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Abstract 
Water shortage is one of the predominant factors that can directly or indirectly cause a 

reduction in crop yield and thus poses a severe threat to sustainable crop production. It is 

therefore critical to improve the sustainability of current agricultural management practices 

and develop new strategies that will allow the establishment of more sustainable agricultural 

production systems that can meet present and future food demand. The use of agro-ecosystem 

models to simulate crop growth for given environmental conditions, and the use of detailed 

information on soil heterogeneity beyond the field scale are among the most promising tools 

for achieving this goal. Soil properties are a key control for water and nutrient availability and 

are therefore co-responsible for yield gaps and harvest failures. A detailed representation of 

the spatial variability of soil is consequently essential for establishing relevant spatially 

distributed agro-ecosystem simulations of crop performance in response to water stress. 

Unfortunately, a detailed soil representation is costly to obtain, and generally cannot be 

substituted by the use of existing general-purpose soil maps that lack the necessary level of 

detail. Recently, improvements in digital soil mapping have been made using non-invasive 

geophysical methods such as electromagnetic induction (EMI) that provide fast and cost-

effective mapping of relevant soil information. It is however still challenging to derive 

information relevant for agricultural management from large geophysical datasets and their 

added value for agricultural applications has not been fully investigated yet, especially for the 

analysis of patterns in crop performance. This thesis aims at investigating and quantifying the 

added value of detailed soil information obtained using large-scale geophysical mapping for 

the simulation and prediction of the spatial variability of crop growth and yield obtained with 

agro-ecosystem modelling. 

 

In a first step, a detailed EMI survey with a 2.5 m spacing between measurement lines was 

performed for a 1 x 1 km area consisting of 51 adjacent agricultural fields where previous 

studies reported a clear connection between soil properties and crop performance. In total, 

nine apparent electrical conductivity (ECa) maps were obtained with a depth of investigation 

ranging between 0 to 2.7 m. Based on the combination of these ECa maps and available soil 

maps, an a priori interpretation was performed and four sub-areas with characteristic 

sediments and ECa were identified. This was followed by a division of the ECa maps into 

areas with similar soil properties using a supervised classification methodology. Soil profile 

descriptions up to a depth of 2 m were obtained at 100 sampling locations and 552 samples 
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were analyzed for textural characteristics. The combination of the classified map and ground 

truth data resulted in a 1m resolution geophysics-based soil map divided into eighteen soil 

units with soil profile and texture information. These eighteen soil units showed statistically 

significant differences when their characteristics were compared using a two-tailed t-test and 

corresponded well with patterns in crop performance obtained from satellite imagery. 

 

In a second step, this geophysics-based soil map was used as input for agro-ecosystem 

simulations of the growth of multiple crops. Soil hydraulic parameters were calculated from 

texture and bulk density by using the pedotransfer function (PTF) from Rawls and Brakensiek 

(1985). Simulations of soil water content dynamics performed with the agro-ecosystem model 

AgroC were compared with soil water content measured at two different locations. The 

resulting root mean square error (RMSE) between measured and simulated water content was 

0.032 and 0.056 cm3 cm-3 for the two sites. These RMSE values were lower than that of these 

obtained using the more widely used ROSETTTA PTF. The AgroC model was then used to 

simulate the growth of corn, potato, sugar beet, winter rapeseed, winter barley, and winter 

wheat in the 1 x 1 km study area. It was found that the simulated leaf area index (LAI) was 

affected by the magnitude of simulated water stress, which was a function of both the crop 

type and soil characteristics. Simulations of LAI were generally consistent with the observed 

LAINDVI obtained from RapidEye satellite images. Finally, maps of simulated productivity at 

harvest were produced for corn, sugar beet, winter barley, and winter wheat and the results 

matched well with actual harvest data and literature values. 

 

In a third step, the agro-ecosystem simulations obtained using the geophysics-based soil map 

were compared with simulations obtained using two general-purpose soil maps. In these two 

maps, quantitative percentages of the grain size distribution were calculated by using the 

USDA soil texture triangle since these two maps were provided with a qualitative subdivision 

in textural classes only. The soil texture of the upper horizons was found to be rather similar 

in the three soil maps, which was not the case for the description of the underlying coarse 

horizons and the location of the boundaries between the four sub-areas in which the study area 

was divided. Subsequently, the growth of corn, sugar beet, winter barley, winter rapeseed, and 

winter wheat was simulated with AgroC using inputs from all three maps. A comparison 

between simulated LAI and observed LAINDVI consistently showed that lower RMSE and 

higher model efficiency (ME) and coefficient of determination (R2) were obtained using the 

geophysics-based soil map. The added value of the geophysics-based soil map was rather 



 Abstract 

v 
 

subtle for winter crops and for periods with limited water stress. On the contrary, the 

geophysics-based soil map resulted in improved LAI predictions for summer crops and for 

periods with a strong reduction in crop performance. A more detailed comparison of the 

simulation results for sugar beet showed that the geophysics-based soil map provided better 

results due to more accurate descriptions of i) the depth to coarse sediments, ii) the soil 

texture of the soil above the coarse sediments, and iii) the subdivision of the four sub-areas. 

Furthermore, the simulated productivity of sugar beet at harvest matched with the actual 

harvest only with the use of inputs from the geophysics-based soil map. 

 

In conclusion, the novel EMI data processing approach described in this thesis provided a 

reliable and cost-effective tool to obtain high-resolution soil maps that are beneficial for 

precision agriculture. The geophysics-based soil map obtained through this approach allowed 

accurate agro-ecosystem simulations for multiple crops in a large area where water stress is 

strongly influenced by soil characteristics. Overall, it was found that a geophysics-based soil 

map represents an added value in terms of providing long-term support to agricultural 

management as it is able to provide crucial information on the spatial distribution of water 

stress and crop performance under present and future scenarios. The presented methodology 

might provide the foundation for future research aimed at obtaining detailed soil information 

in agricultural areas well beyond the scale that was investigated in this thesis and at improving 

management practices such as the optimization of irrigation and crop rotation for given 

climatic conditions. 
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Zusammenfassung 
Wasserknappheit ist einer der dominierenden Faktoren, der direkt oder indirekt zu einer 

Verringerung des Ernteertrags führen kann und somit eine ernsthafte Bedrohung für eine 

nachhaltige Pflanzenproduktion darstellt. Daher ist es von entscheidender Bedeutung, die 

derzeitigen landwirtschaftlichen Bewirtschaftungspraktiken zu verbessern und neue Strategien 

zu entwickeln, die es ermöglichen, nachhaltigere landwirtschaftliche Produktionssysteme zu 

etablieren, die die gegenwärtige und zukünftige Nachfrage nach Lebensmitteln decken 

können. Der Einsatz von Agrar-Ökosystemmodellen zur Simulation des Pflanzenwachstums 

unter gegebenen Umweltbedingungen und die Verwendung detaillierter Informationen zur 

Bodenheterogenität über die Feldskala hinaus gehören zu den vielversprechendsten 

Instrumenten zur Erreichung dieses Ziels. Die Bodeneigenschaften bestimmen die Wasser- 

und Nährstoffverfügbarkeit und sind somit mitverantwortlich für Ertragslücken und 

Ernteausfälle. Eine detaillierte Darstellung der räumlichen Variabilität des Bodens ist daher 

unerlässlich, um relevante räumlich verteilte Agrar-Ökosystemsimulationen der 

Ertragsleistung als Reaktion auf Wasserstress zu erstellen. Leider ist eine detaillierte 

Charakterisierung der Bodeneigenschaften kostspielig und zeitintensiv und kann in der Regel 

nicht durch die Verwendung vorhandener universeller (grobskaliger) Bodenkarten ersetzt 

werden. In jüngster Zeit wurden Verbesserungen bei der digitalen Bodenkartierung 

vorgenommen, wobei nicht-invasive geophysikalische Methoden wie elektromagnetische 

Induktion (EMI) genutzt werden, um eine schnelle und kostengünstige Kartierung relevanter 

Bodeninformationen zu ermöglichen. Jedoch ist es nach wie vor schwierig aus großen 

geophysikalischen Datensätzen relevante Informationen für die landwirtschaftliche Praxis 

abzuleiten. Auch ist dessen Mehrwert für landwirtschaftliche Anwendungen noch nicht 

vollständig untersucht, insbesondere für die Analyse von Mustern in der Ertragsleistung. 

Diese Studie zielt daher auf die Untersuchung und Quantifizierung des Mehrwerts detaillierter 

Bodeninformationen ab, die mit Hilfe groß angelegter geophysikalischer Kartierungen für die 

Simulation und Vorhersage der räumlichen Variabilität von Pflanzenwachstum und Ertrag 

durch Agrar-Ökosystemsimulationen gewonnen wurden. 

 

In einem ersten Schritt wurde eine detaillierte EMI-Kartierung mit einem Abstand von 2,5 m 

zwischen den Messlinien für ein 1 x 1 km großes Gebiet mit insgesamt 51 

landwirtschaftlichen Schlägen durchgeführt, wobei frühere Studien einen deutlichen 
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Zusammenhang zwischen Bodeneigenschaften und Ertragsleistung zeigten. Insgesamt wurden 

neun Karten der scheinbaren elektrischen Leitfähigkeit (ECa) mit einer Erkundungstiefe 

zwischen 0 und 2,7 m erstellt. Basierend auf der Kombination dieser ECa-Karten und 

verfügbaren Bodenkarten wurde eine a- priori Interpretation durchgeführt und vier 

Teilflächen mit charakteristischen Böden und charakteristischer ECa identifiziert. Es folgte 

eine weitere Aufteilung der ECa-Karten in Gebiete mit ähnlichen Bodeneigenschaften unter 

Verwendung einer überwachten Klassifikation. An 100 Probenahmestellen wurden 

Bodenprofilbeschreibungen bis zu einer Tiefe von maximal 2 m aufgenommen und 552 

Proben wurde hinsichtlich der Bodentextur analysiert. Die Kombination der 

Bodenklassifikation und der Bodenbeprobung führte zu einer geophysikalisch basierten 

Bodenkarte mit einer Auflösung von 1 m, die in achtzehn Bodeneinheiten mit Bodenprofil- 

und Texturinformationen unterteilt ist. Diese achtzehn Bodeneinheiten zeigten statistisch 

signifikante Unterschiede (zweiseitiger t-Test) und korrelierten gut mit Pflanzenmustern aus 

Satellitenbildaufnahmen. 

 

In einem zweiten Schritt wurde diese geophysikalisch basierte Bodenkarte als Input für 

Agrar-Ökosystemsimulationen für 6 landwirtschaftliche Kulturen verwendet. Die 

hydraulischen Bodenparameter wurden aus Textur und Lagerungsdichte mit Hilfe der 

Pedotransferfunktion (PTF) von Rawls und Brakensiek (1985) berechnet. Simulationen der 

Dynamik des Bodenwassergehalts, die mit dem Agrar-Ökosystemmodell AgroC durchgeführt 

wurden, wurden mit dem an zwei verschiedenen Orten gemessenen Bodenwassergehalt 

verglichen. Der resultierende mittlere Quadratwurzelfehler (RMSE) zwischen gemessenem 

und simuliertem Wassergehalt betrug 0,032 und 0,056 cm3 cm-3 für die beiden Standorte. 

Diese RMSE-Werte waren niedriger als die, die mit den etablierten ROSETTTA PTFs erzielt 

wurden. Mit dem AgroC-Modell wurde in einem weiteren Schritt das Wachstum von Mais, 

Kartoffeln, Zuckerrüben, Winterraps, Wintergerste und Winterweizen im 1 x 1 km großen 

Untersuchungsgebiet simuliert. Es wurde festgestellt, dass der simulierte Blattflächenindex 

(LAI) vom simulierten Wasserstresses beeinflusst wurde, der sowohl von der Kulturart als 

auch von den Bodeneigenschaften abhängt. Die Simulationen des Blattflächenindex (LAI) 

waren im Allgemeinen konsistent mit den beobachteten LAINDVI, die aus RapidEye-

Satellitendaten abgeleitet wurden. Schließlich wurden Karten der simulierten 

Ernteproduktivität für Mais, Zuckerrüben, Wintergerste und Winterweizen erstellt, deren 

Ergebnisse gut mit gemessenen Erträgen und Literaturwerten übereinstimmen. 
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In einem dritten Schritt wurden die mit der geophysikalisch basierten Bodenkarte erstellten 

Agrar-Ökosystemsimulationen mit Simulationen auf Basis von zwei universellen 

Bodenkarten verglichen. In diesen beiden Karten wurden die Anteile der 

Korngrößenverteilung unter Verwendung des USDA-Bodentexturdreiecks abgeleitet, da diese 

beiden Karten nur Informationen zu Texturklassen bereit stellen. Die Bodentextur der oberen 

Horizonte erwies sich in den drei Bodenkarten als recht ähnlich, was aber für die 

Unterbodenhorizonte und die Lage der Horizontgrenzen zwischen den vier Teilbereichen, in 

die das Untersuchungsgebiet unterteilt war, nicht der Fall war. Anschließend wurde das 

Wachstum von Mais, Zuckerrüben, Wintergerste, Winterraps und Winterweizen mit AgroC 

anhand von Inputs aus allen drei Karten simuliert. Ein Vergleich zwischen simuliertem LAI 

und beobachtetem LAINDVI zeigte, dass ein niedrigerer RMSE und ein höhere Modelleffizienz 

(ME) sowie ein höheres Bestimmtheitsmaß (R2) unter Verwendung der geophysikalischen 

Bodenkarte erreicht wurden. Der Mehrwert der geophysikalisch basierten Bodenkarte war für 

Winterkulturen und für Zeiträume mit begrenztem Wasserstress eher niedrig. Die 

geophysikalisch basierte Bodenkarte führte aber zu verbesserten LAI-Vorhersagen für 

Sommerkulturen und für Perioden mit stark verminderter Ernteleistung. Ein detaillierterer 

Vergleich der Simulationsergebnisse für Zuckerrüben zeigte, dass die geophysikalisch 

basierte Bodenkarte aufgrund genauerer Beschreibungen von i) der Tiefe bis zu 

Schottersedimenten, ii) der Bodentextur des Bodens über den Schottersedimenten und iii) der 

Unterteilung der vier Teilbereiche bessere Ergebnisse lieferte. Darüber hinaus stimmen die 

simulierten Erträge der Zuckerrübe mit den tatsächlichen Erträgen nur bei der Verwendung 

der geophysikalisch basierten Bodenkarte überein. 

 

Zusammenfassend lässt sich feststellen, dass der in dieser Arbeit beschriebene neuartige EMI-

basierte Kartierungsansatz ein zuverlässiges und kostengünstiges Werkzeug zur Gewinnung 

hochauflösender Bodenkarten ist, der für die Präzisionslandwirtschaft von Vorteil sein wird. 

Die so gewonnene geophysikalisch basierte Karte ermöglichte genaue Agrar-

Ökosystemsimulationen für mehrere Nutzpflanzen in einem großen Gebiet, in dem der 

Wasserstress stark von den Bodeneigenschaften beeinflusst wird. Es wurde festgestellt, dass 

eine geophysikalisch basierte Bodenkarte einen Mehrwert für die langfristige Unterstützung 

der landwirtschaftlichen Bewirtschaftung darstellt, da sie in der Lage ist, entscheidende 

Informationen über das räumliche Muster von Wasserstress und Ertrag unter aktuellen und 

zukünftigen Szenarien zu liefern. Die vorgestellte Methodik könnte die Grundlage für 

zukünftige Forschungsarbeiten bilden, die darauf abzielen, detaillierte Bodeninformationen in 
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landwirtschaftlichen Gebieten zu erhalten, die weit über das in dieser Studie bereits 

untersuchte Maß hinausgehen, und die in der Lage sind Managementpraktiken, wie z.B. die 

Optimierung der Bewässerung und der Fruchtfolge für bestimmte klimatische Bedingungen, 

besser anzupassen. 
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Chapter 1 
 

Introduction 
 

In recent years, significant improvements have been made in data acquisition, data 

management, and modelling to support more productive and sustainable agriculture, which is 

vital to meet present food security challenges (Antle et al., 2017). Reductions in crop 

performance can be directly or indirectly attributed to a number of factors, such as insufficient 

nutrient availability, inadequate crop and soil management practices, adverse weather 

conditions, occurrence of pests and diseases, and water shortage (Baret et al., 2007; Foley et 

al., 2011; Sánchez, 2010; Slingo et al., 2005). Worldwide, agriculture is the largest consumer 

of freshwater (Brauman et al., 2013) with most crops being produced using water that comes 

exclusively from precipitation (Rosegrant et al., 2009). Water is not only essential in 

agriculture, but also is a vital component of the environment significantly impacting 

ecosystem and human health, nature conservation, sustainable development, industry, and 

economic growth (Chartzoulakis and Bertaki, 2015). At the same time, the rapidly growing 

world population combined with increasing irrigation practices, industrial developments, and 

climate change have been affecting the quantity and quality of the available water 

(Chartzoulakis and Bertaki, 2015). Within this context, drought stress caused by below-

average precipitation is considered to be a severe threat for sustainable crop production in the 

coming decades (Anjum et al., 2011). It will therefore be essential to produce more food per 

unit of water (Brauman et al., 2013). 

 

A crop can reach its yield potential when grown with adequate water and nutrient supply in 

the absence of additional stress factors, such as pests, diseases, and weeds (Evans and Fischer, 

1999). The yield potential is the highest yield that a given crop can reach in a given area, and 

it depends on crop density, solar radiation, temperature, and atmospheric CO2 concentration 

(Evans, 1996; van Ittersum et al., 2003). However, a crop rarely achieves its yield potential 
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(van Ittersum et al., 2013). Yield often is reduced by insufficient water and/or nutrient supply 

resulting in the so-called water-limited or nutrient-limited yield potential (van Ittersum et al., 

2003). Pests, diseases, and competition with weeds can further reduce the water/nutrient-

limited yield potential down to the actual yield achieved by a farmer on a given field 

(Cassman et al., 2003). The difference between the actual and potential yield represents a 

yield gap that can be reduced with adequate agricultural management of water, nutrients, and 

pests (Cassman et al., 2003). Unfortunately, the occurrence of yield gaps caused by water 

scarcity cannot always be foreseen and prevented, especially in regions where irrigation is 

typically not used (Ceglar et al., 2016; Ward and Hohmann, 1988). The exact response of 

crops to drought also is highly variable, and depends on crop type (Prasad et al., 2008). In 

general, crops respond to drought stress with a decrease of leaf production, a reduction in leaf 

area index (LAI), an increase in senescence rate, followed by a reduction of the yield (Baret et 

al., 2007). The actual crop growth and yield are influenced by additional factors, such as the 

amount and timing of precipitation, soil physical properties, and soil horizon distribution 

because all these factors have an effect on the plant-available soil water (Krüger et al., 2013; 

Lück et al., 2009). Therefore, understanding the spatial variability of water stress and crop 

yield is essential (Wong and Asseng, 2006). Unfortunately, our ability to predict within-field 

variability of crop stress and the resulting reduction in crop growth is still rather limited 

(Batchelor et al., 2002). One important reason for this is that detailed high-resolution 

information on the soil characteristics required to successfully predict crop growth (Boenecke 

et al., 2018) is typically not available. 

 

Local differences in shallow soil properties (~1-2 m max depth), such as soil horizon 

thickness and texture, are known to influence soil water movement and retention as well as 

nutrient availability and root growth. Over the last decades, great efforts in soil surveying 

have resulted in the production of a variety of commonly available thematic maps that provide 

information on soil characteristics (e.g., geological, soil, and yield potential maps). 

Nevertheless, these general-purpose maps are not always suited to actual farming applications 

(Della Chiesa et al., 2019). For example, they are often insufficiently detailed to be used in 

precision agriculture (Robert, 1993) or to support the identification and management of 

within-field differences in crop performance (Franzen et al., 2002; Nawar et al., 2017; Robert, 

1993). The inadequate reproduction of this site-specific soil heterogeneity can be explained by 

the sparse and time-consuming point-scale direct soil sampling methodology on which these 

thematic maps are based (Gebbers and Adamchuk, 2010; Heuvelink and Webster, 2001). As a 
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result, soils are discretized in relatively large polygons that are not provided with a 

quantitative description of soil texture and layering (Krüger et al., 2013). Therefore, a more 

accurate spatial description of soil properties is frequently needed to predict spatial variability 

of crop growth (Krüger et al., 2013). This need is a key driver for the increasing demand for 

reliable high-resolution soil maps at scales larger than the field-scale. 

 

Geophysical tools have shown great potential to support precision agriculture and agro-

ecological modelling as they allow a non-invasive investigation of the subsurface. This 

potential has also been realized in the broader field of hydrology, which resulted in the 

emergence of the interdisciplinary field of hydrogeophysics in the past two decades (Binley et 

al., 2015). It has been shown that hydrogeophysical methods provide a suitable alternative to 

direct sampling (Robinson et al., 2008). The most widely used hydrogeophysical methods to 

investigate the shallow soil are sensitive to the soil electrical properties, such as ground 

penetrating radar (GPR), electromagnetic induction (EMI), and electrical resistivity 

tomography (ERT). These methods have often been used to estimate water content, soil 

textural properties, mineralization, porosity, or residual pore water content (Rubin and 

Hubbard, 2005) and are capable of producing catchment-scale datasets that are often useful in 

hydrological studies (Robinson et al., 2008). Nevertheless, few studies used geophysical 

measurements in agricultural applications. In addition, much hydrogeophysical research has 

so far been directed at plot- and field-scale experiments (Binley et al., 2015). However, EMI 

methods are well suited for vehicle-towed platforms that can be easily attached to all-terrain 

vehicles (ATV) or tractors (André et al., 2012; Sudduth et al., 2001), thus considerably 

increasing the feasible survey-scale well beyond that of a single plot or field.  

 

1.1. Electromagnetic induction (EMI) 

EMI is a highly mobile geophysical tool that is particularly promising for the characterization 

of spatial variability in soil properties (Robinson et al., 2012; van Dam, 2012). EMI measures 

the apparent electrical conductivity (ECa) of the ground, which can be related to soil 

properties, such as water content, pore water conductivity, soil porosity, and soil texture 

(Corwin and Lesch, 2003; Sheets and Hendrickx, 1995). Some EMI instruments, for example 

the EM38 and its variants EM38DD and EM38Mk2 (Geonics Limited, Mississauga, Ontario, 

Canada) or the Profiler EMP-400 (Geophysical Survey Systems, Inc., Salem, Massachusetts, 

USA), have been widely used to map soil characteristics even if the vertical resolution that 

they provide is rather limited. For EMI instruments, the depth of investigation (DOI) depends 
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on the distance between the transmitter coil and the receiver coil as well as on the coil 

orientation (McNeill, 1980). Since the above mentioned instruments are provided with only 

one or two coil separations or orientations, they can measure a maximum of two or four DOIs 

in two separate passages. Nevertheless, a considerable number of studies have used these EMI 

instruments to map key soil characteristics within an agricultural context. Among others, they 

were used by André et al. (2012) to highlight anthropogenic soil compaction in a vineyard in 

South France and by De Benedetto et al. (2013) to delineate areas that require different water 

management. Machado et al. (2015) used these EMI instruments to determine cation 

exchange capacity (CEC) of an agricultural field, and Yao et al. (2016) used them to map the 

spatial distribution of soil salinity of a coastal agricultural area and related this to crop yield. 

Other studies used these EMI instruments to identify variations in soil texture and layering. 

For example, Kelley et al. (2017) mapped soil texture of irrigated fields and Mertens et al. 

(2008) mapped the depth of loess layers above coarse sediments and found a clear relation 

between soil depth and crop yield. 

 

Despite these promising results, EMI methods have primarily been considered as a qualitative 

mapping tool (Binley et al., 2015). One of the main reasons for this is the low vertical 

resolution of the soil characteristics obtained with the afore-mentioned EMI instruments. 

Recently, new EMI instruments with multiple coil separations and orientations provide 

improved vertical resolution (Doolittle and Brevik, 2014). Even if such multi-coil systems 

have not been widely used for soil characterization yet (von Hebel et al., 2014), their added 

value has been shown in some studies. For example, Saey et al. (2009) showed that the 

improved vertical resolution of the four-coil DUALEM-21S (DUALEM, Milton, ON, 

Canada) system allowed to obtain maps of the depth to clay-rich horizons without the need for 

ground truth sampling, which was essential when using the simpler EM38DD system. 

Similarly, the DUALEM-21S EMI system was successfully used to reconstruct the depth of a 

coarse substrate by De Smedt et al. (2011). A second multi-coil instrument that became 

recently available is the DUALEM-421S (DUALEM, Milton, ON, Canada), which provides 

six simultaneous ECa readings. A series of recent studies with this device have focused on 

soil salinity (Huang et al., 2017a; Stockmann et al., 2017; Zare et al., 2016). However, the 

DUALEM-421S system was also used by Huang et al. (2017b) to perform time-lapse 

measurements and monitor soil water content dynamics, and Monteiro Santos et al. (2010) 

used this system for discerning changes in soil properties with depth. A further multi-coil EMI 

instrument that was successfully used within an agricultural context is the three-coil CMD 
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MiniExplorer (GF Instruments, Brno, Czech Republic). For example, Jadoon et al. (2015) 

used this system to characterize patterns in the distribution of soil salinity in a drip irrigation 

system, and Stadler et al. (2015) and Rudolph et al. (2015) used this instrument to 

quantitatively link ECa maps, soil characteristics, and crop growth and performance during 

periods of water stress. Recently, von Hebel et al. (2018) combined the CMD MiniExplorer 

with an additional six-coil CMD MiniExplorer Special Edition to investigate soil-plant 

interactions by comparing EMI data with measures of crop performance obtained from 

airborne hyperspectral data. 

 

Despite the potential of EMI instruments for the characterization of large-scale areas, most 

studies were confined to the plot- or field-scale (<10 ha). Only a few studies have also used 

EMI measurements for soil characterization at scales larger than the field-scale (> 10 ha). 

Generally, very large areas of tens of km2 can be investigated with EMI by performing point-

scale measurements at selected locations followed by an interpolation to larger areas using 

information from other proximal or remote sensing techniques. Such a point-scale approach 

combined with Landsat-TM images was used by Ding and Yu (2014) to assess soil salinity 

over a large area of approximately 10000 km2, whereas Zare et al. (2016) used EMI in 

combination with airborne gamma-ray spectrometry to identify soil landscape units in a 270 

km2 area. However, very few studies performed high-resolution EMI surveys beyond the field 

scale. The study of Frederiksen et al. (2017) is one of the few examples where high-resolution 

EMI measurements were acquired for an area of 1000 ha using a spacing of approximately 20 

m between EMI lines. This general lack of large-scale studies can be explained by the fact 

that EMI measurements are usually performed in a limited time window to minimize temporal 

variations in dynamic soil characteristics within the EMI survey (e.g., water content and soil 

temperature) (Frederiksen et al., 2017). However, this might not always be feasible, especially 

in complex agricultural areas characterized by multiple fields with different crops and 

variable harvest times. 

 

A further disadvantage of EMI measurements is that the spatial variation in ECa is often 

difficult to interpret in terms of a single soil property. In the absence of direct correlations 

between EMI measurements and a single soil property, a range of studies have used clustering 

or classification of EMI data to identify zones with similar soils. These zones are of particular 

interest in agriculture, especially in precision agriculture where within-field site-specific 

agricultural management is used to optimize crop productivity (van Schilfgaarde, 1999). 
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Clustering of ECa maps has been widely used to identify proper management zones that can 

be treated homogeneously within precision agricultural applications. These management 

zones often corresponded well with historical yield maps as the properties that contribute to 

high conductivity readings (such as low sand content and high clay and moisture content) are 

usually the same that characterize fertile soils (King et al., 2005). Many of these zonation 

studies relied on a combination of ECa maps and historical yield maps (e.g., Taylor et al., 

2003; Galambošová et al. 2014) or on the combination of EMI and direct soil sampling (e.g., 

Oldoni and Bassoi, 2016). 

 

Other studies also considered proximal and remote sensing techniques in addition to ECa 

maps to identify management zones as commonly used EMI sensors can fail to distinguish 

between contrasting soils under certain circumstances (Castrignano et al., 2012). For example, 

Jing et al. (2017) and Huang et al. (2014) combined EMI with gamma-ray spectrometry and 

Castrignano et al. (2012) added digital elevation data recorded with a real-time kinematic 

GPS to these two sensors. Furthermore, EMI was combined with GPR and remotely sensed 

imagery by De Benedetto et al. (2013) and Ciampalini et al. (2015) combined EMI with 

airborne hyperspectral images. In most cases, the combination of different sensors provided 

improved results. However, the best combination of sensors likely depends on site-specific 

requirements (Castrignano et al., 2012) and it must be considered that the benefits provided 

by the additional information may not outweigh the additional measurement costs (Taylor et 

al., 2010). A commonality of the abovementioned studies was the focus on the field-scale and 

the use of a single or a limited number of EMI configurations only. Overall, the applicability 

and utility of clustering EMI data to identify areas with similar soil properties have not yet 

been demonstrated for large-scale multi-configuration EMI data sets consisting of EMI 

measurements taken at different times and for a range of investigation depths. 

 

1.2. Crop modelling for agricultural applications 

As previously mentioned, a number of factors can reduce crop yield (Evans and Fischer, 

1999). The adverse effects of low water and nutrient availability can be mitigated by 

agricultural management, as it is the case for the prevention and control of pests and diseases. 

It is therefore vital to quantify both the negative effects of water and nutrient shortage on crop 

yield as well as the positive effect of management actions to mitigate these shortages (i.e., 

irrigation and fertilizer applications). An effective method to quantify the influence of water 

availability on crop growth is the use of process-oriented crop growth models (Batchelor et 
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al., 2002). These models allow the simulation of the temporal interaction of water stress and 

crop development with a high temporal resolution. Therefore, they can be used to provide 

yield predictions for various environments and meteorological conditions (van Ittersum et al., 

2003) and have the potential to answer a variety of questions relevant for research, 

management, and policy (Boote et al., 1996) 

 

Common crop-specific models to simulate crop growth for given environmental conditions 

are ORYZA2000 for rice (Bouman, 2001), APSIM-wheat (McCown et al., 1996), CROP-

Soybean (Hoogenboom et al., 1994), CWRES-Maize (Jones and Kiniry, 1986) and CERES-

Wheat (Ritchie, 1985), amongst many others. Popular multi-crop models with modules that 

account for water and nutrient limitations and the effects of pests, diseases and weeds are 

LINTUL (Spitters and Schapendonk, 1990) and SUCROS (Spitters et al., 1989). Other 

widespread multi-crop models are Aquacrop (Steduto et al., 2009), Cropsyst (Stockle et al., 

1994), APSIM (McCown et al., 1996), ARIDCROP (van Keulen, 1975), and WOFOST (Van 

Diepen et al., 1989). Crop growth models are also included in broader decision support 

systems such as DSSAT (Jones et al., 2003), which is provided with a template crop module 

that simulates certain crop varieties but can be set to implement additional crop models such 

as the CERES models to increase the variety of crops that can be simulated. DSSAT was also 

successfully coupled to HYDRUS-1D to obtain accurate simulation of vertical soil water 

dynamics (Shelia et al., 2018). A further example of coupling multiple models is the agro-

ecosystem model AgroC which is a one-dimensional model that couples SUCROS with 

SOILCO2 (Šimůnek and Suarez, 1993) for simulating water, heat and CO2 fluxes and RothC 

(Coleman and Jenkinson, 1996) for simulating soil organic carbon turnover (Klosterhalfen et 

al., 2017). 

 

Crop models are sometimes used as a tool for decision-making in agricultural management 

since they have been demonstrated to adequately simulate crop growth (Boote et al., 1996). 

Therefore, crop models can potentially help farmers in increasing their profit by identifying 

factors that can be controlled and managed (Paz, 2000). Such models require inputs for 

management practices (such as crop variety, plant population and row spacing, fertilizers and 

irrigation applications) and environmental conditions (such as soil type, temperature, 

precipitation, humidity, and solar radiation). Crop development is simulated from these inputs 

with model-specific time steps and is generally influenced by water and nitrogen stress, 

growth stage, and photosynthetic activity (Paz, 2000). Some crop growth models have been 
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successfully applied to simulate the spatial variability of yield (Batchelor and Paz, 1998) 

produced by variations in soil moisture availability (Paz et al., 1998). Examples of further 

applications of crop models include the simulation of the yield gap for corn in a cool climate 

due to abiotic stress (Žydelis et al., 2018), the optimization of nitrogen fertilizer prescription 

(Paz et al., 1999), and the validation of management zones obtained by classifying normalized 

difference vegetation index (NDVI) maps obtained from satellite remote sensing (Basso et al., 

2001). 

 

Crop models are also used at scales larger than farm scale (van Ittersum et al., 2003) as they 

can be used to simulate growth, development, and yield of a certain crop on a presumed 

homogeneous unit which can be either a field plot, a large cropped field, a regional 

catchment, or a pixel with variable size. For example, Chipanshi et al. (1999) used the 

CERES-wheat model to simulate crop growth for three major soil types distributed over a 

large area of 20000 km2 and obtained reasonably accurate yield estimates. Furthermore, Liu et 

al. (2007) combined the EPIC crop model with a geographic information system (GIS) to 

simulate yield for a 10-year period using actual water and nutrient supply with a resolution of 

30 arc-minutes (~50 x 50 km at the equator) with a global coverage. 

 

Despite these large-scale applications, it must not be overlooked that a process-oriented crop 

growth model typically relies on a one-dimensional description of water flow in the soil 

column (Vereecken et al., 2016) in which a detailed description of the soil profile 

characteristics, including soil hydraulic properties, is key to obtain meaningful yield 

predictions (Boenecke et al., 2018). This is a major challenge for agro-ecosystem simulations 

for large areas, since, as previously mentioned, this information is generally obtained from 

general-purpose maps (Boenecke et al., 2018) that do not adequately represent field-scale soil 

heterogeneity. Within this context, geophysics-based soil mapping seems a viable strategy to 

address the need for high-resolution soil information as a range of geophysical properties have 

been shown to provide useful proxies for soil properties in precision agriculture (Adamchuk et 

al., 2004; Allred et al., 2008; Gebbers and Lück, 2005; Grisso et al., 2005; Vitharana et al., 

2008). In particular, EMI has been used to provide detailed soil information in support of 

agro-ecosystem modelling. For example, Krüger et al. (2013) used EMI and GPR to 

characterize site-specific variations in soil properties, and this improved simulations of soil 

water dynamics and biomass production on a 4.4 ha field. Wong and Asseng (2006) used EMI 

to map plant-available water content and performed simulations that illustrated how variations 
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in available water interacted with the amount and timing of precipitation and caused yield 

variability within a single 70 ha field. Similarly, Boenecke et al. (2018) used EMI mapping as 

a basis for simulating the spatial variability of soil water content and yield at the farm scale 

(30 ha). Despite these successful examples, there is a general lack of studies linking soil maps 

to modelling applications at a scale larger than the single farm (Krüger et al., 2013) and for 

multiple crops. It is clear that a successful simulation of the spatial variability of water stress 

and the associated decrease in crop productivity within large and complex agricultural 

environments could lead to significant improvements in our knowledge of the soil-plant 

system. Such knowledge could provide a valuable support for the development of long-term 

strategies for decision-making in agricultural management (Krüger et al., 2013). However, the 

added value of geophysical data compared to general-purpose soil maps has not been 

quantified yet for such large and complex areas. 

 

1.4. Objectives and outline 

The overall aim of this thesis is to quantify the added value of geophysical mapping alongside 

point-scale soil sampling to obtain high-resolution information on soil characteristics for the 

simulation and prediction of the spatial variability of water-limited crop growth and yield. In 

order to achieve this, the following three sub-objectives have been defined. 

 

The first sub-objective is to develop a geophysics-based digital soil mapping strategy that 

exploits the strengths of multi-configuration EMI instruments in combination with a limited 

number of direct point-scale soil samples. In a complex km2 scale agricultural area, this 

strategy should have the potential for a relatively cost-effective characterization of the small-

scale variability of soil structural properties (e.g., soil layering and texture) that are 

responsible for yield gaps. It should result in a soil map that successfully reproduces spatial 

patterns in crop performance determined from independent satellite images. 

 

The second sub-objective is to investigate how field-scale patterns in soil properties obtained 

using geophysical mapping affect the spatial variability of soil water content dynamics and 

growth of multiple crops at the km2 scale by using spatially distributed one-dimensional agro-

ecosystem models. For this, the spatio–temporal variations of crop growth and yield will be 

simulated, and the results will be validated with independent remotely sensed data. To achieve 

this, an approach will be developed to estimate the necessary soil hydraulic properties from 

the information of the geophysics-based soil map. This approach should return simulations of 
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soil water content dynamics that are comparable to measurements from long-term monitoring 

stations placed at key locations within the investigated area. 

 

The third and final sub-objective is to assess the added value of the geophysics-based soil 

representation for the modelling of crop growth and yield. For this, the improvement in the 

correspondence between observed and simulated crop growth and yield that is obtained by 

using this advanced soil representation will be compared to the use of commonly available 

soil maps. This comparison should provide insights on the importance of an accurate 

representation of soil distribution, layering, and texture, and thus on the added value of 

geophysics-based soil mapping for agricultural applications. 

 

To address these objectives, the thesis is organized as follows. After this introductory Chapter 

1, a description of the study area is provided in Chapter 2. Here, the climatic, geological, and 

morphological characteristics of the study area are presented and the motivations behind the 

selection of the site are provided. A characterization of the land use and agricultural setting is 

then provided and this is followed by a description of the meteorological and ancillary data 

acquisition. 

 

In Chapter 3, EMI measurements combined with soil sampling are used to map the soil 

characteristics of the area described in Chapter 2. First, a description of the measurement 

methodology is given. Then, an interpretation of the main geomorphological features based 

on the acquired multi-configuration EMI measurements and additional commonly available 

soil maps is provided. Next, a supervised classification methodology is developed to 

subdivide the geophysical maps into areas with similar soil properties. The resulting classified 

EMI map is then combined with direct soil sampling to produce a high-resolution soil map 

divided into management zones with typical soil properties. Finally, the correspondence of the 

soil units with patterns in crop performance obtained from remote sensing is evaluated. 

 

Chapter 4 starts with a description of the agro-ecosystem model AgroC. Next, the geophysics-

based soil map developed in Chapter 3 is used as input to perform agro-ecosystem simulations 

for the six common crop types in the study area. The hydraulic parameters are estimated from 

the information obtained in Chapter 3 by using pedotransfer functions (PTF). The simulations 

are compared with measured water content at selected locations. Then, the water stress 

simulated with AgroC and the resulting impact on simulated LAI is compared with LAINDVI 
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obtained from satellite images. Simulated productivity at harvest is compared with the actual 

harvest data or with literature values. Finally, maps of simulated productivity at harvest are 

shown and their potential is discussed. 

 

In Chapter 5, the agro-ecosystem simulations derived with the geophysics-based soil map 

discussed in Chapter 4 are compared to simulations based on two general-purpose soil maps. 

First, a qualitative comparison between the soil descriptions provided by the three maps is 

provided. Then, the LAI simulated with AgroC by using inputs from the three soil maps is 

compared with independent LAINDVI values obtained in Chapter 4. The added value provided 

by the geophysics-based soil map is discussed first for the simulation of five crop types over 

the entire study area, and then in more detail for the simulation of sugar beet. Finally, it will 

be discussed in which conditions the geophysics-based soil characterization provides an added 

value for the simulation of the spatial variability of crop growth. 

 

The thesis concludes with Chapter 6, which provides the overall conclusions of the thesis and 

an extensive outlook that illustrates remaining research gaps and needs for further research. 
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Chapter 2 

 

Study area 
 

This study was conducted in an agricultural area near Selhausen in the Rur Catchment (North-

Rhine Westphalia) approximately 40 km west from Cologne, Germany (50°51’56”N, 

6°27’03”E). The climate of the study site is characterized by a mean annual precipitation of 

715 mm and a mean annual temperature of 10.2°C (Rudolph et al., 2015). The shape of the 

study area is a square of 1x1 km bearing 12.75° east (Figure 1a). The exact position and 

orientation were selected to cover a large area while excluding visible anthropogenic artifacts. 

On the eastern side, a power grid and a power plant bound the study area. On the western side, 

the study area extends until a railway track that runs N-S from Jülich to Düren. The northern 

and southern boundaries are a consequence of the previously mentioned considerations and of 

the square geometry of the study area. The 1 km2 area is divided into 51 fields ranging in size 

from 0.5 to 9.6 ha. These fields are cultivated in rotation with winter wheat, winter barley and 

sugar beet. Occasionally, potato, maize, winter raps, and oats are grown. According to the 

German cadaster, there are 52 different land owners but the effective number of farmers is 

lower than twenty because of kinship and lease. Nevertheless, this large number of active 

farmers leads to a heterogeneous field management. 

 

To obtain geomorphic information, a digital elevation model (DEM) with spatial resolution of 

1 m (Scilands-GmBH, 2013) was used. The study area is morphologically divided in two 

terraces with an altitude that ranges between approximately 101 m for the western lower 

terrace and 113 m a.s.l for the eastern upper terrace. The two terraces are separated by a slope 

that ranges from 2% to 10% with a westbound dip and an approximately NNW-SSE strike. 

This characteristic feature corresponds with the subdivision between two quaternary fluvial 
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terraces but its origin may also be connected to the tectonic structure of the study area that is 

characterized by a series of normal step faults striking NNW-SSE, the so called Rurrand-

Störung (Walter, 2010). The shape of this slope may have been modified by human activity 

since the area of the lower Rur has been inhabited and farmed for about the last 7000 years 

and the topography of the study area is known to have been reshaped to facilitate agriculture. 

Further anthropogenic activity during WWII might also have shaped the area since the Rur 

river represented a strategic defense line during the allied invasion of Germany. In this area, 

the front was stationary from the beginning of the Battle of the Bulge (December 1944) until 

the end of Operation Grenade (February 1945) with massive bombing runs on the city of 

Düren and on the nearby defensive structures, some of which were located within the study 

area (USAAF, 1944). 

 

 
Figure 1: a) Satellite image of the study area (ESRI, 2015) with the investigated fields and respective codes, 

the location of the water table sensor, the soil water content measurement points P01 and P02, and the 

locations of the in situ LAI measurements (red dots), b) digitized main features of the 1:5000 soil map 

(sheets 510410 and 510411) with the locations of the upper terrace (UT) and lower terrace (LT), c) 

digitized Soil Taxation Map (NRW, 1960) sheets 510410 and 510411. 

 

The shallow geology of the study area is divided in two main geological features consisting of 

quaternary sediments of the upper and lower terrace. According to the 1:5000 soil map 

(Figure 1b), the upper terrace consists of Pleistocene sand and gravel sediments associated 

with the Rhine/Meuse river system (Röhrig, 1996). This terrace is characterized by a system 
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of subsurface channels eroded in the sand and gravel sediments, which was subsequently 

buried by aeolian sediments of variable thickness (Klostermann, 1992; Patzold et al., 2008; 

Vandenberghe and van Overmeeren, 1999). The lower terrace consists of Pleistocene loess 

sediments and translocated loess sediments from the Holocene (Figure 1b). Similar to the 

upper terrace, part of the translocated loess of the lower terrace is deposited on 

Pleistocene/Holocene sand and gravel sediments (Röhrig, 1996). The dominant reference soil 

groups in the area are Cambisols, Luvisols, Planosols, and Stagnosols (WRB, 2015). 

 

2.1. Influence of soil heterogeneity on crop performance 

Previous research in this area showed that crop performance during periods of drought is 

strongly influenced by soil heterogeneity at the field scale and beyond (Rudolph et al., 2015; 

Simmer et al., 2015; Stadler et al., 2015). Generally, a reduction in performance of sugar beet, 

corn, and cereals in the shape of a variety of narrow and undulated channels (Rudolph et al., 

2015) can be observed in satellite images and in field observations (Rudolph et al., 2015; 

Stadler et al., 2015; von Hebel et al., 2018). These patterns are visible in different years and at 

different scales. For example, field-scale patterns in crop performance of sugar beet and corn 

are shown in two recent drone photos from a drought period in summer 2018 (Figure 2a-b).  

 

 
Figure 2: Drone photos of patterns in crop performance at the 22nd of July 2018 for a) sugar beet in fields F-

08 and F-24a, and b) corn in field F-05 (courtesy of Prof. Dr. F. Jonard). 

 

At a larger-scale, patterns in crop performance of sugar beet are locally found within the study 

area as shown in a satellite image from a drought period in summer 2015 (Figure 1a). By 

analyzing the large-scale patterns presented in Figure 1a, the fields with visible patterns in 

crop performance of sugar beet can be divided into three groups. First, some fields that are 

entirely located within the upper terrace (fields F05, F17a, F22b, and F49 in Figure 1a) show 

patterns that are associated with sand and gravel channels that are buried in aeolian sediments. 
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Second, some fields that are located at the boundary between the two terraces (fields F07, 

F14a, F23, F24a-b, and F47 in Figure 1a) show a reduction of crop performance in the part of 

the field that is located in the upper terrace (Rudolph et al., 2015). Finally, some fields of the 

lower terrace (fields F39 and F40 in Figure 1a) show patterns in crop performance that appear 

similar to those found in the upper terrace. Although the lower terrace has not been 

intensively investigated yet, the satellite image suggests that a connection between subsurface 

structures and crop performance is also present in the lower terrace. 

 

Figure 1c shows a digitization of the soil taxation map (NRW, 1960) of the study area (sheet 

510410 in the west and 510411 in the east). This map shows the yield potential of the 

agricultural land at a scale of 1:5000 and provides soil profile information up to a depth of 2.0 

meter. In this map, the upper terrace is characterized by a strong heterogeneity in soil type and 

origin with a general north-south orientation. The upper terrace is composed of sandy loam of 

aeolian origin in the eastern part whereas the western part near to the slope that divides the 

two terraces is composed of strongly loamy sand of aeolian and alluvial origin (Figure 1c). In 

contrast, the lower terrace is entirely composed of loamy sediments that are generally of 

aeolian origin and locally of alluvial origin. Within the lower terrace, a large area in the 

South-West is not provided with genesis data. In general, this map represents the most 

detailed available soil information for the selected study area. However, it appears that it is 

not capable of representing the complexity of the subsurface for this particular study area. 

This is evident from a comparison with the observed patterns in crop performance shown in 

Figure 1a. The lack of detail in the soil taxation map is mainly due to the low sampling 

density of one drilling per 40-50 m used during mapping. 

 

2.2. Status of the study area in 2015 and 2016 

In this thesis, the analysis of the study area will be focused on crop performance in late 2015 

and 2016. For this reason, information on crop type, emergence dates, and harvesting dates 

was recorded during 2016. The land use map shown in Figure 3 was produced by digitizing 

field geometries retrieved from satellite images (ESRI, 2015) and by field mapping to record 

the land use of each field. As shown in Table 1, a small percentage of the area was 

characterized by bare soil, oat, and grass in late 2015 and in 2016 (4.4% of the total area). In 

these cases, no further data were collected. Corn, potato, sugar beet, winter barley, winter 

rapeseed, and winter wheat were grown on larger areas (Table 1). For these crops, the 

emergence and harvesting dates were recorded. It has to be noted that various emergence and 
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harvest dates were recorded in separate fields for the same crop. However, these differences 

were rather small (e.g., within 3-10 days for emergence and within 1-5 days for harvest dates). 

Therefore, it was assumed that each crop type was characterized by a maximum of two 

different emergence dates and by a single harvesting date. The resulting emergence and 

harvest dates for each crop are given in Table 1 together with the total area. 

 

 
Figure 3: Crops and land use types of the study area in 2016. 

 

Within the study area, a 2.3 ha field cropped with sugar beet field F01) and a 9.5 ha field 

cropped with barley (field F11) were investigated in more detail (see Figure 1). In both fields, 

the productivity at harvest in 2016 was provided by the respective field owners. Sugar beet 

was grown in field F01 and the wet weight of harvested beet roots was 61.4 tons per ha (t ha-

1). This weight was reduced by 76.8% to obtain the dry weight of harvested storage organs 

(FAO, 1999), which thus was 14.25 t ha-1 for field F01. Winter barley was grown in field F11 

in 2016. Here, the productivity at harvest of barley grains was 7.90 t ha-1 with 13% moisture 

content (i.e., a dry weight of 6.87 t ha-1). Further data on the average wet weight of sugar beet 

yield were available for field F11 for different growing seasons. On average, 83.53 t ha-1 of 
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wet beets were harvested in 2011, 2014, and 2017, which corresponds to a dry weight of 

19.38 t ha-1. 

 

Table 1: Total area in ha of the crop and land use types that were present in the study area in late 2015 and 

in 2016 with emergence and harvest dates for those crops that are found on more than three ha in total. 

Plant Area (ha) Emergence Harvest 
Sugar beet 26.5 02.05.2016 14.11.2016 

Winter wheat 26.2 15.11.2015 29.07.2016 
Winter barley 18.2 1/10.12.2015 25.07.2016 

Winter rapeseed 9.2 1/10.11.2015 20.07.2016 
Potato 7.1 15.5.2016 20.10.2016 
Corn 3.5 1/10.05.2016 20.10.2016 
Oat 2.1 NA NA 

Bare soil 1.1 NA NA 
Grass 1.0 NA NA 

 

2.3. Meteorological and ancillary data 

The study area is part of the Terrestrial Environmental Observatories (TERENO) network 

(Bogena et al., 2018; Schmidt et al., 2012; Simmer et al., 2015). Several meteorological and 

ancillary measurements are being performed in one field located approximately in the center 

of the study area (field F11 in Figure 1). Here, continuous measurements of the following 

meteorological parameters were performed in 2015 and 2016: air temperature and relative 

humidity (HMP45C sensor, Vaisala Inc., Helsinki, Finland), precipitation (RM-52203 tipping 

bucket rain gauge, R.M. Young Company, Traverse City, USA), soil temperature at a depth of 

0.5 cm (TCAV temperature thermocouple probe, Campbell Scientific, Inc., Logan, UT, USA), 

global radiation (NR01 net radiometer sensor, Hukseflux Thermal Sensors, Delft, 

Netherlands), wind speed (CSAT3 three dimensional sonic anemometer, Campbell Scientific, 

Inc., Logan, UT, USA), and air pressure (LI7500 open-path infrared gas analyzer, LI-COR 

Inc., Lincoln, NE, USA). 

 

In the upper terrace, two locations were selected within field F01 (P01 and P02 in Figure 1) to 

monitor volumetric soil water content from 28th of April 2016 to 18th of October 2016. At 

each location, two SMT-100 soil water content sensors (Truebner GmbH, Neustadt, 

Germany) were installed at three depths (10 cm, 20 cm, and 50 cm). These sensors were 

calibrated to provide soil dielectric permittivity before installation (Bogena et al., 2017) and 

the volumetric soil water content was obtained using the equation of Topp et al. (1980). 
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Chapter 3 

 

Large-scale soil mapping using multi-

configuration EMI and supervised 

image classification 
 

In this chapter*, it will be shown how electromagnetic induction (EMI) measurements 

combined with soil sampling can be used to map soil characteristics. First, a detailed 

geophysical survey that was performed in the study area in 2016 will be described. Then, it 

will be shown how an interpretation of the main geomorphological features of the study area 

was performed by using geophysical measurements and commonly available soil maps. This 

interpretation allowed a subdivision of the study area in four sub-areas with characteristic 

sediments and EMI response. In a following step, it will be described how a supervised 

classification methodology was used to subdivide the maps that were obtained from 

geophysical data into areas with similar soil properties. Soil profile descriptions to a depth of 

2 m were obtained at 100 sampling locations and it will be shown that the combination of the 

classified EMI map with ground truth data resulted in a 1 m resolution soil map with eighteen 

units with typical soil profiles and texture information. Finally, it will be shown that this high-

resolution geophysics-based soil map corresponded well with patterns in crop performance 

obtained from satellite imagery. 

                                                 
* This chapter is adapted from a journal article published as:  
Brogi, C., Huisman, J. A., Pätzold, S., von Hebel, C., Weihermüller, L., Kaufmann, M. S., van der Kruk, J., 
Vereecken, H., (2019): Large-scale soil mapping using multi-configuration EMI and supervised image 
classification. Geoderma 335, 133-148, doi:10.1016/j.geoderma.2018.08.001. 
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3.1. Materials and methods 

3.1.1. Electromagnetic induction (EMI) measurements 

Frequency domain EMI systems generate a fixed frequency alternating current through a 

transmitter coil, which generates the primary magnetic field. This primary magnetic field 

induces eddy currents in the electrically conductive subsurface, which in turn generate a 

secondary magnetic field. The ratio between the secondary and primary magnetic field is 

related to the apparent electrical conductivity (ECa) and, to a lesser degree, to the apparent 

magnetic permeability over a certain depth range that depends on the source-receiver coil 

distance and orientation (Keller and Frischknecht, 1966; Ward and Hohmann, 1988). 

 

3.1.1.1. EMI instrumentation 

Measurements were performed by simultaneously using two EMI instruments: i) the CMD 

MiniExplorer (ME) with three receiver coils and coil separations of 32, 71, and 118 cm 

oriented in vertical coplanar configuration (VCP) and ii) a custom-made CMD MiniExplorer 

Special Edition (SE) with six receiver coils and coil separations of 35, 50, 71, 97, 135, and 

180 cm (GF instruments, Brno, Czech Republic) oriented in horizontal coplanar configuration 

(HCP) to collect data using both VCP and HCP configurations at the same time (Table 2). 

 

Table 2: EMI instrument configurations, coil separations, depth of investigation (DOI) and frequency for 

the CMD Mini Explorer and the CMD Mini Explorer Special Edition. 

EMI 
instrument 

Receivers Orientation 
Separation 

[cm] 
DOI 
[cm] 

Frequency 
[kHz] 

Mini Explorer 3 VCP 32 0-24 30.00 
  VCP 71 0-53  
  VCP 118 0-89  

Mini Explorer 6 HCP 35 0-52 25.17 
Special Edition  HCP 50 0-75  

  HCP 71 0-107  
  HCP 97 0-146  
  HCP 135 0-203  
  HCP 180 0-270  

 

Figure 4 shows the depth-specific sensitivity of all EMI measurements in VCP and HCP 

orientation to the subsurface electrical conductivity distribution (McNeill, 1980). The VCP 

orientation is most sensitive to the shallow subsurface and becomes less sensitive with 
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increasing depth, while the HCP orientation is less sensitive to the shallow subsurface and the 

sensitivity peaks at a depth of around 0.4 times the coil separation (McNeill, 1980). As a rule 

of thumb, the depth of investigation (DOI) for VCP is approximately 0.75 times the coil 

separation (s) and the DOI for HCP is approximately 1.5 times the coil separation. This result 

in DOI’s ranging from 0-24 to 0-270 cm for our measurements set-up. 

 

 
Figure 4: Local sensitivity function for the nine coil separations in the VCP and HCP loop orientation with 

the separations that are shown in Table 2. 

 

3.1.1.2. EMI survey 

The EMI measurements on the 51 agricultural fields (102 ha) shown in Figure 1a were 

performed between April and December 2016 within a few days after harvest of the different 

crops. For each field, a standardized measurement protocol based on best practice EMI 

measurements was followed (European Committee for Standardization, 2011). The EMI 

instruments were mounted on two plastic sleds that were separated by 1.5 m. A quad-bike 

ATV was used to pull the sleds while keeping a distance of 4 m from the first sled (Figure 5). 

The driving speed ranged from 5 to 7 km h-1. The sampling frequency was 5 Hz, which 

resulted in an in-line resolution of approximately 0.3 m with a track spacing of 2.0 to 2.5 m. 

The EMI measurements were made in the direction of ploughing to avoid possible effects of 

terrain roughness on the EMI measurements. 

 

A single frequency GPS (NovAtel inc., Calgary, Canada (see Rudolph et al., 2018)) was used 

to provide spatial position during the measurements from April to October 2016 (a total of 76 

ha). A TRX centerpoint DGPS system (Trimble inc., Sunnyvale, USA) with higher accuracy 
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was used from November to December 2016 for a total of 21 ha. Despite the difference in 

accuracy between the single frequency GPS system (meter accuracy) and a DGPS system (cm 

accuracy), the measurements obtained with the two GPS systems were considered equally 

reliable for the purpose of this work. Each field was measured continuously and the first line 

of EMI measurements was repeated at the end of each field survey to verify that no 

unexpected shifts in the measured ECa occurred. In general, the difference in ECa values 

measured at the start and at the end of each survey was negligible. 

 

 
Figure 5: Example of the EMI measurement setup. The ATV is used to pull the CMD MiniExplorer (first 

plastic sled) and the CMD MiniExplorer Special Edition (second plastic sled). A GPS/DGPS unit that is 

connected to the EMI device is positioned on top of each sled. 

 

3.1.1.3 Data filtering and interpolation 

The CMD MiniExplorer and the CMD MiniExplorer Special Edition have been factory-

calibrated using the supplied handle (i.e., a crutch). Therefore, it is not necessary to perform 

in-field zeroing. Both devices also internally compensate for temperature changes during a 

survey with a stability of 0.1 mS m-1 per °C (GF_Instruments, 2011). Nevertheless, negative 

ECa values were measured as already observed in previous studies (Rudolph et al., 2015; von 

Hebel et al., 2014). Some studies have therefore calibrated the ECa measurements with 

independent electrical resistivity tomography (ERT) data (Lavoué et al., 2010; Shanahan et 

al., 2015) in order to obtain quantitative EMI data that allow inversion (Mester et al., 2011; 

von Hebel et al., 2014). Alternatively, calibration can be achieved using a metal sphere or by 

measuring at multiple elevations (Tan et al., 2019; Thiesson et al., 2014). Since repeated 

calibration is difficult to achieve for the EMI survey presented here, a correction based on a 
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linear regression between EMI measurements made with the sled and the supplied handle for 

each EMI coil configuration was applied. In this approach, it is assumed that the required 

calibration of each EMI coil configuration is relatively stable in time. 

 

Since measured ECa values are rarely normally distributed (Minsley et al., 2012), an 

histogram-filtering technique was applied following von Hebel et al. (2014) to identify and 

exclude outliers. The filter divides the data into 15 bins. Bins containing <0.5% of the data 

were removed. Afterwards, neighboring ECa measurements that showed differences larger 

than 1 mS m-1 were removed to avoid unrealistically high lateral ECa variation. In a next step, 

the filtered data of each coil configuration were interpolated to a regular 1 by 1 m grid using 

ordinary Kriging with an exponential semivariogram. The individual interpolated surfaces for 

each coil configuration were merged together in a raster mosaic dataset. 

 

3.1.1.4. Temperature correction 

To standardize the EMI data to a reference temperature of 25°C, we performed a correction 

for soil temperature using the approach of Campbell et al. (1949). 

 

ECୟ
ଶହ = f୘ECୟ

୘,          (1) 

 

where ECaT is the ECa measured at soil temperature T and fT is a temperature correction 

factor given by 

 

f୘ = 0.4470 + 1.4034eି୘/ଶ଺.଼ଵହ        (2) 

 

as proposed by Sheets and Hendrickx (1995), corrected by Corwin and Lesch (2005) and used 

in many time lapse EMI studies (e.g., Robinet et al., 2018). The average soil temperature 

between 08:00 AM and 08:00 PM at all measurement days was obtained by averaging the 

measurements from three soil temperature sensors installed in field F10 at a depth of 0.5 m. 

The minimum soil temperature was measured on the 5th of December (4.7°C when field F50 

was measured), while the highest temperature was measured on 15th of September (20.8°C 

when fields F38 and F39 were measured). It is important to realize that this temperature 

correction will not be able to overcome all differences in mean ECa between fields, since EMI 

data were acquired in different seasons and after different agricultural management (e.g., type 

of crop, timing of fertilization). 
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3.1.2. Classification of ECa maps 

A flowchart of the classification methodology including aspects of preprocessing as well as 

the selection of sampling locations for ground truth data is shown in Figure 6. The following 

analyses were performed using ArcGIS Desktop software. The first step of the classification 

was to merge the EMI measurements obtained with the six coil separations in the HCP 

orientation. For this, a raster processing composite band tool (ESRI, 2017) was used to 

generate a multiband raster dataset, where HCP coils with increasing separation represent the 

different bands (Figure 7). It was decided not to add the VCP configurations to the multiband 

image because the stronger sensitivity to shallow layers resulted in higher noise and because 

the relatively homogeneous ploughing horizon of ~30 cm thickness resulted in relatively 

constant ECa values within each single field for these configurations. However, the EMI 

measurements in VCP mode will be used in the following to support the interpretation of the 

EMI data. 

 

 
Figure 6: Flowchart of the supervised classification methodology. 

 

To classify the multiband raster data, a supervised classification method was used. In a first 

step, the number of soil classes and their interpretation need to be defined. For this 

interpretation, information contained in the nine ECa maps, the soil map, the soil taxation 

map, as well as expert knowledge from previous studies and field observations were taken 
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into account. As a result of this interpretation process, the amount and type of soil classes is 

known for each field. 

 

In a next step, the multiband raster of EMI data was used to classify the survey area field-by-

field. This was necessary because EMI data were found to vary between fields due to other 

factors besides soil properties (see results section of this chapter for a more detailed analysis 

of this variability). For each field, areas belonging to a specific soil class were identified 

within the multiband raster data (so-called training areas). This was achieved by visualizing 

different combinations of EMI coil separations displayed with RGB composite colors (see 

Figure 7 for one possible example). After the training areas were selected for each soil class, 

histograms of ECa values for each class and band as well as scatter plots of ECa values for all 

classes for different combinations of bands were used to evaluate the distribution and 

separation of the classes in the six-dimensional space of the measured ECa values. When it 

was not possible to achieve a proper separation of the clusters (e.g. fully overlapping clusters) 

in all fields using the given number and interpretation of classes, then the interpretation was 

reviewed and the process was repeated until a proper cluster separation was achieved on all 

fields. 

 

 
Figure 7: Multiband raster image from the ECa interpolation maps on F05. The 6 bands are the 6 coil 

distances in HCP configuration of the CMD Mini Explorer Special Edition. 

 

After defining the training areas for a given field, a Maximum Likelihood classification 

(ESRI, 2017) was used to classify all raster cells of a field. For this, the mean and the 

covariance matrix of the training areas were calculated (Ball and Hall, 1965; ESRI, 2014; 
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Richards, 1999). Based on this, the statistical probability that a particular cell belongs to each 

class was calculated and the cell was assigned to the class with the highest probability. After 

this classification, a raster map of the field is obtained where every cell is assigned to the most 

probable class. 

 

After the classification of each field, the results were merged together to obtain one classified 

map of the whole study area. Next, two filtering procedures were applied to remove small 

areas characterized by a single or few cells as well as to smooth the boundaries between 

different classes. First, a majority filter (ESRI, 2017) was used to replace cell values based on 

the value that occurs most often within the eight neighboring cells. This replacement occurred 

only when the number of neighboring cells from the same soil class is large enough to be the 

majority (e.g., 5 out of 8 cells) (ESRI, 2014). Second, a boundary clean filter (ESRI, 2017) 

relying on an expand-and-shrink method in order to clean the boundaries from ragged edges 

between different soil classes was used. A sorting based on the size of different zones 

represented by a single class was applied to facilitate the expansion of large zones over small 

ones (ESRI, 2014).  

 

3.1.4. Soil sampling for ground truth information 

Based on the final map obtained from the classification of EMI data, 100 soil augering 

locations were selected where soil profile descriptions and soil samples were acquired. The 

sampling points were distributed amongst all the soil classes and the number of points per soil 

class was based on the total area of the soil class itself with a minimum of three sampling 

locations per soil class. For each of the 100 points, a random location within the assigned 

class was determined. Each location was at least 2.5 m away from the boundary between two 

soil classes. Also, locations within the same soil class were separated by at least 150 m. In 

January and February 2017, all locations were visited using a DGPS system (Trimble inc., 

Sunnyvale, USA) and a Pürckhauer auger was used to sample and describe the soil up to a 

maximum depth of 2.0 m. 

 

The maximum augering depth at each location varied considerably because of the presence of 

horizons with high gravel content or strong cementation. For each sampling location, a soil 

profile description was obtained with information on horizon type, horizon thickness, total 

depth, and color. To delineate horizons in the field, texture was estimated by feel (“hand 

texturing”) (Sponagel et al., 2005; Vos et al., 2016). For each horizon, at least one soil sample 
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was collected. When layers with different texture were identified in a single horizon, multiple 

samples were collected. All soil samples were stored in a refrigerated room until the 

gravimetric water content was estimated by drying the sample at a temperature of 105°C for 

36 hours. The weight fraction of gravel (> 2 mm) was determined using sieving. Afterwards, 

the texture of each sample was analyzed with a combined sieving and pipette method using a 

Sedimat 4-12 apparatus (UGT, Umwelt Geräte Technik GmbH, Münchenberg, Germany).  

 

The soil profiles of all ground truth locations within a single soil class were averaged to 

obtain a typical soil profile with information on horizon type, depth, texture, and gravimetric 

water content for that particular class. To compare different soil classes, the soil classes were 

ordered according to decreasing average ECa. Two tailed t-tests were performed between 

matching horizons of two adjacent soil classes to establish whether there are statistically 

significant differences. For this statistical analysis, the horizons Ap and AB were considered 

as a single horizon. The null-hypothesis of equal means in the t-test was rejected when the 

computed t-value was higher than the 5 % level of significance (2.5 % in each tail). 

 

3.1.5. Comparison with satellite image 

To test the potential of the geophysics-based soil map to identify areas with variable crop 

growth, a comparison with observed field-scale patterns in crop growth derived from remote 

sensing was performed. For this, we used a WorldView-2 panchromatic satellite image with 

0.5 m resolution provided by DigitalGlobe within ArcGIS Basemap (ESRI, 2015). The image 

was collected during a drought period in July 2015 (Figure 1a). Here, a set of fields that were 

cropped with sugar beet in 2015 were analyzed (F05,F07, F08, F17a, F22b, F23, F24, F39, 

F40 and F49) since sugar beet is known to show visual signs of drought stress in this area 

(Rudolph et al., 2015). In each of the sugar beet fields, areas with relatively stressed crops 

(light green) and areas with relatively healthy crops (dark green) were manually digitized on 

the satellite image. 

 

In order to quantify the correspondence between each class of the geophysics-based soil map 

and the crop performance derived from the satellite image, the number of cells located on 

stressed and healthy crops was determined for each class of the soil map for each field. If 

more than 50% of the cells of a soil class for a particular field were stressed crops, the soil 

class was assumed to correspond with stressed conditions (and vice versa). The 

correspondence of each soil class with the satellite image was quantified using the true 
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positive ratio (TPR), which is the fraction of cells correctly classified as being stressed, and 

the true negative ratio (TNR), which is the fraction of cells correctly classified as healthy 

crops. Due to these definitions, TPR and TNR can range from 50 to 100%. 

 

3.2 Results and discussion 

3.2.1. Large-scale EMI survey 

The ECa maps presented in Figure 8 show that the study area can be divided in four sub-areas 

(Figure 8c), each with characteristic sediments and ECa values and patterns. This subdivision 

was performed by comparing the patterns in ECa maps (Figure 8a-f) and their general ECa 

values (Table 3) with the geometry of the soil map (Figure 8a) and, to a lesser degree, of the 

soil taxation map (Figure 8b). Here, it is assumed that the soil maps provide reliable 

information on the type and origin of the sediments, albeit with a low resolution because of 

the lower density of the ground truth information used to create the maps. Therefore, the joint 

interpretation of ECa maps (horizontal geometry) and soil maps (type and origin of 

sediments) results in a more reliable subdivision of the study area. From east to west, the 

following sub-areas were identified: a buried paleochannel system on the upper terrace (sub-

area A in Figure 8c), a transition zone associated with a slope heading N-S (sub-area B in 

Figure 8c), a relatively homogeneous area in the center (sub-area C in Figure 8c), and a 

second heterogeneous area in the west (sub-area D in Figure 8c). In the following, the ECa 

maps from these four sub-areas are discussed in more detail. 

 

Sub-area A was partly studied by Rudolph et al. (2015), and is characterized by relatively low 

ECa values compared to the rest of the study area (Table 3). The geometry of this sub-area 

agrees well with the Pleistocene loess deposits on sand and gravel described in the soil map 

(Figure 1b). Therefore, it is assumed that the entire sub-area A is characterized by 

paleochannels cut in sandy-gravel material and then filled by finer loess sediments. These 

paleochannels are characterized by a relatively higher ECa because of the larger thickness of 

the loess sediments with higher silt and clay content and higher water storage capacity 

(Rudolph et al., 2015). The average ECa generally increased with DOI for both VCP and HCP 

coil configurations (Table 3). However, the range of ECa values is relatively small, especially 

when compared to the rest of the study area. A geomorphological interpretation of the pattern 

of buried channels indicates that the stream type was an anastomosing fluvial system with 

multiple channels (Rosgen, 1994). 



3. Large scale soil mapping using multi-configuration EMI and supervised image classification 
 

29 
 

 
Figure 8: ECa maps of the six HCP configurations: a) HCP 35 cm with lines from the 1:5,000 soil map, b) 

HCP 50 cm with lines from the soil taxation map, c) HCP 71 cm with subdivision of the study area in four 

geomorphological sub-areas A, B, C, and D, d) HCP 97 cm with evidence of buried irrigation channels and 

water ponds (dashed line), e) HCP 118 cm, f) HCP 180 cm. 

 

Table 3: Average (Avg.) and Standard deviation (𝜎) of the measured ECa values (mS m-1) obtained with 

the six HCP coil configurations in the four classes of sub-area A. 

 Sub-Area D  Sub-Area C  Sub-Area B  Sub-Area A 
Configuration Avg. σ  Avg. σ  Avg. σ  Avg. σ 

VCP 32cm 13.6 5.3  16.1 5.8  10.5 6.0  8.7 4.0 
VCP 71cm 17.5 4.3  22.0 4.8  15.1 4.0  10.6 3.2 
VCP 118cm 18.8 4.0  24.5 4.6  16.6 3.3  11.4 3.1 
HCP 35cm 15.6 3.9  18.8 4.2  14.0 2.1  10.7 2.8 
HCP 50cm 16.5 3.3  20.6 4.0  14.7 2.2  11.1 2.6 
HCP 71cm 16.5 3.0  21.2 3.7  15.0 2.1  10.9 2.2 
HCP 97cm 16.2 2.9  21.6 3.1  15.7 1.8  12.2 1.8 
HCP 135cm 16.8 3.1  23.1 3.4  17.1 2.1  12.2 1.9 
HCP 180cm 17.9 3.2  25.3 3.7  19.4 2.2  13.0 1.9 

 

The transition zone represented by sub-area B coincides with the slope that strikes ~N-S 

across the study area. The morphology of the area, the soil map description (Pleistocene loess 

sediments), and the patterns in the ECa maps suggest the presence of Holocene slope deposits 
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located on Pleistocene loess sediments. In general, the ECa values increase with DOI for both 

VCP and HCP configurations and they are higher compared to sub-area A (Table 3). The 

increase of ECa with DOI is most pronounced for the deeper sensing configurations (HCP 

with 130 cm and 180 cm coil separation). This is probably related to the presence of fine 

sediments in the deeper layers compared to the shallow surface. 

 

Within sub-area B, the EMI data consistently showed small areas of 1-2 ha with lower ECa 

compared to the surroundings. The shape of these areas depends on the DOI (see Figure 9a-c 

for DOIs of 75, 146 and 270 cm respectively) indicating that the presence of shallow 

structures was associated with the slope that characterizes sub-area B. The shape and the 

position of different structures along the slope allow a distinction between two regions with 

different genesis.  

 

 
Figure 9: Shallow structures of type 1 and 2 visible along the slope in sub-area B. The interpolated ECa 

values are shown for a) HCP 49cm, b) HCP 97cm, and c) HCP 180cm. 

 

The first structure (Type 1 in Figure 9a-c) was interpreted as a deposition of coarse material 

eroded from sub-area A when the channel system was not yet buried under aeolian sediments 

that led to the formation of small structures that are similar to fluvial fans. To support this 

interpretation, it was found that these features were adjacent to a paleochannel structure of 

sub-area A intersecting the boundary with sub-area B, and that the ECa pattern showed an 

elongated shape with low persistence with depth in their distal or proximal positions. The 

second structure (Type 2 in Figure 9a-c) was interpreted as a feature resulting from both 

natural and anthropogenic processes. First, shallow and slow movement has moved material 

from sub-area A to B. However, the observed feature is also related to recent anthropogenic 

soil management. It is known that the topography of the study area has been reshaped to 

facilitate agriculture with mechanized equipment (plowing, sowing and harvesting). In 
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addition, the area of the lower Ruhr has been inhabited and farmed for about the last 7000 yrs. 

Thus, soil erosion since the beginning of arable farming has also contributed to relief 

flattening. 

 

The ECa values in sub-area C also showed a general increase with DOI and were relatively 

higher when compared to the other three sub-areas (Table 3). This area was previously 

described as a homogeneous lower terrace using measurements in VCP and HCP 

configuration with a small offset (Rudolph et al., 2015). The soil taxation map (Figure 1c) 

describes this area as relatively homogeneous with loamy sediments, while the soil map 

(Figure 1b) indicates Pleistocene loess and translocated loess. The higher ECa values in sub-

area C suggest the presence of soils and sediments with higher clay content. 

 

 
Figure 10: Geometry of anthropogenic features highlighted by a) ECa maps with HCP 97cm configuration 

compared with b) aerial photo from 19th November 1944 and c) historical map from 1881-1912 (NRW, 

2017). 

 

The remains of irrigation channels and water ponds are visible in the ECa maps of this sub-

area (Figure 8d), and these features are shown in detail in Figure 10a. The shape of these 

structures is characterized by straight lines and approximately square polygons with lower 

ECa values compared to the surroundings. To identify the origin of these shapes, we 

compared the ECa map in Figure 10a with georeferenced aerial pictures and historical maps 

shown in Figure 10b and Figure 10c, respectively. From the aerial photo taken in November 
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1944 (USAAF, 1944), it can be concluded that these features were not related to defensive 

trench systems from WWII (Figure 10b). Instead, historical maps suggest that these structures 

were associated with field boundaries, irrigation channels, and water ponds and reservoirs that 

were active at the end of the 19th century or before (Figure 10c). Similar geometries are also 

visible in older maps like the Tranchot map from Napoleon times dating back to between 

1801 and 1809 (map not shown). The ECa and historical maps do not perfectly match, but this 

could be expected given the limited precision of the older maps and the transient nature of 

such local water management structures. 

 

The heterogeneous sub-area D was measured for the first time with EMI in this work. 

Generally, the average ECa values again increased with DOI both for the VCP and for the 

HCP coil configurations. The pattern visible in the ECa map (Figure 8) suggests that the 

subsurface of sub-area D is also characterized by a buried fluvial system and that the 

paleochannels are again characterized by a relatively higher ECa. However, the different 

geometry of the buried channels and the higher ECa values suggest a different type of fluvial 

activity. This is corroborated by the soil map that indicates translocated loess sediments on 

sand and gravels (Holocene-Pleistocene). Furthermore, the buried channels are straighter and 

wider compared to sub-area A. Likely, the depositional environment was closer to a braided 

fluvial system (Rosgen, 1994). 

 

 
Figure 11: a) ECa maps for HCP 97 cm configuration highlighting a buried structure with a strong EMI 

response, b) aerial picture from 19th of November 1944 (USAAF, 1944), and c) DEM with 0.5 m spaced 

contour lines. 

 

In sub-area D, more indications for recent anthropogenic activity have been identified in field 

F39 (Figure 11) as it is also possible to identify one channel with a strong EMI response 
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(Figure 11a). When comparing the EMI measurements with aerial photos from 1944 

(USAAF, 1944) (Figure 11b), we identified a depression that probably corresponds to the 

remains of a small brook. The channel has been buried with anthropogenic sediments since 

1944. The channel geometry matched with the higher ECa values obtained with EMI, and it 

was still apparent in the DEM where a topographic depression indicated the old position of 

the channel (compare Figure 11a-c). 

 

3.2.2. Heterogeneity at the field scale 

Besides the large-scale patterns in ECa values, field-scale variability in ECa values is also 

apparent. For example, fields F08 and field F24a-b were managed differently before the EMI 

data acquisition that took place on the same day (Figure 12a). Field F08 and field F24a were 

cropped with wheat by two different farmers, while field F24b was cropped with barley. 

Therefore, it is assumed that the observed differences in ECa for field F08 and field F24a-b 

are related to the different management that has resulted in different soil water content or 

different pore water conductivity at the time of data acquisition. Similarly, Figure 12b shows 

variations in ECa values between adjacent fields that were not measured at the same time. As 

in the previous case, part of the observed variation is related to differences in field 

management. More importantly, there are differences due to the variable amount of 

precipitation before data acquisition. For example, field F13b was measured in the beginning 

of the growing season and 53 mm of precipitation occurred in the five weeks before data 

acquistition. In field F43 and F06, which were measured at the end of the growing season, 44 

mm and 29 mm of precipitations were recorded in the previous five weeks, which obviously 

affects soil water content and thus ECa values. 

 

Although these two examples illustrate that variable management and timing of EMI data 

acquisition affected the ECa maps, it can be seen that the characteristics of the subsurface in 

terms of layering and texture are still identifiable, since a range of features that cross the field 

boundaries are apparent (Figure 12b). Here, it is important to emphasize that the adopted 

approach for ECa correction (calibration and temperature) was not expected to correct these 

differences in ECa between fields, since they are likely related to variations in soil water 

content and pore water conductivity. To overcome this secondary variability in ECa as much 

as possible, it was required to apply the classification methodology to each field 

independently. 
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Figure 12: a) Variation in ECa between fields measured within 24h on August the 25th 2016, b) variation in 

ECa between fields measured at different times (measurement dates given after field abbreviation). 

 

3.2.3. Definition of the classes 

After subdividing the study area in four different sub-areas, it was assumed that the soils in 

each sub-area are different because of the different type and age of the sediments. Further 

subdivision within each sub-area was performed prior to the classification of each field. In 

sub-area A, the best distribution and separation of the clusters in the six-dimensional space 

provided by the EMI data in the multiband raster was achieved by using four soil classes, 

which are named A1a, A1b, A1c, and A1d in the following. These soil classes showed a 

general decrease in ECa from class A1a to A1d (Table 4). In sub-area B, an appropriate 

separation of clusters was obtained using a total of five soil classes divided in two groups: two 

soil classes representing natural soils (B1a and B1b) and three representing anthropogenic 

soils (B2a, B2b, and B2c). Generally, ECa was higher in natural soils compared to 

anthropogenic soils (Table 5). Moreover, ECa decreased from soil class B1a to B1b and from 

soil class B2a to B2c (Table 5). In sub-area C, a clear subdivision can be made between 

anthropogenic soils (Figure 8d) and the surrounding natural soils. The anthropogenic soils 

were divided in buried irrigation channels (class C2a) and buried water ponds (class C2b in 

Table 6). These soil classes were manually determined in the multiband raster because of their 

evident geometry (Figure 8d and Figure 10a) and subsequently removed from the multiband 

image to avoid any influence in the classification process. The remaining area of sub-area C is 

apparently homogeneous according to the 1:5000 soil map and the soil taxation map (Figure 

1b-c). However, the range of ECa (e.g., from 9.2 to 35.1 mS m-1 in HCP 35 cm and from 13.8 

to 34.2 mS m-1 in HCP 180 cm) suggested further subdivision and the use of two soil classes 

C1a and C1b with different ECa (Table 6). In sub-area D, the best distribution and separation 
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of clusters was provided by using five soil classes. The four soil classes D1a, D1b, D1c, and 

D1d represent natural soils, and soil class D2a represents an anthropogenic structure in field 

F39. The ECa of soil class D2a was highest, then the ECa decreased from soil class D1a to 

D1d (Table 7). 

 

3.2.4 Classified ECa map 

Using these classes, the multiband ECa image of each field was classified. This resulted in a 

high resolution soil map composed of four sub-areas divided in a total of 18 soil classes. In 

the following, the results for each sub-area are presented separately to facilitate the 

description and the understanding of the high resolution geophysics-based soil map obtained 

by combining the classification results with the ground truth sampling. 

 

3.2.4.1. Classified ECa map of sub-area A 

 
Figure 13: a) ECa map of the HCP 97 cm configuration in sub-area A, b) classified ECa map of sub-area A 

with the locations of the ground truth points, c) averaged soil profiles for each of the four classes with a 

description of the statistically significant differences in texture and layers depth between classes A1a-A1b, 

A1b-A1c, and A1c-A1d. Note that the ECa scale for panel a) differs from the one in Figure 8 to improve 

visualization. 
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The results of the supervised classification of sub-area A are shown in Figure 13b while the 

average soil profiles of each soil class are shown in Figure 13c. The soil profiles of each soil 

class are richer in fine sediments (clay and silt) in the Ap-AB, and Bw horizons characterized 

by Aeolian sediments. The deeper horizons consisted of coarser sediments composed of 

Pleistocene sand and gravels. The average ECa for each configuration decreased from soil 

class A1a to class A1d (Table 4). This may be due to the decreasing maximum depth of the 

Bw horizon that consists of finer sediments (Figure 13c). A pairwise t-test between 

neighboring soil classes indicated that this maximum depth was significantly different only 

between classes A1a and A1b (p = 0.040). However, the textural data showed a significant 

difference (p = 0.031) in gravel content between the Ap-AB horizon of soil class A1b (16.7 

%) and A1c (29.8 %). In addition, the clay content of the AP-AB horizon in class A1c (14.4 

%) was significantly higher (p = 0.034) than that of class A1d (12.9 %). These textural 

characteristics are in agreement with the decreasing average ECa from soil class A1b to A1d. 

The average texture of all soil profiles for sub-area A-D and the results of all pairwise t-tests 

within each sub-area are provided in the supplementary material S.1. 

 

Table 4: Average (Avg.) and Standard deviation (𝜎) of the measured ECa values (mS m-1) obtained with 

the six HCP coil configurations in the four classes of sub-area A. 

 A1a A1b A1c A1d 
Configuration Avg. σ Avg. σ Avg. σ Avg. σ 

HCP 035 12.5 2.9 10.8 2.3 9.6 2.3 8.3 1.9 
HCP 050 12.9 2.5 11.1 2.1 10.0 1.9 8.6 1.5 
HCP 071 12.5 2.2 10.9 1.6 10.0 1.6 8.8 1.3 
HCP 097 12.7 1.8 11.1 1.3 10.3 1.3 9.4 1.1 
HCP 130 12.7 1.8 11.1 1.4 10.3 1.3 9.9 1.2 
HCP 180 13.6 1.9 11.8 1.3 11.1 1.3 10.8 1.2 

 

3.2.4.2. Classified ECa map of sub-area B 

The results of the supervised classification of sub-area B are shown in Figure 14Figure 14: a) 

ECa map of the HCP 97 cm configuration in sub-area B, b) classified ECa map of sub-area B 

with the locations of the ground truth points, c-d) averaged soil profiles for each of the four 

classes with a description of the statistically significant differences in texture between classes 

B1a-B1b, B2a-B2b, and B2b-B2c.b and the average soil profiles are shown in Figure 14c-d. 

Compared to sub-area A, the soil profiles in this sub-area generally have a Bg horizon below 

the Bw horizon. Moreover, the 2C horizon consisting of coarse sediments that is common in 
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sub-area A was found only in one of the five soil classes of sub-area B. An Ap-AB horizon 

was always found on top of each profile. 

 

 
Figure 14: a) ECa map of the HCP 97 cm configuration in sub-area B, b) classified ECa map of sub-area B 

with the locations of the ground truth points, c-d) averaged soil profiles for each of the four classes with a 

description of the statistically significant differences in texture between classes B1a-B1b, B2a-B2b, and 

B2b-B2c. 

 

Table 5 shows that the average ECa is higher in soil class B1a compared to B1b. Together 

with the presence of the 2C horizon in soil class B1b, this suggests that B1b represents areas 

in which the 2C horizon, typical of sub-area A, is present below slope deposits. Although 

there were no significant differences in horizon depth between class B1a and B1b, we did 

observe significant differences in texture as indicated in Figure 14c. The most evident was the 

higher clay content of the Ap-AB, Bw, and Bg horizons of class B1a (15.9 %, 17.3 %, and 

22.5 % compared to 12.3 %, 16.4 % and 18.1 % with p = 0.005, p = 0.006, and p = 0.002). In 

addition, the sand content of the Ap-AB and Bg horizons of class B1a was lower than in B1b 

(15.1%, and 12.8 % compared to 19.2 %, and 17.8 % with p = 0.002, and p = 0.012). Again, 

these textural differences are consistent with observed differences in ECa. In contrast with the 
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decrease in average ECa, the gravel content of the Bg horizon of soil class B1a was 

significantly higher than that of class B1b (12.8 % compared to 1.6 %, p = 0.014). However, 

we assume that this difference in gravel content is secondary given the aforementioned 

differences in textural characteristics and layering of these two classes. 

 

Table 5: Average (Avg.) and Standard deviation (𝜎) of the measured ECa values (mS m-1) obtained with 

the six HCP coil configurations in the four classes of sub-area B. 

 B1b B1a B2a B2b B2c 
Configuration Mean σ Mean σ Mean σ Mean σ Mean σ 

HCP 035 16.1 2.0 13.3 1.6 14.7 2.5 14.3 2.5 12.6 2.0 
HCP 050 16.9 2.2 14.2 1.9 15.5 2.4 14.9 2.2 13.2 2.1 
HCP 071 17.2 1.9 14.6 1.8 15.8 2.1 15.2 2.1 13.4 1.9 
HCP 097 17.7 1.6 15.4 1.0 16.6 1.7 15.8 1.7 14.0 1.5 
HCP 130 19.4 1.7 17.0 1.3 18.0 2.1 17.3 2.3 15.1 1.9 
HCP 180 21.7 1.9 19.5 1.3 20.2 2.2 19.5 2.4 17.0 2.1 

 

Soil classes B2a, B2b, and B2c are characterized by anthropogenic deposits in the first ~70-90 

cm of the profile. The profiles of classes B2a and B2b are relatively similar, and no 

significant differences were found in horizon depth. Again, the texture showed meaningful 

differences. The clay content of the Ap-AB horizon of class B2a was significantly higher than 

that of B2b (15.1 % compared to 12.0 %, p = 0.002). Even though the anthropogenic horizon 

of soil class B2b showed a significantly higher sand content (19.7 % compared to 15.1 %, p = 

0.020), the profile and texture were considered to be consistent with the higher average ECa 

of class B2a. The profile of soil class B2c is the only one without a Bg horizon. At the same 

time, the Ap-AB horizon of this class is characterized by a significantly higher gravel content 

compared to class B2b (24.3 % in class B2c compared to 3.5 %, p = 0.001). Furthermore, the 

sand content of the Ap-AB horizon is significantly higher in soil class B2c (21.7 % compared 

to 17.1 %, p = 0.010). This is in agreement with the lower average ECa in class B2c compared 

to class B2b and apparently compensates the significantly higher clay content of horizon Ap-

AB of class B2c (14.9 % in class B2c compared to 12.0 % in class B2b, p = 0.006). Note that 

each of these anthropogenic soil classes was characterized using only three ground truth 

sampling locations, so that the provided interpretation should be considered with some 

caution. 
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3.2.4.3. Classified ECa map of sub-area C 

The results of the supervised classification of sub-area C are shown in Figure 15b and the 

average profiles of the four soil classes are shown in Figure 15c-d. The profiles in this sub-

area are relatively simple. A Bg horizon is consistently present below a Bw horizon and an 

Ap-AB horizon is always found on top of each profile. 

 

 
Figure 15: a) ECa map of the HCP 97 cm configuration in sub-area C, b) classified ECa map of sub-area C 

with the locations of the ground truth points, c-d) averaged soil profiles for each of the four classes with a 

description of the statistically significant differences in texture and layers depth between classes C1a-C1b 

and C2a-C2b. 

 

The two soil classes associated with natural deposits (C1a and C1b) did not show significant 

differences in the horizon depths, and also no significant differences in texture were found. 

This could be expected considering the subtle differences in ECa between the two classes 

(Table 6). However, a significant difference in gravimetric water content was found for the 

Bg horizons. The gravimetric water content was significantly higher in soil class C1a (16.0 % 

compared to 14.1 %, p = 0.021), which is in agreement with the higher average ECa for this 
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class, and this may be related to differences in bulk density at depths. Nevertheless, these two 

classes are considered to be similar and could be merged according to the ground truth 

information. 

 

Table 6: Average (Avg.) and Standard deviation (𝜎) of the measured ECa values (mS m-1) obtained with 

the six HCP coil configurations in the four classes of sub-area C. 

 C1a C1b C2a C2b 
Configuration Mean σ Mean σ Mean σ Mean σ 

HCP 035 20.0 4.0 18.3 3.8 19.6 4.9 19.0 4.0 
HCP 050 22.1 3.8 20.1 3.4 21.5 3.9 19.9 3.7 
HCP 071 22.7 3.6 20.8 3.1 21.6 3.3 19.8 3.4 
HCP 097 22.9 2.8 21.3 2.7 21.3 2.7 19.9 3.4 
HCP 130 24.5 3.1 22.8 2.8 22.8 2.9 20.7 3.2 
HCP 180 26.8 3.3 25.2 3.0 25.1 3.3 22.7 4.0 

 

 

For the anthropogenic soil classes (C2a and C2b), the soil profiles differ in the thickness and 

thus the maximum depth of the anthropogenic horizon and the depth of the Bg horizon. The 

anthropogenic horizon extends to 112.5 cm in C2b compared to a mean depth of 51.0 cm in 

C2a (p = 0.036). In addition, the top of the Bg horizon is 129.0 cm in C2b compared to 86.0 

cm in C2a (p = 0.034). This is in agreement with the interpretation of anthropogenic fillings 

of old irrigation networks (class C2a) and water ponds (class C2b). 

 

3.2.4.4. Classified ECa map of sub-area D 

The results of the supervised classification of sub-area D are shown in Figure 16b, while the 

average profiles of each soil class are shown in Figure 16c and Table 7 provides the average 

ECa values and the standard deviation for each of the four soil classes. The soil profile of 

each soil class is characterized by finer sediments in the top horizons (Ap-AB, Bw, and Bg) 

above a coarser 2C horizon. Another anthropogenic soil class with an Ap-AB horizon over an 

anthropogenic layer is also present in this sub-area. 

 

The four soil classes D1a-d showed similar horizon types. An Ap-AB horizon was found over 

Bw and Bg horizons with variable thickness followed by a coarser 2C horizon. Similar to sub-

area A, the decrease in depth to the coarse 2C horizon corresponds with a decrease in average 

ECa going from class D1a to class D1d (Table 7). The difference in depth to the 2C horizon 

are statistically significant between classes D1b and D1c (122.7 cm in class D1b and 83.3 cm 
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in class D1c, p = 0.034). This difference was not statistically different between classes D1a 

and D1b, but the textural analysis revealed a significant difference in gravel content of the 

Ap-AB horizon (higher in class D1b with 4.3 % compared to 0.9 %, p = 0.044) and in sand 

content of the Bw horizon (again higher in class D1b with 17.8 % compared to 14.5 %, p = 

0.030). The difference in depth was also not statistically significant between soil classes D1c 

and D1d. However, the clay content of the Ap-AB horizon of soil class D1c was significantly 

higher than that of class D1d (17.2 % compared to 15.0 %, p = 0.030). These observed 

differences in texture are in agreement with the decrease in average ECa from class D1a to 

D1d. 

 

 
Figure 16: a) ECa map of the HCP 97 cm configuration in sub-area D, b) classified ECa map of sub-area D 

with the locations of the ground truth points, c) averaged soil profiles for each of the four classes with a 

description of the statistically significant differences in texture and layers depth between classes D1a-D1b, 

D1b-D1c, and D1c-D1d. 

 

Soil class D2 showed an anthropogenic horizon over coarser sediments in all four ground 

truth locations. No other horizon type (e.g., Bw, Bg, or 2C) was found in these four profiles. 

The coarse horizon at the bottom of the four profiles was different from the 2C horizon of the 

other classes of sub-area D. This was confirmed by differences in the color of the sediments, 

the shape of the gravels, and the generally higher clay, and water content compared to the 2C 
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horizon of the other soil classes. This soil class was interpreted as the remains of a small 

brook that was recently buried with anthropogenic filling. 

 

Table 7: Average (Avg.) and Standard deviation (𝜎) of the measured ECa values (mS m-1) obtained with 

the six HCP coil configurations in the four classes of sub-area D. 

 D1a D1b D1c D1d D2a 
Configuration Mean σ Mean σ Mean σ Mean σ Mean σ 

HCP 035 17.4 3.0 15.7 3.6 12.3 2.1 11.1 2.1 21.0 1.9 
HCP 050 18.8 2.8 16.4 2.7 13.5 1.5 13.7 1.3 21.6 1.9 
HCP 071 19.0 2.7 16.4 2.4 13.7 1.4 12.6 1.3 20.8 1.4 
HCP 097 19.0 2.6 16.2 2.4 13.9 1.6 12.7 1.4 20.3 1.8 
HCP 130 19.7 2.8 16.6 2.3 14.0 1.2 13.1 1.4 19.8 1.9 
HCP 180 20.8 3.0 17.8 2.5 15.1 1.3 14.5 1.5 20.2 1.9 

 

3.2.5. Comparison with patterns in crop stress 

In order to verify the ability of the high-resolution geophysics-based soil map to represent 

agronomically relevant processes, it was compared to patterns in crop stress in sugar beet 

obtained from satellite imagery (Figure 17). This comparison focused on approximately one 

fourth of the study area (25.5 ha) covered with sugar beet and considered fields from all four 

sub-areas. 

 

 
Figure 17: a) Satellite image (ESRI, 2015) of the study area with highlights on the fields cropped with 

sugar beet, b) digitized patterns in crop stress in F05 ( F07 shown in e), c) comparison between classified 

map and patterns in crop stress on F05 (F07 shown in f), d) correctly classified cells (green) and incorrectly 

classified one (red) on F05 (F07 shown in g). 
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Figure 17 shows the patterns in crop stress determined for field F05 (Figure 17b) and field 

F07 (Figure 17e). It can be seen that these patterns match well with the geophysics-based soil 

map for both fields (Figure 17c and Figure 17f), and the match is visualized in Figure 17d and 

Figure 17g, where green cells indicate correctly classified cells and red cells indicate 

incorrectly classified ones. To quantify the match between the soil map and the patterns in 

crop stress, the TPR and TNR were first calculated for each class and then aggregated to the 

field-scale using weighted averaging (Table 8). The TPR represents the percentage of cells 

that are correctly classified as stressed crops, and ranged from 60.2 to 93.5% for the 

investigated fields. The weighted average for the study area was 77.9%. The TNR represents 

the percentage of cells that are correctly classified as healthy crops, and ranged from 62.7 to 

97.1% with a weighted average of 89.0% for the study area. 

 

Table 8: True positive ratios (TPR), true negative ratios (TNR), and total percentage of correctly classified 

cells (TOT) resulting from the comparison with satellite image. 

Field or area TPR (%) TNR (%) TOT (%) 
F05 87.0 73.6 79.0 
F07 76.9 96.4 90.5 
F08 93.5 97.1 96.6 
F17a 89.6 62.7 70.4 
F22b 74.0 77.4 76.2 
F23 90.1 95.7 94.5 
F24 91.0 96.1 95.2 
F39 64.8 92.1 91.0 
F40 60.2 89.0 88.1 
F49 67.7 75.7 72.5 

Sub-area A 80.4 73.6 76.6 
Sub-area B 73.1 95.2 92.0 
Sub-area C ND 100.0 100.0 
Sub-area D 62.7 84.6 83.3 

1 x 1 km 77.9 89.0 87.2 
 

In sub-area A, the TPR is 80.4%, the TNR is 73.6%, and the weighted average is 76.6% 

(Table 8). The result of the classification in this sub-area is satisfying with a high accuracy in 

the classification of areas with stressed crops (soil classes A1c-d). In sub-area B, only soil 

class B1b corresponded to stressed crops and the TPR is 73.1%. All other soil classes 

corresponded to healthy crops, and the TNR was 95.2%. However, this high TNR is affected 

by the large area of healthy crops (85%) in this sub-area. Sub-area C is entirely covered with 

healthy plants. Consequently, it has no TPR and a TNR of 100%. In sub-area D, the TPR is 
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62.7%, the TNR is 84.6%, and the weighted average is 83.3%. Similar to sub-area B, is 

mostly covered with healthy crops (~85%, soil classes D1a-c and D2a), resulting in a high 

TNR. In this sub-area, the relatively poor TPR is most probably connected with the conditions 

in which field F40 was measured (under heavy rain, the 20th and 21st of October 2016). 

 

Overall, the correspondence between the high-resolution soil map and the satellite image was 

found to be satisfying, also because the geometry of the areas in which crops are experiencing 

water stress during drought periods was identified to a reasonable degree. 

 

3.3. Conclusions 

In this chapter, multi-configuration EMI measurements acquired over a period of several 

months were combined with ground truth data to obtain a high-resolution geophysics-based 

soil map of a 1 x 1 km area. A supervised classification approach commonly used for the 

interpretation of multi-band remote sensing data was adopted to classify the ECa 

measurements into areas with similar soil properties. In particular, the study area was first 

divided in four sub-areas based on geophysical data and on information of available soil 

maps. In a second step, these four sub-areas were further divided in a total of 18 soil classes 

using a field-by-field analysis. It is clear that the results of such supervised classification 

depend to some extent on the interpreter, as is the case for many soil maps. Nevertheless, it 

was found that this approach was most suited to obtain soil information from the EMI 

measurements in the presence of additional variation due to variable water content and pore 

water conductivity. Future research could explore the benefit of advanced unsupervised 

classification methodologies to obtain a more objective approach. This will be discussed in 

more detail in Chapter 6. 

 

In a next step, 100 locations where selected to obtain layering information and textural 

characteristics. The profiles located within each class were averaged to obtain typical soil 

profiles for each soil class. It was found that there were statistically significant differences 

between the soil profiles of different classes in terms of layering and texture, and that the 

observed differences were in agreement with the variation of average ECa between different 

classes. Finally, the geophysics-based soil map was compared with patterns in crop stress 

obtained from a satellite image and it was found that areas with stressed crops matched well 

with particular soil types. 
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Overall, the high-resolution soil map obtained from a combination of multi-configuration 

EMI measurements and ground truth data was found to be useful for defining zones that 

require variable management within precision agriculture applications. For example, this map 

could be used as input for fertilization and irrigation equipment that are capable of changing 

rates on individual sprinklers during operation. In addition, this geophysics-based soil map 

may be useful as input for agro-ecological model applications to predict crop stress as a 

function of environmental boundary conditions (soil, water availability, crop type). This will 

be explored in detail in Chapter 4. 
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Chapter 4 

 

Simulation of spatial variability of crop 

LAI and yield using agro-ecosystem 

models and geophysics-based 

quantitative soil information 

 

In this chapter*, it will be shown that the geophysics-based soil map developed in Chapter 3 

allows for precise agro-ecosystem simulations of multiple crops. First, the agro-ecosystem 

model AgroC that is used within this thesis will be described. Then, it will be described how 

soil hydraulic parameters were calculated from texture and bulk density provided by the 

geophysics-based soil map using the pedotransfer function from Rawls and Brakensiek 

(1985). In order to evaluate the spatially distributed AgroC simulations, simulations of water 

content will be compared to measured water contents at two different locations in a first step. 

In a following step, the agro-ecosystem simulations for corn, potato, sugar beet, winter barley, 

winter rapeseed, and winter wheat will be described. It will be shown that the magnitude of 

simulated water stress is a function of both the crop type and the soil characteristics. In order 

to further validate the agro-ecosystem simulations and the impact of simulated water stress on 

LAI and crop performance, six LAINDVI maps were produced from RapidEye satellite images. 

It will be shown that the simulated LAI was generally consistent with the observed LAINDVI, 
                                                 
* This chapter is adapted from a journal article in preparation: 
Brogi, C., Huisman, J. A., Herbst, M., Weihermüller, L., Klosterhalfen, A., Montzka, C., Vereecken, H., 
Simulation of spatial variability of crop LAI and yield using agro-ecosystem models and geophysics-based 
quantitative soil information 
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and that the simulated productivity at harvest of four crops matched well with the actual 

harvest or corresponded to literature values. Finally, maps of simulated productivity at harvest 

will be presented for the four main crops, and the potential of these maps in practical 

agricultural applications will be discussed. 

 

4.1. The AgroC model 

AgroC is an agro-ecosystem model that couples: i) the SOILCO2 module (Šimůnek and 

Suarez, 1993; Šimůnek et al., 1996) for simulating vertical water, heat, and CO2 fluxes in a 

soil column, ii) the RothC module for simulating the turnover of organic carbon (Coleman 

and Jenkinson, 1996), and iii) the SUCROS module for simulating crop growth and organ-

specific dry matter accumulation in crops (Spitters et al., 1989). The AgroC model is 

described in detail in (Klosterhalfen et al., 2017). In the following, a short overview of the key 

model components relevant for this work is provided.  

 

The SOILCO2 module solves the one-dimensional Richard’s equation that describes water 

flow in a given soil profile: 
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where h (cm) is the pressure head, θw (cm3 cm-3) is the volumetric water content, K (cm h-1) is 

the hydraulic conductivity, t is time (hours), z is the vertical coordinate (cm), and Q (cm3 cm-3 

h-1) is the source/sink term accounting for water uptake by plant roots. The water retention 

and the unsaturated hydraulic properties as a function of pressure head are described by the 

Mualem- van Genuchten (Van Genuchten, 1980) model: 
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where θr and θs (cm3 cm-3) are the residual and saturated water content, respectively, Ks is the 

saturated hydraulic conductivity (cm h-1), Se is the relative saturation (dimensionless), α is the 

inverse of the air entry pressure (cm-1), n is a dimensionless parameter related to the pore size 

distribution, and the parameter m is set equal to 1-1 n-1.  

 

In the SUCROS module, potential evapotranspiration of a crop ETp,crop growing under optimal 

conditions is calculated by multiplying the potential grass reference evapotranspiration with a 

crop-specific coefficient Kc. Here, the potential grass reference evapotranspiration is 

calculated from meteorological data using the Penmann-Monteith approach (Allen et al., 

1998). The value of the Kc coefficient varies throughout the growing season and is affected by 

climatic conditions and crop development stage (DVS). Then, ETp,crop is split into potential 

soil evaporation Ep (cm h-1) and potential transpiration Tp (cm h-1) according to the Beer’s 

law: 

 

E୮ = ET୮,ୡ୰୭୮exp(−0.6 ∗ LAI)        (6) 

T୮ = ET୮,ୡ୰୭୮ − E୮ − E୧         (7) 

 

where LAI is the leaf area index and Ei (cm h-1) is the water removed by evaporation of 

intercepted rainfall calculated using: 

 

E୧ = (ET୮,ୡ୰୭୮ − E୮)
େ౟

ୗ౟
         (8) 

 

where Ci (cm) is the interception storage at a specific time step and Si (cm) is the canopy 

interception storage capacity that is assumed to be proportional to the LAI. 

 

The potential root water uptake Sp (cm3 cm-3 h-1) is a function of the potential transpiration Tp 

over depth z according to relative root density distribution. Actual root water uptake is 

calculated from the potential root water uptake using: 

 

Q(z, h) = φ(h)S୮(z)          (9) 
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where φ(-) is a root water uptake stress factor that reduces the potential root water uptake in 

dry and wet soil conditions. This reduction factor is calculated according to (Feddes et al., 

1978): 

 

φ(h) ൞

୦బି୦

୦బି୦భ

1

10
౞మష౞

౞య

 for  

h଴ ≤ h ≤ hଵ

hଵ ≤ h ≤ hଶ

hଶ ≤ h ≤ hଷ

        (10) 

 

where h0, h1, h2, and h3 (cm) are prescribed threshold pressure heads. Finally, the actual 

transpiration is provided by the integration of the actual root water uptake over depth: 

 

Tୟ = ∫ Q(z, h)dz
୐౨

଴
          (11) 

 

where Lr is the rooting depth (cm). At crop emergence an initial rooting depth is assumed for 

each crop. Thereafter, rooting depth increases according to temperature until the maximum 

rooting depth is reached. The root length density distribution with depth was calculated from 

a dimensionless weighting factor specified for relative rooting depths. 

 

Biomass increase is estimated from the carbon assimilated by the plant. Here, the potential 

assimilation is scaled by the ratio Ta/Tp to account for water stress. The glucose assimilation 

rate Ag (kg CH20 m-2 h-1) is equal to 30/44 of the total carbon assimilation rate A (kg CO2 m-2 

h-1), which is obtained by integrating the total instantaneous assimilation rate AL,T (kg CO2 m-

2 leaf surface-1) over the daylight period and the LAI. In a second step, the net growth rate of 

dry matter (DM) per unit area GWT (kg DM m-2 h-1) is calculated using 

 

GWT =
୅ౝିୖౣ

୅ୗ୕ୖ
           (12) 

 

where ASRQ (kg DM kg-1 h-1) is a coefficient that represents the organic-specific conversion 

efficiency from glucose to dry matter and Rm (kg CH20 m-2 h-1) is the total maintenance 

respiration demand, which is controlled by plant senescence and temperature. After 

determining the net growth, a partitioning into the crop organs is used to describe dry matter 

accumulation in the roots, storage organs, stems, and leaves. This partitioning is crop-specific 

and is a function of DVS.  
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During the crop juvenile stage, the development of LAI is driven by temperature. At later 

stages, the dry matter growth rate of green leaves GWLVG
t (kg DM m-2 soil h-1) at a specific 

time-step t is limited by the supply of assimilates. Therefore, the green LAI growth rate 

GLAIG
t (m2 leaf m-2 soil h-1) is 

 

GLAIୋ
୲ = GWLVୋ

୲ ∗ SLA          (13) 

 

where SLA (m2 leaf kg-1 DM) is the specific leaf area. The leaf area growth rate decreases 

during the season because of senescence, self-shading, and chilling temperatures. In the 

model, a dead LAI growth rate is calculated for different crops and is then subtracted from the 

GLAIG
t to describe this reduction in the growth rate.  

 

4.2 Materials and methods 

4.2.1 Unique soil-crop combinations 

 

Figure 18: a) Geophysics-based soil map of the study area provided with soil layering description, b) land 

use of the study area in 2016, and c) map of the 80 unique soil-crop combinations resulting from the 

intersection of the 18 soil units of the soil map and the six simulated crops. 
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The land use map shown in Figure 18b was produced by combining the land use described in 

Chapter 2 (Figure 3) with in situ DGPS measurements (Trimble Inc., Sunnyvale, USA). The 

crops present in 2016 were corn, potato, sugar beet, winter barley, winter rapeseed, and winter 

wheat. As described in Chapter 2, a small percentage of the area was covered with bare soil, 

oat, and grass. Due to the small size of these fields, it was decided to exclude them from 

analysis. In a next step, the geophysics-based soil map (Figure 18a) and the land use map 

were intersected. This resulted in 80 unique soil-crop combinations (Figure 18c). 

 

4.2.2. Estimation of the hydraulic parameters 

In this chapter, the pedotransfer functions (PTF) provided by Rawls and Brakensiek (1985) 

were used to estimate the hydraulic parameters of each layer of the soil profiles provided by 

the geophysics-based soil map. This PTF uses the fractions of sand, silt, and clay, and the 

bulk density to estimate the hydraulic parameters. The bulk density of the fine fraction < 2 

mm (BD<2) was not directly determined during soil profile characterization and sampling for 

soil texture. In the upper plow layers, a lower bulk density of BD<2 of 1.30 g cm-3 for Ap 

horizons and a BD<2 of 1.40 g cm-3 for AB horizons were assumed due to regular tillage 

(Ehlers et al., 1983; Unger and Jones, 1998). For the deeper soil horizons, a BD<2 of 1.50 g 

cm-3 was assumed for fine sediments and a BD<2 of 1.60 g cm-3 was assumed for 2C horizons 

that contained a lot of coarse material. These assumptions were based on results from 

previous sampling campaigns conducted on two test fields within the study area (field F01 

and F10 in Figure 1). Because of the high gravel content of some soils in the study area, the 

bulk density of the fine earth fraction was corrected for gravel content according to 

Brakensiek and Rawls (1994) by 

 

BD୲ = BDழଶ + G୴ (BDவଶ − BDழଶ)        (14) 

 

where BDt is the bulk density of the soil, BD>2 is the bulk density of gravel, and Gv is the 

volume of gravel (Flint and Childs, 1984). The bulk density of gravel was assumed to be that 

of solid quartz: BD>2 = 2.65 g cm-3 (Brakensiek and Rawls, 1994). The volume of gravel was 

calculated using 

 

G୴ = G୵/(2 − G୵)          (15) 
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where Gw is the weight fraction of gravel (Flint and Childs, 1984), which was available from 

the soil texture information provided by the geophysics-based soil map. 

 

Table 9: Hydraulic parameters of soil unit A1d estimated using the Rawls and Brakensiek PTF (Rawls and 

Brakensiek, 1985) and the Rosetta PTF (Zhang and Schaap, 2017). 

PTF Horizon θs (cm3 cm-3) θr (cm3 cm-3) α (cm-1) n (-) Ks (cm h-1) 
Ra. & Br. Ap (loess) 0.416 0.055 0.0233 1.348 0.2605 
Ra. & Br. AB (loess) 0.401 0.054 0.0216 1.349 0.2099 
Ra. & Br. Bg (loess) 0.372 0.064 0.0150 1.322 0.0914 
Ra & Br. 2C (coarse) 0.165 0.052 0.0087 1.306 0.0024 
Rosetta Ap (loess) 0.399 0.070 0.0042 1.558 1.0387 
Rosetta AB (loess) 0.389 0.069 0.0044 1.546 0.8535 
Rosetta Bg (loess) 0.395 0.081 0.0041 1.516 0.0807 
Rosetta 2C (coarse) 0.245 0.053 0.0087 1.403 0.0105 

 

Due to the high gravel content of the 2C horizon (estimated to be 70% in the upper terrace 

and 50% in the lower terrace), the estimates of the hydraulic properties were deemed to be 

less accurate for this horizon. To avoid introducing variation into the simulation results due to 

these uncertain hydraulic properties, it was decided to set the hydraulic parameters of the 2C 

horizon to the same values for all soils of the upper terrace (soil units A1a-d) and for all soils 

of the lower terrace (soil units D1a-d and D2a). In both cases, the hydraulic parameters were 

estimated from the average soil texture and corrected bulk density obtained from the 

estimation procedure outlined above. Finally, the estimated saturated hydraulic conductivity 

(Ks) (cm h-1) of the 2C horizon was also corrected for gravel content according to Brakensiek 

and Rawls (1994): 

 

𝐾௕ = 𝐾௦ [2(1 − 𝐺௩ )/(2 + 𝐺௪ )]        (16) 

 

were Kb is the saturated hydraulic conductivity of the bulk soil (fine earth and gravel) and Ks 

is the saturated conductivity of the fine earth fraction estimated by the PTF (Rawls and 

Brakensiek, 1985). In this simple correction, it is assumed that rock fragments have zero 

conductivity. An example of the estimated hydraulic parameters is shown in Table 9 for soil 

unit A1a. For comparison, the hydraulic parameters of soil unit A1a obtained by applying the 

same procedure but using the commonly applied ROSETTA PTF (Zhang and Schaap, 2017) 

are also shown.  
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4.2.3. Estimation of LAI from satellite observations 

LAI was estimated from RapidEye multispectral satellite imagery using a logarithmic 

relationship to calculate LAINDVI from vegetation indices (Ali et al., 2015). Successful 

applications of this procedure have been published by Hasan et al. (2014), Montzka et al. 

(2016), Post et al. (2018), Reichenau et al. (2016), and Rudolph et al. (2015). For this work, 

six RapidEye images with a resolution of 5 m were available. The six images were acquired 

on 14th March, 20th April, 28th May (Figure 19a), 9th June, 12th August, and 8th September 

2016, and thus cover the full growing season of various crops. Further data had to be 

discarded because of dense cloud cover and relatively poor illumination conditions with 

associated low signal-to-noise ratios. 

 

In a first step, the NDVI (Normalized Difference Vegetation Index) was calculated for each 

image pixel using 

 

NDVI =
୒୍ୖିୖ

୒୍ୖାୖ୉ୈ
           (17) 

 

where NIR is the near infra-red (760-850 nm) and RED is the red spectral band (630 – 685 

nm). An example of a NDVI map calculated from the satellite image of the 28th of May is 

shown in Figure 19b. In a next step, the fractional vegetation cover (FVCNDVI) of each image 

was calculated using 

 

FVC୒ୈ୚୍ =
୒ୈ୚୍ି ୒ୈ୚୍౩

୒ୈ୚୍౬ି ୒ୈ୚୍౩
          (18) 

 

where NDVIs is the NDVI for bare soil and NDVIv is the value at the fully vegetated state 

(Beck et al., 2006; Xiao and Moody, 2005; Zeng et al., 2003). The values of NDVIs and 

NDVIv were estimated through histogram evaluation (NDVIV = -0.05 and NDVIS = 0.81). 

Finally, the LAINDVI was calculated using 

 

LAI୒ୈ୚୍ =
ି ୪୭୥  (ଵି୊୚େొీ౒౅)

୩(஘)
         (19) 

 

where k(θ) is the light extinction coefficient for a given solar zenith angle (θ). This coefficient 

is a measure of attenuation of radiation in the canopy and depends on factors such as the 

latitude, date, solar elevation and declination, and terrain geometry.  
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A set of 45 in situ LAI measurements performed between 22nd March and 7th September 2016 

were used to estimate k(θ) of sugar beet, winter barley and winter wheat. The fields in which 

these measurements were performed are shown in Figure 1a. At each sampling location, 

destructive measurements of LAI were performed by sampling 0.5 m of plants from three 

adjacent rows in wheat and barley. For sugar beet, three individual plants were collected and 

crop density was determined in the field. 

 

 
Figure 19: a) RapidEye satellite image of the study area at the 28th of May, b) NDVI map calculated from 

the satellite image, and c) LAINDVI map calculated from NDVI and in situ measurements. 

 

Subsequently, the leaf area was measured in the lab by using a Flatbed Scanner (Epson GT-

15000, Seiko Epson Corp., Suwa, Japan) and a public domain image analysis software 

(ImageJ, 2016). Upscaling to a square meter was performed based on the harvested area. 

These in situ LAI values were compared with the respective FVCNDVI values to obtain an 

estimate of k(θ). In this process, only in situ measurements that were performed 8 days or less 

before or after the acquisition date of a satellite image were used. The number of in situ 

measurements, the R2 between FVCNDVI and in situ LAI, and the k(θ) of each crop are shown 

in Table 10. An example of a LAINDVI map calculated from the satellite image of the 28th of 

May is shown in Figure 19c. 

 

In sugar beet, the initial R2 obtained by using all available in situ measurements was rather 

low with 0.29. Therefore, two different k(θ) were used: one value for RapidEye images from 

March to August, and one value for September. This improved the resulting R2 considerably 

to 0.79 (March-August) and 0.74 (September). The use of two different k(θ) within the 

growing season is justified by the fact that non-irrigated sugar beet generally suffers from 

water stress (Hoffmann and Kenter, 2018), which is known to have an immediate effect on 

leaf geometry and other plant characteristics (De Costa and Dennett, 1992). Late summer 
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water stress in sugar beet was reported in previous studies within the study area (Rudolph et 

al., 2015; Stadler et al., 2015). Similarly, two k(θ) were used in winter wheat since the R2 

obtained using all available measurements was 0.6 only. When two different values of k(θ) 

were used in March-April and in May-September, much improved R2 values of 0.90 and 0.98 

were obtained. On the contrary, barley showed an overall higher R2 of 0.75 when all the 

available LAI measurements were used in the calculation of k(θ). In the case of corn, potato, 

and winter rapeseed, k(θ) was set to 0.25 since no ground-based LAI measurements were 

available for calibration. This value was suggested by Ali et al. (2015) to obtain LAINDVI 

maps from RapidEye in this area.  

 

Table 10: Number of in situ LAI measurements for each crop, R2 between FVCNDVI obtained from 

RapidEye images and in situ LAI, and estimated k(θ) coefficients. 

Plant N. of meas. R2 k(θ) 
Sugar beet 13/6 0.79/0.74 0.33/0.49 

Corn NA NA 0.25 
Potato NA NA 0.25 

Winter wheat 18 0.90/0.98 0.60/0.35 
Winter barley 8 0.75 0.65 
Winter raps NA NA 0.25 

 

4.2.4. Set-up of the AgroC simulations 

In the AgroC simulations, the soil is discretized using up to 232 nodes with variable 

separation: 0.1 cm for the first 10 nodes, 0.2 cm for nodes 11 to 20, 0.5 cm for nodes 21 to 30, 

0.5 cm for nodes 31 to 40, and 1.0 cm until node 232 or until the profile depth was reached. 

Each node was assigned to a particular soil layer with associated hydraulic properties based 

on the soil profile description for each of the 80 unique soil-crop combinations derived from 

the land use and the geophysics-based soil map. 

 

Two different set- ups were used for the AgroC simulations. The first set-up was used for soil 

profiles that have a coarse 2C horizon at the bottom of the soil profile. This includes all soils 

of the upper terrace and some soils of the lower terrace (i.e., soil units A1a-d, D1a-d and D2a 

in Figure 18). This coarse and less conductive layer is known to have a strong influence on 

water flow and crop growth (Rudolph et al., 2015; von Hebel et al., 2018). For these soils, the 

depth of the simulation domain was defined to be from the surface down to a depth of 3 cm 

into the 2C horizon. This resulted in different depths for the simulation domains that ranged 

from 52 cm to 137 cm depending on the soil profile description. The lower boundary 
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condition was set to free drainage for these profiles. This set-up and selection of boundary 

conditions was required to avoid unrealistic upward water flow from the 2C horizon that 

occurred when using longer soil profiles. The second set-up was used for soil profiles where 

fine sediments were present at depth. In this case, the simulation domain extended from the 

surface down to a depth of 2.0 m. A water table with variable depth was used to define a 

variable pressure head as the lower boundary condition. The maximum and minimum depth 

of the water table were obtained from a CTD-5 sensor (Decagon devices, Pullman WA, USA) 

installed in a well in the western part of field F10 (Figure 1). In 2015 and 2016, the water 

table below surface depth varied periodically over the year. The minimum depth was 2.0 m at 

~15th January and the maximum depth was 2.6 m at ~15th July. 

 

Crop-specific parameters required to parameterize AgroC were mainly obtained from 

literature (Allen et al., 1998; Bolinder et al., 1997; Boons-Prins et al., 1993; Borg and Grimes, 

1986; Penning de Vries, 1989; Spitters et al., 1989; Van Heemst, 1988; Vanclooster, 1995; 

Vries, 1989). The parameters of the root water uptake stress parameters (Eq7) were set to h0 = 

0 cm, h1 = -20 cm, h2 = -5000 cm, and h3 = -16000 cm (Vanclooster, 1995). For each crop, a 

specific maximum rooting depth was set: 150 cm for sugar beet and corn, 140 cm for 

rapeseed, 120 cm for barley, and 100 cm for wheat and potato. The root distribution with 

depth was calculated using the method of Rum et al. (1974). Due to the high bulk density of 

the 2C horizons, it is assumed that roots cannot grow into this layer due to high penetration 

resistance (Daddow and Warrington, 1983). Therefore, the rooting depth was reduced when a 

coarse 2C horizon was present within the rooting depth. In such a case, the root distribution 

between the surface and the 2C horizon was extracted from the distribution that was 

calculated with the crop-specific maximum rooting depth (i.e., a truncated root length 

distribution). 

 

Meteorological data for 2015 and 2016 were used to define the upper atmospheric boundary 

condition using precipitation and potential grass reference evapotranspiration according to the 

Penman-Monteith approach (Allen et al., 1998). All simulations started on 1st July 2015 and 

ended on 31st December 2016, thus allowing simulation of both summer and winter crops. 

Two strategies were again used to define the initial pressure heads within each soil profile. 

The first strategy was applied to soil profiles where a water table with variable depth was used 

as lower boundary condition. Here, a spin-up simulation was used by repeatedly running a 

period of two years (1st of January 2015 to 31st of December 2016) until the pressure head 
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within the soil column did not change between subsequent simulations. This spin-up strategy 

resulted in very low water content within the soil column when simulating soil profiles with a 

free drainage boundary at the bottom. To avoid such unrealistically low initial water contents 

in these soil profiles, the pressure head of the underlying 2C horizon was set to -1 cm and 

hydrostatic equilibrium was assumed for the rest of the profile. 

 

4.3. Results and discussion 

4.3.1. Water content simulations for field F01 

In Figure 20a-b, the soil water content measured at P01 and P02 is compared with the soil 

water content simulated with AgroC for soil units A1a and A1d. In general, the simulated and 

measured soil water content showed a similar response to atmospheric forcing with increasing 

water content after precipitation events followed by a dry-down in periods without 

precipitations in both locations. For the location P1 in soil type A1a (Figure 20a), the average 

RMSE between measured and simulated water content for all three soil depths was 0.056 cm3 

cm-3. In general, the simulated water content was very similar for all three depths, whereas the 

measured water content considerably increased with depth and showed a stronger response to 

atmospheric forcing. For location P02 in soil type A1d (Figure 20b), the average root mean 

square error (RMSE) between measured and simulated water content for all three soil depths 

was considerably lower with 0.032 cm3 cm-3. However, differences between measured and 

simulated water content were also clearly present. For example, two peaks in measured soil 

water content at 10 cm depth in August were not well captured by the model. Also, the 

measured soil water content at 50 cm was overestimated during the dry period from August 

onward. 

 

This difference in performance for the two locations is related to discrepancies between the 

actual soil profile and the average soil profile of the two soil units obtained from the 

geophysics-based soil map. In general, the actual horizon depths at point P02 were similar to 

the horizon depths of the soil profile of soil unit A1d. At this location, a rather thin layer of 

loess sediment was deposited on a coarse sand and gravel layer. The actual depth of the loess 

layer was 47 cm, whereas it was 49 cm in soil unit A1d of the soil map. Therefore, there was 

a good match between measured and simulated water content. For point P01 in soil unit A1a, 

a larger mismatch between the actual and the average soil profile was observed. In particular, 

the actual thickness the loess layer at P01 was 160 cm, whereas the average thickness of this 
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layer was only 87 cm in soil unit A1a. The differences in soil profile description are a likely 

explanation for the mismatch between the simulated and the measured water content at this 

location. Obviously, these differences are due to the scale mismatch between the point 

measurements and the geophysics-based soil map. This soil map is expected to capture the 

main variability in soil properties at the 1 km2 scale, but is not expected to capture small-scale 

variabilities in profile depth and description within one soil unit. Apparently, P01 was not a 

representative location for the soil unit A1a and therefore it could not be simulated with the 

same accuracy as P02.  

 

 
Figure 20: a) Simulated and measured soil water contents (cm3 cm-3) for sugar beet grown in soil unit A1a 

at P01, b) simulated and measured soil water contents (cm3 cm-3) for sugar beet grown in soil unit A1d at 

P02 based on the hydraulic parameters estimated by the PTF of Rawls and Brakensiek (1985), c) simulation 

performed for sugar beet grown in unit A1a at P01 and d) in unit A1d and P02 based on the ROSETTA 

PTF. 

 

To investigate the sensitivity of the AgroC simulations to the choice of the PTF, the 

simulations for locations P01 and P02 were repeated with soil hydraulic parameters estimated 

from the widely used ROSETTTA PTF (Figure 20c-d). It can be seen that a stronger 

mismatch between measured and simulated water content was found when the ROSETTA 
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PTF was used. In particular, the RMSE increased from 0.056 to 0.134 cm3 cm-3 for soil type 

A1a, and from 0.032 to 0.072 cm3 cm-3 for soil type A1d. Also, the simulated water content 

obtained with ROSETTA PTF seemed unrealistically low for both soil units. The estimated 

hydraulic parameters of soil unit A1d using the Rawls and Brakensiek as well as the 

ROSETTA PTF are given in Table 9. It can be seen that the Ks estimated with ROSETTA 

was up to five times higher, and this likely explains the low simulated water contents and the 

increase in the mismatch between measured and modelled water content. Since the 

unrealistically low simulated water content was observed for all soil units, it was preferred to 

use the PTF of Rawls and Brakensiek in this chapter. Overall, it is concluded that the 

presented parameterization strategy provides reasonable predictions of soil water content 

dynamics considering that the soil profiles were obtained from a soil map and no calibration 

was used to improve the fit between measured and modelled soil water content. 

 

4.3.2. Validation of LAI and yield simulations 

In a next step, the results of the AgroC simulations at the km2 scale are evaluated using 

LAINDVI derived from satellite remote sensing. When available, yield information is also used 

for model evaluation. The results will be presented for three groups of units: i) the soils of the 

upper terrace (units A1a-d), ii) the soils of the lower terrace with underlying fine layers (soil 

units B1a-b, B2a-c, C1a-b, and C2a-b), and iii) the soils of the lower terrace with underlying 

coarse layers (soil units D1a-d and D2a). For simplicity, we will refer to second group as BC 

soil units. In the following, we first present results for the summer crops that are more prone 

to water stress (sugar beet, corn, and potato) followed by the winter crops (wheat, barley, and 

rapeseeds). 

 

4.3.2.1. Simulation of sugar beet 

Figure 21a-c shows the simulated LAI (lines) and the observed LAINDVI (dots) for all soil 

units grown with sugar beet. The observed LAINDVI was obtained by averaging all LAINDVI 

values within each unique soil-crop combination. High LAI was observed for all BC soil 

units, which indicates that the crops in this area were not stressed. On the contrary, a 

generalized reduction in LAINDVI was observed in soil units A1a-d and D1a-d, and the 

reduction appears to be proportional to the depth of the coarse layer. In order to capture these 

differences in LAI between the three groups of soil units with the AgroC model, it was 

necessary to use three different crop parameterizations. In fact, the water stress simulated with 
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AgroC reduced the accumulation of new dry mass but had less influence on the green LAI, 

which was accumulated before the occurrence of prolonged periods of water stress in July and 

August (Figure 21d). In order to match the differences in observed LAI between the three 

groups of soil units, the death rate of the leaves was calibrated. After calibration, the death 

rate of the leaves was highest in soil units A1a-d, intermediate in D1a-d, and lowest in the BC 

units (see supplementary material S.2 for a detailed description of the input parameters). All 

other plant parameters were identical in all simulations. Therefore, the differences in LAI 

shown within each group of soils are solely due to differences in soil parameterization in 

terms of layering and hydraulic properties. 

 

 
Figure 21: Simulations for sugar beet. a) Simulated LAI (lines) and observed LAINDVI (points) in soil units 

A1a-d, b) in soil units BC, c) and in soil units D1a-d. d) Simulated water stress in soil units A1a-d, f) and in 

soil units D1a-d. e) Simulated mass of storage organs at harvest in soil units A1a-d and BC. 

 

In soil units A1a-d (Figure 21a), the LAINDVI was similar for all four soil units early in the 

growing season (May-June). This was well reproduced by the model simulations, despite the 

strong water stress in this period (Figure 21d). Apparently, this stress period did not strongly 

affect the simulated accumulation of aboveground biomass at this initial stage of crop 

development. In the second half of June and July, there was a period with no water stress 

where the simulated LAI increased rapidly. Afterwards, the absence of rain resulted in water 

stress and an associated reduction of LAI in August and September. Here, the simulated LAI 

was lower in soil units with higher water stress, and matched well with both the maximum 

value and the decrease of observed LAINDVI in response to water stress. 
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In soil units BC (Figure 21b), simulated LAI and observed LAINDVI generally matched well, 

but only showed limited variability between soil units. This is explained by the lack of water 

stress in this area. A mismatch can be observed on the 9th of June where simulations matched 

the LAINDVI of soil units C1a-b and C2a-b (LAI = 1.1-1.4) but did not match the LAINDVI of 

the soil units B2a-b and B2a-c (LAI = 2.2-2.6). This is attributed to differences in seeding and 

emergence dates between soil units that are not captured in the model. This is supported by 

the fact that the two groups of soil units are located in separate fields with different owners 

(units C1a-b/C2a-b in field F46 and units B1a-b/B2a-c in fields F12 and F50). 

 

In soil units D1a-d (Figure 21c), a general decrease in LAI proportional to the amount of 

simulated water stress was observed in the second half of the growing season (similar to the 

soil units A1a-d). However, the simulated stress in D1a-d is generally lower than in A1a-d 

since the coarse layers are generally deeper in D1a-d and have different soil hydraulic 

parameters (Figure 4f). Again, simulated LAI and observed LAINDVI matched well. Until 

August, the simulated LAI for soil units D1a-c was very similar. A considerable difference 

between soil units was simulated on the 8th of September because water stress reduced the 

LAI of soil units D1a-c. This simulated behavior is well supported by the observed LAINDVI. 

On the contrary, the simulations for soil unit D1d underestimated LAINDVI, likely because 

water stress was overestimated. However, the area represented by unit D1d is small (0.3 ha 

within fields F50 and F51) compared to the total area cropped with sugar beet in 2016 (26.5 

ha). 

 

The simulated productivity of sugar beet (dry weight of storage organs) expressed in t ha-1 is 

shown in Figure 21e for selected soil units. The simulated productivity at harvest of the soil 

units A1a-d ranged from 12.0 to 15.9 t/ha and was well below the simulated productivity of 

soil units BC that was 20.7 t/ha. Here, a reduction in the mass allocated to the storage organs 

is apparent from July until the end of the growing season and is proportional to the magnitude 

of water stress. The simulated productivity at harvest of soil units A1a-d was compared with 

the actual productivity at harvest of field F01 in 2016. The area-weighted average simulated 

productivity (productivity of soil units A1a-d weighted on the actual area of each unit) in field 

F01 was 14.3 t ha-1 and well matched the actual productivity of 14.2 t ha-1. The simulated 

productivity of soil units BC and D1a-d was compared with the average productivity at 

harvest of field F11 in 2011, 2014, and 2017. Again, the average simulated productivity of 

19.7 t ha-1 in 2016 was similar to the average observed productivity of 19.3 t ha-1. 
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4.3.2.2. Simulation of corn 

The observed LAINDVI for corn in soil units A1a-d (Figure 22a) was similar on the 28th of 

May (~LAI = 0.4) and on the 9th of June (~LAI = 1.6). In contrast, the observed LAINDVI for 

soil units D1a-d (Figure 22c) was more variable on the 28th of May (ranging from 0.3 to 0.8). 

This indicates that the LAI of corn was quite heterogeneous in space at this point in time, 

likely due to different emergence dates within these soil units. In addition, the observed 

LAINDVI on the 9th of June (~LAI = 0.6) was lower than that of the soil units A1a-d, 

suggesting the presence of younger crops. Therefore, simulations were performed using the 

same crop parameterization, but with different emergence date. The emergence date for soil 

units A1a-d was set to 1st of May and the emergence date for soil units D1a-d was set to 10th 

of May. 

 

 
Figure 22: Simulations for corn. a) Simulated LAI (lines) and observed LAINDVI (points) in soil units A1a-

d, b) in soil units C1a, c) and in soil units D1a-d. d) Simulated water stress in soil units A1a-d, f) and in soil 

units D1a-d. e) Simulated mass of above surface organs at harvest in soil units A1a-d and D1a. 

 

The simulated LAI for soil units A1a-d (Figure 22a) suggested a homogeneous growth until 

late May. Afterwards, the simulated LAI of the four soil units diverged and showed 

considerable differences from June to August. The simulated LAI matched the observed 

LAINDVI well in general, although the simulated LAI of soil units A1b-c somewhat 

underestimated LAINDVI. Since water stress was relatively low in June compared to the second 

part of the growing season, this variability in simulated LAI was attributed to the combination 

of the early stress period in May with later stress in July and August. The following abrupt 

decrease in LAINDVI was due to the senescence stage of corn development. Interestingly, 
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differences in LAINDVI due to water stress were still present at this development stage. In the 

AgroC model, senescence in corn starts when a certain value of crop DVS is reached. In order 

to match the observed variation in LAINDVI at the 8th of September, four different DVS were 

used to start senescence at four different times in the soil units A1a-d. Earlier senescence was 

assumed in soil units where stronger water stress was observed since it was apparent from 

field observations how stronger stress resulted in smaller crops and early senescence. This 

required a modification of the model code as described in the supplementary material S.2. 

 

The simulated LAI for soil units D1a-c (Figure 22c) showed similar development throughout 

the growing season. This is consistent with the observed values of LAINDVI. In contrast to soil 

units A1a-d, the water stress simulated in May was rather low for these three soil units and 

did not affect the simulated LAI in the following months (Figure 22f). In this case, the later 

emergence date for soil units D1a-c prevented water stress from strongly affecting LAI in the 

early stage of corn growth. To corroborate this hypothesis, we performed the same simulation 

on soil unit C1a that typically does not show water stress. The simulated LAI of corn grown 

on this soil unit is shown in Figure 22b and matched well with the simulated LAI of soil units 

D1a-c. This confirms that water stress in the early growth stage of simulated corn has a strong 

influence on simulated LAI. In the case of soil unit D1d, simulated LAI was strongly reduced 

by water stress and did not match LAINDVI values. Again, this is attributed to the very small 

area of this soil-crop combination (0.05 ha). 

 

Figure 22e shows the simulated aboveground biomass of corn in soil units A1a-d and C1a, 

which is used as a measure of productivity because corn is used for livestock feeding in this 

area. The simulated productivity ranged from 12.5 to 17.1 t ha-1 in soil units A1a-d, and was 

18.7 t ha-1 in C1a. These simulated productivity values are in good agreement with the results 

of Žydelis et al. (2018), who used a comparable methodology and found similar measured and 

simulated productivity: ~18.5 t ha-1 in healthy corn and ~14.5 t ha-1 in stressed corn. 

 

4.3.2.3. Simulation of potato 

Figure 23b-c shows the simulated LAI and the observed LAINDVI of potato in soil units C1a-b, 

C2a-b, and D1a-d. The observed LAINDVI only showed small variations, except for the 12th of 

August were moderate differences between soil units C1a-b/C2a-b (from ~4.4 to ~4.7) and 

soil units D1a-d (from ~3.8 to ~4.3) were observed. Overall, the AgroC model was able to 

capture LAI development of potato fairly well. However, Figure 23d shows that the simulated 
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water stress in soil units D1a-d was rather strong and affected the simulated LAI (Figure 23c) 

and the simulated dry biomass above ground (Figure 23e) to some extent. Unfortunately, no 

clear correlation between variations in simulated LAI and LAINDVI due to water stress was 

observed. This is attributed to irrigation of the potato field cropped in 2016. Regrettably, 

detailed information on the amount, timing, and location of this irrigation was not available. 

Therefore, it was not possible to meaningfully implement irrigation in our simulation. It is 

expected that irrigation increased the LAINDVI in soil units where strong water stress was 

simulated with AgroC, thus preventing a clear expression of water stress in LAINDVI. 

 

 
Figure 23: Simulations for potato. a) Simulated LAI (lines) and observed LAINDVI (points) in soil units 

A1a-d (no potatoes were cropped), b) in soil units BC, c) and in soil units D1a-d. d) Simulated water stress 

in soil units A1a-d (no potatoes were cropped), f) and in soil units D1a-d. e) Simulated mass of above 

surface organs at harvest in soil unit BC and D1a-d. 

 

4.3.2.4. Simulation of winter wheat 

The AgroC simulations for winter wheat are shown in Figure 24. Similar to sugar beet, three 

different crop parameterizations were used. In order to capture observed difference in 

maximum LAINDVI, it was necessary to calibrate the partitioning of the mass allocated to the 

stem and to the leaf as described in detail in the supplementary material S.2. As in the case of 

sugar beet, one parameterization was used for each group of soil units shown in Figure 24a-c. 

Thus, the variability in simulated LAI between soil units A1a-d and between soil units D1a-d 

can only be the results of different soil parameterizations. As shown in Figure 24, water stress 

was rather low throughout the growing season for winter wheat and was limited to three 
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distinct periods: late February and March, May, and finally in June. It is important to note that 

the simulated stress in February and March is caused by high water contents. 

 

In soil units A1a-d (Figure 24a), simulated LAI is consistent with observed LAINDVI. Both 

simulated and observed LAI showed little variation between soil units A1a-c, and lower 

values for soil unit A1d at the 14th of March and at the 20th of April. In soil units BC (Figure 

24b), the observed LAINDVI was generally higher than in the other soil units. Here, all values 

of LAINDVI were similar throughout the year and the simulated LAI matched the observed 

LAINDVI well. A similar result was obtained for soil units D1a-d and D2a, although the 

variability between soil units was somewhat higher than in the BC soil units. However, this 

variability does not seem to be related to simulated stress, except for soil unit D1d (Figure 

24c) that showed lower simulated LAI and observed LAINDVI at the 28th of May and at the 9th 

of June compared to the soil units D1a-c. 

 

 
Figure 24: Simulations for winter wheat. a) Simulated LAI (lines) and observed LAINDVI (points) in soil 

units A1a-d, b) in soil units BC, c) and in soil units D1a-d. d) Simulated water stress in soil units A1a-d, f) 

and in soil units D1a-d. e) Simulated productivity at harvest in soil unit A1a, A1d, BC, D1a, and D1d. 

 

Despite the lower magnitude compared to summer crops, water stress affected simulated 

productivity of winter wheat at harvest for the different soil units (Figure 24e). This is due to 

the fact that the storage organs grow until the end of the growing season (June and July), and 

are thus more influenced by water stress than LAI (Steduto et al., 2012). Here, non-stressed 

soil units produced 7.7 t ha-1 of dry grains whereas the most stressed soil unit produced 6.6 t 

ha-1. These values are comparable to actual yields observed in other studies (Han and Yan, 
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2017; Káš et al., 2018; Liu et al., 2017) for winter wheat growing under no- and low water 

stress conditions. 

 

4.3.2.5. Simulation of winter barley 

 
Figure 25: Simulations for winter barley. a) Simulated LAI (lines) and observed LAINDVI (points) in soil 

units A1a-d, b) in soil units BC, c) and in soil units D1a-d. d) Simulated water stress in soil units A1a-d, f) 

and in soil units D1a-d. e) Simulated productivity at harvest in soil units BC, and Da-d. 

 

The simulated and observed LAI for winter barley are shown in Figure 25a-c. Here, the same 

crop parameterization was used for all simulations except for the emergence date, which was 

set to 10th of December for soil units A1a-d, 1st of December for the BC soil units and for soil 

units D1a-d. These different emergence dates resulted in lower simulated LAI for soil units 

A1a-d compared to D1a-d at the 20th of March, which is consistent with the observed 

LAINDVI. Throughout the growing season, the variability in LAINDVI at each date was rather 

low and was not related to water stress (Figure 25d and Figure 25f). For the BC soil units, the 

observed LAINDVI showed some variability within each date. However, this variability was 

seemingly not related to the specific characteristics of each soil unit. In summary, the 

simulated LAI of winter barley well matched the observed LAINDVI after selecting appropriate 

emerging dates. However, LAINDVI showed rather small differences between soil units, and 

effects of water stress were thus not observed. 

 

As discussed in the case of wheat, barley yield is more sensitive to changes in growing 

conditions during the period when grain number is set (Steduto et al., 2012). For this reason, 

the water stress simulated in May had an influence on the final dry mass of grains (Figure 
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25e). The simulated dry weight of barley grains in soil units D1a-d and BC in field F11 was 

6.9 t ha-1. This simulated value for field F11 was identical to the harvest reported by the field 

owner in 2016.  

 

4.3.2.6. Simulation of winter rapeseed 

Simulations for winter rapeseed were performed using a single crop parameterization, but the 

emergence date was set to the 10th of November for soil units A1a-d and to the 1st of 

November for soil units BC and D1a-d based on observed LAINDVI. Figure 26a-c shows the 

simulated LAI and the LAINDVI of winter rapeseed, whereas Figure 26d and Figure 26f shows 

the water stress simulated in soil units A1a-d and D1a-d. A single peak of water stress was 

present in May and no other stress was obtained throughout the rest of the simulation. 

 

 

Figure 26: Simulations for winter rapeseed. a) Simulated LAI (lines) and observed LAINDVI (points) in soil 

units A1a-d, b) in soil units BC, c) and in soil units D1a-d. d) Simulated water stress in soil units A1a-d, f) 

and in soil units D1a-d. e) Simulated productivity at harvest in soil unit A1a-d and BC. 

 

In the absence of extended periods of water stress, only small variations in simulated LAI 

were observed between different soil units. In contrast, some variability in observed LAINDVI 

was found for soil units A1a-d, especially for the 14th of March and at the 20th of April 

(Figure 26a), which suggests that the simulations underestimate the variation observed in the 

LAINDVI. On the 9th of June, both simulated and observed LAI did not vary between soil types 

anymore and showed a similar value (~LAI = 6.1). 
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The simulated LAI for soil units C1a-b, C2a-b, and D1a-d (Figure 26b-c) did not match the 

observed LAINDVI at all times. Obvious differences between simulated and observed LAI 

were present at the 14th of March and at the 20th of April. In March, the LAINDVI of soil units 

D1a-d showed considerable variability with LAI values ranging from 3.8 for soil unit D1a to 

4.9 for soil unit D1c. This variability was not captured by the LAI simulations. The reason for 

this variability in LAINDVI may be associated with factors that are not considered in our 

modelling approach (e.g., nutrient availability, within-field management). In April, the 

simulated LAI considerably overestimated the observed LAINDVI. Here, the low observed 

LAINDVI may have been influenced by the blooming of winter rapeseed that occurs in April or 

May. This blooming has an influence on the LAI estimated from satellite remote sensing, and 

may have resulted in lower LAINDVI values. It is possible that the LAINDVI of soil units A1a-d 

were not affected by this because the late emergence date may have delayed the blooming 

stage. Overall, it is important to note that the simulated water stress had a rather low impact 

on crop growth. 

 

4.3.3. LAI simulations at the km2 scale 

Figure 27 compares the simulated LAI of the 80 unique soil-crop combinations with the 

LAINDVI derived from the six RapidEye satellite images. Generally, the spatial pattern in the 

observed LAINDVI is well reproduced and the simulated emergence, growth, and senescence of 

each crop are well timed. However, a closer inspection allows identifying several 

discrepancies. For example, differences in simulated LAI and observed LAINDVI of corn 

(fields F13b, F41, and F42 in Figure 27) and sugar beet (fields F01, F05, F12, F13a, and F46-

51 in Figure 27) can be observed in August and September (Figure 27e-f). In this case, the 

general average of each soil-crop combination is well captured (Figure 21a-c and Figure 22a-

c). However, a lower variability was found in simulated LAI compared to the observations. 

As mentioned previously, the geophysics-based soil map can successfully capture the main 

variability in soil properties at the km2 scale and thus the main patterns in soil-controlled 

water stress and resulting difference in crop development. However, it is not expected that the 

geophysics-based soil map can reproduce pixel-scale variabilities of LAINDVI that occur 

within a single soil-crop unit. 

 



4. Simulation of spatial variability of crop LAI and yield 
 

70 
 

 
Figure 27: Comparison between observed LAINDVI (above) and simulated LAI (below) at the a) 14th March, 

b) 20th April, c) 28th May, d) 9th June, e) 12th August, and f) 8th September 2016. 

 

A lower variability of simulated LAI compared to observed LAINDVI at the early growth stage 

of winter rapeseed was also observed (Figure 27a). This might be caused by the absence of 
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early water stress in the simulation of winter rapeseed (Figure 26a), but it may also be related 

to within-field management that is not considered in the methodology. The effects of local 

management are considered to be of secondary importance at the km2 scale and cannot be 

meaningfully simulated with typically available information. Similar considerations are valid 

in the case of within-field variability associated with soil compaction by tractors, which are 

found in the fields cropped with potato (field F40 in Figure 27d-e) and sugar beet (Figure 

27d-f). Overall, the agro-ecosystem simulations for the growing season 2016 were capable of 

reproducing the growth of the six investigated crops, and the simulated LAI is generally 

consistent with the LAINDVI observed in the satellite images. 

 

4.3.4. Crop productivity simulations at the km2 scale 

The productivity at the time of harvest for each soil-crop combination of sugar beet, corn, 

winter wheat and winter barley is shown in Figure 28. In these maps, a value of 100% 

represents crops that have grown with optimal water supply for the entire growing season. 

Lower percentages are shown in the case of water-limited growth and correspond with a 

lower dry weight at harvest of storage organs (or aboveground biomass in the case of corn) 

relative to optimal water supply. All four crops achieved a productivity of 100% for the 

simulations of the BC soil units. For these soils, crops did not experience water stress since 

the shallow ground water table provided sufficient water to guarantee optimal growth in 2016. 

On the contrary, a lower productivity was apparent for the soil units with underlying coarse 

layers. In this case, the productivity of each crop showed a reduction that is largely 

proportional to the intensity of water stress. The lowest productivity was commonly observed 

for shallow 2C layers with a large amount of gravels. 

 

The simulated sugar beet productivity at harvest was strongly influenced by soil type and 

ranged between 58% and 77% in soil units A1a-d, and between 62% and 92% in soil units 

D1a-d (Figure 28a). Corn simulated in soil units A1a-d (Figure 28b) had a similar range but 

higher average productivity compared to sugar beet (from 67% to 89%). On the contrary, the 

corn productivity was much higher than that of sugar beet in soil units D1a-c, and showed 

much lower variability (from 99% to 100%). For the winter crops, productivity was still 

influenced by soil type but the impact was generally lower as evidenced by the higher average 

productivity as compared to the summer crops. In particular, the productivity ranged from 

86% to 94% for winter wheat (Figure 28c), and between 81% and 98% in winter barley 

(Figure 28d). 
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Figure 28: Maps of the simulated productivity at harvest in 2016 of a) sugar beet, b) corn, c) winter wheat, 

and d) winter barley. 

 

The maps presented in Figure 28 have valuable practical applications in the maximization of 

agricultural productivity. For example, the selection of specific crop type could be based on 

the characteristics of the soils that are found in a given field. Furthermore, the seeding date of 

specific crops could be selected after investigating the precipitation recorded in the previous 

weeks and the forecasted meteorological conditions. Moreover, the proposed maps and 

simulation strategy could provide valuable information on the amount and timing of irrigation 

that is needed to reduce water stress and maximize productivity. 
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4.4. Conclusions 

In this chapter, the growth of six crops in 2016 within a 1x1 km area was simulated using the 

agro-ecosystem model AgroC by using soil layering and texture that was provided by the 

high-resolution geophysics-based soil map described in Chapter 3. 

 

The soil hydraulic parameters that are needed as input for the AgroC model were estimated 

using the pedotransfer function of Rawls and Brakensiek (1985). The simulated water content 

in two of the soil units was compared to measured soil water content at three depths. It was 

found that a low RMSE was obtained when the soil profile provided by the geophysics-based 

soil map well represented the actual soil profile. Additional simulations performed using soil 

hydraulic parameters estimated with the ROSETTTA pedotransfer function resulted in a 

much higher RMSE between measured and simulated water content, which was attributed to 

the higher estimated values of the saturated hydraulic conductivity.  

 

In a next step, agro-ecosystem simulations were performed for six crops: sugar beet, corn, 

potato, winter wheat, winter barley, and winter rapeseed. In general, it was found that the 

magnitude of simulated water stress was a function of the crop type and of the soil 

characteristics. Higher water stress occurred in coarser soils and summer crops. To provide 

independent data and validate the agro-ecosystem simulations, six leaf area index (LAINDVI) 

maps were produced from RapidEye satellite images. Overall, the simulated LAI was found 

to be consistent with observed LAINDVI although local inconsistencies between simulations 

and observations were found (e.g., during the blooming of winter rapeseed, in the case of 

irrigation, or when the effect of field-scale management was not reproduced). Water stress 

had an impact on the simulated productivity at harvest for each of the investigated crops. 

Simulated productivity of sugar beet and winter barley matched the actual harvest in 2016 in 

two fields within the study area and the simulated productivity of corn and winter wheat 

corresponded to literature values. Maps of the productivity at harvest were produced for these 

four crops. These maps consistently showed a productivity reduction in soil units with 

underlying coarse layers. This reduction was largely proportional to the intensity of water 

stress. 

 

Overall, this chapter showed that quantitative spatial information on soil heterogeneity 

derived from geophysics-based soil mapping allowed precise agro-ecosystem simulations of 

multiple crops on a large area where water stress is strongly influenced by soil characteristics. 
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The thematic maps produced with the results of these simulations are relevant in practical 

agricultural applications such as the selection of a specific crop type for a given soil or the 

selection of the best seeding date for crops that are particularly susceptible to water stress in 

the early growth stage. For this, additional information could be obtained by considering 

precipitation recorded in previous weeks or precipitation forecasted by weather models. By 

extending the simulation period (e.g., 30 years), the proposed strategy could also allow the 

evaluation of the cost-benefit ratio of long-term strategies such as the most suitable crop 

rotation. Finally, the proposed maps and simulation strategy might provide valuable insights 

about irrigation scheduling and quantity by implementing information from forecasted 

precipitations. A more in-depth discussion of the possible combined use of agro-ecosystem 

simulations and geophysics-based soil mapping will be provided in Chapter 6. 
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Chapter 5 

 

Analysis of the added value of 

geophysics-based soil mapping in agro-

ecosystem simulations 

 

In this chapter*, it will be shown that geophysics-based soil mapping provides added value 

compared to conventional soil maps. In a first step, two commonly available soil maps for the 

1 x 1 km study area will be described and a qualitative comparison with the geophysics-based 

soil map will be provided. In a next step, the growth of five crops that were cultivated in the 

study area in 2016 will be simulated using the methodology developed in Chapter 4 by using 

inputs from the geophysics-based soil map and the two commonly available soil maps. Then, 

the simulations based on each of these maps will be compared to the observed LAINDVI 

derived in Chapter 4. It will be shown that the use of inputs from the geophysics-based soil 

map consistently outperformed the use of the commonly available maps, especially for 

summer crops and in periods with strong reduction in crop performance. Finally, a more 

detailed comparison will be presented for sugar beet that includes the simulation of 

productivity at harvest in one field. Here, the aspects of the soil characterization that are 

responsible for the poorer performance of the commonly available soil maps will be discussed 

and the added value of the geophysics-based soil map will be highlighted. 

 

                                                 
* This chapter is adapted from a journal article in preparation: 
Brogi, C., Huisman, J. A., Weihermüller, L., Herbst, M., Klosterhalfen, A., Montzka, C., Vereecken, H., 
Analysis of the added value of geophysics-based soil mapping in agro-ecosystem modelling. 
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5.1. Materials and methods 

5.1.1. Extent of the analysis within the study area 

The LAI simulated with AgroC was compared to the remotely observed LAINDVI in all fields 

where corn, sugar beet, winter barley, winter rapeseed, and winter wheat were grown in 2016. 

Since the potatoes grown in field F-40 were irrigated, this field was excluded from the 

analysis because the required information to adequately implement this irrigation in AgroC 

was not available. Therefore, the size of the area in which the comparison was performed 

totaled 90.4 ha. A detailed analysis was performed in fields where sugar beet (fields F-01, F-

05, F13-a, F-46, F-48, and F-49 in the upper terrace and fields F-12, F-47, F-50, and F-51 in 

the lower terrace) was grown (26.5 ha). 

 

5.1.2. Commonly available soil maps 

In this chapter, AgroC simulations were performed using information from two commonly 

available soil maps: i) the most detailed regional soil map with a scale of 1:5000, which was 

produced in 1984/85 and revised in 1996 (Röhrig, 1996) and ii) a national soil and yield 

potential map from 1960 used for the standardization of agricultural taxation (NRW, 1960). 

The results for these two maps were compared with the results based on the geophysics-based 

soil map as described in Chapter 4.  

 

The 1:5000 soil map for the study area is shown in Figure 29. This thematic map is part of the 

official soil inventory of North-Rhine Westphalia and it is broadly used in regional projects 

such as the preparation of local development or sustainable soil protection plans (NRW, 

2018). In this map, the 1:5000 German Land Map (Deutsche Grundkarte) is used as a 

topographic base. The soil information is obtained from a relatively dense network of 

augering information where distances between auger positions are typically below 100 m. 

Each soil unit is provided with information on soil type, grain size distribution (qualitative 

description), and thickness of the top soil horizons (typically, two horizons are described). 

The depth of the interface between two overlapping soil horizons is generally represented by a 

range (e.g., soil unit A-1B in Figure 29 is composed of two horizons and the interface is 

located between 30 cm and 60 cm depth), which had to be generalized to one depth by taking 

the average of the maximum and minimum range values. In general, the soil units of the upper 

terrace are composed of silty loam or loamy sand above sand deposits. In the lower terrace, 
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silty loam and silt are generally present and sandy material is found locally underlying these 

deposits. In this map, the study area is divided into 13 soil units ranging from 1.0 to 25.3 ha. 

 

 
Figure 29: The 1.5000 soil map of the study area with examples of the qualitative description of soil 

profiles A-1B and A-7L. 

 

The soil taxation map (Karte der Bodenschätzung) for the study area is shown in Figure 30. 

This map provides estimates of the yield potential of the agricultural land, which is used to 

calculate tax rates for land owners (NRW, 1960). The estimation of the potential of an 

agricultural land is based on soil characteristics based on i) soil texture (8 classes), ii) 

geological age of parent material (4 classes), and iii) overall soil development stage (7 

classes). The German Cadaster map is used as the base for the soil information, which was 

collected by direct sampling with a density of one augering per 40 to 50 m. For each soil unit, 

the map is provided with soil profile information up to 2.0 m depth. Each profile is divided 

into multiple horizons (generally four), in which the grain size is qualitatively described. 

According to this map, the study area generally consists of silty loam soils on top of gravelly 

sandy loam in the upper terrace. Loamy silt and silty loam are present in the lower terrace and 

locally found on top of sandy loam. In total, 10 different soil units with an area ranging 

between 0.7 and 17.5 ha are present in the study area according to this map. 
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Figure 30: Soil taxation map of the study area and examples of the qualitative description of soil profile A-

01 and A-04. 

 

5.1.3. Similarities between sub-areas of the three soil maps 

As described in Chapter 3, the geophysics-based soil map divides the study area into four sub-

areas A, B, C, and D. However, AgroC simulations in sub-areas B and C were performed with 

the same crop parameterization and lower boundary conditions of the soil profile, and were 

described as sub-area BC in Chapter 4. Each soil unit of the two commonly available soil 

maps generally falls within one of these sub-areas. Therefore, the soil units of these two soil 

maps were assigned to one of the three sub-areas (A, BC, and D). The unified codes of the 

soil units of the three soil maps that will be used in this chapter are provided in Table 11. 

 

Table 11: Unified codes of the soil units of the three soil maps following the general separation in sub-areas 

developed in Chapter 3 and 4. 

Soil map Sub-area A Sub-area BC Sub-area D 
Geophysics-based 

soil map 
A1a, A1b, 
A1c, A1d 

B1a, B1b, B2a, B2b, B2c, C1a, 
C1b, C2a, C2b 

D1a, D1b, D1c, 
D1d, D2a 

1:5000 Soil map  A-01, A-02, 
A-03 

BC-05, BC-06, BC-07 D-09, D-10, D-14, 
D-15 

Soil taxation map A-1B, A-2B, 
A-7L 

BC-5L, BC-8sL, BC-10sL, BC-
17lS, BC-21gS, BC-32U 

D-20sG, D- 22gS, 
D-25G, D-27sG 
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5.1.4. Unique soil-crop combinations 

The land use information from 2016 (Figure 31a) and the soil units of the two commonly 

available soil maps were intersected to obtain unique soil-crop combinations for the five 

investigated crops. This resulted in 42 unique soil-crop combinations for the 1:5000 soil map 

(figure 3b) and 35 unique combinations for the soil taxation map (figure 3c). The number of 

soil-crop combinations in the geophysics-based soil map was reduced to 72 after removing 

potato from the analysis. 

 

 

Figure 31: a) Distribution of the five investigated crops, b) unique soil-crop combinations for the 1:5000 

soil map, and c) unique soil-crop combinations for the soil taxation map. 

 

5.1.5. Estimation of soil hydraulic parameters 

The soil units described in the two commonly available soil maps are provided with a 

qualitative description of soil texture (soil texture classes). Generally, with such qualitative 

description, look-up tables are used in land surface modeling (Van Looy et al., 2017) as they 

provide textural class-average hydraulic parameters (Baker, 1978; Bouma, 1989). However, 

in Chapter 4, a rather different methodology was used and soil hydraulic parameters were 

estimated from quantitative texture using the pedotransfer function from Rawls and 

Brakensiek (1985). To achieve a consistent comparison between the geophysics-based soil 

map and the commonly available soil maps, the qualitative description provided by the 

commonly available soil maps was translated in quantitative percentages of sand, silt, and 

clay content using the USDA soil textural classification (USDA, 2019). For this, the centroid 

of each soil class within the USDA soil texture triangle was calculated and the associated 

grain size distribution was determined (Table 12). Afterwards, the percentages of sand, silt, 
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and clay were used to estimate soil hydraulic parameters by using the pedotransfer function 

from Rawls and Brakensiek (1985). Occasionally, the presence of gravel is also qualitatively 

described in the maps. In these cases, 25% volume of gravel was assumed if the maps defined 

the gravel content as “gravelly” and 10% volume of gravel was assumed if the maps defined 

the gravel content as “weakly gravelly”. 

 

Table 12: Grain size distribution of the centroid of relevant soil textural classes within the USDA soil 

texture triangle. 

Soil class Sand (%) Silt (%) Clay (%) 
Loam 40 40 20 

Loamy sand 80 10 10 
Loamy silt 25 60 15 

Sand 90 5 5 
Sandy clay loam 60 10 30 

Sandy loam 70 10 20 
Silt 5 90 5 

Silty loam 22 70 8 
 

After estimation of the grain size distribution, the dry bulk density, BD, was estimated for 

each horizon following a similar approach as described in Chapter 4. Unfortunately, the depth 

of the interface between Ap and AB horizons is not provided in the soil profiles of the two 

commonly available soil maps, which is different from the geophysics-based soil map. 

Therefore, the first horizon of each soil profile was subdivided into Ap and AB horizons at a 

depth of 30 cm as commonly observed in the study area. In a next step, a BD<2 of 1.30 g cm-3 

was assigned to the first 30 cm (Ap horizon) and a BD<2 of 1.40 g cm-3 was assigned to the 

remaining depth of the first horizon (AB horizon). In deeper and more compacted horizons, a 

BD<2 of 1.50 g cm-3 was assigned for fine sediments and a BD<2 of 1.60 g cm-3 was assigned 

when the horizons were reported to contain gravel. Following the same procedure as 

described in Chapter 4, these bulk densities were corrected for gravel content using Equation 

12. Finally, the PTF of Rawls and Brakensiek (1985) was used to estimate the soil hydraulic 

parameters from sand, silt, and clay percentages as well as bulk density and the estimated 

saturated hydraulic conductivity (Ks) of the coarse horizon in sub-areas A and D was 

corrected for gravel content according to Brakensiek and Rawls (1994). 

 

The results in Chapter 4 highlighted the importance of the properties of the 2C horizon for the 

correct simulation of crop productivity within the study area. However, the properties of these 
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deeper soil horizons were not adequately captured in the two commonly available soil maps. 

To avoid the introduction of strong and unrealistic variation in the results of the AgroC 

simulations performed with the different soil maps, the information obtained from the 

quantitative analysis of the soil sampling campaign performed in 2017 was integrated into the 

commonly available soil maps. In particular, the soil hydraulic parameters calculated in 

Chapter 4.2.2 for the 2C horizon in sub-area A and D were used. Therefore, the underlying 

horizon of the soil units of group A in the commonly available soil maps had the same soil 

hydraulic parameters as the 2C horizons of soil units A1a-d in the geophysics-based soil map. 

Similarly, the underlying sediments of the soil units of group D in the commonly available 

soil maps had the same soil hydraulic parameters as the 2C horizons of the soil units D1a-d 

and D2a of the geophysics-based soil map. 

 

5.1.6. Set-up of AgroC simulations 

The information provided by the commonly available soil maps were used to generate thirteen 

unique 1-dimensional soil columns for the 1:5000 soil map and ten unique 1-dimensional soil 

columns for the soil taxation map (i.e., one for each soil unit). As described in Chapter 4, a 

total of 232 nodes with variable separation were used to discretize each soil column. As for 

the simulations performed with the geophysics-based soil map, two different set-ups were 

used for the AgroC simulations. For the soil units of sub-area A and D, the depth of the 

simulation domain was set from the surface down to a depth of 3 cm into the coarse 

underlying horizon. Therefore, the depth of the modelling domain ranged from 33 cm to 143 

cm in these sub-areas. The maximum rooting depth was set equal to the depth of the fine 

sediments overlying the coarse horizon. In these profiles, the lower boundary condition was 

set to free drainage. The second type of set-up was used for soil units of sub-area BC, where 

fine sediments were present even at larger depth. In this case, the simulation domain extended 

from the surface down to a depth of 2.0 m and a variable pressure head was used as the lower 

boundary condition as described in Chapter 4.  

 

The same crop-specific parameters that were used in the simulations based on the geophysics-

based soil map were used in the simulations based on the commonly available soil maps, 

including the differentiations between sub-areas A, BC, and D as described in Chapter 4. 

Similarly, the upper boundary condition was defined by the same meteorological data as used 

for the simulations based on the geophysics-based soil map. Finally, the initial pressure head 
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distribution within each soil profile was determined using the same approach as described in 

Chapter 4.  

  

5.1.7. Comparison of simulations results 

To compare the results of the AgroC simulations performed using information from different 

soil maps, simulated LAI was compared with observed LAINDVI calculated from six RapidEye 

images as described in Chapter 4. First, the mean value of the observed LAINDVI for each soil-

crop combination of the three soil maps was compared with the LAI simulated with AgroC. 

The root mean square error (RMSE), the model efficiency (ME), and the R2 coefficient of 

determination were calculated for each soil map for all six RapidEye images. In a following 

step, the RMSE, ME, and R2 were calculated using the simulated LAI and all the observed 

LAINDVI values that were located within each soil-crop combination. In the following, we will 

refer to this comparison as pixel-by-pixel comparison. In this comparison, fields with sugar 

beet and corn were removed from the analysis for the satellite images collected on the 14th of 

March and the 20th of April, since the LAINDVI values of these crops are not reliable at this 

early growing stage. Similarly, fields with winter barley, winter rapeseed, and winter wheat 

were removed from the analysis for the 12th of August and the 8th of September since these 

crops were already harvested at this time. In a final step, a field-by-field analysis of the 

RMSE of the simulated LAI of the three soil maps for the images taken the 12th of August 

and 8th of September was performed in fields where sugar beet and corn were grown.  

 

5.2. Results and discussion 

5.2.1. Comparison of soil descriptions in the three maps 

From a visual comparison, the three soil maps have a similar identification of the limit 

between the upper and lower terrace that divides sub-area A and BC (Figure 32). In the 

geophysics-based soil map, this border was identified based on the measured apparent 

electrical conductivity (ECa) data, whereas the delineation was mainly based on topography 

and coarse soil augering in the other two soil maps. The location of the border between sub-

areas BC and D showed stronger differences between the three maps. In the geophysics-based 

soil map, this border is again obtained from measured ECa data. Since no clear topographic 

feature is associated with this border, only the information from augering was available to 

determine the position of this border in other two maps. This likely also explains why the 

border between the two sub-areas is locally coincident with the boundary between adjacent 



5. Analysis of the added value of geophysics-based soil mapping 

 

83 
 

fields. The geophysics-based soil map divides the study area in a larger number of soil units 

compared to the commonly available soil maps, and also has more complex polygon shapes 

due to high resolution of the ECa data used to identify the soil units. Generally, a single 

agricultural field within the study area is described by 4 to 9 soil units in this geophysics-

based soil map. The two commonly available soil maps often integrate larger areas in one soil 

unit, and therefore single fields are often described by only one soil unit. 

 

 
Figure 32: Distribution of soil units and of sub-areas A, BC, and D in a) the geophysics-based soil map, b) 

the 1:5000 soil map, and c) the soil taxation map. 

 

The majority of the shallow soils within the study area are described by silty loam and loamy 

silt above coarser sediments in the commonly available soil maps. Figure 33 shows the 

percentages of sand and silt at 30cm depth in the three soil maps. The grain size distribution 

obtained from this qualitative description using Table 12 was generally similar to the one 

obtained by the quantitative analysis of the soil samples described Chapter 3. For example, 

the areas classified as loamy silt were estimated to have 25% sand, 60% silt, and 15% clay 

based on Table 12, whereas the range of values determined from the soil samples in this area 

was 13-24% sand, ~56-70% silt, and ~13-23% clay. The estimated grain size distribution for 

silty loam (22% sand, 70% silt, and 8% clay) differed more from the range of values obtained 

from the above mentioned laboratory results, but still is in reasonable agreement. The 

underlying coarse material in sub-areas A and D were classified as sand or sandy clay loam in 

the 1:5000 soil map and sandy loam or loamy sand in the soil taxation map. For these four 

soil textural classes, the sand fraction obtained from Table 2 is much higher than the values 

obtained from the laboratory analysis of the soil samples (60-90% sand compared to ~28-58% 
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for the laboratory data). As a consequence, the percentage of silt is much lower (5-10% silt 

compared to ~30-54% for the laboratory data). These textural differences are also apparent in 

in Figure 33 where the percentages of sand and silt at 150 cm depth in the three soil maps are 

shown.  

 

 
Figure 33: percentages of sand (orange color scale) and silt (brown color scale) at 30 cm and at 150 cm in 

the three soil maps. 

 

Figure 34 shows the saturated hydraulic conductivity (Ks) and the saturated water content (θs) 

at 30 cm and at 150 cm depth in the three soil maps which were obtained from soil texture 

and estimated bulk density. Generally, the values of Ks and θs at 30 cm depth are rather 

similar in the three maps. The same applies to the values at 150 cm depth in sub-area BC. On 

the contrary, within sub-areas A and D, the values of Ks and θs at 150 cm depth are much 

higher in the commonly available soil maps compared to those of the geophysics-based soil 

map. 

 

 
Figure 34: estimated saturated hydraulic conductivity (blue color scale) and saturated water content (green 

color scale) at 30 cm and at 150 cm in the three soil maps. 
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Overall it was concluded that the top soil was reasonably well described by the commonly 

available soil maps, whereas the description of the underlying coarse horizons did not match 

well with the soil texture determined from laboratory analysis. 

 

The depth to the coarse 2C horizon varied between 49 and 86 cm in sub-area A and between 

47 and 134 cm in sub-area D in the geophysics-based soil map. As described in the previous 

chapters, the depth of this coarse horizon has a strong effect on crop water stress and crop 

performance. In the 1:5000 soil map, the depth to this horizon ranged between 30 (soil unit A-

2B) and 80 cm (soil unit A-7L) in sub-area A, and between 80 (soil unit D-27sG) and 150 cm 

(soil unit D-22gS) in sub-area D. In the soil taxation map, this depth ranged between 30 and 

120 cm (soil units A-04 and A-01) in sub-area A and between 105 (soil unit D-10) and 140 

cm (soil units D-09, D-10, and D-15) in sub-area D. Generally, it was found that this 

important depth was better represented by the 1:5000 soil map than by the soil taxation map. 

However, it is important to realize that the spatial distribution of the depth to this horizon is as 

essential as its depth for adequate prediction of patterns in crop productivity. 

  

5.2.2. Performance of LAI simulations  

Figure 35 shows the results of a comparison between simulated LAI and observed RapidEye 

LAINDVI for the different soil maps. For this comparison, we used the mean LAINDVI value 

within each soil-crop combination at the six dates of the RapidEye images.  

 

 
Figure 35: Simulated LAI and mean LAINDVI value within each soil-crop combination for simulations 

based on the a) geophysics-based soil map, b) the 1:5000 soil map, and c) the soil taxation map for all six 

available RapidEye images. 
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The values obtained by the AgroC simulations based on the inputs from the geophysics-based 

soil map (RMSE = 0.604, ME = 0.919, and R2 = 0.925) showed an improvement compared to 

the simulation results based on the commonly available soil maps (RMSE = 0.724, ME = 

0.869, and R2 = 0.887 for the 1:5000 oil map and RMSE = 0.720, ME = 0.866, and R2 = 0.886 

for the soil taxation maps). However, this improvement is relatively small and the results for 

the two commonly available soil maps could also be considered to be satisfactory. These 

similarly good results are due to the simultaneous use of all simulated crops and dates and to 

the fact that the comparison is performed using the mean value of each soil-crop combination, 

thus reducing the influence of the naturally occurring pixel-scale variability of LAINDVI. In a 

next step, simulated LAI and the mean LAINDVI value within each soil-crop combination were 

compared separately for each RapidEye image. The results of this comparison are 

summarized in Table 13.  

 

Table 13: RMSE, ME, and R2 between simulated LAI and the mean of observed LAINDVI within each soil-

crop unit for the three soil maps. The best performing result at each date are marked in bold. 

 Geophysics-based map 1:5000 Soil map Soil taxation map 
Date RMSE ME R2 RMSE ME R2 RMSE ME R2 

14th Mar 0.465 0.867 0.953 0.628 0.752 0.816 0.512 0.733 0.818 
20th Apr 0.777 0.785 0.945 1.309 0.199 0.751 1.708 -0.464 0.539 
28th May 0.333 0.983 0.985 0.696 0.917 0.929 0.940 0.838 0.867 
09th Jun 0.198 0.991 0.992 0.646 0.891 0.904 0.652 0.882 0.910 
12th Aug 0.185 0.906 0.943 0.437 0.394 0.752 0.499 0.146 0.418 
08th Sep 0.732 0.701 0.773 0.887 0.305 0.491 0.892 0.358 0.479 

 

First, it should be noted that the geophysics-based soil map showed lower RMSE, higher ME, 

and higher R2 for all individual dates, and thus also outperformed the two other soil maps in 

this analysis. However, it also becomes apparent that the three soil maps performed similarly 

well in March, May, and June. In April, the geophysics-based soil map outperformed the 

commonly available soil maps, although there was a general decrease in performance for all 

three maps. This might be related to the high variability in LAINDVI in different agricultural 

fields that is caused by the uncertainty in seeding and emergence dates of winter barley, 

winter rapeseed, and winter wheat. Moreover, the blooming of winter rapeseed affected the 

estimated LAINDVI as discussed in Chapter 4, and this may also have reduced the performance 

in April for all three soil maps. A second drop in the performance of the three soil maps was 

apparent in August for the 1:5000 soil map and the soil taxation map and in September for all 

three maps (Table 13). At this stage, corn and sugar beet were the only crops present and the 
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reduced correlation is likely caused by the appearance of crop stress that increased the spatial 

variability in LAINDVI. In this stressed situation, the geophysics-based soil map clearly 

outperformed the other soil map. 

 

5.2.3. Pixel-by-pixel comparison of LAI simulation 

Figure 36 shows the pixel-by-pixel comparison between simulated LAI and observed 

LAINDVI. Here, the highest density of pixels (in red) is close to the regression line in the case 

of the geophysics-based soil map, and showed more spread for the commonly available soil 

maps. This is also reflected in the error measures, which were slightly better for the 

geophysics-based soil map (RMSE = 0.747, ME = 0.859, and R2 = 0.866) than those for the 

1:5000 soil map (RMSE = 0.823, ME = 0.829, and R2 = 0.842) and considerably better than 

those for the soil taxation map (RMSE = 1.166, ME = 0.655, and R2 = 0.723). This 

comparison includes the values of each single cell of the LAINDVI dataset and is therefore 

different from the previous comparison in which only the mean LAINDVI of each soil-crop 

combination was used. As discussed in Chapter 4, the values of LAINDVI locally show a rather 

strong variability within single soil-crop combinations. This variability is responsible for the 

lower values of RMSE and higher values of ME and R2 compared to the previous comparison 

that made use of the average LAINDVI. 

 

 
Figure 36: Pixel-by-pixel comparison between simulated LAI and observed LAINDVI for a) simulation 

based on the geophysics-based soil map, b) the 1:5000 soil map, and c) the soil taxation map. The color 

indicates the density of events with red being the most dense and blue the less dense. 

 

Table 14 summarizes the pixel-by-pixel performance for all three soil maps for each 

RapidEye image. As in the case of the comparison of the mean values per soil-crop unit, the 

three soil maps performed well in March, May, and June. However, the higher performance of 

the geophysics-based soil map in comparison to the commonly available soil maps is more 
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apparent in this pixel-by-pixel analysis. In April, the geophysics-based soil map (RMSE = 

1.10, ME = 0.55, and R2 = 0.72) and the 1:5000 soil map (RMSE = 1.14, ME = 0.51, and R2 = 

0.70) showed similar performance and provided more accurate simulations than the soil 

taxation map (RMSE = 1.87, ME = -0.32, and R2 = 0.43). In August and September, a strong 

drop in performance was observed for all three soil maps due to the increased spatial 

variability of LAINDVI that was not fully captured by the simulations. However, the 

geophysics-based soil map again outperformed the other soil maps with an increasing 

difference in performance towards the end of the growing season. 

 

Table 14: RMSE, ME, and R2 of the pixel-by-pixel comparison between simulated LAI and the observed 

LAINDVI within each soil-crop unit for the three soil maps. The best performing result at each date are 

marked in bold. 

 Geophysics-based map 1:5000 Soil map Soil taxation map 
Date RMSE ME R2 RMSE ME R2 RMSE ME R2 

14th Mar 0.619 0.761 0.836 0.651 0.737 0.793 0.807 0.595 0.687 
20th Apr 1.095 0.546 0.715 1.137 0.511 0.701 1.868 -0.321 0.434 
28th May 0.662 0.924 0.925 0.676 0.921 0.923 1.0146 0.772 0.808 
09th Jun 0.653 0.883 0.887 0.686 0.871 0.878 0.929 0.764 0.812 
12th Aug 0.852 0.326 0.337 1.047 -0.019 0.257 0.886 0.271 0.282 
08th Sep 0.786 0.646 0.649 1.073 0.340 0.446 1.114 0.289 0.340 

 

5.2.4. Simulation of sugar beet 

In a next step, simulations of sugar beet are analyzed in more detail. This crop was selected 

because of its importance in the study area (31.7% of the investigated area) and because the 

difference in performance between the three soil maps was strongest in August and 

September when this crop was still growing.  

 

5.2.4.1 LAI simulation at the km2 scale 

Figure 37 shows the LAINDVI determined from Rapid Eye images and the simulated LAI 

based on the soil input from the three soil maps on the 9th of June, 12th of August, and 8th of 

September in fields where sugar beets were grown. On the 9th of June, LAINDVI showed high 

variability between fields that was mainly caused by differences in seeding date or field 

management (Figure 37a). As discussed in Chapter 4, the modelling set-up that was used in 

this chapter is not capable of reproducing this variability at this stage of crop development. 

On the 12th of August, the LAINDVI of sugar beet reached the maximum observed value in sub-

area BC and water stress affected the development of crops growing in sub-area A. On the 8th 
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of September (Figure 37c), water stress affected the development of sugar beet in both sub-

area A and sub-area D.  

 

 
Figure 37: Satellite observed LAINDVI and simulated LAI using the geophysics-based soil map (Geophy.), 

the 1:5000 soil map (soil 5k), and the soil taxation map (Taxation); a) shows the codes of the investigated 

fields and c) shows the geometry of sub-areas A, BC, and D. The comparison is shown for the following 

dates: a) the 9th June, b) 12th August, and c) 8th September 2016.  

 

The simulated LAI obtained using the geophysics-based soil map captured the correct 

location of the borders between sub-areas A, BC, and D, which were also clearly detected in 

the LAINDVI. In the case of the 1:5000 soil map, the border between sub-area A and sub-area 

BC was well represented. This was not the case for the border between sub-area BC and sub-

area D since the simulated LAI was very similar for these two sub-areas. In the case of the 

soil taxation map, the border between sub-area A and BC was well represented, whereas no 

visible subdivision between sub-area BC and D was obtained using inputs from this map 

because of the absence of simulated water stress in sub-area D that did not result in a 

meaningful reduction of simulated LAI. 
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The patterns in simulated LAI within each sub-area obtained using the geophysics-based soil 

map matched well with the patterns in LAINDVI at the 12th of August and at the 8th of 

September. As discussed in Chapter 4, the variability of LAINDVI was not fully represented by 

the simulations based on the geophysics-based soil map as the simulation approach with soil-

crop units cannot capture pixel-scale variabilities in LAINDVI that occur within a single soil 

unit. In contrast, simulations based on the other two soil maps did not result in representative 

patterns of simulated LAI within each sub-area. 

 

Table 15 summarizes the RMSE between simulated and observed LAI for individual fields 

(see Figure 37a) where sugar beet was grown at the 12th August and at the 8th September for 

all three soil maps. Generally, these 14 fields can be divided in three groups according to the 

RMSE obtained for the different soil maps. The first group is composed of fields F-01, F-05, 

F13a, F-48, and F-49 that are located within sub-area A. In these fields, the geophysics-based 

soil map showed a lower RMSE in August and September compared to the simulations based 

on the two other soil maps. The only exception was field F-46 in August, where the lowest 

RMSE of 0.53 was obtained for the 1:5000 soil map. In some cases, the reduction of RMSE 

between the simulations of the geophysics-based soil map and the other soil maps was rather 

limited, such as in field F-48 or field F-49. Nevertheless, the reduction in RMSE obtained 

using the simulations based on the geophysics-based soil map was apparent for both days and 

increased in September.  

 

The second group is composed of fields F-12, F-44, and F-47 that are located in sub-area BC, 

where no water stress was simulated. In this group, there was no general indication on which 

soil map provided the lowest RMSE. In particular, field F-12 showed the same RMSE 

irrespective of the soil map used as input, whereas fields F-44 and F-47 showed lower and 

similar RMSE when the geophysics-based soil map or the soil taxation map were used. The 

third group is composed of fields that are generally located in sub-area D (fields F-50 and F-

51). The RMSE of the simulations performed using the three soil maps were rather similar in 

August, whereas the geophysics-based soil map outperformed the simulations based on the 

other two maps in September. Here, it has to be noted that water stress observed in sub-area D 

was rather low in August and had a stronger effect on sugar beet growth in September. 
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Table 15: Table of RMSE error of LAI simulation in fields cropped with sugar beet and corn. The best 

performing result at each date are marked in bold. 

 12th August 8th September 

Field 
Geophysics-based 

soil map 
1:5000 

Soil map 
Tax. 
map 

Geophysics-based 
soil map 

1:500 
Soil map 

Tax. 
map 

F-01 0.78 1.01 0.81 0.49 0.56 0.96 
F-05 0.78 0.99 0.82 0.45 0.50 0.57 
F-13 0.57 0.76 0.62 0.57 0.73 0.73 
F-46 0.65 0.53 0.93 0.43 0.45 1.27 
F-48 0.79 1.07 0.80 0.65 0.80 0.94 
F-49 0.80 1.07 0.84 0.49 0.50 1.16 
F-12 1.01 1.01 1.01 0.96 0.96 0.96 
F-44 1.10 1.14 1.11 0.90 0.86 0.84 
F-47 0.87 0.83 0.76 0.82 0.92 0.88 
F-50 0.76 0.75 0.71 0.63 0.76 0.75 
F-51 1.37 1.40 1.37 1.06 1.29 1.41 
 

All in all, it is apparent how the improvements in simulation of sugar beet provided by the 

geophysics-based soil map are strongly dependent on the amount and timing of water stress. 

The results of the simulations based on the three soil maps were rather similar in areas and 

periods in which water stress is not affecting crop development. In periods with significant 

water stress, the RMSE obtained for simulations based on the geophysics-based soil map was 

2% to 74% lower than the RMSE obtained with the other soil maps. Additionally, this 

reduction in RMSE varied substantially from field to field, likely because of differences in 

quality of the soil characterization provided by the three soil maps. 

 

5.2.4.2 AgroC simulations of sugar beet in sub-area A 

Figure 38a-c shows the simulated LAI based on the input from the three soil maps (lines) and 

the observed LAINDVI (dots) for sugar beet grown on the soil units of sub-area A. Figure 38d-f 

shows the related water stress simulated with AgroC in each soil-unit of sub-area A. As 

described in Chapter 4, the simulations based on the input from the geophysics-based soil 

map well matched the observed LAINDVI. The four soil units A1a-d showed nearly the same 

LAI values early in the growing season (28th May and 9th June) and differed in simulated LAI 

later in the growing season (12th August and 8th September) due to different amounts of water 

stress occurring in each soil unit. 
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In the case of the 1:5000 soil map, the LAI simulated for the three soil units well matched the 

observed LAINDVI in May and June with the exception of soil unit A-07L that underestimated 

observed LAINDVI. In August and September, soil unit A-07L well matched the observed 

LAINDVI, whereas the other two soil units underestimated observed LAINDVI. The mismatch 

between simulated and observed LAI for the soil units A-01B and A-02B is due to assumed 

shallow depth to the coarse sediments, which was 30 cm in soil unit A-02B, 45 cm in unit A-

1B, and 80 cm in unit A-7L. As previously discussed, the depth to this coarse sediment has a 

strong influence on the timing and intensity of water stress. Since the uppermost soils had 

similar soil physical properties in the descriptions provided by the three soil maps, it can be 

concluded that the reduced match between simulations and observations was due to an 

underestimation of the depth to the coarse sediments in soil units A-01B and A-02B that 

caused stronger water stress due to lower water availability. 

 

 
Figure 38: Observed LAINDVI (dots) of sugar beet in sub-area A compared to the LAI (lines) as well as 

corresponding stress occurrence simulated using input from a,d) the geophysics-based soil map, b,e) the 

1:5000 soil map, and c,f) the soil taxation map. 

 

In the case of the soil taxation map, the observed LAINDVI for the two soil units were rather 

similar. This suggests that the distribution of the two soil units did not capture differences in 

crop performance that are apparent in the satellite images. The depth to the coarse sediment in 

the two soil units was 120 cm in A-01, and 70 cm in A-03, respectively. Again, the uppermost 

soils horizons had similar soil physical properties compared to the soil units of the 

geophysics-based soil map. Due to the higher water availability in soil unit A-01 because of 
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the overestimation of the soil depth, the simulated LAI overestimated measured LAINDVI. The 

actual depth was better captured for soil unit A-03, thus leading to improved LAI simulations.  

 

 
Figure 39: Productivity at harvest of the soil units of field F-01 simulated with inputs from a) the 

geophysics-based soil map, b) the 1:5000 soil map, and c) the soil taxation map. The productivity of sugar 

beet simulated on soil units without water stress is also provided in green. 

 

Figure 39a-c shows the development of sugar beet biomass over time (expressed in t ha-1 of 

dry beets) simulated for sub-area A based on inputs from the three soil maps. All simulations 

based on the three soil maps showed reduced biomass development due to water stress from 

July until harvest compared to the non-stressed soil-crop combinations of sub-area BC. The 

total simulated productivity at harvest of sugar beet in field F-01 based on simulations with 

inputs from the geophysics-based soil map was 14.3 t ha-1. As described in Chapter 4, this 

value matched well the actual total productivity recorded in this field (14.2 t ha-1). The 

simulated productivity based on the 1:5000 soil map was 15.4 t ha-1, which was an 8% 

overestimation of the actual productivity. In the case of the soil taxation map, the simulated 

productivity was 17.3 t ha-1 (+21%). 

 

5.2.4.3 AgroC simulations of sugar beet in sub-area D 

Figure 40a-c shows the simulated LAI (lines) and observed LAINDVI (dots) for sugar beet 

growing on the soil units of sub-area D for all three soil maps and Figure 40d-f shows the 

associated simulated water stress. As in sub-area A, the simulations based on the geophysics-

based soil map matched well with the observed LAINDVI with the exception of soil unit D1d 

where the simulated LAI underestimated observed LAINDVI in August. 

 

In the case of the 1:5000 soil map, the simulated LAI for the soil units D-22G and D-27G 

were similar in May, June, and August, and matched well with the observed LAINDVI. In 

September, simulated LAI of soil unit D-22G also matched well the observed LAINDVI but the 

simulated LAI for soil unit D-27G clearly overestimated LAINDVI because of the low amount 
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of simulated water stress. In this case, the upper depth to the coarse sediments for soil unit D-

27G (80 cm) was similar to the depth to the coarse sediments in soil unit D1c of the 

geophysics-based soil map (83 cm). However, the simulated LAI for these soil units differed 

strongly because of differences in simulated water stress. This is caused by different soil 

hydraulic parameterizations of the uppermost horizons between these two soil units. In fact, 

the saturated water content of the uppermost horizons is generally higher in D-27G (between 

0.434 and 0.396 cm3 cm-3) than in D1c (between 0.404 and 0.364 cm3 cm-3). At the same 

time, residual water content is lower in D-27G (between 0.037 and 0.021 cm3 cm-3) compared 

to D1c (between 0.072 and 0.066 cm3 cm-3). These differences in soil hydraulic parameters 

are due to differences in estimated soil texture, which was derived through laboratory analysis 

for the geophysics-based soil map and qualitatively described through hand texturing for the 

1:5000 soil map. It is true that the above described difference in soil hydraulic parameters of 

these two maps is rather subtle compared to those occurring in coarser and deeper soils. 

Nevertheless, the result of this different parameterization is a generally higher plant available 

water content in D-27G compared to D1c. 

 

 
Figure 40: Observed LAINDVI (dots) of sugar beet in sub-area D compared to the LAI (lines) as well as 

corresponding stress occurrence simulated using input from a,d) the geophysics-based soil map, b,e) the 

1:5000 soil map, and c,f) the soil taxation map. 

 

Finally, Figure 40c,f shows the simulation results based on the input from the soil taxation 

map. As for the 1:5000 soil map, the simulated LAI in the three soil units D-10, D-14, and D-

15 showed rather similar values in May, June, and August. In September, the simulated LAI 

of soil units D-10 and D-15 was again similar because the soil description provided by the soil 
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taxation map is identical for these two soil units. In contrast, the occurrence of simulated 

water stress in soil unit D-14 caused a reduction in simulated LAI compared to the other two 

soil units. Overall, the simulated LAI in the soil units of the soil taxation map did not match 

well the observed LAINDVI. This was attributed to two main factors. First, the depth to the 

coarse sediments ranged from 105 to 140 cm for the soil units of the soil taxation map. This 

depth is much larger than the depths obtained for the other two soil maps, thus reducing water 

stress in the simulations performed with inputs based on the soil taxation map. Second, the 

extent of sub-area D in the soil taxation map differed from the extent of the same sub-area in 

the other two soil maps (Figure 32). In particular, fields that are located in sub-area BC in the 

geophysics-based soil map and in the 1:5000 soil map were located in sub-area D in the soil 

taxation map. The fields within sub-area BC did not show water stress and thus have the 

highest LAINDVI values. Therefore, the inclusion of these areas in sub-area D resulted in 

higher observed LAINDVI in the soil taxation map that was not captured by the simulations. 

 

Throughout the studied area, the magnitude of the reduction in performance of the two 

commonly available soil maps compared to geophysics-based soil map depended on local soil 

characteristics. Generally, this reduction was caused by a poor representation of the depth of 

coarse sediments, of the texture of the overlying fine sediments, and of the subdivision 

between large sub-areas that have different soil characteristics. The different quality of this 

soil representation had an impact not only on the quality of the simulation of LAI but also on 

simulation of crop productivity at harvest. 

 

5.3. Conclusions 

In this chapter, the agro-ecosystem simulations performed in Chapter 4 by using inputs from 

the geophysics-based soil map obtained in Chapter 3 were compared with simulations 

performed by using inputs of two commonly available soil maps. These two maps are 

provided with a qualitative description of the soil texture, which was converted to quantitative 

percentages of the grain size distribution using the USDA soil texture triangle. The three 

maps showed a comparable subdivision of the study area in three sub-areas A, BC, and D, 

(already described in the previous chapters). However, substantial differences were found in 

the location of the boundary between sub-area BC and D. The soil texture for the top soil was 

found to be similar in the three maps. On the contrary, the textural information of the 

underlying coarse horizons differed significantly. 
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In a next step, the growth of corn, sugar beet, winter barley, winter rapeseed, and winter 

wheat was simulated with the agro-ecosystem model AgroC. The simulated LAI obtained by 

the agro-ecosystem simulations was compared with observed LAINDVI determined from 

RapidEye images using the root mean square error (RMSE), the model efficiency (ME), and 

the explained variance (R2). This analysis showed that the simulations performed with inputs 

from the geophysics-based soil map consistently resulted in lower RMSE and higher ME and 

R2 and thus outperformed the simulations obtained by using inputs from the two commonly 

available soil maps. However, the improvement in simulation quality was subtle for winter 

crops and periods with limited water stress. In contrast, the simulations based on the 

geophysics-based soil map clearly outperformed the commonly available soil maps in periods 

with moderate to high water stress that caused a reduction in crop performance. This was 

particularly evident for corn and sugar beet. 

 

A more detailed evaluation was performed using the AgroC simulations for sugar beet. It was 

found that the geophysics-based soil map clearly outperformed the commonly available soil 

representations in areas where stronger water stress was observed. This improved 

performance obtained with the geophysics-based soil map were locally caused by a more 

accurate depth to the coarse sediments, by a more accurate description of the soil texture of 

the overlying horizons, and by a more precise subdivision of the four sub-areas that are found 

in the study area. These aspects also had an impact on the simulation of the productivity at 

harvest where the geophysics-based soil map again outperformed the commonly available soil 

maps. However, these potential improvements in simulated productivity at harvest should be 

validated more extensively in future work since simulated and actual productivity were 

compared in one field only in this thesis. 

 

Overall, it was found that the geophysics-based soil characterization provides an added value 

to agro-ecosystem modelling and allows for better simulation of crop LAI and crop 

productivity. However, improvements were more apparent when prolonged periods of 

drought resulted in reduced crop performance. At the same time, improvements depended on 

the combination of soil characteristics and crop type. Nevertheless, a substantial mismatch 

with observations was observed in the simulations obtained by using the two commonly 

available maps. A detailed and quantitative soil characterization such as the geophysics-based 

soil map can thus have long term utility in an agricultural environment and can enable the use 
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of advanced farming techniques and strategies that are not practicable when solely based on 

general-purpose soil maps. 
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Chapter 6 

 

Conclusions and outlook 
 

In this chapter, the overall conclusions of this thesis will be presented and further research 

questions and gaps in knowledge arising from the elaborated topics will be discussed in an 

extensive outlook. 

 

6.1. Final conclusions 

It is already well established that electromagnetic induction (EMI) measurements are valuable 

for the characterization of the shallow subsurface because EMI is a non-invasive geophysical 

technique that allows to collect a large amount of data with a rather limited consumption of 

time and resources. Nevertheless, only a few studies have made use of EMI to produce high-

resolution soil maps beyond the scale of a single field. Furthermore, the added value of such 

geophysics-based soil representations within the context of agro-ecosystem modelling of 

multiple crops has not been demonstrated yet. This was the challenging starting point of the 

work presented in this thesis. 

 

In Chapter 3, it was shown that multi-configuration EMI measurements can be used to obtain 

a high-resolution geophysics-based soil map of a large and heterogeneous agricultural area of 

1 x 1 km. Here, the collection of detailed EMI measurements resulted in a total of nine 

apparent electrical conductivity (ECa) maps with an increasing depth of investigation. Despite 

the application of a temperature correction, the ECa maps clearly showed changes in ECa 

between fields due to different water content and land management (crop type, fertilization, 

etc.). This heterogeneity was present because EMI data acquisition was performed field-by-

field and over a period of six months as a consequence of the combination of the large size 



6.  Conclusions and outlook 

100 
 

and heterogeneous land management that characterizes the study area. Therefore, it was 

necessary to adopt a field-by-field analysis approach. In a following step, a supervised 

classification method was used to subdivide the study area into management zones with 

similar soil properties using the nine available ECa maps. To achieve this, the study area was 

first divided into four sub-areas based on geomorphological setting, patterns within the nine 

available ECa maps, and commonly available soil maps. These sub-areas were further divided 

into a total of 18 soil classes using a field-by-field analysis of the ECa maps. Finally, the 

classified maps of each field were merged in a composite raster and the result was a 1 m 

resolution map divided into 18 zones. Subsequently, 100 sampling locations were randomly 

selected to provide this map with soil profile descriptions and quantitative information on 

textural characteristics of each soil horizon. Here, it has to be noted that one soil augering 

location per hectare was used, and that this density is similar or lower compared to the sample 

density used to make commonly available soil maps for the same area. In a next step, a typical 

soil profile was assigned to each zone of the classified map by averaging the characteristics of 

each sampling point that was located within that zone. It was found that there was at least one 

statistically significant difference in terms of layering or texture between each typical soil 

profile for each of the 18 zones. Therefore, we concluded that the 18 zones identified by the 

classified EMI map represented 18 distinct soil units. Finally, the geometry of these soil units 

was compared to patterns in crop stress of sugar beet that were obtained from a satellite image 

for approximately one fourth of the study area. It was found that the areas with stressed crops 

matched well with particular soil units. It was therefore concluded that the geophysics-based 

soil map is particularly useful for characterizing management zones that are of great interest 

to precision agriculture applications. 

 

In Chapter 4, the quantitative soil characterization obtained in Chapter 3 was used to simulate 

the growth of six crops cultivated in the study area in 2016 using the agro-ecosystem model 

AgroC. The necessary soil hydraulic parameters were obtained from the soil texture described 

in the geophysics-based soil map and from estimated dry bulk density. For this, the 

pedotransfer function of Rawls and Brakensiek (1985) was used. Simulated water content was 

found to be consistent with soil water content measured in two different locations and their 

comparison resulted in relatively low values of root mean square error (RMSE). The lowest 

RMSE values were obtained when the soil profile provided by the geophysics-based soil map 

well represented the actual soil profile. Additional simulations performed with soil hydraulic 

parameters that were obtained using the ROSETTTA pedotransfer function resulted in a much 
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higher RMSE between the measured and the simulated water content. This was attributed to 

the higher estimated values of the saturated hydraulic conductivity. In a next step, agro-

ecosystem simulations were carried out for sugar beet, corn, potato, winter wheat, winter 

barley, and winter rapeseed for the 2016 growing season. In general, it was found that the 

magnitude of simulated water stress was a function of the crop type and of the soil 

characteristics with higher water stress occurring in summer crops and in coarser soils. At the 

same time, a reduction of LAI that was generally proportional to the simulated water stress 

was apparent in the simulations. To validate the agro-ecosystem simulations with independent 

data, six LAINDVI maps were produced from RapidEye satellite images. The simulated LAI 

was overall consistent with observed LAINDVI despite local inconsistencies between 

simulations and observations (e.g., during the blooming of winter rapeseed, in the case of 

irrigation, or when the effect of field-scale management was not adequately represented in the 

model). Overall, it could be shown that water stress had an impact on the simulated 

productivity at harvest for each of the investigated crops. The simulated productivity of one 

sugar beet field and one winter barley field matched well with the actual harvest of these 

fields in 2016, and the simulated productivity of corn and winter wheat corresponded well 

with literature values. Finally, maps of the simulated productivity at harvest were created for 

all four crops for the entire study area. The simulated productivity was 100% in soil units 

without water stress, whereas a reduction in productivity that was largely proportional to the 

intensity of water stress was apparent in soil units with underlying coarse layers. Clearly, such 

maps are highly relevant for practical agricultural applications, such as the selection of crop 

type, crop rotation, and seeding date depending on the previously recorded and forecasted 

precipitation intensity as well as on local soil characteristics. 

 

In Chapter 5, the agro-ecosystem simulations based on inputs from the geophysics-based soil 

map described in Chapter 3 were compared to simulations based on two commonly available 

soil maps: i) a 1:5000 official soil map from the geological office of North Rhein-Westphalia 

and ii) a soil taxation map from the German Ministry of Finance. The two commonly 

available maps are provided with a qualitative description of the soil texture, which was 

converted to quantitative percentages of the grain size distribution using the USDA soil 

texture triangle. By comparing the soil descriptions of the three maps, the soil texture 

described for the upper fine sediments appeared to be rather similar. However, the textural 

information of the underlying coarse horizons differed significantly between the commonly 

available soil maps and the geophysics-based soil map. At the same time, the three soil maps 
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showed substantial differences in the location of the boundary between the four sub-areas in 

which the study area was previously divided. In a following step, the growth of corn, sugar 

beet, winter barley, winter rapeseed, and winter wheat was simulated with the agro-ecosystem 

model AgroC using the methodology described in Chapter 4 and inputs from the three soil 

maps. Here, the LAI simulated with AgroC was compared to the observed LAINDVI using the 

RMSE, the model efficiency (ME), and the explained variance (R2). The use of inputs from 

the geophysics-based soil map consistently showed lower RMSE and higher ME and R2. 

However, the improvement in simulation quality was rather subtle for winter crops and for 

periods with limited water stress. In contrast, the use of the geophysics-based soil map clearly 

outperformed the commonly available soil maps for summer crops (sugar beet and corn) and 

in periods with strong reduction in crop performance caused by water stress. Therefore, a 

more detailed comparison was performed for sugar beet. It was found that the magnitude of 

the reduction in performance of the commonly available soil maps compared to the 

geophysics-based soil map was caused by: i) a poor representation of the depth of the coarse 

sediments, ii) an inappropriate description of the soil texture of the upper fine horizons, and 

iii) a poor representation of the subdivision between sub-area BC and D. The lower 

performance of the simulations based on the commonly available soil maps also affected the 

simulated productivity at harvest. For example, the simulated productivity of sugar beet in a 

2.3 ha field was overestimated when using inputs from the two commonly available soil 

maps, which was not the case for the simulations performed with inputs from the geophysics-

based soil map. 

 

Overall, it was concluded that an accurate representation of the spatial variability of soil 

characteristics that is provided by geophysics-based soil mapping provides long term benefits 

within an agricultural environment that is characterized by a reduced productivity caused by 

soil heterogeneity. The amount of soil augering locations that are necessary to obtain such a 

geophysics-based soil map is similar or lower than what is generally required for commonly 

available soil maps, but the resulting resolution is much higher. The geophysics-based soil 

map allows identifying meaningful management zones within individual fields, and thus 

clearly provides added value in agricultural applications. Due to the quantitative information 

on layering and texture, this map also allowed meaningful agro-ecosystem simulations of 

multiple crops in which soil water content dynamics, crop growth, and crop productivity at 

harvest were correctly captured at the field scale and beyond. It was also shown that 

simulations based on this geophysics-based soil characterization clearly outperformed 
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simulations based on the commonly available soil maps for the study area investigated here, 

especially in dry periods. Since the combination of geophysics-based soil mapping and agro-

ecosystem modelling provided reliable information on the spatial distribution of water stress 

and crop productivity at harvest, this approach may allow to reduce yield gaps by supporting 

site-specific selection of the most productive and sustainable agricultural management 

options. One could argue that similar results could be achieved by parametrizing agro-

ecosystem models using time series of available satellite images. However, the advantage of 

the methodology proposed here lies in the potential of simulating future scenarios (e.g. 

climate change scenarios), which is vital to meet present and future food security and 

environmental challenges. 

 

6.2. Outlook 

The geophysical data analysis and agro-ecosystem modelling strategies developed in this 

thesis are able to provide valuable information for agricultural management. For example, 

maps of simulated productivity at harvest similar to those presented in Chapter 4 can help 

farmers in the maximization of crop productivity. Furthermore, the seeding of summer crops 

could be timed based on the precipitation forecast for the coming days or weeks. Finally, the 

best crop rotation for a particular field could be determined using the developed strategies. In 

this case, the agro-ecosystem simulations should not be based on a single growing season. 

Instead, the simulation period should be extended to longer periods (e.g., 30 years) in order to 

allow the evaluation of the cost-benefit ratio of long-term strategies. 

 

Despite the promising results, the methodology described in this thesis is not exempt from 

limitations and can certainly be improved. For example, the results of the supervised 

classification methodology depend to some extent on the interpreter as discussed in Chapter 3. 

Even if this approach was found to be the most suited to obtain soil information from EMI 

measurements in this study, future research should explore the use of more complex 

classification methods such as supervised machine learning classification. The use of 

unsupervised classification methodologies, such as the iterative self-organizing (ISO) 

clustering technique or even the application of more complex artificial neural networks should 

also be explored as the influence of the operator is strongly reduced in these methods. 

However, the suitability of such methodologies may be limited by the influence of contrasting 

environmental conditions that are affecting EMI measurements collected at different times. 

Nevertheless, the application of more complex data filtering, management, and conversion 
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techniques could lead to significant improvements. For example, the Z-score normalization 

method described in Rudolph et al. (2015) can partially remove the influence of contrasting 

environmental conditions from EMI measurements, which may allow the use of an 

unsupervised classification methodology. This is illustrated in Figure 41 for 18 fields located 

in the upper terrace of the study area. The unsupervised classification of Z-transformed ECa 

maps resulted in a consistent map in which all fields show patterns that are likely to represent 

subsurface structures (Figure 41b). In contrast, an unsupervised classification of the non-

transformed data did not result in meaningful results (Figure 41a) and only five fields showed 

patterns that represent the known variation in subsurface properties (see patterns in crop 

performance in Figure 17a and classified map in Figure 13a-b). Despite these encouraging 

preliminary results, the use of Z-transformed ECa for the classification of EMI data also 

showed some limitations that require further investigation. For example, some fields are 

subdivided in areas with different and unrecorded management that might have unclear 

effects on the classification results. This example demonstrates that it is worthwhile to test 

and analyze the use of different strategies for the classification of an extensive EMI dataset 

and obtain more standardized products. 

 

 
Figure 41: a) Multiband image of ECa maps of 18 fields within the upper terrace and resulting classified 

map obtained with unsupervised classification method and b) multiband image of the Z-transformed ECa 

maps of the same fields and resulting unsupervised classification map. Both multiband images are 

composed of red band = HCP 35 cm, green band = HCP 50 cm, and blue band = HCP 71 cm). 

 



6. Conclusions and outlook 

 

105 
 

This thesis demonstrated the added value provided by geophysics-based soil mapping beyond 

the farm-scale. Although it seems attractive to extend this approach to other areas or the 

regional scale, the costs of the collection of EMI and ground truth data should be taken into 

account in such considerations. In fact, the production of the geophysics-based soil map was a 

time- and resource-consuming activity that can be divided in three distinct phases: i) the 

collection of EMI measurements (220 hours of work with two operators), ii) the description of 

soil profiles and the collection of soil samples (50 hours of work with three operators), and iii) 

the laboratory analysis of soil samples (400 hours of work with one laboratory technician). 

Using the results of the comparison of the agro-ecosystem simulations obtained with the 

inputs from the three soil maps, it is possible to speculate about scenarios with a reduced 

amount of invested resources. The EMI measurements were performed with a dense spacing 

of 2.5 m between measurement lines. In retrospect, this spacing could have been increased to 

10 m in some fields without strong soil heterogeneity. By increasing the spacing between 

measured lines, a considerable reduction of ~60% in the measurement time can be obtained. 

For the study area investigated here, this applied to 7.5 ha. Therefore, a reduction of 4.7% of 

the measurement time could have been achieved. During the selection of soil sampling 

locations, 21 points were placed in anthropogenic deposits or in other rather small soil units. 

In the end, these deposits did not show meaningful differences in the agro-ecosystem 

simulations compared to the surrounding non-anthropogenic deposits, despite clear 

differences in soil layering and texture. The time needed to perform soil sampling could have 

been reduced by ~20% by removing these locations. Finally, a total of 552 soil samples were 

analyzed to obtain information on grain size distribution. By analyzing the results of the ago-

ecosystem simulations performed with the three soil maps, it is apparent that similar results 

could have been achieved with a qualitative characterization of soils. Therefore, the textural 

characterization could have been obtained from the commonly available soil maps or 

estimated with hand texturing. This could have substantially reduced the laboratory analysis 

to the subsoil properties. In this scenario, the number of soil samples would have been 

reduced to 229, which is a time reduction of 59%. In summary, this retrospective analysis 

suggests that the total time needed to characterize the 1 x 1 km study area could have been 

reduced by 29%. Obviously, the appropriate resolution of EMI measurements and the 

required amount of soil samples is not known a priori. However, the results of this 

retrospective analysis may guide the characterization of neighboring areas since the geology 

that characterizes the investigated study area extends well beyond the 1 km2 area investigated 

here. 
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In order to move forward, a hierarchical analysis approach could be used to obtain detailed 

soil information in agricultural areas at the regional, national, or transnational scale. In a first 

step, large areas of tens of km2 within typical geological settings could be identified based on 

available soil and geological maps. Within each of these areas, a relatively small area could be 

investigated with the procedures described in this thesis. Then, the insights obtained within 

this small area could be used to assemble a complete soil map for the agricultural areas within 

each geological setting. Clearly, this would require a considerable amount of time and 

resources, but this is common to all soil mapping performed at a regional or national level. In 

order to achieve such a large-scale digital soil characterization, improvements in geophysical 

instruments and data acquisition strategies are required. For example, it would be highly 

desirable when EMI devices would provide accurate measurements when operated on a 

tractor because this would allow the collection of ECa measurements during field 

management. Commercial EMI equipment to achieve such measurements is becoming 

available, and novel EMI system designs (e.g., Mester et al. 2014) may allow to improve the 

accuracy of EMI measurements in the presence of measurement errors associated with the 

proximity of the tractor that affects the inductive measurements. 

 

Obviously, EMI is only one of the available mobile methods that provide proximal 

information on soil properties. As previously discussed, a number of studies used a 

combination of multiple proximal and remote sensing platforms for soil mapping with 

encouraging results. Even if EMI proved effective in studying a rather exhaustive soil depth 

of an extensive area and provided vital information that enabled exploiting crop modelling 

capabilities, the application of the same technique to a rather different area might not be as 

effective as in this study. Different sensors are more effective under certain site-specific 

conditions and the simultaneous use of multiple sensors can overcome the limitation of a 

single device. However, each additional measurement increases the mapping costs (Taylor et 

al., 2010). Therefore, it is vital to use the most effective instrument at each site. To reduce 

measurement costs, the assessment of the most suited proximal or remote sensing technique 

could be performed on a small portion of the area that is the objective of the mapping. In a 

second step, the best performing device could be used to map the entire area with the support 

of existing datasets (e.g., general-purpose soil maps, yield maps, and satellite data) or in 

combination with air-borne devices such as air-borne EM or air-borne gamma-ray 

spectrometry. 
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Finally, in order to develop more efficient data acquisition strategies, farmers should be more 

actively involved in the collection of geophysical data and soil samples. For example, farmers 

are already collecting a variety of soil samples for bio-geochemical analysis on a regular basis 

for regulatory control and planning of nutrient management. An important step forward would 

be to include soil description and/or photos of soil profiles provided by farmers via a simple 

and standardized procedure that makes use of the latest portable technology (e.g., mobile 

apps). This may allow the development of an extensive database that can be used to develop 

and validate high-resolution digital soil maps. By doing this, farmers would benefit from a 

product that is publicly available and would not be forced to produce their own soil 

characterization. Moreover, continuous feedback between farmers and soil scientists on the 

practical use of these soil maps would make these products more effective. This process could 

be streamlined by regulatory bodies through the definition of guidelines for fruitful 

cooperation between farmers and soil scientists (Bouma, 2001) and appropriate incentives, 

thus paving the way for a more productive and sustainable agriculture. 

 

A further promising extension of the research presented in this thesis is to combine the 

simulation set-up with weather forecast. By assimilating information on forecasted 

precipitation quantity and timing, it would be possible to optimize irrigation scheduling aimed 

at the maximization of crop productivity in drought conditions. The potential of this approach 

is illustrated in the following example, where the amount and timing of irrigation were 

implemented into the atmospheric input data of the AgroC model by increasing the amount of 

precipitation at certain time steps. A rule-based approach for irrigation scheduling was 

adopted and it was assumed that a 7-day perfect weather forecast was available. Rule-based 

irrigation scheduling is a well-established method in which a set of rules is used to determine 

irrigation timing and amount (Bergez et al., 2002; Jamal et al., 2018).  

 

In the example presented here, the need for irrigation was evaluated at the first day of each 

week after the emergence of sugar beet on the 2nd of May. The amount of irrigation was 

determined based on the simulated water stress reduction factor (h in Equation 10 in Chapter 

4) at the end of the coming week using the actual precipitation in 2016 (i.e., a perfect weather 

forecast). If the reduction factor was between 0.85 and 1.0, no irrigation was applied. If the 

stress reduction factor was lower than 0.85, 3 mm of irrigation was applied and the simulation 

for the coming week was repeated. If the reduction factor after seven days was still lower than 
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0.85, the process was repeated by adding an additional 3 mm of irrigation. This procedure was 

repeated until h > 0.85 was obtained or until a maximum of 30 mm of irrigation was applied. 

This weekly irrigation scheduling was repeated until the end of the growing season. 

 

 
Figure 42: Effect of irrigation on the simulation of sugar beet growing on field F01. The amount of 

precipitation, irrigation, and the water stress simulated in each soil unit is shown in a) for soil unit A1a, b) 

for A1b, d) for A1c, and e) for A1d. The productivity at harvest of sugar beet is shown for the case c) 

without irrigation and f) with rule-based irrigation. 

 

Table 16: Number of irrigation events, average irrigated amount (mm), total amount of irrigation (m3 ha-1), 

and productivity at harvest (t ha-1) with non-irrigated and irrigated sugar beet for the four soil units of field 

F01. 

Soil 
unit 

Irrigation 
events 

Avg. Irrig. 
(mm) 

Total (m3 
ha-1) 

Non-irrigated 
prod. (t ha-1) 

Irrigated prod. 
(t ha-1) 

A1a 10 18.6 1860 16.0 19.6 
A1b 13 16.6 2160 14.5 19.7 
A1c 15 16.4 2460 13.3 19.7 
A1d 16 16.3 2610 12.1 19.8 

 

The simulation results obtained with this irrigation scheduling are shown in Figure 42 and 

summarized in Table 16. The simulated productivity at harvest of dry beets in field F01 

without irrigation was 14.3 t ha-1 and increased to 19.7 t ha-1 using irrigation (+ 23.3 t ha-1 of 

wet beets). The amount of irrigation that was needed to achieve this increase in productivity 

was 2231 m3 ha-1. The simulation strategy outlined above could allow farmers to optimize 

irrigation and maximize productivity, or to perform a cost-benefit analysis for the use of 

irrigation. Even if it is an essential practice in other regions of the world (Topak et al., 2011), 
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irrigation of sugar beet is considered to be a non-profitable practice in North Rhein-

Westphalia based on current climate conditions (Landwirtschaftskammer, 2019). In the 

proposed irrigation scenario, a rough estimation resulted in additional cost for the farmer of 

~330 Euro ha-1 (~100 Euro ha-1 for the installation/usage of the machinery and 1 Euro ha-1 per 

mm of irrigated water). Here, it was assumed that the equipment for irrigation is already 

available (Hanse et al., 2010; Lozán et al., 2007). Assuming a price of ~30 Euro t-1 of wet 

beets, the increase in productivity of 23.3 t ha-1 would result in an increased income of ~690 

Euro ha-1 for the farmer, which is higher than the costs. Even if this rough calculation 

suggests that irrigation might be profitable, it is important to realize that the necessary perfect 

weather forecast is currently not available. Obviously, the irrigation cost might strongly 

increase in case of underestimated precipitation (overuse of irrigation) and the income may 

decrease in case of overestimated precipitation (lower productivity). Furthermore, costs for 

irrigation water and fuel vary in different regions, and the final sugar content of the wet beets 

also influences the income for the farmer. Finally, the European sugar sector no longer has a 

guaranteed price/quota system for sugar beet. Therefore, sugar price is are currently 

fluctuating depending on the supply and demand of beets, thus increasing the uncertainty of 

such cost/benefit analyses.  

 

In the light of recent global climatic change and the expected more frequent occurrence of dry 

summers and heat waves, the long-term vision of central-European farmers and regulatory 

bodies is rapidly changing and irrigation is now not only necessary to improve yield but also 

to prevent harvest failure. Within this light, a reliable quantification of both the economic 

costs and benefits of irrigating crops is vital, and the work presented in this thesis can help to 

provide a foundation for improved methods to simulate present and future climate scenarios. 

An important step for an operational irrigation scheduling system based on the approach 

outlined here would be the consideration of uncertainty in forecasted meteorological data. 

Currently, weekly precipitation forecasts are often not very reliable, which affects the 

performance of this type of irrigation scheduling (Linker et al., 2018). However, short-term 

forecasting tools are constantly improving and their availability on the internet is rapidly 

expanding (Linker and Sylaios, 2016). 

 

A promising long-term further development would be the consideration of nutrient 

availability and stress in the developed model framework. This would require extending 

AgroC with a module that simulates nutrient uptake and distribution within the soil-crop 
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continuum. In a first step, nitrogen should be added to the AgroC model, but other nutrients 

such as phosphorus are also of interest because crop growth is limited by phosphorous in 

many regions of the world (Goll et al., 2017; Jiang et al., 2019; Lun et al., 2018). With this 

addition, the AgroC model could be used as a digital agricultural avatar (DAA) and be 

exploited to predict and forecast crop development in response to agricultural management 

and within-field interventions. 

 

Another promising avenue for further analysis is to use the methodology proposed in this 

thesis for the simulation of carbon turnover on the landscape scale. This is relatively 

straightforward since AgroC is already designed to calculate CO2 assimilation by crops and 

soil respiration. Crops experiencing water stress generally show a reduced magnitude of net 

ecosystem exchange (NEE). By applying irrigation, the magnitude of NEE can be increased 

and this could lead to increased carbon sequestration that can be quantified with agro-

ecosystem models. A comparison between irrigated and non-irrigated scenarios could provide 

an estimation of the environmental costs and benefits of irrigation that should be examined 

alongside the economic analysis. Moreover, CO2 emissions are known to be reduced by an 

efficient management of irrigation (West et al., 2004) and the application of irrigation could 

save a considerable portion of land from farming. For example, 1 hectare of irrigated sugar 

beet produced as much as 1.4 hectares of non-irrigated sugar beet in the irrigation analysis for 

field F01 presented above. Maximizing local productivity is not only required for feeding the 

growing world population but also by environmental concerns since it is known that land use 

changes, such as the conversion from forest to cropland, can reduce global carbon 

sequestration (Quesada et al., 2018). Within this context, it is vital to use the most updated 

methods and technology not only to achieve higher yield, but also to look at agriculture in a 

more holistic way as it is done, for example, in the field of agro-ecology. By doing so, it 

would be possible to meet the goals of sustainable agriculture and to combine a high 

economic income with low environmental impact and reduced use of non-renewable 

resources. 
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Supplementary material 
This first supplementary material section shows the results of the statistical comparison 

between typical profiles of different soil units as well as the horizon description, depth, 

texture, and water content for each soil unit described in Chapter 3. The second section 

provides additional information regarding the parameterization of sugar beet, corn and winter 

wheat described in Chapter 4. 

 

S1. Statistical comparison between soil profiles 

S1.1 Sub-area A 

The characteristics of the averaged profiles of the four classes of sub-area A are shown in 

Table S1. The results of the t-test conducted between matching horizons of the classes of sub-

area A are shown in Table S2. The t-tests were conducted between the available values of 

paired classes: A1a vs A1b, A1b vs A1c, A1c vs A1d. The t-test was considered positive 

when the computed value fell in the 5 % level of significance (2.5 % in each tail). 

 

Table S1. Texture of the averaged profiles of the four classes of sub-area A with maximum depth of the 

horizon, gravimetric water content, clay content, silt content, sand content, and gravel content (gravel 

content given in % of weight and relative to the total weight of the dry sample). 

Class Horizon Depth (cm) WC (%) Clay (%) Silt (%) Sand (%) Gravels (%) 

A
1a

 Ap-AB 40.7 17.8 17.1 63.0 19.8 10.8 
Bw 86.0 14.8 21.3 58.0 20.6 14.0 
2C ND 10.8 25.6 45.7 28.6 33.3 

A
1b

 Ap-AB 39.9 16.2 13.0 66.6 20.4 16.7 
Bw 66.6 12,7 18.2 58.0 23.9 27.6 
2C ND 8.2 19.2 29.9 50.9 24.6 

A
1c

 Ap-Ah 37.6 18.7 14.4 67.0 18.8 29.8 
Bw 58.1 15.3 16.8 62.7 20.5 29.1 

2C ND 10.0 21.9 37.0 41.1 43.7 

A
1d

 Ap-AB 41.0 17.2 12.9 66.0 21.1 18.6 
Bw 49.6 14.4 17.3 69.7 13.0 18.2 

2C ND 10.8 14.5 54.0 31.4 36.0 
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Table S2 - Results of the pairwise t-tests conducted in sub-area A. Bold font indicates significant 

differences. 

Horizon Classes Depth WC Clay Sand Gravels 

A
p

-A
B

 A1a vs A1b 0.757 0.280 0.003 0.862 0.073 

A1b vs A1c 0.377 0.085 0.068 0.440 0.031 
A1c vs A1d 0.232 0.232 0.034 0.529 0.092 

B
w

 A1a vs A1b 0.040 0.001 0.127 0.406 0.017 
A1b vs A1c 0.197 0.071 0.303 0.431 0.868 

A1c vs A1d 0.558 ND ND ND ND 

2C
 A1a vs A1b ND 0.191 0.308 0.109 0.461 

A1b vs A1c ND 0.440 0.284 0.415 0.170 
A1c vs A1d ND 0.785 0.076 0.399 0.666 

 

 

S1.2 Sub-area B 

The characteristics of the averaged profiles of the four classes of sub-area B are shown in 

Table S3.  

 

Table S3 - Texture of the averaged profiles of the four classes of sub-area B with maximum depth of the 

horizon, gravimetric water content, clay content, silt content, sand content, and gravel content (gravel 

content given in % of weight and relative to the total weight of the dry sample). 

Class Horizon Depth (cm) WC (%) Clay (%) Silt (%) Sand (%) Gravels (%) 

B
1a

 Ap-AB 46.0 18.6 15.9 69.0 15.1 5.3 
Bw 126.3 15.1 17.3 65.3 17.3 3.1 
Bg ND 16.9 22.5 64.6 12.8 12.8 

B
1b

 

Ap-AB 47.0 18.5 12.3 68.5 19.2 9.5 
Bw 121.3 14.2 16.4 66.4 17.3 6.9 

Bg 146.3 15.6 18.1 64.1 17.8 1.6 
2C ND 13.4 15.7 62.4 21.9 ND 

B
2a

 

Ap-AB 38.0 18.5 15.1 65.2 19.7 9.7 
M 90.0 16.9 14.6 65.2 20.2 4.6 
Bw 119.7 15.5 22.6 58.6 18.9 3.7 

Bg ND 16.5 20.1 64.6 15.2 0.8 

B
2b

 

Ap-AB 42.7 19.3 12.0 70.9 17.1 3.5 

M 68.7 15.5 15.1 69.3 15.7 6.5 
Bw 157.7 15.7 18.8 65.4 15.9 2.5 

Bg ND 16.4 21.3 67.3 11.4 0.6 

B
2c

 Ap-AB 45.3 16.3 14.9 63.4 21.7 24.3 

M 76.0 15.7 17.1 64.4 18.5 16.7 
Bw ND 15.6 20.7 63.2 16.1 9.1 
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The results of the t-test conducted between matching horizons of classes of sub-area B are shown in Table 

S4 and Table S5. The t-tests were conducted between the available values of paired classes: B1a vs B1b 

(natural deposits shown in Table S4), and B2a vs B2b - B2b vs B2c (anthropogenic deposits shown in 

Table S5). The t-test was considered positive when the computed value fell in the 5 % level of significance 

(2.5 % in each tail). 

 

Table S4 - Results of the pairwise t-tests conducted in sub-area B (natural deposits). Bold font indicates 

significant differences. 

Horizon Classes Depth WC Clay Sand Gravels 

Ap-AB B1a vs B1b 0.852 0.925 0.005 0.002 0.402 
Bw B1a vs B1b 0.930 0.394 0.006 0.700 0.323 
Bg B1a vs B1b ND 0.123 0.002 0.012 0.014 

 

Table S5 - Results of the pairwise t-tests in sub-area B (anthropogenic deposits). Bold font indicates 

significant differences. 

Horizon Classes Depth WC Clay Sand Gravels 

Ap-AB 
B2a vs B2b 0.268 0.612 0.002 0.065 0.149 
B2b vs B2c 0.386 0.021 0.006 0.010 0.001 

M 
B2a vs B2b 0.610 0.198 0.497 0.020 0.686 
B2b vs B2c 0.826 0.806 0.149 0.067 0.121 

Bw 
B2a vs B2b 0.231 0.700 0.166 0.075 0.456 

B2b vs B2c ND 0.913 0.466 0.931 0.052 
Bg B2a vs B2b ND 0.962 0.782 0.190 0.861 

 

S1.3 Sub-area C 

The characteristics of the averaged profiles of the four classes of sub-area C are shown in 

Table S6. The results of the t-test conducted between matching horizons of classes of sub-area 

C are shown in Table S7 and Table S8. The t-tests were conducted between the available 

values of paired classes: C1a vs C1b (natural deposits shown in Table S7), and C2a vs C2b 

(anthropogenic deposits shown in Table S8). The t-test was considered positive when the 

computed value fell in the 5 % level of significance (2.5 % in each tail). 
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Table S6 - Texture of the averaged profiles of the four classes of sub-area C with maximum depth of the 

horizon, gravimetric water content, clay content, silt content, sand content, and gravel content (gravel 

content given in % of weight and relative to the total weight of the dry sample). 

Class Horizon Depth (cm) WC (%) Clay (%) Silt (%) Sand (%) Gravels (%) 

C
1a

 Ap-AB 45.0 18.9 17.4 69.0 13.6 0.4 
Bw 109.3 15.5 20.9 66.5 12.7 0.1 
Bg ND 16.0 20.8 64.0 15.1 0.3 

C
1b

 Ap-AB 42.0 18.5 16.4 69.8 13.8 0.6 
Bw 129.3 16.1 20.1 66.5 13.3 0.4 
Bg ND 14.1 21.5 63.6 14.8 1.3 

C
2a

 

Ap-AB 41.0 18.4 16.3 71.2 12.4 0.0 

M 51.0 17.0 18.2 69.2 12.6 0.0 
Bw 86.0 17.6 18.4 70.3 11.4 0.2 
Bg ND 15.9 19.5 59.5 20.9 5.1 

C
2b

 

Ap-AB 43.0 19.5 14.6 65.8 19.5 0.6 
M 112.5 16.3 17.1 65.8 17.0 1.1 

Bw 129.0 15.5 16.4 73.6 9.9 0.0 
Bg ND 15.4 23.2 56.1 20.7 0.0 

 

Table S7 - Results of the pairwise t-tests in sub-area C (natural deposits). Bold font indicates significant 

differences. 

Horizon Classes Depth WC Clay Sand Gravels 

Ap-AB C1a vs C1b 0.429 0.522 0.113 0.675 0.669 

Bw C1a vs C1b 0.419 0.277 0.562 0.457 0.326 
Bg C1a vs C1b ND 0.021 0.346 0.993 0.203 

 

Table S8 - Results of the pairwise t-tests in sub-area C (anthropogenic deposits). Bold font indicates 

significant differences. 

Horizon Classes Depth WC Clay Sand Gravels 

Ap-AB C2a vs C2b 0.294 0.425 0.238 0.119 0.214 
M C2a vs C2b 0.036 ND ND ND ND 
Bw C2a vs C2b 0.034 0.412 0.420 0.271 0.423 

Bg C2a vs C2b ND 0.767 0.097 0.053 0.294 

 

S1.4 Sub-area D 

The characteristics of the averaged profiles of the four classes of sub-area D are shown in 

Table S9. The results of the t-test conducted between matching horizons of classes of sub-area 

D are shown in Table S10. The t-tests were conducted between the available values of paired 

classes: D1a vs D1b, D1b vs D1c, and D1c vs D1d. The t-test was considered positive when 

the computed value fell in the 10 % level of significance (5 % in each tail). 
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Table S9 - Texture of the averaged profiles of the four classes of sub-area D with maximum depth of the 

horizon, gravimetric water content, clay content, silt content, sand content, and gravel content (gravel 

content given in % of weight and relative to the total weight of the dry sample). 

Class Horiz. Depth (cm) WC (%) Clay (%) Silt3 (%) Sand (%) Gravels (%) 

D
1a

 

Ap-AB 52.3 19.6 18.1 66.6 15.3 0.9 

Bw 79.0 17.6 22.8 62.7 14.5 0.7 

Bg 134.0 16.1 21.7 57.6 20.7 3.9 

2C ND 9.2 11.8 30.5 57.7 50.3 

D
1b

 

Ap-AB 41.3 20.8 17.7 66.3 15.9 4.3 

Bw 69.5 17.8 22.6 59.6 17.8 3.5 

Bg 122.7 15.5 22.6 56.9 20.6 1.7 

2C ND 11.6 16.5 36.8 46.8 26.2 

D
1c

 

Ap-AB 38.3 21.2 17.2 66.5 16.3 2.3 
Bw 60.7 15.3 19.1 60 20.9 1.4 
Bg 83.3 15.6 17.5 60.6 21.9 8.5 
2C ND 8.9 16.0 40.1 43.9 37.7 

 Ap-AB 32.5 22.4 15.0 68.5 16.5 6 

D
1d

 Bw 41.7 15.6 16.9 64.7 18.4 37.8 
Bg 46.7 16.1 18.1 64.3 17.7 2.6 
2C ND 10.2 15.6 41.3 43 51 

D
2 

Ap-AB 41.0 26.3 23.7 61.4 14.9 2.6 

M 92.5 24.9 25.4 56.2 18.4 6.2 

Riv.Gr. ND 16.1 16.4 35.8 47.8 41.1 

 

Table S10 - Results of the pairwise t-tests in sub-area D. Bold font indicates significant differences. 

Horizon Classes Depth WC Clay Sand Gravels 

A
p

-A
B

 D1a vs D1b 0.278 0.174 0.775 0.309 0.044 
D1b vs D1c 0.299 0.596 0.548 0.631 0.243 
D1c vs D1d 0.221 0.102 0.030 0.843 0.548 

B
w

 D1a vs D1b 0.553 0.727 0.915 0.030 0.150 

D1b vs D1c 0.621 0.286 0.016 0.466 0.275 
D1c vs D1d 0.320 0.907 0.513 0.623 0.343 

B
g 

D1a vs D1b 0.338 0.661 0.664 0.983 0.345 
D1b vs D1c 0.034 0.977 0.004 0.888 0.304 
D1c vs D1d 0.082 ND ND ND ND 

2C
 D1a vs D1b ND ND ND ND ND 

D1b vs D1c ND 0.083 0.816 0.865 0.411 
D1c vs D1d ND 0.498 0.960 0.994 0.421 
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S2. Additional information on the parameterization of corn, sugar 

beet, and winter wheat 

In this section, additional information regarding the parameterization of sugar beet, corn and 

winter wheat is provided. In sugar beet, a strong reduction of LAINDVI in soil units A1a-d and 

in D1a-d was observed in August and September 2016 (Figure 21). At this stage, the AgroC 

simulations for LAI already reached their highest possible value which was similar in all soil 

units. Here, the water stress simulated in May was not able to influence simulated LAI since 

temperature is the main driver of LAI accumulation in the juvenile stage. At the same time, 

there was no possibility to reduce LAI in August and September by water stress because the 

simulated water stress does not feed back to the simulation of the death rate of leaves or 

senescence in the current AgroC model. However, the observed LAIs indicated the existence 

of this feedback mechanism. Therefore, it was decided to reproduce the LAI reduction in the 

late growing season by using three specific death rates of leaves (m2 leaf m-2 soil °C day-1). 

The adopted death rate of leaves was higher in soil units A1a-d, intermediate in D1a-d, and 

lowest in D1a-d (Table S11). This calibration influenced the simulated LAI in a way that it 

improved the simulation of the differences in observed LAI between sub-areas A, BC, and D. 

Since all other plant parameters and boundary conditions were identical in all simulations, the 

differences in simulated LAI within each sub-area are solely due to the magnitude and timing 

of simulated water stress. 

 

Table S11: Values of death rates of leaves used in the three groups of sugar beet simulations as a function 

of the temperature sum. 

 Death rate of leaves (m2 m-1 °C day-1) 
Temperature sum (°C) A1a-d BC D1a-d 

0 0.000 0.000 0.000 
300 0.000 0.000 0.000 
600 0.006 0.005 0.005 
900 0.011 0.006 0.008 
1200 0.022 0.007 0.008 
1500 0.036 0.017 0.015 
2000 0.060 0.036 0.045 
2500 0.005 0.005 0.005 
3000 0.001 0.001 0.001 

 

In corn, the abrupt decrease in LAI that occurred in soil units A1a-d in September is due to 

the start of the senescence stage. Since senescence stage can be affected by water stress (Baret 
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et al., 2007), we assumed that crops that are subject to stronger water stress showed earlier 

senescence. This assumption was corroborated by field observations. In the AgroC model, 

senescence of corn is generally started when a DVS value of 1.4 is reached. To implement 

variable senescence consistent with stress intensity, this DVS value was set to 1.38, 1.35, 

1.33, and 1.30 for soil units A1a-d, respectively.  

 

Table S12: Partitioning of mass allocated to the stem and the leaves in the three groups of winter wheat 

simulations as function of DVS. 

 A1a-d BC D1a-d and D2a 
DVS leaf stem leaf stem leaf Stem 
0.00 0.55 0.45 0.60 0.40 0.70 0.30 
0.10 0.50 0.50 0.60 0.40 0.70 0.30 
0.25 0.45 0.65 0.55 0.45 0.70 0.30 
0.50 0.29 0.71 0.44 0.56 0.33 0.77 
0.70 0.25 0.75 0.28 0.72 0.15 0.85 
0.95 0.05 0.95 0.10 0.90 0.05 0.95 
1.05 0.05 0.00 0.05 0.00 0.05 0.00 
2.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

In winter wheat, the three groups of soil units A1a-d, BC, and D1a-d showed differences in 

LAINDVI, especially in April. In this case, the partitioning of mass allocated to the stem and to 

the leaves was calibrated and one specific partitioning was used for each group of soil units 

(see Table S12). Since one parameterization was used within each group of soil units, the 

variability in simulated LAI in each group is the results of different soil parameterizations 

which affect water stress. 
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