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Abstract

We develop a simulator for quantum computers composed of superconducting transmon
qubits. The simulation model supports an arbitrary number of transmons and resonators.
Quantum gates are implemented by time-dependent pulses. Nontrivial effects such as
crosstalk, leakage to non-computational states, entanglement between transmons and res-
onators, and control errors due to the pulses are inherently included.

The time evolution of the quantum computer is obtained by solving the time-dependent
Schrödinger equation. The simulation algorithm shows excellent scalability on high-
performance supercomputers. We present results for the simulation of up to 16 transmons
and resonators. Additionally, the model can be used to simulate environments, and we
demonstrate the transition from an isolated system to an open quantum system governed
by a Lindblad master equation. We also describe a procedure to extract model parameters
from electromagnetic simulations or experiments.

We compare simulation results to experiments on several NISQ processors of the IBM
Q Experience. We find nearly perfect agreement between simulation and experiment for
quantum circuits designed to probe crosstalk in transmon systems. By studying common
gate metrics such as the fidelity or the diamond distance, we find that they cannot reliably
predict the performance of repeated gate applications or practical quantum algorithms.
As an alternative, we find that the results from two-transmon gate set tomography have
an exceptional predictive power. Finally, we test a protocol from the theory of quantum
error correction and fault tolerance. We find that the protocol systematically improves
the performance of transmon quantum computers in the presence of characteristic control
and measurement errors.
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Zusammenfassung

Wir entwickeln einen Simulator für Quantencomputer, die aus supraleitenden Transmon-
Qubits bestehen. Das Simulationsmodell unterstützt eine beliebige Anzahl von Trans-
mons und Resonatoren. Quantengatter werden durch zeitabhängige Pulse realisiert. Nicht-
triviale Effekte wie Crosstalk, Verlust in nicht rechnerische Zustände, Verschränkung zwi-
schen Transmons und Resonatoren sowie Steuerungsfehler verursacht durch die Pulse sind
automatisch miteinbezogen.

Die Zeitentwicklung des Quantencomputers wird durch Lösung der zeitabhängigen
Schrödingergleichung bestimmt. Der Simulationsalgorithmus zeigt ausgezeichnete Skalier-
barkeit auf Hochleistungs-Supercomputern. Wir präsentieren Ergebnisse für die Simulati-
on von bis zu 16 Transmons und Resonatoren. Zusätzlich kann das Modell zur Simulation
von Umgebungen verwendet werden. Wir demonstrieren den Übergang von einem iso-
lierten System zu einem offenen Quantensystem, das von einer Lindblad-Mastergleichung
bestimmt wird. Wir beschreiben außerdem ein Verfahren zur Extraktion von Modellpa-
rametern aus elektromagnetischen Simulationen oder Experimenten.

Wir vergleichen Simulationsergebnisse mit Experimenten auf mehreren NISQ-Prozes-
soren der IBM Q Experience. Wir finden eine nahezu perfekte Übereinstimmung zwischen
Simulation und Experiment für Quantenschaltungen zur Untersuchung von Crosstalk in
Transmon-Systemen. Durch Untersuchung gängiger Gatter-Metriken wie der Fidelity oder
der Diamant-Distanz finden wir, dass sie die Leistung von wiederholten Gatteranwen-
dungen oder praktischen Quantenalgorithmen nicht zuverlässig vorhersagen können. Als
Alternative finden wir, dass die Ergebnisse einer Zwei-Transmon-Gattermengentomogra-
phie eine außergewöhnlich gute Vorhersagekraft aufweisen. Zum Schluss testen wir ein
Protokoll aus der Theorie der Quantenfehlerkorrektur und Fehlertoleranz. Wir stellen
fest, dass das Protokoll systematisch die Leistung von Transmon-Quantencomputern bei
charakteristischen Steuerungs- und Messfehlern verbessert.
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Chapter 1

Introduction

For over a century, humans have designed and built digital computing machines. The
initial ideas can be traced back to the mid-1800s [Bab1837; Boo1847], but the actual
construction started less than a century ago. In 1936, Zuse designed a floating point
general-purpose computer [Zus1936] that led to the first programmable floating point
machine in 1941, the Z3 [Cop2017]. Turing formalized the universal computing machine
[Tur1937] that influenced the construction of the Colossus in 1943 [Ran1973], which was
used to perform Boolean operations for cryptanalysis. Other computers of that time were
the ABC [Ata1940] built in 1942 and the ENIAC built in 1945 [Ran1973].

Most of these early computers were based on vacuum tubes which made them large
and unreliable. Universal digital computing only became scalable after the vacuum tubes
were replaced by semiconductor devices such as transistors. Nowadays, computers are
ubiquitous in everyday life; every mobile phone contains a general-purpose digital com-
puter, and large-scale high-performance supercomputers are used routinely to solve some
of the most difficult computational problems.

Similarly, for about a century, humans have developed and studied quantum theory.
This physical theory has extraordinary descriptive power, also in numerous fields be-
yond physics [Khr2010]. The predictions of quantum theory are fundamentally stochas-
tic, meaning that quantum theory can only predict probabilities for observable events
[Bal1998]. In this sense, quantum theory is inherently linked to probability theory
[Jay2003]. The mathematical framework of quantum theory is based on linear algebra
and can be reduced to a few axioms [Neu1955; Bal1998; Nie2010].

Quantum computing

The essential idea of a quantum computer is to combine these two concepts, i.e., the
universal computing machine and quantum theory. The goal is to build a computing
machine that implements the equations of quantum theory for two-level systems. The
elementary two-level systems of digital computers, the bits, are replaced by quantum bits,
commonly known as qubits. As quantum theory only predicts probabilities, a program for
a quantum computer basically determines a set of probabilities for the qubits.

An actual device, however, does not produce probabilities but individual bits. There-
fore, a program is typically repeated multiple times to make the connection to the pre-
dicted probabilities. This is a common principle of all types of quantum computing: From
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Chapter 1 Introduction

the user perspective, a quantum computer produces a large ensemble of individual results.
Two basic approaches to quantum computing are currently pursued by science and

industry [Nat2019]. The first is called the gate-based quantum computer. Inspired by
the gate model of digital computing, programs for a gate-based quantum computer are
specified in terms of elementary quantum gates [Nie2010]. As every algorithm can be
decomposed into a sequence of such elementary gates, the gate-based quantum computer
is considered universal [Bar1995; Deu1995; DiV1995].

The other approach to quantum computing is quantum annealing [Fin1994; Kad1998;
Far2000; Har2010; Joh2011]. Quantum annealers have turned out to be very useful for
quickly producing an ensemble of close-to-optimal solutions to a given optimization or
machine learning problem [Pud2012; Per2019; Orú2019; Wil2020b].

Over the past decades, research in gate-based quantum computing has evolved from an
abstract, mathematical model of a computing machine [Ben1980; Deu1985] to a broad
range of experimental devices. All of these pursue the idea of implementing the mathe-
matical framework of quantum theory to gain a computational advantage over the mature
technology of digital computers [Eke1996]. The strongest advantage is envisioned as an
exponential speedup for a special set of mathematical problems, such as (1) the simu-
lation of quantum mechanical systems which is believed to significantly aid in research
and development [Fey1982; Bab2018; Küh2019], (2) the approximate solution of sparse
linear systems in logarithmic time [Har2009] (albeit with a few caveats [Aar2015]), or
(3) the polynomial-time factorization of integers [Sho1994; Sho1997] which might form a
potential threat to the security of widely-used asymmetric cryptosystems such as RSA
[Riv1978].

Currently, the two most advanced technologies for gate-based quantum computers
use superconducting circuits [Rai2001; Vio2002; Bla2004; Wen2017] and trapped ions
[Cir1995; Mon1995]. IBM and several other companies have made small superconduct-
ing quantum processors available to the community to explore the technology [IBM2016;
Rig2017; Chi2018b; DWa2019; LaR2019]. Additionally, a superconducting quantum pro-
cessor manufactured by Google has produced results for a well-defined class of problems
that are beyond the reach of digital supercomputers [Aru2019], thereby achieving quantum
supremacy [Pre2012; Boi2018].

Objectives

Despite the recent progress, it is still an open question if a universal, fully error-corrected
quantum computer can be built. All current quantum processors belong to the class of
noisy intermediate-scale quantum (NISQ) devices [Pre2018; Nat2019]. And although a
fully error-corrected device is possible in theory [Sho1996; Aha1997; Ali2007], there is a
priori no guarantee that it can also be built in practice. The essential questions are: How
close do current NISQ devices come to the ideal, mathematical qubit model of a quantum
computer? What are the main errors and limitations that would need to be overcome?

To address these questions, we carry out detailed supercomputer simulations of current
NISQ devices. Additionally, we perform experiments on such devices to compare simula-
tion results with experimental observations. We identify and analyze the main limitations,
i.e., leakage and crosstalk, and study to what extent the induced errors can be corrected.
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Supercomputer simulations

The aim of this thesis is to utilize the power of digital supercomputers to study the
emerging technology of quantum computers. Supercomputer simulations are vital for
the development and verification of quantum computers. For instance, massively parallel
simulators such as the Jülich universal quantum computer simulator (JUQCS) [DeR2007;
DeR2019a; Wil2020a] have been essential to verify Google’s demonstration of quantum
supremacy [Aru2019].

In this work, we develop a simulator of superconducting quantum processors. We
focus on gate-based quantum computers with superconducting transmon qubits [Koc2007]
because of the tremendous progress that has been reported recently for the transmon
architecture [IBM2016; Rig2017; Chi2018b; Aru2019]. We devise a scalable method to
simulate transmon systems with an arbitrary number of qubits and couplers, limited only
by the available amount of physical memory and computing time. The simulation model
includes the effects of higher transmon levels and generic time-dependent pulses. All
model and pulse parameters are freely configurable.

Simulation method

The simulator solves the time-dependent Schrödinger equation (TDSE) with h̄ = 1,

i
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 , (1.1)

where H(t) is a generic, time-dependent model Hamiltonian representing the hardware
of the quantum processor, including the transmon system and their electromagnetic en-
vironment.

From the solution |Ψ(t)〉, we can compute any physically relevant quantity of the system
such as reduced density matrices with non-unitary dynamics describing the actual qubits.
In this sense, the TDSE approach can be related to other common approaches based on
master equations, perturbative studies, and completely positive trace-preserving maps.
We study each of these relations in the course of this thesis.

The time dependence of H(t) in Eq. (1.1) represents external microwave control pulses
that are applied to the system. Each pulse is a time-dependent voltage signal designed
to implement a certain quantum gate. We use an optimization procedure to find optimal
pulse parameters for each simulated transmon system.

The simulator is based on the Suzuki-Trotter product-formula algorithm [DeR1987;
DeR2000; DeR2006]. This allows the TDSE given by Eq. (1.1) to be solved on a sub-
picosecond scale for time evolutions over several hundred microseconds, without making
additional approximations. We formulate the TDSE in an appropriate basis that makes
its solution amenable to large-scale supercomputer simulations. Most of the simulations
presented in this thesis were performed on the supercomputers JURECA [Jül2018] and
JUWELS [Jül2019].
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Chapter 1 Introduction

Outline

In this thesis, we present results from the simulation of transmon systems with up to
16 transmons and couplers. As real NISQ devices of the same size and architecture are
publicly accessible on the IBM Q Experience [IBM2016], we also perform some of the
experiments on these quantum processors. This offers a great opportunity to relate the
simulation results directly to experiments. We find that the main limitations revealed
by the simulation, i.e., leakage and crosstalk due to additional transmon and resonator
states, capture most of the errors observed in the corresponding NISQ devices.

This thesis is organized as follows. Chapter 2 reviews the mathematical model of a
gate-based quantum computer, i.e., qubits, gates, circuits, quantum operations, and leak-
age. In Chapter 3, we define the supercomputer simulation method. After specifying the
full model Hamiltonian, we describe in detail the numerical algorithm to solve the TDSE
given by Eq. (1.1). We then define the primary model systems. Finally, we present a
method to obtain model parameters for the simulation of electromagnetic environments.

Chapter 4 focuses on free, undriven time evolutions. This includes accuracy and per-
formance benchmarks. Additionally, we relate our simulation approach to perturbative
results and simulations of a Lindblad master equation.

In Chapter 5, we define the elementary single-qubit and two-qubit pulses used to imple-
ment quantum gates. We describe the optimization procedure used to find optimal pulse
parameters and present optimization results for the larger transmon systems. Finally, we
discuss the compilation process used to translate quantum circuits to pulse information
for the simulator.

In Chapter 6, we characterize the optimized quantum gates in detail. After introduc-
ing the most prominent gate metrics, we study repeated gate applications on both the
simulated systems and experimental devices. The chapter concludes with an application
of gate set tomography (GST) and an assessment of its predictive power.

Chapter 7 combines the results from the previous chapters and applies them to a selected
class of quantum circuits, executed using both the transmon simulator and experimental
processors. We first design and implement a class of quantum circuits to study crosstalk
in transmon systems. Secondly, we study quantum circuits designed to characterize the
singlet state. Finally, we implement a full protocol from the theory of quantum fault tol-
erance to assess its potential to improve quantum computation in transmon architectures.

Chapter 8 contains our conclusions and an outlook on many interesting paths to con-
tinue the present work. Implementation details and separate mathematical proofs are
given in Appendices A–J. Some results presented in this thesis have previously been pub-
lished in [Wil2017; Wil2018b].
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Chapter 2

Ideal gate-based quantum computing

In this chapter, we review the computational architecture of an ideal gate-based quantum
computer and related concepts as formally defined in the literature [Yan2008; Nie2010;
Wat2018]. We start by introducing the quantum bit as the fundamental unit of compu-
tation in Section 2.1. In Section 2.2, we define quantum gates as the basic operations
that can be performed on a qubit. A combination of these operations is called a quantum
circuit, which is introduced in Section 2.3. Qubits, quantum gates, and quantum circuits
are the basic building blocks that are required to define algorithms for a gate-based quan-
tum computer. Finally, in Section 2.4, we introduce the concept of quantum operations,
which are used in a more general description of gate-based quantum computers in terms
of mixed states.

Although it is still unclear when a large universal gate-based quantum computer can be
built or if the envisioned exponential speedup can be delivered, the mathematical model
of an ideal quantum computer is an interesting model to study. Advances in quantum
algorithms with a theoretical speedup can inspire valuable discoveries in other areas.
For instance, a quantum algorithm for recommendation systems (i.e., systems that are
supposed to provide product suggestions to users based on past purchases) is known to
provide an exponential speedup over previous classical algorithms [Ker2016]. Recently,
this discovery has led to the development of novel, similarly efficient algorithms for digital
computers [Tan2019]. Further examples of such quantum-inspired algorithms are given in
[Tan2018; Gil2018; Chi2018a].

2.1 Quantum bits

A quantum bit or qubit is the generalization of a digital bit to the mathematical frame-
work of quantum theory. The goal of this section is to understand the precise meaning
of generalization in this context. This helps to understand why quantum computers
have the theoretical potential to be more powerful than digital computers. We approach
the concept of generalization by first defining the digital bit, and then highlighting the
mathematical difference to the qubit.
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Chapter 2 Ideal gate-based quantum computing

2.1.1 Single qubits

A (digital) bit j is the fundamental unit of computation in every digital computer. The
name “bit” stands for binary digit. It means that, at each point in a computation, j can
only be either 0 or 1, i.e., j ∈ {0, 1}. If n bits are combined, the state of the computation
is described by a bit string J = j0 · · · jn−1. Again, each bit can only be either 0 or 1. The
algebraic structure to describe all possible n-bit states J is given by the n-fold Cartesian
product

J = j0 · · · jn−1 ∈ {0, 1}n = {0 · · · 00, 0 · · · 01, . . . , 1 · · · 11}, (2.1)

which has a finite number of elements |{0, 1}n| = 2n. A computation can be formally
expressed as a function f : {0, 1}n → {0, 1}m for m,n ∈ N. This formalism is known as
Boolean algebra and was first introduced in [Boo1847].

A qubit |ψ〉, on the other hand, is defined as a two-level quantum system determined
by two complex numbers a0, a1 ∈ C with |a0|2 + |a1|2 = 1. It is commonly written as

|ψ〉 = a0 |0〉+ a1 |1〉 =

(
a0

a1

)
, (2.2)

where the computational basis states |0〉 and |1〉 represent the digital bit states 0 and 1,
respectively. Thus, a qubit is not always either |0〉 or |1〉, but rather any complex linear
combination of both. This concept is usually called superposition and is the first reason
why a qubit can be considered a generalized bit.

If it were only this generalization, it would be easy to imagine why the computational
model of quantum computing might have an advantage over digital computing. However,
the drawback of this computational model is that the complex coefficients a0 and a1

defining the state given by Eq. (2.2) cannot be observed directly. Instead, as dictated
by quantum theory, they only define probabilities p0 = |a0|2 (p1 = |a1|2) to observe the
qubit in the binary state 0 (1). Such an observation is called measurement. The complex
coefficients are correspondingly called probability amplitudes. The interpretation in the
context of probability theory also requires that the amplitudes be normalized such that
|a0|2 + |a1|2 = 1.

Thus, a constraint of the computational model of quantum computing is that, after a
measurement, the state of the qubit is reset to the observed binary state. This mathemat-
ical constraint is the core of why algorithms for quantum computers have been notoriously
hard to find, and that only a few key algorithms with a considerable theoretical speedup
have been found [Aar2008].

2.1.2 Bloch sphere

The fact that the complex coefficients a0 and a1 in Eq. (2.2) are probability amplitudes
can be used to find a convenient parametrization of a general single-qubit state: From
|a0|2 + |a1|2 = 1, we know that there is an angle ϑ ∈ [0, π] such that |a0| = cos(ϑ/2) and
|a1| = sin(ϑ/2). Furthermore, quantum theory states that the global phase of any state
|ψ〉 is not observable, so we can set a0 = cos(ϑ/2) ≥ 0 and a1 = exp(iϕ) sin(ϑ/2), where

6



2.1 Quantum bits

Figure 2.1: Bloch sphere representation of a pure single-qubit state |ψ〉. The azimuthal
angle ϑ ∈ [0, π] and the polar angle ϕ ∈ [0, 2π) are defined in Eq. (2.3), and the Cartesian
coordinates rx, ry, and rz are given by Eq. (2.5)

Figure 2.2: Bloch sphere representations of a few single-qubit states corresponding to
eigenstates of the Pauli matrices defined in Eq. (2.4): (a) +1 eigenstate of σz, (b) −1
eigenstate of σz, (c) +1 eigenstate of σx, and (d) +1 eigenstate of σy. For simplicity, the
normalization factor of 1/

√
2 has been left out in the labels of (c) and (d).

7



Chapter 2 Ideal gate-based quantum computing

ϕ ∈ [0, 2π) encodes the relative phase between a0 and a1. The general single-qubit state
|ψ〉 given by Eq. (2.2) thus becomes

|ψ〉 = cos
ϑ

2
|0〉+ eiϕ sin

ϑ

2
|1〉 . (2.3)

Due to the domain of the angles ϑ ∈ [0, π] and ϕ ∈ [0, 2π), the single-qubit state |ψ〉 can
be visualized on the surface of a three-dimensional sphere called Bloch sphere as shown in
Fig. 2.1. Consequently, the representation defined by Eq. (2.3) is called the Bloch sphere
representation and the three-dimensional vector ~r representing |ψ〉 on this sphere is called
the Bloch vector. Its Cartesian coordinates rx, ry, and rz can be calculated from the
expectation values of |ψ〉 with respect to the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.4)

yielding

~r =



rx

ry

rz


 =



〈ψ|σx|ψ〉
〈ψ|σy|ψ〉
〈ψ|σz|ψ〉


 =




2 Re a∗0a1

2 Im a∗0a1

|a0|2 − |a1|2


 =




sinϑ cosϕ
sinϑ sinϕ

cosϑ


 . (2.5)

The three Pauli matrices given in Eq. (2.4) are unitary, traceless, Hermitian matrices
with eigenvalues ±1. The corresponding eigenstates define the unit axes of the coordinate
system of the Bloch sphere shown in Fig. 2.1. In particular, the eigenstates of σz are the
computational basis states |0〉 and |1〉, whose Bloch vectors are given by the positive
and the negative z axis, respectively (see Fig. 2.2(a) and (b)). The eigenstates of σx

are denoted by |±〉 = (|0〉 ± |1〉)/
√

2 with Bloch vectors lying on the x axis, and the
eigenstates of σy are given by |±i〉 = (|0〉 ± i |1〉)/

√
2 with Bloch vectors lying on the y

axis. Both σx and σy eigenstates corresponding to the eigenvalue +1 are visualized in
Fig. 2.2(c) and (d), respectively.

2.1.3 Multiple qubits

The second reason why qubits can be seen as generalized bits becomes apparent when
multiple qubits are combined. While an n-bit state in a digital computer is an element of
the n-fold Cartesian product (see Eq. (2.1)), an n-qubit state in a quantum computer is an
element of the n-fold tensor product. This means that an n-qubit state is a superposition
of all 2n bit states given in Eq. (2.1). We can therefore write an arbitrary multi-qubit
state |ψ〉 as

|ψ〉 =
∑

j0···jn−1∈{0,1}n
aj0···jn−1 |j0 · · · jn−1〉 =

2n−1∑

J=0

aJ |J〉 =




a0
...

a2n−1


 , (2.6)

where the integer index J and its binary representation j0 · · · jn−1 can be used interchange-
ably.
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2.1 Quantum bits

Formally, a single-qubit state is an element of the two-dimensional complex Hilbert
space H2 = span{|0〉 , |1〉} ∼= C2. A multi-qubit state for n qubits is then an element of
the 2n-dimensional complex Hilbert space H2n , given by the n-fold tensor product of H2,

H2n = H⊗n2 = span{|0〉 , |1〉}⊗n = span{
⋃

j0,...,jn−1

∈{0,1}

|j0 · · · jn−1〉}

= span{|
n︷ ︸︸ ︷

0 · · · 0〉 , . . . , |
n︷ ︸︸ ︷

1 · · · 1〉︸ ︷︷ ︸
2n

} ∼= C2n . (2.7)

To keep the notation concise, we do not write the tensor products explicitly such that the
states |j0j1 · · · jn−1〉, |j0〉 |j1〉 · · · |jn−1〉, and |j0〉 ⊗ |j1〉 ⊗ · · · ⊗ |jn−1〉 are understood to be
the same. Note that the basis states |j0 · · · jn−1〉 in the vector space H2n correspond to
the same 2n bit strings j0 · · · jn−1 comprising the space for n-bit states given by Eq. (2.1).
By analogy with single-qubit states, a multi-qubit state can be an arbitrary complex
superposition of these basis states.

A property of Eq. (2.6) is that most of the states in the tensor-product space H2n cannot
be written as tensor products themselves. Such states are called entangled states and the
corresponding concept is called entanglement. Simple examples for entangled states in
the two-qubit case n = 2 are the so-called Bell states

|Φ±〉 =
1√
2

(|00〉 ± |11〉), (2.8a)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉), (2.8b)

the last of which, |Ψ−〉, is also known as the singlet state. The fact that these states are
entangled can be proven by contradiction: Assuming that there exists a tensor-product
state of the form (a0 |0〉 + a1 |1〉)(b0 |0〉 + b1 |1〉) for any of the four Bell states leads to
contradictory equations for a0, a1, b0, b1 ∈ C.

The presence of entanglement is a consequence of the algebra (with complex tensor-
product spaces) that we use in quantum theory to describe observations mathematically.
It may seem peculiar in the sense that two separate qubits described by (|00〉+ |11〉)/

√
2

have a strong correlation, i.e., when we measure one qubit we seem to know the state
of the other qubit without measuring it. However, this sense of peculiarity is rather a
consequence of the way we choose to describe the state.

For instance, suppose that we observe some process that can be described by a proba-
bility distribution p(x, y). Then we empirically observe that one cannot express p(x, y) =
f(x)g(y) for any two functions f and g and therefore call the variables x and y entan-
gled. The existence of such processes seems reasonable, but does not look very peculiar
in this language. To make this example concrete in the present context, such a probabil-
ity distribution for an entangled state (|00〉 + |11〉)/

√
2 would be p(x, y) = δxy/2 where

x, y ∈ {0, 1}. It is obvious that δxy depends on both x and y and cannot be written as
a product of some f(x) and g(y). For a non-entangled state such as (|00〉 + |10〉)/

√
2,

in contrast, the probability distribution would be p(x, y) = δy0/2, and it can be easily
expressed as a product f(x)g(y) for f(x) = 1 and g(y) = δy0/2.
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Chapter 2 Ideal gate-based quantum computing

So entanglement is a consequence of the fact that in quantum theory, we model physical
states using complex tensor-product spaces (see Eq. (2.7)). This allows us to describe
correlations between individual components of the full space, such as the individual qubits
in Eqs. (2.8a) and (2.8b), which cannot be described by states in Cartesian-product spaces
(see Eq. (2.1)). For this reason, there is no analogue of entanglement in the classical multi-
bit states used to describe digital computers.

It is worth mentioning that there exist mathematical tests for entanglement, known as
Bell tests in the context of Bell inequalities [Bel1964; Bel2004] and separability criteria
[Hor1996; Ter2000]. If one wants to describe an experiment using a quantum theoretical
model, such a Bell test yields an answer to the question if the observations have to be
described in terms of an entangled state. Note, however, that such a test can never prove,
in a mathematical sense, that the observations can only be described by a quantum
theoretical model. An alternative “subquantum” model that can describe the individ-
ual events and not only their quantum theoretical statistics can be found in [DeR2005]
(see [Wil2020f; DeR2020] for two particular applications of the model).

The constraint of normalizing the states is not included in the definition of the multi-
qubit space given by Eq. (2.7). The purpose of this is to keep the linearity of the algebraic
structures. Similarly, we have not made any efforts to eliminate the global phase of the
complex coefficients of the general multi-qubit state given by Eq. (2.6). The concepts of
normalization and global phase only play a role when the complex coefficients are to be
interpreted as probability amplitudes, or when one wants to eliminate as many degrees
of freedom as possible to find concise representations of quantum states. The latter was
done to derive the Bloch sphere representation of a single-qubit state (see Eq. (2.3) and
Fig. 2.1).

For general multi-qubit states |ψ〉 ∈ H2n , it is possible to visualize the individual
qubits using one Bloch sphere per qubit. However, such a picture does not capture all
the information required to describe the state |ψ〉, as it did for a single qubit. This
can be understood from a simple counting argument: A single-qubit state a0 |0〉 + a1 |1〉
is described by two complex numbers or, equivalently, four real numbers. Using the
normalization constraint and eliminating the global phase, we were able to reduce these
four real numbers to the two angles ϑ and ϕ, which can be visualized as a vector of length
1 on the Bloch sphere. For n qubits with one Bloch sphere per qubit, we would need 2n
real numbers (or 3n if we do not fix the length of each Bloch vector to 1). However, a
general n-qubit state such as the one given by Eq. (2.6) is described by 2n+1 real numbers.
Even if we subtract two for the normalization constraint and the global phase, this is still
much more than can be visualized using n spheres (see also [Ben2006]).

Nevertheless, it may still be helpful to visualize each single qubit on a separate Bloch
sphere. To compute the Bloch vectors, we use the notation

σαi = I ⊗ · · · ⊗ σα ⊗ · · · ⊗ I (2.9)

for the corresponding Pauli matrices, where I denotes the identity matrix on the two-
dimensional single-qubit space H2, α ∈ {x, y, z} labels the Pauli matrices given by
Eq. (2.4), and i ∈ {0, . . . , n− 1} denotes the position of σα in this tensor-product matrix
using the same ordering as for the multi-qubit basis state |j0 · · · jn−1〉. This means that
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2.1 Quantum bits

applying σαi to this basis state only affects the qubit |ji〉 such that

σαi |j0 · · · jn−1〉 = |j0〉 · · · |ji−1〉 (σα |ji〉) |ji+1〉 · · · |jn−1〉 . (2.10)

Using σαi , we can now compute Bloch vectors ~ri ∈ R3 for each qubit in the same manner
as in Eq. (2.5) for the general multi-qubit state |ψ〉 ∈ H2n given by Eq. (2.6). A short
calculation yields

~ri =



rxi
ryi
rzi


 =



〈ψ|σxi |ψ〉
〈ψ|σyi |ψ〉
〈ψ|σzi |ψ〉


 =

∑

j0···jn−1
without ji




2 Re(a∗j0···0···jn−1
aj0···1···jn−1)

2 Im(a∗j0···0···jn−1
aj0···1···jn−1)

|aj0···0···jn−1 |2 − |aj0···1···jn−1 |2


 , (2.11)

exhibiting a similar structure as Eq. (2.5). This expression is used for the implementation
of the visualizations discussed in Section 3.3.3 and Appendix A.

It is worth mentioning that for two-qubit states, some ideas have been proposed to
visualize a general two-qubit state using three spheres. The requirement is that two of
the three spheres shall correspond to the respective single-qubit Bloch vectors computed
from Eq. (2.11). The remaining information about the amount of entanglement in the
two-qubit state is then visualized on the third sphere. See [Wie2014] or [Rig2009] for
more information.

2.1.4 Leakage

In practice, many physical realizations of qubits contain additional states beyond the
computational basis states |0〉 and |1〉. For superconducting transmon qubits, for instance,
this refers to higher excited states |2〉 , |3〉 , . . .. Formally, these non-computational states
are not described by the tensor-product structure of Eq. (2.7). Instead, they describe
alternative states that belong to the individual qubits. This means that the single-qubit
description from Eq. (2.2) needs to be extended by a direct sum structure

|ψ〉 = a0 |0〉+ a1 |1〉+ a2 |2〉+ · · · ∈ H2 ⊕HL, (2.12)

where HL = span{|2〉 , |3〉 , . . .}. If the state |ψ〉 acquires a contribution of states from HL,
one generally speaks of leakage.

For the multi-qubit Hilbert space H2n defined in Eq. (2.7), the corresponding leakage
space is constructed via

(H2 ⊕HL)⊗ · · · ⊗ (H2 ⊕HL) = H2n ⊕HLeak, (2.13)

where HLeak is spanned by each state in which at least one part is an element of HL.
The concept of leakage and its implications for evolutions of quantum systems are

considered further in Section 2.4.2. Since leakage is a particularly important issue for
superconducting transmon qubits, the concept will play an important role for the exper-
iments studied throughout this thesis.
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Chapter 2 Ideal gate-based quantum computing

2.2 Quantum gates

Given a set of qubits as defined in the previous section, there are certain operations that
can be performed on the qubits. These operations are called quantum gates. They are
inspired by their analogue for digital computers, i.e., the digital logic gates.

A digital logic gate is an arbitrary function f : {0, 1}n → {0, 1}m. It takes as input a
bit string of length n such as the one defined in Eq. (2.1) and outputs another bit string of
length m (not necessarily of the same length). There is, in principle, no further limitation
for f .

Transferring this idea to quantum states, a quantum gate would need to be a function
acting on the spaceH2n defined in Eq. (2.7), which is an immensely larger space. However,
there are certain restrictions for quantum gates that impose some nontrivial limitations
on these functions. In this section, we first discuss these limitations and then define the
set of elementary quantum gates that are implemented in terms of pulses by the transmon
simulator (see also Appendix B).

2.2.1 Unitary operators

Every quantum gate is a basic operation on multi-qubit states of the form given by
Eq. (2.6). A quantum gate is mathematically defined as a linear map U : H2n → H2n

with the important restriction that it has to be unitary (see Appendix C for a review of
arguments why quantum theory requires unitary linear maps). Note that the linearity of
the map U implies that expressions such as U(|ψ〉+ |φ〉) can be evaluated as U |ψ〉+U |φ〉
for any quantum gate U and any states |ψ〉 and |φ〉.

As we only consider finite-dimensional Hilbert spaces, we identify unitary operators with
their representation in terms of unitary matrices, i.e., complex invertible matrices U ∈
C2n×2n that satisfy U−1 = U †, where U † denotes the Hermitian conjugate (or conjugate
transpose) of U . By definition, such matrices conserve the norm of quantum states, so the
restriction to unitary matrices goes hand in hand with the interpretation of the complex
coefficients in Eq. (2.6) as probability amplitudes.

From a computational perspective, the condition of unitary square matrices imposes
severe limitations on the computational model of quantum computing. In particular,
each quantum gate has to be invertible (i.e., reversible). This property is not fulfilled by
many of the conventional digital logic gates. For instance, the logical AND gate takes
two bits as input and produces only one bit as output (namely 1 if both of its inputs
are 1, and 0 otherwise). Since it is not possible to deduce the two input bits given the
output bit, the AND gate is not reversible. The same applies to the logical OR gate,
the universal NAND gate, and many others. However, all these gates can, in principle,
be made reversible by adding another output bit. This is the idea of classical, reversible
computation, which bridges the gap to make the logical gates amenable to quantum
computing (see [Fre1982; Ben1973] for more information).
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2.2 Quantum gates

2.2.2 Elementary quantum gates

An elementary single-qubit gate is given by a three-dimensional rotation on the Bloch
sphere (see Fig. 2.1). General single-qubit gates are often represented as sequences of
such single-qubit rotations. This is possible since for one qubit, the Bloch sphere yields
a faithful representation of the state, in the sense that it captures the full information
contained in the state. Furthermore, it has the advantage that single-qubit rotations
directly relate to the pulses that are used on actual quantum processors (such as the IBM
Q processors [IBM2016]) to implement the gates [Cro2017]. For this reason, we follow
this convention and express all single-qubit gates as a sequence of rotations on the Bloch
sphere.

A single-qubit rotation on the Bloch sphere is given by Rα(ϑ) = exp(−iϑσα/2), where α
defines the axis of rotation, σα denotes the respective Pauli matrix given by Eq. (2.4), and
ϑ is the angle of rotation. One can compute the matrix exponential to get the closed-form
expressions

Rx(ϑ) = e−iϑσ
x/2 =

(
cos(ϑ/2) −i sin(ϑ/2)
−i sin(ϑ/2) cos(ϑ/2)

)
, (2.14a)

Ry(ϑ) = e−iϑσ
y/2 =

(
cos(ϑ/2) − sin(ϑ/2)
sin(ϑ/2) cos(ϑ/2)

)
, (2.14b)

Rz(ϑ) = e−iϑσ
z/2 =

(
exp(−iϑ/2) 0

0 exp(iϑ/2)

)
. (2.14c)

The operation Rα(ϑ) |ψ〉, where |ψ〉 is the single-qubit state shown in Fig. 2.1, corre-
sponds to a rotation of the Bloch vector ~r (see Eq. (2.5)) around the axis α by an angle
ϑ. The sense of rotation is given by the right-hand rule, set by the minus sign in the
exponent of Rα(ϑ).

We define three elementary combinations of Rx(π/2) and Rz(ϑ) that are directly related
to the hardware implementations of the IBM Q processors [Cro2017] (see also Section 5.1).
They are given by

U1(λ) = c1R
z(λ), (2.15a)

U2(φ, λ) = c2R
z
(
φ+

π

2

)
Rx
(π

2

)
Rz
(
λ− π

2

)
, (2.15b)

U3(θ, φ, λ) = c3R
z(φ+ 3π)Rx

(π
2

)
Rz(θ + π)Rx

(π
2

)
Rz(λ), (2.15c)

where the complex phase factors c1 = exp(iλ/2) and c2 = c3 = exp(i(φ + λ)/2) are not
essential for the operation of the gates and are given for reference only.

When a single-qubit gate is applied to one of the qubits of a multi-qubit state |ψ〉 ∈ H2n

(see Eq. (2.6)), the Pauli matrices σα in Eqs. (2.14a)–(2.14c) have to be replaced by σαi
defined in Eq. (2.9). Accordingly, we denote the corresponding rotations by

Rα
i (ϑ) = e−iϑσ

α
i /2 = I ⊗ · · · ⊗ Rα(ϑ)⊗ · · · ⊗ I. (2.16)

In the following chapters, we sometimes use the widespread alternative notations Xϑ
i =

Rx
i (ϑ), Y ϑ

i = Ry
i (ϑ), Zϑ

i = Rz
i (ϑ). Furthermore, we use the convention that ϑ = π if the

“exponent” ϑ is not explicitly specified.
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Any of the single-qubit gates used in this work can be expressed in terms of the single-
qubit rotations defined in Eqs. (2.14a)–(2.14c) or the U gates defined in Eqs. (2.15a)–
(2.15c) (see Tab. B.1 in Appendix B for a list of all gates, their matrix representations,
and their relations to the elementary gates). Two particularly important single-qubit
gates are the X gate (also known as bit flip or NOT gate) and the Hadamard gate. They
are defined as

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
. (2.17)

As before, we extend these single-qubit gates to multi-qubit spaces using the notations
Xi and Hi, as done in Eqs. (2.9) and (2.16). Note that the gate Xi corresponds to the
single-qubit rotation Xϑ

i for ϑ = π (up to a complex phase factor), which is in agreement
with the above convention.

In quantum computing, there is a much larger variety of single-qubit gates than in
digital computing (where the only nontrivial single-bit gate is the NOT gate). Nonethe-
less, it turns out that almost any two-qubit gate is sufficient to build a universal gate set
from the single-qubit rotations [Deu1995; DiV1995] (see also [DiV2000]). In this context,
universal means that any quantum gate on H2n can be represented as a finite sequence of
gates from this set, using suitable angles for all single-qubit rotations.

One such two-qubit gate is the controlled NOT (CNOT) gate. It is defined as

CNOT =

|00〉 |01〉 |10〉 |11〉





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

, (2.18)

such that CNOT |j0〉 |j1〉 = |j0〉 |j0 ⊕ j1〉 where ⊕ denotes the XOR operation (or integer
addition modulo 2). The effect of this gate is to flip the target qubit |j1〉 if and only if the
control qubit |j0〉 is in state |1〉. In the multi-qubit space H2n (see Eq. (2.7)), we use the
notation CNOTil to denote a CNOT gate where qubit i is the control qubit and qubit
l is the target qubit.

An important thing to realize is that the model of gate-based quantum computing
with elementary gates given by the single-qubit rotations in Eqs. (2.14a)–(2.14c) is a
model of analog computation. Given an angle ϑ ∈ [0, 2π), a high level of precision
over the controlling pulse may be necessary to implement the rotation Rα

i (ϑ) accurately.
We study hardware implementations of quantum gates (and in particular the two-qubit
CNOT gate) in more detail in the following chapters.

2.3 Quantum circuits

For a gate-based quantum computer, an algorithm is specified in terms of a quantum
circuit. It consists of a sequence of quantum gates as defined in the previous section.
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|j0〉 H T † T † S • •

|j1〉 • • T H •

Figure 2.3: Circuit diagram for the two-qubit QFT. The boxes denote single-qubit gates
(see Tab. B.1 in Appendix B), and vertical lines denote two-qubit CNOT gates as defined
in Eq. (2.18). The solid circle in a CNOT gate denotes the control qubit, and the open
circle denotes the target qubit. The matrix representation of this circuit is given by
Eq. (2.19).

This model is inspired by the circuit model of digital computation, in which an algorithm
for a digital computer can, in principle, be decomposed into a sequence of digital logic
gates.

As each quantum gate is a unitary operator, a full quantum circuit is also a unitary
operator (the set of unitary operators on a given Hilbert space forms a group). For an
n-qubit system described by the Hilbert space H2n given by Eq. (2.7), a quantum circuit is
thus a specification of a large but sparse unitary matrix U ∈ C2n×2n . If a quantum circuit
is written as a sequence of gates from a certain gate set, this means that a (potentially
large) unitary matrix is expressed as a product of (typically small) elementary unitary
matrices. In this sense, a quantum circuit is just a decomposition of a large matrix into
smaller matrices. A list of elementary gates and their matrix representations is given in
Appendix B.

Quantum circuits are often expressed in a diagrammatic notation, where each qubit
corresponds to a horizontal line. Gates on each qubit are specified using correspond-
ing circuit symbols. An example for a simple circuit diagram representing a two-qubit
quantum Fourier transform (QFT) is shown in Fig. 2.3. It is taken from [Nie2010] after
rewriting some of the gates in terms of the elementary gate set used in this thesis.

Circuit diagrams are defined such that time increases from left to right. Therefore,
when converting between circuit diagrams and their matrix representations, the order of
the matrices has to be reversed. For instance, the unitary matrix corresponding to the
circuit shown in Fig. 2.3 is computed as

U (QFT2) = CNOT01 CNOT10 CNOT01 H1 T1 S0 CNOT10 T
†
0 CNOT10 T

†
0 H0

=
1

2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 . (2.19)

The QFT can be generalized to an arbitrary number of qubits. Its generic property is
that it maps a computational basis state to a uniform superposition over all states with
relative phases dependent on the original state. This can be seen from its definition for a
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Chapter 2 Ideal gate-based quantum computing

basis state |J〉 ∈ H2n [Nie2010],

U (QFTn) |J〉 =
1

2n/2

2n−1∑

K=0

e2πiJK/2n |K〉 , (2.20)

where we identified J and its binary representation j0 · · · jn−1 as done in Eq. (2.6).
Mathematically, the QFT corresponds to a discrete Fourier transform over the additive

group of integers modulo 2n. Interestingly, a universal quantum computer using the gate
set defined in Appendix B can do a QFT in a number of steps polynomial in n, as opposed
to the Fast Fourier Transform that requires O(n2n) steps [Coo1965]. This discovery forms
the basis for most of the quantum algorithms for which an exponential speedup is known.

One such algorithm is Shor’s factorization algorithm [Sho1994] in which the QFT is
basically used to find the period of a suitable function (note that finding periods is a
generic feature of any Fourier transform). The common algebraic problem solved by most
algorithms with an exponential speedup is the hidden subgroup problem [Joz2001].

The difficulty in finding these algorithms, however, is that even for an ideal gate-based
quantum computer, the complex phases in Eq. (2.20) are not directly accessible (see also
the discussion at the end of Section 2.1.1). Furthermore, actual implementations of the
QFT require an extremely precise control over the phases of the pulses that are used
to implement the gates. These phases are related to the relative phase factors present
in Eq. (2.20). We study the problem of controlling the phases and implementing gates
through pulses in more detail in the following chapters.

2.4 Quantum operations

In some situations, it is expedient to consider not a single, pure quantum state |ψ〉 ∈ H2n

representing the n qubits, but a probability distribution {pi} over several quantum states
|ψi〉 ∈ H2n . Such states are called mixed states. They can be represented by a density
matrix

ρ =
∑

i

pi |ψi〉〈ψi| . (2.21)

This representation is called ensemble representation. The fact that {pi} represents a
probability distribution means that each pi ≥ 0, and Tr ρ =

∑
i pi = 1. Further properties

of ρ are ρ = ρ† and that ρ is a positive (semidefinite) matrix, i.e., 〈φ|ρ|φ〉 ≥ 0 for all |φ〉.
Note that this characterization of density matrices is both necessary and sufficient, since
each positive matrix ρ with Tr ρ = 1 can be written in the form of Eq. (2.21) by taking its
spectral decomposition such that pi ≥ 0 are the eigenvalues and |ψi〉 are the eigenvectors
of ρ.

The model of a gate-based quantum computer can be extended to a description in terms
of mixed states. The result of applying a quantum gate U , which maps a pure quantum
state |ψ〉 to U |ψ〉, is then described by

ρ 7→ UρU † =
∑

i

piU |ψi〉〈ψi|U †. (2.22)
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2.4 Quantum operations

For mixed states, however, one often considers more general transformations called
quantum operations [Kra1971]. We denote such an operation by a map E that transforms
ρ according to

ρ 7→ E(ρ). (2.23)

Typical constraints on E are that it be linear (cf. Appendix C), Hermiticity-preserving
(E(ρ)† = E(ρ†)), and completely positive. The latter means formally that if A is a
positive matrix on an extended Hilbert space of arbitrary dimensionality, then also the
extended map E ⊗ 1 preserves the positivity of A [Sti1955]. This property ensures that a
density matrix ρ =

∑
i pi |ψi〉〈ψi| with non-negative probabilities pi is mapped to another

density matrix E(ρ) that also represents non-negative probabilities. Furthermore, the
“completely” in completely positive ensures that this preservation of positivity also applies
if the description is extended to another system (such as extending the description of a
single qubit to two qubits, or one qubit and an environment). If E is also trace-preserving
(i.e., Tr E(ρ) = Tr ρ), we call the completely positive trace-preserving (CPTP) map E
quantum channel or error channel (cf. Section 7.2.2).

2.4.1 Representations of quantum operations

There are several ways of representing a quantum operation E . Since it is a linear map,
one obvious way is to write it as a matrix with elements E(ij),(kl) = Tr |i〉〈j|† E(|k〉〈l|) =
〈i|E(|k〉〈l|)|j〉. For an n-qubit system of dimension N = 2n, this matrix has N2 × N2

complex elements. It is referred to as the matrix representation of E in the standard
basis. However, this representation is not tuned to the particular properties of E . For
instance, the property of complete positivity is not easily expressed by this matrix.

A more useful representation is the so-called Kraus representation, E(ρ) =
∑

αAαρB
†
α,

where Aα, Bα ∈ CN×N . One can show that E is completely positive if and only if Bα = Aα
[Kra1971; Cho1975]. This means that for completely positive maps E , a Kraus represen-
tation is given by

E(ρ) =
R∑

α=1

EαρE
†
α, (2.24)

where Eα ∈ CN×N . The smallest number R of terms in the Kraus representation is called
the Kraus rank of E . Using the Kraus representation, one has that E is trace-preserving
if and only if

∑
αE

†
αEα = 1.

Another commonly used matrix representation of E is the so-called Choi matrix J(E).
It is defined as

J(E) =
1

N

N−1∑

i,j=0

|i〉〈j| ⊗ E(|i〉〈j|) =
1

N



E(|0〉〈0|) E(|0〉〈1|) · · ·
E(|1〉〈0|) E(|1〉〈1|)

...
. . .


 , (2.25)

and it represents a matrix with N2×N2 complex coefficients. A useful property of the Choi
matrix is that E is completely positive if and only if J(E) is positive semidefinite [Cho1975].
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Chapter 2 Ideal gate-based quantum computing

Furthermore, the rank of the Choi matrix (i.e., the number of non-zero singular values)
yields the minimum number R of terms in the Kraus representation given by Eq. (2.24).
For this reason, the Kraus rank R is also called the Choi rank of E .

The Choi matrix is often written in compact form as J(E) = (1 ⊗ E)(Φ), where Φ =
|Φ〉〈Φ| and |Φ〉 =

∑
j |jj〉 /

√
N is the maximally-entangled state on an extended Hilbert

space. Note also that the order of the tensor-product factors is sometimes reversed such
that J(E) = (E ⊗ 1)(Φ) is used instead. Both definitions are equivalent, but the matrix
representation of the one given in Eq. (2.25) appears more canonical.

Finally, there is a matrix representation that is particularly convenient for numerical
work called the Pauli transfer matrix G. It is the matrix representation of the linear map
E with respect to the Pauli basis

P = {I, σx, σy, σz}⊗n. (2.26)

We denote the elements of P by Pi for i = 0, . . . , N2 − 1, where P0 = I ⊗ · · · ⊗ I,
P1 = I ⊗ · · · ⊗ I ⊗ σx, P2 = I ⊗ · · · ⊗ I ⊗ σy, and so on. The basis P is orthogonal
with respect to the Hilbert-Schmidt inner product, TrP †i Pj = Nδij. The corresponding

normalized basis elements are given by P̂i = Pi/
√
N . In this basis, we obtain the Pauli

transfer matrix of E as

Gij = Tr P̂iE(P̂j) =
1

N
TrPiE(Pj). (2.27)

The matrix G obeys the typical properties expected from matrix representations of lin-
ear maps, namely that the columns contain the images of the basis elements, and the
composition of two maps E1 ◦ E2 corresponds to the matrix product G1G2 of their Pauli
transfer matrices. Furthermore, a quantum operation E preserves Hermiticity, so the ma-
trix G consists only of real numbers, which makes it convenient for numerical work. For
trace-preserving and trace-decreasing quantum operations, the matrix elements Gij are
in the range [−1, 1]. We also have G0j = Tr E(Pj)/N , so the first row of G is given by
(1, 0, . . . , 0) if and only if E is trace-preserving. Another property of the Pauli transfer
matrix is that if the first column of G is given by (1, 0, . . . , 0)T , the map E is unital
(meaning that E(1) = 1). Finally, if all rows and all columns of G contain exactly one
non-zero entry of magnitude 1, the map E is known as a Clifford gate, which means that
it maps Pauli operators to Pauli operators. Clifford gates are useful as it can be shown
that simulating quantum circuits containing only Clifford gates is much less complex than
simulating universal quantum circuits [Got1998a].

A modern perspective including a graphical calculus for the common ways of represent-
ing quantum operations is given in [Woo2015]. For the present work, the (generalized)
Kraus representation and the Pauli transfer matrix are the most useful representations.
The former is used in various places in Chapter 6 and Chapter 7. The latter, because of the
convenient properties discussed above, will prove particularly useful for the tomography
experiments studied in Section 6.3.
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2.4 Quantum operations

2.4.2 Transformations of subsystems and leakage

In Section 2.2, we said that quantum theory typically considers unitary transformations
(see Appendix C for the reasons behind this). This notion is also contained in the formal-
ism of quantum operations, although it is not immediately apparent from the completely
positive map E given in Eq. (2.24). To illustrate this connection, we extend the compu-
tational Hilbert space H2n given by Eq. (2.7) with another Hilbert space HEnv,

H = H2n ⊗HEnv, (2.28)

which can be interpreted as a simple system-environment model. The idea of this model
is that the system and the environment, which are initially described by a product state
ρ⊗ ρEnv, undergo a joint unitary transformation U , i.e., ρ⊗ ρEnv 7→ U(ρ⊗ ρEnv)U †. The
final state of the system is then fully described by

E(ρ) = TrEnv

(
U(ρ⊗ ρEnv)U †

)
, (2.29)

where TrEnv denotes the partial trace over the environment’s degrees of freedom. In this
context, “fully described” means that the expectation value of each observable A on H2n

is given by TrAE(ρ).
To relate Eq. (2.29) to the Kraus representation given by Eq. (2.24), we write the initial

state of the environment as a pure state ρEnv = |e0〉〈e0| (note that the space HEnv can
always be chosen large enough so that ρEnv can be expressed as a pure state [Nie2010]).
Choosing Eα = (1⊗〈eα|)U(1⊗|eα〉), where {|eα〉} is a basis ofHEnv completing |e0〉, yields
the Kraus representation of E given by Eq. (2.24). The fact that the Kraus operators are
given by Eα and E†α, respectively, shows that each model of the form of Eq. (2.29) is
automatically completely positive (see [Bre2007] for a more comprehensive discussion).

The system-environment model can also be extended to a description of leakage (cf. Sec-
tion 2.1.4) by supplementing the Hilbert space given by Eq. (2.28) with a direct sum for
higher, non-computational states,

H = (H2n ⊕HLeak)⊗HEnv, (2.30)

where HLeak is defined in Eq. (2.13). Since H2n and HLeak form a direct sum and not a
direct product, one cannot trace out HLeak to obtain a description of the computational
subspace. Instead, one can project the result of Eq. (2.29) onto H2n . The corresponding
quantum operation for a density matrix ρ on H2n is then given by

E(ρ) = P TrEnv

(
U(ρ⊗ ρEnv)U †

)
P =

∑

α

EαρE
†
α, (2.31)

where Eα = P (1⊗〈eα|)U(1⊗|eα〉)P , and P denotes the projection onto the computational
subspace H2n . As before, the state E(ρ) fully describes the final state, in the sense that
expectation values for observables on H2n can be evaluated with E(ρ). Furthermore, since
E(ρ) can be written in Kraus form (see Eq. (2.24)), it is automatically completely positive.
The only difference is that it may no longer be trace-preserving due to the projection P .
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Chapter 2 Ideal gate-based quantum computing

Note that, in a description of an experiment, it may be that leakage can still be
described by trace-preserving quantum operations. This depends on how higher, non-
computational states show up in the measurement. For instance, if a measurement re-
ports each non-computational state as |1〉, the quantum operation would need to map
each non-computational state to |1〉 (which is a non-unitary operation), but the corre-
sponding quantum operation would be trace-preserving. If, however, a non-computational
state shows up randomly as 0 or 1, or if the measured event is classified as “wrong” and
discarded, the procedure would be described in terms of a trace-decreasing quantum op-
eration. In this case, the resulting probability distribution may need to be renormalized,
which is sometimes also be modeled by a nonlinear, trace-preserving quantum operation
of the form ρ 7→ E(ρ)/Tr E(ρ).

Finally, we remark that there are also simple quantum systems whose evolution cannot
be described by quantum operations of the form of Eq. (2.24), i.e., systems that cannot be
described by completely positive maps. In the context of Eq. (2.29), this may be the case
if the system and the environment do not start in a separable state such as ρ⊗ ρEnv. See
[Nie2010] for a simple example of such a system. Further characterizations of quantum
systems beyond completely positive maps are given in [Car2008; Dom2016].

We utilize the formalism of quantum operations on mixed states in Chapter 6 to in-
troduce error metrics on quantum gates and the procedure of gate set tomography. Fur-
thermore, practical applications of quantum channels are given in Chapter 7 for simple,
effective error models and example circuits from the theory of quantum fault tolerance.
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Chapter 3

Simulating superconducting
transmon qubits

Over the past decades, superconducting circuits have emerged as a convenient platform to
engineer quantum mechanical systems with very few degrees of freedom. This is remark-
able in the sense that such quantum mechanical systems are usually given by atoms or
single electrons, i.e., microscopic objects that cannot be easily perceived. Superconducting
circuits, however, are visible to the naked eye. And although these macroscopic electrical
systems are composed of a huge number of atoms, they exhibit collective phenomena that
can be accurately described with Hamiltonians that have only a small number of charge
and phase variables. In this context, the field is commonly called macroscopic quantum
mechanics and the systems are often referred to as artificial atoms. It is this property
that makes superconducting circuits ideal candidates to engineer quantum mechanical
two-level systems that serve as qubits for quantum information processors, and a huge
variety of different candidates has been studied in the literature. A review of prominent
superconducting architectures for quantum information processors and their theoretical
modeling can be found in [Wen2017].

In this chapter, we introduce and describe the transmon simulator that is used for most
of the simulations presented in this work. Section 3.1 reviews the quantum mechanical
modeling of superconducting circuits with an emphasis on the architecture used for trans-
mon qubits. In Section 3.2, we define the generic model Hamiltonian used to describe the
dynamics of a transmon quantum computer. Section 3.3 describes the simulation packages
developed for this work, including the implementations of the numerical algorithms. The
most important transmon model systems used for the results presented in the remainder
of this thesis are defined in Section 3.4. Finally, in Section 3.5, we describe a procedure
to extract suitable model parameters from experiments or electromagnetic simulations of
the experimental devices.

3.1 Superconducting circuits

A superconducting circuit is an electronic circuit in which the circuit elements are su-
perconducting. This means that they conduct electricity with practically zero resistance.
Just like conventional electronic circuits, a superconducting circuit includes basic circuit
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Chapter 3 Simulating superconducting transmon qubits

elements such as capacitors or inductors. A circuit element of particular importance for
quantum information processors is the Josephson junction. It consists of two supercon-
ducting metals with an insulating barrier in between. A key observation was that such
a system can be described by quantum mechanical tunneling processes of the supercon-
ducting charge carriers, the Cooper pairs [Jos1962].

3.1.1 Quantum and classical descriptions

The quantum mechanical description of superconducting circuits emerged from a course
given by Devoret at the Les Houches School of Physics [Dev1997] and has recently been
reviewed and updated in [Voo2017]. The first step is to obtain a classical Hamiltonian (or
a Lagrangian) describing the dynamics of the superconducting circuit. For basic circuit
elements such as capacitors or inductors, the equations of motion determined by the
Hamiltonian are the corresponding differential equations of classical electrodynamics (see
[Jac1999]). Typically, the resulting Hamiltonians are a set of harmonic oscillators with
potential anharmonicities from the Josephson junctions.

The quantum description in terms of a quantum Hamiltonian is obtained by quantizing
the harmonic oscillators. The quantized Hamiltonian is the key element to model dissipa-
tionless superconducting circuits for quantum information processors. It can directly be
used to obtain the dynamics of the system as described by the TDSE given by Eq. (1.1).

For the quantum mechanical description of superconducting circuits to be appropriate,
the following physical conditions are considered necessary [Dev1997; Voo2017]:

(a) The characteristic wave lengths corresponding to the oscillation frequencies need to
be larger than the dimensions of the chip. In this case, the circuit is in the lumped
element limit and can be described by only a few collective degrees of freedom such
as the charge or the flux (which could still follow the classical equations of motion).

(b) The temperature surrounding the system needs to be sufficiently low such that
thermal fluctuations are much smaller than the spacing of the energy levels (although
a high temperature does not by itself invalidate the quantum description).

(c) The widths of the energy levels (caused by dissipative elements such as resistors
that induce damping and reduce quality factors) need to be much smaller than the
spacing of the energy levels.

For quantum harmonic oscillators, a well-known property is that the expectation values
still follow the classical equations of motion. Therefore, quantum phenomena would only
be observable in second-order expectation values (such as the variance as a function of
temperature). The presence of at least one nonlinear circuit element (such as a Joseph-
son junction) can make quantum effects more directly observable [Dev1985; Mar1987;
Cla1988].

Essentially, however, the superconducting systems under investigation are macroscopic
objects in the sense that they contain a large number of constituents (such as aluminum
atoms). Ultimately, one cannot prove that a quantum description for a certain experi-
ment is necessary. The reason is that conceptually, one can never formally prove that a
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3.1 Superconducting circuits

Figure 3.1: Lumped element circuit diagrams for (a) an LC resonator with capacitance C
and inductance L and (b) a Josephson junction with capacitance C and Josephson energy
EJ .

(potentially unknown) model will not be able to describe the observations properly (see
also [Jay1996]).

In the present case, descriptions based solely on classical electrodynamics are occa-
sionally explored. A nice overview concerning Josephson junctions is given in [Bla2016].
Further ventures in this direction can be found in [Mic2005; Mar2007; Grø2010; Kad2016;
Bla2017; Iva2018], the last of which is particularly constructive. It would be interesting to
investigate the descriptive potential of these classical models for the quantum computing
systems under investigation.

This project, however, is concerned with the quantum description. We show that the
discrete energy-level structure of the quantum mechanical description makes the problem
amenable to large-scale simulations.

To introduce the quantum descriptions, we consider two elementary circuit components
of a quantum information processor with transmon qubits. The first is a simple LC res-
onator and the second is a Josephson junction. The lumped element circuits for isolated,
ideal versions of both are shown in Fig. 3.1. We summarize the main relations; a more
detailed review can be found in [Voo2017].

3.1.2 LC resonator

The LC resonator shown in Fig. 3.1(a) is a typical example for an harmonic oscillator
in classical electrodynamics. Its characteristic frequency is ωLC = 1/

√
LC, where C is

the capacitance and L is the inductance. The dynamical variables are the charge Q of
the capacitor and the magnetic flux Φ of the inductor. They obey the typical differential
equations for an harmonic oscillator, i.e., Q̈+ω2

LCQ = 0 and Φ̈+ω2
LCΦ = 0. The equations

are Hamilton’s equations of motion for the Hamiltonian

HLC =
Q2

2C
+

Φ2

2L
. (3.1)

A quantum mechanical description of the system can be obtained by replacing the
variables Q and Φ with operators on the Hilbert space L2(R) of square-integrable functions
over R. The operators have the spectrum R and they obey a commutation relation
[Q,Φ] ∝ i. They have the same algebraic properties as the position and momentum
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operators used in the treatment of the quantum harmonic oscillator [Bal1998]. Thus the
system can be diagonalized algebraically by introducing raising and lowering operators â†

and â, respectively, such that (up to a constant)

HLC = ωLCâ
†â. (3.2)

In quantum optics, the operator â†â is called the photon number operator and its eigenval-
ues k ∈ N0 represent the number of photons in the corresponding monochromatic electric
field of frequency ωLC [Fox2006].

3.1.3 Josephson junction

The circuit shown in Fig. 3.1(b) represents the capacitance C and the Josephson energy
EJ of a Josephson junction. The capacitance originates directly from the superconductor-
insulator-superconductor geometry. It determines one of two characteristic energy scales
of a Josephson junction, namely the charging energy

EC =
e2

2C
, (3.3)

where e is the electron charge. EC can be interpreted as the electrostatic energy required
to charge the capacitor with an additional electron (although, to be precise, the supercon-
ducting charge carriers are Cooper pairs with a charge of 2e, so the electrostatic energy
changes in multiples of 4EC). The other characteristic energy scale is associated with the
tunneling current through the junction, namely the Josephson energy

EJ =
Ic
2e
, (3.4)

where Ic is the critical current representing the maximum tunneling current. EJ can be
interpreted as the energy required for tunneling processes through the insulating barrier
of the Josephson junction.

A Hamiltonian for the circuit shown in Fig. 3.1(b), analogous to HLC given in Eq. (3.1),
reads

HJJ =
Q2

2C
− EJ cos(Φ/φ0), (3.5)

where Q denotes the charge on the capacitor C, Φ stands for the magnetic flux, and
φ0 = h̄/2e is the reduced flux quantum. The common characterization of a Josephson
junction as a weakly anharmonic oscillator can be seen from Eq. (3.5) by expanding the
cosine in powers of Φ (see also Section 3.5). The leading terms are then the same as for
the harmonic oscillator represented by HLC in Eq. (3.1).

An important difference, however, is that the flux Φ in HLC ranges from −∞ to ∞. In
HJJ, the dependence on Φ is periodic such that restricting Φ/φ0 ∈ [0, 2π) is sufficient to
describe the system. A deeper understanding for the periodicity of Φ can be gained by
describing the superconductors on both sides of the Josephson junction in the BCS theory
of superconductivity [Bar1957]. This approach links the magnetic flux Φ directly to the

24



3.1 Superconducting circuits

phase difference of the collective Cooper pair ground states (see [Wil2016; Voo2017] for
more information).

In the quantum mechanical version of HJJ, the chargeQ and flux Φ are again represented
by Hermitian operators. They are often made dimensionless such that n̂ = Q/2e denotes
the charge operator and ϕ̂ = Φ/φ0 denotes the phase operator. The Hamiltonian then
becomes

HJJ = 4EC n̂
2 − EJ cos ϕ̂. (3.6)

Note that the spectra of the operators n̂ and ϕ̂ are not the same as for the harmonic
oscillator described in the previous section. In fact, the spectrum of n̂ is Z, where both
positive and negative integers are physically meaningful since n̂ represents the difference
in the number of net charges on both sides of the capacitor. Consequently, the conjugate
operator ϕ̂ has a bounded spectrum given by [0, 2π), representing the periodic dependence
on Φ in Eq. (3.5).

The different spectra can lead to apparent mathematical paradoxes or contradictions
such as 1 = 0 (cf. [Dir1927; Car1968; Los1992; Bar2007]). The contradictions stem from
applying the operators to states that lie outside their domain. This problem does not
occur if the operator domains are evaluated and adhered to properly (see [Wil2016]).

3.1.4 Cooper pair box

A system known as the Cooper pair box (CPB) [Bou1998] can be obtained by applying an
external voltage bias Vg(t) to the Josephson junction shown in Fig. 3.1(b). The voltage
bias can be used to control the number of charges (i.e., Cooper pairs) stored on the
capacitor of the Josephson junction. The external voltage is modeled by a time-dependent
offset to the number of charges given by ng(t) = CgVg(t)/2e, where Cg is the capacitance
of the gate through which the voltage is applied. The Hamiltonian HJJ given in Eq. (3.6)
then needs to be replaced by the time-dependent Hamiltonian

HCPB = 4EC(n̂− ng(t))2 − EJ cos ϕ̂. (3.7)

An important property of the CPB is that the dynamics of the system can be controlled
externally through an electromagnetic pulse described by ng(t). In quantum comput-
ing systems, ng(t) represents the pulses that are used to implement quantum gates (see
Chapter 5).

CPBs have been used to engineer qubits for quantum information processors for almost
20 years [Vio2002; Bla2004], where two low-energy states of the multi-level system are
used to define the qubits. CPB qubits can be classified into two groups by means of
the energy scales EJ and EC , namely the charge qubit where EC � EJ (such that the
charging energy dominates), and the transmon qubit where EC � EJ [Koc2007] (the
name transmon is derived from transmission-line shunted plasma oscillation and refers to
a large shunt capacitance that reduces EC , see Eq. (3.3)). The transmon has turned out
to be much more coherent [Pai2011; Rig2012] and easier to control [Cho2012]. It is now
employed in many experimental quantum computing platforms [Nat2019] by companies
such as IBM [IBM2016], Google [Aru2019], and Rigetti Computing [Rig2017].
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3.2 Transmon quantum computer model

The topic of this thesis is the simulation of a system of transmons and resonators by
means of solving the TDSE,

i
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 , (3.8)

for a generic model Hamiltonian H. The solution to Eq. (3.8), namely the state |Ψ(t)〉,
can be used to compute any physically relevant quantity. The model Hamiltonian H
includes NTr transmons described as CPBs (see Eq. (3.7)) to represent the qubits, NRes

transmission-line resonators described as LC oscillators (see Eq. (3.2)), and various ways
of coupling transmons and resonators.

Throughout this work, we use units with h̄ = 1 unless otherwise stated. Often, time
and energy are the only necessary physical quantities that appear in this thesis. Typically,
time is given in nanoseconds, and energies and frequencies are given in gigahertz.

3.2.1 Hamiltonian

The full model Hamiltonian reads

H = HTr +HRes +HInt, (3.9a)

where

HTr =

NTr−1∑

i=0

[
4ECi(n̂i − ngi(t))2 − EJi cos ϕ̂i

]
, (3.9b)

HRes =

NRes−1∑

r=0

Ωrâ
†
râr +

NRes−1∑

r=0

Ωrεr(t)(âr + â†r), (3.9c)

HInt =

NRes−1∑

r=0

NTr−1∑

i=0

Grin̂i(âr + â†r) (3.9d)

+
∑

0≤r<l<NRes

λrl(âr + â†r)(âl + â†l ) (3.9e)

+
∑

0≤i<j<NTr

ECi,Cjn̂in̂j. (3.9f)

The transmon Hamiltonian HTr given by Eq. (3.9b) is a sum of NTr CPB Hamiltonians
(see Eq. (3.7)). Each transmon i = 0, . . . , NTr − 1 is defined by its charging energy ECi
and Josephson energy EJi (see Eqs. (3.3) and (3.4)). n̂i is the number operator and ϕ̂i
is the phase operator of transmon i. ngi(t) represents a time-dependent external pulse
applied to the transmon.

The resonator Hamiltonian HRes given by Eq. (3.9c) is a sum of NRes LC resonators
(see Eq. (3.2)). Each resonator r = 0, . . . , NRes − 1 is defined by its frequency Ωr. The
raising and lowering operators of resonator r are given by â†r and âr, respectively. εr(t)
denotes a time-dependent pulse applied to resonator r.
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3.2 Transmon quantum computer model

Table 3.1: Characteristic values for the parameters of the model Hamiltonian defined in
Eqs. (3.9a)–(3.9f). The numbers are usually determined by the corresponding experimen-
tal setups. The complexity of the simulation grows with NTr and NRes, so these quantities
are limited to keep the computational cost reasonable (see below). The exact numerical
values of the energies, however, are irrelevant for the computational cost of the simulation.

NTr NRes ECi/2π EJi/2π Ωr/2π Gri/2π λrl/2π ECi,Cj/2π

1–20 1–20 0.1–1 GHz 10–15 GHz 4–7 GHz 10–100 MHz 1–20 MHz 10–100 MHz

The interaction between transmons and resonators is modeled by HInt given by Eqs.
(3.9d)–(3.9f). The first term given in Eq. (3.9d) represents a coupling between each
resonator r and each transmon i with coupling strength Gri. This coupling originates from
the capacitive interaction between the transmons and resonators (see [Koc2007]) since the
number operator n̂i describes the amount of charges stored in the CPB’s capacitor and
âr + â†r represents the electric field of the resonator. In the simulation model, in principle,
each resonator r can be coupled to each transmon i such that the matrix Gri is dense.
However, this is hard to realize in experiments for a system of more than a few transmons.
The architecture based on coupling different transmons via resonators is characteristic of
the processors available on the IBM Q Experience [IBM2016].

The second interaction term given by Eq. (3.9e) models an electric dipole interaction
between the resonators. It is typically used to describe photonic interactions when a bath
of resonators is used as a model for an environment [Koc2007] (see Section 3.5).

Finally, the term given by Eq. (3.9f) describes a capacitive coupling between the trans-
mons, where ECi,Cj is the capacitive coupling energy between transmon i and j. A cou-
pling mechanism of this form is used by Rigetti Computing [Did2018] (see also [Rea2018;
Cal2018]) and Google [Bar2013; Nei2018; Aru2019].

The simulation model defined by Eqs. (3.9a)–(3.9f) contains a large set of parameters
and time-dependent functions which can be set to arbitrary values. However, note that
in the practically relevant scenarios studied in this thesis, only a small subset of all
parameters is non-zero. Typically, the non-zero parameters are set to values which have
been measured in corresponding experimental setups. All energies are usually specified
in gigahertz and in units of 2π (using h̄ = 1). Consequently, the characteristic time scale
for these systems is nanoseconds. See Tab. 3.1 for characteristic values of the model
parameters.

3.2.2 Choice of the basis

To solve the TDSE given by Eq. (3.8) on a digital computer, it is necessary to choose
a basis for the state |Ψ(t)〉 such that the solution of the TDSE corresponds to a set of
complex coefficients to be determined numerically.

For the resonators described by HRes (see Eq. (3.9c)), an obvious choice for the basis
vectors are the eigenstates of the photon number operator â†râr for resonator r. These are
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the photon number states (or Fock states), denoted by |kr〉 for kr ∈ N0 such that

â†râr =
∑

kr

kr |kr〉〈kr| . (3.10)

All other terms in HRes are proportional to the operator âr + â†r, which corresponds to the
electric field in resonator r. Its representation with respect to the photon number states
is

âr + â†r =
∑

kr

√
kr + 1(|kr〉〈kr + 1|+ |kr + 1〉〈kr|) =




0 1

1 0
√

2√
2 0

√
3

√
3 0

. . .
. . . . . .



, (3.11)

i.e., a tridiagonal symmetric matrix with zeros on the diagonal.
For the transmons described by HTr (see Eq. (3.9b)), there are two possible choices

of basis states that come to mind. One option is given by the eigenstates of the charge
number operators n̂i. They are called charge states and are denoted by |ni〉 for ni ∈ Z
such that

n̂i =
∑

ni

ni |ni〉〈ni| . (3.12)

The interpretation of the state |ni〉 is that the capacitor of the Josephson junction is
charged with a net charge of ni Cooper pairs (note that the net charge can be both
positive and negative such that ni ∈ Z). An advantage of this basis is that each operator
in Eqs. (3.9a)–(3.9f) associated with transmon i has a straightforward representation with
respect to this basis. Specifically, the operator cos ϕ̂i is given by

cos ϕ̂i =
∑

ni

1

2
(|ni〉〈ni + 1|+ |ni + 1〉〈ni|). (3.13)

It couples the charge states |ni〉 and |ni ± 1〉. In other words, it describes the tunneling
processes of Cooper pairs from one side of the Josephson junction to the other, thereby
changing the net charge on the capacitor by one. A CPB qubit simulator solving the
TDSE in this basis was studied in [Wil2016].

However, for transmon simulations, a much more appropriate basis is given by the
transmon eigenstates. They are denoted by |mi〉 for mi ∈ N0 and correspond to the
eigenstates of the full Josephson junction Hamiltonian HJJ given in Eq. (3.6). This means
that for each transmon i, we have

4ECin̂
2
i − EJi cos ϕ̂i =

∑

mi

ETr
i,mi
|mi〉〈mi| , (3.14)

where ETr
i,mi

denotes the corresponding eigenvalues (we typically shift the eigenvalues ETr
i,mi

by the respective ground-state energy ETr
i,0 such that ETr

i,0 = 0 for all i). The ground state
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3.2 Transmon quantum computer model

|mi = 0〉 and the first excited state |mi = 1〉 are the so-called qubit states or computational
states of each transmon. Correspondingly, the energy difference ω̃i = ETr

i,1 − ETr
i,0 between

the two lowest states is called the qubit frequency. Note that in practice, it may be benefi-
cial to use a slightly shifted frequency ωi for pulse control because of the presence of other
components such as resonators (see the discussion around Eq. (3.39) or Section 5.3.2).
More insight into the spectrum can be gained by observing that the ϕ̂i dependence of
cos ϕ̂i in leading order is ϕ̂2

i (up to a constant). This means that Eq. (3.14) can be seen
as an harmonic oscillator with anharmonic higher-order corrections. It can be shown that
the spectrum {ETr

i,mi
} slightly deviates from an equidistant spectrum by an anharmonicity

αi = ETr
i,2 − ETr

i,1 − ω̃i ≈ −ECi [Koc2007]. The energy difference between higher levels
m′i + 1 and m′i is approximately reduced by m′i|αi| such that ETr

i,m′i+1 − ETr
i,m′i
≈ ω̃i + αm′i

[Gam2013].
To set up a simulation for Eqs. (3.9a)–(3.9f) in the transmon basis |mi〉, we need to find

a representation for the charge operator n̂i given in Eq. (3.12) with respect to this basis.
One approach is given in [Did2018], where the authors perform a systematic perturbation
theory up to 25th order in the parameter ξi =

√
2ECi/EJi. For typical device parameters

(see Tab. 3.1), ξi takes values between 0.1 and 0.5.
However, since this work is based on a computer simulation where we have access

to all numerical values of the parameters, we take a different approach to obtain the
representation of n̂i in the transmon basis: We construct the tridiagonal matrix for the
transmon Hamiltonian given by Eq. (3.14) in terms of the charge states |ni〉 and use
numerical diagonalization to obtain the coefficients 〈ni|mi〉, i.e., the representation of the
charge states in the transmon basis. The global phase of the transmon states is chosen
such that the coefficients 〈ni|mi〉 ∈ R. The characteristic distribution of these coefficients
is shown in Fig. 3.2. Typically, a truncation of the tridiagonal matrix given by Eq. (3.14)
to 50 charge states below and above ni = 0 suffices to obtain the coefficients 〈ni|mi〉 for
the lowest states mi = 0, 1, 2, . . . to machine precision.

Given the coefficients 〈ni|mi〉, we can obtain the matrix representation of the charge
operator n̂i in the transmon basis. The matrix is symmetric since 〈ni|mi〉 ∈ R, and its
characteristic form is

n̂i =
∑

mim′i

n
(mi,m

′
i)

i |mi〉〈m′i| =




n
(0,1)
i n

(0,3)
i

n
(0,1)
i n

(1,2)
i · · ·

n
(1,2)
i n

(2,3)
i

n
(0,3)
i n

(2,3)
i

. . .
...

. . .



, (3.15)

where the coefficients n
(mi,m

′
i)

i =
∑

ni
ni 〈mi|ni〉 〈ni|m′i〉 are non-zero only if mi and m′i dif-

fer by an odd number. Moreover, if this odd number is large (i.e., the coefficient n
(mi,m

′
i)

i

is far away from the diagonal), the matrix element n
(mi,m

′
i)

i tends to zero. The coefficients

n
(mi,mi±1)
i on the subdiagonal are approximately equal to those of the tridiagonal matrix
âr + â†r shown in Eq. (3.11). In fact, for the approximation of the transmon as an anhar-
monic oscillator often found in the literature, n̂i is effectively replaced by the operator
−(EJi/32ECi)

1/4(b̂i + b̂†i ), where b̂i + b̂†i is represented by the same tridiagonal matrix (see
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Figure 3.2: Characteristic distribution of the four lowest transmon eigenstates (a)
|mi = 0〉, (b) |mi = 1〉, (c) |mi = 2〉, (d) |mi = 3〉, in terms of the charge basis |ni〉.
Shown are the coefficients 〈ni|mi〉 obtained from a numerical diagonalization of the tridi-
agonal matrix given by the left-hand side of Eq. (3.14) for ECi = 2π × 0.222 GHz and
EJi = 2π× 12.61 GHz (the KIT system, cf. Tab. 3.2). 101 charge states ni = −50, . . . , 50
have been used for the diagonalization. Note that the sign (i.e., the global phase) of
〈ni|mi〉 is irrelevant, but the relative signs of the bars with even and odd parity around
ni = 0 is characteristic.

Section 4.2.1). The coefficient n
(0,3)
i , which is dropped in this approximation, is typically

smaller than the other matrix elements by a factor of 10–50. Nevertheless, we observed
that the coefficient is still significant for an accurate simulation of the time evolution. See
Section 4.2 and, in particular, Fig. 4.7 for an empirical investigation of approximations of
this type.

The total Hilbert space of NTr transmons and NRes resonators is given by

Htotal =

(
NRes−1⊗

r=0

⊕

kr∈N0

span{|kr〉}
)
⊗
(
NTr−1⊗

i=0

⊕

mi∈N0

span{|mi〉}
)
, (3.16)

which is an instance of the system-environment model with leakage defined in Eq. (2.30).
Although the dimension of Htotal is infinite, the advantage of the chosen basis is that only
a small number of basis states needs to be implemented to describe the dynamics of the
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system. To be precise, a transmon-resonator system initialized in the ground state usually
requires four states from the transmon basis for each transmon (see Section 4.1.1 below),
whereas in the charge basis {|ni〉}, at least 17 states ni = −8, . . . , 8 need to be taken
into account to obtain the dynamics to sufficient precision [Wil2016]. A similar argument
holds for the Fock states |kr〉 used for each of the resonators.

Therefore, for the majority of this work, we restrict the basis to four states for each
of the NTr + NRes subsystems. We found that this basis is sufficient to describe the dy-
namics for almost all applications. Furthermore, it enables a large-scale high-performance
implementation of the simulation (see Section 3.3.1). The basis states are given by the
four lowest energy eigenstates |mi〉 of each transmon and four Fock states |kr〉 starting at
some koffset

r ∈ N0 for each of the resonators. The offset will be set to koffset
r = 0 for most of

the simulations such that the resonator parts of the basis consist of the four lowest energy
Fock states for each resonator. Thus, the effective Hilbert space is given by

H = span{|k0〉|k1〉· · ·|kNRes−1〉|m0〉|m1〉· · ·|mNTr−1〉}, (3.17)

where each kr ∈ {koffset
r , koffset

r +1, koffset
r +2, koffset

r +3} and each mi ∈ {0, 1, 2, 3}. The total
number of states (i.e., the dimension of the Hilbert space) is thus dim(H) = 4NRes+NTr .

3.3 Simulation toolkit

The software package developed for this thesis consists of several programs for the simu-
lation of transmon quantum computers. The central tool, solver, computes the solution
|Ψ(t)〉 of the TDSE given in Eq. (3.8), by which any physically relevant quantity of the
system can be evaluated. Additionally, the toolkit contains several convenience programs
to either prepare a run for solver or to evaluate its results. The individual software
components are:

• solver: Compute the numerical solution |Ψ(t)〉 of the TDSE given by Eq. (3.8) for
the full model Hamiltonian H given by Eqs. (3.9a)–(3.9f). H is characterized by a
set of numerical values for the parameters and pulse shapes for the time-dependent
functions. The result |Ψ(t)〉 is the time evolution of a given initial state |Ψ(0)〉.

• evaluator: Given the solution |Ψ(t)〉 produced by solver, compute expectation
values such as the Bloch vectors given in Eq. (2.11) or perform basis transformations
to rotating frames. The program can also be used to evaluate the accuracy and the
overlap between different solutions.

• visualizer: Generate 3D visualizations of the time evolution of the Bloch vectors
computed from the solution |Ψ(t)〉 using real-time rendering.

• optimizer: Optimize quantum gates by finding suitable pulses (see Chapter 5).
This program invokes solver repeatedly for varying pulse parameters and evaluates
the success of implementing a certain gate by studying the time evolution produced
by solver.
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• compiler: Given a quantum circuit specified as a set of quantum gates in a certain
file format such as OpenQASM [Cro2017] or the JUQCS instruction set defined in
[DeR2019a], generate the pulse shape information required for solver. The pro-
gram can use the results produced by optimizer and can also produce appropriate
configuration files to set up the environment for solver.

In this section, we give a detailed description of the algorithms underlying solver,
evaluator, and visualizer. Advanced functionalities implemented by optimizer and
compiler are discussed in the Sections 5.3 and 5.4, respectively.

3.3.1 Numerical algorithm: solver

The task of solver is to simulate the time evolution |Ψ(t)〉 of a given initial state |Ψ(0)〉.
Formally, the time evolution can be expressed as

|Ψ(t)〉 = U(t, 0) |Ψ(0)〉 , (3.18)

where U denotes the unitary time-evolution operator of the system given by

U(t1, t0) = T exp

(
−i
∫ t1

t0

H(t̃) dt̃

)
. (3.19)

In this expression, H(t̃) is the time-dependent model Hamiltonian defined in Eqs. (3.9a)–
(3.9f) and T is the time-ordering symbol (see [Bru2004]). The time-evolution operator
satisfies the group property U(t1, t0) = U(t1, t

′)U(t′, t0) such that the time evolution from
0 to t can be written as a product of successive time evolutions with a time step τ , i.e.,

|Ψ(t)〉 = U(t, t− τ) · · · U(2τ, τ)U(τ, 0) |Ψ(0)〉 . (3.20)

In each step, the current state vector |Ψ(t0)〉 is updated by computing

|Ψ(t0 + τ)〉 = U(t0 + τ, t0) |Ψ(t0)〉 , (3.21)

starting from t0 = 0. Here, we have chosen the time step τ to be constant, but in
principle it may be updated dynamically for each time step to speed up the simulation, if
the problem allows it. In general, the time step τ needs to be sufficiently small such that
H(t0) and H(t0 + τ) are well approximated by H(t0 + τ/2) (this condition is affected by
the time dependence of the pulses ngi(t) and εr(t) in Eqs. (3.9b) and (3.9c), respectively).
In this case, the time-evolution operator U(t0 + τ, t0) (which is equal to Eq. (3.19) for
t1 = t0 + τ) simplifies to U(t0 + τ, t0) = e−iτH(t0+τ/2). The update rule for the time
evolution given by Eq. (3.21) then becomes

|Ψ(t0 + τ)〉 = e−iτH(t0+τ/2) |Ψ(t0)〉 . (3.22)

The core of the transmon simulator implements this operation to propagate the state
vector according to Eq. (3.20). Obviously, there are many different ways to implement
Eq. (3.22), but whether a simulation for large systems is feasible or not heavily depends
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on the choice of basis and the particular algorithm. A suitable choice for the basis is
the product basis of resonator eigenstates |kr〉 and transmon eigenstates |mi〉 discussed
in Section 3.2.2.

In this basis, the solution |Ψ(t)〉 is determined by its complex expansion coefficients
ψk0k1···m0m1···(t) defined by

|Ψ(t)〉 =
∑

k0k1···
m0m1···

ψk0k1···m0m1···(t) |k0k1 · · ·m0m1 · · ·〉 . (3.23)

As each kr and mi in the truncated Hilbert space H (see Eq. (3.17)) can take one of four
different values, |Ψ(t)〉 is described by an array of 4NRes+NTr complex coefficients. The
index k0k1 · · ·m0m1 · · · can thus be efficiently encoded in an integer of 2(NRes +NTr) bits.
We introduce the notation

KM =

k0

↑
00

k1

↑
00 · · · 00︸ ︷︷ ︸

K

m0

↑
00

m1

↑
00 · · · 00︸ ︷︷ ︸

M

, . . . , 11 · · · 11︸ ︷︷ ︸
K

11 · · · 11︸ ︷︷ ︸
M

(3.24)

for this integer, where each group of two bits encodes the respective value of kr ∈
{koffset

r , koffset
r + 1, koffset

r + 2, koffset
r + 3} and mi ∈ {0, 1, 2, 3}. Using this notation, the

expansion in Eq. (3.23) reads

|Ψ(t)〉 =
∑

KM

ψKM(t) |KM〉 . (3.25)

We choose unsigned 64-bit integers to represent the index KM in the implementations
(see Appendix D). This choice is reasonable since the number of bits required for NTr

transmons and NRes resonators is 2(NTr + NRes). This means that 32-bit integers would
impose the unnecessary constraint NTr + NRes ≤ 16 even though larger simulations are
technically feasible. Integers larger than 64 bits are not required since there exists no
system today that can store more than 264 complex numbers.

We have already studied the matrix representation with respect to |KM〉 for parts of
the Hamiltonian in Section 3.2.2. This knowledge can be used to derive an algorithm to
implement the operation given by Eq. (3.22).

Suzuki-Trotter product-formula algorithm

The algorithm that we use to implement Eq. (3.22) is the second-order Suzuki-Trotter
product-formula algorithm [DeR1987]. It is based on generalizations of the Lie-Trotter
formula [Lie1888; Tro1959; Suz1976; Suz1985]. The algorithm belongs to a family of
explicit and unconditionally stable algorithms for linear parabolic difference equations
and has been applied numerous times to solve the TDSE, especially also in the context
of quantum computing [DeR2000; DeR2002; DeR2006; Wil2016; Wil2017; Wil2018b;
Wil2020d; Wil2020e]. Moreover, rigorous error bounds have been proven to assess the
accuracy of the algorithm [DeR1987; Huy1990]. Recently, the bounds have been extended
to tight error bounds for observables [Wil2020d]. We test these bounds in Section 4.1.
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The first step in the derivation of the algorithm is to split the Hamiltonian H given by
Eqs. (3.9a)–(3.9f) at time t̃ = t0 + τ/2 into a part H0 that is diagonal with respect to |KM〉
and the remaining part W . We obtain up to an irrelevant constant (which would only
lead to a global phase in the solution),

H = H0 +W, (3.26a)

H0 =

NTr−1∑

i=0

(4ECin̂
2
i − EJi cos ϕ̂i) +

NRes−1∑

r=0

Ωrâ
†
râr, (3.26b)

W =

NTr−1∑

i=0

−8ECingi(t̃)n̂i (3.26c)

+

NRes−1∑

r=0

Ωrεr(t̃)(âr + â†r) (3.26d)

+

NRes−1∑

r=0

NTr−1∑

i=0

Grin̂i(âr + â†r) (3.26e)

+
∑

0≤r<l<NRes

λrl(âr + â†r)(âl + â†l ) (3.26f)

+
∑

0≤i<j<NTr

ECi,Cjn̂in̂j. (3.26g)

The second-order product-formula decomposition for U(t0 + τ, t0) = e−iτ(H0+W ) is given
by

Ũ = e−iτH0/2 e−iτW e−iτH0/2. (3.27)

This decomposition is equal to U(t0 + τ, t0) up to second order in τ . It is the only
approximation apart from the discretization in time, and the error can be well controlled
by the time step τ using the rigorous bounds given in [DeR1987; Wil2020d]. To apply
the decomposition to the state vector given in Eq. (3.25), we need to derive its action on
the basis state |KM〉.

For the diagonal part e−iτH0/2, we make use of the spectral representations given in
Eqs. (3.10) and (3.14), yielding

H0 =
∑

KM

(
k0Ω0 + k1Ω1 + · · ·+ ETr

0,m0
+ ETr

1,m1
+ · · ·

)
|KM〉〈KM| . (3.28)

Thus we obtain the explicit expression

e−iτH0/2 |KM〉 = exp(−iτ(k0Ω0 + k1Ω1 + · · ·+ ETr
0,m0

+ ETr
1,m1

+ · · ·)/2) |KM〉 , (3.29)

which can be implemented on a computer by multiplying each coefficient ψKM with the
corresponding phase factor. Since all operations are independent, this operation can be
easily parallelized.
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The action of the non-diagonal part e−iτW on |KM〉 is more complicated. One option
would be to apply the Suzuki-Trotter product-formula decomposition again to each of
the terms contained in W (see Eqs. (3.26c)–(3.26g)) and evaluate the smaller matrix
exponentials explicitly. Such an approach was used in [Wil2016]. However, in the present
case, a non-diagonal term like n̂in̂j in Eq. (3.26g) would result in 16-component updates
(cf. Eq. (3.15)) of the state vector given by Eq. (3.25). Furthermore, additional second-
order decompositions of the matrix exponential e−iτW would introduce additional errors
of order τ 3 such that the time step τ would need to be reduced.

Therefore, we follow a different route by constructing a transformation V to change
to the eigenbasis of W such that Λ = V †WV is diagonal. This means that the operator
e−iτW in Eq. (3.27) can be implemented as V e−iτΛ V †. Using this, the decomposition
used to implement the time step Eq. (3.21) reads

Ũ = e−iτH0/2 V e−iτΛ V † e−iτH0/2. (3.30)

Since the Hilbert space given by Eq. (3.17) is a product of multiple spaces with only four
dimensions each, V can be written as a tensor product of complex 4 × 4 matrices,

V =

NRes−1⊗

r=0

V (a)
r

NTr−1⊗

i=0

V
(n)
i , (3.31)

where V
(a)
r diagonalizes the matrix representation of âr + â†r in the Fock basis (see

Eq. (3.11) and V
(n)
i diagonalizes the matrix representation of n̂i in the transmon ba-

sis (see Eq. (3.15)). We obtain these 4 × 4 matrices numerically by diagonalizing the
corresponding 4 × 4 matrix representations given in Eq. (3.11) and Eq. (3.15), respec-

tively. The matrices V
(a)
r and V

(n)
i only need to be computed once, i.e., before the actual

time evolution starts. Furthermore, the matrices V
(a)
r are all equal for different r, so only

one of them needs to be stored in memory. In summary, we have

V (a)
r Λ(a)

r V (a)†
r =




√
1 + koffset

r√
1 + koffset

r

√
2 + koffset

r√
2 + koffset

r

√
3 + koffset

r√
3 + koffset

r


 , (3.32a)

V
(n)
i Λ

(n)
i V

(n)†
i =




n
(0,1)
i n

(0,3)
i

n
(0,1)
i n

(1,2)
i

n
(1,2)
i n

(2,3)
i

n
(0,3)
i n

(2,3)
i


 , (3.32b)

where n
(mi,m

′
i)

i =
∑

ni
ni 〈mi|ni〉 〈ni|m′i〉 (see Eq. (3.15)), and the corresponding eigenvalues

are contained in the diagonal matrices Λ
(a)
r and Λ

(n)
i , respectively.

A proof that V defined in Eq. (3.31) diagonalizes W given by Eqs. (3.26c)–(3.26g) can
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be obtained by explicitly computing Λ = V †WV :

Λ =

NTr−1∑

i=0

−8ECingi(t̃)Λ
(n)
i +

NRes−1∑

r=0

Ωrεr(t̃)Λ
(a)
r +

NRes−1∑

r=0

NTr−1∑

i=0

Gri Λ
(a)
r ⊗ Λ

(n)
i

+
∑

0≤r<l<NRes

λrl Λ
(a)
r ⊗ Λ

(a)
l +

∑

0≤i<j<NTr

ECi,Cj Λ
(n)
i ⊗ Λ

(n)
j , (3.33)

which is a direct expression for the eigenvalues of W . It can be used to implement the
operation e−iτΛ in Eq. (3.30) in the same way as e−iτH0/2 in Eq. (3.29).

The only thing left for the implementation of Ũ given in Eq. (3.30) is the implementation

of the basis transformation V . Each 4× 4 component V
(a/n)
r/i of V in Eq. (3.31) results in

four-component updates of the coefficients ψKM of the form



ψ∗···∗00∗···∗
ψ∗···∗01∗···∗
ψ∗···∗10∗···∗
ψ∗···∗11∗···∗


← V

(a/n)
r/i




ψ∗···∗00∗···∗
ψ∗···∗01∗···∗
ψ∗···∗10∗···∗
ψ∗···∗11∗···∗


 , (3.34)

where the notation ∗ · · · ∗ indicates that the 4× 4 transformation V
(a)
r (V

(n)
i ) needs to be

done in a loop over KM = 0, . . . , 4NTr+NRes − 1 where the two bits corresponding to kr (mi)
are fixed (cf. Eq. (3.24)).

We study three alternatives to implement this loop over KM on a supercomputer. There
is a priori no guarantee which of the implementations performs best on which processor. It
is reasonable to focus mainly on optimizing this part since it makes the largest contribution
to the run time of the algorithm (see Fig. 4.5 below). For this reason, we compare the
alternative implementations empirically in Section 4.1.2. A C++ sample implementation
for each is given in Listings D.1–D.3 in Appendix D.

Implementation 0: Complete single loop with branches

The simplest approach consists of a complete loop over all KM from 0 to dim(H) − 1 =
4NTr+NRes − 1. In each iteration, we test if the two bits corresponding to the current
transformation are 0 (i.e., if KM = ∗ · · · ∗ 00 ∗ · · · ∗). If they are, we perform the 4 × 4
update of the coefficients ψKM. In other words, we iterate over all KM, but only do something
every fourth iteration.

This implementation might seem naive since the inner loop has four times as many
iterations as it needs. Moreover, the test KM = ∗ · · · ∗ 00 ∗ · · · ∗ introduces branches in the
code which may interrupt the sequential flow in the instruction pipeline of the processor.

However, modern processors use branch predictors to detect patterns in the evaluation
of conditional structures [Smi1981; Mit2019]. This means that instructions which are
likely to follow the branch are already loaded into the pipeline before knowing if they are
really going to be executed. Since the branch under consideration (see lines 6 and 13 of
Listing D.1) has an easy pattern (it evaluates to true every four iterations), it could be
that branch prediction effectively removes the overhead. Therefore, the implementation
is worth studying in more detail, also to assess the impact that optimizations on this level
can have with modern compilers and processors.
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Implementation 1: Reduced single loop with bitwise operations

The next implementation explicitly reduces the number of iterations in the inner loop by
a factor of four. The price to be paid is that the actual index KM needs to be computed
from the reduced iteration count. This is done by means of additional bitwise operations
(see lines 8 and 18 of Listing D.2).

This implementation has the smallest amount of branches, at the cost of additional
computation required for the bitwise operations to obtain the index KM. Furthermore, it
requires the largest amount of code and is less readable than the other implementations.
This approach might have been the first choice for older architectures where branches in
performance-critical code directly result in an increased run time. It is interesting to see
if this intuition also holds for modern processors.

Implementation 2: Reduced nested loops

The last implementation divides the loop over KM into two separate, nested loops over
the higher part K and the lower part M of the index KM (see Eq. (3.24)). A potential
problem of this implementation is that the loops themselves also introduce branches, and
the evaluation of the tests may not be as predictable as the branches in implementation
0.

However, modern processors are well tuned to the execution of loops with simple con-
ditions and increments, and separate loops over K and M are easy to parse and parallelize.
This implementation conveys the programmer’s intent more clearly and does not con-
tain as many explicit bitwise operations as implementation 1 or additional iterations as
implementation 0.

Storage of the results and the computational subspace

The results produced by solver are the complex coefficients ψKM(t) of the state vector
|Ψ(t)〉 given in Eq. (3.25) at certain times t ∈ T during the time evolution. The set T
usually consists of the times after each pulse implementing a certain quantum gate. The
maximum number of times in T is determined by the total duration of the time evolution
divided by the time step τ . The particular set of times T at which the coefficients are
saved is often much smaller than the total number of time steps.

The coefficients ψKM(t) are typically stored in separate text files containing the modu-
lus abs(ψKM(t)) and the argument arg(ψKM(t)) of the complex numbers. Additionally, the
current state vector can be saved in binary format. This is useful when the simulation is
interrupted and needs to be continued at a later point in time; for instance, if the simu-
lation takes longer than the maximum time that a job can allocate on a supercomputer.

Sometimes, it may not be feasible or necessary to store the coefficients ψKM(t) for all
4NRes+NTr values of the index KM (see Eq. (3.24)). It is often sufficient to consider only the
projection of |Ψ(t)〉 on the so-called computational subspace of the Hilbert space H given
by Eq. (3.17). The projection can be formally written in terms a projection operator
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defined by

PH2n
|KM〉 =

{
|KM〉 if k0, k1, . . . = 0 and m0,m1, . . . ∈ {0, 1}
0 otherwise

, (3.35)

where n = NTr. Hence PH2n
keeps only those states |KM〉 for which the resonator part

K = 0 and each mi in the transmon part M is either 0 or 1.
Since the range of the operator PH2n

is a subspace of dimension 2n, it can be identified
with the multi-qubit space H2n defined in Eq. (2.7). This is the computational subspace
of H. Consequently, we call all other states |KM〉 for which PH2n

|KM〉 = 0 higher levels
or non-computational states of H (see also Section 2.4.2). This concept will play an
important role in Chapter 5, when we study and optimize pulses ngi(t) to implement a
set of quantum gates on the computational subspace.

Note that a projection on the computational subspace may not be sufficient to compute
any arbitrary observable for the system, since transmons may suffer from leakage or
become entangled with resonators. In the latter case, a partial trace over the resonators’
degrees of freedom would be more appropriate (see e.g. Eq. (3.38) below). However,
for the optimization of quantum gates, where a pulse is explicitly optimized to render
the transmon within the computational subspace, the projection defined by Eq. (3.35) is
adequate.

3.3.2 Evaluation of the results: evaluator

The first step after setting up a new simulation (i.e., after specifying the device param-
eters for the Hamiltonian including potential time-dependent pulses) is to configure the
simulation parameters to ensure that the results are accurate up to a certain numerical
precision. Afterwards, qubit-specific properties such as the qubit frequency or the Bloch
vectors can be calculated from the results. These tasks are provided by evaluator. They
typically need to be done before pulses are optimized to implement the quantum gates.

Adjusting the time step by monitoring overlap and error

A crucial parameter of the simulation is the time step τ used to solve the TDSE (see
the discussion below Eq. (3.20)). Despite the existence of rigorous error bounds (see
[DeR1987; Wil2020d]), it is often crucial to tweak τ such that the simulation produces
results equal to the mathematical solution of the TDSE (up to some desired precision),
but still runs in reasonable time on a (super)computer. In practice, one usually starts
with a small time step and gradually increases τ as long as the resulting state vectors
|Ψ(t)〉 (or certain desired expectation values) effectively stay the same. For most of the
simulations, we use time steps τ ∈ {10−3 ns, 10−4 ns}.

To check whether two state vectors |Ψτ1(t)〉 and |Ψτ2(t)〉 resulting from simulations
with different time steps τ1 < τ2 are effectively the same, evaluator provides an option
to compute the respective overlap given by

overlap(t) =
|〈Ψτ1(t)|Ψτ2(t)〉|2

〈Ψτ1(t)|Ψτ1(t)〉 〈Ψτ2(t)|Ψτ2(t)〉 ∈ [0, 1]. (3.36)
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This quantity has the advantage of being independent of a global phase difference between
each of the state vectors. A difference in the global phase is typically the first observable
numerical error caused by an increased time step, but it is irrelevant for computing phys-
ically meaningful quantities. Although the simulation result |Ψ(t)〉 is always normalized
since the Suzuki-Trotter product-formula algorithm is unitary by definition [DeR1987],
Eq. (3.36) includes an explicit normalization of both state vectors in the denominator.
The reason for this is that evaluator can then also be applied to a projection of the state
vectors on the computational subspace (see Eq. (3.35)).

A larger time step τ2 > τ1 is sufficient for the simulation if overlap(t) is 1 for all times
t ∈ T. For convenience, evaluator also computes the average error between |Ψτ1(t)〉 and
|Ψτ2(t)〉 given by

1− 1

|T|
∑

t∈T

overlap(t), (3.37)

such that only a single number needs to be monitored when configuring the time step.
We present results from applying this procedure in practice at the end of Section 4.1.1.

Additionally, we study the behavior of local and global errors with respect to rigorous
error bounds (see Figs. 4.1 and 4.2). However, note that a study of the error bounds
requires small, undriven systems, whereas the practical procedure outlined in this section
also works for larger systems with time-dependent Hamiltonians.

Computing Bloch vectors

Given the coefficients ψKM(t) of the resulting state vector |Ψ(t)〉, one could in principle
compute its projection on the computational subspace (see Eq. (3.35)) and evaluate the
Bloch vectors ~ri(t) for each qubit according to Eq. (2.11).

However, a characteristic problem of transmon qubits is that a significant part of the
state may lie outside the computational subspace during the time evolution. This problem
is known as leakage [Che2016; Woo2018; Wil2017] (see also Section 2.1.4). In this case, a
simple projection as defined by Eq. (3.35) may not be sufficient to compute the observables
~ri(t) = 〈Ψ(t)|~σi|Ψ(t)〉. Instead, we need to trace over all other degrees of freedom of the
Hilbert space. Hence, Eq. (2.11) becomes

~ri(t) =
∑

k0k1···

∑

m0m1···
without mi




2 Re(ψ∗k0k1···m0m1···(mi=0)···(t)ψk0k1···m0m1···(mi=1)···(t))

2 Im(ψ∗k0k1···m0m1···(mi=0)···(t)ψk0k1···m0m1···(mi=1)···(t))

|ψk0k1···m0m1···(mi=0)···(t)|2 − |ψk0k1···m0m1···(mi=1)···(t)|2


 , (3.38)

where all indices KM = k0k1 · · ·m0m1 · · · without mi enumerate all other basis states
included in the simulation (cf. Eq. (3.17)).

Determining qubit frequencies

The computational basis states for each qubit i are given by the respective lowest-energy
transmon eigenstates |mi = 0〉 and |mi = 1〉. The energy difference between these states
is called the qubit transition frequency ωi, because it corresponds to the frequency that
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an externally applied pulse needs to have to drive transitions between the states. It may
not be equal to the qubit frequency ω̃i obtained from diagonalization (see the discussion
below Eq. (3.14)) due to the presence of other transmons and resonators in the system.

One option to measure this frequency makes use of the fact that the time evolution of
the state |1〉 results in a relative phase factor e−iωit between the states |0〉 and |1〉. If the
qubit is prepared in the uniform superposition |+〉 = (|0〉 + |1〉)/

√
2, its time evolution

yields a Bloch vector that rotates around the z axis with a frequency of ωi (see Eq. (2.5)),
i.e.

~r
(theory)
i (t) =




cos(ωit)
− sin(ωit)

0


 . (3.39)

We can thus infer a good candidate for the effective frequency of the qubit by fitting
ωi in this equation to the time evolution of the Bloch vector of qubit i computed using
Eq. (3.38). Specifically, this means that we first prepare the qubit in the state (|mi = 0〉+
|mi = 1〉)/

√
2, and then have it evolve freely for a certain time T . The other qubits are all

prepared in the state |0〉 (this protocol is in agreement with the experimental procedure;
see, for instance, the red squares in Fig. 7.3(b) obtained from experiments on the ibmqx4

processor [IBM2018b]). At each time t, we then compute the respective qubit’s Bloch
vector according to Eq. (3.38), and finally fit Eq. (3.39) to the data. The squared error
for this fit is given by

χ2(ωi) =

Ndata∑

n=1

[
(rxi (tn)− cos(ωitn))2 + (ryi (tn) + sin(ωitn))2

]
, (3.40)

where Ndata is the number of points included in the fit (usually much smaller than the total
number of time steps required for the simulation), tn is the nth point in time (comprising
the set T above), and rxi (tn) (ryi (tn)) is the x (y) component of ~ri(t) given by Eq. (3.38)
at time tn. Note that it is advantageous to include the data for both “quadratures”
rxi (tn) and ryi (tn) in the error function, instead of only fitting a cosine function to rxi (tn).
Otherwise the function can have additional extrema and be harder to minimize properly.

We apply this procedure to determine frequencies since it emulates a typical experi-
mental procedure to infer qubit frequencies. An alternative exact diagonalization of the
full system to determine its eigenenergies is usually not feasible for larger systems. The
time T is typically chosen on the order of 1000 ns and the number of data points included
in the fit is Ndata = 10000. The inferred qubit frequency ωi will later serve as an initial
value for the drive frequency of the pulse optimizations to implement quantum gates.

A technical difficulty of the procedure is that the error function χ2(ωi) given by Eq. (3.40)
is a strongly oscillating function of ωi with many local minima and only one sharply
peaked global minimum (see for instance Fig. 3.6 below). Therefore, standard fitting
routines might have problems in locating the right minimum.

We apply a method called Golden Section Search which is designed to handle the worst
possible case of one-dimensional function minimization [Pre2007]. The method brackets
the minimum by maintaining a triplet of points ωa < ωb < ωc, and chooses the next point
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to be the golden mean point (closer to ωb) within the larger segment of ωb−ωa and ωc−ωb.
In each step, the bracketing interval ωc−ωa will be a factor of (

√
5− 1)/2 ≈ 0.61803 (the

inverse golden section) smaller than the preceding interval. This particular ratio stems
from an optimality condition for function minimization similar to the bisection method
for finding zeros (see [Pre2007] for more information).

Transformation to the rotating frame

During a free time evolution, the Bloch vector ~ri(t) of qubit i describes rotations around
the z axis (see Eq. (3.39)) at the frequency ωi of the qubit. For transmon qubits, for which
ωi can be around 2π×5 GHz, typical quantum gate implementations (such as rotations of
~ri(t) around the x or z axis) may take approximately 80 ns (see Eq. (5.9) in Section 5.1).
Thus, ~ri(t) performs a large number of rotations during the time needed to apply one
gate.

For this reason, it is convenient to describe the qubit in a basis rotating at the qubit’s
frequency, both for the description of the pulses to implement quantum gates and also for
the purpose of visualization. This basis is commonly called the rotating frame (the other
basis is often referred to as the lab frame in this context). The rotating frame is defined
as a change to a time-dependent basis according to (|0〉 , |1〉) 7→ (|0〉 , exp(−iωit) |1〉),
effectively removing the relative phase between the computational basis states mentioned
above.

For the coefficients ψk0k1···m0m1···(t) of the solution |Ψ(t)〉 of the transmon simulation,
this change of basis amounts to replacing

ψk0k1···m0m1···(t) 7→ eit
∑
i ωimiψk0k1···m0m1···(t). (3.41)

Note that this transformation only removes the relative phase factors between states cor-
responding to mi = 0 and mi = 1. It does not completely remove relative phases of higher
non-computational states mi > 1 since transmon eigenenergies are not exactly equidistant
(see e.g. [Koc2007]). However, this is also not required as we are only interested in the
computational states when describing transmon qubits in a rotating frame. Furthermore,
the transformation Eq. (3.41) does not affect the probability |ψk0k1···m0m1···(t)|2.

The geometrical effect of the rotating frame is that the Bloch vector ~ri(t) given in
Eq. (3.38), after replacing the coefficients according to Eq. (3.41), effectively stands still.
As shown below, this only holds on average since the influence of higher levels and crosstalk
will typically make the Bloch vectors shrink, wiggle, or continue to rotate slowly in time
(see, for instance, Fig. 7.2(b)). The goal of the pulse optimizations is then to tune the
pulse parameters to capture this effect such that the result of applying a quantum gate
also displaces the qubit’s Bloch vector into the desired position.
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3.3.3 Visualization of the results: visualizer

Quantum gate implementations for transmon qubits typically consist of time-dependent
pulses whose purpose is to rotate the qubits’ Bloch vectors in their respective Bloch spheres
(see Fig. 2.1). This is a continuous, analog operation which can be easily visualized,
especially for single-qubit gates. To engineer and assess the effect of different pulses, it is
instructive to study the time evolution of each ~ri(t) computed from Eq. (3.38) (potentially
in a rotating frame, see Eq. (3.41)).

For this purpose, visualizer processes the coordinates of each ~ri(t) and renders a
three-dimensional scene that can be navigated in time and space using mouse and key-
board. The program makes use of the high-performance cross-platform open-source en-
gine Irrlicht [Geb2005]. It is written in C++ and builds on the real-time renderer that has
been developed for the work presented in [Wil2016]. See Appendix A for some example
renderings.

3.4 Definition of the model systems

In this section, we give a definition of the most important transmon systems used in the
following chapters. Each system is characterized by its parameters for the full model
Hamiltonian given by Eqs. (3.9a)–(3.9f). The values of the device parameters and the
topology of the systems are inspired by various transmon systems used for quantum
processors in experiments.

3.4.1 Single transmon-resonator system

The simplest system studied in this work consists of a single transmon coupled to a
single resonator. It models a system used in an experiment that has been conducted
at the Karlsruhe Institute of Technology (KIT). The parameters are given in Tab. 3.2.
This system is used for two purposes in Section 4.2 of the following chapter, namely to
study the validity of perturbative approaches and to assess the influence of higher photon
numbers in the resonator. It is also part of the environment model defined in the next
section.

3.4.2 Transmon-resonator system coupled to a bath

We consider the single transmon-resonator system from Section 3.4.1, coupled to a sepa-
rate bath of harmonic oscillators. The form of the model is sketched in Fig. 3.3. Although
only the resonator is explicitly connected to the bath, the model is completely general: as
we show in Section 3.5, it is uniquely related to the Foster representation of a supercon-
ducting environment [Nig2012]. This model is used extensively in Section 4.3, where we
use the bath approach to study the transition from an isolated system to an open quan-
tum system described by a quantum master equation. The particular model parameters
chosen for this study are given in Tab. 3.3.
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Table 3.2: Model parameters for a device operated at KIT with a single transmon coupled
to a readout resonator [Rie2019], simulated by solving the TDSE for the model Hamil-
tonian given by Eqs. (3.9a)–(3.9f). The indices i = 0 and r = 0 have been dropped for
simplicity. All energies are expressed in GHz (h̄ = 1). Unspecified parameters are set to
zero. An estimate for the qubit frequency ω and the anharmonicity α are obtained by
diagonalizing the transmon Hamiltonian given in Eq. (3.14). They are given for reference
only.

NTr NRes EC/2π EJ/2π Ω/2π G/2π ω̃/2π α/2π

1 1 0.222 GHz 12.61 GHz 5.821 GHz 0.0349 GHz 4.498 GHz −0.252 GHz

Figure 3.3: Setup of a system with one transmon and one resonator, coupled to a bath of 10
additional resonators. Such a setup is a generic model for a general linear superconducting
environment (see Section 3.5). The system is simulated by solving the TDSE for the model
Hamiltonian given in Eqs. (3.9a)–(3.9f) (see Tab. 3.3 for the model parameters).

Table 3.3: Model parameters for the KIT device specified in Tab. 3.2 coupled to a
bath of 10 resonators (see Fig. 3.3). The relation between the specified resonator pa-
rameters and the parameters of the model Hamiltonian given in Eqs. (3.9a)–(3.9f) is
(Ωr=0,Ωr=1, . . . ,Ωr=10) ↔ (Ω,Wl=1, . . . ,Wl=10) and λrl ↔ λl (for simplicity, we do
not write the index r = 0 of the central resonator). The notation Gaussian(µ,σ)
means that the frequencies are drawn from a Gaussian distribution with mean Ω =
2π × 5.821 GHz and standard deviation σ = 2π × 1 GHz. The notation Uniform(0,λ)
means that the coupling strengths are drawn from a uniform distribution between 0 and
λ ∈ 2π × {5 MHz, 10 MHz, 20 MHz} (see Section 4.3).

NTr NRes EC , EJ ,Ω, G Wl/2π λl/2π

1 11 (see Tab. 3.2) Gaussian(Ω,σ) Uniform(0,λ)
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3.4.3 Two-transmon system

The smallest nontrivial system that allows for a simulation of a quantum computer needs
at least two qubits [Gar2004] such that the study of two-qubit gates is possible. The
parameters of such a system with two transmons coupled by one resonator are defined
in Tab. 3.4. We use this system frequently throughout the following chapters to analyze
two-qubit gates and small quantum algorithms. It has also been used for the results
published in [Wil2017].

Table 3.4: Model parameters for a system with NTr = 2 transmons and NRes = 1 resonator,
simulated by solving the TDSE for the model Hamiltonian given by Eqs. (3.9a)–(3.9f). The
parameters are inspired by device parameters of the quantum processors available on the
IBM Q Experience between December 2016 and September 2017 [IBM2016] and have been
obtained using an electromagnetic HFSS simulation [Sol2016] (see Section 3.5 for more
information on this procedure). All energies are expressed in GHz (h̄ = 1). Unspecified
parameters are set to zero. Estimates for the qubit frequencies ω̃i and the anharmonicities
αi are obtained by diagonalizing the transmon Hamiltonian given by Eq. (3.14) (see also
the actual frequencies given in Eqs. (4.31a) and (4.31b)). The resonator operates at
frequency Ωr=0/2π = 7 GHz.

Transmon i ECi/2π EJi/2π Gi/2π ω̃i/2π αi/2π

0 0.301 13.349 0.07 5.350 −0.350
1 0.301 12.292 0.07 5.120 −0.353

3.4.4 Small five-transmon system

The fourth system considered in this work is a setup inspired by the five-transmon device
that was available on the IBM Q Experience in 2016 [IBM2016] and was further char-
acterized in [Tak2017]. It consists of five transmons coupled by two resonators, each of
which connects to three of the five transmons. The system is sketched in Fig. 3.4 and
its model parameters are defined in Tab. 3.5 and Tab. 3.6. We use this system primarily
for simulations of the quantum circuit experiments studied in Chapter 7. In particular,
we study a circuit designed to reveal frequency shifts due to crosstalk for which we also
perform the corresponding experiment on a quantum processor (see Section 7.1).

3.4.5 Large five-transmon system

The largest system used for simulations of actual quantum algorithms consists of five
transmons and six resonators (larger systems are only considered for free evolutions and
benchmarks). It is sketched in Fig. 3.5 as a subset of IBM’s 16-qubit device, extended
with an additional resonator. The model parameters of the system are given in Tab. 3.7
and Tab. 3.8. The qubit frequencies ω in Tab. 3.7 have been obtained by the procedure
described above (see Eq. (3.40)); the corresponding squared errors defined for each qubit
are shown in Fig. 3.6.
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Figure 3.4: Setup of a system with five transmon qubits and two resonators inspired by
the five-transmon device that was available on the IBM Q Experience in 2016 [IBM2016].
The system is described by the Hamiltonian given by Eqs. (3.9a)–(3.9f) (see Tab. 3.5 and
Tab. 3.6 for the model parameters).

Table 3.5: Model parameters for a system of NTr = 5 transmons and NRes = 2 resonators,
simulated by solving the TDSE for the model Hamiltonian given by Eqs. (3.9a)–(3.9f).
The system is sketched in Fig. 3.4. All values are given in GHz (h̄ = 1). The qubit
frequencies ω have been obtained by minimizing the function given in Eq. (3.40) (see
also Fig. 3.6). The drive frequencies f have been obtained by the single-qubit pulse-
optimization procedure (see Sections 5.1 and 5.3). The parameters of the resonators are
given separately in Tab. 3.6.

q0 q1 q2 q3 q4

EC/2π 0.301 0.301 0.301 0.301 0.301
EJ/2π 13.3511 13.1446 12.2942 12.7882 12.0903
ω/2π 5.34732 5.30259 5.11382 5.22509 5.07094
f 5.34697 5.30232 5.11345 5.22506 5.07065

Table 3.6: Model parameters of the resonators coupling the transmon qubits specified in
Tab. 3.5. The parameters determine the resonator Hamiltonian defined in Eq. (3.9c). All
values are given in GHz (h̄ = 1).

r0 r1

Ω/2π 7.01 6.63
G/2π 0.07 0.07

Coupled to q0, q1, q2 q2, q3, q4
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Figure 3.5: Setup of a system with five transmons and six resonators. The system is
described by the Hamiltonian given by Eqs. (3.9a)–(3.9f) (see Tab. 3.7 and Tab. 3.8 for
the model parameters). It represents a subset of the 16-qubit device ibmqx5 [IBM2016]
indicated by the dashed lines. An additional resonator r5 has been added to the simu-
lation model to enable the implementation of all circuits required for the fault-tolerance
experiment considered in Section 7.3.

Table 3.7: Model parameters for a system of NTr = 5 transmons and NRes = 6 resonators,
simulated by solving the TDSE for the model Hamiltonian given by Eqs. (3.9a)–(3.9f).
The system is sketched in Fig. 3.5. All values are given in GHz (h̄ = 1). The qubit
frequencies ω have been obtained by minimizing the function given in Eq. (3.40) (see the
plot in Fig. 3.6). The drive frequencies f have been obtained by the single-qubit pulse-
optimization procedure (see Sections 5.1 and 5.3). The parameters of the resonators are
given separately in Tab. 3.8.

q0 q1 q2 q3 q4

EC/2π 0.301 0.301 0.301 0.301 0.301
EJ/2π 11.6671 12.1273 13.003 12.2456 11.1943
ω/2π 4.97154 5.07063 5.26657 5.10145 4.86036
f 4.97164 5.07043 5.26634 5.10147 4.86055

Table 3.8: Model parameters of the resonators coupling the transmon qubits specified in
Tab. 3.7. The parameters determine the resonator Hamiltonian defined in Eq. (3.9c). All
values are given in GHz (h̄ = 1).

r0 r1 r2 r3 r4 r5

Ω/2π 6.45 6.25 6.65 6.65 6.45 6.85
G/2π 0.07 0.07 0.07 0.07 0.07 0.07

Coupled to q1, q2 q0, q1 q2, q3 q1, q4 q3, q4 q0, q4
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Figure 3.6: Squared error χ2(ω) defined in Eq. (3.40) for Ndata = 10000 points from the
free time evolution of the system sketched in Fig. 3.5 up to T = 1000 ns. Each line
corresponds to a separate simulation in which the transmon qi (whose frequency is to be
determined) is initialized in the state |+〉 and the other transmons are initialized in the
state |0〉. The time step used for the simulations is τ = 10−3 ns. The minima of the
sharply peaked functions correspond to the qubit frequencies listed in Tab. 3.7. They
are determined using the Golden Section Search method described above with ωa/2π =
4.8 GHz and ωc/2π = 5.3 GHz. All simulations were performed on the supercomputer
JURECA [Jül2018].

We mainly use the large five-transmon system to test a fault-tolerant protocol from the
field of quantum error correction (see Section 7.3). The same model has also been used
for the results published in [Wil2018b].
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3.5 Modeling electromagnetic environments

In this section, we describe a general method to find suitable model parameters for sim-
ulating electromagnetic environments with the simulation method defined in Section 3.2.
The parameters can be obtained either by directly probing the experimental system or
by performing an electromagnetic simulation of the device.

The following construction is inspired by the black box quantization method [Nig2012;
Ans2019] and makes use of Foster’s theorem [Fos1924]. It is also related to the method for
extracting circuit Hamiltonians described in [Bou2012]. Furthermore, it can be extended
to lossy electromagnetic environments to capture dissipative dynamics and predict relax-
ation rates (see [Sol2014; Sol2015]). Following a similar approach, the authors in [Sol2019]
demonstrate how to extract the device parameters, including transmon-transmon and
transmon-resonator couplings, for the 16-qubit device ibmqx5 [IBM2018a] sketched in
Fig. 3.5.

To make the construction concrete, we consider in detail the transmon-resonator-bath
system defined in Section 3.4.2 for a general number L of bath resonators. In particular, we
show that the system is a sufficiently general model for a Josephson junction coupled to a
linear but otherwise arbitrary electromagnetic environment. This implies that there is no
loss of generality by modeling a bath of uncoupled harmonic oscillators that only interact
with a central resonator which is in turn coupled to a transmon. In principle, the method
can be extended to multiple transmons by following the corresponding generalization in
[Nig2012; Ans2019].

The transmon-resonator-bath Hamiltonian reads (cf. Eqs. (3.9a)–(3.9f))

H = HTr +HRes +HBath, (3.42a)

HTr = 4EC n̂
2 − EJ cos ϕ̂, (3.42b)

HRes = Ωâ†â+Gn̂(â+ â†), (3.42c)

HBath =
L∑

l=1

Wlb̂
†
l b̂l +

L∑

l=1

λl(â+ â†)(b̂l + b̂†l ). (3.42d)

The idea is to treat all linear contributions canonically, and later work out the connection
to the nonlinear parts (note that (non)linear in this context means (an)harmonic). The
only nonlinear electromagnetic contribution to H comes from the Josephson junction
described by the transmon Hamiltonian HTr. We split the Hamiltonian H into all linear
and purely nonlinear parts by expanding the cosine in HTr,

HTr = 4EC n̂
2 +

EJ
2
ϕ̂2 +HNonlin, (3.43)

where the nonlinear part reads (up to a constant),

HNonlin = EJ(1− cos ϕ̂)− EJ
2
ϕ̂2 = EJ

∞∑

n=2

(−1)n+1

(2n)!
ϕ̂2n = −EJ

24
ϕ̂4 + · · · . (3.44)
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âTr â

Transmon Resonator

Bath

g

λ

b̂1

b̂2

b̂L−1

b̂L

Figure 3.7: Setup of a system with one transmon and one central resonator, coupled to a
bath of L noninteracting resonators. The coupling strength between the central resonator
and the transmon (the bath) is g (λl for l = 1, . . . , L). Although only the central resonator
is connected to each other component, we show that such a setup is sufficiently general
to model a generic case.

To diagonalize the linear part of HTr, we introduce operators âTr and â†Tr such that

n̂ = − 1√
2

(
EJ

8EC

)1/4

(âTr + â†Tr), (3.45a)

ϕ̂ =
i√
2

(
8EC
EJ

)1/4

(âTr − â†Tr). (3.45b)

Note that no approximation is required for this step (see the discussion in Section 4.2.1).
Using Eqs. (3.45a) and (3.45b), the linear part of the full Hamiltonian H = HLin +HNonlin

becomes

HLin = ΩTrâ
†
TrâTr + Ωâ†â+

L∑

l=1

Wlb̂
†
l b̂l

+ g(âTr + â†Tr)(â+ â†)

+
L∑

l=1

λl(â+ â†)(b̂l + b̂†l ), (3.46)

where ΩTr =
√

8ECEJ denotes the frequency of the linear part of the transmon (which
is different from the actual qubit frequency; see the discussion below Eq. (3.14)), and
g = −(EJ/32EC)1/4G. The model is sketched in Fig. 3.7.
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Chapter 3 Simulating superconducting transmon qubits

Figure 3.8: (a) Schematics of a transmon qubit (represented by a Josephson junction with
capacitive energy EC and inductive energy EJ) coupled to an electromagnetic environ-
ment. (b) The environment is characterized by its complex impedance Z(ω) and assumed
to be linear, passive, and lossless. It is expressed in terms of capacitances Cj and induc-
tances Lj using the Foster representation of the first kind (see Eq. (3.48)). Note that
all linear parts of the Josephson junction are combined with the rest of the environment
and lumped into Z(ω). The only nonlinear part, represented by the red spider symbol,
corresponds to the Hamiltonian HNonlin given in Eq. (3.44).

In what follows, we first review the Foster representation of an electromagnetic envi-
ronment, which gives rise to a procedure for extracting suitable model parameters. We
then construct the mapping to the parameters of the Hamiltonian HLin in the rotating
wave approximation (RWA). Finally, we give the full symplectic transformation to relate
the model parameters to the Hamiltonian without the RWA.

3.5.1 The Foster representation of an electromagnetic
environment

We consider a Josephson junction that is connected to a general, linear electromagnetic
environment (see Fig. 3.8(a)). Such an environment is characterized by its electrical
impedance Z(ω) or, equivalently, by its admittance Y (ω) = 1/Z(ω). Note that for the
treatment of several Josephson junctions, the impedance Z(ω) is replaced by an impedance
matrix [Nig2012].

As we consider superconducting systems, we assume in the following analysis that the
environment is lossless, i.e., no dissipative elements such as resistors are present. This
means that the impedance Z(ω) is purely imaginary. Note, however, that the formalism
can be extended to dissipative elements (see [Sol2014; Sol2015]).

Foster’s theorem [Fos1924] states that for a lossless, passive network, Z(ω) is a complex
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meromorphic function of the form

Z(ω) = −iz0
(ω2

0 − ω2) · · · (ω2
L − ω2)

(ω2
0 − ω2) · · · (ω2

L+1 − ω2)
, (3.47)

where z0 ≥ 0 is a constant and ωj (ωj) are the resonant (antiresonant) frequencies, which
obey 0 ≤ ω0 ≤ ω0 ≤ · · · ≤ ωL ≤ ωL+1. In particular, the function Z(ω) has poles at each
ωj (for simplicity, we do not consider poles at zero or infinity). By writing ωj = 1/

√
LjCj

for suitable inductances Lj and capacitances Cj and using a pole decomposition of Z(ω),
Foster showed that Z(ω) can be synthesized by the series of LC-oscillators shown in
Fig. 3.8(b). This representation is sometimes called the Foster representation of the first
kind [Fel2009]. Explicitly, we obtain

Z(ω) =
L+1∑

j=0

Zj =
L+1∑

j=0

iω/Cj
ω2
j − ω2

, (3.48)

where we used the relation Zj = 1/(1/ZLj + 1/ZCj) for the impedance of a parallel
combination of an inductance ZLj = iωLj and a capacitance ZCj = 1/iωCj.

Relation to experiments

The impedance of the environment Z(ω) can, in principle, be extracted from current-
voltage measurements. In practice, however, it is much more convenient to obtain Z(ω)
from a finite-element high-frequency structure simulator (HFSS) to solve Maxwell’s equa-
tions for a specification of the device’s geometry [Nig2012].

After finding Z(ω), the next step is to determine the frequencies ωj corresponding to
the poles of the impedance (see Eq. (3.48)) or, equivalently, the zeros of the admittance
Y (ω) = 1/Z(ω). This can be done numerically. Additionally, we obtain the capacitances
Cj and inductances Lj of the Foster representation shown in Fig. 3.8(b) using the formulas

Cj =
|ImY ′(ωj)|

2
, (3.49a)

Lj =
2

ω2
j |ImY ′(ωj)|

. (3.49b)

These expressions can be proven by observing that the residue of Z(ω) at ω = ωj is
Res(Z, ωj) = limω→ωj(ω − ωj)Z(ω) = i/2Cj. Furthermore, since Z(ω) = f(ω)/g(ω) with
f and g holomorphic and g(ωj) = 0 and g′(ωj) 6= 0 (cf. Eq. (3.47)), we have Res(Z, ωj) =
limω→ωj(ω−ωj)f(ω)/g(ω) = f(ωj)/g

′(ωj). Also, we have Y ′(ωj) = g′(ωj)/f(ωj) and thus
Y ′(ωj) = 1/Res(Z, ωj) = −2iCj, which yields Eq. (3.49a). Equation (3.49b) then follows
from ω2

j = 1/LjCj.
Using Eqs. (3.49a) and (3.49b), we also find an expression for the characteristic impedance

of a lossless resonator,

Zeff
j =

√
Lj
Cj

=
2

ωj|ImY ′(ωj)|
. (3.50)
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Quantization

After extracting all fundamental modes ωj of the environment depicted in Fig. 3.8(b),
we can directly write down a Hamiltonian of L+ 2 quantum harmonic oscillators for the
electromagnetic environment of the system,

HEnv =
L+1∑

j=0

ωj ĉ
†
j ĉj, (3.51)

where ĉl and ĉ†l are the corresponding ladder operators (see Section 3.1.1 for some general
remarks on quantum and classical descriptions).

Note that the Hamiltonian in Eq. (3.51) describes the same system as the model Hamil-
tonian HLin given by Eq. (3.46). In essence, HEnv is the diagonal version of HLin. However,
it is not obvious that the model parameters in HLin (i.e., the set of frequencies and cou-
pling coefficients) are sufficiently generic to capture all instances of HEnv. Constructing
the mapping to the parameters of HLin is the purpose of this section.

Up to this point, we have a Hamiltonian HEnv to describe the linear environment
(dashed green box in Fig. 3.8(b)), and another Hamiltonian HNonlin (see Eq. (3.44)) for the
nonlinear part represented by the spider symbol in Fig. 3.8(b). To make the connection
between both, we need to relate the operator ϕ̂ ∝ (âTr − â†Tr) given in Eq. (3.45b) to the
ladder operators ĉj and ĉ†j in Eq. (3.51). As indicated in Fig. 3.8(b), this relation can be
made through the phase ϕ̂ using the conservation of the total magnetic flux (cf. [Nig2012]):

ϕ̂ =
∑

j

ϕ̂j =
∑

j

i√
2
ξj(ĉj − ĉ†j), (3.52)

where ξj =
√
Zeff
j /φ0 is a dimensionless coefficient, Zeff

j is given by Eq. (3.50), and φ0 is

the reduced flux quantum (note that in SI units, ξj =
√
h̄Zeff

j /φ0 and φ0 = h̄/2e). The

convention ϕ̂j ∝ i(ĉj− ĉ†j) instead of ĉj + ĉ†j (as used in [Nig2012]) is only for compatibility
with Eqs. (3.45a) and (3.45b) and does not affect the resulting dynamics.

3.5.2 Mapping to the model Hamiltonian

In this section, we construct the mapping from HEnv given by Eq. (3.51) to the model
Hamiltonian HLin given by Eq. (3.46). For simplicity, we first consider the RWA version
of the model Hamiltonian,

HRWA
Lin = ΩTrâ

†
TrâTr + Ωâ†â+ g(â†Trâ+ âTrâ

†) +
L∑

l=1

Wlb̂
†
l b̂l +

L∑

l=1

λl(â
†b̂l + âb̂†l ), (3.53)

and generalize the mapping to the full model Hamiltonian HLin afterwards.
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Derivation within the RWA

First, we write both HRWA
Lin and HEnv in matrix form,

HRWA
Lin = â†Ωâ, Ω =




ΩTr g
g Ω λ1 · · · λL

λ1 W1
...

. . .

λL WL



, â =




âTr

â

b̂1
...

b̂L



, (3.54a)

HEnv = ĉ†ωĉ, ω =



ω0

. . .

ωL+1


 , ĉ =




ĉ0
...

ĉL+1


 . (3.54b)

The goal is to construct a linear transformation ĉ = U â, or in components,

ĉj =
∑

j′

Ujj′âj′ , (3.55)

such that HRWA
Lin = HEnv. Here, U is a matrix of dimension (L + 2)× (L + 2). There are

three conditions that U needs to meet:

(I) Ω = U †ωU, (3.56a)

(II) 1 = U †U, (3.56b)

(III) âTr ∝
∑

j

ξj ĉj. (3.56c)

Condition (I) comes from the requirement HRWA
Lin = HEnv and yields direct expressions

for the model parameters Ω in terms of the results from Section 3.5.1. Condition (II)
follows from the fact that both operators âj and ĉj for j = 0, . . . , L + 1 need to satisfy
the bosonic commutation relations,

δij = [ĉi, ĉ
†
j] =

∑

i′j′

Uii′U
∗
jj′ [âi′ , â

†
j′ ] = (UU †)ij, (3.57)

which means that U is unitary. Note that this is the point where the RWA simplifies the
construction; in general, a transformation between bosonic operators is not necessarily
unitary (see below). Finally, by condition (III), we can make sure that the transforma-
tion is compatible with the already existing relation between âTr and ĉj following from

Eqs. (3.45b) and (3.52), namely that (âTr − â†Tr) ∝ ϕ̂ ∝∑j ξj(ĉj − ĉ†j).
In what follows, we construct the elements of U . Let uj for j = 0, . . . , L+ 1 denote the

columns of U , i.e., U = (u0, . . . ,uL+1). Although Eq. (3.56a) states that U diagonalizes
Ω, the construction is not straightforward, because we do not know the elements of Ω
yet. Instead, we need to start from the eigenvalues ωj and obtain the elements of Ω from
Eq. (3.56a),

Ωij = u†iωuj. (3.58)
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Furthermore, Eq. (3.56b) requires that the vectors (u0, . . . ,uL+1) form an orthonormal
basis, and the fact that Ω in Eq. (3.54a) is symmetric allows us to choose uj ∈ RL+2

(which makes U an orthogonal matrix).
For the first vector, u0, we obtain using Eqs. (3.55) and (3.57), u†0ĉ = â0 = âTr. To

satisfy condition (III) in Eq. (3.56c), we set

u0 =
1√∑
j ξ

2
j




ξ0
...

ξL+1


 , (3.59)

where ξj =
√
Zeff
j /φ0 ∈ R is given below Eq. (3.52). It is not uncommon to find ξ0 � ξj

for j ≥ 1 since the slope of the admittance |ImY ′(ω0)| in the denominator of Eq. (3.50) is
typically small for the lowest frequency ω0 (see also Fig. 2 in the supplementary material
of [Nig2012]). Hence, the first component of u0 is often the largest. Equation (3.58) then
yields the first model parameter,

ΩTr = u†0ωu0 =

∑
j ξ

2
jωj∑

j ξ
2
j

, (3.60)

i.e., a weighted average of ωj, where the weights are given by the effective characteristic
impedances ξ2

j ∝ Zeff
j . We can also determine EC and EJ at this point: By inserting

âTr = u†0ĉ and â†Tr = ĉ†u0 into Eq. (3.45b) and comparing with Eq. (3.52), we obtain√
8EC/EJ =

∑
j ξ

2
j . The second equation for EC and EJ comes from Eq. (3.60) by using

ΩTr =
√

8ECEJ (see Eq. (3.46)). Combining both, we find

EC =
1

8

∑

j

ξ2
jωj, (3.61a)

EJ =

∑
j ξ

2
jωj

(
∑

j ξ
2
j )

2
. (3.61b)

The choice of the next vector, u1, requires a little trick: We want all elements Ωj0 = 0

for j ≥ 2 (the first column of Ω in Eq. (3.54a)). These elements are given by Ωj0 = u†jωu0

(see Eq. (3.58)). If we choose u1 such that

span{u0,u1} = span{u0,ωu0}, (3.62)

we know that all uj for j ≥ 2 will be orthogonal to ωu0. Therefore, Ωj0 = u†jωu0 = 0.
As Ω0j = Ωj0 (see Eq. (3.58)), this choice also produces the zeros in the first row of Ω
(see Eq. (3.54a)). A real unit vector u1 that accomplishes Eq. (3.62) and is orthogonal
to u0 is given by

u1 =
ωu0 − ΩTru0

|ωu0 − ΩTru0|
, (3.63)
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where we used that the frequencies ωj in ω are, in general, different from ΩTr. Equa-
tion (3.58) then yields the next set of model parameters,

Ω = u†1ωu1, (3.64a)

g = u†0ωu1. (3.64b)

The remaining columns (u2, . . . ,uL+1) need to be orthogonal to S = span{u0,u1}.
Furthermore, they need to satisfy Ωij = u†iωuj = 0 for i, j ≥ 2 with i 6= j because the
bottom-right L×L block of Ω in Eq. (3.54a) is diagonal. One way to achieve this is to com-
plete a set of linearly independent vectors to an orthonormal basis (u0,u1,v2, . . . ,vL+1)
of RL+2 using the Gram-Schmidt procedure, followed by a rediagonalization of ω in the
space spanned by the vectors vj.

Another way to achieve this is to project ω directly onto the orthogonal complement
S⊥ of S using the projector

P = 1− u0u
†
0 − u1u

†
1, (3.65)

and to diagonalize the projected matrix PωP . Since P reduces the rank of ω from L+ 2
to L, the matrix PωP has only L non-zero eigenvalues. These are exactly the frequencies
Wl for l = 1, . . . , L of the L noninteracting oscillators of the bath (cf. Fig. 3.7). The
corresponding eigenvectors make up the remaining columns ul+1 of U ,

(PωP )ul+1 = Wlul+1. (3.66)

Thus we find for the remaining model parameters Wl and λl of HRWA
Lin for l = 1, . . . , L,

Wl = u†l+1ωul+1, (3.67a)

λl = u†l+1ωu1. (3.67b)

Derivation without the RWA

Without the RWA, the model Hamiltonian HLin given in Eq. (3.46) also contains quadratic
terms of the form â2

j and (â†j)
2 (the operators â are defined in Eq. (3.54a)). In this more

general case, the Hamiltonians read

HLin =
(
â† â

)( Ω/2 Ω/2−D
Ω/2−D Ω/2

)(
â

â†

)
, (3.68a)

HEnv =
(
ĉ† ĉ

)(ω/2 0
0 ω/2

)(
ĉ

ĉ†

)
, (3.68b)

where D = diag(Ω/2), and ĉ and ω are defined in Eq. (3.54b). This case would require
a more general transformation,

(
ĉ

ĉ†

)
= T

(
â

â†

)
, (3.69)
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that also mixes the operators in â and â†. The most general transformation T that
preserves the bosonic commutation relations is a Bogoliubov transformation, which is
also known as a Bogoliubov-Valatin transformation as it was studied independently by
Bogoliubov and Valatin to find solutions of the BCS theory of superconductivity [Bog1958;
Val1958]. Bogoliubov transformations have to be para-unitary, i.e.,

T †
(
1 0
0 −1

)
T =

(
1 0
0 −1

)
. (3.70)

Bogoliubov transformations have been studied in great detail by Colpa [Col1978]. It is
not directly obvious that a suitable para-unitary transformation producing HLin = HEnv

exists, as the matrices on the diagonal and off-diagonal blocks in Eq. (3.68a) need to be
equal except for the diagonal D. Nonetheless, it is possible to construct a para-unitary
transformation for the present problem by following Section 5 of [Col1978].

A simpler mapping that yields HLin = HEnv, however, can be obtained by working in
an appropriate position-momentum representation, i.e., by writing the bosonic operators
â and ĉ as linear combinations of Hermitian operators. Specifically, we define Hermitian
operators x̂, ŷ, q̂, and p̂ such that for j = 0, . . . , L+ 1,

âj =
√
αj x̂j +

i
√
αj
ŷj, (3.71a)

ĉj =
√
ωj q̂j +

i
√
ωj
p̂j, (3.71b)

where α0 = ΩTr, α1 = Ω, αl+1 = Wl for l = 1, . . . , L, and ωj are the frequencies of the
linear environment (see Eq. (3.51)). The inverse relations are given by

x̂j =
âj + â†j
2
√
αj

, ŷj =
âj − â†j
2i/
√
αj
, (3.72a)

q̂j =
ĉj + ĉ†j
2
√
ωj

, p̂j =
ĉj − ĉ†j
2i/
√
ωj
. (3.72b)

In this representation, HLin in Eq. (3.46) and HEnv in Eq. (3.54b) amount to

HLin =
(
x̂ ŷ

)(X 0
0 1

)(
x̂
ŷ

)
, (3.73a)

HEnv =
(
q̂ p̂

)(ω2 0
0 1

)(
q̂
p̂

)
, (3.73b)

where

X =




Ω2
Tr 2g

√
ΩTrΩ

2g
√

ΩTrΩ Ω2 2λ1

√
ΩW1 · · · 2λL

√
ΩWL

2λ1

√
ΩW1 W 2

1
...

. . .

2λL
√

ΩWL W 2
L



, (3.74)
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and ω2 = diag(ω2
0, . . . , ω

2
L+1). Note that the coefficients in Eqs. (3.71a) and (3.71b) were

chosen such that the bottom-right blocks in Eqs. (3.73a) and (3.73b) are identity matrices,
and the commutation relations,

[x̂j, ŷj′ ] = [q̂j, p̂j′ ] =
i

2
δjj′ , (3.75)

take the same form for each j and j′.
To find a mapping that yields HLin = HEnv, we now search for a transformation

(
q̂
p̂

)
= S

(
x̂
ŷ

)
. (3.76)

The transformation S needs to be real (to preserve Hermiticity) and symplectic, i.e.

ST
(

0 1

−1 0

)
S =

(
0 1

−1 0

)
, (3.77)

to preserve the commutation relations in Eq. (3.75). The symplectic condition is analogous
to the para-unitary condition defined in Eq. (3.70) for Bogoliubov transformations in the
ladder-operator representation (see also [Mey2009a; Dop2009]). As an ansatz, we try

S =

(
O 0
0 O

)
(3.78)

with an orthogonal matrix O, i.e., OTO = 1. By testing Eq. (3.77), S is easily seen to be
symplectic. Inserting Eqs. (3.76) and (3.78) into Eq. (3.73b), we see that for HLin = HEnv,
O has to satisfy

X = OTω2O, (3.79)

which is the analogous condition to Eq. (3.56a). Note that the ansatz Eq. (3.78) only
works because the coefficients in Eqs. (3.71a) and (3.71b) are such that the bottom-right
blocks in Eqs. (3.73a) and (3.73b) are identity matrices.

We now construct the elements of the orthogonal matrix O. Let oj for j = 0, . . . , L+ 1
denote the columns of O, i.e., O = (o0, . . . ,oL+1). Since the matrices X and ω2 in
Eq. (3.79) have the same structure as Ω and ω in Eqs. (3.54a) and (3.54b), we can use
almost the same construction for O as we did for U (note that the resulting elements of U
were real, so U was already orthogonal). The major difference lies in the first column o0

defined by ŷ0 = oT0 p̂ since it has to be compatible with the flux conservation Eq. (3.52).
This equation reads in terms of the new coordinates

ϕ̂ = −
∑

j

√
2

ωj
ξjp̂j. (3.80)

On the other hand, we have from Eq. (3.45b),

ϕ̂ = −
√

2

ΩTr

(
8EC
EJ

)1/4

ŷ0. (3.81)
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Therefore, we choose the first normalized column of O as (cf. Eq. (3.59))

o0 =
1√∑
j ξ

2
j /ωj




ξ0/
√
ω0

...
ξL+1/

√
ωL+1


 . (3.82)

The remaining construction of O = (o0,o1, . . . ,oL+1) is completely analogous to the
construction of U = (u0,u1, . . . ,uL+1) above: We set (cf. Eq. (3.63))

o1 =
ω2o0 − Ω2

Tro0

|ω2o0 − Ω2
Tro0|

, (3.83)

where Ω2
Tr = oT0ω

2o0. Then we define the projector P = 1 − o0o
T
0 − o1o

T
1 , diagonal-

ize Pω2P , and find all non-zero eigenvalues W 2
l for l = 1, . . . , L. The corresponding

eigenvectors ol+1 constitute the remaining columns of O.
Given O = (o0, . . . ,oL+1), Eqs. (3.74) and (3.79) then yield for the model parameters

of HLin in Eq. (3.46):

ΩTr =
√
oT0ω

2o0 =



∑

j

ξ2j
ωj
ω2
j

∑
j

ξ2j
ωj




1/2

, (3.84a)

Ω =
√
oT1ω

2o1, (3.84b)

Wl =
√
oTl+1ω

2ol+1, (3.84c)

g =
oT1ω

2o0

2
√

ΩTrΩ
, (3.84d)

λl =
oTl+1ω

2o1

2
√

ΩWl

. (3.84e)

Finally, from Eqs. (3.80)–(3.82), ŷ0 = oT0 p̂, and ΩTr =
√

8ECEJ , we obtain expressions
for the remaining model parameters of the full Hamiltonian H in Eq. (3.42b),

EC =
1

8

∑

j

ξ2
jωj, (3.85)

EJ =

(∑

j

ξ2
j

ωj

)−1

, (3.86)

G = −
(

32EC
EJ

)1/4

g. (3.87)

Note that the procedure yields all model parameters of H, including the transmon energies
EC and EJ , because all linear components have been included in the electromagnetic
environment shown in Fig. 3.8.
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Free time evolution

A straightforward application of the simulation framework presented in the previous chap-
ter is the free (undriven) evolution of various transmon-resonator systems. This is inter-
esting for three reasons: First, it does not require the specification of pulses such that
the systems can be easily scaled up and benchmarked with respect to accuracy and per-
formance. Second, small free systems are simple enough such that one can compare to
perturbative results often used in analytical works. And third, an undriven evolution may
be easier to study in laboratory experiments.

A free time evolution mathematically means that in the model Hamiltonian given by
Eqs. (3.9a)–(3.9f), the time-dependent fields ngi(t) and εr(t) are zero. The model Hamil-
tonian considered in this chapter can therefore be reduced to

H free = H free
Tr +H free

Res , (4.1a)

H free
Tr =

NTr−1∑

i=0

[
4ECin̂

2
i − EJi cos ϕ̂i

]
, (4.1b)

H free
Res =

NRes−1∑

r=0

Ωrâ
†
râr +

NRes−1∑

r=0

NTr−1∑

i=0

Grin̂i(âr + â†r)

+
∑

0≤r<l<NRes

λrl(âr + â†r)(âl + â†l ). (4.1c)

We use this Hamiltonian to test the implementation of the main part of the simulation
algorithm (see Section 3.3). This includes accuracy and performance benchmarks dis-
cussed in Section 4.1, where we use small systems to compare the simulation results to
exact diagonalization, and larger systems to assess weak and strong scaling performance
on parallel supercomputers. In Section 4.2, we simulate a single transmon-resonator sys-
tem to analyze the accuracy of known analytical results based on perturbation theory.
Section 4.3 is centered around a larger system of resonators that play the role of a bath as
a model for an open quantum system. The results are compared to those obtained from a
Lindblad master equation. In particular, we consider the time evolution of a transmon as
a function of the number of photons in its readout resonator. A corresponding experiment
has been conducted at the Karlsruhe Institute of Technology (KIT), and we use the same
device parameters to define the particular instance of the model Hamiltonian H free (see
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Tab. 3.2 and Tab. 3.3). Finally, in Section 4.4, we study the free evolution of two cou-
pled transmon qubits for different initial states, by which we characterize state-dependent
frequency shifts caused by the resonator-mediated exchange interaction.

4.1 Accuracy and performance benchmarks

In this section, we study the accuracy and the performance of the simulation algorithm
described in Section 3.3.1. For the former, the number of transmons NTr and resonators
NRes in the system is kept small to compare the results to exact diagonalization, which is
infeasible if the size of the Hilbert space is too large. For the latter, we study increasing
system sizes with a focus on the scaling of the algorithm. All simulations were performed
on the supercomputer JURECA [Jül2018].

4.1.1 Accuracy

A mandatory step for any implementation of a numerical algorithm is to verify its cor-
rectness. In this context, correctness concerns two points: First, the algorithm should be
stable with respect to different initial conditions (i.e., different initial states for the TDSE
in Eq. (3.8)). This is guaranteed as the Suzuki-Trotter product-formula algorithm is un-
conditionally stable, since all updates of the state |Ψ(t)〉 in the decomposition are unitary
by construction (see Eqs. (3.19) and (3.30)). Second, the result of the algorithm has to
agree, up to a certain controllable precision, with the exact solution of the mathematical
problem. Specifically, this means that the resulting coefficients of the solution |Ψ(t)〉 have
to agree with the mathematical solution of the TDSE in Eq. (3.8). Verifying this is the
purpose of the present section.

The systems used to study the accuracy of the simulation are small such that they can
still be diagonalized exactly: a single transmon-resonator device produced at KIT (see
Section 3.4.1), and a device with two transmons coupled by a single resonator inspired by
one of the early processors available on the IBM Q Experience (see Section 3.4.3).

For the Suzuki-Trotter product-formula algorithm, the numerical error can be controlled
by the time step τ used to integrate the TDSE. Specifically, we test the following local
and global error bounds for the second-order product-formula algorithm:

‖Ψ−Ψ‖ ≤ const ·Nτ · τ 3, (4.2a)

1− |〈Ψ|Ψ〉|2 ≤ const ·N2
τ · τ 6, (4.2b)

where Ψ represents the coefficients of the state vector after Nτ time steps of size τ , and
Ψ represents the exact solution at time Nττ . Equation (4.2a) was proven in [DeR1987;
Huy1990], along with an expression for the constant in terms of commutators of H0

and W given in Eqs. (3.26a)–(3.26g). To prove Eq. (4.2b), note that 1 − |〈Ψ|Ψ〉|2 ≤
1− (Re 〈Ψ|Ψ〉)2 ≤ 2(1− Re 〈Ψ|Ψ〉) = ‖Ψ−Ψ‖2.

The local error is obtained by performing a single time step (Nτ = 1) for different values
of τ . The global error, on the other hand, is obtained by keeping τ fixed and performing
Nττ as a function of Nτ . Note that a nice property of the algorithm is that the bound on
the global error in Eq. (4.2a) only grows linearly with the number of time steps Nτ .
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Figure 4.1: Local error between the result of the simulation |Ψ〉 and the exact result |Ψ〉
after a single time step τ . The purpose of this local error plot is to verify the scaling laws
given in Eqs. (4.2a) and (4.2b) as a function of the time step τ for (a) the KIT system
defined in Section 3.4.1, and (b) the IBM system defined in Section 3.4.3. Additionally,
the plots show errors for the observable X given by Eq. (4.4) and the respective bounds
given by Eqs. (4.3a) and (4.3b).

Both local and global errors are shown in Figs. 4.1 and 4.2, respectively. The initial
state of the simulations is set to |+〉 (|++〉) for the KIT (IBM) system. This means
that we study a worst-case scenario because of the fast, observable rotations performed
by the Bloch vectors (see Eq. (3.39)). We obtain the mathematical solution Ψ by exact
diagonalization of the full system, which can be done up to machine precision [Dem2008].

For the local error shown in Fig. 4.1, we used four states for each transmon and each
resonator to obtain Ψ in order to verify the power-law scaling in Eqs. (4.2a) and (4.2b) as
a function of τ . Figure 4.1 shows that the scaling laws are satisfied, as soon as the errors
leave the range of machine precision around 10−15 where the numbers are practically zero.

For the global error shown in Fig. 4.2, we used 10 states to obtain Ψ such that Ψ is
equal to the mathematical result (up to machine precision). For this reason, Fig. 4.2 also
includes the error made by truncating the Hilbert space given in Eq. (3.17). We see that
even for the largest time step used in this work (τ = 10−3 ns), the errors are sufficiently
small.

Accuracy of observables

Often, one is not interested in the full state vector itself (especially in cases where the
system is so large that it is not practical to store the coefficients on disk anymore).
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Figure 4.2: Global error between the result of the simulation |Ψ〉 and the exact result |Ψ〉.
(a) the KIT system defined in Section 3.4.1, (b) the IBM system defined in Section 3.4.3.
Additionally, the plots show errors for the observable X given in Eq. (4.4) and the re-
spective bounds given in Eqs. (4.3a) and (4.3b). The total time evolution corresponds to
2 µs using a time step of τ = 10−3 ns.

Rather, the goal of the simulation is to produce the expectation value 〈X〉 = 〈Ψ|X|Ψ〉
of an observable X. In practice, an expectation value may often be more accurate than
suggested by the error bounds given in Eqs. (4.2a) and (4.2b). A reason for this is that
the error ‖Ψ−Ψ‖ is often dominated by a difference in the global phase, which does not
lead to errors in expectation values.

Therefore, we additionally consider the actual error on the observable |〈X〉−〈X〉|, where
〈X〉 = 〈Ψ|X|Ψ〉. This quantity gives a measure of the discriminability of different states.
For any Hermitian operator X, one can prove the following bounds (see Appendix E and
[Wil2020d] for more information):

|〈X〉 − 〈X〉| ≤ 2
√

∆ ‖X‖2, (4.3a)

|〈X〉 − 〈X〉| ≤ 2
√

∆
√

VarΨ(X) |〈Ψ|Ψ〉|+ 2∆ ‖X‖2, (4.3b)

where ∆ = 1 − |〈Ψ|Ψ〉|2 is the distinguishability between |Ψ〉 and |Ψ〉, ‖X‖2 denotes
the spectral norm (largest singular value) of X, and VarΨ(X) = 〈X2〉 − 〈X〉2 is the
variance of X with respect to the state |Ψ〉. Note that both bounds are general bounds
for how well different quantum states can be distinguished. However, the second bound
may be preferable because it depends, to leading order in

√
∆, only on the variance of the

observableX in the respective state, instead of the state-independent operator norm ‖X‖2.
Both bounds can be related to the time step τ by using ∆ ∝ τ 6 (see Eq. (4.2b)), without
knowledge of the exact result |Ψ〉. Furthermore, they can be estimated by evaluating the
expressions in [DeR1987; Huy1990] for the constant prefactor in Eq. (4.2b).
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As an application, we study the observables

X =

{
σx0 (KIT system)

σx0σ
x
1 (IBM system)

. (4.4)

In both cases, we have ‖X‖2 = 1 and VarΨ(X) = 1− 〈X〉2. Since the initial state of the
simulation is set to |+〉 (|++〉) for the KIT (IBM) system, the observables X in Eq. (4.4)
measure the fast rotations performed by the Bloch vectors (see Eq. (3.39)). Therefore,
we expect errors to surface quickly.

Indeed, Fig. 4.1 shows that the local error of |〈X〉 − 〈X〉| increases earlier than 1 −
|〈Ψ|Ψ〉|2, but is still a factor of 10–100 smaller than the bounds given in Eqs. (4.3a) and
(4.3b). Interestingly, though, the VarΨ(X) bound is tight for the global error shown in
Fig. 4.2(a), even after two million time steps of size τ = 10−3 ns (corresponding to 2 µs).
For the slightly larger systems studied in Fig. 4.2(b), we see that the global error of
|〈X〉 − 〈X〉| saturates after 1 µs while the respective bounds increase.

Finally, we evaluate the error defined by Eq. (3.37) between results obtained with two
different time steps τ1 = 10−4 ns and τ2 = 10−3 ns. We consider the overlap in Eq. (3.36)
between |Ψτ1(t)〉 and |Ψτ2(t)〉 after every 10 ns for a total time of 2 µs. This means that
the set T in Eq. (3.37) contains 200 items. For the KIT system, we obtain an error of
3.34 × 10−8. The IBM system yields an error of 9.50 × 10−7. Hence, we conclude that a
time step of 10−3 ns is sufficient for both systems. In contrast to the rigorous error bounds
studied above, this procedure to determine the time step does not require knowledge of
the exact result |Ψ〉, so it can also be used for much larger systems with time-dependent
Hamiltonians.

4.1.2 Performance

Having verified the accuracy of the simulation method, the next step is to assess the
performance of the transmon simulator. This requires a simulation of larger systems such
that most of the time spent goes into updating the state vector |Ψ〉 for each time step of
size τ . As discussed in Section 3.3 (see Eqs. (3.22) and (3.30)), this update is given by

|Ψ〉 ← e−iτH0/2 V e−iτΛ V † e−iτH0/2︸ ︷︷ ︸
Ũ

|Ψ〉 . (4.5)

The transformation associated with the operator V is the most complicated part (see
Eq. (3.31); the other operators are diagonal). Therefore, we expect the bottleneck to be
in this transformation. We compare three different implementations of this transformation
(see Appendix D).

Performance benchmarks are usually obtained by measuring the run time as a function
of the system size NTr+NRes and the number of parallel threads NThreads. We consider two
different system configurations. For configuration (1), we vary NTr while keeping NRes = 1
fixed, and for configuration (2), we vary both NTr = NRes. The model parameters are
given in Tab. 4.1. For each of the following benchmarks, we perform 1000 time steps of
size τ = 10−3 ns. All simulations were performed on the JURECA cluster [Jül2018] at the
Jülich Supercomputing Centre.
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Table 4.1: Model parameters for performance benchmarks for various system sizes NTr +
NRes between 1 and 16 (cf. Eqs. (4.1a)–(4.1c)). For configuration (1), NTr is variable and
NRes = 1. For configuration (2), NTr = NRes are both variable. The symbols uIi , u

I
r, and

uIri denote uniform random numbers drawn from the interval I, where i = 0, . . . , NTr − 1
and r = 0, . . . , NRes − 1. The parameters are inspired by the IBM device specified in
Tab. 3.4. All energies are expressed in GHz (h̄ = 1). Unspecified parameters are set to
zero.

Configuration ECi/2π EJi/2π Ωr/2π Gri/2π

(1) NTr variable, NRes = 1 0.301 10 + u
[0,5)
i 5.5 + u

[0,3)
r 0.055 + u

[0,0.03)
ri

(2) NTr = NRes variable 0.301 10 + u
[0,5)
i 5.5 + u

[0,2)
r 0.055 + u

[0,0.02)
ri

For a given system size NTr +NRes, the memory needed to store the state vector |Ψ〉 is

dim(H)× 16 bytes = 4NTr+NRes+2 bytes, (4.6)

where the size of the Hilbert space is dim(H) = 4NTr+NRes (see Eq. (3.17)) and the factor
of 16 is due to the use of complex double-precision floating point numbers. Therefore, we
expect the computational work to grow exponentially with the system size NTr + NRes,
and the goal is to work against this by increasing the number of threads.

As a simple check, we measure the run time T as a function of the system size, for each of
the three implementations (see Appendix D) in both single-threaded and multi-threaded
runs. The result for configuration (1) is shown in Fig. 4.3. The run times for configuration
(2) are almost the same (data not shown). We see that in the single-threaded case, the
run time T grows as expected already for very small systems. In the multi-threaded case,
the scaling only starts at system sizes around 7. This effect is due to the overhead of
managing 48 threads, compared to the relatively small computational work required for
NTr + NRes < 7. At this stage, one cannot see an essential difference between the three
implementations yet.

Weak and strong scaling

The performance of a parallel implementation is usually evaluated using two scaling met-
rics, namely the weak scaling performance and the strong scaling performance. The weak
scaling performance is obtained by simultaneously increasing the system size NTr +NRes

and the number of threads NThreads, while keeping the computational work per thread
constant. For the present algorithm, increasing the system size NTr +NRes by 1 increases
the size of the state vector |Ψ〉 by a factor of 4 (see Eq. (4.6)). However, the total com-
putational work is increased by more than a factor of 4. This effect is easily seen in
Listings D.1–D.3 in Appendix D: the number of operations in the inner loop grows by a
factor of 4 and, additionally, the number of iterations in one of the outer loops grows by 1
(the reason is that increasing NTr +NRes adds additional four-component updates to the
transformation V given in Eq. (3.31)). Therefore, the total computational work is propor-
tional to (NTr+NRes)4

NTr+NRes . Since the number of threads NThreads can only be increased
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by a factor of 4, we consider the rescaled run time T̂ = T/(NTr + NRes). We normalize

this quantity by the time T̂ST obtained for the single-threaded case at NTr +NRes = 6.
The weak scaling performance is shown in Fig. 4.4(a)–(c) for each of the three imple-

mentations, using configuration (1) since the system size in configuration (2) can only be
increased in steps of 2 (cf. Tab. 4.1). We find that implementations 1 and 2 show almost
ideal scaling behavior while implementation 0 does not scale as favorably. This means
that relying on branch predictors, as done for implementation 0, can hamper parallel scal-
ability. In particular, it is the additional non-loop branches present in implementation 0
(cf. Listing D.1) that destroy the scalability. In Fig. 4.4, the difference between the three
implementations is much more evident than in Fig. 4.3, where the fact that implemen-
tation 0 is slower can only be seen in the slightly higher red diamonds and the missing
blue square at NTr + NRes = 13 (in this case, the computation did not finish within the
allotted time of 24 hours).

The strong scaling performance is obtained by increasing the number of threads NThreads

while keeping the computational work (i.e., the system size) fixed. We choose a moderate
system of size 10 from configuration (2) (see Tab. 4.1) with NTr = 5 transmons and
NRes = 5 resonators. The number of threads NThreads is varied from 1 to 48 in steps of 1.

The strong scaling performance is shown in Fig. 4.5 for implementation 2 (the results
for implementation 1 are almost identical). A node on JURECA has 24 physical cores
which can each process two threads using hyper-threading (also called simultaneous mul-
tithreading) [Jül2018]. Therefore, we find two separate domains, namely the domain
1 ≤ NThreads ≤ 24 where hyper-threading is off and the domain 25 ≤ NThreads ≤ 48 where
hyper-threading is on. In each domain, a fit of the function f(x) = axb to the observed
run times yields an almost ideal strong scaling exponent of b ≈ −1. Although the run time
decreases at the hyper-threading threshold from NThreads = 24 to NThreads = 25, we find
that the simulation performs best when the full capacity of the node with NThreads = 48
is used.

To analyze which part of the update rule given in Eq. (4.5) takes the longest fraction
of the run time, we perform a breakdown of the computational work. For this purpose,
we measure the run time for each of the transformations included in Ũ as a function of
the system size NTr + NRes. For each transformation, we compute the median of 10 run
times, measured every 100 time steps. The result is shown in Fig. 4.6 for both the single-
threaded and the multi-threaded case, using configuration (1) and implementation 2. As
expected, the bottleneck for larger systems is the transformation V . The irregularities
for smaller system sizes NTr + NRes < 7 in the multi-threaded case shown in Fig. 4.6(b)
again reflect the above-mentioned overhead required for managing too many threads for
smaller systems.

We conclude that, among the three implementations for V (cf. Appendix D), imple-
mentations 1 and 2 are preferable since they are faster and show almost ideal weak and
strong scaling performance. We use implementation 2 for the simulation work presented
in the remainder of this thesis (see also the discussion at the end of Section 3.3.1).
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Figure 4.6: Breakdown of the time required for the different transformations for the update
rule given in Eq. (4.5); (a) single-threaded case using one core, (b) multi-threaded case
using 48 threads on 24 cores. The run-time fractions are shown for both exp(−iτH0/2)
transformations (blue), for the exp(−iτΛ) transformation (yellow), and for both V and
V † (green). The memory required to store the state vector |Ψ〉 (top axis) is linked to the
system size (bottom axis) via Eq. (4.6).
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Chapter 4 Free time evolution

4.2 Single transmon-resonator system

In this section, we study the elementary case of a single transmon coupled to a single
resonator. Such a system is small enough to make detailed analytical investigations pos-
sible. It has often been considered in the literature (e.g., in the initial proposals of the
circuit QED architecture [Bla2004] and the transmon [Koc2007]). Also, the system can
be related to the famous Jaynes-Cummings model [Jay1963]. Therefore, this simple setup
is an ideal candidate to relate results from the transmon simulator to previous analytical
work.

The Hamiltonian of the single transmon-resonator system is given by

HSingle = 4EC n̂
2 − EJ cos ϕ̂+ Ωâ†â+Gn̂(â+ â†), (4.7)

and corresponds to H free given in Eqs. (4.1a)–(4.1c) for NTr = NRes = 1. We use the
model parameters of a corresponding system manufactured at KIT (see Tab. 3.2). We
first give a brief summary of some analytical results for this model and then check their
range of validity with the simulation.

4.2.1 Overview of known perturbative results

The Hamiltonian HSingle given in Eq. (3.16) expressed in the transmon basis {|m〉} reads

HSingle =
∑

m

ETr
m |m〉〈m|+ Ωâ†â+

∑

mm′

Gn(m,m′) |m〉〈m′| (â+ â†), (4.8)

where ETr
m denotes the transmon eigenenergies (see Eq. (3.14)), and n(m,m′) denotes the

matrix elements of the charge operator n̂ in the transmon basis (see Eq. (3.15)). In this
representation, HSingle resembles the Jaynes-Cummings model [Jay1963], which is why it
is often called generalized Jaynes-Cummings Hamiltonian [Koc2007].

Several approximations to this Hamiltonian are frequently found in the literature. The
first step in most of them is an approximation of the transmon as an anharmonic oscillator
(AO), based on the observation that the energy levels ETr

m are almost equidistant. To apply
this approximation, we introduce operators âTr and â†Tr (cf. Eqs. (3.45a) and (3.45b)) such
that

n̂ = − 1√
2

(
EJ

8EC

)1/4

(âTr + â†Tr), (4.9a)

ϕ̂ =
i√
2

(
8EC
EJ

)1/4

(âTr − â†Tr), (4.9b)

with [âTr, â
†
Tr] = 1. The operators n̂ and ϕ̂ can always be written in this way because

they are Hermitian and obey [n̂, ϕ̂] = i (note that, strictly speaking, the commutator
[n̂, ϕ̂] = i is only well defined on the domain of periodic functions; see Appendix B in
[Wil2016]). In the literature, the phase factors −1 and i are sometimes put in different
places (cf. [Dev1997; Koc2007; Gam2013]), but this does not change the resulting time
evolutions.
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4.2 Single transmon-resonator system

For the AO approximation, the operators âTr and â†Tr are effectively replaced by ladder

operators b̂ =
∑

m

√
m+ 1 |m〉〈m+ 1| and b̂† =

∑
m

√
m+ 1 |m+ 1〉〈m|, respectively (see

[Koc2007]). This means that the matrix representation of n̂ in the transmon basis (see
Eq. (3.15)) is approximated by a tridiagonal matrix.

We first study the accuracy for the case in which the AO approximation is only done for
the interaction term Gn̂(â+â†), but in combination with the rotating wave approximation
(RWA), (b̂+ b̂†)(â+ â†) ≈ b̂â† + b̂†â. We define (cf. Eq. (4.8))

HAOIntRWA
Single =

∑

m

ETr
m |m〉〈m|+ Ωâ†â+ g(b̂â† + b̂†â), (4.10)

where

g = −
(

EJ
32EC

)1/4

G (4.11)

is the rescaled transmon-resonator coupling.
Since g is small compared to the other energy scales (cf. Tab. 3.2), the Hamiltonian in

Eq. (4.10) is often diagonalized in first-order perturbation theory (PT) for the eigenstates
|km〉 of the diagonal part (note that â†â =

∑
k k |k〉〈k| is also diagonal in this basis). One

obtains [Koc2007]

|km〉 =
1

Nkm

(
|km〉+

g

∆m

âb̂† |km〉 − g

∆m−1

â†b̂ |km〉
)
, (4.12)

where ∆m = ETr
m+1−ETr

m −Ω, and the factor Nkm is chosen such that |km〉 is normalized.

The states |km〉 are often called dressed states since the transmon states are dressed by
a small photonic component [Fox2006] (see also [Pom2020]). Using Eq. (4.12), we define
the second approximation under investigation by

HAOIntPT
Single =

∑

km

(ETr
m + kΩ)|km〉〈km|, (4.13)

where the eigenvalues ETr
m + kΩ are the same as for the original Hamiltonian given in

Eq. (4.8), because they are not affected by the off-diagonal interaction operator in first-
order PT. Note that the same result can be obtained using the Schrieffer-Wolff transfor-
mation [Sch1966; Bra2011] (see [Ric2013] for the calculation).

A third alternative is to extend the AO approximation (which was only done for the
interaction before) to the full transmon (cf. [Gam2013]),

HAOFull
Single = ω̄b̂†b̂+

ᾱ

2
b̂†b̂(b̂†b̂− 1) + Ωâ†â+ g(b̂+ b̂†)(â+ â†), (4.14)

where ω̄ =
√

8ECEJ − EC and ᾱ = −EC are the resulting approximations to the qubit
frequency and the anharmonicity, respectively (see also the discussion below Eq. (3.14)).
In this form, the transmon’s character as an AO is evident: Using b̂†b̂ =

∑
mm |m〉〈m|,

Eq. (4.14) states that the eigenvalues ETr
m are approximated by ω̄m+ ᾱm(m− 1)/2 such
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Chapter 4 Free time evolution

that successive eigenvalues differ by ETr
m+1 − ETr

m ≈ ω̄ + ᾱm. Note that unlike Eq. (4.10),
the RWA has not been used in Eq. (4.14).

Finally, we consider the two-level approximation (TLA) of the transmon. This is the
crudest approximation since it retains only the two lowest-energy eigenstates |m = 0〉
and |m = 1〉 of Eq. (4.14). Expressing the ladder operators in terms of Pauli matrices
σz = − |0〉〈0|+ |1〉〈1| and σx = |0〉〈1|+ |1〉〈0|, we obtain (up to a constant)

HTLA
Single = − ω̄

2
σz + Ωâ†â+ gσx(â+ â†), (4.15)

which resembles the Jaynes-Cummings model of an atom coupled to an electric field (see
[Jay1963; Ger2005]), except that the RWA has not been used. The reason for not using
the RWA is that all deviations from the exact time evolution can then be attributed to
the TLA.

In summary, we list all of these approximations in terms of the transmon states {|m〉}
or the dressed transmon-resonator states {|km〉}, respectively:

HAOIntRWA
Single =

∑

m

ETr
m |m〉〈m|+ Ωâ†â

+
∑

m

g
√
m+ 1(|m〉〈m+ 1| â† + |m+ 1〉〈m| â), (4.16a)

HAOIntPT
Single =

∑

km

(ETr
m + kΩ)|km〉〈km|, (4.16b)

HAOFull
Single =

∑

m

(ω̄m+
ᾱ

2
m(m− 1)) |m〉〈m|+ Ωâ†â

+
∑

m

g
√
m+ 1(|m〉〈m+ 1|+ |m+ 1〉〈m|)(â+ â†), (4.16c)

HTLA
Single = ω̄ |m = 1〉〈m = 1|+ Ωâ†â

+ g(|m = 0〉〈m = 1|+ |m = 1〉〈m = 0|)(â+ â†). (4.16d)

4.2.2 Comparison to simulation results

We measure the success of the different approximations given in Eqs. (4.16a)–(4.16d)

by how well they predict the time evolution. For every Hamiltonian H̃ ∈ {HAOIntRWA
Single ,

HAOIntPT
Single , HAOFull

Single , H
TLA
Single} in Eqs. (4.16a)–(4.16d), we obtain the time evolution by nu-

merical diagonalization. This is done by diagonalizing the matrix representation of H̃
with respect to the joint transmon-resonator basis {|km〉} for k,m ∈ {0, . . . , 9}. We then

use the resulting eigenvalues and eigenvectors of H̃ to compute the time-evolution oper-
ator Ũ(t) = exp(−iH̃t). Note that this procedure is only possible since the matrices are
small enough and the Hamiltonians do not contain time-dependent terms.

We compute the probability pkm(t) for 0 ≤ t ≤ 100 ns to measure the system in the
state |km〉 if it has been initialized in |km〉 at t = 0. Using the time-evolution operator

Ũ(t), this probability is given by

pkm(t) = |〈km|Ũ(t)|km〉|2. (4.17)
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Figure 4.7: Time evolution of two different initial states |km〉 = |01〉 , |21〉 to compare
the exact solution (solid lines) and various common approximations (dots): (a) using an
anharmonic oscillator for the interaction term combined with the RWA (see Eq. (4.10)),
(b) the same but in first-order PT (see Eq. (4.13)), (c) using an anharmonic oscillator
for the whole transmon (see Eq. (4.14)), (d) using a two-level system to describe the
transmon (see Eq. (4.15)). Shown is the probability pkm(t) to measure the system in the
state |km〉 (see Eq. (4.17)). The exact time evolution corresponds to the Hamiltonian
HSingle given in Eq. (4.7), and the approximations (a)–(d) correspond to the Hamiltonians
given in Eqs. (4.16a)–(4.16d)
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Chapter 4 Free time evolution

The reference time evolution is the exact result governed by the Hamiltonian given in
Eq. (4.7). It is obtained using the transmon simulator defined in Section 3.3 (note that
the error for this system can be made arbitrarily small by scaling the time step τ ; see
Fig. 4.1(a)). Explicitly, using the notation from Eq. (3.23), we set ψk0m0(0) = δk0kδm0m,
perform the time evolution, and compute pkm(t) = |ψkm(t)|2.

The result is shown in Fig. 4.7 for the initial states |km〉 = |01〉 , |21〉, i.e., the transmon
is always initialized in the excited qubit state |m = 1〉 and the resonator is populated with
either k = 0 or k = 2 photons. We see that if the AO approximation is only used for the
interaction, both the short-term and the long-term evolution are described reasonably well
(see Fig. 4.7(a)). We checked that in this case, the result is the same whether the RWA
is used for this term or not. The perturbative result shown in Fig. 4.7(b) can describe
the short-term evolution equally well, but acquires a shift for longer time evolutions.
The same applies if the whole transmon is approximated as an anharmonic oscillator
(see Fig. 4.7(c)). However, in this case a slight drift for the k = 2 case is also already
observable at t = 4 ns. Still, in all approximations for which the transmon is described
by more than two levels, the average amplitude of the oscillations is correct. As shown
in Fig. 4.7(d), this is not true anymore for the two-level approximation. It suffers both
from a drift and also from a reduced amplitude in the k = 2 case. The strength of the
interaction for k 6= 0 is thus underestimated.

We can conclude from this that higher transmon states play an important role in me-
diating the interaction between the transmon and the resonator. We find that none of
the approximations are suitable for the optimization of quantum gate pulses which take
O(100 ns). The reason is that all approximations develop a drift at this time scale, and
drifts are related to inaccurate relative phases which are required to be very precise in
order to implement e.g. the CNOT gate. As shown in Section 4.4, however, there still
exist nontrivial cases in which even a two-level approximation describes the time evolution
rather well.

4.3 Transmon-resonator system coupled to a bath

In practice, it is almost impossible to keep readout resonators completely void of photons
(see, for instance, [Sur2015; Bul2016]). This means, in the context of this work, that it is
difficult to prepare a resonator exactly in the state |k = 0〉 (cf. Eq. (3.23)). An interesting
question is how much a transmon qubit is affected by the presence of photons in the
resonator.

We study this question using three complimentary approaches. First, we consider an
isolated transmon-resonator system as defined in Section 3.4.1. Next, we study its coupling
to a heat bath using the model defined in Section 3.4.2 (this model is the same that
can be used to describe electromagnetic environments, see Section 3.5). These first two
approaches are based on solving the TDSE given in Eq. (3.8) using the transmon simulator
described in Section 3.3. For the third approach, we use a quantum master equation
approach. This allows us to address the transition from a closed system over the system-
bath model to the effective evolution described by a quantum master equation.
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4.3 Transmon-resonator system coupled to a bath

4.3.1 Simulation models

The central system considered in this section is the single transmon-resonator system
defined in Section 3.4.1. We supplement the system with a bath of L = 10 resonators to
model an open quantum system. The bath Hamiltonian essentially represents a collection
of harmonic oscillators, i.e., a boson bath. Thus, the model Hamiltonian for the TDSE is
given by H = HSingle +HBath, where

HSingle = 4EC n̂
2 − EJ cos ϕ̂+ Ωâ†â+Gn̂(â+ â†), (4.18a)

HBath =
L∑

l=1

Wlb̂
†
l b̂l +

L∑

l=1

λl(â+ â†)(b̂l + b̂†l ). (4.18b)

For clarity, we use the symbols b̂l to distinguish the bath resonators from the central
resonator. Thus, the mapping to the model Hamiltonian H free

Res given in Eq. (4.1c) is

âr=0 ↔ â and âl ↔ b̂l for l = 1, . . . , L. The specification of the bath parameters and their
relation to the parameters of the full model Hamiltonian used in the simulation framework
(see Eqs. (3.9a)–(3.9f)) is given in Tab. 3.3. The topology of the system is sketched in
Fig. 3.3.

Isolated system

The first approach focuses on the isolated transmon-resonator system. As in Section 4.2,
we solve the TDSE

i
∂

∂t
|Ψ(t)〉 = HSingle |Ψ(t)〉 , (4.19)

where HSingle is given in Eq. (4.18a), corresponding to H free given in Eqs. (4.1a)–(4.1c)
for NTr = NRes = 1. We use the model parameters of a transmon system manufactured
at KIT (see Tab. 3.2).

The system’s initial state is given by |Ψ(0)〉 = |k,m = 0〉 such that the transmon
is initialized in its ground state and the resonator is populated with k photons. We
intentionally do not initialize the system in an eigenstate of the full Hamiltonian (such as
the dressed states given in Eq. (4.12)). The reason for this is that in an eigenstate, the
time evolution would be trivial for each k. Instead, the goal is to assess the impact of
k additional photons on the transmon-resonator interaction and its consequences for the
time evolution of the transmon system.

We analyze the free time evolution for various k between 0 and 180. At each time t, we
evaluate the probability pm 6=0(t) to find the transmon in a higher excited state |m〉 with
m 6= 0. This probability is given by

pm 6=0(t) = 1− 〈Ψ(t)| (|m = 0〉〈m = 0|) |Ψ(t)〉 , (4.20)

where |Ψ(t)〉 is given in Eq. (3.23). Since the Hilbert space given in Eq. (3.17) includes
only four states for the resonator, we make use of the parameter koffset to study larger
values of k. Specifically, we set koffset = k − 2 (for k ≥ 2) such that two Fock states
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below |k〉 and one Fock state above |k〉 are taken into account. We have verified by exact
diagonalization that with this choice, the quantities studied for this system are accurate
up to three significant digits.

System with bath

For the second approach, we use the transmon simulator to solve the TDSE

i
∂

∂t
|Ψ(t)〉 = (HSingle +HBath) |Ψ(t)〉 , (4.21)

where HSingle and HBath are given in Eqs. (4.18a) and (4.18b), respectively. We consider
various coupling strengths λl that are chosen uniformly from [0, λ], where λ ∈ 2π ×
{5 MHz, 10 MHz, 20 MHz}. Furthermore, the frequencies Wl of the bath modes are chosen
randomly from a Gaussian distribution centered around Ω (see Tab. 3.3). The choice
of random bath parameters is motivated by the observation that for such large, generic
models, randomness in the bath parameters is required to model generic effects [Jin2013].
Note that in principle, this particular system-bath setup is a sufficiently general model
for a superconducting environment (see Section 3.5, where we also describe a procedure
to extract the bath parameters Wl and λl from electromagnetic HFSS simulations).

We solve Eq. (4.21) for an initial state given by a product of the state |k,m = 0〉 (as
before) and the zero temperature ground state of the bath. Note that the state vectors
|Ψ(t)〉 in Eqs. (4.19) and (4.21) are defined on different Hilbert spaces. Specifically, the
Hilbert space for Eq. (4.19) includes one transmon and one resonator, whereas the one
for Eq. (4.21) contains 11 resonators and is thus much larger (cf. Eq. (3.23)). In the
case λ = 0, however, the solution of Eq. (4.21) coincides with the solution of Eq. (4.19)
after projection onto the smaller Hilbert space. All simulations for the approach given
by Eq. (4.21) were performed on the supercomputers JURECA [Jül2018] and JUWELS
[Jül2019].

As before, we study the effect of a larger number of photons k in the system’s resonator
by evaluating Eq. (4.20). As opposed to the isolated case, the photons now directly couple
to the environment. This means that for a larger number of photons k, energy can leak
out of the resonator into the environment. Furthermore, energy exchange between the
transmon and the environment can be virtually mediated by the resonator. Therefore,
a reasonable expectation would be that the average transmon excitation 〈pm 6=0(t)〉 is
reduced.

We remark that simulating Eq. (4.21) also allows for a study of the theory used to
describe the Purcell effect for transmons, which starts from a bath model similar to
Eq. (4.18b) to derive the transmon relaxation rate (see [Koc2007]).

Master equation

As a third approach, we consider a Lindblad master equation (also known as GKLS
equation) [Gor1976; Lin1976] for the system’s reduced density matrix ρ(t),

∂

∂t
ρ(t) = −i[HSingle, ρ(t)] +

∑

γ

κγD[Aγ](ρ(t)), (4.22)
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4.3 Transmon-resonator system coupled to a bath

where the dissipator D[Aγ] is defined by D[Aγ](B) = AγBA
†
γ − (A†γAγB + BA†γAγ)/2

for some operator B. This type of master equation is the most general form for the
generator of the quantum dynamical semigroup [Bre2007]. The associated time evolution
is automatically CPTP (cf. Section 2.4). In this context, the reference to the algebraic
structure of a semigroup is due to the fact that an inverse time evolution is not required
[Kos1972] (unitary time evolutions, on the other hand, form a group because they are
reversible). A comprehensive historical account of the events that led to Eq. (4.22),
including a survey of the results, is given in [Chr2017].

For a single dissipator D[â], the master equation in Eq. (4.22) reads

∂

∂t
ρ(t) = −i[HSingle, ρ(t)] +

κ

2

(
2âρ(t)â† − â†âρ(t)− ρ(t)â†â

)
, (4.23)

where κ = 2π × 2.7 MHz denotes the photon loss rate obtained from a corresponding
experiment at KIT [Rie2019]. In addition to the single dissipator D[â], one frequently
considers effects of the form D[â†] for environment-induced photon excitation, or corre-
sponding versions for qubit relaxation, excitation, and dephasing (see e.g. [Sur2015]). The
motivation to consider D[â] the most dominant dissipator is that the readout resonator is
directly coupled to the “outside world” (i.e, the transmission line, whose temperature may
be much higher than the effective temperature of the transmons). Therefore, photons in
the resonator can easily leak out and take energy away from the system. This is especially
true if the number of photons k in the resonator is large.

In the case of the master equation, the solution is given by the system’s density matrix
ρ(t). Therefore, the probability from Eq. (4.20) to find the transmon in a higher excited
state |m〉 with m 6= 0 is given by

pm 6=0(t) = 1− 〈m = 0|ρ(t)|m = 0〉 . (4.24)

We emphasize that the bath approach in Eq. (4.21) is more general than the other two:
The solution reduces to the one of Eq. (4.19) if the bath coupling strength λ = 0, and
a Markovian master equation of the form of Eq. (4.23) for the reduced density matrix
ρ(t) = TrBath |Ψ(t)〉〈Ψ(t)| can describe the more complicated dynamics generated by a
system-bath model only under certain conditions [Bre2007] (see [Zha2016; DeR2017] for
detailed investigations of this point).

4.3.2 Results

The time evolution of pm 6=0(t) for k = 0, 20, . . . , 180 photons is shown in Fig. 4.8. For
the isolated system, Fig. 4.8(a) shows oscillations of the transmon between |m = 0〉 and
higher excited states. For k = 180 (red curve), this oscillation is quite strong such that
after 0.33 ns, pm 6=0(t) already reaches 46%. A closer inspection (data not shown) yields
that at this point in time, the probability to find |m = 1〉 (|m = 2〉) is 37% (9%). Hence,
an increased number of photons can also excite the qubit to higher, non-computational
states. Figure 4.8 also shows that with increasing k, the frequency of the oscillation
between |m = 0〉 and higher states grows.
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Figure 4.8: Time evolution of the probability pm 6=0(t) to find the transmon in any excited
state |m〉 for m 6= 0. pm 6=0(t) is obtained by solving (a) the TDSE given in Eq. (4.19) (see
Eq. (4.20)), (b) the master equation given in Eq. (4.23) (see Eq. (4.24)). Different colors
correspond to a different number of photons k in the resonator.
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in Eq. (4.25). For the isolated system and the master equation, the corresponding prob-
abilities pm 6=0(t) are shown in Fig. 4.8. For the bath simulations, each point (error bar)
is the mean (standard deviation) of 10 independent results for 〈pm 6=0(t)〉, each of which
uses different, random bath parameters that are distributed as specified in Tab. 3.3.

76



4.3 Transmon-resonator system coupled to a bath

In Fig. 4.8(b), we show the corresponding probability pm 6=0(t) as described by the
Lindblad master equation given in Eq. (4.23). For the first 10 ns, the time evolution is
almost equal to the isolated transmon-resonator case shown in Fig. 4.8(a). After that,
the photon loss modeled by the dissipator D[â] becomes observable, and the oscillations
of pm 6=0(t) decay. Note that the state at the end of the depicted time evolution is not
the steady state, since the photon-loss mechanism in this model would continue to take
energy from the system until the resonator is completely depleted of photons.

We average the probability pm 6=0(t) shown in Fig. 4.8 over a period 0 ≤ t ≤ T to obtain
the average excitation probability

〈pm 6=0(t)〉 =
1

T

T∫

0

pm 6=0(t) dt, (4.25)

for each number of photons k = 0, 20, . . . , 180 and each of the three approaches introduced
above. For the TDSE-based approaches given by Eqs. (4.19) and (4.21), we take T = 20 ns
such that enough oscillations contribute to the average. For the master-equation approach
given by Eq. (4.23), we take T = 100 ns, because this is roughly the time scale of the
measurement process in the corresponding experiment [Rie2019]. The result is shown in
Fig. 4.9.

For the bath simulations (yellow, green, and red curves in Fig. 4.9), we additionally
average 〈pm 6=0(t)〉 over ten independent runs using different bath parameters. Since for
each k, we also have random parameters, the averages give a clear indication of the generic
trend. However, we also see fluctuations (represented by error bars) for different baths.
See below for an analysis of this point.

Generically, we see that the average excitation probability increases with the number
of photons k. The overall effect is most pronounced for the isolated system (blue line in
Fig. 4.9). This makes sense since without an environment, energy can only be exchanged
between the transmon and the resonator (see Eq. (4.18a)). Qualitatively, this interaction
is proportional to â+ â† ∼

√
k + 1 (cf. Eq. (3.11)). Therefore, a larger number of photons

k can lead to a higher excitation of the transmon.
In the system-bath models, however, energy from the resonator and (in second order)

from the transmon can dissipate into the environment. Therefore, we see in Fig. 4.9 that
the transmon excitation decreases. In particular, for increasing system-bath couplings
λ, the results approach the purely dissipative situation modeled by the Lindblad master
equation (black line). Note that in general, TDSE dynamics of a system coupled to a
bath can exhibit much more complicated, non-Markovian behavior that is incompatible
with a Lindblad master equation [DeR2017].

Bath fluctuations

The remarkably nice transition from an isolated system (TDSE) to a dissipative system
(master equation) by gradually increasing the system-bath coupling λ cannot be observed
in every simulation. This is the reason for the fluctuations represented by the error bars
in Fig. 4.9, especially for stronger system-bath couplings (see the red line corresponding
to λ = 2π × 20 MHz).
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Figure 4.10: Time evolution of the average number of photons k(t) (see Eq. (4.26)) in the
resonator in the presence of the bath described by Eq. (4.18b). The model is schematically
shown in Fig. 3.3. For each initial number of photons k(0) = k with (a) k = 80, (b)
k = 100, and (c) k = 120, we show one time evolution from the 10 independent runs
that yield a point on the yellow, green, and red lines in Fig. 4.9. The same colors yellow,
green, and red are used to represent different coupling strengths λ.

A closer look at the data shows that most bath configurations follow the average, but
a few particular configurations cause a dip in the excitation probability. This dip is
observable in the red line at k = 100 and k = 180 in Fig. 4.9. To understand the reason
for this, we evaluate the time evolution of the average photon number in the resonator,

k(t) = 〈Ψ(t)| â†â |Ψ(t)〉 , (4.26)

where |Ψ(t)〉 is the solution of the TDSE given by Eq. (4.21).
Figure 4.10(a) shows a representative result for k(t) for each λ, taken from one of the

ten runs for each λ corresponding to k = 80 in Fig. 4.9. We see that over the course of
the time evolution, k(t) stays nicely within the four simulated Fock states (cf. Eq. (3.17)).

However, the red line in Fig. 4.10(b) shows an extreme case for λ = 2π × 20 MHz, in
which the average photon number k(t) immediately drops and hits the computational
boundary at k = 98. This case corresponds to a particular configuration of the bath that
causes a dip in the corresponding red line in Fig. 4.9 at k = 100. A similar situation is
depicted in Fig. 4.10(c) for λ = 2π× 5 MHz (yellow line). This is the cause of the slightly
less pronounced dip in the corresponding yellow line at k = 120 in Fig. 4.9.

To understand this immediate drop in the photon number, we investigated the corre-
sponding spectral properties of the bath. In many cases, there is a certain bath mode
with a frequency Wl close to the resonator frequency Ω and a particularly strong coupling
λl (see Eq. (4.18b)). It seems reasonable that such a resonant condition leads to a special
situation. However, this explanation does not hold for each instance that exhibits this
behavior, and it is complicated to recognize the resonant pathway in all cases. This points
out an opportunity to improve the model and suggests an interesting venue for further
research.
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4.3.3 Additional ways to improve the models

For the results presented above, we initialized the resonator in a Fock state |k〉 with k
photons. A more adequate model of the experimental situation would be to consider a
coherent state [Gla1963; Fox2006], given by

|α〉 =
∑

k′

e−|α|
2/2α

k′

k′!
|k′〉 . (4.27)

For such a state, α =
√
k would represent the electromagnetic field in the resonator with

an average photon number k. We ran simulations including up to 300 Fock states (data
not shown) and found that the average excitation probability 〈pm 6=0(t)〉 shown in Fig. 4.9
is only marginally reduced (from 24% to 22% at the maximum for k = 180). For the
master equation, the effect is even weaker, with a decrease by less than 0.1%. The time
evolution pm 6=0(t), however, is more interesting, with sharply peaked oscillations at a 5–10
times higher frequency on top of the curves shown in Fig. 4.8.

Future work will go into extending the model such that larger baths with additional Fock
states can be simulated. This would allow a precise classification of the bath configurations
that lead to the immediate drop in the photon number illustrated in Fig. 4.10(b) for
λ = 2π × 20 MHz (red line). Furthermore, it enables an initialization of the bath in a
thermal state at a certain temperature T 6= 0 such that finite temperature effects can be
studied.

From a statistical physics point of view, the transition from the isolated system over the
system-bath model to the master equation shown in Fig. 4.9 could be scrutinized. In this
respect, it would be interesting to study a more general type of master equation including
photon excitations D[â†] and additional dissipators for the transmon itself, which are often
used to describe experimental observations (see e.g. [Sur2015]).

In the context of modeling experiments, it would be an exciting idea to use, instead of
random bath parameters, the frequencies Wl and couplings λl representing the supercon-
ducting environment of the particular device. A procedure to extract these parameters
from experiments or electromagnetic HFSS simulations of the device is described in Sec-
tion 3.5. We plan to continue in this direction for a new sample manufactured at KIT
[Rie2019].

Finally, an interesting conceptual question is to what extent the generic features are
specific to the bosonic bath considered in this section. For instance, an alternative model
for an environment would be a spin bath to model a system of two-level defects in materials
[Mül2009; Mül2019; Wil2020d; Wil2020e]. Similarly, one could replace the bosonic bath
with a fermionic bath of superconducting (Bogoliubov) quasiparticles [Kiv1990], which are
also considered to be sources of relaxation, decoherence, and electromagnetic dissipation
[Cat2011; Cat2012; Pop2014].
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4.4 Effective ZZ interaction for coupled transmons

We consider a pair of transmon qubits coupled by a resonator. This way of coupling
transmon qubits is the primary architecture studied in this work. The effective transmon
coupling mediated by a resonator has been frequently studied in the literature (see for
instance [Bla2004; Maj2007; Li2008; Gam2013; Ric2013; Bil2015; Wil2017; Ku2020]).
Analytical calculations often use perturbation theory to obtain dominant effective cou-
plings such as σx0σ

x
1 or (σx0σ

x
1 +σy0σ

y
0)/2. In this section, we study a much weaker coupling

of the type σz0σ
z
1. Albeit very small, this coupling is still relevant for experiments; we will

later construct a quantum circuit by which its effects can be directly observed in the IBM
Q processors (see Section 7.1). Note that it is also possible to obtain this coupling from
a complete microwave description of the system [Sol2019].

A coupling of the type σz0σ
z
1, also known as longitudinal coupling, makes the frequency

of one qubit depend on the state of the other qubit. To see this, consider a Hamiltonian
describing two qubits (Q0, Q1) of the form

HZZ = −ω
′
0

2
σz0 −

ω′1
2
σz1 + Jσz0σ

z
1. (4.28)

When Q1 is in state |0〉, the frequency of Q0 is ω′0 − 2J (given by the difference between
the eigenvalues of |10〉 and |00〉). However, when Q1 is in state |1〉, the frequency of Q0
is ω′0 + 2J . This means that the frequency of Q0 depends on the state of Q1. In the same
manner, the frequency of Q1 depends on the state of Q0.

To study this effect for a pair of transmon qubits, we simulate a system of NTr = 2
transmons coupled by NRes = 1 resonator (see Tab. 3.4 for the model parameters). We
determine the frequency of Q0 for three different initial states of Q1, namely |0〉 , |+〉, and
|1〉. To determine the frequency, we make use of the procedure described in Section 3.3.2.
Thus, we initialize Q0 in the state |+〉 and obtain the frequency from the time evolution
of its Bloch vector ~r0(t) (see Eqs. (3.39) and (3.40)). The resonator is always initialized
in its ground state |k = 0〉.

Figure 4.11 shows a plot of the time evolution of the Bloch vector’s x component rx0(t)
for the three different initial states of Q1, along with the frequencies determined by the
procedure described in Section 3.3.2. As expected, the frequency of Q0 depends on the
state of Q1. Since the difference in frequency is on the order of ∆f ≈ 0.0001 GHz, we
need to simulate the time evolution up to 1 µs (corresponding to 1 µs/τ = 106 time steps)
to observe the difference in f .

As can be seen, the frequencies used for the cosine functions (lines) describe the sim-
ulation results (points) very accurately. However, on closer inspection, we see that the
amplitude of the oscillation corresponding to the case where Q1 is in state |+〉 (yellow
circles) decreases over time, which is not described accurately by cos(2πft). The reason
for this is that the magnitude of the Bloch vector ~r0(t) becomes smaller which corresponds
to entanglement building up in the state.

Interestingly, the effect is described correctly by the effective Hamiltonian HZZ given
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Figure 4.11: Time evolution of the x component of the Bloch vector ~r0(t) of Q0
(cf. Eq. (3.38)), for different initial states of Q1 (indicated by blue, yellow, and green
colors). Points represent simulation results. Blue, yellow, and green lines correspond to
the functions cos(2πft), where the frequency f is given in GHz in the legend. The red
line corresponds to the function cos(2Jt) cos(ω′0t) (see Eq. (4.30)), where J and ω′0 are
given in Eqs. (4.31a) and (4.31c), respectively. The difference in the frequencies is only
observable after a long time evolution (right panel of the plot).

by Eq. (4.28). To see this, we compute the corresponding time evolution under HZZ ,

e−itHZZ |++〉 =
1

2

(
eit(ω

′
0+ω′1−2J)/2 |00〉+ eit(ω

′
0−ω′1+2J)/2 |01〉

+ eit(−ω
′
0+ω′1+2J)/2 |10〉+ eit(−ω

′
0−ω′1−2J)/2 |11〉

)
. (4.29)

Evaluating the expectation value rx0(t) = 〈σx0 〉 for this state yields

rx0(t) = cos(2Jt) cos(ω′0t). (4.30)

The parameters ω′0, ω′1, and J can be obtained from the time evolution of the four states
(|+0〉 , |+1〉 , |0+〉 , |1+〉). Using the same procedure as before, we extract the correspond-
ing four frequencies f±i from the data for ~ri(t) (see Eqs. (3.39) and (3.40)). For instance,
the frequency f−0 (f+

0 ) obtained from the time evolution of |+0〉 (|+1〉) corresponds to
the blue (green) line in Fig. 4.11. The frequencies f±i are related to the parameters ω′0,
ω′1, and J via 2πf±i = ω′i ± 2J (see Eq. (4.28)). Therefore, we have ω′i = 2π(f+

i + f−i )/2
and J = 2π(f+

i − f−i )/4 (which is the same for both i = 0 and i = 1 up to 10−10 GHz),
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which evaluates to

ω′0 = 2π × 5.346300 GHz, (4.31a)

ω′1 = 2π × 5.116707 GHz, (4.31b)

J = 2π × 46.6 kHz. (4.31c)

The frequencies ω′i are shifted with respect to the individual qubit frequencies ω̃i given in
Tab. 3.4 due to the presence of the resonator. Note the large number of significant digits
that is required to resolve the value of J .

The function cos(2Jt) cos(ω′0t) given in Eq. (4.30) is shown as a red line in Fig. 4.11.
We see that it describes the decrease in amplitude very accurately, despite the extremely
small value of J . In Section 6.3, we will reproduce the same value for J (see Eq. (6.32))
using a much more sophisticated procedure called gate set tomography (GST).

It is worth mentioning that the effective Hamiltonian HZZ given in Eq. (4.28) can also
be derived from the original transmon-resonator Hamiltonian by doing a perturbative
diagonalization. Such a calculation is given in [Gam2013] and, using a more recent tech-
nique, in [Mag2020]. The starting point of the calculation is a two-transmon version of
the anharmonic oscillator Hamiltonian HAOIntRWA

Single given in Eq. (4.10). Furthermore, in
[Bil2015], a derivation starting from a two-qubit version of HTLA

Single given in Eq. (4.15)
is presented, without resorting to the RWA. Both calculations yield the correct type
of longitudinal ZZ interaction. Furthermore, the order of magnitude of the frequency
corrections is right: The difference between ω′i given in Eqs. (4.31a) and (4.31b) and
the original frequencies ω̃i given in Tab. 3.4 is approximately equal to the Lamb shift
−g2

i /(Ω− ω̃i) ∈ {2π×−0.0035 GHz, 2π×−0.0029 GHz}, where gi = −(EJi/32ECi)
1/4Gi.

However, the respective values for the longitudinal coupling strength J given in Eq. (4.31c)
are different:

JAOIntRWA ≈ 2π × 240 kHz, (4.32a)

JTLA ≈ 2π × 5 kHz. (4.32b)

The interaction strength JAOIntRWA is stronger because it refers to the eigenbasis obtained
after the perturbative diagonalization. The reason for JTLA being too small is that the
TLA discards contributions from higher levels. Thus, higher transmon states play an
important role in mediating the exchange interaction between transmon qubits. Inde-
pendent of these deviations, however, all perturbative calculations yield the important
scaling law J ∝ G4, showing that the resonator-mediated exchange interaction depends
sensitively on the respective transmon-resonator couplings.

Although the magnitude of the coupling is extremely small (see Eq. (4.31c)), one can
find circuits by which its consequences, namely the state-dependent frequencies, can be
directly observed in the IBM Q processors (see Section 7.1). Furthermore, the effective
evolution described by HZZ given in Eq. (4.28), including the same value for J given in
Eq. (4.31c), is also found, without using prior information, by the black box model of
GST (see Eq. (6.32) in Section 6.3).
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4.5 Conclusions

In this chapter, we studied undriven time evolutions. After verifying known error bounds
for the transmon simulator (see Eqs. (4.2a) and (4.2b)), we found that new error bounds
for observables [Wil2020d] (see Eqs. (4.3a) and (4.3b)) are indeed tight. In detailed bench-
marks, we observed that the simulation algorithm exhibits nearly ideal weak and strong
scaling behavior (see Figs. 4.3–4.6) on the supercomputer JURECA [Jül2018] for imple-
mentations 1 and 2 (cf. Appendix D). We compared the time evolution produced by the
transmon simulator to known perturbative results, and found that the perturbative results
qualitatively predict the time evolution properly, but all develop a drift after a short time
(see Fig. 4.7), which makes them unsuitable for accurate pulse optimization. By coupling
an isolated system to a bosonic heat bath, we observed that system-environment models
based on the solution of the TDSE can, under certain conditions, be effectively described
by the CPTP dynamics generated by a Lindblad master equation (see Fig. 4.9). Finally,
we characterized the resonator-mediated exchange interaction between coupled transmons.
Although the magnitude of this interaction is extremely small (see Eq. (4.31c)), we note
that it is accurately reproducible using a black box model (see Section 6.3.2). Further-
more, its consequences such as the state-dependent frequency shifts of neighboring qubits
shown in Fig. 4.11, can be directly observed in the IBM Q processors (see Section 7.1).
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Chapter 5

Optimizing pulses for quantum gates

For gate-based quantum computers, a quantum gate is implemented by a certain external
action on the system. A natural way of interacting with a superconducting system is
to apply an electromagnetic pulse. In the transmon systems considered in this thesis,
such a pulse is a microwave voltage pulse, applied to each qubit through its respective
transmission line (see Section 3.1.4). A voltage pulse is modeled by the external time-
dependent functions ngi(t) in the Hamiltonian given by Eqs. (3.9a)–(3.9f). We consider a
generic sum of microwave voltage pulses

ngi(t) =
∑

j

Ωij(t) cos(2πfijt− γij), (5.1)

where Ωij(t) is the envelope of pulse j on qubit i, fij is the corresponding drive frequency,
and γij is an offset phase. The generic expression for microwave pulses given by Eq. (5.1) is
motivated by the form of the microwave signals used in typical experiments to implement
quantum gates (see [McK2017] for more information).

To implement a particular quantum gate, the pulses ngi(t) given by Eq. (5.1) must
be chosen such that the time evolution of the full system corresponds to the unitary
transformation representing the desired quantum gate. In other words, if U : H2n → H2n

is the unitary operator corresponding to the desired quantum gate (see Section 2.2), the
functions ngi(t) for 0 ≤ t < T need to be chosen such that the time-evolution operator of
the full system U(T, 0) (see Eq. (3.19)) implements U (potentially in a certain rotating
frame, meaning that the columns of U(T, 0) are transformed according to Eq. (3.41)).

The challenge, however, is that the time-evolution operator U(T, 0) acts on the much
larger Hilbert space H of all transmons and resonators given by Eq. (3.17). Therefore,
the operators U and U(T, 0) can only be equal after projecting U(T, 0) on the smaller
computational subspace H2n , yielding

M = PH2n
U(T, 0)PH2n

, (5.2)

where PH2n
denotes the projection operator defined in Eq. (3.35). In almost all prac-

tical cases, the projected matrix M is not unitary anymore, so it is, strictly speaking,
impossible to make M equal to the desired quantum gate U . Intuitively, this means
that non-computational states affect the time evolution of the total system, a particular
problem for transmon qubits known as leakage [Che2016; Wil2017; Woo2018] (see also
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Section 2.1.4). The best one can hope for is to find a pulse resulting in a transformation
M that approximates the desired quantum gate U as closely as possible. The impor-
tant question is whether such a fundamentally imperfect implementation is sufficient in
practice.

Therefore, the aim of this chapter is to develop an optimization scheme for a set of pulse
parameters for Eq. (5.1) to implement the closest approximation to U . The particular
set of parameters depends on the kind of quantum gate to be optimized. In Sections 5.1
and 5.2, we specify this set of parameters for single- and two-qubit gates, respectively. In
Section 5.3, we describe the optimization procedure and present results for some of the
model systems used for this work. Section 5.4 gives an example of the compilation process
to translate a quantum circuit into a sequence of pulses. Finally, we give a brief overview
of alternative optimization techniques in Section 5.5. Applying the optimized pulses to ac-
tual quantum circuits and comparing their performance to experimental implementations
is the topic of the following chapters.

5.1 Single-qubit pulses

Applying a pulse of the form of Eq. (5.1) has the effect that the qubit represented by
transmon i is rotated around its Bloch sphere. Specifically, within the RWA, one can
show [Gam2013] that a pulse of the form

Ω(t) cos(2πft− γ), (5.3)

on transmon i, where f = ωi/2π is given by the qubit frequency, corresponds to a rotation
by an angle

ϑ = bi

T∫

0

Ω(t) dt, (5.4)

where T is the duration of the pulse, and

bi = 8ECi

(
EJi

32ECi

)1/4

(5.5)

is the energy scale of the dimensionless amplitudes. In other words, the area under the
envelope Ω(t) determines the angle of rotation. The axis of rotation is defined by the phase
γ in Eq. (5.3). In particular, γ = 0 (γ = π/2) corresponds to the x (y) axis. Furthermore,
one can show that choosing f 6= ωi/2π results in additional rotations around the z axis.
See [Gam2013; Wil2016] for more information on these properties.

For the above relations, the coefficients of the state vector have to be expressed in the
rotating frame (see Eq. (3.41)). Note that, although the choice of frame does not affect
the result of the final measurement, it matters when we want to interpret or visualize the
coefficients of the intermediate state vector |Ψ(t)〉.

As discussed in Section 2.2.2, every single-qubit gate can be expressed in terms of
rotations on the Bloch sphere. We implement the particular set of single-qubit rotations
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Xπ/2 = Rx(π/2) (a π/2 rotation of the qubit around the x axis) and Zϑ = Rz(ϑ) (an
arbitrary rotation by an angle ϑ around the z axis). These gates represent the elementary
building blocks of the U1,U2, and U3 gates given by Eqs. (2.15a)–(2.15c), which in turn
can be used to express all standard single-qubit gates (see Tab. B.1 in Appendix B).
This choice of elementary single-qubit gates is the same that was made for the IBM Q
processors [Cro2017].

5.1.1 The VZ gate

In principle, the information given above is sufficient to find candidates for pulses to
implement both Xπ/2 and Zϑ. However, one can simplify the hardware implementation
further by using the concept of a virtual Z gate (VZ gate). This concept is common
practice in the transmon architecture under investigation [McK2017]. Therefore, we also
implement this concept in the transmon simulator.

The VZ gate is based on the fact that the phase γ in Eq. (5.3) defines the axis of
rotation in the xy plane. In other words, γ determines the frame of reference in which the
qubit is defined. Therefore, whenever the next gate in a sequence of gates is Zϑ or U1(λ),
instead of applying a pulse, we rotate our personal frame of reference. This affects the
phases {γ} of all the following pulses according to a given rule.

For single-qubit pulses, this rule corresponds to an exchange of operations according to
the scheme

pulse(m)(γ) · · · pulse(1)(γ)Zϑ |Ψ〉 = Zϑ pulse(m)(γ − ϑ) · · · pulse(1)(γ − ϑ) |Ψ〉 . (5.6)

The advantage of this scheme is that no time on the hardware is required to implement
the family of rotations Zϑ. This is the reason why the VZ gate is called a virtual gate.

However, the downside is that during the time evolution, we have to keep track of the
VZ phases γi for each transmon i. Furthermore, for every elementary quantum gate, we
need to define how it commutes with Zϑ and how ϑ affects the phases of the underlying
pulses. For the single-qubit pulse to implement Xπ/2 and the more complicated two-qubit
pulses, this rule is given in the following sections (see Eq. (5.10) and Fig. 5.3, respectively).

5.1.2 The GD pulse

To implement Xπ/2 with a VZ phase parameter γ, we use a microwave pulse of the form

ΩG(t) cos(2πft− γ), (5.7)

where the envelope ΩG(t) is a Gaussian defined as

ΩG(t) = ΩX

exp
(
− (t−TX/2)2

2σ2

)
− exp

(
− T 2

X

8σ2

)

1− exp
(
− T 2

X

8σ2

) . (5.8)

Here, ΩX is the amplitude that needs to be chosen such that the angle ϑ given by Eq. (5.4)
equals π/2, TX is the duration of the pulse (typically around 80 ns), and σ = TX/4
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characterizes the width of the Gaussian. Note that the Gaussian is shifted vertically such
that ΩG(0) = ΩG(T ) = 0.

For transmon qubits, simple Gaussian pulses like the one given in Eq. (5.7) can drive
the qubit out of the computational subspace such that higher levels |m〉 with m ≥ 2
are excited. To mitigate this effect, a technique known as DRAG has become standard
[Mot2009; Cho2010; Gam2011; The2018]. There are several alternatives of implementing
DRAG (see [Gam2013; Wil2016] for a comparison), but the common concept is that a
shifted microwave pulse with an amplitude given by the derivative Ω̇G(t) of the Gaussian
in Eq. (5.8) is added to Eq. (5.7). The prefactor of this term is the so-called DRAG
coefficient βX . We also implement this concept for the transmon simulator.

The single-qubit pulse to implement Xπ/2 with DRAG correction is given by

GDπ/2(γ) : ΩG(t) cos(2πft− γ) + βXΩ̇G(t) cos(2πft− (γ + π/2)), (5.9)

and is a characterized by four pulse parameters (f, TX ,ΩX , βX). These parameters are
tuned in the pulse optimization procedure discussed in Section 5.3. Initial values for
the optimization are either given by theory or taken from experiments. Specifically, the
drive frequency f is initialized to the qubit frequency fi = ωi/2π (determined using the
procedure described in Section 3.3.2); the time TX is typically kept fixed at around 80 ns
(given by the corresponding processor, see e.g. [IBM2018a]); the drive strength ΩX is
determined from Eq. (5.4); and the DRAG coefficient βX is set to −1/2α, where α is
the anharmonicity (see the text below Eq. (3.14)). The phase γ in Eq. (5.9) is used to
implement VZ gates according to the rule

GDπ/2(γ)Zϑ |Ψ〉 = Zϑ GDπ/2(γ − ϑ) |Ψ〉 . (5.10)

By analogy with the notation used for single-qubit gates in multi-qubit systems (see

Eq. (2.16)), we denote a GD pulse on qubit i by GD
π/2
i (γ). In addition to GD

π/2
i (γ),

we also define a pulse GDπ
i (γ) that is supposed to implement a full Xπ

i rotation (i.e., a
bit flip). This pulse is used mainly as a building block for the two-qubit pulses defined
in the next section; a single-qubit Xπ

i gate is typically implemented as U3i(π, 0, π) (see

also Eq. (2.15c)), i.e., in terms of two GD
π/2
i (γ) pulses as done for the IBM Q processors

[Cro2017].
Technically, a pulse for the Xπ rotation differs from the Xπ/2 rotation in that the drive

amplitude ΩX is twice as large, since the angle of rotation given by Eq. (5.4) is directly
proportional to ΩX . However, the other parameters may also come out differently in
the parameter-optimization process. In general, it is nontrivial to predict the best set of
parameters (f, TX ,ΩX , βX) for a full transmon-resonator system.

5.1.3 The zero pulse

We define a particular pulse representing an undriven time evolution for a time T , denoted
by zero(T ). It is used as an explicit expression for an identity gate. Typically, T = TX is
the time used for single-qubit gates (see above).

In the transmon computer model defined in Section 3.2, a zero pulse on qubit i corre-
sponds to setting ngi(t) = 0. Usually, it is not necessary to specify the zero pulse explicitly,
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since ngi(t) = 0 whenever no pulse is specified. However, it can be used to configure free
time evolutions as studied in Chapter 4, or to have the simulation run freely for some
time after the last actual pulse has been applied.

Note that for some quantum computing systems, an identity gate is implemented by
explicit pulses with zero net effect. For instance, a second-order dynamical decoupling
sequence of the form XπY πXπY π [Kho2009] was found to improve the performance of
identity gates in a recent trapped-ion qubit system [Blu2017]. However, we choose to
implement the identity gate in terms of an undriven time evolution, which is also done for
the IBM Q processors [IBM2016; Cro2017]. Additionally, this implementation allow us to
study and understand the emerging effects in coupled transmon systems (see Sections 4.4
and 7.1, and also the gate set tomography experiments discussed in Section 6.3.2).

5.2 Two-qubit pulses

The universal two-qubit gate used for the quantum computer simulations presented in
this thesis is the CNOT gate defined by Eq. (2.18). A prominent pulse to implement
the CNOT gate is the cross-resonance (CR) pulse [Rig2010; Cho2011; Gro2012]. Its idea
was first proposed in [Par2006], and the knowledge and methods about how to use it for
transmon quantum computers have continuously improved over the past years [Cór2013;
She2016b; Tak2017; Tri2019; Mag2020; Mal2020].

5.2.1 CNOT gates based on the CR effect

We consider a CNOT gate between a control qubit iC and a target qubit iT . The basic
CR pulse is defined as a microwave pulse applied to the control qubit at the resonance
frequency fiT = ωiT /2π of the target qubit. Since the frequencies of adjacent transmon
qubits typically differ by 100− 300 MHz, the CR pulse is a slightly off-resonant pulse on
the control qubit. For the time-dependent pulses ngi(t) given by Eq. (5.1), we define the
basic CR pulse (denoted by CR0) as a flat-topped Gaussian microwave pulse

CR0(γ) : ΩGF (t) cos(2πfiT t− γ), (5.11)

where γ is the VZ phase (cf. Section 5.1.1), and the envelope ΩGF (t) of the CR pulse is
a flat-topped Gaussian. The latter is formally defined as

ΩGF (t) =





ΩG(t)
∣∣∣
(

ΩX
TX
σ

)
7→
( ΩCR

2Trise
Trise/3

)
(0 ≤ t ≤ Trise)

ΩCR (Trise ≤ t ≤ Trise + TCR)

ΩG(t− TCR)
∣∣∣
(

ΩX
TX
σ

)
7→
( ΩCR

2Trise
Trise/3

)
(Trise + TCR ≤ t ≤ 2Trise + TCR)

, (5.12)

where ΩCR is the amplitude of the CR pulse, TCR is the time of the flat part in the
middle of the pulse, and Trise = 15 ns is the time of the Gaussian rise at the beginning
and the Gaussian fall at the end of the pulse. The total duration of the CR pulse is
thus Ttot = TCR + 30 ns. The parameters for the Gaussian ΩG(t) given by Eq. (5.8) have
to be replaced as indicated in Eq. (5.12). The basic CR0 pulse given by Eq. (5.11) is
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schematically shown in Fig. 5.1(a). It works as a building block for the pulse sequences
defined below to implement the CNOT gate.

The effect of the basic CR0 pulse can be illustrated in terms of the effective two-qubit
Hamiltonian

Heff =
JIX
2
σxiT +

JZX
2
σziCσ

x
iT

+
JZI
2
σziC , (5.13)

where iC is the index of the control qubit (to which the pulse is applied), iT is the index
of the target qubit (which determines the frequency of the pulse), and the coefficients
JIX , JZX , and JZI represent the strength of the two-qubit terms. Both JIX and JZX are
approximately proportional to ΩCR (see below). After an application of the CR0 pulse,
the implemented transformation is approximately given by

exp(−iHeffTtot) ∝
Control in |0〉 Control in |1〉( )

Rx((JIX + JZX )Ttot) 0
0 Rx((JIX − JZX )Ttot)e

iη
, (5.14)

where Rx(ϑ) is the matrix of the single-qubit x rotation defined in Eq. (2.14a) and eiη is
a phase factor. The operation expressed by Eq. (5.14) is an x rotation of the target qubit
by an angle ϑ = (JIX + JZX )Ttot (ϑ = (JIX − JZX )Ttot) if the control qubit is in state
|0〉 (|1〉). See Fig. 5.2(a) and (b) for a Bloch-sphere visualization of the time evolution,
computed from the simulation of the two-transmon system defined in Section 3.4.3 under
the application of a CR0 pulse. In each plot, the number of arrows per time plotted
is constant, so larger spacings between successive arrows represent a faster relative time
evolution. Furthermore, the vectors are not renormalized, so the fact that the magnitude
of all vectors is almost one means that the states evolve as almost unentangled states if
the initial state is a computational basis state.

Note that the effective Hamiltonian given by Eq. (5.13) does not accurately model the
intermediate time evolution during the application of the pulse including the finite rise
and fall time. For instance, the control qubit does not stand still during the evolution,
as indicated by the red arrows in Fig. 5.2. However, the result of the pulse application
is described well enough by Eq. (5.14): an x rotation of the target qubit, for which the
angle depends on the state of the control qubit. Since this operation maps the target
qubit to different states depending on whether the control qubit is in state |0〉 or |1〉, it
is an entangling operation and can be used to assemble a CNOT gate.

We consider three candidates, denoted by CR1, CR2, and CR4, to implement a CNOT
gate based on the elementary CR0 pulse. They are schematically plotted in Fig. 5.1(b)–
(d). For each pulse, the time evolution of a two-transmon system is shown in Fig. 5.2(c)–
(h). While the target qubit (blue) can be easily seen to end up in the proper state, the
time evolution of the control qubit (red) can be much more complicated.

The CR1 pulse

As a first candidate to implement the CNOT gate, we consider the CR1 pulse shown in
Fig. 5.1(b). This pulse sequence was introduced in [Wil2017] and a demonstration of how
to implement it on an IBM Q processor by means of Qiskit Pulse is given in [Ale2020].
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Transmon iC

(a) CR0

Transmon iT

Transmon iC

(b) CR1

Transmon iT

Transmon iC

(c) CR2

Transmon iT

Transmon iC

(d) CR4

Transmon iT

Figure 5.1: CR pulse sequences as a function of time, corresponding to ngi(t) given by
Eq. (5.1) where i = iC (i = iT ) denotes the control (target) qubit, (a) basic CR0 pulse
on the control qubit at the frequency of the target qubit (see Eq. (5.11)); (b)–(d) three
different realizations CR1, CR2, and CR4 of a CNOT gate using combinations of CR
pulses (see Eq. (5.11)) and single-qubit GD pulses (see Eq. (5.9)). Gaussians represent
the GD pulses and implement Xπ/2 and Xπ rotations. Flat-topped Gaussians represent
the CR pulses. The CR1 gate consists only of flat-topped Gaussian pulses at the target
frequency. The CR2 gate is an echoed CR gate containing two additional Xπ pulses on
the control qubit and one Xπ/2 pulse on the target qubit. The CR4 gate is a four-pulse
echoed CR gate that contains an additional Xπ pulse on the target qubit. See Fig. 5.3
for the full pulse specifications.
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Figure 5.2: Bloch-sphere representation of the time evolutions of two transmons under
the application of the CR pulses shown in Fig. 5.1; (a) and (b) basic CR0 pulse with
ΩCR = 0.01 and TCR = 270 ns; (c)–(h) CR1, CR2, and CR4 pulse implementing a CNOT
gate. The time t is encoded in the color of the arrows, i.e., from red to yellow (blue to
cyan) for the control (target) qubit. The pulse parameters for (c)–(h) result from the
optimization procedure described in Section 5.3 and are listed in Appendix F. The model
parameters of the simulated transmon system are given in Tab. 3.4. The Bloch vectors are
computed by Eq. (3.38) (not renormalized) in a frame rotating at the frequencies given
in Tab. F.1. The data has been visualized with QuTiP [Joh2012; Joh2013].
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(a) CNOT

iC ZϑC •

iT ZϑT

(b) CR1
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(d) CR4
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iT GDπ/2

(ξ−ϑT )
GDπ

(π+ξ−ϑT ) ZϑT

Figure 5.3: Specifications of the pulse sequences shown in Fig. 5.1(b)–(d) to implement
the CNOT gate; (a) elementary CNOT gate with preceding local z rotations; (b)–(d)
CR1, CR2, and CR4 schemes to implement the CNOT gate with local z rotations, where
the z gates have been propagated to the end of the sequence to make the pulse scheme
compatible with the VZ gate. Note that the VZ phases of the control qubit are unaffected
by ϑC because of Eq. (5.21). The single-qubit GD pulse is defined in Eq. (5.9) and the
basic CR0 pulse is defined in Eq. (5.11).

The CR1 pulse consists of two simultaneous elementary CR0 pulses: one on the control
qubit and one on the target qubit. Both pulses have the frequency fiT of the target
qubit. The amplitude of the second pulse is denoted by ΩCancel and is typically smaller
than the control pulse amplitude ΩCR. Since the second pulse on the target qubit is a
resonant driving, its effect is a simple x rotation whose angle is determined by Eq. (5.4).
Therefore, ΩCancel directly changes the strength JIX of the unconditional x rotation given
in Eq. (5.13). This behavior is also confirmed by the simulation results discussed in the
next section (see Fig. 5.4(c) and (d)).

We can use this fact in the following way: The elementary CR0 pulse with amplitude
ΩCR on the control qubit sets the magnitude of JIX and JZX . By changing ΩCancel on the
target qubit, we can adjust JIX independently such that

(JIX + JZX )Ttot mod 2π = 0, (5.15a)

(JIX − JZX )Ttot mod 2π = π, (5.15b)

and the implemented transformation in Eq. (5.14) becomes proportional to a CNOT gate
(up to local z rotations). The effect of Eq. (5.15a) can be seen in Fig. 5.2(c), where the
target qubit undergoes a full 2π rotation and remains effectively unchanged. Similarly,
the effect of Eq. (5.15b) is shown in Fig. 5.2(d), where the target qubit undergoes a π
rotation such that it ends up in the |1〉 state.

There may still be spurious local z rotations. One is represented by the phase factor
eiη in Eq. (5.14), which stems from the coefficient JZI . Because of such phase errors, the
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operation on the computational subspace actually amounts to




eiχ1

eiχ2

eiχ3

eiχ4


 . (5.16)

However, the phase errors χi can be corrected with phase shifts φCR and φCancel in the
basic CR0 pulses defined in Eq. (5.11), followed by local z rotations ZφC

iC
⊗ ZφT

iT
.

In summary, the CNOTiC iT implementation using the CR1 pulse is

CNOTiC iT = (ZφC
iC
⊗ ZφT

iT
)(CR0iC (φCR)⊗ CR0iT (φCancel)). (5.17)

The CR1 gate depends on 7 parameters (fiT , TCR,ΩCR,ΩCancel, φCR, φCancel, φC , φT ) to be
optimized in the optimization procedure. In principle, one phase parameter could be elim-
inated; however, we found that keeping an additional phase parameter helps in mitigating
phase errors caused by other components of the system. The full pulse sequence including
VZ phases is specified in Fig. 5.3(b).

The CR2 pulse

The CR2 pulse implements the CNOT gate using a two-pulse echo scheme. The idea
has been analyzed in [Cór2013] and further specified in the supplementary material of
[Tak2017]. It is also currently used for the processors on the IBM Q Experience [IBM2016]
(see the IBM Q backend specifications). The sequence of pulses is schematically shown
in Fig. 5.1(c).

The idea of the echo scheme is that the CR0 pulse is split into two parts with opposite
amplitudes ΩCR. Both parts are defined to have the duration TCR + 30 ns. Between these
two parts, the control qubit is inverted using a GDπ pulse. In this way, the JIX component
in Eq. (5.13) is canceled, whereas the desired JZX component is doubled. Besides canceling
the JIX component, this scheme also addresses the JZI component in Eq. (5.13) and the
residual longitudinal interaction of the form given in Eq. (4.28).

The amplitude ΩCR and the time TCR of each of the two CR0 parts are chosen such
that

JZXTtot =
π

4
. (5.18)

This means that the combined effect of the two CR0 pulses and the intermediate GDπ

pulse is a π/2 rotation of the target qubit in one direction if the control qubit is in state
|0〉, and in the other direction if the control qubit is in state |1〉. The CNOT gate is
completed with an additional GDπ pulse on the control qubit (whose VZ phase can be
used to take care of JZI ) and a GDπ/2 pulse on the target qubit. These pulses have been
moved to the beginning of the pulse sequence shown in Fig. 5.1(c).

The time evolution generated by the CR2 pulse sequence is shown in Fig. 5.2(e) and
(f): First, the target qubit is rotated by π/2 to the negative y axis. Then the first CR0
pulse rotates it either back towards |0〉 (Fig. 5.2(e)) or further on towards |1〉 (Fig. 5.2(f)).
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The second CR0 pulse finishes this rotation. Note also that the angular velocity of the
target qubit is different for both CR0 parts (indicated by the abrupt transition from blue
to cyan). This is due to the different magnitudes of |JIX ± JZX |.

In practice, we use a slightly more sophisticated relation to obtain good initial values
from Eq. (5.18) for the time and the amplitude of the CR pulses. The idea is to account
for the finite rise and fall of ΩGF (t) given by Eq. (5.12) by integrating over time. The
area under the envelope then yields the angle of rotation, analogous to the single-qubit
result in Eq. (5.4). The relation reads

TCR+30 ns∫

0

J theory
ZX |ΩCR 7→ΩGF (t) dt = sign(J theory

ZX )
π

4
, (5.19)

where J theory
ZX is given by the first term of the perturbative result given in Eq. (5.22b)

below. Typically, we set ΩCR = 0.01 and solve Eq. (5.19) for TCR to get initial values for
the optimization.

The set of parameters specifying the CR2 pulse is (fiC , fiT , TCR,ΩCR). Implicitly, the
CR2 pulse also depends on the parameters (T πX ,Ω

π
X , β

π
X)C of the GDπ pulses on the control

qubit, as well as the parameters (T
π/2
X ,Ω

π/2
X , β

π/2
X )T of the GDπ/2 pulse on the target qubit.

Additionally, a phase shift ξ = π is required if JZX < 0 for ΩCR > 0. This can happen
when ωiC < ωiT or ωiC > ωiT + |αiC | (see Eq. (5.22b) or Fig. 5.12 in [Wil2016] for more
information). The full pulse sequence is specified in Fig. 5.3(c) and has a total duration

of 2(TCR + 30 ns) + (T πX)C + max{(T πX)C , (T
π/2
X )T}.

The CR4 pulse

The CR4 pulse splits the basic CR0 pulse into four parts and contains another set of GD
pulses to echo out additional phase errors. It has been used in [Tak2016] and further
refined in [Tak2017] (see the corresponding supplementary material). The full pulse is
sketched in Fig. 5.1(d).

The time evolution of a two-transmon system under the application of a CR4 pulse
is shown in Fig. 5.2(g) and (h). We see that, as in CR2, the target qubit undergoes an
initial π/2 rotation followed by two CR0 pulses. Then, a π pulse moves it to the opposite
side of the Bloch sphere. Another set of two CR0 pulses finally rotates it back to |0〉 if
the control qubit is in state |0〉 (see Fig. 5.2(g)), or to |1〉 if the control qubit is in state
|1〉 (see Fig. 5.2(h)).

Similar to the CR2 pulse, a CR4 pulse is determined by the amplitude ΩCR and the
time TCR for each of the four CR0 parts. Implicitly, the CR4 pulse also depends on
the parameters of all intermediate GD pulses. The full pulse sequence is specified in
Fig. 5.3(d).

Implementation of the VZ gate in CR pulses

All CNOT pulses need to be compatible with the VZ gate introduced in Section 5.1.1.
This means that we have to define how the pulses commute with Z gates in the spirit of
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Eq. (5.6). Since the CRn pulses are two-qubit pulses, the scheme has to take into account
the two phases ϑC and ϑT of the control and the target qubit, respectively:

CNOTiC iT (ZϑC
iC
⊗ ZϑT

iT
) |Ψ〉 = (Z

ϑ′C
iC
⊗ Zϑ′T

iT
) CRn({γ′}) |Ψ〉 . (5.20)

The VZ phases {γ′} of the intermediate pulses and the resulting phases ϑ′C and ϑ′T are
summarized in Fig. 5.3(b)–(d).

Note that only the target phase ϑT has an influence on the VZ phases of the control
qubit. The reason for this is that

CNOTiC iT Z
ϑC
iC

= ZϑC
iC

CNOTiC iT , (5.21)

meaning that the CNOT gate commutes with z rotations on the control qubit.

5.2.2 Analysis of IX and ZX interactions

The effective interaction strengths JIX and JZX can be both estimated analytically or
extracted from simulations (such as the one shown in Fig. 5.2(a) and (b)). The procedure
for the simulation emulates the procedure used in experiments [She2016b]. In this section,
we explore both routes and systematically compare the results.

Analytic expressions for JIX and JZX can be derived perturbatively. See [Mag2020] for
an extensive perturbative calculation, yielding analytic expressions up to third order in
the drive strength ΩCR for the coefficients JIX and JZX . The results are

J theory
IX = − Jxch

αiC + ∆
biCΩCR +

JxchαiC∆

(αiC + ∆)3(αiC + 2∆)(3αiC + 2∆)
(biCΩCR)3, (5.22a)

J theory
ZX = − JxchαiC

∆(αiC + ∆)
biCΩCR +

Jxchα
2
iC

(3α3
iC

+ 11α2
iC

∆ + 15αiC∆2 + 9∆3)

2∆3(αiC + ∆)3(αiC + 2∆)(3αiC + 2∆)
(biCΩCR)3,

(5.22b)

where ∆ = ωiC−ωiT is the difference between the qubit frequencies, αiC is the anharmonic-
ity of the control qubit, biC is the conversion factor between energies and dimensionless
amplitudes (see Eq. (5.5)), and Jxch is the effective transmon-exchange coupling. The
latter can be approximated as

Jxch =
giCgiT (ωiC + ωiT − 2Ω)

2(ωiC − Ω)(ωiT − Ω)
, (5.23)

where giC and giT are the rescaled transmon-resonator couplings given by Eq. (4.11), and
Ω is the frequency of the resonator. Both the linear terms and the cubic corrections in
Eqs. (5.22a) and (5.22b) are shown as dotted and dashed lines, respectively, in Fig. 5.4(a)
and (b). We remark that Eqs. (5.22a) and (5.22b) can also be obtained as a special
case in an extensive theoretical study using the energy-basis representation of a transmon
[Mal2020].

From the simulations, we extract JIX and JZX by measuring the oscillations of the target
qubit conditional on the control qubit being in state |0〉 and state |1〉. This means that for
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Figure 5.4: Interaction strengths JIX and JZX (see Eq. (5.13)) as a function of the CR
drive amplitudes ΩCR and ΩCancel. (a) and (b) represent applications of a CR0 pulse (see
Fig. 5.1(a)) with amplitude ΩCR on the control qubit; (c) and (d) represent applications
of a CR1 pulse (see Fig. 5.1(b)) with ΩCR = 0.1 for the control qubit fixed and ΩCancel for
the target qubit variable. Each CR pulse has a total duration of TCR +30 ns = 500 ns. For
(a) and (c), the control qubit is iC = 0; for (b) and (d), the control qubit is iC = 1. The
dimensionless amplitudes can be converted to the strength of the drive by multiplying
them with the conversion factor given in Eq. (5.5) (shown on top of the figures). Each
point in the figures results from two simulations of the system defined in Section 3.4.3:
one where the control qubit is in state |0〉 and one where the control qubit is in state |1〉.
The theory predictions given by Eqs. (5.22a) and (5.22b) are shown as dotted (dashed)
lines for the linear (cubic) approximations.
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each amplitude ΩCR, we simulate two time evolutions for both states of the control qubit.
The resulting evolutions of the target qubit are described by Eq. (5.14) and visualized in
Fig. 5.2(a) and (b). The procedure to obtain JIX and JZX from the data is described in
[She2016b] (see also Fig. 5.12 in [Wil2016]).

As shown in Fig. 5.4(a) and (b), the linear terms in Eqs. (5.22a) and (5.22b) correctly
describe the regime of weak driving ΩCR . 0.3. Although the cubic correction to the
theoretical results properly captures the sign of the curvature, it diverges quickly from the
numerical results. The fact that sometimes the numerical result is not exactly between the
linear and cubic theory predictions for 0 ≤ ΩCR ≤ 0.05 may be due to the approximation
made for the exchange coupling in Eq. (5.23).

For fixed ΩCR = 0.01, we additionally apply a CR0 pulse at the target frequency on the
target qubit. Technically, this combination of pulses corresponds to the CR1 pulse scheme
sketched in Fig. 5.1(b). The amplitude ΩCancel of the second pulse is varied between −0.01
and 0.01. The same analysis as before is used to obtain the coefficients JIX and JZX. The
result is plotted in Fig. 5.4(c) and (d). As can be seen, the additional pulse on the target
qubit linearly displaces JIX and does not affect JZX. This property has been used to satisfy
the CR1 pulse conditions given by Eqs. (5.15a) and (5.15b).

5.3 Optimization of pulse parameters

The functionality discussed in this section is part of the optimizer module of the software
toolkit developed for this thesis (cf. Section 3.3). Its task is to optimize a set of pulse
parameters ~x to implement a quantum gate U . This is done by first generating the
appropriate pulse information for the time-dependent functions ngi(t) in Eqs. (3.9a)–(3.9f),
and then invoking solver with this pulse information for different initial states from the
computational basis. From the results, optimizer infers new pulse parameters ~x′ and
invokes solver again. Eventually, the procedure converges to a set of pulse parameters
that can then be used by compiler to translate arbitrary quantum circuits into pulse
information. In what follows, we outline the procedure to determine the pulse parameters
for a particular quantum gate U .

Given a certain voltage pulse ngi(t) of the form of Eq. (5.1), the goal is to implement
a quantum gate U on the computational subspace. We denote the actual transformation
of the computational subspace after the application of the pulse by the matrix M defined
in Eq. (5.2).

The matrix M depends on the set of parameters ~x defining the particular pulse. For
the single- and two-qubit pulses of interest, these parameters have been specified in the
previous sections. They typically consist of times, amplitudes, and phases. The goal is
to optimize the parameters ~x, starting from some initial values suggested by theory, with
the objective to make M as close as possible to U .

Quantitatively, we measure closeness between M and U in terms of the matrix distance

∆(M,U) = ‖M − zU‖2
F , (5.24)

which is induced by the Frobenius norm ‖A‖2
F =

∑
ij|Aij|2. The phase factor z =

±
√

Tr(MU †)/Tr(MU †)∗ is chosen such that the difference due to the global phases of
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M and U is minimal, since quantum gates are considered equivalent if they only differ
by a global phase (the two candidates for z can be derived by minimizing Eq. (5.24)
w.r.t. z = eiζ for ζ ∈ R). In principle, one could use other, more sophisticated quantities
to measure closeness between quantum gates. Obvious examples include the common gate
metrics studied in Section 6.1, e.g., the fidelity or the diamond distance. However, we
found that for practical purposes, the choice of the distance function does not significantly
change the quality of the resulting quantum gates. Furthermore, Eq. (5.24) is numerically
well suited for optimization and yields a reasonably fast convergence.

We construct M by initializing the system in each of the computational basis states
at t = 0 and simulating its time evolution |Ψ(t)〉 under the application of the pulse for
0 ≤ t ≤ T . Each final state vector |Ψ(T )〉 is transformed to the rotating frame (see
Eq. (3.41)) and projected onto the computational subspace to obtain the columns of M .

The size of the matrix M is, in principle, determined by the computational subspace
on which the quantum gate U shall be implemented. Specifically, this means that M
and U are 2× 2 complex matrices for single-qubit gates, and 4 × 4 complex matrices for
two-qubit gates. However, if numerically feasible, we sometimes optimize M on the whole
computational subspace, as done for the transmon-resonator system studied in [Wil2017].

For a set of pulse parameters ~x, the evaluation of the objective function ∆(M,U)
given by Eq. (5.24) is a complicated procedure that involves several simulations of the
time evolutions of a joint transmon-resonator system. It is therefore nontrivial to find
suitable gradients of ∆(M,U) with respect to ~x. Fortunately, there is a multidimensional,
gradient-free algorithm well suited for the optimization of a few parameters in the case
where the most complicated step is the evaluation of the objective function: the Nelder–
Mead algorithm [Nel1965; Pre2007].

5.3.1 The Nelder–Mead algorithm

Many minimization algorithms in multiple dimensions are based on the evaluation or
estimation of gradients of the objective function. This either requires analytic expressions
for the function’s reaction to changes in the parameters, or repeated function evaluations
to trace changes in the function values back to changes in the parameters. Furthermore,
typical multidimensional minimization algorithms base their computational strategy on
well-known minimization algorithms in a single dimension. Popular examples of these are
quasi-Newton methods such as BFGS [Pre2007] or L-BFGS-B [Zhu1997; Mor2011].

The Nelder–Mead algorithm (also known as the downhill simplex method) is based
on a completely different approach that does not require the evaluation of gradients.
It is an entirely self-contained, direct search method based on geometrical heuristics. In
principle, it can also be applied to constrained or discrete optimization problems [Lue2004;
Aud2018]. Due to its conciseness, it is often used as a first step to produce reasonable
results and may become the method of choice if only a few parameters need to be optimized
and the evaluation of the objective function is rather complicated. This is the case for the
present work, where less than 10 pulse parameters need to be optimized but the evaluation
of the objective function may take several minutes on a supercomputer (e.g. for systems
with more than 10 transmons or resonators, cf. Fig. 4.3).
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~xmin

~xi ~xrefl ~xi ~xexpd

~xi ~xcont

Figure 5.5: Illustration of the four central operations of the Nelder–Mead algorithm in
N = 3 dimensions. The simplex is defined by N + 1 = 4 points. Shown are the basic
Nelder–Mead operations which (a) reflect, (b) expand, (c) contract, or (d) shrink the
simplex. The solid, black simplex represents the initial simplex. The dashed, green
simplex represents the simplex after the corresponding operation.

To find a minimum of a function F (~x) in N real dimensions (i.e., ~x ∈ RN), the Nelder–
Mead method maintains a set of N + 1 points S = (~x0, . . . , ~xN). Geometrically, S defines
a simplex in N dimensions. At each step in the minimization, the “highest” point ~xi, for
which Fi = F (~xi) = maxj F (~xj), is reflected along a line through the opposite face of the
simplex (i.e., through the centroid of the face spanned by all the other points ~xj for j 6= i,
see Fig. 5.5(a)).

After this reflection, four things can happen:

(a) If the new point ~xrefl is better than at least one ~xj for j 6= i, but not better than
the current minimum, it is taken as the new ~xi.

(b) If ~xrefl is even better than the current minimum, it is expanded further along the
line to ~xexpd (see Fig. 5.5(b)). The better point of ~xrefl and ~xexpd is taken as the new
~xi.

(c) Otherwise, if ~xrefl is worse than all ~xj for j 6= i, it is contracted back along the line
to ~xcont (see Fig. 5.5(c)). If this point is better than the previous maximum ~xi, it is
taken as the new ~xi.

(d) Only if ~xcont is still not better than the previous maximum ~xi, the simplex is shrunk
towards the current minimum ~xmin as shown in Fig. 5.5(d) (this will be the excep-
tion).

Most of the time, the algorithm will either take the reflected point ~xrefl or the contracted
point ~xcont (cf. Figs. 5.6(b) and 5.7(b) below). See [Pre2007] for an example implementa-
tion or [Wil2018a] for a modular implementation of the algorithm.
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As with many optimization algorithms, the choice of the initial parameters is crucial.
Therefore, it is a good idea to use initial values from theory (such as those outlined in
Sections 5.1 and 5.2) or from an initial scan of parameters. Each point of the simplex is
then initialized to

~x0 = ~xinit, (5.25a)

~x1 = ~xinit + δ~x · (1 0 · · · 0 0)T , (5.25b)

... (5.25c)

~xN = ~xinit + δ~x · (0 0 · · · 0 1)T , (5.25d)

where ~xinit is the initial set of parameters, and δ~x is a set of characteristic scales for each
parameter.

We terminate the optimization when the fractional range of all function values ~F =
(F (~x0), . . . , F (~xN)) of the simplex becomes smaller than a certain tolerance ε [Pre2007].
Quantitatively, this means that

δ = 2
|max ~F −min ~F |

|max ~F |+ |min ~F |+ tiny
< ε, (5.26)

where tiny = 10−10 is used to prevent division by zero. Typically, we choose ε = 10−4 to
make sure that the optimization does not run indefinitely because of limited resolution in
∆(M,U) due to the finite time step τ .

In general, no multidimensional minimization algorithm can guarantee to find the global
optimum; but a local minimum may still produce close-to-optimal results. For the Nelder–
Mead algorithm, the stability of the solutions can be tested by restarting the algorithm
from the previous minimum with a new set of characteristic scales δ~x that may be chosen
a factor of 10 smaller than the previous characteristic scales. This step may also help to
escape from local minima that are not yet close to optimal.

5.3.2 Optimization results

We use the optimizer module (cf. Section 3.3) to optimize quantum gate pulses for the
two-transmon system defined in Section 3.4.3, the small five-transmon system defined in
Section 3.4.4, and the large five-transmon system defined in Section 3.4.5. The pulses are
used for the quantum circuit simulations described in the following chapters. All resulting
pulse parameters are summarized in Appendix F.

As an example, we present results for the optimization process of gate pulses for the large
five-transmon system (see Section 3.4.5) used for the fault-tolerance experiments discussed
in Section 7.3. We consider two sets of gate pulses that are optimized separately. For
the first set, labeled with frequency tuning (or withf in the tables given in Appendix F),
the drive frequency f of the single-qubit pulses defined by Eq. (5.9) is included in the
set of parameters to optimize. The idea is that slightly off-resonant driving (i.e. f 6= fi)
can mitigate phase errors since it induces rotations about the z axis [Gam2013]. The
second gate set, labeled without frequency tuning, keeps the frequencies f fixed at the
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Figure 5.6: Optimization of single-qubit GD pulses for a system with five transmons and
six resonators with frequency tuning (left panels) and without (right panels); (a) values
of the pulse parameters specified in Eq. (5.9) at each evaluation of ∆(M,U) given by
Eq. (5.24); (b) convergence criterion δ given by Eq. (5.26) and Nelder–Mead operation
(see Fig. 5.5) at each iteration of the optimization. The system is sketched in Fig. 3.5
(see also Tab. 3.7 and Tab. 3.8). The resulting parameters are given in Tab. F.5. All
optimizations were performed on the supercomputer JURECA [Jül2018].
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Figure 5.7: The same as in Fig. 5.6 but for the optimization of the two-qubit CR2 pulses
specified in Section 5.2.1, using the GD pulses with frequency tuning (left panels) and
without (right panels). The resulting parameters are given in Tab. F.6 in Appendix F.
All optimizations were performed on the supercomputer JURECA [Jül2018].
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qubit frequencies fi. The optimization process of the first (second) set is shown on the
left (right) panels in Figs. 5.6 and 5.7. Note that the relation between the two different
scales on the x axis, i.e., the number of objective function evaluations and the number
of Nelder–Mead iterations, is not one-to-one since some Nelder–Mead operations require
several function evaluations.

Figure 5.6 illustrates the optimization process of the single-qubit GD pulses. As dis-
cussed in Section 5.1, the GD pulses are used to implement X

π/2
i = Rx

i (π/2) (the target
matrix is defined in Eq. (2.16)). At the first evaluation, Fig. 5.6(a) shows that the ini-
tial values mentioned below Eq. (5.9) already yield reasonable candidates, for which the
matrix distance ∆(M,Rx(π/2)) defined by Eq. (5.24) is between 10−2 and 10−3. The
following three evaluations correspond to the initialization of the simplex according to
Eqs. (5.25a)–(5.25d). After that, the optimization begins its search through the parame-
ter space. As shown in Fig. 5.6(b), the minimization with frequency tuning (left panels)
converges after less than 50 iterations for each transmon i. We see that in most iterations,
the simplex is contracted or reflected (cf. Fig. 5.5). Note that the DRAG coefficients βX
do not change significantly for the gate set with frequency tuning.

For the gate set without frequency tuning, i.e., when the drive frequency f = fi is
fixed, this behavior is completely different (see the right panels of Fig. 5.6): When the
convergence criterion δ reaches a local minimum after approximately 20–30 iterations, the
DRAG coefficients βX start to diverge significantly from their initial values. This means
that the optimization without frequency tuning tries to compensate for the inability to
change f by drastically changing βX . From Eq. (5.9), we see that βX controls a pulse
whose phase is shifted by π/2. Thus it can be exploited to trigger effective rotations about
the z axis. In this way, changing βX can have the same effect as the slightly off-resonant
driving included in the optimizations with frequency tuning. Note also that the simplex
is frequently expanded during the drastic increase of |βX | (cf. Fig. 5.6(b)).

Eventually, the optimizations with and without frequency tuning converge to pulse
parameters that implement the Xπ/2 gate with a similar matrix distance. To make fur-
ther statements about the quality of the different single-qubit gate sets, we study the
corresponding gate metrics in Section 6.1.4.

Figure 5.7 shows the optimization of two-qubit CR2 pulses to implement CNOT gates
between each pair of qubits with a corresponding resonator (cf. Fig. 3.5). The optimiza-
tion process looks similar to the single-qubit case shown in Fig. 5.6 except that more
parameters need to be optimized. Furthermore, the time evolution due to the CR2 pulse
is more complicated (cf. Fig. 5.2(e) and (f)). As shown in Fig. 5.7(b), this is reflected
by the fact that the convergence criterion δ goes a more convoluted path, on which the
Nelder–Mead optimization occasionally needs to do the SHRINK operation illustrated in
Fig. 5.5(d).

For some gates, such as CNOT34 with frequency tuning, the distance ∆(M,CNOT)
shown in Fig. 5.7(a) (black line on the left panels) does not turn out much better than the
initial point. This suggests that in this case, the theory outlined in Section 5.2 already
provides good pulse parameters. However, for CNOT32 and CNOT40 with frequency
tuning (red and purple lines on the left panels), the optimization finds that making the
pulses much shorter (by reducing TCR) and stronger (by increasing ΩCR) yields better
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gates. For the gates without frequency tuning shown on the right panels of Fig. 5.7(a), we
again see the effect observed for the single-qubit pulses, namely that the DRAG coefficients
(βπX)C are modified drastically by the optimization process to compensate for the fixed
drive frequency.

As with the single-qubit gates, we study the quality of the resulting two-qubit gates
in more detail by analyzing various gate error rates in Section 6.1.4. The metrics of the
particular two-qubit gates discussed here are presented in Tab. 6.3.

The result of the optimizer module is a set of parameters defining each elementary
quantum gate pulse for a system. This serves as input for the compiler module discussed
in the following section.

5.4 Compiling quantum circuits

The compiler module is the last component of the simulation toolkit introduced in Sec-
tion 3.3. It takes as input a specification of the elementary pulses (as produced by
optimizer) and a quantum circuit to compile. The circuit can be in one of several file
formats such as OpenQASM [Cro2017] or the JUQCS instruction set [DeR2019a]. The
output is a sequence of pulse information describing the time-dependent functions in the
model Hamiltonian given by Eqs. (3.9a)–(3.9f). This is used by the transmon simulator
to perform the simulation.

In this section, we discuss an example of the compilation process. The model system
is the two-transmon system defined in Section 3.4.3. We consider the compilation of the
simple circuit shown in Fig. 5.8. It contains one single-qubit gate and one two-qubit gate
and creates the maximally entangled state (|00〉+ |11〉)/

√
2.

To compile the circuit into a sequence of pulses, compiler needs a specification of the
elementary pulse parameters produced by optimizer. For the system of interest, the
input file is given in Listing 5.1. It represents a subset of the full set of pulse parameters
given in Tab. F.1 and Tab. F.2 in Appendix F. The parameters of the single-qubit GD
pulses are defined by Eq. (5.9). The parameters of the two-qubit CR2 pulse are defined
in Section 5.1.2 (see the text below Eq. (5.19)).

The first step to translate a circuit into a sequence of pulses is to express all single-qubit
gates in terms of the elementary single-qubit U gates defined in Eqs. (2.15a)–(2.15c). In
the present case, this means that we need to write the gate -Y as

-Y = U2(0, 0) = Zπ/2 Xπ/2 Z−π/2. (5.27)

The first gate acting on the qubits is Z−π/2. Since Zϑ gates are implemented by means of
the VZ gate defined in Section 5.1.1, it only affects the VZ phase of the following pulses.
The next gate is Xπ/2, which is implemented by GDπ/2(0). According to Eq. (5.10), we
have

Zπ/2 GDπ/2(0)Z−π/2 |Ψ〉 = Zπ/2 Z−π/2 GDπ/2(π/2) |Ψ〉 = GDπ/2(π/2) |Ψ〉 , (5.28)

so the first pulse resulting from the compilation is GDπ/2(π/2). It is specified in line 2 of
Listing 5.2: a pulse for the first 83 ns with phase π/2 and Gaussian envelope ΩG(t) (see
Eq. (5.8)) defined by its duration T, amplitude A, and width sigma.
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|0〉 -Y •
|0〉

Figure 5.8: Circuit diagram for an example of the process performed by the compiler

module. See Tab. B.1 in Appendix B for a definition of the circuit elements.

Listing 5.1 Optimized pulse parameters for the system defined in Section 3.4.3
1 #name type f TX OmegaX betaX

2 xpih -0 GD 5.3463 83 0.002221 0.2309

3 xpih -1 GD 5.1167 83 0.002269 0.2891

4
5 #name type fiC fiT TCR OmegaCR TX OmegaXpiC betaXpiC OmegaXpihT betaXpihT

6 cnot -0-1 CR2 5.3463 5.1167 102.9746 0.01111 83 0.004444 0.2193 0.002269 0.2891

From the second term in the definition of the GD pulse in Eq. (5.9), we obtain line 3 of
Listing 5.2: a DRAG pulse at the same time as the first pulse, characterized by a phase
of π, the identifier gaussdot, and a much smaller amplitude A than the main Gaussian
pulse. Since the Z gates in Eq. (5.28) cancel, no VZ phase is carried over to the following
pulses.

The next gate in Fig. 5.8 is a two-qubit CNOT gate which is implemented in terms of a
CR2 pulse shown in Fig. 5.1(c). As specified in Fig. 5.3(c), this requires a GDπ(0) pulse on
qubit 0 (defined in lines 4 and 5) and a GDπ/2(0) pulse on qubit 1 (defined in lines 6 and
7). Since no VZ phase was carried over from the previous pulses, we have ϑC = ϑT = 0.
In line 8, we find the first flat-topped Gaussian with phase 0 and a duration of TCR +2Trise

with Trise = 15 ns. After another GDπ(0) pulse on qubit 0, the CR2 pulse is finalized by
the second flat-topped Gaussian defined in line 11. The echo scheme implemented by the
CR2 pulse is reflected by the phase difference of π between line 8 and line 11. This is the
full information needed to describe the CR2 pulse visualized in Fig. 5.2(e) and (f).

As the last line of Listing 5.2 shows, the full pulse sequence takes 514.950 ns. This is
the time for which solver needs to compute the time evolution to simulate the circuit
shown in Fig. 5.8.

Listing 5.2 Compiled pulse information for the circuit in Fig. 5.8
1 #i Tstart Tend f phase pulse T A sigma (Trise)

2 0 0 83 5.3463 1.57080 gauss 83 0.0022212 20.75

3 0 0 83 5.3463 3.14159 gaussdot 83 0.0005129 20.75

4 0 83 166 5.3463 0 gauss 83 0.0044440 20.75

5 0 83 166 5.3463 1.57080 gaussdot 83 0.0009744 20.75

6 1 83 166 5.1167 0 gauss 83 0.0022686 20.75

7 1 83 166 5.1167 1.57080 gaussdot 83 0.0006558 20.75

8 0 166 298.975 5.1167 0 gaussflat 132.975 0.0111083 5 15

9 0 298.975 381.975 5.3463 1.57080 gauss 83 0.0044440 20.75

10 0 298.975 381.975 5.3463 3.14159 gaussdot 83 0.0009744 20.75

11 0 381.975 514.950 5.1167 3.14159 gaussflat 132.975 0.0111083 5 15
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5.5 Alternative gate optimization techniques

The goal of obtaining the best pulse parameters to implement a desired quantum gate
can be addressed by many different optimization techniques. In Section 5.3.1, we have
discussed why a Nelder–Mead optimization is a reasonable approach for the present case,
in which the evaluation of the objective function by simulating the time evolution is the
most expensive step.

However, given the vast number of optimization and machine learning techniques, one
may pursue other approaches in the hope of finding better pulse parameters or completely
new pulse shapes. Such efforts belong to the field of quantum control and are often
addressed by applying the techniques directly to the experiment. Especially the popularity
of deep reinforcement learning (DeepRL) [Goo2016], which has stemmed from the recent
successes in playing Atari games [Mni2015] or board games such as Go [Sil2016], may
inspire efforts to apply the framework to quantum control. For this reason, a few research
groups have recently implemented strategies to apply DeepRL to control optimization
[Niu2019; An2019] (see also [Pal2017]). It would be interesting to study such methods to
obtain completely new pulses, and to test them using both the transmon simulator and
the real processor by means of the recently released OpenPulse interface [McK2018].

For the purpose of the present work, however, we choose not to optimize the pulses
further. One reason is that the pulse parameters found by the Nelder–Mead method
are in the same range that is used in experiments, so the resulting pulses resemble the
experimental approach. In fact, as we shall see in the following chapter, the pulses often
exhibit a much better performance than their experimental equivalents. Hence we leave
the endeavor of studying more optimization methods for pulses in simulated transmon
quantum computers for future work.

5.6 Conclusions

In this chapter, we studied how time-dependent pulses can be used and optimized to
implement quantum gates. Two results obtained in this analysis are noteworthy: First,
the third-order perturbative results for the CR interaction strengths given by Eqs. (5.22a)
and (5.22b) are useful for obtaining initial pulse parameters, but the predictions quickly
diverge from the actual interaction strengths for larger CR drive amplitudes (see Fig. 5.4).
Secondly, when the drive frequencies are not tuned during the pulse optimization, the
DRAG coefficients βX can be (mis)used to compensate for phase errors such that equally
good quantum gates are still possible (cf. the fourth row in Fig. 5.6(a)).

However, it is important to realize that, because of the presence of higher transmon
states in the time evolution of the full system, the projection of the full time-evolution
operator on the computational subspace (see Eq. (5.2)) is inherently non-unitary. There-
fore, even in theory, it is impossible to realize perfect quantum gates on the computational
subspace (unless certain resonance conditions are met exactly, which is practically impos-
sible). This implies that bare quantum gate implementations are always faulty. The
question is whether the associated error rates can still be made small enough to allow for
a reasonable operation of the devices. This question is studied in the following chapters.
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Chapter 6

Errors in quantum gates

The goal of this chapter is to characterize the optimized quantum gate pulses and compare
their performance to experiments. In general, neither the pulses used in experiments nor
the optimized pulses used for the transmon simulator can implement perfect quantum
gates (see Section 5.6). The advantage of the simulator, though, is that we have full
access to the complex coefficients of the quantum state. This means that a much deeper
analysis of the intrinsic errors can be performed.

Note that all errors observed in the simulation are inherently part of the unitary time
evolution of the full transmon-resonator system. However, this does not mean that they
have to be unitary maps on the computational subspace (such as systematic over- or
underrotations). Often, unitary maps on a large system are not unitary on a smaller part
of the system (see also Section 2.4).

We study quantum gate errors in four complementary ways:

(a) by evaluating common gate metrics such as the fidelity [Nie2002], the diamond
distance [Kit1997], and the unitarity [Wal2015b];

(b) by analyzing repeated gate applications;

(c) by performing gate set tomography using the black box model of a quantum com-
puter;

(d) by assessing the performance of actual quantum algorithms.

Results for (a) and (b) are presented in Sections 6.1 and 6.2, respectively. These findings
can be directly compared to experiments on the IBM Q Experience [IBM2016]. Section 6.3
contains results for (c), i.e., an extensive gate set tomography of the simulated two-
transmon device. Real quantum algorithms (d) are partially tested in this chapter (such
as the quantum Fourier transform in Section 6.2 or the circuits for gate set tomography
in Section 6.3), but this is mainly the topic of the following chapter. Some of the results
presented in Sections 6.1 and 6.2 of this chapter have been published in [Wil2017].
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6.1 Evaluation of gate metrics

The performance of an implementation for a certain quantum gate is often measured in
terms of various gate metrics. Such metrics are meant to be single numbers representing
the degree of success or failure to which the quantum gate has been implemented. Some of
these, such as the diamond distance, are sufficient in the mathematical sense, meaning that
a value of 0 implies a perfect implementation of the gate. Of course, in an experiment,
it is not possible to unambiguously prove a perfect implementation, simply because a
particular quantity cannot be estimated with zero error in practice. Nevertheless, a good
value may still inspire confidence in the underlying implementation.

Gate metrics are defined in terms of quantum operations, i.e., completely positive lin-
ear maps on the space of density matrices on the computational subspace H2n (see Sec-
tion 2.4). We define two particular quantum operations,

Gid(|ψ〉〈ψ|) = U |ψ〉〈ψ|U †, (6.1a)

Gac(|ψ〉〈ψ|) = M |ψ〉〈ψ|M †. (6.1b)

Here, Gid denotes the ideal quantum operation, where U is the intended unitary quantum
gate (cf. Section 2.2), and Gac denotes the actual operation performed on the computa-
tional subspace. The matrix M in Eq. (6.1b) is the transformation of the computational
subspace obtained after applying the quantum gate pulse to the full system. Formally,
M is given by the projection in Eq. (5.2), i.e., M = PH2n

U(T, 0)PH2n
, where U(T, 0)

is the time evolution operator resulting from the simulation (potentially expressed in a
rotating frame according to Eq. (3.41)), and PH2n

is the projector onto the computational
subspace. Note that n denotes the number of qubits involved in the quantum gate U ,
which may be smaller than the total number of qubits.

We construct the matrix M in Eq. (6.1b) using the same procedure that was used for
the optimization of the pulses (see Section 5.3). Specifically, for single-qubit gates, we
have M ∈ C2×2, so constructing M requires two simulations of the time evolutions under
the particular pulse (one for the initial state |0〉 and one for the initial state |1〉). Similarly,
constructing M for a two-qubit gate requires four simulations.

Because of the projection in Eq. (5.2), M is generally not a unitary matrix. Never-
theless, the quantum operations defined in Eqs. (6.1a) and (6.1b) are completely positive
maps. This can be seen since 〈φ|(Gac ⊗ 1)(A)|φ〉 = 〈φ′|A|φ′〉 ≥ 0 for all positive operators
A (using |φ′〉 = (M⊗1)† |φ〉). We remark that an alternative definition using M−1 instead
of M † in Eq. (6.1b) would not preserve Hermiticity, so the computed gate metrics would
not be real numbers.

6.1.1 Average gate fidelity

The average gate fidelity between the quantum operations defined in Eqs. (6.1a) and
(6.1b) is given by [Hor1999; Nie2002]

Favg =

∫
d|ψ〉 〈ψ| Gac(G−1

id (|ψ〉〈ψ|)) |ψ〉 , (6.2)
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where the integral is taken over normalized pure states. In practice, Eq. (6.2) means that
the overlap of a state with itself after applying Gac and G−1

id is averaged over random pure
states from the unit sphere [Ben2006], yielding an average measure of agreement between
the ideal and the actual gate operation.

Note that some authors [Bon2010; Sek2014] use a different formula for the fidelity in
the case of trace-decreasing quantum operations. These formulas are effectively based on
trace-preserving extensions of the quantum operation. However, we decide to use Eq. (6.2)
also for trace-decreasing quantum operations. The reason is that, if a quantum operation
does not preserve the trace, it suffers from leakage, which should be reflected accordingly
by a reduced fidelity. Otherwise, we could have quantum operations with leakage out of
the computational subspace that still attain fidelities unreasonably close to unity.

In practice, one could evaluate the average gate fidelity in Eq. (6.2) by sampling the
integrand 〈ψ| Gac(G−1

id (|ψ〉〈ψ|)) |ψ〉 = |〈ψ|MU † |ψ〉|2 for a sufficiently large number of ran-
dom states |ψ〉 [Ben2006]. This procedure is used for the unitarity defined below.

For the fidelity, however, we can use an alternative closed-form expression proven in
Appendix G,

Favg =
|Tr(MU †)|2 + Tr(M †M)

N(N + 1)
, (6.3)

where N = 2n denotes the dimension of the computational subspace. It can either be
derived by generalizing a well-known relation between the average gate fidelity and the
entanglement fidelity [Hor1999; Nie2002] to the case of non-trace-preserving quantum
operations (see Section G.2), or by evaluating the integral in Eq. (6.2) directly (see Sec-
tion G.3). Equation (6.3) can also be found in [Ped2007].

In experiments, the average gate fidelity is typically estimated using randomized bench-
marking (RB) [Eme2005; Kni2008; Mag2012]. However, such results must be treated with
caution as it has been shown that RB cannot measure Favg [Qi2019], but typically pro-
duces numbers that overestimate the performance of the gates [Pro2017; Lin2019].

6.1.2 Diamond distance

The diamond distance is a mathematical construct that measures the difference between
quantum operations. It was introduced in [Kit1997; Aha2008] and is the relevant quan-
tity for many threshold theorems in the theory of fault-tolerant quantum computation
[Ter2005; Ali2006; Ali2007; Aha2008; Ng2009; San2016]. Unfortunately, evaluating the
diamond distance in practice is nontrivial [Hen2010; Wat2018]. Furthermore, the relation
to more accessible quantities such as the average gate fidelity given by Eq. (6.2) is not
straightforward [Wal2014; San2016]. Therefore, we look at these issues in more detail.

Definition of the diamond distance

The diamond distance between the two quantum operations Gid and Gac is defined as

η♦ =
1

2

∥∥Gac ◦ G−1
id − 1

∥∥
♦ , (6.4)
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where ‖·‖♦ denotes the diamond norm. For a general superoperator T , the diamond norm
is defined as [Kit1997; Aha1998]

‖T ‖♦= sup
X 6=0

‖(T ⊗ 1)(X)‖Tr

‖X‖Tr

, (6.5)

where ‖·‖Tr denotes the trace norm defined as ‖X‖Tr = Tr
√
X†X, i.e., the sum of the

singular values of X. The identity operator 1 in Eq. (6.5) acts on a space that is at least as
large as the space of matrices that T acts on. Interestingly, one can show that it does not
need to be larger [Gil2005; Joh2009]. This means that the supremum can be computed
by extending the Hilbert space with another Hilbert space of the same dimensionality.

The fact that the diamond norm is the same even if the Hilbert space is extended by
a much larger space is a stability property that is sometimes expressed in an alternative
definition of the diamond norm (see e.g. [San2016]),

‖T ‖♦ = sup
H′

sup
ρ∈dens(H⊗H′)

‖(T ⊗ 1)(ρ)‖Tr , (6.6)

where H′ is an arbitrary ancillary Hilbert space and dens(H⊗H′) denotes the set of all
density matrices on the joint Hilbert spaceH⊗H′. Equation (6.6) means that the diamond
distance η♦ corresponds to the worst-case error, since the trace norm is maximized over
all ancillary Hilbert spaces H′ added to H and any input density matrix ρ on this joint
space. The diamond distance is thus a very strong measure, in the sense that a small
value for this quantity is not easy to achieve for implementations of quantum gates. Note
that the diamond distance can be interpreted as the distance between ideal and actual
probability distributions, since the trace norm is directly related to the total variation
distance [Gil2005; San2016].

We note that in the mathematical literature, the diamond norm is also known as the
completely bounded trace norm [Pau2003]. Many properties of this norm in relation to
its use in quantum information can be found in [Wat2018].

Computation of the diamond distance

We consider two ways to compute the diamond distance given by Eq. (6.4). The first
method is based on a direct evaluation of the definition given in Eq. (6.5), so it includes
a maximization problem. The second method makes use of a minimization algorithm
presented in [Joh2009]. If both methods (i.e., the minimization and the maximization)
yield the same numeric quantity up to a reasonable number of digits, we have estimated
the true diamond distance with sufficient accuracy.

Historically, the first deep connection between the evaluation of the diamond distance
between two quantum channels and a convex optimization problem was made in [Gil2005].
Apart from the methods we pursue in this work, similar algorithms have been mentioned
in [Zar2006; Ben2010], and a class of algorithms based on semidefinite programming has
been given in [Wat2009; Wat2013; Wat2018], including proofs of their efficiency.
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Maximization algorithm

The definition of the diamond norm given by Eq. (6.5) is valid for a general linear map
T . However, in almost all practical situations, T is at least Hermiticity-preserving, i.e.,
T (ρ)† = T (ρ†). This is also true in the present case, in which

T (ρ) = Gac(Gid(ρ))− ρ = WρW † − ρ, (6.7)

where W = MU † (cf. Eqs. (6.1a) and (6.1b)). In this case, the supremum in Eq. (6.5)
is attained by a pure state X = |x〉〈x| with |x〉 ∈ H2n ⊗H2n [Wat2018]. Since ‖X‖Tr =
〈x|x〉 = 1, Eq. (6.4) becomes

η♦ =
1

2
max
|x〉

∥∥(W ⊗ 1) |x〉〈x| (W † ⊗ 1)− |x〉〈x|
∥∥

Tr
. (6.8)

This expression requires the evaluation of the trace norm of a rank-2 matrix of the form
R = α |v〉〈v| − β |x〉〈x|, where α, β ≥ 0 and |v〉 is a normalized pure state. For the trace
norm ‖R‖Tr of such a matrix, one can derive a closed-form expression:

‖α |v〉〈v| − β |x〉〈x| ‖Tr =
√

(α + β)2 − 4αβ|〈v|x〉|2. (6.9)

This can be shown by noting that a rank-2 matrix has at most two non-zero singular
values. Since the rank-2 matrix R is Hermitian (and thus normal), its singular values are
the absolute values of its eigenvalues µ±, for which a short calculation yields

µ± =
α− β

2
± 1

2

√
(α + β)2 − 4αβ|〈v|x〉|2. (6.10)

As both eigenvalues µ± have opposite signs (meaning |µ±| = ±µ± since α, β > 0 and
0 ≤ |〈v|x〉| ≤ 1), we obtain the trace norm ‖R‖Tr = |µ+|+ |µ−| = µ+ − µ−.

To apply this result to Eq. (6.8), we set α = 〈x|W †W ⊗ 1|x〉 ∈ [0, 1], β = 1, |v〉 =
(W ⊗ 1) |x〉 /√α and |〈v|x〉|2 = |〈x|W ⊗ 1|x〉|2/α. Thus we obtain

η♦ =
1

2
max
|x〉

√
(〈x|W †W ⊗ 1|x〉+ 1)2 − 4|〈x|W ⊗ 1|x〉|2. (6.11)

For the one- and two-qubit quantum operations of interest, this result describes a quadratic
optimization problem that can directly be solved on a computer [Boy2004].

Furthermore, we show in Appendix H that if both quantum operations Gac = M ·M † and
Gid = U · U † are unitary, we can obtain an explicit result from Eq. (6.11). This yields an
elementary proof of the statements given in [Aha1998] and [Joh2009]. In most situations
considered in the present work, however, M is not exactly unitary due to leakage out of
the computational subspace (see below).

113



Chapter 6 Errors in quantum gates

Minimization algorithm

For the second algorithm to compute the diamond norm ‖T ‖♦, we use a slightly modified
version of the minimization algorithm presented in [Joh2009]. The algorithm is based on
minimizing over all generalized Kraus representations

T (ρ) =
∑

l

AlρBl, (6.12)

where Al and Bl are generalized Kraus operators of T (cf. Eq. (2.24) in Section 2.4). We
have

‖T ‖♦ = inf
Al,Bl





∥∥∥∥∥
∑

l

A†lAl

∥∥∥∥∥

1/2

2

∥∥∥∥∥
∑

l

BlB
†
l

∥∥∥∥∥

1/2

2



 , (6.13)

where ‖·‖2 denotes the spectral norm (largest singular value). Note that this expression
differs from the one given in [Joh2009] by the position of the Hermitian conjugate. The
reason for this is that the completely bounded (spectral) norm computed in [Joh2009]
and the diamond norm computed here are related to each other by replacing Al 7→ A†l
and Bl 7→ B†l .

To compute η♦ given by Eq. (6.4), we set T = Gac ◦ G−1
id − 1. We obtain a generalized

Kraus representation of T by inserting Eqs. (6.1a) and (6.1b):

T (ρ) = Gac(G−1
id (ρ))− ρ = MU †ρUM † − ρ, (6.14)

where we can identify A1 = MU †, A2 = 1, B1 = UM †, and B2 = −1. We assume
that both (A1, A2) and (B1, B2) are linearly independent, since otherwise we would have
MU † = γ1 for some γ such that we could directly obtain η♦ = |1 − |γ|2|/2 (which is
consistent with Eq. (6.11) for W = γ1).

All other generalized Kraus representations of T are related to (A1, A2) and (B1, B2)
by an invertible complex 2× 2 matrix S. Thus, the infimum over Al and Bl in Eq. (6.13)
can be written as an infimum over all invertible S ∈ C2×2 after replacing (A1, A2)T 7→
S−1(A1, A2)T and (B1, B2) 7→ (B1, B2)S. Combining this with Eq. (6.13), we obtain

η♦ =
1

2
inf
S

{∥∥∥∥
(
UM †, 1

)
S−†S−1

(
MU †

1

)∥∥∥∥
1/2

2

∥∥∥∥
(
UM †, −1

)
SS†

(
MU †

−1

)∥∥∥∥
1/2

2

}
, (6.15)

where the infimum is taken over all invertible S ∈ C2×2.
In practice, we evaluate Eq. (6.15) by sampling over 104 random S and then applying

the minimization method described in Section 5.3.1 to the eight real coefficients of the
best S sampled. We verified that this procedure, together with the maximization method
discussed above, produces reliable values for η♦ in all relevant cases.
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Relation to the fidelity

The relation between the average gate fidelity given by Eq. (6.2) and the diamond distance
given by Eq. (6.4) is not obvious. As discussed in [San2016], this has led some groups
to make partly unjustified claims about reaching fault-tolerance thresholds [Cho2012;
Bar2014]. As a consequence, the connection between fidelity and diamond distance has
been further studied in the literature [Wal2014; Wal2015a; Kue2016]. In these references,
two bounds relating both quantities have been proven. We have

ηPauli
♦ ≤ η♦ ≤ ηub

♦ , (6.16)

where, for trace-preserving quantum operations,

ηPauli
♦ =

N + 1

N
(1− Favg), (6.17a)

ηub
♦ =

√
N(N + 1)(1− Favg). (6.17b)

For trace-decreasing quantum operations, however, η♦ can actually be lower than ηPauli
♦ .

Therefore, we prove a new lower bound, which also holds for trace-decreasing quantum
operations, in Appendix I. Applying the result in Eq. (I.8) to E = MU † · UM † yields

ηlb
♦ = ηPauli

♦ − N + 2

2N

(
1− TrM †M

N

)
, (6.18)

which is a proper lower bound on η♦. Note that this bound coincides with Eq. (6.17a) in
the trace-preserving case TrM †M = N .

The lower bound ηPauli
♦ given by Eq. (6.17a) is saturated if the actual operation Gac

can be represented as a Pauli channel [San2016]. This means that Gac has a Kraus
representation in which each Kraus operator is proportional to a tensor product of Pauli
matrices. Such quantum operations are typically considered to represent errors that are
easy to correct. We shall see that for the simulations considered in this work, we often
find η♦ � ηPauli

♦ (cf. Tab. 6.1).
The upper bound ηub

♦ given by Eq. (6.17b) grows exponentially with the number of
qubits, which is the reason for the fact that impressively high fidelities do not gener-
ally imply a sufficiently small diamond distance [San2016]. Furthermore, the authors in
[San2016] have shown that the upper bound is asymptotically tight, which means there
cannot be any bound on η♦ in terms of N and Favg that scales better than exponentially
in the number of qubits.

6.1.3 Unitarity

Because of the projection required to obtain the transformation M of the computational
subspace under a certain pulse, the actual operation Gac given by Eq. (6.1b) is often not
unitary. This means that M † 6= M−1, implying that the quantum operation is not trace-
preserving such that we typically have Tr(Gac(ρ)) < Tr(ρ). This is the mathematical
manifestation of the fact that the systems under investigation suffer from leakage into
non-computational states (see also the discussion below Eq. (5.2)).
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To quantify the effects of leakage for a particular quantum gate pulse, a quantity called
unitarity has been introduced [Wal2015b; Wal2016]. It is defined as

u =
N

N − 1

∫
d|ψ〉 Tr

[
G ′ac(|ψ〉〈ψ|)†G ′ac(|ψ〉〈ψ|)

]
, (6.19)

where

G ′ac(|ψ〉〈ψ|) = Gac(|ψ〉〈ψ| − 1/N)− Tr

[Gac(|ψ〉〈ψ| − 1/N)√
N

]
1. (6.20)

The rationale behind this definition is that Eq. (6.19) corresponds to the average purity
Tr(ρ†ρ) where ρ is the output of the quantum operation acting on a pure state. The
reason that the quantum operation is G ′ac instead of Gac is that otherwise, one could define
explicitly trace-decreasing or non-unital quantum operations with u = 1 (see [Wal2015b]).
As for the average gate fidelity given by Eq. (6.2), the integral is taken over random states
from the unit sphere. Since we have no closed-form expression in this case, we evaluate
u by sampling over 105 random states. A typical procedure to generate random states is
given by setting |ψ〉 =

∑
j(aj + ibj) |j〉, where the coefficients aj and bj are first drawn

from a normal distribution and subsequently normalized [Ben2006].
As the definition of the unitarity u given by Eq. (6.19) involves only the actual quantum

operation Gac and not the ideal gate Gid, the value u = 1 does not imply equivalence
between the two operations. In that sense, it differs from other metrics such as the
diamond distance introduced in Section 6.1.2. Nevertheless, the unitarity is a useful
quantity to measure how incoherent the errors appear on the computational subspace.
Therefore, it is an interesting metric to study in the present case, in which all errors are
actually systematic and coherent on the total transmon-resonator Hilbert space.

6.1.4 Results

We evaluate the average gate fidelity Favg given by Eq. (6.2), the diamond distance η♦
given by Eq. (6.4), and the unitarity u given by Eq. (6.19) for all three transmon systems
for which we have optimized quantum gate pulses (cf. Section 5.3.2). For the two-transmon
system, we additionally evaluate the bounds given in Eqs. (6.17a)–(6.18).

Two-transmon system

The gate metrics for the two-transmon system defined in Section 3.4.3 are given in
Tab. 6.1. We see that the overall performance of the gates is reasonably good, in that the
fidelity Favg and the unitarity u are close to one, and the diamond distance η♦ is close
to zero. The fidelities are in the same range as those reported in experiments for similar
pulse schemes [Kel2014; Bar2014; She2016a; She2016b; Gam2017]. In fact, top fidelities
reported in experiments are sometimes better; this is an artifact of the RB procedure
used to measure the fidelities: As shown in [Pro2017], the number reported by RB often
overestimates the performance of the gate. Indeed, we shall see below (cf., for instance,
Fig. 6.2(a)) that in practice, the performance of the pulses optimized for the transmon
simulator is often much better.
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Table 6.1: Gate metrics for the two-transmon system defined in Section 3.4.3. The pulse
types are defined in Section 5.1 and Section 5.2 (see Appendix F for the optimized pulse
parameters). The label in the third column refers to the internal name used for the
compiler (see Listing 5.1 in Section 5.4). ∆ is the distance objective given by Eq. (5.24).
The reported gate metrics are the average gate fidelity Favg (see Eq. (6.2)), the diamond
distance η♦ (see Eq. (6.4)), and the unitarity u (see Eq. (6.19)). The bounds ηlb

♦ , ηPauli
♦ ,

and ηub
♦ are given by Eqs. (6.17a)–(6.18), respectively.

Gate Pulse Label ∆ Favg η♦ ηlb
♦ ηPauli

♦ ηub
♦ u

X
π/2
0 GDπ/2 xpih-0 2.2× 10−3 0.9946 0.027 0.003 0.007 0.33 0.990

X
π/2
1 GDπ/2 xpih-1 2.3× 10−3 0.9942 0.028 0.003 0.007 0.34 0.989

Xπ
0 GDπ xpi-0 1.3× 10−3 0.9949 0.020 0.003 0.006 0.32 0.990

Xπ
1 GDπ xpi-1 1.5× 10−3 0.9943 0.023 0.003 0.007 0.34 0.989

CNOT01 CR1 cnot-0-1 1.3× 10−3 0.9842 0.029 0.008 0.020 0.56 0.969
CNOT10 CR1 cnot-1-0 2.3× 10−3 0.9951 0.033 0.003 0.006 0.31 0.991

CNOT01 CR2 cnot-0-1 6.1× 10−3 0.9943 0.048 0.004 0.007 0.34 0.991
CNOT10 CR2 cnot-1-0 5.6× 10−3 0.9947 0.048 0.003 0.007 0.32 0.992

CNOT01 CR4 cnot-0-1 5.4× 10−3 0.9934 0.049 0.004 0.008 0.36 0.989
CNOT10 CR4 cnot-1-0 4.5× 10−3 0.9946 0.044 0.003 0.007 0.33 0.991

For all gates (including the single-qubit gates), we have optimized the transformation M
of the entire, four-dimensional computational subspace (see Eq. (5.2)). In this respect, the
two-transmon case differs from the optimizations for the five-transmon systems discussed
below, for which only the relevant part of the computational subspace is considered.

Note that a large fidelity does not always correspond to a small diamond distance.
Especially for the CNOT gates, we observe similar fidelities as for the single-qubit gates
but an almost twice as large diamond distance (see also [San2016]). An extreme case
is the CR1-type CNOT01: The fidelity Favg = 0.9842 is much worse than for the other
gates, whereas the diamond distance η♦ = 0.029 has the best value found for all two-qubit
gates.

A decrease in fidelity often corresponds to a decrease in unitarity. From this, we con-
clude that leakage due to non-computational states in the transmons and the resonator
is the dominant source of error for the pulses optimized for this system, even though
the pulse-shaping techniques DRAG [Mot2009] and VZ corrections [McK2017] have been
used.

The diamond distances given in Tab. 6.1 are always within the bounds given in Eq. (6.16).
In most cases, we also find η♦ � ηPauli

♦ , suggesting that the systematic errors included in
the pulses are inherently different from the simple Pauli-type errors (see [San2016]).

Small five-transmon system

The gate metrics of the elementary pulses for the small five-transmon system defined
in Section 3.4.4 are given in Tab. 6.2. For the pulse optimizations, the matrices M
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Table 6.2: Gate metrics for the small five-transmon system defined in Section 3.4.4. The
pulse types are defined in Section 5.2 (see Appendix F for the optimized pulse parameters).
∆ is the distance objective given by Eq. (5.24), Favg is the average gate fidelity given by
Eq. (6.2), η♦ is the diamond distance given by Eq. (6.4), and u is the unitarity given by
Eq. (6.19).

Gate Pulse Label ∆ Favg η♦ u

X
π/2
0 GDπ/2 xpih-0-withf 1.30× 10−4 0.9879 0.011 0.9759

X
π/2
1 GDπ/2 xpih-1-withf 1.28× 10−4 0.9879 0.011 0.9758

X
π/2
2 GDπ/2 xpih-2-withf 2.20× 10−4 0.9837 0.015 0.9675

X
π/2
3 GDπ/2 xpih-3-withf 7.76× 10−6 0.9965 0.003 0.9930

X
π/2
4 GDπ/2 xpih-4-withf 2.71× 10−4 0.9828 0.016 0.9658

CNOT02 CR2 cnot-0-2-withf 5.04× 10−2 0.9691 0.136 0.9584
CNOT12 CR2 cnot-1-2-withf 2.92× 10−2 0.9708 0.107 0.9534
CNOT32 CR2 cnot-3-2-withf 1.46× 10−2 0.9848 0.082 0.9754
CNOT42 CR2 cnot-4-2-withf 6.63× 10−2 0.9774 0.177 0.9812

and U used in Eq. (5.24) are 2 × 2 matrices for all single-qubit gates X
π/2
i , and 4 × 4

matrices for all two-qubit gates CNOTij. This is different from the two-transmon results
given in Tab. 6.1, for which always the full four-dimensional computational subspace was
considered. Although this does not really affect the quality of the optimized pulses, it
can be seen in the objective function ∆ used for the optimization (see Tab. 6.2), because
it typically differs by about two orders of magnitude between single-qubit and two-qubit
pulses.

Another difference to the two-transmon system is that also the drive frequency f has
been optimized (cf. Section 5.3.2). This is indicated by the label withf in Tab. 6.2. The
reason is that we found that when keeping the drive frequency f fixed, especially the
two-qubit gates yield diamond distances approximately twice as large and fidelities as low
as 0.94 (data not shown).

The resulting gate metrics in Tab. 6.2 are slightly worse than those obtained for the
two-transmon system (see Tab. 6.1). This is reasonable since every transmon is coupled
to at least one additional transmon through a resonator (see the topology of the system
in Fig. 3.4). This means that a much larger number of states are present in the joint time
evolution of the system and affect the gate operation. In particular, the CNOT gates, for
which the target qubit is coupled to three additional qubits (typically called “spectator”
qubits [Tak2017]), suffer from this aspect in that they yield diamond distances larger by
a factor of 2–4 compared to the two-transmon system.

A particularly noteworthy result is the single-qubit gate X
π/2
3 , which attains by far the

best values for all gate metrics, also in comparison to the two-transmon results shown in
Tab. 6.1. However, when looking at an actual application (see the fourth Bloch vector

visualized in Fig. A.1 in Appendix A), the performance of X
π/2
1 is better despite much

worse gate metrics.
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Table 6.3: The same as in Tab. 6.2 for the large five-transmon system defined in Sec-
tion 3.4.5. As indicated by the label in the third column, all gate pulses have been
optimized both with and without frequency tuning (cf. Section 5.3.2).

Gate Pulse Label ∆ Favg η♦ u

X
π/2
0 GDπ/2 xpih-0 4.60× 10−5 0.9930 0.007 0.9860

X
π/2
1 GDπ/2 xpih-1 1.19× 10−4 0.9884 0.011 0.9770

X
π/2
2 GDπ/2 xpih-2 7.52× 10−6 0.9962 0.002 0.9925

X
π/2
3 GDπ/2 xpih-3 8.99× 10−6 0.9965 0.003 0.9930

X
π/2
4 GDπ/2 xpih-4 4.17× 10−5 0.9934 0.006 0.9868

X
π/2
0 GDπ/2 xpih-0-withf 4.59× 10−5 0.9930 0.007 0.9860

X
π/2
1 GDπ/2 xpih-1-withf 1.14× 10−4 0.9887 0.011 0.9774

X
π/2
2 GDπ/2 xpih-2-withf 7.20× 10−6 0.9963 0.002 0.9927

X
π/2
3 GDπ/2 xpih-3-withf 8.85× 10−6 0.9965 0.003 0.9930

X
π/2
4 GDπ/2 xpih-4-withf 3.87× 10−5 0.9936 0.006 0.9873

CNOT10 CR2 cnot-1-0 1.34× 10−2 0.9852 0.071 0.9758
CNOT14 CR2 cnot-1-4 1.08× 10−1 0.9621 0.177 0.9668
CNOT21 CR2 cnot-2-1 4.68× 10−2 0.9714 0.119 0.9615
CNOT32 CR2 cnot-3-2 1.83× 10−2 0.9852 0.088 0.9777
CNOT34 CR2 cnot-3-4 9.54× 10−2 0.9671 0.179 0.9720
CNOT40 CR2 cnot-4-0 2.78× 10−1 0.9347 0.284 0.9783

CNOT10 CR2 cnot-1-0-withf 5.70× 10−2 0.9751 0.149 0.9728
CNOT14 CR2 cnot-1-4-withf 7.13× 10−3 0.9841 0.056 0.9712
CNOT21 CR2 cnot-2-1-withf 1.38× 10−2 0.9806 0.081 0.9668
CNOT32 CR2 cnot-3-2-withf 1.21× 10−1 0.9644 0.207 0.9764
CNOT34 CR2 cnot-3-4-withf 1.88× 10−2 0.9832 0.090 0.9740
CNOT40 CR2 cnot-4-0-withf 8.27× 10−2 0.9739 0.168 0.9806

Large five-transmon system

The gate metrics of the elementary pulses for the large five-transmon system defined in
Section 3.4.5 are given in Tab. 6.3. As for the small five-qubit system, the optimized
matrix M is a 2 × 2 matrix for all single-qubit gates X

π/2
i , and a 4 × 4 matrix for all

two-qubit gates CNOTij.
However, in this case, we consider both sets of gate pulses, i.e., with and without

frequency tuning. The reason for this is that the difference in the gate metrics of the
CNOT gates with and without frequency tuning is not as pronounced as for the small
five-qubit system. Furthermore, the single-qubit gates show almost no difference, so it is
reasonable to compare their performance in actual quantum circuits instead.

Compared to the results for the small five-qubit system presented in Tab. 6.2, the
single-qubit gates emerge considerably better from the optimization. Only the X

π/2
1 gate

appears less promising. Therefore, although the parameter space is quite large, the gate
metrics alone seem to suggest that the topology of the larger system shown in Fig. 3.5
(where only two transmons are connected by a resonator) is better suited for single-qubit
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gates than the topology of the smaller system depicted in Fig. 3.4.
The two-qubit gate metrics reported in Tab. 6.2 show much larger fluctuations. Based

solely on these metrics, there is no clear winner between the gates with and without
frequency tuning. This makes sense regarding the much more complicated implementation
of the two-qubit CR2 gates (see Fig. 5.1 in Section 5.2).

The pulse parameters of the gates with and without frequency tuning come out very
differently: As can be seen in Tab. F.5 in Appendix F, for the gates without frequency
tuning, the optimization often finds exotic values for the DRAG coefficients βX . As the
resulting gate metrics given in Tab. 6.3 are almost the same, though, it seems that the
DRAG coefficients are effectively used to compensate for incorrect drive frequencies. This
observation agrees with the conclusions from the previous chapter (see Section 5.6).

We remark that in practical applications, it turns out that the gate set with frequency
tuning comes closer to experimental results and also shows better performance on average
(see [Wil2018b]).

6.2 Repeated gate applications

The simplest practical test of the performance of quantum gates is to apply them repeat-
edly. Such an experiment yields a first quantitative assessment about how the accumula-
tion of errors materializes in actual quantum algorithms. We first consider the evolution
of the diamond distance under repeated pulse applications, and then analyze the evolution
of observable error rates in both simulations and experiments.

6.2.1 Evolution of the diamond distance

For the first experiment on repeated gate applications, we use the two-transmon system
because many errors are most clearly understood when reduced to the smallest repro-
ducible case. Specifically, we test r = 1, . . . , 20 repetitions of gate pulses from the elemen-
tary gate set optimized for the two-transmon system. This involves the single-qubit Xπ/2

and Xπ rotations corresponding to the elementary GD pulses (see Section 5.1), and the
two-qubit CNOT gates corresponding to the CR1, CR2, and CR4 pulses (Section 5.2).

For each gate pulse, we run the two-transmon simulation with the corresponding pulses
applied 20 times. Given the duration T of a certain pulse (cf. Tab. F.1 and Tab. F.2 in
Appendix F), this means that the time evolution is simulated for 0 ≤ t ≤ 20T for each
initial state from the computational basis (|00〉 , |01〉 , |10〉 , |11〉). At each time t = rT after
r pulse applications, we extract the transformation matrix M(rT ) = PH2n

U(rT, 0)PH2n

of the computational subspace according to Eq. (5.2) (see also Section 5.3).
If the implementation of a particular quantum gate U was perfect, the transformation

M(rT ) would be equivalent to U r. In this section, we measure the error rate between
M(rT ) and U r in terms of the diamond distance η♦ defined in Eq. (6.4), where the ideal
operation and the actual operation are given by

Gid(ρ) = U r ρ (U †)r, (6.21a)

Gac(ρ) = M(rT ) ρM(rT )†. (6.21b)
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Figure 6.1: Error rate after repeated application of (a) single-qubit X gates and (b)–(d)
two-qubit CNOT gates (the indicated CR pulse sequences are given in Fig. 5.1). Shown
is the evolution of the diamond distance η♦ (see Section 6.1.2) between the ideal operation
Gid given by Eq. (6.21a), corresponding to r applications of the respective quantum gate
U , and the actual operation Gac given by Eq. (6.21b). The simulated system is the two-
transmon system defined in Section 3.4.3. The corresponding gate metrics are given in
Tab. 6.1.
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Chapter 6 Errors in quantum gates

Table 6.4: Comparison of the CR2 and CR4 pulses (cf. Fig. 5.1) for a single CNOT01 gate,
20 successive CNOT01 gates, and four successive QFT applications (one QFT contains
five CNOT pulses and two GD pulses; see Fig. 2.3 for the circuit and Section 5.4 for how
gates are mapped to pulses). The numbers reported are the diamond distances defined
in Section 6.1.2, but the same qualitative trends are true for the other gate metrics (data
not shown). The results for CNOT1 are taken from Tab. 6.1. The results for CNOT1

and CNOT20 can also be seen as blue squares in Fig. 6.1(c) and (d).

Pulse CNOT1 CNOT20 QFT4

CR2 0.048 0.73 0.27
CR4 0.049 0.33 0.32

The results are presented in Fig. 6.1. We note that the same qualitative results for each of
the curves can be seen for the other gate metrics studied in Section 6.1 (data not shown).

The performance of the single-qubit gates shown in Fig. 6.1(a) is reasonably good.
The error rate of around 2% for r = 1 (which corresponds to the results for η♦ given in
Tab. 6.1) does not grow after repeated gate applications.

This is different for the two-qubit gates shown in Fig. 6.1(b)–(d), for which the error
rate after repeated applications grows approximately linearly with r for all pulse schemes.
For the CR1-type CNOT, we also observe a different performance if control and target
qubit are interchanged. This error seems to have been canceled by the echo schemes used
for the CR2 and CR4 pulses.

Comparing Fig. 6.1(b) and (c), we see that the CR1-type gate CNOT01 (blue squares
in Fig. 6.1(b)) achieves the smallest error rate after repeated applications. Interestingly,
this gate pulse has the worst results for the average gate fidelity and the unitarity (see
Tab. 6.1). This means that the gate metrics do not reflect the actual performance of the
pulses in repeated applications.

The fact that we find the best performance for the CR4 pulse scheme (see Fig. 6.1(d))
agrees with experimental observations [Tak2017]. Note in particular that this is in contrast
to the results suggested by the gate metrics in Tab. 6.1. For instance, the CR4-type gate
CNOT01 has the worst diamond distance η♦ = 0.049 after a single pulse application,
but performs best of all in repeated applications (blue squares in Fig. 6.1(d)). Still, this
observation can change again when looking at the performance of the gates in a practical
quantum algorithm: In Tab. 6.4, we see that the same CR4 pulse performs worse than
CR2 when used 20 times in a quantum Fourier transform (QFT). Therefore, the gate
metrics can also not reliably predict the performance in practical applications.

Finally, it is worth mentioning that the transformation M(rT ) after r > 1 pulse appli-
cations is always closer to the ideal result U r than the product M(T )r (data not shown).
This means that the pulses have been tuned to the full time evolution of the transmon-
resonator system including non-computational states; in a sense, the pulses are capable
of using the more complicated dynamics on the larger space for improved results on the
computational subspace. It also means that the effect of higher levels on the time evolu-
tion cannot be neglected. This is in agreement with the findings reported in Fig. 4.7(d),

122



6.2 Repeated gate applications

which show that the two-level approximation cannot sufficiently describe the dynamics
of full transmon systems. However, as we show in Section 6.3, there exist maps on the
two-qubit reduced density matrix that can reliably describe the dynamics under repeated
pulse applications.

6.2.2 Relation to experiments

The goal of this section is to relate the gate metrics obtained in Section 6.1.4 and their
evolution studied in Section 6.2.1 to the performance of a real device. When executing
a quantum circuit on a real device with two qubits, the result is a two-bit string j0j1.
To relate the results to the ideal, theoretical probabilities p

(id)
j0j1

, one has to execute the
same circuit repeatedly and estimate the experimental relative frequencies p

(exp)
j0j1

of each
bit string j0j1 by sampling. The number of samples is called shots. For the simple
experiments studied in this section and also the more complicated circuits in Chapter 7,
we always consider the maximum number of 8192 shots.

To compare two probability distributions pj0j1 and p̃j0j1 , we use the statistical distance

D =
1

2

∑

J

|pJ − p̃J |, (6.22)

where the sum is over all two-bit strings J = j0j1. In what follows, the distribution pJ is
always the result p

(id)
j0j1

expected from an ideal, gate-based quantum computer as introduced
in Chapter 2. The other distribution, p̃J , is either given by relative frequencies p

(exp)
j0j1

measured in an experiment, or probabilities p
(sim)
j0j1

= |〈m0 = j0,m1 = j1|Ψ〉|2 obtained from
the state vector |Ψ〉 (see Eq. (3.23)) produced by the transmon simulator.

This distance measure D given by Eq. (6.22) is also known as the total variation dis-
tance. It can be interpreted as the minimum fraction of samples that must be altered to
achieve p̃J → pJ . Furthermore, the total variation distance induces the diamond distance
η♦ defined in Section 6.1.2 on the space of quantum channels. See [San2016] for more
information.

We perform 20 repetitions of the CNOT gate on the input states |00〉 and |10〉 using
both a real device and also different pulse schemes on the simulated systems. For the ex-
periment on the real processor, we used qubits Q3 and Q4 of the five-qubit processor that
was available on the IBM Q Experience [IBM2016] on August 17, 2017. The CNOT gate
was implemented by means of the CR2 pulse defined in Fig. 5.1(c) (see also Fig. 5.3(c)).
The RB error rates reported by the processor at the time of execution were 0.0376 for
the CNOT gate, 0.0031 and 0.0016 for the single-qubit gates, and 0.033 and 0.06 for the
readout errors.

The results of these conceptually simple experiments are shown in Fig. 6.2(a) and (b).
We see that on the real processor, the CNOT gate on the state |00〉 yields a reasonable
performance if applied twice, but degrades rapidly for more repetitions. For the initial
state |10〉 shown in Fig. 6.2(b), we see a larger offset of about 0.2 if applied twice; however,
the actual error increases only very slightly over repeated applications of the gate.

For the simulations, we first use the small two-transmon system defined in Section 3.4.3
to compare the different pulse implementations CR1, CR2, and CR4 of the CNOT gate
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Figure 6.2: Evolution of the statistical distance D given by Eq. (6.22), measured after
repeated applications of the two-qubit CNOT gate. (a) and (b) show results from an
IBM Q processor (see text), (c) and (d) have been obtained from the two-transmon
simulation defined in Section 3.4.3, and (e) and (f) have been obtained from the five-
transmon simulation defined in Section 3.4.4. The gate metrics for the simulated systems
are given in Tab. 6.1 and Tab. 6.2, respectively. The left (right) panels correspond to
the initial state |00〉 (|10〉). Different markers correspond to different cross-resonance
pulses (see Fig. 5.1). Different colors correspond to pulses between different qubits. All
simulations of the five-transmon system were performed on the supercomputer JURECA
[Jül2018].
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(see Fig. 5.1). The results shown in Fig. 6.2(c) and (d) demonstrate that only the two-
pulse echoed CNOT gate, CR2, shows a performance similar to the experiment. This is
reasonable as this is the same pulse scheme that is used for the experiment. However,
the offset of about 0.2 for the initial state |10〉 (see Fig. 6.2(b)) cannot be observed in the
simulation. Although it can be modeled by including a simple measurement error of 0.2
(in the spirit of Eq. (7.19) in Section 7.3), it is more likely due to environmental effects
that are not included in the two-transmon simulation.

Note especially that the other pulse schemes, CR1 and CR4, perform much better
than CR2 (see Fig. 6.2(c)). A similar trend has been observed in experiments with CR1
[Ale2020] and CR4 [Tak2017]. This is not at all reflected by the gate metrics shown in
Tab. 6.1. In particular, the fidelity Favg is nearly the same for all pulses, despite the strong
difference in the actual gate performance. In fact, the only gate with a comparably bad
fidelity, CR101, performs unexpectedly well (see Fig. 6.2(c) and (d)). Also the diamond
distances shown in Fig. 6.1 do not suggest that. We note that, since the diamond distance
is related to the worst-case statistical distance [San2016], it is possible that for another
input state, the statistical distances would show a comparable increase for repeated pulses.

In Fig. 6.2(e) and (f), we present simulation results for all CNOT gates on the small
five-qubit system defined in Section 3.4.4. Again, the errors are not properly captured
by the corresponding gate metrics given in Tab. 6.2. Especially the performance of the
pulse CR242 applied to the input state |10〉 (the red line in Fig. 6.2(f)) degrades quickly,
although this pulse scored the best unitarity and the second-best fidelity of all two-qubit
gates (see Tab. 6.2). In this case, only the diamond distance suggests the bad performance.

Apart from this, we observe that the performance of the simulated transmon system
presented in Fig. 6.2(e) comes much closer to the result of the experiment shown in
Fig. 6.2(a). Note that the agreement can only be qualitative because the simulated five-
transmon system corresponds to a different device that does not have a CNOT gate
between transmons 3 and 4 (cf. Section 3.4.4 and Tab. F.4). Still, the observation that
the five-transmon simulation comes much closer to the experiment than the two-transmon
simulation gives positive evidence for the hypothesis that the additional features included
in the five-transmon simulation, i.e., leakage and crosstalk due to additional transmons
and resonators, can capture most of the errors observed in the experiment.

6.3 Gate set tomography

The results presented in the previous sections demonstrate that common gate metrics
such as the average fidelity or the diamond norm cannot reliably predict the performance
of a sequence of quantum gates (cf. [Iye2018]). It has also been recognized in the literature
that the RB-number, i.e., the quantity produced by randomized benchmarking [Pro2017],
suffers from the same problems [Blu2017]. The obvious conclusion is that a quantum gate
is too complicated to be characterized by a single number.

Therefore, in this section, we explore a much more sophisticated approach to char-
acterize implementations of quantum gates called gate set tomography (GST) [Blu2013;
Gre2015]. In short, the idea of GST is to treat a quantum device as a black box that
takes only digital input and produces only digital output. One then fits the best quan-
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Chapter 6 Errors in quantum gates

Figure 6.3: Black box model of a quantum computer. For GST, a quantum computer is
considered as a black box with only digital input and output, agnostic to the physical
details of the implementation. The black box provides buttons for initialization and
measurement (yellow), and several gate operations (cyan; see Tab. 6.5 for the meaning
of the labels). On each measurement, the black box produces binary output in the form
of light signals indicating a bit string. In GST, the best quantum theoretical two-level
description is fitted to the frequency of bit strings produced by the black box.

tum theoretical description to experiments performed with the black box. An example
black box model for a two-qubit device is shown in Fig. 6.3. A recent application to a
quantum processor based on ion traps is presented in [Blu2017], for which an open-source
implementation of GST called pyGSTi [Nie2018] has been developed. This package has
also been used for the GST experiments presented in this thesis.

Our goal is to test the GST procedure for output generated by the transmon simulation
developed for this work (see Section 3.3). In particular, the objective is to study whether
the resulting quantum theoretical description has a better predictive power than the
common gate metrics. As shown below, the answer to this question is affirmative: The
two-level description produced by GST can reliably predict the performance of gates when
used repeatedly in quantum algorithms.

6.3.1 The idea of GST

In quantum theory, we describe the general state of a system in terms of a density matrix ρ.
The evolution of the state is represented by a linear map ρ 7→ G(ρ), where G is typically
a quantum operation as introduced in Section 2.4. After the evolution, the system is
measured and the probability to obtain outcome J is given by

pJ = TrEJG(ρ). (6.23)

Here, the set of operators {EJ} represents the measurement. The minimum requirements
on {EJ} are that the EJ are positive semidefinite and

∑
J EJ = 1 such that the pJ are
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valid probabilities. In the literature, a set {EJ} with these properties is called POVM
[Nie2010] and Eq. (6.23) is a generalization of the Born rule (see also [Fuc2001; Fuc2002]).

The problem of tomography

The central idea of quantum tomography is to construct, from experimentally observed rel-
ative frequencies pJ , an element of the quantum theoretical description given by Eq. (6.23).
If the element to reconstruct is the density matrix ρ, one speaks of quantum state tomog-
raphy [Smi1993; Lei1996]. If the objective is to find a representation of the measurement
{EJ}, the procedure is known as quantum measurement tomography [Lui1999]. And lastly,
characterizing the map G is called quantum process tomography [Chu1997; Poy1997].

All these kinds of tomography have a fundamental flaw, namely that they require the
other elements of Eq. (6.23) to be postulated. For instance, quantum process tomography
requires the system to be prepared in various known states ρ and measured with various
known operators EJ , which are typically implemented using the very same gates G that
process tomography tries to characterize [Blu2013]. In that sense, all three kinds of
tomography are self-referential and circular. Note that this problem also affects more
recent tomography proposals [Xin2017; Hel2019].

The solution provided by GST

The idea of GST is to solve this problem by self-consistently estimating the state ρ, the
process G, and the measurement {EJ} of Eq. (6.23) at the same time, using only experi-
mentally observed frequencies pJ . The philosophy is that all elements of the description
in Eq. (6.23) should be accessible from the observed data. If the system is prepared in a
certain state ρ, the data should reveal it; similarly, if the measurement is in a different
basis, the data should suggest it; etc. The central viewpoint is that obtaining enough data
by playing around with the black box should be sufficient to predict its future behavior
[Blu2013].

To frame this idea, the system is treated as a black box with very limited control.
Such a black box for a two-qubit quantum computer is shown in Fig. 6.3. It has sev-
eral buttons for interaction and two sets of lights signaling the output, but the actual
physical implementation is irrelevant. The mapping of the buttons to the mathemati-
cal description in Eq. (6.23) is as follows. The yellow INIT button is to be described
by the mathematical object ρ. Each cyan button is to be described by a map in the
set {GXI,GYI,GIX,GIY,GII,GCNOT} (the target operation indicated by the indices is given in
Tab. 6.5 below). The process G is then an arbitrary sequence of elements in this set,
corresponding to the sequence of buttons pressed. Finally, the yellow MEAS button makes
the system produce an event J ∈ {00, 01, 10, 11}, which is to be described by {EJ}. An
experiment in this model takes a simple form:

1. Press the INIT button to initialize the system.

2. Press a sequence of gate buttons from the set {XI, YI, IX, IY, II, CNOT}.

3. Press the MEAS button and record the outcome.
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For each experiment corresponding to the same sequence of buttons pressed, the relative
frequencies pJ are computed from the outcomes. The best description in terms of ρ, G,
and EJ is then obtained from the data.

It is important to recognize that only the frequencies pJ of each event J from the
data are used. All other information about the individual events need to be discarded.
This approach is typical of all quantum theoretical models, in the sense that quantum
theory cannot model the individual events [DeR2019b] or long-time correlations between
individual events [Wil2020c].

Mathematical framework

To fit a mathematical description in terms of EJ , G, and ρ to the measured relative
frequencies pJ , it is useful to introduce a vector representation of Eq. (6.23). We obtain
such a representation by expanding the N ×N matrices EJ and ρ in the normalized Pauli
basis P defined in Eq. (2.26),

ρ =
∑

i

ρiP̂i, (6.24a)

EJ =
∑

i

eJiP̂i, (6.24b)

where ρi = Tr P̂iρ and eJi = Tr P̂iEJ . We arrange the coefficients {ρi} and {eJi} in
N2-dimensional vectors denoted by |ρ〉〉 and |EJ〉〉, respectively.

In the literature, the vector space corresponding to this vector representation of matrices
is sometimes called Hilbert-Schmidt space. The inner product on this space is given by
the Hilbert-Schmidt inner product 〈〈X|Y 〉〉 = TrX†Y for complex matrices X, Y .

Inserting Eqs. (6.24a) and (6.24b) into Eq. (6.23) yields

pJ =
∑

ij

eJi

(
Tr P̂iG(P̂j)

)
ρj = 〈〈EJ |G|ρ〉〉, (6.25)

where the matrix G representing the map G is the Pauli transfer matrix defined in
Eq. (2.27). We use a similar notation to distinguish between the maps {GXI, . . .} and
their matrix representations {GXI, . . .}.

Due to the use of the Pauli basis, all coefficients in the vectors |ρ〉〉 and |EJ〉〉 and the
matrices G are real. Still, the total number of coefficients for two qubits (N = 4) is
16 + 4 × 16 + 6 × 162 = 1616 (16 for ρ, 16 for each EJ , and 162 for each of the gate
matrices GXI, GYI, GIX, GIY, GII, and GCNOT). This means that a considerable number of
experiments needs to be run to obtain enough relative frequencies pJ to determine the
coefficients accurately.

These experiments are not chosen arbitrarily. Rather, they are constructed systemati-
cally to yield a sufficient amount of information about the coefficients, while still targeting
operations such as single-qubit rotations that are commonly used in current quantum in-
formation processors [Blu2017]. This construction works as follows: The description of
data from an experiment, which corresponds to a sequence (s1, . . . , sL) of pressed cyan
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buttons in Fig. 6.3, has the structure

p
(s1,...,sL)
J = 〈〈EJ |GsL · · ·Gs∗︸ ︷︷ ︸

F (M)

Gs∗ · · ·Gs∗︸ ︷︷ ︸
gl

Gs∗ · · ·Gs1︸ ︷︷ ︸
F (P )

|ρ〉〉, (6.26)

where F (M) is called a measurement fiducial, gl is called a germ power, and F (P ) is called
a preparation fiducial. The fiducials are chosen to prepare an informationally complete
set of states (for instance, the eigenstates of the Pauli matrices, four of which are shown
in Fig. 2.2(a)–(d)). The germs g, raised to logarithmically spaced integer powers such as
l ∈ {1, 2, 4, 8, 16, 32}, are chosen to amplify certain systematic errors expected from the
gates. All germs and fiducials are sequences of the six gate matrices GXI, GYI, GIX, GIY, GII,
and GCNOT. They explicitly include empty sequences such that also “bare” experiments
corresponding to 〈〈EJ |F (M)

i F
(P )
j |ρ〉〉 and, in particular, 〈〈EJ |ρ〉〉 are represented by the

data. See [Blu2013; Blu2017] for more information on these design choices.

When describing experimentally obtained data {p(s1,...,sL)
J }, the mathematical objects

contained in Eq. (6.26) can only be determined up to an invertible matrix M . The reason

for this is that the p
(s1,...,sL)
J stay the same if all objects in Eq. (6.26) are replaced according

to 〈〈EJ | 7→ 〈〈EJ |M−1, G 7→ MGM−1, and |ρ〉〉 7→ M |ρ〉〉. This fundamental freedom in
GST is called the GST gauge.

There are several ways to fix a certain gauge transformation M . For instance, if one
requires the description of the state ρ to be independent of the operations that are per-
formed on it (as typically required by consistency in quantum theoretical descriptions,
see [DeR2019b]), one could choose a gauge M that always maps the fitted ρ to some
fixed representation. In general, it can be problematic to fix a certain gauge and interpret
the resulting, gauge dependent error rates (see also [Lin2019]). For the following analy-

sis, however, the goal is to predict the p
(s1,...,sL)
J , so the choice of the gauge is irrelevant.

Therefore, we use the default gauge optimization performed by pyGSTi.
The actual self-consistent fitting procedure involves several steps. The first step is to

construct a matrix AB, where ABJ+Ni,j contains the relative frequency corresponding to

〈〈EJ |F (M)
i F

(P )
j |ρ〉〉, i.e., obtained from the “bare” experiments. The (pseudo-)inverse of

this matrix yields initial estimates for ρ, EJ , and G (this step requires the fiducials to be
be informationally complete). This part of the procedure is called linear inversion GST
and is described in detail in [Blu2013; Gre2015]. A difference between the single-qubit
GST described in these references and the two-qubit GST studied here is that all data
for J ∈ {00, 01, 10, 11} is included in AB. The full iterative procedure to refine the initial
estimates self-consistently is explained in [Blu2017] (see Fig. 1 of this work).

We remark that, because of the vast number of parameters to be estimated in GST,
it would be interesting to explore techniques from deep learning to improve the fitting
procedure. These techniques have specifically been invented to fit statistical models with
millions of parameters to observed data [Goo2016].

6.3.2 Running GST

We apply GST to the two-transmon simulation model defined in Section 3.4.3. This
requires 58990 quantum circuits (see below) to be compiled into pulses (cf. Section 5.4)
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Table 6.5: Summary of the pulses used to implement the gates corresponding to the
buttons of the black box shown in Fig. 6.3 by means of the two-transmon simulation model
defined in Section 3.4.3. The general single-qubit GD pulses are defined in Section 5.1.2.
The implementation of Y π/2 = -Y in particular is derived in Eqs. (5.27) and (5.28). The
identity gate is implemented as an undriven time evolution for TX = 83 ns, i.e., the
duration of the single-qubit pulses (see Section 5.1.3). The two-qubit CNOT gate is
implemented using the CR2 pulse (see Section 5.2). All pulse parameters are listed in
Appendix F, and the target gates are defined in Tab. B.1. Gate metrics for the elementary
pulses are given in Tab. 6.1.

Button Pulse Target gate Description

XI GD
π/2
0 (0) X

π/2
0 π/2 rotation of qubit 0 about the x axis

YI GD
π/2
0 (π/2) Y

π/2
0 π/2 rotation of qubit 0 about the y axis

IX GD
π/2
1 (0) X

π/2
1 π/2 rotation of qubit 1 about the x axis

IY GD
π/2
1 (π/2) Y

π/2
1 π/2 rotation of qubit 1 about the y axis

II zero(TX) I identity gate
CNOT CR2 CNOT01 CNOT between qubit 0 (control) and 1 (target)

and simulated by solving the TDSE. From the final state vector |Ψ〉, only the relative
frequencies for the two-qubit states |00〉 , |01〉 , |10〉 , and |11〉 are extracted. In this way,
the simulation represents the implementation that is hidden inside the black box shown
in Fig. 6.3. The particular pulses used to implement the cyan buttons are summarized in
Tab. 6.5.

We use the software package pyGSTi [Nie2018] to produce the input (the quantum
circuits) to the black box and to analyze the output (the relative frequencies pJ). The
list of simulated quantum circuits comprises 58990 gate sequences with a maximum of
38 gates per sequence. pyGSTi respects the structure of Eq. (6.26), using 16 preparation
fiducials F (P ), 11 measurement fiducials F (M), and 89 germs g raised to the power l ∈
{1, 2, 4, 8, 16, 32}. Since the output pJ is passed to pyGSTi in terms of actual integer
counts for each event J ∈ {00, 01, 10, 11}, we compute counts for 1000 samples. This
number reflects the expected accuracy of the product-formula algorithm for τ = 10−3 ns
(cf. Fig. 4.2(b)). Furthermore, pyGSTi offers several modes for estimating the objects ρ,
G, and EJ in Eq. (6.23):

Full: Fully unconstrained maps,

TP: Constrain the maps to be trace-preserving quantum operations (cf. Section 2.4),

CPTP: Constrain the maps to be CPTP quantum channels (cf. Section 2.4).

In this section, we report the CPTP estimates, because they proved to be the most reliable
estimates when trying to predict the performance of quantum gate circuits (see below).
The estimated initial density matrix reads

ρ = |00〉〈00|+ .009(|00〉〈01|+ |01〉〈00|) +O(10−3), (6.27)
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and the estimated operators describing the measurement are

E00 = |00〉〈00|+ .009(|00〉〈01|+ |01〉〈00|) +O(10−3), (6.28a)

E01 = |01〉〈01| − .009(|00〉〈01|+ |01〉〈00|) +O(10−3), (6.28b)

E10 = |10〉〈10|+O(10−3), (6.28c)

E11 = |11〉〈11|+O(10−3). (6.28d)

Up to the small off-diagonal component in ρ, E00, and E01, these estimates match the
expected result given by the first term. The small deviation may be a consequence of the
gauge transformation found by pyGSTi, since we still have TrE00ρ = 1 + O(10−4) and
TrE01ρ = 0 +O(10−4).

Visualization of the Pauli transfer matrices

In Fig. 6.4, we show the resulting estimates for the gate processes G in terms of their
Pauli transfer matrices G (see Eq. (2.27)), which consist of 16 × 16 real numbers in the
range [−1, 1]. One thing to note is that for all matrices G, the first row i = 0 and the first
column j = 0 (both corresponding to the axis label II) contain only one non-zero entry
at G00 = 1. This reflects the fact that the estimated maps are both trace-preserving and
unital.

For each gate, the expected target gate would be represented by the same image with
all small blue and yellow bars replaced by gray areas such that only one large bar occurs
in each row and each column in Fig. 6.4. This reflects the fact that the target gates are
Clifford gates. The result shows that the operations performed by the pulses are best
described by non-Clifford gates.

The largest deviations (i.e., the largest bars that should have been gray areas) can be
observed for the identity gate GII shown in Fig. 6.4(e) and the CNOT gate shown in
Fig. 6.4(f). For the identity gate, the deviations occur systematically on the antidiagonal.
This effect is analyzed in the following section. It corresponds to an intrinsic error of the
form σz0 ⊗ σz1. A related behavior can also be observed in experiments on the IBM Q
processors (see Section 7.1).

Axis-angle decompositions of the estimated gates

To gain further insight into the GST results, we apply a decomposition algorithm to
express the gate maps G in terms of a Hamiltonian generator,

G(ρ) ≈ e−iHρ eiH . (6.29)

Details on the decomposition algorithm are explained in Appendix J. A similar algorithm
is implemented by the pyGSTi package [Nie2018]. Alternative approaches to find effective
Hamiltonians have been studied in [Ric2013; Wil2016; Wil2020d].

We consider a Hamiltonian H expressed in the Pauli basis (see Eq. (2.26)),

H =
d−1∑

k=0

hkPk/2, (6.30)
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(a) GXI (b) GYI

(c) GIX (d) GIY

(e) GII (f) GCNOT

Figure 6.4: Estimated gates resulting from GST experiments on a two-transmon simulation
of 58990 circuits implemented by pulses. Shown are the Pauli transfer matrices Gs (see
Eq. (2.27)), where the subscript s indicates the button of the black box model shown
in Fig. 6.3. Blue (yellow) bars indicate positive (negative) values. Gray areas indicate
absolute values below 10−3. All large bars represent values close to ±1.
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where d = N2 = 4n and hk ∈ R. The reason for this parametrization is that given hk, the
action of e−iH can be interpreted as a rotation characterized by an angle ϕ and an axis ĥ
according to

ϕ =

√∑

k

h2
k, (6.31a)

ĥk =
hk√∑
k h

2
k

. (6.31b)

For instance, an ideal π/2 rotation about the x axis for qubit 1 (X
π/2
1 ) corresponds to

ϕ = π/2 and ĥk = δk1 since P1 = I ⊗ σx (cf. Eq. (2.26)).
The results of the axis-angle decomposition are given in Tab. 6.6. For the single-qubit

gates GXI, GYI, GIX, and GIY, GST almost perfectly reproduces the π/2 rotations that the
GD pulses have been designed to implement. Furthermore, the decomposition errors γ
are reasonable small, and the computed diamond distances η♦ agree with the gate metrics
reported in Tab. 6.1.

The most interesting results are given by the decompositions of the identity gate GII
and the CNOT gate. For the identity gate, GST extracted, without prior knowledge, the
exact same type of σz0 ⊗σz1 interaction studied in Fig. 4.11. From the parameters given in
Tab. 6.6, we can also compute the interaction strength of the effective Hamiltonian HZZ

introduced in Eq. (4.28),

JGST =
ϕĥ15

2TX
= 2π × 46.6 kHz, (6.32)

where TX = 83 ns is the duration of the identity gate, and ĥ15 = 0.9973 is the ZZ entry of
the axis ĥ. This result perfectly matches the result given by Eq. (4.31c). Note that this
ZZ effect is still qualitatively compatible with GII implementing an identity gate since
the angle ϕ = 0.0155π is close to 0. In Section 7.1, we construct a circuit to observe
related crosstalk effects in an IBM Q processor.

For the estimated CNOT gate GCNOT, the axis-angle decomposition reported in Tab. 6.6
yields an effective Hamiltonian of the form

1

2
0.865π(.58[σz0 + σx1 − σz0σx1 ]− .01(σy1 − σz1 + σz0σ

y
1) +O(10−3)). (6.33)

This Hamiltonian agrees very well with the effective Hamiltonian expected from the CR
pulse (see Eq. (5.13)). Furthermore, the next-order terms of the form IY , IZ, and
ZY resemble the contributions observed experimentally in [She2016b] (see also Fig. 5.12
in [Wil2016]). It is remarkable that GST reliably resolves all these effects given only
the measured relative frequencies pJ , without any prior knowledge about the transmon
dynamics such as the CR pulse used internally to implement the gate.

However, one should also be careful not to put too much trust in the decomposition
of GCNOT, since in this case, the decomposition error γ in Tab. 6.6 is larger than for the
other gates. One reason for this could be that a minimal Kraus representation of GCNOT(ρ)
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Table 6.6: Axis-angle decompositions and errors of the estimated gates G. The decom-
positions are obtained from the Hamiltonian given by Eq. (6.30), from which the angle

ϕ and the axis ĥ are extracted via Eqs. (6.31a) and (6.31b). The notation “xmy” means
x × 10−y. Blue (yellow) colors highlight significant positive (negative) coefficients. The
decomposition error γ measures the error of the approximation given by Eq. (6.29) (see
Eq. (J.11) for the precise definition). The target gates are defined in Tab. B.1. The target
error η♦ is the diamond distance between the full estimated map G (not only its axis-angle
decomposition) and the target gate (cf. Section 6.1.2).

Gate Angle ϕ Axis ĥ Error γ Target Target error η♦

GXI 0.5001π

I X Y Z

Q2

Z

Y

X

I

Q1

4m4 1m4 3m3 .02

2m4 . 01 .01 3m3

1.0 5m5 3m5 6m4

0 7m5 2m4 2m3

2.8× 10−5 X
π/2
0 0.023

GYI 0.5002π

I X Y Z

Q2

Z

Y

X

I

Q1

2m4 1m4 3m3 .02

1.0 1m4 8m5 6m4

2m4 .01 . 01 3m3

0 8m5 3m4 2m3

2.0× 10−5 Y
π/2

0 0.023

GIX 0.5001π

I X Y Z

Q2

Z

Y

X

I

Q1

8m5 5m4 3m3 .02

2m4 1m4 .01 3m3

2m4 6m5 . 01 3m3

0 1.0 .01 . 01

2.1× 10−4 X
π/2
1 0.029

GIY 0.5001π

I X Y Z

Q2

Z

Y

X

I

Q1

6m5 3m3 5m5 .02

2m4 . 01 3m5 5m4

2m4 .01 9m5 9m5

0 . 01 1.0 3m7

1.2× 10−5 Y
π/2

1 0.022

GII 0.0155π

I X Y Z

Q2

Z

Y

X

I

Q1

1m3 .01 3m3 1.0

.01 5m3 1m3 5m5

.01 5m4 . 01 1m3

0 3m3 .01 . 07

2.4× 10−5 I 0.026

GCNOT 0.8655π

I X Y Z

Q2

Z

Y

X

I

Q1

.58 . 58 . 01 2m3

4m6 2m4 3m3 4m3

8m5 5m4 3m3 3m3

0 .58 . 01 .01

4.8× 10−2 CNOT01 0.041
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(cf. Eq. (2.24)) needs more than one term such that Eq. (6.29) is not easily achievable.
However, we examined the corresponding Kraus rank by studying the singular values of
the Choi matrix J(GCNOT) (see Eq. (2.25)) and found that all but one singular value are
smaller than 3 × 10−4. Instead, what happens in this case is that the corresponding
Lindblad operator L = log GCNOT does not exactly have the form required to write it in
terms of a Hamiltonian (see Eq. (J.9) in Appendix J for more information).

Intuitively, this decomposition error expresses the lingering effect of non-computational
levels on the result after the pulse application. This additional information, which is
properly captured by the GST result visualized in Fig. 6.4(f), is essential to reliably predict
the effect of many repeated pulse applications. This is demonstrated in the following
section.

6.3.3 Predicting repeated pulse applications

To test the predictive power of GST, as opposed to that of the gate metrics studied in
Section 6.2, we simulate r = 1, . . . , 1000 repeated gate pulses. We compute the statistical
distance D given by Eq. (6.22), where pJ is the distribution for an ideal, gate-based quan-
tum computer p

(id)
J , and p̃J is either given by p

(sim)
j0j1

= |〈m0 = j0,m1 = j1|Ψ〉|2, obtained
from the transmon simulation model defined in Section 3.2, or by a GST prediction p

(GST)
J .

The distribution predicted by GST is computed through Eq. (6.23). In vector form,
this means that

p
(GST)
J = 〈〈EJ |(Gs)

rG(prep)|ρ〉〉, (6.34)

where |ρ〉〉 is the vectorized initial density matrix (see Eq. (6.24a)), G(prep) denotes the
gates used to prepare a certain initial state, (Gs)

r represents r repetitions of a certain
gate s ∈ {XI, YI, IX, IY, II, CNOT}, and 〈〈EJ | is a vectorized measurement operator (see
Eq. (6.24b)).

Note that also the initial state preparation G(prep) explicitly uses the GST estimated
gates Gs, because the purpose of GST is to self-consistently describe all preparation, gate,
and measurement processes. We test four particular initial states corresponding to the
following gate sequences:

|00〉 : G(prep)|ρ〉〉 = |ρ〉〉, (6.35a)

|10〉 : G(prep)|ρ〉〉 = GXIGXI|ρ〉〉, (6.35b)

|++〉 : G(prep)|ρ〉〉 = GYIGIY|ρ〉〉, (6.35c)

|Ψ−〉 : G(prep)|ρ〉〉 = GCNOTGYIGXIGXIGIXGIX|ρ〉〉, (6.35d)

where |Ψ−〉 ∝ |01〉 − |10〉 is the singlet state, and Gs denotes the Pauli transfer matrix
of the gate map Gs (see Eq. (2.27)). For the transmon simulation, the relation between
gates and the pulses used to implement them is given in Tab. 6.5.

We test two particular GST predictions. The first prediction is based on the CPTP
estimate, for which the preparation ρ and the measurements EJ are given by Eqs. (6.27)–
(6.28d), and the gates Gs correspond to the Pauli transfer matrices shown in Fig. 6.4.
The second prediction uses, for each gate Gs, its corresponding decomposition in terms
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of an effective Hamiltonian given in Tab. 6.6 (see also Appendix J). Besides the CPTP
estimate, we also analyzed the “Full” estimate and the TP estimate introduced above.
However, the CPTP estimates proved to be the most reliable (data not shown).

The results of the simulation, the GST prediction, and the decomposed GST predic-
tion are shown in Fig. 6.5. The overall agreement between the simulation and the GST
prediction up to r = 500 repetitions is remarkable, especially since only sequences of up
to 38 gates of the form of Eq. (6.26) have been used to run GST. Evidently, the predictive
power slightly decreases for r = 1000 pulse applications, but it remains sufficient. In
general, it is far superior to the predictive power of the gate metrics, which in some cases
even fail to predict the performance for two successive pulse applications (cf. Fig. 6.1).

There are tiny oscillations in the simulation results that are most apparent on the red
lines in Fig. 6.5, corresponding to results for the initial state |Ψ−〉. These oscillations are
smoothed out in the corresponding GST predictions. Furthermore, small deviations in
amplitude between simulation and GST prediction can be seen for the identity gate and
the CNOT gate (last two rows in Fig. 6.5). These effects stem from entanglement with
non-computational states during the time evolution which are not completely captured
by the GST model. They are most pronounced for the state |Ψ−〉 because of the CNOT
used in the state preparation (cf. Eq. (6.35d)). Still, the overall performance is sufficiently
well described by the GST results.

The right column in Fig. 6.5 might suggest that a similar conclusion is appropriate
for the predictive power of the effective Hamiltonians given in Tab. 6.6, obtained from
the axis-angle decompositions. Indeed, for all but the CNOT gate, the corresponding
decomposition error γ is quite low. However, for the CNOT gate, we see that the periods
of the blue, green, and red lines in the bottom-right panel of Fig. 6.5 are wrong. This
means that already for r = 20 repetitions, the prediction can be wrong. Specifically,
for the initial state |00〉 (blue line), we have DCNOT ≈ 0.41 for the simulation and the
GST prediction, while DCNOT ≈ 0.28 for the decomposed GST prediction. Hence the
decomposition given by Eq. (6.29) is not suitable to obtain reliable predictions for the
two-qubit gate.

From the GST results, another interesting conclusion about the accuracy of the sim-
ulation algorithm can be drawn. For DCNOT (the last row in Fig. 6.5), r = 1000 repeti-
tions correspond to a simulation of the time evolution over 433 µs. Using a time step of
τ = 10−3 ns for the product-formula algorithm (cf. Eq. (3.30)), this corresponds to more
than 4 × 108 time steps. GST, in contrast, uses only data from at most 38 gate pulses,
corresponding to a time evolution for at most 14 µs. The agreement between simulation
results and the GST prediction also after such a long time evolution gives confidence
in the accuracy of the product-formula algorithm in actual applications. This was not
obvious from the error analysis of the simulated system (see Fig. 4.2(b)).

In summary, GST and the underlying black box philosophy provide a reliable model to
effectively describe and predict quantum gate applications in complicated two-transmon
systems. It solves the problem of circular reasoning present in many alternative proposals
of tomography by self-consistently fitting descriptions of the preparation, the gates, and
the measurement to the data. Of course, one may argue where the state preparation pro-
cedure actually starts (see [Bal1998]), and to what extent repeated pulses really generate

136



6.3 Gate set tomography

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0 500 1000 0 500 1000 0 500 1000

D
XI

Simulation GST prediction
GST prediction
(decomposed)

|00〉
|10〉
|++〉
|Ψ−〉

D
YI

D
IX

D
IY

D
II

D
CN

OT

Number of gates r Number of gates r Number of gates r

Figure 6.5: Test of the predictive power of GST for up to 1000 gates implemented through
pulses. Shown is the statistical distance Ds to the ideal result (cf. Eq. (6.22)), where the
subscript s indicates the gate (see Tab. 6.5), corresponding to a certain button of the black
box model shown in Fig. 6.3. The left column shows simulation results for the transmon
model described in Section 3.4.3. The middle column shows the GST prediction computed
through Eq. (6.34). The right column shows the same except that not the full estimates
Gs, but their Hamiltonian axis-angle decompositions are used (see Tab. 6.6). Different
colors indicate different initial states that are also prepared using the estimated gates, as
stated in Eqs. (6.35a)–(6.35d). For all but DCNOT, only every second data point is plotted
(otherwise, there would be small oscillations on some of the lines that would render them
too thick to be distinguishable). Note that the first 20 points on the blue and yellow lines
in the bottom-left panel correspond to the yellow lines in Fig. 6.2(c) and (d).
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the same time evolution or if non-Markovian effects dominate the system. Furthermore,
GST is not scalable to arbitrarily sized qubit systems due to the exponential growth of
the mathematical objects required in the description. However, efforts at applying the
idea of GST to systems with more than two qubits are being explored [Nie2017; Son2019;
Gov2020]. And most importantly, GST shows that it is possible to obtain reliable de-
scriptions for gate-based quantum computers by only pushing well-chosen sequences of
buttons on a black box and analyzing the digital output.

6.4 Conclusions

The purpose of this chapter was to characterize the performance of quantum gate pulses
in transmon systems. We first studied common gate metrics such as the average gate
fidelity given by Eq. (6.2), the diamond distance given by Eq. (6.4), and the unitarity
given by Eq. (6.19). Two byproducts of the analysis were (1) an explicit expression for
the fidelity proven in Appendix G and (2) a new lower bound on the diamond distance
proven in Appendix I; both of which apply, unlike previous results, also to trace-decreasing
quantum operations.

From the evaluated gate metrics, we concluded that the errors are systematic and
inherently different from simple Pauli-type errors (compare η♦ and ηPauli

♦ in Tab. 6.1).
Furthermore, we found that a large part of the reduction in fidelity can be attributed to
non-unitary evolutions of (and in particular, leakage out of) the computational subspace
(compare Favg and u in Tab. 6.2 and Tab. 6.3). Regarding the non-unitarity, repeated
applications showed that the optimized gates have been tuned to the participation of
higher transmon states in the time evolution (see the final remark in Section 6.2.1).

Although the gate metrics help in characterizing the errors, we found that none of the
metrics are suitable for predicting the performance in repeated pulse applications. For
instance, the pulse CR401 has the worst diamond distance (see Tab. 6.1), but performs

best in repeated applications (see Fig. 6.1(d)). Also, the gate X
π/2
3 has by far the best gate

metrics of all optimized transmon pulses (see Tab. 6.2), but the resulting Bloch vector is

still more tilted than for X
π/2
1 after repeated applications (see Fig. A.1 in Appendix A).

The conclusion is that the gate metrics cannot reliably predict the performance in practical
applications, and that quantum gate pulses are generally much too complicated to be
characterized by a single number.

By evaluating error rates for experiments on an IBM Q processor, we found that the
CNOT gate performs much worse when the control qubit is in state |0〉. In the simulation,
this systematic error could also be observed for the same CR2 pulse that was used in the
experiment (see Fig. 6.2(c)). The optimized CR1 and CR4 pulses shown in Fig. 5.1,
however, did not suffer from the same systematic error. Furthermore, we found that
only by simulating a larger system with five transmons and two resonators, we could
observe similar deviations from the ideal result in both simulation and experiment (see
Fig. 6.2(e)). This implies that the crosstalk between transmons, which is inherently part
of the full transmon system’s time evolution, is responsible for most of the errors (see also
the explicit crosstalk experiment in Section 7.1).
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Finally, by performing an extensive GST, we found that the resulting CPTP estimates
provide a much more accurate, effective discrete description of the evolution generated by
the optimized gate pulses. The estimates were obtained only from the relative frequencies
observed in a black box model of the system. They showed that the implemented quantum
gates, unlike the intended target gates, are best described by non-Clifford operations (see
Fig. 6.4). We found that GST was capable of reproducing the exact same ZZ interaction
during the identity gate (see Eq. (6.32)) that was also found in Section 4.4. Secondly,
it accurately reproduced the effective evolution expected from the CR pulses without
prior knowledge of the theory (see Eq. (6.33)). And lastly, the GST results exhibited an
exceptional predictive power for up to 1000 pulse applications (see Fig. 6.5) that is far
superior to the conventional gate metrics.
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Chapter 7

Selected quantum circuit
experiments

In this chapter, we combine the results from the previous chapters, i.e., the transmon
simulator developed in Chapter 3 and benchmarked in Chapter 4, the optimized gate
pulses described in Chapter 5, and the actual quantum gates characterized in Chapter 6,
and apply them to several selected classes of quantum circuits.

In principle, some more or less complicated circuits have already been simulated for
the results of the previous chapters (e.g., the gate set tomography results in Section 6.3
required 58990 quantum circuits with time evolutions up to 433 µs).

Unlike the previous chapters, however, the present chapter focuses entirely on relat-
ing the simulation results to experiments on quantum processors such as the ibmqx4

[IBM2018b] or the ibmqx5 [IBM2018a] which are available on the IBM Q Experience
[IBM2016].

In particular, we consider:

(a) an observation of crosstalk and the induced systematic errors;

(b) a characterization of the singlet state (|01〉 − |10〉)/
√

2;

(c) a test of a protocol from the theory of quantum fault tolerance.

For each of these experiments, we run the corresponding quantum circuits on a quantum
processor and compare the results to data produced by the transmon simulator. The
experiment corresponding to (a) consists of a particular family of circuits, inspired by
the systematic effects observed in the simulation (see Section 4.4). For this experiment,
we obtain almost perfect agreement between the simulator and an IBM Q processor (see
Section 7.1). The results for (b) extend previous work published in [Mic2017; Wil2017],
where the agreement between experiment and simulation was only qualitative. We con-
sider several alternatives such as modified pulse parameters or effective error models for
the environment (see Section 7.2). Finally, in Section 7.3, we implement a protocol from
the theory of quantum error correction and fault tolerance. We find that the protocol
provides a systematic way to improve the results in both the simulation and the real pro-
cessor, suggesting that the dominant errors are of the same nature. Some of these results
have previously been published in [Wil2018b].
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7.1 Crosstalk experiments

In typical quantum computer experiments, individual qubits tend to interact even if no
gate is performed between them. This kind of crosstalk is an always-on coupling that is
inherently part of the free evolution of the quantum system. In this section, we examine
such crosstalk using both the five-transmon model defined in Section 3.4.4 and the five-
qubit processor ibmqx4 of the IBM Q Experience [IBM2018b]. We study a particular
circuit designed to amplify the interaction and compare results from the simulation with
data obtained from the experiment.

Crosstalk effects during the free evolution of a two-transmon system have been studied
in Section 4.4. In this simple case, the interaction resulted in state-dependent frequency
shifts (see Fig. 4.11). They could be described in terms of an effective ZZ interaction of
the form of Eq. (4.28). In Section 6.3, we obtained the same effective two-level description
from the black box model of GST (see Eq. (6.32)).

However, the five-transmon system defined in Section 3.4.4 has many additional states
in the transmons and the resonators that take part in the full time evolution. Further-
more, the interaction topology between the qubits is significantly more complicated (see
Fig. 3.4). For this reason, it may be hard to derive a similarly simple, effective model
analytically, and GST is not easily doable anymore. Therefore, it seems a good opportu-
nity to compare the simulation results to an experiment based on the same architecture.
Obviously, this requires a certain family of quantum circuits to characterize the effect.

7.1.1 Circuit and simulation results

In the free evolution studied in Section 4.4, the resonator-mediated interaction caused
the uniform superposition |+〉 = (|0〉+ |1〉)/

√
2 of a qubit to evolve differently depending

on the state of its neighboring qubit. This is also the reason that the interaction could
be quantified accurately in the black box model of GST (see Section 6.3). Therefore, we
study a family of quantum circuits that prepare one qubit in the state |+〉 and characterize
its free evolution as a function of the state of the other qubits. The general form of the
circuits is given in Fig. 7.1.

Conceptually, the circuit is very simple. The first part of the circuit prepares the
system in a product state, where the state of qubit 0 is given by |+〉. In the simulation,
this is implemented using the gate H = U2(0, π) = Zπ/2 Xπ/2 Zπ/2, which is compiled
into a single-qubit GD pulse according to Eqs. (5.9) and (5.10). The other qubits are
prepared in one of the states {|0〉 , |+〉 , |1〉}, using one of the gates Pi ∈ {I,H,X}. In the
simulation, these gates are implemented using the pulse zero(TX) (see Section 5.1.3), one
GD pulse, or two GD pulses, respectively (cf. Tab. B.1 and Section 5.1.2). The idle gate
is implemented by a free time evolution for a duration Tidle, corresponding to the pulse
zero(Tidle) (see Section 5.1.3). Finally, the gate Y π/2 on qubit 0 is implemented as one
GD pulse as described explicitly in Section 5.4.

Ideally, the idle gate would not affect any of the qubits. Therefore, the ideal circuit
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|0〉 H

(idle)

Y π/2

|0〉 P1

|0〉 P2

|0〉 P3

|0〉 P4

Preparation

Figure 7.1: Circuit diagram for crosstalk experiments on a five-transmon system. Qubit
0 is prepared in the state |+〉 using the H gate. Qubits 1 to 4 are prepared in one of
the states {|0〉 , |+〉 , |1〉}, corresponding to the gates Pi ∈ {I,H,X}. The “idle” gate
denotes a free time evolution for a time Tidle, without the application of any pulses or any
externally generated interaction between the qubits. The Y π/2 gate rotates the state |+〉
to the state |1〉. Therefore, ideally, the measurement of qubit 0 at the end should always
return 1, corresponding to a Bloch vector ~r0 = (0, 0,−1)T (see Eq. (7.1)). The standard
gates used in this circuit are defined in Tab. B.1 in Appendix B.

outcome is given by

|00000〉 Prep.7→ |+q1q2q3q4〉 Idle7→ |+q1q2q3q4〉
Y
π/2
07→ |1q1q2q3q4〉 Meas.7→ 1, (7.1)

where |qi〉 = Pi |0〉 ∈ {|0〉 , |+〉 , |1〉}. This corresponds to a Bloch vector ~r0 that is aligned
with the negative z axis, i.e., rz0 = −1.

However, crosstalk between the transmons during the idle gate is expected to change
the state of qubit 0 in a way that depends on the state of the other qubits. We simulate
the five-transmon system by solving the TDSE given by Eq. (3.8) with the time step
τ = 10−3 ns as described in Section 3.3. A few representative examples of the evolution
of the qubits’ Bloch vectors are shown in Fig. 7.2.

In Fig. 7.2(a), all qubits are rotated to the positive x axis using an H gate. The idle
gate is absent such that the final Y π/2 gate rotates qubit 0 to the negative z axis as
expected. In this case, crosstalk between the transmons only makes the Bloch vectors
wiggle slightly, which can be seen in the not perfectly straight motion of the arrows.

When the duration of the idle gate is set to Tidle = 1600 ns, however, each Bloch vector
keeps on rotating clockwise about the z axis (see Fig. 7.2(b)). Furthermore, the magnitude
of the Bloch vectors shrinks, which represents entanglement forming between the qubits.
Since the Bloch vector of qubit 0 ends up near the negative y axis, the final Y π/2 gate
does not rotate the qubit, resulting in a 50% error of the final measurement.

In Fig. 7.2(c) and (d), we see that the crosstalk effect on qubit 0 is even stronger if
qubits 1 to 4 are prepared in the state |1〉. The same idle time Tidle = 1600 ns renders
the Bloch vector of qubit 0 on the negative x axis. The final Y π/2 gate then rotates the
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(a) Y
π/2
0 H0H1H2H3H4 |00000〉

(b) Y
π/2
0 (idle)H0H1H2H3H4 |00000〉

(c) Y
π/2
0 H0X1X2X3X4 |00000〉

(d) Y
π/2
0 (idle)H0X1X2X3X4 |00000〉

Figure 7.2: Bloch-sphere representation of the time evolution of five transmon qubits
during the application of the pulses corresponding to the gate circuit given in Fig. 7.1
with (a) Pi = H, Tidle = 0 ns, (b) Pi = H, Tidle = 1600 ns, (c) Pi = X, Tidle = 0 ns, (d)
Pi = X, Tidle = 1600 ns. The time t is encoded in the color of the arrows (from blue to
red). The model parameters of the simulated transmon system are given in Tab. 3.5 and
Tab. 3.6. The Bloch vectors ~ri(t) at time t are computed according to Eq. (3.38) in a
frame rotating at the frequencies fi given in Tab. 3.5. The simulation results have been
visualized with QuTiP [Joh2012; Joh2013].
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qubit back to |0〉 (see Fig. 7.2(d)), while it should have ended up in state |1〉. Using this
effect, one could, in principle, engineer a circuit with 100% error rate. Note that this
effect qualitatively agrees with the increased frequency observed in Fig. 4.11, since if the
qubit’s frequency is larger than that of the rotating frame, the Bloch vector performs a
clockwise rotation about the z axis. In the next section, we study to what extent the
same effect can be observed in a real five-transmon processor.

7.1.2 Comparison with experiments on the IBM Q Experience

When executing the circuit in Fig. 7.1 on a real five-qubit processor, the result is given by
the relative frequencies p

(exp)
0/1 , corresponding to the relative number of events that the mea-

surement of qubit 0 returned 0 or 1. From the frequencies, we compute the z component of
the qubit’s Bloch vector according to Eq. (2.5) such that rz0 = p

(exp)
0 − p(exp)

1 = 2p
(exp)
0 − 1.

As the ideal result for each instance of the circuit in Fig. 7.1 is |1〉 (i.e., rz0 = −1), the

error rate in terms of the statistical distance D (see Eq. (6.22)) is given by p
(exp)
0 . In terms

of the coordinates of the Bloch vector ~r0, we have

D =
1 + rz0

2
. (7.2)

In the simulation, we compute the Bloch vector ~r0 through Eq. (3.38). Since this formula
includes a projection onto the computational subspace, using Eq. (7.2) for the error ef-

fectively yields D = p
(sim)
0 + p

(sim)
≥2 /2. Conceptually, this means that a measurement of

the transmon in a higher, non-computational state is interpreted as a 50% chance to find
the qubit in state |0〉 or |1〉. Another reasonable alternative would be to always count
a higher state as |1〉. In practice, however, this conceptual choice only has a negligible

effect on the result, because p
(sim)
≥2 < 0.002 in all cases under investigation.

We use the five-qubit processor ibmqx4 on the IBM Q Experience [IBM2018b] to execute
the circuit given in Fig. 7.1. In the experiment, the idle gate is implemented by nidle =
0, . . . , 120 identity gates. All experiments were run between February 21, 2018 and March
19, 2018 with 8192 shots.

In Fig. 7.3(a), we show results from both simulation and experiment for the circuit

Y
π/2

0 (idle) |+++++〉, corresponding to the Bloch-vector evolutions in Fig. 7.2(a) and
(b). The agreement between simulation and experiment is remarkable. Both are equally
far away from the ideal result rz0 = −1. The only observable difference between sim-
ulation and experimental results for rz0 is the slightly reduced amplitude and the tiny
oscillations between successive circuit simulations. These are apparently not resolved by
the experiment and appear to be smoothed out. This points out a limitation in the degree
to which the device could be engineered to implement the laws of quantum theory on a
macroscopic scale. The most obvious explanation would be that the deviation is caused
by influences from the environment that are not included in the simulation model (cf. also
Fig. 7.6, where a similarly reduced amplitude can be described in terms of environmental
effects). Further investigation by including the qubits’ readout resonators or an effec-
tive environment in the simulation (in the spirit of Section 3.5) could shed light on this
aspect. Nevertheless, the otherwise excellent agreement seems to suggest that for this
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Figure 7.3: Results of the crosstalk experiments based on the circuit given in Fig. 7.1;
(a) ideal, simulation, and experimental results for the circuit Y

π/2
0 (idle) |+++++〉; (b)

experimental results for the same type of circuit with different state preparations Pi as
indicated by the legend. Shown is the z component of the Bloch vector ~r0 = 〈~σ0〉 of
qubit 0. The right axis shows the error rate in terms of the statistical distance D defined
in Eq. (6.22), which is linked to rz0 via Eq. (7.2). In the experiment, the “idle” part
is implemented by a certain number of identity gates given on the bottom axis. In the
simulation, the “idle” part is implemented by the pulse zero(Tidle) (see Section 5.1.3),
where Tidle is shown on the top axis. The simulation results in (a) at Tidle = 0 ns (Tidle =
1600 ns) correspond to the time evolutions visualized in Fig. 7.2(a) (Fig. 7.2(b)).
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7.2 Characterization of the singlet state

particular experiment, the most dominant sources of error are the crosstalk effects that
are inherently included in the unitary evolution of the simulated transmon model defined
in Section 3.2.

Comparing the time scale used in the simulation (top axis in Fig. 7.3(a)) with the
number of identity gates used in the experiment (bottom axis in Fig. 7.3(a)), we find
that a single identity gate corresponds to Tidle = 45 ns. According to the calibration data
obtained from the processor, the single-qubit gate duration at the time of the experiment
was 83.3 ns with a buffer of 6.7 ns between gates. A difference in the exact time scales is to
be expected because the device parameters of the simulated transmon system (see Fig. 3.4
and Tab. 3.5) do not exactly match those of ibmqx4 [IBM2018b]. Furthermore, the time
scale depends sensitively on the transmon-resonator couplings G given in Tab. 3.6, in
the sense that the effective longitudinal interaction J given by Eq. (4.28) is proportional
to G4 [Bil2015]. In the experiment, G is not measured but estimated from simulations
[Sol2016]. The fact that the transmon simulator and the IBM Q processors still agree so
well suggests that this effect is independent of the exact values of the parameters of the
full Hamiltonian given by Eqs. (3.9a)–(3.9f).

The agreement between simulation and experiment shown in Fig. 7.3(a) suggests that
also other trends seen in the simulation are observable in the experiment. For instance,
in Fig. 7.2(d), we found that the crosstalk-induced rotation during the idle gate grows
in speed when all other transmons are prepared in state |1〉. To test this hypothesis,
we execute the circuit given in Fig. 7.1 for three additional state preparations on the
processor ibmqx4 [IBM2018b]. The results are shown in Fig. 7.3(b).

Indeed, we see that with all other qubits in state |1〉, the deviation from the ideal result,
indicated by the deviation of the blue plusses from rz0 = −1, becomes even stronger.
Furthermore, if only the central qubit is prepared in the state |+〉 (green crosses), the
impact is not as pronounced. This also demonstrates that crosstalk effects go beyond the
simple two-qubit picture studied in Section 4.4.

Finally, with all other qubits in state |0〉, the Bloch vector of qubit 0 effectively stands
still during the idle gate (red squares in Fig. 7.3(b)). As this is the same situation that has
been chosen to determine qubit frequencies in Section 3.3.2 (see the text below Eq. (3.39)),
it shows that our method is in agreement with the experiment.

7.2 Characterization of the singlet state

In this section, we consider a conceptually simple experiment that is commonly used to test
whether a system exhibits quantum behavior, in the sense that it produces correlations
described by an entangled state. Specifically, we consider the singlet state

|Ψ−〉 =
1√
2

(|01〉 − |10〉), (7.3)

which is one of the maximally entangled Bell states defined in Eqs. (2.8a) and (2.8b). A
property of this particular Bell state is that independent measurements of both qubits
always yield opposite results. This property is called perfectly anti-correlated. From
Eq. (7.3), we see that this holds when measuring in the computational basis, i.e., when
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|0〉 X H • H U1(ϑ0) H

|0〉 X H U1(ϑ1) H

Figure 7.4: Circuit diagram for experiments on the singlet state |Ψ−〉 given by Eq. (7.3).
The first four gates prepare the state. The last six gates are used to implement a measure-
ment of the state in the eigenbasis of (~σ0 ·~a)(~σ1 ·~b) as a function of ϑ0 and ϑ1 (cf. Eq. (7.6)).
All circuit elements are defined in Tab. B.1 in Appendix B.

measuring the observables σz0 and σz1: whenever one qubit is found in state |0〉 (with
eigenvalue +1 since σz |0〉 = + |0〉), the other qubit is found in state |1〉 (with eigenvalue
−1 since σz |1〉 = − |1〉). One can show [Nie2010] that this property holds for any other
pair of observables ~σ0 · ~v and ~σ1 · ~v, where ~v ∈ R3 is the measurement direction with
‖~v‖= 1, and ~σi = (σxi , σ

y
i , σ

z
i ) is the vector of Pauli matrices on qubit i. Moreover, if ~v is

replaced by ~a for qubit 0 and ~b for qubit 1, a short calculation yields

〈Ψ−|(~σ0 · ~a)(~σ1 ·~b)|Ψ−〉 = −~a ·~b = − cosϑ, (7.4)

where ϑ = ^(~a,~b) is the angle between the measurement directions ~a and ~b. Thus,
ϑ determines the degree of correlation expected in the measurements of both qubits.
Furthermore, we have

〈Ψ−|~σ0 · ~a|Ψ−〉 = 0, (7.5a)

〈Ψ−|~σ1 ·~b|Ψ−〉 = 0. (7.5b)

This means that, when measuring only one of the two observables, a measurement is
expected to produce an equal number of +1’s and −1’s.

7.2.1 Experiment

We perform an in-depth characterization of the singlet state by studying the expectation
values given in Eqs. (7.4)–(7.5b) for various measurement directions ~a and ~b. Specifi-

cally, we choose ~a = (0, sinϑ0, cosϑ0)T and ~b = (0, sinϑ1, cosϑ1)T such that −~a · ~b =
− cos(ϑ1 − ϑ0). The quantum gate circuit to implement this experiment is given in
Fig. 7.4. It consists of a few gates used to prepare the singlet state (using the fact
that |Ψ−〉 = CNOT01 H0 X0X1 |00〉), and a set of gates to implement the measurement.
For the latter, note that the gate sequence HU1(ϑ0)H can be used to transform between
the computational basis (i.e. the eigenbasis of σz) and the eigenbasis of ~σ · ~a since

(HU1(ϑ0)H)† σz (HU1(ϑ0)H) = sinϑ0 σ
y + cosϑ0 σ

z = ~σ · ~a. (7.6)
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A similar relation holds for ϑ1 and ~b. One can compute the ideal probability distribution
of the final state of the circuit shown in Fig. 7.4 as

p(j0j1|ϑ0ϑ1) = |〈j0j1|(HU1(ϑ0)H)⊗ (HU1(ϑ1)H)|Ψ−〉|2

=
1− (−1)j0+j1 cos(ϑ1 − ϑ0)

4
. (7.7)

To verify that this distribution complies with Eqs. (7.4)–(7.5b), one can compute the
expectation values as

E01(ϑ0, ϑ1) =
∑

j0j1

(−1)j0(−1)j1p(j0j1|ϑ0ϑ1) = − cos(ϑ1 − ϑ0), (7.8a)

E0(ϑ0, ϑ1) =
∑

j0j1

(−1)j0p(j0j1|ϑ0ϑ1) = 0, (7.8b)

E1(ϑ0, ϑ1) =
∑

j0j1

(−1)j1p(j0j1|ϑ0ϑ1) = 0, (7.8c)

where we used the fact that j0 (j1) labels the eigenvalue (−1)j0 ((−1)j1) of ~σ0 · ~a (~σ1 ·~b).
When using devices such as an IBM Q processor for this experiment, one does not

obtain a probability distribution p(j0j1|ϑ0ϑ1) directly. Instead, the device produces a
number of samples (usually 8192) for each setting of ϑ0 and ϑ1. The resulting frequencies
for each bit string,

f(j0j1) =
# of samples j0j1

8192
, (7.9)

are then used as estimators for the probabilities p(j0j1|ϑ0ϑ1). We denote the corresponding
estimates for the expectation values given in Eqs. (7.8a)–(7.8c) by F01(ϑ0, ϑ1), F0(ϑ0, ϑ1),
and F1(ϑ0, ϑ1), respectively. The goal of the experiment is to see how well F01, F0, and
F1 agree with the theoretical result E01, E0, and E1.

Some aspects of the experiment have already been studied. In [Mic2017], we performed
the experiment on an IBM Q processor as part of a collection of benchmarking circuits (the
results are plotted as hollow circles in Figs. 7.5 and 7.7 below). In [Wil2017], we simulated
the experiment using the optimized pulses discussed in Chapter 5 (the corresponding
results are shown in Fig. 7.5(a) and (b)). The particular pulse parameters are given in
Tab. F.1 and Tab. F.2 in Appendix F.

As can be seen in Fig. 7.5(a) and (b), there is quite some difference in the results, in
the sense that the IBM Q processor produces rather large, systematic deviations while
the simulation performs reasonably well in comparison with the ideal result (dashed black
lines). Note that the gate metrics given in Tab. 6.1 are almost equal to the error rates of
the processor, so the deviations between simulation and experiment are not captured by
the gate metrics (cf. also the conclusions in Section 6.4).

Adjusting the pulse parameters

Since the gates implemented by the optimized pulses for the two-transmon simulation
model perform much better, an interesting question is whether the errors can be repro-
duced solely from the unitary control errors caused by the time-dependent pulses. To
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Figure 7.5: Results for the singlet-state characterization using (a),(b) the original opti-
mized pulse parameters given in Appendix F and (c),(d) the modified pulse parameters
that have been fitted to the experimental results (see Tab. 7.1). Lines show the expecta-
tion values E01, E0, and E1 defined in Eqs. (7.8a)–(7.8c), computed using the probabilities
p(j0j1|ϑ0ϑ1) from the two-transmon simulation (cf. Section 3.4.3). In all figures, hollow
circles represent the expectation values F01, F0, and F1 obtained from experiments on
the IBM Q processor that was available on February 16, 2017 (see [Mic2017]), computed
using the relative frequencies f(j0j1|ϑ0ϑ1) given by Eq. (7.9). Dashed lines represent the
theoretical result, computed from the ideal probability distribution given by Eq. (7.7).
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7.2 Characterization of the singlet state

Table 7.1: Pulse parameters used for the simulation results shown in Fig. 7.5. The original
values represent the optimized pulses discussed in Chapter 5 (the corresponding results
are shown in Fig. 7.5(a) and (b)). They are taken from the pulse parameters given
in Tab. F.1 and Tab. F.2 in Appendix F. The fitted values result from minimizing the
objective function given by Eq. (7.10) (the corresponding results are shown in Fig. 7.5(c)
and (d)). The duration TX of the single-qubit GD pulses is the same for all gates. The
two-qubit CNOT pulse is based on the CR2 scheme (see Fig. 5.1(c)).

Pulse name Parameter Original value Fitted value

xpih-0 f0 [GHz] 5.3463 5.34647

(Ω
π/2
X )0 0.002221 0.001980

(β
π/2
X )0 [ns] 0.2309 0.2584

xpih-1 f1 [GHz] 5.1167 5.11691

(Ω
π/2
X )1 0.002269 0.002296

(β
π/2
X )0 [ns] 0.2891 0.4698

cnot-0-1 TCR [ns] 102.9746 102.9720
ΩCR 0.01111 0.00979
(Ωπ

X)C 0.004444 0.003415
(βπX)C [ns] 0.2193 0.2239

(Ω
π/2
X )T 0.002269 0.002032

(β
π/2
X )T [ns] 0.2891 0.2742

(for all pulses) TX [ns] 83 82.893

address this question, we try to fit the pulse parameters such that simulation results and
experimental results match. If this is possible, it would suggest that the errors for this
experiment are largely due to the pulses chosen to implement the gates. Otherwise, it
would point at external sources of error such as effects due to the environment or the
additional transmons and resonators on the processor (see below).

To fit the pulse parameters, we utilize the Nelder–Mead optimization method introduced
in Section 5.3.1. In every iteration, the singlet characterization is evaluated using the
current pulse parameters. The objective function used for the optimization is given by
the root mean square

√√√√ 1

3Nϑ

∑

ϑ0,ϑ1

(
(E01(ϑ0, ϑ1)− F01(ϑ0, ϑ1))2 +

∑

l=0,1

(El(ϑ0, ϑ1)− Fl(ϑ0, ϑ1))2

)
, (7.10)

where Nϑ = 16 is the number of configurations (ϑ0, ϑ1) used in the experiment. The 13
fitted pulse parameters are shown in Tab. 7.1. Most of the resulting parameters differ by
less than 10% from their respective initial values.

The performance of the singlet characterization using the fitted pulse parameters is
shown in Fig. 7.5(c) and (d). We see that applying the new pulses yields much better

151



Chapter 7 Selected quantum circuit experiments

agreement between simulation and experimental results. The expectation values E01, E0,
and E1 deviate equally strongly from the theory. This is especially true for the case
shown in Fig. 7.5(c). However, the large oscillation of E0 in Fig. 7.5(d) (yellow line) is
not present in the experimental results (yellow circles); instead, the experimental results
rather indicate a constant offset.

We can understand the cause of this large oscillation in the simulation results by inves-
tigating the corresponding pulses. As shown in Fig. 7.4, the parameters ϑ0 and ϑ1 occur
in the U1 gates. These gates are implemented by changing the phase of the following
pulses for the H gates. Specifically, they change the phase γij ∈ [0, 2π) of the microwave
pulses defined in Eq. (5.1) (see Section 5.1.1). This change would leave the state of the
system invariant if the prepared state was the singlet state given by Eq. (7.3). However, as
the pulse parameters have been modified, the logical conclusion is that a slightly different
state that is sensitive to these phases has been prepared by the pulses (cf. also the state
vector in [Mic2017] obtained from the data produced by the IBM Q processor).

In the experimental data, it is not the oscillation, but rather the almost constant offset
of E0 and E1 from 0 that stands out. This suggests that another kind of error may be
the dominant cause for the deviation from the ideal singlet expectation values.

7.2.2 Effective error model

An obvious alternative source of errors in the device is the environment which is not
included in the two-transmon system. To address this hypothesis, a simple method to
include effective environment-induced errors is provided by the theory of quantum fault
tolerance. In this formalism, errors in the system are modeled by an error channel E(ρ),
which is a linear map on the system’s density matrix ρ, i.e.

ρ 7→ E(ρ) =
∑

α

MαρM
†
α, (7.11)

where Mα are linear (Kraus) operators defining the error channel (cf. the definition of
general quantum operations in Section 2.4). The description is expressed in terms of ρ
instead of pure states |ψ〉 such that non-unitary maps are supported and damping can
be modeled. Note that the evolution of a smaller system coupled to a larger system can
always be written in the form of Eq. (7.11) if the evolution of the joint system is unitary
and the initial state of the joint system is a product state (see Eq. (2.29)).

In this section, we study separate error channels for each qubit. The simplest type of
error channels E considered in the theory of quantum fault tolerance are the so-called
depolarizing channel and the amplitude damping channel [Nie2010].

Depolarizing channel

The depolarizing channel Edep is defined as

Edep(ρ) = (1− px − py − pz)ρ+ pxσ
xρσx + pyσ

yρσy + pzσ
zρσz, (7.12)

where px, py, pz ∈ [0, 1] and px+py+pz < 1. The interpretation is that at each application
of Edep, a bit flip happens with probability px, a phase flip happens with probability pz,
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and a joint bit and phase flip happens with probability py. A depolarizing channel is
called symmetric if px = py = pz. It is worth mentioning that a symmetric depolarizing
channel for an arbitrary number of qubits n can be written as

E (sym,n)
dep (ρ) = Fρ+ (1− F )

I

2n
, (7.13)

where the parameter F ∈ [0, 1] can be interpreted as a fidelity. This channel gives rise
to a simple mixture of a uniform distribution and the quantum state ρ, which was also
considered as a model for the quantum supremacy experiment [Aru2019].

Amplitude damping channel

The amplitude damping channel Eamp is defined by the following set of Kraus operators
in the representation given by Eq. (7.11):

M0 =
√
p

(
1 0
0
√

1− γ

)
, M1 =

√
p

(
0
√
γ

0 0

)
, (7.14a)

M2 =
√

1− p
(√

1− γ 0
0 1

)
, M3 =

√
1− p

(
0 0√
γ 0

)
, (7.14b)

where p, γ ∈ [0, 1]. If p 6= 1, the channel is sometimes called generalized amplitude
damping channel as it can also excite the qubit. In general, the parameter p determines if
the energy exchange with the environment rather causes a decay (p ≈ 1) or an excitation
(p ≈ 0) of the qubit, and the parameter γ is the corresponding rate (per unit time).

Application of the effective error model

We extend the circuit given in Fig. 7.4 with a depolarizing channel after every step that
would correspond to a new pulse, and an amplitude damping channel at the end of the
circuit. A motivation to have the latter only at the end is given by the fact that energy
exchange with the environment is most likely to occur during the measurement process,
where information leaves the system and enters the environment (cf. [Jac2014; Gir2014]).
However, we also experimented with other approaches that produced only slightly worse
results. The new circuit to model effects from the environment in this simple way is shown
in Fig. 7.6.

The result of fitting the error-channel parameters px, py, pz, p, and γ for each qubit to
the experimentally observed data is shown in Fig. 7.7. We find that the effective model
can describe the observations very well. In particular, it includes the systematic zig-zag
pattern observed for E01 in the case ϑ0 = ϑ1 shown in Fig. 7.7(b). We remark that a
single bit-flip channel with px 6= 0 for qubit 0 suffices to model this behavior as well as
the reduced amplitude of E01 shown in Fig. 7.7(a). However, only the amplitude damping
channel can model the constant offset of E0 and E1 from 0.

The channel parameters resulting from the fit are given in Tab. 7.2. They can be
interpreted in the way that the control qubit 0 is more prone to bit-flip errors (0.7%),
while the target qubit 1 is rather susceptible to phase errors (0.3%). This is reasonable
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|0〉 X Edep H Edep • Edep H Edep U1(ϑ0) H Edep Eamp

|0〉 X Edep Edep Edep H Edep U1(ϑ1) H Edep Eamp

Figure 7.6: Circuit diagram for experiments on the singlet state, extended by effective
error channels to test if they can model the experimentally observed deviation from the
theoretical result (see Fig. 7.4). The depolarizing channel Edep is defined in Eq. (7.12)
and is inserted after every step that would correspond to a pulse in an implementation.
The amplitude damping channel Eamp is defined in Eqs. (7.14a) and (7.14b).
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Figure 7.7: Same as Fig. 7.5, except that E01, E0, and E1 are not obtained from the
transmon simulation, but from an ideal quantum computer simulator such as JUQCS
[DeR2019a; Wil2020a] combined with the error channels defined in Eqs. (7.12)–(7.14b).
The corresponding circuit is shown in Fig. 7.6. The parameters of the error channels are
given in Tab. 7.2.

Table 7.2: Resulting parameters (px, py, pz) of the depolarizing channel Edep defined in
Eq. (7.12) and (p, γ) of the amplitude damping channel Eamp defined in Eqs. (7.14a)
and (7.14b). The channels are added to the circuit as shown in Fig. 7.6 with the same
parameters at each step, but different parameters for different qubits.

Qubit px py pz p γ

0 0.007 0.001 0.000 0.818 0.092
1 0.001 0.001 0.003 0.980 0.053
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since for the target qubit, the phase is the most sensitive quantity for the operation of the
CNOT gate because a phase shift on the target qubit affects the pulses on both qubits
(see the occurrence of ϑT for both qubits in the echoed CR scheme in Fig. 5.3(c)). We
also see that the interaction with the environment mainly causes qubit relaxation (p ≈ 1).
The corresponding decay rates γ = 0.092 (γ = 0.053) for the control (target) qubit are
roughly compatible with the qubit relaxation times T1 of the order of 40 µs: for a single
application of Eamp over the course of the circuit in Fig. 7.6, whose execution time Texec

is a few microseconds, we have Texec/γ ≈ T1. The fact that the decay rate γ of the
control qubit is larger than that of the target qubit makes sense as the control qubit of
the CNOT gate is driven much more strongly (cf. Fig. 5.1(c)), so it is more susceptible
to energy exchange with the environment.

In conclusion, there are errors in the device that can be very well described by simple
error channels, such as the depolarizing channel and the amplitude damping channel. As
such simple error channels belong to the error model that is addressed by the theory
of quantum error correction, this suggests that error correction could work reasonably
well for the transmon architecture (see the following section). However, note also that
there are more difficult, correlated errors in the device that are very well described by the
five-transmon simulation model (see Fig. 7.3(a)). It would be interesting to see whether
the five-transmon model can also describe the experiments studied in this section better
than the two-transmon model. Initial evidence for this idea is given by the results shown
in Fig. 6.2. We leave a detailed analysis of the singlet-state characterization with the
five-transmon model for future work.

7.3 Testing quantum fault tolerance

Both simulations and experiments presented in the previous sections suggest that con-
trolling gate-based quantum computers to high accuracy is considerably difficult. For
the simulations, this is true even though the model studied in this work is inherently
quantum mechanical (see Section 3.2). The same observation is supported by many other
experiments implementing the gate-based quantum computer model [She2016a; Gam2017;
Nei2018; Mic2017; Aru2019].

The most prominent, long-term solution to this problem is proposed by the theory of
quantum error correction and fault tolerance [Sho1996; DiV1996; Got1998b; Cam2017].
The basic idea is that additional physical qubits are used to encode a smaller number of
so-called logical qubits. The logical qubits are designed to be tolerant to errors within
certain mathematical models.

Simple models consider discrete, uncorrelated errors such as spontaneous bit or phase
flips (see Eq. (7.12)), whereas more sophisticated models consider non-Markovian errors
in a general Hamiltonian framework [Ter2005; Ali2006; Ali2007; Aha2008; Ng2009]. In
these models, so-called threshold theorems are derived. They state that, if the error rates
are below a certain threshold, arbitrarily long quantum computation is possible by using
a suitable fault-tolerant protocol. As with any mathematical model, however, it is a
priori unclear if its predictions hold in practice. Specifically, it is unclear whether such a
fault-tolerant protocol systematically improves the results in an actual experiment.
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To address this question, we test a full fault-tolerant protocol explicitly designed for
small experiments [Got2016], using both the five-transmon, six-resonator model defined in
Section 3.4.5, and the 16-qubit processor ibmqx5 on the IBM Q Experience [IBM2018a].
The protocol is based on the four-qubit code [Leu1997; Vai1996; Gra1997], which has
recently also been studied in other experiments [Lin2017; Vui2018; Tak2017; Har2019].
We find that the protocol systematically improves the results in the presence of the inher-
ent control and measurement errors of the studied transmon systems. Part of the work
presented in this section has been published in [Wil2018b].

7.3.1 Fault-tolerant protocol

A fault-tolerant protocol considers the full procedure of (1) preparing a certain initial
state, (2) applying a few quantum gates to the state, and (3) measuring the result to
obtain a distribution of bit strings. For steps (1) and (2), the protocol provides a circuit
encoding to translate each bare circuit (or logical circuit) into an encoded circuit that
requires a larger number of physical qubits. Here, the term “circuit” explicitly includes
the gates used to prepare the initial state. For step (3), the fault-tolerant protocol states
how the measured bit strings, obtained by measuring the larger number of physical qubits,
are to be interpreted to obtain a distribution for the logical qubits. In particular, we
consider bare and encoded circuits for two logical qubits.

Definition of the circuit encoding

The protocol under investigation encodes two logical qubits in four physical qubits q1q2q3q4

and an additional so-called ancillary qubit q0. The code can detect an arbitrary single-
qubit error [Got2016]. Such a code is typically expressed using the notation [[4, 2, 2]],
where a code of the form [[nphy, nlog, d]] means that the code uses nphy physical qubits to
encode the state of nlog logical qubits, and the distance d includes information about the
number of errors that the code can detect or correct [Nie2010].

The logical two-qubit states of the [[4, 2, 2]] code are defined as

|00〉 = (|0000〉+ |1111〉)/
√

2, (7.15a)

|01〉 = (|1100〉+ |0011〉)/
√

2, (7.15b)

|10〉 = (|1010〉+ |0101〉)/
√

2, (7.15c)

|11〉 = (|0110〉+ |1001〉)/
√

2. (7.15d)

By linear combination, one can derive the encoded versions of other logical two-qubit
states, e.g.,

|0+〉 = (|00〉+ |01〉)/
√

2 = (|0000〉+ |1100〉+ |0011〉+ |1111〉)/2, (7.16a)

|Φ+〉 = (|00〉+ |11〉)/
√

2 = (|0000〉+ |0110〉+ |1001〉+ |1111〉)/2. (7.16b)

Using the definition of the logical two-qubit basis states given by Eqs. (7.15a)–(7.15d),
we can derive expressions for logical gates in this code. For instance, a logical bit flip on
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Table 7.3: List of the three initial states considered in this experiment. For each state,
we list the bare and encoded versions (see Eqs. (7.15a)–(7.16b)) of their preparation
circuits. The preparation of the encoded version of |00〉 requires an additional ancilla
qubit. Elementary gates are defined in Tab. B.1 in Appendix B.

State Bare version Encoded version

|00〉 q3 |0〉
q4 |0〉

q0 |0〉
q1 |0〉 •
q2 |0〉 •
q3 |0〉 H • •
q4 |0〉 •

|0+〉 q3 |0〉
q4 |0〉 H

q1 |0〉
q2 |0〉 H •
q3 |0〉 H •
q4 |0〉

|Φ+〉 q3 |0〉 H •
q4 |0〉

q1 |0〉 H •
q2 |0〉
q3 |0〉 H •
q4 |0〉

Table 7.4: List of the bare and encoded gate elements used to construct circuits to test
the fault-tolerant protocol (see Eqs. (7.17a)–(7.17f)). Elementary gates are defined in
Tab. B.1 in Appendix B.

Gate Bare version Encoded version

X1 q3 X

q4

q1 X

q2

q3 X

q4

X2 q3

q4 X

q1 X

q2 X

q3

q4

Z1 q3 Z

q4

q1 Z

q2 Z

q3

q4

Gate Bare version Encoded version

Z2 q3

q4 Z

q1 Z

q2

q3 Z

q4

HHS q3 H • H • H •
q4 H H H

q1 H

q2 H

q3 H

q4 H

CZ q3 •
q4 H H

q1 S

q2 S Z

q3 S Z

q4 S
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qubit 1, denoted by X1, has to map |0j〉 to |1j〉 and |1j〉 to |0j〉 for j = 0, 1. This is
accomplished by flipping the physical qubits q1 and q3 in Eqs. (7.15a)–(7.15d). Therefore,
we have X1 = X1X3. In the same way, we find X2 = X1X2. Similar expressions can be
derived for the logical phase flips, namely Z1 = Z1Z2 and Z2 = Z1Z3.

In addition to these single-qubit gates, we consider two particular two-qubit gates. The
first is a Hadamard gate on both logical qubits followed by swapping the qubits. This gate
is denoted by HHS. On a bare two-qubit state, such a transformation can be implemented
by the gate sequence HHS = CNOT12CNOT21CNOT12H1H2. In the code space defined
by Eqs. (7.15a)–(7.15d), this is accomplished by HHS = H1H2H3H4. Finally, we consider
the controlled-phase gate CZ. This is an entangling gate with the matrix representation
diag(1, 1, 1,−1). A bare implementation of this gate is given by CZ = H2CNOT12H2.
On the encoded states defined by Eqs. (7.15a)–(7.15d), we reach the same effect with
the gate sequence CZ = Z2Z3S1S2S3S4. In summary, we consider six logical gates whose
encoded versions are given by

X1 = X1X3, (7.17a)

X2 = X1X2, (7.17b)

Z1 = Z1Z2, (7.17c)

Z2 = Z1Z3, (7.17d)

HHS = H1H2H3H4, (7.17e)

CZ = Z2Z3S1S2S3S4, (7.17f)

where the definitions of the elementary gates on the right-hand side are given in Tab. B.1
in Appendix B.

The goal of this section is to compare bare versions of a two-qubit circuit with their
corresponding encoded versions. We consider circuits composed of one of the initial
states |00〉, |0+〉, and |Φ+〉, and an arbitrary combination of gates from the gate set
{X1,X2,Z1,Z2,HHS,CZ}. Note that this gate set is not universal, in the sense that not
all quantum algorithms can be encoded. The requirement of universality was dropped
in favor of having a full fault-tolerant protocol (including the state preparation) that is
applicable to small experiments [Got2016].

In Tab. 7.3 and Tab. 7.4, we list all gate sequences used to construct both bare and
encoded versions of the circuits. The labels qi refer to the qubit labels that are used in
the experiment below. Note that all circuits need to be expressed in terms of the gates
that are supported by the transmon architecture. Therefore, the bare version of the HHS
gate contains three CNOT gates (see Tab. 7.4). Similarly, the encoded version of the
state preparation of |00〉 requires five CNOT gates and one additional ancillary qubit
(see Tab. 7.3).

The motivation for the ancillary qubit is given in [Got2016] and is based on the simple
model of discrete, uncorrelated single-qubit errors such as spontaneous bit or phase flips.
An error within this model can be detected by the ancilla qubit being in state |1〉 or the
resulting four-qubit state having an odd parity (i.e., an odd number of 1’s), since each
four-qubit state in Eqs. (7.15a)–(7.15d) has an even parity.
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Evaluation

We consider a two-qubit circuit made from an initial state given in Tab. 7.3 and a sequence
of gates from Tab. 7.4. In what follows, we define p

(id)
j0j1

to be the probability distribu-
tion of two-bit strings j0j1 as computed by an ideal gate-based quantum computer (see

Chapter 2). This distribution is compared to the distributions p
(bare)
j0j1

and p
(enc)
j0j1

, which are
obtained from the evaluation of the bare and encoded version of the circuit as follows.

The evaluation of the bare version of the circuit using the two qubits q3q4 is straightfor-
ward: In the experiment, we execute the circuit a certain number of times (typically 8192)
and count the number nj0j1 of measured bit strings j0j1. We then obtain a distribution of

relative frequencies p
(bare)
j0j1

= nj0j1/8192. In the simulation, we directly obtain the proba-
bilities p

(bare)
j0j1

= |〈m3 = j0,m4 = j1|Ψ〉|2 from the state vector |Ψ〉 given by Eq. (3.23).
For the encoded version of the circuit, the distribution p

(enc)
j0j1

is constructed by evaluating
the data as dictated by the fault-tolerant protocol: Since the encoded circuit involves five
physical qubits, a measurement of all qubits at the end of the circuit produces five bits.
If the bit corresponding to the ancilla q0 is 1, or if the four-bit string corresponding
to q1q2q3q4 has an odd parity (i.e., one or three 1’s), the run is discarded. Otherwise,
we can map the resulting four-bit string to a logical two-qubit state |j0j1〉 using Eqs.
(7.15a)–(7.15d). By counting all these mapped two-bit strings, we generate the frequency

distribution p
(enc)
j0j1

.
The step of systematically discarding some of the measured bit strings is called postse-

lection procedure. The corresponding ratio of bit strings that are not discarded is called
the postselection ratio r. Note that the essential idea of fault-tolerant protocols based on
postselection is that the postselection procedure is systematic. In other words, it is not
required to know the ideal, theoretical result of the quantum circuit in order to perform
the postselection procedure. Instead, the protocol provides a fixed set of rules (such as
“q0 is 1” or “q1q2q3q4 has an odd parity”) that can be checked for the measured bit string
to see whether it should be discarded. See Tab. 7.5 below for an example application of
the postselection procedure.

To compare the performance of the bare and encoded circuits, we compare the resulting
distributions p

(bare/enc)
j0j1

to the ideal distribution p
(id)
j0j1

by means of the statistical distance
(cf. Eq. (6.22)),

Dbare/enc =
1

2

∑

j0j1

∣∣∣p(bare/enc)
j0j1

− p(id)
j0j1

∣∣∣ . (7.18)

To distinguish between simulation and experimental results, we use the notations D
(sim)
bare/enc

and D
(exp)
bare/enc, respectively. Note that from the transmon simulator, we can directly obtain

the probabilities p
(bare/enc)
j0j1

from the distribution defined by the state vector |Ψ〉, so the
intermediate step of sampling and counting the outcomes is omitted.

7.3.2 Test systems and circuits

To test the fault-tolerant protocol, the performance of bare and encoded circuits needs
to be compared for a representative set of circuits. We generate such a representative set
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by applying the procedure defined in [Got2016] using the maximum logical circuit length
T = 10, the repetition parameter RP = 6, and the periodicity P = 3. We obtain a total
of 465 circuits, composed of 155 logical gate sequences from Tab. 7.4 for each of the three
initial states given in Tab. 7.3. A list of all circuits is given in Listing 7.1, sorted by the
total time required for the simulation of all underlying quantum gate pulses.

Listing 7.1 Definition of all 465 = 3×155 circuits used to test the fault-tolerant protocol,
generated according to the procedure specified in [Got2016]. Each of the 155 lines consists
of an ID (red), a sequence of logical gates from Tab. 7.4 (blue), and a placeholder for
the three initial states |i> ∈ {|00〉 , |0+〉 , |Φ+〉} (see Tab. 7.3). The circuits are sorted

in ascending order by the total time T
|00〉
bare ∈ [0, 10 µs] required for simulating the time

evolution of all pulses for the bare version corresponding to the initial state |00〉 (cf.
Section 5.4).
0 |i> 52 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i> 104 Z2 X1 Z2 X2 CZ HHS CZ |i>

1 Z2 |i> 53 Z1 Z1 X2 X2 Z1 Z1 X2 X2 |i> 105 HHS CZ X2 CZ |i>

2 Z2 Z2 |i> 54 X2 X1 CZ X1 |i> 106 X1 Z2 HHS CZ CZ |i>

3 Z2 Z2 Z2 |i> 55 X1 X1 X1 X1 X1 |i> 107 HHS X2 Z2 CZ CZ |i>

4 Z2 Z2 Z2 Z2 |i> 56 X2 Z1 X2 Z1 X2 Z1 X2 Z1 X2 Z1 |i> 108 Z2 CZ X1 HHS X1 CZ |i>

5 Z2 Z2 Z2 Z2 Z2 |i> 57 Z2 CZ X2 X2 X1 Z1 |i> 109 Z2 X1 Z1 Z1 CZ Z1 X2 Z1 HHS CZ |i>

6 Z2 Z2 Z2 Z2 Z2 Z2 |i> 58 Z1 X2 Z2 CZ X2 X1 X1 |i> 110 CZ CZ CZ CZ CZ |i>

7 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i> 59 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 |i> 111 X2 CZ HHS X2 CZ Z2 |i>

8 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i> 60 X1 X1 X1 X1 X1 X1 |i> 112 X2 X1 CZ HHS CZ Z1 Z1 X1 X2 Z2 |i>

9 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i> 61 X2 X2 X2 X2 X2 X2 |i> 113 HHS HHS X2 |i>

10 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 |i> 62 CZ CZ |i> 114 Z1 HHS HHS X2 |i>

11 Z1 Z2 |i> 63 X1 X1 X1 X1 X1 X1 X1 |i> 115 X1 HHS X1 HHS |i>

12 Z1 Z2 Z1 Z2 |i> 64 CZ CZ X1 |i> 116 X2 Z2 HHS X2 Z2 HHS |i>

13 Z1 Z2 Z1 Z2 Z1 Z2 |i> 65 X1 CZ Z2 X1 CZ Z2 |i> 117 X2 HHS Z2 Z2 X2 HHS Z2 Z2 |i>

14 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i> 66 CZ Z2 Z1 Z2 X1 CZ X2 |i> 118 Z1 Z2 Z1 HHS X1 Z1 Z2 Z1 HHS X1 |i>

15 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 |i> 67 CZ CZ X2 |i> 119 Z1 Z2 X2 Z1 HHS Z1 Z2 X2 Z1 HHS |i>

16 Z2 Z1 |i> 68 X1 X1 X1 X1 X1 X1 X1 X1 |i> 120 CZ CZ CZ CZ CZ CZ |i>

17 Z2 Z1 Z2 Z1 |i> 69 X2 X2 X2 X2 X2 X2 X2 X2 |i> 121 CZ CZ X1 CZ CZ X1 CZ CZ X1 |i>

18 Z2 Z1 Z2 Z1 Z2 Z1 |i> 70 HHS |i> 122 HHS X1 Z2 X1 Z2 HHS X1 Z2 X1 Z2 |i>

19 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i> 71 HHS Z1 |i> 123 Z2 Z1 HHS HHS X2 X1 Z2 CZ |i>

20 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 Z2 Z1 |i> 72 Z1 Z2 CZ CZ X1 X1 X2 X2 |i> 124 CZ X1 Z2 HHS X2 X1 Z1 Z1 HHS |i>

21 Z1 |i> 73 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i> 125 CZ CZ X2 CZ CZ X2 CZ CZ X2 |i>

22 X2 Z1 |i> 74 X1 HHS |i> 126 X1 X1 X1 HHS Z2 X1 X1 X1 HHS Z2 |i>

23 X1 |i> 75 X2 Z2 HHS |i> 127 CZ CZ CZ CZ CZ CZ CZ |i>

24 Z1 Z1 X1 |i> 76 X2 HHS Z2 Z2 |i> 128 HHS CZ HHS CZ |i>

25 Z2 Z1 X2 Z2 |i> 77 Z1 Z2 Z1 HHS X1 |i> 129 Z1 CZ Z1 Z2 HHS Z1 CZ Z1 Z2 HHS |i>

26 Z2 X1 Z2 X2 |i> 78 Z1 Z2 X2 Z1 HHS |i> 130 HHS CZ X2 HHS X1 X1 Z1 X1 X2 |i>

27 Z2 X2 Z1 |i> 79 HHS X1 Z2 Z2 |i> 131 HHS CZ HHS X2 CZ |i>

28 X2 |i> 80 Z2 Z2 Z2 X2 Z1 CZ CZ Z2 X2 X2 |i> 132 HHS HHS HHS Z1 |i>

29 X1 X1 |i> 81 X1 X1 X1 X1 X1 X1 X1 X1 X1 X1 |i> 133 X2 Z2 Z1 HHS Z1 HHS HHS |i>

30 X2 X2 |i> 82 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 |i> 134 CZ HHS X1 Z2 X2 X2 X2 Z2 HHS CZ |i>

31 X2 Z1 X2 Z1 |i> 83 CZ CZ CZ |i> 135 CZ CZ CZ CZ CZ CZ CZ CZ |i>

32 Z1 Z1 X1 Z1 Z1 X1 |i> 84 HHS X2 X2 Z2 Z2 X1 X1 |i> 136 X1 HHS X1 HHS X1 HHS |i>

33 Z1 X2 X2 |i> 85 X1 CZ Z2 X1 CZ Z2 X1 CZ Z2 |i> 137 X2 Z2 HHS X2 Z2 HHS X2 Z2 HHS |i>

34 Z2 Z1 X2 Z2 Z2 Z1 X2 Z2 |i> 86 HHS X1 Z2 X1 Z2 |i> 138 Z1 X2 HHS CZ X1 HHS CZ CZ X1 X1 |i>

35 Z2 X1 Z2 X2 Z2 X1 Z2 X2 |i> 87 Z1 Z2 X1 Z1 HHS X2 |i> 139 CZ CZ CZ CZ CZ CZ CZ CZ CZ |i>

36 Z1 Z1 X2 X2 |i> 88 HHS X1 X2 X1 X2 Z2 Z1 X1 |i> 140 X1 X1 HHS Z2 HHS HHS X2 Z2 CZ |i>

37 X1 X2 X1 |i> 89 X1 X1 X1 HHS Z2 |i> 141 X1 CZ HHS CZ HHS Z1 CZ CZ X2 |i>

38 Z1 X2 Z1 X2 X1 Z1 |i> 90 HHS CZ |i> 142 X1 Z2 HHS CZ CZ X1 Z2 HHS CZ CZ |i>

39 X1 X1 X1 X2 X2 Z2 |i> 91 Z1 CZ Z1 Z2 HHS |i> 143 CZ Z2 HHS Z2 HHS CZ Z2 HHS |i>

40 X2 Z1 X2 Z1 X2 Z1 |i> 92 HHS Z2 CZ Z1 |i> 144 HHS CZ X2 CZ HHS CZ X2 CZ |i>

41 Z1 Z1 X1 Z1 Z1 X1 Z1 Z1 X1 |i> 93 X2 Z2 HHS CZ |i> 145 CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ |i>

42 X1 X1 X1 |i> 94 Z1 HHS CZ X2 Z2 |i> 146 HHS CZ HHS CZ HHS CZ |i>

43 X1 X2 X1 X2 X1 |i> 95 X2 Z2 Z1 HHS CZ |i> 147 HHS HHS X2 HHS HHS X2 |i>

44 CZ |i> 96 CZ X2 CZ CZ X2 X2 Z2 Z2 |i> 148 Z1 HHS HHS X2 Z1 HHS HHS X2 |i>

45 CZ Z2 |i> 97 CZ CZ CZ CZ |i> 149 X2 CZ HHS HHS HHS Z2 CZ CZ Z1 |i>

46 Z2 Z1 CZ |i> 98 Z1 X2 Z1 HHS CZ Z2 Z2 X2 |i> 150 X1 HHS X1 HHS X1 HHS X1 HHS |i>

47 CZ Z2 Z1 Z2 |i> 99 Z2 HHS CZ X2 X2 Z1 Z2 X1 X1 |i> 151 HHS CZ HHS CZ HHS CZ HHS CZ |i>

48 X1 CZ Z2 |i> 100 CZ CZ X1 CZ CZ X1 |i> 152 X1 HHS X1 HHS X1 HHS X1 HHS X1 HHS |i>

49 Z2 Z1 X1 Z2 CZ |i> 101 X2 HHS Z1 X1 X2 CZ X2 |i> 153 HHS HHS X2 HHS HHS X2 HHS HHS X2 |i>

50 X1 X1 X1 X1 |i> 102 CZ CZ HHS |i> 154 HHS CZ HHS CZ HHS CZ HHS CZ HHS CZ |i>

51 X2 X2 X2 X2 |i> 103 CZ CZ X2 CZ CZ X2 |i>

We test the fault-tolerant protocol using both the transmon simulator and a real quan-
tum processor on the IBM Q Experience [IBM2016]. For the simulation, we use the large
five-transmon system defined in Section 3.4.5. The topology is sketched in Fig. 3.5. The
qubit labels q0q1q2q3q4 given in this figure are the same that are used to define the circuit
components in Tab. 7.3 and Tab. 7.4. Note that the resonator r5 from q4 to q0 has been
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added to the simulation model to also permit the implementation of the state prepara-
tion of the encoded state |00〉 given in Tab. 7.3. All simulations were performed on the
supercomputers JURECA [Jül2018] and JUWELS [Jül2019].

For the real quantum processor, we use five qubits from the 16-qubit processor ibmqx5

[IBM2018a]. The qubit mapping with respect to the circuit elements shown in Tab. 7.3
and Tab. 7.4 is q0q1q2q3q4 7→ Q4Q3Q2Q15Q14, where q0 = Q4 is the ancillary qubit. This
five-qubit subset of the 16-qubit device is also indicated in the topology graph of the
simulation model in Fig. 3.5. Note that the resonator r5 in this figure does not exist
in the real device. Therefore, the encoded version of the initial state |00〉 in Tab. 7.3
cannot be performed on the real device. This means that only 5/6 of all experiments
defined below can be executed on the processor (the 6 coming from 3 initial states times
2 circuit versions). The idea is that, if simulation and experiment agree for these 5/6
of all experiments, an extrapolation of the simulation results for the remaining 1/6 of
the experiments may give an estimate for the performance on a potentially new quantum
processor on which the additional connection between the two qubits would exist.

7.3.3 Results

For each of the 465 circuits given in Listing 7.1, we execute the corresponding bare and
encoded versions. This defines a total of 930 experiments that are both simulated and run
on the ibmqx5 processor. We evaluate the statistical distances Dbare/enc (see Eq. (7.18))
between the obtained distributions and the ideal probability distributions. All results are
summarized in Fig. 7.8.

Figure 7.8(a) shows the statistical distances D
(sim)
bare/enc obtained from the transmon

simulation model specified in Section 3.4.5 using the pulses with frequency tuning de-
fined in Tab. F.5 and Tab. F.6 (results for pulses without frequency tuning are given in
[Wil2018b]). As indicated in this figure, the longest time evolution takes approximately
10 µs. We see that for most of the 465 circuits, the encoded version performs better than
the bare version, especially for longer time evolutions.

However, a particular exception stands out: In the left panel of Fig. 7.8(a), three
encoded circuits (shown as green crosses) with circuit IDs (40, 52, 56) and pulse du-

rations T
|00〉
bare ∈ (0.48 µs, 0.64 µs, 0.80 µs) have a significantly higher statistical distance

than the corresponding bare circuits. Listing 7.1 shows that these circuits correspond to
(X2 Z1)w |00〉 where w ∈ (3, 4, 5). For the bare version, such a circuit basically resembles
the repeated application of Xπ pulses studied in Section 6.2. The reason for this is that
the Z1 gate needs no pulse but only affects the VZ phase of qubit 1 (cf. Section 5.1.1).
Therefore, from the results shown in Fig. 6.1(a), we can expect a reasonably good perfor-
mance for the bare version. The encoded version, however, requires the complicated state
preparation of |00〉 (see Tab. 7.3). Furthermore, each X2 = X1X2 gate requires two Xπ

pulses (see Tab. 7.3), whose phases γ change by π because of the intermediate Z1 = Z1Z2

gates (cf. Section 5.1.1). The fact that we do not see this effect for the encoded circuit

X2
4 |00〉 with ID 51 implies that it is indeed the different phases that cause the deviation.

Apparently, this leads to a significant phase error for the encoded circuit that cannot be
detected by postselection anymore. The most severe case with ID 56 can also be seen
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Figure 7.8: Test of the fault-tolerant protocol using (a) the transmon simulation model
defined in Section 3.4.5; (b) the same model with an additional measurement error of
ε = 0.08 (cf. Eq. (7.19)); (c) the ibmqx5 [IBM2018a] on April 19, 2018; (d) the ibmqx5

on April 20, 2018. Shown are the statistical distances Dbare for the bare circuits (yellow
triangles) and Denc for the encoded circuits (green crosses) as defined in Eq. (7.18), as well
as the corresponding postselection ratios r (blue circles). The three panels in each row
correspond to the three initial states in Tab. 7.3 (the left panels in (c) and (d) only contain
data for the bare circuits because the encoded circuits for the initial state |00〉 cannot be
run on the ibmqx5). The circuit IDs on the bottom axis are defined in Listing 7.1. They

are sorted by the total time T
|00〉
bare required to simulate all pulses of the bare circuits for

the initial state |00〉 (some representative time scales are indicated on the top axis).
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7.3 Testing quantum fault tolerance

for the initial state |Φ+〉 in the right panel of Fig. 6.1(a). Still, it is remarkable that the
encoded circuits perform so much better in all the other cases, even though the state
preparations in Tab. 7.3 (especially that for |00〉) are much more involved.

In the simulations, we obtain the distributions p
(bare/enc)
j0j1

for Eq. (7.18) directly from
the state vector |Ψ〉 given by Eq. (3.23). In particular, this means that no measurement
error is included in the simulations. To understand the effect of measurement errors on
the fault-tolerant scheme, we consider the simple model that for each qubit, a 0 (1) is
mistakenly counted as a 1 (0) with probability ε. For a distribution pJ of n-bit strings
J = j0j1 · · · jn−1, this model is implemented by the transformation

pJ 7→
2n−1∑

J ′=0

pJ ′ε
∆(J,J ′)(1− ε)n−∆(J,J ′), (7.19)

where ∆(J, J ′) is the Hamming distance between J and J ′, i.e., the minimum number
of bits that must be flipped to achieve J = J ′. We have n = 2 in the bare case and
n = 5 in the encoded case. Technically, a measurement error according to Eq. (7.19)
can be interpreted as a depolarizing channel (see Eq. (7.12)) immediately before the
measurement.

Figure 7.8(b) shows the effect of adding a measurement error of ε = 0.08 to the simu-

lation results from Fig. 7.8(a). The overall effect is that the statistical distances D
(sim)
bare/enc

increase, but those of the bare circuits increase more than those of the encoded circuits.
Thus, measurement errors of this sort can be detected and mitigated using the fault-
tolerant scheme, which is also reflected by an overall decrease in the postselection ratios
in Fig. 7.8(b). However, note that the particular family of encoded circuits (X2 Z1)w

discussed above still stands out by performing worse than the corresponding unencoded
circuits.

In Fig. 7.8(c), we present results obtained from running the fault-tolerance test on
the ibmqx5 [IBM2018a] on April 19, 2018. For the bare versions, all 465 circuits given
in Listing 7.1 can be executed. For the encoded versions, 155 out of the 465 circuits
(corresponding to the initial state |00〉) cannot be executed, since the resonator r5 in
Fig. 3.5 does not exist in the device. Therefore, the left panel of Fig. 7.8(c) only shows
results for the bare circuits.

We see that using the fault-tolerant protocol systematically improves the results. Fur-
thermore, we find good qualitative agreement between experiment and simulation. Ex-
trapolating the simulation results suggests that encoded circuits for the initial state |00〉
would perform similarly well if the device were extended by the appropriate connection.

We repeated the experiments on the ibmqx5 several times. Most of the time, the results
were of the type shown in Fig. 7.8(c). However, the fault-tolerance test was not successful
every time we ran the experiment. One such result from April 20, 2018 is shown in
Fig. 7.8(d). As one can see, many of the encoded circuits for the initial state |Φ+〉 (right
panel of Fig. 7.8(d)) have unusually high statistical distances and low postselection ratios.
We examined the corresponding calibration parameters and found that qubits Q14 and
Q15 had higher readout errors around 12%. Typically, the reported readout errors are
between 4% and 10%. However, this alone cannot explain the high error rates observed
in the experiment.
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Table 7.5: Evaluation of the data for bit strings produced by the 16-qubit processor ibmqx5
[IBM2018a] for the encoded circuit Z24 |Φ+〉. The circuit has ID 4 in Listing 7.1 and the
result corresponds to one of the leftmost green crosses on the right panels in Fig. 7.8(c)
and (d). Shown are the 20 most frequent outcomes for the experiment on April 19 (left)
and April 20 (right), sorted by relative frequency. To demonstrate the postselection
procedure, discarded bit strings are highlighted in red, with the reason given in the third
column. Bit strings that are not discarded are highlighted in blue. The qubit mapping on
the device is q0q1q2q3q4 7→ Q4Q3Q2Q15Q14, where q0 = Q4 is the ancillary qubit (see also
Fig. 3.5). As this data reveals, a hardware fault apparently caused a bit flip of qubit Q2

or Q15 with very high probability on April 20 such that the four most frequent outcomes
are erroneously discarded.

April 19, 2018 April 20, 2018

Outcome Frequency Counted as Outcome Frequency Counted as

0 0000 0.163 |00〉 0 0100 0.167 (odd parity)

0 1001 0.161 |11〉 0 1011 0.166 (odd parity)

0 0110 0.130 |11〉 0 0010 0.160 (odd parity)

0 1111 0.123 |00〉 0 1101 0.153 (odd parity)

0 0010 0.061 (odd parity) 0 1100 0.054 |01〉
0 1011 0.053 (odd parity) 0 1010 0.051 |10〉
0 0100 0.050 (odd parity) 0 0011 0.043 |01〉
0 1101 0.049 (odd parity) 0 0000 0.043 |00〉
0 1000 0.037 (odd parity) 0 0101 0.038 |10〉
0 0001 0.025 (odd parity) 0 1001 0.037 |11〉
0 1110 0.023 (odd parity) 0 1000 0.014 (odd parity)

0 1010 0.021 |10〉 0 0110 0.011 |11〉
0 1100 0.019 |01〉 0 0001 0.010 (odd parity)
0 0111 0.018 (odd parity) 1 0010 0.009 (wrong ancilla)

0 0011 0.012 |01〉 0 1111 0.009 |00〉
0 0101 0.012 |10〉 1 0100 0.006 (wrong ancilla)
1 0000 0.008 (wrong ancilla) 1 1011 0.006 (wrong ancilla)
1 1001 0.006 (wrong ancilla) 1 1101 0.005 (wrong ancilla)
1 1111 0.006 (wrong ancilla) 0 1110 0.004 (odd parity)
1 0110 0.006 (wrong ancilla) 0 0111 0.002 (odd parity)
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Therefore, we take a closer look at the data. Table 7.5 shows results obtained for the
encoded circuit Z24 |Φ+〉 corresponding to ID 4 in Listing 7.1. The table shows the most
frequent five-bit strings obtained on April 19 (left) and April 20 (right). After evaluating
the data using the postselection procedure illustrated in the table, we obtain the frequency
distributions p

(enc)
j0j1

, which are used to evaluate the statistical distance D(exp)
enc given by

Eq. (7.18). On April 19, we obtained D(exp)
enc ≈ 0.10 (shown as one of the first green

crosses in the right panel of Fig. 7.8(c)). On April 20, however, we found D(exp)
enc ≈ 0.65,

which corresponds to the much worse result for ID 4 in the right panel of Fig. 7.8(d).
Table 7.5 reveals the reason for this: on April 20, the four most frequent bit strings

were discarded due to an odd parity. In other words, they cannot be assigned to one
of the logical basis states given by Eqs. (7.15a)–(7.15d). If one of the central two bits
corresponding to qubit Q2 and Q15 were flipped, however, the result would be almost
the same as on April 19. It seems that a hardware fault caused a bit flip of qubit Q2

or Q15 with very high probability on April 20. Apparently, this systematic error cannot
be corrected by the fault-tolerant protocol. We remark that, although reproducible, this
problem occurred only in a minority of all runs on the IBM Q processor.

In conclusion, we find that the fault-tolerant protocol provides a systematic procedure
to improve the results by encoding a logical state redundantly in a larger number of
physical qubits. This is remarkable because the errors in the transmon simulation model
and in the real device are not at all guaranteed to be of the simple type assumed in the
design of the protocol (see, for instance, Fig. 7.3(a)). Especially, the long circuit used
to encode the initial state |00〉 (see Tab. 7.3) might have seemed unlikely to improve the
results. However, we also see that all encoded gate elements used in the scheme do not
require two-qubit gates (see Tab. 7.4). Instead, these more error-prone gates (cf. Figs. 6.1
and 6.2) occur only in the initial state preparation of a circuit. This design feature may
provide an alternative explanation why the particular protocol under investigation can
improve the results. Furthermore, in [Wil2018b], we also studied the performance of the
fault-tolerant protocol in the presence of an environment (see also the model studied in
Section 4.3). These results suggest that the scheme does not provide significant improve-
ments when the errors are dominated by decoherence, and a related conclusion was drawn
for existing stabilizer codes in [Nau2018]. Nevertheless, as long as the errors in quantum
information processors are dominated by the inherent control and measurement errors in
transmon systems, our results suggest that the performance of a quantum computer can
be systematically improved by using an appropriate fault-tolerant protocol.

7.4 Conclusions

The purpose of the first experiment studied in this chapter was to observe crosstalk ef-
fects, predicted by the transmon simulator, in an IBM Q processor. We designed a class
of circuits for this purpose (see Fig. 7.1), inspired by the state-dependent frequency shifts
observed in previous simulations (see Fig. 4.11 and the fifth row in Tab. 6.6). The five-
transmon simulation results and experimental results from the ibmqx4 [IBM2018b] showed
almost perfect agreement for time evolutions up to several microseconds (see Fig. 7.3).
We also observed that these effects are generic for the transmon architecture in the sense
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Chapter 7 Selected quantum circuit experiments

that they did not depend on the exact values of the device parameters. Moreover, the
simulation results suggested that the effects can be systematically reduced or enhanced,
which was also confirmed by the experiment (see Fig. 7.3(b)). This observation suggests
that the correlated crosstalk errors inherently included in the full dynamics of the sim-
ulated transmon system (see Fig. 7.2) are a very good model for the errors in the real
processor.

For a set of experiments on the singlet state, we addressed the question if the errors
previously observed for a five-transmon processor [Mic2017; Wil2017] can be described
purely in terms of miscalibrated pulses for a simulated two-transmon system. To a certain
extent, this was possible (see Fig. 7.5), but the two-transmon model does not seem to be
capable of describing all deviations from the ideal result. It would be interesting to see
if a more extensive analysis using the five-transmon simulation is more appropriate, as
indicated by previous results given in Figs. 6.2 and 7.3. However, in this case, we found
that simple error channels such as a depolarizing channel and an amplitude damping
channel offer a much simpler way of describing the observed results (see Fig. 7.7).

Finally, we tested a full protocol from the theory of quantum fault tolerance, moti-
vated by the observation that simple error channels could describe the errors seen in the
singlet-state experiment (cf. Fig. 7.7). The extensive test comprised a total of 930 quan-
tum circuits that were both simulated using the large five-transmon system defined in
Section 3.4.5 and run on the processor ibmqx5 [IBM2018a]. An analysis of the exper-
imental results revealed a systematic hardware fault in the processor during some runs
(see Tab. 7.5). Most of the time, however, we observed that the fault-tolerant protocol
provides a systematic procedure to improve the results. As this was true for both simula-
tions and experiments (see Fig. 7.8(a)–(c)), we conclude that the fault-tolerant protocol
systematically improves the quantum computer’s performance if the errors are due to the
intrinsic control and measurement errors present in transmon systems.

Given the general qualitative and often also quantitative agreement between transmon
simulation and experiment, we can conclude that the IBM Q processors have been en-
gineered very carefully to implement the quantum theoretical model of superconducting
transmon systems. It is interesting to see if further development of the processors can
also bring them sufficiently close to an implementation of the computational model of an
ideal gate-based quantum computer.
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Discussion and conclusion

The goal of this project was to develop a transmon simulator that utilizes the resources
of digital supercomputers to study the emerging technology of transmon quantum com-
puters. NISQ devices of this architecture are currently built by several companies such as
IBM [IBM2016], Google [Aru2019], and Rigetti Computing [Rig2017]. We designed and
implemented a simulation algorithm that computes the real-time dynamics of a system
of transmons and couplers by solving the time-dependent Schrödinger equation (TDSE)
for a generic model Hamiltonian representing the quantum computing hardware.

The model features an arbitrary number of transmons and resonators, as well as time-
dependent pulses used to implement quantum gates on the qubits. Furthermore, we
described a way to simulate electromagnetic environments with the model, together with
a systematic procedure to extract suitable model parameters from experiments or elec-
tromagnetic solvers. The numerical algorithm used to solve the TDSE is unconditionally
stable [DeR1987] and can be used to obtain the dynamics for several hundred microsec-
onds on a sub-picosecond scale. In principle, the size of the model is only limited by
the available computational resources on the supercomputer. In this work, we presented
results for the simulation of up to 16 transmons and resonators, described by more than
four billion complex coefficients.

We used simulations of free time evolutions to benchmark the simulation algorithm and
found excellent weak and strong scaling on the supercomputer JURECA [Jül2018]. By
studying the algorithm’s accuracy, we demonstrated that recently proven error bounds
for the product-formula algorithm [Wil2020d] are tight.

The simulation approach inherently includes effects beyond the ideal gate-based quan-
tum computer model, such as leakage to higher, non-computational states, crosstalk be-
tween the transmons, entanglement between transmons and resonators, and control errors
through imperfect pulses applied to the system. All of these effects are known to be lim-
iting factors in current transmon architectures [Woo2018; The2018; Aru2019].

Additionally, we performed experiments on real transmon devices available on the IBM
Q Experience [IBM2016]. As the size of these NISQ devices is in the range of what
can be simulated on the supercomputers JURECA [Jül2018] and JUWELS [Jül2019], it
was possible to relate the simulation results directly to data obtained from real quantum
processors.
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Chapter 8 Discussion and conclusion

Relation to perturbative results, master equations, and experiments

We investigated known perturbative results for the model and found that, while they
provide a simple, effective description of the system, they develop a drift in time that
makes them unsuitable for pulse optimizations. By simulating the dynamics of a transmon
system coupled to a bath of harmonic oscillators, we observed a transition from TDSE-
based approaches to a Lindblad master equation, with the result that the latter can be
an adequate, effective description under certain conditions. Finally, we characterized the
resonator-mediated exchange interaction between transmons and found that it is well
described by an appropriate ZZ interaction on a two-qubit subspace. We demonstrated
that the strength of this interaction can be accurately determined from simulated time
evolutions or experiments such as gate set tomography.

Characterizing and predicting the performance of optimized quantum gates

By studying an optimization procedure for the pulses used to implement quantum gates,
we found that the Nelder–Mead method is a suitable candidate to obtain pulse parameters
that have error rates of the same magnitude as those reported in experiments. In fact,
the pulses used for the transmon simulator were often found to perform better in actual
applications. This was especially true for two variants (CR1 and CR4) of the echoed
cross-resonance pulse (CR2) that is routinely used to implement the two-qubit CNOT
gate [IBM2016].

We proved two statements to relate the average gate fidelity [Nie2002] to more sophis-
ticated gate metrics such as the diamond distance [Kit1997]. Unlike previous results,
the relations also apply to trace-decreasing quantum operations, which are relevant for
transmon systems where leakage is an important limitation. We found that the gate met-
rics provide useful information about the amount of leakage and the accuracy of a single
application of a quantum gate pulse.

However, none of these gate metrics was found to be suitable for predicting the perfor-
mance of repeated pulse applications in actual quantum algorithms. We observed several
cases with poor gate metrics and exceptional performance, as well as almost ideal gate
metrics but bad performance in practical applications (see also [Wil2017; McK2019]).
Only the diamond distance turned out to provide an upper bound on the observable sta-
tistical distance, and even in this case, the diamond distance also needed to be evaluated
for repeated pulse applications.

As an alternative to the common gate metrics, we extensively studied the approach of
gate set tomography to characterize quantum gates. Gate set tomography requires only
the observable relative frequencies from experiments, and we found that especially the
completely positive trace-preserving estimates have an exceptional predictive power for
the performance of quantum gates in actual applications.
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Crosstalk, effective error models, and quantum fault tolerance

We studied a family of quantum circuits designed to probe crosstalk between transmon
qubits. We found that the time evolution predicted by the transmon simulator was
in excellent agreement with experimental results obtained from the processor ibmqx4

[IBM2018b], suggesting that the simulation model provides a very good description of the
errors present in the device.

For a class of quantum circuits designed to characterize the singlet state, we found that
the deviations from the ideal result are most likely not caused by miscalibrated pulses.
However, the deviations could be well described in terms of simple error channels from
the theory of quantum fault tolerance.

This motivated us to perform an extensive test of a fault-tolerant protocol [Got2016].
Although the protocol cannot correct decoherence errors [Wil2018b], both simulations and
experiments on the ibmqx5 [IBM2018a] suggest that the protocol systematically improves
the quantum computer’s performance in the presence of control and measurement errors
characteristic of the transmon architecture.

Outlook

Many scenarios studied in this work reflect the empirical observation that engineering
accurate gate-based quantum computers is remarkably difficult. It is important that
detailed simulations such as those presented in this thesis are continuously carried out to
understand limitations and find potential ways to overcome systematic errors. There are
many interesting paths along which the present work can be continued:

• Environment simulations: In its current form, the model Hamiltonian defined in
Section 3.2 supports a bath of harmonic oscillators. This is a bosonic bath that can
be used to model electromagnetic environments using the procedure described in
Section 3.5. It would be interesting to extend the formalism to multiple transmons
by following [Nig2012; Ans2019]. Also, the bath simulations can be extended as
described in Section 4.3.3. In particular, it would be interesting to analyze the
consequences of replacing the bosonic bath with a fermionic bath or a spin bath as
studied in [Wil2018b; Wil2020d; Wil2020e].

• Pulse optimization: The problem of finding optimal pulses to implement quan-
tum gates is an area of active research. With the success of advanced machine
learning techniques such as deep reinforcement learning (see Section 5.5), it would
be interesting to find and investigate new pulses using these approaches as done in
[Niu2019; An2019]. Also, IBM has recently introduced OpenPulse [McK2018], by
which new pulses studied with the transmon simulator (such as the CR variants in
Fig. 5.1) can directly be executed on the device. It would be compelling to use this
interface to compare pulses for the transmon simulator directly with experiments
on the real device.

169



Chapter 8 Discussion and conclusion

• Modeling experiments: For some of the experiments studied in this project,
minor differences between simulation and experiment were still observable. Future
work could go into understanding these differences in detail. For instance, the tiny
oscillations on the black curve in Fig. 7.3(a) appear to be smoothed out in the
experiment, which may be understood by adding an environment to the simulation
in the sense of Section 3.5 or Fig. 4.9. Also, it would be interesting to see if a five-
transmon simulation for the singlet experiment can describe the deviations better
than the two-transmon simulation (see Fig. 7.5). A completely different approach
would be to study classical models of quantum information devices (see [Bla2016;
Iva2018]) and to understand in which respect their descriptive power differs from
the quantum theoretical model used in this work.

• Extending the simulation algorithm: A promising direction would be to extend
the simulation model with time-dependent magnetic fluxes to include flux-tunable
transmons. This would require modifications to the numerical algorithm described in
Section 3.3 and enable the simulation of transmon systems controlled by high-speed
flux lines [Rot2017] as pursued by the European FET Flagship project OpenSuperQ
[Ope2018]. Research efforts in this direction are currently underway.
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Appendix A: Visualization of quantum gate implementations

Appendix A

Visualization of quantum gate implementations

In Fig. A.1, we show a screenshot of the scene rendered by visualizer (see Section 3.3.3)
using the C++ engine Irrlicht [Geb2005]. The scene is generated from time-evolution data
of the five-qubit transmon system used to study repeated gate applications in Section 6.2.
It shows the final state after applying two successive X gates on each of the qubits.
Although the gate sequence should technically compose an identity operation, one can
see that the Bloch vectors are not perfectly straight, despite excellent gate metrics of the
X gate pulses (especially for X

π/2
3 , see Tab. 6.2).

Figure A.2 shows a selection of visualizations resulting from the simulation of a quantum
circuit with random gates from the standard gate set (cf. Appendix B) at three differ-
ent points in time using a five-transmon simulation (first row) and the ideal quantum
computer simulator JUQCS [DeR2019a; Wil2020a] (second row). The particular circuit
reveals how crosstalk results in state-dependent frequencies, inducing phase errors that
can dramatically increase the error in the system’s output distribution in certain cases
(see also Fig. 7.3).
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Figure A.1: Example of the scene rendered by visualizer. The screenshot shows the
Bloch vectors ~ri(t) (see Eq. (3.38)) of five transmon qubits after the successive application
of two X gates (implemented as four Xπ/2 gates) on each of the qubits. The simulated
system is the small five-transmon system defined in Section 3.4.4. The corresponding gate
metrics are given in Tab. 6.2. The Bloch vectors corresponding to qubit i = 0, . . . , 4 are
shown from left to right. As the pulse for an Xπ/2 gate for this system takes 80 ns (see
Tab. F.3), the depicted final time is t = 1600 ns. Note that the Bloch vectors at the end
of the time evolution are not perfectly straight. In particular, the second and the fourth
Bloch vector are similarly tilted even though the corresponding gate metrics (see X

π/2
1

and X
π/2
3 in Tab. 6.2) are of very different quality.
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Appendix B

Elementary gate set used for the simulation

In Tab. B.1, we summarize the set of single-qubit gates and their representations in terms
of the elementary single-qubit gates U1, U2, and U3 defined in Eqs. (2.15a)–(2.15c). The
two-qubit gate used to make the gate set universal [DiV2000] is the CNOT gate defined
in Eq. (2.18).

Since the topic of this thesis is the simulation of transmon qubit systems, and the
first platform offering access to transmon qubit processors was the IBM Q Experience
[IBM2016], the gate set implemented for the simulation is inspired by the gates available
on the IBM Q Experience [Cro2017]. Additionally, the gate set includes gates implemented
by JUQCS, which was used to compare the simulated gates to their equivalent on an ideal
universal quantum computer (see [DeR2007; DeR2019a; Wil2020a] for more information
on JUQCS). At the time of writing, JUQCS was used to simulate some of the larger circuits
for Google’s quantum supremacy experiment [Aru2019], as well as universal quantum
circuits with up to 48 qubits, setting the largest simulation of a universal gate-based
quantum computer to date [DeR2019a]. In this context, universal means that arbitrary
circuits can be simulated. If, however, only a specific subset of circuits with a small
number of entangling gates need to be simulated, a much larger number of qubits is
possible [Ped2017; Boi2017; Che2018a; Che2018b; Mar2018; Vil2020; Wil2020a].
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Appendix B: Elementary gate set used for the simulation

Table B.1: Summary of all single-qubit gates used in this work, including their circuit
symbols and matrix representations. The gates listed in the first column and the alterna-
tive representations listed in the second column are only equivalent up to a global phase.
The relations to the U gates defined in Eqs. (2.15a)–(2.15c) are given in the last column if
the gates are implemented in this way. For any gate G, there is also the inverse operation
G† given by the Hermitian conjugate of the corresponding matrix.

Gate Alternatives Symbol Matrix In U gates

I Identity, Idle I

(
1 0
0 1

)
—

U1(λ) U1 gate U1(λ)

(
1 0
0 eiλ

)
—

U2(φ, λ) U2 gate U2(φ, λ)
1√
2

(
1 −eiλ
eiφ ei(φ+λ)

)
—

U3(θ, φ, λ) U3 gate U3(θ, φ, λ)

(
cos θ

2
−eiλ sin θ

2

eiφ sin θ
2

ei(φ+λ) cos θ
2

)
—

X Bit flip X

(
0 1
1 0

)
U3(π, 0, π)

Y Bit&Phase flip Y

(
0 −i
i 0

)
U3(π, π

2
, π

2
)

Z Phase flip Z

(
1 0
0 −1

)
U1(π)

H Hadamard H
1√
2

(
1 1
1 −1

)
U2(0, π)

S Zπ/2, Rz(π
2
) S

(
1 0
0 i

)
U1(π

2
)

T Zπ/4, Rz(π
4
) T

(
1 0
0 eiπ/4

)
U1(π

4
)

+X X−π/2, Rx(−π
2
) +X

1√
2

(
1 i
i 1

)
U2(π

2
,−π

2
)

-X Xπ/2, Rx(π
2
) -X

1√
2

(
1 −i
−i 1

)
U2(−π

2
, π

2
)

+Y Y −π/2, Ry(−π
2
) +Y

1√
2

(
1 1
−1 1

)
U2(−π, π)

-Y Y π/2, Ry(π
2
) -Y

1√
2

(
1 −1
1 1

)
U2(0, 0)

R(k) Phase gate R(k)

(
1 0

0 e2πi/2k

)
U1(2π

2k
)

177



Appendix C

The reason for linear and unitary transformations in

quantum theory

The computational model of a gate-based quantum computer described in Chapter 2 is
largely based on linear and unitary transformations to describe transitions between states.
In fact, the use of unitary matrices can be seen as the characteristic difference between
quantum computers and digital or probabilistic machines (which would use Boolean or
stochastic matrices, respectively) [Ber1997]. An interesting question is therefore: Where
did the use of unitary transformations in quantum theory come from?

To address this question, we review some of the mathematical arguments that have
been given during the development of quantum theory for the use of linear and unitary
transformations. Note that none of these arguments can prove that Nature has to be
described by linear equations and unitary maps; they only illustrate why humans have
developed quantum theory on the basis of linear and unitary transformations.

Historically, the question why quantum theory should be linear and unitary was first
posed when the TDSE given by Eq. (1.1) was introduced by Schrödinger [Sch1926a;
Sch1926b]. As the emergence of his equation was considered “ad hoc” by some researchers,
they started a search for arguments why transformations of a quantum state |Ψ〉 should
be linear and unitary. The first such argument was given by Wigner [Wig1931; Wig1959]
and later formulated more rigorously by Lomont and Mendelson [Lom1963] and Bargmann
[Bar1964]. It has become widely known as Wigner’s theorem.

C.1 Wigner’s theorem

The argument behind Wigner’s theorem starts from the assumption that in any exper-
iment, one can only ever observe transition probabilities of the form |〈φ|ψ〉|2 between
quantum states |φ〉 and |ψ〉. Since the laws of Nature are believed to be invariant un-
der space-time symmetry operations, the observable transition probabilities shall be con-
served. Mathematically, this means that any transformation U between quantum states
shall conserve the absolute value of the inner product between complex vectors, i.e.,

∀ |φ〉 , |ψ〉 : |〈φ|ψ〉| = |〈φ′|ψ′〉|, (C.1)

where |φ′〉 = U(|φ〉) and |ψ′〉 = U(|ψ〉). Wigner’s theorem essentially proves that among
all conceivable transformations U , only linear and unitary or antilinear and antiunitary
operators are compatible with Eq. (C.1). The hardest part of the proof is to show that
U must be either linear or antilinear.

Another equivalent formulation of Wigner’s theorem often seen in the earlier literature
is stated in terms of equivalence classes ψ := {c |ψ〉 : c ∈ C, |c| = 1} (so-called rays)
[Lom1963; Bar1964]. The motivation for this is the idea that two complex vectors |ψ〉
and |ψ′〉 describe the same physical state if they differ only by a complex phase. Therefore,
only the equivalence class ψ is understood to represent the actual physical state. Wigner’s
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Appendix C: The reason for linear and unitary transformations in quantum theory

condition then takes the form

∀φ,ψ : (φ,ψ) = (T(φ),T(ψ)), (C.2)

where T denotes the given symmetry transformation. The square of the inner product
(ψ,φ) in this space can directly be interpreted as the transition probability between ψ
and φ. To obtain the more abstract formulation given in Eq. (C.1), the ray expressions
given in Eq. (C.2) are defined as T (ψ) := U(|ψ〉) and (ψ,φ) := |〈ψ|φ〉|, where the
complex vectors |ψ〉 ∈ ψ and |φ〉 ∈ φ are the representatives chosen for the computation.
This ray formulation of Wigner’s theorem comes at the cost of having to prove that
the ray expressions are well-defined, in the sense that the results do not depend on the
representatives.

There is also a more recent formulation of Wigner’s condition that can be seen as
combining the mathematical convenience of Eq. (C.1) and the interpretational character of
Eq. (C.2). It is based on the density matrix representations of the pure states ρψ = |ψ〉〈ψ|
and ρφ = |φ〉〈φ|. These objects are rank-1 projectors and have the advantage that they
do not entail the ambiguity of a complex phase factor in representing the same physical
state. In this formulation, Wigner’s condition reads

∀ρψ, ρφ : Tr ρψρφ = Tr f(ρψ)f(ρφ), (C.3)

where the symmetry transformation is denoted by the function f (cf. the generalized Born
rule in Eq. (6.23)). In this form, Wigner’s theorem has been extended to non-bijective
transformations [Geh2014]. Instead of linear and unitary or antilinear and antiunitary
transformations, it then states that the function f has to be implemented by a linear or
antilinear isometry W such that f(ρψ) = WρψW

†.

Sketch of the proof

In what follows, we briefly sketch the main ideas of the proof given by Gehér [Geh2014].
To keep it simple, we consider bijective transformations and focus on the formulation of
the condition stated in Eq. (C.1).

Let {|i〉} denote an orthonormal basis (ONB) of the Hilbert space H. Note that, in
the context of quantum computing, we almost always deal with finite-dimensional Hilbert
spaces such that i ∈ {1, . . . , N} where N = dimH (see below for more information on
the infinite-dimensional case).

The proof first defines a set of N vectors {|i′〉} as the images of this basis under U ,

i.e., |i′〉 := U(|i〉). One then constructs a linear or antilinear map Ũ : H → H from these

images such that Ũ |i〉 := |i′〉. Using Eq. (C.1), one can show that {|i′〉} is also an ONB
of H. By studying the action of U on the states |i〉 − |i+ 1〉 and |i〉 + eiπ/2 |i+ 1〉, one

can show that the given transformation U and the constructed Ũ coincide, and that there
are only two options, namely the linear, unitary and the antilinear, antiunitary case. It
is instructive to study both cases and their relevance in quantum theory separately.
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The linear, unitary case

In the linear case, we have

U(a |φ〉+ b |ψ〉) = aU(|φ〉) + bU(|ψ〉) (C.4)

for all states |φ〉 and |ψ〉 and all a, b ∈ C. Given that U is linear, it is quite straightforward
to prove that U has to be unitary. We give a simple proof of this statement.

Since U is linear, it can be represented by a matrix with matrix elements

〈i|U †U |j〉 = |〈i|U †U |j〉|eiϕij = |〈i|j〉|eiϕij = δije
iϕij , (C.5)

where ϕij ∈ [0, 2π) and we have used Eq. (C.1) to eliminate U †U . In the case i 6= j,
we have 〈i|U †U |j〉 = 0, so the phase ϕij is irrelevant. In the case i = j, the left-hand
side of Eq. (C.5) reads 〈i|U †U |i〉 = ‖U |i〉‖2 > 0, so the phase factor eiϕii = 1. Hence we
have 〈i|U †U |j〉 = δij for all i, j. A similar argument yields 〈i|UU †|j〉 = δij, so we have
U †U = UU † = 1, which by definition means that U is unitary.

Given that transformations of the physical state |Ψ〉 can be implemented by unitary
operators U , i.e., |Ψ〉 7→ U |Ψ〉, a derivation of the TDSE given in Eq. (1.1) is very
simple: Each unitary operator can be expressed as the exponential exp(K) of a skew-
Hermitian operator K. Writing K = −iHt where H is a Hermitian operator, we have
|Ψ〉 7→ exp(−iHt) |Ψ〉, or equivalently, Eq. (1.1).

The antilinear, antiunitary case

An antilinear operator is defined by the relation

U(a |φ〉+ b |ψ〉) = a∗U(|φ〉) + b∗U(|ψ〉) (C.6)

for all states |φ〉 and |ψ〉 and all a, b ∈ C. There are two things to keep in mind about
antilinear operators: First, the conventional Dirac notation may cause problems, in the
sense that in general (〈i|U) |j〉 6= 〈i| (U |j〉). This means that the common expression
〈i|U |j〉 must be read with caution. Second, the complex conjugation operator, which is
the simplest example of an antilinear operator, is dependent on the basis in terms of which
it is defined. In particular, two antilinear operators U and V defined by U(

∑
j aj |j〉) =∑

j a
∗
j |j〉 and V (

∑
j aj |j̃〉) =

∑
j a
∗
j |j̃〉 with a slightly different basis |j̃〉 = i |j〉 are not

the same.
Wigner’s theorem states that in the antilinear case, the operator U also needs to be

antiunitary. This means that, in terms of the notation used in Eq. (C.1), the operator U
has to satisfy 〈φ′|ψ′〉 = 〈φ|ψ〉∗.

In general, antilinear operators are far less common in quantum theory than lin-
ear operators [Bal1998]. One reason for this is that we often work with transforma-
tions that depend on a continuous parameter t and shall satisfy the group relation
U(t1)U(t2) = U(t1 + t2). Since the product of two antilinear operators is always lin-
ear, such a transformation cannot be implemented by an antilinear operator.
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Additional literature

In the past decades, many alternative proofs of Wigner’s theorem have been published
(see e.g. [Győ2004; Geh2014; Bar2017]). They all explore different routes for the proof
in the general case of an infinite-dimensional Hilbert space H, where the mathematical
apparatus of functional analysis is utilized [Neu1955; Gus2003]. Some of the proofs require
separability of H [Sim2008] (i.e., the basis {|i〉} is still countable such that i ∈ N) or
differentiability of the transformation [Mou2013]. Gehér’s more recent proof can deal with
non-separable Hilbert spaces and non-bijective transformations [Geh2014]. In addition to
this, generalizations of the proof to several other algebraic structures have been considered
[Mol1998; Geh2017]. The diversity of mathematical arguments to prove Wigner’s theorem
is interesting. However, all these proofs start from the conservation of the absolute value of
inner products expressed in Eq. (C.1), meaning that the observable transition probabilities
shall be conserved. They provide no conceptual alternative to approach the question where
unitary transformations in quantum theory come from. Therefore, we now look at some
approaches that do provide conceptual alternatives.

C.2 Alternative approaches

In this section, we list some alternative approaches to the question about the use of
linearity and unitarity in quantum theory. Each of these provides separate insights into
the topic.

The physically compelling approach

An approach with a conceptual alternative to Wigner’s theorem was explored by Jordan
[Jor1962; Jor2009]. His goal was to derive Wigner’s original condition in Eq. (C.1) and the
density matrix formulation in Eq. (C.3) from a physically more compelling starting point.
One such starting point is the condition that the state of the system does not depend on
anything outside the system, but still allows for a description as part of a larger system.
Jordan shows that this condition implies that transformations between quantum states
must be linear [Jor2006]. Once this is established, one can derive Wigner’s condition given
by Eq. (C.1) [Jor1962]. The same arguments given above then yield the unitarity of the
transformations and, correspondingly, the TDSE given by Eq. (1.1).

The necessity approach

A deeper insight into the use of unitary operators was presented by Landé in 1969
[Lan1969], who explored the question “Why do the probabilities interfere by way of a
matrix product law for the probability amplitudes?” He shows that transition probabil-
ities P (A → B) and P (B → C) can be related, in a triangular form, to a transition
probability P (A→ C) only by means of unitary matrices. There is no mysterious, funda-
mental requirement for unitarity. Rather, the use of unitary operators in quantum theory
is a necessity due to the physicist’s ambition to express such a triangular relation in a
convenient mathematical form.
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The consistency approach

An interesting, fundamentally different approach has been described by Caticha [Cat1998].
He demonstrates that the only consistent way to manipulate probability amplitudes is
by means of linear, unitary transformations. The idea goes back to Cox’s work on the
consistent use of probabilities and their connection to logic [Cox1946; Cox1961]. The
fundamental character of probability theory as extended logic has been comprehensively
presented by Jaynes [Jay2003].

The information-based approach

A more recent approach advocated by Fuchs is based on the concept of information.
[Fuc2001; Fuc2002]. The premise is that a quantum state |Ψ〉 does not represent an
objective entity that exists in Nature. Rather, |Ψ〉 and the probability amplitudes that it
contains are only the concise representation of our subjective information about Nature.
The subjectivity, in particular, implies that quantum theory does not need interpretations
[Fuc2000], and also that the time evolution of a state vector |Ψ〉 does not represent the
real time evolution of a physical system, but rather the evolution of our personal state
of knowledge about the system [Fuc2000]. This point of view is inspired by the Bayesian
interpretation of probabilities (see also [Jay2003]). As soon as probability amplitudes
are seen as representing information, their consistent evolution under linear and unitary
transformations follows [Har2001; Sch2003]. In fact, in a simplified context, some argue
that the difference between probability theory and quantum theory is that, for the former,
the 1-norm of vectors is conserved (so they are transformed by stochastic matrices), while
for the latter, the 2-norm is conserved, so they are transformed by unitary matrices
[Aar2013].

The logical inference approach

A very conclusive approach is the logical inference (LI) approach [DeR2014; DeR2016].
It starts from the actual data that is obtained in experiments, i.e., individually observed
events. LI then tries to infer the most robust description of this data, given that the exper-
iments are reproducible. This approach first yields a nonlinear optimization problem for
the description of the data. By reformulating this optimization problem, one can then de-
rive the equations of quantum theory, such as the TDSE given by Eq. (1.1) [DeR2014], the
Klein-Gordon equation [Don2016], the Pauli equation [DeR2015b], or other well-known
equations for quantum mechanical key experiments [DeR2015a]. In the LI approach, the
linear and unitary character of the equations follows from a reformulation of the optimiza-
tion problem. Similar to Caticha’s approach mentioned above, the ideas behind LI are
based on inductive reasoning in the presence of uncertainty [Cox1946; Cox1961; Tri1969;
Jay2003].
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C.3 General remarks

It is worth mentioning that also nonlinear and non-unitary transformations are sometimes
used in the context of quantum theory. Nonlinear expressions for the state vector |Ψ〉 are
used as an effective tool to address complex systems. For instance, in density functional
theory, a linear multi-particle Schrödinger equation is effectively replaced by a nonlinear
single-particle Schrödinger equation [Eng2011]. A simple example for a non-unitary map
is the evolution of a subsystem, which is typically described by a quantum operation (see
Section 2.4). Also, the measurement process in quantum theory is typically described
in terms of projections which are non-unitary maps (see, for instance, the description of
POVMs in the context of Eq. (6.23)).

Regarding the mathematical arguments presented above, one should keep in mind that
there can never be a way to formally prove the need of linear and unitary transformations
in descriptions of Nature. The only thing that we can prove is that within a certain
theory such as quantum theory, under certain assumptions, the mathematical objects
of the theory evolve under linear and unitary transformations. But in principle, any
experiment might inspire a new theory capable of better describing the observed data
without requiring the concept of linear and unitary operators.
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Appendix D

Implementations of the four-component

transformations V and V †

This appendix includes C++ code examples for each of the three alternative implementa-
tions of the four-component transformations discussed in Section 3.3.1 and benchmarked
in Section 4.1.2. They constitute the V and V † operations in the second-order Suzuki-
Trotter product-formula Eq. (4.5). V and V † consist of a tensor product of 4×4 matrices
(see Eq. (3.31)), which require four-component updates of the form of Eq. (3.34) for all
0 ≤ i < NTr and 0 ≤ r < NRes. The central loops of the three different implementations
for the transformation V are given in Listings D.1–D.3. A description of the variables
and function names used in the code listings is given in Tab. D.1.

Listing D.1 Implementation 0: Complete single loop with branches
1 uint64_t inc = 1; // inc = 0b 00..00 01 00..00

2 for(int i = NTr -1; i >= 0; --i, inc <<= 2) {

3 uint64_t mask = 0b11 * inc; // mask = 0b 00..00 11 00..00

4 #pragma omp for

5 for(uint64_t KM = 0; KM < dim; ++KM)

6 if((KM & mask) == 0)

7 mul4x4 (&Vn[16*i], &psi[KM], inc);

8 }

9 for(int r = NRes -1; r >= 0; --r, inc <<= 2) {

10 uint64_t mask = 0b11 * inc; // mask = 0b 00..00 11 00..00

11 #pragma omp for

12 for(uint64_t KM = 0; KM < dim; ++KM)

13 if((KM & mask) == 0)

14 mul4x4 (&Va[16*r], &psi[KM], inc);

15 }

Listing D.2 Implementation 1: Reduced single loop with bitwise operations
1 uint64_t inc = 1; // inc = 0b 00..00 01 00..00

2 for(int i = NTr -1; i >= 0; --i, inc <<= 2) {

3 uint64_t rmask = inc - 1; // rmask = 0b 00..00 00 11..11

4 uint64_t lmask = dim - 1 - rmask; // lmask = 0b 11..11 11 00..00

5 #pragma omp for

6 for(uint64_t KMred = 0; KMred < dim /4; ++ KMred) {

7 // KM = 0b **..** 00 **..**

8 uint64_t KM = (( KMred & lmask) << 2) | (KMred & rmask);

9 mul4x4 (&Vn[16*i], &psi[KM], inc);

10 }

11 }

12 for(int r = NRes -1; r >= 0; --r, inc <<= 2) {

13 uint64_t rmask = inc - 1; // rmask = 0b 00..00 00 11..11

14 uint64_t lmask = dim - 1 - rmask; // lmask = 0b 11..11 11 00..00

15 #pragma omp for

16 for(uint64_t KMred = 0; KMred < dim /4; ++ KMred) {

17 // KM = 0b **..** 00 **..**

18 uint64_t KM = (( KMred & lmask) << 2) | (KMred & rmask);

19 mul4x4 (&Va[16*r], &psi[KM], inc);

20 }

21 }
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Listing D.3 Implementation 2: Reduced nested loops
1 uint64_t inc = 1; // inc = 0b 00..00 01 00..00

2 for(int i = NTr -1; i >= 0; --i, inc <<= 2) {

3 uint64_t incl = inc << 2; // incl = 0b 00..01 00 00..00

4 #pragma omp for collapse (2)

5 for(uint64_t K = 0; K < dim; K += incl) // K = 0b **..** 00 00..00

6 for(uint64_t M = 0; M < inc; ++M) // M = 0b 00..00 00 **..**

7 mul4x4 (&Vn[16*i], &psi[K | M], inc);

8 }

9 for(int r = NRes -1; r >= 0; --r, inc <<= 2) {

10 uint64_t incl = inc << 2; // incl = 0b 00..01 00 00..00

11 #pragma omp for collapse (2)

12 for(uint64_t K = 0; K < dim; K += incl) // K = 0b **..** 00 00..00

13 for(uint64_t M = 0; M < inc; ++M) // M = 0b 00..00 00 **..**

14 mul4x4 (&Va[16*r], &psi[K | M], inc);

15 }

Table D.1: Description of the identifiers used in Listings D.1–D.3.

Identifier Description

NTr Number of transmons NTr

NRes Number of resonators NRes

dim Dimension of the Hilbert space (dim(H) = 4NTr+NRes , see Eq. (3.17))

psi Coefficients ψKM(t) of the state vector Ψ(t) (see Eq. (3.25))

Vn Matrix V
(n)
i including the eigenstates of the charge operator in the transmon

basis (see Eq. (3.32b))

Va Matrix V
(a)
r including the eigenstates of the operator âr + â†r in the Fock basis

(see Eq. (3.32a))

inc Integer indicating the current position of the 4 × 4 transformation given in
Eq. (3.34). It is left-shifted by two bits after each iteration of the outer loops.

i Transmon index of the current 4×4 transformation, corresponding to the two
bits indicated by inc

r Resonator index of the current 4×4 transformation, corresponding to the two
bits indicated by inc

K, M, KM (Parts of) the index KM given by Eq. (3.24)

KMred Reduced index consisting of KM without the two bits indicated by inc

mask Bit mask with the two bits indicated by inc set

rmask Bit mask for the bits on the right of the position indicated by inc

lmask Bit mask for the bits on the left of the position indicated by inc (including
the two bits in the middle)

incl Increment for the K part of the index KM given by Eq. (3.24)

mul4x4 A vectorized complex 4×4 transformation implementing Eq. (3.34). The inner
loops including this operation are independent and can be parallelized. This
has been indicated in the code listings using a simple OpenMP directive.
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Appendix E

Error bounds for observables

The accuracy of the product-formula algorithm (see Section 3.3.1) can be controlled by
means of rigorous error bounds for the solution of the TDSE [DeR1987; Huy1990] (see
Eqs. (4.2a) and (4.2b)). However, the bounds apply to the full state vector, so they may
be impractical if we are only interested in the expectation value of a certain observable.

Therefore, we tested two general error bounds for expectation values of observables in
Section 4.1.1 (see Eqs. (4.3a) and (4.3b)). The bounds are given by

|〈ψ|A|ψ〉 − 〈φ|A|φ〉| ≤ 2
√

∆ ‖A‖2, (E.1a)

|〈ψ|A|ψ〉 − 〈φ|A|φ〉| ≤ 2
√

∆
√

Varψ(A) |〈ψ|φ〉|+ 2∆ ‖A‖2, (E.1b)

where A is an observable (i.e., a Hermitian operator), |ψ〉 and |φ〉 are pure states, ∆ =
1−|〈ψ|φ〉|2 is the distinguishability between |ψ〉 and |φ〉, ‖A‖2 denotes the spectral norm
(largest singular value) of A, and Varψ(A) = 〈A2〉−〈A〉2 is the variance of A with respect
to the state |ψ〉.

The second bound was shown to be tight (see Fig. 4.2(a)), and a general proof for its
validity is given in [Wil2020d]. For the first bound, we give a short and elementary proof
in this appendix.

First, note that for any Hermitian operator B with eigenvectors |b〉, eigenvalues b, and
singular values |b|, we have

|TrBA| =
∣∣∣∣
∑

b

b 〈b|A|b〉︸ ︷︷ ︸
≤‖A‖2

∣∣∣∣ ≤
(∑

b

|b|
)
‖A‖2 = ‖B‖Tr‖A‖2, (E.2)

where ‖B‖Tr =
∑

b|b| is the trace norm of B. We remark that Eq. (E.2) is a special case of
Hölder’s inequality for Schatten norms, which states that |TrX†Y | ≤ ‖σ(X)‖p‖σ(Y )‖p∗,
where X and Y are operators, σ(X) and σ(Y ) denote vectors of their respective singular
values, ‖v‖p = (

∑
i|vi|p)1/p is the p-norm of a vector v, and p, p∗ ∈ [1,∞] are chosen so

that 1/p + 1/p∗ = 1 [Wat2018]. In this notation, p = 1 and p∗ = ∞ correspond to the
trace norm and the spectral norm, respectively.

Applying this result to Eq. (E.1a), we have

|〈ψ|A|ψ〉 − 〈φ|A|φ〉| = |Tr[(|ψ〉〈ψ| − |φ〉〈φ|)A]| ≤ ‖(|ψ〉〈ψ| − |φ〉〈φ|)‖Tr‖A‖2. (E.3)

To find the trace norm of |ψ〉〈ψ| − |φ〉〈φ|, we make use of Eq. (6.9) for α = β = 1 (the
proof is given in Section 6.1.2):

‖(|ψ〉〈ψ| − |φ〉〈φ|)‖Tr = 2
√

1− |〈ψ|φ〉|2. (E.4)

Recognizing the distinguishability ∆ = 1− |〈ψ|φ〉|2, we obtain

|〈ψ|A|ψ〉 − 〈φ|A|φ〉| ≤ 2
√

∆ ‖A‖2, (E.5)

which proves Eq. (E.1a).
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Appendix F

Pulse parameters for quantum gates

For reference, we list all pulse parameters used for the various multi-transmon systems
under investigation (see Section 3.4). The pulse parameters are the result of the pulse
optimization procedure discussed in Chapter 5 (see Sections 5.1 and 5.2 for the particular
meaning of the single-qubit and two-qubit pulse parameters). The performance of the
individual gates listed in this appendix is discussed in detail in Chapter 6.

Table F.1: Parameters of the optimized single-qubit GD pulses defined in Eq. (5.9) for the
two-transmon system (see Section 3.4.3). For the compilation process (cf. Section 5.4),
these parameters are specified in the form of Listing 5.1.

Pulse name f [GHz] TX [ns] ΩX βX [ns]

xpih-0 5.3463 83 0.002221 0.2309
xpih-1 5.1167 83 0.002269 0.2891
xpi-0 5.3463 83 0.004444 0.2193
xpi-1 5.1167 83 0.004538 0.2239

Table F.2: Parameters of the optimized two-qubit pulses defined in Section 5.2 for the two-
transmon system (see Section 3.4.3). We tested three kinds of CR pulses (cf. Fig. 5.1):
CR1 (see the text below Eq. (5.17)), CR2 (see the text below Eq. (5.19)), and CR4. The
pulse name indicates the control qubit iC and the target qubit iT in the form cnot-iC-iT .
The duration of all single-qubit GD pulses included in these schemes is (T πX)C = (T

π/2
X )T =

83 ns. For the compilation process (cf. Section 5.4), these parameters are specified in the
form of Listing 5.1.

CR1
Pulse name fiT [GHz] TCR [ns] ΩCR ΩCancel φCR φCancel φC φT

cnot-0-1 5.1166 41.865 0.0793 0.00618 0.54 0.00 -2.10 0.04
cnot-1-0 5.3464 128.193 0.0940 -0.00162 -2.89 1.72 3.25 1.40

CR2

Pulse name fiC [GHz] fiT [GHz] TCR [ns] ΩCR (ΩπX)C (βπX)C [ns] (Ω
π/2
X )T (β

π/2
X )T [ns]

cnot-0-1 5.3463 5.1167 102.9746 0.01111 0.004444 0.2193 0.002269 0.2891
cnot-1-0 5.1167 5.3463 71.5580 0.07058 0.004538 0.2239 0.002221 0.2309

CR4
Pulse name fiC [GHz] fiT [GHz] TCR [ns] ΩCR GD pulse parameters from Tab. F.1

cnot-0-1 5.3463 5.1167 50.2385 0.01018
(ΩπX , β

π
X)C and (Ω

π/2
X , β

π/2
X ,ΩπX , β

π
X)Tcnot-1-0 5.1167 5.3463 30.1557 0.06934
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Table F.3: Parameters of the single-qubit GD pulses defined in Eq. (5.9) for the small
five-transmon system (see Section 3.4.4). The parameters have been obtained from the
pulse optimization procedure described in Section 5.3. The label withf indicates pulses
with frequency tuning such that the tuned frequency f may differ slightly from the qubit
frequency (cf. Tab. 3.5).

Pulse name f [GHz] TX [ns] ΩX βX [ns]

xpih-0-withf 5.34697 80 0.00231 0.246
xpih-1-withf 5.30232 80 0.00232 0.220
xpih-2-withf 5.11345 80 0.00236 0.218
xpih-3-withf 5.22506 80 0.00233 0.232
xpih-4-withf 5.07065 80 0.00237 0.228

Table F.4: Parameters of the two-qubit CR2 pulses defined in Section 5.2 (see the text
below Eq. (5.19)) for the small five-transmon system (see Section 3.4.4). The parameters
have been obtained from the pulse optimization procedure described in Section 5.3. The
pulse name indicates the control qubit iC and the target qubit iT in the form cnot-iC-iT .
The label withf indicates pulses with frequency tuning such that the tuned frequencies
fiC and fiT may differ slightly from the qubit frequencies (cf. Tab. 3.5). The duration of

all single-qubit GD pulses included in the CR2 pulse is always (T πX)C = (T
π/2
X )T = 80 ns.

Pulse name fiC [GHz] fiT [GHz] TCR [ns] ΩCR (ΩπX)C (βπX)C [ns] (Ω
π/2
X )T (β

π/2
X )T [ns]

cnot-0-2-withf 5.34697 5.11345 100.341 0.0113 0.00463 0.250 0.00236 0.218
cnot-1-2-withf 5.30232 5.11345 121.308 0.0103 0.00465 0.230 0.00236 0.218
cnot-3-2-withf 5.22506 5.11345 88.442 0.0114 0.00469 0.240 0.00236 0.218
cnot-4-2-withf 5.07065 5.11345 48.632 0.0114 0.00502 0.223 0.00236 0.218

Table F.5: Parameters of the single-qubit GD pulses defined in Eq. (5.9) for the large
five-transmon system (see Section 3.4.5). The parameters have been obtained from the
pulse optimization procedure described in Section 5.3. The corresponding optimization
process is visualized in Fig. 5.6. The label withf indicates that the drive frequency f has
also been optimized such that it may differ slightly from the qubit frequency (cf. Tab. 3.7).

Pulse name f [GHz] TX [ns] ΩX βX [ns]

xpih-0 4.97154 80 0.00238 1.335
xpih-1 5.07063 80 0.00236 -1.904
xpih-2 5.26657 80 0.00233 -2.165
xpih-3 5.10145 80 0.00236 0.498
xpih-4 4.86036 80 0.00241 2.276

xpih-0-withf 4.97164 80 0.00239 0.239
xpih-1-withf 5.07043 80 0.00236 0.238
xpih-2-withf 5.26634 80 0.00233 0.229
xpih-3-withf 5.10147 80 0.00236 0.232
xpih-4-withf 4.86055 80 0.00241 0.236
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Table F.6: Parameters of the two-qubit CR2 pulses defined in Section 5.2 (see the text
below Eq. (5.19)) for the large five-transmon system (see Section 3.4.5). The parameters
have been obtained from the pulse optimization procedure described in Section 5.3. The
corresponding optimization process is visualized in Fig. 5.7. The pulse name indicates
the control qubit iC and the target qubit iT in the form cnot-iC-iT . The label withf
indicates pulses with frequency tuning such that the tuned frequencies fiC and fiT may
differ slightly from the qubit frequencies (cf. Tab. 3.7). The duration of all single-qubit

GD pulses included in the CR2 pulse is always (T πX)C = (T
π/2
X )T = 80 ns.

Pulse name fiC [GHz] fiT [GHz] TCR [ns] ΩCR (ΩπX)C (βπX)C [ns] (Ω
π/2
X )T (β

π/2
X )T [ns]

cnot-1-0 5.07063 4.97154 76.955 0.0097 0.00461 0.640 0.00238 1.335
cnot-1-4 5.07063 4.86036 64.161 0.0183 0.00476 -0.148 0.00241 2.276
cnot-2-1 5.26657 5.07063 33.398 0.0235 0.00465 -0.036 0.00236 -1.904
cnot-3-2 5.10145 5.26657 242.064 0.0111 0.00471 0.508 0.00233 -2.165
cnot-3-4 5.10145 4.86036 33.247 0.0290 0.00465 0.640 0.00241 2.276
cnot-4-0 4.86036 4.97154 105.151 0.0210 0.00449 -1.511 0.00238 1.335

cnot-1-0-withf 5.07043 4.97164 73.538 0.0101 0.00477 0.798 0.00239 0.239
cnot-1-4-withf 5.07043 4.86055 109.439 0.0114 0.00472 0.502 0.00241 0.236
cnot-2-1-withf 5.26634 5.07043 82.077 0.0111 0.00463 0.661 0.00236 0.238
cnot-3-2-withf 5.10147 5.26634 58.763 0.0429 0.00480 -0.198 0.00233 0.229
cnot-3-4-withf 5.10147 4.86055 85.294 0.0118 0.00474 0.247 0.00241 0.236
cnot-4-0-withf 4.86055 4.97164 98.599 0.0239 0.00483 0.115 0.00239 0.239
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Appendix G

Average fidelity of trace-decreasing quantum

operations

In this appendix, we provide two separate proofs for a generalized version of an explicit
relation between the average fidelity Favg (defined in terms of an integral over random
states) and the entanglement fidelity Fent (typically accessible in closed-form),

Favg(E) =
dFent(E) + Tr E(1/d)

d+ 1
. (G.1)

Here, d is the dimension of the Hilbert space (typically 2n for an n-qubit system), and
E(ρ) =

∑
αEαρE

†
α is a completely positive map which is not necessarily trace-preserving,

i.e.,
∑

αE
†
αEα ≤ 1 (cf. Section 2.4). In the special case that E is trace-preserving, we

have Tr E(1/d) = 1 such that Eq. (G.1) reduces to the well-known expression given in
[Hor1999].

After stating some preliminary definitions to settle the notation, we give both an alge-
braic proof using methods from quantum information theory and an elementary, analytic
proof by direct calculation.

G.1 Preliminaries

The fidelity between two quantum states ρ and σ is defined as [Joz1994] (see also [Fuc1995])

F (ρ, σ) = ‖√ρ√σ‖2
Tr =

(
Tr
√√

ρσ
√
ρ

)2

, (G.2)

where we used the definition of the trace norm ‖X‖Tr = Tr
√
X†X (sum of the singular

values) of X. If one of the states is pure, e.g. ρ = |ψ〉〈ψ|, the fidelity simplifies to the
overlap 〈ψ|σ|ψ〉.

The average fidelity of a quantum operation E is defined by averaging the fidelity
F (|ψ〉〈ψ| , E(|ψ〉〈ψ|)) over random pure states |ψ〉,

Favg(E) =

∫
d|ψ〉 〈ψ|E(ψ)|ψ〉 . (G.3)

The integral is taken over pure states |ψ〉 whose 2d real coefficients are distributed uni-
formly on the surface of a 2d-dimensional unit sphere. For simplicity, we use the notation
that ψ = |ψ〉〈ψ| if the meaning is clear from the context.

The entanglement fidelity of E is defined as the fidelity F (Φ, (E ⊗ 1)(Φ)), where |Φ〉 =∑
j |jj〉 /

√
d is the maximally entangled state on an extended Hilbert space that is also

of dimension d. We have

Fent(E) = 〈Φ|(E ⊗ 1)(Φ)|Φ〉 =
∑

α

|TrEα|2
d2

. (G.4)
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G.2 Quantum information theoretic proof

The following proof is based on the algebraic proof given in [Nie2002], generalized to
non-trace-preserving quantum operations and thus extending the work in [Gil2005].

We consider the so-called twirled quantum operation

ET (ρ) =

∫
dU U †E(UρU †)U, (G.5)

where the integral is over the Haar measure on the group of unitary matrices [Spe2012].
This operation leaves both the average fidelity given by Eq. (G.3) and the entangle-
ment fidelity given by Eq. (G.4) invariant, which can be shown by substitution [Nie2002].
Therefore, we have

Favg(E) = Favg(ET ), (G.6a)

Fent(E) = Fent(ET ). (G.6b)

Furthermore, for any ρ and any unitary operator V , we have

V ET (ρ)V † =

∫
dU V U †E(UρU †)UV † = ET (V ρV †), (G.7)

which can also be shown by substitution, i.e., W = UV †. Let ρ = P be a rank-1 projector
and Q = 1 − P its orthogonal complement. We define the space SP (SQ) as the space
onto which P (Q) projects. For any block-diagonal unitary matrix V = VP + VQ, where

VP (VQ) is only non-zero on SP (SQ), we have V PV † = VPV
†
P = 1SP = P and thus

V ET (P )V † = ET (P ). Since this holds for any block-diagonal unitary matrix of the form
V = VP +VQ, ET (P ) must also be block-diagonal and each block must be proportional to
the identity. The identity on SP is 1SP = P , and the identity on SQ is 1SQ = Q = 1−P ,
so we have

ET (P ) = αP + β(1− P ) (G.8)

for some α and β. Using Eq. (G.7) again for an arbitrary unitary operator V transforms
P in this equation into any other rank-1 projector P ′ = V PV †, so we see that α and β
are the same for each P .

Writing an arbitrary ρ =
∑

i ρiPi as a sum of rank-1 projectors Pi with unit trace,
linearity of ET yields that for any ρ, ET (ρ) = αρ + β(1 − ρ). By replacing β = p/d and
α = t− p+ p/d, we obtain

ET (ρ) = (t− p)ρ+ p1/d, (G.9)

where also the parameters p and t are independent of ρ.
The difference to the trace-preserving case considered in [Nie2002] is now that in general,

Tr ET (ρ) = t 6= 1. Consequently, Eq. (G.9) does not represent a depolarizing quantum
operation anymore. Note that care must be taken with the identity symbol 1 in Eq. (G.9)
since it only applies when the map ET is restricted to density matrices with Tr ρ = 1. If

191



trace-decreasing quantum operations are applied to operators with trace less than 1 (e.g. if
they are chained, ET (ET (ρ))), the correct expression is ET (ρ) = (t − p)ρ + p1Tr ρ/d. To
determine the trace parameter t, we evaluate Eqs. (G.5) and (G.9) for ρ = 1/d:

t = Tr ET (1/d) = Tr

∫
dU U †E(UU †)U/d = Tr E(1/d). (G.10)

Using the simple form of Eq. (G.9), we can evaluate the fidelities in Eqs. (G.6a) and
(G.6b) directly. For the average fidelity, we find

Favg(E) =

∫
d|ψ〉 〈ψ|E(ψ)|ψ〉 = Tr E(1/d)− p+

p

d
, (G.11)

and the entanglement fidelity becomes

Fent(E) = 〈Φ|(ET ⊗ 1)(Φ)|Φ〉 = Tr E(1/d)− p+
p

d2
. (G.12)

Solving Eq. (G.12) for p and inserting the result into Eq. (G.11) yields the desired relation
given by Eq. (G.1).

G.3 Analytic proof

In this version of the proof, we directly evaluate the integral for the average gate fidelity
given by Eq. (G.3). First, by expanding the pure state |ψ〉 =

∑
i ci |i〉 with ci ∈ C, we

obtain

Favg(E) =
∑

α

∑

ijkl

〈i|Eα|j〉 〈k|E†α|l〉
∫

d|ψ〉 c∗i cjc∗kcl. (G.13)

The integral at the end of this expression can be computed in the following way:

∫
d|ψ〉 c∗i cjc∗kcl =

∫
da1db1 · · · daddbd δ(

∑
j(a

2
j + b2

j)− 1)c∗i cjc
∗
kcl∫

da1db1 · · · daddbd δ(
∑

j(a
2
j + b2

j)− 1)
, (G.14)

where we used the fact that the space of pure states of dimension d is characterized
by cj = aj + ibj for aj, bj ∈ R with

∑
j(a

2
j + b2

j) = 1. The first thing to note is that
the integral is non-zero only if i = j and k = l or i = l and j = k, since otherwise
the integrand in the numerator is an odd function integrated over a symmetric interval.
Hence, the required integrals are

∫
d|ψ〉 |ci|2|cj|2 and

∫
d|ψ〉 |ci|4. These integrals have

been evaluated in [Ham2000] and [Jin2020]. We do not repeat the full calculation here
but, for the sake of reference, we outline three common strategies used to compute such
integrals.

One way to evaluate Eq. (G.14) is to use spherical coordinates, i.e., polar coordinates
for (ai, bi) and (aj, bj), and hyperspherical coordinates for the remaining coefficients. Since
the integrands only depend on the radii in these coordinates, they reduce to single integrals
over these radii multiplied by the surface of the respective spheres. See [Ham2000; Jin2020]
for more information.
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Another way to compute the integrals is to make use of the representation of the δ-
function δ(x) =

∫
dt eitx/2π and closing the contour of integration in the complex plane

with Im t = ε > 0. See the supplementary material of [Boi2018] for an example using this
approach.

A third option to obtain the result is particularly convenient for numerical work: The
coefficients of a random pure state |ψ〉 can be generated from the normal distribution
[Ben2006]

p(a1, b1, . . . , ad, bd) =
1

(2π)d
e−(a21+b21+···+a2d+b2d)/2. (G.15)

This is a construction that has a long history (see Muller’s method in [Mul1959]) and
is commonly used in random matrix theory [Ede2005]. With this strategy, we set cj =
(aj + ibj)/

∑
j(a

2
j + b2

j) for aj, bj ∈ R, and the evaluation of the integral amounts to

∫
d|ψ〉 f(c1, . . . , cd) =

∫
da1db1 · · · daddbd p(a1, b1, . . . , ad, bd)f(c1, . . . , cd). (G.16)

As shown in [Jin2020], this expression basically reduces to a set of Gaussian integrals.
Independent of the strategies used, one obtains

∫
d|ψ〉 c∗i cjc∗kcl =

1

d(d+ 1)
(δijδkl + δilδjk). (G.17)

Inserting this expression into Eq. (G.13), we immediately find

Favg(E) =
∑

α

|TrEα|2 + TrE†αEα
d(d+ 1)

, (G.18)

which is equivalent to the desired relation given by Eq. (G.1) after substituting Fent(E) =∑
α|TrEα|2/d2 (see Eq. (G.4)) and Tr E(1) =

∑
α TrE†αEα. We remark that the result

given by Eq. (G.18) can also be found in [Ped2007].
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Appendix H

Diamond distance between unitary quantum

operations

In Section 6.1.2, we obtained an expression for the diamond distance η♦ between two
quantum operations Gid(ρ) = UρU † and Gac(ρ) = MρM †, where U is a unitary matrix
representing an ideal quantum gate, and M denotes a matrix describing the actual imple-
mentation. In this appendix, we evaluate this expression for the case that both M and U
are unitary. The result provides an explicit proof for the statements given in [Aha1998]
and [Joh2009] and illustrates the construction.

The expression in Eq. (6.11) reads

η♦ =
1

2
‖M ·M † − U · U †‖♦=

1

2
max
|x〉

√
(〈x|W †W ⊗ 1|x〉+ 1)2 − 4|〈x|W ⊗ 1|x〉|2, (H.1)

where W = MU †. If both M and U are unitary, we have W †W = 1 and therefore
〈x|W †W ⊗ 1|x〉 = 1.

The first step is to diagonalize W so that V −1WV = Λ, where Λ = diag(λi) denotes
the eigenvalues of W . Since W is unitary, it is a normal matrix, so also V is unitary and
preserves the norm. Thus, we can substitute |x〉 7→ V |x〉 in the maximization to obtain

η♦ = max
|x〉

√
1− |〈x|Λ⊗ 1|x〉|2. (H.2)

Obviously, the maximum is attained when |〈x|Λ⊗ 1|x〉|2 is minimal. We now expand
|x〉 =

∑
ij xij |i〉 ⊗ |j〉 with i, j = 0, . . . , N − 1 and

∑
ij|xij|2 = 1 (we can also think of |i〉

as the eigenbasis of W ; but the important thing is that V is unitary since otherwise, in
general,

∑
ij|xij|2 6= 1). Thus we have

η♦ =

√√√√√1− min
xij∈R∑
|xij |2=1

∣∣∣∣∣
∑

ij

|xij|2λi
∣∣∣∣∣

2

=

√√√√√1− min
pi≥0∑
pi=1

∣∣∣∣∣
∑

i

piλi

∣∣∣∣∣

2

, (H.3)

where pi =
∑

j|xij|2 ≥ 0 with
∑

i pi = 1. The minimization is now over all convex
combinations of the eigenvalues λi, i.e., all points in the set

C =

{∑

i

piλi : pi ≥ 0 and
∑

i

pi = 1

}
. (H.4)

By definition, this set is the convex hull of all λi, i.e., a polygon whose vertices are given
by λi. Since W is unitary, all eigenvalues satisfy |λi| = 1, so the vertices λi of the polygon
lie on the complex unit circle (see Fig. H.1). The quantity |∑i piλi| to be minimized
represents the distance from the point

∑
i piλi ∈ C to the origin.

There are now two possible cases: Either the origin is inside the polygon (0 ∈ C), or it
is outside. If 0 ∈ C as shown in Fig. H.1(a), there exists a set {pi} such that

∑
i piλi = 0,

and we have η♦ = 1.
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(a) (b)

λ1

λ2

λ3

λ4

λ1

λ2

λ3

λ4

C

d

η♦

C

Figure H.1: Illustration of the diamond distance between unitary quantum operations.
The red points represent the eigenvalues λi. They lie on the unit circle in the complex
plane. The polygon is the convex hull C of these points (see Eq. (H.4)). The two possible
cases are: (a) 0 ∈ C, i.e., the origin is inside the polygon such that η♦ = 1; (b) the origin
is outside the polygon such that η♦ =

√
1− d2, where d is the distance between the origin

and the polygon.

In the other case shown in Fig. H.1(b), the point in C with the closest distance d =
min|∑i piλi| to the origin lies in the middle of the line between λj and λk, for which
|λj − λk| is maximal. Inserting d into Eq. (H.3), we find that the diamond distance is
η♦ =

√
1− d2, which is the result stated without proof in [Aha1998].

Furthermore, this result can be related to the result given in [Joh2009] by noting that
the hypotenuse of the right triangle indicated in Fig. H.1(b) is 1. Hence we have that
η♦ =

√
1− d2 is half the line between λj and λk, i.e., η♦ = maxjk|λj − λk|/2. This means

that 2η♦ is the diameter of the smallest closed disc enclosing all eigenvalues of W , as
stated in [Joh2009].

In summary, we have

η♦ =

{
1 (0 ∈ C)
1
2

max
jk
|λj − λk| (otherwise)

. (H.5)

A practical way to check for 0 ∈ C is to compute all arguments ϕi = arg(λi) ∈ [0, 2π) and
list them in increasing order 0 ≤ ϕ0 ≤ · · · ≤ ϕN−1 < 2π. If all N successive differences
∆ϕi = (ϕi+1 − ϕi) mod [0, 2π) (including the case ϕN ≡ ϕ0) are in [0, π], the convex
polygon C includes the origin.

Note that in the single-qubit case, W has only two eigenvalues such that the convex
hull C is a straight line. In this case, the formula for the second case in Eq. (H.5) is always
valid such that η♦ = |λ1 − λ2|/2.
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Appendix I

Proof of a diamond-distance bound for

trace-decreasing operations

For trace-preserving quantum operations E , the best known lower bound for the diamond
distance in terms of the average fidelity was proven in [Wal2014]. In this appendix,
we derive a new bound that also applies to non-trace-preserving quantum operations
(cf. Section 2.4). Furthermore, it reduces to the original bound in the trace-preserving
case, thereby generalizing the previous result.

The known lower bound for a completely positive trace-preserving map E reads [Wal2014;
Kue2016]

d+ 1

d
(1− Favg(E)) ≤ η♦. (I.1)

Here, d is the dimension of the Hilbert space, Favg(E) is the average fidelity defined
in Eq. (G.3), and η♦ = ‖E − 1‖♦/2 is the diamond distance defined in Section 6.1.2.
Equation (I.1) is only valid under the assumption that E is trace-preserving.

In what follows, let E be a completely positive quantum operation that is not necessarily
trace-preserving. We start from the definition of the diamond norm given by Eq. (6.5)
for T = E − 1,

η♦ =
1

2
sup
X 6=0

‖((E − 1)⊗ 1)(X)‖Tr

‖X‖Tr

, (I.2)

where ‖X‖Tr = Tr |X| with |X| =
√
X†X denotes the trace norm (sum of the singular

values). Because of the supremum in the definition of η♦, we have

η♦ ≥
1

2
‖((E − 1)⊗ 1)(Φ)‖Tr =

1

2
‖J(E)− Φ‖Tr, (I.3)

where Φ = |Φ〉〈Φ| with |Φ〉 =
∑

j |jj〉 /
√
d is the maximally entangled state, and we used

the definition of the Choi matrix J(E) = (E⊗1)(Φ). Note that the order of tensor-product
factors in this definition of the Choi matrix is reversed (as compared to Eq. (2.25)) such
that it complies with the definition of the diamond norm. The result is independent of
the order.

Using the definition of the trace norm given above and inserting 1 = Φ + 1 − Φ, we
obtain

1

2
‖J(E)− Φ‖Tr =

1

2

(
Tr Φ|J(E)− Φ|+ Tr (1− Φ)|J(E)− Φ|

)
. (I.4)

Since the matrix J(E)− Φ is Hermitian, its singular values are the absolute values of its
eigenvalues. For any positive semidefinite matrix A and any Hermitian matrix B with
singular values |b|, eigenvalues b, and eigenvectors |b〉, we have

TrA|B| =
∑

b

|b|TrA |b〉〈b| ≥
∑

b

bTrA |b〉〈b| = TrAB, (I.5)
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and similarly, TrA|B| ≥ TrA(−B). Since both Φ and 1 − Φ are projectors, their eigen-
values are 1 and 0, so they are positive semidefinite. Thus, Eq. (I.4) is bounded by

1

2
‖J(E)− Φ‖Tr ≥

1

2

(
Tr Φ(Φ− J(E)) + Tr (1− Φ)(J(E)− Φ)

)
(I.6a)

= Tr Φ(Φ− J(E)) +
1

2
Tr (J(E)− Φ) (I.6b)

= 1− 〈Φ|J(E)|Φ〉+
1

2
(Tr J(E)− 1). (I.6c)

Note that for this step, the proof in [Wal2014] made use of the Fuchs-van de Graaf
inequality ‖J(E)− Φ‖Tr/2 ≥ 1− 〈Φ|J(E)|Φ〉 [Fuc1999], which only works if Tr J(E) = 1,
i.e., if E is trace-preserving. The step from Eq. (I.4) to Eq. (I.6a), however, is elementary
and also works in the non-trace-preserving case.

By identifying the term 〈Φ|J(E)|Φ〉 in Eq. (I.6c) as the entanglement fidelity Fent(E)
defined in Eq. (G.4), we obtain

η♦ ≥ 1− Fent(E) +
1

2
(Tr J(E)− 1). (I.7)

After using Tr J(E) = Tr E(1/d) and inserting the relation between entanglement fidelity
and average fidelity derived in Appendix G, i.e., Fent(E) = (d+1)Favg(E)/d−Tr E(1/d)/d,
we finally obtain

η♦ ≥
d+ 1

d
(1− Favg(E))− d+ 2

2d
(1− Tr E(1/d)). (I.8)

The first term in this expression is the result given in Eq. (I.1), referred to as ηPauli
♦ in

Eq. (6.17a) and [San2016]. The second term is a new contribution that represents the
correction required for trace-decreasing quantum operations.
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Gate decompositions and effective Hamiltonians

In this appendix, we outline a method to relate an arbitrary quantum operation G (see
Section 2.4) to an effective Hamiltonian H. The method was used to obtain the axis-angle
decompositions of the two-qubit GST results studied in Section 6.3 (see Tab. 6.6), which
are much more straightforward to interpret than the corresponding Pauli transfer matrices
shown in Fig. 6.4. A similar method to obtain such decompositions is implemented by
the pyGSTi package [Nie2018].

A quantum operation G can be written in Kraus form (see Eq. (2.24)),

G(ρ) =
R∑

α=1

EαρE
†
α, (J.1)

where Eα are the Kraus operators and R is the Kraus rank of G. The aim of the method
is to find a “Hamiltonian” H that approximately generates the evolution described by G
according to

G(ρ) ≈ e−iHρ eiH . (J.2)

We explicitly left out a symbol for the time in the expression for the generator. Typically,
one would rather write H = Ĥt, where Ĥ is the Hamiltonian and t is the time, to
express the characteristic structure of time evolutions in quantum theory. However, since
G describes only one discrete evolution ρ 7→ G(ρ), there is no notion of time such that

a separation into individual components Ĥ and t is arbitrary. For convenience, we still
refer to the symbol H as the Hamiltonian.

The relation given in Eq. (J.2) can only be exact if the Kraus rank R in Eq. (J.1) is
1 and the operator E1 is unitary. This means that the action of G can be written as
G(ρ) = UρU †, where U is a unitary matrix. But even if this is not the case, the following
method can be used to produce an approximation to G in terms of a Hamiltonian, which
may be simpler to understand or provide insights into potential errors. In the context of
quantum gate optimization, this may provide information on how to improve the gate’s
implementation.

If G is not unitary but has a Kraus rank R of almost one (meaning that all but one
singular value of the Choi matrix J(G) given by Eq. (2.25) are close to zero), the method
yields an effective Hamiltonian that approximates the quantum operation. This Hamilto-
nian may have non-Hermitian components to model non-unitary or non-trace-preserving
quantum operations.

Note that a Hamiltonian generating G according to Eq. (J.2) is not unique, since the
complex matrix exponential is a many-to-one function. One way to see this is that by
adding a multiple of 2π to any eigenvalue of H, the matrix exponential e−iH does not
change. In what follows, we aim for an expression for H in terms of Pauli matrices that
can be readily interpreted as a rotation by a certain angle around an axis specified by H,
so this ambiguity can be understood in the context of rotations.
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J.1 The matrix logarithm

We start with the matrix representation G of the superoperator G defined in Eq. (2.27) (the
Pauli transfer matrix). We denote the correspondence between the matrix representation
G and the map G by

G|ρ〉〉 ↔ G(ρ), (J.3)

where |ρ〉〉 denotes a vector representation of the density matrix ρ, obtained by expanding

ρ =
∑

i ρiP̂i in the normalized Pauli basis P̂i (see Eq. (2.26)).
If G preserves Hermiticity, the matrix G is a real d× d matrix, where d = N2 = 4n for

an n-qubit system. We define the matrix logarithm of G = eL as

L = logG = V log(Λ)V −1, (J.4)

where G = V ΛV −1 denotes the eigendecomposition of G (see [Mey2009b] for a common
alternative definition of the matrix logarithm). Thus, Λ = diag(λ0, . . . , λd−1) contains the
eigenvalues of G, the columns of V = (v0, . . . , vd−1) contain the right eigenvectors, and
the columns of (V −1)† = (w0, . . . , wd−1) contain the left eigenvectors. In this definition,
log λi = log|λi| + i arg λi denotes the principal logarithm defined by arg λi ∈ (−π, π). If
all λi ∈ C \ (−∞, 0], the principal matrix logarithm defined by Eq. (J.4) is unique. If
some λi = 0, the matrix G is singular and the matrix logarithm does not exist.

If the matrix logarithm L is real, there is a Hermiticity-preserving map L such that

G|ρ〉〉 = eL|ρ〉〉 ↔ G(ρ) = eLρ. (J.5)

Unfortunately, some ideal quantum gates are special in the sense that their Pauli transfer
matrices have eigenvalues −1. This is the case for the CNOT gate defined in Eq. (2.18),
for which the Pauli transfer matrix corresponding to the map ρ 7→ CNOT ρCNOT† has
eigenvalues λi = ±1. In this case, however, one can still find a real matrix logarithm since
the negative eigenvalues occur in pairs [Cul1966]. It is constructed by choosing, for each
pair λi = λj = −1, two conjugate branches of the logarithm log λi/j ← ±iπ. Similarly, the
corresponding real eigenvectors vi and vj in the degenerate subspace have to be replaced
by conjugate pairs, i.e., vi ← (vi + ivj)/

√
2 and vj ← (vi − ivj)/

√
2.

J.2 Extracting the Hamiltonian

The map L in Eq. (J.5) is typically called the Lindblad operator or Lindbladian. The
goal is to approximate L by a map of the form LH(ρ) = −i[H, ρ]. If this is possible, the
correspondence given by Eq. (J.5) becomes

eL|ρ〉〉 ↔ eLρ ≈ e−i[H, · ]ρ = e−iHρ eiH . (J.6)

We consider a Hamiltonian H expressed in the Pauli basis (see Eq. (2.26)),

H =
d−1∑

k=0

hkPk/2. (J.7)
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The real coefficients hk are explicitly defined with respect to Pk/2 instead of the normalized

basis elements P̂k. The reason is that in this way, the action of e−iH can be interpreted
as a rotation about an axis specified by ĥ = h/|h|, where the angle of rotation is given by
ϕ = |h| =

√∑
k h

2
k (cf. Eqs. (6.31a) and (6.31b)).

Using the form of the Hamiltonian given by Eq. (J.7), we evaluate the Pauli transfer ma-
trix LH corresponding to the map LH = −i[H, · ]. Its matrix elements are (cf. Eq. (2.27))

LHij =
1

N
TrPi(−i[H,Pj]) =

∑

k

hk
TrPi[Pk, Pj]

2Ni
=
∑

k

hkskji, (J.8)

where skji = Tr([Pk, Pj]Pi)/2Ni. Note that, as each Pi is an n-fold tensor product of Pauli
matrices, evaluating skji analytically may be cumbersome. However, skji can be easily
evaluated with computer algebra systems such as Mathematica [Wol2019]. One finds
skji ∈ {1, 0,−1} (see also [Rig2009], in which skji is called the n-qubit super-commutator).
The typical structure of the matrix LH for n ≥ 1 qubits is

LH =




0 0 0 0 · · ·
0 0 −h3 h2 · · ·
0 h3 0 −h1 · · ·
0 −h2 h1 0 · · ·
...

...
...

...
. . .



. (J.9)

The upper left 4 × 4 block corresponds to n = 1 qubit, the upper left 16 × 16 block
corresponds to n = 2 qubits, and so on.

The map G can be approximately generated by the Hamiltonian given in Eq. (J.7) if
the matrix logarithm L = logG given by Eq. (J.4) has the form of the matrix LH in
Eq. (J.9). We construct a candidate Hamiltonian by projecting L onto this form, such
that

hk =

{∑
k Lijskji/

∑
k|skji| (

∑
k|skji| 6= 0)

0 (otherwise)
(J.10)

for all k = 0, . . . , d− 1. If the decomposition error defined by

γ = ‖G− eLH‖F (J.11)

is much smaller than 1, we accept the Hamiltonian generator. This was the case for almost
all experiments studied in this thesis.

However, since the matrix logarithm given by Eq. (J.4) is not unique, and because the
correspondence in Eq. (J.6) is only approximate, there may of course be other Hamil-
tonians generating the evolution. One way to proceed is to optimize the entries of L
towards the intended target gate’s matrix logarithm LU = logGU , where GU is the Pauli
transfer matrix of the map GU = U · U † and U is the target gate. This can be done by
optimizing a joint objective function including both ‖G − eL

H‖ and ‖LU − LH‖. This
option is implemented by the pyGSTi package [Nie2018] and was also used to obtain
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the decomposition of the CNOT gate reported in Tab. 6.6. The objective function was
‖G − eL

H‖1+10‖LU − LH‖2
F , where ‖A‖1 =

∑
ij|Aij|, using the L-BFGS-B algorithm

[Zhu1997; Mor2011]. However, for two qubits, L already contains d× d = 256 real num-
bers, so this approach becomes impractical for more qubits.

Another option is to optimize the d coefficients hk defined by Eq. (J.7), starting from
initial values given by Eq. (J.10) and using the objective function defined in Eq. (J.11).
This approach directly relates the Hamiltonian H to the map G without using an ex-
plicit matrix logarithm, so the approach is closer in spirit to the relation anticipated by
Eq. (J.2). The advantage is that this approach does not rely on the matrix logarithm as
an intermediate step. Furthermore, it only requires an optimization of d real numbers
instead of d2. A similar approach was implemented in [Wil2016].

A third option would be to resolve the ambiguity of the matrix logarithm by adding
integer multiples of 2πivjw

†
j to L. This corresponds to changing the eigenvalues λj 7→

λj + 2πi, which leaves eL invariant but may lead to imaginary parts in the Hamiltonian.
If the resulting Hamiltonian indeed describes the original map G, as reflected by a low
decomposition error γ (see Eq. (J.11)), this procedure may provide an effective qubit
model for decay in the system under investigation.

201





Bibliography

[Aar2008] S. Aaronson, “The Limits of Quantum Computers”, Sci. Am. 298, 62
(2008) [cit. on p. 6].

[Aar2013] S. Aaronson, Quantum Computing Since Democritus, Cambridge Univer-
sity Press, 2013 [cit. on p. 182].

[Aar2015] S. Aaronson, “Read the fine print”, Nat. Phys. 11, 291 (2015) [cit. on
p. 2].

[Aha1997] D. Aharonov and M. Ben-Or, “Fault-Tolerant Quantum Computation
with Constant Error”, Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC ’97, 176 (1997) [cit. on p. 2].

[Aha1998] D. Aharonov, A. Kitaev, and N. Nisan, “Quantum Circuits with
Mixed States”, Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, 20 (1998) [cit. on pp. 112, 113, 194, 195].

[Aha2008] D. Aharonov and M. Ben-Or, “Fault-Tolerant Quantum Computation
with Constant Error Rate”, SIAM J. Comput. 38, 1207 (2008) [cit. on
pp. 111, 155].

[Ale2020] T. Alexander, N. Kanazawa, D. Egger, L. Capelluto, C. Wood,
A. Javadi-Abhari, and D. McKay, “Qiskit Pulse: Programming Quan-
tum Computers Through the Cloud with Pulses”, arXiv:2004.06755 (2020)
[cit. on pp. 90, 125].

[Ali2006] P. Aliferis, D. Gottesman, and J. Preskill, “Quantum Accuracy
Threshold for Concatenated Distance-3 Codes”, Quantum Inf. Comput. 6,
97 (2006) [cit. on pp. 111, 155].

[Ali2007] P. Aliferis and B. Terhal, “Fault-tolerant Quantum Computation for
Local Leakage Faults”, Quantum Inf. Comput. 7, 139 (2007) [cit. on pp. 2,
111, 155].

[An2019] Z. An and D. Zhou, “Deep reinforcement learning for quantum gate
control”, EPL 126, 60002 (2019) [cit. on pp. 107, 169].

[Ans2019] M. Ansari, “Superconducting qubits beyond the dispersive regime”, Phys.
Rev. B 100, 024509 (2019) [cit. on pp. 48, 169].

203

https://dx.doi.org/10.1038/scientificamerican0308-62
https://dx.doi.org/10.1017/CBO9780511979309
http://dx.doi.org/10.1038/nphys3272
https://dx.doi.org/10.1145/258533.258579
https://doi.org/10.1145/276698.276708
https://dx.doi.org/10.1137/S0097539799359385
https://arxiv.org/abs/2004.06755
http://dl.acm.org/citation.cfm?id=2011665.2011666
http://dl.acm.org/citation.cfm?id=2011706.2011715
https://dx.doi.org/10.1209/0295-5075/126/60002
https://dx.doi.org/10.1103/PhysRevB.100.024509


Bibliography

[Aru2019] F. Arute, K. Arya, R. Babbush, D. Bacon, J. Bardin, R. Barends,
R. Biswas, S. Boixo, F. Brandao, D. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E.
Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. Harrigan, M. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. Humble, S. Isakov, E. Jeffrey, Z.
Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. Klimov, S. Knysh, A.
Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero,
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[Jül2018] Jülich Supercomputing Centre, “JURECA: Modular supercomputer
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Córcoles, J. Smolin, S. Merkel, J. Rozen, G. Keefe, M. Roth-
well, M. Ketchen, and M. Steffen, “Superconducting qubit in a
waveguide cavity with a coherence time approaching 0.1 ms”, Phys. Rev. B
86, 100506 (2012) [cit. on p. 25].

223

https://dx.doi.org/10.1007/s11128-012-0506-4
https://dx.doi.org/10.1142/S021974991950031X
https://dx.doi.org/10.1103/RevModPhys.73.565
https://dx.doi.org/10.1007/978-3-642-96242-4
https://dx.doi.org/10.1126/sciadv.aao3603
https://www.quantuminfo.physik.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaajiobd
https://www.quantuminfo.physik.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaajiobd
https://www.quantuminfo.physik.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaajiobd
http://qulab.eng.yale.edu/documents/theses/Rigetti-PhDthesis-QuantumGatesForSuperconductingQubits-Yale2009.pdf
https://dx.doi.org/10.1103/PhysRevB.81.134507
https://dx.doi.org/10.1103/physrevb.86.100506


Bibliography

[Rig2017] Rigetti Computing, 2017, https://www.rigetti.com/ [cit. on pp. 2,
3, 25, 167].

[Riv1978] R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems”, Commun. ACM 21,
120 (1978) [cit. on p. 2].

[Rot2017] M. Roth, M. Ganzhorn, N. Moll, S. Filipp, G. Salis, and S.
Schmidt, “Analysis of a parametrically driven exchange-type gate and a
two-photon excitation gate between superconducting qubits”, Phys. Rev. A
96, 062323 (2017) [cit. on p. 170].

[San2016] Y. Sanders, J. Wallman, and B. Sanders, “Bounding quantum gate
error rate based on reported average fidelity”, New J. Phys. 18, 012002
(2016) [cit. on pp. 111, 112, 115, 117, 123, 125, 197].

[Sch1926a] E. Schrödinger, “Quantisierung als Eigenwertproblem”, Ann. Phys. (Berl.)
384, 361 (1926) [cit. on p. 178].

[Sch1926b] E. Schrödinger, “Quantisierung als Eigenwertproblem”, Ann. Phys. (Berl.)
384, 489 (1926) [cit. on p. 178].

[Sch1966] J. Schrieffer and P. Wolff, “Relation between the Anderson and
Kondo Hamiltonians”, Phys. Rev. 149, 491 (1966) [cit. on p. 69].

[Sch2003] R. Schack, “Quantum Theory from Four of Hardy’s Axioms”, Found.
Phys. 33, 1461 (2003) [cit. on p. 182].

[Sek2014] Y. Sekino and S. Ishizaka, “Quantum-information division and an opti-
mal uncorrelated channel”, Phys. Rev. A 89, 034304 (2014) [cit. on p. 111].

[She2016a] S. Sheldon, L. Bishop, E. Magesan, S. Filipp, J. Chow, and J.
Gambetta, “Characterizing errors on qubit operations via iterative ran-
domized benchmarking”, Phys. Rev. A 93, 012301 (2016) [cit. on pp. 116,
155].

[She2016b] S. Sheldon, E. Magesan, J. Chow, and J. Gambetta, “Procedure
for systematically tuning up cross-talk in the cross-resonance gate”, Phys.
Rev. A 93, 060302 (2016) [cit. on pp. 89, 96, 98, 116, 133].

[Sho1994] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring”, Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, 124 (1994) [cit. on pp. 2, 16].

[Sho1996] P. Shor, “Fault-tolerant quantum computation”, Proceedings of 37th Con-
ference on Foundations of Computer Science, 56 (1996) [cit. on pp. 2, 155].

[Sho1997] P. Shor, “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”, SIAM J. Comput. 26, 1484
(1997) [cit. on p. 2].

224

https://www.rigetti.com/
https://www.rigetti.com/
https://dx.doi.org/10.1145/359340.359342
https://dx.doi.org/10.1103/PhysRevA.96.062323
http://stacks.iop.org/1367-2630/18/i=1/a=012002
https://dx.doi.org/10.1002/andp.19263840404
https://dx.doi.org/10.1002/andp.19263840602
https://dx.doi.org/10.1103/PhysRev.149.491
https://dx.doi.org/10.1023/A:1026044329659
https://dx.doi.org/10.1103/PhysRevA.89.034304
https://dx.doi.org/10.1103/PhysRevA.93.012301
https://dx.doi.org/10.1103/PhysRevA.93.060302
https://dx.doi.org/10.1109/SFCS.1994.365700
https://dx.doi.org/10.1109/SFCS.1996.548464
https://dx.doi.org/10.1137/S0097539795293172


Bibliography

[Sil2016] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of Go with deep
neural networks and tree search”, Nature 529, 484 (2016) [cit. on p. 107].

[Sim2008] R. Simon, N. Mukunda, S. Chaturvedi, and V. Srinivasan, “Two
elementary proofs of the Wigner theorem on symmetry in quantum me-
chanics”, Phys. Lett. A 372, 6847 (2008) [cit. on p. 181].

[Smi1981] J. Smith, “A Study of Branch Prediction Strategies”, Proceedings of the
8th Annual Symposium on Computer Architecture, ISCA ’81, 135 (1981)
[cit. on p. 36].

[Smi1993] D. Smithey, M. Beck, M. Raymer, and A. Faridani, “Measurement
of the Wigner distribution and the density matrix of a light mode using
optical homodyne tomography: Application to squeezed states and the vac-
uum”, Phys. Rev. Lett. 70, 1244 (1993) [cit. on p. 127].

[Sol2014] F. Solgun, D. Abraham, and D. DiVincenzo, “Blackbox quantization
of superconducting circuits using exact impedance synthesis”, Phys. Rev. B
90, 134504 (2014) [cit. on pp. 48, 50].

[Sol2015] F. Solgun, “Analysis and Synthesis of Multi-Qubit, Multi-Mode Quantum
Devices”, PhD thesis, RWTH Aachen University, 2015 [cit. on pp. 48, 50].

[Sol2016] F. Solgun and J. Gambetta, personal communication, 2016 [cit. on
pp. 44, 147].

[Sol2019] F. Solgun, D. DiVincenzo, and J. Gambetta, “Simple Impedance
Response Formulas for the Dispersive Interaction Rates in the Effective
Hamiltonians of Low Anharmonicity Superconducting Qubits”, IEEE Trans.
Microwave Theory Tech. 67, 928 (2019) [cit. on pp. 48, 80].

[Son2019] C. Song, J. Cui, H. Wang, J. Hao, H. Feng, and Y. Li, “Quantum
computation with universal error mitigation on a superconducting quantum
processor”, Sci. Adv. 5, (2019) [cit. on p. 138].

[Spe2012] C. Spengler, M. Huber, and B. Hiesmayr, “Composite parameter-
ization and Haar measure for all unitary and special unitary groups”, J.
Math. Phys. 53, 013501 (2012) [cit. on p. 191].

[Sti1955] W. Stinespring, “Positive Functions on C*-Algebras”, Proc. Amer. Math.
Soc. 6, 211 (1955) [cit. on p. 17].

[Sur2015] B. Suri, Z. Keane, L. Bishop, S. Novikov, F. Wellstood, and B.
Palmer, “Nonlinear microwave photon occupancy of a driven resonator
strongly coupled to a transmon qubit”, Phys. Rev. A 92, 063801 (2015)
[cit. on pp. 72, 75, 79].

225

https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1016/j.physleta.2008.09.052
http://dl.acm.org/citation.cfm?id=800052.801871
https://dx.doi.org/10.1103/PhysRevLett.70.1244
https://dx.doi.org/10.1103/PhysRevB.90.134504
https://publications.rwth-aachen.de/record/465229
https://dx.doi.org/10.1109/TMTT.2019.2893639
https://dx.doi.org/10.1126/sciadv.aaw5686
https://dx.doi.org/10.1063/1.3672064
http://www.jstor.org/stable/2032342
https://dx.doi.org/10.1103/PhysRevA.92.063801


Bibliography

[Suz1976] M. Suzuki, “Generalized Trotter’s formula and systematic approximants of
exponential operators and inner derivations with applications to many-body
problems”, Commun. Math. Phys. 51, 83 (1976) [cit. on p. 33].

[Suz1985] M. Suzuki, “Decomposition formulas of exponential operators and Lie ex-
ponentials with some applications to quantum mechanics and statistical
physics”, J. Math. Phys. 26, 601 (1985) [cit. on p. 33].
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