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Whereas there are recent papers on the effect of robot adoption on employment and wages, 

there is no evidence on how robots affect non-monetary working conditions. We explore 

the impact of robot adoption on several domains of non-monetary working conditions 

in Europe over the period 1995–2005 combining information from the World Robotics 

Survey and the European Working Conditions Survey. In order to deal with the possible 

endogeneity of robot deployment, we employ an instrumental variables strategy, using 

the robot exposure by sector in other developed countries as an instrument. Our results 

indicate that robotization has a negative impact on the quality of work in the dimension 

of work intensity and no relevant impact on the domains of physical environment or skills 

and discretion.
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1. Introduction

Automation means a major force in today's labour markets, contributing to rising

living standards (Atack et al., 2019; Autor, 2015; Autor & Salomons, 2018), but

also being considered a relevant source of anxiety for citizens: 75% of Europeans

see technological progress as a phenomenon threatening their job perspectives

(European Commission, 2017a). While there is an increasing empirical evidence

showing positive e�ects of robot adoption on productivity (Dauth et al., 2017;

Graetz & Michaels, 2018; Jungmittag & Pesole, 2019; Kromann et al., 2020),

research on the impact of this technology on the labour market is mainly lim-

ited to employment and wages (Acemoglu & Restrepo, 2020a; Borjas & Freeman,

2019; Chiacchio et al., 2018; Dahlin, 2019; Dauth et al., 2017; Graetz & Michaels,

2018; Jäger et al., 2016; Klenert et al., 2020; Koch et al., 2019). To the best of

our knowledge, general evidence on other non-monetary aspects of job quality is

lacking.

The aim of this paper is to explore whether the increase of robot density in

Europe a�ects working conditions. This is relevant for two reasons: At �rst,

workers do care for working conditions. Workers are willing to trade money for

improvements in other domains in the sense of compensating di�erentials (Clark,

2015; Maestas et al., 2018; Muñoz de Bustillo et al., 2011), even if labour market

imperfections and job rationing do not guarantee that the market compensates

such attributes according to workers' preferences (Bonhomme & Jolivet, 2009).

Working conditions are one of two most important concerns for European citizens

(European Commission, 2017b): more than a half of them reported that the quality

of work has worsened during the last years.
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Second, other than business cycle �uctuations or changes in bargaining condi-

tions, the introduction of (industrial) robots should in principle modify working

conditions directly: speci�c tasks of workers are substituted, new tasks are cre-

ated, others are reshaped; as a result, the whole production process changes with

obvious consequences for job quality and working conditions. Because of these

potentially contradictory changes in tasks, it is not clear in what directions they

may change working conditions. While robots will substitute heavy and monotonic

work�thus leading to less physical demands on employees�, work pace and stress

might become stronger. The raise in productivity due to robot adoption might also

result in a wider space for improving conditions at the workplace, which, in turn,

are shaped by the possibility of monitoring workers' performance (Bartling et al.,

2012). At the same time, robot adoption might widen the ability to improve

employee surveillance, with consequences on work intensity.

We combine sector- and industry-level data on robots with several European-

level surveys on working conditions that allow us to analyse how the increase

in robot density a�ects working conditions at the local labour market. We use

composite indices of job quality previously employed in the literature and use

Ordinary Least Squares (OLS) in changes over the period 1995-2005. As there

might be reverse causality or a problem with missing variables, we resort to instru-

mental variables (IV) techniques based on sector-level trends in robot adoption in

other leading countries, such as South Korea, Switzerland or Australia. Whatever

method we use, we �nd that the increase in robot adoption across Europe had a

negative e�ect on job quality in work intensity but does not have any e�ect on

other aspects of job quality, like physical job environment and skills and discretion

of workers on the job.
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Robots applied in the industrial production process are not so widespread as

computers or potential applications of arti�cial intelligence. Therefore, it is debat-

able to which extent the deepening in the adoption of this technology represents a

qualitative change (as one could more easily argue, for instance, regarding arti�-

cial intelligence, see Acemoglu and Restrepo (2020b) and Fernández-Macías et al.

(2020)); so the impact of robots might not be the same as in the case of other tech-

nologies the literature has analysed thoroughly (see, Acemoglu and Autor [2011],

Autor [2015], Autor and Salomons [2018], Barbieri et al. [2019], Fernández-Macías

and Hurley [2016] and Jerbashian [2019]).

With our research we contribute to several recent discussions. There is a grow-

ing literature on the impact of robotization on employment and wages, which is

far from reaching a consensus. While several studies for the US suggest a negative

impact on employment and wages (Acemoglu & Restrepo, 2020b; Borjas & Free-

man, 2019; Dahlin, 2019), the e�ects are not so clear for other economies. Those

negative e�ects only seem to apply to manufacturing in Germany (Dauth et al.,

2017), while the work of Chiacchio et al. (2018) for six EU countries only shows

a detrimental impact on employment, but not for wages. The pioneering study of

Graetz and Michaels (2018), including a wide set of developed countries, identi�es

a positive e�ect on wages and a neutral e�ect on employment, whereas Klenert

et al. (2020), which extend the period of analysis and limit their exploration to

manufacturing, even point out a positive contribution of robots to employment

growth.1 Similarly, the cross-country studies of Carbonero et al. (2018) and De

Backer et al. (2018) draw mixed conclusions on the impact of robots on job cre-

1See also Bekhtiar et al. (2020) and Fernández-Macías et al. (2020) on problems with industry-
level data.
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ation. Firm-level studies, on the other hand, �nd a positive association between

the introduction of robots and employment growth in France (Domini et al., 2020)

and Spain (Koch et al., 2019). Our study is the �rst to explore the impact of

robots on non-monetary working conditions.

Robots might a�ect job quality through several channels. In the �rst place, they

can modify the tasks performed by workers. In principle, this e�ect can be more

direct on those workers complementary to robots than those who are potentially

replaceable. Nevertheless, the presence of robots might also create pressure on

the work carried out by other workers, who might have to take up or modify the

way they perform their (new) tasks due to the introduction of the technology.

Furthermore, the introduction of a new technology might lead to productivity

gains that lead not only to wage gains but also to the improvement of other job

amenities, even if they are costly for employers.

We also contribute to the discussion about changes in working conditions.

Fernández-Macías et al. (2015) show that job quality in the EU was remarkably

stable before and after the �nancial crises with some increase in job quality in the

European periphery. Green et al. (2013) look at di�erent components of working

conditions and �nd the component of work intensity and � to some extent � work-

ing time quality to improve in Europe. Moreover, they study the dispersion of

these measures across groups and across time. Bryson et al. (2013) investigate the

impact of organisational changes and trade unions on working conditions, whereas

Cottini and Lucifora (2013) explore the consequences of working conditions on

mental health. Closer to our topic are studies relating changes in computer use

with working conditions: Menon et al. (2020) report that computerization has no

large e�ects on working conditions in general, there is even a mild positive e�ect
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on job discretion. Green and McIntosh (2001) in an earlier study show that com-

puter use leads to an intensi�cation of the workpace.2 In our study we extend this

analysis with a closer look at the impact of robotization on working conditions in

general.

Following this introduction, the rest of the paper unfolds as follows. Section

2 describes the databases employed in the analysis and outlines the identi�cation

strategy used in the econometric analysis. We present the main results of the

paper in section 3 and the 4th and last section summarizes and discusses the main

conclusions of the paper.

2. Data and methods

2.1. Data

Robots. In order to assess the e�ect of robotization on the working conditions

of European workers, we combine several databases that contain information on

robot adoption and job attributes. Our �rst source is the World Robotics 2017

edition, a dataset administered by the International Federation of Robotics (IFR)

(IFR, 2018), the main association of manufacturers of robots worldwide. It com-

prises information on industrial robot stocks and deliveries by country and sector

of activity all over the world from 1993 to 2016. The robots included in the IFR

(2018) consist of industrial machinery, digitally controlled, mainly aimed at hand-

ling operations and machine tending, welding and soldering and assembling and

disassembling. In terms of accounting, these robots are part of non-information

2There is a large literature on job satisfaction or happiness as general indicators of working
conditions (see Clark and Oswald [1994] or Clark [2005] for early references). These indicators
may lack comparability as they may also comprise di�erences in expectations (Osterman, 2013);
they are general indicators and there is no research linking these indicators to robots.
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and communication technology capital, with the exception of their associated soft-

ware needed to manage them.3

The IFR basically constructs a series of robot stocks on the basis of deliveries,

using a perpetual-inventory approach and a 12-year depreciation. This is a more

reliable approach �as compared to using stocks�, since the association of robot

producers controls those in�ows directly. As the distribution of robots is missing

in some years and countries, we impute initial unspeci�ed stocks or deliveries on

the basis of the distribution by industry in the three closest years to the period of

interest with speci�ed information.4

Working Conditions. We use the 2nd, 3rd and 4th waves the European Work-

ing Conditions Survey (EWCS), carried out in 5-year intervals by the European

Foundation for the Improvement of Living Conditions (Eurofound) (Eurofound,

2018), 1995, 2000 and 2005.5 There are two additional waves (2010 and 2015),

but we focus on the period 1995�2005 in order to avoid confounding e�ects of

the Great Recession, which had a markedly di�erent impact across countries and

regions (Acemoglu & Restrepo, 2020a; Chiacchio et al., 2018; Dauth et al., 2017).

Furthermore, the increase in robot density during the decade 1995�2005 is signi�c-

antly more intense than over the period 2005�2015. For our sample countries, the

number of robots per thousand workers rose from 0.800 in 1995 to almost 2.200 in

3IFR (2018) provides robot �gures by industry according to the International Standard In-
dustrial Classi�cation of All Economic Activities, Revision 4, which is largely compatible with
the Statistical Classi�cation of Economic Activities in the European Community, Revision 2
(NACE Rev. 2).

4This process is very similar to the one followed by Graetz and Michaels (2018). They use the
total number of speci�ed deliveries for imputation (instead of the three closest years). Our series
are virtually identical. For more details on the imputation procedure, see Fernández-Macías
et al. (2020).

5We do not include the �rst wave of the EWCS, because of limited coverage of countries and
reduced sample size.
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2005; with only a slight increase to 2.750 in 2015. Finally, as there is less variation

in the latter period, our proposed instrumentation (IV) strategy does not produce

a signi�cant �rst stage.

The EWCS represents the most comprehensive database for the analysis of non-

monetary working conditions across Europe on a comparative perspective, covering

the European Union (EU) members, several accession countries and other states

like Norway and Switzerland. We focus on the 12 EU countries with the highest

ratio of robots per worker during the analysed period.6

Each wave includes a minimum of 1,000 interviewees in each country and year.

As robot technology is mainly used in manufacturing, we focus on privately salaried

workers employed in mining and quarrying and the secondary sector (manufactur-

ing, electricity, gas water supply and construction), which concentrates more than

90% of these types of robots. Unfortunately, there is no further disaggregation

of these industries. This leaves us a sample of 7,764 workers. The EWCS con-

tains a rich set of variables covering di�erent dimensions of working conditions; we

describe that in the next subsection.

Control Variables. We use the European Union Labour Force Survey (EU-

LFS) (Eurostat, 2018) and due to missing regional information for Germany the

European Community Household Panel (ECHP) for the years 1995 and 2000

(Eurostat, 2003).7 Changes in information, communication and technology (ICT)

capital stock per worker are from the EU KLEMS (Stehrer et al., 2019), data

for Chinese imports come from the United Nations International Trade Statist-

6The list of countries includes Austria, Belgium, Denmark, Finland, France, Germany, Italy,
the Netherlands, Portugal, Spain, Sweden and the United Kindgom.

7Detailed information by region and industry sometimes was only available through an ad hoc
request to the Eurostat User Support (Eurostat, 2020). Moreover, sectors have to be reclassi�ed
from NACE Rev. 1.1 to NACE Rev. 2.
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ics Database, to which we access through the World Integrated Trade Solution

(WITS) (World Bank, 2020) following Autor et al. (2013).8

We construct instrumental variables from the Korean Industrial Productivity

Database (KIP), provided by the Korea Productivity Center (KPC) (KPC, 2015),

labour force statistics from Australia and information from Eurostat for Switzer-

land.

Our database on working conditions, the EWCS, does contain detailed inform-

ation on sectors of activity (only some large industry groups are available), but it

is representative by region. In the fashion of previous literature (Acemoglu & Re-

strepo, 2020a; Dauth et al., 2017), we perform the analysis at such a level. In order

to calculate the change in robot exposure by region, assuming that the distribution

of the change in robot stocks by region over a certain period of interest depends

on the distribution of employment at the beginning of the period, we combine

detailed sector-level data by country on robots and region-level employment data

by industry obtained from several ad hoc requests to the Eurostat User Support

(Eurostat, 2020).9 We provide further details on the construction of the variation

8Previous literature �nds relevant negative e�ects of exposure to Chinese imports not only
on employment and wages (Autor et al., 2016), but also on health outcomes (Lang et al., 2019).

9We consider 20 sectors of activity (in the nomenclature of NACE Rev. 2) we are able to
match in our robot and employment data: agriculture, hunting and forestry; �shing (A); mining
and quarrying (B); food products and beverages; tobacco products (C10�12); textiles, leather,
wearing apparel (C13�15); wood and wood products (including furniture) (C16); paper and
paper products; publishing and printing (C17�18); chemical products, pharmaceuticals, cosmet-
ics, unspeci�ed chemical, petroleum products (C19�21); rubber and plastical products (C22);
glass, ceramics, stone, mineral products not elsewhere classi�ed (C23); basic metals (C24); metal
products (except machinery and equipment) (C25); electrical/electronics (C26�27), industrial
machinery (C28); automotive (C29); other transport equipment (C30), other manufacturing
branches (C32); electricity, gas and water supply (D, E), construction (F), education, research
and development (P) and others. The questionnaires of the EU-LFS e�ectively collects this
detailed information on the distribution of the labour force by region and industry, but the an-
onymized microdata does not disclose it because of con�dentiality reasons and we access it to
several tailored petitions.
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in the robot exposure by region in the next subsection.

2.2. Methodology

As mentioned above, our identi�cation strategy exploits the regional variation in

the increase in the adoption of robots. Following the strategy proposed by Acemo-

glu and Restrepo (2020a), we compute the change in the exposure to robotization

by region assuming that the robot in�ows during a certain interval of time follows

the distribution of employment in the initial period. Our geographical units of

analysis mainly correspond to the Nomenclature of Territorial Units for Statistics

at the second level (NUTS 2), although in some cases, because of the existence of

administrative changes in the boundaries of NUTS we cannot trace over time, we

make use of larger geographical units. As a result, we are able to trace 80 regions

over the period 1995�2005. Given the very low mobility across NUTS 2 in Europe

(Gákova & Dijkstra, 2008; Janiak & Wasmer, 2008), we can consider our regions

as reasonably closed labour markets, in the sense that it is not likely that robot

adoption results in relevant out�ows from regions with high deployment to others

with low adoption of the technology.

Another problem that might arise is a sort of sample selection bias. We con-

centrate our analysis on workers in these regions in the years 1995, 2000 and 2005.

If the exposure to robots would change or reduce the workforce considerably, we

would be in trouble, comparing working conditions of those in the region before the

advent of robots with the working conditions of those still employed in the region

after the exposure to robot adoption. While Acemoglu and Restrepo (2020a) do

�nd a negative impact of robots on employment in the US, studies for Europe do

not �nd such e�ects (Antón et al., 2020; Dauth et al., 2017). In addition, we use
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additional variables to control for changes in the composition of the workforce.

The main variable of interest in our analysis is the increase in robot exposure

(RE), which we de�ne as the change in the number of robots during a certain period

t in a region r divided by the number of workers in the region at the beginning of

the period, that is,

∆RE rt =
1

Lrt

∑
j

Lrjt

Ljt

∆Rjt (1)

where Rjt represents the change in robot stocks in sector j in the country where

the region is located over period t; Lrt, the initial number of workers in the region

at the beginning of the period of interest; Ljt denotes the employment �gures in

industry j in region r in the initial year and Lrjt, the number of workers in region

r in industry j at the same moment of time. In this fashion, we attribute to each

region a change in the stock of robots according to the share of employment in

this sector in the initial period.

In order to explore the impact of robot adoption on working conditions, we

estimate the following equation:

∆Yrt = β0 + ∆RErtβ1 + Z ′
rtβ2 + εrt (2)

∆Yrt denotes the change in the average job quality indicator of region r over

the period t. Z ′
rt is a set of start-of-the-period regional control variables, very

similar to those considered by Acemoglu and Restrepo (2020a) and Autor et al.

(2013), including the share of employment in mining and quarrying and the sec-

ondary sector in the region (to which we refer as the share of industry for brevity),

population (in logs), share of females and foreign workers, age structure of the
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workforce, the share of population with middle or high education, the average

routine task intensity (RTI) (Autor & Dorn, 2013; Goos et al., 2014; Mahutga

et al., 2018; Schmidpeter & Winter-Ebmer, 2020) and the average o�shoreability

risk (Blinder & Krueger, 2013; Mahutga et al., 2018).10 Given that we pool two

5-year di�erences, we include time �xed e�ects covering each of those periods.

Second, we add a geographical dummy for core-periphery countries to capture

group-of-countries-speci�c time trends.11. Finally, it is possible that some changes

in working conditions have to do with changes in the labour force composition. In

order to mitigate this selection e�ect, we control for the changes in the share of

female workers, the proportion of workers with medium education, the proportion

of workers with high education and the share of workers aged less than 30 years old

and aged 50 years old or more employed in the region in the industries considered

in the analysis.

Similar to previous analyses of the impact of robotization on employment or

wages (Acemoglu & Restrepo, 2020a; Dauth et al., 2017)), there is the possibility

of reverse causation. In these studies it may well be that robot adoption is caused

by developments on the labour market, like the availability of suitable workers or

a fast rising wage in the respective sector. In our case, reverse causation could

occur for similar considerations: Since working conditions can also be indirect

cost components (slower work pace or costs for accident avoidance) or have an

10The aim of controlling for the initial values of RTI and o�shoreability is to rule out that
other sources of labour market changes due to technological changes di�erent from robot adoption
might con�ate with the latter. The RTI intends to capture to which extent an occupation is
routine-task intensive. The logic behind the RTI measure is that automation is more likely to
a�ect routine, manual, non-interactive job tasks. Likewise, the o�shoreability risk index tries to
measure the degree to which a certain occupation might be outsourced to a remote location.

11We are unable to include country dummies given that some states only contain one traceable
region because of their size or changes in the boundaries of NUTS2.

12



impact on labour supply with respect to a speci�c industry, reverse causation could

apply. Given our use of non-monetary working conditions, the argument for reverse

causation is less strong as in the case of wages. Still, we use the same strategy

as Acemoglu and Restrepo (2020a) and Dauth et al. (2017), who instrument the

adoption of robots by the trends in other developed countries.12 Given our focus

on European Union countries, we look at the patterns of robotization by sector

in South Korea, one of the world leaders in the adoption of this technology (IFR,

2018; United Nations Conference on Trade and Development, 2017), in order to

build our IV. Considering the size of this economy and its limited integration with

EU countries (compared to other member states), it is not likely that Korean

industry-level developments trigger any relevant general-equilibrium e�ects. The

exclusion restriction of the IV strategy requires that the instrument (robotization

in Korean industries) has no impact on European working conditions over and

above its indirect impact via robotization in Europe. We strongly believe that this

is, indeed, the case. We also build on data from Australia, Switzerland and Sweden

in order to check the robustness of our results using alternative instruments.

We can express the increase in robot exposure as a function of the importance

of each industry in the region and the average increase in robot density per worker

at the national level. In order to build our IV, we consider the increase in robot

exposure per worker in each of our third countries instead of the variable corres-

12It is worth mentioning that previous studies using robot data from the IFR to explore the
impact of this technology on labour market outcomes �nd very close OLS and IV estimates
(Acemoglu & Restrepo, 2020a; Dauth et al., 2017; Graetz & Michaels, 2018), thus suggesting
little evidence of endogeneity in the �rst place.
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ponding to each European Union country, obtaining the following expression:

∆RE k
rt =

1

Lrt

∑
j

Lrjt

∆Rk
jt

Lk
jt

(3)

where the superindex k denotes the third country used for building the IV (South

Korea, Australia, Sweden or Switzerland). Our IV is relevant, with an F -statistic

between 40 and 80 in di�erent econometric speci�cations, using clustered standard

errors at the regional level.

In order to build changes in ICT capital stock per worker and in the exposure

to Chinese imports, we depart from sector-level data and follow a similar proced-

ure to the one applied to robots based on the initial distribution of employment,

considering roughly the same industry classi�cation as in the case of robots and

even a more detailed one regarding Chinese imports.

Working conditions in the EWCS are referring to the dimensions i) work in-

tensity, ii) physical environment and iii) skills and discretion, which are developed

by Eurofound and their collaborators (see, e.g., Eurofound [2012, 2015, 2019],

Fernández-Macías et al. [2015], Green et al. [2013], Menon et al. [2020], and Muñoz

de Bustillo et al., 2011). We formulate indicators in such a way, that all questions

are available in the three waves of the survey.

The index of work intensity comprises two sub-dimensions, quantitative de-

mands and pace determinants and interdependency. The �rst sub-dimension builds

on three variables, pace of work (high speed), tight deadlines and time pressure,

while our indicator of pace determinants and interdependency considers how in-

terviewee's work depends on colleagues, customer demands, production targets,

machine speed and bosses.
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Job quality in physical environment considers three domains: ambient risks (vi-

brations, noise, high temperatures and low temperatures), biological and chemical

risks (exposition to fumes and vapours and chemicals) and posture-related risks

(tiring positions, heavy loads and repetitive movements).

Finally, the quality of work in terms of skills and discretion comprises three

sub-dimensions: cognitive tasks (carrying out complex tasks and working with

computers, smartphones, laptops, etc.), decision latitude (control the order of

tasks, speed of work, methods of work and timing of breaks) and training (receiving

training provided by the employer and the possibility of learning new things).

Following the previous literature (see, e.g., Eurofound [2019]), we combine

these variables, most of them of an ordinal nature, in order to de�ne indicators

of job quality in each of the dimensions and sub-dimensions in a positive sense�

i.e., the higher the measure, the higher the well-being�and using a 0�100 scale.

For instance, the attribute vibrations receives the highest score when the workers

are never exposed to this sort of workplace risk. Each variable receives the same

weight within each sub-dimension and we compute the arithmetic average of these

sub-domains in order to again obtain a score between 0 and 100 for our index of

job quality in work intensity.13

3. Results

Table 1 displays descriptive statistics of the dependent variables and covariates

of our database, containing 80 European regions. We present the �gures for the

13Sensitivity analyses in Muñoz de Bustillo et al. (2011) suggests that the composite measures
of these dimensions are quite robust to the use of di�erent weighting schemes because there is a
high positive correlation between the outcomes in di�erent domains
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three mentioned dimensions (work intensity, physical environment and skills and

discretion) and the two sub-domains composing work intensity. The evolution of

these variables over time does not seem to follow a clear pattern. The number of

robots per worker by region multiplies by more than 2.5 from 1995 to 2005. Fig-

ure 1 plots the correlation between 5-year changes in robot exposure and changes

in job quality by dimension over the period 1995�2005. The graphs suggest a

negative correlation in the case of work intensity, a somewhat weaker negative one

with physical environment and a slightly positive one with respect to skills and

discretion.

We present the main results of our analysis of the e�ects of robot adoption on

work intensity, physical environment and skills and discretion in Tables 2 and 3,

respectively. In these tables, we display both OLS and IV estimates, without and

with controls for the change in the share of workers of di�erent characteristics in

the working population in the region. The relevant F -statistic of the �rst stage is

well above 50, pointing out to the relevance of our IV. We present the complete

details on the �rst stage in Table A.1 in the Appendix.

Table 2 shows that the adoption of robots reduces job quality with respect to

work intensity. All four estimates are very consistent, columns (1) and (2) exclud-

ing or including variables for compositional change in the workforce show an e�ect

of −4.3, whereas the IV results are somewhat higher at −5.2�−5.6; the statist-

ical indistinguishability between OLS and IV results indicates no big relevance for

endogeneity. The quantitative result means that an increase in robot adoption of

one unit (which is around one standard deviation in 2000) increases work intensity

by 4�5 units (60�80 percent of a standard deviation in 2000). In other words, the

increase in robots between 1995 and 2005 from 0.8 − −2.1 per thousand workers
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led to an increase in work intensity of 5.6�7.3 points (87�114 percent of a stand-

ard deviation in 2000). These e�ects are rather large, but comparable to those

of Menon et al. (2020) in size: They calculate the e�ect of computers on working

conditions in the European Union, �nding negative but insigni�cant coe�cients for

the impact of computer use on work intensity, but a positive impact of computer

use on work quality in terms of work discretion.

Table 3 reports similar estimations for working conditions in terms of physical

environment and skills and discretion. Panel A of the Table refers to physical envir-

onment and Panel B to skills and discretion. Here, the e�ects are smaller, mostly

negative (i.e., reducing job quality) and insigni�cant. This refers to both OLS and

IV results: Physical environment and skills and discretion are not impacted by the

adoption of robots.

We have seen that there is a negative e�ect of robotization on job quality, but

only in the dimension of work intensity, not in physical environment and skills

and discretion. In Table 4 we further proceed by looking at the sub-domains of

work intensity, quantitative demands and pace and interdependence. Again, we

present OLS and IV coe�cients, which are fairly consistent. Both dimensions

of work intensity are negatively related with robotization. The impact on the

sub-dimension of quantitative demands is considerably stronger than in the whole

job quality dimension, while the e�ect in the case of pace and interdependency is

somewhat weaker, but still statistically signi�cant.

In order to check the robustness of our main results, we perform several addi-

tional estimations whose results are presented in Table 5. In the �rst two columns,

we test whether our results hold under the use of other instruments: in column

(I) we use two countries outside the European Union not included in our sample
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of regions, Australia and Switzerland. Under this speci�cation, the e�ect of robot

adoption remains negative and signi�cant. In column (II), we use the increase

in robot penetration by sector in Sweden (one of the leaders in the adoption of

this technology in Europe) in order to build our IV. In this case, we have to ex-

clude Sweden from the countries considered in the analysis. Our results are pretty

similar to the ones reported under our original instrument based on South Korea.

In the third column, we include two additional controls that, though being

potentially endogenous, have been shown to in�uence labour market outcomes:

the increase in exposure to Chinese imports and the increase in the ICT capital

per worker. Moreover, they could correlate with the adoption of robots. Res-

ults have to be taken with care, therefore. The estimates in column (III) show

that the baseline results do not qualitatively change when adding these additional

covariates, corroborating our main results.

The �nal robustness check is a rough �falsi�cation� test, where we look at the

e�ects of the change in robot exposure per worker in the region on workers in

agriculture, forestry and �shing and the services sector. Given that most of the

robots are concentrated in manufacturing, we should expect a null or, at least, a

much lower impact of robots on the job quality of workers employed there. If our

results were based on other concurrent events�correlated with robot adoption�

such a placebo might catch these concurrent events. As expected, and in contrast

to such a hypothesis, there is no e�ect of robotization in this falsi�cation exercise

(column (V)).

We present similar robustness checks for the impact of robotization on job qual-

ity in the dimensions, physical environment and skills and discretion in the Annex

(Tables A.2 and A.3). These results are very similar to those presented in Table3
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and do not show any e�ect of robotization on either the physical environment of

the job or skills and discretion in the job.

4. Conclusions

The impact of technology on the workplace, workers and their work environment

attracts a lot of concern among citizens and researchers in Social Sciences, alike.

The adoption of industrial robots, even if not new, is one of the more visible realiz-

ations of such technological changes. While there are a relevant number of studies

concerned with the impact of this technology on employment and wages, ours is

the �rst comprehensive study on the impact of robotization on working conditions

in Europe. We employ data from the European Working Conditions Survey and

instrumental variables techniques in order to explore how a more intense adoption

of this technology shapes job quality in regional labour markets. Over the period

1995 to 2005 an increase in robots used in industry led to worse working conditions

with respect to tougher work intensity, but there are no e�ects on other working

conditions, like physical environment of the job or skills and discretion in the job.

While robots are substituting for arduous�repetitive, heavy or fatiguing�tasks,

their precision and predictability and standardization may lead to an increase in

work intensity.
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Figures and tables

Figure 1. Job quality index of work intensity and robot exposure (5-year di�er-
ences, 1995�2005).
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Note: Observations weighted by the number of workers in the region at the beginning of the
period.
Source: Authors' analysis from EWCS, EU-LFS and IFR.
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Table 1. Descriptive statistics

Means
(standard deviations)

1995 2000 2005

Robots per thousand workers 0.798 1.486 2.126
(0.585) (1.192) (1.672)

Work intensity (0�100) 55.459 55.374 55.710
(6.969) (6.428) (7.153)

Quantitative demands (0�100) 59.305 59.878 63.741
(9.991) (7.996) (7.500)

Pace and determinants (0�100) 51.574 50.859 47.661
(7.830) (9.353) (9.648)

Physical environment (0�100) 72.602 70.092 72.431
(6.441) (6.889) (5.916)

Skills and discretion (0�100) 55.595 53.409 53.570
(9.659) (9.290) (11.255)

% of pop. employed in industry 0.301 0.297 0.283
(0.060) (0.067) (0.064)

Population (thousand people) 7,061.838 7,939.785 8,014.270
(4,949.596) (5,232.782) (5,111.177)

% of females 0.498 0.498 0.499
(0.009) (0.009) (0.007)

% of pop. above 64 6.654 6.151 5.855
(0.941) (0.909) (0.870)

% of pop. with medium education 0.412 0.403 0.420
(0.127) (0.123) (0.120)

% of with high education 0.168 0.176 0.206
(0.065) (0.063) (0.067)

% of foreigners 0.063 0.085 0.073
(0.056) (0.064) (0.064)

Average RTI index 0.108 0.090 0.031
(0.090) (0.106) (0.071)

Average o�shorability index 0.022 0.012 =0.052
(0.109) (0.122) (0.098)

% of female workers 0.215 0.221 0.236
(0.117) (0.106) (0.051)

% of workers below 30 0.224 0.212 0.238
(0.123) (0.121) (0.038)

% of workers with 50 or more 0.193 0.236 0.201
(0.127) (0.154) (0.040)

% of medium educated workers 0.404 0.429 0.473
(0.178) (0.189) (0.162)

% share of highly educated workers 0.273 0.233 0.173
(0.263) (0.206) (0.078)

ICT capital stock (thousand US$ per worker) 7.720 6.311 7.198
(2.513) (1.556) (1.450)

Chinese imports (US$ per worker) 1,464.923 3,068.354 8,001.657
(630.298) (1,695.555) (4,977.016)

80 80 80

Notes: Observations weighted by the number of workers in the region.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR, EU KLEMS and WITS.
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Table 2. E�ect of robot adoption on job quality: work intensity

(I) (II) (III) (IV)
OLS OLS IV IV

∆Robot exposure =4.382∗∗∗ =4.292∗∗∗ =5.592∗∗∗ =5.166∗∗∗

(1.256) (1.252) (1.953) (1.628)
% of employment in industry 30.040∗ 24.961 32.580∗∗ 26.373

(16.480) (17.756) (16.619) (17.611)
Population (log) 2.187∗∗ 1.718∗∗ 2.099∗∗ 1.677∗∗

(0.940) (0.845) (0.924) (0.839)
% of females 6.241 =57.528 =6.887 =68.191

(67.022) (89.371) (69.779) (93.323)
% of pop. above 64 0.657 0.660 0.614 0.613

(0.565) (0.723) (0.568) (0.726)
% of pop. with medium education 19.104∗∗ 13.856∗ 20.237∗∗∗ 14.681∗

(7.562) (7.887) (7.718) (7.999)
% of pop. with high education 75.508∗∗∗ 55.904∗∗∗ 75.436∗∗∗ 55.443∗∗

(19.239) (21.365) (19.222) (21.708)
% of foreigners =3.936 =1.568 =1.438 0.061

(10.891) (14.330) (10.682) (14.559)
RTI 24.790∗∗ 10.805 23.308∗∗ 9.575

(10.190) (13.101) (10.198) (13.439)
OFF =20.178 =10.606 =17.679 =8.780

(12.920) (13.946) (13.244) (14.294)

R2 0.181 0.267
No. of observations 160 160 160 160
Mean of dependent variable 0.015 0.015 0.015 0.015
Mean of independent variable 0.607 0.607 0.607 0.607
First-stage Wald F statistic 75.304 59.089

Compositional changes X X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. All
speci�cations include an intercept, a dummy for the period 2000-2005 and a dummy for core-
periphery European countries. 5-year changes, 1995-2005. Standard errors clustered at the
regional level in parentheses. Observations weighted by the number of workers in the region.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR and KIP.
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Table 3. E�ect of robot adoption on job quality: physical environment and skills
and discretion

(I) (II) (III) (IV)
OLS OLS IV IV

Panel A. Physical environment

∆Robot exposure =0.053 =0.062 =1.727 =1.544
(1.481) (1.402) (2.061) (1.892)

R2 0.149 0.183
No. of observations 160 160 160 160
Mean of dependent variable 0.463 0.463 0.463 0.463
Mean of independent variable 0.607 0.607 0.607 0.607
First-stage Wald F statistic 75.304 59.089

Panel B. Skills and discretion

∆Robot exposure =0.558 0.224 =3.284 =2.208
(1.963) (1.769) (3.067) (2.546)

R2 0.085 0.107
No. of observations 160 160 160 160
Mean of dependent variable 0.463 0.463 0.463 0.463
Mean of independent variable 0.607 0.607 0.607 0.607
First-stage Wald F statistic 75.304 59.089

Start-of-period-controls X X X X
Compositional changes X X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. All
speci�cations include an intercept, a dummy for the period 2000-2005 and a dummy for core-
periphery European countries. 5-year changes, 1995-2005. Standard errors clustered at the
regional level in parentheses. Observations weighted by the number of workers in the region.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR and KIP.
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Table 4. E�ect of robot adoption on the sub-dimensions of work intensity

Quantitative
demands

Pace and
interdependency

(I) (II) (III) (IV)
OLS IV OLS IV

∆Robot exposure =6.200∗∗∗ =6.806∗∗∗ =2.354∗ =3.528∗

(1.678) (1.965) (1.257) (1.933)

No. of observations 160 160 160 160
R2 0.319 0.320
Mean of dependent variable 2.254 2.254 =2.215 =2.215
Mean of independent variable 0.607 0.607 0.607 0.607
First-stage Wald F statistic 59.089 59.089

Start-of-period controls X X X X
Compositional changes X X X X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. Standard
errors clustered at the regional level in parentheses. All speci�cations include an intercept, a
dummy for the period 2000-2005 and a dummy for core-periphery European countries. 5-year
changes, 1995-2005. Observations weighted by the number of workers in the region.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR and KIP.
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Table 5. Robustness checks: work intensity

Alternative IVs
(AUS, CH)

Alternative IV
(SE)

Additional
controls

Unweighted
Falsi�cation

test

(I) (II) (III) (IV) (V)

∆Robot exposure =3.853∗∗ =4.623∗∗∗ =6.727∗∗∗ =3.412∗ 1.370
(1.585) (1.667) (1.854) (1.883) (1.227)

No. of observations 160 158 150 160 160
Mean of dependent variable 0.015 =0.078 0.103 0.563 0.324
Mean of independent variable 0.607 0.610 0.626 0.483 0.533
First-stage Wald F statistic 63.259 47.830 51.351 68.405 88.478
Hansen J p-value 0.418

Start-of-period controls X X X X X
Compositional changes X X X X X
Chinese import exposure X
∆ICT capital X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. Standard errors clustered at the regional level
in parentheses. All speci�cations include an intercept, a dummy for the period 2000-2005 and a dummy for core-periphery European
countries. 5-year changes, 1995-2005.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR, KIP, Australian labour force statistics, EUKLEMS and WITS.

31



Annex

Table A.1. First-stage regression of the change in robot exposure on the change
in robot exposure using the changes in sectoral robot density in South Korea

(I) (II)

∆Robot exposure (South Korea) 1.053∗∗∗ 1.064∗∗∗

(0.116) (0.130)
Share of industry =0.505 =0.796

(0.808) (0.911)
Population (log) =0.031 =0.037

(0.025) (0.027)
% of females 2.482 2.455

(2.644) (2.565)
% of pop. above 64 =0.053∗∗∗ =0.053∗∗∗

(0.018) (0.017)
% of pop. with medium education 1.458∗∗∗ 1.609∗∗∗

(0.322) (0.349)
% of pop. with high education 0.212 =0.416

(0.506) (0.620)
% of foreigners 0.133 0.389

(0.545) (0.562)
RTI =1.257∗∗∗ =1.668∗∗∗

(0.294) (0.348)
OFF 0.768∗∗ 1.082∗∗

(0.350) (0.422)

Compositional changes X

R2 0.849 0.856
No. of observations 160 160
Mean of dependent variable 0.607 0.607
Mean of the instrument 0.793 0.793
First-stage Wald F statistic 75.304 59.089
Partial R2 of instrument 0.714 0.699

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. Standard
errors clustered at the regional level in parentheses. All speci�cations include an intercept, a
dummy for the period 2000-2005 and a dummy for core European countries. 5-year changes,
1995-2005. Observations weighted by the number of workers in the region.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR and KIP.
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Table A.2. Robustness checks: physical environment

Alternative IVs
(AUS, CH)

Alternative IV
(SE)

Additional
controls

Unweighted
Falsi�cation

test

(I) (II) (III) (IV) (V)

∆Robot exposure =1.027 =0.800 =0.554 =0.494 =0.759
(0.808) (0.861) (0.943) (1.083) (0.836)

No. of observations 160 158 150 160 160
Mean of dependent variable 1.129 1.180 1.150 1.020 1.129
Mean of independent variable 0.533 0.535 0.545 0.533 0.533
First-stage Wald F statistic 69.779 80.617 77.916 84.135 88.478
Hansen J p-value 0.952

Start-of-period controls X X X X X
Compositional changes X X X X X
Chinese import exposure X
∆ICT capital X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. Standard errors clustered at the regional level
in parentheses. All speci�cations include an intercept, a dummy for the period 2000-2005 and a dummy for core-periphery European
countries. 5-year changes, 1995-2005.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR, KIP, Australian labour force statistics, EUKLEMS and WITS.
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Table A.3. Robustness checks: skills and discretion

Alternative IVs
(AUS, CH)

Alternative IV
(SE)

Additional
controls

Unweighted
Falsi�cation

test

(I) (II) (III) (IV) (V)

∆Robot exposure 0.198 =0.382 0.826 2.073 =0.377
(1.415) (1.481) (1.501) (1.996) (1.483)

No. of observations 160 158 150 160 160
Mean of dependent variable =0.140 =0.247 =0.211 0.840 =0.140
Mean of independent variable 0.533 0.535 0.545 0.533 0.533
First-stage Wald F statistic 69.779 80.617 77.916 84.135 88.478
Hansen J p-value 0.904

Start-of-period controls X X X X X
Compositional changes X X X X X
Chinese import exposure X
∆ICT capital X

Notes: ∗∗∗ signi�cant at 1% level; ∗∗ signi�cant at 5% level; ∗ signi�cant at 10% level. Standard errors clustered at the regional level
in parentheses. All speci�cations include an intercept, a dummy for the period 2000-2005 and a dummy for core-periphery European
countries. 5-year changes, 1995-2005.
Source: Authors' analysis from EWCS, ECHP, EU-LFS, IFR, KIP, Australian labour force statistics, EUKLEMS and WITS.
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