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ABSTRACT

Estimating Production Functions in
Differentiated-Product Industries with
Quantity Information and External
Instruments:

This paper develops a new method for estimating production-function parameters that
can be applied in differentiated-product industries with endogenous quality and variety
choice. We take advantage of data on physical quantities of outputs and inputs from the
Colombian manufacturing survey, focusing on producers of rubber and plastic products.
Assuming constant elasticities of substitution of outputs and inputs within firms, we
aggregate from the firm-product to the firm level and show how quality and variety
choices may bias standard estimators. Using real exchange rates and variation in the
“bite” of the national minimum wage, we construct external instruments for materials
and labor choices. We implement a simple two-step instrumental-variables method, first
estimating a difference equation to recover the materials and labor coefficients and then
estimating a levels equation to recover the capital coefficient. Under the assumption that
the instruments are uncorrelated with firms’ quality and variety choices, this method yields
consistent estimates, free of the quality and variety biases we have identified. Our point
estimates differ from those of existing methods and changes in our preferred productivity
estimator perform relatively well in predicting future export growth.
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1 Introduction

A central challenge in estimating production functions is to estimate the elasticities of real output
with respect to real inputs, unconfounded by differences in prices across firms. Estimates of
these elasticities are key to constructing standard measures of total factor productivity (TFP),
the most commonly used metric of firm performance. They are also important for estimating
markups in the influential method of Hall (1986) and De Loecker and Warzynski (2012). As
recently emphasized by Bond et al. (2020), that method requires an elasticity of real output, not
of sales or value-added, in order to generate informative estimates of markups.

Two difficulties in estimating such elasticities have received particular attention. First, prices
and physical quantities of outputs and inputs are usually not observed at the firm (or plant) level.
The most common solution is to regress sales (or value-added), deflated by a sector-level price
index, on material expenditures and other inputs, similarly deflated. It has long been recognized
that the resulting estimates may reflect idiosyncratic variation in market power at the firm level
(Klette and Griliches, 1996; Foster et al., 2008, 2016; De Loecker and Goldberg, 2014). Second,
firms may choose variable inputs after observing shocks to their own productivity in a given period,
generating a positive correlation between unobserved productivity shocks and the input choices
— the familiar “transmission bias” problem, first noted by Marschak and Andrews (1944).1

Information on prices and quantities at the firm-product level, while still uncommon, is in-
creasingly available and has enabled researchers to make progress on the first issue. Focusing
on eleven homogeneous products in the US Census of Manufactures, Foster et al. (2008) esti-
mate regressions with physical output quantities on the left-hand side, yielding output elasticities
arguably purged of demand-side influences. Although Foster et al. (2008) do not use physical
quantities of inputs, in cases where inputs are homogeneous and quantities are observed it is
straightforward to extend their approach and put physical quantities of inputs on the right-hand
side (Atalay, 2014).

But as suggested by Katayama et al. (2009), Grieco and McDevitt (2016), Atkin et al.
(2019), Jaumandreu and Yin (2018) and others, using physical quantities may be misleading
in differentiated-product industries where the quality and variety of outputs and inputs vary

across firms and over time. If consumers value product quality and variety, then they should be

'For reviews, see Griliches and Mairesse (1998), Bartelsman and Doms (2000), Ackerberg et al. (2007), Van
Biesebroeck (2008), Syverson (2011), De Loecker and Goldberg (2014), Section 2 of Ackerberg et al. (2015), and
Section 2.2.1 of Verhoogen (2020).



incorporated in our notion of real output; similarly, if input quality and variety matter for real
output, then they should be incorporated in real inputs. But once one accepts these propositions,
estimates using only physical units may be subject to what we call quality and variety biases.
For instance, a firm may take advantage of an increase in capability to produce fewer physical
units of higher-quality goods (for a given set of inputs), generating a negative bias in output
elasticities estimated using only physical output quantities. If more-productive firms tend to use
higher-quality inputs and this choice is correlated with the physical quantity of inputs used, then
another form of bias arises, with the direction depending on the sign of the input quality-quantity
correlation. Similar biases can also result from the endogenous choice of variety by firms, or from
exogenous shocks to product appeal or input quality, if firms’ choices of physical units of inputs
respond.

In this paper, we develop a new approach to estimating output elasticities that takes advan-
tage of quantity information, that is arguably not subject to quality or variety biases, and that
also addresses the transmission-bias problem. The method can be applied in horizontally and
vertically differentiated industries with multi-product firms and requires relatively weak theoret-
ical assumptions on the nature of demand and market competition. We implement it in data
from the Colombian manufacturing survey, which contains information on prices and quantities
of both inputs and outputs, focusing (for reasons discussed below) on producers of rubber and
plastic products.

The paper makes three main contributions. The first is to highlight conceptually how estimates
of output elasticities based on physical quantities may be misleading in industries where quality
and variety vary differentially by firm over time. As in almost all similar datasets, the mapping
between specific inputs and specific outputs within the firm is unobserved.? Our approach is to
aggregate from the firm-product to the firm level. It is not possible to do this aggregation in a
theory-free way; any aggregation embeds assumptions, implicit or explicit, about consumer and
firm behavior. Here we assume that outputs and inputs, respectively, have constant elasticities of
substitution (CES) within firms. We place minimal constraints on substitution elasticities across
firms. Following common practice, we assume that (firm-level aggregate) materials, labor, and
capital combine in Cobb-Douglas fashion. Although restrictive, the within-firm CES structure is

convenient in that it allows us to express the change in each aggregate as the sum of an observ-

2We are aware of only two exceptions with a substantial number of firms, a dataset on Bangladeshi garment
firms used by Cajal Grossi et al. (2019) and one on Chinese steel firms used by Brandt et al. (2018).



able quantity index and unobservable terms capturing quality and variety. This in turn makes
transparent how differences in quality and variety may bias standard estimates. Empirically, we
will show that our estimates are robust to using other common aggregators at the firm level.

Our second contribution is to address transmission bias by introducing “external” instruments
capturing exogenous variation in input prices at the firm level. The idea that external instruments
in general, and input prices in particular, would be an attractive solution to the transmission-bias
problem has been “in the air” for many years, at least since the landmark review by Griliches and
Mairesse (1998).2 Several recent papers have acknowledged that factor prices would be natural
instruments, but have argued that it would be difficult to find truly exogenous variation at the firm
level.* In the absence of credible external instruments, two approaches have dominated the recent
literature. One has been to construct a proxy for unobserved productivity by inverting either
an investment-demand or a materials-demand equation, which requires a monotonic relationship
between the productivity term (assumed to be scalar) and investment or materials, conditional
on other observables (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Wooldridge, 2009; De
Loecker, 2011; Doraszelski and Jaumandreu, 2013, 2018; Ackerberg et al., 2015; Gandhi et al.,
2020). Another approach has been to construct “internal” instruments using lagged values of
inputs (Chamberlain, 1982; Anderson and Hsiao, 1982; Arellano and Bond, 1991; Arellano and
Bover, 1995; Blundell and Bond, 1998, 2000).5 In this panel-data approach, the most successful
strategy has been the “System GMM” estimator of Arellano and Bover (1995) and Blundell and
Bond (1998, 2000), which supplements an equation in first differences, using lagged levels as
instruments, with an equation in levels, using lagged differences as instruments.

Our aggregation strategy requires firm-specific normalizations, which we absorb with a firm
effect in our main estimating equation. As a consequence, the proxy-variable strategy is not an

attractive option, because the firm effect would violate the required monotonicity assumption

3Griliches and Mairesse (1998) write that the “future” of production-function estimation lies in “find[ing] (in-
strumental) variables that have genuine information about factors which affect firms differentially as they choose
their input levels” (p. 198) and describe using “factor prices ... as instrumental variables to identify the parameters
of interest” as an “obvious” solution. Nerlove (1963) is an early paper using an external instrument — electricity
prices — in production-function estimation.

4For instance, Ackerberg et al. (2015, p, 2418, fn 3) write: “if one observed exogenous, across-firm-variation
in all input prices, estimating the production function using input price based IV methods might be preferred to
OP/LP [Olley-Pakes/Levinsohn-Petrin] related methodology (due to fewer auxiliary assumptions).” But they also
note that “the premise of most of this [proxy-variable| literature is that such variables are either not available or
not believed to be exogenous.” See also Ackerberg et al. (2007, p. 4208) and Gandhi et al. (2020, Sec. 6.1).

®The two dominant approaches are themselves related, since the proxy-variable methods often use lagged levels
as instruments, as discussed in Ackerberg et al. (2015, Sec. 4.3.3).



(Ackerberg et al., 2015). We instead build on the panel-data approach, which more easily accom-
modates the firm effect. But rather than include further and further lags as instruments, which
is commonly done but may raise concerns about instrument strength, we include a parsimonious
set of lags and two external instruments capturing exogenous variation in input prices. To con-
struct the materials-price instrument, we first use exchange rates to predict import-price changes
at the product level, omitting one firm at a time in making the predictions. We then use the
lagged product composition of a firm’s imports, in conjunction with the “leave one out” predicted
import-price changes, to construct a firm-specific predicted import price index. To construct the
wage instrument, we interact changes in the national minimum wage, which saw large increases
in real terms over our study period, with an indicator for how binding the change was likely to be
on particular firms (the “bite” of the minimum wage), defined as the lagged ratio of the minimum
wage to the average wage for permanent employees in the firm. We will see that the external
instruments are helpful in alleviating (if not completely removing) weak-instrument concerns.

In estimating the coefficient on capital, we face a well-known difficulty: methods with trans-
formations to remove firm effects — either first-differencing or deviating from firm means — tend
to yield implausibly low estimates.® The most common explanation is that transformations to
remove the firm effect exacerbate the attenuation bias due to measurement error; other expla-
nations, discussed below, are also possible (Griliches and Mairesse, 1998). Others have found
that this problem persists when instrumenting the change in capital with lagged levels (see e.g.
Ornaghi (2006)). Fundamentally, the issue is that much of the genuine variation in capital stock
is cross-sectional; the within-firm evolution of capital stock — and, in particular, of utilized cap-
ital — is very difficult to measure well. The main existing approaches, proxy-variable methods
and System GMM, both rely to some extent on cross-sectional variation to estimate the capital
coefficient.

Our third contribution is an approach to estimation that allows us both to absorb the firm
effect when estimating the materials and labor coefficients and to take advantage of cross-sectional
variation to estimate the capital coefficient. In the broad spirit of System GMM, we combine
a difference equation, using lagged levels as instruments, with a levels equation, using lagged
differences as instruments. But rather than estimating the equations simultaneously using GMM,

we estimate them separately in what we call a two-step instrumental-variables (TSIV) procedure.

5See e.g. Griliches and Mairesse (1998), Ackerberg et al. (2007), and Ackerberg et al. (2015).



In the first step, we first-difference and use the external instruments described above, together
with a parsimonious set of lagged levels, to recover the coefficients on materials and labor. In
the second step, we use the first-step estimates of the materials and labor coefficients and impose
an additional assumption that ensures orthogonality between the lagged difference in log capital
and the firm effect; this allows us to use the lagged difference of capital as an instrument in an
IV model in levels.” If the model is correctly specified, the TSIV estimator is less efficient than
simultaneous GMM estimation of the difference and levels equations, but it has the advantage that
the materials and labor coefficient estimates are robust to misspecification of the levels equation
(Kripfganz and Schwarz, 2019).

The TSIV procedure yields plausible point estimates: we find materials and labor coefficients
of approximately .4, and a capital coefficient of approximately .2. The fact that constant returns
to scale approximately hold is reassuring. Although the standard errors are large enough that the
differences with standard estimators are generally not statistically significant, the point estimates
display some interesting patterns. The materials coefficient is lower than, and the labor coefficient
larger than, the coefficients from (a) naive OLS estimation using revenues for output and materials
expenditures for material input, (b) the Olley and Pakes (1996) and Levinsohn and Petrin (2003)
proxy-variable methods, and (c) standard System GMM.® Somewhat surprisingly, our estimates
(including for capital) are similar to those from OLS in levels using our constructed quantity
aggregates.

The main goal of this paper is to provide a new approach to estimating output elasticities,
which are useful for several purposes, including calculating markups. But it is natural to ask how
TFP measures constructed from our estimates perform relative to other TFP measures commonly
used in the literature. We face a choice between a revenue-based TFP and a quantity-based TFP
measure based on our quantity indexes. We note that even with our improved estimates of output
elasticities, neither measure corresponds directly to technical efficiency. Our revenue-based TFP
may reflect pure output or input price differences, and our quantity-based TFP may be biased
by quality and variety choices (even if the output-elasticity estimates are not). We favor using
revenue-based TFP, and keeping in mind that it may capture price differences as well as technical

efficiency. To compare with TFP estimates from other methods, we examine the extent to which

"The second-step approach is akin to that of Collard-Wexler and De Loecker (2016).
80ur materials estimate is quite similar to the one we obtain by applying Gandhi et al. (2020) in our data, and
our labor coefficient is somewhat smaller.



estimated changes in revenue-based TFP predict future changes in export performance, and we
find that our estimates compare well to standard methods.

In addition to the studies cited above, this paper is related to several branches of literature.
It is perhaps most closely related to a small number of studies on production-function estimation
in multi-product firms using information at the firm-product level. This literature has dealt in
different ways with the lack of an observed mapping between inputs and outputs in multi-product
firms. One strategy has been to focus on single-product firms, for which the mapping is clear,
and (in some cases) to do a selection correction for the fact that they may not be representative
(Foster et al., 2008; De Loecker et al., 2016; Garcia-Marin and Voigtldnder, 2019; Balat et al.,
2018; Blum et al., 2018).? Recent work by Dhyne et al. (2020a,b) develops an alternative strategy
of estimating simultaneous equations relating output of each good to firm-level input usage and
the output levels of other goods. This strategy requires as many proxies as products and a multi-
dimensional generalization of the monotonicity condition, and it tends to reject the hypothesis
that single-product production is a good approximation for multi-product production. Another
approach has been to use estimates of demand elasticities and profit-maximization conditions to
infer the allocation of inputs to outputs that would be implemented by optimizing firms (Orr, 2020;
Valmari, 2016).!1° Our strategy, by contrast, is to aggregate both outputs and inputs to the firm
level. Previous papers that have aggregated from the firm-product to the firm level include Eslava
et al. (2004, 2013), Ornaghi (2006), Doraszelski and Jaumandreu (2013), Smeets and Warzynski
(2013) and Bas and Paunov (2020).!! These papers do not use CES aggregators, nor do they
show how explicitly how quality or variety differences enter firm-level price or quantity indexes.
Our approach builds on an extensive literature using CES functions in addressing other questions,
including Feenstra (1994), Hsieh and Klenow (2009), Hottman et al. (2016), and Redding and
Weinstein (2020).

This paper is also related to studies that explicitly consider differences in the quality of outputs

or inputs in a production-function context. Melitz (2000), Katayama et al. (2009), and Grieco et

9Foster et al. (2008) include in their sample only firms in which one product makes up more than 50% of
revenues, thus essentially focusing on single-product firms. De Loecker et al. (2016) implement a modified version
of the Ackerberg et al. (2015) proxy-variable method and focus on calculating mark-ups at the firm-product level
in Indian data. In Chilean data, Garcia-Marin and Voigtlander (2019) use firm-product-level markups calculated
along the same lines to infer marginal costs and to relate them to firms’ export behavior.

198ee also Gong and Sickles (2019) and Forlani et al. (2016).

"Dhyne et al. (2020a) and Garcia-Marin and Voigtlinder (2019) employ similar aggregations in parts of their
analyses.



al. (2016) propose estimators that take quality differences into account in settings where product-
level information is not observed; the lack of direct price and quantity data means that they must
rely on more restrictive theoretical assumptions than we do here. Fox and Smeets (2011) show
that including detailed indicators of labor quality significantly reduces the dispersion of estimated
productivities across firms in Denmark, but they do not have product-level information on outputs
or inputs. For the most part, the literature exploiting information at the firm-product level does
not explicitly take into account quality or variety differences. Exceptions include De Loecker et
al. (2016) and Eslava and Haltiwanger (2020), who use control-function approaches to address
potential quality and variety biases.'? Two recent papers take advantage of detailed product
characteristics in particular sectors. Focusing on outpatient dialysis centers in the US, Grieco and
McDevitt (2016) find that firms trade off quality and quantity of care, suggesting that measures
of performance based solely on quantity can be misleading. In an Egyptian rug cluster, Atkin
et al. (2019) collect direct measures of rug quality and producer performance under laboratory
conditions and also find that purely quantity-based measures of performance are misleading. Such
direct measures of product quality are clearly very valuable for estimating firm performance, but
unfortunately they are rarely available. We view our method as being most useful in settings
where product prices and quantities are available but detailed product characteristics are not.
Relative to the existing literature, our approach has costs and benefits. On one hand, some of
our assumptions are stronger than those of other methods. We impose an unusually strong (but
testable) restriction on the evolution of unobserved productivity, discussed below. We require
exclusion restrictions for our instruments. We do not consider firms’ endogenous investments in
raising productivity, as do for instance Doraszelski and Jaumandreu (2013, 2018). The within-
firm CES assumptions are restrictive (although the empirical patterns are robust to using other
aggregators). On the other hand, we are able to avoid some strong assumptions required by other
methods. We do not need a scalar monotonicity condition to ensure invertibility of an investment

or materials-demand function as in proxy-variable methods. Although we presume some maxi-

12De Loecker et al. (2016) describe their approach as addressing “input price bias” and “output price bias” and
do not explicitly address what we call quality and variety biases. They put flexible functions of output prices and
market shares in a control function for input demand and put physical quantities of output on the left-hand side.
Arguably, this approach completely removes quality biases only in the special case where input and output quality
are perfectly correlated, which is unlikely to hold exactly in practice, and does not address what we call variety
biases. Eslava and Haltiwanger (2020) also use CES aggregation, but they do so in the context of joint GMM
estimation of production and demand functions, which requires CES across as well as within firms, while here we
do not need to impose a particular demand structure across firms.



mizing behavior on the part of firms to justify the CES aggregation, we do not need first-order
conditions for aggregate materials or labor to hold exactly as in Doraszelski and Jaumandreu
(2013, 2018) and Gandhi et al. (2020). We can remain agnostic about cross-firm demand elastic-
ities. Relative to the panel-data literature, we are able to reduce the reliance on lagged internal
instruments. We can also relax the assumptions required for the levels equation in System GMM,
and do not need them at all if we are only interested in the output elasticities with respect to
materials and labor. We explicitly consider output and input quality and variety differences, as
relatively few other papers have done. While there are trade-offs, we believe that, on balance,
our method represents an attractive alternative to existing methods in differentiated-product
industries where quantity information and external instruments are available.

The next section develops our econometric strategy. Section 3 describes the data we use and
our motivation for focusing on producers of rubber and plastic products. Section 4 presents our
baseline estimates of output elasticities, and Section 5 conducts several robustness checks. Section
6 compares our coefficient estimates to those of other common estimation methods. Section 7
constructs productivity measures using our coeflicient estimates and examines how well they do,

relative to existing measures, in predicting future export performance. Section 8 concludes.

2 Econometric Strategy

This section first presents the theoretical framework that underpins our firm-level aggregation
and estimating equations. We begin on the demand side (Subsection 2.1) and then turn to the
production side (Subsection 2.2) and rewrite the production function using decompositions of
our output and input aggregates, which makes clear how endogenous quality and variety choices
may bias standard estimates (Subsection 2.3). We then present our two-step IV (TSIV) strategy
(Subsection 2.4). Full derivations are in Appendix A.

2.1 Demand

The first task is to construct a measure of real output at the firm level — firm-level sales deflated
by an appropriate firm-specific price index. In differentiated-good industries, any price index
necessarily embeds assumptions about how a firm’s products enter consumers’ utility. Here we

follow Hottman et al. (2016) and others in imposing constant elasticity of substitution of products



within firms. This is restrictive, but unlike much of the existing literature we do not need to make
strong assumptions about the elasticity of substitution of products across firms. (We will also show
(in Section 5.1 below) that the empirical patterns are robust to using other common aggregators.)

We assume that a representative consumer has the following utility function:

¥
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Here i, j and ¢ index firms, products (outputs), and periods (years), I is the total number of firms,
Y;j+ is physical quantity of output, o is the elasticity of substitution between outputs, specific to
firm i, and QY is the set of products sold by the firm. The ¢;j; terms are demand shifters that
can be interpreted as product appeal or quality, which may reflect endogenous choices of the firm
(e.g. physical attributes of goods) or external factors (e.g. exogenous fashion trends). We assume
that U(+) is quasi-concave and weakly separable in its arguments. We follow common practice and
assume that aiy > 1. Although the consumer optimization problem would remain well-behaved
as long as o] > 0,'3 the stronger o/ > 1 ensures that the representative consumer will purchase
more units of a good that increases in appeal, which seems realistic in our context.!?

The assumption of weak separability and the homotheticity of Vi imply that the consumer’s
optimization problem can be solved in two stages, first choosing the quantity of each variety from
firm 7, Y;j;, to minimize the cost of acquiring each unit of zt and second choosing }Nﬁ»t to maximize
utility. Assuming the consumer optimizes in the first stage, the price required to purchase one

unit of lNC;t is:
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This is the price index that sets ]Bitf/}t = R;:, where R;; is the consumer’s total expenditures on

goods of firm 4, which are also the firm’s revenues. Note that it is quality-adjusted: conditional

13See Appendix A.1. For the knife-edge Cobb-Douglas case of 0! =1, we would need an additional condition to
ensure that the optimization problem remains well-behaved.

14 As noted by Redding and Weinstein (2020), ¢¢ > 1 is sufficient to ensure that products are “connected sub-
stitutes” in the sense of Berry et al. (2013) and hence that the demand system is invertible. This is a sufficient
condition, not a necessary one, and our method could be implemented in settings with a greater degree of comple-
mentarity between products, but for reasons of realism and convenience we maintain the standard assumption.



on the price of a given output, higher output quality reduces the value of the index.
An attractive feature of our approach is that we do not need to impose further assumptions
on demand. The assumption of quasi-concavity implies that there is a unique demanded bundle,

given by:
Et:Dit(ﬁltw--,ﬁIt,Ct) for i = 1,2,...,[ (3)

where C; is total consumption in period ¢. The demand for the output aggregate of a given firm
depends only on the firm’s own aggregate price index, the price indexes of other firms, and total
consumption. We can leave the D(-) function unspecified.

The within-firm CES assumption allows us to decompose changes in the firm-specific price
index in a particularly convenient way. Let QY be firm i’s common outputs between ¢ — 1 and
t (le. QY ;NQY%), R} be the consumer’s expenditures on common goods (i.e. common-goods
revenue for the firm), ]5;; and 17; be the price and quantity indexes for common goods analogous
to P,t and th, SY

ijt

by firm ¢, and Slyjt

Vartia (1976), Feenstra (1994) and Redding and Weinstein (2020), it is straightforward to show

be the consumer’s expenditure share on product j among all products produced

be the corresponding share among common goods.'® Following Sato (1976),
(see Appendix A.1) that the log change in the firm-specific price level can be expressed as:
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The first term on the right-hand side of (4) is (the log of) the familiar Sato-Vartia index (Sato,

1976; Vartia, 1976); it is an observable weighted average of product-specific price changes for
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common goods, with the “Sato-Vartia weights” d;;;. The second term is a weighted average
of changes in (unobservable) product quality, again using the Sato-Vartia weights. Intuitively,
increases in product quality tend to reduce the price index, other things equal.' Together, the
first and second terms are equal to the log change in the common-goods price index, ]5;; The
third term is an adjustment for entry and exit of products, first introduced by Feenstra (1994).
Increases in product variety also tend to reduce the price index.'” Although the o! term is
unobservable, the X?tq,t and X%t,tq terms (which capture the common-goods shares of total firm
revenues in periods ¢ — 1 and ¢) are observable.

Appendix A.1 further shows that the log change in the quantity index, }7“, can also be ex-

pressed in a simple decomposition:

Zt Yij Pijt o! Xi‘/t—l t
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where }7; is the quantity index for common goods. The first term is again the log of a Sato-Vartia

index, this time for quantities, the second term captures improvements in product quality, and
the third term captures increases in product variety.

It is worth noting that this within-firm CES approach nests the common approach of using
firm revenues deflated by a sector-level price index to measure real ouput, as o} — 00.18 In that

sense, our aggregation method is strictly more general than the most commonly used one.

16Redding and Weinstein (2020), in a very different exercise, deal with the quality terms by assuming that the
geometric average of product quality across products is time-invariant; our approach, by contrast, is to assume that
they are orthogonal to the instruments we construct, as will be made clear below.

1"For example, if no goods are dropped from t — 1 to t but new goods are introduced, then Xio1: = 1> X1
which, since o > 1 by assumption, implies a reduction in the price index. This reflects the fact that the utility
function (1) embeds a taste for variety in the goods from a given firm.

18put another way, as oy — oo our approach would provide theoretical justification for the standard approach

of deflating firm revenues by a sector-level price index. From (1) and (2), limogﬁoo Yi: = Zjeﬂi_jt @ijtYije and
lim,y_, ., P = minjenyf (Psji/wiji). All goods purchased by the consumer have the same quality-adjusted price,
call it B, = it/ pije ¥ j € QY; goods with higher quality-adjusted prices are not purchased. Then R;; =

ZjEQyt PijiYije = Zg‘eﬂ%’t (Pijt/pijt)pijtYijt = P.Y;;. Hence as c? — oo, deflating R;; by P, yields real output.

Our approach is more general in that it is theoretically justified also for of < co.
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2.2 Production

On the production side, we assume that real output, as defined above, is a function of capital,

labor, and a firm-level CES materials aggregate, combining in Cobb-Douglas fashion:

m
i
™

oih—1
oM —1 2

Yy = MémLﬁénge“ii+"i+gt+5it where M;, = Z (vineMipg) o7 (7)
heQm

Here h indexes material inputs, €277 is the set of inputs purchased by the firm, M;;, is the quantity
of each material input purchased, L;; is labor, and Kj; is capital. We refer to ;¢ as input quality,
recognizing that it may reflect physical attributes of the inputs or characteristics of the technology
used to combine them in production. It captures any differences across inputs in how much one
physical unit of the input contributes to the input aggregate. The assumption that the production
function is Cobb-Douglas in capital, labor, and materials is standard in the literature. In principle,
our approach could be extended to other functional forms (e.g. translog), although other forms
would require additional instruments. As on the output side, we assume the the firm-specific

m

elasticity of substitution between inputs is greater than unity, o!

™ > 1, which ensures that a

firm consumes more of an input that increases in quality. In addition to being standard, this
assumption is consistent with recent evidence at the micro level that intermediate inputs are
typically substitutes (Dhyne et al., 2020b; Peter and Ruane, 2020); also, as discussed below, we
believe that the assumption that inputs are subsitutes is particularly plausible in the subsectors
we focus on.'?

In the error term, wj; is a firm-specific “ex ante” productivity shock that firms observe before
choosing inputs but that is unobservable to the econometrician; 7; is a time-invariant firm effect;
& is a sector- or economy-level shock; and €;; is an “ex post” shock that is revealed after firms
have chosen inputs (and hence is not “transmitted” to input choices). (We may also think of it as
reflecting measurement error.) As is standard, we allow material inputs and labor to be adjustable
in the short run and hence potentially correlated with the ex ante shock, w;, but assume that
capital can be adjusted only with a lag of one period. We assume that the ex ante and ex post

productivity shocks are uncorrelated with past values of inputs, but we allow for feedback from

current shocks to future input choices (and from the ex ante shock to current choices). In the

19 As on the output side, our method remains applicable, although with somewhat less intuitive implications, as
long as o;" > 0. See Appendix A.2.
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language of Wooldridge (2010), we assume that the input choices are sequentially but not strictly
exogenous. In addition, we assume that both w;; and €;; are serially uncorrelated. This assumption
on wj is stronger than usually imposed, but it can be tested with standard methods (Arellano

and Bond, 1991), and we will not reject the null of no serial correlation. Formally, we assume:

E(wit|ni, Kit, Kig—1Mie—1, Lip—1, wit—1, €it—1..., K1, M1, Li1, win, €i1) = 0 (8)

E(eit|ni, Kie, Mg, Lig, Kig—1, Mig—1, Lig—1, wit—1, €it—1..., K1, My, Lit, win, €i1) = 0

where the conditioning on past values of the shocks implies a lack of serial correlation in the
shocks. Here we assume that the firm effect, n;, arguably captures within-firm persistence that
might show up as serial correlation in models without fixed effects.?"

It is important to note that the quality and variety of both outputs and inputs, represented
by the quality terms ¢;;; and a;p,; and the variety sets QY and Q, may be chosen endogenously
by firms. Researchers have proposed a number of frameworks to analyze such choices; see for
instance Kugler and Verhoogen (2012) on quality, and Eckel and Neary (2010), Bernard et al.
(2011) and Mayer et al. (2014) on variety. Here we do not adopt a particular model of how firms
make these choices, nor do we assume that the firm behaves optimally in making them. We need
only that the choices are uncorrelated with our internal and external instruments, discussed in
Subsection 2.4 below.

The derivations of the price and quantity indexes on the input side are analogous to those on
the output (i.e. demand) side. Given the production function (7) (which is also weakly separable,
with homothetic aggregate J\Zt% the firm can be thought of as first choosing values of M
to minimize the cost of acquiring a given level of the aggregate input, ]\Zm and then choosing
optimal values of ]\Zt, L and Ky, given the demand function, (3). Firms are assumed to be
price-takers on input markets. As discussed below, we believe that this assumption is reasonable

in the subsectors we focus on.?! Optimization in the first stage implies that the cost of purchasing

20Proxy-variable methods typically assume that wg follows a Markov process, which allows for flexible patterns
of serial correlation, but they do not allow for a firm effect, as discussed below.

21 Estimation of production functions when producers have oligopsony power in input markets has recently been
considered by Rubens (2020). Although market power in input markets could potentially be accommodated in our
framework, we leave this extension to future work.
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one unit of the materials aggregate, ]\7,;15, is:

1
1—om

o= | 3 (M) o)

«
heQm iht

This is the price index that sets Wit]\//.\fit = B, where E} is the firm’s total expenditures on
material inputs.

As on the output side, the CES assumption allows us to decompose input-price changes in a
convenient way. Let Q7}* be firm ¢’s common inputs between ¢t — 1 and ¢t (i.e. Q) ; NQY), Wl’;
and Mi’; be the price and quantity indexes for common inputs, E7}"* be the firm’s expenditures on
common inputs, S7, be the firm’s expenditure share on input s, among all inputs purchased by
firm 4, and S};'; the corresponding share among common inputs. 22 Appendix A.2 shows that the

log change in the firm-specific input price level can be expressed as:

1 Xit—1,t
In Yin 111( ) Vin ln< >— In : 10
W
ln<Wi*t—l)

where:
( SZZZ‘ Sini—1
In STy —In STy m m m m
Yint = g s Xitt—1 = E  She X1 = E iht—1 (11)
( iht iht—1 ) heQm* heQm*
he In ST —In STy S S

As for output prices, the first term is the log Sato-Vartia observable price change index for common
goods; the second term is a weighted average of changes in input quality; and the third term is
an adjustment for entry and exit of inputs.

As for output quantities, the change in the CES materials quantity aggregate can again be

written as the sum of an observable Sato-Vartia quantity change index and unobservable terms

1
22 . m* TA7* 1—o™ | 1-07" A7
That s, EE* =  Cpeqm WinMine, Wi = [Speape , Wind/am)' =77, M =

—ot| 1= mx Wine M m WineM;
[Zheagng ) (cineMing )" ] ", S = Wl for h € Q" and Sjj, = Wi,
T k2
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capturing increases in variety and quality:

M, < Mipy > < Qipt ) o Xit—1,¢
In| = = E Yine In + g Yine In +——1In : 12
<Mit1> i Mipt— ot Qipg—1) ot —1 Xitt—1 (12)
) it

where M? 4 is the quantity index for common inputs. This approach again nests the standard
approach of using expenditures deflated by a sector-level input price index as o]" — oo; see

footnote 18.

2.3 Deriving Estimating Equation

To integrate the CES output and input quantity decompositions (6) and (12) into the production
function, (7), it is convenient to restate the decompositions in levels. Let lower-case letters
represent logs and A a change from ¢ — 1 to £. Summing the differences in (6) and (12) over time

within firms, with firm-specific normalizations y;0 and m;g, we have:

t
B = ymz Z%Ayzﬂz Z%ln< Pir ) <U —1)2 <x” h) 13

X Pijr—1 X7
= 1]69;/7_ =1 GQ;/: 1T — T, T—1
=75 =3 v
¢ - ¢
~ ~ Qihr XzT 1,7
My = My + E > " Yine Awinr +Y > YineIn <a< ) < o 1> > 1 (
=1 heQp* =1 heQ* thr=1 = X
fnZStV =qy =g

where we define the new variables under the underbraces, ﬂf;v, q, vy, TTL‘;V, ¢}, and v}y, to be

equal to the indicated summations. Note that in defining variables in this way, we set the quality
and variety terms ¢}, v, ¢, and v}’ to zero in the initial year and include the firm-specific
normalizations as part of the “Sato-Vartia” quantity terms, git and ﬁ@zstv.

Plugging these expressions into the production function, (7), and rearranging, we have:

UiV = Bmmigy + Belit + Brkie +mi + & + uir (14)
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where:
wir = (Bmviy — vh) + (Bmdiy — qf) + wit + €5t (15)

This equation relates the Sato-Vartia output quantity index to the Sato-Vartia input quantity
index (both observable, modulo the firm-specific normalizations), log capital, log labor, a firm
effect, a year effect, and an error term that reflects variety and quality of outputs and inputs as
well as the “ex ante” and “ex post” productivity shocks.

Writing the production function in this way helps to clarify two issues. The first is that simply
using physical quantities for output and input may be problematic in a setting where quality or
variety vary differently by firm over time, on the output side or the input side. The input choices
ﬁliv, i, and k; may be correlated with the unobserved quality and variety terms, ¢i, ¢, vy,
and Uft, generating what we call output- or input-quality bias, or output- or input-variety bias. To
fix ideas, suppose that firms produce a single product using a single material input, in which case
ﬂgv and ﬁ@iv simplify to the physical quantities of output and input and the variety terms drop
out. If producing one unit of a higher-quality output requires more physical units of labor, with
all else equal, then there will be a positive correlation between ¢;; and the ¢}, (and hence a negative
correlation between ¢;; and the —¢; in the error term), generating a negative output-quality bias
in the OLS estimate of 5. Biases may also arise from purely exogenous shocks to product appeal
or input quality, if such shocks affect firms’ input choices — for instance, if a firm’s product
becomes fashionable for reasons unrelated to the firm’s actions but it expands production to take
advantage of the increased demand, or if a supplier improves the quality of a purchased input
without changing the price and this induces the firm to increase output.

Among multi-product, multi-input firms, biases could arise from changes in variety. For
instance, if import-tariff reductions increase the set of input varieties available and induce firms
to increase the variety of inputs purchased, the variety of outputs produced, and total output,
as suggested by Goldberg et al. (2010) and Bas and Paunov (2020), one would expect a positive
correlation between ﬁzﬁv and v’ and a negative correlation between ﬁLZ-St'V and —v,, generating
offsetting biases with ambiguous net effects. It is important to note that these quality and variety
biases are distinct from transmission bias, and might be present even if one had a perfect proxy

for the ex ante productivity term, w;;.>>

23Note also that including a proxy for input quality alone, as in De Loecker et al. (2016), does not solve all of
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The second issue that equation (14) clarifies is why the scalar monotonicity assumption re-
quired by standard proxy-variable approaches is incompatible with our approach to aggregation.
The leading proxy-variable approaches require a one-to-one relationship between a firm’s under-
lying productivity and either investment or materials demand, conditional on other observables
(Olley and Pakes, 1996; Levinsohn and Petrin, 2003; De Loecker, 2011; Doraszelski and Jauman-
dreu, 2013, 2018; Ackerberg et al., 2015; Gandhi et al., 2020) As noted by Ackerberg et al. (2015),
in models with a firm effect (here 7;) in addition to the ex ante productivity term (here wj), this
assumption is unlikely to hold, since the firm effect introduces a second dimension of heterogene-
ity between firms.?* In our case, we assumed the presence of a firm effect at the outset, in the
production function, (7). But even if we had not, we would have to deal with the firm-specific
normalizations y;o and m;o in (13), which we have folded into the levels of the observable Sato-
Vartia quantity aggregates, gjﬁv and ﬁzgv. We impose a particular normalization in the second
step of our estimation procedure below, but we feel that a strength of our approach is that we
do not need to impose such an assumption in the first step when estimating the coefficients on
materials and labor. We will pursue an approach more in the spirit of the panel-data literature,

in part because it can more easily accommodate the fixed effect.

2.4 Two-Step IV Estimation Procedure

To estimate the production function, (14), we proceed in two steps, each implementing an IV
model. In the first step, we first-difference to remove the firm effect and use lagged levels and
external drivers of input price changes as instruments. We recover estimates of 3, and S, from
this step, but we treat 5, as a nuisance parameter, in part because we do not believe there is
sufficient signal in the within-firm changes in capital to est