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Abstract 

Sensitivity analysis is a mathematical means for analysing the sensitivities of a compu-

tational model to variations of its input parameters. Thus, it is a tool for managing pa-

rameter uncertainties. It is often performed probabilistically as global sensitivity analy-

sis, running the model a large number of times with different parameter value 

combinations. Going along with the increase of computer capabilities, global sensitivity 

analysis has been a field of mathematical research for some decades. 

In the field of final repository modelling, probabilistic analysis is regarded a key element 

of a modern safety case. An appropriate uncertainty and sensitivity analysis can help 

identify parameters that need further dedicated research to reduce the overall uncer-

tainty, generally leads to better system understanding and can thus contribute to build-

ing confidence in the models.  

The purpose of the project described here was to systematically investigate different 

numerical and graphical techniques of sensitivity analysis with typical repository mod-

els, which produce a distinctly right-skewed and tailed output distribution and can ex-

hibit a highly nonlinear, non-monotonic or even non-continuous behaviour.  

For the investigations presented here, three test models were defined that describe 

generic, but typical repository systems. A number of numerical and graphical sensitivity 

analysis methods were selected for investigation and, in part, modified or adapted. Dif-

ferent sampling methods were applied to produce various parameter samples of differ-

ent sizes and many individual runs with the test models were performed. The results 

were evaluated with the different methods of sensitivity analysis. On this basis the 

methods were compared and assessed. 

This report gives an overview of the background and the applied methods. The results 

obtained for three typical test models are presented and explained; conclusions in view 

of practical applications are drawn. At the end, a recommendation for executing sensi-

tivity analysis in a practical study is given
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1 Introduction 

1.1 Background 

The long-term performance of repositories for radioactive waste has to be analysed us-

ing adequate computer models. Such models are made up by mapping the existing or 

planned real repository structure to a simplified system of coupled components that can 

be described by numerical algorithms, taking into account various effects like radionu-

clide mobilisation, gas production, pressure build-up, fluid flow, sorption, dissolution 

and precipitation or other effects or processes that might be considered important in 

the considered case. The resulting model typically depends on a number of input pa-

rameters. Such a model cannot describe the real evolution of the system, but if set up 

thoroughly, it should at least be able to yield results that allow an assessment of the 

long-term safety of the system, provided that the parameters are given the “right” val-

ues. This, however, is a demanding problem, as a single model parameter normally 

represents, in a stylised manner, a more or less complex group of physical or chemical 

influences to the real system, which are not known in detail and cannot be quantified 

exactly. Such parameters can be measured in situ or estimated by experts, but are al-

ways subject to a range of uncertainty. Sometimes a conservative choice is possible, 

which means that the parameter is set to a value on the pessimistic end of its range. In 

many cases, however, a uniquely pessimistic choice is not possible. Additionally, over-

conservatism can destroy the proof of safety. Therefore, conservatism can be applied 

only to a limited extent.  

1.2 Management of uncertainties 

A proper management of uncertainties is an essential part of any safety case, since a 

meaningful statement on the long-term safety of a final repository system is only possi-

ble if its uncertainty can be quantified reliably. With respect to an overall assessment 

process, management of uncertainties comprises several steps, each of which requires 

thorough investigation. 
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1.2.1 Identification and quantification of inherent uncertainties 

Once identified, all uncertainties will be assessed and screened with regard to their rel-

evance for the safety case. While some of them can be ruled out for obvious low rele-

vance, others can be easily avoided using conservative assumptions. Though this is a 

somewhat subjective process, it is nevertheless necessary in order to reduce the set of 

uncertainties on the “input side” of the assessment process to a manageable number. 

In this report, these uncertainties are called inherent uncertainties. They have to be 

taken as they are; the assessment process has no direct influence on the initial uncer-

tainties, although it can trigger specific research or development work in order to re-

duce them.  

With respect to their origin, the inherent uncertainties of a final repository safety as-

sessment are often classified in three categories: 

• Scenario uncertainties reflect our lack of knowledge about the future development 

of the repository and its environment.  

• Model uncertainties result from the fact that a model can never describe the reality 

exactly. 

• Parameter uncertainties refer to the numerical input data of the applied models. 

While parameter uncertainties can be directly described by a mathematical formulation, 

scenario and model uncertainties are, in principle, non-numerical. If they are to be in-

cluded in a formal uncertainty assessment process, they have to be mapped to numer-

ical values in an adequate manner. 

With respect to their nature, uncertainties can be ideally distinguished in two types: 

• Epistemic uncertainties are due to our limited knowledge of the natural conditions 

and processes. In principle, they can be reduced by performing adequate research. 

• Aleatory uncertainties are due to influences that are or have to be considered ran-

dom, according to our present-day understanding of the underlying processes.  

Aleatory uncertainties cannot be reduced. 

In practice, a proper distinction between these types is not always easy or can even be 

impossible. Many uncertainties are an overlap of both types, one or the other dominat-
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ing. Moreover, it can be a matter of the scale of detail, whether an uncertainty appears 

epistemic or aleatory.  

Numerical uncertainties can be described using probability density functions (pdf). The 

integral of a pdf over a limited interval of values gives the total probability that the un-

known actual parameter value is in this interval. The integral of a pdf over the total pa-

rameter range is always 1. 

Proper identification, assessment and quantification of the inherent uncertainties is a 

very complex and time-consuming task within the safety case, requiring a lot of specific 

expert knowledge in physics, chemistry, hydrodynamics, geology, climatology, biology 

and other natural sciences, but also in mathematics. The correct choice of pdf types 

depends on the degree of knowledge about the quantity in question, which has to be 

properly analysed. 

Inherent uncertainties may be subject to mutual influences. If, for example, the porosity 

of a porous medium is low one can expect that the permeability of the medium will also 

be low (or vice versa), but this is not sure and a strict formula to connect these values 

cannot be given. Such statistical interdependencies often occur if the underlying physi-

cal processes are not completely understood or hard to describe in detail. For mathe-

matical purposes, the interdependencies are normally expressed as statistical correla-

tion, although this concept does not cover all kinds of dependency.  

1.2.2 Uncertainty and sensitivity analysis 

For numerical assessment of long-term safety a model is necessary, which is assumed 

to represent the actual system development in a representative manner. Such a model 

has a number of input parameters and produces one or several output values that al-

low, in comparison with specific reference values, statements about the safety of the 

system or assessment of the performance of a subsystem. Such values are called 

safety indicators or performance indicators, respectively (/BEC 03/, /BEC 09a/). 

Any safety statement derived from a model is subject to some uncertainty, which re-

sults from the inherent uncertainties. To quantify the uncertainty of the model output 

one has to evaluate the model a number of times with the input parameters varied ac-

cording to the inherent uncertainties and to analyse the model output statistically. This 
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procedure is called uncertainty analysis. Uncertainty analysis refers to the model output 

alone with no reference to the inherent uncertainties. 

A more sophisticated question is, to what extent a specific inherent uncertainty or a 

group of inherent uncertainties affects the overall uncertainty of the safety statement. 

There are many mathematical approaches to this problem, addressing different as-

pects and based on different concepts. This is called sensitivity analysis. 

Uncertainty and sensitivity analysis of model output is a purely mathematical proce-

dure. One always has to keep in mind that any statement concerning uncertainty or 

sensitivity that has been derived in this manner is a statement about the model under 

consideration, and not a statement about the real system.  

1.2.3 Time-dependent versus maximum analysis 

In the context of repository safety, it is often more interesting for the performance as-

sessor how the – real or hypothetic – system under consideration will contaminate the 

environment maximally, no matter at which time this maximum arises, than what hap-

pens at a specific point in time. Therefore, also uncertainty and sensitivity analysis can 

be performed either for the calculated contaminant releases or annual doses at specific 

points in time or for the run maxima. The results answer different questions and can 

therefore be completely different. An extreme situation would be that the maximum oc-

curs as a sharp peak and some specific parameter considerably influences the time at 

which this happens, but not at all the height of the maximum. This parameter would not 

show up in a maximum-related sensitivity analysis, but could be one of the most im-

portant in a time-related analysis. 

1.2.4 Assessment of uncertainties and drawing consequences 

The uncertainty and sensitivity measures that have been calculated are numerical 

numbers that do not provide any added value to uncertainty management by them-

selves. These values have to be assessed in the context of the real system under con-

sideration, which again requires expert knowledge. Therefore, it is necessary that nu-

merical uncertainty and sensitivity results be not simply listed without comment and 

maybe used for assembling parameter ranking lists, but presented and explained with 

relation to the system under consideration. A proper interpretation of the obtained re-
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sults will often lead to an improved understanding of the system behaviour and conse-

quently to more confidence in the modelling results. If a plausible explanation is not 

found this can be a hint to some essential lack of understanding or even to an error in 

the model. 

1.3 Sensitivity analysis and its role in the safety case 

Uncertainty and sensitivity analysis, in the context addressed here, is the systematic 

investigation of the influences of parameter uncertainties to the results of model calcu-

lations. While the goal of uncertainty analysis is the assessment of the uncertainty of 

the calculated results under influence of the entirety of all existing parameter uncertain-

ties, sensitivity analysis aims at investigating the sensitivity of the model to variations of 

a single parameter or a group of interacting parameters within its range of uncertainty.  

Sensitivity analysis can be performed as a local or global analysis by means of deter-

ministic or probabilistic methods. Local sensitivity analysis addresses the behaviour of 

the model under variation of the investigated parameter alone while all others are kept 

constant. In contrast, global sensitivity analysis means that all parameters that are con-

sidered uncertain are varied together, nevertheless focusing the evaluation to each pa-

rameter individually. Approaches of the former type cannot reveal the effects of interac-

tions of different parameters and describe the model behaviour only at a fixed point in 

the parameter space. Therefore, global sensitivity analysis is normally more meaning-

ful. In a deterministic investigation the model is evaluated with only a few, specifically 

selected parameter combinations and the results are compared to each other in order 

to analyse the influences of this variation in detail. Such investigations can provide im-

proved understanding of the model behaviour. For systematic sensitivity quantification, 

however, a high number of model runs is necessary, exploring the parameter space (or 

a subspace) as homogeneously as possible, and the results must be evaluated by 

some adequate mathematical or graphic procedure. This is called a probabilistic ap-

proach, because it takes account of the (assumed) probabilities of parameter combina-

tions. Often, local is equalised with deterministic, global with probabilistic sensitivity 

analysis, but these terms refer to different aspects, and a global deterministic approach 

is as well conceivable as a local probabilistic one. 

The report at hand deals with global probabilistic sensitivity analysis. For a probabilistic 

investigation all uncertain parameters have to be identified and their uncertainty has to 
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be quantified using adequate probability density functions (pdf). Then the model is exe-

cuted a high number of times with parameter values that are drawn according to their 

assumed probabilities. The parameter matrix, containing one set of values for each 

model run, is called sample, the sample size is the number of contained sets, i. e. the 

number of runs to be executed. A characteristic output variable is collected from all 

runs. The sensitivity analysis procedure finally quantifies or visualises the sensitivity of 

this output variable to variations of the input parameters. 

Probabilistic sensitivity analysis has been a field of specific mathematical interest for 

the last two or three decades, triggered by the constantly increasing performance of 

computers. A complex model that would require weeks to be evaluated just a few hun-

dred times 30 years ago can be executed tens of thousands of times within a few hours 

on a modern parallel system. Therefore, mathematical concepts have attracted interest 

that used to be impossible to be applied in practice, and a variety of sophisticated sen-

sitivity analysis methods have been developed. Mathematicians tend to test their meth-

ods using specifically designed models or test functions. This, however, does not seem 

to reflect correctly the performance of these methods if applied to complex perfor-

mance assessment models with their typical properties like extreme nonlinearities and 

a wide, non-gaussian distribution of possible output values.  

In the context of long-term performance assessment for radioactive waste repositories 

probabilistic uncertainty and sensitivity analysis is increasingly considered as a power-

ful and indispensable tool for building confidence in the safety case. One has to keep in 

mind, however, that such methods can never make statements about the real reposito-

ry system but only about the numerical model under consideration, including the ap-

plied pdfs of the input parameters. While a proper uncertainty analysis yields simple 

and mathematically unique results concerning the overall uncertainty of the model out-

put under the influence of the parameter uncertainties, sensitivity analysis provides 

more sophisticated insights to the model behaviour. Primarily, it acts as a tool for identi-

fying those parameters that are most important for the model in that sense that their 

uncertainty dominates the uncertainty of the model output. It has turned out, however, 

that a detailed sensitivity analysis is often very valuable for improving the general un-

derstanding of the model, recognising implausible behaviour and identifying model er-

rors. Sensitivity analysis for repository models has been under investigation for some 

time and was already addressed within the project PAMINA (/BEC 09b/). Comprehen-
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sive sensitivity analyses for the American repository projects WIPP and Yucca Moun-

tain have been performed by Helton and others (/HEL 98/, HEL 09/). 

The goal of the work documented here is to test different classical and modern meth-

ods of sensitivity analysis with realistic long-term performance assessment models, to 

assess their usability in practice and to develop a sensible way of proceeding. A short 

theoretical overview is given in chapter 2. In chapter 3 the test systems used for inves-

tigations are described. Chapters 4 to 6 contain the preliminary results of the work per-

formed so far, and in chapter 7 some preliminary conclusions are drawn. 
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2 Overview of methods for sensitivity analysis 

This chapter gives an overview of the main theoretical concepts underlying the applied 

methods and techniques. This is meant for the reader’s orientation, but not as a com-

prehensive description of the theory, which can be found in the indicated literature. A 

good survey of methods is also given in /HEL 06/.  

2.1 Basic terms and notations 

This section briefly explains some essential terms and notations used in this report. 

In the context of this report, a model is assumed to be a set of numerical instructions 

that transforms a defined number of k input values x1, … , xk uniquely into one output 

value y. The input values are called parameters. Dependent on its degree of uncertain-

ty and/or available information in form of data or general knowledge, the distribution of 

each parameter is characterised by its probability density function (pdf). The integral of 

the pdf over the total parameter interval is always 1. Common distribution types are 

uniform, log-uniform, normal, log-normal or triangular distributions. The resulting distri-

bution of the output variable is then defined by the model.  

A set of input parameter values is interpreted as a realisation of a set of probabilistic 

parameters X1, …, Xk.  The model output is represented by the probabilistic variable Y. 

X and Y are called probabilistic as they are represented by values that are distributed 

according to characteristic probabilities. A sample of size N consists of a collection of N 

complete sets of parameter values for the model under consideration, i. e. N realisa-

tions of the parameter vector X, generated by some sampling method. The model can 

be described using a function f : 

𝑌𝑌 = 𝑓𝑓(𝑿𝑿) = 𝑓𝑓(𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑘𝑘)             

where   𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖,1,𝑥𝑥𝑖𝑖,2,⋯ , 𝑥𝑥𝑖𝑖,𝑁𝑁�    and   𝑌𝑌 = (𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑁𝑁);    i = 1, 2,…, k. 
(2.1) 

2.2 Monte-Carlo (MC) methods 

The probabilistic methods applied in the investigations belong to the field of Monte-

Carlo (MC) methods. Such methods are based on the idea of carrying out a number of 

model evaluations with input data chosen randomly with respect to their probability 
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density functions. MC methods have been originally developed for multi-dimensional 

numerical integration, but can be used to solve various kinds of computational prob-

lems (/NIE 92/). Different techniques of statistical sampling are available for utilisation 

within MC methods to approximate solutions to problems (/MAR 08/). 

Various types of Monte-Carlo methods have been developed to improve convergence 

and/or accuracy and to reduce CPU cost and time. These different types are character-

ised by the type of sampling schemes and/or other information used in the analysis or 

in the process of finding a solution to a given problem. 

The plain Monte-Carlo, also called crude or traditional (/LIJ 00/) or just Monte-Carlo 

methods are the basic version of Monte-Carlo methods in which random sampling 

schemes (see chapter 2.3.1) are used.  

To increase the efficiency of the Monte-Carlo method, techniques for variance reduc-

tion have been established. A means for reaching this goal is utilisation of stratified 

sampling techniques (e.g. Latin Hypercube Sampling, see chapter 2.3.2.1) (/NIE 92/).  

In Quasi-Monte-Carlo (QMC) methods, the samples are generated with quasi-random 

sampling schemes. These sampling schemes use specifically designed deterministic 

sequences with better uniformity properties (/NIE 92/, /OEK 02/ and /GOE 09/). At first 

sight, such sequences look random, but they are designed to avoid the typical cluster-

ing of points generated by a memory-less random process. The according sampling al-

gorithms are designed to minimise the discrepancy, i.e. the deviation from an ideal uni-

form distribution. The resulting sequences of numbers are therefore called low-

discrepancy sequences. Quasi-Monte-Carlo methods can provide more accurate re-

sults than plain Monte-Carlo methods with reduced CPU cost and time (/NIE 92/).  

A disadvantage of Quasi-Monte-Carlo methods is that they may produce worse results 

for systems with high dimensions. Theoretically – though not necessarily in practice – 

the superiority of QMC compared to plain MC decreases rapidly with the dimension of 

the parameter space. To overcome these limitations, hybrid Monte-Carlo methods have 

been introduced. Hybrid Monte-Carlo methods employ sampling schemes utilising 

QMC sampling and another type of sampling scheme (/OEK 02/). 
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2.3 Sampling 

In this section the most important sampling techniques are shortly explained. 

2.3.1 Random sampling 

Random sampling is best adequate for all evaluations that require totally independent 

sample points. This is necessary, for example, to derive proper and unbiased statistical 

statements about the model under consideration. A pure uncertainty analysis with de-

termination of statistical measures like mean or quantiles, confidence bounds or proba-

bility of limit exceedance, should therefore be done using random sampling. 

To perform a proper random sampling a random number generator is needed. It is, 

however, not an easy task for a computer to generate a random sequence. A hardware 

random number generator that makes use of some random physical effect like semi-

conductor noise provides a possibility to generate genuine random numbers. Normally, 

however, algorithms for pseudo-random number generating (PRNG) are applied. Start-

ing with a given numerical value, called seed, such algorithms generate sequences of 

numbers in a certain interval that look random but are actually fully deterministic and 

reproducible. The values produced by a PRNG should not only be distributed uniformly 

but should not show any sign of “non-randomness”, which is not easy to define. One 

important – but, obviously, not sufficient – indicator for the quality of a PRNG is the pe-

riod length, which gives the total length of the sequence until it starts from the begin-

ning, repeating all numbers in exactly the same order. Different PRNGs of different 

quality are available (/DUT 09/). For MC methods, however, random sampling is often 

not optimal, because instead of providing a homogeneous coverage of the parameter 

space it tends to building clusters and gaps. This is due to the fact that random sam-

pling does not – and should not! – have any memory, which could lead to preference of 

“empty’” regions in the parameter space. 

2.3.2 Stratified sampling 

Generally, stratified sampling means that the statistical population from which the sam-

ple is to be drawn is exhaustively partitioned into non-overlapping subsets (strata) with 

specific common characteristics. Random sampling is then performed independently 

for each of the subsets. In the context of Monte-Carlo methods, where the population is 
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a continuous, multi-dimensional parameter space, strata can be defined by dividing 

each parameter interval into subintervals and combining these adequately. If only one 

parameter is to be drawn N times, one can divide its total interval into N subintervals of 

equal probability 1/N and then take one value randomly from each subinterval, which 

makes sure that the whole interval is homogeneously covered by the sample. For high-

er-dimensional parameter spaces, however, this simple approach does not work, be-

cause the required sample size would become extremely high. With, e.g., ten parame-

ters even a very rough division of two subintervals per parameter would require more 

than 1000 sample points. It is therefore inevitable that many combinations of parameter 

subintervals remain unconsidered in the sample.  

2.3.2.1 Latin Hypercube Sampling (LHS) 

The Latin Hypercube Sampling (LHS) method is a form of stratified random Monte Car-

lo sampling scheme, first suggested by /MCK 79/. 

A Latin Square is a quadratic grid filled with different symbols, each occurring exactly 

once per row and column. The generalisation of this concept to a multi-dimensional 

space is called a Latin Hypercube. This principle can be used to define a sampling al-

gorithm that provides a more homogeneous coverage of the parameter space than 

random sampling. A true Latin Hypercube with its full combinatorial complexity, howev-

er, is not needed for this purpose; only one symbol is regarded. 

First, the range of each of the k parameters is subdivided in N subintervals of equal 

probability. Then it has to be made sure by an adequate algorithm that each k-1-

dimensional hyperplane is met by exactly one sample point. The latter requirement 

could be easily fulfilled by simply following a diagonal through the hypercube, which 

would provide a rather poor coverage of the total space. Therefore, the subintervals 

should at least be shuffled randomly for each of the parameters before combining 

them. A possibility to further improve the sampling is to subdivide the total parameter 

space into larger cells of equal probability and to add the requirement that each of 

these cells is met equally often. This is called orthogonal sampling. 

The concept is illustrated in Fig. 2.1 with a simple example of two parameters and four 

sample points. With random sampling (I) the points are randomly distributed. Simple 

LHS (II) guarantees that each line and row of the parameter space is met exactly once. 
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Orthogonal sampling (III) additionally provides a homogeneous density of points in 

each 4x4-cell. 

 

Fig. 2.1 The principle of Latin Hypercube Sampling (taken from Wikipedia) 

2.3.3 Quasi-random (low-discrepancy) sampling 

In view of faster convergence and higher accuracy of a Monte Carlo simulation, for 

specific investigations uniformity of the distribution of sample points may be more im-

portant than ‘true’ randomness (/NIE 92/). With Quasi-Random Sampling (QRS) 

schemes, more uniformity can be put into the samples. Such schemes use determinis-

tic formulas to generate sequences of numbers with better uniformity properties 

(/KIP 08/). Quasi-random sequences should nevertheless provide homogeneity in each 

dimension and at any stage of the sampling process, which is why, at the first sight, 

they look random. Unlike random sampling, however, a QRS algorithm makes use of a 

memory, which prevents it from building the typical clusters and gaps. QRS algorithms 

aim at minimising the mathematical discrepancy, which is a measure for the deviation 

of a given distribution from the ideal one. Therefore, the sampling sequences generat-

ed by such algorithms are sometimes called low-discrepancy (LD) sequences. 

In particular for problems with few parameters, LD sequences can help to obtain relia-

ble sensitivity analysis results with low computational cost (e.g., /MOR 94/). For high-

dimensional problems, the performance depends on which type of LD sequences is 

used and/or how the points of the sequences interacts with the studied problem 

(/LEM 04/). 
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2.3.3.1 Sobol’ LpTau sequences 

For the investigations with quasi-random sampling described in this report Sobol’ 

LpTau sequences were used (/SOB 67/). These sequences are designed to cover the 

k-dimensional parameter space as well as any of its lower-dimensional projections as 

homogeneously as possible. The Sobol’ sampling establishes successively finer 

partitions of the [0,1] interval on the base of two and then rearranges the coordinates in 

each dimension. The generated sample is then transformed to the desired intervals 

and distribution for each parameter. Fig. 2.2 illustrates this principle in one dimension 

for a uniform distribution. Details on calculating Sobol’ LpTau sequences in higher 

dimensions can be found, e.g., in /SHU 94/.  

 

Fig. 2.2 Illustration of the basic idea of the Sobol’ LpTau sequences in [0,1] 

2.3.4 Periodic sampling 

Some sensitivity analysis methods require specific sampling schemes. The basic idea 

of a family of methods is to introduce some periodicities in the sample and to rediscov-

er them in the calculation results by performing a Fourier analysis. These methods 

have the drawback of working only with specifically drawn samples. Such methods – 

(E)FAST and RBD – are described and investigated later in this report. At this point on-

ly some general considerations on periodic sampling are given. 

As with all sampling methods, a largely homogeneous coverage of the parameter 

space in all dimensions is desirable. As periodic sampling anyway tends to leaving 
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large gaps in the multi-dimensional parameter space, one should at least try to reach 

homogeneous distributions for the individual parameters. Best homogeneity can be 

reached by choosing a linear sequence that changes its direction when reaching the in-

terval end. This technique leads to a triangle-shaped sampling curve 

2.3.5 Correlation 

The parameters of a probabilistic investigation are not always independent of each 

other. If there is a strong mathematical relation between two parameters, then they can 

be represented by one single parameter by regarding the relation as part of the model. 

Often, however, parameters are statistically dependent, which means that a specific 

tendency of one parameter causes a tendency of another one. 

Two statistical parameters X and Y are called correlated if their correlation coefficient  

𝜌𝜌𝑋𝑋,𝑌𝑌 = corr(𝑋𝑋,𝑌𝑌) =
cov(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

=
E[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑌𝑌 − 𝜇𝜇𝑌𝑌)]

𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌
 , (2.2) 

is different to 0, otherwise they are uncorrelated. In the above formula cov (𝑋𝑋,𝑌𝑌) means 

the covariance of 𝑋𝑋 and 𝑌𝑌 and E(. ) the expectation value. The correlation coefficient is 

always between -1 and 1, the sign indicating the direction of correlation. Absolute val-

ues of 1 mean a strong linear or inverse linear correlation. If the correlation coefficient 

is calculated for the rank-transformed values, which means that each value is mapped 

to its number in a size-ordered list, it is called rank correlation coefficient. 

Parameters can be statistically dependent even if they are uncorrelated, i. e. their cor-

relation coefficient is 0. Fig. 2.3 shows different statistical dependencies of two parame-

ters. Note that the distributions in the lower line are all uncorrelated. 
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Fig. 2.3 Possible statistical dependencies of two parameters with their correlation 

coefficients. For the case presented in the middle, the correlation coeffi-

cient is undefined, since there is no variation in 𝑌𝑌  

(from Wikipedia: 

https://en.wikipedia.org/wiki/Correlation_and_dependence). 

In reality, input parameters of a PA model are often statistically dependent on each 

other in some manner. This can be a sign for lack of understanding of the physical de-

tails, but has nevertheless to be taken into account, which is normally done by assum-

ing a required correlation matrix. Calculating the correlation coefficients of all pairs of 

parameters should approximate this matrix as closely as possible. Therefore, the sam-

pling procedure has to take account of the correlation matrix. 

An approved algorithm for implementing a given correlation matrix into a sample is the 

Iman-Conover method (/IMA 82, MIL 05/). This method preserves the marginal distribu-

tions and works with any sampling scheme, except schemes that rely on specific paths 

through the multi-dimensional parameter space (like periodic sampling). The drawn pa-

rameter values remain unchanged, only their pairing is affected by the algorithm. The 

Iman-Conover method is designed to generate a sample that has the same rank corre-

lation matrix as the desired, correlated reference distribution. Usually, the linear corre-

lation matrix is then at least approximately equal to the desired one. 

2.3.6 Comparison of sampling methods 

Five sampling methods have been used to produce the results discussed in the report: 

Random sampling, LHS, EFAST sampling, RBD sampling and Sobol’ LpTau sequenc-

https://en.wikipedia.org/wiki/Correlation_and_dependence


 

17 

es. Fig. 2.4 shows a graphical comparison of these five methods on the basis of two 

uniformly distributed, uncorrelated parameters p1 and p2. Three diagrams have been 

made for each sampling method: a frequency histogram of p1, a scatterplot of p1 vs. 

p2 and a scatterplot of p1 vs. simulation number. 
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Fig. 2.4 Comparison of sampling methods by means of three diagrams: p1 vs. p2 

(left), p1 vs. number of simulation (middle), p1 frequency histogram (right) 
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On the first sight, random sampling, LHS and RBD sampling look random, while there 

are clear regular structures in EFAST and LpTau sampling. Obviously, EFAST sam-

pling produces the least homogeneous coverage of the two-dimensional parameter 

space, leaving large white regions. RBD sampling seems to be superior to EFAST 

sampling in view of one- and two-dimensional homogeneity. LpTau provides the most, 

random sampling the least homogeneous p1 marginal distribution. Although the regular 

patterns in the LpTau scatterplots seem to indicate systematically under- and 

overrepresented regions in the two-dimensional parameter space, in fact this sample 

provides the most homogeneous coverage, as the white regions are smaller than with 

any other method. 

2.4 Uncertainty analysis 

Although the subject of this report is sensitivity analysis, this chapter is dedicated to 

uncertainty analysis, since it is an essential part of each probabilistic analysis.  

In the context of this report, uncertainty analysis means quantifying the overall uncer-

tainty of the results of a PA model calculation under the given uncertainties of the mod-

el input parameters. Proper quantification of the input uncertainties, i. e. establishing 

the correct pdfs, is a pre-condition for obtaining reliable results and a demanding task, 

but not a part of the uncertainty analysis itself. It is always assumed that the utilised 

sample represents the actual uncertainty of all input parameters. Under this precondi-

tion, it does not matter how many input parameters are taken into account, since, in 

contrast to sensitivity analysis, uncertainty analysis does not establish any references 

from the model output to the model input. The only question of interest is the variation 

of the model output itself.  

2.4.1 Graphical uncertainty analysis 

We assume that we have a time-dependent model, so that each model run produces a 

time curve of some model output quantity of interest. The overall uncertainty of the 

model results can be visualised by plotting all time cures in one single plot. Such a fig-

ure is not adequate to show or even compare the model behaviour in individual runs, 

but can give a graphic impression of the uncertainty as it shows the fluctuation ranges 

and can draw attention to extreme or outlying runs. An example with 1000 curves is 

shown in Fig. 2.5. 
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Fig. 2.5 Graphical uncertainty analysis: plot of all runs (left) and CDF/CCDF (right) 

Histograms are another possibility of illustrating the uncertainty of calculation results 

graphically. For a histogram the output values for a specific point in time or for the ab-

solute maxima are grouped in an adequate number of sub-intervals that are (normally) 

equidistant on a linear or logarithmic scale, each interval (“bin”) is plotted as a column 

with a height proportional to the number of values in the interval. If the number of bins 

is selected properly, the shape of the envelope qualitatively approximates the (un-

known) pdf of the distribution. In order to produce a more unique illustration one can 

simply count the values that do not exceed a given threshold 𝑥𝑥, normalise it to the total 

number of values and plot it versus 𝑥𝑥. Such a curve always starts at 0 at the lower end 

of the interval and ends at 1 at the upper end. This plot is called cumulated density 

function (CDF). It is often preferred to present it in its complementary form (CCDF), 

starting at 1 and ending at 0. An example is shown in Fig. 2.5. 

Scatterplots can be used to graphically illustrate any two-dimensional distribution. If the 

run maxima of a set of calculations are to be evaluated, it is helpful to plot the values of 

the maxima versus the times of occurrence. Such a maximum scatterplot gives a visual 

impression not only of the distribution of the maximum values, but also of their depend-

ency on time. Plots of this kind can be specifically helpful if an additional piece of in-

formation, for example the radionuclide responsible for the maximum, is coded by col-

ouring the scatter points, see Fig. 2.6 (in the figure, the colours indicate the second 

most relevant radionuclide as in the used dataset the most relevant is always Sn-126). 
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Fig. 2.6 Graphical uncertainty analysis: histogram (left) and colour-coded maximum 

scatterplot (right) 

2.4.2 Numerical uncertainty analysis 

For a numerical uncertainty analysis one can calculate various statistical measures for 

selected points in time. If sufficient supporting points are selected, the measures them-

selves can be plotted as time curves. In the context of repository performance assess-

ment, however, the quantity under consideration, e. g. a safety indicator like the indi-

vidual dose rate (/BEC 09a/), is normally supposed to be as low as possible. Therefore, 

it can be interesting to determine the absolute maximum of each run and to analyse 

these values instead of the values at a fixed point in time.  

In the following a short overview of the most common uncertainty measures is given. 

For the details we refer to standard statistics literature, good introductions and refer-

ences can be found on Wikipedia (http://en.wikipedia.org) under the relevant keywords. 

Statistically distributed values, represented by a statistic variable 𝑋𝑋, are characterised 

by their expectation 𝐸𝐸(𝑋𝑋) = 𝜇𝜇. For discrete values this is identical to the arithmetic 
mean of the values, which gives a rough impression of the order of magnitude of the 

values, but does not say anything about their distribution. For widely spread values, 

which are typically produced by PA models, the mean is dominated by the highest val-

ues. 

Some statistical measures that can provide valuable information about the distribution 

are based on the central moments  
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𝜇𝜇𝑘𝑘 = 𝐸𝐸�(𝑋𝑋 − 𝜇𝜇)𝑘𝑘� . (2.3) 

Obviously, the first central moment is always 0. The second central moment is called 

variance: 

Var(𝑋𝑋) = E((𝑋𝑋 − 𝜇𝜇)2) . (2.4) 

The square root of the variance is called standard deviation. This formula is valid for 

calculation of the standard variation of a given distribution. The sample standard de-
viation of the values is an estimator for the standard deviation of the true distribution, 

calculated from a limited sample. Since the sample can never be complete and the true 

expectation of the distribution is unknown, the corrected formula  

𝑠𝑠 = �
1

𝑁𝑁 − 1
�(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
𝑁𝑁

𝑖𝑖=1

 (2.5) 

should be used for calculation, which can be proven to be an unbiased estimator. The 

standard deviation is a numerical measure for uncertainty, but it should be kept in mind 

that for non-normal distributions it might say little about the real variation of the data. 

The median 𝑚𝑚 of a distribution marks its middle, i. e. that value in the parameter inter-

val at which the integral of the pdf reaches 1/2: 

� pdf(𝑥𝑥)𝑑𝑑𝑥𝑥 
𝑚𝑚

−∞

=  
1
2

 . (2.6) 

A finite set of data is separated by the median in two equally populated parts. Com-

pared to the arithmetic mean, the median is less sensitive to the influences of extreme 

values and outliers and is often more significant for comparing a single value with the 

entirety of all data. 

As a generalisation of the same concept, a quantile 𝑞𝑞 is the value that separates the 

distribution in two parts at a specific fraction: 



 

23 

� pdf(𝑥𝑥)𝑑𝑑𝑥𝑥 

𝑞𝑞

−∞

= 𝑟𝑟    ,   0 < 𝑟𝑟 < 1 . (2.7) 

If 𝑟𝑟 is given as a percentage, the quantile is sometimes called the 𝑟𝑟th percentile of the 

distribution. The median is the same as the 50%-quantile or the 50th percentile.  

2.5 Graphical methods for sensitivity analysis 

Graphical methods of sensitivity analysis provide a good means for getting a quick vis-

ual impression of the sensitivities of a system. In many respects, such methods are 

more appropriate to convey the basic messages about the sensitivity. Moreover, they 

can visualise aspects that cannot be derived from a numerical sensitivity measure. 

Sensitivity graphs are easy to understand and in most cases, and they can be made 

with low computational effort. In this chapter, several types of graphs are explained. 

2.5.1 Scatterplots 

A scatterplot is a plot of unconnected data points on a 2D-area. This is an appropriate 

means to present statistically distributed data. A scatterplot of the model output versus 

the value of a specific parameter provides a direct view of how the parameter influ-

ences the result. Such a plot can convey detailed information that cannot be derived 

from other types of plots. Moreover, it is possible to colour the points according to 

some additional piece of information, which can reveal specific interesting relation-

ships. On the other hand, scatterplots are inadequate or unclear for investigating and 

comparing several parameters in one plot, or for showing the time-evolution of the sys-

tem sensitivities. 

2.5.2 Contribution to the sample mean (CSM) 

The CSM plot (/SIN 93/, /BOL 09/) is a specific kind of 2D-plot that allows a quick as-

sessment and comparison of the sensitivities of a system to variation of different pa-

rameters. For each parameter to be presented a curve, starting at (0,0) and ending at 

(1,1), is plotted on a unit square according to the following instructions: 
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From a probabilistic set of calculation runs the model output values for a specific point 

in time or the run maximum are paired with the values of the parameter under investi-

gation. These pairs are sorted according to increasing parameter values. Then the cu-

mulated contribution to the sample mean is calculated for each pair. That means that 

for any parameter value the model output values are added up to the relevant pair and 

divided by the number of runs as well as by the arithmetic mean of all values. This pro-

cedure automatically yields 1 for the last pair, which is defined by the highest parame-

ter value. The CSM is plotted versus the fraction of the number of runs.  

If the model output does not depend at all on the parameter under investigation, the 

cumulated sum of output values will increase by comparable amounts all over the in-

terval, which results in a curve very close to the diagonal. If, however, low parameter 

values predominantly cause low model output values, the cumulated sum increases 

slowly in the lower part of the diagram and more steeply in the end. Therefore, a strong 

sensitivity is indicated by a CSM curve that deviates significantly from the diagonal. Ac-

tually, however, not the deviation from the diagonal is the primary indication of sensitivi-

ty, but the curvature. Negative curvature means an inverse influence of the parameter 

on the model output, i. e. increasing parameter values cause decreasing model output. 

If the influence is non-monotonic the CSM curve has an inflection point. 

CSM plots can easily be generated and are appropriate for comparing the influences of 

several parameters, or the time development. They also allow spotting parameter 

ranges of higher or lower sensitivity by analysing the curvature. 

2.5.3 Contribution to the sample variance (CSV) 

The idea of CSV is the same as that of CSM, but using the variance instead of the 

mean. Since the variance is likewise a linear measure, it can be split in the same way 

as the mean. The message of a CSV curve is similar to that of CSM, but less direct and 

mathematically harder to understand. CSV curves are often more pronounced, but less 

smooth than CSM curves.  

2.5.4 Cumulated sums of normalised re-ordered output (CUSUNORO) 

CSM does not work properly with non-positive model output and not at all if the mean is 

zero. Moreover, it is not invariant against a constant offset. The CUSUNORO plot 
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/PLI 12/ is an enhancement of the CSM plot, which avoids these drawbacks. It is appli-

cable on any data set and yields identical curves for data sets that only differ by a con-

stant. 

Instead of the sum of the output values themselves, CUSUNORO uses the sum of their 

deviations from the mean, normalised to the square root of the sum of squares of these 

differences. The result is a curve that starts at (0,0) and ends at (1,0). High sensitivity is 

indicated by a significant deviation of the curve from the x-axis. Like in the CSM plot 

the degree of sensitivity is actually indicated by the curvature.  

2.5.5 Conditional cobweb plots and mean rank plots 

The following methods are not applied in this report but can provide a quick graphical 

visualisation of sensitivities and are therefore shortly mentioned here for completeness.  

An often seen kind of plot is based on the idea to display the value ranges of all input 

parameters and the model output on parallel vertical axes and to represent each indi-

vidual model run by a line connecting the associated values. If only a specific selection 

of runs is plotted, for instance those 10 % with the highest model output values, one 

can directly see which parameter values are preferably associated with this condition. 

Such a plot is called a conditional cobweb plot. The effects are best visualised with no 

more than a few hundred lines.  

The mean rank plot (/COR 12/) provides basically the same message, but avoids the ir-

ritating multiplicity of intersecting lines. First, all input parameters and the model output 

are ranked. The parameter ranks are shown side by side on axes in the y-direction. As 

in the case of a cobweb plot the x-axis has no meaning but can be used for grouping 

the parameters according to their meaning (e. g., near field – far field – biosphere pa-

rameters). The model runs are then divided into classes according to some property, 

for instance on the basis of the model output ranks. The classes are represented as 

lines in individual coulours, showing the mean rank for each parameter. The lines 

themselves are unnecessary but can help focus the view. For a parameter with low 

sensitivity the rank values will be more or less uniquely distributed over the total range, 

regardless of the output rank, and all lines will intersect the respective axis near the 

middle. On the other hand, a broad distribution of the intersecting points is a hint to 

high sensitivity (/KUH 15/).   
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2.6 Correlation- and regression-based methods 

For numerical evaluation of the sensitivities of a numerical model on the basis of a 

probabilistic set of model runs, a variety of different methods have been developed. A 

classical and often applied approach is to approximate the influence of a parameter to 

the model output as well as possible by a linear relationship and to derive a measure of 

sensitivity from this approximation. Due to their nature, such methods work best if the 

actual model behaviour is close to linear, with respect to the parameter under consid-

eration. 

There are two different mathematical approaches to this idea, one of which is based on 

correlation, the other on regression. 

2.6.1 Pearson’s correlation coefficients 

For two statistical variables, 𝑋𝑋 and 𝑌𝑌, with 𝑛𝑛 realisations 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, 𝑖𝑖 = 1 …𝑛𝑛, the empirical 

linear correlation coefficient 𝜌𝜌(𝑋𝑋,𝑌𝑌), or Pearson’s correlation coefficient, can be calcu-

lated as 

𝜌𝜌(𝑋𝑋,𝑌𝑌) =
∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)(𝑦𝑦𝑖𝑖 − 𝑌𝑌�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑋𝑋�)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛

𝑖𝑖=1

  , (2.8) 

where 𝑋𝑋� and 𝑌𝑌� denote the arithmetic means of 𝑋𝑋 and 𝑌𝑌. In case of a strong positive or 

negative linear relationship between 𝑋𝑋 and 𝑌𝑌 the correlation coefficient is +1 or -1, re-

spectively, regardless of the gradient. An absolute value below 1 indicates a statistical 

tendency, which is the less pronounced the closer the value is to 0. As, however, the 

correlation coefficient requires a linear relationship, a value of 0 does not exclude a 

non-linear statistical relationship. 

For a model with a number of input parameters 𝑋𝑋𝑘𝑘 and the model output 𝑌𝑌, the correla-

tion coefficients 𝜌𝜌𝑘𝑘 = 𝜌𝜌(𝑋𝑋𝑘𝑘 ,𝑌𝑌) provide a measure of sensitivity, which is the more relia-

ble the closer to linear the model behaves. It should be kept in mind, however, that a 

high absolute value does not mean that a small variation of parameter 𝑋𝑋𝑘𝑘 causes a 

high change of the model output. It is rather an indication that the parameter in ques-

tion dominates the influences on the model output, not allowing for much scatter due to 

other influences.  
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2.6.2 Standardised regression coefficients (SRC) 

Linear regression is based on the attempt to approximate the relationship between the 

statistical Variables 𝑋𝑋 and 𝑌𝑌 as well as possible by a linear function: 

𝑌𝑌� = 𝑏𝑏0 + �𝑏𝑏𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑋𝑋𝑗𝑗 . (2.9) 

For every set of parameter values 𝑥𝑥𝑗𝑗𝑖𝑖, 𝑖𝑖 = 1 …𝑛𝑛, an absolute error 𝜀𝜀𝑖𝑖 results: 

𝑦𝑦𝑖𝑖 = 𝑏𝑏0 + �𝑏𝑏𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑥𝑥𝑗𝑗𝑖𝑖 + 𝜀𝜀𝑖𝑖 = 𝑦𝑦�𝑖𝑖 + 𝜀𝜀𝑖𝑖 . (2.10) 

The coefficients 𝑏𝑏𝑗𝑗, 𝑗𝑗 = 1 …𝑘𝑘, can be determined to minimise the total error according 

to the least squares: 

�𝜀𝜀𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= min . (2.11) 

Then the coefficients 𝑏𝑏1 … 𝑏𝑏𝑘𝑘 are a measure of the sensitivity of the model output 𝑌𝑌 

against variations of the model input parameters 𝑋𝑋1 …𝑋𝑋𝑘𝑘. In order to allow for a unique 

assessment of these coefficients, they are transformed such that they get the expecta-

tion 0 and the standard deviation 1: 

𝑌𝑌� − 𝑌𝑌�
�̂�𝑠

= �
𝑏𝑏𝑗𝑗�̂�𝑠𝑗𝑗
�̂�𝑠

𝑘𝑘

𝑗𝑗=1

∙
𝑋𝑋𝑗𝑗 − 𝑋𝑋�𝑗𝑗
�̂�𝑠𝑗𝑗

  (2.12) 

with 

𝑌𝑌� =
1
𝑛𝑛

 �𝑦𝑦�𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ,   𝑋𝑋� =
1
𝑛𝑛

 �𝑥𝑥𝑗𝑗𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (2.13) 

and 

�̂�𝑠 = ��
(𝑦𝑦�𝑖𝑖 − 𝑌𝑌�)2

𝑛𝑛 − 1

𝑛𝑛

𝑖𝑖=1

 ,   �̂�𝑠𝑗𝑗 = ��
(𝑥𝑥𝑗𝑗𝑖𝑖 − 𝑋𝑋�)2

𝑛𝑛 − 1

𝑛𝑛

𝑖𝑖=1

 . (2.14) 
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The coefficients (𝑏𝑏𝑗𝑗�̂�𝑠𝑗𝑗)/�̂�𝑠 are called standardised regression coefficients (SRC). Their 

values are always between -1 and 1, negative values indicating inverse dependency.  

Although in practice, the SRC values are often similar to Pearson’s correlation coeffi-

cients, their mathematical meaning is different. While the correlation coefficient indi-

cates, how much the model is dominated by the parameter, a high SRC means a high 

gradient of the regression line.  

The coefficient of model determination is defined as 

𝑅𝑅2 =
∑ (𝑦𝑦�𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑌𝑌�)2𝑛𝑛
𝑖𝑖=1

  . (2.15) 

It represents the fraction of the variation of the model output that can be declared by 

linear regression. That means, 𝑅𝑅2 = 1 for a strong linear relationship and 𝑅𝑅2 = 0 for a 

model that cannot at all be declared by a linear regression (i.e., the best linear regres-

sion is a simple constant). 𝑅𝑅2 is equal to the squared multiple correlation coefficient of 

the output with all input variables. It provides a measure for the degree of linearity of 

the model under consideration. As a rule of thumb, 𝑅𝑅2 should be at least 0.5 to allow 

for a meaningful sensitivity analysis with linear methods.  

2.6.3 Partial correlation coefficients (PCC) 

If the input parameters 𝑋𝑋1 …𝑋𝑋𝑘𝑘, or some of them, are correlated among themselves, 

which may have been brought about on purpose due to some assumed statistical phys-

ical coupling, there is a common influence to the model output 𝑌𝑌. The sensitivity analy-

sis methods described so far cannot resolve this coupling but describe the total influ-

ence of an input parameter to the output, including the indirect influence via other 

parameters. In order to separate these influences, one can use the following regression 

ansatz: 

𝑋𝑋�𝑗𝑗 = 𝑐𝑐𝑗𝑗0 + � 𝑐𝑐𝑗𝑗𝑗𝑗

𝑘𝑘

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗

𝑋𝑋𝑗𝑗  , 𝑌𝑌� = 𝑏𝑏0 + � 𝑏𝑏𝑗𝑗

𝑘𝑘

𝑗𝑗=1,𝑗𝑗≠𝑗𝑗

𝑋𝑋𝑗𝑗  . (2.16) 

This describes the influences of all input parameters different from 𝑋𝑋𝑗𝑗 to 𝑋𝑋𝑗𝑗 as well as to 

the model output 𝑌𝑌. The partial correlation coefficient (PCC) of 𝑋𝑋𝑗𝑗and 𝑌𝑌 is defined as 
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the correlation coefficient of the errors (𝑋𝑋𝑗𝑗 − 𝑋𝑋�𝑗𝑗) and (𝑌𝑌 − 𝑌𝑌�). It can be seen as a 

measure for the sensitivity of the model output to the input parameter 𝑋𝑋𝑗𝑗 alone, regard-

less of indirect influences via other parameters. It can be shown that these coefficients 

are identical to the SRCs if the parameters are uncorrelated.  

2.6.4 Rank transformation 

As mentioned, correlation- and regression-based methods for sensitivity analysis are 

founded on the assumption that there is a close-to-linear relationship between the input 

parameters and the model output. For complex models, this is often not the case, 

which can be seen by a low value of 𝑅𝑅2. In many cases, however, the relationship is at 

least monotonic. A monotonic relationship can be transformed into a linear one by per-

forming a rank transformation. This is done by sorting the values of each input parame-

ter and the model output according to their size and replacing each value by its rank in 

the respective list. If calculated for the ranks, 𝑅𝑅2 often – but not always! – increases 

considerably compared to its value calculated from the original values.  

All sensitivity measures explained in this chapter can as well be calculated on the basis 

of the ranks instead of the values. On the one hand, the rank-based measures are of-

ten more significant and allow for a more unique sensitivity ranking of the input pa-

rameters. On the other hand, the rank transformation annihilates details of the model 

behaviour and therefore causes some loss of quantitative meaning of the results. 

Tab. 2.1 shows the corresponding value- and rank-based sensitivity measures with 

their naming and abbreviations used in this report. 
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Tab. 2.1 Naming of correlation- and regression-based methods of sensitivity analysis 

Principle/Method/Concept Value-based Rank-based 

Correlation Pearson’s correlation coeffi-
cients  (PEAR) 

Spearman’s rank correlation 
coefficients (SPEA) 

Regression Standardised regression 
coefficients (SRC) 

Standardised rank correla-
tion coefficients (SRRC) 

Partial correlation Partial correlation coeffi-
cients (PCC) 

Partial rank correlation coef-
ficients (PRCC) 

2.7 Variance-based methods 

The variance of a statistically distributed variable 𝑋𝑋 is (cf. eq. (2.4)) 

Var(𝑋𝑋) = E((𝑋𝑋 − E(𝑋𝑋))2) = E(𝑋𝑋2) − (E(𝑋𝑋))2 . (2.17) 

Based on the variance, a sensitivity measure can be defined that reflects the global 

sensitivity quantitatively, regardless of the linearity or non-linearity of the model: 

𝑆𝑆𝑗𝑗 =
Var𝑋𝑋𝑗𝑗�E�𝑌𝑌�𝑋𝑋𝑗𝑗 = const.��

Var(𝑌𝑌)
 . (2.18) 

In this notation, E�𝑌𝑌�𝑋𝑋𝑗𝑗 = const.� means the expectation of the model output 𝑌𝑌 under 

the side condition that the input parameter 𝑋𝑋𝑗𝑗 is kept constant. This expectation value 

varies with 𝑋𝑋𝑗𝑗, and the variance of its distribution is divided by the total variance of 𝑌𝑌. 

The values 𝑆𝑆𝑗𝑗 are called first-order sensitivity indices.  

It can be shown that, as long as the input parameters 𝑋𝑋𝑖𝑖 are independent of each other, 

the model output  𝑌𝑌 = 𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑘𝑘) can be uniquely decomposed in terms of increasing 

dimensionality: 

𝑓𝑓(𝑋𝑋1, … ,𝑋𝑋𝑘𝑘) = 𝑓𝑓0 +�𝑓𝑓𝑗𝑗(𝑋𝑋𝑗𝑗)
𝑘𝑘

𝑗𝑗=1

+ � 𝑓𝑓𝑗𝑗1𝑗𝑗2(𝑋𝑋𝑗𝑗1 ,𝑋𝑋𝑗𝑗2)
𝑘𝑘

𝑗𝑗1<𝑗𝑗2

+⋯+ 𝑓𝑓12…𝑘𝑘(𝑋𝑋1, … ,𝑋𝑋𝑘𝑘)  (2.19) 

with functions that depend only on the parameters in their index: 



 

31 

𝑓𝑓0 = E(𝑌𝑌) , 

𝑓𝑓𝑗𝑗�𝑋𝑋𝑗𝑗� = E�𝑌𝑌�𝑋𝑋𝑗𝑗 = const.� − 𝑓𝑓0 , 

𝑓𝑓𝑗𝑗1𝑗𝑗2�𝑋𝑋𝑗𝑗1 ,𝑋𝑋𝑗𝑗2� = 𝐸𝐸�𝑌𝑌�𝑋𝑋𝑗𝑗1 = const.,𝑋𝑋𝑗𝑗2 = const.� − 𝑓𝑓𝑗𝑗1�𝑋𝑋𝑗𝑗1� − 𝑓𝑓𝑗𝑗2�𝑋𝑋𝑗𝑗2� − 𝑓𝑓0  

(2.20) 

and so on. This is denoted as high-dimensional model representation (HDMR). The to-

tal variance of the model output 𝑌𝑌 can be decomposed uniquely as 

Var(𝑌𝑌) =  � 𝑉𝑉𝑗𝑗1

𝑘𝑘

𝑗𝑗1=1

+ � 𝑉𝑉𝑗𝑗1𝑗𝑗2

𝑘𝑘

𝑗𝑗1<𝑗𝑗2

+ ⋯+ 𝑉𝑉12…𝑘𝑘  (2.21) 

where 

𝑉𝑉𝑗𝑗1 = Var𝑋𝑋𝑗𝑗1�E�𝑌𝑌�𝑋𝑋𝑗𝑗1 = const.�� , 

𝑉𝑉𝑗𝑗1𝑗𝑗2 = Var𝑋𝑋𝑗𝑗1𝑋𝑋𝑗𝑗2 �E�𝑌𝑌�𝑋𝑋𝑗𝑗1 = const.,𝑋𝑋𝑗𝑗2 = const.�� − 𝑉𝑉𝑗𝑗1 − 𝑉𝑉𝑗𝑗2 
(2.22) 

and so on. Higher-order sensitivity indices 𝑆𝑆𝑗𝑗1𝑗𝑗2  (and so on) are defined as the ratios of 

the respective variance components to the total variance of 𝑌𝑌, so that 

� 𝑆𝑆𝑗𝑗1

𝑘𝑘

𝑗𝑗1=1

+ � 𝑆𝑆𝑗𝑗1𝑗𝑗2

𝑘𝑘

𝑗𝑗1<𝑗𝑗2

+ ⋯+ 𝑆𝑆12…𝑘𝑘 = 1 .  (2.23) 

While the first-order indices (SI1) are a measure for the sensitivity of the model to one 

input parameter alone, the higher-order indices characterise the combined influence of 

two or more parameters.  

While it is often difficult to calculate the individual higher-order indices, there are some 

methods for determining what is called the total-order sensitivity indices (TSI). For the 

model parameter  𝑋𝑋𝑗𝑗 the TSI is defined as the sum of all first- and higher-order sensitiv-

ity indices that contain the index 𝑗𝑗. It is a measure for the total influence of the parame-

ter on the model output, alone and via any interactions.  

The calculation of the variance-based sensitivity indices from a set of Monte-Carlo-runs 

is not a straightforward task, but a number of computational methods have been devel-

oped for this purpose. These methods yield more or less accurate approximations of 
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the first-, higher- or total-order sensitivity indices. Some methods need specific sam-

pling schemes. In the following, some methods are shortly described without going into 

the details. 

2.7.1 The Sobol’ method 

The method originally proposed by Sobol’ (/SOB 93/) and further developed by others 

(/SOB 01/, /SAL 02/) calculates the sensitivity indices using specific estimators. For this 

purpose, two independent samples of size 𝑛𝑛 are used as a starting point. A number of 

combined sample matrices are constructed, each by replacing a single column of the 

first sample sample with the respective column of the second one. The model has to be 

evaluated for each combination. Therefore, the number of necessary model runs in-

creases essentially with the number of parameters under consideration.  

The Sobol’ method is the most direct way to calculate the sensitivity indices of any or-

der as well as the TSIs. It can handle parameter correlations without problems. On the 

other hand, due to the high number of model runs, the method is very computationally 

expensive.  

2.7.2 (Extended) Fourier Amplitude Sensitivity Test (FAST/EFAST) 

FAST (/CUK 78/, /SAL 97, /SAL 98/) has been developed in order to allow the calcula-

tion of first-order sensitivity indices with essentially reduced computational effort. The 

general idea is the following: instead of using a randomly drawn or elsewise construct-

ed sample, the 𝑘𝑘-dimensional parameter space is scanned using periodical functions. 

The periodicity can be rediscovered in the model output, the more pronounced the 

higher the sensitivity is. If each input parameter is assigned an individual frequency, 

one can distinguish the influences by performing a Fourier analysis of the model out-

put. It can be shown that this procedure yields the sensitivity indices. Since the model 

is, in general, non-linear, each frequency has to be analysed together with a sufficient 

number of harmonics. Therefore, the frequencies have to be selected thoroughly to 

avoid overlap of main harmonics. The highest frequency that has to be considered de-

termines the minimal number of model runs to be executed, because the maximum 

frequency that can be identified in a discrete sample of 𝑛𝑛 values is (𝑛𝑛 − 1)/2 . 
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A variant of the standard FAST method is called Extended FAST (EFAST, /SAL 97/). 

This method works with only two different basic frequencies. The higher one is as-

signed to one selected parameter, the lower frequency is used for all other parameters. 

The Fourier analysis of the model output then yields two numbers: the first reflects the 

influence of the selected parameter alone and the second measures the common influ-

ence of all parameters except the selected one. The first number is an estimator for the 

SI1 of the selected parameter, and the second evaluates the common influence of all 

parameters different from the selected one. If subtracted from 1, this yields an estima-

tor for the TSI. By this procedure, SI1 and TSI are determined in one step, but only for 

one of the parameters. Therefore, each parameter is considered in an own investiga-

tion with a number of model runs that results from dividing the intended total sample 

size by the number of parameters. The EFAST sampling scheme takes account of this 

by automatically assigning the high frequency successively to each parameter for a 

number of runs. 

Principally, it would be possible to calculate second- or higher-order sensitivity indices 

with FAST. That would require a common frequency for all parameters whose interac-

tion is to be analysed.  

2.7.3 Random Balance Design (RBD) 

A disadvantage of FAST/EFAST is that the sampling yields a rather inhomogeneous 

coverage of the parameter space. To avoid this problem, and nevertheless use a Fou-

rier-based technique, the Random Balance Design (RBD) method has been invented  

based on the idea to use only one frequency, but to hide the periodicity for all variables 

except one by shuffling the runs appropriately (/TAR 06/). This is realised in the follow-

ing way: For an investigation with 𝑛𝑛 runs one starts with an empty sample matrix of 𝑘𝑘 

lines and 𝑛𝑛 columns. A random permutation 𝜋𝜋1of the lines is applied; then the values of 

the variable 𝑥𝑥1 are calculated according to a periodic scheme and inserted in the first 

column. If the permutation is reversed, the values look randomly distributed. In the next 

step the second column is filled with values for the variable 𝑥𝑥2 in the same way, using a 

different permutation 𝜋𝜋2 and so forth. The same frequency (normally 1) is used for all 

variables. As a result one gets a sample that covers the parameter space satisfyingly 

and does not show visual periodicity. Nevertheless, if any of the permutations 𝜋𝜋1 …𝜋𝜋𝑘𝑘 

is applied to the model output, the periodicity of the respective input parameter will 

show up the more distinct the higher the model sensitivity is. All other variables, how-
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ever, remain shuffled and therefore have only a random influence to the model output. 

The first-order sensitivity index can be computed via Discrete Fourier Transformation 

(DFT).  

RBD calculates all first-order indices from one set of model runs. Higher- or total-order 

indices, however, cannot be calculated. Although the sample is generally more homo-

geneous than a FAST/EFAST sample, a specific sampling is still needed. 

2.7.4 Effective Algorithm for computing global Sensitivity Indices (EASI) 

The idea of EASI (/PLI 10/) is basically the same as that applied in RBD, but with an 

essential difference. While RBD uses random permutations to generate the sample 

from periodical data, EASI goes the opposite way. It uses a randomly or otherwise 

drawn sample and determines the needed permutations such that a periodicity occurs 

in the values of one variable in each case. These permutations, successively applied to 

the model output, bring about the same periodicity, so that it can be analysed by DFT. 

There is a small noise superposed to the pure periodicity, but as long as the frequency 

spectrum of this noise is randomly distributed, it has a negligible influence to the Fouri-

er analysis.   

Like RBD, EASI calculates the first-order sensitivity indices. The essential advantage, 

however, is that nearly any sample can be used, for instance a random sample, a strat-

ified sample or a quasi-Monte-Carlo sample. It should only be kept in mind that a sys-

tematic coupling of parameters can distort the Fourier evaluation by inducing unwanted 

periodicity. This freedom in sampling strategy is a specific feature of EASI in compari-

son with all other variance-based techniques mentioned so far. It allows not only for se-

lecting an optimal sampling strategy but also for re-using existing model runs as a part 

of an investigation with a higher number of runs. 

2.7.5 Metamodelling and State-Dependent Parameter method (SDP) 

The approach shortly described in this section is based on the idea of metamodelling. 

This means that the original computational model, which calculates a variety of effects 

and solves differential equations, is replaced by a simple, computationally cheap meta-

model that simulates the behaviour of the original model as well as possible. The sensi-

tivities are then calculated from the metamodel. The SDP approach is an integrated 
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technique, which generates and mathematically analyses the metamodel in one step 

(/RAT 07/).  

While the approaches described so far make direct use of the variance decomposition 

according to eq. (2.21), the SDP method estimates the first-order components 𝑓𝑓𝑗𝑗�𝑋𝑋𝑗𝑗� of 

the HDMR (eq. (2.19)) using recursive filtering and Fixed Interval Smoothing (FIS) al-

gorithms to fit SDP models to the input-output mapping. It is assumed that the effects 

of all terms of order higher than 1 can be estimated by a Gaussian white noise with 

mean 0. Then the variances of the functions 𝑓𝑓𝑗𝑗 are calculated to estimate the main ef-

fects.  

The SDP approach is established upon comparing the HDMR representation with a 

State-Dependent Regression (SDR) approach. The ‘time dependency’ of the SDR 

model represents the sequence of the Monte Carlo simulations of the computational 

model. For the estimation of the SDP it is essential to map the variability of these pa-

rameters in some stochastic way: it is assumed that the evolution of each SDP can be 

described by one type of a Generalized Random Walk (GRW) process on non-

stationary random sequences, for example with the integrated random walk (IRW) pro-

cess. It was observed that this process generates good results as it enforces the 

smooth properties of a cubic spline upon the estimated SDP relationship. If the IRW 

process is used, the SDPs can be approximated. The first-order sensitivity indices can 

then be estimated from the different smoothed estimates of the HDMR terms.  

In contrast to many classical variance-based methods, the SDP method can be applied 

using any sample. 

2.8 Non-parametric methods 

In contrast to parametric statistics, non-parametric statistics do not make use of para-

metrised probability distributions. The parameters of non-parametric statistical models 

are not defined a priori and fitted to the data, but derived from the data directly.  

Some methods of sensitivity analysis are based on non-parametric approaches.  
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2.8.1 Two-sample tests 

Two-sample tests compare the parameter distributions of two independent samples. 

The null hypothesis is that both belong to the same population, i.e. they are equally dis-

tributed. The null hypothesis is tested against the alternative hypothesis that the distri-

butions of both samples differ significantly.  

In order to assess the sensitivity of a model to its input parameters, one can separate 

the total sample of parameters and model output values in two sub-samples according 

to the output value. For instance, the 90 %-quantile of the output distribution can be 

used as the sample separation criterion, which means that those 10 percent of the 

model runs that produce the highest output values are taken as one sample and the 

remaining 90 percent as the second sample. The distributions of the corresponding 

values of one specific input parameter are then compared using some statistical test. If 

a significant difference between these distributions is found, it is obvious that the model 

is sensitive to the parameter under investigation.  

In the case of the Smirnov test (SMIR) the null hypothesis of equal distributions of both 

samples is rejected if the maximum difference of the empirical distributions exceeds a 

certain quantile of a test distribution. Other statistical tests that can be used are, e.g., 

the Mann-Whitney-U-test or the Cramér-von Mises test. Although such a test yields, 

strictly speaking, a yes/no answer, in practice there is some quantitative result, which 

allows a ranking of the parameters. Such rankings, however, can considerably differ 

from those calculated with other SA methods and it should be kept in mind how they 

have been established. 
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3 Description of the test systems 

The purpose of the project described in this report was to investigate different methods 

of sensitivity analysis applied to typical final repository system models with a variety of 

inherent parameter uncertainties. According to experiences with numerical long-term 

safety assessment, such models can exhibit a number of specific properties that may 

cause problems in the context of sensitivity analysis. In order to encompass a wide va-

riety of such particularities, three different model systems were used. Two of these sys-

tems are fully generic, but based on experiences with realistic systems or concepts. 

The third system is based on an obsolete concept for disposal of SF and HLW in rock 

salt. In the following, the main features and numerical properties of the test systems 

are described. 

3.1 Repository for Spent Fuel and HLW in clay 

This model system describes a generic repository in a Northern German clay for-

mation. It is based on considerations made in the context of the project GENESIS 

(/JOB 07/) and was already investigated in the project TONI (/RUE 07/). The repository 

is assumed to be located in the middle of the Apt layer in the Lower Cretaceous Clay in 

Lower Saxony, see Fig. 3.1.  

The model comprises the near field with the waste containers, three clay layers (ben-

tonite buffer, Apt and Alb) and the biosphere. The radionuclide mobilisation and the 

(purely diffusive) transport through the clay layers was calculated with the near field 

code CLAYPOS (version 3.01), the far field with the code module CHETLIN (version 

4.1) and for the biosphere the code module EXMAS (version 2.1) was used.  

Six parameters were selected for investigation. These are listed in Tab. 3.1. 
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Tab. 3.1 Parameters of the clay system model 

Parameter Type of pdf  Range 

DiffClay2: 
Diffusion constant clay formation 1 Log-uniform 8.3E-12 - 8.3E-10 

DiffClay3: 
Diffusion constant clay formation 2                   Log-uniform 8.3E-12 - 8.3E-10 

KdBent: 
Kd value bentonite (U)  Log-uniform 4 - 400 

KdClay2: 
Kd value clay formation 1 (U) Log-uniform 2 - 200 

KdClay3: 
Kd value clay formation 2 (U) Log-uniform 2 - 200 

PorClay: 
Porosity clay formation 2 Uniform 0.06 - 0.24 

 

 

Fig. 3.1 Cross-section of the model area in Northern Germany 

3.2 Repository for LILW in rock salt 

The second model, which was used for most of the investigations, represents a reposi-

tory for Low- and Intermediate-Level Waste (LILW) installed in an abandoned former 

salt production mine. This model is generic, but was motivated by a model developed 

for a real German site of that type. A salt mine that has not been specifically designed 

and built for waste disposal is typically subject to various unfavourable effects, and 
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measures have to be taken to avoid or mitigate unwanted processes. Therefore, the 

model describing such a system can become rather complex and exhibit a highly non-

linear or even non-continuous behaviour that is hard to predict.  

The LILW model was established as a test model for sensitivity analysis reflecting all 

relevant properties of the model for the real site and leaving aside only such details that 

are irrelevant for the numerical particularities. In Fig. 3.2 a scheme of the model struc-

ture is presented. The near field part consists of sub-models for two emplacement 

chambers, one of which is sealed from the rest of the mine, a mixing region and a large 

area of mine openings without waste. The model exit, located in the mixing region, is 

coupled to a far field model, which calculates the contaminant transport through a 

pathway in the cap rock and the aquifer, and finally to a biosphere code determining 

the radiation exposure of man in the form of the annual effective dose to an adult hu-

man individual.  

In reality, there would be a slow intrusion of brine to the mine building, causing a grad-

ually increasing rise of the fluid level and a time-dependent dissolution of contaminants. 

For simplicity reasons, however, it is assumed that the non-sealed part of the mine is 

filled up with brine instantaneously at some specific point in time. From then on, the 

brine seeps slowly into the sealed emplacement area AEB. 

 

Fig. 3.2 Schematic view of the components of the LILW system 

The most peculiar feature of the model is the seal between AEB and MB. It represents 

a sealing construction made of salt concrete, which is subject to chemical dissolution 

(corrosion) by magnesium-containing brine. As the corrosion front is assumed to pro-

ceed slowly through the material, the seal loses its isolation capability nearly suddenly 

at some point in time, resulting in an essential change of the model behaviour and usu-
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ally a considerable increase of the radiation exposure. The time of seal failure depends 

on a number of parameters, so that, analysed at a specific point in time, the model be-

haves nearly non-continuous with respect to some of these parameters. 

The model was set up to be calculated with the RepoTREND package (/REI 16a/, 

/REI 17/), using the modules LOPOS, GeoTREND-SP and BioTREND. 

The LILW model depends on a number of parameters, 20 of which were selected for 

statistical variation. These are defined in Tab. 3.2. Most investigations, however, were 

conducted with subsets of 11, 7 or 6 parameters while the others were fixed to their 

standard value. In order to distinguish between these cases, the model is addressed as 

LILW20, LILW11, LILW7 or LILW6 in this report. 

Tab. 3.2 Parameters of the LILW system model. The colours indicate the subsets of 

parameters that were used for the different investigations (LILW6 = red, 

LILW7 = red + green, LILW11 = red + green + blue, LILW20 = all) 

Parameter Type of pdf Range or  
pdf parameters 

Standard 
value 

GasEntryP: 
Gas entry pressure  Uniform 0 - 2.5 2.0 

IniPermSeal: 
Initial permeability of dissolving seal  Log-normal μ=41.0605 

σ=1.9809 1.0·10-18 

RefConv: 
Reference convergence rate Log-uniform 1.0·10-5 - 1.0·10-4 4.0·10-5 

AEBConv: 
Factor of local convergence variation in AEB Log-uniform 0.05 - 5.0 1.0 

GasCorrPE: 
Organics corrosion rate  Log-normal μ=12.6642 

σ=1.1177 1.0·10-5 

TBrine: 
Time of brine intrusion  Log-normal μ=8.8857 

σ=0.6933 7500 

BrineMgSat: 
Relative magnesium saturation of brine  Triangular 0 - 0.1 - 1.0 0.1 

RGConv: 
Factor of local convergence variation in RG  Log-uniform 0.25 - 2.5 1.0 

GasCorrFe: 
Metal corrosion rate  Log-normal μ=-6.6728 

σ=1.1177 4.0·10-3 

AEBGasProd: 
Proportion of the material involved in gas 
production in AEB  

Triangular 0.1 - 0.8 - 1.0 0.8 

NABGasProd: 
Proportion of the material involved in gas 
production in NAB  

Triangular 0.1 - 0.8 - 1.0 0.8 

RGGasProd: 
Proportion of the material involved in gas Triangular 0.1 - 0.8 - 1.0 0.8 
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production in RG 
NABConv: 
Factor of local convergence variation in NAB Log-uniform 0.05 - 5.0 0.2 

MBConv: 
Factor of local convergence variation in MB Log-uniform 0.075 - 0.75 0.2 

DiffCoeff: 
Diffusion coefficient Log-uniform 1.0·10-10 - 1.0·10-8 1.0·10-9 

RefPor: 
Reference porosity Triangular 0.15 - 0.3 - 0.4 0.3 

FacDisp: 
Longitudinal dispersion length Triangular 0.5 - 1.0 - 2.0 0 

ConvFak: 
Variation factor for sheeting Uniform 0 - 2.0 1.0 

PorDebris: 
Porosity of debris from sheeting Uniform 0.25 - 0.5 0.4 

C14Inv: 
Variation factor for C-14 inventory Uniform 0 - 2.5 1.0 

3.3 Repository for Spent Fuel and HLW in rock salt (SAM-GBS) 

As test model for a repository for spent fuel and high-level waste an old concept was 

chosen, which had been designed for the emplacement of waste containers in bore-

holes and drifts in a common emplacement area. It was used in the SAM project 

(/BUH 91/) and was already then evaluated statistically with variation of 31 parameters. 

These are listed in Tab. 3.3. In 2004, the model was used for a first comparison of sen-

sitivity analysis techniques within the project ARTE (/BUH 04/). For this purpose, a new 

set of model runs was executed using a random sample of size 3000 and applying the 

EMOS modules REPOS (version 6.04), CHETLIN (version 3.01) and EXCON (version 

2.02) (/STO 96/). This existing set of model results was also used for some new inves-

tigations in the context of MOSEL. 

The prominent property of the SAM-GBS model is the high probability of zero output. If 

the waste-containing parts of the mine are separated from the rest due to convergence 

before brine can get in contact with the wastes, no contaminants are mobilised and a 

zero release is calculated. This situation, which is beneficiary for repository safety but 

causes problems with sensitivity analysis, is typical for repositories for heat-generating 

waste in rock salt. The SAM-GBS model produced about 85 % zero output runs.  
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Tab. 3.3 Parameters of the SAM-GBS system model 

Parameter Type of pdf Range or 
pdf parameters Unit 

TBrine 
Time of brine intrusion Log-normal μ=45 

σ=1.24 a 

VIncl 
Volume of brine inclusion Log-Hist. 11 - 1000 m3 

TLifeLWR 
Container lifetime LWR-BE Log-normal μ=500 

σ=0,28 a 

FConvHAW 
Factor convergence reduction (HAW) Log-uniform 0,001 - 0,1 - 

FConMAW 
Factor convergence reduction (MAW) Log-uniform 0,1 - 1 - 

KRef 
Reference convergence rate Log-normal μ=1·10-2 

σ=0,92 1/a 

EActSalt 
Activation energy (salt) Uniform 5800 - 7200 1/K 

ExpPP 
Exponent in perm.-por.-relation Log-normal μ=4,5 

σ=0,13 - 

PermSeal 
Seal permeability Log-normal μ=7·10-16 

σ=0,78 m2 

FPerm 
Permeability increase during inflow Log-uniform 1 - 100 - 

FBrineGas 
Factor brine transport / gas transport Log-uniform 120 - 1,2·105 - 

FBrineConc 
Factor brine transp. / conc. difference Log-uniform 2,56·109 - 

2,56·1011 - 

FBrineTemp 
Factor brine transp. / temp. difference Log-uniform 9,59·108 - 

9,59·1010 - 

CDiff 
Diffusion coefficient Log-normal μ=6,7·10-8 

σ=1,35 m2/s 

ConcMg 
Magnesium concentration in brine Uniform 0 - 88 kg/m3 

RmCem 
Mobilisation rate cemented containers Log-normal μ=1·10-2 

σ=0,36 1/a 

Rm1LWR 
Mobilisation rate 1 LWR-BE Log-normal μ=1·10-1 

σ=0,92 1/a 

Rm2LWR 
Mobilisation rate 2 LWR-BE Log-normal μ=1,6·10-3 

σ=0,92 1/a 

RmRkHTR 
Mobilisation rate RK from HTR-BE Log-uniform 4·10-4 - 0,01 1/a 

RmRpHTR 
Mobilisation rate RP from HTR-BE Log-normal μ=2·10-3 

σ=0,55 1/a 

CLGlass 
Mobilisation: elution coefficient glass Log-normal μ=3,6·10-1 

σ=0,85 kg/m2/a 

EActGlass 
Mobilisation: activation energy glass Log-normal μ=75  

σ=0,50 kJ/mol 
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LimSolAcid 
Solubility limits acidic (Sr) Log-uniform 1·10-6 - 1 mol/l 

LimSolNeutr 
Solubility limits neutral (Sr) Log-uniform 1·10-6 - 1 mol/l 

LimSolAlk 
Solubility limits alkaline (Sr) Log-uniform 1·10-6 - 1·10-4 mol/l 

LimSolUnk 
Solubility limits unknown (Sr) Log-uniform 1·10-6 - 1 mol/l 

KdCemSr 
Kd-values cement (Sr) Log-uniform 0,04 - 4 m3/kg 

KdCemZr 
Kd-values cement (Zr) Log-uniform 100 - 10000 m3/kg 

KdGeo 
Kd-values geosphere Log-uniform 5·10-4 - 5·10-2 m3/kg 

FDisp 
Variation factor for long. dispersion Log-normal μ=1  

σ=0,916 - 

FDil 
Dilution by flow rate Log-uniform 0,41 - 2,44 - 
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4 Graphical sensitivity analysis 

This chapter is dedicated to presenting and interpreting results achieved with graphical 

methods of sensitivity analysis applied to the test systems. The methods themselves 

have been introduced in chapter 2.5.  

4.1 Scatterplots 

Scatterplots of the model output versus the value of one of the model parameters are 

easily made from the results of a probabilistic calculation and provide a direct view of 

the influence of a parameter to the model output, even with low sample sizes. There-

fore, such plots are predestined as a starting point for sensitivity analysis. For a time-

dependent model, scatterplots can either be made for a specific point in time or for the 

run maxima.  

4.1.1 Scatterplots for the clay system 

The scatterplots for the six parameters of the clay system are presented in Fig. 4.1 for 

a model time of 106 years on the basis of 512 runs (random sample). Even with this 

small sample size it can be seen that the model output, the annual dose rate in 

Sv/year, is distributed over many orders of magnitude and obviously, only two of the 

parameters – the diffusion constants in the two clay regions – have a clear influence. 
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Fig. 4.1 Scatterplots for the clay system, 106 years 

The equivalent scatterplots for the system at the end of the calculated scenario are 

presented in Fig. 4.2. The points concentrate below the value of 3·10-6 Sv/yr, which 

seems to be an upper limit. All parameters seem to have a certain influence to the 

model output. Since in most model runs the absolute maximum is reached at the end of 

the scenario, there are only minor differences between the scatterplots presented in 

Fig. 4.2 and those obtained for the run maxima. By this reason, the latter are not shown 

here.  

 

Fig. 4.2 Scatterplots for the clay system, 108 years 
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The scatterplots seem to suggest that during the relevant assessment period of 1 mil-

lion years the system is predominantly controlled by the diffusion in the clay regions, 

while the sorption and the clay porosity gain some importance only in the very late 

phase, in which the model is no longer valid for describing the reality and which is in-

teresting only for model understanding. This, however, might be a misinterpretation, as 

simple scatterplots are not appropriate for showing coupled influences of parameters. 

Since the individual dots look all the same and indicate the value of only one parame-

ter, it is not discernible whether or not there is a tendency to produce higher or lower 

model output if two or more parameters act together.  

4.1.2 Scatterplots for the LILW system 

The LILW model is more complex than the clay model and yields scatterplots that dis-

tinctly evolve with time. In Fig. 4.3 to Fig. 4.6 this is shown for four influential parame-

ters. The plots are based on 1000 runs, calculated with the LILW6 model. A clear split 

in two separate clouds of dots starts to become visible around 10 000 years, which is 

due to the failure of the seal. Those runs in which the seal has already failed at the 

presented time yield a higher output than those in which it has not. Obviously, the pa-

rameter IniPermSeal (the initial permeability of the seal) has a dominant influence on 

this behaviour. 

 

Fig. 4.3 Time-development of the scatterplot for the parameter IniPermSeal (LILW6 

model) 
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Fig. 4.4 Time-development of the scatterplot for the parameter AEBConv (LILW6 

model) 

 

Fig. 4.5 Time-development of the scatterplot for the parameter GasEntryP (LILW6 

model) 
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Fig. 4.6 Time-development of the scatterplot for the parameter TBrine (LILW6 

model) 

With permeabilities higher than 10-18 m² the seal fails relatively early and the number of 

runs in which it has not yet failed decreases with time. After 1 million years, there are 

still a few cases in which the seal remains intact, but as the annual dose generally de-

creases with time, these cannot be seen on the selected scale.   

The parameter AEBConv obviously has no significant influence on the model results as 

long as the seal is intact, but causes a further increase after seal failure. This is under-

standable because the parameter characterises the convergence of the sealed em-

placement area, which becomes, of course, relevant only after seal failure. Also the pa-

rameter GasEntryP does only affect the upper cloud of dots. The parameter defines the 

gas pressure necessary for the gas to displace liquids from the pore space in the mine 

sealings and to allow the gas to escape. Due to specific model properties, the behav-

iour changes significantly at a value of 1.0, resulting in a higher release from the sealed 

emplacement area AEB. This can be seen in the scatterplots, especially those for me-

dium times, from a kind of step at that value. The parameter TBrine is the time at which 

the mine is assumed to be suddenly filled with brine. The model output is zero before 

this time. While the parameter has a visible positive effect (higher parameter value – 

higher model output) on the lower cloud of points, which means before seal failure, 

there is nearly no effect on the upper cloud of points. As the model assumes that all ra-

dionuclides dissolve completely and instantaneously as soon as they get in contact 

with brine, due to the ongoing convergence a later brine intrusion leads to a higher 
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concentration in the non-sealed emplacement area and with that to a slightly higher 

outflow of radionuclides. Obviously, this effect is not relevant for the sealed emplace-

ment area.   

4.2 CSM, CUSUNORO and CSV plots 

CSM plots provide a quick graphical view of the sensitivities. This is demonstrated in 

the following by examples of the clay and the LILW system.  

4.2.1 CSM plots for the clay system 

In Fig. 4.7 CSM plots for the clay system are presented for several points in time, 

based on a random sample of 4096 runs. It does not make sense to present the plots 

for earlier times than 400 000 years, because at such times only very few parameter 

combinations produce a non-zero output at all. Even after model times of several mil-

lions of years there are still a lot of zero or very low results, which is the reason for the 

uneven, step-like shape of the curves. The contribution to the sample mean is domi-

nated by a few higher values, which are, in general, caused by parameters different 

from the presented one. This results in randomly distributed jumps in the CSM curves. 

Only for very late times of 10 million years or more, the curves look satisfyingly smooth.  
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Fig. 4.7 CSM plots of the clay system 

To understand the message of the plots, we first look at the lowest presented time of 

400 000 years. The CSM curves for the parameters KdBent, KdClay2, KdClay3 and 

PorClay show randomly distributed steps as explained above and progress horizontally 

in between. That means that most runs produce zero or very low model output, and the 

few ones that do not appear with no obvious relation to the parameter value. The mod-

el behaviour must therefore be dominated by other influences. These CSM curves are 

too uneven to be of relevance. The curves for DiffClay2 and DiffClay3, however, re-

main on the zero level for the lower 80 or 90 % of the respective parameter values and 

the runs that really contribute to the mean, producing the steps, are concentrated at the 

upper end of the parameter intervals, which is a strong indication for significant sensi-

tivity of the model to these parameters.  

For later times, increasingly more runs produce non-zero output, so that the steps be-

come smaller and the curves appear smoother. Beginning from about 1 million years, 

there is a clearly visible deviation from the diagonal even for the CSM curves for 

KdBent, KdClay2, KdClay3 and PorClay. For the Kd-values the higher contributions to 

the mean concentrate at the lower end of the interval, which means that low Kd-values 

tend to produce higher dose rates. For the clay porosity, however, the CSM curve pro-

ceeds below the diagonal, meaning that higher porosities lead to higher dose rates. 
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4.2.2 CSM plots for the LILW system 

The time evolution of the CSM plots for the LILW6 system is presented in Fig. 4.8 on 

the basis of an investigation with 3000 runs and a random sample. Again, at early 

times the model output is often 0, so that the respective curves look uneven and 

stepped. For the earliest time of 3300 years, there is, understandably, a clear influence 

of the parameter TBrine. Only the lower 10 % of the values can lead to a non-zero out-

put at all. The sensitivity to TBrine is still high at 10 000 years, but the importance of 

this parameter decreases quickly. Since a non-zero output is only possible if TBrine is 

smaller than the point in time under consideration, the CSM curve of TBrine visibly re-

flects the percentage of such calculation cases as the point where it reaches the value 

of 1: after 3300 years it is about 10 %, after 10 000 years 66 % and after 33 000 years 

95 %. For the later times, there are no zero outputs.  

The CSM curve for IniPermSeal seems to start only at a certain percentage, which is 

40 % for 33 000 years, 20 % for 100 000 years, 10 % for 330 000 years and 5 % for 1 

million years. This means that the lowest values of this parameter systematically yield 

very low model output, which is due to the fact that the seal has not failed by the re-

spective time. IniPermSeal seems to have a strong influence on the failure of the seal, 

which is understandable, because it characterises the initial permeability of the seal 

and the flow of corrosive fluid.  

 

Fig. 4.8 CSM plots for the LILW6 system 
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The CSM curve for GasEntryP has a sharp bend at a proportion of 40 %, which is a 

hint that something remarkable happens if its value exceeds the 0.4-quantile. This cor-

responds with the value of 1.0, which is indeed the threshold at which the system be-

haviour changes as explained in the previous chapter.   

Fig. 4.9 shows CSM plots for the LILW11 system. Here only one parameter is present-

ed per plot, but the time-development is indicated by colours. The plots have been 

made on the basis of an investigation with 16 384 runs and a quasirandom sample. 

Due to the different number of varied parameters the curves are not fully comparable to 

those of Fig. 4.8, but this is of minor importance. As a result of the high number of runs, 

the curves look much smoother.  

 

Fig. 4.9 Time-development of CSM curves for the LILW11 system 

This kind of presentation is appropriate for showing how the sensitivity of the system to 

a parameter evolves over time. It can be seen, for example, that the sensitivity to 

TBrine is high in the early phase but decreases quickly. The CSM curves for the pa-

rameters GasEntryP, GasCorrPE and AEBConv proceed below the diagonal for early 

times and above the diagonal for late times. They change their main curvature from 

concave to convex during the model time. This means that these parameters change 

their direction of influence to the model output: all of them have a positive influence (in-

creasing parameter value – increasing dose rate) in the early phase but a negative in-

fluence (decreasing parameter value – increasing dose rate) at late times. The late 

CSM curves for AEBConv even have an inflection point, which means that in its low 
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range, the parameter has a positive influence but in its high range a negative influence. 

The CSM curves of the parameter GasEntryP show no curvature at all, except from the 

sharp bend at the 0.4-quantile, corresponding to the value of 1.0 Mpa. That means that 

there is practically no continuous sensitivity of the model to this parameter, neither be-

low nor above the threshold value. While for early times, a gas entry pressure above 

the threshold leads to a higher dose rate than a value below the threshold, the opposite 

is the case for late times. This is due to the fact that with a high gas entry pressure the 

inventory of the sealed emplacement area AEB is released faster, so that it is widely 

depleted in the late phase. 

4.2.3 CSM versus CUSUNORO 

The CSM plot is easy to make and to understand, but has a few drawbacks: 

- The curves are oriented around the diagonal, which makes it a bit hard to rec-

ognise deviations. 

- Due to the non-rectangular projection to the x-axis conspicuous features are 

hard to assign to a specific quantile. 

- Magnification by confining the range of y-values in order to better present curve 

details is not possible. 

- Since the calculation is related to the mean of all values and not to their varia-

tion, a common additive offset changes the shape of the CSM curves. The 

higher the absolute value of the mean, the less pronounced appear the curves. 

If, for instance, the model output were a temperature, the shape of the CSM 

curves would depend on the measuring unit, and if Kelvin were used, deviations 

from the diagonal would possibly be barely visible.  

- Should the mean of the values be zero, CSM plots cannot be made. 

To overcome all of these drawbacks, the CUSUNORO plot has been proposed by 

Plischke (/PLI 12/). For this kind of presentation the values are normalised to the 

standard deviation instead of the mean. The curves proceed around the x-axis, starting 

at (0,0) and ending at (1,0).  

In Fig. 4.10 CUSUNORO plots are presented for the same model calculation and in the 

same way as the CSM plots in Fig. 4.9. While the principle statement is similar, there 

are some differences. The dominance of the parameter TBrine in the early phase ap-
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pears less pronounced in the CUSUNORO plot. Moreover, the quantile at which the the 

influence of TBrine stops cannot be seen as clearly as in the CSM plot. On the other 

hand, a slight positive curvature of the very late curves is discernible, and could be op-

tically magnified by using a different y-scale, which is nearly invisible in the CSM plot. 

The CUSUNORO curves for AEBConv show even more clearly than the CSM curves 

that for late times this parameter changes its direction of influence over its interval. 

While the curvature is positive for low values, it becomes negative for high values. 

Physically, this means that if the convergence rate of the sealed emplacement area is 

low, a slight increase will cause a higher dose rate at late times, but if it is high, a fur-

ther increase will reduce the dose rate. 

 

Fig. 4.10 Time-development of CUSUNORO curves for the LILW11 system  

Generally, CUSUNORO plots seem less appropriate for this kind of presentation as the 

curves for increasing points in time are more likely to intersect and cover each other. 

4.2.4 CSV plots 

Following the principle of the CSM plot, but plotting the contribution to the total sample 

variance instead of the sample mean, one gets a similar kind of plots. Due to the quad-

ratic nature of the variance, CSV curves are generally more pronounced but less 

smooth and robust than CSM curves. For an output distribution over several orders of 

magnitude with many low and a few higher values, as it is typical for a repository mod-
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el, the variance is often dominated by a relatively low number of individual values. If 

these dominating values are distributed more or less randomly, the CSV curve looks 

uneven. In Fig. 4.11 the time-development of the CSV curves for the LILW11 model is 

presented in the same way as for CSM in Fig. 4.9, and despite the high number of 

model evaluations (16384) many of the curves, especially those for early points in time, 

which are based on data sets with many zeros, show distinct jumps. 

Due to this property, amongst other things, CSV seems less appropriate for a quick 

visual assessment of the sensitivities of the system, especially with a low number of 

model runs. An advantage, however, is that in contrast to CSM, the CSV curves are in-

variant to a constant offset and can be made also for negative model output or zero 

mean. Only a zero total variance would be forbidden, but this would mean a strictly 

constant model output, which is anyway of no interest for sensitivity analysis.  

 

Fig. 4.11 Time-development of CSV curves for the LILW11 system  

4.3 Summary 

A variety of graphical methods for sensitivity analysis are available for providing a quick 

and descriptive visual impression of the sensitivities of a model. Scatterplots, CSM, 

CSV and CUSUNORO plots were applied to the test systems. 

Scatterplots are the most direct method of investigating the influence of a parameter to 

the model output. They provide the most detailed impression of the parameter influ-
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ence and allow visual assessment of the sensitivity. Therefore, scatterplots are most 

valuable for gaining system understanding and screening the variables in view of fur-

ther sensitivity analysis. A drawback is that a big number of plots are needed, as each 

individual plot represents one specific parameter and one specific evaluation point. 

Combining several scatterplots for demonstrating the time development or comparing 

different parameters is possible by using different colours, but will normally lead to con-

fusing and unclear figures. 

CSM plots provide an illustrative visualisation of parameter sensitivities and are easy to 

understand and communicate. As for each parameter and each evaluation point a con-

tinuous curve is produced, several of them can be clearly presented in one figure. So 

these plots are much better than scatterplots for comparing different parameters or dif-

ferent points in time. A drawback of CSM is that the curves are not invariant to an addi-

tive shift in the model output, and cannot be made at all if the mean happens to be 0. 

Moreover, as the scale is fixed, curve details cannot be magnified. 

CSV plots supply a similar – though different – message as CSM, but are generally 

harder to understand. The curves are often more pronounced and less smooth. Unlike 

CSM, CSV plots are invariant to additive shift and can be made for any non-constant 

set of model output values, regardless of its mean. 

CUSUNORO plots provide basically the same information as CSM plots, avoiding the 

mentioned disadvantages. These plots are not only invariant to additive shift, but use a 

scalable, rectangular presentation, which allows detail studies. A drawback is that they 

are harder to explain and understand. 

CSM, CSV and CUSUNORO plots are the only methods investigated in the project that 

allow identification of sections of the parameter range with higher or lower sensitivity. 

An inflection point is a sign for a change of the direction of influence at some specific 

parameter value. 
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5 Correlation- and regression-based sensitivity analysis 

Since correlation- and/or regression-based methods have been the most common ap-

proach to sensitivity analysis for a long time, intensive investigations with such meth-

ods were made using the clay model and the LILW model in order to provide a starting 

point for comparison with other methods. In this chapter the results are presented and 

explained.  

5.1 Comparison of correlation and regression 

The first question to answer is how the correlation-based sensitivity measures differ 

from the regression-based ones. These are compared in Fig. 5.1 and Fig. 5.2 for the 

clay model and the LILW6 model. The figures show the time curves for the mentioned 

sensitivity measures calculated for both systems model runs, based on random sam-

ples of sizes 4096 (clay) and 3000 (LILW6). All examples show that the difference be-

tween the correlation-based and the regression-based analysis is small for all times, no 

matter if the direct or rank-based evaluation is performed. This may be a bit surprising, 

because correlation and regression are different mathematical concepts, and by theory, 

a strong correlation between input and output of a model one does not necessarily 

mean a high regression coefficient, and vice versa. Obviously, however, this difference 

is of low significance for practical sensitivity analysis. By this reason, we confine our-

selves to considering the regression-based types of sensitivity analysis in the following. 

 

Fig. 5.1 Regression- and correlation-based sensitivity analysis with direct (left) and 

rank-transformed (right) data for the clay model 
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Fig. 5.2 Regression- and correlation-based sensitivity analysis with direct (left) and 

rank-transformed (right) data for the LILW6 model 

5.2 The principle message 

The time curves of SRC or SRRC provide information on how the sensitivity of the sys-

tem under consideration to the individual parameters evolves with time. In contrast to 

the graphical methods described in the previous chapter, however, this method cannot 

resolve the variation ranges of the parameters. Only one value per parameter is calcu-

lated for each point in time, which can only be representative if the model answer to 

variation of the parameter is more or less homogeneous over the total range of varia-

tion, i.e. the model behaviour is close to linear. Consequently, a low SRC or SRRC val-

ue does not necessarily mean a low sensitivity.  

As an example, we consider the SRC and SRRC curves for AEBConv (Fig. 5.2). The 

values become very small and finally negative at late times. By comparing this to the 

CUSUNORO curves for this parameter (Fig. 4.10), one can see that the reason is not a 

vanishing sensitivity but the fact that the direction of influence changes over the range 

of parameter values. The late CUSUNORO lines are distinctly curved, indicating a high 

sensitivity, but they change their curvature from positive to negative, which means a 

non-monotonic behaviour. For SRC the positive and negative contributions compen-

sate each other, resulting in a near-zero value. For the latest times, the negative con-

tribution even predominates, which can also be verified with the CUSUNORO plot. This 

kind of information cannot be derived from the SRC or SRRC curves, which seem to 

indicate a low sensitivity at late times. Also the curves for GasEntryP and GasCorrPE 

Time in years

Se
ns

iti
vi

ty
co

ef
fic

ie
nt

103 104 105 106

-0.4

-0.2

0

0.2

0.4
r2

GasEntryP
IniPermSeal
RefConv
AEBConv
GasCorrPE
TBrine

P:\a401\projekte\mosel\entwuerfe\finalreport\figures\SRC-PEA_LILW3000_6.lay

Solid = SRC
Dashed = PEAR

Time in years

Se
ns

iti
vi

ty
co

ef
fic

ie
nt

103 104 105 106
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

r2

GasEntryP
IniPermSeal
RefConv
AEBConv
GasCorrPE
TBrine

P:\a401\projekte\mosel\entwuerfe\finalreport\figures\SRRC-SPEA_LILW3000_6.lay

Solid = SRRC
Dashed = SPEA



 

61 

cross the zero line at some time, but in these cases, that really means that there is no 

sensitivity at some point in time, which can be seen at the CSM or CUSUNORO plots. 

5.3 Direct evaluation of the model output (SRC) 

The coefficient of model determination R² provides a measure for assessing how well 

the model is determined by linear regression. While a value of 1 would mean a strong 

multilinear relationship, zero indicates that linear regression does not at all approximate 

the model. It is often recommended as a rule of thumb that for regression-based sensi-

tivity analysis to work properly R² should be greater than 0.5. In Fig. 5.1 and Fig. 5.2 the 

time-development of R² is presented as a light-grey, long-dashed curve. It can be seen 

that for both model systems, if the direct SRC evaluation is applied, it remains below 

0.5 for most of the model time and is even below 0.2 for parts of the time interval. Nev-

ertheless, the SRC evaluation seems to identify at least the main sensitivities correctly. 

5.3.1 The clay system 

The left part of Fig. 5.1 shows that R² is low during the “realistic” time period and rises 

above 0.2 only after 7 million years. Nevertheless, some sensitivity statements can be 

derived from the SRC evaluation. In agreement with the graphical sensitivity analysis 

presented in chapter 4, the parameters DiffClay3 and DiffClay2 are identified as the 

most and second most influential ones over the total range of time. The SRC values of 

the other parameters are very close to zero during the first million years of model time 

and only then start to assume significant nonzero values. It becomes clear that the pa-

rameters DiffClay3, DiffClay2 and PorClay have a positive influence while KdBent, 

KdClay3 and KdClay2 have a negative one, as expected: higher Kd means higher 

sorption and with it less release of contaminants. All calculated sensitivities become 

more pronounced with time and also R² rises. This is due to the fact that for most pa-

rameter combinations a significant contaminant release starts only at a late time.   

5.3.2 The LILW system 

The complex character of the LILW system is reflected in the SRC curves, which look 

rather uneven and over a wide range of time do not seem to allow proper assessing of 

sensitivities and ranking of parameters. Only the parameter TBrine clearly dominates 
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during the first few thousand years. From about 20 000 years on, R² rises above 0.2 

and the parameter ranking becomes a bit more unique. As mentioned above, the SRC 

values for the parameters AEBConv, GasEntryP and GasCorrPE change their sign dur-

ing the model time, which is consistent with the findings from the CSM and 

CUSUNORO plots.  

5.4 Rank-based evaluation (SRRC) 

For both models, it can be seen that R² essentially rises if a rank transformation is per-

formed. It is generally assumed that the regression-based sensitivity analysis then be-

comes more meaningful.  

5.4.1 The clay system 

For the clay model the increase of R² caused by rank transformation is extreme. It even 

reaches nearly 1 in a time range where it is below 0.1 for the direct evaluation. Such a 

pronounced difference in linear model determination, induced by rank transformation, is 

a hint at a strongly nonlinear but monotonic model behaviour. In this case, it can be ex-

plained by the fact that, in the time range of a few million years, the release of contami-

nants typically increases in more and more model runs, resulting in model output val-

ues logarithmically distributed evenly over many orders of magnitude, as can be seen 

from the scatterplots in Fig. 4.1. 

In fact, the SRRC time curves provide a more unique parameter ranking than the SRC 

curves, especially in the “realistic” phase. The parameter DiffClay3 appears as clearly 

most dominating over the total time range, followed by DiffClay2. The other parameters 

show no practical influence at all, initially, and their SRRC curves only start to diverge 

from the zero line after 5 million years. Interestingly, this happens later than in the di-

rect SRC evaluation. At very late times, however, SRRC yields a different parameter 

ranking than SRC and assigns a higher influence to the parameter KdClay3. In order to 

explain this, Fig. 5.3 presents two scatterplots, visualising the influences of KdBent at 

4.6 million years and of KdClay3 at 37 million years. It can be clearly seen that KdBent, 

at the earlier time, mainly affects the highest model output values while KdClay3, at the 

late time, mainly influences the lowest values. A variation of the relatively few high val-

ues hardly changes the value ranking and the rank regression, but, as these values are 

orders of magnitude higher than the lower ones, can have a considerable influence on 
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the direct regression. Therefore, sensitivities of this type are better detected by SRC. 

On the other hand, variations of very low values are of minor relevance for direct re-

gression but get more importance on a rank basis.  

 

Fig. 5.3 Scatterplots of the clay model, presenting parameters that influence the 

highest (left) and the lowest (right) values 

From the SRC and SRRC time curves it can be concluded that during the time frame 

between 0.5 and 5 million years the influence of KdBent, KdClay2, KdClay3 and Por-

Clay affects mainly the highest model output values. At late times, these parameters 

exert an increasing influence to the lower model output values, which is especially valid 

for KdClay3. 

5.4.2 The LILW system 

For the LILW model the increase of R² caused by rank transformation is less pro-

nounced. Around the time of 400 000 years it changes merely from 0.14 to 0.19. Espe-

cially for the early time phase up to about 10 000 years, however, there is a considera-

ble increase of R², and compared to the SRC evaluation SRRC seems to produce a 

more unique ranking. According to SRRC, there is practically no influence during this 

time frame from other parameters than TBrine and RefConv, while SRC calculated 

comparably significant values also for the other parameters. Again, this is an indication 

that these parameters mainly influence the high values, which changes the regression 

coefficient but not the ranking. 

At late times the SRRC curves are very similar to those calculated with SRC, but look a 

bit smoother. The linear model determination, measured by R², is only slightly better for 
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the rank-transformed data. Obviously, the model linearity cannot be significantly in-

creased by rank transformation in this phase. 

5.5 Summary  

Correlation- or regression-based sensitivity analysis emerged to be an appropriate ap-

proach for identifying the main sensitivities of both investigated test models. Significant 

differences between the results obtained with the correlation-based and the regression-

based methods were not found; therefore, it seems sufficient to apply one or the other. 

For the purpose of this report we use SRC/SRRC.  

As only one value per parameter is calculated for each point in time, the method is not 

adequate to resolve variations of the influence to the model output over the parameter 

interval. Consequently, a value near zero does not necessarily mean a weak influence 

of the parameter.  

Linear regression performs best for models with a close-to-linear behaviour. This can 

be checked by calculating the coefficient of model determination R². A high value of R², 

however, is not a precondition for the method to yield meaningful results. The main 

sensitivities of both test models were identified with SRC even where R² is below 0.1.  

Rank transformation can significantly increase R². By theory, this is the case for nonlin-

ear but monotonic models. Therefore, the rank-based variant SRRC is often consid-

ered more appropriate for nonlinear systems. This, however, is not necessarily the 

case. If the model output is roughly logarithmically distributed over several orders of 

magnitude and a parameter mainly influences the highest values, this is better detected 

by SRC than by SRRC, because the ranking of the few high values merely changes. 

On the other hand, influences of a parameter to the lowest values are generally better 

detected by SRRC.  

When applying SRRC it should be kept in mind that the rank transformation is a non-

reversible transformation. Inevitably, some information about the model sensitivity gets 

lost if a rank-based evaluation is performed. 
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6 Variance-based sensitivity analysis 

In contrast to regression- or correlation-based sensitivity analysis, variance-based sen-

sitivity analysis does not, by theory, require any linear or close-to-linear behaviour of 

the model under consideration. A variety of methods are available to calculate vari-

ance-based sensitivity indices, a few of which were applied to the test models. The 

methods have been theoretically described in chapter 2.7. 

Not all methods, however, are designed to calculate all first-, higher- and total-order in-

dices. The first-order sensitivity indices (SI1) quantify the influence of the variation of 

one parameter alone to the variation of the model output. Second- and higher-order in-

dices quantify the combined influence of two or more parameters. The total-order indi-

ces (SIT), on the other hand, quantify the influence of a specific parameter in coaction 

with all others.  

The sum of all first- and higher-order indices is, by theory, 1 (although in practice, due 

to shortcomings of the applied methods, the calculated indices sometimes sum up to a 

higher value). The sum of all first-order indices provides a measure for how well the 

system is determined by independent influences of the individual parameters and how 

well the sensitivities are described by first-order analysis. 

In the context of MOSEL, we investigated a selection of methods. The main focus was 

laid on the first-order indices, as these can be calculated by all methods and convey a 

well understandable message. Second- and higher-order indices might provide inter-

esting insights in the model behaviour in specific situations, but the number of such in-

dices is high and an easily applicable method for calculating them was not available. 

Therefore, this report does not provide any results on second- or higher-order sensitivi-

ty indices. Additional information, however, can sometimes be taken from the total-

order indices, which some methods are able to calculate with justifiable effort. 

Tab. 6.1 contains an overview of the investigations that were performed. Some basic 

results are presented in the following. As the influence of the number of varied parame-

ters is the subject of chapter 8.1, here we concentrate on results for the clay model and 

the LILW6 model. 
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Tab. 6.1 Investigations performed with variance-based methods 

Method Clay  LILW6  LILW7 LILW11 LILW20 

Sobol’ SI1, SIT SI1, SIT SI1, SIT SI1, SIT - 

EFAST SI1, SIT SI1, SIT SI1, SIT - - 

RBD SI1 SI1 SI1 SI1 - 

EASI SI1 SI1 SI1 SI1 SI1 

SDP SI1 SI1 SI1 SI1 SI1 

6.1 Sobol’ method 

The Sobol’ method is the oldest method for calculating the variance-based sensitivity 

indices. It requires a specific kind of sampling and a rather high number of runs, but 

principally allows calculation of sensitivity indices of any order. Several variations and 

computational improvements of the procedure originally proposed by Sobol’ have been 

developed (/SOB 01/, /SAL 02/). In this project, the method was investigated in the 

form implemented in the SimLab 3 software. The results presented in the following 

were calculated using SimLab 3.2.6. 

6.1.1 The clay system 

In Fig. 6.1 the time-developments of the Sobol’ sensitivity indices of first and total order 

are presented for the clay system, calculated from 4096, 8192 and 16384 runs. Espe-

cially for the total-order indices, there are still big differences between the correspond-

ing curves for 8192 and 16384 runs, which means that even the set with the highest 

number of runs does not provide stable results. Moreover, the calculated total-order in-

dex for DiffClay3 exceeds 1, which should not be possible, by theory. Obviously, the 

applied algorithm is not adequate to provide reliable results. 
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Fig. 6.1 Sobol’ indices of first (left) and total order (right) for the clay model 

Nevertheless, the main findings from the SRC-/SRRC-analysis seem to be confirmed 

by the Sobol’ analysis: DiffClay3 is by far the most influential parameter nearly over the 

total time period, followed by DiffClay2, while KdBent achieves some considerable in-

fluence only in the very late phase, and finally even exceeds that of KdClay2. An inter-

esting result, however, is that around 3 million years all first-order indices are very 

small, their sum being smaller than 0.1. The calculated total-order indices, on the other 

hand, exhibit the most confuse and unstable behaviour around this time. This can be 

interpreted in that way that at that time the system is dominated by multiple parameter 

interactions. At very late times, when the sum of all SI1 rises and reaches a maximum 

of about 0.8, the convergence of the SIT-curves is better, but the total-order analysis as 

a whole does not seem reliable. 

6.1.2 The LILW system 

The time-developments of the first- and total-order sensitivity indices, calculated with 

the Sobol’ method for the LILW6 model, are presented in Fig. 6.2. The indices were 

calculated for 301 points in time, resulting in curves that look very uneven and do not 

reach satisfying agreement even between sample sizes as high as 16384 and 32768. 

Although the Sobol’ analysis identifies the main sensitivities in basic agreement with 

the SRC/SRRC results, this investigation does not seem to be reliable in this case. At 

least, some information about the total sensitivity indices can be deduced. This, how-

ever, does not seem to apply any longer if more parameters are taken into account. In 

Fig. 6.3 the time-dependent Sobol’ evaluation for the LILW11 model is presented for a 

sample size of 16384. For better comparability with the results for the LILW6 model on-
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ly the six most relevant parameters are depicted. The curves exhibit a very unsteady 

progress and hardly allow clear statements about the sensitivity. The calculated SI1 are 

generally lower than for LILW6, which is understandable as the total output variance is 

distributed to contributions of more parameters, but they even assume negative values 

(not depicted in the figure), which is forbidden by theory and does not make sense. At 

least, the SIT curves seem more or less stable in the medium time frame between 

30 000 and 500 000 years and there is also a fair agreement with those for the LILW6 

model in this time frame. 

 

Fig. 6.2 Sobol’ indices of first (left) and total order (right) for the LILW6 model 

 

Fig. 6.3 Sobol’ indices of first (left) and total order (right) for the LILW11 model (on-

ly the 6 most relevant parameters are presented) 

Especially in view of the high computational effort for the Sobol’ analysis in the form as 

implemented in SimLab 3, a practical use cannot be derived from these investigations. 
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6.2 EFAST 

The EFAST method is a specific variant of the FAST method, which is able to deter-

mine the first- and total-order sensitivity indices in one step. EFAST requires a specific, 

periodic sampling, which is non-extendible. Although the sampling scheme is basically 

deterministic, a random element can be introduced by a phase shift. The evaluations 

were made with SimLab 3.2.6. 

6.2.1 The clay system 

EFAST results for the clay model, calculated with sample sizes of 8214 and 16374, are 

presented in Fig. 6.4. The curves look smooth and plausible and seem to be fairly con-

vergent for the investigated number of runs. The first-order analysis is well comparable 

to the Sobol’ results (see Fig. 6.1, left) and also confirms the results of SRC/SRRC. 

The total-order EFAST analysis produces much clearer results than Sobol’. In the early 

phase, DiffClay2 and DiffClay3 have high and nearly identical SIT values. These pa-

rameters seem to dominate the system in mutual interaction without relevant contribu-

tions from the other parameters. The SIT values calculated for these are probably due 

to the low number of runs with relevant output in the early phase, and actually originate 

from a pseudo-interaction with DiffClay2 and DiffClay3. 

 

Fig. 6.4 EFAST indices of first (left) and total order (right) for the clay model 

From 1 million years on, the total-order index of DiffClay2 decreases while those of 

KdBent, KdClay2, KdClay3 and PorClay increase and that of DiffClay3 remains rela-

tively high. In the late phase the system is clearly dominated by DiffClay3 in interaction 

with all other parameters. In the time phase below 1 million years the model output is 
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normally very low and therefore controlled by few runs with higher output values. As a 

consequence, a stable evaluation cannot be expected and the curve progressions 

should not be taken too seriously.  

For the relatively simple clay system, the EFAST method seems to provide a reliable 

approach to variance-based sensitivity analysis, which is able to calculate the first-

order as well as the total-order sensitivity indices. The results are consistent with those 

of earlier investigations with the clay model (/SPI 12c/). 

6.2.2 The LILW system  

EFAST results for the first- and total-order sensitivity indices of the LILW6 model are 

presented in Fig. 6.5. Compared to the Sobol’ results the curves look smoother and the 

convergence between sample sizes of about 16 000 and 32 0001 is better, so that, at 

the first sight, EFAST seems to provide more stable and reliable results for variance-

based sensitivity analysis of the LILW model.  

 

Fig. 6.5 EFAST indices of first (left) and total order (right) for the LILW6 model 

In Fig. 6.6, however, two EFAST evaluations are compared that only differ by the ran-

dom phase shift, which was realised by using two different seeds for the random num-

ber generator. There are essential differences between the curves, especially with re-

gard to the parameter IniPermSeal. At 300 000 years the two SI1 calculations even 

                                                
1  The EFAST sampling scheme as realised in the SimLab software generates specific sample sizes; 

therefore, they slightly differ from the sample sizes used for the Sobol analysis 
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differ by a factor of 2. The EFAST sampling follows specific periodic paths through the 

parameter space, interrupted by jumps induced by the phase shift (see Fig. 2.4). Since 

these jumps in the sample are the only difference between the two sets of model runs, 

the evaluation is obviously susceptible to them. The highly nonlinear model can react to 

a jump in the input parameters with a considerable change in the output and thus influ-

ence the results of the evaluation. The parameter IniPermSeal, which is most affected 

by this susceptibility, is the one that predominantly controls the quasi-non-continuous 

behaviour of the LILW model due to seal failure. One can conclude that EFAST is not 

best compatible with extremely nonlinear models. Moreover, the EFAST sampling pro-

vides a very inhomogeneous coverage of the parameter space (see Fig. 2.4), so that, 

even with high sample sizes, specific parameter combinations are never met. This may 

also be a reason for the relatively low robustness of the EFAST evaluation. 

 

Fig. 6.6 EFAST indices of first (left) and total order (right) for the LILW6 model, cal-

culated with two different random seeds 

6.3 RBD 

Like EFAST, the Random Balance Design (RBD) technique is also based on periodic 

sampling and Fourier analysis of the output, but the periodicity is hidden by applying 

random permutations of the parameter values (see Chapter 2.7.3), resulting in a more 

homogeneous coverage of the parameter space. The method is only capable of calcu-

lating first-order indices.  
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6.3.1 The clay system 

The SI1 time curves obtained with RBD for the clay model are presented and com-

pared to the corresponding results of EFAST and Sobol’ in Fig. 6.7. The convergence 

between sample sizes of 8192 and 16384 is quite good and the curves are in fair 

agreement with those produced by the other methods. During the early phase RBD 

yields a lower estimation of the sensitivity index for DiffClay3 than the other methods, 

but as mentioned above, the model itself is not very robust for early times and the sen-

sitivity analysis results are of low relevance. 

 

Fig. 6.7 RBD first-order indices for the clay model 

6.3.2 The LILW system 

The RBD results for the LILW6 model are presented in Fig. 6.8. The RBD sampling is 

subject to a random element, represented by the applied permutations. As for the 

EFAST sampling, the influence of this random element was investigated by changing 

the seed of the random number generator. The results are compared on the right side 

of the figure. The agreement is fair and much better than for the EFAST results (Fig. 

6.6). Obviously, the RBD method is less susceptible to strong nonlinearities. This is 

probably, at least in part, due to the fact that the RBD sampling provides a more homo-

geneous coverage of the parameter space.  
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Fig. 6.8 RBD first-order indices for the LILW6 model, compared for different sample 

sizes (left) and different random seeds (right) 

6.4 EASI 

In contrast to the variance-based methods presented so far, EASI does not need a 

specific sampling but can principally be applied to model results calculated with any 

sample. The only requirement is that the sample should be free of systematic couplings 

between the values of the individual parameters, as any kind of order in the sample can 

lead to unwanted side-effects. The influence of the sampling scheme is the subject of 

chapter 7. For the investigations presented here, random samples were used. 

6.4.1 The clay system 

The SI1 time curves obtained with EASI for the clay model are presented and com-

pared to the corresponding results of the other variance-based methods in Fig. 6.9. 

The convergence between the sample sizes of 8192 and 16384 is good, and the 

agreement with the other methods is fair. There is a close agreement especially with 

the RBD results, which is probably due to the fact that both methods use basically the 

same idea and differ only with respect to the sampling. 
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Fig. 6.9 EASI first-order indices for the clay model 

6.4.2 The LILW system 

EASI results for the LILW6 model are presented in Fig. 6.10. The convergence be-

tween the sample sizes of 16384 and 32768 is good, except from the very early phase, 

where the model output is dominated by relatively few values. In the right part of the 

figure a comparison with the Sobol’ calculation is made (see Fig. 6.2). Here the Sobol’ 

sample was also used for calculating EASI. Interestingly, EASI produces smoother 

curves and obviously more stable results than Sobol’, even if a sample is used that was 

specifically drawn for Sobol’.  

 

Fig. 6.10 EASI results for the LILW6 model, compared for different sample sizes 

(left) and with the Sobol’ calculation (right, the Sobol’ sample was also 

used for EASI) 
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6.5 SDP 

The SDP method is an integrated metamodelling approach and can be calculated with 

a specific software tool by Ratto and Young (/RAT 07/). Like EASI it is only able to cal-

culate first-order indices and does not require a specific sampling scheme.  

6.5.1 The clay system 

The SDP results for the clay system are presented in Fig. 6.11. On the left side of the 

figure, sample sizes of 2048 and 4096 are compared, on the right side compares the 

results to those of EASI. There is obviously a fair convergence already with the rela-

tively low sample size of 2048. Moreover, SDP seems to calculate nearly the same re-

sults as EASI, except from the parameter DiffClay3 in the early time phase, which is 

probably due to the low number of non-zero results in this phase. 

 

Fig. 6.11 SDP results for the clay model on the basis of random samples, compared 

for different sample sizes (left) and with EASI (right) 

6.5.2 The LILW system 

The SDP results for the LILW6 model are presented in Fig. 6.12. The curves look 

smooth and like in the clay case, the convergence is quite good. In the right part of the 

figure, the SDP results are compared to those obtained with EASI. Again, except from 

the very early phase, both methods seem to yield very similar results. This is specifical-

ly interesting in view of the computing times for SDP (about one day) and for EASI (a 

few seconds). 

Time in years

S
D

P
S

I1

105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6
DiffClay2
DiffClay3
KdBent
KdClay2
KdClay3
PorClay

P:\a401\projekte\mosel\entwuerfe\finalreport\figures\sdp_siton_lptau_si1.lay

Dashed: 2048 runs
Solid: 4096 runs

Time in years

S
I1

105 106 107 108
0

0.1

0.2

0.3

0.4

0.5

0.6
DiffClay2
DiffClay3
KdBent
KdClay2
KdClay3
PorClay

P:\a401\projekte\mosel\entwuerfe\finalreport\figures\sdp-easi_siton_lptau_si1.lay

2048 Runs
Solid: SDP
Dashed: EASI



 

76 

 

Fig. 6.12 SDP results for the LILW6 model on the basis of random samples, com-

pared for different sample sizes (left) and with EASI (right) 

6.6 Comparison with regression-based sensitivity analysis 

Basically, the results of variance-based sensitivity analysis confirm those of the regres-

sion-based analysis; striking contradictions were not found. The variance-based analy-

sis even provides less information as it cannot resolve the direction of influence. Never-

theless, there is some added value of this kind of evaluation, which can be seen in Fig. 

6.13. The figure shows a time detail of correlation-based and variance-based sensitivity 

evaluation of the LILW6 system.  

 

Fig. 6.13 Comparison of correlation-based (3000 runs, left) and variance-based 

(4096 runs, right) sensitivity analysis for the LILW6 system 
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parameter. During this time phase the absolute SRC values of the parameters Ref-

Conv, TBrine and especially GasCorrPE are much higher than that of AEBConv. The 

influence of AEBConv, however, is not at all irrelevant as the EASI evaluation shows. 

The SI1 of AEBConv is in fact nearly constant, but clearly different from zero, similar to 

that of GasCorrPE and much higher than those of RefConv and TBrine. The reason for 

this difference is that the model is non-monotonic with respect to AEBConv and during 

the considered time phase the positive and negative influences compensate each other 

in the linear evaluation. By contrast, the SRC of GasEntryP intersects the zero line at 

about 320 000 years, and the SI1 value is indeed zero at the same time. This means 

that there is in fact no significant influence of GasEntryP to the model output around 

350 000 years.  

The CUSUNORO plots in Fig. 6.14 confirm these findings. While the curves for 

AEBConv reverse their curvature, which means that the direction of influence changes 

over the parameter interval, those for GasEntryP are more or less uniquely curved, but 

change the curvature sign over time and the curve for 350 000 years is nearly flat. 

This investigation shows that in fact there can be an added value of a variance-based 

sensitivity analysis compared to a regression-based one in that it is able to identify non-

monotonic influences. 

 

Fig. 6.14 CUSUNORO plots of the LILW6 model for the time period between 

300 000 and 600 000 years for the parameters AEBConv (left) and 

GasEntryP (right)  
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6.7 Summary 

In the context of the project described here, five methods for calculating variance-

based sensitivity indices were tested with the clay system and the LILW system: Sob-

ol’, EFAST, RBD, EASI and SDP. While Sobol’ and EFAST yield the first- and total-

order indices, RBD, EASI and SDP are only able to calculate the first-order indices. 

As all methods estimate the same sensitivity measures, their results should, by theory, 

be similar, and one would expect that with increasing number of model runs they con-

verge to the “true” values. It was, however, found that, even with 16 000 to 32 000 runs 

and merely 6 parameters, the convergence was partly unsatisfying, especially for the 

highly nonlinear LILW6 model. Although all methods principally show the same tenden-

cies, their calculated time curves do not quite agree in detail. 

The Sobol’ method in the investigated form (as implemented in SimLab 3.2) produced 

the least stable results and does not inspire much confidence. Therefore, the method 

was excluded from further investigations in this project. This, however, must not be 

misunderstood as a concluding assessment of the Sobol’ method in principle. 

The EFAST method produced fairly convergent and plausible results for the clay mod-

el. For the LILW6 model, however, the obtained results look less stable and, even for 

high sample sizes, seem to depend on the random seed used for the sampling. Obvi-

ously, EFAST is less appropriate for models with strong nonlinearities or even disconti-

nuities. As Sobol’ was excluded, it is, however, the only remaining method that allows 

determination of total-order indices. 

RBD calculated fairly convergent, smooth and plausible time curves for the first-order 

indices of both models. For the highly nonlinear LILW6 model the method seems more 

appropriate than EFAST, but it does not provide total-order indices and also requires a 

specific sampling. 

For both models, the results obtained with EASI are very similar to the RBD results. 

EASI, however, works with any sampling scheme, so that one is not bound to use 

model calculations specifically made for the intended evaluation. If applied with a Sob-

ol’ sample, EASI produces obviously “better” results than the Sobol’ method itself. 

Moreover, EASI is very quick.  
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SDP is an integrated metamodelling approach. Like EASI, it can be applied to any set 

of probabilistic model calculations on the basis of any sample. For the LILW6 model, if 

calculated on the basis of the same sample, the SDP results are in close agreement 

with the EASI results. SDP, however, uses a complicated algorithm and requires a 

specific software program, which needs a lot of time for the evaluation, so that SDP is 

by orders of magnitude slower than EASI. 

The results obtained in the project do not imply any preference of either RBD or SDP 

over EASI. An essential drawback of all three methods, however, is that they are una-

ble to calculate total-order indices.  

Principally, variance-based sensitivity analysis seems appropriate to analyse the sensi-

tivities of the investigated models. Compared to regression-based sensitivity analysis, 

the first-order indices often do not seem to provide additional qualitative information, 

but possibly give a better impression of the quantitative influence of the individual pa-

rameters for nonlinear models. Especially non-monotonic influences are better detect-

ed by variance-based analysis. Total-order indices can provide insight to the interac-

tions of the parameters. 

It has to be kept in mind, however, that typically the output of repository models is 

roughly logarithmically distributed over several orders of magnitude, and variance is not 

best appropriate to quantify variations on such a scale, as it gives an overweight to the 

highest values. This problem is further addressed in chapter 9. 
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7 Influence of the sampling scheme 

In chapter 2.3 five different sampling strategies were introduced and compared in view 

of homogeneity. Some sensitivity analysis methods, like Sobol’ and EFAST, require 

their specific sampling scheme. One has to decide about the application of such meth-

ods at the very beginning of the probabilistic analysis, which can lead to results that are 

then inappropriate – or at least less appropriate – for other evaluations. Moreover, such 

samples are normally not extendible, which means that for an investigation with a high-

er number of runs a totally new sample has to be drawn and existing results from the 

preceding investigation cannot be re-used. It is therefore generally preferable to resort 

to analysis methods that work with any sample. 

For a pure uncertainty analysis, random sampling is principally the best choice as it al-

lows unbiased statistical statements about the model output. Sensitivity analysis, how-

ever, does not aim at statistics, but at quantifying the relations between the model input 

and output. For this purpose a homogeneous coverage of the parameter space is more 

important than randomness. In this chapter we investigate how the applied sampling 

scheme influences the results of sensitivity analysis.  

As Sobol’, EFAST and RBD anyway require their specific sampling, these methods are 

not appropriate for comparing sampling schemes. Therefore, in the following only re-

sults obtained with methods that can be applied with any sampling scheme are used. 

7.1 Random sampling versus Latin Hypercube Sampling 

Latin Hypercube sampling (LHS, see chapter 2.3.2.1) is a well-known and often rec-

ommended sampling method, which is sometimes assumed to be superior to random 

sampling for sensitivity analysis, due to its property to produce more balanced marginal 

distributions (see Fig. 2.4, right). This, however, does not automatically mean a more 

homogeneous coverage of the multi-dimensional parameter space.  

To test LHS in comparison with random sampling, both methods were used for drawing 

samples of sizes 2048, 4096 and 8192 for the clay model system, and some sensitivity 

analysis evaluations were performed. These are presented in the following. 
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Fig. 7.1 shows CSM curves for 1.0·107 years, calculated on the basis of random and 

Latin Hypercube samples with 2048, 4096 and 8192 runs. There is no evidence for bet-

ter performance of one or the other method with respect to convergence of the results. 

There are still clearly visible differences of about the same dimension between the cor-

responding curves for all three sample sizes in both cases. Principally the same con-

clusion is to be drawn from the SRC evaluation shown in Fig. 7.2. LHS seems to yield, 

if at all, only slightly better convergent time curves than random sampling.  

 

Fig. 7.1 CSM curves for the clay system at 1.0·107 years, calculated on the basis of 

random samples (left) and Latin Hypercube samples (right) of different sizes 

 

Fig. 7.2 Time-dependent SRC evaluation for the clay system on the basis of ran-

dom samples (left) and Latin Hypercube samples (right) of different sizes 
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7.2 Random sampling versus quasi-random LpTau sampling 

Quasi-random sampling means a sampling strategy that is fully deterministic and spe-

cifically designed to cover the parameter space as homogeneously as possible (see 

chapter 2.3.3). For our investigations we chose the Sobol’ LpTau method and the LILW 

system.  

In Fig. 7.3 CSM curves for the time 105 years are compared. The curves were generat-

ed from results of the LILW11 model, obtained with random and LpTau samples of siz-

es 2048 and 4096. While there are still visible differences between the corresponding 

curves for the random samples, those for the LpTau samples are in much closer 

agreement. Obviously, the convergence with increasing sample size is better if LpTau 

sampling is applied. This is the more remarkable as it is sometimes claimed that quasi-

random sequences are superior to random sequences only in low-dimensional spaces. 

If, however, some of the parameters only have a weak influence on the model output, 

they do not “fully count”. A better criterion is the average dimension, which is equal to 

the sum of all total-order sensitivity indices (/SOB 16/). Without a mathematical proof, 

Sobol’ claims that quasi-random sampling outperforms random sampling as long as the 

average dimension is less than about 3.  

 

Fig. 7.3 CSM plots for the LILW11 system, based on random (left) and LpTau 

(right) samples of sizes 2048 and 4096 

In Fig. 7.4 EASI time curves for the LILW6 system are presented, calculated on the ba-

sis of random and LpTau samples of different sizes, but the LpTau samples are by a 

factor of 4 smaller than the random samples. Nevertheless, the convergence with in-

creasing samples sizes is similar, maybe even slightly better, for the LpTau curves. 
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Fig. 7.4 Time-dependent EASI evaluation for the LILW6 system on the basis of 

random samples (left) and LpTau samples (right) of different sizes 

7.3 Summary 

From the investigations on sampling schemes, it can be concluded that Latin Hyper-

cube sampling does not provide a significant advantage to random sampling with re-

spect to the required number of runs for sensitivity analysis. This statement is valid for 

the investigated clay system, but since it is a relatively simple model with no strong 

nonlinearities and only six parameters, there is no reason to assume that LHS is signif-

icantly superior to random sampling for more complex models. 

Quasi-random LpTau sampling, however, is obviously superior to random sampling in 

that it produces convergent results at significantly lower sample sizes. For the LILW6 

model LpTau seems to yield comparable convergence at sample sizes that are by a 

factor of 4 smaller than for random sampling. This means that with LpTau sampling on-

ly one fourth of the model runs are necessary that are needed for similar robustness 

with random sampling. One should keep in mind, however, that this depends on the 

number of influential parameters. The average dimension, which can be calculated as 

the sum of all total-order indices, is a measure for this. As a rule of thumb, if it does not 

exceed 3, one can expect advantages from quasi-random sampling.
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8 Detailed sensitivity investigations 

In this chapter we present specific investigations performed on the LILW system. It 

turned out that, due to its complexity, the sensitivity analysis results exhibit some de-

tails that are hard to understand at the first sight.  

8.1 Influence of number of parameters 

In Fig. 8.1 the EASI time curves for the LILW model with 6, 7, 11 and 20 parameters 

(LILW6 to LILW20) are presented. All calculations are based on 16384 runs from 

LpTau samples. One should recall that all four models are numerically identical and on-

ly differ by the number of varied parameters. The parameters that were not varied were 

fixed to their reference value (see Tab. 3.2). A general observation is that the total vari-

ance of the model output is dominated by only a few parameters while the many re-

maining ones have only a negligible influence. This is an often-reported property of 

numerical models describing practical problems (/SAL 08/). Moreover, there are three 

facts that attract attention: 

1. The corresponding curves for the LILW6 model and the LILW7 model, especially 

those of the parameters IniPermSeal and AEBConv, look conspicuously different. 

These two parameters obviously exchange their ranking positions. While under the mi-

gration from 6 to 7 parameters the SI1 value of IniPermSeal is reduced by a factor of 2 

in its maximum, that of AEBConv increases by a similar factor. The curves of 

GasEntryP, RefConv and GasCorrPE show slighter differences. The differences are 

surprising as the variable additionally varied seems to have no significant influence at 

all; its SI1 reaches a maximum of only about 0.01, so that one would expect that it 

hardly matters whether this parameter is varied over its uncertainty interval or fixed to 

any value within. This, however, is obviously a wrong conclusion, see chapter 8.2. 
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Fig. 8.1 Time-dependent EASI evaluation for the LILW model with 6, 7, 11 and 20 

parameters; for LILW20 the sum of the SI1 values of the parameters 12 – 

20 is shown as a black dotted line 

2. The high peak of the SI1 curve of the parameter TBrine at very early times seems to 

be considerably reduced if additional parameters are taken into account. While for 

LILW6 its early maximum reaches 0.44 (not visible in 8.1), it is only 0.21 for LILW7 and 

decreases further to values below 0.03 for LILW11 and LILW20. At such early times 

there are only very few cases with a non-zero model output, and this depends on 

TBrine alone, since contaminant release can and will only arise after the time defined 

by TBrine. Other parameters can only influence the value of the model output if it is al-

lowed by TBrine. These are higher-order effects. It is therefore well understandable 

that the only parameter with a significant first-order effect at very early times is TBrine. 

As there are so few non-zero values at early times, the statistical basis is small and the 

numerical evaluation is considerably influenced by random effects. These cannot actu-

ally be assigned to specific parameters but appear like a blurred interaction of all pa-

rameters in producing the output variance. Numerically, this leads to increased higher-

order contributions. Consequently, the first-order effect of TBrine seems to decrease if 
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more parameters are taken into account. To better visualise this, Fig. 8.2 shows the 

time development of the total variance and the absolute contributions of three parame-

ters during the early phase for different numbers of parameters taken into account. The 

first-order index calculates as the quotient of the parameter’s contribution and the total 

variance, which can be seen in the logarithmic plot as the distance between the curves. 

The total variance increases by 8 to 9 orders of magnitude between 1000 and 10000 

years, which is due to the rapid increase of non-zero results.  

Therefore, one should not put too much confidence in the early-phase evaluation. 

 

Fig. 8.2 Total variance and contributions of three parameters during the early time 

phase; LILW6 vs. LILW7 (left) and LILW11 vs. LILW20 (right)  

3. The curves seem to become more unstable with increasing number of varied pa-

rameters. This is mainly visible between the curves for the LILW11 model and the 

LILW20 model, which hardly differ except from this effect. Although none of the addi-

tional parameters perceptibly contributes to the total output variance, they all together 

seem to have some more or less random-dominated influence – indicated by a dotted 

black line in 8.1 – that visibly disturbs the evaluation for the more important parame-

ters. 

From these investigations one can conclude that  

− too many varied parameters that have no significant influence can disturb the sta-

bility of sensitivity analysis results, 

− even if a parameter looks insignificant by its own, it can have essential influences 

on the sensitivities of the others, 
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− if the statistical basis is weak, a high number of insignificant parameters can mask 

actual sensitivities. 

Therefore, the number of parameters taken into account in sensitivity analysis should 

be thoroughly considered. 

8.2 Hidden sensitivities 

The conspicuous differences in the time development of the sensitivity indices calculat-

ed for the LILW model with 6 and 7 parameters indicate that there is some “hidden 

sensitivity”. This is shown more clearly in Fig. 8.3 by means of different sensitivity plots. 

For better clarity, only the two most influential parameters IniPermSeal and AEBConv 

and the parameter BrineMgSat, which is the one additionally varied in the LILW7 mod-

el, are presented in the plots. 

In all four plots substantial differences between the curves for the LILW6 and the 

LILW7 model are visible. These are obviously caused by the variation of the parameter 

MgBrineSat, which itself has only a low sensitivity according to all methods.  

All four plots show the same tendency: If the additional parameter is varied the sensitiv-

ity of the system to IniPermSeal decreases, while the sensitivity to AEBConv increases. 

The methods do not agree, however, about the sensitivity ranking of the parameters. 

According to EASI, the additional parameter causes an exchange of the ranking posi-

tions of the two leading parameters over nearly the total time period, which is only in 

part the case according to SRC and not at all according to SRRC. However, as ex-

plained in chapter 6.6, a low SRC or SRRC value of the parameter AEBConv does not 

necessarily mean a low sensitivity.  
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Fig. 8.3 Comparison of sensitivity plots for the LILW6 and the LILW7 model: CSM 

(top left), EASI (top right), SRC (bottom left), SRRC (bottom right) 

Physically, MgBrineSat characterises the relative saturation of magnesium in the corro-

sive brine in the repository mine. As magnesium is the critical element for corrosion of 

the seal material, the magnesium content of the brine can influence the corrosion 

speed and the time of seal failure. It is assumed that, according to the conditions in an 

abandoned mine for salt and potassium production, the brine has a chemical composi-

tion between saturated NaCl solution and IP21 solution. The relative magnesium satu-

ration is therefore related to the magnesium content of IP21, so that the range of pos-

sible values is between 0 and 1. The reference value is assumed to be 0.1, which is 

also taken as the modus of the non-symmetric triangular distribution.  

One has to note that the reference value of BrineMgSat is distinctly different from the 

expectation value of the distribution, which is 0.37. Consequently, the LILW6 model 

uses the constant value 0.1 for all runs while the LILW7 model uses values between 0 

and 1 with an average of 0.37. Therefore, a calculation was made with a modified 

LILW6 model, using not the reference value but a fixed value close to the expectation 
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of the distribution (by technical reasons, the value 0.385 was used). The results are 

presented in Fig. 8.4 as CSM plots and EASI time curves. 

 

Fig. 8.4 Comparison of sensitivity plots for the original and the modified LILW6 

model with those of the LILW7 model: CSM (left) and EASI (right) 

The Fig. shows that there are only minor differences between the calculated sensitivi-

ties of the modified LILW6 model and the LILW7 model. Obviously, the increase of the 

mean of values for BrineMgSat by more than a factor of 3 is responsible for the change 

of the sensitivity analysis results. This can be understood from the physical point of 

view: Higher values of BrineMgSat lead to earlier seal failure, so that the probability 

that the seal has failed at a specific point in time is generally much higher than with the 

small reference value of BrineMgSat. Consequently, the value of the second parameter 

that influences this probability, the initial seal permeability IniPermSeal, becomes less 

important. Once the seal has failed, IniPermSeal has only little influence to the release 

of contaminants, which is then dominated by the convergence rate of the sealed em-

placement area, AEBConv. At the time 105 years, for instance, the seal has failed in 

about 85 % of the runs of LILW7, but only in 75 % of the runs of LILW6.  

Thus, the influence of BrineMgSat, although surprising at the first sight, is plausible. 

Nevertheless one would expect this influence to be deducible from the calculated sen-

sitivities for the parameter itself, which does not seem to be the case. As, according to 

the understanding, the sensitivity is due to an interaction with the parameter 

IniPermSeal, it might be visible in a second-order analysis, which was not performed 

due to technical reasons. A total-order analysis, however, was made with EFAST. In 

Fig. 8.5 the EFAST total-order results are compared between the LILW6 model and the 

LILW7 model. 
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Fig. 8.5 EFAST total-order analysis of the LILW6 (left) and the LILW7 (right) model; 

for better visibility the curve for BrineMgSat is marked by circles 

The results for the early time phase must not be taken seriously because of the low 

number of non-zero runs. From about 20 000 years on, however, they should be satis-

fyingly reliable. In agreement with the explanation given above, it is confirmed that the 

effect of IniPermSeal decreases and that of AEBConv increases if BrineMgSat is addi-

tionally varied, but the analysis does not show any conspicuousness with respect to the 

total-order index of this parameter itself. Its total-order index is about 0.2 for most of the 

model time, which is a relatively low value for total-order. 

From this investigation we conclude that a complex model can have relevant sensitivi-

ties that show up neither in correlation-based sensitivity analysis nor in first- or total-

order variance-based sensitivity analysis.  

8.3 Handling of two-split output by a dynamic two sample test 

The annual dose calculated by the LILW model increases typically by about two orders 

of magnitude after the seal failure. On the considered time scale, this happens nearly 

instantly at some point in time, depending on the parameters. Therefore, at any specific 

point in time, in a certain percentage of model runs the seal has already failed, and this 

percentage increases with time. Consequently, the distribution of model output values 

is typically two-split. The histograms presented in Fig. 8.6 clearly show this separation. 

They were made for the LILW20 model.  
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Fig. 8.6 Histograms for the LILW20 model for two points in time; calculation cases 

with (presumably) intact seal are presented in green, those with failed seal 

in red  

Actually, there will be a certain overlap of the two sub-distributions, but this cannot be 

resolved by means of the available model output, since the model does not provide in-

formation about the status of the seal. Therefore, the threshold was determined by vis-

ual inspection, accepting that it cannot be quite exact. 

This specific property makes the model a bit problematic for sensitivity analysis and is 

probably the main reason for the difficulties that arise with the standard methods. An in-

teresting question is, of course, which parameters are most responsible for the output 

value to lie in the “lower” or in the “higher” part of the histogram.  

In order to analyse this question, we developed the following idea: Since the output dis-

tribution is two-split “by nature”, it seems predestined for a two-sample test (see chap-

ter 2.8.1). Therefore, we applied a modified version of the Smirnov sensitivity test. In 

the standard version of this test, the output data are separated in two sub-samples at 

the 90th percentile of the distribution; then the corresponding distributions of the input 

parameters are compared. If there is a significant difference, the respective parameter 

has a notable influence on whether or not the model output value will be among the 

highest 10 %. As in this case, the question is whether the output value will be in the 

lower or in the upper part of the split distribution, we used a dynamic, time-dependent 

threshold value instead of a rigid separation at the 90th percentile. The temporal pro-

gression of the threshold value, which was determined manually by visual inspection, is 

presented in Fig. 8.7 (left) together with the numbers of model runs that were thus as-
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signed to the lower and the upper part of the distribution. The right part of the figure 

shows the results of the Smirnov test performed on this basis. 

 

Fig. 8.7 Time-dependent dynamic Smirnov sensitivity evaluation of the LILW20 

model with: threshold value and numbers of runs (left) and results of the 

Smirnov test (right, only the 7 most important parameters are presented) 

This evaluation was expected to indicate which parameters are most influential to the 

question whether or not the seal has failed at each point in time. In fact, the results dif-

fer from those obtained with other methods in that they show a clear dominance of 

IniPermSeal and actually a relatively high influence of BrineMgSat, which was not iden-

tified as relevant by any other method. In the time range between about 40 000 and 

160 000 years this parameter is even the second most important one according to this 

kind of analysis. This is a plausible result in view of the explanations given in chapter 

8.2.  

8.4 Summary 

The investigations described in this chapter have shown that for a complex nonlinear 

model like the LILW system a specifically designed, detailed sensitivity analysis can re-

veal interesting facts about the system that cannot be seen at standard sensitivity anal-

ysis results.  

Generally, the relevant sensitivities are confined to a low number of parameters, and in 

view of stable and robust results it seems to be a good idea to keep the number of var-

ied parameters as small as possible. There is, however, some danger that a quick 

screening of the parameter sensitivities by means of standard methods, including total-
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order analysis, leads to exclusion of parameters that in fact have interesting influences 

to the model results. Analysing such influences can help increase the model under-

standing. 

If some parameter is, from a physical point of view, suspected to be influential but does 

not show up in the sensitivity analysis it can be helpful to perform several probabilistic 

sets of model runs with and without the respective parameter being varied, or with sev-

eral different fixed values of the parameter, and to apply the same sensitivity analysis 

methods to all of the sets individually. If the results are similar, the influence of the pa-

rameter is obviously actually low; otherwise one should try to explain the differences 

and, if possible, perform specifically designed investigations. 

A model like the LILW model that produces distinctly split output distributions seems 

predestined to be analysed with a two-sample test like the Smirnov test. Such tests an-

alyse the influences of the individual parameters to the tendency of the model to run in 

one or the other direction. This makes sense specifically if the separation of the two 

subsets of model output values is not made according to a fix and more or less arbi-

trary threshold, but on the basis of the model output itself. For a time-dependent analy-

sis the threshold has to be calculated for each point in time separately. 
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9 Output transformation 

The output of repository models is typically distributed over several orders of magni-

tude. While the highest values are most relevant for assessing the safety of the system, 

the lower ones are of minor interest. Especially models for repositories in rock salt can 

even yield zero results. This is often a consequence of a model situation in which all 

waste-containing parts of the mine are closed by convergence before brine could get in 

contact with waste.  

On a linear scale, the distribution of the model output values is typically distinctly right-

skewed, which means that there is a clear concentration of values near zero and a long 

tail of relatively few higher values. Correlation-, regression and variance-based meth-

ods of sensitivity analysis are mathematically designed to work on a linear scale as 

they make use of linear concepts. Therefore, such evaluations are often dominated by 

a few high values, so that a sensitivity analysis performed on a linear scale does not 

necessarily provide the most meaningful results.  

The dominance of very few values is especially pronounced for variance-based sensi-

tivity analysis, as illustrated in Fig. 9.1 for the SAM-GBS model. This model was used 

since it was of specific interest how the transformation technique works on a set of out-

put values with a high number of zeros. It produces about 85 % zero output runs, which 

together make only 1.9 % of the total variance. On the other hand, the highest one of 

more than 6000 runs makes nearly 10 % of the total variance and the 0.2 % of all runs 

with the highest results are responsible for more than 50 % of the total variance. In var-

iance-based sensitivity analysis, such disproportion can not only lead to results of low 

robustness and stability, but also to an unwanted strong overweighing of the highest 

values. 
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Fig. 9.1 Contributions to the total variance of the results of the SAM-GBS system  

Sometimes, it is recommended in such cases to use the logarithm of the model output 

for analysis. This can be a sensible approach if the model output is actually distributed 

over a limited interval on the logarithmic scale, but for a typical repository model a sim-

ple logarithmic transformation might not solve the problem but turn it into the opposite. 

Zeros are impossible to take into account on a logarithmic scale, and moreover, reposi-

tory models sometimes yield output values that are very low and physically meaning-

less but determined by numerical effects. As a consequence, instead of the high values 

the lowest ones are overvalued and can distort the sensitivity analysis.  

One transformation that is in wide use in sensitivity analysis, especially for correlation-

and regression-based methods, is the rank transformation, which replaces each value 

with its rank in an ordered list (see chapter 2.6.4). This is automatically applied by the 

Spearman’s rank correlation method and the SRRC method; it is, however, unusual to 

apply it for variance-based sensitivity analysis. The rank transformation linearises the 

relationship between model input and output, which can also give overweight to small 

values. An additional drawback of the rank transformation is that it is not reversible and 

destroys information contained in the original data. 

Therefore, instead of the logarithmic or rank transformation, we look for transformations 

that are better adequate to the typical output distributions of repository models. 

9.1 Definition of transformations 

The basic idea of applying a transformation is that different model output values be dif-

ferently weighed, according to magnitude, in sensitivity analysis. While the undue 
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overweight of high values is to be mitigated, the transformation should not, at the same 

time, give such an overweight to low values. A transformation that fulfils this require-

ment can only be defined if a distinction between “low” and “high” values is given. In 

order to provide such a distinction, we introduce a threshold 𝑎𝑎, which has to be defined 

sensibly. The transformation, however, shall not handle “low” and “high” values differ-

ently, but be designed as a continuous, bijective function. Thus it is made sure that the 

transformation is uniquely reversible and does not destroy information as the rank 

transformation does. 

Assuming that the model output is never negative, we require that the transformation 

shall 

− be strictly monotonic, 

− map 0 to 0, 

− map 𝑎𝑎 to 1, 

− map values << 𝑎𝑎 to values near 0, 

− map values >> 𝑎𝑎 to moderately increasing values above 1. 

Such a transformation maps all values below 𝑎𝑎 to the interval between 0 and 1. 

We made experiments with two types of transformations of this kind:  

− shifted-logarithm: 𝑦𝑦 →  log2 (1 +  𝑦𝑦/𝑎𝑎) , 

− power: 𝑦𝑦 →  (𝑦𝑦/𝑎𝑎)𝑗𝑗 . 

The shifted-logarithm transformation uses the logarithm to the basis 2 in order to auto-

matically map the value 𝑎𝑎 to 1. For the power transformation, a positive exponent sig-

nificantly below 1 should be chosen to fulfil the requirements. For the investigations 

presented here, exponent values of 0.2 and 0.3 were used. 

The courses of the three transformation functions are visualised in Fig. 9.2 in compari-

son with the original data, divided by the threshold value, which was set to 10-7 for 

demonstration. One can see that the shifted-logarithm transformation leaves low values 

nearly unchanged and behaves like the logarithm for high values. The power transfor-
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mations, however, have a notable effect also to low, non-zero values, transferring them 

closer to 1.  

 

Fig. 9.2 Shifted-log transformation and power transformation with two different ex-

ponents, visualised with a logarithmic (left) and a linear y-axis (right) 

9.2 Selection of the threshold 

As all transformations depend on the threshold parameter 𝑎𝑎, a proper selection of its 

value is essential. One possibility is to orient it at physical – or physiological – facts. If, 

for example, the model calculates the annual dose to a human individual one can 

choose a threshold that is related to the permissible limit, for instance, 1 % of it. This 

would mean that all values above 1 % of the limit are considered as “high” and are giv-

en an increasing weight in the sensitivity analysis.  

If, however, the repository performance is so good that a threshold oriented at the per-

missible limit is never exceeded or even remotely reached, a transformation with such 

a threshold value will hardly make sense. In this case, it seems better to choose a 

threshold value that is oriented at the actual model output. One possibility is to set 𝑎𝑎 

equal to the median of all output values. As the transformation is monotonic, it does not 

change the ranking so that the median of the transformed data is automatically 1, 

which is a nice mathematical property. With this choice, the upper half of the values is 

treated as “high”, the lower half as “low”. We call this a median-centred transformation. 

Another idea is to calculate the threshold such that after the transformation the arithme-

tic mean of the values becomes 1. This technique automatically leads to sensitivity 
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analysis results that are centred on the limit between “low” and “high”, but the calcula-

tion is numerically difficult.  

If a non-constant threshold value is used for a time-dependent analysis, however, the 

threshold has to be determined individually for each point in time, and when interpret-

ing the sensitivity analysis results one has to be aware that the threshold can vary con-

siderably over time. 

For the investigations the approaches with a constant threshold value and with a 

threshold equal to the median were tested. 

9.3 Sensitivity analysis results 

The effects of the transformations to sensitivity analysis are demonstrated in the follow-

ing with two models. The evaluations for the obsolete SAM-GBS model were done us-

ing an old set of calculation results. 

9.3.1 The SAM-GBS model 

Fig. 9.3 shows how the three transformations change the distribution of the contribu-

tions to the total variance. The histograms are based on 3000 runs of the SAM-GBS 

model. While for the original data the variance is clearly dominated by very few high re-

sults – each of the five highest values contributes about as much to the variance as all 

zero and near-zero results together –, in the transformed data the contributions to the 

variance look much more balanced with regard to the relation of bin population and 

contribution to the variance, no matter which transformation is used.  
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Fig. 9.3 Histograms for frequency and contribution to the total variance of 3000 

runs of the SAM-GBS model (run maxima); calculated from the original da-

ta and after application of three transformations (1: shifted-log, 2: power 

p=0.2, 3: power p=0.3) with 𝑎𝑎 = 10-7 Sv/yr 

Fig. 9.4 shows how the transformations work on a variance-based sensitivity analysis 

with EASI. As in the figure above, 𝑎𝑎 = 10-7 Sv/yr was used as the threshold value. This 

is oriented at the German legal requirement that the radiation exposure to a human in-

dividual, originating from the repository, shall not exceed 10-5 Sv/yr for probable sce-

narios (/BMU 10/). The threshold was chosen as 1 % of this value as proposed above. 
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Fig. 9.4 First-order sensitivity indices calculated using EASI for the SAM-GBS 

model from the original and transformed data (𝑎𝑎 = 10-7 Sv/yr); only the 6 

most relevant of 31 parameters and the sum of all SI1 are presented 

The parameter VIncl, which represents the volume of an assumed brine inclusion in the 

host rock, dominates clearly in all evaluations. The dominance appears, however, 

much more pronounced, if any of the three transformations is applied. In the time 

phase between 380 000 and 560 000 years the first-order index of VIncl, calculated 

from the original data, even decreases below 0.04, exceeding those of three other pa-

rameters by a mere factor of two. In the transformed evaluations, there is only a slight 

dent visible in the SI1 curves in this phase. Moreover, the parameter ExpPP is clearly 

the second most dominant in the transformed evaluations nearly for the total model 

time. Generally, the transformations seem to increase the sensitivity indices for im-

portant parameters and decrease those for the non-important parameters. Thus the 

evaluation becomes clearer. 

Unlike the power transformations, the shifted-log transformation hardly changes the 

sensitivities in the very early phase, compared to the original data. This is due to the 
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fact that in this time phase the model results are generally very low and the shifted-log 

transformation has little effect on low data. The power transformations, however, bring 

these low values closer to 1 and thus reduce the total variance. This leads to higher 

sensitivity indices for those parameters that mainly influence the highest of these low 

values. A similar effect can be seen at the very end of the model time, when the calcu-

lated annual doses become lower again. So the application of a power transformation 

can produce clearer sensitivity statements especially if predominantly low values are 

calculated by the model. 

Looking at the light-grey curves in Fig. 9.4 one realises that all three transformations 

considerably increase the sum of all SI1 values. This means that the higher-order influ-

ences are reduced; the transformed model output is obviously less determined by pa-

rameter interactions than the original values.  

9.3.2 The LILW model 

Fig. 9.5 shows the effects of the three transformations to the EASI evaluation of the 

LILW11 model. In view of the generally lower output of this model a threshold value of 

10-8 Sv/yr, that is one order of magnitude lower than for the SAM-GBS model, was 

used. The different line styles represent the results obtained with three different ran-

dom samples of size 3000 each. The sample size was deliberately chosen low for this 

investigation in order to test the capability of transformations to enhance robustness. 

Principally, the same effects as described for the SAM-GBS model can be observed. 

The transformations generally increase the calculated first-order effects of the most 

relevant parameters and slightly decrease those of the less relevant ones. Specifically, 

the effect on TBrine is eye-catching. Its SI1 is considerably increased in the early and 

medium phase, and especially the power transformations lead to calculation of first-

order indices up to 0.75 (not visible in the figure). 

The most interesting effect, however, is that, compared to the evaluation with the origi-

nal data, all three transformations lead to an exchange of the rankings of IniPermSeal 

and AEBConv, as it was the case in the investigations with different numbers of pa-

rameters. The SI1 curves for the transformed LILW11 model output resemble more the 

curves for the original LILW6 model (see Fig. 6.10) than those for the original LILW11 
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model. Moreover, the parameter BrineMgSat, which is responsible for the difference, 

becomes at least visible in the transformed evaluation.  

 

Fig. 9.5 First-order sensitivity indices calculated using EASI with three different 

random samples (3000 runs each) for the LILW11 model from the original 

and transformed data (𝑎𝑎 = 10-8 Sv/yr); in view of clarity only 7 parameters 

are shown in the legend 

The decrease of the sensitivity of AEBConv by the effect of transformation is plausible, 

in that it mainly influences the magnitude of the annual dose after seal failure, while 

IniPermSeal mainly acts on the time of failure. The highest model output values are 

likely to be caused, among other effects, by a high AEBConv. In the original-data anal-

ysis these few values have a high weight, which is considerably reduced by the trans-

formation. So logically, the calculated sensitivity of AEBConv decreases under applica-

tion of any of the transformations, while those of IniPermSeal and BrineMgSat 

increase, as they together are most responsible for the decision whether the seal has 

failed or not, so whether the model output generally tends to be higher or lower. So ob-
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viously, transformation can help to detect such hidden sensitivities without the need to 

execute two sets of model runs with different numbers of varied parameters. 

When comparing the results for the three different random samples in Fig. 9.5, one 

notes that these are not significantly closer to each other in the evaluations of trans-

formed data than in the evaluation of the original data. Obviously, a transformation of 

the investigated type cannot be expected to significantly enhance the robustness of the 

evaluation in view of variations due to random influences of the sample.  

In Fig. 9.6 the time-dependent results of an evaluation with a shifted-log transformation 

are presented, in which the median of the original data was used as the threshold value 

for each point in time. The time-development of the median is also shown. 

 

Fig. 9.6 First-order sensitivity indices calculated using EASI with three different 

random samples for the LILW11 model from the original and transformed 

data (left); a median-centred shifted-log transformation was used 

One can see that only after 7500 years the median starts to achieve relevant values, 

which is due to the fact that before this time many calculation results are zero and the 

others very low. In the beginning, TBrine appears as the only parameter that has any 

influence at all and consequently its SI1 is very high. Beginning with about 10 000 

years the sensitivity analysis results are qualitatively similar to those with a fixed 

threshold value of 10-8 Sv/yr, but appear less pronounced. For most of the time the 

median is higher than the fixed value so that fewer values are considered “high” than in 

the previous investigation. 
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9.4 Summary 

On a linear scale, the output of a repository performance assessment model is typically 

distinctly right-skewed and tailed and therefore not best appropriate for variance-based 

sensitivity analysis as it gives a strong overweight to few high values. A simple log-

transformation will normally not solve this problem but turn it into its opposite. 

Therefore, we defined two types of bijective transformations in order to mitigate the 

overweighing of high values without at the same time giving overweight to very low val-

ues: the shifted-log transformation and the power transformation, the latter with an ex-

ponent closer to 0 than to 1 – we tested exponents of 0.2 and 0.3. 

The transformations make use of a threshold value that discriminates “high” from “low” 

values. This can be chosen oriented at physical, physiological or legal data or calculat-

ed automatically to fulfil some mathematical requirement. The latter, however, may 

lead to results that are hard to interpret. 

Applied to the data to be analysed by variance-based sensitivity analysis, the transfor-

mations seem to lead to clearer and more unique results. The sum of all first-order in-

dices increased in all investigated cases if any of the transformations was applied. This 

shows that the transformations reduced the influence of parameter interactions, making 

a first-order analysis more meaningful. 

Generally, sensitivities that are relevant over the total parameter ranges seem to be-

come more pronounced by the transformation while less relevant ones decrease even 

further. An analysis on non-transformed data, however, will probably better identify pa-

rameters that specifically influence the highest model results.  

Output transformation can yield hints to hidden sensitivities as investigated in chapter 

8.2. By comparing the results of the sensitivity analysis results for non-transformed and 

transformed data one can possibly achieve valuable insight to the model behaviour 

without the need to calculate several sets of model runs with different samples.
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10 Handling of parameter dependencies 

Complex models often depend on a large number of input parameters many of which 

are interconnected by physical or technical reasons or because his accords to the in-

tentions of the investigator. Insofar as such couplings can be expressed by strict func-

tional relations, this is a pure technical problem. The modeller can either select one of 

the coupled parameters for statistical variation and make sure by appropriate technical 

measures that the others are varied accordingly, or introduce a new parameter on 

which all the coupled ones depend; their values are calculated before each individual 

model run from the sample values for the new parameter. The new parameter is then 

used as the actual parameter for uncertainty and sensitivity analysis. The latter tech-

nique is applied in RepoTREND (/REI 16a/, /REI 17/) as it allows more direct assign-

ment of the real uncertainties to the parameters under investigation and, moreover, has 

technical advantages (/REI 16b/).  

Statistical couplings between two or more of the model input parameters can occur if 

there is some reason to assume that a statistical tendency of one parameter causes a 

specific tendency of another one. For example, a high porosity of a medium will nor-

mally induce a high permeability for fluids and gases, but this is not a strict coupling. 

Although correlation is only a special case of statistical dependency, observed or as-

sumed statistical parameter couplings are often taken into account in probabilistic in-

vestigations by introducing more or less arbitrarily chosen, non-zero correlation coeffi-

cients between the concerned parameters. Many sampling techniques allow defining a 

correlation matrix before the sampling and then generate samples that approximately 

reflect the desired correlation coefficients.   

While the described approach may be adequate for uncertainty analysis, statistical de-

pendencies are a known problem in sensitivity analysis. The reason is that an identified 

sensitivity cannot clearly be assigned to one or the other parameter if both are correlat-

ed. Moreover, sensitivity analysis methods, for instance FAST/EFAST, do not allow 

correlated input. A procedure for variance-based sensitivity analysis with correlated in-

put is described in /LIG 10/. 

A statistical dependency between model parameters is normally due to some common 

influence that has not been modelled itself. Often this influence is not exactly known 

and is therefore simplified as a parameter correlation with some estimated value of the 

correlation coefficient.  
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The feeling that a pair of parameters should be correlated is often a hint at a lack of 

understanding of physical effects. In many cases, however, it is more or less impossi-

ble to resolve this by research, as an exact description would require a model on a 

much more detailed scale. In the mentioned example of a correlation between porosity 

and permeability the common influence originates from the microstructure of the po-

rous medium and is hard to be analysed in detail.  

For strongly correlated parameters any method of sensitivity analysis will calculate 

more or less the same sensitivities, so that it is hard to assess which parameter is ac-

tually responsible for the variation of model results. Therefore, one should avoid statis-

tical dependencies where possible. This can be done by simply ignoring the dependen-

cy and using a sample with statistically independent parameter values. In this case one 

gets results that assign the sensitivities uniquely to the parameters, but are valid for a 

modelling situation that does not represent the actual physical conditions exactly as in-

tended. One could perform two sensitivity analyses, one with a correlated and the other 

with a non-correlated sample, and compare the results.  

A better, but methodically more challenging approach is to ascribe the coupled influ-

ence to two (or even more) statistically independent parameters, which together deter-

mine the correlated ones. In the case of porosity and permeability, one could introduce 

a simple model that links the permeability to the porosity, depending on some addition-

al uncertain parameter, which itself is independent of the porosity. This can be a simple 

factor or a more complex relationship. In this way, parameter correlation can be avoid-

ed and more meaningful sensitivity analysis results are obtained, showing which influ-

ences to the results originate from the uncertainty of the porosity itself and which are 

due to the uncertainty of the link to the permeability.
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11 Summary, recommendations and outlook 

In this chapter a summarising overview of the main project results and conclusions is 

given at first. Then, as a final outcome of the project, a recommendation is formulated 

how to proceed to execute a meaningful sensitivity analysis in a safety case. Finally, 

some open questions are identified and related research activities are mentioned. 

11.1 Project summary and general conclusions 

11.1.1 Background and project setup 

For assessing the safety of an existing or planned repository system, numerical models 

are needed. Such models, which can describe the total system as a whole or parts of it, 

are used to generate safety statements. As any model makes use of a number of un-

certain input parameters every safety statement itself is subject to some uncertainty, 

which has to be quantified in order to allow proper assessment of the repository safety. 

This is done by uncertainty analysis. 

Sensitivity analysis is a mathematical means for detecting, separating and quantifying 

the influences of the uncertainties of the individual parameters and parameter interac-

tions to the overall uncertainty of the model output. Global sensitivity analysis means 

that all parameter uncertainties are taken into account together, each covering its total 

range. This is normally done as a probabilistic analysis by executing a large number of 

model runs with different combinations of parameter values. The goal of the project de-

scribed here was to investigate different classical and newly-developed mathematical 

methods of global sensitivity analysis with typical repository models and to develop 

some recommendations for performing a sensible and meaningful global sensitivity 

analysis in the context of a repository safety case. 

Sensitivity analysis is not an end in itself. A general finding of this project and previous 

investigations is that sensitivity analysis is a valuable tool for getting deeper insight in 

the behaviour of a simulation model and helps understand and communicate how the 

model works. This can enhance confidence in the model or even identify weaknesses 

and mistakes. A simple parameter ranking table however, derived from some more or 

less arbitrarily selected standard sensitivity analysis method, does not perform very 

well in these tasks.  
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Therefore, in the MOSEL project a variety of sensitivity analysis methods were intense-

ly tested with three numerical models that describe realistic repository systems. These 

models simulate the integrated system including all components from the waste con-

tainers to the biosphere. In all cases the model output is the annual dose to an adult 

human individual. The models were either taken from former studies or specifically de-

signed to represent typical properties of repository models. The distributions of the in-

put parameters were selected according to expert judgement.  

All three models produce distinctly right-skewed and tailed output distributions span-

ning several orders of magnitude, which is typical for integrated repository system 

models. One model – the LILW model – additionally exhibits a strong nonlinear, nearly 

non-continuous behaviour due to the sudden failure of a seal in the near field. This is a 

characteristic property of a model made for a repository in an existing salt mine like the 

Morsleben repository (/BEC 09c/). One model – the SAM-GBS model – produces a 

high proportion of zero output over the total time range, which is typical for repositories 

for heat-generating waste in rock salt, due to early closure of parts of the mine. These 

repository-specific properties can evoke unexpected sensitivity analysis effects that 

need to be investigated thoroughly.  

All models were run very many times using different samples of different sizes up to 

about 32 000. Different sampling schemes were also applied. 

A number of graphical and numerical methods for global sensitivity analysis were ap-

plied to the test systems. These methods can be grouped in three types: correlation-

/regression-based methods, variance-based methods and non-parametric methods.  

11.1.2 Graphical sensitivity analysis 

It was found that graphical methods of sensitivity analysis are generally very useful for 

gaining system understanding. Scatterplots of the model output versus the values of 

individual parameters contain much information, but are a bit unhandy and difficult to 

condense to a concise statement about the sensitivity. Good experiences were made 

with CSM plots, which allow, unlike the considered numerical methods, identification of 

parameter subranges with increased influence to the model output, provided that the 

used sample size is high enough to produce sufficiently smooth CSM curves. An im-

proved variant of the CSM plot is the CUSUNORO plot, which basically provides the 
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same information about the system but is independent of an additive offset and gener-

ally better to present. For getting an impression of the time-development of the sensitiv-

ity, CSM or CUSUNORO plots for many points in time can be presented in one plot, 

colour-coding increasing time ranges. This kind of presentation was found to be very 

descriptive. 

11.1.3 Correlation- and regression-based sensitivity analysis 

Correlation- and regression-based methods make use of an assumed linearity of the 

model and have been in wide use for many years. These methods exist in their direct 

form acting on the original model output and in a rank-based form, which performs a 

rank transformation on the data before executing the regression or correlation analysis. 

The rank transformation generally enhances the linearity of monotonic models and is 

therefore assumed to improve the performance of this type of methods. The investiga-

tions confirmed that the rank-based evaluation can considerably enhance the coeffi-

cient of model determination R² and lead to clearer results, but we found that even with 

an R² value of 0.2 or less the main sensitivities seem to be reliably identified by the di-

rect version of the method. If applying a rank transformation, one has to keep in mind 

that this transformation is not bijective and destroys some information contained in the 

original data. If, for example, a parameter variation leads to increase of the highest 

model output values by a factor of 2 or even 10, a rank-based evaluation cannot detect 

these influences as long as the value ranking remains unchanged. While influences to 

the highest values are better detected by the direct evaluation, even with a low R², a 

rank-based evaluation is more adequate for analysing influences to low model output 

values. Applying both methods and comparing the results can be helpful for identifying 

model particularities. 

Although correlation and regression are different mathematical concepts, the investiga-

tions did not show noteworthy differences between both kinds of evaluation. Any rea-

son for applying one or the other cannot be derived from the project results.  

11.1.4 Variance-based sensitivity analysis 

Variance-based sensitivity analysis is a concept developed for finding sensitivities in 

distinctly nonlinear and even non-monotonic models. Instead of trying to linearise the 

relationship, the contributions of the variances of the parameters to the variance of the 
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model output are calculated. While the first-order sensitivity indices quantify the contri-

butions of the individual parameters alone, second- and higher-order indices character-

ise the influences of two- and multi-parameter interactions. In theory, the indices of all 

orders and for all parameters add up to 1. The sum of all indices describing first- or 

higher-order influences of a certain parameter is the total-order sensitivity index of this 

parameter.  

Different methods are available for calculating the variance-based sensitivity indices. 

Five selected methods were applied to the test systems in a number of individual inves-

tigations: Sobol’, EFAST, RBD, EASI and SDP. While all these methods are capable of 

calculating the first-order indices, only the Sobol’ method calculates higher-order indi-

ces. Since, however, the results obtained with the available implementation of the 

Sobol’ method were unsatisfying, it was excluded from further investigation. EFAST is 

at least capable of calculating total-order indices. As regards the first-order indices, the 

most convincing results were achieved with EASI. This method is mathematically smart 

and numerically effective, works with any sample and seems to generate robust re-

sults.  

The variance-based methods seem to yield a message qualitatively similar to that of 

the regression-based SRC analysis; striking contradictions were not found. The vari-

ance-based analysis even provides less information as it cannot resolve the direction of 

influence. Variance-based sensitivity analysis, however, was found to be superior to 

regression-based analysis if there are significant non-monotonic influences to the mod-

el output. In such a case, SRC can pretend a low relevance, which the variance-based 

analysis does not.  

11.1.5 The role of the sampling scheme 

The selection of the sampling scheme to be applied for drawing the sample for a prob-

abilistic set of runs turned out to be essential for the stability and robustness of the re-

sults. As in uncertainty analysis unbiased statistical statements are desirable, random 

sampling is principally the best choice for this purpose. For sensitivity analysis, howev-

er, this is generally not the case, as random sampling tends to develop clusters and 

gaps, resulting in a rather inhomogeneous coverage of the parameter space. Stratified 

sampling schemes like the Latin Hypercube sampling (LHS) are designed to reach a 

better homogeneity. Quasirandom low-discrepancy sequences are deterministic se-



 

113 

quences that, on the first sight, resemble random sequences but are specifically de-

signed to cover an interval of values as homogeneously as possible at any sequence 

length. The quasirandom LpTau sampling scheme is based on this idea. 

The project results did not provide evidence for a significant superiority of LHS to ran-

dom sampling with regard to sensitivity analysis. The numbers of runs necessary for 

reaching convergent results were similar with both techniques. Clearly better perfor-

mance, however, was found for the quasirandom LpTau sampling scheme. To reach 

comparable convergence, about four times as many runs were necessary with random 

sampling compared to LpTau sampling. Although the superiority of quasirandom sam-

pling to random sampling is theoretically confined to low dimensionalities, it could be 

confirmed even for the LILW11 model with 11 parameters. As a rule of thumb, if the 

average dimension, which can be calculated as the sum of all total-order indices, does 

not exceed 3, one can expect advantages from quasi-random sampling. 

11.1.6 Dependence on the set of parameters 

The sensitivity analysis results for the LILW model were found to depend considerably 

on the selection of parameters that are taken into account. One parameter, the relative 

saturation of magnesium in the brine, was identified to be responsible for these differ-

ences. Although this parameter itself does not turn out to be of significant relevance, no 

matter if calculated with correlation- or variance-based methods, clearly different re-

sults for at least two of the other parameters were achieved depending on whether not 

its uncertainty was taken into account in the analysis. Although the origin of the differ-

ences can be well understood by analysing the functioning of the system, it may be 

surprising that the standard methods of sensitivity analysis do not reveal the obviously 

essential influence of one specific parameter. There seems to be some danger that rel-

evant model properties are overlooked if one exclusively relies on such standard meth-

ods. 

11.1.7 Two-sample tests 

The idea of two-sample tests like the Smirnov test, which belong to the non-parametric 

methods of sensitivity analysis, is to analyse the sensitivity of a model to a parameter 

by splitting the total set of model output values in two subsets according to some crite-

rion, transferring this split to the parameter sample and comparing the respective distri-
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butions of the parameter in the two sub-samples. If they differ significantly, there must 

be some influence of the parameter to the assignment of the model output to one or the 

other subset. 

If the separation is done using a rigid criterion like the 90th percentile of the model out-

put distribution, as it is done in the standard version of the Smirnov sensitivity test, the 

results of such a test may be difficult to interpret. Then the test produces sensitivity 

statements similar to those derived from a conditional cobweb plot or a mean rank plot 

(see chapter 2.5.5). For a model with an inherent tendency to produce a two-split out-

put distribution, however, this technique can yield valuable information about the sensi-

tivities with regard to the model output falling in the lower or the upper part, provided 

that the split criterion is adapted accordingly. Due to the nearly sudden failure of the 

seal in the LILW system, the model has exactly this property, typically producing a bi-

modal output distribution. By this reason the model seems predestined to be investi-

gated with a two-sample test. This was done using a dynamic threshold, which was de-

termined manually for each point in time. In fact, the results of the analysis showed a 

considerable influence of the magnesium saturation, which had not been found with the 

standard methods.  

11.1.8 Output transformation 

In order to better adapt the model output to the scale of evaluation and to avoid over-

valuation of a few high values, one can apply an appropriate transformation to the 

model output before performing the sensitivity analysis. This can make sense specifi-

cally for variance-based sensitivity analysis as the total variance of a typical output dis-

tribution of a repository model, which is distinctly right-skewed and tailed on a linear 

scale, is often clearly dominated by very few individual runs. The well-proven rank-

based methods of sensitivity analysis automatically apply a rank transformation, which 

linearises a monotonic relation, but is not bijective and therefore destroys some amount 

of information contained in the original model output. Sometimes it is recommended to 

analyse the output on a logarithmic scale, which means to apply a log transformation, 

but this can end up in a strong overvaluation of very low values and a complete failure 

with zero values.  

An alternative is to use a monotonic, continuous and bijective transformation that maps 

“low” values to the interval between 0 and 1 and “high” values to moderately increasing 
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values above 1. For the distinction a threshold value must be defined, which can be 

oriented at physical or legal arguments or at formal properties of the distribution. Two 

transformations of this type were tested: the power transformation and the shifted-log 

transformation. It was found that a variance-based sensitivity analysis performed on the 

transformed data can produce results that allow a clearer assessment of the sensitivi-

ties and, in comparison with the direct evaluation, even reveal hidden sensitivities with-

out the necessity to calculate a new set of runs. 

11.2 Recommendation for proceeding in practical cases 

The goal of this chapter is to provide the practitioner with a guideline for performing a 

sensible sensitivity analysis of a repository model in the context of a safety case. This 

is, of course, not a universally valid code of practice but a recommendation on the ba-

sis of the outcome of the project, which can require revision after gaining further expe-

riences, maybe with methods or tools that were not available for the project. 

Step 1: Identification of uncertain parameters 

Before starting any kind of probabilistic analysis one has to identify the relevant uncer-

tain parameters of the model and to properly quantify their uncertainties by means of 

appropriate probability density functions (pdf). This can be a demanding task, which 

has not been a goal of the project described here.  

If statistical couplings between certain parameters are assumed, this often means that 

there is some kind of common influence from some parameter that itself is not directly 

taken into account in the model. The preferable way to handle this situation is to re-

solve the coupling by introducing a new uncertain parameter that is actually subject to 

the uncertainty and to calculate the model input values from this. It is even conceivable 

to introduce two or even more uncertain but statistically independent parameters that 

together determine the program input values. Using correlated parameters should re-

main an exception as it unavoidably leads to coupled sensitivities that cannot clearly be 

assigned to one or the other parameter. If necessary, one can consider executing the 

sensitivity analysis once with and once without taking account of the correlation. 

For sensitivity analysis, one should generally include as few uncertainties as possible 

but as many as necessary. In case of doubt one should, as a start, rather include too 
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many than too few parameters and leave the final selection to step 2. For the following 

it is assumed that properly parametrised pdfs are available for all parameters.  

Generally, one should be aware that sensitivity analysis is a stylised mathematical ap-

proach and avoid drawing overhasty conclusions from the results. 

Step 2: Graphical screening by means of scatterplots 

Scatterplots are easily made and provide a good visual impression of the sensitivities. 

They can therefore be used for a first screening. A relatively small sample size of some 

1000 is normally sufficient for this task, for which quasirandom sampling is recom-

mended, as it is likely to lead to better robustness of the results than random sampling. 

Scatterplots should be made for each parameter and a number of points in time, cover-

ing the total time interval of interest, as well as for the run maxima. Although a big 

number of scatterplots can become necessary following this proposal, their creation 

and visual assessment is not too time-consuming if supported by an appropriate com-

putational tool.  

One has to keep in mind that higher-order sensitivities due to parameter couplings 

might not become visible in one-parameter scatterplots. 

Based on the results of the screening, a final selection of parameters to be taken into 

account in the sensitivity analysis has to be made by excluding those with little visual 

effects to the output. The number of parameters should not exceed 10, if possible.  

Step 3: Assessing the kind of influence 

One can use the scatterplots to roughly assess the kind of influence of the individual 

parameters to the model output. This can be done using three categories, see Fig. 11.1 

for examples: 

a) basically linear (on a linear or logarithmic scale), 

b) clearly nonlinear but monotonic, 

c) extremely nonlinear, non-monotonic, split or otherwise conspicuous. 
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Fig. 11.1 Example scatterplots of types a (left), b (middle) and c (right) 

The scatterplots for all relevant parameters should be assessed in this way for a num-

ber of points in time and for the run maxima. By this assessment one gets a rough im-

pression of the complexity of the model. The recommended further procedure depends 

on how complex the system seems to be. 

Step 4: Simple sensitivity analysis 

If the scatterplots are mainly of type a, maybe a few ones of type b, then a simple sen-

sitivity analysis is probably sufficient. If a more detailed sensitivity analysis is required 

anyway, one can skip this step, as it is covered by the following one.  

One should decide whether there are some points in time of specific interest or an 

analysis of the run maxima is sufficient.  

A simple sensitivity analysis can be made on the basis of the existing probabilistic re-

sults that were produced for the scatterplots. If, however, there are a significant number 

of parameters visually assessed as irrelevant, more robust results can be expected 

from a new set of runs including only the final selection of parameters. A sample size of 

some or a few thousand will normally suffice. Again, quasirandom sampling is recom-

mended. Random sampling can also be used, but might require a higher sample size 

to reach stable sensitivity analysis results. 

We recommend presenting a graphical analysis, for example by means of CSM or 

CUSUNORO plots. CUSUNORO is mathematically smarter, but CSM might be easier 

to communicate. 

In case the output distribution spans many orders of magnitude as in the examples of 

Fig. 11.1, one might consider applying a shifted-log transformation. Practically this 
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means that the evaluation is made on the logarithmic scale but without overvaluing 

meaningless low values. 

We propose to calculate three sensitivity measures: the standardised regression coeffi-

cients (SRC), the standardised rank regression coefficients (SRRC) and the first-order 

sensitivity indices (SI1). For the latter, the EASI method seems best appropriate. For 

SRC and SRRC the coefficient of linear model determination, R² should be checked. 

While a high value (near 1) indicates a good performance of the method, even a value 

of 0.2 or less does not mean that the method fails. The R² value for SRRC should not 

be lower than that for SRC.  Moreover, if the sum of all calculated SI1 is close to 1, the 

system is well-determined by first-order effects. A low value, however, is an indication 

for considerable influences of parameter interactions, which cannot be resolved by the 

methods applied so far.   

If all three measures agree about the parameter ranking, the results seem plausible, 

explain the model sensitivities satisfyingly and no parameters of type c were identified 

by the scatterplots, the sensitivity analysis can be stopped at this point. Otherwise, one 

should proceed to step 5. 

Step 5: Detailed sensitivity analysis 

This step should be performed if there seem to be major nonlinear influences, visible at 

scatterplots of type b or even c, if step 4 did not produce fully understandable and ex-

plicative results or if by any reason deeper system understanding is expected to be 

achieved from the sensitivity analysis.  

If the model is time-dependent, the detailed sensitivity analysis should also be per-

formed as a time-dependent analysis. Therefore, the model output should be available 

as a time series. The analysis should be based on a higher number of runs, but as a 

start, the existing results can be used. If quasirandom or random sampling was applied, 

the sample can be extended later.  

We recommend producing time-dependent CSM or CUSUNORO plots as they are a 

good means for getting a visual impression of the time-development of the sensitivities. 

These plots also allow detecting non-monotonic influences. Moreover they can reveal 

parts of the parameter intervals with a specifically high or low sensitivity. 
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For a time-dependent model, time curves of the sensitivity measures are helpful for un-

derstanding the system development and should therefore always be made in a de-

tailed analysis. A comparison of SRC, SRRC and SI1 time curves can reveal interest-

ing details about the system. Qualitative differences between SRC and SI1 can indicate 

non-monotonic influences. Qualitative differences between SRC and SRRC can be a 

hint at different influences to low and high values. Generally, influences to low values 

are better detected by SRRC, influences to high values by SRC. Applying a shifted-log 

or power transformation can also be helpful for analysing such different influences, but 

it should not be done without cause. 

In order to assess the stability of the achieved results one can calculate the same 

curves from different sets of model runs. One possibility is to start with a relatively 

small sample size and increase it successively by factors of two. Comparison of the 

curves shows how many runs are needed to reach satisfyingly stable results. 

Generally, it should be avoided to simply present curve plots without interpretation as 

this might be more confusing than helpful. Only such results should be presented that 

have been well understood and from which plausible messages about the system and 

its time evolution can be derived. 

If the detailed sensitivity analysis yields unsatisfying or suspicious results or leaves any 

other open questions, one can proceed to step 6. 

Step 6: Expert sensitivity analysis 

This step requires deeper expert knowledge and should only be performed by investi-

gators who actually have such knowledge. General instructions cannot be given as the 

procedure depends on the specific problems to be addressed. Some ideas, which were 

triggered by the findings of this project, are given in the following. 

A low sum of first-order indices is a hint at considerable parameter interactions. Per-

forming a shifted-log or power transformation can reduce the effects of such interac-

tions to the model results and with it increase the significance of first-order analysis. A 

detailed analysis of interactions, however, requires a systematic higher-order sensitivity 

analysis. This requires a well-working tool, which was not available for this project. To-

tal-order analysis can also yield some information, but is not always easy to interpret. 
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Total-order indices can be calculated using EFAST, but this requires a specific set of 

runs and does not seem to perform too well with highly nonlinear systems. 

Suspicious parameters that are expected to have some influence but do not show up in 

the standard sensitivity measures can be investigated by performing two sets of calcu-

lations, with and without variation of the parameter in question. It is possible that the 

results essentially differ.  

An appropriate transformation of the model output can lead to clearer results especially 

of variance-based sensitivity analysis. We propose to use a shifted-log or power trans-

formation with a problem-adequate threshold value. It was found that application of 

such a transformation and comparison of the results with those for the non-transformed 

output can even identify influential parameters with low sensitivity measures, without 

the need of an extra set of calculations.  

A two-split, bimodal output distribution predestines a model to be analysed with a two-

sample test. We applied the Smirnov test with a dynamic, time-dependent threshold. 

Such an analysis identifies the most important influences to the decision whether the 

model output value appears in the upper or the lower part of the distribution and can 

therefore provide valuable information about the system functioning. 

11.3 Related work and outlook 

The work in the project MOSEL was accompanied and supported by other research ac-

tivities. The project NUMSA (/KUH 15/), executed by TU Clausthal, was carried out in 

close cooperation with MOSEL and made, in parts, use of the same models, but was 

focused on numerical effectivity as well as at methods and aspects that were not in de-

tail considered in MOSEL. A specific, generic model for a repository for high-level 

waste in rock salt was defined that produces a considerable proportion of zero output, 

in order to investigate how such situations can be handled in sensitivity analysis. 

Metamodeling is a mathematical technique to simplify a complex numerical model by 

simulating its behaviour as close as possible by a multi-parameter function. For this 

purpose, the original model is run a number of times with different parameter combina-

tions and the metamodel function is calibrated using the results, which can be done by 

interpolation or approximation. In view of sensitivity analysis, the question arises 
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whether one can save model runs and computing time by replacing the original model 

by an appropriately calibrated metamodel and then analysing the uncertainties of the 

metamodel. One approach that makes use of this concept is the SDP method investi-

gated in chapter 6.5, but it was found that, if applied to repository models, this method 

is not at all numerically efficient and needs a lot of computing time. Therefore, a specif-

ic investigation was undertaken in cooperation with the Institute of Scientific Computing 

of the TU Braunschweig (/RAN 15/). Several metamodels for the LILW6 model based 

on interpolation or approximation were developed, calibrated with a set of original 

model results and tested with a larger set. Then the sensitivity indices were calculated 

from the metamodels and compared with those obtained in the MOSEL project. As a 

result, it was found that a metamodel approach can reduce the computational effort for 

sensitivity analysis, but the applied metamodeling techniques do not seem to be best 

appropriate for this purpose. Generally, the metamodeling approaches seem promis-

ing, but need further improvement in view of sensitivity analysis. 

To make the investigated methods and techniques of sensitivity analysis available for 

application in repository safety assessment with the program package RepoTREND, an 

appropriate computational tool was needed. As a basis for such a tool, the software 

program SimLab seemed appropriate, which was developed by the Joint Research 

Centre (JRC) in Ispra/Italy. SimLab 2, however, is technically obsolete ad cannot be in-

tegrated in other programs. The newer version SimLab 3, which was designed as a 

program library, has been withdrawn by the developers due to some errors and short-

comings. Therefore, a completely new development was initiated in cooperation be-

tween GRS and JRC. The new concept is based on scripts written in the statistical pro-

gramming language R, as this powerful open-source tool is popular among 

mathematicians, verified R-scripts are available for all standard methods of sensitivity 

analysis and it is relatively easy to write own scripts or adapt existing ones to specific 

needs. The new software package SimLab 4 (/JRC 16/), which was developed by JRC 

with support from GRS, can be used as a stand-alone tool or as a program library for 

use with own developments. It is written in C++ but provides an interface to R. This 

concept makes it very flexible for adaptation to individual needs or integration of new 

methods.   

On the basis of SimLab 4, a new framework program for preparation, execution and 

evaluation of statistical investigations with the RepoTREND program package, called 

RepSTAR (/BEC 16/), was developed in cooperation with the project ADEMOS. This 
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framework consists of routines for sampling and data support of statistical runs as well 

as the interactive tool RepoSUN for executing probabilistic uncertainty and sensitivity 

analysis of the results.  

A well working method for higher-order variance-based sensitivity analysis was not 

available for the investigations of the MOSEL project, and total-order indices could only 

be calculated with the EFAST method, which needs a specific non-extendible sampling 

and does not seem to perform too well on highly nonlinear models. Some orienting ex-

periments, however, were undertaken with the SobolGSA software of the Imperial Col-

lege London (/ZUN 13/, /KUC 13/). This program makes use of a metamodeling ap-

proach in combination with a modified Sobol’ analysis. It works with any samples and is 

able to calculate first-, second- and total-order sensitivity indices. As the results look 

promising, an integration of this concept in the RepoSUN tool seems sensible. 

In MOSEL, only a limited selection of sensitivity analysis methods have been tested. It 

is possible that other approaches like non-parametric regression or density-based sen-

sitivity analysis provide additional insight to the behaviour of complex systems or reveal 

sensitivities that are not recognised by the investigated methods. Therefore, it seems 

advisable to permanently follow the development in the field of sensitivity analysis, to 

test new methods and to update the proceeding recommendation if necessary. 
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A Data of the test systems 

In the following tables the basic data of the two main test model systems are given. As 

no new model calculations were performed for the SAM-GBS system, the data of this 

system are not given here, see /BUH 91/. 

A.1 Repository for Spent Fuel and HLW in clay 

For the details of this system see /RUE 07/. 

Tab. A.1 Geometry data for the clay model 

Parameter Value 

Borehole length [ m ] 50 

Numbers of containers per borehole [ - ] 5 

Area of the hexagonal reference section [ m2 ] 1 913.05 

Width of the CLAYPOS model [ m ] 43.74 

Transport length in the bentonite [ m ] 10 

Transport length in the Apt [ m ] 80 

Transport length in the Alb [ m ] 250 

Tab. A.2 BSK-3 container data 

Parameter Value 

Length [ m ] 4.90 

Diameter [ m ] 0.43 

Wall thickness [ m ] 0.05 

Void volume [ m3 ] 0.30 

Mass [ kg ] 1 660 

Inventory [ tHM ] 1.6 

Life-time [ y ] 2 500 

Tab. A.3  Radionuclide inventory 

Nuclide Half-life [ y ] Container [ Bq ] Repository [ Bq ] 

C-14 5.730·10+3 3.020·10+10 1.616·10+14 

Cl-36 3.000·10+5 5.493·10+08 2.939·10+12 
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Nuclide Half-life [ y ] Container [ Bq ] Repository [ Bq ] 

Co-60 5.272·10+0 1.634·10+14 8.743·10+17 

Ni-59 7.500·10+4 9.626·10+10 5.150·10+14 

Ni-63 1.000·10+2 1.371·10+13 7.333·10+16 

Se-79 1.100·10+6 2.796·10+10 1.496·10+14 

Sr-90 2.864·10+3 3.756·10+15 2.009·10+19 

Zr-93 1.500·10+6 1.341·10+11 7.172·10+14 

Nb-94 2.000·10+4 1.013·10+05 5.421·10+08 

Mo-93 3.500·10+3 7.148·10+07 3.824·10+11 

Tc-99 2.100·10+5 4.066·10+11 2.175·10+15 

Sn-126 2.345·10+5 4.964·10+10 2.656·10+14 

I-129 1.570·10+7 3.222·10+09 1.724·10+13 

Cs-135 2.000·10+6 3.481·10+10 1.863·10+14 

Cs-137 3.017·10+1 6.324·10+15 3.383·10+19 

Sm-151 9.300·10+1 1.092·10+14 5.844·10+17 

Ra-226 1.600·10+3 1.691·10+04 9.048·10+07 

Th-229 7.880·10+3 1.032·10+04 5.519·10+07 

Th-230 7.540·10+4 6.280·10+06 3.360·10+10 

Th-232 1.405·10+10 8.118·10+00 4.343·10+04 

Pa-231 3.276·10+4 2.029·10+06 1.085·10+10 

U-233 1.592·10+5 5.795·10+06 3.100·10+10 

U-234 2.455·10+5 6.609·10+10 3.536·10+14 

U-235 7.038·10+8 7.969·10+08 4.263·10+12 

U-236 2.342·10+7 1.348·10+10 7.210·10+13 

U-238 4.468·10+9 1.953·10+10 1.045·10+14 

Np-237 2.144·10+6 2.153·10+10 1.152·10+14 

Pu-238 8.774·10+1 4.747·10+14 2.540·10+18 

Pu-239 2.411·10+4 3.465·10+13 1.854·10+17 

Pu-240 6.563·10+3 8.160·10+13 4.366·10+17 

Pu-241 1.435·10+1 1.387·10+16 7.419·10+19 

Pu-242 3.750·10+5 6.035·10+11 3.229·10+15 

Am-241 4.322·10+2 3.277·10+14 1.753·10+18 

Am-242m 1.410·10+3 3.228·10+12 1.727·10+16 
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Nuclide Half-life [ y ] Container [ Bq ] Repository [ Bq ] 

Am-243 7.37·10+3 5.740·10+12 3.071·10+16 

Cm-243 2.91·10+1 1.447·10+12 7.741·10+15 

Cm-244 1.810·10+1 8.996·10+14 4.813·10+18 

Cm-245 8.500·10+3 3.484·10+11 1.864·10+15 

Tab. A.4 Mobilisation rates for different fuel compartments 

 Fuel matrix Metal parts Gas space 

Mobilisation rate  [ y-1 ] 1.0·10-6 3.6·10-3 instantaneous 

Tab. A.5 Relative inventory in the different fuel compartments in per cent 

Element Metal parts Fuel matrix Gas space 

C 72.20 26.41 1.39  

Cl 0.00 94.00 6.00 

Ni, Mo, Nb 99.50 0.47 0.03 

Sn 0.00 98.00 2.00 

I, Se 0.00 97.00 3.00 

Cs 0.00 96.00 4.00 

Rb, H 0.00 95.00 5.00 

Sr, Sm, Pb 0.00 99.90 0.10 

Zr 9.40 86.07 4.53 

Tc 0.10 99.89 0.01 
Pd, Cm, Am, Pu, Pa, U, 
Th, Ac, Np, Ra 0.00 99.99 0.01 

Tab. A.6 Solubility limits in [ mol·l-1 ] (“high” denotes no solubility limit) 

Element Reference Minimum Maximum 

H high high high 

Be 1·10-6 1·10-6 high 

Corg high high high 

Cl high high high 

Ca 1·10-2 1·10-2 1·10-2 

Ni 3·10-5 1·10-5 8·10-5 

Se 5·10-9 2·10-11 1·10-5 
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Element Reference Minimum Maximum 

Sr 2·10-5 3·10-6 1·10-4 

Zr 2·10-9 3·10-11 2·10-9 

Nb 3·10-5 1·10-8 1·10-4 

Mo 1·10-6 1·10-6 1·10-5 

Tc 4·10-9 1·10-9 1·10-8 

Pd 5·10-8 1·10-10 2·10-7 

Ag 3·10-6 1·10-10 3·10-6 

Sn 1·10-8 5·10-9 1·10-7 

I high high high 

Cs high high high 

Sm 5·10-7 3·10-7 9·10-7 

Ho 5·10-7 3·10-7 9·10-7 

Pb 2·10-6 2·10-8 8·10-5 

Po high high high 

Ra 2·10-11 4·10-12 5·10-8 

Ac 1·10-6 5·10-8 3·10-5 

Th 7·10-7 2·10-7 3·10-6 

Pa 1·10-8 1·10-8 1·10-5 

U 3·10-9 3·10-10 5·10-7 

Np 5·10-9 3·10-9 1·10-8 

Pu 5·10-8 3·10-9 1·10-6 

Am 1·10-6 5·10-8 3·10-5 

Cm 1·10-6 5·10-8 3·10-5 
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Tab. A.7 Distribution coefficients for the Lower Cretaceous Clays (all elements not 

included here are assumed to have Kd = 0) 

Element Kd [m3/kg] Element Kd [m3/kg] Element Kd [m3/kg] 

Tc 5·10-4 C 2·10-2  U 0.012 

Se 5·10-4 Sr 2·10-4 Ra 3·10-3 

Zr 8·10-2 Np 6·10-2 Ni 1·10-3 

Nb 1 Pu 0.5 Th 8·10-2 

Cs 5·10-2 Am/Cm 0.5 Pa 1 

I 0 Pb 6·10-4 Ac 4·10-2 

For the element-specific porosity a value of 0.16 was used for all elements except 

Chloride, Selenium, Molybdenum and Iodine. For these four elements anion exclusion 

by a factor of two was assumed and consequently a porosity of 0.08 was used. 

For the pore diffusion coefficient a value of 2.6·10-10 m2·s-1 was used for all radionu-

clides. 

For calculating the annual dose to a human individual the biosphere dose conversion 

factors given in Tab. A.8 were used. 

Tab. A.8 Dose conversion factors (DCF) in Sv·y-1 / Bq·m-3 

Activation and fission 
products Th- and Np- series U- and Ac-series 

Nuclide DCF Nuclide DCF Nuclide DCF 

C-14 4.6·10-8 Cm-248 5.0·10-6 Cm-246 8.0·10-7 

Cl-36 3.5·10-8 Pu-244 3.0·10-6 Pu-242 9.4·10-7 

Ca-41 2.0·10-9 Cm-244 3.8·10-7 AM-242 7.6·10-7 

Co-60 3.9·10-6 Pu-240 9.6·10-7 U-238 7.1·10-7 

Ni-59 4.9·10-9 U-236 5.6·10-7 Pu-238 7.5·10-7 

Ni-63 1.1·10-9 Th-232 1.1·10-4 Th-234 4.8·10-9 

Se-79 3.4·10-7 Ra-228 2.4·10-6 U-234 1.4·10-6 

Rb-87 1.3·10-7 U-232 5.4·10-6 Th-230 3.7·10-5 

Sr-90 1.8·10-7 Th-228 1.3·10-6 Ra-226 3.0·10-5 

Zr-93 3.7·10-8 Cm-245 1.4·10-6 Pb-210 2.3·10-6 

Mo-93 3.2·10-7 Pu-241 1.8·10-8 Po-210 4.9·10-6 
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Activation and fission 
products Th- and Np- series U- and Ac-series 

Nuclide DCF Nuclide DCF Nuclide DCF 

Nb-94 3.1·10-6 Am-241 8.0·10-7 Cm-247 2.9·10-6 

Tc-99 8.8·10-9 Np-237 4.7·10-6 Am-243 2.0·10-6 

Pd-107 1.9·10-9 U-233 3.9·10-6 Pu-239 9.8·10-7 

Sn-126 1.6·10-5 Pa-233 8.8·10-9 U-235 3.3·10-6 

I-129 5.6·10-7 Th-229 1.7·10-5 Pa-231 4.0·10-5 

Cs-135 5.7·10-8 Ra-225 1.1·10-7 Ac-227 1.0·10-5 

Cs-137 9.5·10-7 Ac-225 3.7·10-8 Th-227 1.9·10-8 

Sm-151 3.2·10-10   Ra-223 1.1·10-7 

 

A.2 Repository for Low- and Intermediate-Level waste (LILW) in rock salt 

Only the basic near field and far field data of the LILW system are given in the follow-

ing. The biosphere data are identical to those described in A.1. 

 

Tab. A.9 Near field segment data 

  EXIT AEB MB RG NAB 
Height m 10 10 100 160 5 
Width m 10 50 20 60 30 
Length m 100 250 20 300 200 
Height of seal m  2  10 10 
Width of seal m  4  10 10 
Length of seal m  25  10 10 
Additional volume m³   7000   
Porosity of add. volume -   0.4   
Local convergence factor -  1 0.2 1 0.2 
Seal permeability m²    1.0E-14 1.0E-14 
Seal porosity -    0.2 0.2 
Vol. of backfill w/o waste m³  34000  1750000 25000 
Initial backfill porosity -  0.39  0.4 0.4 
gas storage / pore volume -    0.2 0.3 
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Gas-prod. prop. of material -  0.8  0.8 0.8 
Level of lowest seal m  12    
Porosity - 0.3     
Non-backf. vol. below AE m³  40000    
Backfilled vol. below AE m³  100000    
Non-backf. vol. adj. AE m³  1000    
Backfilled vol. adj. AE m³  2500    
Non-backf. vol. above AE m³  250000    
Backfilled vol. above AE m³  250000    
Height of voids above AE m  132    

 



 

142 

Tab. A.10 Global near field data 

General 
Fluid density kg/m³ 1200  
Fluid viscosity Pa s 2.4E-03  
Rock temeperature K 300  
Hydrostatic pressure MPa 5.0  
Rock pressure MPa 10  
Stress exponent - 5.0 
Diffusion coefficient m²/s 1.0E-09  
Dispersion length m 0 
Convergence 
Reference convergence rate 1/a 4.0E-05 
Reference porosity - 0.3 
Stress exponent for backfill support - 5.0 
Permeability-porosity parameter - 7.46E-09 
Permeability-porosity exponent - 5.253 
Final porosity - 1.0E-05 
Specific 
Initial backfill porosity - 0.4 
Sheeting factor - 1.0 
Initial porosity of sheeting debris - 0.4 
Initial porosity of seals - 0.2 
Initial permeability of seals m² 1.0E-18 
Volumetric dissolution capacity of brine - 0.2 
Maximum permeability increase - 1.0E+04 
viscosity of brine in unaltered seal Pa s 2.0E-03 
Gas production 
Specific gas production (metal) mol/kg 24 
Specific gas production (cellulose) mol/kg 33.3 
Specific gas production (organics) mol/kg 143 
Corrosion rate (metal) 1/a 4.0E-03 
Corrosion rate (cellulose) 1/a 0 
Corrosion rate (organics) 1/a 1.0E-05 
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Tab. A.11 Waste package data 

  NAB AEB RG  
Matrix mass kg 0 0 0 
Container mass kg 4.0E+05 1.0E+07 2.0E+06 
Waste volume m³ 2.0E+03 3.0E+04 0 
Converging void volume m³ 1.5E+03 1.5E+04 0 
Non-converging void volume m³ 0 0 0 
Mass of gas producing substances (1) kg 1.0E+05 1.5E+06 4.0E+05 
Mass of gas producing substances (2) kg 3.0E+05 3.5E+06 1.0E+03 
Interim storage time a 0 0 0 

 

Tab. A.12 Radionuclide inventories 

Radionuclide NAB AEB Radionuclide NAB AEB 

H-3 8.0E+08 2.0E+12 Cm-248 0.0E+00 0.0E+00 

Cc-14 1.4E+06 4.0E+07 Pu-244 0.0E+00 0.0E+00 

Cl-36 5.0E+06 8.0E+08 Cm-244 5.0E+05 2.0E+09 

Ca-41 5.0E+04 7.0E+07 Pu-240 3.0E+06 1.0E+09 

Co-60 2.0E+14 8.0E+12 U-236 2.0E+04 8.0E+06 

Ni-59 6.0E+08 1.5E+11 Th-232 0.0E+00 3.0E+05 

Ni-63 3.0E+10 2.0E+13 Cm-245 2.0E+02 2.0E+05 

Se-79 3.0E+05 2.0E+08 Pu-241 2.0E+08 2.0E+11 

Rb-87 3.0E+05 5.0E+03 Am-241 3.0E+07 9.0E+10 

Sr-90 2.0E+09 5.5E+12 Np-237 4.0E+04 1.0E+07 

Zr-93 9.0E+06 9.0E+09 U-233 5.0E+03 3.0E+03 

Nb-94 4.0E+07 2.0E+10 Th-229 5.0E+03 2.0E+03 

Mo-93 4.5E+05 9.0E+07 Cm-246 3.0E+00 1.0E+05 

Tc-99 3.0E+08 7.5E+10 Pu-242 2.0E+04 1.0E+07 

Pd-107 3.0E+04 7.0E+07 U-238 2.0E+04 2.0E+07 

Sn-126 4.0E+05 2.0E+08 U-234 7.0E+04 7.0E+07 

I-129 2.5E+04 9.0E+06 Th-230 1.0E+01 6.0E+05 

Cs-135 5.0E+05 3.0E+08 Ra-226 0.0E+00 1.0E+10 

Cs-137 5.0E+13 7.5E+13 Cm-247 0.0E+00 0.0E+00 

Sm-151 5.0E+08 9.0E+10 Am-243 8.0E+03 2.0E+07 
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Tab. A.13 Far field data 

  Overburden Aquifer 

Layer  Grauer Salzton Oberkreide 

Length of transport path m 0.8 0.2 

Cross section of transport path m² 150 12500 

Groundwater volume flow rate m³/a 0 15000 

Dispersion length m 4 4 

Molecular diffusion coefficient m²/a 0.016 0.016 

Porosity - 0.3 0.3 

Density kg/m³ 2500 2500 

 

Tab. A.14 Sorption distribution coefficients (Kd) in m³/kg 

Element Overburden Aquifer  Element Overburden Aquifer  

C 0 0 Sn 0 0 

Cc 0.003 0 I 0 0 

Cl 0 0 Cs 0.003 0 

Ca 1.40E-04 0 Sm 0.7 0 

Co 0.014 0 Cm 0.7 0 

Ni 0.014 0 Am 0.4 0.1 

Se 3.50E-04 0 Pu 0.4 0.1 

Rb 0.035 0 Np 0.042 0.01 

Sr 1.40E-04 0 Pa 0.7 0.6 

Zr 0.7 0 Th 0.7 0.2 

Nb 0.7 0 U 0.2 0.002 

Mo 0 0 Ra 0.004 0.04 

Tc 3.50E-04 0 Pb 0.028 1 

Pd 0.014 0 Po 0 1.2 

Sb 0 0 Ac 0.49 0.3 
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