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ABSTRACT

IZA DP No. 14050 JANUARY 2021

Turning Relative Deprivation into a 
Performance Incentive Device*

The inclination of individuals to improve their performance when it lags behind that of 

others with whom they naturally compare themselves can be harnessed to optimize the 

individuals’ effort in work and study. In a given set of individuals, we characterize each 

individual by his relative deprivation, which measures by how much the individual trails 

behind other individuals in the set doing better than him. We seek to divide the set into 

an exogenously predetermined number of groups (subsets) in order to maximize aggregate 

relative deprivation, so as to ensure that the incentive for the individuals to work or study 

harder because of unfavorable comparison with others is at its strongest. We find that 

the solution to this problem depends only on the individuals’ ordinally-measured levels of 

performance independent of the performance of comparators.
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“Relative success, tested by an invidious pecuniary comparison with other men, becomes 

the conventional end of action. The currently accepted legitimate end of effort becomes 

the achievement of a [less un]favourable comparison with other men.” (Veblen 1899.) 

 

 

1. Introduction  

We build on the finding that people are motivated to perform better when their 

achievements lag behind the achievements of comparators (those with whom people 

naturally compare themselves). Drawing on a constructive example, we show how this 

tendency can be used to design a combination of allocations of individuals that 

maximizes the individuals’ aggregate incentive to improve performance. 

Our constructive example is based on three considerations: there is strong 

evidence of “a comparators’ performance effect” (the performance of an individual, in 

particular effort exerted in study, work, and so on, is affected by the performance of 

comparators); the effect is asymmetrical (it is affected by those to the right of the 

individual in the relevant distribution); and we define a concrete cardinal measure that 

enables us to quantify the intensity of the effect (an index of relative deprivation).  

With regard to the first two considerations, there is ample empirical evidence that 

the presence of better-performing comparators motivates students to perform better 

(examples are studies by Sacerdote, 2001; Azmat and Iriberri, 2010; Garlick, 2018), and 

workers to exert more effort (examples are studies by Falk and Ichino, 2006; Mas and 

Moretti 2009; Bandiera et al., 2010; Cohn et al. 2014). With regard to the third 

consideration: in Appendix B we present a concise historical account of how the 

sociological-psychological concept of relative deprivation is linked to the discipline of 

economics, and we describe how we construct the index of relative deprivation that we 

use in this paper. In a nutshell, the relative deprivation experienced by a member of a 

population is the aggregate of the excess of the levels of performance of the member’s 

comparators, divided by the size of the population.  

In our own research, we have combined these three considerations. Here we list 

merely a few examples. In one study (Stark, 1990) we showed how the incentive to 

improve performance can be harnessed to design reward structures in career games and 
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other contexts such as golf tournaments. In another study (Stark and Hyll, 2011) we 

analyzed the impact on a firm’s profits and optimal wage rates, and on the distribution of 

workers’ earnings, when workers compare their earnings with those of coworkers. We 

considered a low-productivity worker who receives lower earnings than a high-

productivity worker. We showed that when the low-productivity worker derives 

(dis)utility not only from his own effort but also from comparing his earnings with those 

of the high-productivity worker, his response to the sensing of relative deprivation is to 

increase his optimal level of effort. Consequently, the firm’s profits are higher, its wage 

rates remain unchanged, and the distribution of earnings is compressed. And in yet 

another study (Stark and Budzinski, 2019) we inquired how in the wake of migration 

from a community, say a village economy, the changes of the income distribution and  

the social comparison space in the village set in motion behavioral responses of the non-

migrants, including changes in their work effort and, as a consequence, their output, and 

we showed whose migration will bring about the strongest incentive of the non-migrants 

to increase their work effort and output.  

In this paper, rather than document the strength of the effect of the performance of 

others we assume the effect, and we ask how acknowledging the effect can be exploited 

as a management tool, namely as a means of setting optimal incentives to improve 

performance.  

We study a setting in which individuals who differ in their capability but are 

homogeneous in preferences (as shown below, they all exhibit the same distaste for 

relative deprivation) need to be distributed between an exogenously predetermined 

number of facilities, where the number of positions in each of the facilities differs by no 

more than one. 

A few examples of this assignment task are presented next. 

Suppose that we have two classes and four students. An exogenously imposed 

constraint is that the classes should be of equal size. The justifications for that are so as to 

equalize the study environments, and to ensure that no class can accommodate more than 

two students. We have two teachers on the school payroll, and all the students need to be 

schooled. How do we distribute students 4, 3, 2, and 1 between the two classes so that the 

incentives to study harder will be maximized? The numbers 4, 3, 2, and 1 represent levels 
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of performance that are independent of the performances of comparators, namely how 

each student performs in isolation from the pressure of the comparators’ performances.  

In a supermarket, there are two exits at the two ends of the shop, each with two 

cash desks, and there are four cashiers on the payroll. The earnings of a cashier are 

determined, in part, by the number of grocery items processed. Cashiers observe each 

other at the same exit, but not across both exits. 

There are three fields, at a distance one from the other, and in each field three 

harvesters are stationed. There are nine qualified harvester operators. The payment to a 

harvester operator is determined, in part, by the weight of the harvested crop. The fields 

differ, so performance comparisons are field-specific. 

There is a production line in each of four car production plants. The engineers 

who designed the lines made them identical in terms of the positions to be manned. There 

are as many qualified assembly workers as there are positions. Because the cars produced 

differ markedly between the production sites, performance comparisons are site-specific. 

The postal service serves six neighborhoods in Cambridge, MA. In terms of the 

characteristics and the type of services that the residents demand, the neighborhoods 

differ. For reasons of security, a post office branch cannot be manned by just one person, 

and closing a branch is not allowed. Part of the payment to a postal employee is 

performance-related, and given the distinct character of the six neighborhoods, 

comparisons of performance across branches are not relevant.  

Finally, consider further the assignment problem in the case of two school classes 

with students 4, 3, 2 and 1. The assignment options are {{4,3},{2,1}}; {{4,2},{3,1}}; and 

{{4,1},{3,2}}. We assume that the ordering of the classes is immaterial, namely we treat 

{{4,3},{2,1}} and {{2,1},{4,3}} as the same option. Intuition suggests that the first of 

these three assignment options is dominated by the second and third assignment options: 

the aggregate “pressure” to improve performance appears to be higher in the case of the 

second and third assignments than in the case of the first assignment. In other words: if 

we assume that the incentive to study harder increases with the difference between the 

students in their free-from-comparison levels of performance,1 then the division 

                                                 
1 This argument is broadly in line with Akerlof (1997). 
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{{4,3},{2,1}} does not maximize the incentive to study harder because for the divisions 

{{4,2},{3,1}} and {{4,1},{3,2}}, the difference is twice as large.  

 

2. A model of assignments aimed at maximizing the incentive to perform better  

In order to formalize and generalize what the above examples entail, and in particular 

what the preceding school classes assignment tells us, we introduce some notation and 

three definitions. 

Let {1,2, , }nN    be a set of individuals, 4n  , and ia   is the comparison-

free performance of individual i N  (such as the individual’s initial test score). Without 

loss of generality, we assume that 1 2 na aa   .  Let k  be such that k n . 

Denote 
k

q
n 
  

 , and let r  be such that n kq r  . These notations mean that when 

we divide N  into k  groups of equal size or of equal size but for one, we obtain r  groups 

of 1q   individuals, and k r  groups of q  individuals. 

Definition 1. 

A division of the set N  into k  groups is a family of sets 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    

satisfying the following three conditions. 

(i) 1 2 1 2, , ,, , , ,r k rX X YX Y Y    are pairwise disjoint; 

(ii) 
1 1

r k r

i i
i i

X Y N


 

   ; 

(iii) | | 1iX q   for {1,2, , }ri  2 and | |iY q  for {1,2, , }i k r   , where the 

notation | |Z  stands for the number of elements in the set Z. 

 We use the notation of an unordered sequence 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    

rather than the notation of an ordered sequence 1 2 1 2( , , , , ), , ,r k rX X YX Y Y    because in 

our context (for example, as already noted in the assignment problem of school classes) 

the ordering of the sets is immaterial. Conditions (i) and (ii) of Definition 1 state that 

each individual from N  is assigned to exactly one element of the division of N (namely 

to one of the sets that belong to the family 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y   ). Condition (iii) 

                                                 
2 Here and henceforth, if 0r  , then ,{ }2, .1, r   
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of Definition 1 requires that the individuals are distributed between the sets 

1 2 1 2, , ,, , , ,r k rX X YX Y Y    equally, or equally but for one if 
n

k
 is not a natural number. 

In light of typical real-life considerations, condition (iii) is reasonable. For example, 

students are usually divided into classes of (approximately) the same size so as to create 

similar learning environments.  

Definition 2. 

Let 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    be a division of N . The relative deprivation, RD, of 

individual i S  where 1 2 1 2, , ,{ , , , },r k rX Y YS X X Y     is defined as 

                       
1

max{ ,0}
| |

( )S j i
j S

aRD i a
S 

  .    

A detailed derivation of ( )SRD i  is in Appendix B. 

Using aggregate relative deprivation (ARD) as a measure of the combined 

“pressure” to improve performance, we seek to maximize the function  

 
1 2 1 2

1 2 1 2
{ , , , }, ,, ,

{ , , , } (( , , , ), )
r k r

r k S
S X X Y Y SYX i

rXARD X X Y RDY Y i



   

     .   

Definition 3. 

For a given set N  and an ordered vector of performances that are independent of the 

performance of comparators 1 2, , , )( naa a , a division 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    is 

optimal if it maximizes 1 2 1 2( , , , ,{ , , }),r k rX YARD X X Y Y   .  

Example 1. 

Revisiting the school classes assignment problem with students 4, 3, 2, and 1, ia i  for 

{1,2,3,4}i , and 2k  , we calculate as follows.  

For 1 2 {4,3},{ , } { {2,1}}Y Y  : 1 2({ , }
1

1 1
2 2

)
1

1ARD Y Y      ; 

For 1 2 4, 2}{ , } { 1}}{ ,{3,Y Y  : 1 2({ , }
1

2 2
2 2

)
1

2ARD Y Y      ; 

For 1 2 {4,1},{ , } { {3,2}}Y Y  : 1 2({ , }
1

3 1
2 2

)
1

2ARD Y Y      . 
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Thus, whereas the latter two assignments are optimal, the first assignment is not optimal. 

We can already see that for a given set N  and an ordered vector of performances that are 

independent of the performance of comparators 1 2, , , )( naa a , more than one optimal 

division may exist. 

 Prior to solving the general assignment problem, two additional definitions will be 

of help. 

Definition 4. 

Assume that {1,2, , }nN   , k n , 
k

q
n 
  

 , and n kq r  . The partition of N into k 

subsets, henceforth the k-partition, is a family of sets 1 2 2 1{ , , , }qA A A   such that for 

{0,1, , }ql   

2 1 { 1, 2, , }l lk lA k lk r      

if 0r   and  

 2 1lA      

if 0r  , and for {1, , }ql   

2 {( 1) 1, ( 1) 2, , }l l k r l kA r lk        . 

 

Remark 1. For fixed N  and k , the k-partition of N  1 2 2 1{ , , , }qA A A   is uniquely 

defined, 1 2 2 1, ,, qA A A   are pairwise disjoint, and 
2 1

1
i

q

i

A N




 . 

Remark 2. If ix A , jy A , and i j , then x y .     

Definition 5.  

We say that the division 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    of N  is leveled if and only if for 

every {0,1, , }ql  , {1,2, , }ri  , and {1,2, , }j k r    

2 1 2 1| | 1, | | 0,i l j lA AX Y     

and for every {1, , }ql  , {1,2, , }ri  , and {1,2, , }j k r    

2 2| | 0, | | 1,i l j lYA AX     



7 
 

where 1 2 2 1{ , , , }qA A A   is the k-partition of N . 

Example 2. 

(i) Revisiting once again the school classes assignment problem, {1,2,3,4}N   and 

2k  , we have that 2q   and that 0r  . Therefore, the 2-partition of N  is:  

1 3 5AA A   , 

2 {1,2}A  , 

4 {3,4}A  . 

The division 1 2{ , }Y Y  of N  is leveled if and only if each of the sets iY , 1, 2i  , contains 

exactly one element from 2A , and exactly one element from 4A . Namely the divisions 

{{4,2},{3,1}} and {{4,1},{3,2}} are leveled, whereas the division {{4,3},{2,1}} is not 

leveled.   

(ii) Alternatively, let {1,2,3,4,5}N   and 2k  , so that 2q  , 1r  , and the 2-partition 

of N  is: 

1 {1}A  , 

2 {2}A  , 

3 {3}A  , 

4 {4}A  , 

5 {5}.A    

Thus, there exists only one leveled division of N : 1 1{ , } {{1,3,5},{2,4}}X Y  .  

(iii) As yet another alternative, let {1,2, ,18}N    and 5k  , so we have that 3q  , and 

that 3r  , and the 5-partition of N  is:  

1 {1,2,3}A  , 

2 {4,5}A  , 

3 {6,7,8}A  , 

4 {9,10}A  , 

5 {11,12,13}A  ,   

6 {14,15}A  , 
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7 {16,17,18}A  .   

The division 1 2 3 1 2{ , , , , }X X X Y Y  of N  is leveled if and only if each of the sets iX , 

1,2,3i   consists of exactly four elements: one from 1A , one from 3A , one from 5A , and 

one from 7A , and each of the sets iY , 1, 2i   consists of exactly three elements: one from 

2A , one from 4A , and one from 6A . There are multiple leveled divisions of N . For 

example, the divisions {{18,12,8,1},{17,13,6,3},{16,11,7,2},{15,9,4},{14,10,5}} and 

{{18,13,8,3},{17,12,7,2},{16,11,6,1},{15,10,5},{14,9,4}} are leveled. It is easy to see 

that not all the divisions of N are leveled. For example, the division 

{{18,16,2,1},{15,10,6,3},{13,12,11,9},{17,14,4},{8,7,5}} is not leveled.   

Lemma 1. Optimal divisions are leveled 

Let 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    be a division of N . If this division is optimal, then it is 

leveled. 

Proof. In Appendix A. 

Lemma 2. Leveled divisions have the same ARD 

Let 1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    be a leveled division of N . 

Then,

2 1 2

1

1 2 1 2
1 1

( , ,
1 1

{ , , , } (2 2) ( 1 ,
1

, , ) 2 )
l l

q q

r k r i
l

i
l i A i A

AR X Y Y l q a l q aD X
q q

X Y





   

   
            




   
where 1 2 2 1{ , , , }qA A A   is the k-partition of N . In particular, for every leveled division 

of N, 1 2 1 2( , , , ,{ , , }),r k rX YARD X X Y Y    is the same.  

Proof. In Appendix A. 

Claim 1. Characterization of the optimal division  

Assume that {1,2, , }nN   , k n , 
k

q
n 
  

 , and n kq r  . 

(a) A division of N  1 2 1 2{ , , , }, , , ,r k rX X YX Y Y    is optimal if and only if it is leveled. 

(b) There are 1( !) (( )!)q qr k r   optimal divisions of N .   

Proof. In Appendix A. 

Remark 3. If 2k   and n  is odd, then 1r k r   , 1( !) (( )!) 1q qr k r   , and there is 

only one optimal division of N: 1 1{ , }X Y  where 1 {1,3 , }, nX    is the group of odd-
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numbered individuals, and 1 {2,4, , 1}Y n    is the group of even-numbered individuals. 

For any other combination of n  and k , there are always several optimal divisions.  

 For instance, in Example 2 (ii) and as already noted, there is only one optimal 

division: {{5,3,1},{4,2}}. However, if 2k   and n  is even, then 0r  , 
2

q
n

 , and there 

are 
11 2( !) (( )!) 2

n
q qr k r

   optimal divisions of N . In particular, in Example 2 (i) there 

are 
1

4

22 2

  optimal divisions: {{4,2},{3,1}} and {{4,1},{3,2}}. And in Example 2 (iii), 

where 18n  , 5k  ,  and 3q r  , there are 3 2(3!) (2!) 864  optimal divisions. 

It is of interest to add that the optimal solution to the maximization problem of 

ARD does not depend on the vector of performances that are independent of the 

performance of comparators 1 2, , , )( naa a ; the optimal solution is premised on the 

feature that the performances that are independent of the performance of comparators are 

arranged in an ascending order (namely 1 2 naa a  ). To illustrate once again: the 

optimal divisions of {1,2,3,4}N   into 2k   sets will be the same regardless of whether 

41 2 3, , , ) (1, 2( ,3, 4)a aa a  , whether 3 41 2, , , ) (1, 2,( 4,10)a a aa  , or whether 

3 41 2, , , ) (1,7,( 9,10)a a aa  . It is the hierarchical order that matters, rather than the 

cardinal values of the performances that are independent of the performance of 

comparators.3 

 

3. Conclusions 

We have studied how to divide a group of individuals into subgroups so as to maximally 

influence their performance in conditions of pressure exerted by the performance of 

comparators. For each population of size n , 4n  , we identified the set of divisions 

that maximizes aggregate pressure. For each n , the solution depends only on the 

                                                 
3 Quite obviously, the maximal value of 

1 2
,({ })A XRD X  depends on 1 2, , , )( naa a . As calculated in 

Example 1, for 4N   and 
41 2 3

, , , ) (1, 2( , 3, 4)a aa a  , the maximal value of 
1 2
,({ })A XRD X  is 2 . For 

4N   and 
3 41 2

, , , ) (1, 2,( 4,10)a a aa  , the maximal value of ( , )ARD A B  is 5.5 . Nonetheless, in both 

cases, the set of optimal divisions {{{4,1},{3, 2}},{{4, 2},{3,1}}}  is the same. 
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ordinally-measured performances that are independent of the performance of 

comparators. 

Our analysis is based on several implicit assumptions, and thus has its limitations. 

For example, we assume that when individuals are assigned into groups, they have no 

better alternative options. That being said, we formulate a rule of assignment that was not 

presented before. Follow-up research could build on our framework, looking into issues 

of robustness and, perhaps particularly rewarding, put our claims to laboratory and 

empirical tests.  

Some literature maintains that comparisons are with worse off individuals, and 

not - as we have assumed - with better off individuals. Although we believe that the 

weight of the evidence supports our stance, we note that studies (such as Boyce et al., 

2010) which looked at both effects found strong support that comparisons with better off 

individuals are substantially more important than comparisons with worse off individuals. 

To the extent that comparisons could be both ways while those with the better off 

individuals dominate, then in this regard our setting is a “limit” case. 

In closing, it is interesting to note that the behavior that we modeled in this paper 

is not the only behavior that a group of workers or students can exhibit. For example, in 

the domain of workers and management, rather than exerting effort to move up in the 

performance hierarchy, a group of workers may exercise social control to hold 

performance at a low level. The reason for this is fear that, otherwise, management may 

set as a standard a level of effort that is too high. The possibility of such behavior was 

documented a long time ago in the classical study of Roethlisberger and Dickson (1939). 

In our setting we did not allow strategic behavior of this type. The assignment problem 

that we modeled is based on a management’s drive to maximize the aggregate pressure of 

workers to perform better, where what propels that behavior is an unimpeded desire of 

each worker to curtail his relative deprivation. The distinction between the case studied 

by Roethlisberger and Dickson and our setting notwithstanding, what is common to their 

study and to our study is that their years of research led them (citing from an abstract of 

their study) “to a critical evaluation of the traditional view that workers … [can] be 

considered apart from their social setting and treated as essentially ‘economic men.’” 
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Appendix A: Proofs  

For ease of reference, we use the following notation: if 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a 

division of N , then for each {1,2, , }ri   we denote the comparison-free performances 

of the individuals from the set iX  as 2 11, , ,i i
q
ixx x  , where t u

i ix x , for 

{1,2, ,, 1}t u q   , if and only if t u . For each {1,2, , }j k r    we denote the 

comparison-free performances of the individuals from the set jY  as 1 2, , , q
j j jy y y , where 

t u
i iy y , for {1,2,, , }t u q  , if and only if t u . Moreover, for Z N  and z Z , we 

denote {( :) }z iZ Z i z   and |( ), () |n Zz zZ   (namely if 1 2, , ,{ }pz zZ z  and 

1 2 pz zz   , then )( , in Z z i ). 

 Prior to proving Lemma 1, Lemma 2, and Claim 1, we present a supportive 

lemma that yields a helpful auxiliary result. 

 

Supportive Lemma.  

Let s n  and let {1,2, ,: }S s N    be an increasing injection. If 

(1), (2), , ( )}{ S S SS s   , then 

 ( ) ( 1) (1) ( )
1

1
( 3) .

1
( ) ( 1) ( 1) (2 1)

S S S SS

s

s s l
m S l

m s a a s a l s a
s

RD s
s   

 

            

In particular, if 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a division of N , then for {1,2, , }ri   

1

1

1
( ) (2

1
2)

i

i

X

q
l
i

m X l

m l qRD
q

x


 

  
  , 

and for {1,2, , }j k r    

1

1
( ) (2 1)

j

j

q

Y l
Y j

l

m

R m qD l
q

y
 

    . 

 

Proof of the Supportive Lemma. 

By Definition 2 and the definition of the set S   

 ( ) ( )
, 1 1

1 1
( ) max{ ,0}

| | S S

s s

S m m l
m S m l S l m l

lm a a aD a
s

R
S  

    

     
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     ( ) ( ) ( ) ( )
1 1 1 1 1

1 1
( ) ( )

S S S S

s s s s s

m l m l
l m l l m i l

a s l a a s l a
s s   

      

  
     

 

 
 


 

 
       

                   ( ) ( ) ( )
1 1 1

1 1
( 1) ( ) (2 1) .

S S S

s s s

l l l
l l i

l a s l a l s a
s s  

  

   
 

       

In particular, for iS X , {1,2, , }ri  , it holds that 1s q   and that  ( )S la  l
ix , thus 

1

1

1
( ) (2

1
2)

i

i

X

q
l
i

m X l

m l qRD
q

x


 

  
  , 

and for jS Y , {1,2, , }j k r   , it holds that s q  and that  ( )S la  l
jy , thus 

1

1
( ) (2 1)

j

j

q

Y l
Y j

l

m

R m qD l
q

y
 

    . 

Q.E.D. 

 

Proof of Lemma 1. 

To show that a division of N  1 2 3 1 2,{ , , , , , , }r k rX X X YX Y Y    that is not leveled is not 

optimal, we note that, then, at least one of the following four cases occurs. 

(i) there exists {1,2, , 2 1}l q    such that l  is odd and there exists {1,2, , }ri   where 

| 1|i lAX   ; 

(ii) there exists {1,2, , 2 1}l q    such that l  is odd and there exists {1,2, , }j k r    

where | 0| lj AY   ; 

(iii) there exists {1,2, , 2 1}l q    such that l  is even and there exists {1,2, , }ri   

where | 0|i lAX   ;  

(iv) there exists {1,2, , 2 1}l q    such that l  is even and there exists {1,2, , }j k r    

where | 1| lj AY   .  

 Assuming that either (i) or (ii) occurs for {1,2, , 2 1}l q    and i lX A  , 

namely that | 1|i lAX     for each {1,2, , }ri  , then in case (i) 

11

)| |( ||
r r

l l i l i
ii

A X A XA r


    , 

and in case (ii) 
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11

( ) ( ) || | | | | 1 .
r r

l l i l j l i l j
ii

A X A Y A XA rA Y r


          

In both cases, we reach a contradiction with | |lA r . Therefore, if (i) or if (ii) occurs, 

then there exists {1,2, , }ri   such that i lX A  . Analogously, we can show that if 

(iii) or if (iv) occurs, then there exists {1,2, , }j k r    where ljY A  . 

 Thus, there exists {1,2, , 2 1}l q    such that either l  is odd and there exists 

{1,2, , }ri   where i lX A  , or l  is even and there exists {1,2, , }j k r    where 

ljY A  . Henceforth, such l  is termed level-breaking. We define 

max{ {1,2, , 2 1}:  is level-breaking}l q l     . 

We note that as long as 1 2 3 1 2,{ , , , , , , }r k rX X X YX Y Y    is not leveled, 

{1,2, , 2 1}q    is well defined. By definition of a leveled division and Remark 2, if 

2 1 2 1ql    , then for every {1,2, , }ri  , 2 1
l
i lAx  . Also, if 2 2ql   , then for 

every {1,2, , }j k r   , 2
l
j ly A . 

 We consider first the case of an odd  : 02 1l   . In this case, there exists 

{1,2, , }ri   such that iX A   and either 

(a) there exists {1,2, , } { }ij r  �  where | | 1j AX   , 

or 

(b) there exists {1,2, , }j k r    where jY A   .  

Without loss of generality and for simplicity’s sake, we assume that 1i  . 

 Considering sub-case (a), we assume that there exists {1,2, , } { }ij r  �  such 

that | | 1j AX   . Again, without loss of generality and for simplicity’s sake, we assume 

that 2j  . Let  2min Xx A  . Then 2 0( , )X xn l , because there are at least 

02q l   individuals in 2X  whose comparison-free performance is better than x  

( 01q l   of them belong, respectively, to sets 
0 02 1 2 3 2 1, ,,l l qA A A   , and at least one 

other individual from 2X  belongs to 2X A  and performs better). We define 

0 0
1 1 1 2 2 1{ } { }; { } }' ' { .l lX XX x x X x x      
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Then 1 2 3 1 2', ', ,{ , , , },r k rX X X X Y Y Y    is also a division, and  

1 2 1 2 1 2 1 2

1 1

1 1

2

2

'

1 2 3 1 2 1 2 3 1

, ', , , , , ,

2

{ , , , } { , ,

' '
'

,

'

, }

( ',{ , , , } { , , , }

( ) ( )

', , , ) ( , , , , )

( ) ( ) ( )

r k r r k r

r k r r k r

X Y Y S X Y Y
S S

S X X Y i S X X Y i

i i i

S

X X X X
X X X

X Y Y X Y YARD X X X Y ARD X X X Y

RD RD

RD i RD i RD i RD

i i
 

 

       

  



 

 
    


 



 

   

  

1 1

1 1

2

2

2 2

2 2

' '
' '

( )

( ) ( ) ( ) ( ).

X

X X X X
X X X

i

i i Xi i

i

RD i RD i RD i RD i



   

 
 
 

   



   

 

From Remark 2 and the fact that 0
1
l

lx A  for l  , it follows that 0
1
lx x . Also, 

1 2 1
l

lAx   for 0l l , and 
02 1lA Ax     so, therefore, 0

11 1 0( , ) ( , )'ln nX x X x l  . By the 

Supportive Lemma we obtain that 

1

1

1

1

1

1
( ) (2 2

1
) ,

q
l

X
X

i l

i qRD x
q

l


 




    

and that 

0

1

1

' 1 1

1

0
'

0
1

1 1 1
( ) (2 2) (2 2) (2 2

1 1 1
) .

q
ll

X
X

i l

RD x x x
q

i l q l q l q
q q



 

      
     

Therefore, 

1 1

1 1

0
0' 1

'

1
( ) ( ) (2 ).

1
2)(X X

i i

l

X X

RD RD x x
q

i i l q
 

   
   

Moreover, 

2

2

2

1

1

1
( ) (2 2

1
) .

q
l

X
X

i l

i qRD x
q

l


 




   

We know that 0
1
lx x , thus 0

1 02 2( , )' ( , )lX x Xn xn l  . Assume that 2 1 0( , )n lX x l   

(namely 1
2
lx x ) and that 0

212 1'( , )ln X x l l  . Then 

0

1 2

2

2 1 2

1

1
1 1

1 1

' 2 2 2 2
'

1
( ) (2 2) (2 ) (2 2) (2 2) .

1

l lq
ll l l

X l l l
X

i l l

RD x x x
q

i l q l q l q x l q


  



 

 
        


 

 
    

Thus, 

0

1

2 2

2 2 2

1

1

' 2 2 1
'

1
( ) ( ) 2 (2 2) (2 2)

1
.

l
ll

X
i iX X l

X
l

RD RD xi i l q x l q x
q  



   
 

      
   

Finally, 



15 
 

1 2 3 1 2 1 2 3 1 2( ', ', , , ) ( ,{ , , , } { , , ,, , , })r k r r k rARD X X X Y ARD X XX Y Y X YX Y Y      

     
1 1

1

2 2

1 2 2

' '
' '

( ) ( ) ( ) ( )X X X X
X X X Xi i i i

RD i RD i RD i RD i
   

        

     
2

0 0

1 1

1 120 2 1)
1

(2 2)( 2 (2 2) (2 2)
1

l
l ll

l l

l q l q xx x l q x
q

x





 

        
  


  

      
1

2

0 00 1
0 1 0 2 1 1

1

2

2(
) 2( ) 0

)1
2( ) 2 (

1 1
.

l
l ll

l l

l
l l l x x x

q q

l
x l x






  

       
   

Thus, 

1 2 3 1 2 1 2 3 1 2( ', ', , , ) ( ,{ , , , } { , , ,, , , })r k r r k rARD X X X Y ARD X XX Y Y X YX Y Y     . 

 Considering now sub-case (b), we assume that there exists {1,2, , }j k r    such 

that jY A   . Without loss of generality and for simplicity’s sake, we assume that 

1j  . Let  1minx Y A  . Then 1 0( , ) 1xn Y l   because there are at least 0 1q l   

individuals in 1Y  whose comparison-free performance is better than x  (each of the sets 

0 0 02 2 2 2 4 2,, , ,l l l qA A A A    contains exactly one of these individuals and there can be 

individuals whose comparison-free performance is better than x  in 1Y A ). We define 

0 0
1 1 11 11{ } { }; { } }' ' { .l lX YX x x Y x x      

Then 1 3 1 22', , ,{ , , ,' , }r k rX YX X Y YX    is also a division, and  

1 2 1 2 1 2 1 2

1 1

1 1

1

1

', , , ' , , , , ,

' '
'

1 2 3 1 2 1 2 3 1 2

{ , , , } {

'

, , , }

{ , , , } { , , , }

( ) (

( ', , , ' , ) ( , , , , )

( ) )

)

( ) (

r k r r k r

S S
S X X Y i S X X

r k r r k r

X Y Y S X Y Y S

X X

Y i

Y Y
i iX Y i X

ARD X X X Y ARD X X X Y

RD RD

RD

X Y Y

i RD i RD i RD

X Y Y

i i
 

 

       

  



 

 
    


 



 

   

   1

1

1 1 1 1

1 1 1 1

' '
' '

( )

( ) ( ) ( ) ( ).

i Y

Y Y
i i i i Y

X X
X X Y

i

RD i RD i RD i RD i



   

 
 
 

   



   

 

Identically, as in the sub-case (a) we obtain that 

1 1

1 1

0
0' 1

'

1
( ) ( ) (2 ).

1
2)(X X

i i

l

X X

RD RD x x
q

i i l q
 

   
   

Moreover,  

1

1 1
1

1
( ) (2 1) .

q
l

Y
Y li

RD q
q

i l y
 

    
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We know that 0
1
lx x , thus 0

1 1 1 0 0( , ) ( , )' 1ln Y nx Y x l l    . Assume that 11 0( , )n lY x l   

(namely 1
1
lx y ) and that 0

211 1'( , )ln X x l l  . Then 

1 2

1

1 2

0

1

1

1
1 1

1 1

' 1 1 2 1
'

1
( ) (2 1) (2 1) (2 1) (2 1) .

i

l lq
ll l l

Y
Y l l l l l

i l q y l q y l q x l qRD
q

y


   

 



 
        


  


     

Thus, 

1

0

1 1

1 21

1

' 1 2 01
'

1
2 (2 1) (2 3)( ) ( ) .Y Y

i Y

l
l

Y

l

l li

y l q x l q xRD i RD i
q



 

 
   


 


      

Finally,  

1 2 3 1 2 1 2 3 1 2( ', , , ' , ) ( ,{ , , , } { , , ,, , , })r k r r k rARD X X X Y ARD X XX Y Y X YX Y Y      

     
1 1 1 1

1 1 1 1

' '
' '

( ) ( ) ( ) ( )Y Y
i i i Y i Y

X X
X X

RD i RD i RD i RD i
   

        

     0

2

0

1 1

1 10 12 0

1 1
(2 2)( 2 (2 1) (2 3)

1
)

l
l ll

l l

l q y l q xx x
q

l q x
q 

 
         

 
  

     0 0

2

0

1 1

10 1 11 2 0) 0.
1

(2 3)( 2 (2 1) (2 3) 2
l

l l ll

l l

x xl q y l q x l q x x
q 

 
       


 


     

Thus, 

1 2 3 1 2 1 2 3 1 2( ', ', , , ) ( ,{ , , , } { , , ,, , , })r k r r k rARD X X X Y ARD X XX Y Y X YX Y Y     . 

 For both sub-cases (a) and (b) we obtained that there exists a division which 

yields a higher ARD than 1 2 3 1 2, , ,{ ,, , , }r k rX YX X Y YX   , so if   is odd, then 

1 2 3 1 2, , ,{ ,, , , }r k rX YX X Y YX    is not optimal. Analogously, we can obtain the same 

type of result when   is even. The proof of this case, which is similar to the proof for an 

odd  , is available from the authors on request. 

 To sum up, for every {1,2, , 2 1}q   , 1 2 3 1 2, , ,{ ,, , , }r k rX YX X Y YX    is not 

optimal. Therefore, if 1 2 3 1 2, , ,{ ,, , , }r k rX YX X Y YX    is optimal, then   cannot exist 

and, consequently, 1 2 3 1 2, , ,{ ,, , , }r k rX YX X Y YX    is leveled. Q.E.D.   
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Proof of Lemma 2. 

We assume that 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a leveled division of N. First, we note 

that for every {1,2, , }ri   and for every {1,2, , 1}l q   , 2 1
l
i lAx  . Also, for every 

{1,2, , }j k r    and for every {1,2, , }ql  , 2
l
j ly A . Therefore, for every 

{1,2, , 1}l q    

2 11 l

l
i i

A

r

i i

x a


  , 

and for every {1,2, , }ql    

21 l

l
i

k r

i
Ai i

y a




  . 

   

 Thus, by the Supportive Lemma  

2 11 1

1 1 1

1 1 1 1

1 1 1
( ) (2 2) (2 2) (2 2) ,

1 11i

i l

q q qr
l l
i i

m X l l

r r

X i
i i l i Ai

RD
q

m l q x l q x l q a
qq



  

      

 
          

    
and 

21 1 11 11

1 1 1
( ) (2 1) (2 1) (2 1) .

i

i l

q q qk r
l l
i i

m Y l l i l i

k r r

Y i
i Ai

m l q y l q l q aRD y
q q q



      

 
     


   


       

 Finally,  

1 2 1 2

1 2 1 2
{ , , , }, ,, ,

{ , , , } (( , , , ), )
r k r

r k S
S X X Y Y SY

r
X m

XARD X X Y RDY Y m



   

      

    

2 1 2

1

1 11 1

1 1
( ) ( ) (2 2) (2 1) .

1i i

i i l l

r k r

X Y i

q q

m X m Y l i A li i
i

Ai

m m l q a l q a
q

D R
q

R D




     



 

 
   

           
    

 

Q.E.D. 

 

Proof of Claim 1.  

Proof of part (a) 

By Lemma 1 we know that every optimal division is leveled. Because the set of all 

possible different divisions of N  is finite, at least one optimal division exists, and it is 
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leveled. Because by Lemma 2 all leveled divisions of N  yield the same ARD, then all 

leveled divisions of N  yield the same ARD as the optimal division. Therefore, every 

leveled division is optimal. 

Proof of part (b) 

Because the set of the optimal divisions of N  is equal to the set of the leveled divisions 

of N, it is sufficient to calculate the number of leveled divisions of N . 

We first calculate the number of sequences 1 2, , , )( rXX X  for which a family of 

subsets 1 2{ , , , }k rY Y Y   exists such that 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a leveled division 

of N . Each of the sets iX , 1, 2 ,,i r   consists of one element from each of the sets 

1 3 2 1{ , , , }qA A A  , where 1 2 2 1{ , , , }qA A A   is the k-partition of N . For 0,1 ,,j q  , 

2 1 || j rA   . Therefore, each sequence 1 2, , , )( rXX X  is equivalent to one permutation of 

the sets 1 3 2 1, , , qA A A  ,4 and 1( !)qr   such permutations exist. 

To calculate the number of unordered families 1 2, , ,{ }rXX X  for which there 

exists a family of sets 1 2{ , , , }k rY Y Y   such that 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a leveled 

division of N , we need to divide the number of such sequences 1 2, , , )( rXX X  by the 

number of permutations of the sequence 1 2, , , )( rXX X . We obtain  

1( !)
( !)

!

q
qr

r
r



 .  

Analogously, we can calculate the number of unordered families 1 2{ , , , }k rY Y Y   

for which a family of sets 1 2, , ,{ }rXX X  exists such that 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    

is a leveled division of N, and we obtain 1(( )!)qk r  . 

We note that 1 2 1 2{ , , , , ,, },r k rX X YX Y Y    is a leveled division of N  if and only 

if a family of sets 1 2{ , ,' ' '}, k rY Y Y   exists for 1 2, , ,{ }rXX X   such that 

1 2 1 2, ' '{ , , , , , }, 'r k rX X X Y Y Y    is a leveled division of N , and a family of sets 

1 2{ ' ', , , '}rX X X  exists for 1 2{ , , , }k rY Y Y   such that 1 2 1 2' ' ',{ , , , , , , }r k rX X Y Y YX    is 

                                                 
4 By a permutation of the sets 

1 2
, , ,

m
ZZ Z   we mean here a sequence of permutations 

1 2
( ,, , )

m
    

such that 
i

  is a permutation of 
i

Z  for 1, 2 ,,i m  .  



19 
 

a leveled division of N . Moreover, because the distribution of the set 

1 3 2 1qA A A    into the family of sets 1 2, , ,{ }rXX X  is independent of the 

distribution of the set 2 4 2qA A A   into the family of sets 1 2{ , , , }k rY Y Y  , the 

number of leveled divisions of N  is 1( !) (( )!)q qr k r  . Q.E.D. 
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Appendix B. The measure of relative deprivation in Definition 2 

B1. A concise historical account of the “adoption” of the sociological-psychological 

concept of relative deprivation by the discipline of economics  

A considerable amount of economic analysis has been inspired by the sociological-

psychological concepts of relative deprivation (RD) and reference (comparison) groups.5 

Economists have come to consider these concepts as appropriate tools for studying 

comparisons that affect an individual’s behavior, and - in particular - comparisons with 

related individuals whose incomes are higher than his own income (consult the large 

literature spanning from Duesenberry, 1949, to, for example, Clark et al., 2008). An 

individual has an unpleasant sense of being relatively deprived when he lacks a desired 

good and perceives that others in his reference group possess that good (Runciman, 

1966). Given the income distribution of the individual’s reference group, the individual’s 

RD is the sum of the deprivation caused by every income unit that he lacks (Yitzhaki, 

1979; Ebert and Moyes, 2000; Stark et al., 2017). 

The pioneering study in modern times that opened the way to research on RD and 

primary (reference) groups is the 1949 two-volume set of Stouffer et al. Studies in Social 

Psychology in World War II: The American Soldier. That work documented the distress 

caused not by a low military rank and weak prospects of promotion (military police) but 

rather by the faster pace of promotion of others (air force). It also documented the lesser 

dissatisfaction of black soldiers stationed in the South who compared themselves with 

black civilians in the South than the dissatisfaction of their counterparts stationed in the 

North who compared themselves with black civilians in the North. Stouffer’s research 

was followed by a large social-psychological literature. Economics has caught up 

relatively late, and only partially. This is rather surprising because eminent economists in 

the past understood well that people compare themselves to others around them, and that 

social comparisons are of paramount importance for individuals’ happiness, motivation, 

and actions. Even Adam Smith (1776) pointed to the social aspects of the necessities of 

life, and stressed the relative nature of poverty: “A linen shirt, for example, is, strictly 

                                                 
5 The reference (comparison) group of an individual is the set of individuals with whom the individual 
naturally compares himself. (Consult Runciman, 1966; Singer, 1981.) 
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speaking, not a necessary of life. The Greeks and Romans lived, I suppose, very 

comfortably, though they had no linen. But in the present times, through the greater part 

of Europe, a creditable day-laborer would be ashamed to appear in public without a linen 

shirt, the want of which would be supposed to denote that disgraceful degree of poverty 

[…]” (p. 465). Marx’s (1849) observations that “Our wants and pleasures have their 

origin in the society; [… and] they are of a relative nature” (p. 33) emphasize the social 

nature of utility and the impact of an individual’s relative position on his satisfaction. 

Inter alia, Marx wrote: “A house may be large or small; as long as the surrounding houses 

are equally small, it satisfies all social demands for a dwelling. But if a palace arises 

beside the little house, the house shrinks into a hut” (p. 33). Samuelson (1973), one of the 

founders of modern neoclassical economics, pointed out that an individual’s utility does 

not depend only on what he consumes in absolute terms: “Because man is a social 

animal, what he regards as ‘necessary comforts of life’ depends on what he sees others 

consuming” (p. 218). 

The relative income hypothesis, formulated by Duesenberry (1949), posits an 

asymmetry in the comparisons of income which affect the individual’s behavior: the 

individual looks upward when making comparisons. Veblen’s (1899) concept of 

pecuniary emulation explains why the behavior of an individual can be influenced by 

comparisons with the incomes of those who are richer. Because income determines the 

level of consumption, higher income levels may be the focus for emulation. Thus, an 

individual’s income aspirations (to obtain the income levels of other individuals whose 

incomes are higher than his own) are shaped by the perceived consumption standards of 

the richer individuals. In that way, invidious comparisons affect behavior, that is, 

behavior which leads to “the achievement of a favourable comparison with other men 

[…]” (Veblen, 1899, p. 33).6  

 

                                                 
6 The empirical findings support the relative income hypothesis. Duesenberry (1949) already found that 
individuals’ levels of savings depend on their positions in the income distribution, and that the incomes of 
the richer people affect the behavior of the poorer ones (but not vice versa). Later on, and for example, 
Schor (1998) showed that, keeping annual and permanent income constant, individuals whose incomes are 
lower than the incomes of others in their community save significantly less than those in their community 
who are relatively better off.  
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B2. Construction of the index of relative deprivation  

Several recent insightful studies in social psychology (for example, Callan et al., 2011; 

Smith et al., 2012) document how sensing RD impacts negatively on personal wellbeing, 

but these studies do not provide a method of calibrating it; a sign is not a magnitude. For 

the purpose of constructing a measure, a natural starting point is the work of Runciman 

(1966), who, as already noted in the preceding section, argued that an individual has an 

unpleasant sense of being relatively deprived when he lacks a desired good and perceives 

that others with whom he naturally compares himself possess that good. Runciman (1966, 

p. 19) writes as follows: “The more people a man sees promoted when he is not promoted 

himself, the more people he may compare himself with in a situation where the 

comparison will make him feel deprived,” thus implying that the deprivation of not 

having, say, income y is an increasing function of the fraction of people in the 

individual’s reference group who have y. To aid intuition and for the sake of 

concreteness, we resort to income-based comparisons, namely an individual feels 

relatively deprived when others in his reference group earn more than he does. It is 

assumed implicitly here that the earnings of others are publicly known. Alternatively, we 

can think of consumption, which might be more publicly visible than income, although 

these two variables can reasonably be assumed to be strongly positively correlated.  

As an illustration of the relationship between the fraction of people possessing 

income y and the deprivation of an individual lacking y, consider a population (reference 

group) of six individuals with incomes {1,2,6,6,6,8}. Imagine a furniture store that in 

three distinct departments sells chairs, armchairs, and sofas. An income of 2 allows you 

to buy a chair. To be able to buy an armchair, you need an income that is a little bit 

higher than 2. To buy any sofa, you need an income that is a little bit higher than 6. Thus, 

when you go to the store and your income is 2, what are you “deprived of?” The answer 

is “of armchairs” and “of sofas.” Mathematically, this deprivation can be represented by 

( 2)(6 2) ( 6)(8 6)P Y P Y     , where ( )P Y a  stands for the fraction of those in the 

population whose income is higher than a , for 2,6a  . The reason for this 

representation is that when you have an income of 2, you cannot afford anything in the 

department that sells armchairs, and you cannot afford anything in the department that 
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sells sofas. Because not all those who are to your right in the ascendingly ordered income 

distribution can afford to buy a sofa, but they can all afford to buy armchairs, a 

breakdown into the two (weighted) terms ( 2)(6 2)P Y    and ( 6)(8 6)P Y    is needed. 

This way, we get to the very essence of the core measure of RD presented in this note: we 

take into account the fraction of the reference group (population) who possess some good 

which you do not, and we weigh this fraction by the “excess value” of that good. Because 

income enables an individual to afford to consume certain goods, we refer to comparisons 

based on income.  

Formally, let 1( ,..., )ma a a  be the vector of incomes in population S with relative 

incidences ( )p a   1( ),..., ( )mp a p a , where | |m S  is the number of distinct income 

levels in a , and where m is a natural number. The RD of an individual earning ia  is 

defined as the weighted sum of the excesses of incomes higher than ia  such that each 

excess is weighted by its relative incidence, namely  

   ( ) ( )( )
j i

S i j j i
a a

RD a p a a a


  .                              (B1) 

In the example given above with income distribution {1,2,6,6,6,8}, we have that the 

vector of incomes is (1,2,6,8)a  , and that the corresponding relative incidences are 

( )p a  (1/ 6,1/ 6, 3 / 6,1/ 6) . Therefore, the RD of the individual earning 2 is 

( )( ) (6)(6 2) (8)(8 2)
ij

j ij
a a

p a a a p p


     3 1
4 6 3

6 6
     . By similar calculations, 

we have that the RD of the individual earning 1 is higher at 
5

3
6

, and that the RD of each 

of the individuals earning 6 is lower at 
1

3
. 

We expand vector a  to include incomes with their possible respective repetitions, 

that is, we include each ia  as many times as its incidence dictates, and we assume that 

the incomes are ordered, that is, 1 | |( ,..., )Sa a a  such that 1 2 | |... Sa a a   . In this case, 

the relative incidence of each ia , ( )ip a , is 1/ | |S , and (B1), defined for 1,...,| | 1i S  , 

becomes   
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                  
| |

1

1
( ) .

| |

S

S i j
j i

iRD a a a
S  

          (B2) 

If we additionally assume that for , |1, | Si  , i  denotes an individual whose 

income is ia , then from  (B2) we get that the RD  of individual i  is  

                  
| |

1

1
( ) .

| |

S

S j
j i

iRD i a a
S  

          (B3) 

For , 1,...,| }{ |i j S  such that j i  it holds that 0j ia a  . Thus, for 1,..., |}{ |i S ,  we 

obtain  

           
| | | |

1 1

0 max{ ,0}.i i j i
j

S S

j j
j j i Si

a a a aa a i
    

             (B4) 

Inserting (B4) into (B2) yields  

 max
1

( )
| |

{ ,0}S j i
j S

aRD i
S

a


  , 

which aligns with Definition 2. 
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