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Abstract 
 

Complex heterogeneities in the aquifers are critical and challenging to be detected and can have a significant 

effect on subsurface flow and transport. Thereby, reliable prediction of groundwater flow and solute 

transport is important for the protection of drinking water, and the remediation of contaminants. Small-scale 

high resolution images of the subsurface can help to improve the understanding of complex and 

heterogeneous aquifer structures that effect hydrological properties and processes. To successfully obtain 

hydrological parameters distributed in a 2D cross-section with high resolution, we can apply crosshole 

ground penetrating radar (GPR). Crosshole GPR uses high-frequency electromagnetic pulses that are 

emitted from a dipole-type antenna in a borehole and recorded by a receiver antenna in a second borehole. 

The received electromagnetic wave with its arrival time and amplitude contains information about the 

subsurface medium properties through which it travelled. Thereby, crosshole GPR is able to provide two 

electromagnetic parameters the dielectric permittivity and the electrical conductivity at the same time. 

Conventional inversion approaches for crosshole GPR data are generally based on geometrical ray theory, 

which provide relatively smooth images with a resolution that scales approximately with the diameter of the 

first Fresnel zone. In contrast, the crosshole GPR full-waveform inversion (FWI) provides decimeter-scale 

high resolution images, because it considers the fully recorded waveform information and the inversion is 

based on solving the full Maxwell’s equations. However, the crosshole GPR FWI approach also includes 

some limiting factors and requires several detailed processing and inversion steps. If these steps are not 

carefully applied, the inversion can be trapped in a local minimum. In order to minimize the influence of at 

least some of these factors, appreciate FWI starting models and an accurate estimation of the effective source 

wavelet are required.  

To precisely describe aquifers, high porosity layers and clay lenses, that can strongly effect flow and 

transport processes, need to be considered. In the framework of this thesis, we first extend this amplitude 

analysis approach to identify two different types of low-velocity waveguides, caused by an increased 

porosity and/or by a higher electrical conductivity. The obtained information about extension and dimension 

of such wave guiding structures is considered to improve the starting models of the FWI. Moreover, we 

estimate an updated effective source wavelet based on the updated permittivity starting model. To verify the 

presented scheme, nine GPR cross-sections were measured and analyzed at the Hermalle-sous-Argenteau 

test site near Liege in Belgium. Consistent structures between different cross-sections show the robustness 

of the updated amplitude analysis approach and the FWI results. In addition, the aquifer structures obtained 

from the new FWI results agree with the crosshole electrical resistivity tomography (ERT) monitoring 
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results of a previous conducted heat tracer experiment and is able to explain a precisely obtained plume 

distribution in more detail. 

To further improve the reconstruction of the subsurface properties, we combine the standard FWI results 

of crosshole GPR data with Cone Penetration Test (CPT) data. In previous studies, the FWI results were 

compared with the low wavenumber information of nearby measured CPT data and found that the low 

wavenumbers information of GPR FWI models was reliable. Therefore, we introduce an improved scheme 

that is able to enhance the effective source wavelet by combining the standard FWI permittivity results with 

the porosity data derived from the CPT measurements. Firstly, we converted the FWI permittivity values to 

porosity values, which correspond to water content in the saturation zone. Secondly, a lowpass filter based 

on the porosity values of the two approaches was constructed, and used to amplify the FWI permittivity 

results within the full 2D cross-section. By using these wavenumber amplified permittivities in the forward 

modeling an updated effective source wavelet can be obtained, that not only contains the CPT information 

but also possesses a larger bandwidth than the traditional effective source wavelet. Finally, the new updated 

FWI was performed using the ray-based starting models and the updated source wavelet. The new scheme 

was applied to a realistic synthetic data set and to experimental data of the Krauthausen aquifer in Germany. 

A comparison between the traditional FWI and the updated FWI permittivity results illustrates a higher and 

more reliable resolution of the updated FWI.  

In addition, another approach that improves the FWI results for the crosshole GPR based on a 

progressively expanded bandwidth approach is presented. To tame the non-linearity problem of the FWI 

process, we consider using the progressively expanded bandwidths of the modeled data and the measured 

GPR data (PEBDD) to construct a better permittivity starting model. Therefore, we designed tapered 

bandpass filters and applied them to the standard effective source wavelet and the GPR data. The first FWI 

uses the sub-data with the smallest bandwidth. The generated FWI results replace the previous starting 

models while the bandwidth of the sub-data is progressively expanded. This procedure is repeated until the 

sub-data with the selected maximum bandwidth and the resulting FWI permittivity result as the new starting 

model for the final FWI with the full bandwidth data. To test the FWI with PEBDD approach, synthetic 

GPR data, that is generated using a stochastic model of the Krauthausen test site, and field experimental 

GPR data from the same site are used. We compared the standard FWI results with the new updated FWI 

results by computing the root mean square error and correlation coefficient with the CPT data and concluded 

that the new PEBDD approach is able to improve the results of the GPR FWI. In addition, by the usage of 

the PEBDD scheme the detailed work to construct good starting models for experimental GPR data can be 

reduced and the application to field data will be much easier. 

These enhanced 2D GPR full-waveform inversion schemes provide detailed hydrogeological aquifer 

characterization, and can be applied in other Geophysics applications, thus improving our ability to detect 

small-scale structures in the subsurface. 
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Zusammenfassung 
 

Komplexe Heterogenitäten in den Grundwasserleitern sind kritisch und schwierig zu erkennen und können 

einen erheblichen Einfluss auf die unterirdische Strömung und den Transport haben. Eine zuverlässige 

Vorhersage der Grundwasserströmung und des Transports gelöster Stoffe ist entscheidend für den Schutz 

des Trinkwassers und für die Schadstoffsanierung. Hochauflösende Darstellungen des oberflächennahen 

Untergrundes können dazu beitragen, komplexe und heterogene Strukturen in Grundwasserleitern, und 

deren Einfluss auf hydrologische Eigenschaften und Prozesse, besser zu verstehen. „Crosshole“ (Bohrloch 

zu Bohrloch) Bodenradar (englisch: Ground Penetrating Radar; GPR), kann genau für solche 

Fragestellungen eingesetzt werden und die erzeugten 2D-Querschnitte können erfolgreich hydrologische 

Parameter abbilden. Dadurch ist das Crosshole-GPR in der Lage gleichzeitig zwei elektromagnetische 

Parameter, die dielektrische Permittivität und die elektrische Leitfähigkeit, zu ermitteln. Dazu liefert die 

Crosshole-GPR Wellenform-Inversion (englisch: Full-Waveform Inversion; FWI) hochauflösende Bilder 

im Dezimeterbereich, da sie die gesamte Form der aufgezeichneten Wellen berücksichtigt und auf der 

Lösung der vollständigen Maxwell-Gleichungen basiert. Allerdings beinhaltet der Crosshole-GPR FWI 

Ansatz auch einige limitierende Faktoren und erfordert mehrere detaillierte Vorbearbeitungs- und 

Inversionsschritte. Wenn diese Schritte nicht sorgfältig angewendet werden, kann die Inversion in einem 

lokalen Minimum stagniert. Um den Einfluss zumindest einiger dieser Faktoren zu minimieren, sind gute 

FWI-Startmodelle und eine genaue Schätzung des effektiven Quellsignals erforderlich.  

Zur genauen Beschreibung von Grundwasserleitern müssen Schichten mit hoher Porosität und Tonlinsen, 

welche Strömungs- und Transportprozesse stark beeinflussen können, berücksichtigt werden. Deshalb 

erweitern wir den Amplitudenanalyse-Ansatz, um zukünftig beide zuvor beschriebenen Typen von 

Niedriggeschwindigkeits-Wellenleitern zu identifizieren, die durch eine erhöhte Porosität und/oder durch 

eine höhere elektrische Leitfähigkeit verursacht werden. Die gewonnenen Informationen über die 

Abemessungen solcher wellenleitenden Strukturen werden zur Verbesserung der FWI Startmodelle benutzt. 

Zusätzlich ermitteln wir, auf der Grundlage des aktualisierten Permittivitäts-Startmodells, ein aktualisiertes 

effektives Quellsignal. Zur Verifizierung des vorgestellten Schemas, wurden neun GPR-Querschnitte auf 

dem Testgelände Hermalle-sous-Argenteau bei Lüttich in Belgien gemessen und analysiert. Konsistente 

Strukturen zwischen verschiedenen Querschnitten zeigen die Robustheit des aktualisierten 

Amplitudenanalyse-Ansatzes und der aktualisierten FWI-Ergebnisse.  

Um die Rekonstruktion der Untergrundeigenschaften weiter zu verbessern, kombinieren wir die FWI-

Standardergebnisse der Crosshole-GPR-Daten mit Daten aus Drucksondierungsversuchen (englisch: Cone 

Penetration Test; CPT). Wir führen ein verbessertes Schema ein, das in der Lage ist das effektive Quellsignal 
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zu verbessern, indem es die Ergebnisse der Standard-FWI mit den CPT-Daten kombiniert. Zuerst wurden 

die FWI Permittivitätswerte zu Porositätswerten konvertiert, die in der gesättigten Zone dem Wassergehalt 

entsprechen. Dann wurde ein Tiefpassfilter basierend auf den Porositätswerten der beiden Ansätze 

konstruiert und zur Verstärkung der FWI Permittivitäts-Ergebnisse innerhalb des gesamten 2D-Querschnitts 

genutzt. Durch Verwendung dieser wellenzahlverstärkten Permittivitäten in der Vorwärtsmodellierung kann 

ein aktualisiertes effektives Quellsignal ermittelt werden, das nicht nur die CPT-Informationen enthält, 

sondern auch eine größere Bandbreite als das traditionelle effektive Quellsignal aufweist. Schließlich wurde 

eine aktualisierte FWI unter Verwendung der strahlenbasierten Startmodelle und des aktualisierten 

Quellsignals durchgeführt. Das neue Vorgehen wurde auf einen realistischen synthetischen Datensatz und 

auf experimentelle Daten eines Grundwasserleiters des Testgeländes Krauthausen in Deutschland 

angewandt. Ein Vergleich zwischen den traditionellen FWI- und den aktualisierten FWI-

Permittivitätsergebnissen zeigt eine höhere und zuverlässigere Auflösung der aktualisierten FWI.  

Darüber hinaus wird ein weiterer Ansatz vorgestellt, der die FWI-Ergebnisse für das Crosshole-GPR auf 

der Grundlage eines progressiv erweiterten Bandbreitenansatzes verbessert. Um das Nicht-

Linearitätsproblem des FWI-Prozesses zu bewältigen, versuchten wir die progressiv erweiterten 

Bandbreiten der modellierten und der gemessenen GPR-Daten (PEBDD) zu verwenden, um ein besseres 

Permittivitäts-Startmodell zu konstruieren. Dafür konstruierten wir konisch zulaufende Bandpassfilter, die 

auf das effektive Standard-Quellsignal und die GPR-Daten angewendet wurden. Die erste FWI verwendet 

die Teildaten mit der kleinsten Bandbreite. Die generierten FWI-Ergebnisse ersetzen die früheren 

Startmodelle, während die Bandbreite der Teildaten schrittweise erweitert wird. Dieses Verfahren wird so 

lange wiederholt, bis zu den Teildaten mit der maximalen Bandbreite und die daraus resultierenden FWI-

Permittivitätsergebnisse werden als neues Startmodell für die endgültige FWI mit den Daten der vollen 

Bandbreite eingesetzt. Um den FWI mit dem PEBDD-Ansatz zu testen, werden synthetische GPR-Daten, 

die mit Hilfe eines stochastischen Modells des Versuchsstandorts Krauthausen generiert wurden, und 

experimentelle GPR-Felddaten vom gleichen Standort verwendet. Darüber hinaus kann durch die 

Verwendung des PEBDD-Schemas die notwendige Arbeit zur Erstellung guter Startmodelle für 

experimentelle GPR-Daten reduziert werden und die Anwendung auf Felddaten kann wesentlich erleichtert 

werden. 

Diese verbesserten 2D-GPR Wellenform-Inversionsmethoden mit ermöglichen eine detaillierte 

hydrogeologische Grundwasserleiter-Charakterisierung und können auch in anderen geophysikalischen 

Anwendungen angewandt werden, wodurch die Erkennung kleinräumiger Strukturen im Untergrund 

verbessert wird. 
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Chapter 1  

Introduction 
 

With the development of society economic, the demand for Earth natural resources continues to increase. 

Freshwater resources are extremely important for the progress and development of the human civilization. 

Groundwater is the most important freshwater resource on Earth that constitutes over 95% of the Earth’s 

unfrozen freshwater (Wada et al., 2010). The shallow subsurface of the earth is an extremely important 

geological zone that contains much of our available freshwater, supports our agriculture, and ecosystems, 

and influences our climate (Hubbard et al., 2005). With growing population, contaminants associated with 

daily life and industrially polluted groundwater increase the threat to human life. Therefore, it is very urgent 

to improve our understanding of the shallow subsurface heterogeneities that we are able to accurately predict 

groundwater flow and contaminant transport (e.g., Bear and Cheng, 2010; Binley et al., 2015). 

The heterogeneity and the spatial variability in the subsurface aquifers have a great influence on the 

prediction of groundwater storage, the determination of priority flow direction, and the spread of 

contaminants. Traditional hydrogeological methods to characterize estimate hydrological parameters in 

near-surface aquifers include, e.g., coring, pumping tests, flowmeter tests and permeameter tests (e.g., 

Colwell et al., 1992; Bohling at al., 2002; Le Borgne at al., 2007). Such methods have either an average 

response over a large volume with a lack of detailed characterization at smaller-scale (Landon et al., 2001), 

or, they represent small spatial sampling volume with a poor lateral expansion (Brauchler et al., 2011). 

Especially for the spatial connectivity of subsurface structures at the field scale, classic hydrogeological 

methods are not able to provide information with higher resolution. To overcome the difficulty of estimation 

of the subsurface spatial heterogeneity at the point scale (e.g., high contrast layers linked to preferential flow 

paths or clay lenses) with a high spatial resolution, Cone Penetration Test (CPT) surveys with a fast, accurate, 

and minimally invasive manner have become popular in the last decades to investigate shallow 

unconsolidated sediments (e.g., Fejes and Jósa, 1990; Lunne et al., 1997; Tillmann et al., 2008). The CPT 

approach can be used to collect subsurface lithological and soil data and quantitatively investigate the data 

properties in detail. For example, CPT can provide mechanical resistance, natural gamma activity, bulk 

density, matrix density, water content, and electrical resistivity data (Tillmann et al., 2008). However, the 

drawback of the CPT approach is its one-dimensional nature, and therefore the distribution of lateral 

information is poor. 

In the last decades, geophysical methods have been widely applied for the subsurface modeling and 

imaging, which can be used to provide detailed models of the near-surface and the critical zone (e.g., Binley 
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et al., 2015). Generally, these geophysical methods are able to close the gap between small-scale 

investigations with high resolution (e.g., coring) and large-scale zones mapping (e.g., flowmeter tests). 

Seismics (e.g., Doetsch et al., 2010a), electrical resistivity tomography (ERT; e.g., Coscia et al., 2012) and 

ground penetrating radar (GPR; e.g., Klotzsche et al., 2010) are popular to gain 2D and 3D continuous 

models of subsurface structures. Some research groups have successfully used one or a combination of these 

methods to characterize the near-subsurface and to derive hydrological relevant properties (Binley et al., 

2015). For example, Feng et al. (2017) provided a joint inversion of crosshole seismic and GPR data in the 

frequency domain to map the shallow subsurface structures. Hermans et al. (2015a) investigated the ability 

of crosshole ERT to monitor a heat tracer experiment in a complex heterogeneous alluvial aquifer. Looms 

et al. (2008) introduced an approach to monitor unsaturated flow and transport using cross-borehole GPR 

data. These results improved the understanding of how different geophysical methods can be used to obtain 

detailed aquifer structures. By using empirical relationships or specific mixing models, the measured 

geophysical parameters can be converted to the hydrological parameters and further image the subsurface 

heterogeneity in detail. To improve the characterization of hydrogeological parameters (e.g., porosity, 

hydraulic conductivity or dispersivity), time-lapse tracer experiments can be applied (e.g., Linde et al., 2006; 

Saar, 2011; Hermans et al., 2015a). Commonly applied tracers are salt or heat tracers, which can be 

monitored with ERT (e.g., LaBrecque et al., 1996b; Hermans et al., 2012b) or GPR traveltime tomography 

(Kowalsky et al., 2004). For example, to investigate flow and transport processes, time-lapse crosshole GPR 

measurements with a high spatial and temporal resolution can be linked to soil hydrological parameters such 

as hydraulic conductivity (e.g., Doetsch et al., 2010b). Müller et al. (2010) applied a negative and positive 

salt tracer and monitored the time–lapse changes with crosshole ERT to characterize flow and transport 

processes.  

During the last two decades, GPR has undergone a rapid development and has shown a great potential 

to non-or/minimally invasively map and characterize aquifers with a higher resolution than ERT and seismic 

investigations (e.g., Huisman et al., 2001; Klotzsche et al., 2018). The method is using high frequency 

electromagnetic (EM) waves to obtain the near-subsurface parameters dielectric permittivity 𝜀 (related to 

velocity 𝑣 of the EM wave) and electrical conductivity 𝜎 (related to attenuation α of the EM wave). In this 

thesis, the relative permittivity is used, which is calculated with the formula 𝜀𝑟 = 𝜀  𝜀0⁄ , where  𝜀0 is the 

dielectric permittivity of free space with 8.8542 ×10-12. Because of the large difference between the relative 

permittivity of air ( 𝜀𝑟=1) and pure water ( 𝜀𝑟  = 80 at 20°C),  𝜀𝑟  can be linked to the soil water content or 

porosity in the subsurface saturated media using appreciate empirical equations or mixing models (e.g., 

Birchak et al., 1974; Eisenberg and Kauzmann, 2005; Steelman and Endres, 2011; Gueting et al., 2015; 

Carmichael, 2017). Meanwhile, σ can be linked to hydrological relevant variables such as water salinity, 
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clay content, and lithological variations (e.g., Davis & Annan, 1989; Tronicke et al., 2004; Busch et al., 

2012).  

The most common GPR measurement techniques include surface GPR and cross-borehole GPR 

measurements (Huisman et al., 2001). The center frequency of most GPR antennae is in the high frequency 

range 20-1000 MHz with a corresponding dominant wavelengths of 5 - 0.1 m for common earth materials. 

Surface GPR is a non-invasive measurement method in which both transmitter (Tx) and receiver (Rx) 

antennae are located on the surface. Thereby, two types of measurements can be conducted. The common 

midpoint (CMP) or the wide-angle reflection and refraction (WARR) setup are applied to derive subsurface 

velocity distribution at the point scale. The CMP or WARR sounding method are the EM equivalent to 

seismic refraction and wide-angle reflection, where the transmitter and receiver spacing are varied (Jol, H.M. 

ed., 2008). The second type of measurements setup is the common-offset profiling (COP) that can be applied 

at larger scale along profiles or grids. For COP mode, which is commonly applied in the surface GPR data, 

are acquired with a fixed spacing between the transmitter and the receiver antennae (e.g., Liu et al., 2018; 

Klotzsche et al., 2018). In contrast to the CMP or WARR measurements, the COP is much faster but can 

only provide information about lateral changes. To derive accurate depth information from COP data, CMP 

or WARR measurements are necessary to link the structures to velocity distributions.  

The crosshole GPR measurement technique emits electromagnetic pulses from the transmitter antennae 

in one borehole, which are received from receiver antennae in a second borehole. Commonly two types of 

measurement setup are possible for crosshole GPR. The zero-offset profiling (ZOP) approach is a quick and 

simple survey method that can locate velocity anomalies or attenuation zones (Gilson et al., 1996; Binley et 

al., 2001) by synchronously moving the two antennae up or down in the two different boreholes with a 

constant spacing (Figure 1.1a). However, the results obtained from the ZOP measurements cannot 

distinguish the horizontal heterogeneity in the subsurface. To receive more scattered waves caused by 

reflections and refractions in a heterogeneous subsurface (Figure 1.1c), the more advanced measurement 

technique of multi-offset-gathers (MOG) measurement (Figure 1.1b) is needed. In this surveying mode, the 

transmitter antenna stays fixed in one borehole, while the receiver antenna is moved down or up with a 

constant spacing in a second borehole. This is repeated for multiple transmitter locations and can 

additionally be done in the other borehole by interchanging of the boreholes positions for transmitter and 

receiver. The resulting data set has a large number of rays with a larger number of angles that cover the 

domain between the two boreholes (Huisman et al., 2001; Klotzsche et al., 2019a). In contrast to surface 

techniques, crosshole applications of GPR are well suited to characterize the shallow subsurface and are 

beneficial for monitoring of aquifers (e.g., Paz et al., 2017). Because of the known borehole distance 

between the two antennae, the dense ray-coverage, and relatively small acquisition errors, crosshole GPR is 

a good constraint for sophisticated inversion schemes (e.g., Axtell et al., 2016; Klotzsche et al., 2019b). 

Note that both GPR measurement techniques are able to receive reflected, refracted, and direct waves.  
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Figure 1.1. a) Illustration of a transillumination zero-offset profiling (ZOP). b) The setup of one MOG data 

set for one transmitter (TRN) position. c) Illustrations of direct, refracted, and reflected waves that can be 

measured between two boreholes. d) And e) show differences between the ray-based method (red and green) 

and the full-waveform inversion (blue) input parameters. Red and green arrows indicate first arrived times 

and first-cycle amplitudes locations, respectively. In which d) trace of one receiver and e) all receiver traces 

for one transmitter position of MOG data. Figure 1.1a and b are adapted from Klotzsche et al. (2019b). 

Figure 1.1c, d and e are adapted from Klotzsche (2013).  

To derive the distribution of the subsurface structures, tomographic inversion algorithms can be applied 

to the crosshole GPR data. The most commonly applied inversion algorithms are based on the ray-based 

approaches by utilizing the first-arrival time and first-cycle amplitude information of the data (indicated by 

red and green in Figure 1.1d and e). Thereby, damping and smoothing constraints are necessary to stabilize 

the inversion (e.g., Holliger et al., 2001; Maurer & Musil, 2004). The information of first-arrival time can 

be used to calculate the velocity distribution of the subsurface (or permittivity), while the damping of the 

EM waves (conductivity) distribution in aquifers is derived from first-cycle amplitude information (e.g., 

a)  b)  c) 

d)  e)  
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Tronicke et al., 2001, 2004; Irving and Knight, 2005; Clement and Barrash, 2006; Musil et al., 2006; Paasche 

and Tronicke, 2007). However, the spatial resolution of a standard ray-based inversion for crosshole GPR 

data is limited, because it uses only a small amount of the data and the resolution scales approximately with 

the diameter of the first Fresnel zone √𝜆𝐿  (Williamson, 1991), where 𝜆 and 𝐿 are the dominant wavelength 

and the wave propagation path length, respectively. Most often ray-based imaging is not able to resolve 

targets with a size smaller than the dominant wavelength of the antennae (e.g., Holliger et al., 2001; Irving 

et al., 2007). Furthermore, ray-based approaches only consider data until a certain angle to avoid an 

increasing apparent-velocity for increasing ray path angles (Peterson, 2001), therefore only a limited angular 

coverage of the target is available. 

To improve the resolution of crosshole GPR inversions, a number of waveform-type approaches have 

been developed, such as weak-scattering iterative methods based on integral representations of Maxwell’s 

equations (e.g., Wang and Chew, 1989), the approximate wave-equation traveltime (e.g., Cai et al., 1996), 

Fresnel-volume (e.g., Johnson et al., 2005), and diffraction tomography methods (e.g., Cui and Chew, 2000 

and 2002). Inspired by the full-waveform inversion (FWI) approach that was first developed and applied in 

the seismic community (e.g., Tarantola, 1984, 2005; Shin & Cha, 2008; Virieux & Operto, 2009), the 2D 

time-domain FWI for crosshole GPR data was implemented by Ernst et al. (2007a, b) and Kuroda et al. 

(2007). Meles et al. (2010) improved the method of Ernst et al. (2007a) by including the vector 

characteristics of the EM fields and introduced a simultaneous update of the permittivity and electrical 

conductivity parameters. Additionally, the vector properties enabled combining surface GPR and borehole 

GPR measurements in the inversion. To tame the non-linearity issue of GPR data FWI caused by high 

contrast media, Meles et al. (2011) introduced an approach using the progressive bandwidth expansion 

synthetic data (PBED) by applying bandpass filter to the effective source wavelet. The 2D time domain FWI 

with vector properties based on Meles et al. (2010) was successfully applied to experimental data sets from 

different test sites, for example to the River Thur test site in Switzerland (Klotzsche et al., 2010, 2012, and 

2013) and to the Boise Hydrogeophysics Research Site in the USA (Yang et al., 2013; Klotzsche et al., 

2014). Additionally, the measurement efficiency and computational costs of the FWI were improved by 

changing from a dense one-sided to a semi-reciprocal measurement setup (Klotzsche et al., 2010; 

Oberröhrmann et al., 2013) and Yang et al. (2013) introduced normalized gradients that are independent 

from the number of transmitters and receivers. Klotzsche et al. (2012) were able to identify a preferential 

flow path within an aquifer using the FWI results together with logging data. Klotzsche et al. (2014) 

combined information gained from an amplitude analysis approach with the starting models of the full-

waveform inversion and showed the potential to detect small scale contrast structures in aquifers with both 

methods. At Krauthausen test site in Germany, Gueting et al. (2015) employed CPT measurements to verify 

GPR FWI results and introduced a clustering approach of the data to identify lithological structures of the 
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aquifer. This study indicates that combining the 2D FWI results with the 1D CPT data can help to improve 

FWI imaging results along the GPR cross-section. Furthermore, by stitching 15 GPR tomograms together 

from multiple adjacent crosshole planes, they applied the 2D FWI clusters to derive a 3D larger scale facies 

model of the entire Krauthausen site. Thereby, they were able to explain a plume splitting that was 

previously observed during a salt tracer test experiment (Gueting et al., 2017). 

Generally, FWI approaches can be implemented in time and frequency domain. Both methods have pros 

and contrasts. While frequency approaches can highly minimize the calculation costs and improve the cycle 

skipping problem, the time domain approaches are more mature because it provides the most flexible 

framework to apply time windowing of arbitrary geometries. This is especially true for 3D problems 

(Virieux & Operto, 2009). Similar to seismics,  also frequency-domain FWI approaches for GPR data were 

implemented, because of certain benefits such as a few discrete frequencies of data are benefit for frequency-

dependent medium properties and a wider range of misfit functions that can be implemented (e.g., Lavoue 

et al., 2014). Ellefsen et al. (2011) inverted measured crosshole GPR data from a laboratory tank by using a 

2.5D frequency-domain FWI approach. Furthermore, a 2D frequency-domain quasi-Newton approach for 

multioffset GPR data was implemented to a synthetic model (Lavoue et al., 2014) and carbonate rocks data 

(Pinard et al., 2016). Although frequency-domain FWI seems to have certain benefits compared to time-

domain FWI, for many experimental GPR data, the low frequency data is missing or shows a low signal-to-

noise ratio. Until now almost all successful applications to experimental data have been performed using 

the time-domain FWI approach for GPR data (Klotzsche et al., 2019b). 

The 2D time-domain crosshole GPR FWI based on Ernst at al. (2007a) and Meles at al. (2010) uses a 

conjugate-gradient algorithm (Polak et al., 1969) to optimize the misfit function between the measured and 

modeled data. This inversion approach is with the inevitable ill-posed and non-linear problems due to 

multiple scattering in the heterogeneous subsurface (e.g., Mora, 1987). Both of these problems are easily 

causing the FWI trapped into local minima convergence. Especially if the starting models differ too much 

from the true models and they exceed the half-wavelength criteria, the inverted results fail to converge to 

the true solution. The half-wavelength criterion requires that the modeled data based on the starting models 

are within half a wavelength of the measured data. To tame these problems, a number of solutions were 

proposed. The frequency hopping method was used in frequency domain for microwave and seismics (Chew 

and Lin, 1995; Pratt et al., 1998; Zhou and Greenhalgh, 2003; Dubois et al., 2009; Maurer et al., 2009). To 

mitigate the cycle skipping issue in the FWI of seismic data, some researchers have proposed to generate 

artificial low frequencies information for measured seismic data lack of low frequency (Shin et al., 2008; 

Choi et al., 2018). They inverted the zero-frequency damping wavefield to obtain low-wavenumbers 

structures of the starting models. In addition, the artificial low-frequency components hidden in the seismic 

envelope were able to be estimated based on the modulation signal model (Wu et al., 2014). Recently, Meng 

et al. (2019) have proposed an adaptive Laplace domain waveform inversion to build more suitable starting 
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models. However, for many field experimental GPR data, the low frequency data was a low signal-to-noise 

ratio because of noises contaminated. To avoid the local minima convergence for the crosshole GPR data 

FWI, Meles et al. (2011) presented a combined frequency-time-domain approach that uses the progressive 

bandwidth expansion of the modeled data (PBED) as iterations proceed, while the observed data keep the 

full bandwidth. This approach worked very well for synthetic data, but for experimental data the choice of 

the frequency bands and the inversion parameters such the perturbation factors hindered a successful 

application so far. 

In the presence of special subsurface structures such as high contrast small-scale heterogeneities, the 2D 

time-domain crosshole GPR FWI can easily result in incorrect inverted structures because of ill-posed and 

non-linear problems. Meanwhile, these small-scale high contrast layers, which are often caused by, e.g., 

changes in porosity (higher permittivity) or clay content (higher electrical conductivity), are critical for 

improving our ability to detect and visualize for hydrological processes in aquifers. Klotzsche et al. (2014) 

introduced the amplitude analysis approach that could identify and map the boundaries of sub-wavelength 

high contrast zones caused by an increase in permittivity/porosity already in the measured data. Such zones 

can act as low-velocity EM waveguides for the GPR data (e.g., Arcone, 1984; Arcone et al., 2003; van der 

Kruk et al., 2009, 2010; Klotzsche et al., 2012, 2013; Strobach et al., 2013) causing characteristic wave 

propagation behavior like late arrival high amplitude elongated wave trains in the data. However, 

waveguides related to clay content changes are more difficult to detect in the GPR data because of lacking 

obvious features caused by the higher damping of the waves and hence diminished amplitudes.  

In addition, some preprocessing steps are necessary for experimental crosshole GPR data such as an 

accurate time zero estimation, defining good starting models, considering a 3D to 2D conversion of the data, 

and estimating an effective source wavelet. Although many studies show the potential of FWI for 

experimental GPR data, to apply the FWI to experimental data is still challenging due to the higher inverted 

resolution, data acquisition with noises, and detailed preprocessing and inversion of the data need to be 

performed carefully (e.g., Klotzsche et al., 2019b). 

 

Thesis objectives and outline 

The primary objective of this thesis is to improve the reconstruction of crosshole GPR FWI results and to 

make the inversion more robust against processing errors. This is achieved by extending, for example the 

amplitude analysis approach for high contrast structures of the subsurface from measured GPR data, 

including additional information of CPT data to the FWI improvement, and using the adaption progressive 

frequency-bandwidth expansion approach for both modeled data and observed data.  
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After the introduction part, the second Chapter of this thesis presents the fundamentals of the 

electromagnetic wave propagation (Maxwell’s equations), the ray-based approach, and the full-waveform 

inversion algorithm. Some preprocessing steps of the full-waveform inversion for experimental crosshole 

GPR data with focuses on the 3D to 2D transformation of the measured data, the estimation of the starting 

models and the effective source wavelet estimated are explained in detail.  

The third Chapter of this thesis presents a combination of the amplitude analysis and the standard GPR 

FWI. Due to the difficult to detect clay lens in the measured data by using the amplitude analysis approach, 

we extend the amplitude analysis to identify two different types of low-velocity waveguides either caused 

by an increased porosity or and a higher electrical conductivity. The standard FWI is performed according 

to the ray-based starting models and the standard effective source wavelet. To enhance the FWI results, we 

use the standard low iterations FWI permittivity results (iteration=10), which are able to provide 

approximate waveguide structures locations, as a new permittivity starting model. After updating the 

effective source wavelet, the updated FWI results obtained a better reconstruction of the model. The new 

approaches were tested at the Hermalle-sous-Argenteau test site, where nine boreholes GPR data sets were 

acquired. We inverted each 2D cross-section separately and integrated these cross-sections together in 

pseudo 3D view. Consistent structures in the nine permittivity and conductivity cross-sections showed the 

robustness of the updated inversion results and allowed the interpretation of a previously performed heat 

tracer experiment. 

In Chapter 4, we improve the FWI results by using 1D CPT data. Firstly, a bandpass filter was generated 

and applied to the crosshole 2D FWI permittivity data. After that, we updated a new effective source wavelet 

based on the 2D wavenumber amplified FWI permittivity model by using the previous filter. Using this 

updated effective source wavelet and the standard ray-based starting models, the new FWI was performed. 

In further, the traditional and the updated FWI results were compared with the CPT data. Finally, the updated 

permittivity FWI results showed better reconstructions. To further verify the amplified approach with CPT 

data, we test one synthetic model and five measured crosshole GPR data sets from a test site in Krauthausen, 

Germany. 

In Chapter 5, we present a scheme to tame the nonlinearity problem for the 2D time-domain crosshole 

GPR full-waveform inversion. We propose an idea of progressively expanding the bandwidths of both 

modeled and observed data (PEBDD). This new scheme is able to avoid some defects of the approach in 

Meles et al. (2011), such as the difficult determination of perturbation factors. In addition, for experimental 

GPR data, the approach of Meles et al. (2011) is unavailable. To verify our new scheme, we test two different 

synthetic case studies and applied the approach to experimental crosshole GPR data sets of the Krauthausen 

test site. Both synthetic and experimental data showed that the PEBDD scheme improved the FWI results 

by taming the local minima convergence problem. 
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Final conclusions and an outlook for further work are presented in Chapter 6. The outlook provides topics 

for future research. One is to recover low-wavenumber information of starting models based on high-

frequency observed data by applying the approach of angle difference identity for Cosine (Wang et al., 

2019), and the second one is to improve the computation of gradient directions in the process of FWI using 

the seismic staining algorithm (Chen and Jia, 2014; Li and Jia, 2017). 
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Chapter 2 

Theory 
 

In this Chapter, firstly Maxwell’s equations are introduced, which mathematically describe the EM wave 

propagation and provide the foundations of achieving the subsurface medium information through using the 

EM waves traveling. Afterwards the ray-based inversion schemes including first-arrival travel time 

inversion and first-cycle amplitude inversion are described. Finally, the details of full-waveform inversion 

for experimental crosshole GPR data are presented based on Klotzsche et al. (2019b).  

2.1 MAXWELL’S EQUATIONS OF ELECTRODYNAMICS 
 

GPR is based on the fundamentals of the electromagnetic wave propagation. It is well known that the electric 

field originates from electric charges and the magnetic field from current loops. According to Maxwell's 

equations, we are able to find relations between the electric field E, the magnetic field H, time t, space x, 

and material related equations such as Ohm's law. The propagation and affiliation of the electric and 

magnetic fields are applied for investigating the interactions of the fields with objects (i.e., the structures in 

the subsurface). The Earth’s near-surface structures are able to be interpreted through analyzing these 

received electric and magnetic fields signals. By simulating electromagnetic wave propagation, we can 

invert and update the related material properties. According to Meles et al. (2010), the partial differential 

system of Maxwell’s equations is defined at any point in time 𝑡 and space 𝐱 by: 

 

                                       

{
 
 

 
 𝜕𝑡𝐁(𝐱, 𝑡) + ∇ × 𝐄(𝐱, 𝑡) = 0；

∇ × 𝐇(𝐱, 𝑡) − 𝜕𝑡𝐃(𝐱, 𝑡) − 𝐉𝑒𝑥(𝐱, 𝑡) − 𝐉𝑐(𝐱, 𝑡) = 0;

∇ ˑ 𝐃(𝐱, 𝑡) = 𝜌(𝐱, 𝑡);

∇ ˑ 𝐁(𝐱, 𝑡) = 0;

                                         (2.1) 

with 

                                   𝐄(𝐱, 𝑡) = Electric field intensity (V/m), 

                                      𝐇(𝐱, 𝑡) = Magnetic field intensity (A/m), 

                                      𝐃(𝐱, 𝑡) = Electric displacement (C m2⁄ ), 

                                   𝐁(𝐱, 𝑡) = Magnetic induction (W m2⁄ ), 

                  𝜌(𝐱, 𝑡)  = Volume charge density (C m3⁄ ), 

                                   𝐉𝑐(𝐱, 𝑡)  = Conduction (induced) current density (A m2⁄ ), 
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                                      𝐉𝑒𝑥(𝐱, 𝑡) = External (source) current density (A m2⁄ ). 

To connect the electric and magnetic fields, constitutive relationships are constructed based on the three 

fundamental bulk electromagnetic properties of material media, which are the dielectric permittivity 𝜀, the 

magnetic permeability µ, and the electrical conductivity σ. To simply show the relationship between the 

electric field 𝐄(𝐱, 𝑡)  and bulk electromagnetic properties (similar equations apply for  𝐇(𝐱, 𝑡) ,  𝐃(𝐱, 𝑡) 

and 𝐁(𝐱, 𝑡)), a damped wave equation with the partial differential form is presented: 

                                                     ∇2𝐄(𝐱, 𝑡) =  𝜇𝜎𝜕𝑡𝐄(𝐱, 𝑡) + 𝜇𝜀𝜕𝑡𝑡𝐄(𝐱, 𝑡).                                           (2.2) 

For most GPR applications, magnetic field 𝐇 is not considered, and therefore a simplified formulation of 

the electric field 𝐄 is given by (Meles et al., 2010) 

                                                                        𝐄𝑠 = 𝐆 𝐉𝑠 ,                                                                         (2.3) 

where the superscript 𝑠 is used for the particular source, and 𝐆 represents the Greens operator and describes 

the propagation of the electrical field through the medium. The explicit formulation of Equation 2.3 for a 

specific time–space point (𝐱, 𝑡) is given by 

                                      𝐄𝑠(𝐱, 𝑡) = ∫ 𝑑𝑉(𝐱′) ∫ 𝑑𝑡′
𝑇𝑚𝑎𝑥
0𝑉

𝐆(𝐱, 𝑡, 𝐱′, 𝑡′)  𝐉𝑠(𝐱′, 𝑡′),                                  (2.4) 

where 𝐄𝑠(𝐱, 𝑡) is the electric field generated by the source 𝐉𝑠(𝐱′, 𝑡′) at a specific time and space point (x, t) 

and 𝑇𝑚𝑎𝑥  is the maximum observation time. 𝑉 represents the model space. 𝐆(𝐱, 𝑡, 𝐱′, 𝑡′) is the Green’s 

tensor that acts on the source term 𝐉𝑠(𝐱′, 𝑡′), which can be defined as 𝐉𝑠 = 𝛿(𝐱 − 𝐱𝑠). 𝐒(𝜔), where 𝐒 is the 

source wavelet and the 𝛿 function shows the position. 

Generally, for medium with high frequencies, low loss, and non-magnetic property, the GPR wave 

velocity 𝑣 in medium can be calculated by using the real part of the bulk dielectric permittivity 𝜀 in nature 

medium and the air wave velocity 𝑐 with 0.29979 m/ns by 

                                                                           𝑣 = 𝑐

√𝜀
 .                                                                           (2.5) 

Typically for GPR applications, the relation between the electrical conductivity σ and the amplitude 

attenuation 𝛼 for GPR data for the same high frequency low loss attenuation medium structures is used (𝜇 ≈

1 with 𝜇 = 𝜇0 . 𝜇𝑟  with 𝜇0 = 4 . 𝜋 .  10−7) that is described by 

                                                                        𝜎 = 2𝛼√
𝜀 

𝜇
 .                                                                       (2.6) 
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2.2 RAY-BASED METHODS 
 

Conventional crosshole GPR tomographic inversion is based on geometrical ray theory (e.g., Maurer & 

Musil, 2004; Irving et al., 2007; Dafflon et al., 2011, 2012). Thereby, the first-arrival times and the first-

cycle amplitudes of measured GPR traces are considered in the inversion process to derive velocity and 

attenuation models. In this thesis, we applied the finite-difference Eikonal algorithm (Vidale, 1990) for the 

forward modeling of the ray-based approach, which demonstrated to be more suitable for the heterogeneous 

mediums. 

The subsurface velocity model is derived based on picked first-arrival times for crosshole GPR data. To 

solve the velocity distributions in the subsurface, it is necessary to simulate the ray-paths between the 

transmitting and receiving antennae. By varying input parameters and performing forward modeling 

according to a finite difference implementation of the Eikonal Equation (Vidale, 1990), a velocity 

distribution can be obtained by minimizing the misfit function between the observed 𝑡𝑠𝑟𝑜𝑏𝑠  and the calculated 

travel times 𝑡𝑠𝑟
𝑠𝑦𝑛 . According to Lanz et al. (1998) and Rabbel (1996), the travel time misfit function 𝐶𝑇𝑇  

can be described by 

                                                                   𝐶𝑇𝑇 = ∑ ∑
(𝑡𝑠𝑟
𝑜𝑏𝑠−𝑡𝑠𝑟

𝑠𝑦𝑛
)2

𝑛𝑟𝑠 ,                                                       (2.7) 

where 𝑛, 𝑠 and 𝑟 represent the data points, the source and receiver numbers, respectively. 𝑡𝑠𝑟𝑜𝑏𝑠  and 𝑡𝑠𝑟
𝑠𝑦𝑛  are 

the observed and calculated first-arrival times at the locations with transmitter 𝑥𝑠  and receiver  𝑥𝑟 , 

respectively. 

To solve the calculated first-arrival times 𝑡𝑠𝑟
𝑠𝑦𝑛  based on the present model value parameters, we describe 

the propagating time along a ray path 𝑆 between the transmitter and receiver as (e.g., Lanz et al., 1998) 

                                                               𝑡 = ∫ 𝐮(𝑟(𝐱, 𝐳)) 𝑑𝑟
𝑆

,                                                                (2.8) 

where 𝐮(𝑟(𝐱, 𝐳)) is the slowness field with 𝑟(𝐱, 𝐳) location vector. In further, the slowness field 𝐮(𝑟(𝐱, 𝐳)) 

can be approximated by using 𝑚 equidimensional cells, each having a constant slowness 𝑢𝑘 (k=1…m), so 

the 𝑖𝑡ℎ traveltime of 𝑛 observations can be described as  

                                                               𝑡𝑖 = ∑ 𝑙𝑖𝑘
𝑚
𝑘=1 𝑢𝑘 = 𝐋𝑖𝐮,                                                            (2.9) 

where 𝑙𝑖𝑘 denotes the 𝑖𝑡ℎ portion of the ray path for in the 𝑘𝑡ℎ cell. Determination of matrix 𝐋 requires 

calculating traveltimes in 2D media.   

In most cases for heterogeneous medium, regularizations with smoothing and damping constrains are 

necessary to solve the travel time inversion by using the finite-difference Eikonal solver. Based on Musil et 

al. (2003), Equation 2.9 can changed as  
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                                                                       [
𝑡
0
𝑢0

] = [
𝐋
𝐀
𝐈
]  𝐮 ,                                                                  (2.10) 

where 𝑢0 is a damping constraints vector, 𝐀 is a smoothing matrix and the identity matrix is represented by 

𝐈. A more compact form can be shown as  

                                                                          𝐝 = 𝐃𝐮.                                                                         (2.11) 

The misfit function 𝐶𝑇𝑇  is minimizing during the inversion process by searching minimum and is non-linear 

because 𝐋  relies on the unknown slowness field  𝐮 . Therefore, Equation 2.11 is iteratively solved. 

Considering 𝐃 is a sparse matrix, some sparse matrix solvers, such as a least squares (LSQR) approach 

based on Paige and Saunders (1982), can be applied to solve the sparse least squares problems (Lanz et al., 

1998). 

For the picked first-cycle amplitudes from crosshole GPR data, we can estimate the subsurface electrical 

conductivity distribution from the amplitude attenuation inversion based on ray-based methods. The 

inversion of the amplitudes needs a priori assumptions about the GPR antennae radiation patterns. The most 

common approach is that the radiation patterns of antennae are infinitesimal dipoles that correspond to the 

prevailing in a homogeneous medium (e.g., Holliger et al., 2001). The corresponding ray-based paths based 

on the picked first-arrival times are necessary for the amplitude inversion. Note that we take a homogeneous 

conductivity starting model to replace the inverted first-cycle amplitudes results in this thesis, thereby much 

more details can be referenced from Holliger et al. (2001) and Maurer & Musil (2004). 

For the ray-based methods some critical shortcomings associated with the inherent high frequency 

limitations appear in the tomographic results. For instance, the ray-based tomographic inversion is only 

relatively smooth images and the resolution scales approximately with the diameter of the first Fresnel zone 

(Williamson, 1991; Williamson and Worthington, 1993). In addition, ray-based approaches only consider 

data until a certain angle to avoid an increasing apparent-velocity for increasing ray path angles (Peterson, 

2001), therefore only a limited angular coverage of the target is available. The third point is that damping 

and smoothing constraints are necessary to stabilize the application of ray-based inversion (e.g., Holliger et 

al., 2001; Maurer & Musil, 2004). Although some inevitable shortcomings exist, for experimental crosshole 

GPR data, ray-based inversion results (especially for relative permittivity) are used to provide starting 

models for the full-waveform inversion (Klotzsche et al., 2019b).  
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2.3 FULL-WAVEFORM INVERSION 

 

In contrast to ray-based methods, full-waveform inversion (FWI) takes the entire waveform of GPR data 

into account, which includes secondary events like scattered and refracted waves (e.g., Meles et al., 2010; 

Klotzsche et al., 2010). Therefore, the FWI promises a better imaging capability. However, it is well known 

that the FWI problems include both ill-posed and non-linear. Therefore, good starting models and an 

accurate effective source wavelet are important. As mentioned before, the starting models together with the 

effective source wavelet need to yield modeled data within half a wavelength of the measured data in the 

entire inversion domain to avoid cycle skipping and trapping of the inversion in a local minimum. Generally, 

the FWI scheme is very consuming computational costs, thus the main limitation factor for FWI 

development was computer computing power in the early years. With the developments of parallel 

programming tools, and the availability of high performance cluster, the limitation has been solved. Inspired 

by the FWI works in seismic domain, FWI was developed and progressively applied in EM domain based 

on Maxwell’s equations by using finite-difference methods. In this thesis, we applied the FWI approach of 

Meles et al. (2010), who further improved the approach of Ernst et al. (2007a, b) with modifications from a 

stepped (cascaded) inversion scheme to simultaneously updating parameter scheme.  

2.3.1 Pre-processing 
 

For experimental crosshole GPR data, some pre-processing steps are critical. First of all, the raw GPR data 

are filtered to remove low-frequency noise. The raw data is affected by a slowly decaying low frequency 

'wow', caused by signal saturation due to early wave arrivals, the electrical properties of the ground, 

inductive coupling effects, and/or the proximity of the transmitter and receiver. This low frequency 'wow' 

superposes the high frequency signal, and needs to be filtered out by using a highpass filter, called 'dewow'. 

The dewow method applies a running average filter to each trace, and is able to pass the transmitted signal 

spectral peak for the specific antenna center frequency and to suppress the low frequency wow in the data. 

In addition, accurate borehole deviation information is indispensable and artefacts occurred when 

uncorrected coordinates are used (Maurer & Green, 1997).  

 During the MOG crosshole GPR measurement, time-shifts or jumps in the first arrival time of the wave 

occur that are caused by thermal drift, electronic instability, cable length differences and variations in 

antenna coupling (Nobes, 1999; Olhoeft, 2000). Therefore, the exact starting time of the wave, which is 

called time zero, needs to be determined and the GPR traces need to be adjusted. In this thesis, we apply the 

method of time-zero correction by a cross-correlation of a ZOP with corresponding horizontal traces of each 

MOG based on Oberröhrmann et al. (2013). In the first step, the ZOP traces, which are additionally 
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measured after all MOGs are acquired, need to be time corrected with a subsequently calibration CMP or 

WARR measurement in air. The calibration measurement is performed by placing the antennae at the 

surface and performing a CMP or WARR measurement to measure the air wave. Using the known air wave 

velocity, the time shift between the actual starting time and current time can be estimated. This time shift is 

applied to the ZOP data. Afterwards, for each ZOP trace, a corresponding MOG trace, which has traveled 

the same path between the same transmitter and receiver positions (see red arrow in Figure 1.1a and b), can 

be found. It can be assumed that the highest cross-correlation of the two traces shows the relative time shift 

that occurred in the MOG trace, caused by the time zero changes. Finally, we can correct the time-zero of 

MOG traces according to shifted times. After the data is filtered, time zero corrected and accurate deviations 

data is available, first-arrival travel times and first-cycle amplitudes can be picked and used in the ray-based 

inversion. Note that the same data is used in the FWI. The estimated velocity and attenuation tomograms of 

the subsurface based on ray-based methods are considered to obtain permittivity and conductivity 

distributions according to Equations 2.5 and 2.6 as starting models for the FWI. 

Because the forward modeling and the inversion are performed in the 2D domain (data measured in 3D), 

it is necessary to understand that the 3D radiation characteristics of electromagnetic wave propagation are 

different in 2D. Therefore, the experimental GPR data needs to be convert from 3D to 2D using the approach 

by Bleistein (1986) to reduce the influence of the 3D wave propagation phenomena. The main reason is the 

geometrical spreading differences in 2D and 3D. For the 3D case, the wave front propagates spherical and 

the amplitude decay is proportional to the traveled distance. In contrast, the wave energy is spread over the 

perimeter of the circle in the 2D case. Therefore, multiplying the 3D data with √𝑡 is necessary. Furthermore, 

a phase shift must be introduced to compensate an assumption with infinitive long extended sources in 2D 

that is not true in reality (e.g., Klotzsche, 2013). Similar to Ernst et al. (2007b) and Bleistein (1986), we use 

a scheme that compensate for differences in geometrical spreading and pulse shape. The transformation uses 

a phase shift of 𝜋 4⁄  and a scaling factor of 1 √𝜔⁄  in the frequency domain. The expressed equation is shown 

as following:   

                                    �̂�2𝐷(𝐱𝑡𝑟𝑛 , 𝐱𝑟𝑒𝑐 , 𝜔)=�̂�𝑜𝑏𝑠(𝐱𝑡𝑟𝑛 , 𝐱𝑟𝑒𝑐 , 𝜔)√
2𝜋𝑡(𝐱𝑡𝑟𝑛,𝐱𝑟𝑒𝑐)

−𝑗𝜔𝜀𝑚𝑒𝑎𝑛𝜇
 ,                                   (2.12) 

where �̂�2𝐷(𝐱𝑡𝑟𝑛 , 𝐱𝑟𝑒𝑐 , 𝜔) is the corrected 2D data for a transmitter at location 𝐱𝑡𝑟𝑛  and a receiver at 𝐱𝑟𝑒𝑐 . ˆ 

indicates parameters are in frequency domain. �̂�𝑜𝑏𝑠(𝐱𝑡𝑟𝑛 , 𝐱𝑟𝑒𝑐 , 𝜔)  represents 3D original GPR data. 

𝑡(𝐱𝑡𝑟𝑛 , 𝐱𝑟𝑒𝑐)  is the travel time; and 𝜀𝑚𝑒𝑎𝑛  is the mean dielectric permittivity of the media. A good 

agreement can be achieved between 3D and corresponding pure 2D data in the far-field, which has been 

verified by Ernst et al. (2007b). The main reason of only valid in the far field and in slowly changing medium 

is the filter assumes that the high amplitude/energy is associated with the first break. The high contrast layers 

problem probably causes elongated late arrived amplitudes.   



 

17 
 

2.3.2 Forward Problem 

 

A forward modeling tool is necessary in the process of both an effective source wavelet estimation and the 

full-waveform inversion. In this thesis, we applied a 2D FDTD solution of the Maxwell Equations in 

Cartesian coordinates based on Ernst et al. (2007a) and Meles et al. (2010). The main idea is to find a 

numerical solution of time-dependent differential Equation 2.1 by finite differences with grid-based in 

differential time domain. The generalized perfect matched layers (GPML) are implemented to reduce back-

refection artefacts at the model boundaries (Berenger, 1994; Ernst et al., 2006). In the FWI process, we need 

to compute four times the forward modeling to compute the updating direction and step-lengths. Considering 

most crosshole cases, the standard vertical antenna orientations are used to measure the vertical component 

of the electrical field, we employ the transverse electrical (TE) model of the Maxwell Equations in this 

thesis. 

2.3.3 Source wavelet estimation and correction 

 

The estimation of an effective source wavelet is a critical step for the full-waveform inversion. The 

traditional effective source wavelet is based on ray-based starting models and the deconvolution method 

(e.g., Klotzsche et al., 2010). First, an initial source wavelet 𝑠𝑘  is estimated from horizontally travelling 

waves of each transmitter, where only the shape of the wavelet is determined without considering any 

amplitude information. Because the electrical field is proportional to the time derivative of the current 

density source (multiplication of 𝑖𝜔 in the frequency domain), we need to divide the averaged Fourier 

transformed pulse by 𝑖𝜔 in the frequency domain to obtain the effective source wavelet (more details can 

be found in Klotzsche et al., 2019b). Second, we correct the initial source wavelet 𝑠𝑘  for shape and 

amplitude based on a deconvolution approach. Thereby, synthetic data based on the starting models and 

initial source wavelet 𝑠𝑘 are derived. Considering the modeled data can be expressed mathematically in the 

time domain as a convolution or in the frequency domain as a multiplication of the source wavelet and the 

Green’s function. Thereby, the effective source wavelet 𝑠𝑘+1 is solved based on the Green’s function and 

the measured GPR data by using the deconvolution approach. The computational details can be found in the 

following deconvolution equations:                                

                                                        �̂�(𝑓) = �̂�𝑠𝑦𝑛(𝑓)[�̂�𝑘(𝑓) + 𝜂𝐷]−1,                                                              (2.13) 

                                                                          and 

                                                        �̂�𝑘+1(𝑓) = [�̂�(𝑓) + 𝜂𝐼]
−1
�̂�𝑜𝑏𝑠(𝑓) ,                                                          (2.14) 
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where 𝑠𝑘  represents the initial source wavelet. 𝐄𝑠𝑦𝑛  is the forward modeled GPR data. 𝐆 is the Green’s 

function and 𝐄𝑜𝑏𝑠  is the measured GPR data. 𝑠𝑘+1 the effective source wavelet with an optimized phase and 

amplitude. 𝜂𝐷  and 𝜂𝐼  are prewhitening factors that are applied to stabilize the solution and avoid dividing by 

zero. ^ indicates frequency domain. Note that we can refine the time-domain effective source wavelet 

𝑠𝑘+1(𝑡) by repeating the deconvolution approach until the updated source wavelet fulfills the FWI converge 

before or during the FWI if necessary (e.g., Klotzsche et al., 2019b). 

 

2.3.4 Inversion algorithm 
 

The basic method of FWI is to seek an accurate model of the earth responds in terms of certain parameters 

(e.g.,  𝜀𝑟  and 𝜎) by minimizing the differences between the observed and the modeled data. Here, we apply 

a conjugate-gradient type algorithm for the time-domain crosshole GPR FWI to optimize the misfit function 

𝐶 between the measured and modeled data (Polak et al., 1969; Meles et al., 2010). The following squared 

misfit norm 𝐶(𝜀, 𝜎) describes the misfit between the observed 𝐄𝑜𝑏𝑠and modeled synthetic 𝐄𝑠𝑦𝑛GPR data 

over the number of transmitters s, receivers r, and the observation time 𝜏 (Tarantola et al., 2005): 

𝐶(𝜀, 𝜎) = 1
2
∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀, 𝜎) − 𝐄𝑜𝑏𝑠]𝑟,𝜏

𝑇
𝜏𝑟𝑠 𝛿 (𝐱 − 𝐱𝑟,𝑡 − 𝜏) [𝐄

𝑠𝑦𝑛(𝜀, 𝜎) − 𝐄𝑜𝑏𝑠]𝑟,𝜏 ,               (2.15) 

here 𝑇 denotes the transpose operator. Each of the fields is locally defined at any point of space x and time 

t. The multiplication with the Dirac delta 𝛿 function selects from the entire wavefield the used receiver 

locations and observation times. Additionally, the gradients of the misfit function with respect to 

permittivity ∇𝐶𝜀  and conductivity ∇𝐶𝜎  are calculated by a zero-lag cross-correlation of the synthetic 

wavefield with the back-propagated residual wavefield 𝐑S.  

[
∇𝐶𝜀(𝐱

′)

∇𝐶𝜎(𝐱
′)
] =  ∑

(𝛿 (𝐱 − 𝐱′)𝜕𝑡𝐄
𝑠𝑦𝑛)𝑇�̂�𝑇𝐑S

(𝛿 (𝐱 − 𝐱′)𝐄𝑠𝑦𝑛)𝑇�̂�𝑇𝐑S
𝑠                                          (2.16) 

with           

𝐑S = ∑ ∑ 𝛿 (𝐱 − 𝐱𝑟,𝑡 − 𝜏) [𝐄
𝑠𝑦𝑛(𝜀, 𝜎) − 𝐄𝑜𝑏𝑠]𝑟,𝜏𝜏𝑟 = ∑ ∑ ∆ [𝐄𝑠𝑦𝑛]𝑟,𝜏𝜏𝑟 ,                          (2.17) 

The spatial delta function 𝛿 (𝐱 − 𝐱′) in Equation 2.16 corresponds to the spatial components of the gradients 

and reduces the inner product to a zero-lag cross-correlation in time (Meles et al., 2010). Note that a time 

derivative is the only difference between the gradients of 𝜀 and 𝜎. The medium parameters can be updated 

to reduce the misfit function Equation 2.15 by updating all locations gradients values in Equations 2.16 and 

2.17. These gradient values determine the updated directions for permittivity and conductivity models. To 
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search how far to update in a direction, the step-length 𝜁 is necessary to update the current model matrixes 

using  

                                                          [𝜀𝑢𝑝𝑑] = [𝜀] − 𝜁[∇𝐶𝜀],                                                                 (2.18) 

                                                                          and 

                                                         [𝜎𝑢𝑝𝑑] = [𝜎] − 𝜁[∇𝐶𝜎].                                                                (2.19) 

Thereby, we need to choose the step-length 𝜁 in a way to avoid overshooting of the full-waveform inversion 

or to reduce truncation errors (Meles et al., 2010). Using appreciate perturbation factor κ, the step-length 𝜁 

can be solved by: 

    𝜁 = κ 
∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀+𝜅𝛻𝐶𝜀,𝜎+𝜅𝛻𝐶𝜎)−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏
𝑇   𝛿(𝐱−𝐱𝑟,𝑡−𝜏)[𝐄

𝑠𝑦𝑛(𝜀,𝜎)−𝐄𝑜𝑏𝑠]
𝑟,𝜏𝜏𝑟𝑠

∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀+𝜅𝛻𝐶𝜀 ,𝜎+𝜅𝛻𝑪𝜎)−𝐄
𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏

𝑇   𝛿(𝐱−𝐱𝑟,𝑡−𝜏)[𝐄
𝑠𝑦𝑛(𝜀+𝜅𝛻𝐶𝜀 ,𝜎+𝜅𝛻𝐶𝜎)−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏𝜏𝑟𝑠
.              (2.20) 

Considering large differences between permittivity and conductivity sensitivities the simultaneous inversion 

of 𝜀 and 𝜎, with one step-length is not possible for complex subsurface structures. A stepped (cascaded) 

inversion approach was applied by Ernst et al. (2007a), in which the permittivity was inverted firstly, while 

the conductivity was kept constant for a certain number iterations. After that, the permittivity was fixed and 

the conductivity was inverted. In contrast, a simultaneous update of the permittivity and conductivity models 

in each iteration was introduced by Meles et al. (2010) using two different step-length calculations: 

[𝜀𝑢𝑝𝑑] = [𝜀] − 𝜁𝜀[∇𝐶𝜀],                                                                 (2.21) 

                                                                         and 

[𝜎𝑢𝑝𝑑] = [𝜎] − 𝜁𝜎[∇𝐶𝜎],                                                               (2.22) 

whereas the individual step-lengths 𝜁𝜀and 𝜁𝜎  can be calculated using: 

      𝜁𝜀 = 𝜅𝜀
∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀+𝜅∇𝐶𝜀 ,𝜎)−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏
𝑇   𝛿(𝐱−𝐱𝑟 ,𝑡−𝜏)[𝐄

𝑠𝑦𝑛(𝜀,𝜎)−𝐄𝑜𝑏𝑠]
𝑟,𝜏𝜏𝑟𝑠

∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀+𝜅𝜀∇𝐶𝜀,𝜎)−𝐄
𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏

𝑇   𝛿(𝐱−𝐱𝑟,𝑡−𝜏)[(𝐄
𝑠𝑦𝑛(𝜀+𝜅𝜀∇𝐶𝜀,𝜎))−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏𝜏𝑟𝑠
,              (2.23) 

                                                                       and 

      𝜁𝜎 = 𝜅𝜎
∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀,𝜎+𝜅∇𝐶𝜎)−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏
𝑇   𝛿(𝐱−𝐱𝑟 ,𝑡−𝜏)[𝐄

𝑠𝑦𝑛(𝜀,𝜎)−𝐄𝑜𝑏𝑠]
𝑟,𝜏𝜏𝑟𝑠

∑ ∑ ∑ [𝐄𝑠𝑦𝑛(𝜀,𝜎+𝜅𝜎∇𝐶𝜎)−𝐄
𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏

𝑇   𝛿(𝐱−𝐱𝑟,𝑡−𝜏)[𝐄
𝑠𝑦𝑛(𝜀,𝜎+𝜅𝜎∇𝐶𝜎)−𝐄

𝑠𝑦𝑛(𝜀,𝜎)]𝑟,𝜏𝜏𝑟𝑠
.             (2.24) 

Note that the perturbation factors are critical and needed to be chosen carefully. Too large values possibly 

cause the perturbed mode to deviate the linearity range and can cause overshooting of the inversion; too 
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small values can produce round-off errors of the computer system when dealing with small numbers (Meles 

et al., 2010). 

Finally, the permittivity and conductivity are updated with the obtained updated directions and step-

lengths using Equations 2.21 and 2.22. In this thesis, we stop the inversion when the root-mean-squared 

error (RMSE) change between the modeled and measure data is less than 0.5% between to subsequent 

iterations. Furthermore, these results are considered as optimal solution if no significant gradient for both 

parameters is present for this iteration, a good correlation between the measured and modeled data is reached, 

and the inversion converged.    

2.3.5 Implementation details 
 

Parametrization of the physical system 

For the unknown parameters 𝜀 and 𝜎, we applied a logarithmic scaled version based on Ernst at al. (2007a) 

via using the following Tarantola’s approach 

                                                                 𝜀̃ = 𝑙𝑜𝑔 𝜀

𝜀0
=  log (𝜀𝑟),                                                           (2.25) 

and 

�̃� = 𝑙𝑜𝑔
𝜎

𝜎0
=  log (𝜎),                                                           (2.26) 

where 𝜎0  is 1 S/m and 𝜀0  is the dielectric permittivity of free space. It is necessary to adopt such as 

logarithmic scaling to ensure the models space with a linear structure and further to provide positive values 

for two parameters within a wider range of the values. In further, we can rewrite the gradient function 

combining with Equations 2.25 and 2.26 by using 

𝐶(𝜀(𝜀̃), 𝜎(�̃�)) = 𝐶′(𝜀̃, �̃�).                                                     (2.27) 

Normalized gradients 

During the first applications of the FWI to experimental data for different test sites and setups, it was 

observed that the values of gradients depend on the number of transmitters and receivers. Therefore, to allow 

a direct comparison between different setups, normalized gradients for the permittivity and conductivity 

was introduced by Yang et al. (2013), which are independent of the number of sources 𝑁𝑆 and receivers 𝑁𝑟. 

The details can be described by the following equations: 

∇�̅�𝜀(𝐱
′) =

∇𝐶𝜀(𝐱
′)

𝑁𝑆𝑁𝑟 
,                                                        (2.28) 
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and 

∇�̅�𝜎(𝐱
′) =

∇𝐶𝜎(𝐱
′)

𝑁𝑆𝑁𝑟 
.                                                        (2.29) 

Furthermore this normalized gradients equation allows a direct comparison of the gradients and step-lengths 

for different crosshole survey layouts and results in fewer testing to define the optimal perturbation factors 

for the inversion (Yang et al., 2013; Klotzsche et al., 2019b).  

Gradient preconditioning 

Considering that the gradients are highly sensitivity close to transmitter and receiver positions, inversion 

artifacts can easily arise close to boreholes. The approach of Meles at al. (2010) applied a muting zone to 

avoid numerical artifacts close to the boreholes during the inversion. This muting zone is normally chosen 

to be two cells next both boreholes, which hindered a direct comparison with independent geophysical and 

hydrologic logging data. To minimize these inversion artifacts in the vicinity of the boreholes, the approach 

of Kurzmann et al. (2013) is applied using a gradient preconditioning (van der Kruk et al., 2015). To 

overcome this issue, the gradient preconditioning operator 𝐏𝑘  for the updating domain 𝐱 is defined and 

applied to the gradients using the maximum values of the forward propagated field and the back-propagated 

residual field: 

𝐏𝑘(𝐱) =
𝐛(𝐱)

max𝐱𝐛(𝐱)
,                                                     (2.30) 

𝐛(𝐱) =
1

𝑎(𝐱)+𝐶𝑠𝑡𝑎𝑏�̅�
,                                                    (2.31) 

                 and 

𝑎(𝐱) = max𝑡 |𝐄
𝑠𝑦𝑛| + max𝑡|𝐑

𝑆|,                                    (2.32) 

where 𝐶𝑠𝑡𝑎𝑏 represents the stabilization factor that is selected as between 0 and 100. The terms 𝐄𝑠𝑦𝑛  and 𝐑𝑆 

are determined by space 𝐱 and time 𝑡. The spatial average of 𝑎(𝐱) is indicated by �̅�. The first term and the 

second term on the right side of Equation 2.32 are considered as the maximum of the synthetic wavefield 

and the maximum of the residual wavefield, respectively.  

  



 

22 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

23 
 

Chapter 3 

3D aquifer characterization of the Hermalle-
sous-Argenteau test site using crosshole GPR 
amplitude analysis and full-waveform 
inversion1 

 

In this chapter, we explore the GPR amplitude analysis and the crosshole GPR full waveform inversion 

using a set of nine crosshole GPR datasets from a test site in Hermalle-sous-Argenteau near Meuse River in 

Belgium. We investigate the datasets to characterize the aquifer within a decimeter scale resolution and to 

improve the understanding of a previously performed heat tracer experiment. Thereby, we extend the 

amplitude analysis to identify two different types of low-velocity waveguides either caused by an increased 

porosity or/and a higher electrical conductivity. Combining the GPR amplitude analysis for low-velocity 

waveguide zones with the standard FWI results, provided information on waveguide zones which modified 

the starting models and enabled to improve the FWI results further. Moreover, an updated effective source 

wavelet is estimated based on the updated permittivity starting model. In comparison with the traditional 

FWI results, the updated FWI results present smaller gradients and smaller the root mean squared error 

values in the final inversion results. The nine crosshole sections are used to generate a 3D image of the 

aquifer and allowed a detailed analysis of the porosity distribution along the different sections. Consistent 

structures of the permittivity and electrical conductivity show the robustness of the updated FWI results. 

The aquifer structures obtained by the FWI results agree with previous results of the heat tracer experiment 

and are able to explain the heat tracer plume splitting in more detail. 

 

 

 

 

 
 

1adapted from Zhou, Z., A. Klotzsche, T. Hermans, F. Nguyen, J. Schmäck, P. Haruzi, H. Vereecken, and J. van der 

Kruk, 2020a. 3D aquifer characterization of the Hermalle-sous-Argenteau test site using crosshole GPR amplitude 

analysis and full-waveform inversion: Geophysics, under review. 
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3.1 FIELD SITE AND GPR MEASUREMENT SETUP 
 

The study site is located on the alluvial plain of the Meuse River at Hermalle-sous-Argenteau near the city 

of Liege, Belgium (Figure 3.1a). In the saturated zone, between 3.0 m and 10.0 m depth, the aquifer is 

composed of gravel and pebbles in a sandy matrix (Hermans et al., 2015a; Lesparre et al., 2019). This layer 

can be divided in two main units: the upper aquifer from 3.0 m to 6.0 m depth, consisting of sandy gravels 

and the lower aquifer between 6.0 m and 10.0 m depth, which is characterized by coarser and cleaner gravels. 

The water table lies at approximately 3.2 m depth. Below 10.0 m depth, the aquitard consists of folded 

shales and sandstones. According to Hermans et al. (2015a), we can expect an electrical conductivity change 

of 5 mS/m to 10 mS/m between boreholes Pz13 and Pz17 (see Figure 3.1c). The heated water experiment 

of Hermans et al. (2015a), hot water was injected from Pz09 (red triangle in Figure 3.1b). The ERT results 

revealed the ability of the time-lapse ERT to monitor the variations of temperature in the aquifer as shown 

exemplary for an ERT plane after 30 hours of injection in Figure 3.1d, where the temperature variations 

clearly display two anomalies as a result of a heterogeneous flow field (Klepikova et al., 2016; Hoffmann 

et al., 2019).  

Crosshole GPR measurements were performed at nine cross-sections at the same investigation area as 

the ERT monitoring (different color lines in Figure 3.1b) using 200 MHz PulseEKKO borehole antennae 

(Sensors & Software Inc.) in September 2018. A semi-reciprocal MOG acquisition setup was used with 

transmitter and receiver spacings of 0.2 m and 0.1 m, respectively, as proposed by Klotzsche et al. (2010, 

2019b). We chose as 0.0 m depth the casing of borehole Pz09 similar to Hermans et al. (2015a). To avoid 

critical angle reflections and refractions of the GPR waves from the interface between the saturated domain 

and the groundwater table, the first antenna position was located at least 0.4 m deeper than the water table 

(Klotzsche et al., 2019a). Up to 60 transmitters and 120 receivers positions were used for each plane (see 

Table 3.1 for detailed information). Note that the plane between the boreholes Pz10-Pz17 was measured 

two months later than the others. One critical step in the FWI data pre-processing is the estimation of an 

accurate time zero of the signal (see Klotzsche et al., 2019b for more details). To reduce travel time errors, 

time-zero was determined using a cross-correlation between MOG and zero-offset (ZOP) data as proposed 

by Oberröhrmann et al. (2013). Firstly, wide-angle reflection and refraction (WARR) measurements in air 

before and after the multiple-offset (MOG) measurements are acquired. Secondly, a ZOP measurement is 

performed before the last WARR measurement (used for correcting the ZOP data); the individual time shifts 

of each MOG are obtained by cross correlating the ZOP traces with the corresponding horizontally travelled 

rays within the MOGs traces. To reduce borehole geometry errors in the measurements, borehole dip and 

azimuth deviation data were collected using a magnetic inclinometer tool (QL40-DEV from Mount Sopris 

Instrument Co.). 
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Figure 3.1. a) The site of Hermalle-sous-Argenteau is located at the northern part of the Meuse River in 

Belgium (modified from Hermans et al., 2015a). The red area indicates the experimental site. b) Schematic 

setup of  the Hermalle-sous-Argenteau test site in Belgium indicating the boreholes used for the crosshole 

GPR measurements with Pz-numbers. The colored lines indicate the nine GPR cross-sections (modified 

from Klepikova et al., 2016). c) Background inverted ERT section showing the resistivity values between 

the boreholes Pz13-Pz17 (indicated by blue triangles in Figure 3.1b). d) ERT-estimated temperature 

between Pz13-Pz17 30 hours following hot water injection from Pz09 (modified from Hermans et al., 2015a). 

The location of the heat plume intrusion is indicated with a red rectangle. 

a) 

b) 

c) d) 
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3.2 GPR AMPLITUDE ANALYSIS RESULTS 
 

3.2.1 Amplitude analysis approach 
 

Guided electromagnetic waves can be formed in the near surface when a low-velocity layer with a thickness 

smaller than the electromagnetic wavelength is embedded between higher velocity layers (van der Kruk et 

al., 2009). Such small-scale high contrast layers can often be linked to high porosity layers because they 

have a lower velocity (high permittivity) than the surrounding medium. Such so-called waveguides cause 

most of the energy of the emitted wave to be trapped within the low-velocity layer if the propagating wave 

angle at the interface is larger than or close to the Snell critical angle. Klotzsche et al. (2014) observe that 

when a transmitter in a crosshole setup is located within such a waveguide zone, multiple internal reflections 

interfere constructively, causing late arrival high amplitudes in the observed GPR data. Furthermore, for 

transmitter positions outside the waveguide zone, a clear diminished amplitude gap could be observed close 

to the boundary of the waveguide zone. Using these characteristic wave-propagation features, they proposed 

an amplitude analysis approach that can detect low-velocity waveguides from the measured data. This 

amplitude analysis approach detects local maxima and minima positions within the trace energy (squared 

amplitude of the trace) spectra of each transmitter to first detect and second map low-velocity waveguides, 

respectively. In the first step, clear maxima positions (at least one order of magnitude higher) in the trace 

energy spectra are picked to identify a low-velocity waveguide. Secondly, in the trace energy spectra for 

transmitter which do not show maxima, local minima positions close to the previously found maxima 

position are estimated. Finally, the estimated maxima and minima picks are plotted against receiver depth 

to indicate the dimensions of the waveguide zone. Note that the maxima positions can only be observed if 

the electrical conductivity of the high contrast layers is not too large, which is the case for example for thin 

higher porosity layers. Until now this approach was only applied to experimental data to detect small-scale 

high contrast zones related to higher porosity layers. To distinguish between waveguides caused by porosity 

and clay content changes, the image plots of measured GPR data should be carefully analyzed for elongated 

wave trains and amplitude gaps in the data. If only amplitude gaps and significant minima positions are 

present in the GPR data, this could be an indicator for a low-velocity waveguide caused by an increase of 

electrical conductivity caused e.g., by a higher amount of clay. To sum up, we propose to distinguish in the 

first step on visual inspection of the data between two types of waveguides that could be identified with the 

amplitude analysis approach: 
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- Waveguide type I (WGT I): High permittivity and low/intermediate electrical conductivity that 

could be related to high porosity zones. Elongated wave trains and zones with diminished 

amplitudes can be found in the GPR data. 

 

- Waveguide type II (WGT II): High permittivity and high electrical conductivity that could be related 

to layers with high clay content. No elongated wave trains can be detected due to higher attenuation 

of the electromagnetic wave in the waveguide zone, but zones with diminished amplitudes are 

present. 

By combining the amplitude analysis with FWI results and independently measured logging data, the origin 

of such zones could be validated. 

3.2.2 Detailed analysis for crosshole plane Pz10-Pz13 
 

We applied the amplitude analysis to the measured GPR data from the Hermalle-sous-Argenteau site. We 

will explain the associated steps and the results in detail for one plane Pz10-Pz13 and summarize the finding 

for all planes. Plane Pz10-Pz13 was considered due to that both waveguide types can nicely be identified 

and explained in this dataset. In the first step, we analyze the measured data for the characteristic wave 

propagation features that could indicate waveguide zones (Figure 3.2). For transmitter locations at 8.09 m 

and 9.09 m in borehole Pz10 (Tx nr. 23 and 28), and, at 7.73 m and 9.13 m in borehole Pz13 (Tx nr. 20 and 

27) between 7.7 m and 9.2 m depth in both boreholes very clear elongated wave trains can be observed (red 

circles). Therefore, we see indicators for at least two low-velocity waveguides with a higher permittivity 

and lower electrical conductivity (WGT I). Interestingly around the two elongated wave train features, zones 

with diminished amplitudes can be observed probably related to the other waveguides (see green circles 

with numbers in Figure 3.2e – h). Transmitter locations around 6.5 m depths (Tx nr. 15 in Pz10; Tx nr. 14 

in Pz13) in both boreholes show no significant features in the data. Some minor diminished amplitude 

changes could be sensed at 4.0 m, 6.0 m, and 7.0 m depth for transmitter at 6.5 m in Pz13 (blue and light 

blue circles Figure 3.2d). For the transmitter positions at 3.9 m depth (Tx Pz13=1) in borehole Pz13 a zone 

at around 4.0 m can be observed, which shows diminished amplitudes in contrast to the surrounding. Such 

features with no clear elongated wave trains close by could be an indicator for a low-velocity waveguide 

with a higher permittivity and a higher electrical conductivity (WGT II). 
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Figure 3.2. Image plots of the measured data of the cross-section Pz10-Pz13 for different transmitter (Tx) 

locations in both boreholes. Different waveguide features are indicated with F1-F4, while WGT I features 

are marked with red and green circles and WGT II features with blue and light blue circles. Amplitudes of 

each image plot are normalized to the maximum value of the amplitudes for the cross-section and range 

from –7×10-1 to 7×10-1. 

       Transmitter in Pz10                            Transmitter in Pz13 
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Figure 3.3. Trace energy profiles of the measured data of Pz10 and Pz13 that show clear a) - b) maxima and 

c) - d) minima. Each transmitter has a certain color affiliation in a) - d) and the vertical dashed lines represent 

the selected energy thresholds. Picked positions of the trace energy spectra for the Tx data in e) Pz10 and f) 

Pz13. The red and green crosses indicate the position of the maxima and local minima of the energy caused 

by waveguides WGT I. The blue (and light blue) crosses represent the local minima energy locations caused 

by possible WGT II. The black solid lines indicate the boundaries of waveguide structures of WGT I using 

amplitude analysis. 

In the second step, we calculate the energy spectra for each transmitter gather and plot them against 

receiver depth. First, spectra that show clear maxima beyond a certain threshold (1.1×10-7 for transmitter in 

Pz10 and 1.5×10-7 for transmitter in Pz13) are identified for both boreholes (Figure 3.3a and b). We used 
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the logarithmic scale along the energy direction to better show the energy changes. The peak of the 

maximum is picked (red crosses) for each transmitter position that is used to identify a low-velocity 

waveguide. For the borehole pairs Pz10 and Pz13 two waveguide zones of the WGT I can be identified. 

Second, all remaining spectra are plotted (Figure 3.3c and d) and distinct local minimum are picked with 

green crosses around the previously found maxima positions. Note that in the plots that shows the maxima 

in the spectra also the minima of the other features can be observed (not shown). Next to the two defined 

waveguide structures below 7.5 m depth, a very clear zone with minima (blue crosses in Figure 3.3d) can 

be observed at around 4.0 m depth for the transmitter in Pz13. Since no elongated wave trains (Figure 3.2b) 

and no maxima at this location can be observed, these minima could be an indicator for a zone with a higher 

permittivity and conductivity of a WGT II. Between 6.0 m and 7.0 m depth in Pz13 two zones with minor 

minima positions can be identified. These minima structures are only observed in one borehole, which 

indicates that the detected structures are not continues between the boreholes as demonstrated by Klotzsche 

et al. (2014). The obtained positions of maxima and minima are plotted against receiver depth to estimate 

the dimension of the different waveguide zones (Figure 3.3e and f). Note that only the boundaries of the 

waveguides close to the borehole can be obtained. 

3.2.3 Amplitude analysis for all measurement planes 
 

Similar to the amplitude analysis for boreholes Pz10-Pz13, the amplitude analysis was employed to the other 

crosshole planes to define the approximate locations and dimensions of the low-velocity waveguides of both 

types WGT I and II. Thereby, each plane is separately analyzed and the different types of waveguides are 

identified. In Figure 3.4, we present the waveguide locations of WGT I marked by red and brown boxes. 

Blue and light blue boxes represent the approximate locations of WGT II with both high permittivity and 

high conductivity clay layers. Different colors mean waveguide structures at different depths that might be 

discontinuous. In general, the locations of WGT I are present for all boreholes between 7.3 m to 9.1 m. 

Furthermore, indicators of WGT II can be found nearby 4.0 m depth at most of the boreholes. In addition, 

in the vicinity of 6.0 m, 7.0 m and 9.0 m depths, there are some discontinuous features that could be related 

to events caused by WGT II. Next, we will use the obtained information to modify the permittivity starting 

models of the updated FWI, and with this, we will verify the location of the waveguiding structures. 
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Figure 3.4. Approximate waveguide structures based on the amplitude analysis for the eight cross-sections. 

Red and brown (difficult picking) indicate possible waveguide locations caused by WGT I, while blue and 

light blue (difficult picking) indicate possible waveguide locations caused by WGT II. The depths of 

different color shades indicate possible discontinuous waveguide structures. 

 

 

 

. 
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3.3 FULL-WAVEFORM INVERSION RESULTS  
 

3.3.1 Full-waveform inversion method 
 

We consider the FWI converges when the root mean squared error RMSE of observed and model traces 

changes less than 0.5% between two subsequent iterations. Furthermore, we investigate the behavior of the 

remaining gradient values of  𝜀𝑟  and 𝜎. In the framework of this study, we applied a muting zone around the 

boreholes to avoid the effect of nested wells in the vicinity of GPR boreholes (Klepikova et al., 2016). Note 

that gradient normalization as proposed by van der Kruk et al. (2015) leads to artifacts close to the boreholes 

due to the presence of more than one tubes in some of the boreholes. Each of the planes was independently 

analyzed and inverted with the FWI following the guideline of Klotzsche et al. (2019b). 

3.3.2 Short distance boreholes 
 

During this study, we note that the ray-based results of short distance boreholes (approximate 3.0 m) 

provided  𝜀𝑟  starting models that were not within half a wavelength of the measured data. Such borehole 

pairs are probably affected by the presences of the 10 cm diameter water-filled boreholes and could create 

3D effects. Generally, the permittivity values are overestimated in comparison to neighboring planes with 

larger offsets (Peterson, 2001). Reducing the angle of the measurements did not improve the results. To 

solve this problem, we combined the results of the short distance boreholes with close larger distance 

boreholes, and then compared the mean velocity based on both ZOP data sets. We assume that the aquifer 

is isotropic and that the mean velocity should not change much between neighboring boreholes. For 

example, the plane between Pz09-Pz11 has a width of 3.02 m and the close by plane Pz11-Pz15 has an offset 

of 4.88 m. In Figure 3.5a, the calculated mean velocities (black lines) and relative permittivity (red lines) 

based on the ZOP data for cross-section Pz09-Pz11 (solid lines) and Pz11-Pz15 (dashed lines) show a clear 

difference of about 2 - 4 in  𝜀𝑟 . Pz09-Pz11 shows lower mean velocity (higher mean 𝜀𝑟) along the vertical 

depth axis. If we assume that in the horizontal direction the medium behaves similarly and therefore the 

mean velocities should be in the same range, we can speculate that the lower velocity for short distance 

borehole pairs is caused by the increased proportion of the borehole fillings compared to the whole measured 

distance, an effect that should be corrected. Considering the boreholes distance between Pz09 and Pz11 is 

3.02 m, we calculated a delay time of approximately 3.3 ns (∆𝜀𝑟= 2.9) for the short distance boreholes 

(3.3 = 3.02

𝑉𝑃𝑧09−11
−

3.02

𝑉𝑃𝑧11−15
). Using this delay time, we corrected the picked first arrival times of the MOG 

data for the short plane and performed a new ray-based inversion. For the unsaturated zone above the water 

table, we modeled a homogeneous layer with a relative permittivity of  𝜀𝑟= 4.4 (not shown, same for all  
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Figure 3.5.  a) Velocity (black lines) and  𝜀𝑟  (red lines) comparison over depth based on the ZOP data for 

boreholes Pz09-Pz11 (solid lines) and Pz11-Pz15 (dashed lines). b) and d) indicate the ray-based  𝜀𝑟  results 

and the updated starting models based on the ZOP analysis, respectively. Conductivity starting model is 

homogeneous with 13 mS/m. c) and e) show the corresponding FWI results based on the ray-based starting 

models and the updated starting models, respectively. The RMSE value is indicating the root-mean-square 

error between the measured and model GPR data. 

a) ZOP profiles of Pz09-Pz11 and Pz11-Pz15 

    ∆𝜀𝑟=2.9 

d) Corrected starting models e) Corrected FWI results (RMSE= 0.91×10-6) 

b) Ray-based starting models c) FWI results (RMSE= 1.00×10-6) 
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following inversions) and for the σ starting model, we selected a homogeneous model of 13 mS/m (mean of 

the first cycle amplitude inversion results). By comparing the FWI results of both uncorrected and corrected 

ray-based starting models for the FWI, we note that the corrected FWI results of Pz09-Pz11 show generally 

lower permittivity results that the uncorrected data (Figure 3.5). This is also in agreement with the ZOP 

results of the neighboring borehole pair with the larger offset. Although the final RMSE is similar for both 

inversions, the data fit and the remaining gradient were better for the corrected data. 

3.3.3 Starting model test for waveguide zones 
 

From the amplitude analysis we know the approximate locations of possible waveguide structures. Instead 

of adding homogeneous layers at the expected locations of the waveguide zones as shown by Klotzsche et 

al. (2012), we investigate another strategy that considers different stages/iterations of the traditional FWI. 

Details are investigated for the crosshole plane Pz10-Pz13 and will then be applied to the other planes. First, 

we perform the standard FWI using the ray-based starting models including the water table contrast (Figure 

3.6a and b). The obtained FWI results show higher resolution images than the ray-based results, and the 

FWI modeled and measured data are in a good agreement in phase and amplitude (not shown), and, show 

only minor differences also indicated by a correlation coefficient of 0.9652 (Table 3.1). Analyzing the 

results in more detail, we note that the permittivity results with only ten iterations provide clear indications 

of the waveguide locations, which were consistent with the amplitude analysis results. Therefore, we used 

the permittivity result of the tenth iteration as a new starting model (Figure 3.6c) and updated the effective 

source wavelet (the red one of intersect in Figure 3.6c). Note that standard applications of the crosshole 

GPR FWI normally consider the ray-based results also with updated effective source wavelets. Here, we 

apply results of a previous FWI iteration as an updated permittivity starting model and a corresponding 

updated effective source wavelet. The updated FWI results based on this new effective source wavelet and 

updated starting model show clearer structures with more details and provide a lower RMSE in the final 

iteration (RMSE=0.90×10-6 instead of RMSE=1.11×10-6 for the traditional FWI). The green boxes in Figure 

3.6d indicate the waveguide structures that are probably caused by high porosity waveguides (WGT I), 

while the blue boxes indicate waveguide zones that could be caused by a higher clay content yielding a 

higher electrical conductivity (WGT II). Generally, we see a good correlation between the waveguide zones 

identified with the amplitude analysis and the final FWI inversion results. Similar to previous studies (e.g., 

Klotzsche et al., 2014), the WGT I structure below 7.0 m depth shows a higher permittivity than the 

surrounding media indicating an increase in porosity. This is consistent with the heat tracer was flowing 

preferentially at the bottom of the aquifer, which has a larger hydraulic conductivity. Furthermore, the FWI 

confirmed the hypothesis that the WGT II structures are caused by an increase of electrical conductivity that 

could be caused by an increase in clay content. To further confirm the updated FWI results, we present 
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image plots of the FWI modeled data for boreholes Pz10-Pz13 in Figure 3.7, which can be compared to the 

measured data in Figure 3.2. The modeled data show a good fit to the measured data in the entire aquifer 

domain indicating that the FWI solution explains the measured data well. The features that were identified 

and marked as possible WGT I (red and green circles) and WGT II (dark and light blue) features in the 

measured data correspond to the features observed in the FWI result. 

An erroneous permittivity starting model also affects the high electrical conductivity zone and vice versa. 

If the permittivity estimate is inaccurate and the modeled data cannot fit the shape of the traces, the 

conductivity model tries to compensate for this and yields erroneous structures. Therefore, it is highly 

important to confirm that the inverted permittivity results are reliable. Numerous studies show that it is 

necessary that first the permittivity (shape of traces) are updated before the conductivity (amplitude of the 

traces) can be optimized in more detail (Klotzsche et al., 2019a). In previous studies, higher homogenous 

permittivity layers were added into the permittivity starting model (Klotzsche et al., 2014) to ensure that the 

starting models fulfill the half-wavelength criteria. 

To verify the higher permittivity and conductivity zone near 4.0 m close to Pz10, we performed 

additional starting model tests. In these tests, we investigate the possibility that the high electrical 

conductivity zone is caused by an erroneous permittivity starting model and the possibility that the 

waveguide is caused by an increased permittivity instead of conductivity. Note that due to a reduced ray 

coverage in the upper part of the investigation domain, it is possible that the permittivity starting model 

based on the ray-based approach does not fulfil the half-wavelength criterion. In such a case, it can happen 

that the electrical conductivity results compensate for an erroneous permittivity model. As proposed by 

Klotzsche et al. (2014), we added different scenarios of a higher homogeneous  𝜀𝑟 layer (𝜀𝑟=16) in the ray-

based  𝜀𝑟  model (Figures 3.8a-d) and repeated the FWI analysis. We kept the effective source wavelet and 

the conductivity starting model unchanged. All results of the different starting model tests confirmed the 

previously obtained structure, but some discontinuity in the inversion results is visible indicating difficulties 

of the inversion to find the global minimum. Therefore, we can assume that our FWI results based on the 

updated permittivity starting model  (Figure 3.6c) without the homogeneous layers produced reliable results 

and that the FWI indicates that the minimum locations in the amplitude analysis approach are caused by an 

increased electrical conductivity (Figure 3.8, WGT II).  
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Figure 3.6. a) Ray-based starting models and b) corresponding FWI results for crosssection Pz10-Pz13. c) 

Updated starting models based on a lower iteration number results of b) and d) correponding FWI results. 

Inset in Figure 3.6 c) shows the estimated effective source wavelets based on different starting models. The 

green and blue boxes in d) indicate the locations of waveguides of WGT I and II, respectively 

a)     Ray-based starting models b)     FWI results (RMSE= 1.11×10-6) 

 c)   Low iteration FWI starting models d)     Updated FWI results (RMSE= 0.90×10-6) 
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Figure 3.7. Image plots of the modeled data based on updated FWI results for the cross-section Pz10-Pz13 

(Figure 3.6d). Different waveguide features are indicated with F1-F4, while WGT I features are marked 

with red and green and WGT II features with blue and light blue, respectively. Note that we have normalized 

the amplitudes values to the maximum value of amplitudes for the cross-section (range from –7×10-1 to 

7×10-1). 

       Transmitter in Pz10                            Transmitter in Pz13 
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Figure 3.8. Starting model tests for  𝜀𝑟  are to determine the FWI 𝜎 reliability. The first column shows the 

ray-based starting models of  𝜀𝑟  with added a high  𝜀𝑟  value zones (𝜀𝑟=16). Conductivity starting models 

are homogenous with 13 mS/m (not shown). The second and third columns show the corresponding FWI 

 𝜀𝑟  and 𝜎 results, respectively. Note the effective source wavelet in Figure 3.6c (red) is used to perform the 

FWIs. 

 

 𝜀𝑟  starting models                  FWI  𝜀𝑟                                 FWI 𝜎 
a) 

 

  

 

b) 

 

  

 

c) 
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RMSE= 0.91×10-6 

 

RMSE= 0.91×10-6 

 

RMSE= 0.89×10-6 
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3.3.4 Combined FWI results of the Hermalle-sous-Argenteau 
 

For the other crosshole planes, we followed the same approach and updated the effective source wavelets 

based on the iteration ten FWI  𝜀𝑟  field. The effective source wavelet of a cross-section is depending on the 

borehole fillings and couplings, and anything is not included in the forward model (e.g., finite length 

antennae). The obtained updated effective source wavelets are also depending on the borehole distance as 

shown in Figure 3.9. The crosshole pair with the largest distance shows the highest amplitude in time and 

frequency domain. Furthermore, we observe a shift in center frequency from a higher center frequency for 

small distance pairs towards a lower center frequency for larger offset combinations (Figure 3.9b). Note that 

boreholes Pz09-Pz11 and Pz15-Pz19 show the largest (𝑓𝑐 = 80 MHz) and the smallest (𝑓𝑐 = 57 MHz) center 

frequency, respectively. Except for the effect in amplitude values, similar shapes are observed for all cross-

sections using the 200 MHz antennae. The effective center frequency is significantly lower than the nominal 

center frequency of the antennae in air (200 MHz). This is caused by the fact that the antennae are electrically 

longer in high-permittivity media and emit lower frequencies than in air (e.g., Klotzsche et al., 2013). 

Therefore, considering that the signals travel longer in the subsurface for larger offset datasets, the center 

frequency of effective source wavelet decreases with increasing distance.  

The ray-based permittivity results and the final FWI results of the nine crosshole planes combined 

together to generate a 3D image of the aquifer (Figure 3.10). The ray-based results show generally a three-

layer model with lower and intermediate permittivity values above 7.5 m depth and higher permittivity 

values between 7.5 m to 9.5 m depth. In contrast, the FWI results show higher resolution images for both 

permittivity and conductivity and more structures can be observed. Although the inversions are performed 

independently, consistent structures at the borehole locations are observed. For simplification, the locations 

of waveguides with high porosity from amplitude analysis are marked at the cross-sections of Pz09-Pz11, 

Pz11-Pz15 and Pz15-Pz19 using green boxes (WGT I). Additionally, the waveguides caused by WGT II are 

indicated with blue boxes in the conductivity image. In the FWI  𝜀𝑟  results, the higher permittivity values 

located from 7.5 m to 9.5 m comprise waveguide structures of WGT I and a higher continuous conductivity 

zone is clearly shown in the FWI 𝜎 results around 4.0 m depth.  

For all inversion planes a good fit between the measured and modeled data was found (not shown). Table 

3.1 shows a comprehensive comparison between the traditional and the updated FWI for all planes. The 

final RMSE, the absolute mean gradient (AMG) values for permittivity and conductivity, and the correlation 

coefficients (R) between observed and modeled data indicate that the updated FWI results are better than 

the traditional FWI results. 
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Figure 3.9. a) Estimated effective source wavelets for the nine cross-sections in time domain using the 

updated low iteration FWI results as starting models. b) Corresponding frequency spectra of the nine 

different effective source wavelets. Each color represents a different plane. The legend values in b) indicate 

these effective center frequencies for different planes. 

The updated FWI results show a good consistency at the different borehole cross-sections as indicated 

by the R at the intersections of 15 cross-sections (Table 3.2). For all cross-sections, we used the mean of 

two inversion cells to compute R values (Klotzsche et al., 2013). For the planes that have a separation of 

approximately 5.0 m the R for 𝜀𝑟  shows values from 0.52 to 0.89. Note that the cross-sections Pz09-Pz11 

(3.02 m) and Pz15-Pz19 (7.07 m) are different from others. Further, a lower R of 0.26 for the permittivity 

intersection between Pz09-Pz11 and Pz11-Pz15 is calculated, which shows the FWI results are not very 

consistent at the borehole Pz11. Similarly, Pz15 shows a weak correlation of the intersections. The R for 𝜀𝑟  

between Pz10-Pz13 and Pz10-Pz17 is 0.24, and R for  𝜀𝑟  between Pz10-Pz14 and Pz10-Pz17 is 0.35. The 

reason for this weak correlation could be that the plane between the borehole Pz10 and Pz17 was measured 

two months later than the other crosshole sections and seasonal fluctuations could have caused this effect in 

the permittivity. Comparing these values with the R ( 𝜀𝑟  ) values derived from the crossing point of non-

borehole (Pz10-Pz17) zones, which are 0.69, 0.89 and 0.90, we believe the later measured GPR cross-section 

is affected by the vicinity of borehole Pz10. Note, that there is a second well very close by to Pz10, which 

could affect the results of the planes connected to this borehole. Finally, although a lower mean R ( 𝜀𝑟  ) was 

achieved for some locations, for most cases an acceptable value above 0.61 for permittivity and 0.85 for 

conductivity indicate consistent and reliable results. 

a) Effective source wavelets 
 

b) Frequency spectra 

(a) 
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Figure 3.10. a) Ray-based results of  𝜀𝑟   for all crossections for different viewing angles. b) and c) FWI  𝜀𝑟  

and σ results, respectively, using the traditional low (10) iteration FWI results as starting models and a 

homogenous model with 13 mS/m for the σ (not shown). Green and blue boxes next to the cross-sections 

image boundaries along Pz09 to Pz19 indicate the boundaries of the waveguide structures of WGT I and II 

obtained from the amplitude analysis, respectively. 

a) Ray-based  𝜀𝑟 starting models 

b) FWI  𝜀𝑟  results 

c) FWI 𝜎 results 
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3.4 PETROPHYSICAL INTERPRETATION 
 

To improve the understanding and to explain the heat tracer experiment of Hermans et al. (2015a), which described 

quantitative temperature monitoring at the Hermalle-sous-Argenteau field site, we analyzed the porosity of the 

saturated zone based on the new GPR FWI  𝜀𝑟  results using the complex refractive index model (CRIM) similar to 

Gueting et al. (2015):    

                                                         ∅ = √ 𝜀𝑟−√ 𝜀𝑠

√ 𝜀𝑓−√ 𝜀𝑠
 ,                                                               (3.1) 

for the fluid permittivity 𝜀𝑓 we considered 84 for a water temperature of 10 ℃ and for the solid permittivity 𝜀𝑠 we 

used 4.5 based on literature values of quartz (e.g., Birchak et al., 1974; Eisenberg and Kauzmann, 2005; Carmichael, 

2017). To evaluate the porosity values between Pz13 and Pz17 (ERT cross-section in Figure 3.1d), we considered 

five cross-section porosity results in Figure 3.11a (3D) and Figure 3.11b (2D). Higher permittivity zones of the FWI 

results (Figure 3.10) result in higher porosity values (Figure 3.11). Porosity values reach 30-35% in the high porosity 

zones between 7.0 m to 9.0 m depth. The higher porosity at these depths is consistent with the classification from 

ERT and borehole log results (Hermans, 2014; Hermans et al., 2015a, b, 2017) with coarse gravel at the bottom and 

gravel in a sandy matrix on the top. The gravel at the bottom is very coarse (pebbles) with almost no matrix, and is 

referred to as the swimming pool due to its large hydraulic conductivity. In addition, the coarse gravel has a lower 

resistivity compared to the sandy gravel due to a larger water content. The high porosity layers are more continuous 

between the boreholes P10-Pz13 and Pz10-Pz14, while for P12-Pz16 and Pz12-Pz17 more discontinuous structures 

can be observed, which is consistent with the splitting of the thermal plume (Figure 3.1d). By analyzing the mean 

porosity close to the boreholes crossing the intersection of Pz13 and Pz17 between 7.0 m and 9.5 m depth (dashed 

rectangles in Figure 3.11b), we see that the mean porosity values in the selected 2D zones become smaller from 

Pz13 towards Pz17 (Figure 3.11c). Such a behavior of the porosity structures could explain the heat tracer 

distribution observed by Hermans et al. (2015a). Zones with a higher porosity and continuous structures such as 

observed close to Pz13 and Pz14 could also cause preferential flow paths for heat when hot water was injected from 

borehole Pz09. 
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Figure 3.11. a) Estimated porosity distributions in 3D based on CRIM to related to the ERT measured profile Pz13-

Pz17 (Figure 3.1). b) Detailed porosity distribution of the five relevant crosshole sections. The green boxes close to 

antennae indicate the boundaries of the wave-guiding structures WGT I obtained from the amplitude analysis. 

Dashed black rectangles indicate the zones close to boreholes to compute the mean porosity profiles in c) along the 

vertical direction.  
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3.5 CONCLUSIONS AND OUTLOOK 
 

We applied an extended amplitude analysis approach and the crosshole GPR FWI to the Hermalle-sous-Argenteau 

test site located in the alluvial aquifer of the Meuse River in Belgium. The results of the GPR FWI provided high-

resolution images of the aquifer within decimeter-scale resolution and allowed a detailed characterization of the 

porosity structures. The amplitude analysis, which can be used to identify low-velocity guided wave structures, is 

extended to detect two waveguide types (WGT) with different origins. To further improve traditional FWI results, 

the estimation of different starting models for permittivity was proposed. First, for short distance cross-sections, 

zero-offset profile data were used to correct the travel-time inversion results and to update the starting model of the 

permittivity. Second, the FWI results were updated by using low iteration number traditional FWI results as starting 

models and performing new effective source wavelet corrections. Comparisons of the RMSE, the mean remaining 

gradients for  𝜀𝑟  and 𝜎, and correlation R of the measured and the final FWI data, indicated an improvement of the 

FWI results using these low iteration starting models in contrast to the traditional results. 

By using the amplitude analysis, the approximate locations of WGT I caused by higher permittivity (porosity) 

and low/intermediate electrical conductivity that produced elongated wave trains in the measured GPR data were 

detected and confirmed by FWI. For the first time, WGT II structures that are caused by an increase in permittivity 

and electrical conductivity were identified in the measured data using the amplitude analysis approach. Such 

waveguides are difficult to detect from the measured data and the amplitude analysis due to the absences of the 

elongated wave trains (higher wave attenuation in the waveguide zone). The FWI inversion results of the WGT II 

zones confirmed the existence of these structures probably caused by an increase of clay content. 

For the 3D characterization of the alluvial aquifers, nine 2D intersecting GPR planes were separately inverted. 

We evaluated the updated 2D FWI results by computing correlation coefficient (R) for consistent structures, where 

acquisition planes intersect. In most of the cases, the FWI results in combination with the amplitude analysis 

presented consistent structures between the intersections for both permittivity and conductivity images. From the 

3D FWI image, high-permittivity layers between 7.5 m to 9.5 m depth for all cross-sections were observed (WGT 

I). Further, continuous higher conductivity zones above 4.0 m are detected in all cross-sections that aligned with 

the WGT II features. Compared with ERT tomography results, the updated GPR FWI results confirmed the presence 

of a high hydraulic conductivity zone with high porosity, but provided higher resolution images of the subsurface 

and much more details about the lateral heterogeneity. This refined description of the heterogeneity allows a better 

explanation of the spatial distribution (plume splitting) of the heat tracer test performed on the experimental site. 

Further research will investigate the potential to use the FWI results to construct a full 3D aquifer model including 

small-scale heterogeneity and to discriminate geological scenarios as a basis for starting models. In addition, the 

approach of source-independent time-domain waveform inversion of cross-hole GPR data will be considered in 

future studies. 
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Chapter 4  

Improvement of GPR Full-waveform inversion 
images using Cone Penetration Test data1

 

 

In this chapter, a new approach that uses CPT data to enhance the final FWI relative permittivity resolution via 

updating an effective source wavelet applied in the inversion process has been presented. The updated source 

wavelet possesses a priori CPT information and a larger bandwidth. Using the same starting models, a synthetic 

model comparison between the conventional FWI and the updated FWI results demonstrate that the updated FWI 

method provides reliable and more consistent structures. For field-observed GPR data of the same test site, five 

GPR cross-sections results were analyzed. Both synthetic and experimental results indicate the potential of 

improving the reconstruction of subsurface aquifer structure by combining conventional 2D FWI results and 1D 

CPT data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1adapted from Zhou, Z., A. Klotzsche, J. Schmäck, H. Vereecken, and J. van der Kruk, 2020b. Improvement of GPR Full-
waveform inversion images using Cone Penetration Test data: Geophysics, under review. 
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4.1 UPDATING WAVELET USING AMPLIFIED FWI 
 

Generally, to avoid the overfitting of between the observed and the modeled data, the inversion of experimental 

data is stopped if the change of the misfit function value is less than 0.5% between two subsequent iterations. In 

this chapter, we considered the remaining mean gradient values of permittivity and the root mean squared error 

(RMSE) values between observed and modeled radar traces to judge the different inversion levels. The FWI results 

with optimal iteration should include the smallest normalized  𝜀𝑟  gradient and RMSE values. Considering that the 

gradients are highly sensitive close to the transmitter and receiver positions, inversion artifacts can easily arise 

close to the boreholes. To minimize these inversion artifacts the approach of Kurzmann et al. (2013) is applied using 

a gradient preconditioning (van der Kruk et al., 2015). 

4.1.1 Wavenumber filter 
 

The CPT data presents a high spatial resolution along the vertical 1D profile. Transforming the spatial CPT data to 

amplitude-wavenumber domain by a fast Fourier transformation (FFT), we can obtain a broader bandwidth of the 

CPT data than the FWI models bandwidth (e.g., Yang et al., 2013). Therefore, it is feasible to improve the FWI 

resolution by expanding the bandwidth of the FWI amplitude values using the CPT data in the amplitude-

wavenumber domain. In the first step, we convert the relative dielectric permittivity of the FWI results into porosity 

∅ by using the complex refractive index model (CRIM) for the saturated zone (e.g., Birchak et al., 1974) (Equation 

3.1). 

In the second step, the selected 1D vertical porosity-model of the CPT data (located close by or at the GPR cross-

section) and FWI permittivity results were interpolated to receive enough data points to generate the filter in 

wavenumber domain. Here, we used a mean value of the selected data and two cosine functions (represented as 

tapers) to expand the initial data. The final expanded data (data points = 512) with tapers are transferred into 

wavenumber domain using the 1D FFT. Note that the two endpoints of the resampled data should satisfy periodicity 

to avoid trapping into Gibbs jumps (e.g., Li et al., 2018). The resampled process can be expressed by 

{
 
 
 

 
 
 
𝐸𝑥𝑝∅ = 𝑝 × 𝑚𝑒𝑎𝑛 (𝑂𝑟𝑖∅),                      (𝑥 < 𝐿𝑖𝑑𝑥 − 𝑇𝑙𝑒𝑛 𝑜𝑟 𝑥 > 𝑅𝑖𝑑𝑥 + 𝑇𝑙𝑒𝑛)  

   

𝐸𝑥𝑝∅ = 𝐶1 × (1 − cos (
𝜋

𝑇𝑙𝑒𝑛
× (𝑥 − (𝐿𝑖𝑑𝑥 − 1 − 𝑇𝑙𝑒𝑛)))) + 𝑝 × 𝑚𝑒𝑎𝑛 (𝑂𝑟𝑖∅),

                                                                                                 (𝐿𝑖𝑑𝑥 − 𝑇𝑙𝑒𝑛 ≤ 𝑥 < 𝐿𝑖𝑑𝑥)

𝐸𝑥𝑝∅ = 𝐶2 × (1 − cos (
𝜋

𝑇𝑙𝑒𝑛
× ((𝑅𝑖𝑑𝑥 + 1 + 𝑇𝑙𝑒𝑛) − 𝑥))) + 𝑝 × 𝑚𝑒𝑎𝑛 (𝑂𝑟𝑖∅),

                                                                                                  (𝑅𝑖𝑑𝑥 < 𝑥 ≤ 𝑅𝑖𝑑𝑥 + 𝑇𝑙𝑒𝑛) 

            (4.1) 
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where 𝑂𝑟𝑖∅ and 𝐸𝑥𝑝∅ represent the original data and the final expanded data points, respectively. 𝑝 is 0.8, which is 

always used in this paper. 𝑚𝑒𝑎𝑛 (𝑂𝑟𝑖∅) shows a mean value of original data. 𝑥 represents point position in the final 

expanded data. 𝐿𝑖𝑑𝑥 and 𝑅𝑖𝑑𝑥 represent the left and right positions of original data in the expanded data. 𝑇𝑙𝑒𝑛 

shows the taper length that is 0.3 times of the original data length. 𝐶1 and 𝐶2 are chosen parameters, which are used 

to smooth connection points between the taper and the original data two points. 

In the third step, a smooth function is applied to flatten the highly fluctuating amplitudes of both interpolated 

data set, which are caused by the interference of the real and imaginary parts for the data in wavenumber domain 

as explained by Yang et al. (2013). These smooth results are estimated by         

                                              𝑆𝐴(𝑥) = {𝐴
(𝑥)                                    , 𝑥 = 1
𝑠𝑚𝑜𝑜𝑡ℎ(𝐴(𝑥), 𝑠𝑝𝑎𝑛)      , 𝑥 > 1

                                                  (4.2) 

where 𝐴 and 𝑆𝐴 represent amplitude and smooth amplitude values in the wavenumber domain, respectively, and, 𝑥 

indicates the wavenumber sample up to the selected maximum wavenumber threshold. For the smoothing of 

amplitude values in amplitude wavenumber domain, we applied standard function 𝑠𝑚𝑜𝑜𝑡ℎ  of MATLAB 

(MathWorks, Inc. 2016b). For this function a span value needs to be defined that is used in the smooth function. 

Note that the smooth function starts with the second sample (Equation 4.2) because of unusual zero-frequency 

values and ends with an appropriate maximum threshold wavenumber value. In general, the selected maximum 

threshold value is determined using an empirical rule that keeps the generated filter to be approximate monotonically 

increasing or to be fluctuated around the amplitude value with 1 (Zhou et al., 2019). Finally, a filter is designed 

with a ratio factor that was calculated in the wavenumber domain to amplify the FWI results in the whole 2D domain. 

This filter was implemented with: 

                                                                       𝐹𝑖𝑙𝑡𝑒𝑟 =
𝑆𝐴𝐶𝑃𝑇

𝑆𝐴𝐹𝑊𝐼
  ,                                                                                    (4.3) 

where 𝑆𝐴𝐶𝑃𝑇  and 𝑆𝐴𝐹𝑊𝐼  represent the smooth CPT data and the smooth FWI results from one to the maximum 

threshold in wavenumber domain, respectively. After this filter has been calculated, it is multiplied with the 

conventional FWI results in the wavenumber domain to generate the 2D wavenumber amplified FWI (WA-FWI) 

permittivity results, which are back-transformed into the spatial domain using an Inverse Fast Fourier 

transformation (IFFT). 

Since the real emitted source wavelet of experimental GPR data cannot directly be obtained, it is important to 

estimate an effective source wavelet for the FWI. Different from the traditional deconvolution approach that uses 

the ray-based starting models or later iterations of the FWI results, we employed the 2D WA-FWI  𝜀𝑟 results to 

replace the ray-based  𝜀𝑟  model. Therefore, similar to the standard procedure, synthetic data is generated with 

forward modeling using the standard effective source wavelet and the WA-FWI  𝜀𝑟  model (σ model is the same). 

Using the Greens function (synthetic data divided by the conventional source wavelet in frequency domain) and the 
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observed data, an updated effective source wavelet 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  can be obtained that contains the high wavenumber 

information. After obtaining the updated source wavelet 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼 , an updated FWI was performed using the 

same starting models of the conventional FWI. Generally, a second-updated source wavelet is necessary that can 

be computed based on the deconvolution method, when the previous updated source wavelet replaces the standard 

source wavelet and the new FWI  𝜀𝑟 results replaces the WA-FWI  𝜀𝑟  models. The updated processing including 

generating the filter, updating the effective wavelet and performing the updated FWI, is summarized in a workflow 

diagram (Figure 4.1).  
 

 

Figure 4.1.  Workflow chart of the updating strategy of the effective source wavelet based on WA-FWI results and 

of the performance of the new FWI. The red boxes represent data in wavenumber domain.  
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4.2 SYNTHETIC CASE STUDIES 
 

4.2.1 Stochastic aquifer models  
 

To verify the approach of improving the resolution of GPR FWI results using the CPT data, a hydrological model 

based on experimental hydrological and geophysical data of the well-known Krauthausen test site (Figure 4.2) was 

used to derive GPR data (Haruzi et al., 2018). We constructed realistic synthetic models of relative dielectric 

permittivity and electrical conductivity using a stochastic simulation (Sequential Gaussian Simulation; e.g., Bortoli 

et al., 1993). For the simulation, the aquifer facies model was divided into 3 facies based on Tillmann et al. (2008): 

sand, sandy gravel and gravel (Figure 4.2a). The simulation of each facies was performed separately. The mean and 

variance values for permittivity and conductivity were calculated from the traditional GPR FWI results of the 

Krauthausen test site. Correlation lengths of both  𝜀𝑟  and 𝜎  are the same and are adapted from hydraulic 

conductivity values estimated from high spatial resolution CPT analysis (Tillman et al., 2008). The input parameters 

(mean, variance, horizontal and vertical correlation lengths) for the variogram model are summarized in Table 4.1.  

Before computation of the forward synthetic modeling result, the boundaries of the stochastic models needed to 

be enlarged to use the same borehole geometries as experimental GPR boreholes (B38-31 in Figure 4.2d) and to 

avoid interactions with the inversion domain boundaries. Here, we employed a uniform value, which is close to the 

boundaries within the stochastic models (shadowed areas in Figure 4.3a). For the unsaturated zone above the water 

table, we chose a homogenous layer with a relative permittivity of  𝜀𝑟= 4.4 (not shown, same for all following 

inversions). A semi-reciprocal acquisition setup was used for the models with transmitter TRN and receiver REC 

spacing of 0.5 m and 0.1 m, respectively. Black circles (TRN=27) and crosses (REC=129) show the exact 

transmitter and receiver positions within the boreholes. The effective source wavelet used to generate synthetic data 

is similar to the effective source wavelet of previous measurements performed in the borehole pair 38-31 of the 

Krauthausen test site (Figure 4.2d, Gueting et al., 2015). Realistic synthetic GPR trace data (called observed data) 

hereafter without noise based on the stochastic models were generated using 2D finite-difference time-domain 

(FDTD) modeling. The vertical dashed line (Figure 4.3a) indicates the selected locations of stochastic CPT (Sto-

CPT) data that was used to calculate the wavenumber filter.  

 



 

54 
 

 

    

Figure 4.2. a) Generalized cross-section of the uppermost aquifer based on Tillmann et al. (2008). b) Schematic 

sketch of the crosshole GPR acquisition setup, in which the green arrow indicates the location of CPT data. c) 

Picture of the Krauthausen test site and d) location of boreholes (circles) and cone penetration tests (asterisk), in 

which the distance from the CPT 144 to the corresponding cross-section is about 0.5 m. Figure 4.2 a) and b) are 

adapted from Gueting et al. (2015). 

 

 

c) d) 

a) b) 
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Table 4.1. Parameters for stochastic simulation of permittivity and conductivity based on data of the Krauthausen 

test site (Tillman et al., 2008). Parameters 𝜀 and 𝜎 are mean values for different facies. 𝑠𝜀2 and 𝑠𝜎2 represent variance 

values for permittivity and conductivity, respectively. Parameters λ𝜀,ℎ and λ𝜀,𝑣  are the horizontal and vertical 

correlation lengths fitted with an exponential model for permittivity. And the horizontal and vertical correlation 

lengths of conductivity are shown by λ𝜎,ℎ and λ𝜎,𝑣 , respectively. 

  Sand (1) Sandy gravel (2) Gravel (3) 
Permittivity 𝜀 21.52 17.82 13.89 

 𝑠𝜀
2 9.83 8.71 8.68 

 λ𝜀,ℎ[𝑚] 5 1.75 0.3 

 λ𝜀,𝑣[𝑚] 0.19 0.2 0.41 

Electrical 
conductivity 

𝜎 [
𝑚𝑆

𝑚
] 15 10.4 9.6 

 
𝑠𝜎
2 [(

𝑚𝑆

𝑚
)
2

] 
4.32 17.68 4.48 

 λ𝜎,ℎ[𝑚] 5 1.75 0.3 

 λ𝜎,𝑣[𝑚] 0.19 0.2 0.41 
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Figure 4.3. a) Results of  𝜀𝑟 and σ based on the stochastic simulation that are used to generate the realistic synthetic 

GPR data. The shadow zones at the boundaries indicate the extended domain of the inversion. The vertical dashed 

line indicates the selected Sto-CPT location used to compute the filter and to amplify the wavenumber of the FWI 

results. b) FWI starting models. Ray-based result for  𝜀𝑟  using the GPR data based on a) and a uniform starting 

model for σ. 

 

  

a) Stochastic models 

b) Starting models for FWI 
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4.2.2 Conventional FWI 
 

First, we applied the ray-based method to generate the relative permittivity starting model for the FWI (Figure 4.3b). 

For the electrical conductivity starting model, a homogeneous model with 13 mS/m was used. This is consistent 

with previous inversion results of experimental GPR data from this test site. Using the ray-based starting model, 

the standard effective source wavelet 𝑆𝑊𝑅𝑎𝑦  was computed using the deconvolution approach. To determine the 

optimal iteration of the final FWI results, the normalized remaining gradient values of the  𝜀𝑟  results and the 

normalized RMSE were analyzed (Figure 4.4a). Thereby, iteration 28 was selected as the optimal iteration of the 

FWI considering the stopping criterions (Klotzsche et al., 2019b), and the FWI  𝜀𝑟  and 𝜎 results are shown in Figure 

4.4b. A comparison of the ray-based results (Figure 4.3b), the FWI results (Figure 4.4b) and the real stochastic 

models (Figure 4.3a) indicates that the FWI results show higher resolution images and more details in the 

tomograms than the ray-based results, but still a certain mismatch to the real models can be noticed. Note that a 

good fit between the modeled traces based on the FWI results and observed data was achieved and almost no 

remaining gradient was present (not shown) for chosen iteration. 

4.2.3 Construction of the wavenumber filter 
 

To obtain a generalized filter in the wavenumber domain for the synthetic data set, we applied Equation 4.1 to 

smoothen highly fluctuating amplitudes of the selected and interpolated 1D FWI permittivity (dashed line in Figure 

4.4b) and the stochastic CPT (Sto-CPT) data (Figure 4.3a). Note that both data sets are transformed into porosity 

using Equation 3.1. To find the optimal span value of the smoothing function, the 1D wavenumber-amplified FWI 

results and the filtered 1D stochastic CPT data are compared in wavenumber amplitude domain by computing the 

root mean square error (RMSE) and correlation coefficients (R) for different span values (Figure 4.5a). A final span 

value of 21 was selected because it provided a high R and a low RMSE values. Using this value, we transformed 

and smoothed the three different results (ray-based, FWI and Sto-CPT) in the wavenumber domain (Figure 4.5b). 

Here, the selected maximum threshold wavenumber was 2.00 m−1 (vertical dashed line) so that the generated filter 

still provided approximately monotonically increasing results. Finally, the filter was calculated by dividing the 

smooth Sto-CPT by the smooth FWI results. To intuitively show the resolution differences of the different methods 

along the selected vertical profile, we analyze the porosity value distribution along the depth direction from 3 m to 

8.28 m separately (Figure 4.6). The comparison of the full wavenumber information for three different results along 

this vertical profile indicate that the resolution differences of the three approaches (Figure 4.6a). In addition, 

comparisons of low wavenumber parts of different results indicate WA-FWI results are better fitting with the 

filtered Sto-CPT data, which means the calculated filter is valid along the 1D profile (Figure 4.6b).  A quantitative 

comparison of the results can be found in Table 4.2. 
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Figure 4.4. a) Evolution of the FWI RMSE misfit (black line) and the remaining absolute mean  𝜀𝑟 gradient (blue 

line) over number of iterations. Black asterisk line indicates the average value between the normalized remaining 

gradient values and the normalized RMSE. The red circle shows the iteration with the optimal value. b) The standard 

FWI permittivity and conductivity results after iteration 28. The dashed vertical line indicates the selected FWI 

profile to generate the amplifying filter.  

a) Normalized RMSE and remaining absolute mean  𝜀𝑟  gradient 

b) FWI results 
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Figure 4.5. The distributions of RMSE and R values with changing the smooth function span values for the selected 

range of 0 to 71. The dashed line indicates the optimal span value 21. b) A comparison of the spatial wavenumber 

spectra of Sto-CPT data (blue), FWI (red) and ray-based (green) results. The filter is indicated by the black solid 

line, which is derived from the ratio between the smooth Sto-CPT and the smooth FWI (smooth span is 21). The 

dashed black line shows the maximum wavenumber for the filter. 

 

a)  Correlation between normalized RMSE, R and smooth span along Sto-CPT profile 

b)  Porosity spatial fourier domain along Sto-CPT profile 
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Figure 4.6. Comparisons of the a) full and b) low wavenumber information for Sto-CPT (blue), ray-based (green) 

and FWI (red) porosity results. 

Table 4.2. Comparisons of the correlation coefficient R and the root-means square error RMSE of the filtered Sto-

CPT, filtered FWI and wavenumber amplified FWI (WA-FWI) results given the maximum wavenumber, the 

suitable span value and the optimal FWI iteration value. R is Pearson's Correlation Coefficient between two 

variables (same for all following tables). The percentage in parentheses indicates the improvement of the WA-FWI 

RMSE to the filtered FWI RMSE. 

 

 

 

 

 

 

Considered parameter  𝜺𝒓 

Max. wavenumber for filter (𝐦−𝟏)  2.00 

Span value of smooth function  21 

Optimal iteration of FWI  28 

R (Filtered FWI: Filtered Sto-CPT)  0.9562 

R (WA-FWI: Filtered Sto-CPT  )  0.9655 

RMSE ( Filtered  FWI:  Filtered Sto-CPT )  1.0907 

RMSE( WA-FWI: Filtered Sto-CPT )  0.8830 

a) Comparison of full   
       wavenumber compared 

b) Comparison of low  
       wavenumber compared 
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4.2.4 Updating effective source wavelet and FWI 

 
Although the developed filter was based on 1D vertical information, it was employed for the entire 2D domain of 

the conventional FWI permittivity model. Thereby, for some locations, especially those which are furthest away 

from the CPT profile location, higher wavenumber information appeared that was not consistent with the true model. 

To remove this inconsistent noise, we used an approach inspired by spectrum whitening deconvolution (Li et al., 

2009). In particular, we replaced the traditional ray-based permittivity model with the 2D wavenumber-amplified 

FWI (WA-FWI) results and used the deconvolution method to generate an updated effective source wavelet (Zhou 

et al., 2019). To analyze and investigate which source wavelet strategy provides the most accurate final FWI results, 

we tested six different effective source wavelets based on different input models in the deconvolution approach.  

The effective source wavelet used to generate the observed data is named real source wavelet 𝑆𝑊𝑅𝑒𝑎𝑙. The 

effective source wavelet based on the ray-based  𝜀𝑟  and a homogeneous 𝜎 (13 mS/m) is referred as 𝑆𝑊𝑅𝑎𝑦   and is 

used to generate the conventional FWI results. For comparison to the standard procedure without CPT data, this 

effective source wavelet is updated with the final conventional FWI results providing 𝑆𝑊𝐹𝑊𝐼. As mentioned before, 

the source wavelet 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  is based on the wavenumber-amplified FWI (WA-FWI) permittivity results 

and 𝑆𝑊𝑅𝑎𝑦. Similar to the conventional approach, also this wavelet is once updated with the final FWI results 

using 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼 , which provides 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼. For a complete comparison of all cases, an ideal source wavelet 

𝑆𝑊𝑆𝑡𝑜 is estimated based on the real subsurface structures of the stochastic 𝜀𝑟  model (homogeneous 𝜎 model). Note 

that for better comparisons of these effective source wavelets, all source wavelets are normalized to their minimum 

in the provided figure (Figure 4.7). Comparing the six different effective source wavelets, a similar shape can be 

observed although a minimal time difference of the pulses is visible. Except for 𝑆𝑊𝑅𝑎𝑦 (blue line), all the wavelets 

show similar amplitude spectra in the frequency domain (Figure 4.7b). Note that the bandwidth for 𝑆𝑊𝑅𝑎𝑦 is smaller 

compared to the other wavelets suggesting FWI results with a lower resolution using 𝑆𝑊𝑅𝑎𝑦. The bandwidth of 

𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  (cyan line) is slightly larger than the bandwidth of  𝑆𝑊𝑊𝐴−𝐹𝑊𝐼 (red line). As expected the bandwidth 

of 𝑆𝑊𝑆𝑡𝑜 and 𝑆𝑊𝑅𝑒𝑎𝑙 are showing the largest bandwidth. By analyzing the unwrapped phases, we find that the phase 

of 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  is closest to the phase of 𝑆𝑊𝑅𝑒𝑎𝑙, especially for high frequency parts (Figure 4.7c) indicating that 

𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  should provide the most optimal effective source wavelet when the real models are unknown.  
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Figure 4.7. Comparisons of different effective source wavelets in a) time domain, b) corresponding frequency 

spectra from 0 to 160 MHz, and c) phase spectra based on the different processing steps indicated in Figure 4.1. 

Note that all source wavelets are estimated for different 𝜀𝑟  models, while 𝜎 models were the same for all steps with 

a homogenous model of 13 mS/m. Amplitudes of a) and b) are normalized to their corresponding minimum and 

maximum for a better comparison, respectively. 

a) Effective source wavelets 

b) Frequency spectra 

c) Unwraped phases 
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Table 4.3. Mean RMSE and R of different 𝜀𝑟  model comparisons for the entire 2D domain. F-Stochastic and F-FWI 

(to keep the same wavenumber information as WA-FWI) are filtered Stochastic and filtered FWI permittivity 

models, respectively. The F-FWI results with 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  are the optimal choice because of the lower RMSE and 

the higher R value. 

 

All source wavelets were tested using the same starting models based on the ray-based  𝜀𝑟 results and a 

homogenous 𝜎 model with 13 mS/m to verify the relationship between source wavelet bandwidth and the accuracy 

of the FWI results. Note that  𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  is generated with a FWI  𝜀𝑟  model that includes the full wavenumber 

information. The final FWI results for the five different source wavelets (except for   𝑆𝑊𝑅𝑒𝑎𝑙) are shown in Figure 

4.8a and 4.8b. RMSE values were computed based on the filtered stochastic permittivity model and the filtered FWI 

permittivity model in 2D domain. First thing to notice is that all FWI results show more details and structures as 

the ray-based results. Further, it is interesting to notice that although the final RMSE for the FWI results of  𝑆𝑊𝐹𝑊𝐼 

and 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  are similar, for 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  more consistent structures close to the boreholes can be seen that 

match the input model better. In addition, except for the FWI conductivity results with  𝑆𝑊𝑅𝑎𝑦 , the other 

conductivity tomograms are very similar as expected because the wavenumber filter should only change the 

resolution of the FWI permittivity. Finally, using the stochastic permittivity model as starting model for 𝑆𝑊𝑆𝑡𝑜 did 

not significantly improve the FWI results compared to  𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼 . A similar behavior can be observed by 

analyzing the vertical distribution of the correlation coefficient R and the RMSE for the filtered 2D permittivity 

models (Figure 4.8c and Table 4.3). Comparisons between WA-FWI and other FWI results show that the WA-FWI 

results have larger differences between 1 m to 3 m along the horizontal distance, which indicate that the filter is not 

valid in these zones due to overamplification. As expected, while all FWI results are slightly better resolved in the 

middle regions of the tomograms, FWI results are degraded in the vicinity of the boreholes due to the acquisition 

Compared models (𝜺𝒓) Mean RMSE Mean R 

F-Stochastic and Ray-based 
 

2.4836 0.7237 

F-Stochastic and F-FWI (𝑺𝑾𝑹𝒂𝒚) 
 

1.4886 0.9222 

F-Stochastic and F-FWI (𝑺𝑾𝑭𝑾𝑰) 1.3234 0.9409 

F-Stochastic and WA-FWI  
 

2.1754 0.8713 

F-Stochastic and F-FWI (𝑺𝑾𝑾𝑨−𝑭𝑾𝑰) 1.6465 0.8907 

F-Stochastic and F-FWI (𝑺𝑾𝑵𝒆𝒘−𝑭𝑾𝑰) 1.3660 0.9315 

F-Stochastic and F-FWI (𝑺𝑾𝑺𝒕𝒐) 
 

1.2029 0.9445 
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strategy in crosshole applications. Furthermore, the FWI results of 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼 show a higher R and smaller RMSE 

values than the results of  𝑆𝑊𝑊𝐴−𝐹𝑊𝐼 , 𝑆𝑊𝐹𝑊𝐼  and 𝑆𝑊𝑅𝑎𝑦, especially in vicinity of the left borehole. As expected 

the best FWI results are obtained using 𝑆𝑊𝑆𝑡𝑜, which can only be obtained in synthetic model studies. In the absence 

of complete knowledge on the subsurface, the FWI results based on 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼 showed the best results.  

 

Figure 4.8. Comparisons of FWI a) permittivity and b) conductivity results using different effective source wavelets 

(Figure 4.7). Values in parentheses indicate mean RMSE between filtered FWI permittivity models and the filtered 

stochastic permittivity model in the entire 2D domain (see Table 4.3 for more details). c) Quantitative comparisons 

of the RMSE and R between filtered stochastic permittivity model and different filtered FWI permittivity results 

(same wavenumber as WA-FWI) along the vertical profile.  

a) 

b) 

c) 
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4.3 EXPERIMENTAL GPR DATA STUDIES 
 

At the Krauthausen test site in Germany (Figure 4.2c), we measured the uppermost aquifer using crosshole GPR 

with 200 MHz antennae between several boreholes (red lines in Figure 4.2d). A detailed description of the site was 

provided by Vereecken et al. (2000). The measured uppermost aquifer can be broadly divided into three layers 

(Figure 4.2a): A poorly sorted gravel layer extending from 1 m to 4 m depth; the middle sand layer extending from 

4 m to 6 m depth; and a bottom layer including sandy and gravely grains extending from 6 m to 11.5 m depth 

(Tillmann et al., 2008). For the acquisition of the experimental data, a semi-reciprocal acquisition setup (Figure 

4.2b) was used with transmitter and receiver spacing of 0.5 m and 0.1 m, respectively. The water table was 

approximately at 2 m depth during the measurements. Therefore, GPR measurements started below 3 m depth. The 

CPT profiles that are closest to the crosshole sections are shown in Figure 4.2d (red asterisk). To improve the 

crosshole GPR FWI results, we analyzed five GPR cross-sections and the corresponding CPT profiles. For five 

CPT locations, the CPT probe was pushed into the ground to record cone resistance, electrical resistivity, natural 

gamma, gamma-gamma and neutron activity values. Tillmann et al. (2008) changed the neutron log into water 

content by calibration. In contrast to Gueting et al. (2015), we reanalyzed the FWI results following the suggestion 

given by the Corrigendum to the paper (Klotzsche et al., 2020). Reanalysis of the time zero correction of the GPR 

data showed that there was an error in the automatic picking routine, which is now updated. Therefore, the 

conventional FWI results are different to the results of Gueting et al. (2015) and show generally higher permittivities 

and lower electrical conductivities, while the structures are similar. 

In the first step, the porosity information of five 1D vertical CPT profiles was compared to the corresponding 

FWI porosities, and the wavenumber filter for each borehole pair was estimated separately (Figure 4.9). Note that 

the original CPT data was used (Tillmann et al., 2008) without applying a shift as proposed by Gueting et al. (2015). 

For the experimental GPR data, a smooth function span value of 27 was selected for all cross-sections and the 

maximum threshold wavenumber of the filters was 2.31 m−1  (to keep the generated filters approximately 

monotonically increasing). The 1D porosity amplitude values along the CPT profile locations in the amplitude-

wavenumber domain clearly show that the CPT values contain the largest bandwidth, whereas the FWI results have 

a reduced bandwidth, and the ray-based data have the lowest bandwidth for all five borehole pairs (Figure 4.9a-e). 

By comparing the five obtained filters (Figure 4.9f) in the wavenumber range of 0 to 2.31 m−1, it can be noticed 

that the filter of profile 103 between boreholes 62-30 differs from the other four filters near 0.5 m−1. Note that the 

cross-section distance between the boreholes 62-30 is 6.16 m, which is larger than others (Figure 4.2d). 
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Figure 4.9. a) - e) Comparisons of spatial frequency spectra of the CPT data (blue), the ray-based (green) and the 

conventional FWI (red) results in the wavenumber domain for different profiles (see Figure 4.2d for the locations 

of the profiles). The wavenumber filter is indicated by the black solid line for each profile. f) Comparisons of the 

five filters, where a clear difference of profile 103 to the other profiles near 0.5 m-1 is noticeable.   

 

 

a) b) 

c) d) 

e) f) 
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In the next step, these five wavenumber filters are applied to derive WA-FWI results between each borehole pair 

and the corresponding updated effective source wavelets  𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  (Figure 4.10). Similar to the synthetic case 

study, these wavelets were generated by updating the standard effective source wavelets with the deconvolution 

approach and the WA-FWI results (𝜎 starting model homogenous with 13 mS/m) to the source wavelet 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  

and then updating these wavelets to  𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼 (see flow diagram in Figure 4.1). Note that we only show the 

permittivity FWI results based on 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼, since this source wavelet provided satisfying results in the synthetic 

study. The final effective source wavelets show similar shapes with slight shifts in time (Figure 4.10a) and similar 

bandwidth in the frequency spectra (Figure 4.10b and c). Note that the effective source wavelet  𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  for the 

cross-section 62-30 is solved based on “WA-FWI subtract 1” because the WA-FWI results are too large to solve an 

effective source wavelet. One possible reason is that the larger borehole distance causes the lower FWI resolution 

and then the solved filter over amplified the WA-FWI values. 

The traditional FWI  𝜀𝑟  results (Figure 4.11a) using 𝑆𝑊𝑅𝑎𝑦  are used to derive the WA-FWI results (Figure 

4.11b). The updated FWI results (Figure 4.11c) are derived using the corresponding updated source wavelets 

𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  and the ray-based  𝜀𝑟  results as starting models. Similar to the synthetic studies, the WA-FWI results 

show over amplified features close to the boreholes. The vertical dashed lines indicate the locations of CPT data for 

each pair of boreholes. The updated FWI results show more consistent structures in the individual planes and at the 

crossings of the boreholes in comparison to the conventional FWI permittivity results. Generally, better RMSE 

values and R factors are obtained for the updated FWI results than for the conventional FWI (Table 4.5).  

Finally, to verify the updated FWI results, we computed and compared the FWI porosity results using Equation 

3.1 with the CPT porosity values (Figure 4.12). Thereby, we first compared the wavenumber-amplified FWI results 

with the filtered CPT (Figure 4.12a) similar to the synthetic case study (Figure 4.6b). Note that we selected the same 

depth of the CPT data from 3 m to 8.28 m for five different measurements to calculate the filters and compared with 

different FWI results. Both Figure 4.12a and Table 4.4 show the generated filters along respective 1D CPT profile. 

Comparisons of full wavenumbers information for CPT (blue), ray-based results (green), conventional FWI (red) 

and updated FWI (black) along each CPT profile are shown in Figure 4.12b (quantitative comparison in Table 4.5). 

An improved fit between the CPT and updated FWI results in contrast to the conventional FWI porosity results is 

visible. By comparing the computed R and RMSE between the CPT data and the 1D different FWI results, we 

conclude that the updated effective source wavelets, which incorporate the CPT information, improved the FWI 

permittivity results for all planes.  
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Figure 4.10. Comparison of the updated effective source wavelets of the five cross-sections used for the 

experimental study in a) time domain, b) frequency and c) phase spectra. Amplitudes of a) and b) are normalized 

to their corresponding minimum and maximum for a better comparison, respectively. 

 

a) Effective source wavelets 

b) Frequency spectra 

c) Unwraped phases 
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Figure 4.11. a) Traditional permittivity FWI results using 𝑆𝑊𝑅𝑎𝑦 for the five cross-sections. Circles and crosses 

indicate the transmitter and receiver locations, respectively. Dashed lines present the locations of the CPT profiles. 

b) Shows the permittivity images of the wavenumber-amplified FWI using the filters shown in Figure 4.9. c) 

Updated FWI results using the updated effective source wavelets as shown in Figure 4.10. 

 

 

a) Traditional FWI permittivity 

b) WA-FWI permittivity 

c) Updated FWI permittivity 
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Table 4.4 Comparisons between filtered CPT, filtered FWI and wavenumber amplified FWI (WA-FWI) porosity 

results of the experimental data set from the Krauthausen site. Percentages in parentheses indicate the improvement 

of the WA-FWI RMSE to the filtered FWI RMSE. 

 

Table 4.5. Comparisons of the full wavenumber CPT and FWI porosity results using different effective source 

wavelets. R and RMSE are calculated based on 1D full wavenumber profile data. Percentages in parentheses indicate 

the improvement of the New-FWI RMSE to the traditional FWI RMSE. 

 

  32-38 
(5.13 m) 

 38-31 
(4.99 m) 

 31-62 
(3.83 m) 

 62-30 
(6.16 m) 

 75-76 
(4.96 m) 

 

Profiles of  CPT 100 101 102 103 144  

Max. wavenumber for filter (𝐦−𝟏) 2.31 2.31 2.31 2.31 2.31  

Span value of smooth function 27 27 27 27 27  

Optimal iteration of FWI 30 22 30 15 26  

R (Filtered FWI: Filtered CPT) 0.7851 0.9278 0.8414 0.8711 0.8340  

R (WA- FWI: Filtered CPT ) 0.7604 0.9031 0.8771 0.9054 0.9062  

RMSE ( Filtered  FWI: Filtered CPT) 0.0436 0.0308 0.0386 0.0349 0.0269  

RMSE( WA- FWI: Filtered CPT ) 0.0291 

(33.3%) 

0.0197 

(36.0%) 

0.0210 

(45.6%) 

0.0210 

(39.8%) 

0.0207 

(23.0%) 

 

  32-38 
(5.13 m) 

38-31 
(4.99 m) 

31-62 
(3.83 m) 

62-30 
(6.16 m) 

75-76 
(4.96 m) 

R (FWI: CPT) 
 

 0.7576 0.9153 0.8049 0.8564 0.8149 

R (New-FWI: CPT )  0.7701 0.9189 0.8312 0.8569 0.8636 

RMSE (FWI: CPT)  0.0448 0.0316 0.0410 0.0360 0.0285 

RMSE (New-FWI : CPT )  0.0296 

(33.9%) 

0.0249 

(21.2%) 

0.0249 

(39.3%) 

0.0272 

(24.4%) 

0.0255 

(10.5%) 
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Figure 4.12. a) Porosity comparisons of the filtered CPT (blue), the ray-based results (green), the filtered FWI 

results (red) and the wavenumber-amplified FWI (black) along each vertical profile. b) Indicates the full 

wavenumber porosity results comparison of the CPT, ray-based, the FWI results (using 𝑆𝑊𝑅𝑎𝑦) and the updated 

FWI results (using 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼). 

To analyze the behavior of the model updated for permittivity and conductivity over the iterations of two FWI 

together with two FWI converged RMSE curves, we defined the differences ∆𝜀𝑟  and ∆𝜎 between the models for 

different iterations (iter) to the starting models according to the approach of Klotzsche et al.(2019b). The computing 

details can be found from the following Equations 4.4 and 4.5: 

                                       ∆𝜀𝑟(𝑖𝑡𝑒𝑟) = ∑ ∑ |𝜀𝑟
𝑖𝑡𝑒𝑟 − 𝜀𝑟

𝑠𝑡𝑎𝑟𝑡| ∑ ∑ |𝜀𝑟
𝑠𝑡𝑎𝑟𝑡|𝑛𝑧

𝑗=1
𝑛𝑥
𝑖=1⁄𝑛𝑧

𝑗=1
𝑛𝑥
𝑖=1 ,                                     (4.4) 

∆𝜎(𝑖𝑡𝑒𝑟) = ∑ ∑ |𝜎𝑖𝑡𝑒𝑟 − 𝜎𝑠𝑡𝑎𝑟𝑡| ∑ ∑ |𝜎𝑠𝑡𝑎𝑟𝑡|𝑛𝑧
𝑗=1

𝑛𝑥
𝑖=1⁄𝑛𝑧

𝑗=1
𝑛𝑥
𝑖=1 ,                                        (4.5) 

where 𝑛𝑥  and 𝑛𝑧  show the cells number in the horizontal and vertical directions of the inversion domain, 

respectively.  

a) 

b) 
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By analyzing the developments of two FWI tomograms and the differences in the model update for permittivity 

and conductivity (Figure 4.13), it can clearly be noted that the starting synthetic data with the updated source 

wavelets are more much differences between the observed data than the tradtional starting synthetic data except 

borheoles 38-31(Figure 4.13b) because higher dashed green curves values (iter=0). The main reason is the amplitude 

differences because the updated source wavelets are corrected according to WA-FWI permittivity models. The 

second point is the conductivity updated are more efficient than the permittivity for both FWI approaches in the 

early interations.  

Considering the small perturbation factors are important to determine the step-lengths for permittivity and 

conductivity in the inversion process, therefore we need to be carefully to chose these values. These perturbation 

factors are small enough to guarantee the perturbed model is in the linearity range to avoid overshooting. Meanwhile, 

to avoid round-off errors of the computer system, the perturbation factors should be large enough (Meles et al., 

2010). In addtion, different perturbation factors can effect the final results in Figure 4.13. Finally, we summarized 

the details of parameters in the inversion for two FWI in Table 4.6. 

 

Table 4.6. Comparisons of selected iterations, FWI converged RMSE, and perturbation factors for two FWI 

approaches. 

 

     32-38 
(5.13 m) 

38-31 
(4.99 m) 

31-62 
(3.83 m) 

  62-30 
(6.16 m) 

75-76 
(4.96 m) 

     Traditional FWI 

Optimal Iteration  
 

 30 22     30 15 26 

RMSE (10-7) 8.5055 9.4156 9.1763 7.0538 8.8673 

Perturbation factor (𝜺𝒓) 10-2 10-2 10-2 10-1 10-1 

Perturbation factor (𝝈) 100 100 100 5×100 100 

Updated FWI 

Optimal Iteration   25 30 18 24 24 

RMSE (10-7) 8.2225 6.4862 9.5057 5.6149 7.2403 

Perturbation factor (𝜺𝒓) 10-2 10-2 10-2 10-1 10-1 

Perturbation factor (𝝈) 10-1 100 5×10-1 2×100 100 
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Figure 4.13 a) - e) Summations of the differences between the FWI permittivity (blue) and conductivity (red) to the 

starting models over the number of iterations for 5 boreholes. Green curves indicate the corresponding FWI 

converged RMSE. The vertical green lines indicate the thresholds of selected optimal iterations. The traditional and 

updated results are shown by solid and dashed curves, respectively.   
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4.4 CONCLUSIONS AND OUTLOOK 
 

We demonstrated a new approach to improve the permittivity FWI results by incorporating additional information 

from CPT data. The novel approach was tested and verified at a realistically synthetic case study and applied to an 

experimental data set from the Krauthausen test site. To improve the FWI results, we proposed to design a 1D 

wavenumber filter based on CPT data and apply this filter to the 2D conventional FWI results. To verify the 

approach of updating the source wavelet based on the CPT data, we generated a stochastic simulated model of the 

Krauthausen test site. Combining the conventional FWI permittivity results and Sto-CPT data, we generated a filter 

that was applied in 2D FWI domain and obtained the WA-FWI results. To remove the inconsistent high 

wavenumber data of the wavenumber-amplified FWI results, we estimated an effective source wavelet  𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  

based on the WA-FWI results. Further, we used five different effective source wavelets to perform FWIs to 

determine the best effective source wavelet. The synthetic studies indicate that by applying an additional source 

wavelet correction cycle with the deconvolution approach and obtaining an enhanced source wavelet 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼 , 

the FWI results could be improved even further. Thereby, the comparisons of updated FWI permittivity results and 

the CPT data show improved results and more consistent structures in contrast to the conventional FWI.  

The new approach for optimizing the effective source wavelet with the CPT data, was tested at experimental 

GPR datasets of five cross-boreholes sections. Similar to the synthetic study, the updated FWI results based on the 

effective source wavelet 𝑆𝑊𝑁𝑒𝑤−𝐹𝑊𝐼  show an improved consistency of the images in the entire domain and 

improved FWI  𝜀𝑟  results. The comparison of the updated FWI and CPT porosities confirmed the improvement in 

contrast to the conventional FWI results. In the following research, we will try to tame the non-linearity problem 

by gradually expanding the bandwidth of the updated effective source wavelet.  
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Chapter 5  

Improvement of crosshole GPR FWI results by 
using progressively expanded bandwidths of the 
data1 

 

In this chapter, we introduce a new approach that improves the starting model problematic and is able to enhance 

the reconstruction of the subsurface medium properties. The new approach tames the non-linearity issue caused by 

high contrast complex media in the inversion by applying different designed bandpass filters, which are 

progressively expanded to the full-bandwidth effective source wavelet and the observed GPR data. The resulting 

permittivity FWI model with the progressively expanded bandwidths of both modeled and observed data (PEBDD) 

is used in the next step as updated starting model and is applied to update the effective source wavelet. The following 

FWI with the full bandwidth data (FBD) and the second-updated effective source wavelet is able to enhance the 

reconstruction of the permittivity and electrical conductivity results in contrast to the standard FWI results. The new 

approach has been applied to two synthetic case studies and an experimental dataset, while the field data was 

additionally compared to cone penetration test data for validation. 

 

 

 

 

 

 

 

 

1adapted from Zhou, Z., A. Klotzsche, H. Vereecken, and J. van der Kruk, 2020c. Improving the resolution of crosshole GPR 

FWI results by using progressively expanded bandwidths of the data: Journal of Applied Geophysics, submitted. 
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5.1 NOVEL PEBDD FULL-WAVEFORM INVERSION SCHEME 
 

Our new updated approach proposes to tame the non-linearity issue of the time-domain FWI, which can be 

considered as extensions of the standard FWI procedure to improve the characterization of small-scale subsurface 

structures. Therefore, we consider the idea of frequency-domain approach that use longer wavelengths with lower 

frequency in the beginning of the inversion to avoid the cycle skipping problem, and that the bandpass filters are 

defined according to the center frequency of an effective source wavelet. As a first step, we construct a series of 

bandpass filters according to different high cut frequencies, while keeping the lowest cut frequency constant. Figure 

5.1a shows an example for an effective source wavelet with a center frequency of 65 MHz and a bandwidth of 12 

MHz to 140 MHz. For such a wavelet we would select the lowest cut frequency with 12 MHz, while the maximum 

cut frequency is considered larger than the center frequency of the effective source wavelet, which is in our case 68 

MHz. To smooth the bandpass, we assigned two tappers with lengths of 12 MHz and 10 MHz for the starting and 

ending frequencies points, respectively (Figure 5.1a). These tapered bandpass filters are applied in the next step to 

observed GPR data and the effective source wavelet, which results after the FDTD in sub-modelled data with the 

sub-source wavelet that has a similar frequency spectra as the sub-observed data under using the same filter (Figure 

5.1b green box).  

Secondly, the FWI with the progressively expanded bandwidths of the modelled data and observed data (PEBDD) 

is performed (Figure 5.1b green box loop 1 and 2). The first starting models for the FWI are based on the ray-based 

results  𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑦  (“Ray ( 𝜀𝑟) and Homo (𝜎)” in Figure 5.1b green box). Using the starting models with the sub-

source wavelet and sub-observed data with the same smallest bandwidth, we perform a certain number iterations of 

the FWI (5 iterations are selected in Figure 5.1b green box loop 1: 𝑛 = 0; 𝑛 represents the number of bandwidth 

expansions). Note that it is also possible to use different number of iterations (Meles et al., 2011). The perturbation 

factors for the inversion, which are necessary to define the step-lengths for the gradient approach, are kept the same 

as for the standard FWI. The  𝜀𝑟  and 𝜎 FWI results after this 5th iterations are considered as the next new starting 

models for the next sub-data with progressively expanded bandwidth, while the maximum cut frequency was 

increased by 4 MHz in our case (Figure 5.1b green box loop 2). These steps are repeated until the selected maximum 

cut frequency is reached (Figure 5.1b green box loop 1: 𝑛 = 𝑛max). Until this point all data (including source 

wavelet and observed data) used for the inversion are progressive bandwidth expanded.  
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Figure 5.1. a) Example for an effective source wavelet amplitude spectrum and corresponding step wise increased 

bandpass filters (shown schematically by the black and red horizontal bars). These filters are progressively expanded 

until the center frequency is reached and applied to the observed data and the effective source wavelet. The bandpass 

filters start at the lowest frequency of 12 MHz (taper length 12 MHz) indicated by a vertical dashed line. The high 

cut frequency is stepwise expanded every five iterations of the FWI and has a taper of 10 MHz. After the highest 

corner frequency of 68 MHz is reached (center frequency of 65 MHz), all subsequent iterations use the full 

bandwidth of an updated source wavelet and the observed data.  b) Flowchart of the new FWI PEBDD approach. 

In the first part (green box) the progressively expanded effective source wavelet and the observed data are used, in 

which i, n, and k represent all iterations using all sub-data, the numbers of filters, and individual iterations of each 

group sub-data, respectively.  𝑛max  is related to the center frequency of the wavelet. In this application, we 

select 𝑛max = 13. In the second part (red box) the full bandwidth data (FBD) FWI is performed, where two effective 

source wavelets corrections are performed and used during FWI. The final result is indicated by 2nd FWI with the 

 𝑆𝑊𝑁𝑒𝑤  as effective source wavelet.    

a)  

b)  
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Thirdly, the FWI with the full bandwidth data (FBD) is calculated (Figure 5.1b red box). From these results only 

the PEBDD permittivity FWI results with the maximum cut frequency are considered as new permittivity starting 

model in the next step (see “Low-Freq FWI ( 𝜀𝑟)” in Figure 5.1b). Together with the conductivity starting model 

with the same as the traditional one (Figure 5.1b “Homo (𝜎)”), we construct the new starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤. 

Note that tests indicated that also using the conductivity results with the maximum cut frequency as starting models 

did not improve the final results. The new starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤  and the traditional effective source wavelet 

𝑆𝑊𝑅𝑎𝑦 are used in the next step to generate an updated effective source wavelet 𝑆𝑊𝐿𝑜𝑤 with the full bandwidth 

data using the deconvolution approach (Equation 2.14, Figure 5.1b red box). After obtaining the updated source 

wavelet 𝑆𝑊𝐿𝑜𝑤 , an updated FWI is performed with the new starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤 and the wavelet 𝑆𝑊𝐿𝑜𝑤. 

Generally, a second-updated source wavelet 𝑆𝑊𝑁𝑒𝑤  is necessary to further improve the FWI results. Thereby, the 

effective source wavelet 𝑆𝑊𝐿𝑜𝑤  is updated to 𝑆𝑊𝑁𝑒𝑤  using the deconvolution method with the wavelet 𝑆𝑊𝐿𝑜𝑤  and 

the permittivity model from the updated FWI results with 𝑆𝑊𝐿𝑜𝑤 . The final updated FWI results with FBD are 

solved based on the second-updated source wavelet 𝑆𝑊𝑁𝑒𝑤 and the new starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤 (details can be 

found in Figure 5.1b). 

5.2 SYNTHETIC CASE STUDIES 

5.2.1 Synthetic case study I: Stochastic input models and ray-based starting models 
 

To verify the aforementioned new FWI scheme for improving the GPR FWI results, we construct realistic synthetic 

models of relative dielectric permittivity and electrical conductivity using a stochastic simulation (Sequential 

Gaussian Simulation). For the simulation existing data set of the Krauthausen aquifer test site in Germany are used 

to generate a facies model with certain parameters (based on Tillmann et al. (2008) and more details can be found 

in Zhou at al. (2020b)). The construed aquifer consistent of a 3-layered structure similar to the Krauthausen aquifer: 

sandy layer between 1.0 m to 4.0 m, sandy gravel between 4.0 m to 5.5 m and below coarse gravel (Left side in 

Figure 5.3 and Figure 5.8). For the unsaturated zone above water table at 2.0 m, we chose a homogenous layer with 

a relative permittivity of  𝜀𝑟  = 4.4 (not shown, same for all following inversions). To generate the realistic synthetic 

GPR data (called observed data), we used a source wavelet (𝑆𝑊𝑅𝑒𝑎𝑙; dashed curves in Figure 5.2a and b) based on 

available experimental data from the cross-section B38-31 of the Krauthausen test site (Gueting et al., 2015). Similar 

to the acquisition of experimental data, a semi-reciprocal acquisition setup was used with transmitter and receiver 

spacing of 0.5 m and 0.1 m, respectively. The realistic synthetic crosshole GPR data are modelled with the same 

time-domain 2D FDTD approach as used for the FWI. Similar to experimental data applications, we defined the  𝜀𝑟  

starting model for the FWI by picking the first arrival times of the synthetic data and performed a ray-based 

inversion (1st column of Figure 5.3a; e.g., Dafflon et al., 2012). Similar to previous studies, we choose for a 
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homogenous  𝜎 starting model of 13 mS/m (not shown) that was defined by testing various different homogenous 

models and used the results of the first cycle amplitude inversion of the experimental data. 

 

Figure 5.2. Comparisons of the a) effective source wavelets and the b) corresponding frequency spectra of the 

different steps of the new PBEDD approach used for synthetic case study I. The legend values in b) indicate center 

frequencies for different source wavelets. The source wavelet used to generate the ‘observed data’ is indicated with 

a dashed black line. Note that 𝑆𝑊𝑁𝑒𝑤( 𝜀𝑟 + 𝜎) is the effective source wavelet based on the results shown in Figure 

5.6. 

To keep it as realistic as for experimental data applications, we used the ray-based starting models to estimate 

an effective source wavelet (𝑆𝑊𝑅𝑎𝑦; blue curves in Figure 5.2a and b) and performed the standard FWI (1st column 

of Figure 5.3b and c). As expected the FWI results show higher resolution images as the ray-based results within 

decimeter-scale resolution. Because of the known input models, we can calculate the mean absolute error MAE 

according to Equation 5.1 between the resolved FWI models and the true input models based on the stochastic 

simulation (Shown in the 1st column titles of Figure 5.3d and e). The final results were obtained after 28 iterations 

and the inverted results fulfilled the criteria for a reliable inversion. The corresponding RMSE curve that is 

calculated between the observed and modelled radar data is indicated by the blue curve in Figure 5.4 with the final 

RMSE of 6.9945×10-7. Generally, most of the distinct features of the stochastic input models are resolved and good 

fit between the observed and the modelled data is obtained (see Figure 5.5a and b). By comparing the differences 

between observed data and modelled data for one exemplary data set (Figure 5.5c), we find most of the regions in 

the tomograms a small misfit is visible, but for some domains a still increased difference can be noticed. Considering 

that the real source wavelet has a center frequency of 69 MHz and the stochastic model has an approximate average 

permittivity value of 18, the corresponding wavelength of the GPR signal is 1.03 m. Comparing the model cell size 

0.09 m with the wavelength 1.03 m, it is hard to match all the features of the stochastic model especially when the 

contrast is relatively high. For synthetic case studies, the mean absolute error (MAE) in the 2D domain can be 

described as: 

a) Effective source 
wavelets  

b) Frequency spectra 
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𝑀𝐴𝐸 = ∑ ∑ (|𝑅𝑀𝑖,𝑗 − 𝐹𝑊𝐼𝑖,𝑗|)
𝑚
𝑗=1

𝑘
𝑖=1   (𝑘 × 𝑚)⁄   ,                                (5.1) 

where 𝑅𝑀𝑖,𝑗 and 𝐹𝑊𝐼𝑖,𝑗  represent the input and the FWI models located at the cell of 𝑖, 𝑗. 𝑘 and 𝑚 show the cell 

numbers in 2D domain along horizontal and vertical directions, respectively. 

 

 

Figure 5.3. Overview of the FWI results using the different approaches and starting models. Left side shows the 

real input models based on the stochastic simulation (Zhou et al. 2020b). a) Permittivity starting models and 

corresponding FWI results for b)  𝜀𝑟  and c) 𝜎  for the different FWI approaches. The applied effective source 

wavelets are named in titles of the Figures. Image plots of the absolute error between the real input models and final 

FWI results are shown for d) 𝜀𝑟  and e) 𝜎 for the different approaches. The mean absolute error MAE of the entire 

2D domain are shown in parentheses of titles. 
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Following our new introduced approach of the progressively expanded bandwidths of the modelled and observed 

data (PEBDD), we applied the different bandpass filters as shown in Figure 5.1a to the standard effective source 

wavelet 𝑆𝑊𝑅𝑎𝑦  and the observed data. For this study, we choose the optimal 5 iterations for the sub-data FWI by 

comparing with other iterations values. The first sub-data FWI started from the filtered sub-source wavelet and 

filtered sub-observed data with bandwidth 12-16 MHz and the ray-based starting models  𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑦 . Every 5 

iterations the bandpass is increased by 4 MHz until the final cut off frequency of 68 MHz is reached. The final 

permittivity FWI results using the maximum bandwidth sub-data are shown in Figure 5.3a (title is “Updated- 𝜀𝑟”). 

Combining the conductivity starting model with a homogenous value of 13 mS/m, we construct the new starting 

models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤 for the following FWI results and the updated source wavelet. Following the flowchart (Figure 

5.1b red box), the effective source wavelet 𝑆𝑊𝐿𝑜𝑤  is updated using the new starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤 and the 

wavelet  𝑆𝑊𝑅𝑎𝑦 . The effective source wavelet 𝑆𝑊𝐿𝑜𝑤  together with the starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤  is used to 

calculate the FWI as shown in Figure 5.3b and c (second column) using the full dataset. By comparing the RMSE 

curve behavior of this inversion (black graph in Figure 5.4; black graph is covered by red graph before 71 iterations), 

we can notice that first the RMSE is stepwise increased until the full data are used and the RMSE curve with the 

full data is decreased after 23 iterations to a final value of 6.9749 ×10-7. The misfit between the input and resolved 

tomograms (Figure 5.3d and e) and the data misfit (Figure 5.5c) are slightly better than using the standard FWI 

approach.  

These updated FWI results are in the last step considered to update the effective source wavelet a last time 

(𝑆𝑊𝑁𝑒𝑤  in Figure 5.2a and b, red source wavelet) by using the new FWI  𝜀𝑟  results with 𝑆𝑊𝐿𝑜𝑤  in the deconvolution 

approach. The corresponding final FWI results (Figure 5.3 third column) are derived with the 𝑆𝑊𝑁𝑒𝑤  and 

𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤  as the starting models. Note that we also tested the new approach with the both permittivity and 

conductivity starting models based on the maximum bandwidth sub-data (Figure 5.6a). The generated FWI results 

(Figure 5.6b) indicate the results with 𝑆𝑊𝑁𝑒𝑤 ( 𝜀𝑟 + 𝜎) did not improve significantly than the FWI results with the 

𝑆𝑊𝑁𝑒𝑤 and 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤 as the starting models, therefore, we consider in further applications only the permittivity 

updated starting model. For comparisons, we performed the approach of Meles et al. (2011) that only uses the sub-

source wavelets in the FWI, which means using the progressively bandwidth expanded modelled data (PBED), 

while the observed data includes the full bandwidth (Figure 5.3 fourth column). Note that the generated FWI results 

(including 𝜀𝑟  and 𝜎) with the maximum bandwidth sub-source wavelet are the new starting models (only show the 

 𝜀𝑟  starting model with the title "𝑀 −  𝜀𝑟" in Figure 5.3a) for the following FWI with FBD.   
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Figure 5.4. RMSE misfit curves of the different FWI approaches of the synthetic case study I. Blue graph represents 

the RMSE of the standard FWI using the ray-based starting models (iteration numbers are shown at the top with a 

red label). The cyan graph represents the RMSE behavior for the PBED inversion scheme based on Meles et al. 

(2011). Black and red graphs represent the new PEBDD inversion scheme using the 1st updated and 2nd updated 

source wavelet, respectively. The green graph shows the new FWI RMSE according to the updated starting models 

including  𝜀𝑟  and 𝜎 (Figure 5.6) by using PEBDD inversion scheme. Note that on the left side of the dashed lines, 

the progressively expansion of the bandwidths of effective source wavelets and observed data were used, while on 

the right side the FWI was performed considering the full bandwidth of all data. 

The FWI results using the 𝑆𝑊𝑁𝑒𝑤 show the smallest misfit of the resolved tomograms and the smallest final 

RMSE indicating that this approach is able to resolve the input tomograms best. Note that we are able to improve 

the FWI results for the permittivity and the conductivity by 13.7% and 7.7% in comparisons to the standard FWI 

models using 𝑆𝑊𝑅𝑎𝑦 by comparing the mean absolute error MAE (Equation 5.1) values with two approaches, 

respectively (Table 5.1). Especially, the small-scale structures close to the boreholes are clearer and more accurately 

resolved as by the standard method. By comparing the final RMSE curves (only show the max iterations until 101 

or 31; the same for Figure 5.9) of the five different FWI results (green graph based on results shown in Figure 5.6), 

the second-updated FWI results with the wavelet 𝑆𝑊𝑁𝑒𝑤 indicate the best convergence behavior resulting in the 

smallest residual value of 2.8996×10-7 after 50 iterations (red curve in Figure 5.4). Comparisons of 4 different FWI 

 𝜀𝑟  and 𝜎 results in 2D domain (Figure 5.3b and c) show the FWI results with the approach of Meles et al. (2011) 

are unrealistic. By computing the absolute errors between these different FWI results and the real input models in 

2D domain (Figure 5.3d and e), we can find that the second-updated FWI results with 𝑆𝑊𝑁𝑒𝑤 are close to the input 

models indicated by the smallest mean absolute error MAE values (Table 5.1). By investigating the fit between the 

observed and the FWI modelled GPR data, a good fit can be observed for all the FWI results generally (one example 
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shown for transmitter depth 5.69 m in Figure 5.5a and b), but analyzing the differences (Figure 5.5c) in more detail, 

we notice that the FWI using 𝑆𝑊𝑁𝑒𝑤 shows the smallest misfit. 

In order to describe the regional differences of different FWI models, we computed the mean absolute errors 

MAE between the input stochastic models and the FWI models results along the horizontal direction (Figure 5.5d) 

and the vertical direction (Figure 5.5e) for 𝜀𝑟  and 𝜎, respectively. The smallest MAE of the horizontal direction can 

be observed in the central part of the tomograms between 3.0 m and 5.0 m (Figure 5.5d). For all results the MAE 

of the horizontal direction increases towards the boundaries of the inversions domain, meaning the boreholes of the 

cross-section (Figure 5.5d). The MAE in horizontal direction and an increase in MAE towards the boreholes is 

related to the acquisition geometry and the related distribution of the ray coverage between the boreholes. 

Oberröhrmann et al. (2013) showed already that the resolution is highly effect by the acquisition geometry and 

depends on the ray-coverage. The MAE along the vertical direction shows more fluctuations around 2, while the 

results in horizontal direction are smoother. Interestingly to notice is that all the FWI results (except the approach 

based on Meles at al., 2011) show improved results with a smaller MAE in the vertical direction between 4.0 m and 

5.5 m depth in comparison to other depths, where the small-scale structures are located. A small increase of the 

MAE at 5.5 m depth can be noticed at the lower boundary of the small-scale high permittivity zone. For both 

horizontal and vertical directions the FWI results based on the 𝑆𝑊𝑁𝑒𝑤 shows the lowest MAE in contrast to the 

other FWI results. Comparing the FWI results and the related MAE, we can conclude that our new updated PEBDD 

scheme is effective to enhance the complicated synthetic models FWI results for permittivity and conductivity in 

contrast to the standard FWI approach.  
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Figure 5.5. a) Observed data, b) modelled data based on the FWI results, and c) differences between the observed 

and modelled data for one exemplary data set of transmitter location at 5.69 m depth (see input models and black 

arrow for the transmitter location in Figure 5.3). Note the amplitudes in a), b) and c) are normalized to the maxima 

amplitude of the real observed data (shown range from –7×10-1 to 7×10-1). The mean absolute error MAE of the 

permittivity and conductivity between the real input and the different FWI results are shown along d) horizontal 

cross-section and e) vertical direction. 
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For the synthetic case study I, we constructed a second set of starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤( 𝜀𝑟 + 𝜎), which were 

derived from the final FWI  𝜀𝑟  and 𝜎 results using the maximum bandwidth sub-data (Figure 5.6a). Following the 

flowchart (Figure 5.1b), an effective source wavelet 𝑆𝑊𝐿𝑜𝑤( 𝜀𝑟 + 𝜎) (not shown) is updated using the new starting 

models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤( 𝜀𝑟 + 𝜎)  and the wavelet  𝑆𝑊𝑅𝑎𝑦 . This updated wavelet 𝑆𝑊𝐿𝑜𝑤( 𝜀𝑟 + 𝜎)  together with the 

starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤( 𝜀𝑟 + 𝜎) are used in the next step to calculate the FWI results using the full dataset (not 

shown). These updated FWI results (including  𝜀𝑟  and 𝜎) are in the last step considered to update the effective 

source wavelet 𝑆𝑊𝑁𝑒𝑤( 𝜀𝑟 + 𝜎)  (Figure 5.2a and b, green source wavelet). The corresponding final FWI results 

(Figure 5.6b) are derived with the 𝑆𝑊𝑁𝑒𝑤( 𝜀𝑟 + 𝜎)  and 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤( 𝜀𝑟 + 𝜎) as the starting models. By comparing 

the final RMSE curves after 45 iterations (green graph in Figure 5.4), the second-updated FWI results with the 

wavelet 𝑆𝑊𝑁𝑒𝑤 (RMSE = 2.8996×10-7; red curve) indicate a better convergence behavior and a smaller RMSE than 

the new updated results with the 𝑆𝑊𝑁𝑒𝑤( 𝜀𝑟 + 𝜎) (RMSE = 3.8620×10-7; green curve). Computing the absolute 

errors between the FWI results and the input models of the 2D domain (Figure 5.6c), it can be noticed that the new 

updated FWI results with 𝑆𝑊𝑁𝑒𝑤( 𝜀𝑟 + 𝜎) show a less good fit than the second-updated FWI results with 𝑆𝑊𝑁𝑒𝑤 

(Table 5.1). Therefore, we abandon this approach of using both permittivity and conductivity results derived by the 

FWI using the maximum bandwidth sub-data and consider for all other studies the homogeneous 𝜎 starting model 

with 13 mS/m. 

Table 5.1. Comparison of the different FWI approaches for synthetic case study I using the mean absolute error 

MAE between the real input models and the different FWI results for the entire 2D domain, and the root-mean-

squared errors RMSE between observed and modelled radar traces represents residual values. Percentages in 

parentheses indicate the ratio of the single FWI RMSE to the standard FWI RMSE with 𝑆𝑊𝑅𝑎𝑦, while a decreased 

value means the higher improvement efficiency. 

 

 

 

 

 

 

 

 

Real models MAE ( 𝜺𝒓) MAE  (𝝈) RMSE ( 10-7) 

FWI (𝑺𝑾𝑹𝒂𝒚) 
 

2.0056 2.2043 6.9945 (100%) 

FWI (𝑺𝑾𝑳𝒐𝒘) 1.9338 2.2718 6.9749 (99.7%) 

FWI (𝑺𝑾𝑵𝒆𝒘) 
 

1.7309 2.0351 2.8996 (41.5%) 

FWI (𝑺𝑾𝑹𝒂𝒚 +𝑴) 
 

2.5560 2.5430 8.6499 (123.7%) 

FWI (𝑺𝑾𝑵𝒆𝒘( 𝜺𝒓 + 𝝈)) 1.8500 2.1851 3.8620 (55.2%) 
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Figure 5.6. a) The permittivity and conductivity starting models based on the FWI results using the maximum 

expended bandwidth sub-data. b) Corresponding FWI results using the updated starting models and the updated 

effective source wavelet. Effective source wavelet is named in titles. c) Image plots of the absolute error between 

the stochastic input models and the final FWI  𝜀𝑟  and 𝜎 results. The mean absolute errors MAE of the entire 2D 

domain are shown in parentheses of titles. 

5.2.2 Synthetic case study II:  Permittivity starting model beyond the half-wavelength criteria  
 

In the presence of high contrast layers ray-based results are often erroneous and need to be updated to be fulfilled 

the half-wavelength starting model criteria for the standard FWI. Here, we want to demonstrate the potential of the 

PEBDD scheme, which allows also starting models that are beyond the half-wavelength criteria. Therefore, we 

perform a second synthetic case study with the same stochastic input models as before and enforce the permittivity 

starting model to provide modelled data more than half a wavelength away from the measured data by enforcing a 

smaller 𝜀𝑟 model. The changed  𝜀𝑟  starting model was obtained by subtracting three from the normal ray-based 𝜀𝑟  

model in the entire domain (Figure 5.8a, title is “Ray- 𝜀𝑟(-3)”). The conductivity starting model is unchanged with 

a homogenous value of 13 mS/m. We follow the same approach as in the synthetic study case I and obtained the 

different updated effective source wavelets (Figure 5.7) and FWI results (Figure 5.8).  
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Firstly, we estimate the effective source wavelet 𝑆𝑊𝑅𝑎𝑦(−3)  based on the erroneous starting 

models 𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑦−3. We can clearly notice that the 𝑆𝑊𝑅𝑎𝑦(−3) based on the erroneous starting models is shifted in 

time to the right (Figure 5.7a). This is indicating that the permittivity starting model is currently too far away from 

the input models and that the wavelet is compensating for this by starting later in time (blue curves in Figure 5.7a 

and b). Note that a good effective source wavelet needs to start at 0 ns (Klotzsche et al., 2019b). The FWI results 

(first column in Figure 5.8b and c) based on these starting models and the effective source wavelet 𝑆𝑊𝑅𝑎𝑦(−3) fulfill 

the stopping criteria after 24 iterations and no remaining gradient is present. The FWI RMSE curve by using the 

source wavelet 𝑆𝑊𝑅𝑎𝑦(−3) is shown with the blue curve in Figure 5.9. Generally, the resulting FWI results show a 

lower  𝜀𝑟  than the input model demonstrating that the  𝜀𝑟  results trapped in a local minimum of the inversion process 

(Figure 5.8b, first column). This is also indicated by the differences between the input model and FWI results in 

Figure 5.8d, where many regions are present that show differences with more than 3 in permittivity. Note that this 

inversion still fulfills most of the criteria for a good inversion process. The only indicators that the inversion is too 

far away from the input model are provided by the effective source wavelet that is shifted in time and the high MAE 

(not available for experimental data applications). To fulfill the criteria that the effective source wavelet needs to 

start at 0 ns, we shifted in the next step the source wavelet by - 4 ns in the time domain  𝑆𝑊𝑅𝑎𝑦(−3𝑠ℎ𝑖𝑓𝑡) (cyan curves 

in Figure 5.7a and b) to ensure that it starts at 0 ns. The corresponding FWI results (Figure 5.8b and c, second 

column) show a better reconstruction of the permittivity results than the previous inversion and the final RMSE 

value after 30 iterations is 8.3326×10-7 (cyan curve in Figure 5.9). Meanwhile the FWI 𝜎 results are better than the 

FWI 𝜎 results with 𝑆𝑊𝑅𝑎𝑦(−3) (Figure 5.8c, columns 1st and 2nd).  

  

 

Figure 5.7. a) Comparisons of the different effective source wavelets used for synthetic case study II. The source 

wavelet used to generate the ‘observed data’ is indicated with a dashed graph. b) Frequency spectra comparisons 

from 0 to 140 MHz for the five different effective source wavelets. The legend values in b) indicate these effective 

center frequencies for different steps. 

a) Effective source 
wavelets  

b)  Frequency spectra 
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Similar to the previous synthetic case І, we apply the same bandpass filters for the same number of iterations to 

the shifted effective source wavelet  𝑆𝑊𝑅𝑎𝑦(−3𝑠ℎ𝑖𝑓𝑡)  to enhance the reconstruction of the FWI results with the 

PEBDD approach. For the FWI with the different bandpass filters, the first starting models 𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑦−3 are used. 

The final FWI  𝜀𝑟  results using the maximum bandwidth sub-data (Figure 5.8a, Updated-  𝜀𝑟 (-3)) and the 

homogenous 𝜎 model with 13 mS/m are used as the new updated starting models 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤−3. It can be noticed 

that the updated permittivity starting model shows generally higher values in the entire domain and the model is 

much closer to the ray-based model used in the synthetic study I indicating that the PEBDD approach is able to 

enhance the erroneous starting model (compare Figure 5.3a and 5.8a). The updated starting models are considered 

to derive 𝑆𝑊𝐿𝑜𝑤  before performing the FWI. 

The updated FWI results using 𝑆𝑊𝐿𝑜𝑤  show improved permittivity results and more continues structures, 

although the conductivity performs less good indicated by the images differences (Figure 5.8b and c, third column) 

and the higher RMSE value for the final iteration (Figure 5.9, black graph). The final permittivity results of this 

inversion and 𝑆𝑊𝐿𝑜𝑤  are used to update the effective wavelet a last time to 𝑆𝑊𝑁𝑒𝑤  (Figure 5.7a and b, red source 

wavelet). The corresponding FWI results (Figure 5.8b and c, fourth column) after 50 iterations are derived with the 

𝑆𝑊𝑁𝑒𝑤 and 𝑀𝑜𝑑𝑒𝑙𝑁𝑒𝑤−3 as the starting models. These results show an improved reconstruction of the permittivity 

and the conductivity results in comparison to the previous FWI results. Furthermore, comparisons of the absolute 

error MAE tomograms for different FWI  𝜀𝑟  and 𝜎 results in 2D domain (Figure 5.8d and e) show that the second-

updated FWI results with the wavelet 𝑆𝑊𝑁𝑒𝑤 are the most accurate reconstruction of the input models. 

The MAE tomograms and behavior of the RMSE curves are the smallest for the second-updated FWI results 

with the wavelet 𝑆𝑊𝑁𝑒𝑤 and are indicating the best FWI results (more details in Table 5.2). Analyzing the misfit 

between the measured and FWI modelled data shows that the second-updated FWI results provides the best fit and 

indicates that this inversion obtained a model that describe the data well and best, while for the other three FWI 

results a significant misfit can be observed (Figure 5.10a and b, exemplary for transmitter at 5.69 m depth). To 

describe the regional differences of different FWI models, we compute the MAE between the stochastic input 

models and the FWI models results along the horizontal direction (Figure 5.10c) and the vertical direction (Figure 

5.10d) for 𝜀𝑟  and 𝜎, respectively. Thereby, we can notice that the FWI  𝜀𝑟 results with 𝑆𝑊𝑅𝑎𝑦(−3) display the largest 

MAE values for both directions. The FWI 𝜎 results with 𝑆𝑊𝐿𝑜𝑤  (black curves) have a large MAE, which implies 

that they cannot be resolved by only using the first-updated effective source wavelet in time when the starting 

models are too far away from the real models. Finally, we can conclude that the progressively expanded bandwidth 

scheme can not only improve the FWI results, but also that it is able to retrieve accurate FWI results for starting 

models more than a half-wavelength away from the measured data. Therefore, a lot of previous detailed work to 

construct good starting models for experimental GPR data can be reduced and the application to field data could be 

much easier.   
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Figure 5.8. Overview of the FWI results using different approaches. Left side real input models for the stochastic 

simulation. a) Permittivity starting models, and corresponding FWI results for b) 𝜀𝑟  and c) 𝜎 for the different FWI 

approaches. The applied effective source wavelets are named in titles of the Figures. Image plots of the absolute 

error between the input models and final FWI results for d) 𝜀𝑟  and e) 𝜎 for the different approaches. The mean 

absolute error MAE of the entire 2D domain are shown in parentheses of titles. 
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Figure 5.9. RMSE misfit curves of the different FWIs for synthetic case study II. The blue and cyan graphs represent 

the FWI RMSE convergence behaviors using the source wavelets 𝑆𝑊𝑅𝑎𝑦 (−3)  and 𝑆𝑊𝑅𝑎𝑦 (−3 𝑠ℎ𝑖𝑓𝑡)  based on 

enforcing a smaller 𝜀𝑟 starting model (iterations are from 1 to 31 at red label on the top), respectively. Black and 

red graphs represent the new PEBDD inversion scheme using the 1st updated and 2nd updated effective source 

wavelets, respectively. Note that before the dashed lines, the progressively expanded of the bandwidths of source 

wavelets and observed data are used, while on the right side the FWI with the full bandwidth of all data is performed. 

Table 5.2. The mean absolute error MAE between the real input models and the different FWI models for the entire 

2D domain (synthetic case study II). RMSE represents residual values between observed and modelled radar traces. 

Percentages in parentheses indicate the ratio of the other FWI RMSE to the standard FWI RMSE with 𝑆𝑊𝑅𝑎𝑦 (−3), 

the lower value means the higher improvement efficiency. 

 

 

 

 

 

 

 

 

Real models MAE ( 𝜺𝒓) MAE  (𝝈) RMSE ( 10-7) 

FWI (𝑺𝑾𝑹𝒂𝒚 (−𝟑)) 
 

3.6152 2.3394 9.1843 (100%) 

FWI (𝑺𝑾𝑹𝒂𝒚 (−𝟑𝒔𝒉𝒊𝒇𝒕)) 
 

2.4839 2.2683 8.3326 (90.7%) 

FWI (𝑺𝑾𝑳𝒐𝒘) 2.1968 3.1050 18.366 (200.0%) 

FWI (𝑺𝑾𝑵𝒆𝒘) 
 

2.1027 2.0498 3.6288 (39.5%) 
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Figure 5.10. a) Modelled data based on the FWI results, and b) differences between the observed and modelled data 

for the transmitter at 5.69 m depth (see input models and black arrow for the transmitter location in Figure 5.8). 

Note the amplitudes in a) and b) are normalized to the maxima amplitude of the real observed data (shown range 

from –7×10-1 to 7×10-1). The mean absolute error MAE of the permittivity and conductivity between the input 

models and the different FWI results are shown along d) horizontal cross-section and e) vertical direction.                         
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5.3 EXPERIMENTAL GPR DATA STUDIES 
 

As final test, we applied the new PEBDD approach to an experimental dataset from the Krauthausen test site in 

Germany. The Krauthausen study site is located approximately 10 km northwest of the city of Düren in Germany 

and a detailed description of the site can be found in Vereecken et al. (2000). In last decades, many hydrological 

and geophysical field techniques have been applied in this site to study the aquifer spatial distribution and flow 

characteristics, including flowmeter tests (Li et al., 2008), tracer experiments (Vereecken et al., 2000; Vanderborght 

and Vereecken, 2001), cone penetration tests (Tillmann et al., 2008), and GPR measurements (e.g., Gueting et al., 

2015). Here, we utilized the measured crosshole GPR data of Gueting et al. (2015) and Zhou et al. (2020b) using 

200 MHz antennae (Sensors & Software) to test the PEBDD FWI scheme for 4 cross-sections between 5 boreholes. 

The GPR data were acquired using a semi-reciprocal acquisition setup with a transmitter and receiver spacing of 

0.5 m and 0.1 m, respectively.  

Before the full-waveform inversion of experimental GPR data can be performed, some pre-processing steps are 

necessary (more details can be found in Klotzsche et al. 2019b). After applying a standard dewow filter and defining 

the borehole coordinates for the antennae positions, we need to determine an accurate time-zero of the received 

radar signals. Here, we employed an improved time-zero correction method based on the ZOP-MOG cross-

correlation method (Oberröhrmann et al., 2013). The ray-based method was applied for the four GPR cross-sections 

to obtain the ray-based permittivity starting models (Figure 5.11a). Similar to previous studies, the electric 

conductivity starting models were chosen to be homogenous with 13 mS/m in the entire domain (not shown). In 

addition, to reduce the influence of 3D wave propagation phenomena, the 3D data needs to be transformed into 2D 

according to the approach by Bleistein (1986). The approach is available under assuming both the subsurface and 

scattering are invariant in one coordinate direction, antennae are line sources, and polarization affects are not 

properly accounted for (Watson et al., 2016). The effective source wavelet 𝑆𝑊𝑅𝑎𝑦 (Figure 5.12, dashed curves) is 

estimated based on the ray-based starting models according to the standard procedure. Using the wavelet 𝑆𝑊𝑅𝑎𝑦 

and the corresponding starting models, the standard FWI is performed (Figure 5.13a and c). Note that in contrast to 

Gueting et al. (2015) the time-zero correction of the GPR data was improved and corrected (more details in the 

Corrigendum Klotzsche et al. 2020). Therefore, the final standard FWI results show generally higher permittivity 

of about 3 - 4 and lower electrical conductivity results, while the structures are similar.  
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Figure 5.11. a) Ray-based  𝜀𝑟  results and b) FWI  𝜀𝑟  results using the PEBBD approach. Note that results shown in 

b) are used as starting models for the full bandwidth inversion of the experimental Krauthausen data. And a 

homogeneous conductivity starting model of 13 mS/m was used for all inversions. 

Similar to the previous synthetic cases studies, we filtered the effective source wavelets and corresponding 

measured GPR data by using the PEBDD scheme. The smallest filtered sub-data bandwidths are 12-16 MHz for 

four cross-sections. The bandpass widths are increased every 5 iterations by 4 MHz until the maximum bandwidth 

sub-data is reached. Note that we selected different highest cut corner frequencies according to center frequencies 

of the different cross-section data sets. For the cross-sections B38-31 and B62-30 we used 68 MHz and for the 

datasets of B32-38 and B31-62 we applied 72 MHz. The final FWI  𝜀𝑟  results using the maximum bandwidth sub-

data (Figure 5.11b) and the homogenous 𝜎 model were considered as the updated starting models and applied in a 

following FWI under the full bandwidth data. Following the flowchart in Figure 5.1b, the effective source wavelet 

𝑆𝑊𝐿𝑜𝑤  is updated using the new starting models and the effective source wavelet 𝑆𝑊𝑅𝑎𝑦. The updated source 

wavelets 𝑆𝑊𝐿𝑜𝑤  together with the new starting models are used to calculate the FWI results (not shown). Finally 

the second-updated effective source wavelets 𝑆𝑊𝑁𝑒𝑤 are derived using the new FWI  𝜀𝑟 results and 𝑆𝑊𝐿𝑜𝑤  in the 

deconvolution approach (Figure 5.12, solid curves). The corresponding updated final FWI results (Figure 5.13b and 

d) show very similar structures as the standard FWI results, but the structures are more continues closer to the 

boreholes. The RMSE values between the observed and modelled data based on selected different FWI models 
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show that the updated FWI results are smaller than of the standard FWI (Table 5.3) indicating improved results of 

the updated FWI. 

 

   

Figure 5.12. a) Comparisons of the effective source wavelet estimation based on ray-based models (dashed graphs) 

and the updated source wavelets of the PEBBD scheme (solid graphs) for the four cross-sections in time domain 

for the experimental data of the Krauthausen test site. b) Corresponding frequency spectra of standard and updated 

effective source wavelets. The legend values in b) indicate these effective center frequencies for different cross-

sections. 

 

 

 

b)  Frequency spectra 

a) Effective source wavelets  
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Figure 5.13. Standard FWI results of a) 𝜀𝑟 and c) 𝜎 of the four cross-sections. Updated FWI results of b)  𝜀𝑟  and d) 

𝜎 based on the new  𝜀𝑟  starting models (Figure 5.11b) and corresponding updated new effective source wavelets 

(solid graphs in Figure 5.12). Dashed lines mark the CPT data locations between the boreholes. 
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To validate the different FWI results, we compared them with porosity data based on cone-penetrations test 

(CPT) measurements (Zhou et al., 2020b). Note that the CPT data was acquired mostly in the center of the cross-

sections. First of all, we converted the porosity values ∅ of the CPT to the relatively permittivity using the three 

phase complex refractive index model (CRIM) in saturated zone (e.g., Gueting et al., 2015), 

                                                   𝜀𝑟 = [∅ × (√  𝜀𝑓 − √  𝜀𝑠) + √  𝜀𝑠]
2
 .                                                        (5.2) 

Thereby, 𝜀𝑠 and 𝜀𝑓 are the permittivity of the solid and the fluid, respectively. Considering a water temperature of 

10℃ we use a 𝜀𝑓 of 84 and we apply a 𝜀𝑠 value with 4.5 based on literature values of quartz (e.g., Eisenberg and 

Kauzmann, 2005; Carmichael, 2017). We compared the two FWI 𝜀𝑟  results with the CPT data along the vertical 

profile locations (dashed lines in Figure 5.13). Comparisons of these 1D vertical results indicate that the updated 

FWI  𝜀𝑟 results (Figure 5.14, red lines) are closer to the CPT data (Figure 5.14, black lines) than the standard FWI  𝜀𝑟  

results (Figure 5.14, blue lines). Quantitative comparisons are described in Table 5.3, where we computed RMSE 

and correlation coefficient R with larger than 0.8 between the CPT and two FWI results. In general, the updated 

FWI results with the PEBDD scheme are better than the standard FWI results indicating that the new PEBDD 

approach improved the experimental GPR FWI results. Note that the RMSE value (for 1D CPT) of the updated 

FWI for boreholes 38-31 is larger than the standard FWI (green value in Table 5.3). A possible explanation could 

be that the standard FWI was already very good because many studies have been already performed with this data 

set and many optimizations have been performed with the standard approach. For the other data sets less intense 

tests have been applied for the standard FWI. 
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Figure 5.14. Permittivity comparisons derived from cone-penetration test (CPT) data (black), standard FWI 𝜀𝑟  

results (blue) and the updated new FWI  𝜀𝑟  (red) results along CPT profiles between boreholes (see Figure 5.13 for 

locations). 

Table 5.3. RMSE (10-7) represents residual values between observed and modelled radar traces. Percentages in 

parentheses indicate the ratio of the new FWI RMSE to the standard FWI RMSE with 𝑆𝑊𝑅𝑎𝑦 , the lower value 

means the higher improvement efficiency. Correlation coefficient R and RMSE between 1D  𝜀𝑟  FWI and the CPT 

data (CPT porosity has been converted into  𝜀𝑟) represent the reliability of the FWI results, the larger R and the 

lower RMSE values mean the FWI results are closer to the real values. 

 

    32-38 
(5.13 m) 

38-31 
(4.99 m) 

31-62 
(3.83 m) 

  62-30 
 (6.16 m) 

 

Standard FWI RMSE (10-7) (𝑺𝑾𝑹𝒂𝒚)  8.5055 9.4156 9.1763 7.0538  

New FWI  RMSE (10-7) (𝑺𝑾𝑵𝒆𝒘)  6.8210 

(80.2%) 

7.1789 

(76.2%) 

7.8503 

(85.5%) 

5.4136 

(76.7%) 

 

R  (Sta-FWI:CPT)  0.8105 0.9032 0.8301 0.8830  

R (New-FWI:CPT )  0.8409 0.8973 0.8408 0.8723  

RMSE (Sta-FWI:CPT)  2.6807 1.9307 2.5131 2.1026  

RMSE (New-FWI:CPT )  1.9054 2.1503 1.5224 1.7333  
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5.4 CONCLUSIONS 
 

We have presented a new crosshole GPR FWI approach using progressively expanded bandwidth of the measured 

and the modelled data (PEBDD) with frequency bandpass filters to improve the reconstruction of the subsurface 

properties. The new PEBDD scheme was applied to two synthetic case studies and an experimental data set from 

the Krauthausen test site in Germany. Thereby, we have demonstrated that the new scheme is able to improve the 

FWI results by taming the problem of the inversion to be easily trapped in local minima caused by non-linear and 

ill-posed problems. The introduced PEBDD scheme applies designed bandpass filters to the effective source wavelet 

and the observed data. Thereby, the different sub-data sets with various bandwidths are progressively expanded 

until the center frequency of the data is reached. The FWI results of this PEBDD provide an updated  𝜀𝑟  starting 

model, which is used to update an effective source wavelet in the deconvolution approach and to perform the FWI 

with full bandwidth data. In further, we update the effective source wavelet  𝑆𝑊𝑁𝑒𝑤 . Considering this updated 

effective source wavelet and the starting models based on the PEBDD scheme, the resulting FWI results show a 

better reconstruction of the medium properties and the final root-mean-square values are decreased in contrast to 

the standard FWI.  

Two synthetic cases have proven that the PEBDD scheme is robust and can also reconstruct the permittivity and 

electrical conductivity results for starting models that are more than half a wavelength away from the measured 

data. To fulfill the starting models criteria that the modelled data need to be within half a wavelength of the measured 

data, normally need an accurate processing of the data and a detailed understanding of trained user. Problems arising 

from erroneous starting models are sometimes hard to notice and therefore an improved approach such as the 

PEBDD can significantly improve the applicability of the FWI. For the experimental GPR data, we have computed 

the standard and the updated FWI results using the PEBDD scheme for four cross-sections. We compared the 

different FWI results with CPT data from the center of the cross-sections, where the updated FWI results provided 

the best correlation to the CPT data. Finally, we concluded that the progressively expanded bandwidth approach 

can not only improve the FWI results, but also that it is able to retrieve more accurate FWI results also for starting 

models more than a half wavelength away from the measured data. Therefore, a lot of previous detailed work to 

construct good starting models for experimental GPR data can be reduced and the application to field data will be 

much easier. In future work, we will also investigate the possibility to apply the new PEBDD approach to other 

frequencies such as for 100 MHz antennae and to different test sites.  
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Chapter 6 

Conclusions and Outlook 
 

In this chapter, we summarized the main findings from each chapter and presented some general conclusions for 

the application of crosshole GPR full-waveform inversion with the improved FWI reconstruction. Some future 

research directions and ideas are shown in the outlook. 

 

6.1 CONCLUSIONS 
 

During this thesis, our main goal was to improve the full-waveform inversion for crosshole GPR data. For this, we 

focused on two aspects: the relative permittivity 𝜀𝑟  starting model and the effective source wavelet. The most 

applied approach is to generate a starting 𝜀𝑟  model based on the ray-based inversions. In special cases, the ray-

based inaccurate starting 𝜀𝑟  model possible causes the FWI trapped into a local minimum. To improve starting 

models, an updated starting  𝜀𝑟  model using a low iteration FWI result that is confirmed by the amplitude analysis 

results is considered in the FWI. Furthermore, the approach to progressively expand the bandwidths of both modeled 

and observed data (PEBDD) is to enhance the starting 𝜀𝑟  model. The second aspect is to improve the effective 

source wavelet estimation. The conventional effective source wavelet has a small bandwidth and is estimated and 

corrected using ray-based starting models. Expanding the bandwidth of an effective source wavelet is an approach 

of improving the FWI resolution. In this thesis, we applied Cone Penetration Test data (CPT), and the PEBDD 

scheme to enhance the effective source wavelet in the forward modeling and the inversion. 

In Chapter 3, experimental crosshole GPR data at an alluvial aquifer located near the Meuse River in Belgium 

was analyzed by amplitudes analysis. The results displayed the approximate locations of waveguides with high 

porosity that were indicated by the energy maxima of GPR trace profiles (WGT I). Meanwhile, local minima of 

GPR trace energy profiles were either caused by waveguide boundaries due to EM wave total reflection or by the 

high conductivity of clay (WGT II) that causes an increased attenuation. For the FWI we updated the  𝜀𝑟  starting 

model using a low iteration (10) FWI result, which included the waveguide structures that corresponded to the 

results of the amplitude analysis. Meanwhile, we kept the traditional 𝜎 starting model with a homogeneous value 

(13 mS/m). By using the deconvolution method, an updated effective source wavelet, which contains waveguides 

information, was determined. Finally, the FWI results using the updated  𝜀𝑟  starting model and the new effective 

source wavelet presented the waveguide structures with a higher resolution. We inverted nine 2D intersecting GPR 
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planes individually, and combined them to characterize the alluvial aquifer in 3D domain. By computing the 

correlation coefficient R for intersecting acquisition planes, we showed that the updated FWI provides results that 

are more consistent. The 3D FWI results were able to show the spread and location of the high-permittivity layers 

at depths from 7.5 m to 9.5 m in all nine cross-sections (WGT I).  Further, continuous higher conductivity zones 

above 4 m were detected in all cross-sections that aligned with the WGT II features. Compared to the previous heat 

tracer test by ERT tomography, the updated FWI results provided better consistency with a high hydraulic 

conductivity zone with high porosity and gave some reasonable explanations for the plume splitting that occurred 

in the heat tracer test. 

In Chapter 4, we improved the 𝜀𝑟  FWI results by using 1D vertical CPT data. First, we compared filtered CPT 

data and filtered  𝜀𝑟  FWI results, which were filtered by a lowpass filter, and found a satisfying consistency. 

Meanwhile, some differences between two filtered results implied the possibility to improve the FWI results 

resolution. Therefore, we constructed a filter based on the two filtered 1D results, then we used the filter to amplify 

the  𝜀𝑟 FWI results in the whole 2D domain. Further, we updated the effective source wavelet by replacing the ray-

based  𝜀𝑟  results with the 2D wavenumber-amplified FWI  𝜀𝑟  (WA-FWI) results. The updated source wavelet had 

a broader bandwidth and was used to perform the new FWI combining with the traditional starting models. In most 

cases, we needed to repeat the process of effective source wavelet updating and the FWI conduction by using the 

updated  𝜀𝑟  FWI results to achieve an even better fit between measured and modeled data. The new scheme was 

verified using a synthetic stochastic model of the Krauthausen test site, which was constructed based on CPT 

parameters. In addition, we applied our new approach to field experimental GPR data of five pair boreholes. Similar 

to the synthetic results, the updated effective source wavelets showed a broader bandwidth than traditional source 

wavelets. Finally, we compared the CPT data and the updated  𝜀𝑟 FWI results, both of them are full wavenumber 

information, and were able to obtain smaller RMSE values. These results demonstrated the improvement of the 

updated  𝜀𝑟  FWI results under neglecting conductivity.   

In Chapter 5, inspired by Meles et al. (2011), we focused on the non-linearity problem of full-waveform 

inversion for complicated synthetic models and experimental crosshole GPR data. Different from the approach of 

Meles et al. (2011), we used an approach named progressive expansion bandwidth of the modeled data and observed 

data (PEBDD) to construct the new starting models and a new effective source wavelet for the 2D full-waveform 

time-domain inversion. The approach can be divided into two processes. First, we utilized designed bandpass filters 

to divide the traditional effective source wavelet and observed data. Thereby, we obtained different sub-source 

wavelets and sub-observed data with various bandwidths. The FWI was performed starting from the smallest 

bandwidth data. With the sub-data bandwidth increasing until the selected maximum bandwidth, we computed 

various FWI results ( 𝜀𝑟  and 𝜎) when we considered the previous bandwidth FWI results as the next starting models. 

Note starting models are updated for both  𝜀𝑟  and 𝜎 under various sub-data in the first process. The second process 

is the performance of the FWI using the full frequency data (FBD) information. Using the deconvolution method, 
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a new effective source wavelet was generated by being updated twice. The low and high frequency parts of the 

effective source wavelet were corrected with the first and second updated, respectively. Note that the starting 𝜎 

model is always a homogenous value with 13 mS/m in the second process when we correct the source wavelet and 

perform the FWI. Two synthetic case studies indicate that the progressively expanded bandwidth scheme can not 

only improve the FWI results, but also that it is able to retrieve accurate FWI results also for starting models more 

than a half-wavelength away from the measured data. Therefore, a lot of previous detailed work to construct good 

starting models for experimental GPR data can be reduced and the application to field data will be much easier. In 

addition, we applied the PEBDD scheme to four experimental GPR cross-sections of the Krauthausen test site. The 

comparison of RMSE and R as the traditional FWI results, the updated FWI results, and the CPT data showed that 

the updated FWI results with the PEBDD scheme achieve a better fit with the real data. 

In conclusion, this thesis demonstrates that crosshole GPR data with the full-waveform inversion method is an 

effective tool to construct the subsurface aquifer with sub-wavelength resolution for both permittivity and 

conductivity. And the starting models and the effective source wavelet are important for the final FWI resolution. 

Combining the FWI and the amplitude analysis results, we distinguish two types of waveguide structures. Through 

using the CPT data, the updated effective source wavelet with a larger bandwidth enable enhancing the FWI results. 

This scheme possible extends to seismic domain in future. To tame the non-linearity issue of the FWI algorithm, 

the PEBDD scheme is applied for complicated synthetic models and experimental GPR data. To compare the 

standard FWI, the updated FWI using the CPT data, and the updated FWI with the PEBDD scheme, we draw three 

different FWI results for boreholes 38-31 in Figure 6.1. In which, the standard FWI with final RMSE value after 22 

iterations is 9.42×10-7, while the updated FWI using the CPT data with the smallest final RMSE value after 30 

iterations is 6.49×10-7. The FWI results using the PEBDD scheme show that final RMSE value after 22 iterations 

is 7.18×10-7. The final goal is to improve our ability to detect small-scale structures in the subsurface, in further to 

better forecast and protect underground water resources.   
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Figure 6.1. Standard FWI results of a) 𝜀𝑟  and b) 𝜎 for the cross-section of B38-31. Updated FWI results of c)  𝜀𝑟  

and d) 𝜎 based on the amplified approach according to the CPT data in Chapter 4. e) and f) represent the updated 

FWI  𝜀𝑟 and 𝜎 results using the PEBDD scheme in Chapter 5, respectively.  

 

  

               a) Standard FWI 𝜀𝑟                 b) Standard FWI 𝜎

In Chapter 4:   c) Updated FWI 𝜀𝑟                d) Updated FWI 𝜎

In Chapter 5:  e) Updated FWI 𝜀𝑟                  f) Updated FWI 𝜎
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6.2 OUTLOOK 
 

Following with the aforementioned improved approach, we will also investigate the possibility to apply the new 

PEBDD approach to other frequencies such as for 100 MHz antennae and to different test sites in the future work. 

In addition, we should improve the starting models by using other approaches, such as CPT, ERT, and seismic data. 

Furthermore, the previous work on the crosshole GPR data FWI inspires two ideas for the future work. First of all, 

recovering low-wavenumber information of the starting models based on high-frequency observed data by applying 

the approach of angle difference identity for cosine (ADIC) (Wang et al., 2019). The second one is to improve the 

computation of gradient directions in the FWI process triggered by the approach of seismic staining algorithm (Chen 

and Jia, 2014; Hu et al., 2016; Li and Jia, 2017). 

 

6.2.1 Improvement of starting models by applying ADIC 
 

The lack of low-frequency information in the crosshole GPR data causes the GPR FWI to suffer from local minima 

convergence and serious nonlinearity. When the saturated aquifers include high contrast layers, missing low 

frequency information especially affects the FWI results due to the ray-based inversion starting models differ a lot 

from the true values. To enhance the low-frequency information, Wang et al. (2019) applied the approach of angle 

difference identity for cosine in the seismic data. By building an internal connection between high- and low-

frequency signals, a plausible recovery of the low-wavenumber velocity can be obtained from the high-frequency 

information (Wang et al., 2019). For crosshole GPR data, because the interfering noises in the field measurement 

process, the low frequency information in measured data is easy to be contaminated. In addition, the electromagnetic 

pluses are common high frequency, which causes more pronounced phenomena of high-frequency suppression of 

low-frequency.    

To recovery the low-wavenumber permittivity starting model from crosshole GPR observed data, we should 

invert the low-wavenumber model with a new shifted effective source wavelet. The amplitude spectrum of the new 

source wavelet should be moved on the left some suited frequencies to improve the low frequencies amplitude 

values. The results of an updated FWI by using the shifted source wavelet provide the full new starting models with 

enough low-wavenumber information. In further, we improve our ability to detect small high contrast layers in the 

saturated aquifers. 
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6.2.2 Improvement of FWI results by using staining algorithm  
 

The gradient of the misfit function for the FWI for crosshole GPR data is estimated by correlating the forward 

propagating synthetic wavefield and the backwards propagating residual wavefield (Taratola, 1984). While the 

forward modeling data and the back propagating receiver data are correlated in the reverse time migration (RTM) 

(Hu et al., 2016). Therefore, there are many similarities when the back propagating receiver data are replaced by 

the backwards propagating residual wavefield. In addition, the staining algorithm has proven to practically effective 

and enhance the RTM images in local areas with amplitude-preserved. In other words, we are able to improve the 

RTM images in some blind zones without illuminations. Therefore, we would suggest for the future to use the 

staining algorithm to improve local areas gradients and thereby enhance FWI results. Considering the limitation of 

2D time-domain FWI of crosshole GPR data, which can only provide rough FWI results near boreholes, top, and 

bottom areas, we possible acquire high inversion resolution in these zones using the staining algorithm. In addition, 

the staining algorithm with amplitude-preserved probably improve the FWI conductivity results. 
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Appendix A 

Corrigendum to “Imaging and characterization 
of facies heterogeneity in an alluvial aquifer using 
GPR full-waveform inversion and cone 
penetration tests” 1 

 
The authors regret that an error has occurred and the following corrections need to be recorded regarding the above 

cited paper. After reanalyzing the crosshole GPR data, we found an error in the automatic picking routine for 

estimating the time zero of the GPR data. After correction, the GPR data was shifted in time affecting the calculated 

permittivities  𝜀𝑟 and electrical conductivities 𝜎  (Original Figure 3 and 4). Using the corrected time zero, the 

permittivity and conductivity results of the full-waveform inversion were updated. The comparison between the 

original and correct tomograms now show that the permittivity and electrical conductivity results are approximately 

4 higher and 10 mS/m lower, respectively (see Figure A.1). Using this correction the full-waveform inversion results 

are in a better agreement with the CPT data (Figure A.2). It is Interesting to note that the constant shift of -0.08 that 

was applied previously to align the porosity CPT data with the FWI results is not necessary anymore. The porosity 

values based on the updated FWI results are now in a very good agreement with the original values of Tillman et 

al. (2008) indicated by a correlation coefficient of 0.91, which was before 0.80 (Figure A.2a). Furthermore, the 

updated electrical conductivity FWI results are closer to the electrical conductivity results based on the CPT data 

(Figure A.2b). We expect only minor changes in the results using the cluster analysis to derive the facies of the 

aquifer indicating that the main conclusions of the paper remain valid.  

 

 
 

1adapted from Klotzsche, A., Z. Zhou, J. Schmäck, J. van der Kruk, J. Vanderborght, and H. Vereecken, 2020, Corrigendum 
to “Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone 
penetration tests”, Journal of Hydrology, submitted. 
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Figure A.1. Comparison for the exemplary transect B38-B31 of the original a) permittivity and b) electrical 

conductivity full-waveform inversion results, and, the corrected c) permittivity and d) electrical conductivity results 

using the corrected time zero estimation. Please note the different color scales of the tomograms.     

 

Figure A.2. Comparison of the old (grey) and corrected (black) cross-plots between the FWI results and CPT data. 

Cross-plots of a) porosities and b) electrical conductivities derived from CPT and GPR data. Results based on the 

corrected FWI are shown in black for the exemplary transect B38-B31 for which co-located porosity and electrical 

conductivity data of the CPT 101 exist. Data based on Gueting et al. (2015) presented in grey for the a) five and b) 

two profiles and corresponding co-located CPT porosity and electrical conductivity data, respectively. Regression 

lines through all data points are depicted in grey and black for old and corrected data, respectively. The 

corresponding straight-line equations are given at the bottom of the cross plot, r is the correlation coefficient. 
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Appendix B 

Improved resolution of ground penetrating radar 
full-waveform inversion by using cone 
penetration test data: A synthetic study1 

 
Crosshole ground penetrating radar (GPR) full-waveform inversion (FWI) has shown to be a powerful tool 

providing decimeter-scale high resolution images of the subsurface. To enhance this resolution even more, we 

present here a new approach that uses the cone penetration test (CPT) data acquired between the two boreholes to 

improve the bandwidth of the effective source wavelet by using wavenumber-amplified FWI models. A synthetic 

model is generated using a stochastic simulation based on measured parameters at Krauthausen. After generating 

forward modeling data (called true data) based on the synthetic models, white noise is added in true GPR data. The 

standard full-waveform inversion using a ray-based start model and the updated results based on the CPT data are 

compared and show that the new effective source wavelet based on CPT data can improve the resolution of the FWI 

results. 

 

B.1 INTRODUCTION  
 
 
Crosshole GPR has often been used in hydrogeological investigations to obtain cross-sectional information about 

porosity, soil water content and connectivity of structures (Klotzsche et al., 2018). Compared with conventional  

crosshole GPR tomographic inversions based on geometrical ray theory (e.g., Dafflon et al., 2011 and 2012), full- 

waveform inversion (FWI), which uses the entire waveform, provides higher resolution images of the subsurface 

properties such as relative permittivity  𝜀𝑟  and electrical conductivity 𝜎 (Ernst et al., 2007a). In contrast to crosshole 

GPR, CPT measurements provide accurate and high resolution porosity results along the 1D vertical probing 

location (Tillmann et al., 2008). Combining the results and resolution of both methods can enhance the 

understanding of the investigated aquifer.  
 

1adapted from Zhou, Z., Klotzsche, A., Güting, N., Haruzi, P., Vereecken, H. and Kruk, J.V.D., 2019. Improved resolution of 

ground penetrating radar full-waveform inversion by using cone penetration test data: A synthetic study. In SEG Technical 

Program Expanded Abstracts 2019 (pp. 2898-2902). Society of Exploration Geophysicists. 

https://doi.org/10.1190/segam2019-3215765.1 
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Here, we present an approach that combines the standard FWI with the CPT data to enhance the resolution of 

the FWI results. First, we evaluate the reliability of the obtained FWI images by comparing them with CPT data 

acquired between the boreholes. The CPT data provides water content values or for a fully saturated porous media 

the porosity. The FWI derived permittivity values can be transformed into porosity using the Complex Refractive 

Index Model (CRIM) (e.g., Gueting et al., 2015). Due to the differences in resolution, the overlapping wavenumber 

information of the CPT and GPR FWI data are compared (see Yang et al., 2013 for more details) along the vertical 

locations where the CPT data coincides with the GPR FWI results. Similar to the approach of Yang et al. (2013), 

we compute a wavenumber filter based on the CPT data and apply it to the FWI results in wavenumber domain. 

Note that the filter was only computed in the lower vertical wavenumbers domain and higher spatial frequency 

information is neglected. In the process of computing the filter, a smoothing function was used to smooth out any 

fluctuating amplitudes. 

After applying the wavenumber domain filter to the FWI results to obtain a wavenumber-amplified FWI (WA-

FWI) model that includes a broad bandwidth, the effective source wavelet is updated such that only consistent high 

frequency information remains. To quantitatively compare the conventional FWI with the new FWI results using 

the updated effective source wavelet, we compute the root mean squared error (RMSE) and the correlation 

coefficient (R) along each vertical profile between the boreholes. We test this new approach on GPR data modeled 

for a stochastic representation of the Krauthausen test site in Germany. 

 

B.2 STOCHASTIC SIMULATION MODEL STUDY  
 
We constructed realistic models (Figure B.1a and b) of relativity permittivity  𝜀𝑟  and electrical conductivity σ using 

a stochastic simulation (Sequential Gaussian Simulation) based on Haruzi et al. (2018). A semi-reciprocal 

acquisition setup was used with transmitter and receiver spacing of 0.5 m and 0.1 m, respectively. In Figure B.1, 

black circles and crosses show the exact transmitter and receiver positions within the boreholes (see Figure B.1a 

and b).  

Realistic synthetic GPR data are generated by performing the finite-difference time-domain (FDTD) modeling 

using the stochastic models and a real wavelet. The real wavelet is similar as the wavelet of GPR data measured by 

200 MHz antennas at Krauthausen, which has an approximate center frequency of 70 MHz (not shown). Note that 

we added 10% white noise to the true synthetic GPR data (see Figure B.1g).  
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Figure B.1. a) And b) show the input models based on stochastic simulation for  𝜀𝑟 and σ, respectively, to generate 

the true synthetic GPR data. c) And d) show the ray-based results for  𝜀𝑟  and a homogeneous σ model. Here, the 

ray-based results were inverted based on true GPR data including white noise. e) And f) show the FWI results 

(iterations=30) based on ray-based models and true GPR data with noise. Dashed lines indicate the location of the 

CPT data, which will be used to compute the filter and to amplify wavenumber of FWI results. g) Shows the true 

synthetic GPR data containing 10% white noise.  

 

e) f) 

g) 

b) a) 

c) d) 
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B.3 FULL-WAVEFORM INVERSION RESULTS  
 
 
The FWI for crosshole GPR data is based on a 2D FDTD solution of Maxwell's equations (e.g., Klotzsche et al., 

2012, 2013). The ray-based method has been used to obtain a starting model for  𝜀𝑟 (Figure B.1c) for the FWI, 

whereas for the conductivity we choose a homogenous model with 13 mS/m (Figure B.1d, similar to Gueting et al., 

2015). During the inversion process, the misfit function is computed by subtracting the synthetic data from the 

observed data. The gradient is determined by using a zero-lag cross-correlation of the forward propagated synthetic 

wavefield with the backward propagated residual wavefield. To minimize inversion artefacts in the vicinity of the 

boreholes, the approach of 3 cells (each cell: 9 cm) with a gradient preconditioning (van der Kruk et al., 2015) is 

employed in this paper. 

Before performing the FWI, an effective wavelet is estimated. Using an approximated wavelet �̂�𝑘(𝑓) obtained 

by analyzing horizontal rays (Klotzsche et al., 2010); synthetic data �̂�𝑠𝑦𝑛(𝑓) is calculated using FDTD. Then the 

Greens function �̂�(𝑓)  is obtained using Equation B.1, followed by the calculation of an updated effective 

wavelet  �̂�𝑘+1(𝑓), 𝑆𝑊𝑅𝑎𝑦, as shown by Equation B.2. 

                                                                 �̂�(𝑓) = �̂�𝑠𝑦𝑛(𝑓)[�̂�𝑘(𝑓) + 𝜂𝐷]−1,                                                           (B.1) 

                                                                �̂�𝑘+1(𝑓) = [�̂�(𝑓) + 𝜂𝐼]
−1
�̂�𝑜𝑏𝑠(𝑓),                                                        (B.2) 

where 𝜂𝐷  and 𝜂𝐼 are prewhitening factors that are applied to stabilize the solution and avoid dividing by zero, and 

^ indicates frequency domain. 

The conventional FWI results when using the ray-based inversion results as start model are shown in Figure 

B.1e, and f. The reconstructed  𝜀𝑟  and σ images have a higher resolution than the ray-based results but have still a 

reduced resolution compared to the true data shown in Figure B.1a, and b. 

 

B.4 WAVENUMBER INFORMATION IN RAY-BASED, FWI AND CPT  
 

Along the dashed lines in Figure B.1a, c and e, porosity data are calculated as if a virtual CPT measurement was 

carried out in between the two boreholes. To investigate the spatial bandwidth present in the true data (Sto-CPT), 

the ray-based and FWI reconstructed data, a 1D FFT was carried out. Figure B.2a shows the spatial wavenumber 

information for all three cases. It can be clearly seen that the Sto-CPT data contains the largest bandwidth, whereas 

the FWI data has a reduced bandwidth, and the ray-based data has the lowest bandwidth. 
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Figure B.2. a) Comparison of the wavenumber spectra of Sto-CPT data (blue), FWI results (red) and ray-based 

(green) in wavenumber domain. Filter is indicated by black solid line. b) Filter based on smooth FWI results and 

smoothed Sto-CPT. c) Porosity comparison for Sto-CPT, FWI, and ray-based results along the vertical dashed lines 

in Figure B.1a, e and c, respectively. d) Porosity comparison between filtered Sto-CPT, wavenumber-amplified 

FWI, filtered FWI and ray-based results up to a maximum 𝐾𝑍  = 3.60 m−1. 

 

 

 

c) d) 

a) b) 
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B.5 WAVENUMBER FILTER ESTIMATION USING CPT DATA 
 

To use the higher spatial bandwidth present in the true data (Sto-CPT), a 1D FFT filter function is introduced that 

amplifies the FWI reconstructed data up to a threshold wavenumber, that was estimated as 𝐾𝑍=3.60 m−1 (the 

vertical dashed line in Figure B.2a). First, a smoothing function with a span of 21 is used to smooth the wavenumber 

data after which we compute the ratio factor that is used as a filter to increase the spatial bandwidth up to a selected 

maximum wavenumber. This filter in frequency-wavenumber domain is implemented as follows: 

                                                                  {
𝑆𝐴(1) = 𝐴(1) ,                                                                                         (B. 3)

𝑆𝐴(𝑥) = 𝑠𝑚𝑜𝑜𝑡ℎ(𝐴(𝑥), 𝑠𝑝𝑎𝑛)  (1 < 𝑥) ,                                           (B. 4)

 

                                                                     𝐹𝑖𝑙𝑡𝑒𝑟 = 𝑆𝐴𝐶𝑃𝑇

𝑆𝐴𝐹𝑊𝐼
 ,                                                                                        (B. 5)  

 
where 𝐴 and 𝑆𝐴 represent amplitude and smooth amplitude values in wavenumber domain, respectively, and 𝑥 

means wavenumber samples up to the maximum wavenumber. The filter is described by Equation B.5. Figure B.2b 

shows the filter in Cartesian coordinate system, which keeps approximate incremental trend. Figures B.2c and d 

show the full-wavenumber information and filtered results comparisons for different methods. From Table B.1, we 

find WA-FWI is closer to filtered Sto-CPT, although the increased value is small.  

Table B.1 Comparisons between filtered Sto-CPT, filtered FWI and WA-FWI results are listed. 

Filter 𝜀𝑟  
Max wavenumber for filter (m−1) 3.6 
Span value of smoothing function 21 
Optimal FWI iteration   30 
R (Filtered FWI: Filtered Sto-CPT) 0.8653 
R (WA-FWI: Filtered  Sto-CPT  ) 0.8688 
RMSE ( Filtered  FWI:  Filtered  Sto-CPT ) 1.6679 
RMSE( WA-FWI: Filtered  Sto-CPT ) 1.6585 

 

B.6 UPDATING EFFECTIVE SOURCE WAVELET BASED ON WA-FWI RESULTS  
 

Although the filter is based on the information present along the vertical dashed lines in Figure B.1a and e, it is 

employed for all the FWI data along all positions. Probably, high wavenumber information is generated that is not 

consistent with the true data. To remove this inconsistent high wavenumber data, we estimate an updated effective 

wavelet where we use the wavenumber-amplified FWI data as �̂�𝑠𝑦𝑛(𝑓)  and the initial effective wavelet 

(𝑆𝑊𝑅𝑎𝑦  𝑎𝑠 �̂�𝑘(𝑓)) in Equation B.1, which means the synthetic data (�̂�𝑠𝑦𝑛) will be forward modeled based on the 
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initial wavelet (𝑆𝑊𝑅𝑎𝑦 ) and WA-FWI models. Using the �̂�(𝑓)  in Equation B.2, that now contains higher 

wavenumbers information; an improved effective source wavelet �̂�𝑘+1is calculated that contains a higher bandwidth.  

We perform the FWI by using different effective source wavelets. Figure B.3a-c shows the ray-based, 

wavenumber-amplified FWI, and stochastic models that are used to perform a forward modeling, and subsequent 

generation of the ray-based, wavenumber-amplified FWI, and stochastic effective source wavelets. Figure B.3d-f 

shows the FWI results using the corresponding wavelets while using the same start models shown in Figure B.1c 

and d. Note that here the results contain wavenumbers up to 𝐾𝑍 = 3.60 m−1, similar to the WA-FWI results. In 

Figure B.3g and h, the RMSE and R values over the vertical profiles for each horizontal position are shown. It can 

be seen that the FWI results using 𝑆𝑊𝑆𝑡𝑜 return erroneous FWI results, especially in the top location between 

distances from 2 to 4.1 m. The main reason is probably the white noise that was added in the true GPR data and the 

broadband effective wavelet causing the inversion results being trapped in a local minimum value. The  𝑆𝑊𝑅𝑎𝑦 

results return better R values and smaller RMSE values than the WA-FWI results; this is probably due to the fact 

that for the WA-FWI results all spatial bandwidth has been amplified. By estimating an effective source wavelet 

from the WA-FWI data and performing a FWI, only the consistent large waveband data remains which is indicated 

by the smallest RMSE and the highest R values for 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼 . Table B.2 gives an overview of the RMSE and R 

values obtained over the 2D domain, which confirms the former statements and indicates that the best results are 

obtained by the 𝑆𝑊𝑊𝐴−𝐹𝑊𝐼  approach and can improve the resolution for FWI results when CPT data is available. 

 

Table B.2 Mean RMSE and mean R between filtered stochastic (F-Sto) and filtered FWI (F-FWI) results over full 

2D domain. 

Different Cases (𝜀𝑟) RMSE R 
F-Sto and  Ray-based 2.9988 0.6434 
F-Sto and  F-FWI (𝑆𝑊𝑅𝑎𝑦) 2.4706 0.7737 
F-Sto and  WA-FWI 2.6892 0.7462 
F-Sto and  F-FWI (𝑆𝑊𝑊𝐴−𝐹𝑊𝐼) 2.3733 0.7904 
F-Sto and  F-FWI (𝑆𝑊𝑆𝑡𝑜) 3.0358 0.6532 
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Figure B.3. a)-c) Show the starting permittivity models (ray-based, wavenumber-amplified FWI, and stochastic) for 

forward modeling, and subsequent generation of the ray-based, wavenumber-amplified FWI, and stochastic source 

wavelets. d)-f) Show the FWI results using the corresponding wavelets. The indicated RMSE values are the mean 

RMSE within the 2D domain, which are also given in Table B.2 including the R values. g) And h) show RMSE and 

R values illustrate quantitative comparison between F-stochastic models and different F-FWIs (or WA-FWI) along 

vertical profiles between boreholes by computing RMSE and R values. 

a) b) c) 

d) e) f) 

g) 

h) 
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B.7 CONCLUSIONS 
 

In this paper, we present an approach to improve the resolution of GPR FWI imaging results using 1D CPT data. 

By using 1D vertical CPT data, we can obtain a filter based on 1D FWI permittivity results and CPT data. Then we 

amplify wavenumber for the whole 2D FWI cross-section and obtain wavenumber-amplified FWI results. However, 

WA-FWI results have been amplified for all spatial bandwidth, which generate inconsistent high wavenumber data 

with true models data. To remove the inconsistent high wavenumber data, we estimate an updated effective wavelet 

based on conventional effective source wavelet (𝑆𝑊𝑅𝑎𝑦 ) and WA-FWI permittivity results. In addition, the 

stochastic source wavelet (𝑆𝑊𝑆𝑡𝑜) is also estimated according to the 𝑆𝑊𝑅𝑎𝑦 and true stochastic models. Compared 

with the traditional source (𝑆𝑊𝑅𝑎𝑦) and the stochastic source (𝑆𝑊𝑆𝑡𝑜), the new source wavelet (𝑆𝑊𝑊𝐴−𝐹𝑊𝐼) has a 

higher bandwidth and can improve the resolution and reliability for the FWI results, especially for GPR data 

including white noise. Final results illustrate the feasibility and efficiency of the new source wavelet when 

combining FWI results and CPT data. Future work is testing the presented approach to field measured GPR data.  
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