13-to-15-year-old girls are significantly more risk averse than similarly aged boys, suggesting that

the gap in risk taking emerges in adolescence.

The fact that puberty encompasses physical and hormonal changes opens the door for biology
to affect cognitive abilities and behaviour, and the fact that boys and girls reach adolescence at
different points in their life cycle may also contribute to an emergence of a math gender gap. It is
also possible that the physical changes taking place during adolescence may also affect the expected
behaviour of boys and girls. Asynchronous development may for instance cause problems in
psychosocial adaptation increasing the chances of risky behaviours (Brooks-Gunn et al 1985, Haynie
2003). Also, social norms to develop stereotypical gender identities may become stronger with
puberty (Akerlof and Kranton 2000). In fact, Andersen et al (2013) compare competitiveness
differences in a matrilineal and a patriarchal society and show that whereas there are no differences
in competitiveness between boys and girls at any age in the matrilineal society, girls become less
competitive around puberty in the patriarchal society. They conclude that culture and socialization
appear to interact with biological forces in determining the difference in gender gaps between the
matrilineal and patriarchal societies around puberty. This view is also shared by neuroscientists that
believe that from puberty onwards the social world around us also influences brain development, that

is, which neural connections are pruned, and which are retained (Blakemore 2018, Dahl et al. 2019).

We use a unique dataset, the first four waves (pregnancy and birth, and 7, 11, and 16 years-
old) of the NCDS58. The NCDS is specially indicated to study the impact of puberty development on
student outcomes because it is the only database to offer, besides self-reported assessments, medical

assessments of puberty development alongside a rich set of cognitive outcomes. Medical assessments

2017). In consequence pubertal development may directly impact social and cognitive abilities. (Picci and Scherf 2016;
Steinberg 2008). Moreover, pubertal development may have sex-specific effects on trajectories of brain maturation and
neurodevelopment in boys and girls, which may give rise to important differences in social and cognitive abilities by gender
(Brouwer et al. 2015).



of puberty were performed alongside the rest of medical examinations minimizing sample attrition,
and are generally considered the gold standard in the evaluation of puberty development (Baird et al.
2017). Its longitudinal character allows implementing very rich dynamic production function models
to estimate the causal effect of puberty, and the availability of a rich set of individual (endowments),
household, and school characteristics allows us to control for many arguably exogenous variables that

very rarely the literature can control for.

We first present novel causal evidence on the impact of puberty development on boys’ and
girls’ math test scores at 11 and 16 years of age by estimating very rich production function models
of boys’ and girls’ math skills, paying special attention to the assumptions needed to identify key
parameters in each model (see Todd and Wolpin 2003). We estimate contemporaneous, value added,
cumulative value-added models (see Fiorini and Keane 2014). We address two key challenges for
identification. First, we control for measurement error in the lagged test score through an
instrumental-variables model, using the twice-lagged skill as an instrument as in Del Bono et al.
(2016). Second, we minimize selection bias due to unobservable factors by using a very rich dataset
that allows controlling for a myriad of variables. We also perform falsification analyses showing that
puberty development is unrelated to maternal education, maternal smoking during pregnancy, birth
weight, and pre-term birth, suggesting that unobserved factors such as maternal IQQ or nutrition
patterns are not driving our results. We also show the robustness of our findings to departures from
the cumulative value-added model proposed by Del Boca et al. (2017) and Agostinelli et al (2019)
that consider additional information on reading scores and non-cognitive skills in estimating math

skills production functions.

Our findings suggest that puberty development may explain the widening in the math gender
gap over the lifecycle, especially its widening during the adolescence years. Using different models
and puberty measures, we find that puberty development impacts differently boys’ and girls’ math
outcomes, benefiting girls’ outcomes for girls who show advanced development at 11 years of age but
impairing the math performance of girls who show advanced development at 16 years of age, and
improving -or not harming, depending on the specification- the math performance of boys that show
advanced development at 16 years of age. We find that the different timing in and sign of the
impacts of puberty on math scores by gender can explain about two thirds of the math gender gap.
The math gender gap drops from about 20 percent to about 8 percent of a standard deviation at age

16 when puberty development is controlled for.



Further analysis into the mechanisms through which pubertal development may affect math
outcomes suggests that social conditions interact with biological factors in shaping gender gaps in
maths. First, if the channel was purely biological the impact of adolescent development should be
similar independently of the child’s age. We find that, at least for girls, puberty development is
positive for math cognitive development at 11 years of age but negative later on. Second, a purely
biological channel would also imply that adolescent development would impact math attainment in
the same way independently of the respondent’s self-assessed ability in math. Heterogenous analyses
reveal that there is a much larger impact of puberty development on boys showing higher self-
perceived assessment of math skills. If puberty development impacted math outcomes purely
through a biological mechanism, we should expect to see the same effects from puberty on math and
on English performance by boys and girls. We find that puberty development influences 16-year-old
girls’ English and math skills differently, as would be consistent with a social stereotype explanation
of gender gaps in cognitive outcomes. These results are consistent with previous economic literature
emphasizing the role of both self-confidence and social-stereotypes in explaining math gender gaps
(Coffman 2014 and Bordalo et al. 2019) and prior child development literature documenting increases

in self-esteem upon development for boys, and decreases for girls (Martin and Steinbeck 2017).

We contribute to the novel and growing literature documenting a persistence of the widening
of the math gender gap over time by highlighting the causal role of puberty in widening the math
gender gap upon puberty and the possible mechanisms at play. A limited number of studies has
looked at the contemporaneous influence of puberty on educational outcomes, estimating mere
correlations, including no controls for birth endowments or schooling variables (Koivusilta and
Rimpela 2004, Cavanagh et al. 2007, Dreber et al 2011, Koerselmann and Pekkarinen 2017, Martin
and Steinberg 2017). None of the existing studies looking at puberty and educational outcomes has
focused on the impact of puberty development on math’s skills. Our study also contributes to the
literature exploring the potential channels of gender differences on math academic achievements.
Most studies use cross-section data and cannot include child endowment proxies. Out of the few
longitudinal studies documenting the widening of the math gender gap during adolescence (Fryer and
Levitt 2010, Contini et al. 2017) only the paper by Bharadwaj et al (2016) includes birth
characteristics. This study is the first to estimate the dynamic causal impacts of puberty

development on math outcomes.



Our work also contributes to the very recent literature emphasizing differences in economic
preferences of boys and girls emerging during adolescence such as self-efficacy, competitiveness,
leadership, and risk taking (Andersen et al. 2013, Alan et al 2019, Andreoni et al. 2019), and how
gender stereotypes interact with self-confidence in explaining differences in educational performance
and occupational choices by boys and girls (Coffman 2014; Reuben, et al. 2017, Bordalo et al. 2019,
Carlana 2019). Puberty is commonly proxied by age in these studies, which makes it harder to
understand the mechanisms at play. The richness of information in our data related to the child’s
health, education, and school and family environments allows us to test for the mechanisms behind

the effect of puberty on math outcomes and to understand the differential effect for boys and girls.

This paper is organized as follows. Section 2 describes the dataset. Section 3 presents the
different empirical specifications of the math skills production function. Section 4 presents main
estimation results together with specification and identification checks. Section 5 discusses potential

mechanisms. Finally, Section 6 concludes.

Data

The 1958 National Child Development Study (NCDS) is a longitudinal study that sampled all
children born in the first week of March 1958. Originally designed as a perinatal mortality study, the
initial birth survey was followed by different sweeps carried out when the cohort members were 7, 11,
16, 23 and 33 years of age. More recently, the UCL Centre for Longitudinal Studies has carried out
the four most recent sweeps, when cohort members turned 41, 46, 50, and 55 years old (in 2013).
The studies between ages 7 and 16 contain information on cognitive outcomes, schooling, health, and
family circumstances. In particular, the NCDS has special features that make it especially suitable for
the study of puberty influences on educational achievement. First, thanks to its longitudinal nature
we can construct different puberty measures for ages 11 and 16, coincident with cognitive
achievement measures. Second, it offers information on the child’s school environment, such as school
size, whether schooling is gender-segregated, and the type of tracking policies followed. And third,
the study offers both reported and, importantly, medical assessments of puberty development. This
last feature constitutes the main advantage of the NCDS over other longitudinal studies that also
include education and puberty measures, such as the Avon Longitudinal Study of Parents and
Children (ALSPAC), the Millenium Cohort Study (MCS), the US Child Development Supplement,

the National Longitudinal Study of Adolescent to Adult Health (Add Health), and the Longitudinal



Study of Australian Children. These studies offer parent or child self-assessed measures of puberty
development, which are generally considered to be less accurate than objective assessments by
doctors (Brooks-Gunn and Warren 1985; Baird et al. 2017). Also, given that puberty examinations
were performed together with the rest of medical examinations in the NCDS, sample attrition was
minimized. Additionally, compared to other longitudinal studies in the UK such as ALSPAC and
MCS, in the NCDS all children were born in the same week, and thus issues of differences in

chronological ages are minimized.

We select how many individuals for which we have information on test scores at age 7 and
both test scores and puberty measures at ages 11 and 16. Columns 1 to 3 in Table B.1 in Appendix
B show the effect of attrition and missing data on the distribution of some observables. We
acknowledge that our sample may not be adequately representative of the non-white population.
However, the small size of the coefficients for the rest of the independent variables suggest that

selection on observables is quantitatively weak.
2.1 Test scores

Our main dependent variables are standardized math scores. The NCDS58 administered math tests
at ages 7, 11, and 16. At age 7, 10 problems were read to the child and the score ranged from 0 to 10.
At age 11, there were 40 questions (scores ranged 0 to 40), and at age 16, there were 31 questions
(scores ranged from 0 to 31). (See examples of math problems in Appendix C). Children were also
administered reading tests at the same ages. There were 30 reading questions at age 7, 35 questions
at age 11, and 35 questions at age 16. (See examples of reading questions in Appendix C). All scores
are standardized to have a mean of zero and a standard deviation of one, so that all coefficients can

be read in units of one standard deviation. 2

Figure 1 (Table 1) presents trends in average standardized math and reading scores by
gender. Unlike the gap in reading scores that vanishes over the school years, the gap in math scores
is already present at 7 years-old at the beginning of primary school (about 9% of a standard
deviation), but after diminishing to approximately 4% of a standard deviation at 11 years of age,
widens considerably at 16, at the end of secondary school, reaching almost 20 percent of a standard

deviation.

2 Figure A.1 in Appendix A shows the raw distributions of math and reading scores by age and gender. Even if all the
children in our sample were born during the same week in March 1958, we include controls for when the tests were taken to

allow for comparison of children of different ages.



2.2 Adolescence development

Our main control variables are measures of puberty development. The NCDS58 measures adolescence

development at ages 11 and 16, through both medical assessments and direct questions to the child.

Our main measure of adolescent development is an index derived from the medical
assessments carried out at ages 11 and 16. The puberty index compiles all the information in the
medical assessments. Trained health personnel assessed anthropomorphic measures of the children at
ages 11 and 16, using standard procedures as suggested by Brooks-Gunn and Warren (1987) and
Coleman and Coleman (2002). At 11 years-old the NCDS58 information on the development of pubic
hair for both girls and boys together with the development of breast for girls and genitalia for boys
was gathered. All three development measures were coded from 1 (early development) to 5 (late
development) by NCDS. As in Koerselman and Pekkarinen (2018), we add up the two corresponding
measures for each child to obtain an increasing index of development ranging from 2 to 10 that we
rescale to the 0-1 interval. Information on the development of pubic hair (1 absent; 2 sparse; 3
intermediate; 4 adult) and axillary hair (1 absent; 2 sparse; 3 intermediate; 4 adult) for girls and
boys together with information on the development of facial hair for boys (1 absent; 2 sparse; 3
adult) and breast for girls (1 absent; 2 intermediate; 3 adult) was collected at age 16. Similarly, we
add up the three corresponding measures for each child to obtain an increasing index of development
ranging from 3 to 11 that we again rescale to the 0-1 interval. Therefore 0 corresponds to a child’s
adolescent development considered ‘absent’ in all measures; 1 corresponds to a child’s development
considered ‘adult’ in all measures; and the value of the index can be interpreted as the percentage of
undergone pubertal maturation. Figure 2 presents the distribution of the indices by gender. We
control for calendar month when assessments were performed to assure comparability of different

individuals.

From children’s questionnaires we know age at menarche for girls and when the voice broke
for boys. Both the onset of the first menstruation for girls and voice breaking for boys constitute
distinct events in puberty (Day et al. 2014). Age at menarche, even if not adequately validated, has
been widely used in epidemiological studies as a proxy for pubertal stage (Baird et al 2017);
conversely voice breaking is a validated marker of male puberty development, associated to Tanner
stages 3 and 4 in late puberty (Hodges-Simeon et al 2013). In consequence our second measure of

puberty development is age at development. Figure 2 also presents its distribution by gender.



Table 2 shows the descriptive statistics of our puberty measures by gender. Column 1 shows
that at 11 years, both boys and girls are in the first stages of development, approximately in their
first quarter. However, girls have an index of 0.2 points and boys a lower index of 0.15 points, in a 0-
1 scale, that is, girls present on average a development level of 2 (early-to-mid-development) out of 5
possible stages for both breast development and pubic hair and boys may have a development level
of 2 for genitalia development but just a development level of 1(early development) for public hair.
At 16 years of age both boys and girls are in the second half of their puberty development (Column
2). On average, girls have completed 80 percent of their pubertal maturation (showing on average
‘intermediate’ hair and breast development), while boys have just completed about 60 percent
(showing ‘sparse’ to ‘intermediate’ hair development). These disparities are also present when
considering age at development, taking place on average for girls aged 12 and a half years and for

boys aged almost 14 years (Column 3).
2.4 Controls and other variables used in the analysis

NCDS offers a vast array of potential control variables. We consider, not only demographic maternal
characteristics (race, age at birth, lone parenthood, and any postsecondary education) usually
included as controls in math gender gap analyses (see for instance Fryer and Levitt 2010), but also a
whole bunch of additional variables that can safely be considered exogenous to the impact of puberty
development on cognitive outcomes. These variables include several birth and pregnancy
characteristics (birth order, birth weight, term pregnancy, birth complications, maternal smoking
during pregnancy, mother working before birth), maternal and family background variables (English
non-spoken at home, mother’s height, mother's body mass index (BMI)), child's physical features
(child's BMI at 7 years of age), schooling characteristics (class size, type of secondary school-
grammar, modern, comprehensive), and region of residence at birth. Using such a rich set of control
variables minimizes the risk of omitted variable bias when estimating skills’ production functions.
Descriptive statistics for these variables by gender are offered in Panels A through D of Table B.1 in

Appendix B.

Empirical specification

Our goal is to determine whether there exists an effect of puberty development on boys’ and girls’
math performance. We model the math skills production function using the framework developed by

Todd and Wolpin (2003, 2007), which considers school, family, and children’s inputs.
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Recent literature has emphasized the existence of sensitive periods in the formation of skills
over the life cycle, that is, human capital inputs likely having different effects at different
developmental stages (Cunha and Heckman 2007 Kautz et al. 2014, Keane et al. 2018). In particular,
there is no a priori expectation that the impact of puberty development on math scores is constant
with age. Therefore, as starting point, we test whether the effect of puberty development on math
skills at 11 years of age is similar to the effect at 16 years of age, using the following

contemporaneous model:

Where Test;; is individual i”s standardized test score at age t. PU; is a vector of individual i’s
degree of adolescence development at age t, as measured by one of our puberty measures; B; is a
vector of a wide set of controls, including pregnancy and birth characteristics, family features, school
characteristics, and own child attributes as described in Table B.2 in Appendix B; and e;; is the error
term. Notice that one of our puberty measures, age at development, is only available at age 16, so we
only estimate equations for that age. Also, to allow for non-linearities we include a quadratic function

of age at development in all the models.

As emphasized by Fiorini and Keane (2014), in estimating Equation (1) we face the problem
of distinguishing a mere correlation between adolescence development and cognitive achievement
from a true causal effect. A common source of endogeneity is simultaneity (reverse causality). This
source of endogeneity is unlikely to appear in our case. Presumably more cognitively able children are
not going to be able to influence their adolescence development. A second source of endogeneity
relates to omitted variables, such as unobserved inputs and endowments. For instance, the child’s
diet may influence both the child’s adolescence development and test scores. Given that no dataset
contains a complete history of all relevant inputs, omitted variables remains problematic. The third
source of potential endogeneity is measurement error in both inputs and outcome measures. We use a
very rich source of data which hopefully reduces measurement error, but we also address this

potential problem below.

The literature has proposed two broad estimation strategies to deal with endogeneity due to
omitted variables: fixed-effect models and value-added models (see Todd and Wolpin 2003, 2007,

Fiorini and Keane 2014, and Del Boca et al. 2017). Within child fixed effect (first difference) models

11



require that human capital production functions are constant with age —so that both unobserved
inputs and the endowment can be differenced out. This assumption is not plausible in the context of

sensitive periods during childhood and adolescence. We thus turn to value-added models.

The value-added (VA) specification considers that both unobserved inputs and the
endowment can be accounted for by past test scores. Todd and Wolpin (2003) show that this
requires that the effects of all inputs, observed and unobserved, and the endowment decline at the
same rate with age. In particular, for instance, the impact of puberty development at age 11 on test
scores at age 16 would be a fraction 4; of the impact of puberty development at age 11 on test scores
at age 11 and the impact of the endowment at age 16 would be a fraction A; of the impact of the
endowment at age 11. If the estimated coefficient of past test scores A; is less than one, the value-
added specification would imply that the effect of past inputs must always decrease over time.

Formally:

(2) Testlt = PUitat + Blpt + /1tT€Stit_1 + eit

We can relax the assumption that the effect of observed inputs on test scores declines at the
same rate that unobserved inputs and the endowment by estimating an extended version of the
added value model that includes lagged inputs. We obtain the cumulative value-added (CVA) model
(Todd and Wolpin 2007). Given that we only observe puberty development at 16 and 11 years, this
model is only estimable for test scores at age 16. By including terms for past inputs in the estimating
equation we are able to estimate long-term dynamic impacts of puberty development on cognitive
skills and allow for different impacts of puberty development at age 11 on test scores at ages 16 and
11. We, however, still need to assume that the effect of unobserved inputs and endowments declines

with age at a specific rate (4;) and is uncorrelated with the error term e;;. Formally:

(3) Testyy = Y=o PUit—r @k + Bipy + AcTest_1 + e

Next, we address measurement error in the lagged test score.® In value-added models,
measurement error tends to bias downwards the coefficient on lagged achievement (4, in Equation

(3)) and may bias the observed input coefficients in an ambiguous direction (Del Bono et al. 2016,

3 We do not address measurement error in puberty development. First, because doctors’ assessments are less likely to show
measurement errors correlated to test scores; and second, because it is difficult to obtain valid instruments for puberty

measures.
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Keane et al. 2018). Our preferred specification involves instrumenting for lagged test scores using
two-period lagged outcomes in a cumulative value-added instrumental variables (CVA-IV)

specification:

(4) Testy = Y=o PUit—r @k + Li=o Xit—xBrx + Bipe + A Test,e_y + ey

Notice that this model can only be estimated for skills at age 16 and that when using the quadratic

function of age at development it tuns into a value-added instrumental variables model.

The causal dynamic effects of puberty development and Math test scores

In this section we present our main estimation results for the impact of puberty development on
math performance of boys and girls. We evaluate the impact of puberty development at 11 and 16
years old on math scores at 11 and 16 years of age, using the contemporaneous, VA, CVA, and CVA-

IV models of Section 3.

The different panels in Table 3 estimate the relationship between puberty and Math test
scores by child’s age and gender using the contemporaneous specification in Equation (1) for the
medical measures of puberty development: the puberty indices at ages 11 and 16. It clearly shows
different associations between puberty development and math test scores, by gender and age: whereas
boys show similar positive associations at 11 and 16 years of age, for girls the positive associations at
11 years of age are no longer present at 16 years. For instance, Column 1 shows that a one-point
increase in the puberty index at age 11, that is, going from totally immature to completely
developed, is associated with increases in boys’ Math scores of 20% of a standard deviation. For a
more realistic change in boys’ puberty index of 10 percentage points at age 11 (such as presenting
genitalia development at stage 2 instead of 1 out of 5 possible stages) Math test scores increase by
approximately 2% of a standard deviation at 11 years of age, an impact similar to 6% of the impact
of having a mother with post-secondary education. Column 2 shows that a similar 10-percentage-
point increase in the puberty index at age 11 for girls (such as presenting breast development at
stage 2 instead of 1 out of 5 possible stages) is associated with increases in Math test scores at age 11
of approximately 1.7% of a standard deviation, an impact similar to 5% of the impact of having a
mother with post-secondary education. Similarly, Columns 3 and 4 show that a 10 percentage point
increase in the puberty index at 16 years of age (such as presenting adult pubic hair development at

stage 4 instead of stage 2 —sparse- out of 4 possible stages) is associated with increases in boys’ Math

13



tests scores at age 16 of approximately 2% of a standard deviation again, but shows no correlation

with girls’ scores at that age.

The results in Columns 1 to 4 of Table 4 address potential endogeneity concerns of omitted
variables and measurement error by estimating the value-added models of Equations (2) to (4).
Overall, controlling for previous performance reduces the contemporaneous impact of puberty
development on boys’ and girls’ math test scores and even turns the impact negative for 16-year-old
girls. The fact that the estimates of the value-added model in Table 4 differ from the estimates of the
contemporaneous model in Table 3 suggest that unobserved inputs and the endowment are correlated

with puberty development and the estimates in Table 3 are likely biased.

Columns 1 and 2 of Table 4 show that at 11 years of age, the impact of current puberty
development is no longer significant for boys and drops to half of its size for girls, compared to the
figures in Table 3. That is, a 10pp increase in girls’ puberty index at 11 increases math scores just
0.9% of a standard deviation. Also, at 16 years of age (columns 3 and 4), a 10pp increase in the
puberty index at age 16 (such as presenting adult axillary hair development at stage 4 instead of
stage 3 —intermediate- out of 4 possible stages) increases boys’ math scores by about 0.8% of a
standard deviation, but reduces girls’ math scores by 0.9% of a standard deviation. Therefore,
moving from absent (0) to mature (1) puberty development at age 16 increases boys’ math scores

and decreases girls’ math test scores by roughly 10% of a standard deviation.

Columns 5 and 6 of Table 4 present estimation results for the cumulative value-added model
of Equation (3) that relax the assumption that the effect of puberty development on math scores
declines over time at the same rate as the impacts of unobserved inputs and the endowment. In
general, including information on puberty development at age 11 does not change the
contemporaneous impact of puberty development on boy’s math scores at age 16, but further
decreases the contemporaneous impact of puberty on girls’ math scores at age 16. Given that the
value-added model is nested on the cumulative value-added model, these results imply that the
value-added model may be adequate to estimate the unbiased impact of puberty development on
boys’ math skills, but not on girls’ math skills. In particular, columns 5 and 6 of Table 4 show that
at 16 years of age, a 10pp increase in the puberty index at age 16 increases boys’ math scores by
about 0.8% of a standard deviation as in Column 3, but reduces girls’” math scores by 1.2% of a

standard deviation, 0.3pp more than previously in Column 4. Column 6 additionally shows that
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puberty development has long-term effects beyond its impact through past scores for girls. A 10-
percentage-point increase in the puberty index of girls at age 11 (such as presenting breast
development at stage 3 instead of 2 out of 5 possible stages) increases Math test scores at age 16 by
1.4% of a standard deviation, that is, roughly a 15% increase for moving from infant (0) to mature

(1) development at age 11.

Columns 7 and 8 of Table 4 further address measurement problems. Using twice-lagged skills
to instrument for lagged test scores increases the coefficient of the lagged tests scores as expected by
about 20 to 30 percent. The point estimates of the effect of puberty development on math scores
remain very similar, however. For boys, a 10pp increase in the puberty index at age 16 increases
boys’ math scores by about 0.6% of a standard deviation, significant at the 17% level, slightly lower
than reported results in Columns 3 and 5. A similar increase in the puberty index at age 16 reduces
girls” math scores by 1.4% of a standard deviation, 0.2pp more than previously in Column 6. The
long-term impact of a 10-percentage-point increase in the puberty index of girls at age 11 increases

Math test scores at age 16 by 1.3% of a standard deviation, 0.1pp less than in Column 6.

To put these results into perspective, Carneiro et al (2013) report for instance that one
additional year of mother’s education increases mathematics standardized scores by 3.8% of a
standard deviation at 12 to 14 ages. Our estimates imply that the impact of puberty development on
math scores at 16 years of age, that is, the impact of moving from infant to mature in the puberty
index at 11 years for girls (about 15% of a standard deviation), or moving from infant to mature in
the puberty index 16 years for boys (roughly 7% of a standard deviation), may be similar to the
impact of between 1 and 4 more years of maternal education. The impact of puberty development on

math scores is quantitatively and qualitatively important.

In other to see the contribution of puberty to explaining the math gender gap we estimate
equations 2, 3, and 4 by age including a female dummy indicator and its interaction with our puberty
measure. Estimating one equation for boys and girls implies assuming that boys and girls share the
same production function (see the discussion in Baker and Milligan 2016). Table 5 presents the
results for the change in the math gender gap when we control for puberty development. To get a
sense of the impact of controlling for puberty development, we first show the size of the gender gap
for the different models in the previous Table 4 before any puberty measure or its interaction with

gender are included (Panel A). The specifications in Panel B of Table 5 include the puberty index

15



and its interaction with the female dummy. Once previous scores are controlled for, there is virtually
no gender gap in maths at 11 years of age. Including controls for puberty development does not
change this finding (Column 1 in Table 5). However, at 16 years of age there is a gap of about 18%
of a standard deviation (Columns 2 to 4 in Panel A) that diminishes to almost a third of its previous
size and turns insignificant when puberty development and its interaction are included in the

regressions (Columns 2 to 4 in Panel B).

4.1. Robustness Checks to Alternative Model Specifications and Measures of Adolescence

Development

In this section we assess the sensitivity of our findings to (1) changes in model specification and (2)
using an alternative self-assessed measure of puberty development. We first present two departures
from our basic value-added model for the impact of puberty development at 16 years of age that
consider additional information on reading scores and non-cognitive skills in estimating math skills
production functions. First, Del Boca et al (2017) propose an additional model that relaxes the
requirement that past scores are uncorrelated with the error term in Equation (3). In their two-step
estimation procedure, they first compute an individual fixed effects estimation of the depreciation
rate (A; in Equation (3)), using the information on the different skills for each child at times t and t-
1. We use math, reading, and non-cognitive test scores at 16 and 11 years of age to estimate this
persistence parameter that controls for the child-specific endowment. In the second step, A; is
replaced with its estimate from the fixed effects regression, obtaining the two-step cumulative value-

added model:

(5) Testy — A Testy_, = k=0 PUit_iay + Tieo Xie—Br + Bipe + ;¢

Secondly, in the spirit of Cunha et al (2010) we consider skills as latent variables imperfectly
measured and include past measures of other skills, reading and non-cognitive skills, in the
production function of math skills. Following Agostinelli et al (2019) we further address potential
mismeasurements in all lagged skills measures by instrumenting them with two-period-lagged skills
measures. Our second robustness check involves estimating a variant of Equation (4) that

incorporates information on past reading and non-cognitive outcomes, adequately instrumented:

(6)  Testfy = YhooPUs—k@ + Theo Xie—kBr + Bipe + A X, Test), + ey
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Panel A in Table 6 shows that the conclusions from the CVA-IV model of Columns 7 and 8
of Table 4 (reproduced here in Columns 1 and 2 in Panel A of Table 6) remain when estimating both
the two-step and the latent-factors CVA models of Equations (5) and (6). In particular, the
contemporaneous impact of puberty development on boys’ math scores at 16 years of age ranges now
from 0.6% to 1.2% of a standard deviation for a 10pp increase in the puberty index. Similarly, a 10pp
increase in girls’ puberty index at 16 years of age decreases girls’ math scores between 1 and 2% of a
standard deviation, and a similar increase in girls’ puberty index at 11 years of age increases girls’

math scores by between 1.3 and 2% of a standard deviation.

Subsequently, we test the sensitivity of our findings to using self-reported age at development
as an alternative measure of adolescent development. As previously stated, while voice breaking has
been validated as an adequate marker for male puberty development, girls age at menarche has not.
Panel B of Table 5 looks at the association of the quadratic function of age at development and Math
scores at age 16 using the CVA-IV model of Equation (4). Age at development has a convex —
though non-significantly different from zero— relationship with girls’” math scores and a clearly
concave relationship with boys’ math scores. This relationship with boys’ math scores presents a
maximum for between 13.1 and 13.4 years of age, about half a year before the average age at
development of boys of 13.9 years. The estimated impact implies that for the representative boy
developing at 13.9 years of age, developing 6 months earlier accounts for between 0.3% and 0.7% of a

standard deviation higher math score.

Taken together, the results in this section suggest that our findings from Table 4 are quite
robust and the assumptions made in Equation (4) can be considered a lower bound for the impact of

puberty development on math scores by boys and girls.
4.2. Identification Checks: Looking for Any Remaining Sources of Bias

The main assumption behind the value-added models used in the previous analysis is that, after
controlling for past test scores, there remain no unobserved factors affecting the impact of puberty
development on math performance. There is no formal way of testing this assumption. In what
follows we present suggestive evidence that any unobserved factors, such as mothers’ IQ or nutrition
patterns, must be uncorrelated with puberty development once past scores and the vast set of
covariates are controlled for. The exercise consists of identifying a set of variables, birth weight,

maternal education, and smoking during pregnancy, that could be related to these unobserved
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factors. For instance, birth weight has been shown to have long-lasting impacts on cognitive
development (Figlio et al 2014). Similarly, maternal education also increases the child’s cognitive
ability (Carneiro et al 2013) and maternal smoking during pregnancy is associated with lower
cognitive test scores and behavioural problems (Wehby et al 2011). If these variables are measured
before the adolescence period, they cannot possibly be affected by puberty development unless there

remains some selection bias not properly accounted for by model specifications.

In Table 7 we estimate the models in Equations 2 to 4 using birth weight, maternal
education, and smoking during pregnancy as dependent variables. The results therein basically show

that puberty development is virtually unrelated to pre-determined variables.

We also control for a variety of covariates that have been shown to be correlated with
puberty as well as math outcomes and show that neither family background, nor school
characteristics, nor the physical and psychological features of the child affect the estimated impact of
puberty development on boys’ and girls’ math scores.* Family background may impact gender
differences in math skills through at least three potential channels. First, family resources may
impact differently boys’ and girls’ educational outcomes (Autor et al. 2019, Lundberg 2017). Second,
parents may make differentiated gender-specific investments, particularly time investments (Baker
and Milligan 2016). For instance, sons may receive more time due to the extra time devoted by their
fathers (Lundberg 2005). And third, parental preferences or gender attitudes may be transmitted to
their children (Dossi et al 2019). There is evidence on the critical impact of same-sex family figures
during adolescence in shaping later roles and choices (Olivetti et al 2018). The literature shows not
only correlations between mothers’ and children’s attitudes towards working women (Farre and Vella
2013), but also correlations between mothers’ and daughters’ labour supply (Olivetti et al. 2018).
Fryer and Levitt (2010) hypothesize that maternal occupation in STEM jobs and expectations for
having children in STEM jobs should reduce the gender gap in math but find no corroborating
evidence. Table B.4 shows that family background does not affect the impact of puberty development
on boys’ and girls’ math achievement. Controlling for maternal labour supply, occupation, and

expectations do not significantly alter the impact of puberty development on math scores.

School environments may also affect the gender gap in math, especially through the influence

of, first, teachers, and, second, peers. Teachers gender role beliefs and expectations may influence

4 Table B.3 In Appendix B offers descriptive statistics by gender for the variables used in this section.

18



students’ self-image, affecting their interests and aspirations and ultimately their academic outcomes,
leading to a self-fulfilling prophecy (Papageorge et al 2019, Carlana 2019). Also, teachers may
interact differently with boys and girls - giving different types of feedback or spending more time
training boys in math relative to girls - directly affecting their academic outcomes (Lavy and Sand,
2018, Alan et al. 2018). Additionally, the gender composition of the classroom has often been studied
as a potential explanatory factor in gender differences in math scores. Females are more likely to
conform with gender stereotypes in the presence of males to avoid disappointing gender-specific
expectations (Steele 1997). Alternatively, girls may also shy away from competition, especially when
confronted with boys (Gneezy et al. 2003, Niederle and Vesterlund 2007, 2010). The empirical
evidence shows that the proportion of boys in the classroom does not affect the gender gap in math,
however, except for when it is restricted to the proportion of high achieving boys (Bharadwaj et al.
2015, Cools et al. 2019). Nonetheless, single-sex schooling has been found to improve girls’ academic
outcomes in math and math related subjects (Eisenkopf et al. 2015, Booth et al. 2018). Table B.5
shows that school inputs do not significantly change the estimated impact of puberty on math scores
of boys and girls. Neither teacher gender, nor teacher expectations, nor the number of math courses
taken, nor co-educational schooling change the estimated impact of puberty development on math

scores.

Own-child factors may also influence the gender gap in math. First, from a biological
standpoint overweight has been shown to be correlated with academic outcomes (Sabia 2007).
Second, differences in perseverance, risk aversion, or leadership may also be behind math differences
between boys and girls. For instance, Elison et al. (2018) show that girls give up more easily;
Andreoni et al. (2019) show that they are more risk averse; and Alan et al (2019) show that they are
less willing to take leadership roles. Table B.6 shows that neither the physical nor the psychological
features of the child alter the estimated impact of puberty development on math scores. Both
overweight children and children with behavioural problems seem to show similar impacts of puberty

measures on math achievement.

Understanding the mechanisms behind the impact of puberty on math outcomes by gender

We have seen that puberty changes may explain if not completely, at least partially the widening of
the gender gap in math. In this section we shed some light on the mechanisms that may be

underlying this relationship. In what follows we present several pieces of evidence that support that
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culture and socialization appear to interact with biological forces in shaping how adolescent

development impacts the math performance of boys and girls.

We first draw the attention towards the different impacts of puberty development by age. If
puberty development impacted math outcomes purely through a physical mechanism its impact
should not change with the child’s age. The fact that we find different impacts of puberty
development at 11 and 16 years, especially for girls, in Tables 3 and 4 suggests a social channel

coming into play alongside the physical changes.

Second, heterogeneity analyses by initial skills, and self-assessed math performance also point
at the direction of self-confidence affecting how puberty development impacts math performance.
There is some consensus in the literature that the gender gap in math tends to be larger at the upper
tail of the test scores distribution, as boy’s variability in results is higher than girls’ (Machin and
Pekkarinen 2008, Hyde et al. 2008, Ellison and Swanson 2010).> For instance, using data from the
American Mathematical Competitions, Ellison and Swanson (2010) document a 4.1 to 1 male to
female ratio for scoring at the 33% top of the distribution and show that this gender gap at high
achievement levels increases for higher percentiles in the distribution. Also, differences in self-
confidence in own abilities in math-related tasks may also impact the gender gap in math. For
instance, Coffman (2014) shows that women report significantly less confidence in gender-incongruent
than gender-congruent tasks. Bordalo et al. (2019) further distinguish the role of social stereotypes
from the role of self-confidence showing a significant impact of self-confidence on the math gender
gap. There is also some evidence pointing at an increase in self-esteem upon development for boys,

and a decrease for girls (Martin and Steinbeck 2017).

To explore potential heterogeneity in the impact of puberty development by initial skills, and
self-assessed math performance, we re-estimate the VA specifications and include interactions to
determine if the effect of puberty development is different for girls and boys with higher math skills
at 7 years of age, and above average level of self-assessed math performance. The estimates in Panel
A of Table 8 show that there are no significant differences in the impact of puberty development on

math scores by initial skills. Panel B, however, reveals that the positive impact of puberty

°. There is some controversy regarding this greater variability hypothesis, though. Using PISA data for 2003, Machin and
Pekkarinen (2008) find that the average variance ratio (hoys’ variance over girls’ variance) which should be 1.00 if there
was equality is 1.13; and is even larger -1.70- when considering the top 5 percent of the distribution. However, Using
TIMMs data for 2003 and 2007, Kane and Mertz (2012) show evidence against this greater male variability hypothesis: the
average variance ratio ranges from 0.90 to 1.49 across countries and therefore the greater variability of boys’ results over

girls’ is not found in some countries.
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development on boys’ math scores is driven by those with higher self-assessed math efficacy. In
particular, for boys with above average self-efficacy a 10pp. increase in the puberty index at age 16 is
associated with almost a 2% of a standard deviation increase in math scores. Even if there are no
differences for girls of high and low self-perceived math ability, puberty development impacts
positively math scores of high self-perceived ability boys, though not those of low self-perceived
ability boys, These observed differences by self-perceived ability seem to rule out that the effect from

puberty on math outcomes by gender purely come from biological changes.

Third, social stereotypes dictate that men are good at math and women are good at verbal
skills (Bordalo et al 2016, 2019). If puberty development impacted math outcomes through a social
mechanism, we should expect to see mirror images of math performance on English performance by
boys and girls: that is, puberty development should increase girls’ English performance and boys’
math performance while harming girls’ math performance and boys’ English performance. Table 9
shows that puberty development benefits English outcomes of both boys and girls. Therefore, social

stereotypes might be behind the changes in the math performance of girls, but not boys.

All in all, the evidence gathered regarding differentiated impacts of puberty development on
achievement by age and subject for girls and by self-perceived ability for boys seem to rule out a
purely biological explanation for the gender gap in maths and suggests that social conditions interact

with biological factors in shaping gender gaps in maths.
Conclusion

This paper investigates the causal relationship between adolescence development and the increase in
the gender gap in math performance from primary to secondary school. We use a unique dataset
that followed all British children born in the first week of March 1958 (the 1958 NCDS) and offers
medical assessments of puberty development alongside cognitive outcomes and a rich set of
household, school, and birth characteristics. We document that the gender gap in math widens by
about 10% of a standard deviation during the adolescence years. Using dynamic production function
models, we show that adolescent development can explain almost two thirds of the increased gap in
math performance between boys and girls. Our results are robust to using different alternative model

specifications and a different self-assessed measure of adolescent development.

We also explore the mechanisms behind the estimated impact of adolescent development on the

gender gap in math performance. The fact that impacts vary depending on the age of boys and girls,
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the specific subject under study: math or reading, and the degree of self-perceived math ability allow
us to rule out a purely biological channel for this effect. Consistent with recent neurobiology theories
that emphasize that brain synapses are pruned in response to environmental influences (Dahl et al.
2019), our results imply a combined socio-biological explanation for the gender gap in maths. More

research is clearly needed in this area.
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Figures

Figure 1. Standardized Mathematical Scores by Gender over the lifetime.
1958 NCDS cohort.
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Figure 2. Measures of Puberty Development by Gender over the Lifetime.
1958 NCDS cohort.

Index of puberty development at 11

Male Female

1 0 5 1
Index of puberty development

Index of puberty development at 16

Male Female

0 5 1 0
Index of puberty development

Age at development

Male Female

©
[N
o
[N
N
=
i

16 8
Age at development

Source: NCDS Longitudinal Data

28



Tables

Table 1. Standardized Math and Reading Scores. 1958 NCDS cohort.

At 7 years At 11 years At 16 years

Panel A. Math Scores

Female -0.0443 -0.0186 -0.0946
(0.994) (0.974) (0.949)
Male 0.0420 0.0176 0.0901
(1.004) (1.024) (1.038)
Mean difference
significant -0.086*** -0.036* -0.185***
Nobs. 14897 14126 11920

Panel B. Reading Scores

Female 0.1329 0.0083 -0.0058
(0.938) (0.955) (0.963)
Male -0.1256 -0.0078 0.0055
(1.040) (1.040) (1.035)

Mean difference
significant 0.259%** 0.016 -0.011
Nobs. 14929 14130 11986

Notes: The table shows means by gender. Standard deviations in parenthesis. Mean differences

significant at the * 10%, ** 5 % and *** 1% levels.

Source: NCDS Longitudinal Data.



Table 2. Descriptive statistics: Puberty measures

(1) (2) (3)
Puberty Index Age at development
At 11 years At 16 years

Female 0.2345 0.8036 12.7705
(0.218) (0.206) (1.320)

Male 0.1518 0.6096 13.8889

(0.146) (0.241) (1.226)

Mean diff. significant ~ -0.083*** -0.194%%* 1.118%**

Nobs. 10799 7506 7384

Notes: The table shows means by gender. Standard deviations in parenthesis. Mean differences

significant at the * 10%, ** 5 % and *** 1% levels.

Source: NCDS Longitudinal Data.
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Table 3. Impact of puberty development on Math outcomes by gender.

and Physical Controls. Contemporaneous Model

Family, Birth, School,

(1) (2)

(3) (4)

At age 11 At age 16
Boys Girls Boys Girls
Puberty Index at t 0.207** 0.173%** 0.220%** -0.033
(0.082) (0.056) (0.056) (0.063)
Obs. 5501 5283 3186 3623

Notes. Standard errors are in parentheses. The estimates are obtained from a contemporaneous

specification estimated at each child age. Each regression includes main controls (white race,

mother's age at birth, whether the mother is a lone parent, and whether the mother has post-

secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth

complications), other family controls (English non-spoken at home, maternal smoking during

pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's
BMI, and child's BMI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table 4. Impact of puberty development on Math outcomes by gender. Family, Birth, School, and Physical Controls. Value-Added and

Cumulative Value-Added Models

(1) (2) (3) (4) (5) (6) (7) (8)
At 11 At 16

Value Added Value Added Cum. Value Added Cum. Value Added-IV

Boys Girls Boys Girls Boys Girls Boys Girls

Puberty Index at t 0.115 0.095* 0.083* -0.095%* 0.078%* -0.117%* 0.065 -0.140%*
(0.070) (0.049) (0.043) (0.048) (0.046) (0.052) (0.048) (0.056)

Puberty Index at t-1 -0.027 0.147#%* -0.029 0.135%*
(0.073) (0.052) (0.077) (0.057)
Math scores at t-1 0.468%** 0.431%%* 0.674%%* 0.616%** 0.669*** 0.620%** 0.780*** 0.824%**
(0.011) (0.011) (0.012) (0.013) (0.013) (0.014) (0.027) (0.031)

Obs. 5501 5283 3186 3623 3186 3623 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from the value added specifications of Equations 2 to 4 at each child’s age. Each
regression includes main controls (white race, mother's age at birth, whether the mother is a lone parent, and whether the mother has post-secondary
education) and birth controls (birth order, birth weight, term pregnancy, and birth complications), other family controls (English non-spoken at home,
maternal smoking during pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's BMI, and child's BMI at 7).

*Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table 5. Impact of puberty development on the Math gender gap. Value-Added specifications.

At 11 At 16
(1) 2) () ()
Value Added Value Added CVA CVA-IV
Panel A. No interactions
Female 0.002 -0.179%** -0.179%** -0.171%**
(0.014) (0.014) (0.014) (0.015)
Panel B. Puberty Development
Female -0.005 -0.055 -0.081 -0.068
(0.020) (0.048) (0.051) (0.054)
Puberty Development t 0.104 0.090** 0.081* 0.06
(0.069) (0.042) (0.045) (0.048)
Puberty Development t * Female -0.011 -0.179%** -0.198%** -0.195%**
(0.083) (0.063) (0.069) (0.072)
Puberty Development t-1 -0.029 -0.03
(0.072) (0.077)
Puberty Development t-1 *Female 0.183** 0.172*
(0.088) (0.094)
Observations 10793 7727 7727 6465

Notes. Standard errors are in parentheses. Each regression includes main controls (white race,
mother's age at birth, whether the mother is a lone parent, and whether the mother has post-
secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth
complications), other family controls (English non-spoken at home, maternal smoking during
pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's
BMI, and child's BMI at 7). *Significant at 5% level; **Significant at 1% level. Source: NCDS
Longitudinal Data.
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Table 6. Impact of puberty development on Math outcomes by gender. Family, Birth, School,

and Physical Controls. Basic, Two-Step and Latent Factors Cumulative Value-Added Models.

Age 16
0 @) &) @ ©) (©)
CVA-1IV Two-Step CVA Latent Factors CVA
Boys Girls Boys Girls Boys Girls
Panel A:
Puberty Index at t 0.065 -0.140** 0.117%* -0.106* 0.072 -0.205%**
(0.048)  (0.056) (0.049)  (0.055) (0.049)  (0.073)
Puberty Index at t-1 -0.029 0.135%* -0.019 0.151%%* -0.041 0.212%**
(0.077)  (0.057) (0.078)  (0.056) (0.079)  (0.074)
Math scores at t-1 0.780%**  (.824%*** 0.736%**  1.233%***
(0.027)  (0.031) (0.095)  (0.139)
Reading scores at t-1 0.064  -0.533%**
(0.095)  (0.143)
Non-cognitive scores at t-1 -0.023 -0.002
(0.027)  (0.035)
Panel B:
Age at development 0.268* -0.195 0.367** -0.085 0.342%* -0.209
(0.154)  (0.133) (0.152)  (0.132) (0.160)  (0.170)
Age at development squared -0.010* 0.008 -0.014** 0.003 -0.013** 0.008
(0.006)  (0.005) (0.006)  (0.005) (0.006)  (0.007)
Math scores at t-1 0.748***  0.790%** 0.586***  1.190%**
(0.029)  (0.029) (0.101)  (0.132)
Reading scores at t-1 0.188*  -0.509%**
(0.101)  (0.136)
Non-cognitive scores at t-1 -0.006 0.028
(0.029)  (0.034)
Obs. 3307 3158 3307 3158 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from value added specifications
of Equations 4 to 6 at each child’s age. Each regression includes main controls (white race, mother's
age at birth, whether the mother is a lone parent, and whether the mother has post-secondary
education) and birth controls (birth order, birth weight, term pregnancy, and birth complications),
other family controls (English non-spoken at home, maternal smoking during pregnancy, maternal
working before birth, and mother’s height), and physical controls (mother's BMI, and child's BMI at
7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table 7. Validation Exercise

(1) (2) (3) (4) (5) (6) (7) (8)
At 11 At 16
Value Added Value Added Cum. Value Added Cum. Value Added-IV
Boys Girls Boys Girls Boys Girls Boys Girls
Panel A: Dep. Var. Birth Weight
Puberty Index at t 0.113 -0.076 -0.03  -0.054 -0.051 -0.086 -0.053 -0.111
(0.093) (0.064) (0.067) (0.077) (0.072)  (0.083) (0.077) (0.086)
Puberty Index at t-1 0.221* -0.061 0.224* -0.08
(0.115)  (0.078) (0.122) (0.082)
Panel B: Dep. Var. Mother with Post-Secondary Education
Puberty Index at t -0.037 -0.021 -0.047*  0.02 -0.055* 0.018 -0.066** 0.023
(0.036) (0.026) (0.026) (0.031) (0.028)  (0.034) (0.029) (0.035)
Puberty Index at t-1 0.007 -0.03 0.03 -0.027
(0.046)  (0.034) (0.049) (0.036)
Panel C: Dep. Var. Mother Smoked during Pregnancy
Puberty Index at t -0.021 -0.011 -0.017  0.063* -0.014 0.022 -0.01 0.037
(0.044) (0.031) (0.031) (0.037) (0.033)  (0.040) (0.035) (0.042)
Puberty Index at t-1 -0.018 0.003 -0.021 -0.009
(0.054)  (0.038) (0.057) (0.040)
N 5501 5283 3938 3789 3610 3425 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from the value-added specifications of Equations 2 to 4 at each child’s age. For
each dependent variable, the rest of covariates in Table B.2 are included as controls. These include main controls (white race, mother's age at birth,
whether the mother is a lone parent, and whether the mother has post-secondary education) and birth controls (birth order, birth weight, term
pregnancy, and birth complications), other family controls (English non-spoken at home, maternal smoking during pregnancy, maternal working before
birth, and mother’s height), and physical controls (mother's BMI, and child's BMI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table 8: Heterogeneity in the impact of puberty development by maternal education, initial

skills and self-assessed math efficacy.

1) 2) 3) (4) (5) (6)
At 11 At 16
Value Added Cum. Value Added Cum. Value Added-1V
Boys Girls Boys Girls Boys Girls
Panel A: By Initial Skills
Top Half at Age 7 0.082* -0.001 0.054 0.127 -0.076 -0.066
(0.043) (0.044) (0.063) (0.089) (0.078) (0.099)
Puberty Index at t 0.118 0.149%* 0.043 -0.138%* 0.019 -0.181%**
(0.093)  (0.062) (0.056)  (0.062) (0.063)  (0.069)
Puberty Index at t-1 0.058 0.196%** 0.081 0.178%*
(0.092) (0.065) (0.103) (0.076)
Top Half*Puberty Index at t -0.006 -0.128 0.077 0.044 0.09 0.09
(0.139)  (0.094) (0.093)  (0.110) (0.097) (0.113)
Top Half*Puberty Index at t-1 -0.203 -0.105 -0.231 -0.1
(0.148) (0.103) (0.156) (0.110)
Panel B: By Self-Assessed Math Performance
Above Average Self-Assessed Performance  0.534%%*  (.485%%* 0.394***  (0.616%** 0.308***  (.423%**
(0.038) (0.050) (0.074) (0.122) (0.078) (0.126)
Puberty Index at t 0.151%* 0.072 0.042 -0.119%* 0.031 -0.151%**
(0.075)  (0.050) (0.049)  (0.053) (0.052)  (0.057)
Puberty Index at t-1 0.041 0.155%** 0.028 0.142%*
(0.077)  (0.054) (0.082)  (0.059)
Avobe Average*Puberty Index at t -0.065 0.137 0.185% -0.019 0.193* 0.047
(0.179) (0.139) (0.109) (0.151) (0.112) (0.151)
Avobe Average*Puberty Index at t-1 -0.18 -0.1 -0.137 -0.09
(0.175)  (0.141) (0.181)  (0.142)
N 5501 5283 3610 3425 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from the value added

specifications of Equations 2 to 4 at each child’s age. Each regression includes main controls (white

race, mother's age at birth, whether the mother is a lone parent, and whether the mother has post-

secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth

complications), other family controls (English non-spoken at home, maternal smoking during

pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's
BMI, and child's BMI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table 9. Impact of puberty development on English outcomes by gender. Family, Birth,

School, and Physical Controls.

Ages 11 and 16

(1) (2) (3) (4) (5) (6) (7) (8)
At 11 At 16
Value Added Value Added Cum. Value Added Cum. Value Added-IV
Boys Girls Boys Girls Boys Girls Boys Girls
Panel A:

Puberty Index at t 0.103 0.144%%%* 0.211%%* 0.117%%* 0.198%*** 0.100** 0.127%#%* 0.125%*
(0.069) (0.047) (0.039) (0.043) (0.043) (0.046) (0.046) (0.051)

Puberty Index at t-1 -0.061 0.01 -0.078 -0.067
(0.070) (0.042) (0.077) (0.048)
Math scores at t-1 0.525%%* 0.500%** 0.672%%* 0.681%%* 0.675%%* 0.676*** 0.939%*** 0.965%**
(0.011) (0.012) (0.012) (0.012) (0.013) (0.013) (0.027) (0.031)

Obs. 5501 5283 3186 3623 3186 3623 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from different specifications. Each regression includes main controls (white race,

mother's age at birth, whether the mother is a lone parent, and whether the mother has post-secondary education) and birth controls (birth order, birth

weight, term pregnancy, and birth complications), other family controls (English non-spoken at home, maternal smoking during pregnancy, maternal
working before birth, and mother’s height), and physical controls (mother's BMI, and child's BMI at 7). *Significant at 5% level; **Significant at 1%

level.

Source: NCDS Longitudinal Data.
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Appendix A. Appendix Figures: NCDS
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Figure A1l. Math scores by gender over the life course

Source: NCDS58
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Appendix B. Appendix Tables

Table B.1 Determinants of Sample Attrition

Female Sample Male Sample
(1) (2) 3) (4)
Age 11 Agel6 Age 11 Agel6b
Other ethinic group 0.037* 0.065* -0.035%* 0.086**
(0.020) (0.037) (0.020) (0.035)
Other ethinic group missing 0.916%** 0.596%** 0.909%** 0.584%**
(0.005) (0.010) (0.005) (0.009)
Mother's age at birth -0.001%* 0.000 -0.000 0.001*
(0.000) (0.001) (0.000) (0.001)
Mother's age at birth missing -0.009 -0.164%* 0.003 -0.018
(0.042) (0.076) (0.043) (0.077)
Mother's sole parent 0.012 -0.001 -0.005 0.030
(0.012) (0.023) (0.013) (0.023)
Mother's sole parent missing 0.111 0.002 -0.026 -0.144
(0.092) (0.168) (0.134) (0.237)
Mother post secondary education 0.004 -0.049%** 0.011* -0.037%**
(0.006) (0.010) (0.006) (0.010)
Mother post secondary education missing 0.012 0.182%* 0.008 0.016
(0.041) (0.075) (0.042) (0.075)
Constant 0.096*** 0.392%** 0.078*** 0.376***
(0.012) (0.022) (0.012) (0.022)
N. Obs. 8,957 8,957 9,600 9,600

Notes. Standard errors are in parentheses. Each column in each panel estimates a linear probability
model of the likelihood of having missing information in the 7, 11, 14 or 16 year-old samples as
indicated in the column header. *Significant at 5% level; **Significant at 1% level.

Source: NCDS58 and ALSPAC90 Longitudinal Data.
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Table B2. Descriptive statistics: Control variables. NCDS data.

NCDS58

Female Male Difference

Panel A. Maternal Demographic Controls

Other ethinic group 0.0153 0.0157 -0.000
(0.123) (0.124)

Mother's age at birth 27.5210 27.4282 0.070
(5.560) (5.512)

Mother's sole parent 0.0334 0.0294 0.005%*
(0.180) (0.169)

Mother post secondary education 0.2446 0.2373 0.003
(0.430) (0.425)

Panel B. Birth and Pregnancy Controls

Birth order 2.2480 2.2416 0.001
(1.533) (1.519)

Birth weight 7.1831 7.4619 -0.268%**
(1.085) (1.112)

Term pregnancy 40.1530 40.0848 0.060***
(1.617) (1.633)

Birth complications 0.0889 0.0987 -0.0117%%*
(0.285) (0.298)

Maternal smoking during pregnancy 0.3914 0.3745 0.012%*
(0.488) (0.484)

Maternal working before birth 0.3612 0.3652 -0.003
(0.480) (0.481)

Panel C. Maternal Controls

English non-spoken at home 0.0959 0.0947 -0.001
(0.295) (0.293)

Mother’s height 63.2948 63.3030 0.023
(2.420) (2.438)

Mother's BMI 0.0049 0.0049 -0.000**
(0.001) (0.001)

Panel D. School Controls

Class size 31.9303 31.6675 0.281**
(9.176) (9.220)

Type of school-compehensive 0.4987 0.5010 0.006
(0.500) (0.500)

Type of school-grammar 0.1095 0.0891 0.017%**
(0.312) (0.285)

Type of school-modern 0.1804 0.1835 0.002
(0.385) (0.387)

Type of school-private 0.0457 0.0492 -0.002
(0.209) (0.216)

Panel E. Physical Controls

Child's BMI at 7 15.7624 15.8442 -0.054***
(1.790) (1.548)

Notes: The table shows means by gender. Standard deviations in parenthesis. Mean differences
significant at the * 10%, ** 5 % and *** 1% levels.

Source: NCDS Longitudinal Data.
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Table B3. Descriptive statistics: Potential mechanisms variables. NCDS data.

At age 11 At age 16
Female Male Difference Female Male Difference
Panel A. Family Characteristics
Mother employed 0.5648  0.5399 0.019%** 0.5083  0.5179 0.004
(0.496)  (0.498) (0.500)  (0.500)
Mother's occupation manager 0.0815  0.0711 0.008*** 0.0933  0.0988  -0.001
(0.274)  (0.257) (0.201)  (0.298)
Mother expects child manager 0.2593  0.1874 0.0617%**
(0.438)  (0.390)
Panel B. School Characteristics
Female teacher 0.4382  0.3909 0.045%**
(0.496)  (0.488)
Co-educational school 0.6270  0.6474  -0.006
(0.484)  (0.478)
Number of Math subjects 1.0230  1.0703  -0.040***
(0.326)  (0.340)
Number of English subjects 1.3122  1.2210 0.072%**
(0.493)  (0.454)
Teacher expects child in STEM 0.0502  0.3060  -0.202%**
(0.218)  (0.461)
Panel C. Own Child Features
Overweight child 0.1372 0.1252 0.013%** 0.0974 0.0692 0.021%**
(0.344)  (0.331) (0.296)  (0.254)
Above Rutter score cutoff 0.1376  0.1763  -0.030*** 0.1883  0.1758 0.010%**
(0.344)  (0.381) (0.391)  (0.381)
Above average self-assessed Math 0.0901  0.1740  -0.065%**
Above average self-assessed English 0.2223  0.1915 0.022%**
(0.416)  (0.393)

Notes: The table shows means by gender. Standard deviations in parenthesis. Mean differences
significant at the * 10%, ** 5 % and *** 1% levels.

Source: NCDS Longitudinal Data.

41



Table B.4. Family Mechanisms. Impact of puberty development on Math outcomes by gender. Value Added (age 11) Cumulative Value Added
Instrumental Variables Model (agel6)

©n @ 3 @ ) (© M ® (9) (10) 1w a2 (13) (14)
11 years of age 16 years of age
Benchmark Mother employed Mother manager Benchmark Mother employed Mother manager Expects child manager
Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls
Panel A:
Puberty Index at t 0.115  0.095* 0.115  0.097** 0.114 0.093* 0.065  -0.140** 0.068 -0.136%* 0.067  -0.140** 0.071 -0.140%*
(0.070)  (0.049) (0.070)  (0.049) (0.070)  (0.048) (0.048)  (0.056) (0.048) (0.056) (0.048)  (0.056) (0.048) (0.055)
Family variable at t -0.03 -0.03 0.008  0.092** -0.006 -0.035 -0.074* 0.008 0.234%%%  0.131%+*
(0.021)  (0.021) (0.041)  (0.037) (0.028) (0.027) (0.039)  (0.044) (0.032) (0.026)
Puberty Index at t-1 -0.029  0.135%* -0.033 0.144%* -0.031  0.135%* -0.046 0.126**
(0.077)  (0.057) (0.077) (0.057) (0.077)  (0.057) (0.075) (0.057)
Family variab at t-1 -0.051%*  -0.066*** 0.013 -0.006
(0.025) (0.025) (0.045)  (0.047)
Obs. 5501 5283 5501 5283 5501 5283 3307 3158 3307 3158 3307 3158 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from a VA specification in Columns 1 to 6 and a CVA-IV specification in Columns
7 to 14. Each regression includes main controls (white race, mother's age at birth, whether the mother is a lone parent, and whether the mother has post-
secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth complications), other family controls (English non-spoken
at home, maternal smoking during pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's BMI, and child's
BMI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table B.5. School Mechanisms. Impact of puberty development on Math outcomes by gender. Value Added (age 11) Cumulative Value Added
Instrumental Variables Model (agel6)

(1 2 ®3) 4) (5) (6) (M) (®) 9) (10) (11) (12) (13) (14)
11 years of age 16 years of age
Benchmark Female teacher Benchmark Female teacher Teacher expects STEM No. Math subjects Co-educational school
Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls Boys Girls
Panel A:
Puberty Index at t 0.115 0.095* 0.117*  0.093* 0.065 -0.140%* 0.066 -0.139%* 0.064 -0.135%* 0.073 -0.141%* 0.066 -0.142%*
(0.070)  (0.049) (0.070)  (0.048) (0.048) (0.056) (0.048) (0.056) (0.048) (0.056) (0.048) (0.055) (0.048) (0.056)
School variable at t 0.004 -0.003 0.052%* 0.249%%* 0.267%%%  0.258%** -0.004 -0.041
(0.021)  (0.021) (0.024) (0.048) (0.034) (0.040) (0.032) (0.031)
Puberty Index at t-1 -0.029 0.135%* -0.03 0.134%** -0.034  0.135%* -0.018 0.125%* -0.03 0.135%*
(0.077) (0.057) (0.077) (0.057) (0.077) (0.057) (0.076) (0.056) (0.077) (0.057)
School variable at t-1 0.022 0.021
(0.024) (0.024)
Obs. 5283 5501 5283 5501 3307 3158 3307 3158 3307 3158 3307 3158 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from a VA specification in Columns 1 to 4 and a CVA-IV specification in Columns
5 to 14. Each regression includes main controls (white race, mother's age at birth, whether the mother is a lone parent, and whether the mother has post-
secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth complications), other family controls (English non-spoken
at home, maternal smoking during pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's BMI, and child's
BMI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Table B.6. Own-Child Mechanisms. Impact of puberty development on Math outcomes by gender. Value Added (age 11) Cumulative Value Added
Instrumental Variables Model (agel6)

(1) 2) (s) (9) (10) (11) (12)
11 years of age 16 years of age
Benchmark Behav. Problems Benchmark Child BMI Behav. Problems
Boys Girls Girls Boys Girls Boys Girls
Panel A:

Puberty Index at t 0.115 0.095% -0.140%* 0.077 -0.134%* 0.065 -0.142%*
(0.070) (0.049) (0.056) (0.050) (0.056) (0.048) (0.056)
Own-child variable at t -0.011%* -0.002 -0.003 -0.008**
(0.006) (0.005) (0.003) (0.004)
Puberty Index at t-1 0.135%* -0.026 0.159%%* -0.033 0.130%*
(0.057) (0.077) (0.059) (0.077) (0.057)

Own-child variable at t-1 0.012 -0.009 0.002 0.003
(0.007) (0.007) (0.003) (0.004)

Obs. 5283 5501 3158 3307 3158 3307 3158

Notes. Standard errors are in parentheses. The estimates are obtained from a VA specification in Columns 1 to 4 and a CVA-IV specification in Columns
5 to 14. Each regression includes main controls (white race, mother's age at birth, whether the mother is a lone parent, and whether the mother has post-
secondary education) and birth controls (birth order, birth weight, term pregnancy, and birth complications), other family controls (English non-spoken
at home, maternal smoking during pregnancy, maternal working before birth, and mother’s height), and physical controls (mother's BMI, and child's

BMTI at 7). *Significant at 5% level; **Significant at 1% level.

Source: NCDS Longitudinal Data.
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Appendix C. Examples of tests’ questions in NCDS

Math questions for age 7 tests

- Peter had 4 toy cars and be bought 2 more. How many toy cars did he have altogether ~
- How many socks are there in 4 pairs?

- What is half of 387

- A boy spent 4d. a day for 5 days. How much would he have left out of 2 pounds.?

Math questions for age 11 tests
- In a class of -40 pupils 3/4 are girls. How many of the pupils are boys?
- A rectangle whose length is 6 in. and breadth is 4 in. has an area of 24 sq. in. Give the length and

breadth of another rectangle whose area is 24, sq. in.

Math questions for age 16 tests

- The solution of the equations x + y =8 and x —y = 4 is:

a.x=4y=4
b.x=7y=3
c.Xx=030y=3
dx=2y=-2
e.x=0y=2

- Which of the following is an even number for any whole number of n

a. n2
b. 2n
c.2n-1
d.2n + 1
e.n2 -2

Reading questions for age 7 tests

- "Point to the first picture. the picture of an elephant. Look at the words in the box beside it. Find
the one that says "elephant'. Don't tell anybody which it is. When you have found the word that
says 'elephant' draw a ring round it. Go on, do it by yourselves. Find the word that says 'elephant’

and draw a ring round it."

Reading question for age 11 tests
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- Read the next line carefully and then look up. The line reads, 'A birds lays its eggs in a (pond,

stream, cloud, house, nest)’. Underline the correct word.

Reading question for age 16 tests:
- Now go through the sentences below and put a line under the right word in each one. ‘She had been

dieting for a month but her weight had not (shown. increased, shrunk, decreased, grown)’.
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