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Kurzfassung

Mögliche Quantifizierungen statistischer Abhängigkeiten in Daten kritischer Experimen-

te und dessen Berücksichtigung bei Validierungsverfahren, ist in der Literatur von ver-

schiedenen Gruppen erörtert worden und ist zur Zeit eine aktiv geführte Diskussion in

der Expertengruppe zur Unsicherheitsanalyse für die Sicherheitsprüfung Expert Group

on Uncertainty Analysis for Criticality Safety Assessment (UACSA) des OECD- NEA-

Ausschuss für Nuklearwissenschaften, dem Nuclear Science Committee. Letzterer er-

stellt und publiziert die frei verfügbaren experimentellen Daten im International Handbook

of Evaluated Criticality Safety Benchmark Experiments, ICSBEP. Die meisten Experimen-

te wurden als Serie durchgeführt und teilen sich einige der experimentellen Komponen-

ten, was zu Korrelationseffekten in den Ergebnissen führen kann. Die korrekte Betrach-

tung korrelierter Daten scheint unvermeidbar zu sein, wenn die Anzahl der Experimente

in einem Validierungsverfahren begrenzt ist oder man sich nicht auf eine ausreichen-

de Anzahl von unkorrelierten Datensätzen stützen kann, z.B. Daten verschiedener La-

bors mit verschiedenen Komponenten. Die generelle Bestimmung der Korrelationen und

der zugrunde liegenden Kovarianzdaten sowie deren Berücksichtigung in einem Validie-

rungsverfahren liegt im Fokus der folgenden Arbeiten.

Wir diskutieren und demonstrieren mögliche Effekte auf berechnete keff -Werte, deren

Unsicherheiten und entsprechende Kovarianzmatrizen aufgrund der Interpretation aus-

gewerteter experimenteller Daten und deren Übersetzung in Berechnungsmodelle. Die

Arbeit zeigt Effekte verschiedener Modellierungsansätze, variierender Verteilungsfunk-

tionen von Parametern und vergleicht Ergebnisse der angewandten Monte-Carlo Stich-

probenmethode mit verfügbaren Daten zu experimentellen Korrelationen. Unsere Ergeb-

nisse zeigen, dass für die zuverlässige Bestimmung von integralen experimentellen Ko-

varianzmatrizen oder der Korrelationskoeffizienten eine detaillierte Untersuchung der zu-

grunde liegenden experimentellen Daten, des Modellierungsansatzes und der getroffe-

nen Annahmen sowie der daraus resultierenden Sensitivitätsanalyse unvermeidbar er-

scheint.

Weiterhin wird ein Bayes-Verfahren diskutiert, um integrale experimentelle Kovarianzda-

ten bei der Schätzung des keff eines Anwendungsfalls einzuschließen. Es wird gezeigt,

wie der berechnete keff -Wert eines Anwendungsfalles von den Kovarianzen abhängt und

was die Auswirkungen von unberücksichtigten Korrelationen sein können.
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Abstract

The quantification of statistical dependencies in data of critical experiments and how

to account for them properly in validation procedures has been discussed in the litera-

ture by various groups. However, these subjects are still an active topic in the Expert

Group on Uncertainty Analysis for Criticality Safety Assessment (UACSA) of the OECD-

NEA Nuclear Science Committee. The latter compiles and publishes the freely available

experimental data collection, the International Handbook of Evaluated Criticality Safety

Benchmark Experiments, ICSBEP. Most of the experiments were performed as series

and share parts of experimental setups, consequently leading to correlation effects in

the results. The correct consideration of correlated data seems to be inevitable if the

experimental data in a validation procedure is limited or one cannot rely on a sufficient

number of uncorrelated data sets, e.g. from different laboratories using different setups.

The general determination of correlations and the underlying covariance data as well as

the consideration of them in a validation procedure is the focus of the following work.

We discuss and demonstrate possible effects on calculated keff ’s, their uncertainties, and

the corresponding covariance matrices due to interpretation of evaluated experimental

data and its translation into calculation models. The work shows effects of various mo-

deling approaches, varying distribution functions of parameters and compares and dis-

cusses results from the applied Monte-Carlo sampling method with available data on

correlations. Our findings indicate that for the reliable determination of integral experi-

mental covariance matrices or the correlation coefficients a detailed study of the underly-

ing experimental data, the modeling approach and assumptions made, and the resulting

sensitivity analysis seems to be inevitable.

Further, a Bayesian method is discussed to include integral experimental covariance da-

ta when estimating an application case keff . It is shown, how the calculated keff of an

application case depends on the covariances and what would be the impact of ignoring

them.
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1 Introduction

Criticality safety assessments require a prediction of the effective neutron multiplication

factor keff below a sufficient safety margin. This predicted value is derived using a valida-

ted calculation method with validated computer codes, e.g. so called criticality codes to

calculate the keff of a given application case. The validation of a criticality code can be

achieved by recalculations of suitable critical experiments performed in laboratories and

documented and evaluated e.g. in [1]. In recent years, several authors discussed the fact

that depending on the application case and the choice of experiments, the effect of corre-

lated experimental data on the determination of the bias, its uncertainty, and the resulting

safety margins has to be considered [2, 3, 4, 5, 6, 7, 8, 9, 10]. The questions arising in

the field of determination and handling of integral experimental covariance matrices in

the process of code validation are also discussed in the Expert Group on Uncertainty

Analysis for Criticality Safety Assessment (UACSA), a sub-group of the Working Party

on Nuclear Criticality Safety (WPNCS) of the Nuclear Energy Agency (NEA) within the

Organization for Economic Co-operation and Development (OECD). Some of the current

questions are: How to treat given sets of similar experimental data without knowing all

exact statistical dependencies; and further, what are the implications on modeling these

experiments in a code validation procedure regarding the consideration of the complete

integral experimental correlation or covariance matrices? The discussions of the UACSA

are synthesized in the benchmark proposal [11].

Correlated data can arise if different experiments share parts of the experimental setup,

measurement systems, or other relevant parameters. Some experiments described in the

ICSBEP are not performed as single experiments, but slight variations of a setup were

repeatedly investigated and published as a series of the same experiment. The traditio-

nal validation procedures do not consider any correlations, but treat every experiment

as statistical independent. If one can ensure this independence, e.g. by considering on-

ly experiments from different laboratories with different nuclear fuel characteristics, the

traditional methods are just fine. However, if the data base of suitable experiments in a

validation procedure is limited and correlation effects can not be excluded, the ignoring of

these correlations has the potential of generating non-conservative results. An important

role in the determination of correlations has the translation of the experimental data into

calculation models. Recent discussions in the UACSA have shown, that different groups

derived different correlations even though the underlying experimental data was identical.
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In the following we introduce the general statistic terms used in this work in chapter

2. In chapter 3 we discuss how we generated integral experiment covariance data and

discuss and illustrate the main obstacles in this process. Chapter 4 discusses the impact

of the generated covariance data on some application cases. We conclude our findings

in section 5.
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2 General Statistics

The following is intended to give a brief overview of statistics and to introduce the used

statistical terms and definitions. More details can be found in any of the numerous availa-

ble textbooks on statistics. A good and compact overview can be found e.g. in [12, 13].

Concerning the mathematical notation used in this manuscript we tried to remain as close

as possible to already published notations on the same subject. This holds especially for

the notation of the Bayesian updating process, introduced in [7].

Frequently, one is confronted with an accumulation of data and the wish to use this data

to derive and gather general statements from it. This data could be e.g. a set of ex-

perimental observations or samples of theoretical predictions. Statistics can be used to

derive inference about probabilistic models, e.g. the validity of a model or certain parame-

ters it predicts. Supposing the experimental data consists of independent measurements

(x1, ..., xn) and its parameters following a certain probability density function (p.d.f.), the

unbiased estimators of the principally unknown mean value µ and variance σ2 are

µ̂ =
1

n

n
∑

i=1

xi, (2.1)

σ̂2 =
1

n− 1

n
∑

i=1

(xi − µ̂)2 . (2.2)

The variance of µ̂ is σ2/n and the variance for Gaussian distributed xi is 2σ4/(n − 1) for

n ≥ 2. For large n, the error of the error becomes σ/
√
2n.

For any n and Gaussian distributed xi, µ̂ is an efficient estimator for µ, and µ̂ and σ̂

are uncorrelated. Note, that following equation 2.2, knowing σ2 does not improve the

estimator µ̂. But knowing µ does improve the variance of the estimator of σ2.

If the xi have different but known variances, the weighted average

µ̂ =
1

w

n
∑

i=1

wixi, (2.3)

with wi = 1/σi and w =
∑

wi, is an unbiased estimator for µ with a smaller variance than

the unweighted average. The standard deviation of µ̂ becomes 1/
√
w.

Dealing with uncertainties or errors of experimental values, it can become necessary to
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assign a distribution function to errors to be able to apply certain statistical tools, e.g.

Monte-Carlo sampling or Bayesian statistics. For the purpose of this work it is a very

good approximation to assume all errors following a normal distribution. The reason is

based on the central limit theorem. It basically states, that as the number of variables in

a sum increases the distribution of the sum of random variables approaches the normal

distribution regardless of the shape of the distribution of the individual random variables.

In general, an experimental error consists of a large number of contributing errors. If the

sources of errors are numerous then by the central limit theorem one can say that experi-

mental errors tend to have a normal distribution. Using statistical tools to make inference

about a sample average, which is a further summation of values that are themselves likely

to have normally distributed errors, provides additional justification to assume that sam-

ple averages have normal distributed errors. However, it is worth noting, that the errors of

observations generally tend to be normal distributed, but not the random variable itself.

The latter can follow any distribution function, depending e.g. on physical properties or

definitions e.g. positive definite, or following a uniform distribution.

To compare two random variables or to investigate the dependence between them one

usually calculates the covariance. The covariance of two random variables is a measure

of how much the two variables change together. It has a positive value, if greater (les-

ser) values of one variable corresponds to greater (lesser) of the other. If greater (lesser)

values of one variable correspond to lesser (greater) of the other, the covariance is nega-

tive. For two sets A and B of n sampled neutron multiplication factors keff , the covariance

covAB is defined as

covAB =
1

n− 1

n
∑

i=1

(

keff
A,i − keff

A,i
)(

keff
B,i − keff

B,i
)

(2.4)

with keff symbolizing the expectation value of keff , here the sample mean.

To get comparable statements for more than two sets of random variables the covariance

can be normalized with the standard deviation σ to get Pearson’s correlation coefficient1

cor:

corAB =
1

σAσB
covAB. (2.5)

1 In the following the expression correlation coefficients refers always to Pearson’s definition.
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The correlation coefficient is a non-additive and dimensionless measure of the linear

dependence of two sets of random variables and takes values between +1 (complete

positive linear connection) and -1 (complete negative linear connection). Fig. 2.1 and 2.2

show two different ways of visualizing correlation graphically for the same data set. Both

picture show the correlation of nine different data sets named BM1 to BM9 consisting

each of 250 entries. Both pictures show a matrix of these data sets, mirrored at the

diagonal (corAB = corBA). Fig. 2.1 shows a matrix of scatter plots with the distribution

of values for each of the nine data sets on the diagonal. The more the point clouds are

linearly distributed the higher is the correlation value. The more circled distributed they

are, the lower is the correlation value. This type of representation offers a lot of information

apart from the correlation coefficient. E.g. the check of the distribution function on the

diagonal axis, or to exclude correlations different than linear.

Fig. 2.2 shows the correlation coefficients as numbers in the upper right half and as color

coded squares in the lower half. The diagonal elements show the color coded correlation

coefficients corAA =1. The information provided in these pictures is less compared to

fig. 2.1, but might appear more intuitive and readable. For this reason, we use in this

publication only these types of visualizations.

Transforming the correlation coefficients via Fisher’s z-transformation [14] gives an addi-

tive measure which can be transformed back. The z-distribution is shown in fig. 2.3 and

is defined as

z(cor) := 0.5 ln

(

1 + cor

1− cor

)

. (2.6)

The z-distribution is approximately normal distributed with a standard deviation

σ(z) =
√

(n− 3)−1 (2.7)

with n being the number of samples. Following this definition, one can compute a confi-

dence interval CI of a correlation coefficient in z-space following

CI(z) = z(cor)± CL× σ(z) (2.8)

where CL is the confidence level. For the uni-variant case of a normal distributed ran-

dom variable with known standard deviation, the probability that a value x falls within the
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Fig. 2.1 Shown here is a matrix of correlation of nine different data sets consisting

each of 250 entries. The matrices are mirrored at the diagonal and show a

matrix of scatter plots with the distribution of the values for each of the nine

data sets on the diagonal. The more the point clouds are linearly distributed

the higher is the correlation value. The more circled distributed they are, the

lower is the correlation value.
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Fig. 2.2 Shown are the correlation coefficients as numbers in the upper right half and

as color coded squares in the lower half of the matrix. The diagonal elements

are per definition corAA =1.

interval ±δ = ±mσ, with m ∈ ℜ around the true value µ is defined as

1− α =
1√
2πσ

∫ µ+δ

µ−δ

exp

[

−(x− µ)2

2σ2

]

dx (2.9)

= erf

(

δ√
2δ

)

(2.10)

with erf being the Gaussian error function. The choice δ = σ gives the interval called

standard error with a confidence level of 1−α = 68.27%. Further values of corresponding

pairs of standard deviations and confidence levels are e.g. m = 1.64 (90%), 1.96 (95%),

2.58 (99%), and 3.29 (99.9%). An illustration of the confidence interval is shown in fig.

2.4. The calculated upper and lower limits in z-space can be transformed back via

cor(z) =
exp2z − 1

exp2z + 1
(2.11)

to get the corresponding confidence interval for the calculated correlation coefficient.

2.1 Bayesian Statistic

In the following we will introduce and describe the relevant concepts and formulas. We will

not go into too many details since there exists a vast number of publications on the subject

of Bayes statistic and its advantages and disadvantages compared to the traditional or
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Fig. 2.3 Fisher z-distribution as a function of correlation coefficient. The dashed lines

show the asymptotes at ±1.

frequentist approach. In the context of criticality safety, applications of Bayesian Statistics

is described e.g. in [15, 16].

In the concept of Bayes statistics, a prior believe of an event is updated with further know-

ledge. Technically it means to associate to an event A the probability to occur p(A) and

then gain a better knowledge by update it with further, related knowledge X as cons-

trained probabilities p(A|X), meaning event A occurs under the assumption of X. The

Bayes-Theorem for the so called posterior probability density P (A|X) is defined as

P (A|X) = (P (X|A)P (A))/(P (X)). (2.12)

Expressed in likelihood functions it becomes P (A|X) ∝ L(A|B)p(A). Assuming indepen-

dent realizations of a normal distributed variable y = θ + N(0, 1) with unknown mean µ

and variance σ2, the Likelihood function is given as

L(y|θ) = [y|θ] = 1/
√
πexp[−1/2(y − θ)2]. (2.13)

With a Gaussian prior for [θ] = 1/(
√
πσ)exp[−1/2(θ − µ)2] we get for the posterior proba-

bility density

[θ|y] ≈ [y|θ][θ] (2.14)

= 1/
√
πexp[−1/2(y − θ)2]1/(

√
πσ)exp[−1/2(θ − µ)2] (2.15)

∝ exp[1/(
√
πσ∗)]exp[−1/2(y∗ − θ)2]. (2.16)
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Fig. 2.4 Illustration of a symmetric 90% confidence interval for a uni-variant Gaussian

distribution.

The latter relation arises from the fact, that two Gaussian distributions result again in a

gaussian. The asterisk marked variables σ∗ and y∗ represent posterior standard deviation

and mean value. Straight forward algebra and coefficients matching leads to general

expressions for the posterior variance and mean values:

y∗ = µ+ ((y − µ)σ2)/(1 + σ2) (2.17)

σ∗2 = σ2 − 1/(1 + σ2), (2.18)

with µ and σ being the mean value and standard deviation of the prior distribution. Note,

that y∗ gets larger or smaller compared to µ depending on the sign of (y−µ). The posterior

value σ∗ in 2.18 can only get smaller compared to the prior σ.

2.2 Bayesian Updating of an Application Case Using Benchmar ks

The application of Bayesian statistics in the field of nuclear criticality safety is not new

and for example used in SCALE’s TSUNAMI [17]. Applying the above given formulas to

criticality safety assessments is described in [7, 18, 16]. Assuming an application ca-

se with normal distributed (N(µ, σ)) p(kApp
eff ) = N(kApp

eff , (cov)0) the prior (or knowledge)

can be updated with suitable experimental data or benchmarks. The measurements can

9



be expressed as likelihood functions p(v|kApp
eff ) ∝ exp

[

(UkApp
eff − v)T covv

−1(UkApp
eff − v)

]

,

with the vector of measured values v = ~v, U a rectangular m × n matrix and covv the

covariance matrix of the measurements.

If we assume an application case A and some benchmark experiments B and their keff

values kAeff and kBeff = ~kBeff as functions of the nuclear data α and system describing

parameters ~x, keff (α, ~x), one can define the following prior distributions:

K0 = (k0,Aeff , k0,Beff ) (2.19)

for the mean values of the keff prior distribution and

cov0 =





cov0,A cov0,AB

(

cov0,AB
)T

cov0,B



 (2.20)

for the prior covariance matrix. The covariance of the application case is denoted by

cov0,A, for the benchmark experiments by cov0,B. The matrix or vector (depending on

the number of application cases) cov0,AB is the covariance of the application case and

benchmark experiments due to nuclear data. It represents the comparability of the neu-

tron spectrum and can be viewed as a weighting function. Normalizing these values with

the standard deviations would lead to correlation coefficients as given for example by

SCALE’s TSUNAMI ck values.

The covariances due to system parameters are expressed as covsys = covsys,B, assuming

statistical independence between the system parameters of the application case and

benchmark experiments.

Using some algebra and equations 1.17 and 1.18, we derive the same expressions as [7]

for the posterior model parameters of the application case keff distribution function:

kA,∗
eff = k0,Aeff + cov0,AB

(

cov0,B + covsys,B
)

−1
(

kB,exp
eff − kB,th

eff

)

(2.21)

covA,∗ = cov0,A − cov0,AB
(

cov0,B + covsys,B
)

−1 (
cov0,AB

)T
(2.22)

The updated knowledge of the application case mean value in 2.21 depends on the pri-

or k0,Aeff , the similarity of the application case and benchmark experiments cov0,AB , the

covariance of the used benchmark experiments due to nuclear data uncertainties cov0,B

and due to uncertainties of the model parameters covsys,B and the difference between

10



the experimental and theoretical keff values, kB,exp
eff −kB,th

eff . The application case posterior

mean kA,∗
eff can become smaller or larger in comparison to the prior depending on the sign

of the difference between experimental and theoretical benchmark keff values.
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3 Generation of Covariance Matrices

In the preceding section 2.1 we presented the posterior distribution characteristics and

their dependence on covariance data. In the following section we describe in detail the

generation of integral experiment covariance matrices covsys,B based on publicly available

data sets of critical experiments. The generation of covariance matrices due to nuclear

data uncertainties will be presented, but not discussed in greater details, since it is alrea-

dy described in the literature, e.g. in [19, 20, 21].

The primary source for publicly available experimental data of critical experiments is the

International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)

[1]. It contains criticality safety benchmark specifications that have been derived from ex-

periments performed at various critical facilities around the world. The evaluated critica-

lity safety benchmark data are given in nine volumes and contain 567 evaluations with

benchmark specifications for 4 874 critical, near-critical or sub-critical configurations.

The evaluated data given in the ICSBEP is widely used for validation purposes. Subse-

quently we will consider evaluated data for arrangements of low enriched uranium fuel

rods and plutonium solution, both for thermal neutron spectra. The experiments were

conducted in series, meaning that they were repeated with a slight modification of the

setup. This could be for example the alteration of empty spots in a grid of fuel rods or

a different pitch between the fuel rods. This procedure introduces correlation effects in

the resulting keff values. Based on the data we will generate the covariance data using

Monte-Carlo sampling techniques.

3.1 Monte-Carlo Sampling

Covariance data can be derived either by Monte-Carlo methods or based on linear per-

turbation of model parameters. The covariance matrix Σ of a parameter, e.g. k(x) with

x = ~x can be defined as

Σk = SΣxS
T (3.23)

with S being the sensitivity matrix of the keff values with respect to system parameters

x at x = x0, and Σx the covariance matrix of x. If the system parameters x1, · · · , xn are

13



chosen to be independent, Σx takes diagonal form:

Σx = diag(σ2
1 , · · · , σ2

n). (3.24)

Following the Monte-Carlo sampling approach for the system parameter x and the cor-

responding probability density functions, a Monte-Carlo transport code, e.g. KENO-V.a

can be used to calculate multiple neutron multiplication factors ki. After a sufficient num-

ber of Monte-Carlo cycles, the covariance matrix Σk can be approximated by the sample

covariance matrix

Σ̂k =
1

nMC − 1

nMC
∑

iMC=1

(kiMC
− n−1

MC

nMC
∑

iMC=1

kiMC
)(kiMC

− n−1
MC

nMC
∑

iMC=1

kiMC
)T

(3.25)

Using the Monte-Carlo approach can have several advantages. It is easy to adapt, since

no sophisticated mathematical tools or knowledge is needed. Since it does not rely on

further simplification e.g. taking only 1st order perturbations into account, non-linear de-

pendencies of a varied parameter and the result are included. A disadvantage of Monte-

Carlo sampling Methods compared to linear perturbation approaches can be the number

of calculations needed to get a statistically satisfying result. The summed calculation time

for the repeatedly evaluated calculation models with varying starting conditions can reach

large values, depending on the model and number of varied input parameters.

3.2 SUnCISTT

In this work, we applied SUnCISTT [22] to execute and evaluate the Monte-Carlo sampled

SCALE 6.1.2 criticality calculations. The GRS development SUnCISTT (Sensitivities and

Uncertainties in Criticality Inventory and Source Term Tool) is a modular, easily extensible

abstract interface program, designed to perform uncertainty and sensitivity analysis in the

field of criticality safety. It couples different criticality and depletion codes commonly used

in nuclear criticality safety assessments to the well-established GRS tool SUSA [23] and

various Python packages (e.g. NumPy, SciPy, Matplotlib) for sensitivity and uncertainty

analysis. SUnCISTT handles the complex bookkeeping that arises in the transfer of the

generated samples into valid models of a given problem for a specific code. It generates

and steers the calculation of the sample input files for the used codes. The computed

results are collected, evaluated, and prepared for the statistical analysis. A detailed des-

cription of SUnCISTT is given in [22] and references therein. Here we just review the two

modes prepareSamples and CollectResults, depicted in fig. 3.5 and 3.6 respectively.
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To perform a Monte-Carlo sampling analysis of a given mathematical model, SUnCISTT

needs information about the generated samples, the computational model to be analy-

zed and the specific input file requirements of the code to be executed. For the gene-

rated samples, an ASCII formatted list of the statistical varied input parameters has to

be provided. This list can be generated by any suitable program. In fig. 3.5 the GRS

program SUSA is depicted. For evaluations of large data sets, e.g. several experiments

with a large number of samples and input variables we rely on a statistic program ba-

sed on python. To generate the random numbers used for the Monte-Carlo sampling we

used a Mersenne Twister pseudo-random number generator of the NumPy class num-

py.random.RandomState [24]. Within this class a compatibility guarantee is given, mea-

ning that a fixed seed initializing the random number generator and a fixed series of calls

to ’RandomState’ methods using the same parameters will always produce the same re-

sults up to round-off errors. Practically this means, that one does not need to store the

entire ASCII list of random numbers, but for each parameter the distribution and its cha-

racteristics and the corresponding random seed. From the SCALE input file of the nominal

case, a template file is derived in which user defined keywords replace the nominal values

of the uncertain parameters. The third file to be provided in the SUnCISTT mode prepa-

reSamples is a configuration file that sets the information of the other files into relation.

With the given information, the desired number of individual input files with the statistical

varied input parameters defined in the sample list are generated and the execution of

them is steered. SUnCISTT also collects the calculated individual results and prepares

them for further analysis. By default, SUnCISTT produces an ASCII formatted result file

that can be transferred to SUSA or Python based scripts for the statistical evaluation. For

further visualizations and analysis optional files for ROOT [25] are generated.

3.3 Example 1: Modeling Experimental Data

The questions arising in the field of determination and handling of integral experimental

covariance matrices in the process of code validation for criticality safety calculations are

discussed in the Expert Group on Uncertainty Analysis for Criticality Safety Assessment

(UACSA), a sub-group of the Working Party on Nuclear Criticality Safety (WPNCS) of the

Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and

Development (OECD). Some of the actual questions which arose recently are: How to

treat given sets of similar experimental data without knowing all exact statistical depen-
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Fig. 3.5 Sketch of SUnCISTT sequences to generate samples. The mode prepa-

reSamples needs a list of samples for the statistical independent input pa-

rameters, the parameter definitions, and a template file of the code to be

executed. It then completes the set of parameters by deriving the depending

parameters. By replacing the keywords in the template file with the parame-

ters, the desired number of input files are generated.

dencies; and further, what are the implications on modeling these experiments in a code

validation procedure regarding the consideration of the complete integral experimental

correlation or covariance matrices?

In the following we address these questions by following parts of the group’s proposal

for a benchmark called Role of Integral Experiment Covariance Data for Criticality Safety

Validation [11]. In contrast to the benchmark proposal we focus on a reduced number of

experiments but a total of nine different modeling approaches. With the following analysis

we show the effect of different modeling approaches for the same set of experimental

data on the resulting integral covariance or correlation matrices.

As already mentioned, correlated data can arise if different experiments share parts of
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Fig. 3.6 Sketch of SUnCISTT sequences to collect individual sample results and

create integral result files. The mode collectResults needs some information

about the code dependent structure of the generated output files to create

results tables and ROOT-trees.

the experimental setup, measurement systems, or other relevant parameters. Some ex-

periments described in the ICSBEP are not performed as single experiments, but slight

variations of a setup were repeatedly investigated and published as a series of the sa-

me experiment. This is e.g. the case for LEU-COMP-THERM- 039 (LCT-39), where the

number and locations of empty positions in a fuel rod grid were varied. In the following

work we focus on the experimental data from experiments numbers 6, 7, and 8 from this

series described in detail in [1, 11, 5] and references therein. The critical experiments

consist of water moderated low enriched uranium fuel rods with a thermal neutron spec-

trum. The experimental setups are 22×22 arrays consisting of 363 (459, 448) fuel rods

for experiment 6 (7, 8) and 121 (25, 36) empty positions, respectively. For further details

we refer to [1, 5]. Clearly these experiments share certain components, and treating them

as individual statistical independent data sets in the process of validation probably would

not be appropriate. Hence, the determination of the integral covariance or correlation ma-

trix of the experiments is a crucial step on the way to determine a bias of the calculated

application case keff .

Following a Monte-Carlo Sampling approach, each value describing the experiment has
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to be interpreted as a distribution function. This means in turn, that the definition and

interpretation of the experimental parameters and their uncertainties is essential. It stron-

gly depends on the quality of the experimental data and availability of precise uncertainty

specifications. To circumvent the problem of determining suitable distribution functions

for each parameter, we apply the ones proposed in the benchmark description, listed in

tab. 3.1. All experimental parameters are supposed to follow either a uniform U(a,b) or

normal distribution N(µ,σ). Assuming the three experiments LCT-39 6, 7, and 8 to be stati-

stical independent gives a correlation coefficient close to zero. Results for this assumption

are shown for the correlation of keff values calculated by KENO-V.a using the parameters

given in tab. 3.2 for 250 Monte-Carlo samples for each experiment. The underlying model

assumptions for the results of Fig. 3.7 are very simple and straight forward: It is assumed,

that the fuel rods are all identical in composition and position within its unit cell. In conse-

quence, the modeling of one experiment consists basically of a 22×22 array of identical

unit cells for the fuel rods and the empty positions respectively.

3 9 -6 3 9 -7 3 9 -8

3 9 -6
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Fig. 3.7 Correlation coefficients of the experiments LCT-39 6, 7, and 8 assuming all

fuel rods to be identical and no statistical dependence between each experi-

mental setup. Shown are the cor-values and the upper and lower 95% CI.

3.3.1 Dependence on Modeling Choices

Having determined all relevant parameters and their distribution functions, a calculation

model is built to calculate the neutron transport equations and determine the neutron mul-

tiplication factor. Obviously the model should be as close as possible to the experimental
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Tab. 3.1 All model parameters and their distribution characteristics, following the sug-

gestions of the benchmark proposal [11].

Model parameters Type of variation Distribution functions

Fuel diameter [cm] depends on scenario N(0.7892, 0.0017)

Fuel lengths [cm] depends on scenario N(89.7, 0.3)

Fuel density [g/cm3] depends on scenario N(10.38, 0.0133 )

Fuel content 234U [At.-%] depends on scenario N(0.0307, 0.0005 )

Fuel content 235U [At.-%] depends on scenario N(4.79525, 0.002)

Fuel content 236U [At.-%] depends on scenario N(0.1373, 0.0005)

Boron concentration

[atom/barn×cm×10−8]

depends on scenario N(6.9037,0.8)

Critical water height [cm] individual N(µ, σ) dep. on experiment

Angle of fuel rod individual U( 0, 2π)

Offset of grid hole x [cm] individual N(0, 0.00742)

Offset of grid hole y [cm] individual N(0, 0.00742)

Hole diameter [cm] depends on scenario N(0.0105, 0.0085)

Inner cladding diameter [cm] depends on scenario U (0.81, 0.83)

Cladding thickness [cm] depends on scenario U (0.055, 0.065)

setup to get reasonable results. However, in the statistical interpretation of experimental

series, the available data might leave some freedom of choice. The results shown in fig.

3.7 represent a model simplification of the experimental setup by assuming all fuel rods

in one sample to be identical. However, one can argue, that due to manufacturing toleran-

ces of the experimental equipment individual fuel rods may vary in both, their individual

composition and position within the unit cell. The position of the fuel rod in the unit cell

is then limited by the grid hole. For some simplicity we assume the fuel rod to be always

vertical, meaning a 90 degrees angle to the horizontal plane. The modeling approach for

the fuel rod displacement is depicted in fig. 3.8. For the modeling of the experiments in

KENO-V-a, this implies each fuel rod to be simulated within its own unit cell, which we

assume to have fixed dimension for all fuel rods. According to fig. 3.8, position of the grid

hole might be displaced from the center of the unit cell by δx and δy in x and y direction.

The center of the fuel rod itself might again be displaced in x- and y-direction, denoted by

the radial displacement R and angle θ. In our modeling approach R is indirectly defined

by the assumption that the fuel rod is in contact with the grid hole.
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Tab. 3.2 Used codes and cornerstones of the calculations. KENO-V.a is taken from

the CSAS5 sequence of SCALE 6.1.2.

Code Parameter Value

KENO-V.a

Nuclear data library ENDF/B-VII (ce)

Neutrons per generation 10,000

Skipped generations 500

σMC 5×10−4(Sc. A to D); 1×10−4(Sc. E to H)

SUnCISTT Number of samples 250

Fig. 3.8 Modeling approach for the displacement of the grid hole and fuel rod in a unit

cell (not to scale). The center of the hole might vary from the center of the

unit cell by δx and δy, respectively. The center of the fuel rod can vary by

the distance R under the angle θ. As a boundary condition, the fuel rod has

always contact with the grid.

We chose eight different modeling approaches, scenarios A to H, depending on assump-

tions on the fuel similarity and position of each single fuel rod. Scenarios A to E assume

the fuel to be identical for all fuel rods in all experiments. One can argue that this might be

a reasonable approximation, based on the assumption of a very accurate fuel fabrication

process with only tiny tolerances. However, scenarios F and G assume a set of the maxi-

mal needed fuel rods (484 for the 22×22 grid array) being statistical independent. These

fuel rods are placed for all experiments in a fixed position for scenario F or randomly for

each experiment in scenario G, see fig. 3.9. Finally, scenario H assumes all fuel rods

in every experiment to be statistical independent. The statistical dependence of the fuel

between two experiments decreases from scenario E to H. The results shown in fig. 3.7

assume the same modeling assumptions as scenario A but any correlations were neglec-

ted, meaning no statistical dependence between each experimental setup. This scenario

is named ’NoCor’.

20



Tab. 3.3 Modeling assumptions for fuel rod geometries and compositions of one sam-

ple for each different scenario. The variation of fuel in the last column means

the variation of the diameter, length, density and enrichment of the fuel as

well as the boron impurity. Scenario NoCor (scenario H) is identical to A

(scenario G), except for neglecting statistical dependencies between experi-

ments.

Scenario Grid hole Grid hole Inner Cladding Fuel

displ. diameter clad diam thickness variation

NoCor centered shared shared shared shared

A centered shared shared shared shared

B δx,δy shared shared shared shared

C δx,δy individual shared shared shared

D δx,δy individual individual shared shared

E δx,δy individual individual individual shared

F δx,δy individual individual individual 484 fixed

pos.

G δx,δy individual individual individual 484 ran-

dom pos.

H δx,δy individual individual individual individual

The analysis allover required a total of 6,750 SCALE inputs with up to 20,000 lines per

input file. The calculations were performed using a total of 60,000 CPU-h and 882 TByte-

h. The results then were processed and statistically analyzed using SUnCISTT.

The resulting keff values for each experimental data set and modeling scenario are shown

in fig. 3.10. We found a good agreement within the 2-σ range of the experimental data

keff
exp = 1.0 (±0.0012 for exp. 7,8) (±0.0009 for exp. 6) given in [1]) and our results.

The SCALE calculations with the applied continuous energy library ce_v7_endf (based

on ENDF/B-VII) in the CSAS5 sequence systematically underestimates keff , which is a

known effect for low enriched uranium setups [26]. Scenarios E to H in which the individu-

al variations of the parameters partly cancel out each other, have significant lower error

bars. The larger error bars of the Monte-Carlo approach of Scenario A in comparison to

the error propagation approach done in the ICSBEP Handbook are not attributed to a

general difference between the two methods. They rather arise from a different interpre-
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Fig. 3.9 Sketch of modeling approaches for scenarios F (left) , G and H (right). The

blue boxes represent the fixed library of individual generated fuel rods. The

black and white squares represent the three experimental setups LCT-39 6,

7, and 8 from top to bottom. A black dot represents a fuel rod, a white one

an empty spot. The simulation corresponding to the left part of the picture

assumes a fixed position for each fuel rod in each experimental setup. E.g.

FR1 is always in the top left spot for every experiment. The right part of the

figure depicts the assumption of each fuel rod being randomly placed in the

grid for each experiment.

tation of the system parameter uncertainties. In the original experiment description [27]

the uncertainty of the inner cladding diameter (± 0.01 cm) and the cladding thickness

(± 0.005 cm) are reported to be independent. The uncertainty of the outer cladding dia-

meter is obtained by error propagation. In the ICSBEP evaluation, the uncertainty of the

cladding thickness is split equally between inner and outer diameter. This results in an

uncertainty of the outer cladding diameter of ± 0.0025 cm, which reduces its impact on

the uncertainty of keff significantly. The original evaluation assumes further a Gaussian

distribution by dividing the half tolerance by
√
3. The resulting distributions for the outer

cladding diameter and their impact on keff are different for both considerations, as shown

in figures 3.11 and 3.12. Fig. 3.11 shows the distribution of the outer cladding diameter.

Blue represents the distribution with parameters from the original literature, red with pa-

rameters given in the handbook. Fig. 3.12 shows the resulting distributions of keff . The

black curve is the experimental target value of keff = 1.000 with a standard deviation (σ

= 0.0012) deduced in [1] by linear error propagation from the experimental uncertainties.

The blue curve shows the calculated distribution from a Monte-Carlo approach with pa-
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Fig. 3.10 Resulting keff values for 250 Monte-Carlo samples for each experiment and

scenario. The error bars indicate the standard deviation. While the nominal

values remain fairly constant for all scenarios, the standard deviation decre-

ases significantly from scenario D to F.

rameters from the original literature. The red curve shows the result with the information

from [1]. The resulting uncertainty agrees reasonable well with the one from error propa-

gation in the handbook. However, the values based on the original literature were used

for the following analysis.

In fig. 3.13 nine colored plots are shown for the cor values of the experiments LCT-39

6, 7, and 8 as well as the cor value and the 95% confidence interval. The results show

correlation coefficients around 0 for the scenarios NoCor and H, as expected, since there

are no relevant parameters with shared values between the individual experiments. Note

that the difference between the NoCor and H scenario is the variation of the fuel rods: In

contrast to NoCor, in scenario H each fuel rod in each experiment is simulated individually

and statistically independent. This difference is mapped in the sensitivity plots in fig. 3.15

and 3.16 which show the correlation coefficients of each parameter with the resulting keff .

Note, that the performed sensitivity analysis shows the impact of the actual variation of

each parameter on the keff uncertainty. However, we do not perform a sensitivity analysis

by varying only one parameter at a time. This means, our sensitivities depend on the

chosen distribution functions and their characteristics. Changing these assumptions in

our approach might lead to a different sensitivity profile. This approach was chosen since

we are interested in determining the contribution of each varied input parameter on the

uncertainty of keff for given modeling assumptions.
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Fig. 3.11 Comparison of the distribution functions for samples of the outer cladding

diameter. The red distribution follows the interpretation of [1], the blue distri-

bution follwos the original published experimental data. The distribution func-

tions are both normal distributed with the same mean value, but different σ’s.

While for the scenario NoCor the most relevant parameters are the cladding inner radius

and thickness, the only important parameter for scenario H is the critical water height.

It is notable, that in this case the different interpretations of the given experimental data

lead to comparable cor values but totally different sensitivity profiles. The highest corre-

lation coefficients for scenario NoCor are the ones for the cladding inner diameter and

thickness, and for the radius of the fuel. The only dominant parameter for scenario H is

the critical water height. Scenarios A, B, C and D show all cor values close to 1 with only

little deviations between the different cor values of the scenarios. The cor values for sce-

nario A to C are even the same within the 95% confidence interval. Their corresponding

sensitivity profiles show huge similarities: The three largest cor values are the cladding

inner radius and thickness and the radius of the fuel. For scenario B and C the U-235

weight-% plays a more prominent role. The sensitivity profiles for scenario D show a dif-

ferent behavior since the inner cladding diameter here is varied individually for each fuel

rod. The leading contribution to the sensitivity profile now solely results from the cladding
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Fig. 3.12 Impact of the two different distribution functions for the cladding outer dia-

meter on the calculated keff distribution compared to the experimental values

(black). The distribution function based on the original values (blue) result in

a larger uncertainty compared to the values from [1] (red).

thickness.

Scenario E shows correlation coefficients of approximately 0.75 between the experiments

6 and 7 and 0.7 between experiments 7 and 8. The difference between the cor values is

due to lower number of fuel rods in experiment 6 compared to 7 and 8. Thus, the individual

variation of the cladding inner radius and thickness for each fuel rod affects the correlation

coefficient of the experiments 7 and 8 more. The corresponding sensitivity profile shows

the fuel radius as the leading parameter. A mild impact is shown by the fuel density and

critical water height (additional the weight-% for U-235 and the fuel height for LCT-39 7).

Scenarios F and G show significantly smaller correlation coefficients between the expe-

riments. The difference to Scenario E is that now also the fuel content of each fuel rod is

varied individually. This can be seen in the sensitivity profile of both scenarios in fig. 3.16,

where the dominant parameter is the critical water height.

25



Fig. 3.13 Matrices of the correlation coefficients for the 9 scenarios. The upper part

of each matrix shows the cor values and the ranges for the 95% confidence

interval. The lower part shows the nominal cor values color coded. The scale

varies from dark red for cor = 1 to white for cor = -0.2. The resulting correla-

tion coefficients for scenario NoCor and H are 0 within the 95% confidence

interval. Scenarios A to D show cor values close to 1, while scenarios E to G

show a slight decreasing of cor from approximately 0.75 to 0.5.

3.3.2 Dependence on Neutron Transport Calculation

It is obvious, that the Monte-Carlo uncertainty σMC
keff

of keff has to be chosen to be signifi-

cantly smaller compared to the experimental uncertainty. Otherwise, the effect of correla-

ted data due to shared parameters in the experiment descriptions will remain hidden and

the derived correlation coefficients will be too low. To illustrate this effect, we performed

further SUnCISTT calculations using the CSAS5 sequence of SCALE 6.1.2 for the abo-

ve described Scenarios F and G of the experiments LCT-39 6 to 8 (250 samples each),

but varied σMC
keff

. The latter was set to values of 1×10−3, 5×10−4, 1×10−4, 5×10−5 and
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Fig. 3.14 Correlation coefficients for the pairs of experiment 6 and 7 (black), 6 and 8

(red), and 7 and 8 (blue) of Series LCT-39 for the 9 scenarios. The error bars

represent the 95% confidence interval. Scenarios A, B, C, and D show high

correlation coefficients, all close to 1. For scenarios E to G the coefficients

decrease to approximately 0.7, 0.6, and 0.5 respectively. The correlation co-

efficients for scenario H are 0 within the 95% confidence interval, like the

ones for the NoCor scenario.

additionally for Scenario F1 to 2.5×10−5. The results shown in fig. 3.17 and 3.18 illustra-

te the increasing of the correlation coefficient cor for the three experiments from around

0.1 to 0.2 for σMC
keff

=1×10−3 to cor ≈0.7 (Scenario F) and cor ≈0.55 (Scenario G) for

σMC
keff

=2.5×10−5.

For values smaller than σMC
keff

=1×10−4, the 95% confidence interval overlap and the

change of mean values of the correlation coefficients is small compared to the change

from σMC
keff

=5×10−3 to σMC
keff

=1×10−4.

1 We did not perform the same calculation for Scenario G since it would have needed an estimated calcula-

tion of far more then 60k CPU-h and the expected result would only differ little from σ
MC

keff
=5×10−5.
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Tab. 3.4 Parameters and key words used in fig. 3.15 and 3.16.

Key word Parameter Key word Parameter

rad_CladIn cladding inner raduis w%_U235 weight-% U-235

thick_Clad cladding thickness w%_U236 weight-% U-236

rad_Fuel fuel radius height_Water water height

height_Fuel fuel height rad_Hole hole radius

dens_Fuel fuel density delta_Hole_X δx

dens_B10 B-10 density delta_Hole_Y δy

w%_U234 weight-% U-234 angle_Rod θ

3.3.3 Dependence on Sample Size

Another technical obstacle in calculating the correlation coefficient using a Monte-Carlo

Sampling approach is to use a significant number of samples to ensure convergence.

The problem is widely known and discussed broadly in the literature with various recom-

mendations (see e.g. [28] and references therein). A rule of thumb is, that the larger the

number of samples is, the more the results tend to minimize the probability of errors,

maximize the accuracy of population estimates, and increase the possibility to generalize

the results. Some authors recommend a minimum number of samples of 50, others of

400 [29], for a review see e.g. [30].

A strong limiting factor for the number of samples used for our investigations in this work

is the calculation time for each experiment. Sometimes values of 20,000 CPU-h were

reached to calculate a covariance for two experiments and 250 samples each. In the-

ses cases calculations based on 500 or even 1000 samples seems to become almost

impossible.

To investigate the problem of how many samples are needed to get reliable results,

we generated 625 samples of each experiment described above for Scenario A. We

performed calculations using SUnCISTT with CSAS5 sequence of SCALE 6.1.2 and

a σMC
keff

= 1×10−5. Following the evolution of the correlation coefficient with increasing

number of samples lead to the results shown in fig. 3.19 and 3.20. The 95% confidence

interval becomes broader, the smaller the absolute value of the correlation coefficient

becomes. Or in other words, the closer the correlation coefficient is to 1, the smaller is
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Fig. 3.15 Correlation coefficients of each individual model parameter listed in tab. 3.4

and the resulting 250 keff values for scenarios NoCor and A. The profiles are

similar due to identical modeling assumptions. The only difference between

the two scenarios is the assumption of correlations in scenario A. Note the

different scale of the color coded representation of cor w.r.t. fig. 3.13.

the uncertainty due to sampling. This effect is due to the Fisher’s z-distribution used to

calculate the confidence intervals. It can already been seen, that the bigger the number

of samples is, the less statistical noise corrupts the resulting correlation coefficient. For

correlation coefficients close to the absolute value of 1, the results and converge faster

and the confidence intervals remain almost constant. In fig. 3.20 it can be seen, that for

the correlation coefficient of the experiments LCT-007 1 and 2 approximately 50 samples

give already a very good and stable result, whereas the correlation coefficients for LCT-

007 1 and 3, and 1 and 4 are still very unstable and have comparable huge confidence

intervals.

If one wants determine a minimum number of samples needed, one has to investigate

the evolution of the smaller correlation coefficients in more detail. In the following we will

have a closer look on the evolution of the correlation coefficient of LCT-007 experiments 3

and 4 and its 95% confidence interval (fig. 3.21). The mean value remains fairly constant

for sample numbers larger then 50. But the 95% confidence interval still allows positive

correlation coefficients, whereas these values are excluded for lager values of samples

numbers. Performing a fit of the upper and lower confidence levels each via exponential
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Fig. 3.16 Correlation coefficients for each model parameter and the resulting 250 keff

values. From top to bottom the scenarios B to H are shown. The increased

number of parameters compared to the scenarios NoCor and A is due to

the variations of single fuel rods. The color coded representation of the cor

shows values from -1 to 1.
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Fig. 3.17 Varying the Monte-Carlo uncertainty for the keff calculations in KENO-V.a

for Scenario F and the resulting cor values (colored dots) and the 95% CI

(colored area between solid lines). The ck values increase from approxima-

tely 0 (correlations between experiments 6 and 8) and 0.2 (correlations bet-

ween remaining experiments) for σMC
keff

=1× 10−3 to approximately 0.7 for

σMC
keff

=2.5× 10−5.

fit functions f(x) = a × exp [bx] + c one can identify the linear regime of the confidence

interval in which it remains fairly constant. In our analysis shown in fig. 3.21 this regime

starts at approximately 200 samples. Choosing 200 or more samples leads to acceptable

results even for correlation coefficients around zero.

3.3.4 Summary and Discussion

We discussed different modeling approaches for a given set of experimental data, leading

to different correlation coefficients and sensitivity profiles. Using a Monte-Carlo approach,

we calculated 250 samples for each experimental setup and scenario to obtain the resul-

ting keff values (fig. 3.10). We showed the impact of statistical parameters like sample

size and the uncertainty due to the Monte-Carlo approach of the neutron transport code.

Within each scenario we calculated for each pair of experiments the corresponding cor-

relation coefficient and the 95% confidence intervals of this coefficient (fig. 3.13, 3.14).

We showed for each experiment and scenario the impact of the variation of each input

parameter on the resulting keff by calculating the corresponding correlation coefficients
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Fig. 3.18 Varying the Monte-Carlo uncertainty for the keff calculations in KENO-V.a for

Scenario G and the resulting cor values (colored dots) and the 95% CI (co-

lored area between solid lines). The ck values increase from approximately

0.1 (correlations between experiments 7 and 8) and 0.2 (correlations bet-

ween remaining experiments) for σMC
keff

=1×10−3 to approximately 0.6 and

0.5 respectively for σMC
keff

=2.5×10−5.

(fig. 3.15, 3.16). For the combination of water moderated, low enriched Uranium rods

modeled with the criticality code KENO-V.a we found that the correlation coefficients bet-

ween the keff ’s of the experiments LCT-39 6, 7, and 8 varied between 0 and 1 within the

95% confidence interval. The modeling assumption leading to scenario A and NoCor are

identical, except that NoCor neglects correlations completely. The same holds for scena-

rios G and H, which are identical, but H neglects the correlations between experiments

due to fuel similarities.

Varying all geometrical parameters affecting the outer cladding radius for each fuel rod

separately leads to a significant decrease of the resulting correlation coefficient compared

to the results derived from the assumption of all fuel rods having identical geometrical

parameters (however, scenarios B, C and D still comprise high correlations). We found a

significant drop of the cor value from scenario D to E (3.14) as well as a significant drop

of the keff uncertainty (fig. 3.10). The main contribution to the keff uncertainty in scenario

D stems from the cladding thickness, which in scenario E plays no role since it is varied

for each fuel rod individually (fig. 3.16).
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Fig. 3.19 Shown here are the evolution of correlation coefficients and the 95% CI for

experiments LCT-39 6, 7, and 8 for increasing sample size. All cor values

are close to 1, especially for experiments 7 and 8 (green), where the 95% CI

remains fairly constant for sample size larger than 50.

Scenarios F and G show a further drop of the correlation coefficient, but within the 95%

confidence interval the cor values of the two scenarios overlap (fig. 3.14). The difference

of the two assumptions, knowing the exact position of each fuel rod for Scenario F or

randomize their position in the grid for scenario G has a comparable smaller effect on

cor than the assumption of a finite number of fuel rods. It is notable, that the sensitivity

analysis shows the sole dependence of the keff uncertainty on the critical water height

(fig. 3.16).

The different modeling assumptions might all be justified based on expert judgment. Ho-

wever, the sensitivity analysis reveals different sensitivity profiles, especially from sce-

nario C to F. One could be tempted to choose the modeling assumptions based on the

quality of the experimental data. As an example one could argue to choose scenario F

or G, since the uncertainty of keff is much lower and the almost sole dependence of the

keff uncertainty is on the critical water height. Following this argumentation, one could

construct modeling assumptions based on the given experimental data to reduce uncer-

tainties and to circumvent possible gaps in the data. But one has to be very careful with

these options, and give very good arguments, why one chooses one scenario over ano-
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Fig. 3.20 Shown here are the correlation coefficients for pairs of experiments LCT-07

1, 2, 3, and 4. The CI band of the correlation coefficient of experiment 1 and

2 is small, since the values are close to 1. The CI bands for experiments 1

and 3 (blue), 1 and 4 (purple), and 3 and 4 (yellow) are wider, since their

cor values are closer to zero. The number of samples needed for acceptable

results w.r.t. the 95% CI increases for |cor| → 0.

ther. The resulting covariance matrices directly influence the bias and its uncertainty, and

thus the resulting upper sub-critical limit [7, 6, 8].

Using the covariance or correlation matrices for the purpose of validation or the determi-

nation of the upper sub-critical limit of an application case, the results can vary strongly,

depending on the scenario. Following the argumentation of [6, 8], a rule of thumb is that

the higher the correlation coefficient, the lesser information is available, and thus the up-

per sub-critical limit decreases. This means, that being not able to distinguish between the

different scenarios and identify the correct one based on the available data, one would in

this case take the results associated with the highest correlation coefficient to get a more

conservative estimate of the bias in code validation or the upper sub-critical limit.

Note that the underlying data for the work presented is partly constructed and fictive as

it is a part of a calculation benchmark exercise [11]. From the given data, any modeling

assumption from scenario A to H could be justified. For further determination of the sce-
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Fig. 3.21 Shown is the evolution of the correlation coefficient with increasing sample

size for experiments LCT07 1 and 4 (solid purple line) and the 95% CI. The

latter is fitted via two exponential functions for the upper and lower CI (black

line). The fit is for sample sizes larger 200 almost linear, indicating an accep-

table convergence of the CI.

narios one would need to know e.g. if the fuel content and geometric description for each

fuel rod was identical or if it varied. The statements presented above thus are only valid

for the combinations of code and experiments discussed here.

To derive more general statements, further investigations have to be carried out. On the

other hand, it may be problem dependent if and to what extent the regard for correlati-

ons between benchmark experiments could influence the bias determination. A sufficient

number of statistical independent data sets, e.g. for experiments conducted in different

laboratories using different materials, can always circumvent the problem of the correct

determination of integral experimental covariance data. However, the accurate conside-

ration of correlated data seems to be inevitable if the experimental data in a validation

procedure is limited. But even if one can avoid the determination of the accurate integral

experimental covariance data due to statistically independent data sets, the selected mo-

deling scenario should always be justified. The modeling assumptions have the potential

to decrease the uncertainty of the resulting keff significantly.
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3.4 Example 2: Deriving Statistical Data From Experiments

The previous subsections have shown, that for the determination of covariance and cor-

relation coefficients, precise modeling of experimental data is essential. Another issue

is related to the experimental data itself. Sometimes, not all relevant data needed for a

Monte-Carlo Simulation is given in the experimental description. Without knowing all sta-

tistical dependencies and relevant parameters of the experimental data, they have to be

guessed. Different assumptions, however, may lead to different covariance and correla-

tion coefficients in criticality safety calculations. Most of the required information for cal-

culations may be extracted from the documentation of experiments. However, depending

on the level of detail, relevant information might be missing and has to be reconstructed

or guessed by the evaluator, leaving some space for interpretation. Relevant parameters

comprise experimental values (e.g. fuel radii, uranium concentrations and critical water

heights), their uncertainties and types of uncertainty (as tolerance, measurement un-

certainty or experience value), which translate to different uncertainty distributions. The

most commonly used probability distributions of system parameters are normal or Gaus-

sian and uniform distributions. The former arises e.g. from repeated measurements of a

parameter or fitting procedures, while the latter applies for tolerances or in general if no

specific information about the possible distribution is available. The experimental bench-

mark documentation usually provides all relevant experimental values, in many cases

accompanied with the associated uncertainties. The types of uncertainties, however, are

often missing and have to be chosen according to expert judgment.

In the following, the impact of different distribution functions of parameters describing an

experiment is investigated by calculating the effective neutron multiplication factors keff

and the correlation coefficients for selected benchmark experiments. Modeling a bench-

mark experiment, there is typically a mixture of normal and uniform distributed parame-

ters. This case is in the following referred to as expert judgment. Additionally, two boun-

ding cases are considered, where all parameters are either normal or uniform distributed.

The database of benchmark experiments used in the following consists of LEU-COMP-

THERM (LCT) experiments from the ICSBEP handbook [1]. All experiments are designed

to be critical, i.e. the experimental effective neutron multiplication factors are kexp = 1.0.

A set of nine selected benchmark experiments from series LCT-06, 35 and 62 is used. All

these experiments were carried out in the same laboratory sharing certain components.
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In contrast to LCT-06 and 35, where only pellet fuel rods were used, a combination of

powder and pellet fuel rods was used in LCT-62. Further details on the experiments can

be found in the ICSBEP handbook.

Fig. 3.22 Screen shot of parts of the accumulated data to generate the covariance

matrices. The data consists of the parameter name and its dimension, its

value, uncertainty and (if available) the distribution function. The data bank

also states the source of the knowledge w.r.t. [1].

Here the impact of different distribution functions of system parameters is investigated by

calculating the keff values and correlation coefficients for the selected benchmark expe-

riments from series LCT-06, 35 and 62. The most commonly used distributions are the

normal N(σ, µ) and uniform U(a, b) distribution functions, where σ and µ are the mean

and the standard deviation and a and b the lower and upper bound of the uniform dis-

tribution. The modeling approach assumes that within one sample for each experiment

and case the fuel composition and fuel rod geometry is identical for all pellet and powder

fuel rods respectively. I.e. defining a unit cell for a pellet and a powder fuel rod as shown

in 3.23, they are used for all fuel rods in the assembly, in analogy to Scenario A of the
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preceding section.

Fig. 3.23 Modeling approach of a unit cell for pellet (left) and powder (right) fuel rods

(not to scale).

Applying a Monte-Carlo sampling approach, each uncertain parameter describing the

experiment is represented by a distribution function. Using the GRS development SUn-

CISTT those parameters are varied according to their distributions and for each bench-

mark experiment a set of n input samples is generated. For each experiment and case a

set of 250 effective neutron multiplication factors kieff are calculated. The resulting average

values along with the measured experimental values are shown in 3.24. The uncertain-

ties of the experimental values (black in 3.24) are obtained by error propagation and are

reported in the experiment documentation. The calculated values and their uncertainties

are obtained from the 250 samples for each experiment and case.

The calculated values for experiments from series LCT-06 and 35 are in good agreement

with the measured data. Here, the SCALE calculations underestimate the multiplication

factor by up to 0.14%, which is a known effect for low enriched uranium setups [26]. For

experiments from series LCT-62, however, the multiplication factors are overestimated by

up to 0.39% but still agree within a 2σ interval with the measured values. The overestima-

tion might be explained by the presence of powder fuel rods in these experiments. The

shape of powder fuel rods might be irregular, making the modeling more difficult and intro-

ducing an additional uncertainty, which is difficult to quantify. Furthermore, fig. 3.24 shows

that depending on data interpretation the final uncertainty might be underestimated, as
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Fig. 3.24 Shown are the keff values and the 95% CI’s for the 9 different experiments

assuming all distribution being normal (blue), uniform (green) distributed or

a mixture of both (red). Comparing the results to the experimental values

(black) shows some disagreement with the experiments from series 62. This

might be due to the non-homogeneity of the powder fuel rods due to the

manual manufacturing process.

is the case for the data with all uniform distributions (green). Assuming all parameters to

be normal distributed leads to a conservative, overestimated uncertainty. Since all three

experiment series LCT-06, 35 and 62 share certain components, their calculated kcalceff

values are correlated. By changing the probability distributions of the parameters, some

correlation coefficients change by up to 20%, as e.g. for LCT-06-03 and LCT-35-02 in

figure 3.25.

3.4.1 Summary and Discussion

Assuming different distribution functions for system parameters in the Monte-Carlo samp-

ling approach leads to different uncertainties in kcalc. While with all parameters uniform-

ly distributed the uncertainty in kcalc is smaller compared to the experimental reported

one, the case with all parameters normally distributed provides larger uncertainties and

thus represents the more conservative approach. In most cases SCALE in combination

with ENDF/B-VII nuclear library underestimates the effective neutron multiplication factor.

This is also found to be the case for experiments from series LCT-06 and 35. For LCT-62,

however the neutron multiplication factors are overestimated possibly due to inhomoge-

neous distributions of U-235 in the powder fuel rods.
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Fig. 3.25 Color coded correlation matrices. Left: all parameters are normal distributed,

middle: all parameters are uniform distributed, right: a mixture of normal and

uniform distributions referred to as expert judgment.

Varying the distribution functions of system parameters also alters the correlation coef-

ficients between the calculated keff . Some of the correlation coefficients change by up

to 20% for the three cases and benchmark experiments considered. However, the most

crucial and also time consuming step was the derivation of statistical data from the expe-

rimental description. A detailed analysis of the primary experimental documentation was

necessary, since the information provided in [1] was not always sufficient.

3.5 Example 3: Shared Components But No Correlation Coeffici ents

In the following we want to show, that shared experimental setups or components do

not necessarily lead to statistical significant correlation coefficients, if these components

play only a minor role for the model dependent keff uncertainty. While the work described

above considered water moderated arrays of fuel rods, in the following we examine water

reflected spheres of low concentrated plutonium nitrate solution with a thermal neutron

spectrum. In the ICSBEP these experiments have the identifier PU-SOL-THERM (PST).

We analyze the experiment series PST-03 to -06, and -20 and -21 and determine their

correlation matrix. The experiments include different sizes of spheres, different wt.%240Pu

and different plutonium nitrate concentrations. One series consists of one size of sphe-

res and several experiments have the same plutonium content of 240Pu. Therefore it is

plausible that these experiments are not statistically independent data sets and that cor-

relations arise. A total of 43 experiments from 6 experimental series (PST-03 to -06, and

-20 and -21) was analyzed. All experiments describe plutonium nitrate in aqueous solu-

tion, contained in metal spheres and are slightly under-moderated. Series PST-03, 04,
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Fig. 3.26 Correlation coefficients for the input parameters and the keff uncertainties for

used experiments from series LCT06 (upper), -35 (middle), and -62 (lower).

The biggest impact stems for all experiments from the 235U concentration.

05 and 06 have some dissolved iron as impurity in the solution. A list of all experiments

can be found in tab. 3.5 showing the 6 calculated series, the considered experiments,

the diameter of the spheres in inch1, the experimental uncertainty, and if the latter was

calculated by the evaluator or assumed from similar experiments.

1 The diameters are given in inch, since the original literature is written in United State Customary unit

system.
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Tab. 3.5 Analyzed experiments and used experimental uncertainty.

Experimental Exp. # Exp. Color in Diameter Experimetal

series figures of sphere uncertainty

PST-03 01-08 8 black 13” 0.0047 assumed worst case

PST-04 01-13 13 red 14” 0.0047 assumed worst case

PST-05 01-09 9 green 14” 0.0047 assumed worst case

PST-06 01-03 3 blue 15” 0.0035 calculated

PST-20 10-15 6 purple 14” 0.0047 calculated

PST-21 07-10 4 cyan 15.2” 0.0025-0.0044 calculated

Almost all spheres consist of stainless steel. Only experiments PST-03-07 and 08 use

an aluminum sphere. For series PST-21 a simplified model is assumed, which does not

comprise the metal sphere and is corrected to account for the implications of this modifi-

cation. Experimentally, almost all spheres are submerged in a rectangular water tank with

at least 30 cm of surrounding water. Since from a modeling perspective 30 cm of water

reflector is equivalent to an infinite water reflector, a spherical approximation of this water

is a valid approximation. Only experiments PST-07, 08 and 09 from series 21 are bare

spheres without any reflector. These simplifications and the accompanying compensati-

ons allow a very simple, spherical symmetrical computational model of the experiments:

the spherical metal tank with the homogeneous plutonium nitrate solution and a surroun-

ding water sphere of 30 cm. Experiments 14 and 15 of series PST-20 have an additional

cadmium coating of 0.03 inch (0.762 mm) on the sphere. The detailed descriptions of the

experiments in reference [1] include all assumptions and simplifications.

The experiments are modeled with the criticality code sequence CSAS5 of the code

packet SCALE 6.1.2 using continuous energy cross-section library ce_v7_endf based

on the ENDF/B-VII library. In the CSAS5 calculations 10,000 neutrons are followed, the

first 100 generations are skipped and the calculation is stopped, when the Monte-Carlo

precision drops below 10−5, a value typically reached after 430 generations.

For the nominal cases, the mass number densities of the solutions, spheres and the

surrounding water are taken directly form the experimental description [1]. For plutoni-

um they are given for all isotopes; for nitrogen, hydrogen, oxygen, iron, chrome, nickel,

manganese, aluminum and cadmium the natural abundances are used.
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Fig. 3.27 wt.-%240Pu of all considered cases. The black circles indicate the aluminum

spheres in series 03, the cadmium layer in series 20 and the lack of H2O

reflector in series 21.

Fig. 3.27 shows the wt.-% of 240Pu for all experiments, for different series in different

colors. Also the two cases with aluminum sphere, the two cases with additional cadmium

layers on the outside of the sphere and the three experiments without water reflector are

highlighted. For further details we refer to [31].

series 003 004

experiment 001 002 003 004 005 006 007 008 001 002 003 004 005 006 007 008 009 010 011 012 013

volume █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
thickWall █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
wt% 240Pu █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █

series 005 006 020 021

experiment 001 002 003 004 005 006 007 008 009 001 002 003 010 011 012 013 014 015 007 008 009 010

volume █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
thickWall █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █
wt% 240Pu █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █ █

Fig. 3.28 Correlation of varied system parameters. The colors indicate, for which ex-

periments the corresponding parameter is mutually varied. Identical color

means identical model parameters.

The experiments are correlated, since they share certain system parameters, which are

afflicted by experimental uncertainties. In these geometrically rather simple experiments,

the shared system parameters are the volume of the sphere, the thickness of the wall

and the wt.-% 240Pu. It is assumed that experiments with the same values are correla-
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ted via these parameters. Since the experimental descriptions do not describe how the

solutions are mixed from their individual components, all used densities (ρPu, ρNO3
, ρFe,

ρtotal) are assumed to be independent for each experiment. The matrix in fig. 3.28 shows

the modeling assumptions for the correlations of varied system parameters. Thereby the

parameters are varied mutually for all experiments with the same color box.

We choose 250 samples for each experiment and normal distribution functions for all pa-

rameters. The uncertain experimental parameters are listed in tab. 3.6 with the standard

deviation of the distribution for each series. The amount of 239Pu (filled up to 100 % Pu),

the number densities of the solution and the sphere radii (Pu nitrate, metal, water) for the

calculation input are deduced for each sample.

Tab. 3.6 Uncertain experimental parameters.

Uncertain Variable Uncertainties

experimental series series

parameters 03, 04, 05, 06 20, 21

Total density ρtotal 0.03 % 0.4 %

Pu density ρPu 1.0 % 1.0 %

Fe density in solution ρFe 1.4 % -

Nitrate density ρNO3
0.6 % -

Acid molarity Na - 1.0 %

Weight % 238Pu wt.-%238Pu - 16.67 %

Weight % 240Pu wt.-%240Pu 7.0 % 0.75 %

Weight % 241Pu wt.-%241Pu - 1.93 %

Weight % 242Pu wt.-%242Pu - 11.11 %

Volume V 0.3 % 0.25 %

Wall thickness rwall 10.0 % -

Temperature H2O TH2O 0.09 % 0.09 %

Fig. 3.29 shows the calculated and experimental keff values for all 43 experiments and

the corresponding 1σ deviation. The black crosses show the experimental values kexpeff =1,

the error bars represent the experimental uncertainties due to the uncertainties of system

parameters (see tab. 3.5), which were combined by the evaluators via error propagation.

The blue crosses indicate the nominal calculations. Also shown are the mean values and
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Fig. 3.29 Range of the calculated keff values and the experimental ones taken from

[1] (black). The largest 1-σ uncertainties stem from the uncertainty of the

nuclear data, calculated with TSUANMI (green). Note, that most results for

sampled (red) and nominal (blue) are in agreement with the experimental

values within the 1-σ error bars. The remaining agree within th 2-σ interval.

standard deviations of the sampling calculations due to the variation of system parame-

ters (red) and of nuclear data (green, TSUNAMI).

Compared to the other experiments the two experiments with cadmium coatings of the

spheres (PST-20-14 and 15) deviate significantly towards lower values (∆keff ≈ −0.0112,

and −0.0080 respectively). The hypothesis for this effect is, that KENO-Va overestima-

tes the influence of cadmium, possibly due to nuclear cross sections. For a deeper dis-

cussion of the Cadmium in these experiments we refer again to [31]. However, the two

experiments are used in the following with the original assumed 0.03 inch of cadmium

coating.

The calculated keff values and their standard deviations are included in fig. 3.29 in red.

The mean values agree very well with the nominal values. The standard deviations are in

a comparable range to the experimental uncertainties, but for series PST-03, 04, 05 and

20 they are 30 - 50 % smaller. This can be attributed to the fact, that for these series, the

given experimental uncertainty is not calculated directly, but assumed from calculations of
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other very similar experiments. For series PST-06 and 21 we find an excellent agreement

of the standard deviations and experimental uncertainties.
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Fig. 3.30 Sensitivities of keff on uncertain parameters for all analyzed experiments.

Numerical values shown for mean values and the 95% confidence levels.

For all experiments the correlation coefficients were calculated between the varied para-

meters and keff , shown in fig. 3.30. This gives a measure for the influence of the variation

of each uncertain parameter on the uncertainty of keff and can demonstrate the leading

effects. Note that this is not the sensitivity of keff on the uncertain parameters, but the

sensitivity of keff on the actual variation of the uncertain parameters.
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For the first four series (PST-03, to -06), the two leading effects are a negative correlation

between keff and wt.-%240Pu, and a positive correlation with the Pu density ρPu. The first

relation can be explained by the reduction of the most reactive plutonium isotope 239Pu.

The second by an increase of plutonium atoms available for fission. The keff -decreasing

effect of the small decrease of H/Pu by the increase of ρPu in these under-moderated

systems can be neglected. A small positive correlation exists to the sphere volume V .

All these correlations are obvious: The more material is present, the higher is keff . Also

notably is that the sensitivity to wt.-%240Pu increases with wt.-%240Pu itself since the

absolute variation increases. The small negative correlation with the wall thickness rwall

can be understood by the neutron absorption of stainless steel. Therefore its value is not

significantly different from zero for the two experiments with aluminum sphere PST-03-07

and 08. The uncertainty of the density of the impurity iron ρFe, of the total density ρtotal

and of the temperature TH2O have almost no significant effect on keff . For the total solution

density ρtotal this is certainly attributed to the very small given uncertainty of only 0.03 %

for these experiments.

For the second set of experiments (PST-20 and -21) the situation is slightly different. Here

the leading effect is the total solution density ρtotal, which has a 13 times higher uncer-

tainty of 0.4 % leading to a strong positive correlation. Additionally the given uncertainty

of wt.-%240Pu in this second set is a factor of 100 smaller than in the first set, so that its

influence on keff disappears almost completely. The next effect is a negative correlation

with the acid molarity Na. An increase of Na leads to an increase of ρNO3
and a decrease

of ρH2O. ρNO3
increases the number density of 14N having a considerable neutron absor-

bing effect, ρH2O drives the moderation ratio away from its optimum value, both explaining

the negative impact on keff . The mostly positive correlation with ρPu is evident due to the

same effect as for the first set of experiments.

The fig. 3.31 shows the correalation coefficients for all 43 experiments due to the varia-

tion of system parameters In general, the correlation values range from slightly negative

values to 0.7, but most correlation coefficients are in the range of [-0.1,0.3]. Since the

error of cor is in the range of 0.1 for values around cor =0 for the used 250 samples [32],

most correlations between experiments can be considered statistically not or only slight-

ly significant. Higher correlation coefficients can be found within the experimental series

PST-03 (experiments 03 to 08), PST-04 (experiments 06 to 12), PST-05 (experiments 01
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Fig. 3.31 Correlation matrix of keff between all experiments due to the partly mutual

variation of uncertain system parameters. For most of the experiments a

statistical significant correlation coefficient could not be found. Only some

experiments of series 03,04,05, and 06 show some correlation coefficients.

to 07 and 08, 09) and PST-06 (experiments 01 to 03). Further, three blocks of higher

correlation coefficients between experimental series can be identified: Experiments PST-

03-03 to -08 with PST-04-06 to -12 and experiments PST-06-01 to -03, and PST-04-06 to

-12 with PST-06-01 to -03.

All cases of series PST-20 and 21, PST-04-01 to -05 and -13 are uncorrelated to the

others. This can be explained, since the sensitivities of keff on the mutual varied parame-

ters are much smaller than the ones on the individually varied parameter.
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3.5.1 Summary and Discussion

Comparing the results shown in fig. 3.31 with fig. 3.28 one can see, that almost all blocks

of higher correlations are due to the same wt.-%240Pu. This is the only one of the two

leading effects of the sensitivity of keff , which is varied mutually: PST-03-01 and -02, PST-

03-03 to -08, PST-04-06 to -12, PST-05-01 to -07, PST-05-08 and -09, PST-06-01 to -03,

and PST-03-03 to PST-03-08 with PST-04-06 to -12 and with PST-06-01 to -03.

The results can be compared to available data of the Database for the International Criti-

cality Safety Benchmark Evaluation Project (DICE [33]). DICE is still in the development

phase and also subject to possible data entry errors and omissions. However, it provides

some information on correlations on a vast number of experimental series described in

the ICSBEP Handbook [1]. The relevant data for our analysis is shown in tab. 3.7. There

is no data available neither for the correlation of PST-21 nor for results on the case level

details. A ’+’-sign indicates strong correlations between experiments when one or sever-

al uncertain benchmark parameters are correlated, which are major contributors to the

overall benchmark keff uncertainty. A ’(+)’-symbol indicates a 100% correlation.

The currently available data in DICE does only partly agree with the findings of our more

detailed analysis (fig. 3.31). On one side, we also found statistically significant correlation

coefficients between series for experiments PST-03-03 to -08 with PST-04-06 to -12 and

PST-06. However all these cases have correlation coefficients below 0.6.

On the other side, all experiments of PST-20, PST-21 PST-04-01 to -05 and -13 show

no statistically significant correlation coefficients with any other investigated experiment,

even within the same series.

The only variation introducing a correlation effect between different series is the identical

wt.-% 240Pu of the experiments PST-03-03 to -08, PST-04-06 to -12, and PST-06. These

results support the data provided by DICE. We found, that for these experiments, the

correlation due to shared experimental components are small. We find further, that certain

experiments (PST-03-01 and -02, PST-04-01 to -05 and -13, series PST-20 and -21) have

no statistical significant correlation coefficient with experiments from any other series.

The shared components for these experiments do not introduce correlations due to their

small given uncertainty in the experimental description.
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Tab. 3.7 Information on possible correlations due to shared experimental components

taken from [33]. A ’+’-sign indicates strong correlations, a ’(+)’-symbol 100%

correlation.

PST-03 PST-04 PST-05 PST-06 PST-20

PST-03 (+) + + + +

PST-04 + (+) + + +

PST-05 + + (+) + +

PST-06 + + + (+) +

PST-20 + + + + (+)

This is in contrast to e.g. our findings for lattices of fuel rods described in the subsections

before where shared experimental components can introduce large correlation coeffi-

cients in the data due to higher sensitivities of keff to these shared components and their

corresponding uncertainties.

The presence of shared components within an experimental series does not necessarily

lead to statistically significant values of correlation coefficients. If the shared experimental

components are very well known in the sense of comparable small uncertainties or if the-

se components play only a minor role for ∆keff (determined e.g. by means of a sensitivity

analysis), their contribution to the correlation coefficient is negligible.

3.6 Summary

The generation of integral experiment covariance matrices of experimental series as pu-

blished for example in [1] needs two steps: Analyzing the experimental data and calculate

the covariance matrices based on it.

Technically calculating covariance or correlation matrices is straight forward. We have

shown in section 3.1 a Monte-Carlo sampling based method, orchestrated by SUnCISTT

[22]. However, applying Monte-Carlo sampling methods, one needs always to ensure that

the results converge. In section 3.3.2 we have shown the effect of an uncertainty (here

the σMC
keff

of the Monte-Carlo based neutron transport code KENO.Va) overlapping the

experimental uncertainty and thus in a sense hiding correlation effects. We found for our

example, that a σMC
keff

≈ 10−4 leads to converging correlation coefficients. Another crucial
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step for Monte-Carlo based analysis in general is the sample size. We found that our

results are always converged for sample sizes larger than 250. If the data is close to

being full (anti-)correlated, meaning a correlation coefficient of almost (-)1, the results

converge faster, sometimes even after 50 samples.

The more difficult task is to define the modeling based on the available experimental

data. We have shown in section 3.3.1 that based on the data provided in the UACSA

Phase IV benchmark description of the WPNCS at the OECD-NEA, several modeling

approaches can be chosen, leading to different sensitivity profiles of the resulting keff

values and correlation coefficients varying from 0 to 1. Projecting these finding to the

publicly available experimental data evaluated in [1], the freedom of modeling choice

seems to be difficult to circumvent. To create reliable covariance data based on the data

in [1] further work has to be done. This would include a detailed analysis of the original

data and extract further information. For our example of lattices of fuel rods one could

narrow down the 9 scenarios if one would know e.g. if a fuel rod remained in its grid

position for the whole series or if it was randomly placed for each individual experiment.

Another obstacle is the extraction of statistical data like uncertainties and distribution

functions of parameters, discussed in section 3.4. A lot of time was spent in deriving

parameters from the original literature and document it in a data base. The impact of

varying distribution functions (all normal or uniform distributed and a mixture of both) has

been discussed.

In conclusion, further work has to be conducted to clarify, how to treat gaps in the experi-

mental data on the way of generating reliable covariance matrices. Another huge obstacle

in generating reliable covariance matrices based on the full Monte-Carlo sampling is the

calculation time. The generation of covariance data for three experiments, LCT39 6, 7,

and 8 needed up to 60k CPU-h. Future work needs to lower this time significantly.
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4 Use of Covariance Matrices for Validation purposes

In the following we use and explain the Bayesian updating of an application case keff

using benchmark experiments. We demonstrate the use of formulas 2.21 and 2.22 by

discussing a Toy Model, based on the one suggested in [11]. We than use the integral co-

variance matrices generated in the preceding chapter with the corresponding covariance

matrices due to nuclear data to predict some example application cases keff ’s.

The covariances or correlation coefficients between benchmark experiments and applica-

tion cases due to manufacturing uncertainties are strongly connected with the definition

and interpretation of the uncertainty afflicted parameters. On the other side the expe-

riments are correlated due to uncertainties of the nuclear data of the involved atomic

processes. These are mainly dependent on the material composition and can be assu-

med independent from system parameter uncertainties. Therefore the two uncertainties

will be calculated separately. For this work the SCALE 6.1.2 Sequence TSUNAMI-3D-K5

was used to calculate the sensitivities of keff on the participating nuclear processes and

TSUNAMI-IP for the determination of the Pearson correlation coefficients, the so called

ck-values, from which the covariances can be derived.

4.1 Example 1: A Toy Model Analysis

4.1.1 Reproducing ”True” Values

In the following the described method will be tested against the question, how good the

model can predict a bias, or in other words: How good is the posterior keff -distribution

compared to the real (but unknown) value krealeff . We assume that we know all data (nucle-

ar interactions and geometrical parameters) of a Toy Model exactly and compare the

calculated result for keff with results from distorted data updated with several benchmark

experiments.

Assuming a simple Toy Model based on the one proposed in [11], the keff of a nuclear

system is described by

kTM(~α, ~x) =
(α1α4x1)

(α1x1 + α2x2 + α3x3)
(4.26)

with ~α being the vector of relevant nuclear interactions and ~x the vector of the system

describing parameters. Assuming the real vectors to be ~αr =(1,2,3,4) and ~xr =(3 ,2 ,1.9)
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leads to krTM =0.94488. In the following, it will be investigated, to which extend the re-

sulting kTM from the Bayesian updating process using distorted data matches krTM. The

distorted data might for example represent a cross section library in a given transport

code or measured system parameters. These values are always accompanied by syste-

matic and non-systematic uncertainties (or errors), hiding the real values.

For the distorted vectors we assume normal distributed 1-σ errors of 5 % of the real value,

leading to the two (randomly generated) vectors ~αdis =(1.0811, 1.8635, 2.8105, 3.9698)

and ~xdis =(1.0811, 1.8635, 2.8105, 3.9698). Possible combination of theses vectors and

the resulting kTM’s are shown in table 4.8.

Tab. 4.8 Resulting kTM and deviations from the real value for different sets of ~α and ~x

(~αr,~xr) (~αr,~xdis) (~αdis,~xr) (~αdis,~xdis)

kTM 0.9448 0.94985 1.04590 1.051051

krTM − kTM 0 -0.00497 -0.10102 -0.10617

The set (~αdis,~xdis) leads to the largest deviation of more than 10 % in kTM compared to

the real case. The deviation caused by ~αdis is larger compared to the one introduced by

~xdis which leads only to a very small deviation in the resulting kTM.

Now we have calculated three biases for the different cases. The realistic combination is

the one with both vectors distorted, ~αdis,~xdis. We continue our analysis with this case. Let’s

assume we have now 9 benchmark experiments where we can calculate the (biased) keff

values and compare them to the experimental values. Due to lack of knowledge of the

true nuclear data, we always take the distorted one. This can be seen as a library used in

a neutron transport code, e.g. KENO. The bias b introduced in our model by this is thus

b =-0.10102.

In the next step, kTM(~αdis,~xdis) will be updated with additional data to see how good the

true value krTM can be matched. The data shown in table 4.9 describes 9 additional data

sets called BM1 to BM9. We assume, that the data is pairwise uncorrelated. Correcting

the kTM values for the bias introduced by the nuclear data of the sampled results for

kmean
TM (~αdis, ~xBM) leads to values around 0.94. The covariance matrix due to the nuclear

data of the application case and the BM’s (Σ0B in equations 2.21 and 2.22) for 1000
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Tab. 4.9 Additional data used for the updating process.

x1 x2 x3 kexp kmean
TM (~αdis, ~xBM)± 1σ

BM 1 3.0072 1.82 2.025 0.9396 1.0468 ± 0.01883

BM 2 3.0072 1.9292 1.952 0.9402 1.0460 ± 0.01898

BM 3 3.0072 3.9477 0.6151 0.9409 1.0460 ± 0.01986

BM 4 3.0072 6.065 -0.7895 0.9406 1.0471 ± 0.01919

BM 5 3.0072 8.037 -2.097 0.9403 1.0464 ± 0.01970

BM 6 3.0072 9.8448 -3.297 0.9406 1.0478 ± 0.01992

BM 7 3.0072 15.9819 -7.365 0.9401 1.0460 ± 0.01882

BM 8 3.0072 19.9995 -10.029 0.9403 1.0469 ± 0.01950

BM 9 3.0072 23.9692 -12.662 0.9412 1.0462 ± 0.01959

samples can be translated in a matrix of correlation coefficients shown in figure 4.32. The

assumption, that the data describing the BM’s is uncorrelated is shown in figure 4.33.

The values correspond to the one in the covariance matrix named ΣB in equations 2.21

and 2.22. Using the eq. 2.21 and 2.22 we can now update the prior knowledge of the

application case kApl
TM

prior
=1.0527 ± 0.00529. The result for the posterior distribution

is kApl
TM

post
= 0.94797 ± 0.010437. This result matches the real value of krTM=0.94488.

The prior and posterior distribution functions are plotted in figure 4.34. Fig. 4.35 shows

the posterior kTM value on the y-axis plotted versus the number of BM’s considered in

the updating process. We found for the example discussed here, that already the first

experiment pushes the posterior value to the krTM value. After adding BM3, no significant

change for the posterior value can be observed.

4.1.1.1 Summary and Discussion

We have shown that the Bayesian updating method described in section 2.1 as introduced

in [7] is capable of predicting the bias of an application case if the biases of the bench-

marks are known. If the data used for the updating process consists of experimental data

with an additional and unknown bias, e.g. due to human errors or a defect instrument, this

bias would naturally affect the posterior distribution. Assuming the BM kTM would include

an additional bias of 1%, the example described above would lead to a posterior value

of kApl
TM

post,bias
=0.95793 ± 0.010759, see figure 4.36. The Bayesian updating process

presented can only adjust to an overall bias. If the bias stems not only from geometri-
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Fig. 4.32 Correlation coefficients due to nuclear data for the application case and BM’s.

The values indicate a high similarity w.r.t. to the neutron spectrum of the

application case and the benchmark experiments with a slow decrease from

BM3 to BM9.

cal and nuclear variations but further, e.g. experimental ones, the predictions for the true

kTM is affected by this. For the optimal use of this method, the data used for the updating

process and especially the biases need to be known in detail.

4.1.2 Influence of Correlated Data on Predicted Values

Similar to the preceding section, we investigate the influence of correlated data on the

posterior distribution by discussing a Toy Model. The latter is taken from the UACSA

Benchmark Proposal Phase IV [11]. The k-value is defined via equation 4.26 with the

values shown in table 4.10. The calculated kTM do always exceed the experimental va-

lues. Assuming normal distributed kTM the deviation is in average δk =0.0121±0.0059.

The nuclear data vector αi for i = 1, ..., 4 and the corresponding covariance matrix

Σα = diag[σ2
αi
] = diag[10−4] is also given. From the given data, the necessary matrices

and vectors for the Bayesian analysis following equations 2.21 and 2.22 were created.

Fig. 4.37 shows the color coded correlation coefficients for the matrices cov0 (left pic-

ture) and covsys,B assuming independent variation of x1 (right picture). Fig. 4.38 shows

color coded matrices for covsys,B with higher correlation coefficients representing more

dependencies in the data. The resulting prior and posterior distribution characteristics

for the different covsys,B are shown in table 4.11. For comparison, an additional, simple
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Fig. 4.33 Correlation coefficients due to varied ~x values of the BM’s. The values show

no higher correlations.

linear prior correction is given, based on the average deviation of the calculated kTM’s.

The posterior distribution characteristics show a lower kTM and significantly smaller 1σ

deviations than the prior. It follows the tendency that the higher the correlation is, the

closer is the kTM estimation of the prior and the larger is the 1σ deviation.

This effect can be seen in fig. 4.39. On the left, the prior and the three different poste-

rior distributions are shown. The solid, dashed, and dotted lines show the projections of

the corresponding mean values. The right picture shows the posterior mean and the 1σ

uncertainty of the posterior for a stepwise updating of the prior. It shows the direct influ-

ence of the different covsys,B on the posterior. Note that the shape of the dashed curves is

relatively equal after updating with the third Benchmark. This effect arises from the term

kB,exp
eff − kB,th

eff in equation 2.21, equal to all posteriors.

It is worth noting, that the Monte-Carlo sampling for 250 samples leads always to the sa-

me kTM values (within the standard deviation), only the covariance/correlation matrices

vary. Fig. 4.40 shows the matching of the kTM for sampled α and correlated and uncor-

related x with the values given in [11]. The values show a perfect matching for each BM,

as one would expect.
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Fig. 4.34 Comparison of prior (blue) and posterior (green) distribution functions and

the true (dashed line) and nominal keff value (dotted line). The solid green

and blue lines indicate the respective mean values. The posterior distribution

function reproduces the true value.

Tab. 4.10 Values for the Toy Model analysis, taken from [11].

ID x1 σ1 x2 σ2 x3 σ3 kTM kexp

BM1 2.0072 0.05 4.0424 0.05 -0.0746 0.05 1.0174 1.0

BM2 2.0072 0.05 1.9601 0.05 1.9292 0.05 1.0194 1.0

BM3 2.0072 0.05 -0.0506 0.05 3.9477 0.05 1.0177 1.0

BM4 2.0072 0.05 -2.0458 0.05 6.0650 0.05 1.0111 1.0

BM1 2.0072 0.05 4.0424 0.05 -0.0746 0.05 1.0174 1.0

BM5 2.0072 0.05 -3.9905 0.05 8.0370 0.05 1.0086 1.0

BM6 2.0072 0.05 -6.0613 0.05 9.8448 0.05 1.0185 1.0

BM7 2.0072 0.05 -12.0059 0.05 15.9819 0.05 1.0063 1.0

BM8 2.0072 0.05 -16.0923 0.05 19.9995 0.05 1.0066 1.0

BM9 2.0072 0.05 -20.0440 0.05 23.9692 0.05 1.0032 1.0
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Fig. 4.35 Impact of experiments added to the updating process on the resulting pos-

terior keff distribution. Shown are the mean values and the 1-σ deviation and

the true (dashed line) and nominal (dotted line) keff values. After adding the

third experiment, the changes of the mean value and deviations are compa-

rably small. An effect also due to the decreasing correlation coefficients due

to α for the application case and BM’s 3 to 9.

Tab. 4.11 Table of prior and posterior kTM distribution characteristics for the different

covariance matrices

Prior Prior - δk Post lower cor Post medium cor Post higher cor

kTM 0.9533 0.9412 0.9424 0.9447 0.9479

1σ 0.0128 0.0766 0.0084 0.0090 0.0107
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Fig. 4.36 Characteristics of prior (blue) and posterior (green) distributions including an

unknown experimental bias (red). The updating process relies strongly on

the experimental data and thus can not correct any unknown bias in this

data, as shown by the green and red curve.

Fig. 4.37 Color coded correlation coefficients for the application case and the 9 Bench-

mark experiments due to nuclear data variations (left) and correlation coeffi-

cients between the benchmark experiments due to variation of system para-

meters for independent variations of x1.
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Fig. 4.38 Color coded correlation coefficients for the benchmark experiments due to

system parameters for different dependencies of the system parameters. The

left part shows a hypothetical constructed matrix, the right one assumes all

x1 to be identical.

Fig. 4.39 Prior and posterior distribution functions for different covariance matrices

(left) and the posterior mean and 1σ uncertainties for a stepwise updating

(right).
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Fig. 4.40 Comparison of kTM from the UACSA benchmark proposal [11] and for sam-

pled α and correlated and uncorrelated x1 values

4.2 Application using Benchmark Experiments

4.2.1 Example 1: Different Modeling Scenarios

The Bayesian updating procedure will now be applied using some real experimental data

evaluated and documented in the ICSBEP handbook [1] and two application cases, as

proposed in [11]. The experiments are all water moderated, low enriched uranium fuel

rods from the series LEU-COMP-THERM-07 and -39, described in section 3.3. Since all

experiments were conducted at the same laboratory, partly using the same equipment,

the systematic uncertainties lead to correlated keff results. The correlation coefficients

due to system parameters depend strongly on the model assumptions, as shown in sec-

tion 3.3.1. The matrix of color coded correlation coefficients due to nuclear data varia-

tions is shown in fig. 4.41 including both application cases, App.1 and LCT-79-01. The

application case App.1 is a simplified 16×16 UO2 PWR fuel assembly, fully reflected by

water. The data was taken from [11]. The second application case is the experiment LEU-
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Fig. 4.41 Color coded correlation coefficients due to nuclear data for the application

cases App.1 and LCT-79-01 and the experimental data.

COMP-THERM-79-01 taken from the ICSBEP handbook. The configuration consists of

hexagonal pitched UO2 fuel rods, physically similar to the LEU-COMP-THERM-07 and -

39 series, but completely independent in terms of considered uncertainties of the system

parameters. With exception of LEU-COMP-THERM-07 cases 3 and 4, the keff values are

almost fully correlated. The exception is due to moderation effects as already mentioned

in section 3.3. The matrix shown in fig. 4.41 represents the covariance matrix cov0,A in

equation 2.22 for the two application cases App1. and LCT-79-01 and the Benchmark

experiments.

The correlation coefficients due to system parameters are shown in fig. 4.42 for two dif-

ferent modeling approaches: scenarios A and E, as discussed in section 3.3.1 and were

identified as the bounding cases with respect to the resulting correlation coefficients. Sce-

nario A leads to almost full correlation of the data due to system parameters, except for

LCT-07 03 and 04. The latter shows significantly lower correlation coefficients. The right
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Fig. 4.42 Color coded correlation coefficients for the selected 21 Benchmark experi-

ments for scenario A (left) and E (right).

picture shows the correlation coefficients resulting from scenario E. All coefficients are

lower compared to scenario A, except LCT-07 cases 2, 3, and 4, which are almost fully

correlated. The differences of the LCT-07 cases 2, 3, and 4 are due to moderation and

thus neutron spectrum effects. The described covariance matrices were used in the up-

dating process. The results are shown in fig. 4.43. The figure shows the keff distributions

0 .9 4 0 .9 5 0 .9 6 0 .9 7 0 .9 8 0 .9 9 1 .0 0

keff

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

#
 o

f 
e

v
e

n
ts

Prior

Pos t  ScA

Pos t  ScE

Pos t  w/o  corr

0 .9 7 0 .9 8 0 .9 9 1 .0 0 1 .0 1

keff

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

#
 o

f 
e

v
e

n
ts

Prior

Pos t  ScA

Pos t  ScE

Pos t  w/o  corr

Fig. 4.43 Prior and posterior distributions for the application cases App1 (left) and LCT-

79-01 (right). The posterior distributions are shown for scenarios A and E and

neglecting systematic uncertainties.

for App.1 and LCT-79-01 for the prior and posterior distributions. The latter distribution

is calculated for the two scenarios A and E, and for the case of neglecting the systema-

tic uncertainties (w/o corr). The numerical values are given in table 4.12. The correlation

coefficients decrease from scenario A to E to the w/o corr scenario. The effect on the pos-
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Tab. 4.12 Resulting keff values and the 1-σ deviations for prior and different posteriors.

Prior Post ScA Post ScE Post w/o corr

App.1 0.96891 0.96946 0.97118 0.980743

±6.9830×10−3 ±3.0770×10−3 ±2.4153×10−3 ±2.3940×10−3

LCT79-01 0.9913 0.99184 0.99434 0.99957

±7.4045×10−3 ±3.2262×10−3 ±1.7835×10−3 ±1.7656×10−3

terior distribution can be seen in both pictures in fig. 4.43: the increase in the correlation

coefficient pushes the distribution mean further away from the prior mean and decreases

the 1-σ deviation. This means for the posterior mean of LCT-79-01 in the right picture to

be closer to the experimental value given in the ICSBEP handbook (0.9999±0.0016). In

the case w/o corr this means using more information than the actual experiments offer. In

this sense, the resulting posteriors for the application cases underestimate the 1-σ devia-

tion and overestimate the actual keff . From the viewpoint of criticality safety assessment,

overestimating the keff with a too small 1-σ deviation could be named a conservative ap-

proach. The smaller the resulting correlation coefficients were, the larger the shift of the

mean value and the smaller the standard deviation becomes. In terms of information used

in the updating process, the smaller the correlation coefficients for the system parameters

are, the more information can be used to update the prior keff distribution. In turn, corre-

lation coefficients of almost one means, that the experimental setups are almost identical

and the amount of new information in the updating process is tiny.

In a validation process, the desired values of the correlation coefficients between experi-

ments due to manufacturing tolerances are contrary to the correlation coefficients, or ck

values by TSUNAMI, calculated from the variation of nuclear data between the applica-

tion case and each experimental setup. These correlation coefficients are desired to be

close to one to be sure of describing the same nuclear system.

4.2.1.1 Summary and Discussion

We summarize that neglecting the statistical dependence between the system descri-

bing parameters of the experimental setups leads to the largest keff and in light of the

before mentioned arguments to an overestimating. The opposite is true for the standard

deviation: Neglecting correlation in the data leads to a smaller uncertainty. The analysis

65



of the data assumes more information than available. However, the SCALE calculations

with the used library and the CSAS5 sequence under estimates keff in general, a known

effect for low enriched uranium setups. In this case, the ignoring of correlations leads

to an overestimation of keff , an acceptable circumstance in the light of criticality safety

considerations. This might change for codes and setups where the calculated keff is over

estimated compared to experimental values. Neglecting the correlations in the data of a

validation processes might lead to an unjustified lowering of the posterior keff .

It was shown that depending on modeling assumptions, the same data sets lead to diffe-

rent covariance and correlation matrices and in turn to different posterior keff distributions.

In this sense, the resulting difference of the distributions can be viewed as additional un-

certainty in the bias prediction.

For more general statements on the impact of correlated data due to system parameters

in the process of validation more effort is needed. One crucial point in the analysis is the

interpretation of the uncertainty data given in the experimental description.

4.2.2 Example 2: Varying Distributions of Input Parameters

The benchmark experiments and the corresponding covariance and correlation matrices

described in section 3.4 are now used for the Bayesian updating process of the applicati-

on case App.1 described above. To demonstrate the effect of a positive and negative bias

on the updating process, the data set is split into two subsets. Subset 1 comprises the

five experiments from series LCT-06 and 35 and subset 2 contains the four experiments

from series LCT-62. The results are summarized in fig. 4.45. The upper plot shows re-

sults for parameters assumed with normal probability distributions, the upper right plot for

all parameters with uniform distributions and the lower plot with parameter distributions

according to expert judgment. The distribution characteristics of the prior and posterior

functions are summarized in table 4.13.

Although the correlation coefficients for the three cases considered here change by up to

20% the effect in bias determination is minor, as can be seen in table 4.13. The respective

keff mean values and the standard deviations are essentially the same for each subset.

The Bayesian updating process using the two subsets of benchmark experiments and

omitting correlations results in a small shift of the mean and by almost a factor of two
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Fig. 4.44 Tsunami ck values for the application case App1 and benchmark experi-

ments. All values are close to 1, indicating a high similarity.

smaller line width of posterior distributions. As expected, the posterior shifts with subset

1 to larger and with subset 2 to smaller keff values. Including correlations reduces the

amount of the shift so the mean values of the posterior distributions are closer to the

mean of the prior. Within the 1-σ range of the posterior distributions their mean values

agree with the mean of the prior.

For criticality safety assessment a prediction of the effective neutron multiplication factor

including a 95% confidence interval is required to be below a sufficient safety margin.

Applying the Bayesian updating process with subsets 1 and 2 results in smaller 95%

confidence interval values compared to the prior (see fig. 4.45). The confidence interval

value reduces from 0.980 of the prior to 0.976 of the posterior with subset 1 and to

0.974 with subset 2 and correlations included. However, in this combination of benchmark

experiments and application case the prior represents the conservative approach.
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Fig. 4.45 Prior and posterior distributions for the application case from [11] using ex-

periments from LCT-06 and 35 in subset 1 and from LCT-62 in subset 2 as

benchmark experiments and assuming that all parameter distributions are

normal (upper left plot), uniform (upper right plot) and a mixture of both (lower

plot). The 95% safety limits are indicated by vertical lines.

Now the Bayesian updating process is applied assuming experiment LCT-62-15 as the

application case. For the updating process, experiments from series LCT-07 and 39 and

the corresponding covariance matrix are used as described in section 3.3. The ck-values

as predicted by TSUNAMI are shown in figure 4.46. The prior and the resulting posterior

distributions with and without correlations are shown in fig. 4.47. Here, the calculated pri-

or of the effective neutron multiplication factor kprioreff = 1.00353±0.00642 of the applications

case is overestimated by SCALE, while the keff values of the benchmark experiments are

all underestimated. In this combination the posterior mean value shifts by the updating

process to kposteff =1.00481±0.00263 with correlations and to kposteff =1.00596±0.00178

without correlations and thus even further away from the experimental value kexpeff =1.

Simultaneously the posterior distributions narrow by about a factor of three. Also in this

combination of application case and benchmark experiments the keff mean values of the

posterior agree within their standard deviation with the mean value of the prior. The 95%

confidence interval value, however, decreases from 1.0141 of the prior to 1.0091 of the

posterior with correlations and to 1.0089 without correlations. Also in this example the

prior represents the conservative approach.
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Tab. 4.13 Posterior distribution characteristics (keff ± 1σ) for the prior N(0.96891,

0.00698) assuming correlation (w/ cor) and neglect them (w/o cor) and for

the subsets 1 and 2.

normal distributed uniform distributed expert judgment

post w/ cor, subset 1 0.96938 ± 0.00398 0.96915 ± 0.00376 0.96876 ± 0.00389

post w/o cor, subset 1 0.96973 ± 0.00379 0.96973 ± 0.00376 0.96972 ± 0.003478

post w/ cor, subset 2 0.96746 ± 0.00373 0.96697 ± 0.00373 0.96720 ± 0.00384

post w/o cor, subset 2 0.96621 ± 0.00373 0.96615 ± 0.00370 0.96612 ± 0.00373

Using subsets of experiments with under- and overestimated keff respectively leads to

different behavior in the Bayesian updating process. Updating of an underestimated ap-

plication case with overestimated benchmark experiments or vice versa shifts the mean

of the posterior distribution even further away from the experimental value, as expected.

In case of an overestimated application case the posterior will shift to more conservative

values. However, within one standard deviation the mean values of the posterior distribu-

tions overlap with the mean value of the prior. The updating process not only shifts the

mean value but also narrows the posterior distribution. Determining the 95% confidence

interval results in smaller values for the posterior distributions compared to the prior. Cri-

ticality safety assessment requires a prediction of keff below a safety margin. Applying

the updating process, with experiments described here, the 95% confidence interval of

the posterior distributions may fulfill this criterion while the prior distribution would fail.

However, the prior represents the more conservative approach.

4.2.2.1 Summary and Discussion

Varying the distribution functions of system parameters also alters the correlation coeffi-

cients between the calculated keff . Although some of the correlation coefficients change

by up to 20% for the three cases and benchmark experiments considered here, their im-

pact on bias estimation is minor. This demonstrates that for these experiments the choice

of distribution functions of system parameters is not crucial for bias estimation. Nevert-

heless, the choice of the distribution functions should be chosen and justified based on

expert judgment. Furthermore, the results demonstrate that benchmark experiments as

well as the application case need to be chosen and analyzed carefully. Some benchmark

experiments might even be discarded in further analysis, if they do not reflect the appli-
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Fig. 4.46 Tsunami ck values for the application case LCT62-15 and benchmark ex-

periments from LCT07 and -39. All values are close to 1, indicating a high

similarity.

cation case in a sufficient way. A similarity of the neutron spectrum properties between

the experiments and the application case is only one criterion. Another may be e.g. geo-

metrical similarities, or whether the same type of fuel rods is used. Hidden experimental

and/or calculation systematic error in the benchmark experiments as well as in the ap-

plication case may lead to misleading results. However, shifts to larger effective neutron

multiplication factors represent conservative approaches.

Again, all results and discussions presented here only apply to LEU-COMP-THERM ex-

periments calculated with SCALE6.1.2 in combination with ENDF/B-VII continuous ener-

gy library. For more general and detailed statements further investigations are required.
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Fig. 4.47 Prior and posterior distributions for LCT-62-15 as application case and expe-

riments from the series LCT-07 and -39 described in section 3.3 as bench-

mark experiments. The vertical dash-dotted lines indicate the mean values

and the solid lines the 95% confidence intervals.
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5 Concluding Remarks

This work dealt with the question of how to treat statistical dependencies within data of

experimental series of critical experiments if this data is used for validating purposes.

Statistical dependencies or correlation effects can arise if parameters, materials or parts

of the experimental setups are shared within experimental series.

The work seems necessary due to the increasing computer power which in combinati-

on with the availability of user friendly sophisticated software and the publicly available

huge collections of evaluated experimental data can be used to perform massive ana-

lysis. For a validation this could lead to the use of not just 10 or 20 experiments, but

hundreds without great effort. This would need a correct translation of the available da-

ta into numerical models taking into account the correct statistical treatments. The latter

needs the consideration of integral experimental covariance data, which has to be gene-

rated. However, even the consideration of only few but correlated experiments makes the

consideration of integral experiment covariances necessary, too.

We have used a method based on full Monte-Carlo sampling to investigate the generation

of covariance and the related correlation matrices (section 3). The Monte-Carlo sampling

method provides some advantages in terms of being easy to understand and taking non-

linear dependencies into account. The major drawback is the enormous computational

effort. In section 3.3 we have shown, that a sample size up to 200 is needed to achieve

convergence, leading to the need of a computer cluster to calculate covariance matri-

ces for a few experiments. More sophisticated Monte-Carlo approaches which need less

samples (e.g. the Latin-Hypercube Monte-Carlo sampling) might reduce the calculation

times significantly.

However, having enough time and computer power, this problem can be solved. More

difficult to circumvent is the obstacle of translating the actual experimental data as given

for example in [1] into calculation models. The experimental data is not always complete

regarding the statistical dependence of parameters and thus leaves some freedom in

the interpretation of statistical dependencies and modeling. This leads in turn to different

uncertainties of keff (e.g. fig. 3.10) and different sensitivities of the uncertainty on the

input parameters (e.g. fig. 3.16) and thus to different covariance matrices (e.g. fig. 3.13).

To generate reliable covariance matrices, the treatment of data gaps has to be clarified.
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That might lead to some exclusions of data sets. Even though a lot of data is available and

publicly accessible, not all data might be used for the generation of reliable covariance

data due to lacking information.

For the consideration of the covariance data within a validation procedure we described

and investigated a method based on the Bayesian updating process (section 4). We have

shown, that depending on the application case and the used experimental data, ignoring

correlation effects can have a significant impact on the validation. However, so far we

would not be able to give general statements of how to treat integral experimental cova-

riance data in the process of validation. All our conclusions drawn are only valid for the

investigated cases of application case and benchmark experiments.

The final conclusion for this work are:

– If statistical dependencies can be excluded (e.g., selection of experiments each from

different series conducted in different laboratories), all presented issues can be cir-

cumvented except for the modeling and interpretation of the experimental data.

– If statistical dependencies exist in the experimental data used for validation, the in-

tegral experimental covariances have to be taken into account. If the data allows for

different covariance matrices, the most conservative case should be considered. This

depends on the application, the benchmark experiments and the calculation assump-

tions used (modeling, nuclear data, solution methods of the transport equation, etc.).

– The presence of shared components within experimental series does not necessa-

rily lead to statistically significant correlation coefficients. If the shared experimental

components have comparable small uncertainties or play only a minor role for the keff

uncertainty (determined e.g. by means of a sensitivity analysis), their contribution to

the correlation coefficient is negligible.

– Modeling of experimental data for the calculation of integral covariance data must be

investigated and described further.

– The handling of data gaps in the description of used experimental data has to be

investigated and described further.
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