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Abstract 

Credence goods markets – like for health care or repair services – with their informational 

asymmetries between sellers and customers are prone to fraudulent behavior of sellers and 

resulting market inefficiencies. We present the first model that considers both diagnostic 

uncertainty of sellers and the effects of insurance coverage of consumers in a unified 

framework. We test the model’s predictions in a laboratory experiment. Both in theory and in 

the experiment diagnostic uncertainty decreases the rate of efficient service provision and leads 

to less trade. In theory, insurance also decreases the rate of efficient service provision, but at 

the same time it also increases the volume of trade, leading to an ambiguous net effect on 

welfare. In the experiment, the net effect of insurance coverage on efficiency turns out to be 

positive. We also uncover an important interaction effect: if consumers are insured, experts 

invest less in diagnostic precision. We discuss policy implications of our results. 
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1. Introduction 

In markets for credence goods, expert sellers (e.g., doctors, mechanics, legal or financial 

advisors) are better informed than consumers about the quality of the good, service, or asset 

that fits consumers’ needs best. This informational advantage of sellers creates incentives to 

cheat on consumers – by providing too much (overtreatment), too little (undertreatment), or 

charge for more than has been provided (overcharging). The incentives for fraudulent behavior 

may cause large inefficiencies. This is particularly worrisome because credence goods markets 

have a huge volume. In the U.S.A., for instance, health care services alone account for about 

17% of GDP,1, the finance industry represents about 20% of GDP2, and car repair services, 

another prominent example for credence goods, generated total revenues of about 70 billion 

Dollars in the U.S.A. in 2019.3 

In modelling the informational asymmetries between expert sellers and consumers, most 

of the existing work in the credence goods literature assumes that experts can identify their 

consumers’ needs perfectly, and often at no cost (e.g., Wolinsky, 1993; Dulleck and 

Kerschbamer, 2006; Dulleck et al., 2011; Hyndman and Ozerturk, 2011; Mimra et al., 2016). 

In reality, however, this is typically not the case. Diagnosis is usually costly because it requires 

time and effort, and it may even fail to identify a consumer’s problem perfectly, as is nicely 

illustrated by the field experiment of Schneider (2012) in which about 80% of car mechanics 

were not able to identify all three prefabricated defects of a car. Another very common 

modelling assumption is that consumers bear the full cost of service (Wolinsky, 1993; Dulleck 

and Kerschbamer, 2006; Fong et al., 2014). In contrast to this assumption, in many real world 

credence goods markets consumers are insured and thus often have zero, or negligible, marginal 

costs of additional services. This may induce consumers to think themselves safe with respect 

to potential problems arising from diagnostic uncertainty. However, insurance may reduce the 

expert’s incentives to invest in costly diagnosis, leading to more diagnostic uncertainty. 

Conversely, higher uncertainty in the diagnosis is likely to increase consumer expenditures, 

creating a stronger need for insurance coverage.  

In this paper we provide the first unified approach that allows for a systematic 

theoretical and empirical analysis of the role, and potential interaction, of diagnostic uncertainty 

and insurance coverage in markets for credence goods. Our model of a credence goods market 

                                                      
1 See http://www.oecd.org/els/health-systems/health-expenditure.htm (accessed 29 October 2020). 
2 See the United States’ Bureau of Economic Analysis: https://www.bea.gov/data/gdp/gdp-industry (accessed 29 
October 2020). 
3 See https://www.ibisworld.com/industry-trends/market-research-reports/other-services-except-public-
administration/repair-maintenance/auto-mechanics.html (accessed on 29 October 2020). 
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is based on Dulleck and Kerschbamer (2006), but extends it in several important directions. 

First, we introduce diagnostic uncertainty. In contrast to the original model’s assumption of 

perfect (and costless) diagnosis, we assume that the expert either receives a signal of exogenous 

precision about the consumer’s problem or has the possibility to reduce the uncertainty about 

the consumer’s needs by exerting costly effort. Second, we introduce insurance coverage into 

the model, such that the consumer has to pay a premium and in return the service costs are 

covered by an insurance institution. Third, we allow for malpractice payments for cases where 

the service fails, which is an important feature of many real world credence goods markets and 

which has been discussed as an important factor for cost inflation, in particular in the health 

care sector (Lyu et al., 2017). Fourth, we assume that experts care not only about their own 

profit, but also about the consumer’s material payoff. While the majority of theoretical papers 

on credence goods assume that experts are rational profit maximizers, there is evidence both 

from the lab and the field that (at least some) experts have other-regarding preferences (Liu et 

al., 2013; Brosig-Koch et al., 2016, 2017; Kerschbamer et al., 2017). Our model leads to a series 

of novel predictions. It predicts that, independently of the price vector for high and low quality 

service, the average investment in diagnostic precision and the rates of efficient service 

provision are higher in a regime without insurance coverage. Thus, while insurance is intended 

to protect consumers, it has an adverse effect on the likelihood of efficient service provision 

and might therefore be detrimental for consumers and for market efficiency.  

Based on the theoretical model, we examine the behavior of experts and consumers on 

an experimental market for credence goods. The lab experiment involves 576 participants and 

is based on a 3 x 2 factorial design, varying the following factors: (i) Insurance. Consumers are 

either fully insured, i.e., the full price of service is covered by an insurance in return for an 

insurance premium, or not insured, in which case they have to pay the full price of service 

themselves. (ii) Diagnostic Uncertainty. Experts receive a costly signal about the consumer’s 

problem that – depending on treatment – is either 100% precise, 70% precise, or of endogenous 

precision. 

Our experimental results are largely in line with the predictions of the theoretical model. 

First, we identify diagnostic uncertainty as a major source of inefficiencies in credence goods 

markets. Comparing the two treatments that vary the exogenously given diagnostic precision, 

we find that a lower precision leads to lower rates of efficient service provision and lower rates 

of market entry. To the best of our knowledge, these findings provide the first evidence from 

an experiment on the possible adverse effects of diagnostic uncertainty in markets for expert 

services. 
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Second, we find strong empirical support for the model’s prediction that insurance 

coverage reduces the rate of efficient service provision. Moreover, our study is the first to 

identify a hitherto ignored interaction effect. As predicted by our model, insurance leads to 

lower investments of experts in diagnostic precision in the treatment where precision is 

endogenous. The net impact of insurance on efficiency is nevertheless positive, significant and 

quite sizeable, thanks to the counterbalancing force of higher market entry rates from insured 

consumers. 

Third, our theoretical model further predicts that experts’ other-regarding preferences 

affect market outcomes. Based on the experimental elicitation of distributional preferences 

(Kerschbamer, 2015) one week before the experiment, we find that more prosocial experts are 

more likely to invest in diagnostic precision, all else equal. 

Our paper is related to previous literature in several ways. There is only a small set of 

papers that deal with diagnostic uncertainty in credence goods markets. Pesendorfer and 

Wolinsky (2003) present a theoretical model in which experts have to exert costly, but 

unobservable, effort to identify a consumer’s needs. They show that diagnostic precision is 

negatively affected by price competition on the market. Dulleck and Kerschbamer's (2009) 

model has a different flavor by letting experts compete against discounters, where the former 

can exert costly effort to get precise signals about a consumer’s needs, while the latter provide 

no diagnosis, but only sell services. They find that experts are vulnerable to such competition 

from discounters and may have incentives to undertreat their customers. Bester and Dahm 

(2018) add subjective evaluation of consumers regarding the success of a service and show in 

their theoretical model that first-best outcomes can be achieved by separating diagnosis and 

treatment. Chen et al. (2018) study the design of efficient liability rules in a setting where the 

expert needs to be provided with proper incentives both in exerting diagnostic effort and in 

recommending the appropriate treatment. They show that a well-designed liability rule that 

imposes a penalty on the expert contingent on whether her misbehavior involves over- or 

undertreatment can achieve the efficient outcome. Liu et al. (2019) consider exogenous 

heterogeneity in experts’ diagnostic abilities. They characterize the equilibria that can arise 

when abilities are unobservable and show that, in some cases, a higher share of high-ability 

experts can harm efficiency. Compared to our paper, none of these papers embeds the question 

of how diagnostic uncertainty affects market outcomes in a framework that considers insurance 

coverage of consumers, and none also derives predictions that are contingent on the seller’s 

level of prosociality towards the consumer. In fact, the literature on credence goods markets 

has, so far, dealt with the effects of diagnostic uncertainty and insurance coverage in completely 
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separate lines of research, thus ignoring how these two prominent factors on credence goods 

markets might interact with each other. 

Turning to the credence goods literature that investigates the role of insurance, the 

theoretical model of Sülzle and Wambach (2005) shows that increasing the degree of 

coinsurance on the consumer side can increase or decrease the likelihood of overcharging on 

the seller side, depending on the parameters. There are several experimental studies on how 

insurance coverage affects sellers’ and consumers’ behavior on credence goods markets. In a 

laboratory experiment, Huck et al. (2016) find that insurance coverage lets consumers ask for 

more treatments, and sellers are more likely to overtreat consumers. Several field experiments 

confirm these patterns. Lu (2014) studies physicians’ prescription behavior in a field 

experiment and reports that doctors write significantly more expensive prescriptions to insured 

patients. Kerschbamer et al. (2016) find that notebook owners with an insurance are charged 

about 80% more than non-insured owners for getting a notebook repaired. None of these papers 

combines theory and evidence in order to examine and test possible ways in which introducing 

insurance may affect service provision and market outcomes. Moreover, none interacts 

insurance with diagnostic uncertainty. 

In the following section we introduce the framework of our model. Section 3 presents 

the model’s results. Sections 4 and 5 present the experiment and its results. Section 6 concludes. 

 

2. Model 

2.1. The Credence Goods Problem  

We consider an economy populated by ex ante homogeneous consumers and a single expert. 

Each consumer (he) has either a major problem cത requiring a high-quality service (HQS) at cost 

𝑐, or a minor problem 𝑐 requiring a low-quality service (LQS) at cost 𝑐, with 𝑐 > 𝑐. For future 

reference we define �̃� = 𝑐 – 𝑐. The consumer knows that he has an ex ante probability ℎ of 

having the major problem and a probability of 1 െ ℎ of having the minor one. The consumer 

derives utility 𝑣 ൐ 0 when his problem is solved through a service provided by the expert, and 

derives zero utility otherwise. While the HQS solves both problems, the LQS solves only the 

minor problem. The consumer can observe and verify the kind of service he receives4, but he 

only finds out whether the received quality was the needed one when the expert provides LQS 

for 𝑐̅ (since in that case his problem remains unsolved). In case a consumer does not receive a 

service, both the consumer and the expert receive a reservation utility of 𝑜 ∈ ሾ0, 𝑣ሻ.  

                                                      
4 In the jargon of the literature, this means that verifiability applies. This condition rules out fraud in the 
(over)charging dimension. 
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Ex ante the expert (she) has the same information as the consumer on the severity of the 

consumer’s problem. In contrast to the consumer, the expert is able to acquire additional 

information about the consumer’s problem by performing a diagnosis. We will consider two 

cases, one in which the expert is forced to perform a diagnosis and one in which she can freely 

decide whether to acquire additional information at some cost. We call the former the case with 

exogenous diagnostic precision (abbreviated as EXO) and the latter the case with endogenous 

precision (ENDO). For the EXO case we assume that the expert receives a signal 𝑠 ∈  ሼ𝑐, 𝑐̅ሽ 

about the severity of the consumer’s problem 𝛾 ∈  ሼ𝑐, 𝑐̅ሽ that is correct with probability 𝜎. We 

call 𝜎 the precision level and define it as 𝜎 ൌ Pr൫𝑠 ൌ 𝑐ห𝛾 ൌ 𝑐൯ ൌ Prሺ𝑠 ൌ 𝑐|𝛾 ൌ 𝑐ሻ, where 𝜎 ∈

ሾ0.5, 1ሿ, such that 𝜎 ൌ 0.5 corresponds to a completely uninformative signal and 𝜎 ൌ 1 to a 

fully precise signal. For the ENDO case, we assume that the expert can freely decide on the 

precision level 𝜎 knowing that it is associated with cost 𝐷ሺ𝜎ሻ, where 𝐷ሺ𝜎ሻ ൌ 𝑑ሺ𝜎 െ 0.5ሻଶ and 

d > 0. In line with Inderst and Ottaviani (2009, 2012) we assume that the expert faces a penalty 

𝑡 ∈ ሺ0, 𝑣ሻ whenever she prescribes the LQS to a consumer having the major problem. This 

payment is a compensation for service failure from the expert to the consumer. We assume that 

an external institution (e.g., a court) verifies that the service failed and then enforces the 

payment of t.5  

We denote the exogenously given prices for LQS and HQS by 𝑝 and  𝑝, and assume 

𝑝 ൐ 𝑐,  𝑝 ൐  𝑐  and 𝑝 ൐ 𝑝. For future reference, we define the price difference between HQS 

and LQS as 𝑝෤ = 𝑝 – 𝑝 and the price markups for LQS and HQS as ∆ ൌ 𝑝 െ 𝑐 and ∆ ൌ 𝑝 െ 𝑐, 

respectively. Moreover, we distinguish between three types of price vectors: (i) overtreatment 

(OT) price vectors, where the markup for HQS exceeds the LQS markup ሺ∆ ൐ ∆ሻ, leading to 

monetary incentives for the expert to provide HQS; (ii) undertreatment (UT) price vectors, with 

the LQS markup being higher than the HQS one ሺ∆ ൏ ∆ሻ and monetary incentives for providing 

LQS; and (iii) equal markup (EM) price vectors, with ∆ ൌ ∆. 

Following Liu (2011), Inderst and Ottaviani (2012) and Fong et al. (2014) we allow for 

the possibility that the expert cares positively about the consumer’s well-being. To model this 

motivation, we introduce the parameter 𝜆 ∈ ሾ0,1ሿ and assume that the expert maximizes his 

own material payoff (weighted by one) plus 𝜆 times the consumer’s surplus. A positive value 

of 𝜆 characterizes a prosocial expert, while 𝜆 ൌ 0 implies that the expert is completely selfish.6 

                                                      
5 This eliminates the possibility of fraudulent behavior of consumers by falsely claiming a failed treatment. 
6 Negative values of λ correspond to spiteful experts. Empirically, they are rare (< 2%) in our experiment. 
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With respect to insurance, we consider a baseline scenario with no insurance (henceforth 

NI), which means that the entire price for the service is paid by the consumer. The second 

scheme is one with full insurance (henceforth FI), meaning that an insurance company covers 

the entire cost of the service. The insurance scheme is exogenously in place. Since we are not 

interested in the market behavior of the insurance company per se, we introduce the insurer as 

an implicit institution providing a fair insurance coverage. That is, we assume that the insurance 

premium (paid by the consumer) is equal to the expected insurance coverage, i.e., the expected 

surplus of the insurance company is zero. 

 

2.2. The First-Best  

Before analyzing the actual behavior of the expert, we start by deriving the first-best (FB) 

outcome, first for the case where the diagnostic precision is exogenously given (EXO-FB) and 

then for the case where the diagnostic precision is endogenous (ENDO-FB). 

EXO-FB: Suppose the consumer is able to observe the diagnosis signal and to implement the 

service at the same cost as the expert. Which provision strategy would he follow? To address 

this question we follow a similar line of reasoning as Dulleck and Kerschbamer (2009) and 

Bester and Dahm (2018). There are three candidates for the efficient solution of the consumer’s 

problem.  

Strategy A: Implement the HQS independently of the outcome of the diagnosis.  

Strategy B: Implement the LQS independently of the outcome of the diagnosis. 

Strategy C: Implement the LQS if the signal suggests that the problem is minor and 

implement the HQS if the signal suggests that the problem is major.  

The efficient strategy is the strategy that minimizes generalized costs defined as the direct costs 

plus the implied utility loss for the case where the service fails. The generalized cost of Strategy 

A is 𝑐̅, the generalized cost of Strategy B is 𝑐 ൅ ℎ𝑣, and the generalized cost of Strategy C is 

ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ𝑐 ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ𝑐 ൅ ℎሺ1 െ 𝜎ሻ𝑣. For the characterization of the efficient 

provision policy we need to compare those costs. Along the hyperbola 

 𝜎஺஼
ா௑ைିி஻ ൌ

ℎሺ𝑣 െ �̃�ሻ
ሺ1 െ 2ℎሻ�̃� ൅ ℎ𝑣

 (1) 

strategies A and C have the same cost, and along the hyperbola  

 𝜎஻஼
ா௑ைିி஻ ൌ

ሺ1 െ ℎሻ�̃�
ሺ1 െ 2ℎሻ�̃� ൅ ℎ𝑣

 (2) 

strategies B and C have the same cost. Using these hyperbolas, we can fully characterize the 

first-best provision strategy. This is done in Proposition 1 (see Appendix A for the proof):  
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Proposition 1 (first-best provision strategy with exogenous precision): The first-best 

provision strategy in EXO is fully characterized in Figure 1. In Area A, efficiency requires to 

provide the HQS independently of the outcome of the diagnosis (Strategy A); in Area B, 

efficiency requires to provide the LQS independently of the outcome of the diagnosis (Strategy 

B); and in Area C, efficiency requires to provide the HQS if the outcome of the diagnosis is 𝑐 

and the LQS if the outcome is 𝑐 (Strategy C). 

 

Figure 1. Optimal provision strategy with exogenous diagnostic precision 

 
Note: The functions delineating the areas are those defined in equations (1) and (2).  

 

The intuition for the result illustrated in Figure 1 is simple: Strategy C is optimal if the 

diagnosis is sufficiently precise and if the likelihood of needing the HQS is neither close to zero 

nor close to one. If the precision is low, then Strategy A is optimal if the likelihood of needing 

the HQS is relatively high and Strategy B is optimal if this likelihood is relatively low. 

 

ENDO-FB: Suppose the consumer is able to choose the precision of the signal at the same cost 

as the expert. Which diagnostic precision would he invest in? To address this question we first 

solve for the first-best precision level under the assumption that information acquisition (and 

following the signal) is efficient. This calculation yields 

 𝜎ாே஽ைିி஻ ൌ 𝑚𝑖𝑛 ቊ
1
2
൅
ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ

2𝑑
, 1ቋ , (3) 

which implies that 𝜎ாே஽ைିி஻ ൌ 1 for 𝑑 ൑ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜎ாே஽ைିி஻ ൌ ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻ

ଶௗ
 for 𝑑 ൐ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ. Plugging those values into the generalized cost 

function for Strategy C (as outlined above) and subtracting the associated diagnosis costs yields 

the generalized cost for the strategy “invest efficiently in diagnosis and follow the signal”. Now, 

investing in diagnosis (and following the signal) is efficient if and only if the generalized cost 
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for the latter strategy is lower than the generalized cost associated with Strategy A or Strategy 

B. Along the hyperbola  

 𝜎஺஼
ாே஽ைିி஻ ൌ ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻേට൫ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻାௗ൯
మ
ିௗ൫ௗାସ௛ሺ௩ି௖̃ሻ൯

ଶௗ
  (4) 

strategies A and C have the same generalized cost, and along the hyperbola  

 𝜎஻஼
ாே஽ைିி஻ ൌ ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻേට൫ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻାௗ൯
మ
ିௗ൫ௗାସ௖̃ሺଵି௛ሻ൯

ଶௗ
  (5) 

strategies B and C have the same generalized cost. It is easy (although tedious) to show that the 

optimal diagnostic precision line crosses 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻ at the respective vertex. The 

vertices of 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻ are given by 

 𝑉 𝜎஺஼
ாே஽ைିி஻ ൌ ௖̃ሺଶ௖̃ି௩ሻାௗ௩ିඥௗሺସ௖̃మሺଷ௩ିଶ௖̃ሻା௩మሺௗିସ௖̃ሻሻ

ሺ௩ିଶ௖̃ሻమ
  (6) 

 𝑉 𝜎஻஼
ாே஽ைିி஻ ൌ ௖̃ሺଶ௖̃ି௩ሻିௗ௩ାඥௗሺସ௖̃మሺଶ௖̃ିଷ௩ሻା௩మሺௗାସ௖̃ሻሻ

ሺ௩ିଶ௖̃ሻమ
. (7) 

With the help of those expressions we can fully characterize the first-best investment in 

information acquisition and the first-best provision strategy for the ENDO case. This is done in 

Proposition 2 (the proof is in Appendix B): 
 

Proposition 2 (first-best investment in information acquisition and first-best provision 

strategy with endogenous precision): The first-best investment in information acquisition and 

the first-best provision strategy in ENDO are fully characterized in Figure 2. In each of the 

three panels, investing in diagnostic precision and following the signal is efficient for those 

values of h covered by the black solid line. This black solid line also gives the efficient precision 

level. For h-values to the left of the (start of the) black solid line, efficiency requires to provide 

the LQS independently of the outcome of the diagnosis (Strategy B); and for h-values to the 

right of the (end of the) black solid line, efficiency requires to provide the HQS independently 

of the outcome of the diagnosis (Strategy A). 
 

The intuition for Proposition 2 is as follows: Obviously, investment in information 

acquisition is inefficient for parameter constellations in areas A and B of Figure 1 where it is 

inefficient to follow the signal even when it comes for free. Investment in information 

acquisition is also inefficient for h values in Area C that are either near the boundary to Area A 

or near the boundary to Area B. This follows from the fact that the diagnosis cost increases the 

generalized cost of Strategy C, while leaving the generalized costs of strategies A and B 

unaffected. As a consequence, the optimal investment in precision (black solid line in Figure 2, 

labelled 𝜎ாே஽ைିி஻) starts strictly to the right of the red solid line (which is identical to the red 
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solid line in Figure 1) and ends strictly to the left of the blue solid line (which is again identical 

to the corresponding line in Figure 1). 

To simplify the exposition, we will from now on focus on the case where 
௖̃

௩
൏ ℎ.  As can 

be seen in Figures 1 and 2, under this condition efficiency requires implementing either Strategy 

A (if 𝜎 is low) or Strategy C (if 𝜎 is highሻ, while implementing Strategy B is never efficient. 
 

Figure 2. Optimal provision strategy with choice of diagnostic precision in ENDO 

  

(a) 𝑑 ൑ ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
 (b) ସ௖

̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
൏ 𝑑 ൏ ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
 

 

(c) 𝑑 ൒ ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
 

Note: The solid red and the solid blue line are the functions 𝜎஺஼
ா௑ைିி஻and 𝜎஻஼

ா௑ைିி஻ defined in equations (1) and 
(2); the dashed red and the dashed blue line are the functions 𝜎஺஼

ாே஽ைିி஻ and 𝜎஻஼
ாே஽ைିி஻ defined in equations (4) 

and (5); the solid black line is the function 𝜎ாே஽ைିி஻ defined in equation (3); and the dashed vertical lines are the 
vertices of the functions 𝜎஺஼

ாே஽ைିி஻ and 𝜎஻஼
ாே஽ைିி஻defined in equations (6) and (7). 

 

3. Theoretical Results  

We now turn to the actual performance of the market under consideration. We assume that the 

consumer can neither observe whether the expert has invested in information acquisition (in 

ENDO), nor which signal she has observed (in EXO and ENDO). 
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3.1. Provision Behavior with Exogenous Diagnostic Precision  

EXO-NI: We first consider the case with exogenous diagnostic precision and no insurance. In 

this case the expert has the choice between four pure strategies – strategies A, B and C as 

defined in Subsection 2.2 and Strategy D prescribing to provide the HQS when the signal 

indicates the minor problem and the LQS when the signal indicates the major problem. In 

Appendix C we show that Strategy D is dominated by one of the other three strategies for any 

given parameter constellation. The other three strategies are associated with the following 

utilities for the expert: 
 

Strategy A: Π஺ ൌ 𝑝 െ 𝑐 ൅ 𝜆ሾ𝑣 െ 𝑝ሿ; 

Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 ൅ 𝜆 ቂሺ1 െ ℎሻ𝑣 െ 𝑝 ൅ ℎ𝑡ቃ ;  

Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ ℎሺ1 െ

𝜎ሻ𝑡 ൅ 𝜆 ቂሺ1 െ ℎ ൅ ℎ𝜎ሻ𝑣 െ 𝑝ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ െ 𝑝ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ ൅

ℎሺ1 െ 𝜎ሻ𝑡ቃ.  

For the characterization of the expert’s provision policy we need to compare those profits. 

Along the hyperbola  

 𝜎஺஼
ா௑ைିேூ ൌ 𝑓ሺ𝜆,ℎ, 𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛൫ሺଵିఒሻ௣෤ି௖̃൯ା௛ఒሺ௩ି௧ሻା௛௧

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
  (8) 

 

strategies A and C yield the same profit, and along the hyperbola 
 

 𝜎஻஼
ா௑ைିேூ ൌ 𝑓ሺ𝜆,ℎ, 𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ ሺଵି௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻ

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
  (9) 

 

strategies B and C yield the same profit. With the help of those hyperbolas we can fully 

characterize the expert’s provision strategy for any constellation of the parameters 𝑣,ℎ and �̃�, 

with 𝑣ℎ ൐ 𝑐,෥ any value of the prosociality parameter 𝜆, with 𝜆 ∈ ሾ0, 1ሿ, any diagnostic 

precision 𝜎, with 𝜎 ∈ ሾ0.5,1ሿ, any price vector (𝑝, 𝑝), with 𝑝෤ ൒ 0, and any transfer 𝑡, with 𝑡 ൒

0. This is done in Proposition 3 (see Appendix C for proofs). 
 

Proposition 3 (provision strategy with exogenous precision and no insurance): The expert’s 

actual provision behavior in EXO-NI is fully characterized in Figure 3. In Area A, the expert 

provides the HQS independently of the outcome of the diagnosis (Strategy A); in Area B, the 

expert provides the LQS independently of the outcome of the diagnosis (Strategy B); and in 

Area C, the expert provides the HQS if the outcome of the diagnosis is 𝑐 and the LQS if the 

outcome is 𝑐 (Strategy C). The blue curve in each panel is the hyperbola defined in equation 

(8), and the red curve in panels (a) and (b) is the hyperbola defined in equation (9).  
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Figure 3. Expert provision behavior with exogenous precision and no insurance (EXO-NI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ 𝑝෤ ൒ �̃� 

 
Note: The intercept points 𝜆ଵ

ா௑ைିேூ , 𝜆ଶ
ா௑ைିேூ , 𝜆ଷ

ா௑ைିேூ and 𝜎ଵ
ா௑ைିேூ ,𝜎ଶ

ா௑ைିேூ ,𝜎ଷ
ா௑ைିேூare defined as: 𝜆ଵ

ா௑ைିேூ ൌ
௖̃ି௧ି௣෤

௩ି௧ି௣෤
; 𝜆ଶ

ா௑ைିேூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
; 𝜆ଷ

ா௑ைିேூ ൌ 1 െ
௖̃

௣෤
;  𝜎ଵ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ሻିሺଵି௛ሻ௖̃

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
; 𝜎ଶ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௣෤ି௖̃ା௧ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
;  𝜎ଷ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

௛ሺ௣෤ି௖̃ା௧ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 

A few comments about Figure 3 are in order. Depending on the magnitude of the transfer 𝑡, one 

of the following four cases is relevant for the constellation under consideration: 

 𝑡 ൌ 0: For this value of t, panels (b) and (c) disappear from Figure 3 and the terms 𝜆ଵ
ா௑ைିேூ 

and 𝜆ଶ
ா௑ைିேூ  in panel (a) converge to 0 if 𝑝෤ converges to �̃�. If we increase 𝑝෤ gradually starting 

from 𝑝෤ ൌ 0, then we are first (for UT price vectors) in panel (a); if 𝑝෤ reaches the critical 
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value �̃� (EM price vector) then we are on the boundary between panel (a) and panel (d); and 

for 𝑝෤ > �̃� (OT price vector) we are in the interior of panel (d). 

 𝑡 ∈ ሺ0, �̃�ሻ: For t in this range, all panels are relevant: If we increase 𝑝෤ gradually starting from 

𝑝෤ ൌ 0, then we are first in panel (a); if 𝑝෤ passes the critical value �̃� െ 𝑡 then we reach panel 

(b); and so on.  

 𝑡 ∈ ൣ�̃�, ೎෤
೓
൯: For t in this range, panel (a) disappears from Figure 3: If we increase 𝑝෤ gradually 

starting from 𝑝෤ ൌ 0, then we are first in panel (b); if 𝑝෤ passes the critical value �̃� െ ℎ𝑡 then 

we reach panel (c); and so on. 

 𝑡 ൒ ೎෤
೓
: For t in this range, panels (a) and (b) disappear from Figure 3: If we increase 𝑝෤ 

gradually starting from 𝑝෤ ൌ 0, then we are first in panel (c); and if 𝑝෤ passes the critical value 

�̃� then we are in panel (d). 

For all values of 𝑡, and for each panel that is relevant for the 𝑡 under consideration, we see the 

effect of increasing 𝑝෤ from the lower to the upper boundary of the respective panel by following 

the respective arrow. 

Within each panel, the diagnostic precision 𝜎 of the constellation gives us a horizontal 

line (not shown in the figure). If we go to the point 𝜆 ൌ 1 on this line, then we see the efficient 

provision strategy.7 The efficient solution depends on 𝑣, �̃�, ℎ, and σ, but not on the prices 

prevalent on the market or the transfer 𝑡 – that is, the point 𝜎ଵ
ா௑ைିேூ is exactly the same in each 

of the four panels of Figure 3 and within each panel it changes neither in 𝑝෤ nor in 𝑡. Under our 

assumption 𝑣ℎ ൐ �̃�, always providing the HQS is more efficient than always providing the 

LQS. Thus, efficiency requires to follow the signal (Strategy C) if the signal is precise enough 

(𝜎 ൐ 𝜎ଵ
ா௑ைିேூ) and to blindly provide HQS (Strategy A) otherwise.8 For values of the 

prosociality parameter 𝜆 in ሾ0, 1ሿ we see which provision strategy the expert of type 𝜆 actually 

chooses. As we can see from the figure, there are constellations where efficiency would require 

to follow the signal, but egoistic and modestly prosocial experts choose Strategy B (panels (a) 

and (b) for 𝜎 ൐ 𝜎ଵ
ா௑ைିேூ ) or Strategy A (panels (c) and (d) for 𝜎 ൐ 𝜎ଵ

ா௑ைିேூ). However, there 

are also constellations where efficiency would require to blindly provide the HQS, but egoistic 

and hardly prosocial experts choose Strategy B while modestly prosocial experts choose 

Strategy C (panels (a) and (b) for 𝜎 ൏ 𝜎ଵ
ா௑ைିேூ  ), or where egoistic and scarcely prosocial 

experts choose Strategy C (panel (c) for 𝜎ଷ
ா௑ைିேூ  ൏ 𝜎 ൏ 𝜎ଵ

ா௑ைିேூ ሻ. 

                                                      
7 This is due to the fact that an expert with 𝜆 ൌ 1 is maximizing the sum of the monetary payoffs of the two agents. 
8 Referring to the ሺ𝜎, 𝜆ሻ space, we use the convention that a 𝜎 with a letter in the subscript denotes a function (of 
𝜆) while a σ with a number in the subscript denotes a point.   
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In Figure 3 we can also see that, for any constellation of the parameters 𝑣,ℎ and �̃�, with 

𝑣ℎ ൐  �̃�, there exist combinations of price vector and transfer that induce all experts to choose 

the efficient strategy. For 𝜎 ൐ 𝜎ଵ
ா௑ைିேூ, efficiency requires that the expert follows the signal 

(Strategy C). As we can see in Figure 3, a necessary condition for all experts to choose Strategy 

C is that the prices and the transfer are such that the economy is either in panel (b) or in panel 

(c).9 This in turn requires that prices are such that �̃� ൐ 𝑝෤ (UT price vector) and that the transfer 

is strictly positive (𝑡 ൐  0). Furthermore, a less precise signal (a lower horizontal line) requires 

either a larger value of �̃� െ 𝑝෤, or a larger value of t (because for a less precise signal we need a 

lower value of 𝜎ଶ
ா௑ைିேூ, or 𝜎ଷ

ா௑ைିேூ respectively, to make sure that all experts follow the 

signal). 

Before proceeding, let us shortly discuss how Proposition 3 compares to related findings 

in the literature. Most of the literature assumes 𝑡 ൌ 0 (no transfer), 𝜎 ൌ 1 (perfect diagnostic 

precision) and 𝜆 ൌ 0 (completely selfish experts). For this special case, our figure displays the 

discontinuity in the expert’s provision behavior found in large parts of the literature (see 

Dulleck and Kerschbamer, 2006): For 𝑝෤ ൏ �̃� the expert always provides LQS; for 𝑝෤ ൐ �̃� she 

always provides HQS; and at 𝑝෤ ൌ �̃� the expert is indifferent between providing LQS and HQS 

and is therefore assumed to follow the signal. In Figure 3 we see that this insight extends to the 

case where the diagnosis produces a noisy signal, but only for the special case where 𝑡 ൌ  0. 

With 𝜎 ൏ 1 and 𝑡 ൐  0 the equal markup vector (represented by the dashed curve in panel (d)) 

gives the egoistic expert a strict incentive to provide the HQS independently of the outcome of 

the diagnosis. This is quite intuitive: With an equal markup vector the expert earns exactly the 

same immediate profit from selling the LQS and selling the HQS. However, if she sells the 

LQS in a world where the signal is noisy, then she runs the risk of getting punished (by having 

to pay t) while selling the HQS is safe in this regard.  

Still staying with the constellation 𝑡 ൌ 0 and 𝜎 ൌ 1, but allowing now for 𝜆 ൐ 0, Figure 

3 replicates some of the results in Kerschbamer et al. (2017): If the expert is sufficiently 

altruistic then she follows the signal even under an UT price vector (panel (a)) or an OT price 

vector (panel (d)). Our Figure 3 extends the findings from Kerschbamer et al. (2017) by 

allowing for a compensation for treatment failure (𝑡 ൐ 0) and for a noisy diagnosis (𝜎 ൑ 1ሻ. As 

we can see in Figure 3, with 𝜎 ൏ 1 the equal markup vector induces experts with a low 𝜆 to 

always provide the HQS. We also see that the range of 𝜆 values for which this is the case 

becomes larger as the signal becomes less informative. 

                                                      
9 Only in those panels we can draw a horizontal line above 𝜎ଵ

ா௑ைିேூ such that all points on the line are located in 
Area C. 
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The case where an expert has to pay a transfer 𝑡 ൐ 0 as a compensation for service 

failure has previously been considered by Dulleck and Kerschbamer (2009) for the special case 

where 𝜎 ൌ 1 and 𝜆 ൌ 0. The authors show that an expert can be induced to invest in costly 

diagnosis by a price structure that has 𝑝෤ ൏ �̃� and 𝑡 ൐ 0 – but not by constellations that have 

either 𝑝෤ ൒ �̃� or 𝑡 ൌ 0. We can see this in panels (b) and (c) of Figure 3 where the point 𝜎 ൌ 1 

and 𝜆 ൌ 0 lies in the interior of Area C – which is a necessary condition for an incentive to 

acquire a costly signal. Our analysis extends that by Dulleck and Kerschbamer (2009) by 

allowing for arbitrary values of 𝜆 in ሾ0, 1ሿ and arbitrary values of 𝜎 in ሾ0.5, 1ሿ. 
 

EXO-FI: We next study the effect of introducing full insurance for consumers on the expert’s 

provision behavior, for the case of exogenous diagnostic precision. Full insurance means that 

the payment from the consumer to the expert is covered by the insurance company, in exchange 

for the insurance premium. The latter is paid before the expert-consumer interaction takes place. 

As a result, the payoff of the consumer is not affected by the price charged by the expert. This 

changes the expert’s payoffs for strategies A, B and C to: 

Strategy A: Π஺ ൌ 𝑝 െ 𝑐 െ 𝑑ሺ𝜎 െ 0.5ሻଶ ൅ 𝜆𝑣.  

Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 െ 𝑑ሺ𝜎 െ 0.5ሻଶ ൅ 𝜆ሾሺ1 െ ℎሻ𝑣 ൅ ℎ𝑡ሿ.  

Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ ℎሺ1 െ

𝜎ሻ𝑡 െ 𝑑ሺ𝜎 െ 0.5ሻଶ ൅ 𝜆ሾሺ1 െ ℎ ൅ ℎ𝜎ሻ ൅ ℎሺ1 െ 𝜎ሻ𝑡ሿ.  

Given those payoffs, indifference between strategies A and C is reached along the hyperbola  

 𝜎஺஼
ா௑ைିிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ ௛ሺ௖̃ି௣෤ሻି௛ఒሺ௩ି௧ሻି௛௧

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
  (10) 

and indifference between strategies B and C is reached along the hyperbola  

 𝜎஻஼
ா௑ைିிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ ሺଵି௛ሻሺ௣෤ି௖̃ሻ

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 . (11) 

With the help of those hyperbolas we can fully characterize the expert’s provision strategy for 

the full insurance case. This is done in Proposition 4 (see Appendix D for proofs). 
 

Proposition 4 (provision strategy with exogenous precision and full insurance): The 

expert’s provision behavior in EXO-FI depends on the price markup 𝑝෤. For 𝑝෤ ൒ �̃� all experts 

opt for Strategy A. For 𝑝෤ ൏ �̃�, panels (a), (b) and (c) of Figure 4 show the effect of introducing 

full insurance on the expert’s provision behavior. The solid red and the solid blue line as well 

as the areas A, B and C are defined as in Proposition 3 and they characterize the optimal 

provision areas in the EXO-NI case. The dashed blue line in panels (a), (b) and (c) is the 

hyperbola defined in equation (10), and the dashed red line in panels (a) and (b) is the 
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hyperbola defined in equation (11). Those curves define the optimal provision areas in the 

EXO-FI case.  
 

The effect of introducing full insurance coverage depends on the expert’s type 𝜆 and on 

the prevailing price vector. Selfish experts (𝜆 ൌ 0) are not affected by the introduction of 

insurance, since insurance affects the expert’s payoff only via the consumer’s payoff if 𝜆 ൐ 0. 

For prosocial experts (𝜆 ൐ 0ሻ the incentive to provide the HQS instead of the LQS is increased 

by introducing insurance, since the consumer does not directly bear the additional cost of the 

more expensive service. Which implications does this have for the expert’s provision policy? 

The answer to this question depends on the characteristic of the price vector. 

Under EM and OT price vectors the expert faces no trade-off under FI: Her material 

payoff is maximized by providing the HQS independently of the signal she receives and the 

same is true for the consumer’s payoff. As a consequence, under FI and an EM or an OT price 

vector, the expert opts for Strategy A under any exogenously given precision level – see panel 

(d) of Figure 4. Under UT price vectors – covered by panels (a), (b) and (c) of Figure 4 – there 

is a clear monetary incentive for the expert to provide the LQS, while the consumer’s payoff is 

still maximized with the HQS. As a consequence, a prosocial expert faces a trade-off. If the 

material incentive to provide the LQS is rather low – as in panel (c) of the figure – the region 

in which the expert follows the signal (Area C) unambiguously shrinks in favor of the area in 

which the expert provides the HQS independently of the signal (Area A). More specifically, for 

all experts with 𝜆 ൐ 0 a higher precision level σ is needed to choose Strategy C instead of 

Strategy A, compared to the NI case. If the material incentive to provide the LQS is higher – as 

in panels (a) and (b) of the figure – the curve separating areas A and C in the FI case is above 

and to the left of the corresponding line in the NI case, while the curve separating areas B and 

C in the FI case is below and to the left of the corresponding line in the NI case. Also, the point 

𝜆ଶ
ா௑ைିிூ is located to the left of the point 𝜆ଶ

ா௑ைିேூ. This implies that introducing FI expands the 

range of λ-types choosing Strategy A for low precision levels to ሾ𝜆ଶ
ா௑ைିிூ , 1ሿ and that experts 

in this range follow Strategy A under a wider range of (low) precision levels as compared to 

the NI case. At the same time, introducing FI narrows the range of λ-types choosing Strategy B 

(for lower precision levels) to ሾ0, 𝜆ଶ
ா௑ைିிூሿ and experts in this range follow Strategy B under a 

narrower range of (low) precision levels as compared to the NI case. 

To sum up, introducing full insurance expands Area A (where the HQS is always 

provided) at the cost of Area C (where the expert follows the signal) independently of the 

prevailing price vector. If the price vector induces strong material incentives to always provide 

the LQS, then introducing full insurance in addition expands Area C at the cost of Area B. 
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Figure 4. Expert’s provision behavior with exogenous precision, no insurance and full 

insurance (EXO-FI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  

ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ 𝑝෤ ൒ �̃� 
 

Note: This figure shows the effect of introducing insurance in the setting with exogenous precision. The solid red 
and the solid blue line as well as the areas A, B and C are as defined in Proposition 3 and they characterize the 
optimal provision areas in the EXO-NI case. The dashed red and the dashed blue line are the hyperbolas defined 
in equations (10) and (11) and they define the optimal provision areas in the EXO-FI case. The intercept points 
𝜆ଵ
ா௑ைିேூ , 𝜆ଶ

ா௑ைିேூ , 𝜆ଷ
ா௑ைିேூ and 𝜎ଵ

ா௑ைିேூ ,𝜎ଶ
ா௑ைିேூ ,𝜎ଷ

ா௑ைିேூare as defined in the note to Figure 3. The other 

intercept points are defined as: 𝜆ଵ
ா௑ைିிூ ൌ

௖̃ି௧ି௣෤

௩ି௧
;  𝜆ଶ

ா௑ைିிூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
; ;  𝜎ଵ

ா௑ைିிூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ା௣෤ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௩ି௖̃ା௣෤ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 

 

3.2. The Expert’s Investment in Information Acquisition 

ENDO-NI: We now turn to the expert’s payoff-maximizing investment in information 

acquisition and her payoff-maximizing provision behavior in the ENDO-NI case. To 
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characterize them we first solve for the payoff-maximizing precision level under the assumption 

that information acquisition (and following the signal) is optimal. This calculation yields 

 𝜎ாே஽ைିேூ ൌ min ሼଵ
ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௖̃ି௣෤ି௧ሻାఒሾሺଵି௛ሻ௣෤ା௛ሺ௩ି௧ି௣෤ሻሿ

ଶௗ
, 1ሽ , (12) 

implying that 𝜎ாே஽ைିேூ ∈ ሺ0.5,1ሻ for 𝑑 ൐ ሺ1 െ ℎሻሺ�̃� െ 𝑝෤ሻ െ ℎሺ�̃� െ 𝑝෤ െ 𝑡ሻ ൅ 𝜆ሾሺ1 െ ℎሻ𝑝෤ ൅

ℎሺ𝑣 െ 𝑡 െ 𝑝෤ሻሿ and 𝜎ாே஽ைିேூ ൌ 1 for 𝑑 ൑ ሺ1 െ ℎሻሺ�̃� െ 𝑝෤ሻ െ ℎሺ�̃� െ 𝑝෤ െ 𝑡ሻ ൅ 𝜆ሾሺ1 െ ℎሻ𝑝෤ ൅

ℎሺ𝑣 െ 𝑡 െ 𝑝෤ሻሿ. Plugging those values into the payoff function for Strategy C (as outlined above) 

– and taking into account the associated diagnosis cost – yields the payoff for the strategy of 

investing optimally in diagnosis and following the signal. This strategy is optimal if and only 

if the payoff from it is larger than the payoffs for Strategy A and Strategy B. The former 

constraint translates to  

 

𝜆 ൐ 𝜆஺஼
ாே஽ைିேூ ൌ

ௗ൫௣෤ି௛ሺ௩ି௧ሻ൯ା൫ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻା௛௧൯

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
െ

ටௗሾௗ൫௣෤ି௛ሺ௩ି௧ሻ൯
మ
ାସ௛ሺଵି௛ሺሺሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻሺ௣෤௩ି௖ ෥ሺ௩ି௧ሻሻሿ

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
మ   

(13) 

and the latter constraint translates to  

 

𝜆 ൐ 𝜆஻஼
ாே஽ைିேூ ൌ

ௗ൫௣෤ି௛ሺ௩ି௧ሻ൯ି൫ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻା௛௧൯

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
െ

ටௗሾௗ൫௣෤ି௛ሺ௩ି௧ሻ൯
మ
ିସ௛ሺଵି௛ሻሺሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻሺ௣෤௩ି௖ ෥ሺ௩ି௧ሻሻሿ

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
మ .  

(14) 

It is rather straightforward to show that 𝜆஺஼
ாே஽ைିேூ is a monotonically increasing function of 

𝑝෤, while 𝜆஻஼
ாே஽ைିேூ is a monotonically decreasing function of 𝑝.෥  To characterize the payoff-

maximizing investment in information acquisition we now ask for which values of 𝑝෤ inequality 

(13) (respectively (14)) is a binding constraint. For  

 𝑝෤ ൏ 𝑝෤஺஼ ൌ �̃� ൅ ௛௧

ሺଵିଶ௛ሻ
൅ ௗିඥௗሺௗାସሺଵି௛ሻሺଵିଶ௛ሻ௛௧ሻ

ሺଵିଶ௛ሻమ
  (15) 

𝜆஺஼
ாே஽ைିேூ is strictly negative, implying that constraint (13) is fulfilled for all experts, while for 

𝑝෤ ൐ 𝑝෤஺஼ condition (13) is violated for some experts. Also, for 

 𝑝෤ ൐ 𝑝෤஻஼ ൌ �̃� ൅ ௛௧

ሺଵିଶ௛ሻ
െ ௗିඥௗሺௗିସሺଵି௛ሻሺଵିଶ௛ሻ௛௧ሻ

ሺଵିଶ௛ሻమ
  (16) 

𝜆஻஼
ாே஽ைିேூ is strictly negative, implying that constraint (14) is fulfilled for all experts, while for 

𝑝෤ ൏ 𝑝෤஻஼ it is violated for some experts. Depending on the value of 𝑑 we have two constellations 

to consider. The case when  
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𝑑 ൏ 𝑑∗ ൌ
௖̃మሺଵିଶ௛ሻమାଶ௛௖̃ሺଵିଶ௛ሻሺସሺଵି௛ሻ௧ା௩ሻି௛మ൫ସ௧మାଷ௩మାସ௛ሺ௛ିଶሻሺ௧ା௩ሻమ൯

ସሺ௛௩ି௖̃ሻ
൅

ቀ௖̃ሺଶ௛ିଵሻା௛൫௩ሺଵିଶ௛ሻାଶ௧ሺଵି௛ሻ൯ቁටସ௛ሺଶ௛ିଵሻሺ௖̃ሺଶ௛ିଷሻା௛௧ሻሺ௩ି௧ሻା൫௖̃ሺଵିଶ௛ሻା௛ሺଶ௛ሺ௧ା௩ሻିଷ௩ሻ൯
మ

ସሺ௛௩ି௖̃ሻ
  

(17) 

is characterized in Proposition 5 (the characterization for 𝑑 ൒ 𝑑∗ is very similar and is presented 

in Appendix E):  
 

Proposition 5 (investment in information acquisition and provision behavior with no 

insurance): For 𝑑 ൏ 𝑑∗ (as defined in equation (17)) the expert’s investment in information 

acquisition and her provision behavior for the ENDO-NI case are fully characterized in Figure 

5. The solid red and the solid blue line as well as the areas A, B and C are defined as in 

Proposition 3 and they characterize the optimal provision areas in the EXO-NI case. The point 

𝜆஺஼
ாே஽ைିேூ is the critical λ defined in equation (13) and the point 𝜆஻஼

ாே஽ைିேூ is the critical λ 

defined in equation (14) (in both cases, 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ , 𝑥 ∈ ሼ𝐴,𝐵ሽ,  for d ≤ ሺ1 െ ℎሻ�̃� ൅

ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ for d > ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ). With endogenous precision, 

in constellations falling into panel (a), experts with 𝜆 ൏ 𝜆஻஼
ாே஽ைିேூ decide for Strategy B and in 

constellations falling into panel (c) experts with 𝜆 ൏ 𝜆஺஼
ாே஽ைିேூ decide for Strategy A. In all 

panels, all other experts invest in diagnosis and follow the signal. The optimal precision level 

for those experts investing in diagnosis is given by equation (12). Increasing the diagnosis cost 

𝑑 decreases the diagnosis effort on the extensive and on the intensive margin: as 𝑑 increases, 

fewer experts invest in diagnosis and those who invest, invest in lower precision.  

 

To understand Proposition 5 first note that since the expert’s provision depends on the 

outcome of the diagnosis only under Strategy C, and since investing in diagnosis is costly, the 

expert will invest zero in information acquisition if she does not plan to rely on the diagnosis 

outcome even when it comes for free. This implies that in areas A and B of Figure 5 the expert 

will not invest in information acquisition. For 𝑑 ൌ 0, all experts in the interior of Area C in 

Figure 5 would choose 𝜎ாே஽ைିேூ ൌ 1. However, since 𝑑 ൐ 0, some experts will use Strategy 

C under EXO-NI, but will not invest in the diagnosis in ENDO-NI – see panels (a) and (c) of 

Figure 5. In each of the three panels we see which precision level would be efficient by looking 

at the precision chosen by experts with 𝜆 ൌ  1. As we can see from the figure, for low values 

of 𝑑 there is a range of (highly prosocial) experts who invest efficiently in information 

acquisition. This is no longer the case if 𝑑 exceeds the critical threshold ሺ1 െ ℎሻ�̃� ൅

ℎሺ𝑣 െ �̃�ሻ. For diagnosis costs that exceed that threshold, all experts (except for those sitting at 

𝜆 ൌ  1) underinvest in diagnostic precision compared to the first-best benchmark. 
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Figure 5. Expert’s investment in information acquisition and her provision behavior with 

endogenous precision and no insurance (ENDO-NI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൏ 𝑝෤஻஼  ሺ𝑏ሻ 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼ 

 

ሺ𝑐ሻ 𝑝෤ ൐ 𝑝෤஺஼ 

 

ENDO-FI: We now turn to the expert’s payoff-maximizing investment in information 

acquisition and her payoff-maximizing provision behavior in the ENDO-FI case. To 

characterize those, we proceed as in the ENDO-NI case – but take into account that under FI 

the consumer does not bear the cost of the service (but pays the insurance premium). The 

calculation for the payoff-maximizing precision level under the assumption that information 

acquisition (and following the signal) is optimal now yields 

 𝜎ாே஽ைିிூ ൌ ቄଵ
ଶ
൅

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻା௛௧

ଶௗ
, 1ቅ,  (18) 
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implying that 𝜎ாே஽ைିிூ ∈ ሺ0.5,1ሻ for 𝑑 ൐ ሺ1 െ 2ℎሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ℎሺ𝑣 െ 𝑡ሻ and 𝜎ாே஽ைିிூ ൌ 1 

for 𝑑 ൑ ሺ1 െ 2ℎሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ℎሺ𝑣 െ 𝑡ሻ. Plugging those values into the payoff function for 

Strategy C – and taking into account the associated diagnosis cost – yields again the payoff for 

the strategy “invest optimally in diagnosis and follow the signal”. Again, this strategy is optimal 

if and only if the payoff for it is larger than the payoff associated with strategies A and B. The 

former constraint translates to  

 𝜆 ൏ 𝜆஺஼
ாே஽ைିிூ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻା௛ሺ௖̃ି௣෤ି௧ሻାௗ

௛ሺ௩ି௧ሻ
െ

ටௗ௛మሺ௩ି௧ሻమ൫ௗାସሺ௛ሺଷ௖̃ି௣෤ሻିሺ௖̃ି௣෤ሻሻ൯

௛మሺ௩ି௧ሻమ
  (19) 

and the latter constraint translates to  

 𝜆 ൐ 𝜆஻஼
ாே஽ைିிூ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻା௛ሺ௖̃ି௣෤ି௧ሻିௗ

௛ሺ௩ି௧ሻ
െ

ටௗ௛మሺ௩ି௧ሻమ൫ௗାସሺଵି௛ሻሺ௖̃ି௣෤ሻ൯

௛మሺ௩ି௧ሻమ
 .  (20) 

It is straightforward to show that 𝜆஺஼
ாே஽ைିேூ and 𝜆஻஼

ாே஽ைିேூ are both monotonically decreasing in 

𝑝෤. To characterize the payoff-maximizing investment in information acquisition we now ask for 

which values of 𝑝෤ inequality (19) (respectively (20)) is a binding constraint. For  

 𝑝෤ ൏ 𝑝෤ଵ ൌ �̃� െ ௗ

ସሺଵି௛ሻ
  (21) 

𝜆஺஼
ாே஽ைିிூ is strictly larger than 1, implying that constraint (19) is fulfilled by all experts, while 

for 𝑝෤ ൐ 𝑝෤ଵ it is violated for some experts. Also, for 𝑝෤ ൐ 𝑝෤஺஼ (as defined in equation (15)) 

𝜆஺஼
ாே஽ைିிூ is strictly negative, implying that constraint (19) is violated for all experts, while for 

𝑝෤ ൏ 𝑝෤஺஼ it is fulfilled for some experts. Finally, for 𝑝෤ ൐ 𝑝෤஻஼ (as defined in equation (16)) 

𝜆஻஼
ாே஽ைିேூ is strictly negative, implying that constraint (20) is fulfilled for all experts, while for 

𝑝෤ ൏ 𝑝෤஻஼ it is violated for some experts. Depending on the value of d we again have two 

constellations to consider. For  

 𝑑 ൏ 𝑑∗∗ ൌ ସ௛௧ሺଵି௛ሻ

൫଺ିସ√ଶ൯௛ାସ√ଶିହ
  (22) 

we have 𝑝෤ଵ ൏ 𝑝෤஻஼ ൏ 𝑝෤஺஼ , while for 𝑑 ൐  𝑑∗∗ we have 𝑝෤஻஼ ൏ 𝑝෤ଵ ൏ 𝑝෤஺஼ . With the help of those 

expressions we can fully characterize the expert’s optimal investment in information acquisition 

and her optimal provision behavior for the ENDO-FI case. For 𝑑 ൏  𝑑∗∗ this is done in 

Proposition 6 (the characterization for 𝑑 ൒ 𝑑∗∗ is very similar and is presented in Appendix F):  
 

Proposition 6 (investment in information acquisition and provision strategy with 

endogenous precision and full insurance): The expert’s investment in information acquisition 

and her provision behavior for the ENDO-FI case depends on the price markup 𝑝෤. For 𝑝෤ ൒ 𝑝෤஺஼ 

(with 𝑝෤஺஼ ൑ �̃�) no expert invests in information acquisition and all experts decide for Strategy 

A. For 𝑝෤ ൏ 𝑝෤஺஼ , panels (a), (b) and (c) of Figure 6 show the effect of introducing full insurance 

on the expert’s investment in information acquisition and her provision behavior for the case 
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where d < d** (as defined in equation (22)). The solid and the dashed black line are as defined 

in Proposition 5 and they show the optimal precision in the ENDO-NI case. The solid and the 

dashed red line show the optimal precision in the ENDO-FI case. The point 𝜆஺஼
ாே஽ைିிூ is the 

critical λ defined in equation (19) and the point 𝜆஻஼
ாே஽ைିிூ is the critical λ defined in equation 

(20) (in both cases, 𝜆௫஼
ாே஽ைିிூ = 𝜆௫஼ௗ

ாே஽ைିிூ for d ≤ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼
ாே஽ைିிூ = 

𝜆௫஼ௗ
ாே஽ைିிூ for d > ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ). In constellations falling into panels (a) and (b) experts 

with 𝜆 ൏ 𝜆஻஼
ாே஽ைିிூ decide for Strategy B and in constellations falling into panels (b) and (c) 

experts with 𝜆 ൐ 𝜆஺஼
ாே஽ைିிூ decide for Strategy A. In panels (a), (b) and (c) all other experts 

invest in diagnosis and follow the signal, while in panel (d) no expert invests in diagnosis. The 

optimal precision level for those experts investing in diagnosis is given by equation (18). 

Increasing the diagnosis cost 𝑑 decreases the diagnosis effort on the extensive and on the 

intensive margin: As 𝑑 increases, fewer experts invest in diagnosis and those who invest, invest 

in lower precision. 
 

Similar to the setting with exogenous precision, the effect of introducing full insurance 

depends on the expert’s type 𝜆 and on the prevailing price vector. Under EM and OT price 

vectors the expert faces no trade-off under FI: Her material payoff is maximized by providing 

the HQS independently of the signal she receives and the same is true for the consumer’s payoff. 

As a consequence, under FI and an EM or an OT price vector the expert decides for Strategy A 

without investing in information acquisition for any d ≥ 0. Here, introducing full insurance 

unambiguously leads to a decrease in the investment in information acquisition, since 

moderately and highly prosocial experts invest in diagnosis (and follow the signal) in the NI 

case, while all experts decide for Strategy A without investing in diagnosis in the FI case. 

For t > 0, the same is true for “mild” UT price vectors, where mild means that 𝑝෤ lies in 

the interval [𝑝෤஺஼ ,  𝑐෥ሿ. If the material incentive to provide the LQS becomes higher, introducing 

full insurance leads to a decrease in the investment in information acquisition for moderately 

and highly prosocial agents (in the constellations covered by Figure 6 all experts sitting in the 

interval ሾ𝜆஻஼
ாே஽ைିேூ , 1] invest weakly less under FI than under NI), but there is also a 

countervailing effect: Experts in the interval ሺ𝜆஻஼
ாே஽ைିிூ ,  𝜆஻஼

ாே஽ைିேூሻ invest in information 

acquisition under FI but decide for Strategy B under NI. This latter effect is a direct consequence 

of the fact that for prosocial experts the incentive for choosing Strategy B is decreased by 

introducing full insurance since they internalize the benefit for the consumer of providing the 

HQS instead of the LQS, but do not internalize the associated additional cost.  
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Figure 6. Expert’s provision behavior with endogenous precision, no insurance and full 

insurance (ENDO-FI) 

 

  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑  𝑝෤ଵ ሺ𝑏ሻ  𝑝෤ଵ ൏ 𝑝෤ ൏  𝑝෤஻஼ 

  

ሺ𝑐ሻ 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼ ሺ𝑑ሻ 𝑝෤ ൐ 𝑝෤஺஼ 

Note: The figure shows the effect of introducing insurance on the expert’s investment in information acquisition 
and her provision behavior in the setting with endogenous precision for 𝑑 ൏  𝑑∗∗ (as defined in equation (22)). The 

notation on the graph is as follows: Point 1 stands for 𝜆஻஼ ௗ 
ாே஽ைିேூ, point 2 for 𝜆஻஼ ௗ 

ாே஽ைିேூ, point 3 for 𝜆஻஼ ௗ 
ாே஽ைିிூ, point 

4 for 𝜆஻஼ ௗ 
ாே஽ைିிூ, point 5 for 𝜆஺஼ ௗ 

ாே஽ைିிூ, point 6 for 𝜆஺஼ ௗ
ாே஽ைିிூ, point 7 for 𝜆஺஼ ௗ 

ாே஽ைିேூ , and point 8 for 𝜆஺஼ ௗ 
ாே஽ைିேூ .  

 

To sum up, introducing FI unambiguously leads to lower investments in information 

acquisition under OT, EM and mild UT price vectors. If the price vector induces strong material 

incentives to provide the LQS independently of the diagnosis outcome – as in panels (a), (b) 

and (c) of Figure 6 – then introducing FI has an ambiguous effect on the investment in 

information acquisition: Moderately and highly prosocial experts invest less under FI than 
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under NI, but there is also some segment of hardly prosocial experts who decide for Strategy B 

under NI, but invest in information acquisition under FI. 

 

3.3. The Consumer’s Entry Decision  

For a given institutional environment (EXO-NI, EXO-FI, ENDO-NI or ENDO-FI), given 

values of the parameters 𝑣,ℎ, 𝑐, 𝑐,𝜎,𝑝, 𝑝 (which are all common knowledge), given diagnostic 

precision 𝜎 (which is common knowledge in the EXO environments) or diagnostic costs d 

(which are common knowledge in the ENDO environments), the consumer can infer for each 

𝜆 ∈ ሾ0, 1ሿ the expert’s investment in diagnostic precision (in the ENDO environments) and her 

provision behavior (in all environments). He then uses his prior on 𝜆 to decide whether market 

entry is profitable. In making this decision he takes into account that under Strategy A he gets 

a payoff of 𝑣 െ 𝑝, under Strategy B he gets ሺ1 െ ℎሻ𝑣 ൅ ℎ𝑡 െ 𝑝, and under Strategy C he gets 

ሾ1 െ ℎሺ1 െ 𝜎ሻሿ𝑣 ൅ ℎሺ1 െ 𝜎ሻ𝑡 െ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ𝑝 െ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ𝑝. Suppose, for 

instance, we are in the EXO-NI environment, 𝜎 is equal to 1, and 𝑝෤ ൏ �̃� െ 𝑡. Then the consumer 

knows that the 𝜎 ൌ 1 line of panel (a) of Figure 3 is the relevant provision line for his case. He 

then uses his prior to assess the mass of experts sitting in the segment ሾ0, 𝜆ଵ
ா௑ைିேூሿ, anticipating 

those experts will implement Strategy B, while all the other experts will decide for Strategy C. 

Whether or not the consumer will enter the market in this case will depend on his prior and on 

the price level (i.e., the level of 𝑝 and 𝑝) – not only the price difference between HQS and LQS. 

So, while in theory there is no unambiguous answer for market entry decisions in general, we 

will use a set of parameters in the experiment that allow for sharp comparative static predictions 

regarding entry, without making specific assumptions about the consumer’s prior.  

 

4. The Experiment  

4.1. Experimental Treatments and Parameters  

Our experiment comprises six treatments. In each treatment, we set ℎ ൌ 0.4, 𝑣 ൌ 150,  𝑡 ൌ 50, 

and 𝑜 ൌ 15. The cost of providing the LQS is 𝑐 ൌ 20 and the cost for the HQS is 𝑐 ൌ 60. We 

fix the price of the LQS across all price vectors at 𝑝 ൌ 60 and vary the type of the price vector 

through the price of the HQS. Specifically, for UT we set 𝑝 ൌ 80; for EM we set 𝑝 ൌ 100; and 

for OT we set 𝑝 ൌ 120. Hence, the three types of price vectors have the following markups of 

prices over costs: (i) UT: ∆ൌ 40, ∆ൌ 20; (ii) EM: ∆ൌ ∆ൌ 40; (iii) OT: ∆ൌ 40, ∆ൌ 60. 

The experimental treatments are presented in Table 1. We implement three conditions 

with respect to diagnostic precision in a between-subjects design, and two insurance conditions 
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in a within-subjects design. Regarding diagnostic precision, in EXO100 the expert receives a 

fully precise signal about the consumer’s problem; in EXO70 the expert receives a signal that 

is 70% precise; and in ENDO, the expert can choose between six different precision levels (in 

10% steps from 50% to 100%). The signal is costly in all cases and the cost follows the function 

𝐷ሺ𝜎ሻ ൌ 40ሺ𝜎 െ 0.5ሻଶ, where 𝜎 is the precision level.10 Hence, the price of diagnostic precision 

ranges from 0 for 𝜎 ൌ 0.5 to 10 for 𝜎 ൌ 1. In EXO100 and EXO70, the cost of the 

corresponding signal is automatically subtracted from the expert’s profit. In ENDO, the cost is 

subtracted only if the expert decides to invest in precision. Otherwise, without any investment, 

she receives an uninformative, costless signal of 50% precision.  

The second treatment variation refers to insurance: In the three NI (No Insurance) 

conditions, the price for the service is fully paid by the consumer if he enters the market; in the 

three FI (Full Insurance) conditions, the price for the service is entirely covered by an insurance 

institution in return for a premium paid by the consumer. This premium is set to 𝑃 ൌ 80, which 

was calibrated based on preliminary data in order to ensure zero profits for the insurance 

institution in expectation. Taken together, these variations in insurance and diagnostic precision 

lead to a 3 ൈ 2 factorial design with the six experimental treatments shown in Table 1. 

 

Table 1: Treatment variation  

 No Insurance Full Insurance  

Exogenously precise signal (𝜎 ൌ 1ሻ EXO100-NI EXO100-FI 

Exogenously imprecise signal (𝜎 ൌ 0.7ሻ EXO70-NI EXO70-FI 

Endogenous choice of precision (𝜎 ∈ ሾ0.5,1ሿሻ ENDO-NI ENDO-FI 

 

4.2. Procedure  

We conducted our controlled laboratory experiment in the Innsbruck EconLab during 2018 with 

students enrolled at the University of Innsbruck. All experimental sessions were computerized 

with oTree (Chen et al., 2016) and we recruited subjects via H-ROOT (Bock et al., 2014). A 

total of 576 students participated in the experiment.11 The number of participants in a session 

was either 16 or 24 and we used matching groups of eight subjects each, of which four were in 

the role of experts and four in the role of consumers. Table 2 presents the number of participants, 

                                                      
10 In the theoretical model of sections 2 and 3 the expert receives the diagnosis for free in the EXO environment. 
Assuming instead that the signal is costly in all cases does not change any of the derivations. We decided to make 
the signal costly in the experiment in order to keep the EXO and ENDO treatments more comparable.  
11 Every subject participated in one session only and no subject had ever participated in a credence goods 
experiment before.  
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sessions, and matching groups per treatment. The total number of observations follows from 

each subject making decisions over 24 periods.  
 

Table 2: Observations 

Treatment Subjects Observations Sessions Matching Groups 
EXO100 200 4,800 9 25 
EXO70 192 4,608 8 24 
ENDO 184 4,416 8 23 
Total 576 13,824 26 72 

 

4.2.1. Online Part (Elicitation of prosocial preferences) 

After subjects registered for an experimental session, they received a separate mail with a link 

for an online part of the experiment that was run before the lab session. In the online part we 

elicited social preferences by means of the Equality Equivalence Test, henceforth EET 

(Kerschbamer, 2015). The EET exposes subjects to two choice lists, one located in the domain 

of advantageous inequality and the other located in the domain of disadvantageous inequality. 

The switching points of a subject in the two lists are then used to infer the prosociality (the λ 

parameter) of the subject separately for each domain. For the domain of disadvantageous 

inequality we denote the inferred λ as λD and for the domain of advantageous inequality we 

denote it as λA. The parameters of the EET and the details of the calculation of λ are provided 

in Appendix G.  Decisions were incentivized and participants were paid after the lab part had 

also been concluded.12  

 

4.2.2. Lab Part (The market experiment) 

Table 3 summarizes the experimental design for the credence goods market experiment. 

Treatments EXO100, EXO70, and ENDO were implemented between subjects, while the two 

insurance conditions (NI vs. FI) were varied within subjects such that a group played 12 periods 

with insurance and 12 periods without, in blocks of six periods and with balanced ordering. 

Hence, within each of the three diagnostic precision treatments, we vary two insurance schemes 

(NI, FI), three types of price vectors (UT, OT, and EM), and the type of the consumer’s problem 

(minor or major). This results in 12 possible combinations of insurance, price vector, and 

consumer’s problem. We implemented each of these combinations twice within one session, 

yielding a total of 24 periods to be played. We find no order effects with regards to the sequence 

of the different combinations, therefore we pool all orders in the analysis. 
 

                                                      
12 See https://osf.io/9kwja/?view_only=fc4ec287dd4144d79bee2d688add23ab for the Experimental Instructions. 
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Table 3: Experimental design 

Treatments 
Diagnostic 
precision 

(between subjects) 

Insurance 
(within subjects) 

Price vectors 
(within 

subjects) 

EXO100 100% 
12 periods for each of EXO100-

FI & EXO100-NI* 

8 periods for 
each of UT, 

EM, OT 

EXO70 70% 
12 periods for each of EXO70-FI 

& EXO70-NI* 

8 periods for 
each of UT, 

EM, OT 

ENDO 

expert chooses 
among {50%, 60%, 

70%, 80%, 90%, 
100%} 

12 periods for each of ENDO-FI 
& ENDO-NI* 

8 periods for 
each of UT, 

EM, OT 

Notes: * four blocks of six periods in balanced order. 
 

Given that the stage game is repeated for 24 periods, the matching protocol of 

participants is important. We used matching groups of eight participants, with four experts and 

four consumers (in fixed roles). Consumers and experts were randomly re-matched within a 

matching group after each period. We use matching groups as independent observations in our 

non-parametric tests and cluster for matching groups in our regressions. 

All parameters, the underlying treatment condition, as well as the matching procedure 

were made common knowledge to participants by reading them out aloud at the beginning of 

each session. The average session duration was 1.5 hours and all payoffs were stated in ECU 

(experimental currency units). Participants received 80 ECU as starting endowment, and earned 

on average a total of 1,466.98 ECU (exchange rate 80 ECU = 1 Euro) from the online part and 

all 24 periods in the lab.  

The timing of a one-period interaction was as follows: At the beginning of each period, 

both players were informed about the prevailing price vector (UT, EM, or OT) and the insurance 

condition (NI or FI). Each period consisted of three different stages. In Stage 1, the consumer 

decided whether or not to enter the market. At the same time the expert received a signal on the 

consumer’s problem in EXO100 and EXO70, while in ENDO she decided how much to invest 

in diagnostic precision and afterwards received the signal with the chosen precision.  In Stage 

2, the consumer was inactive while the expert decided on the quality of the service using the 

strategy method (i.e., this decision was implemented if the consumer had entered the market). 

In Stage 3, both players were informed about their own payoff.13 From the second period 

onwards, experts and consumers could see the history of their own decisions and payoffs from 

                                                      
13 The consumer is not informed about the quality that was actually needed, but in case of undertreatment he can 
infer from the payoff that insufficient quality was provided. 
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previous periods, but had no information about their previous interaction partners. After the 24 

periods of the market game, we elicited participants’ self-reported risk attitudes, based on a 

simple question that asked them to report their risk tolerance on a scale from 0 (“completely 

risk averse”) to 10 (“completely risk-seeking”). Moreover, we collected data on their gender, 

age, study program, and highest educational degree.  

 

4.3. Predictions  

In this section we derive the predictions for the experiment. In the derivations we assume that 

there is a positive mass of experts of each type 𝜆 in ሾ0,1ሿ and that this is correctly anticipated 

by consumers.  

 

4.3.1. Predictions for the Provision Strategy in the EXO Treatments  

Figure 7 characterizes the predicted and the efficient service provision policy for the EXO 

treatments of the experiment. The solid lines (blue for the UT price vector, red for the EM price 

vector and orange for the OT price vector) define the provision areas for the NI case: The expert 

decides for Strategy A below the respective line and for Strategy C above the line. In the FI 

case, all experts decide for Strategy A under the EM and the OT price vector while for the UT 

price vector the dashed blue line defines the provision areas (Strategy A below the line and 

Strategy C above the line). By looking at the provision behavior of the 𝜆 ൌ 1 expert in the NI 

case we see what efficiency would prescribe for the parameters of the experiment: For both 

values of the diagnostic precision and independently of whether insurance is present or absent 

efficiency requires following Strategy C. 

From Figure 7 we see that, independently of the level of diagnostic precision and of 

whether insurance is present or absent, a weakly larger range of 𝜆 values is in Area C under the 

UT than under the EM price vector, and a weakly larger range of 𝜆 values is in Area C under 

the EM than under the OT price vector.14 We therefore conclude: 
 

Prediction 1 (impact of price vector on provision strategy in EXO): Independently of the level 

of diagnostic precision and of whether insurance is present or absent, experts decide for the 

efficient service provision policy (of following the signal) more frequently under the UT than 

under the EM price vector, and more frequently under the EM than under the OT price vector.  
 

                                                      
14 Under NI the relation between UT and EM is strict for 𝜎 ൌ 0.7 (while all experts are predicted to choose Strategy 
C under both price vectors for 𝜎 ൌ 1ሻ, and the relation between EM and OT is strict for both precision levels. 
Under FI the relation between UT and EM is strict for both precision levels while the relation between EM and 
OT is strict for none. 
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Figure 7. Expert’s provision in EXO treatments 

 
Note: The figure characterizes the predicted provision behavior for the EXO treatments of the experiment. The 
two black solid horizontal lines (at 𝜎 ൌ 1 and at 𝜎 ൌ 0.7) are the provision lines for the two precision levels 
implemented in EXO. 

 

Turning to the impact of diagnostic precision on the expert’s provision strategy we see that, for 

each price vector and for both insurance regimes, a larger range of 𝜆 values is in Area C on the 

upper ሺ𝜎 ൌ 1ሻ line than on the lower ሺ𝜎 ൌ 0.7ሻ line. 15 This leads to the following prediction:  
 

Prediction 2 (impact of diagnostic precision on provision strategy in EXO): Independently of 

the price vector and of whether insurance is present or absent, experts decide for the efficient 

service provision policy more frequently under 𝜎 ൌ 1 than under 𝜎 ൌ 0.7.  
 

Next we compare – for each price vector and for each provision line – the provision strategy 

under NI with the one under FI. We see that, in all comparisons, a strictly larger range of 𝜆 

values is in the C-area under NI than under FI. This leads to the third prediction:  
 

Prediction 3 (impact of insurance on provision strategy in EXO): Independently of the price 

vector and the level of diagnostic precision, experts decide for the efficient service provision 

policy more frequently under NI than under FI.  
 

A final interesting comparison for the EXO case regards the impact of the prosociality 

parameter λ on the expert’s provision strategy. Looking at Figure 7 we see that, under NI, more 

                                                      
15 Under NI the relation is strict for the EM and for the OT price vector, while in FI it is strict only for the UT price 
vector. 
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prosocial experts are weakly more inclined to choose Strategy C than less prosocial ones. Under 

FI, however, the relationship is reversed.16 We thus conclude: 
 

Prediction 4 (impact of prosocial motivation on provision strategy in EXO): Independently of 

the price vector and of the level of diagnostic precision, under NI more prosocial experts decide 

for the efficient service provision policy more frequently than less prosocial ones, while under 

FI the relationship is reversed. 

 

4.3.2. Predictions for the Investment in Information Acquisition in ENDO  

Figure 8 characterizes the expert’s investment in information acquisition and her provision 

behavior for the ENDO treatments. From this figure we see that efficiency prescribes to acquire 

a fully precise signal (𝜎 ൌ 1ሻ. We also see that in both insurance regimes and for all 𝜆 ∈ ሾ0,1ሿ, 

the investment in information acquisition is weakly higher under the UT price vector than under 

the EM price vector and weakly higher under the EM than under the OT price vector.17 This 

leads to the following prediction:  
 

Prediction 5 (impact of price vector on investment in diagnostic precision in ENDO): 

Independently of whether insurance is present or absent, the average investment in diagnostic 

precision is higher (and thereby closer to the efficient level) under the UT price vector than 

under the EM price vector, and higher under the EM price vector than under the OT price 

vector.  
 

Comparing the two insurance regimes we see that, for all price vectors and all 𝜆 ∈ ሾ0,1ሿ the 

investment in information acquisition is weakly higher under NI than under FI.18 This leads to 

the next prediction:  
 

Prediction 6 (impact of insurance on investment in diagnostic precision in ENDO): 

Independently of the price vector, the average investment in diagnostic precision is higher (and 

thereby closer to the efficient level) in NI than in FI.  
 

Our last prediction for the expert’s behavior in the ENDO treatments regards the impact of the 

prosociality parameter λ on the expert’s investment in information acquisition. Looking at 

                                                      
16 Under NI the relationship is strict for the OT price vector under 𝜎 ൌ 1 and for the OT and the EM price vector 
under 𝜎 ൌ 0.7, while under FI the (reversed) relationship is strict for the UT price vector under 𝜎 ൌ 0.7.  
17 Under NI the relation between the UT and the EM price vector is strict for all 𝜆 ൑ 0.42 and the relation between 
the EM and the OT price vector is strict for all 𝜆 ∈ ሺ0.42, 0.61ሻ. Under FI the relation between the UT and the EM 
price vector is strict for all 𝜆 ∈ ሾ0,1ሿ, while the relationship between the EM and the OT price vector is strict for 
none. 
18 Under the UT price vector the relation is strict for all 𝜆 ൏ 0.4, under the EM price vector it is strict for all 𝜆 ൒ 
0.42, and under the OT price vector it is strict for all 𝜆 ൒ 0.61. 
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Figure 8 we see that, independently of the price vector and the insurance regime, investment in 

information acquisition is higher for more prosocial experts than for less prosocial ones.19 We 

conclude: 
 

Prediction 7 (impact of prosocial motivation on investment in diagnostic precision in 

ENDO): Independently of the price vector and of insurance being present or absent, the 

average investment in diagnostic precision is higher (and thereby closer to the efficient level) 

for more prosocial experts than for less prosocial ones. 
 

Figure 8. Expert’s investment in information acquisition in ENDO 

 
Note: The figure characterizes the expert’s investment in information acquisition and her provision behavior for 
the ENDO treatments. For each insurance regime (NI vs FI) and each price vector (UT, EM, or OT) the figure 
characterizes the chosen precision level for each 𝜆 in ሾ0, 1ሿ. In constellations where 𝜎 ൐  0.5 the expert invests in 
diagnostic precision and then follows the signal. In constellations where 𝜎 ൌ  0.5 the expert abstains from 

investing in diagnostic precision and chooses Strategy A.  
 

4.3.3. Predictions for Consumer Behavior in EXO and ENDO 

Next, we turn to consumers’ market entry decisions. First, note that for the chosen parameters 

the consumer’s payoff under Strategy A is 𝑣 െ 𝑝 ൌ 150 െ 𝑝 for both diagnostic precision 

levels, while his payoff under Strategy C depends on the diagnostic precision: For 𝜎 ൌ 1 the 

consumer’s payoff under Strategy C is 𝑣 െ ሺ1 െ ℎሻ𝑝 െ ℎ𝑝 ൌ 150 െ 0.4𝑝 െ 0.6𝑝, while for 

𝜎 ൌ 0.7 it is ሾ1 െ ℎሺ1 െ 𝜎ሻሿ𝑣 ൅ ℎሺ1 െ 𝜎ሻ𝑡 െ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ𝑝 െ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ𝑝 ൌ

138 െ 0.54𝑝 െ 0.46𝑝. Thus, since 𝑝 ൐ 𝑝 for any given price vector, the consumer 

unambiguously prefers Strategy C over Strategy A if the signal is perfect; however, under 𝜎 ൌ

0.7 the consumer prefers Strategy C over Strategy A only if 0.54 ቀ𝑝 െ 𝑝ቁ ൒ 12. Given our 

                                                      
19 Under NI, the relationship is strict for all price vectors while under FI the relationship is strict only for the UT 
price vector. 
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parametrization this latter inequality is satisfied for the EM and the OT price vector, but not for 

the UT vector. What can we conclude from this? 

First consider the case where 𝜎 ൌ 1. For this case we get a clear prediction: As we move 

from the UT to the EM and then to the OT price vector, the range of 𝜆 values for which Strategy 

C is provided decreases and at the same time 𝑝 increases. This is unambiguously bad news for 

the consumer. However, when moving from the UT to the EM price vector for 𝜎 ൌ 0.7, we 

have two opposing effects. On the one hand, the range of 𝜆 values for which Strategy C is 

implemented decreases, which is now good news for the consumer. On the other hand, the price 

𝑝 increases, which is again bad news for the consumer. Which of the two price vectors is 

preferred by the consumer depends on a comparison between his payoff from Strategy C under 

the UT price vector and his payoff from Strategy A under the EM price vector. This comparison 

shows that the consumer strictly prefers Strategy C under the UT price vector over Strategy A 

under the EM price vector, since 138 െ ሾ0.54ሿ ∙ 60 െ ሾ0.46ሿ ∙ 80 ൐ 150 െ 100. 

Using similar arguments for the impact of insurance and for the impact of diagnostic precision 

and also considering the case where the diagnostic precision is endogenous we arrive at the 

following prediction:  
 

Prediction 8 (factors affecting consumer’s entry decision in EXO and ENDO):  

(a) Both in EXO and in ENDO, consumers are more likely to enter the market under the UT 

than under the EM price vector, and more likely under the EM than the OT price vector. In both 

settings this prediction holds independently of whether insurance is in place, and in EXO it also 

holds independently of the level of diagnostic precision.  

(b) Both in EXO and in ENDO, consumers are more likely to enter the market under FI than 

under NI. In both settings this prediction holds independently of the price vector, and in EXO 

it also holds independently of the level of diagnostic precision.  

(c) In the EXO case, consumers have a more pronounced tendency to enter the market if the 

diagnostic precision is 100% rather than 70%. This prediction holds independently of the price 

vector and of whether insurance is in place. 

 

5. Results of the experiment 

Table 4 provides summary statistics for participants in the different treatments and overall. 

Importantly, randomization across the three treatments was successful in every dimension (p > 

0.05 for all variables in Table 4; 2 tests and Kruskal-Wallis tests). 
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Table 4: Summary statistics 

 All N EXO100 N EXO70 N ENDO N 

Age 22.66 
(3.51) 

576 22.47 
(3.26) 

200 22.86 
(4.00) 

192 22.66 
(3.22) 

184 

% Female 51.56 576 56.00 200 48.96 192 49.46 184 

λD 0.10 
(0.36) 

247 0.08 
(0.37) 

86 0.05 
(0.38) 

83 0.17 
(0.29) 

78 

λA 0.39 
(0.36) 

247 0.41 
(0.39) 

86 0.42 
(0.37) 

83 0.33 
(0.31) 

78 

Risk Measure 5.59 
(2.11) 

528 5.33 
(2.10) 

176 5.72 
(2.04) 

192 5.72 
(2.20) 

160 

Aver. payment 
experts in € 

14.41 
(1.39) 

288 13.94 
(1.29) 

100 14.74 
(1.25) 

96 14.57 
(1.51) 

92 

Aver. payment 
consumers in € 

22.26 
(2.35) 

288 23.78 
(1.83) 

100 20.70 
(1.92) 

96 22.24 
(2.19) 

92 

 

Notes: Means of all dependent variables, except Female, which refers to the percentage of female subjects. 
Risk Measure is constructed from responses to a survey question on a scale from 0 “completely risk averse“ to 
10 “fully risk seeking“ and is available for participants in all but one session. λD and λA are elicited in the EET 
and range from -5/6 to 5/6, with higher values indicating stronger prosociality. These variables are reported for 
experts and are missing for 41 subjects, for whom choices in the online part of the experiment could not be 
matched to the lab part. Standard deviations in parentheses. 

 

5.1. Impact of Prices, Diagnostic Uncertainty and Insurance on Provision Policy (EXO)  

Here we test predictions 1-3 for the EXO treatments. The main variable of interest is the rate of 

efficient service provision: This is the frequency (or, in the regressions, the likelihood) with 

which experts decide for the efficient provision policy by following the signal they received.  

Prediction 1 relates efficient service provision to prices. In line with this prediction, the 

share of experts who follow the signal (pooling the two exogenous treatments and the two 

insurance conditions) is highest with the UT price vector (84.1%), intermediate with the EM 

price vector (72.5%), and lowest with the OT price vector (64.4%). The difference to the EM 

vector is significant both for the UT and the OT vector (p < 0.01, χ2-tests).20  

Figure 9 shows the rate of efficient service provision broken down by diagnostic 

precision and insurance. The treatment differences support predictions 2 and 3. In both 

insurance regimes, efficient service provision is more frequent in EXO100 than in EXO70 

(pooled rates 76.8% vs. 70.4%, p < 0.01, χ2-test). This result confirms the negative impact of 

                                                      
20 All non-parametric statistical tests reported in the paper treat one matching group (of eight subjects) as one 
independent observation, resulting in conservative estimates of statistical significance. 
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diagnostic uncertainty on the rate at which expert sellers follow the signal that they receive. 

Turning to Prediction 3, the data confirm that the rate of efficient service provision declines 

when insurance is in place (FI) compared to when this is not the case (NI), both in EXO100 and 

EXO70 (pooled rates 71.5% vs. 75.9%, p = 0.037, χ2 test). 
 

Figure 9: Rate of efficient service provision, by treatment 

 
Note: All bars in the figure include 95% confidence intervals. 

 

We also test Predictions 1-3 in the multivariate Probit regressions shown in Table 5. 

The dependent variable in the regressions is whether the expert followed the signal. We first 

provide one parsimonious specification with only price vector, insurance, and treatment 

dummies as right hand side variables. We then add a specification that further includes the 

interaction term between insurance and treatment, as well as a third one that includes additional 

control variables (period, experts’ demographics, risk attitudes, and the two social preference 

parameters λD and λA). All regressions in this section include subject random effects and report 

standard errors clustered at the matching group level. In all Probit specifications, we report 

marginal effects of the coefficients. 

The regression results confirm predictions 1-3. The negative effects of diagnostic 

uncertainty and insurance coverage on efficient service provision are captured by the 

statistically and economically significantly coefficients for EXO70 and Insurance. Diagnostic 

uncertainty decreases the likelihood of efficient service provision by up to 8 percentage points 

(about 10% of the overall average) and insurance decreases it by up to 5 percentage points 

(about 6% of the average). These are average effects for each dimension, while the interaction 
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between the two dimensions is insignificant in (2). The regressions also confirm the strong 

positive (negative) effect of UT (OT) price vector on efficient service provision compared to 

the omitted category of EM prices, with effect sizes being about 8 percentage points for the OT 

vector and larger than 10 percentage points for the UT vector. All control variables are 

insignificant, with the exception of Period, suggesting a slight downward time trend. To test 

Prediction 4, we have run the column (3) regressions for NI and FI separately.21 In line with 

Prediction 4, the coefficients of λD and λA have positive coefficients in NI, but only λA is 

statistically significant. The coefficient of λA switches sign (as predicted) in FI, but both λD and 

λA are statistically insignificant. Hence, we only find limited support for Prediction 4. 
 

Table 5: Determinants of efficient service provision  

 (1) (2) (3) 

EXO70 -0.07*** 
(0.02) 

-0.08*** 
(0.02) 

-0.07*** 
(0.02) 

Insurance -0.04*** 
(0.01) 

-0.05*** 
(0.01) 

-0.05*** 
(0.01) 

UT price vector 0.12*** 
(0.02) 

0.12*** 
(0.02) 

0.12*** 
(0.02) 

OT price vector -0.08*** 
(0.02) 

-0.08*** 
(0.02) 

-0.07*** 
(0.02) 

Insurance x EXO70  0.01 
(0.02) 

 

Period   -0.00** 
(0.00) 

Risk measure   -0.01 
(0.01) 

λD   0.04 
(0.03) 

λA   0.02 
(0.03) 

Female   0.02 
(0.03) 

Age   0.00 
(0.00) 

N 4704 4704 3792 

Notes: Dependent variable is Follow, equal to 1 if the expert followed the received signal and 0 otherwise. The 
table presents marginal effects estimates from Probit regressions with subject random effects. Standard errors 
are clustered at the matching group level and stated in parentheses. Insurance is equal to 1 if the consumer was 
insured in a particular period. EXO70 is equal to 1 for the EXO70 treatment. UT price vector is equal to 1 if 
the price for the LQS is 60 and the price for the HQS is 80. OT price vector is equal to 1 if the price for the 
LQS is 60 and the price for the HQS is 120. The omitted benchmark is the EM vector with the price of 60 for 
LQS and of 100 for HQS. The Risk Measure and the prosociality parameters λD and λA are defined as in the 
notes to Table 4. * p < 0.10, ** p < 0.05, *** p < 0.01.  

                                                      
21 Available as supplementary material at https://osf.io/9kwja/?view_only=fc4ec287dd4144d79bee2d688add23ab. 
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Result 1 (Provision behavior): Predictions 1-3 are all supported by the experimental data. 

Experts are more likely to decide for the efficient service provision (by following the signal) 

when diagnostic precision is higher and with the undertreatment price vector, and they are less 

likely to do so when insurance is in place and with the overtreatment price vector. Prediction 

4 is not unanimously supported: Our measures of prosociality affect the provision behavior by 

experts only partially. 

 

5.2. Impact of Prices and Insurance on Investment in Diagnostic Precision (ENDO) 

We now turn to predictions 5 and 6 regarding investment in diagnostic precision by experts in 

ENDO. In this treatment the expert chooses between six different levels of diagnostic precision. 

The distribution of choices is shown in Table 6 (along with the costs in ECU for each choice). 

Overall (i.e., pooling ENDO-NI and ENDO-FI), a precision level of 80% is both the median 

value and the modal choice of experts. At this level, diagnostic precision costs are 3.6 ECU. By 

contrast, efficiency would prescribe to acquire the 100% precise signal at the cost of 10 ECU. 

According to Prediction 5, experts should invest more in diagnostic precision with the 

UT than with the EM price vector, and they should invest less with the OT price vector. This 

prediction is not supported by our data: Overall, experts invest slightly more tokens with the 

UT than with the EM price vector (3.80 compared to 3.56), but the difference is insignificant 

(p = 0.403, Mann-Whitney U test). Investment in precision is even higher with the OT (4.07) 

than with the EM price vector (p < 0.01, Mann-Whitney U test). 

 

Table 6: Investment in diagnostic precision 

Diagnostic 
precision (in %) 

Cost in 
ECU 

ENDO-NI ENDO-FI Pooled 

50 0 16.12 20.74 18.43 

60 0.4 4.44 5.89 5.16 

70 1.6 17.93 16.39 17.16 

80 3.6 28.99 26.27 27.63 

90 6.4 18.03 17.75 17.89 

100 10 14.49 12.95 13.72 

Notes: The table reports the relative frequencies (in %) with which the six different levels of 
diagnostic precision have been chosen by experts. 

 

Prediction 6 states that insurance coverage for consumers leads to a reduction in experts’ 

investment in diagnostic precision. Indeed, in periods with insurance, experts choose 

significantly lower precision levels than when insurance is not in place (75.3% vs. 77.2%, p = 
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0.037, χ2 test). Comparing the distribution of chosen precision between the third and fourth 

column of Table 6 further reveals that a zero investment in precision is much more frequent 

when insurance is in place (20.7 vs. 16.1%, p < 0.01, χ2 test), while precision levels higher than 

60% are chosen more frequently in ENDO-NI than in ENDO-FI (79.4% vs. 73.4%, p < 0.01, 

χ2 test). 
 

Table 7: Determinants of investment in diagnostic precision  

 (1) (2) (3) (4) 

Insurance -0.13** 
(0.06) 

-0.15** 
(0.07) 

-0.29** 
(0.14) 

-0.33* 
(0.17) 

UT price vector 0.16 
(0.11) 

0.19 
(0.12) 

0.24 
(0.28) 

0.27 
(0.31) 

OT price vector 0.18*** 
(0.05) 

0.19*** 
(0.06) 

0.51*** 
(0.12) 

0.53*** 
(0.14) 

Period  -0.02*** 
(0.01) 

 -0.05*** 
(0.01) 

Risk measure  -0.03 
(0.05) 

 -0.08 
(0.12) 

λD  0.53** 
(0.24) 

 -1.67*** 
(0.63) 

λD  0.26 
(0.33) 

 -1.00 
(0.84) 

Female  -0.14 
(0.22) 

 -0.41 
(0.57) 

Age  0.02 
(0.02) 

 0.05 
(0.05) 

Constant   3.70*** 
(0.24) 

3.06** 
(1.35) 

N 2208 1584 2208 1584 

Notes: Dependent variable is number of invested ECU in diagnostic precision, ranging from 0 to 10. The table 
presents subject random effects regressions, using ordered Probit in columns (1) and (2) and Ordinary Least 
Squares in columns (3) and (4). Standard errors are clustered at the matching group level and stated in 
parentheses. The independent variables are defined as in Table 5. * p < 0.10, ** p < 0.05, *** p < 0.01.  

 

The regressions in Table 7 provide further support for the effect of insurance on 

endogenously chosen diagnostic precision. The dependent variable in these regressions is the 

armount of ECU invested by experts into precision in ENDO, ranging from 0 to 10. The 

independent variables are the same as in the regressions of the previous subsection (excluding 

the treatment dummy EXO70 and its interaction with insurance). The first two columns here 

present results from ordered Probit regressions and the last two columns from OLS regressions. 

Regarding Predictions 5 and 6, the key things to note are the significantly negative coefficient 

on Insurance and the significantly positive coefficient for the OT price vector. Moreover, as 

indicated by the significantly positive coefficients for the expert’s λD parameter in columns (2) 
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and (4), the more prosocial an expert is in the domain of disadvantageous inequality, the more 

she invests in a precise signal. This provides direct support for Prediction 7.22 
 

Result 2 (Investment in diagnostic precision): Prediction 5 is refuted by the data, since 

investment in diagnostic precision by experts is higher with the overtreatment than with the 

equal markup price vector. Predictions 6 and 7 are confirmed: Insurance leads to a reduction 

in experts’ investments and to lower precision, and more prosocial experts invest more in 

diagnostic precision. 

 

5.3. Market Entry by Consumers 

Market entry rates by consumers are generally very high, with a mean of 92.4% across 

all periods and treatments. Mean entry rates are shown in Figure 10. In line with Prediction 

8(a), we find that market entry is most likely with the UT price vector, intermediate with the 

EM price vector, and lowest with the OT price vector.23 This holds for both EXO-treatments 

and ENDO, and the differences between EM and OT price vectors are always significant (p < 

0.01, χ2-tests), while the comparison of UT and EM price vectors fails significance. 
 

Figure 10: Market entry rates, by treatment 

 
Note: All bars in the figure include 95% confidence intervals. 

                                                      
22 The coefficient on λA is also positive, but insignificant. The fact that Prediction 7 is more strongly borne out in 
the domain of disadvantageous inequality (λD) is not unexpected, given that experts generally earn substantially 
less than consumers in all treatments (see Table 4). 
23 In the (pooled) EXO treatments, the rates are 96.8%, 95%, and 85.5% for UT, EM, and OT price vectors 
respectively, and for ENDO the corresponding rates are 98%, 96.6%, and 86.8%. 
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The effects of insurance on market entry rates confirm our Prediction 8(b). Under FI, 

entry rates are at 98% both in EXO and ENDO, while under NI they are 87% in EXO and 89% 

in EXO, with the differences always significant at p < 0.01 (χ2-tests). Finally, also Prediction 

8(c) is supported by the data. A higher diagnostic precision is associated with significantly 

higher entry rates (94.7% in the aggregate in EXO100 vs. 90% in EXO70, p < 0.01, χ2-test). 

The Probit regressions in Table 8 confirm Prediction 8 as well. Like in the previous 

regressions, we provide two parsimonious specifications with only treatment dummies and 

period as independent variables, and two further specifications that include additional control 

variables. The dependent variable in Table 8 is a dummy variable taking the value 1 if a 

consumer entered the market and 0 otherwise. 

 

Table 8: Determinants of market entry  

 (1) (2) (3) (4) (5) 

 
EXO70 & 
EXO100 

EXO70 & 
EXO100 

EXO70 & 
EXO100 

ENDO ENDO 

EXO70 -0.04*** 
(0.01) 

-0.04*** 
(0.01) 

-0.04*** 
(0.01) 

  

Insurance 0.09*** 
(0.01) 

0.09*** 
(0.01) 

0.08*** 
(0.02) 

0.07*** 
(0.02) 

0.06*** 
(0.01) 

UT price vector 0.02** 
(0.01) 

0.02** 
(0.01) 

0.02** 
(0.01) 

0.01 
(0.01) 

0.00 
(0.01) 

OT price vector -0.08*** 
(0.01) 

-0.07*** 
(0.01) 

-0.08*** 
(0.01) 

-0.08*** 
(0.01) 

-0.08*** 
(0.02) 

Insurance x EXO70   0.01 
(0.02) 

  

Period  0.00*** 
(0.00) 

  0.00*** 
(0.00) 

Risk measure  0.00* 
(0.00) 

  0.01 
(0.00) 

λD  0.01 
(0.01) 

  -0.01 
(0.01) 

λA  0.02 
(0.01) 

  0.05*** 
(0.02) 

Female  -0.02** 
(0.01) 

  0.01 
(0.01) 

Age  0.00 
(0.00) 

  0.00* 
(0.00) 

N 4704 3936 4704 2208 1608 
Notes: Dependent variable is Market Entry, equal to 1 if the consumer entered the market and 0 otherwise. The 
table presents marginal effects estimates from Probit regressions with subject random effects. Standard errors 
are clustered at the matching group level and stated in parentheses. The independent variables are defined as 
in the notes to Table 4 and Table 5. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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The regressions in Table 8 provide support for the comparison between the OT and the 

EM price vector in the second part of Prediction 8(a), with consumers being less likely to enter 

when prices reflect overtreatment incentives. In addition, there is support for the first part of 

Prediction 8(a) as well, given the significant coefficients for the UT price vector. Consumers 

are significantly more likely (by almost 10 percentage points) to enter the market when they are 

insured, in the exogenous treatments as well as in ENDO, thus confirming Prediction 8(b). With 

respect to the effects of diagnostic uncertainty, the significant coefficient for EXO70 indicates 

that consumers are about 4 percentage points less likely to enter the market when the expert 

receives an imprecise exogenous signal about his problem, thus confirming Prediction 8(c).  
 

Result 3 (Market entry): Market entry rates by consumers are higher when insurance is in 

place, regardless of whether diagnostic precision is exogenous or not. In the exogenous case, 

a higher precision also increases entry rates. Market entry is less likely with the overtreatment 

than with the equal markup price vector. Overall, the data support Predictions 8(b) and 8(c) 

fully, and partly support Prediction 8(a). 

 

5.4. Market Efficiency 

As a final part of our results section, we examine what the behavior of experts and consumers 

implies for market efficiency. The efficiency index used in this analysis measures (in %) which 

fraction of the highest possible efficiency gain is achieved in an expert-consumer interaction. 

The highest possible efficiency gain is the difference between the first-best joint payoff and the 

minimal joint payoff. In the EXO treatments the first-best joint payoff is achieved if the 

consumer enters the market and the expert implements Strategy C, while in the ENDO 

treatments it is achieved if the consumer enters the market and the expert acquires the fully 

informative signal and follows the signal. In all treatments the minimal joint payoff is achieved 

if the consumer refuses interaction on the market.24 The efficiency index is then calculated as 

follows: Efficiency Index = (actual joint payoff – minimal joint payoff) / (first-best joint payoff 

– minimal joint payoff). 

Figure 11 shows efficiency levels across treatments. The figure reveals that efficiency 

is always (i.e., irrespective of treatment) higher under full insurance (dark bars) than under no 

insurance (light bars). The difference is statistically significant for all three treatments pooled 

(p < 0.01, Wilcoxon signed-ranks test) and in the two exogenous treatments separately (p < 

                                                      
24 The first-best joint payoff equals 𝑣 െ ℎ𝑐 െ ሺ1 െ ℎሻ𝑐 െ 𝐷ሺ1ሻ ൌ 150 െ 0.4 ∗ 60 െ 0.6 ∗ 20 െ 10 ൌ 104 in 
treatments EXO100 and ENDO, and ሾ1 െ ℎሺ1 െ 𝜎ሻሿ𝑣 െ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ𝑐 െ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ𝑐 െ 𝐷ሺ𝜎ሻ ൌ
0.88 ∗ 150 െ 0.46 ∗ 60 െ 0.54 ∗ 20 െ 1.6 ൌ 92 in EXO70. The minimal joint payoff is 30 (the sum of the two 
outside payoffs in the case of no market entry) in all treatments. 
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0.01 in EXO70, p < 0.05 in EXO100, Wilcoxon signed-ranks tests), while it is insignificant in 

ENDO (p = 0.12).25 
 

Figure 11: Efficiency rates by treatment and insurance 

  
Note: All bars in the figure include 95% confidence intervals. 

 

Table 9 presents estimates from linear regressions with the efficiency index as 

dependent variable. In these regressions, each consumer-expert interaction is one data point, 

since efficiency is measured at the market interaction level. We separate between cases with 

exogenous (columns 1 and 2) and endogenous (column 3) diagnostic precision. This distinction 

allows us to cleanly identify the effects of diagnostic precision on efficiency, but also to include 

the chosen level of investment in column (3).  

In line with the non-parametric test results, insurance has a sizeable and significant 

positive impact on the efficiency index (ranging from 5 to 9 percentage points) in the exogenous 

as well as in the endogenous treatments. This effect is stronger in the presence of diagnostic 

uncertainty, as evinced by the positive and significant interaction term in (2). This analysis 

suggests that the drop in efficient service provision as a result of insurance documented in 

section 5.1 is outweighed by the increase in market entry rates documented in section 5.3, 

leading to a beneficial net impact of insurance coverage on efficiency. 
 

                                                      
25 Comparing efficiency across treatments is less meaningful, given the way our efficiency index is constructed 
and the fact that its definition varies by treatment (see previous footnote). For completeness, we note that the 
efficiency index does not vary significantly between the two exogenous treatments, and the only significant 
difference is between EXO70 and ENDO (p < 0.05, Mann-Whitney test).  



41 

Table 9: Regressions on market efficiency 

 (1) (2) (3) 
Treatment(s) EXO100 & EXO70 EXO100 & EXO70 ENDO 
Insurance 0.09*** 

(0.02) 
0.05*** 
(0.02) 

0.06** 
(0.03) 

EXO70 0.02 
(0.02) 

-0.01 
(0.03) 

 
 

UT price vector 0.02 
(0.02) 

0.02 
(0.02) 

-0.02 
(0.03) 

OT price vector -0.12*** 
(0.02) 

-0.12*** 
(0.02) 

-0.08*** 
(0.02) 

Insurance x EXO70  
 

0.08** 
(0.04) 

 
 

Investment  
 

 
 

0.02*** 
(0.00) 

Period 0.00*** 
(0.00) 

0.00*** 
(0.00) 

0.00** 
(0.00) 

constant 0.75*** 
(0.03) 

0.76*** 
(0.03) 

0.65*** 
(0.03) 

N 4704 4704 2208 
Notes: Dependent variable: Efficiency Index. The table presents random effects OLS regressions. Standard errors 
are clustered at the matching group level and stated in parentheses. The independent variables are defined as in the 
notes to Table 4 and Table 5.  * p < 0.10, ** p < 0.05, *** p < 0.01. 
 

In treatment ENDO, experts’ investments into diagnostic precision have a highly 

significant positive effect on efficiency. The intuition here is that experts who have achieved a 

higher precision are more likely to follow the signal and, thus, more likely to provide the correct 

quality. We further document an efficiency-diminishing effect of OT price vectors, which is of 

considerable magnitude. This finding is aligned with the way prices affect the behavior of 

experts in the exogenous treatments (see Prediction 1 and Result 1), with OT price vectors 

yielding lower rates of efficient service provision than EM price vectors.  

 

6. Concluding remarks 

Our paper has offered a unified theoretical framework that accommodates three important and 

common features of credence goods markets: (i) diagnostic uncertainty of experts when trying 

to identify a consumer’s problem, as is frequently the case in health care or markets for repair 

services; (ii) insurance coverage of consumers, which is frequently the case in credence goods 

markets, sometimes even compulsory (as in many countries for health care services); and (iii) 

consumer-regarding preferences of experts, reflecting the fact that despite their informational 

advantage many experts in credence goods markets do not only care about their own profits, 

but do also consider consumer’s welfare. The combination of these factors and their analysis in 

a unified theoretical framework is a novel contribution to the literature on credence goods 
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markets. Moreover, we provide an experimental test of the model in a large laboratory 

experiment with 576 participants. 

Our theoretical predictions and experimental findings largely coincide and reveal 

important effects of diagnostic uncertainty and insurance and their interaction – effects that the 

previous literature could not uncover. Diagnostic uncertainty reduces the rate of efficient 

service provision of experts in the sense that they are less likely to follow their signal about the 

consumer’s problem. Insurance has the same effect of reducing efficient service provision. 

There is an important interaction effect as well. Insurance of consumers leads to a reduction in 

experts’ investment in diagnosis and therefore to lower precision. Market entry by consumers 

increases with diagnostic precision and insurance and, overall, a higher precision as well as 

insurance coverage increase market efficiency. 

We hope that our findings – although we would not want to draw too strong conclusions 

from a laboratory experiment – can provide some evidence-based input into the policy debate 

about the organization and potential regulation of credence goods markets. For instance, our 

finding that higher diagnostic precision increases market efficiency through reducing incentives 

for over- or undertreatment suggests that technological progress to improve diagnostic precision 

is socially welcome from an efficiency point of view. Seen from this angle, it is good news 

when advances in medical science make diagnoses less error-prone (Gottschalk et al., 2020) or 

when websites help consumers to identify their needs (Kerschbamer et al., 2019). Diagnostic 

precision is also linked to insurance coverage, but this relationship has never been identified 

before. Importantly, insurance coverage provides negative incentives for diagnostic precision, 

implying that regulatory policies that introduce a requirement to buy insurance may have 

unintended side effects on experts’ effort provision to diagnose consumers’ problems properly.  

For this reason, an important avenue for future research may be to look more deeply into what 

happens when consumers can only get partial insurance – meaning that they have to pay 

deductibles even when being insured – or when they can endogenously choose the extent of 

insurance. It would be interesting to study whether markets may split up in consumers who ask 

for insurance while others remain (voluntarily) uninsured, and how experts would respond with 

their diagnosis effort and tailor their offers to both types of consumers. We leave such questions 

for future research. 
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Appendix A. Proof of Proposition 1: first-best provision strategy with exogenous precision 

We start by defining the generalized costs associated with each of the three provision strategies:  

 Strategy A: 𝐶஺ ൌ 𝑐  

 Strategy B: 𝐶஻ ൌ 𝑐 ൅ ℎ𝑣 

 Strategy C: 𝐶஼ ൌ 𝑐ሺ1െ ℎെ 𝜎൅ 2ℎ𝜎ሻ ൅ 𝑐ሺℎ ൅ 𝜎െ 2ℎ𝜎ሻ ൅ ℎሺ1 െ 𝜎ሻ𝑣. 
 

The efficient provision strategy is the one that minimizes generalize costs. Equating 𝐶஺ and 𝐶஼  results 

in the hyperbola 𝜎஺஼
ா௑ைିி஻ , as defined in equation (1) in the body of the paper. For 𝜎 ൏ 𝜎஺஼

ா௑ைିி஻ Strategy 

A is more efficient than Strategy C and vice versa for 𝜎 ൐ 𝜎஺஼
ா௑ைିி஻ . Equations 𝐶஻ and 𝐶஼  yield the 

hyperbola 𝜎஻஼
ா௑ைିி஻ defined in equation (2) in the paper. For 𝜎 ൏ 𝜎஻஼

ா௑ைିி஻ Strategy B is more efficient 

than Strategy C and vice versa for 𝜎 ൐ 𝜎஻஼
ா௑ைିி஻ . Equating 𝐶஺ and 𝐶஻ yields the line ℎ ൌ

௖̃

௩
 . For ℎ ൏

௖̃

௩
 

Strategy B is more efficient than Strategy A and vice versa for ℎ ൐
௖̃

௩
.  

Figure 1 depicts hyperbolas 𝜎஺஼
ா௑ைିி஻ and 𝜎஻஼

ா௑ைିி஻ in the ሺℎ,𝜎ሻ space, for ℎ ∈ ሾ0,1ሿ and 𝜎 ∈ ሾ0.5,1ሿ. 
The intercept of the two hyperbolas is found by equating 𝜎஺஼

ா௑ைିி஻ and 𝜎஻஼
ா௑ைିி஻ and the crossing point 

corresponds to ℎ ൌ
௖̃

௩
 and 𝜎 ൌ 0.5. From our assumption that �̃� ൏ ℎ𝑣 (and given that ℎ ∈ ሾ0,1ሿሻ it 

directly follows that �̃� ൏ 𝑣. Thus, 
௖̃

௩
∈ ሺ0,1ሻ under any constellation of the parameters ሼ�̃�, 𝑣ሽ. 

As a result, the efficient provision strategy in the EXO case has the following properties:  

(a) for 𝜎 ൏ 𝜎஺஼
ா௑ைିி஻ ൌ

௛ሺ௩ି௖̃ሻ

ሺଵିଶ௛ሻ௖̃ା௛௩
 and ℎ ∈ ሾ

௖̃

௩
, 1ሿ efficiency requires to choose Strategy A; 

(b) for 𝜎 ൏ 𝜎஻஼
ா௑ைିி஻ ൌ

ሺଵି௛ሻ௖̃

ሺଵିଶ௛ሻ௖̃ା௛௩
 and ℎ ∈ ሾ0,

௖̃

௩
ሻ efficiency requires to choose Strategy B; and 

(c) for ሼ𝜎 ൐ 𝜎஻஼
ா௑ைିி஻ ൌ

ሺଵି௛ሻ௖̃

ሺଵିଶ௛ሻ௖̃ା௛௩
∧ ℎ ∈ ሾ0,

௖̃

௩
ሻሽ and ሼ𝜎 ൐ 𝜎஺஼

ா௑ைିி஻ ൌ
௛ሺ௩ି௖̃ሻ

ሺଵିଶ௛ሻ௖̃ା௛௩
 ∧ ℎ ∈ ሾ

௖̃

௩
, 1ሿሽ 

efficiency requires to choose Strategy C. 

 
Figure 1. Optimal provision strategy with exogenous diagnostic precision. 

 
 
Note: In Area A, efficiency requires to implement Strategy A (blindly providing HQS without 
considering the diagnosis outcome); in Area B, efficiency requires to implement Strategy B (blindly 
providing LQS without considering the diagnosis outcome); and in Area C, efficiency requires to 
implement Strategy C (following the signal). 
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Appendix B. Proof of Proposition 2: first-best investment in information acquisition and first-
best provision strategy with endogenous precision 

The assumption that diagnostic precision can be acquired at the cost 𝑑ሺ𝜎 െ 0.5ሻଶ changes the 
generalized cost of Strategy C to 𝐶஼ ൌ 𝑐ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ ൅ 𝑐ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ൅ ℎሺ1 െ 𝜎ሻ𝑣 ൅
𝑑ሺ𝜎 െ 0.5ሻଶ, while Strategies A and B have the same generalized costs as outlined in Appendix A.  

Suppose that information acquisition (and following the signal) is efficient. Which diagnosis effort is 
optimal then? To address this question, we minimize 𝐶஼  with respect to 𝜎, which yields the cost-

minimizing diagnosis precision 𝜎ாே஽ைିி஻ ൌ 𝑚𝑖𝑛 ቄ
ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻ

ଶௗ
, 1ቅ , as outlined in equation (3) in 

the paper. The cost-efficient diagnostic precision implies that if the diagnosis cost is relatively low, 
namely, 𝑑 ൑ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ, efficiency requires to invest in full precision, so 𝜎ாே஽ைିி஻ ൌ 1. By 
contrast, if 𝑑 ൐ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ, efficiency entails acquiring the imperfect diagnostic precision 

𝜎ாே஽ைିி஻ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻ

ଶௗ
൏ 1. Plugging those values into the generalized cost function for 

Strategy C (as outlined above) yields the generalized cost for the strategy “invest efficiently in diagnosis 
and follow the signal”. Now, investing in diagnosis (and following the signal) is efficient if and only if 
the generalized cost for the strategy “invest efficiently in diagnosis and follow the signal” is lower than 
the generalized cost associated with Strategy A and lower than the generalized cost associated with 
Strategy B. 

To find out under which conditions investing efficiently in diagnosis and following the signal is efficient, 
we define the new boundaries between strategies A, B and C, applying the same procedure as in 
Appendix A. The boundary between strategies A and C is found by equating 𝐶஺ and 𝐶஼ , resulting in the 

hyperbola 𝜎஺஼
ாே஽ைିி஻ , as defined in equation (4) of the paper. The boundary between strategies B and C 

is found by equating 𝐶஻ and 𝐶஼ , yielding hyperbola 𝜎஻஼
ாே஽ைିி஻, as defined in equation (5) in the paper. 

Notably, 𝜎஺஼
ாே஽ைିி஻ ൌ 𝜎஻஼

ாே஽ைିி஻ ൌ 𝜎஺஼
ா௑ைିி஻ ൌ 𝜎஻஼

ா௑ைିி஻ at the point ሺℎ ൌ
௖̃

௩
 and 𝜎 ൌ 0.5ሻ for any 

constellation of the parameters ሼ�̃�, 𝑣,𝑑ሽ. 

Now it is rather straightforward to show that the optimal diagnostic precision line crosses σ୅େ
୉୒ୈ୓ି୊୆ 

and σ୆େ
୉୒ୈ୓୊୆ at the respective vertex, that is, 𝜎ாே஽ைିி஻ ൌ 𝜎஺஼

ாே஽ைିி஻ at 𝑉𝜎஺஼
ாே஽ைିி஻ (defined by 

equation (6) in the paper) and 𝜎ாே஽ைିி஻ ൌ 𝜎஻஼
ாே஽ைିி஻ at 𝑉𝜎஻஼

ாே஽ைିி஻(defined by equation (7) in the 
paper).1 

We now consider three cases, depending on the dynamics of the hyperbolas 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻, 
which are summarized in panels (a), (b), and (c) of Figure 2. Let us consider them step-by-step. 

Panel (a) embeds the case where the vertices of both hyperbolas 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻ are located 
at 𝜎 ൐ 1, implying that they lay outside the 𝜎 ∈ ሾ0.5,1ሿ area. Since the efficient diagnosis precision line 
𝜎ாே஽ைିி஻ crosses the hyperbolas precisely at their vertices, it is straightforward that 𝜎ாே஽ைିி஻ ൌ 1 if 
Strategy C is optimal. From the efficient diagnosis precision function we know that 𝜎ாே஽ைିி஻ ൌ 1 iff 
𝑑 ൑ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ. Next, we define the range of ℎ under which Strategy C is efficient. For that, 

we first search for the ℎ at which hyperbolas 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻ intersect with the 𝜎 ൌ 1 line, 

which corresponds to ℎ ൌ
ௗ

ସሺ௩ି௖̃ሻ
 and ℎ ൌ 1 െ

ௗ

ସ௖̃
, respectively. By looking at the dynamics of the two 

                                                            
1 The vertices of 𝜎஺஼

ாே஽ைିி஻ and 𝜎஻஼
ாே஽ைିி஻ are found by equating the term under the square root of the respective 

hyperbola to 0 and solving it for ℎ.  
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hyperbolas, we conclude that the vertex of 𝜎஻஼
ாே஽ைିி஻ decreases faster than the one of 𝜎஺஼

ாே஽ைିி஻ as 𝑑 

increases, implying that 𝜎ாே஽ைିி஻ ൌ 1 for parameter constellations where Strategy C is efficient –as 

long as the vertex of 𝜎஻஼
ாே஽ைିி஻ is located at 𝜎 ൐ 1. To derive this condition, we incorporate the ℎ value 

at which 𝜎஻஼
ாே஽ைିி஻ crosses 𝜎 ൌ 1, i.e. ℎ ൌ

ௗ

ସሺ௩ି௖̃ሻ
, into the 𝜎ாே஽ைିி஻ ൌ 1 condition, i.e. 𝑑 ൑

ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ. This gives us a condition on the diagnosis cost 𝑑, namely 𝑑 ൑ ቀ1 െ
ௗ

ସሺ௩ି௖̃ሻ
ቁ �̃� ൅

ௗ

ସሺ௩ି௖̃ሻ
ሺ𝑣 െ �̃�ሻ, yielding 𝑑 ൑

ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
. We therefore conclude: If the diagnosis cost d is low ሺ𝑑 ൑

ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
ሻ, 

then: 

1. for ℎ ൐ 1 െ
ௗ

ସ௖̃
 efficiency requires blindly providing the HQS without investing in diagnosis 

(Strategy A);  

2. for ℎ ൏
ௗ

ସሺ௩ି௖̃ሻ
 efficiency requires blindly providing the LQS without investing in diagnosis 

(Strategy B); and 

3. for ℎ ∈ ሾ
ௗ

ସሺ௩ି௖̃ሻ
, 1 െ

ௗ

ସ௖̃
ሿ efficiency requires acquiring precision level 𝜎ாே஽ைିி஻ ൌ 1 and 

following the signal. 

Panel (b) covers the case where the vertex of 𝜎஻஼
ாே஽ைିி஻ falls in 𝜎 ∈ ሾ0.5,1ሿ while the vertex of 

𝜎஺஼
ாே஽ைିி஻ is still at 𝜎 ൐ 1. The former condition implies 𝑑 ൐

ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
 while the latter implies 𝑑 ൑

ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
 

(derived by inserting the value of ℎ at which 𝜎஺஼
ாே஽ைିி஻ crosses 𝜎 ൌ 1, i.e. ℎ ൌ 1 െ

ௗ

ସ௖̃
, into 

the 𝜎ாே஽ைିி஻ ൌ 1 condition, i.e. 𝑑 ൑ ቀ1 െ 1 ൅
ௗ

ସ௖̃
ቁ �̃� ൅ ሺ1 െ

ௗ

ସ௖̃
ሻሺ𝑣 െ �̃�ሻ). We therefore conclude: If the 

diagnosis cost d is in an intermediate range ሺ𝑑 ∈ ቂ
ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
,
ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
ቃሻ, then: 

1. for ℎ ൐ 1 െ
ௗ

ସ௖̃
 efficiency requires blindly providing the HQS without investing in diagnosis 

(Strategy A);  

2. for ℎ ൏
௖̃ሺଶ௖̃ି௩ሻିௗ௩ାඥௗሺସ௖̃మሺଶ௖̃ିଷ௩ሻା௩మሺସ௖̃ାௗሻሻ

ሺ௩ିଶ௖̃ሻమ
 efficiency requires blindly providing the LQS 

without investing in diagnosis (Strategy B); and 

3. for ℎ ∈ ሾ
௖̃ሺଶ௖̃ି௩ሻିௗ௩ାඥௗሺସ௖̃మሺଶ௖̃ିଷ௩ሻା௩మሺସ௖̃ାௗሻሻ

ሺ௩ିଶ௖̃ሻమ
, 1 െ

ௗ

ସ௖̃
ሿ efficiency requires acquiring precision 

level 𝜎ாே஽ைିி஻ ൌ 1 and following the signal for 𝑑 ൑ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and acquiring 

precision level 𝜎ாே஽ைିி஻ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻ

ଶௗ
 and following the signal for 𝑑 ൐ ሺ1 െ ℎሻ�̃� ൅

ℎሺ𝑣 െ �̃�ሻ. 

Panel (c) refers to the case where the vertices of hyperbolas 𝜎஺஼
ாே஽ைିி஻ and 𝜎஻஼

ாே஽ைିி஻ fall into the 𝜎 ∈

ሾ0.5,1ሿ range. The latter happens when diagnosis cost gets higher than 
ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
. We, therefore, conclude: 

If the diagnosis cost d is large ሺ𝑑 ൐
ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
ሻ, then: 

1. for ℎ ൐
௖̃ሺଶ௖̃ି௩ሻାௗ௩ିඥௗሺସ௖̃మሺଷ௩ିଶ௖̃ሻା௩మሺௗିସ௖̃ሻሻ

ሺ௩ିଶ௖̃ሻమ
 efficiency requires blindly providing the HQS 

without investing in diagnosis (Strategy A);  



5 

 

2. for ℎ ൏ 
௖̃ሺଶ௖̃ି௩ሻିௗ௩ାඥௗሺସ௖̃మሺଶ௖̃ିଷ௩ሻା௩మሺସ௖̃ାௗሻሻ

ሺ௩ିଶ௖̃ሻమ
 efficiency requires blindly providing the LQS 

without investing in diagnosis (Strategy B); and  

3. for ℎ ∈ ሾ
௖̃ሺଶ௖̃ି௩ሻିௗ௩ାඥௗሺସ௖̃మሺଶ௖̃ିଷ௩ሻା௩మሺସ௖̃ାௗሻሻ

ሺ௩ିଶ௖̃ሻమ
,
௖̃ሺଶ௖̃ି௩ሻାௗ௩ିඥௗሺସ௖̃మሺଷ௩ିଶ௖̃ሻା௩మሺௗିସ௖̃ሻሻ

ሺ௩ିଶ௖̃ሻమ
ሿ efficiency 

requires acquiring precision level 𝜎ாே஽ைିி஻ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻ௖̃ା௛ሺ௩ି௖̃ሻ

ଶௗ
 and following the signal. 

 

 
Figure 2. Optimal provision strategy with choice of diagnostic precision in ENDO. 

 

(a) 𝑑 ൑ ସ௖̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
 (b) ସ௖

̃ሺ௩ି௖̃ሻ

ଷ௩ିଶ௖̃
൏ 𝑑 ൏ ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
 

 

 
(c) 𝑑 ൒ ସ௖̃ሺ௩ି௖̃ሻ

௩ାଶ௖̃
 

 
Note: In each of the three panels investing in diagnostic precision and following the signal is efficient 
for those values of h covered by the solid black line. This solid black line also gives the efficient 
precision level. For h values to the left of the (start of the) solid black line efficiency requires to 
implement Strategy B; and for h values to the right of the (end of the) black solid line efficiency requires 

to implement Strategy A. The solid red and the solid blue line are the functions 𝜎஺஼
ா௑ைିி஻and 𝜎஻஼

ா௑ைିி஻ 

defined in equations (1) and (2); the dashed red and the dashed blue line are the functions 𝜎஺஼
ாே஽ைିி஻ and 

𝜎஻஼
ாே஽ைିி஻ defined in equations (4) and (5); the solid black line is the function 𝜎ாே஽ைିி஻ defined in 

equation (3); and the dashed vertical lines are the vertices of the functions 𝜎஺஼
ாே஽ைିி஻ and 

𝜎஻஼
ாே஽ைିி஻defined in equations (6) and (7).  
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Appendix C. Proof of Proposition 3: provision strategy with exogenous precision and no 
insurance 

Similarly to propositions 1 and 2, the expert has the choice between the three pure strategies outlined in 
the paper. The fourth pure strategy – Strategy D, where the expert provides a treatment opposite to the 
signal she receives – is dominated by one of the other three strategies for any given constellation of the 
parameters ሼ𝑝෤, �̃�, ℎ, 𝑣, 𝑡ሽ. We show this by first ignoring Strategy D and deriving the provision areas for 
the case where only strategies A, B and C are available. Later we show that in the area where Strategy 
𝑋 ∈  ሼ𝐴,𝐵,𝐶ሽ is preferred to the other two strategies, Strategy X is also preferred to Strategy D. 

To characterize the expert’s provision policy for the case where only strategies A, B and C are available, 
we compare the payoffs for the expert associated with each of the three strategies. By equating the 
payoffs associated with strategies A and C (as specified in the paper) we get the boundary condition 

𝜎஺஼
ா௑ைିேூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛൫ሺଵିఒሻ௣෤ି௖̃൯ା௛ఒሺ௩ି௧ሻା௛௧

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
 or 𝜆஺஼

ா௑ைିேூ ൌ 𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

 
ሺ௛ାఙିଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ሺଵିఙሻ௧

ሺ௛ାఙିଶ௛ఙሻ௣෤ି௛ሺଵିఙሻሺ௩ି௧ሻ
. By equating the payoffs associated with strategies B and C (as specified in the 

paper) we get the boundary condition 𝜎஻஼
ா௑ைିேூ ൌ 𝑓ሺ𝜆, ℎ, 𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻ

ሺଵିଶ௛ሻሺ௖̃ିሺଵିఒሻ௣෤ሻା௛ఒሺ௩ି௧ሻା௛௧
 or 

𝜆஻஼
ா௑ைିேூ ൌ 𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ିఙାଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ఙ௧

ሺଵି௛ିఙାଶ௛ఙሻ௣෤ି௛ఙ ሺ௩ି௧ሻ
. 

Functions 𝜎஺஼
ா௑ைିேூ and 𝜎஻஼

ா௑ைିேூ are hyperbolas. To define the areas in the ሺ𝜆,𝜎ሻ space in which each 
of the three strategies is optimal for the expert, we first derive the vertices of the two hyperbolas. The 

vertex of hyperbola 𝜎஺஼
ா௑ைିேூ is 𝑉𝜆஺஼

ா௑ைିேூ ൌ
௛ሺଵି௛ሻሺ௩ሺ௣෤ି௖̃ሻା௖̃௧ሻ

ሺሺଶ௛ିଵሻ௣෤ି௛ሺ௩ି௧ሻሻమ
, while the vertex of hyperbola 𝜎஻஼

ா௑ைିேூ 

is 𝑉𝜆஻஼
ா௑ைିேூ ൌ

ି௛ሺଵି௛ሻሺ௩ሺ௣෤ି௖̃ሻା௖̃௧ሻ

ሺሺଶ௛ିଵሻ௣෤ି௛ሺ௩ି௧ሻሻమ
. 

From these expressions, it is easy to see that the two hyperbolas are geometrically similar and mirroring 
each other. Furthermore, the respective hyperbola does not exist when the associated vertex is 0. The 

latter is true iff 𝑝෤ ൌ
௖̃ሺ௩ି௧ሻ

௩
. Consequently, when 𝑝෤ ൌ

௖̃ሺ௩ି௧ሻ

௩
, the vertex 𝑉𝜆஺஼

ா௑ைିேூ changes from positive 

to negative (i.e., the curve changes from concave to convex), while the vertex 𝑉𝜆஻஼
ா௑ைିேூ changes vice 

versa (i.e., the curve changes from convex to concave).  

Next, let us derive the boundary values of functions 𝜆஺஼
ா௑ைିேூ ,𝜎஺஼

ா௑ைିேூ , 𝜆஻஼
ா௑ைିேூ and 𝜎஻஼

ா௑ைିேூ . 

 𝜆஻஼
ா௑ைିேூሺ𝜎 ൌ 1ሻ ൌ 𝜆ଵ

ா௑ைିேூ ൌ
௖̃ି௧ି௣෤

௩ି௧ି௣෤
 is the 𝜆-value of the function 𝜆஻஼

ா௑ைିேூ when 𝜎 ൌ 1. 

 𝜆஻஼
ா௑ைିேூሺ𝜎 ൌ 0.5ሻ ൌ 𝜆஺஼

ா௑ைିேூሺ𝜎 ൌ 0.5ሻ ൌ 𝜆ଶ
ா௑ைିேூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
 is the 𝜆-value of the function 

𝜆஻஼
ா௑ைିேூ or function 𝜆஺஼

ா௑ைିேூ when 𝜎 ൌ 0.5. 

 𝜆஺஼
ா௑ைିேூሺ𝜎 ൌ 1ሻ ൌ 𝜆ଷ

ா௑ைିேூ ൌ 1 െ
௖̃

௣෤
 is the 𝜆-value of the function 𝜆஺஼

ா௑ைିேூ when 𝜎 ൌ 1. 

 𝜎஺஼
ா௑ைିேூሺ𝜆 ൌ 1ሻ ൌ 𝜎ଵ

ா௑ைିேூ ൌ
1

2
൅

ℎሺ𝑣െ𝑐෤ሻെሺ1െℎሻ𝑐෤

2ሾℎሺ𝑣െ𝑐෤ሻ൅ሺ1െℎሻ𝑐෤ሿ
 is the 𝜎-value of the function 𝜎஺஼

ா௑ைିேூ when 

𝜆 ൌ 1. 

 𝜎஻஼
ா௑ைିேூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଶ

ா௑ைିேூ ൌ
1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஻஼

ா௑ைିேூ 

when 𝜆 ൌ 0. 

 𝜎஺஼
ா௑ைିேூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଷ

ா௑ைିேூ  ൌ
1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the function 𝜎஺஼

ா௑ைିேூ 

when 𝜆 ൌ 0. 
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 𝜎஻஼
ா௑ைିேூሺ𝜆 ൌ 1ሻ ൌ 𝜎ସ

ா௑ைିேூ ൌ
1

2
൅

ሺଵି௛ሻ௖̃ି௛ሺ௩ି௖̃ሻ

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
 is the 𝜎-value of the function 𝜎஻஼

ா௑ைିேூ 

when 𝜆 ൌ 1. 

Next, let us analyze one-by-one the locations of those boundary values on the 𝜆-axis and the 𝜎-axis. 

1. 𝜆ଵ
ா௑ைିேூ ൌ

௖̃ି௧ି௣෤

௩ି௧ି௣෤
: 

i. 𝜆ଵ
ா௑ைିேூ ൏ 0 iff �̃� െ 𝑡 ൏ 𝑝෤ ൏ 𝑣 െ 𝑡. 

ii. 𝜆ଵ
ா௑ைିேூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ 𝑡. 

iii. 𝜆ଵ
ா௑ைିேூ ൐ 1 iff 𝑝෤ ൐ 𝑣 െ 𝑡. 

2. 𝜆ଶ
ா௑ைିேூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
: 

i. 𝜆ଶ
ா௑ைିேூ ൏ 0 iff �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ ℎ𝑣. 

ii. 𝜆ଶ
ா௑ைିேூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii. 𝜆ଶ
ா௑ைିேூ ൐ 1 iff 𝑝෤ ൐ ℎ𝑣. 

3. 𝜆ଷ
ா௑ைିேூ ൌ 1 െ

௖̃

௣෤
: 

i. 𝜆ଷ
ா௑ைିேூ ൏ 0 iff 𝑝෤ ൏ �̃�. 

ii. 𝜆ଷ
ா௑ைିேூ ∈ ሾ0,1ሿ if �̃� ൑ 𝑝෤ ൑ 𝑝෤ ൅ �̃�. 

iii. 𝜆ଷ
ா௑ைିேூ ൐ 1 iff 𝑝෤ ൐ 𝑝෤ ൅ �̃�. 

4. 𝜎ଵ
ா௑ைିேூ ൌ

1

2
൅

ℎሺ𝑣െ𝑐෤ሻെሺ1െℎሻ𝑐෤

2ሾℎሺ𝑣െ𝑐෤ሻ൅ሺ1െℎሻ𝑐෤ሿ
: given our assumption �̃� ൏ ℎ𝑣 we immediately get 𝜎ଵ

ா௑ைିேூ ∈

ሾ0.5,1ሿ. 

5. 𝜎ଶ
ா௑ைିேூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
: 

i. 𝜎ଶ
ா௑ைିேூ ൏ 0.5 if �̃� െ ℎ𝑡 ൏ 𝑝෤ ൑ �̃�. 

ii. 𝜎ଶ
ா௑ைିேூ ∈ ሾ0.5,1ሿ iff �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii.  𝜎ଶ
ா௑ைିேூ ൐ 1 if 𝑝෤ ൐ �̃�. 

6. 𝜎ଷ
ா௑ைିேூ ൌ

1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
: 

i. 𝜎ଷ
ா௑ைିேூ ൏ 0.5 if �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. 

ii. 𝜎ଷ
ா௑ைିேூ ∈ ሾ0.5,1ሿ iff �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. 

iii.  𝜎ଷ
ா௑ைିேூ ൐ 1 𝑝෤ ൒ �̃�. 

7. 𝜎ସ
ா௑ைିேூ ൌ

1

2
൅

ሺଵି௛ሻ௖̃ି௛ሺ௩ି௖̃ሻ

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
: given our assumption �̃� ൏ ℎ𝑣 we immediately get 𝜎ସ

ா௑ைିேூ ൏

0.5. 

Let us now consider each panel of Figure 3 in detail, accounting for the underlying condition �̃� ൏ ℎ𝑣, as 

well as for the additional condition �̃� ൐ 𝑡. We derive typical locations of the curves 𝜆஺஼
ா௑ைିேூ and 

𝜆஻஼
ா௑ைିேூ when 𝑝෤ falls in the specific interval, as well as upper and lower boundaries of the respective 

functions.  

a. Panel (a) corresponds to the case where 0 ൏ 𝑝෤ ൏ �̃� െ 𝑡. Following the geometrical properties of 

hyperbolas 𝜆஺஼
ா௑ைିேூ and 𝜆஻஼

ா௑ைିேூ, function 𝜆஺஼
ா௑ைିேூ is concave and function 𝜆஻஼

ா௑ைିேூ is convex, 

since 𝑝෤ ൏
௖̃ሺ௩ି௧ሻ

௩
. Both functions intersect at 𝜆ଶ

ா௑ைିேூ . The price difference restriction immediately 

yields 𝜆ଵ
ா௑ைିேூ ∈ ሾ0,1ሿ; since 𝑝෤ ൏ �̃� െ 𝑡 ൏ �̃� െ ℎ𝑡, 𝜆ଶ

ா௑ைିேூ ∈ ሾ0,1ሿ; furthermore, 𝜎ଵ
ா௑ைିேூ ∈

ሾ0.5,1ሿ and 𝜎ସ
ா௑ைିேூ ൏ 0.5. The upper and lower boundaries of the 𝜆஺஼

ா௑ைିேூ and 𝜆஻஼
ா௑ைିேூ functions 

are determined by the location of the intercepts 𝜆ଵ
ா௑ைିேூ , 𝜆ଶ

ா௑ைିேூ and 𝜎ଵ
ா௑ைିேூ at the upper and the 

lower limit of 𝑝෤, thus at 𝑝෤ ൌ 0 and at 𝑝෤ ൌ �̃� െ 𝑡: 𝜎ଵ
ா௑ைିேூ is independent of 𝑝෤, therefore, it remains 
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constant at any 𝑝෤; 𝜆ଵ
ா௑ைିேூሺ𝑝෤ ൌ 0ሻ ൌ

௖̃ି௧

௩ି௧
 and 𝜆ଵ

ா௑ைିேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ 0; 𝜆ଶ
ா௑ைିேூሺ𝑝෤ ൌ 0ሻ ൌ

௖̃ି௛௧

௛ሺ௩ି௧ሻ
 

and 𝜆ଶ
ா௑ைିேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ

ሺଵି௛ሻ௧

௛ሺ௩ି௧ሻି௖̃ା௧
, therefore 𝜆ଶ

ா௑ைିேூሺ𝑝෤ ൌ 0ሻ ൐ 𝜆ଶ
ா௑ைିேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ always 

under the assumption 𝑡 ൏ �̃� ൏ ℎ𝑣 and both 𝜆ଵ
ா௑ைିேூ and 𝜆ଶ

ா௑ைିேூ decrease as 𝑝෤ increases from 0 to 
�̃� െ 𝑡. 

b. Panel (b) corresponds to the case where �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. As in panel (a), function 𝜆஺஼
ா௑ைିேூ is 

concave and function 𝜆஻஼
ா௑ைିேூ is convex. Since 𝑝෤ ൏ �̃� െ ℎ𝑡, 𝜆ଶ

ா௑ைିேூ ∈ ሾ0,1ሿ; furthermore, 

𝜎ଵ
ா௑ைିேூ ∈ ሾ0.5,1ሿ and 𝜎ସ

ா௑ைିேூ ൏ 0.5. Given the price difference restriction 𝑝෤ ൐ �̃� െ 𝑡, 𝜆ଵ
ா௑ைିேூ ൏

0 and 𝜎ଶ
ா௑ைିேூ ∈ ሾ0.5,1ሿ. Hence, the major difference between panel (b) and panel (a) is caused by 

a change in the curvature of the function 𝜆஻஼
ா௑ைିேூ as a result of the increase in 𝑝෤. Consequently, the 

intercept 𝜆ଵ
ா௑ைିேூ moves outside of the range 𝜆 ∈ ሾ0,1ሿ and the curve intersects the 𝜎-axis in 

𝜎ଶ
ா௑ைିேூ. The upper and lower limit of the two functions are as follows: 𝜎ଶ

ா௑ைିேூ (𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ

1,𝜎ଶ
ா௑ைିேூ(𝑝෤ ൌ �̃� െ ℎ𝑡ሻ ൌ 0.5; 𝜆ଶ

ா௑ைିேூሺ𝑝෤ ൌ �̃� െ 𝑡ሻ ൌ
ሺଵି௛ሻ௧

௛ሺ௩ି௧ሻି௖̃ା௧
 and 𝜆ଶ

ா௑ைିேூሺ𝑝෤ ൌ �̃� െ ℎ𝑡ሻ ൌ 0. 

Therefore, both 𝜎ଶ
ா௑ைିேூ and 𝜆ଶ

ா௑ைିேூ decrease as 𝑝෤ moves from the lower limit to the upper limit. 

As in the previous sub-case 𝜎ଵ
ா௑ைିேூ remains constant. 

c. Panel (c) corresponds to the case where �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. In this range of 𝑝෤, the shape of functions 

𝜆஺஼
ா௑ைିேூ and 𝜆஻஼

ா௑ைିேூ changes at 𝑝෤ ൌ
௖̃ሺ௩ି௧ሻ

௩
. As long as 𝑝෤ ൏

௖̃ሺ௩ି௧ሻ

௩
, 𝜆஺஼
ா௑ைିேூ is concave and 

𝜆஻஼
ா௑ைିேூ is convex. At 𝑝෤ ൌ

௖̃ሺ௩ି௧ሻ

௩
, both functions are straight lines. At 𝑝෤ ൐

௖̃ሺ௩ି௧ሻ

௩
, 𝜆஻஼
ா௑ைିேூ is 

concave and 𝜆஺஼
ா௑ைିேூ is convex. However, since 𝑝෤ ൐ �̃� െ ℎ𝑡, 𝜆ଶ

ா௑ைିேூ ൏ 0 and the 𝜆஻஼
ா௑ைିேூ curve 

does not appear in the 𝜆 ∈ ሾ0,1ሿ interval. Since �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�, 𝜎ଷ
ா௑ைିேூ ∈ ሾ0.5,1ሿ; 𝜎ଵ

ா௑ைିேூ ∈
ሾ0.5,1ሿ always. When 𝑝෤ is at its lower limit, 𝜎ଷ

ா௑ைିேூሺ𝑝෤ ൌ �̃� െ ℎ𝑡ሻ ൌ 0.5. When 𝑝෤ is at its upper 

limit, 𝜎ଷ
ா௑ைିேூሺ𝑝෤ ൌ �̃�ሻ ൌ 1. Therefore, 𝜎ଷ

ா௑ைିேூ increases as 𝑝෤ increases from the lower to the 

upper limit, while 𝜎ଵ
ா௑ைିேூ remains constant. 

d. Panel (d) corresponds to the case where 𝑝෤ ൐ �̃�. In this range of 𝑝෤, 𝜆஺஼
ா௑ைିேூ remains convex and 

𝜆஻஼
ா௑ைିேூ remains concave. However, since 𝜆ଶ

ா௑ைିேூ ൏ 0 for 𝑝෤ ൐ �̃�, the 𝜆஻஼
ா௑ைିேூ curve remains 

outside the 𝜆 ∈ ሾ0,1ሿ range. Since 𝑝෤ ൐ �̃�, 𝜆ଵ
ா௑ைିேூ ∈ ሾ0,1ሿ; 𝜎ଵ

ா௑ைିேூ ∈ ሾ0.5,1ሿ always. At the lower 

limit of 𝑝෤ ሺ𝑝෤ ൌ �̃�ሻ, 𝜆ଷ
ா௑ைିேூሺ𝑝෤ ൌ �̃�ሻ ൌ 0, and 𝜆ଷ

ா௑ைିேூ increases as 𝑝෤ increases. As in the previous 

sub-case 𝜎ଵ
ா௑ைିேூ remains constant. 

 

We complete the proof by showing that Strategy D, where the expert provides a treatment opposite to 
the signal she receives, is dominated by one of the other three strategies for any given parameter 

constellation. Strategy D is associated with the following utility for the expert: Π஽ ൌ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ∆ ൅
ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ∆ െ ℎ𝜎𝑡 ൅ 𝜆ሾሺ1 െ ℎ𝜎ሻ𝑣 െ 𝑝ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻ െ 𝑝ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ൅ ℎ𝜎𝑡ሿ. First 

consider panel (a) of Figure 3. In this panel Strategy A is strictly preferred over the other two strategies 

for constellations satisfying 𝜆 ൐ 𝜆ଶ
ா௑ைିேூand 𝜎 ൏  𝜎஺஼

ா௑ைିேூ. We now show that for all 𝜆 ൐ 𝜆ଶ
ா௑ைିேூ we 

have  Π஺ ൐  Π஽. To see this note that  Π஺ െ  Π஽ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝෤ െ �̃�ሻ ൅ ሺ1 െ 𝜆ሻ𝑝෤ ൅ 𝜆ℎ𝜎ሺ𝑣 െ
𝑡ሻ ൅ ℎ𝜎𝑡, which is zero at (𝜆 ൌ 𝜆ଶ

ா௑ைିேூand 𝜎 ൌ 0.5) and strictly increasing in 𝜆 and 𝜎. Next note that 
Strategy B is strictly preferred over the other two strategies for constellations satisfying 𝜆 ൏
 𝜆ଶ
ா௑ைିேூand 𝜎 ൏  𝜎஻஼

ா௑ைିேூ. For 𝜆 ൏  𝜆ଶ
ா௑ைିேூ we have  Π஻ ൐  Π஽ since  Π஻ െ  Π஽ ൌ ሺℎ ൅ 𝜎 െ

2ℎ𝜎ሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ሺ𝜎 െ 2ℎ𝜎 െ ℎሻ𝑝෤ ൅ ℎሺ1 െ 𝜎ሻሺ𝜆ሺ𝑡 െ 𝑣ሻ െ 𝑡ሻ is zero at (𝜆 ൌ  𝜆ଶ
ா௑ைିேூand 𝜎 ൌ  0.5) 

and strictly decreasing in 𝜆 and strictly increasing in 𝜎. Finally note that  Π஼ െ  Π஽ ൌ
ሺ1 െ 𝜎ሻ൫ሺ𝑝෤ െ �̃�ሻሺ1 െ 2ℎሻ െ 𝜆ሺ1 െ 2ℎሻ𝑝෤ െ 𝜆ℎሺ𝑣 െ 𝑡ሻ െ ℎ𝑡൯ is zero at (𝜆 ൌ  𝜆ଶ

ா௑ைିேூand 𝜎 ൌ  0.5) 

and strictly increasing in 𝜆 and 𝜎. Thus, in panel (a) of Figure 3 Strategy D is dominated by at least one 
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of the other three strategies for any parameter constellation. The proof for panels (b), (c) and (d) is 
similar and available upon request.  

 

Figure 3. Expert provision behavior with exogenous precision and no insurance (EXO-NI). 

 

  
ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  
ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ 𝑝෤ ൒ �̃� 

 
Note: The blue curve is each panel is the hyperbola defined in equation (8) in the paper, and the red 
curve in panels (a) and (b) is the hyperbola defined in equation (9) in the paper. The intercept points 

𝜆ଵ
ா௑ைିேூ , 𝜆ଶ

ா௑ைିேூ , 𝜆ଷ
ா௑ைିேூ and 𝜎ଵ

ா௑ைିேூ ,𝜎ଶ
ா௑ைିேூ ,𝜎ଷ

ா௑ைିேூare defined as: 𝜆ଵ
ா௑ைିேூ ൌ

௖̃ି௧ି௣෤

௩ି௧ି௣෤
; 

𝜆ଶ
ா௑ைିேூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻି௣෤
; 𝜆ଷ

ா௑ைିேூ ൌ 1 െ
௖̃

௣෤
;  𝜎ଵ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ሻିሺଵି௛ሻ௖̃

ଶሾ௛ሺ௩ି௖̃ሻାሺଵି௛ሻ௖̃ሿ
; 𝜎ଶ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௣෤ି௖̃ା௧ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
;  𝜎ଷ

ா௑ைିேூ ൌ
ଵ

ଶ
൅

௛ሺ௣෤ି௖̃ା௧ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௣෤ି௖̃ା௧ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 
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Appendix D. Proof of Proposition 4: provision strategy with exogenous precision and full 
insurance 

To analyze expert’s provision behavior with exogenous precision and with full insurance, we proceed 
in a similar way as in Appendix C (EXO-NI case). That is, we first ignore Strategy D and derive the 
provision areas for the case where only strategies A, B and C are available. Later we show that in area 
X ∈ {A, B, C}, Strategy X strictly dominates Strategy D.2 

The boundary between strategies A and C (as specified in equation (10) in the paper) is now defined by 

𝜎஺஼
ா௑ைିிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

௛ሺ௖̃ି௣෤ሻି௛ఒሺ௩ି௧ሻି௛௧

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 or 𝜆஺஼

ா௑ைିிூ ൌ 𝑓ሺ𝜎, ℎ, 𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺ௛ାఙିଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ሺଵିఙሻ௧

௛ሺଵିఙሻሺ௧ି௩ሻ
. The boundary between strategies B and C (as specified in equation (11) in the 

paper) is defined by 𝜎஻஼
ா௑ைିிூ ൌ 𝑓ሺ𝜆, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻ

ሺଵିଶ௛ሻሺ௣෤ି௖̃ሻି௛ఒሺ௩ି௧ሻି௛௧
 or 𝜆஻஼

ா௑ைିிூ ൌ

𝑓ሺ𝜎, ℎ,𝑝෤, �̃�, 𝑣, 𝑡ሻ ൌ
ሺଵି௛ିఙାଶ௛ఙሻሺ௣෤ି௖̃ሻା௛ఙ௧

௛ఙ ሺ௧ି௩ሻ
. 

Next, we derive the vertices of the hyperbolas 𝜎஺஼
ா௑ைିேூ and 𝜎஻஼

ா௑ைିேூ to define the areas in the ሺ𝜆,𝜎ሻ 
space in which each of the three strategies is optimal for the expert. The vertex of hyperbola 𝜎஺஼

ா௑ைିிூ is 

𝑉𝜆஺஼
ா௑ைିிூ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻ

௛ሺ௩ି௧ሻ
, while the vertex of hyperbola 𝜎஻஼

ா௑ைିிூ is 𝑉𝜆஻஼
ா௑ைିிூ ൌ

ିሺଵି௛ሻሺ௣෤ି௖̃ሻ

௛ሺ௩ି௧ሻ
. 

As in the EXO-NI case, the two hyperbolas are geometrically similar and mirroring each other. 
Furthermore, the respective hyperbola does not exist when the associated vertex is 0. The latter is true 

iff 𝑝෤ ൌ �̃�. Consequently, when 𝑝෤ ൌ �̃�, the vertex 𝑉𝜆஺஼
ா௑ைିிூ  changes from positive to negative (i.e. the 

curve changes from concave to convex), while the vertex 𝑉𝜆஻஼
ா௑ைିிூ changes vice versa (i.e. the curve 

changes from convex to concave).  

Next, let us derive the boundary values of the functions 𝜆஺஼
ா௑ைିிூ ,𝜎஺஼

ா௑ைିிூ , 𝜆஻஼
ா௑ைିிூ and 𝜎஻஼

ா௑ைିிூ . 

 𝜆஻஼
ா௑ைିிூሺ𝜎 ൌ 1ሻ ൌ 𝜆ଵ

ா௑ைିிூ ൌ
௖̃ି௧ି௣෤

௩ି௧
 is the 𝜆-value of the function 𝜆஻஼

ா௑ைିிூ when 𝜎 ൌ 1. 

 𝜆஻஼
ா௑ைିிூሺ𝜎 ൌ 0.5ሻ ൌ 𝜆஺஼

ா௑ைିிூሺ𝜎 ൌ 0.5ሻ ൌ 𝜆ଶ
ா௑ைିிூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
 is the 𝜆-value of the function 

𝜆஻஼
ா௑ைିிூ or function 𝜆஺஼

ா௑ைିிூ when 𝜎 ൌ 0.5. 
 𝜆஺஼

ா௑ைିிூሺ𝜎 ൌ 1ሻ ൌ ∞ is the 𝜆-value of the function 𝜆஺஼
ா௑ைିிூ when 𝜎 ൌ 1. 

 𝜎஺஼
ா௑ைିிூሺ𝜆 ൌ 1ሻ ൌ 𝜎ଵ

ா௑ைିிூ ൌ
1

2
൅

ℎሺ𝑐෤െ𝑝෤െ𝑣ሻെሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
 is the 𝜎-value of the function 𝜎஺஼

ா௑ைିிூ 

when 𝜆 ൌ 1. 

 𝜎஻஼
ா௑ைିிூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଶ

ா௑ைିிூ ൌ 𝜎ଶ
ா௑ைିேூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻെℎሺ𝑝෤െ𝑐෤൅𝑡ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the 

function 𝜎஻஼
ா௑ைିிூ when 𝜆 ൌ 0. 

 𝜎஺஼
ா௑ைିிூሺ𝜆 ൌ 0ሻ ൌ 𝜎ଷ

ா௑ைିிூ  ൌ 𝜎ଷ
ா௑ைିேூ ൌ

1

2
൅

ℎሺ𝑝෤െ𝑐෤൅𝑡ሻെሺ1െℎሻሺ𝑐෤െ𝑝෤ሻ

2ሾℎሺ𝑝෤െ𝑐෤൅𝑡ሻ൅ሺ1െℎሻሺ𝑐෤െ𝑝෤ሻሿ
 is the 𝜎-value of the 

function 𝜎஺஼
ா௑ைିிூ when 𝜆 ൌ 0. 

 𝜎஻஼
ா௑ைିிூሺ𝜆 ൌ 1ሻ ൌ 𝜎ସ

ா௑ைିிூ ൌ
1

2
൅

ሺ1െℎሻሺ𝑝෤െ𝑐෤ሻെℎሺ𝑐෤െ𝑝෤െ𝑣ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
 is the 𝜎-value of the function 𝜎஻஼

ா௑ைିிூ 

when 𝜆 ൌ 1. 

                                                            
2 This latter proof is similar to that in Appendix C and is available from the authors upon request. 
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Next, let us analyze one-by-one the locations of the just derived boundary values on the 𝜆-axis and the 
𝜎-axis. 

1. 𝜆ଵ
ா௑ைିிூ ൌ

௖̃ି௧ି௣෤

௩ି௧
: 

i. 𝜆ଵ
ா௑ைିிூ ൏ 0 iff 𝑝෤ ൐ �̃� െ 𝑡. 

ii. 𝜆ଵ
ா௑ைିிூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ 𝑡. 

iii. 𝜆ଵ
ா௑ைିிூ ൐ 1 never as long as �̃� ൏ 𝑣. 

2. 𝜆ଶ
ா௑ைିிூ ൌ

௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
: 

i. 𝜆ଶ
ா௑ைିிூ ൏ 0 iff 𝑝෤ ൐ �̃� െ ℎ𝑡. 

ii. 𝜆ଶ
ா௑ைିிூ ∈ ሾ0,1ሿ iff 𝑝෤ ൏ �̃� െ ℎ𝑡. 

iii. 𝜆ଶ
ா௑ைିிூ ൐ 1 never as long as �̃� ൏ ℎ𝑣. 

3. 𝜎ଵ
ா௑ைିிூ ൌ

1

2
൅

ℎሺ𝑐෤െ𝑝෤െ𝑣ሻെሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
:  

i. 𝜎ଵ
ா௑ைିிூ ൏ 0.5 never, given our assumption �̃� ൏ ℎ𝑣. 

ii. 𝜎ଵ
ா௑ைିிூ ∈ ሾ0.5,1ሿ iff 𝑝෤ ൏ �̃�. 

iii. 𝜎ଵ
ா௑ைିிூ ൐ 1 iff 𝑝෤ ൒ �̃�. 

4. 𝜎ଶ
ா௑ைିிூ is identical to 𝜎ଶ

ா௑ைିேூ and conditions are defined in Appendix C. 

5. 𝜎ଷ
ா௑ைିிூ is identical to 𝜎ଷ

ா௑ைିேூ and conditions are defined in Appendix C. 

6. 𝜎ସ
ா௑ைିிூ ൌ

1

2
൅

ሺ1െℎሻሺ𝑝෤െ𝑐෤ሻെℎሺ𝑐෤െ𝑝෤െ𝑣ሻ

2ሾሺ1െℎሻሺ𝑝෤െ𝑐෤ሻ൅ℎሺ𝑐෤െ𝑝෤െ𝑣ሻሿ
: given our assumption �̃� ൏ 𝑣 we immediately get 𝜎ସ

ா௑ைିிூ ൐

1. 

Next, let us consider each sub-case of Figure 4, accounting for the underlying condition �̃� ൏ ℎ𝑣, as well 

as for the additional condition �̃� ൐ 𝑡. We derive typical locations of the curves 𝜆஺஼
ா௑ைିிூ and 𝜆஻஼

ா௑ைିிூ 

when 𝑝෤ falls in the specific interval and compare these with the 𝜆஺஼
ா௑ைିேூ and the 𝜆஻஼

ா௑ைିேூ curve. 

a. Panel (a) corresponds to the case where 0 ൏ 𝑝෤ ൏ �̃� െ 𝑡. In this case 𝜆஺஼
ா௑ைିிூ is concave and 

𝜆஻஼
ா௑ைିிூ  is convex, since 𝑝෤ ൏ �̃�. Both function intersect at 𝜆ଶ

ா௑ைିிூ . The price difference restriction 

immediately yields that 𝜆ଵ
ா௑ைିிூ ∈ ሾ0,1ሿ and 𝜆ଶ

ா௑ைିிூ ∈ ሾ0,1ሿ since 𝑝෤ ൏ �̃� െ 𝑡 ൏ �̃� െ ℎ𝑡; 𝜎ଵ
ா௑ைିிூ ∈

ሾ0.5,1ሿ. Compared to the NI case, Area C shifts to the left with 𝜆ଵ
ா௑ைିிூ ൏ 𝜆ଵ

ா௑ைିேூ, 𝜆ଶ
ா௑ைିிூ ൏

𝜆ଶ
ா௑ைିேூ, and 𝜎ଵ

ா௑ைିிூ ൐ 𝜎ଵ
ா௑ைିேூ. The dynamics of the intercept points 𝜆ଵ

ா௑ைିிூ , 𝜆ଶ
ா௑ைିிூ , 

𝜎ଵ
ா௑ைିிூ as 𝑝෤ increases from 0 to �̃� െ 𝑡 is similar to the respective intercepts of the EXO-NI case, 

namely 𝜆ଵ
ா௑ைିிூ  and 𝜆ଶ

ா௑ைିிூ decrease and 𝜎ଵ
ா௑ைିிூ increases as 𝑝෤ increases. 

b. Panel (b) corresponds to the case where �̃� െ 𝑡 ൏ 𝑝෤ ൏ �̃� െ ℎ𝑡. Under this price difference restriction 

𝜆஺஼
ா௑ைିிூ remains concave and 𝜆஻஼

ா௑ைିிூ  is convex, since 𝑝෤ ൏ �̃�. Since 𝑝෤ ൏ �̃� െ ℎ𝑡, 𝜆ଶ
ா௑ைିேூ ∈ ሾ0,1ሿ 

and 𝜎ଵ
ா௑ைିேூ ∈ ሾ0.5,1ሿ. Given the price difference restriction 𝑝෤ ൐ �̃� െ 𝑡, 𝜆ଵ

ா௑ைିிூ ൏ 0 and 

𝜎ଶ
ா௑ைିிூ ∈ ሾ0.5,1ሿ. Compared to the location of the EXO-NI functions, 𝜆ଶ

ா௑ைିிூ ൏ 𝜆ଶ
ா௑ைିேூ and 

𝜎ଵ
ா௑ைିிூ ൐ 𝜎ଵ

ா௑ைିேூ, while 𝜎ଶ
ா௑ைିிூ ൌ 𝜎ଶ

ா௑ைିேூ. As 𝑝෤ moves from the lower limit to the upper 

limit, 𝜆ଶ
ா௑ைିிூ decreases, 𝜎ଵ

ா௑ைିிூ increases and 𝜎ଶ
ா௑ைିிூ decreases. 

c. Panel (c) corresponds to the case where �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃�. In this range of 𝑝෤, 𝜆஺஼
ா௑ைିிூ remains 

concave and 𝜆஻஼
ா௑ைିிூ remains convex, since 𝑝෤ ൏ �̃�. Since 𝑝෤ ൐ �̃� െ ℎ𝑡, 𝜆ଶ

ா௑ைିிூ ൏ 0 and the 

𝜆஻஼
ா௑ைିிூ  curve does not appear in the (𝜆 ∈ ሾ0,1ሿ,𝜎 ∈ ሾ0.5,1ሿሻ range, same as 𝜆஻஼

ா௑ைିேூ . Since �̃� െ
ℎ𝑡 ൏ 𝑝෤ ൏ �̃�, 𝜎ଵ

ா௑ைିிூ ∈ ሾ0.5,1ሿ; 𝜎ଷ
ா௑ைିிூ ∈ ሾ0.5,1ሿ always. As compared to the EXO-NI case, Area 

C shrinks upward, since 𝜎ଵ
ா௑ைିிூ ൐ 𝜎ଵ

ா௑ைିேூ and 𝜎ଷ
ா௑ைିிூ ൌ 𝜎ଷ

ா௑ைିேூ. As a consequence, the 
range of ሼ𝜆,𝜎ሽ parameter constellations under which Strategy C is optimal is much smaller in FI, as 
compared to NI.  
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d. Panel (d) corresponds to the case where 𝑝෤ ൒ �̃�. In this range of 𝑝,෥  𝜆஺஼
ா௑ைିிூ turns convex and 

𝜆஻஼
ா௑ைିிூ  turns concave. Since 𝑝෤ ൒ �̃�, 𝜎ଵ

ா௑ைିிூ ൐ 1 and 𝜎ଷ
ா௑ைିிூ ൐ 1, which brings the 𝜆஺஼

ா௑ைିிூ 

curve outside the ሺ𝜆 ∈ ሾ0,1ሿ,𝜎 ∈ ሾ0.5,1ሿሻ range, while 𝜆஺஼
ா௑ைିேூ remains in the range of interest. As 

a result, when 𝑝෤ ൒ �̃� there exists no ሼ𝜆,𝜎ሽ parameter constellation under which Strategy C is optimal 
when there is full insurance. 

 

Figure 4. Expert provision behavior with exogenous precision, no insurance and full insurance. 

e.  

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑ �̃� െ 𝑡 ሺ𝑏ሻ �̃� െ 𝑡 ൏ 𝑝෤ ൑ �̃� െ ℎ𝑡 

  
ሺ𝑐ሻ �̃� െ ℎ𝑡 ൏ 𝑝෤ ൏ �̃� ሺ𝑑ሻ 𝑝෤ ൒ �̃� 

 
Note: This figure shows the effect of introducing insurance in the setting with exogenous precision. The 
solid red and the solid blue line, as well as the areas A, B and C, are as defined in Proposition 3 and they 
characterize the optimal provision areas in the EXO-NI case. The dashed red and the dashed blue line 
are the hyperbolas defined in equations (10) and (11) and they define the optimal provision areas in the 

EXO-FI case. The intercept points 𝜆ଵ
ா௑ைିேூ , 𝜆ଶ

ா௑ைିேூ , 𝜆ଷ
ா௑ைିேூ and 𝜎ଵ

ா௑ைିேூ ,𝜎ଶ
ா௑ைିேூ ,𝜎ଷ

ா௑ைିேூare as 

defined in the note to Figure 3. The intercept points 𝜆ଵ
ா௑ைିிூ , 𝜆ଶ

ா௑ைିிூ and 𝜎ଵ
ா௑ைିிூare defined as: 

𝜆ଵ
ா௑ைିிூ ൌ

௖̃ି௧ି௣෤

௩ି௧
;  𝜆ଶ

ா௑ைିிூ ൌ
௖̃ି௛௧ି௣෤

௛ሺ௩ି௧ሻ
; ;  𝜎ଵ

ா௑ைିிூ ൌ
ଵ

ଶ
൅

௛ሺ௩ି௖̃ା௣෤ሻିሺଵି௛ሻሺ௖̃ି௣෤ሻ

ଶሾ௛ሺ௩ି௖̃ା௣෤ሻାሺଵି௛ሻሺ௖̃ି௣෤ሻሿ
. 
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Appendix E. Proof of Proposition 5: investment in information acquisition and provision 
behavior with no insurance 

We again start by ignoring Strategy D – verifying later that for each parameter constellation Strategy D 
is strictly dominated by one of the other three pure strategies.3 Strategies A, B and C are now associated 
with the following payoffs for the expert: 

 Strategy A: Π஺ ൌ 𝑝 െ 𝑐 ൅ 𝜆ሾ𝑣 െ 𝑝ሿ  

 Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 ൅ 𝜆ሾሺ1െ ℎሻ𝑣 െ 𝑝 ൅ ℎ𝑡ሿ  

 Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ

ℎሺ1 െ 𝜎ሻ𝑡 െ 𝑑ሺ𝜎 െ 0.5ሻଶ ൅ 𝜆 ቂሺ1 െ ℎ ൅ ℎ𝜎ሻ𝑣 െ 𝑝ሺℎ ൅ 𝜎 െ

2ℎ𝜎ሻ െ 𝑝ሺ1െ ℎെ 𝜎൅ 2ℎ𝜎ሻ ൅ ℎሺ1 െ 𝜎ሻ𝑡ቃ . 
 

We derive expert investment in diagnostic precision and her provision behavior in three steps.  

Step 1. We first derive the profit-maximizing diagnosis precision level assuming that investing in 
diagnosis and following the signal is optimal. Later we will derive the conditions under which investing 
in diagnosis and following the signal is optimal. To derive the optimal diagnosis effort we maximize Π஼  

with respect to 𝜎, which yields the profit-maximizing diagnosis precision 𝜎ாே஽ைିேூ ൌ min ሼ
ଵ

ଶ
൅

ሺଵି௛ሻሺ௖̃ି௣෤ሻି௛ሺ௖̃ି௣෤ି௧ሻାఒሾሺଵି௛ሻ௣෤ା௛ሺ௩ି௧ି௣෤ሻሿ

ଶௗ
, 1ሽ, as presented in equation (12) in the body of the paper. 

Equation (12) implies 𝜎ாே஽ைିேூ ∈ ሺ0.5,1ሻ for 𝑑 ൐ ሺ1 െ ℎሻሺ�̃� െ 𝑝෤ሻ െ ℎሺ�̃� െ 𝑝෤ െ 𝑡ሻ ൅ 𝜆ሾሺ1 െ ℎሻ𝑝෤ ൅
ℎሺ𝑣 െ 𝑡 െ 𝑝෤ሻሿ and 𝜎ாே஽ைିேூ ൌ 1 for 𝑑 ൑ ሺ1 െ ℎሻሺ�̃� െ 𝑝෤ሻ െ ℎሺ�̃� െ 𝑝෤ െ 𝑡ሻ ൅ 𝜆ሾሺ1 െ ℎሻ𝑝෤ ൅ ℎሺ𝑣 െ 𝑡 െ
𝑝෤ሻሿ.  

Step 2. We derive the boundary conditions between strategies A, B, and C and specify their geometrical 

properties. The boundary curves 𝜎஺஼
ாே஽ைିேூand 𝜎஻஼

ாே஽ைିேூare (quadratic) hyperbolic functions of the 
following (two-part) form.  

 𝜎஺஼ ሺ௔ሻ
ாே஽ைିேூ ൌ

ఒሺሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻሻ

ଶௗ
൅

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻା௛௧ାௗାටௗሺସ௛൫௖̃ି௣෤ା௧ିఒሺ௩ି௧ି௣෤ሻ൯ିௗሻାሺሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାௗାఒ௣෤ሺଵିଶ௛ሻା௛ሺఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
 ; 

 𝜎஺஼ ሺ௕ሻ
ாே஽ைିேூ ൌ

ఒሺሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻሻ

ଶௗ
െ

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻା௛௧ାௗାටௗሺସ௛൫௖̃ି௣෤ା௧ିఒሺ௩ି௧ି௣෤ሻ൯ିௗሻାሺሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାௗାఒ௣෤ሺଵିଶ௛ሻା௛ሺఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
;  

 𝜎஻஼ ሺ௔ሻ
ாே஽ைିேூ ൌ

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻାௗା௛௧ାඥௗሺସሺଵି௛ሻሺ௣෤ି௖̃ሻିௗሻାሺሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାௗା௛ሺఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
; 

 𝜎஻஼ ሺ௕ሻ
ாே஽ைିேூ ൌ

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻାௗା௛௧ିඥௗሺସሺଵି௛ሻሺ௣෤ି௖̃ሻିௗሻାሺሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାௗା௛ሺఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
. 

Under our assumption that �̃� ൏ ℎ𝑣, only the right arm of the hyperbola 𝜎஻஼
ாே஽ைିேூ is relevant for the 

range (𝜆 ∈ ሾ0,1ሿ and 𝜎 ∈ ሾ0.5,1ሿሻ. This holds true since under �̃� ൏ ℎ𝑣, hyperbola 𝜎஻஼
ாே஽ைିேூalways 

                                                            
3 The latter proof is similar to that in Appendix C and is available upon request. 
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remains horizontal and the right arm moves leftward as 𝑝෤ increases. The vertex of the right arm of 

𝜎஻஼
ாே஽ைିேூ – 𝜆஻஼

ாே஽ைିேூ  – is specified in equation (14) of the paper and it is decreasing as 𝑝෤ increases. 

The binding constraint (defined by equating  𝜆஻஼
ாே஽ைିேூ to 0) is given in equation (16).  

When it comes to 𝜎஺஼
ாே஽ைିேூ, depending on the magnitude of diagnosis cost 𝑑, either only the right arm 

or both arms of the hyperbola 𝜎஺஼
ாே஽ைିேூ are relevant in the (𝜆 ∈ ሾ0,1ሿ and 𝜎 ∈ ሾ0.5,1ሿሻ space as long as 

�̃� ൏ ℎ𝑣. This boundary value of 𝑑 is provided in equation (17) and is derived in the following way:  

Unlike 𝜎஻஼
ாே஽ைିேூ, hyperbola 𝜎஺஼

ாே஽ைିேூ turns from vertical to horizontal at some 𝑝෤. This 𝑝෤ is derived by 

equating the vertex of the left arm to the vertex of the right arm of 𝜎஺஼
ாே஽ைିேூ . The vertex of the right 

arm of 𝜎஺஼
ாே஽ைିேூ –𝜆஺஼

ாே஽ைିேூ  – is specified in equation (13) in the paper. The binding constraint (defined 

by equating  𝜆஺஼
ாே஽ைିேூ to 0) is given in equation (15). The vertex of the left arm of 𝜎஺஼

ாே஽ைିேூ is defined 
as:  

𝜆஺஼
ாே஽ைିேூ∗ ൌ

ௗሺ௛ሺ௩ି௧ሻି௣෤ሻି൫ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻା௛௧൯

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
൅

ටௗሾௗ൫௣෤ି௛ሺ௩ି௧ሻ൯
మ
ାସ௛ሺଵି௛ሻሺሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻሺ௣෤௩ି௖ ෥ሺ௩ି௧ሻሻሿ

൫ሺଵିଶ௛ሻ௣෤ା௛ሺ௩ି௧ሻ൯
మ  .  

By equating the two vertices and solving the resulting equality for 𝑝෤, we obtain the critical value of the 
price difference. For 

𝑝෤ ൐ 𝑝෤஺஼
∗ ൌ

௛ሺ௧ି௩ሻሺଶሺ௛ିଵሻሺ௖̃ሺଶ௛ିଵሻା௛௩ሻାௗሻାଶඥሺ௛ିଵሻమ௛మሺ௩ି௧ሻమሺ௖̃మሺଵିଶ௛ሻమାଶ௖̃ሺௗା௛௩ሺଵିଶ௛ሻሻା௛௩ሺ௛௩ିଶௗሻሻ

ௗାସሺ௛ିଵሻሺଶ௛ିଵሻ௛௩
 , 

𝜎஺஼
ாே஽ைିேூ turns from a vertical into a conjugative horizontal hyperbola. 

 

Step 3. The boundary conditions on 𝑑 are derived: For that, we insert 𝑝෤஺஼
∗  into the 𝜎஺஼

ாே஽ைିேூ function, 
equate the resulting expression to 0 and solve for 𝜆. This 𝜆 is then equated to zero and the resulting 
equation is solved for 𝑑. This way, we obtain a boundary value for d – 𝑑∗as defined in equation (17) of 

the paper – which determines whether only the right arm or both arms of 𝜎஺஼
ாே஽ைିேூ are relevant for 

deriving the expert’s provision behavior.  

If 𝑑 ൏ 𝑑∗ (the case depicted in Figure 5), 𝜎஺஼
ாே஽ைିேூ turns from vertical to horizontal at 𝜆 ൏ 0; thus, only 

the right arm appears in the 𝜆 ∈ ሾ0,1ሿ interval.  

If 𝑑 ൒ 𝑑∗, 𝜎஺஼
ாே஽ைିேூ  turns from vertical to horizontal at some 𝜆 ∈ ሾ0,1ሿ. As a result, both the left and 

the right arm of 𝜎஺஼
ாே஽ைିேூ appear in the 𝜆 ∈ ሾ0,1ሿ interval. Here we have to distinguish two subcases 

(see next paragraph) – they are covered in figures E1 and E2 below. 

The optimal precision line 𝜎ாே஽ைିேூ crosses the hyperbolas 𝜎஺஼ 
ாே஽ைିேூand 𝜎஻஼ 

ாே஽ைିேூ at their vertices, 
similarly to the efficient provision case described in Appendix B. Thus, identifying the location of the 
vertices with respect to the 𝜆 axis under different parameter constellations is crucial for deriving the 
expert’s provision behavior. Since we consider 𝜆 ∈ ሾ0,1ሿ, the binding constraints (15) and (16) follow 
and fully characterize the location of the vertices when 𝑑 ൏ 𝑑∗. When 𝑑 ൒ 𝑑∗, two sub-cases need to be 

distinguished, depending on the location of 𝜆஻஼
ாே஽ைିேூ at 𝑝෤ ൌ 𝑝෤஺஼

∗ . Firstly, the subcase where 

𝜆஻஼
ாே஽ைିேூ ൑ 0 when 𝑝෤ ൌ 𝑝෤஺஼

∗ ; this subcase is covered in Figure E1. Secondly, the subcase where 

𝜆஻஼
ாே஽ைିேூ ൐ 0 when 𝑝෤ ൌ 𝑝෤஺஼

∗ ; this subcase is covered in Figure E2. These two sub-cases are separated 
by the second boundary value of 𝑑 ൌ 𝑑∗∗∗. 
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Due to the complex quadratic form, it is impossible to derive an explicit parametric solution for 𝑑∗∗∗. 
However, one can always obtain a numerical solution for any constellation of parameters ሼ𝑝෤, �̃�, ℎ, 𝑣, 𝑡ሽ. 
The numerical solution can be obtained by either substituting 𝑝෤ ൌ 𝑝෤஺஼

∗  into 𝜆஻஼
ாே஽ைିேூ, setting the 

resulting equality to zero and solving for 𝑑, or by solving the following system of equations for 𝑑: 

ቊ
𝜆஺஼
ாே஽ைିேூ∗ ൌ 𝜆஺஼

ாே஽ைିேூ ,
𝜆஻஼
ாே஽ைିேூ ൌ 0.

 

To better illustrate the provision strategies under endogenous diagnostic precision, we plot the 

hyperbolas 𝜎஺஼
ாே஽ைିேூ and 𝜎஻஼

ாே஽ைିேூ for each 𝑝෤ range considered in Figures E1 and E2. The right part 
of each panel depicts how the provision areas change when the endogenous choice of costly diagnosis 
is introduced. The left part of each panel depicts the location of the optimal precision line 𝜎ாே஽ைିேூ 
and marks in which 𝜆-range experts follow Strategy A, Strategy B, and Strategy C, respectively. 

Notably, the optimal precision line 𝜎ாே஽ைିேூ  always crosses the hyperbolas 𝜎஻஼
ாே஽ைିேூand 𝜎஺஼

ாே஽ைିேூ 
at their vertex. For each 𝑑 range we illustrate two cases: one with relatively low 𝑑 and one with relatively 
high 𝑑. 

Figure E1 covers the case with 𝑑∗ ൑ 𝑑 ൏ 𝑑∗∗∗, implying that 𝜆஻஼
ாே஽ைିேூ ൑ 0 when 𝑝෤ ൌ 𝑝෤஺஼

∗ . Thus, when 

𝑝෤ ൏ 𝑝෤஻஼ ,  𝜆 ൌ 𝜆஻஼
ாே஽ைିேூ defines the 𝜆-range for which Strategy C is optimal from the left and 𝜆 ൌ 1 

binds it from the right (panel (a) of Figure E1); when 𝑝෤ ∈ ሾ𝑝෤஻஼ ,𝑝෤஺஼
∗ ሻ, 𝜆 ൌ 0 defines the 𝜆-range for 

which Strategy C is optimal from the left and 𝜆 ൌ 1 binds it from the right (panel (b) of Figure E1), 

implying that all experts invest 𝜎ாே஽ைିேூ and follow Strategy C; when 𝑝෤ ∈ ሾ𝑝෤஺஼
∗ , 𝑝෤஺஼ሻ, 𝜆 ൌ 𝜆஺஼

ாே஽ைିேூ 
defines the 𝜆-range for which Strategy C is optimal from the left and 𝜆 ൌ 1 binds it from the right, while 

 𝜆 ൌ 𝜆஺஼
ாே஽ைିேூ∗  binds the area in which Strategy B is optimal from the right (panel (c) of Figure E1); 

when 𝑝෤ ൐  𝑝෤஺஼,  𝜆 ൌ 𝜆஺஼
ாே஽ைିேூ defines the 𝜆-range for which Strategy C is optimal from the left and 

𝜆 ൌ 1 binds it from the right (panel (d) Figure E1).  

Figure E2 covers the case with 𝑑 ൒ 𝑑∗∗∗, implying that 𝜆஻஼
ாே஽ைିேூ ൐ 0 when 𝑝෤ ൌ 𝑝෤஺஼

∗ . The major 
difference compared to the previous case is that there is no parameter constellation under which all 

experts invest in diagnosis (like in panel (b) of Figure E1). Moreover, since 𝜆஻஼
ாே஽ைିேூ ൐ 0 when 𝑝෤ ൌ

𝑝෤஺஼
∗ , 𝑝෤஻஼ is not any more the binding constrain for expert’s provision behavior.  

In constellations falling into panel (a) of figures E1 and E2, experts with 𝜆 ൏ 𝜆஻஼
ாே஽ைିேூ  decide for 

Strategy B; in constellations falling into panel (c) of Figure E1 and panel (b) of Figure E2 experts with 

𝜆 ൏ 𝜆஺஼
ாே஽ைିேூ∗  decide for Strategy B and experts with 𝜆஺஼

ாே஽ைିேூ∗ ൑ 𝜆 ൏ 𝜆஺஼
ாே஽ைିேூ decide for Strategy 

A; in constellations falling into panel (d) of Figure E1 and panel (c) of Figure E2 experts with 𝜆 ൏
𝜆஺஼
ாே஽ைିேூ decide for Strategy A. In all panels all other experts invest in diagnosis and follow the signal. 

Notably, under the diagnosis cost of 𝑑 ൒ 𝑑∗∗∗ there exist no parameter constellation under which all 
experts would invest in diagnosis. However, as long as 𝑑∗ ൑ 𝑑 ൏ 𝑑∗∗∗ and 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼

∗ , all experts 
will invest in diagnosis.   
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Figure 5. Provision behavior with endogenous precision, no insurance and 𝒅 ൏ 𝒅∗. 

 

   
ሺ𝑎ሻ 0 ൏ 𝑝෤ ൏ 𝑝෤஻஼   ሺ𝑏ሻ 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼  

 
ሺ𝑐ሻ 𝑝෤ ൐ 𝑝෤஺஼  

 
Note: This figure shows the expert’s investment in information acquisition and her provision behavior 
in the setting with endogenous precision and no insurance for the case where 𝑑 ൏ 𝑑∗ – as defined in 
equation (17) in the body of the paper. The solid red and the solid blue line as well as the areas A, B and 
C are as defined in Proposition 3 and they characterize the optimal provision areas in the EXO-NI case. 
The solid and the dashed black line show the optimal precision in the ENDO-NI case (the solid line is 
valid for 𝑑 ൑  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ, while the dashed line covers the opposite case). The point 

𝜆஺஼
ாே஽ைିேூ is the critical 𝜆 defined in equation (13) and the point 𝜆஻஼

ாே஽ைିேூ is the critical 𝜆 defined in 

equation (14) (in both cases, 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ  for 𝑑 ൑  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼
ாே஽ைିேூ = 

𝜆௫஼ௗ
ாே஽ைିேூ for 𝑑 ൐  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ with 𝑥 ∈ ሼ𝐴,𝐵ሽ). In constellations falling into panel (a) 

experts with 𝜆 ൏ 𝜆஻஼
ாே஽ைିேூ  decide for Strategy B and in constellations falling into panel (c) experts with 

𝜆 ൏ 𝜆஺஼
ாே஽ைିேூ decide for Strategy A. In all panels all other experts invest in diagnosis and follow the 

signal. The optimal precision level for those experts investing in diagnosis is given by equation (12).  
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Figure E1. Provision behavior with endogenous precision, no insurance and 𝑑∗ ൑ 𝑑 ൏ 𝑑∗∗∗. 

 

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൏ 𝑝෤஻஼  

ሺ𝑏ሻ 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼
∗  

ሺ𝑐ሻ 𝑝෥𝐴𝐶
∗ ൏  𝑝෤ ൑ 𝑝෤஺஼ 
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ሺ𝑑ሻ 𝑝෤ ൐ 𝑝෤஺஼ 

Note: This figure shows the expert’s investment in information acquisition and her provision behavior 
in the setting with endogenous precision and no insurance for the case where 𝑑∗ ൑ 𝑑 ൏ 𝑑∗∗∗. The solid 
red and the solid blue line as well as the areas A, B and C are as defined in Proposition 3 and they 
characterize the optimal provision areas in the EXO-NI case. The solid and the dashed black line show 
the optimal precision in the ENDO-NI case (the solid line is valid relatively low 𝑑 and the dashed line 
covers relatively high 𝑑, with both fulfilling 𝑑 ൐  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ). The dashed blue curves on the 

right side of each panel correspond to the (𝜎஻஼ ሺ௔ሻ
ாே஽ைିேூ plus 𝜎஻஼ ሺ௕ሻ

ாே஽ைିேூሻ hyperbola, while the dashed red 

curves correspond to the ሺ𝜎஺஼ ሺ௔ሻ
ாே஽ைିேூ plus 𝜎஺஼ ሺ௕ሻ

ாே஽ைିேூሻ hyperbola, which are defined above. The notation 

on the graph is as follows: Point 1 stands for 𝜆஺஼ ௗ
ாே஽ைିேூ∗, point 2 for 𝜆஺஼ ௗ 

ாே஽ைିேூ∗. The point 𝜆஺஼
ாே஽ைିேூ is 

the critical 𝜆 defined in equation (13) and the point 𝜆஻஼
ாே஽ைିேூ is the critical 𝜆 defined in equation (14) 

(in both cases, 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ   for 𝑑 ൑  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ for 

𝑑 ൐  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ with 𝑥 ∈ ሼ𝐴,𝐵ሽ).  

 

Figure E2. Provision behavior with endogenous precision, no insurance, and 𝑑 ൒ 𝑑∗∗∗. 

 

ሺ𝑎ሻ 𝑝෤ ൑ 𝑝෤஺஼
∗  
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ሺ𝑏ሻ𝑝෥𝐴𝐶
∗ ൏  𝑝෤ ൑ 𝑝෤஺஼ 

ሺ𝑐ሻ 𝑝෤ ൐ 𝑝෤஺஼  

Note: This figure shows the expert’s investment in information acquisition and her provision behavior 
in the setting with endogenous precision and no insurance for the case where 𝑑 ൒ 𝑑∗∗∗. The solid red 
and the solid blue line as well as the areas A, B and C are as defined in Proposition 3 and they 
characterize the optimal provision areas in the EXO-NI case. The solid and the dashed black line show 
the optimal precision in the ENDO-NI case (the solid line is valid for relatively low 𝑑 and the dashed 
line covers relatively high 𝑑, with both fulfilling 𝑑 ൐  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ). The dashed blue curves 

on the right side of each panel correspond to the ሺ𝜎஻஼ ሺ௔ሻ
ாே஽ைିேூ plus 𝜎஻஼ ሺ௕ሻ

ாே஽ைିேூሻ hyperbola, while the 

dashed red curves correspond to the (𝜎஺஼ ሺ௔ሻ
ாே஽ைିேூ plus 𝜎஺஼ ሺ௕ሻ

ாே஽ைିேூሻ hyperbola, which are defined above. 

The notation on the graph is as follows: Point 1 stands for 𝜆஺஼ ௗ
ாே஽ைିேூ∗, point 2 for 𝜆஺஼ ௗ 

ாே஽ைିேூ∗, point 3 

for 𝜆஺஼ ௗ 
ாே஽ைିேூ, point 4 for 𝜆஺஼ ௗ 

ாே஽ைିேூ. The point 𝜆஺஼
ாே஽ைିேூ is the critical 𝜆 defined in equation (13) and 

the point 𝜆஻஼
ாே஽ைିேூ is the critical 𝜆 defined in equation (14) (in both cases, 𝜆௫஼

ாே஽ைିேூ = 𝜆௫஼ௗ
ாே஽ைିேூ   for 

𝑑 ൑  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼
ாே஽ைିேூ = 𝜆௫஼ௗ

ாே஽ைିேூ for 𝑑 ൐  ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ with 𝑥 ∈ ሼ𝐴,𝐵ሽ). 
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Appendix F. Proof of Proposition 6: investment in information acquisition and provision 
behavior with insurance 

To characterize expert’s provision behavior under full insurance, we proceed as in the ENDO-NI case, 
but consider that the consumer does not bear the cost of treatment. Strategies A, B and C are now 
associated with the following payoffs for the expert: 

 Strategy A: Π஺ ൌ 𝑝 െ 𝑐 ൅ 𝜆ሾ𝑣ሿ  

 Strategy B: Π஻ ൌ 𝑝 െ 𝑐 െ ℎ𝑡 ൅ 𝜆ሾሺ1െ ℎሻ𝑣 ൅ ℎ𝑡ሿ  

 Strategy C: Π஼ ൌ ሺ1 െ ℎ െ 𝜎 ൅ 2ℎ𝜎ሻሺ𝑝 െ 𝑐ሻ ൅ ሺℎ ൅ 𝜎 െ 2ℎ𝜎ሻ ቀ𝑝 െ 𝑐ቁ െ

ℎሺ1 െ 𝜎ሻ𝑡 െ 𝑑ሺ𝜎 െ 0.5ሻଶ ൅ 𝜆ሾሺ1 െ ℎ ൅ ℎ𝜎ሻ𝑣 ൅ ℎሺ1 െ 𝜎ሻ𝑡ሿ . 

Similarly, as in the ENDO-NI case, we derive the expert’s optimal diagnostic precision and provision 
strategy in three steps. 

Step 1. We first derive the profit-maximizing diagnosis precision level, assuming that investing in 
diagnosis and following the signal is optimal. Later we will derive the conditions under which investing 
in diagnosis and following the signal is optimal. To derive the optimal diagnosis effort, we again 
maximize Π஼  with respect to 𝜎, which yields the profit-maximizing diagnosis precision 𝜎ாே஽ைିிூ ൌ

𝑚𝑖𝑛 ቄ
ଵ

ଶ
൅

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻା௛௧

ଶௗ
, 1ቅ, as presented in equation (18) in the paper. It is easy to see that the 

optimal precision 𝜎ாே஽ைିிூ ∈ ሺ0.5,1ሻ for 𝑑 ൐ ሺ1 െ 2ℎሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ℎሺ𝑣 െ 𝑡ሻ and 𝜎ாே஽ைିிூ ൌ 1 for 
𝑑 ൑ ሺ1 െ 2ℎሻሺ�̃� െ 𝑝෤ሻ ൅ 𝜆ℎሺ𝑣 െ 𝑡ሻ. 

Step 2. We derive the boundary conditions between strategies A, B, and C and specify their geometrical 

properties. As in the NI case, the boundary curves 𝜎஺஼
ாே஽ைିிூand 𝜎஻஼

ாே஽ைିிூare (quadratic) hyperbolic 
functions of the following (two-part) form. 

 𝜎஺஼ ሺ௔ሻ
ாே஽ைିிூ ൌ

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻାௗା௛௧ାඥௗሺସ௛ሺ௖̃ି௣෤ି௧ିఒሺ௩ି௧ሻሻିௗሻାሺሺଵିଶ௛ሻ௖̃ାௗି௣෤ା௛ሺଶ௣෤ାఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
 

 𝜎஺஼ ሺ௕ሻ
ாே஽ைିிூ ൌ

ሺଵିଶ௛ሻሺ௖̃ି௣෤ሻାఒ௛ሺ௩ି௧ሻାௗା௛௧ିඥௗሺସ௛ሺ௖̃ି௣෤ି௧ିఒሺ௩ି௧ሻሻିௗሻାሺሺଵିଶ௛ሻ௖̃ାௗି௣෤ା௛ሺଶ௣෤ାఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
  

 𝜎஻஼ ሺ௔ሻ
ாே஽ைିிூ ൌ

ሺଵିଶ௛ሻ௖̃ାఒ௛ሺ௩ି௧ሻାௗା௛௧ାඥௗሺସሺଵି௛ሻሺ௣෤ି௖̃ሻିௗሻାሺሺଵିଶ௛ሻ௖̃ାௗି௣෤ା௛ሺଶ௣෤ାఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
 

 𝜎஻஼ ሺ௕ሻ
ாே஽ைିிூ ൌ

ሺଵିଶ௛ሻ௖̃ାఒ௛ሺ௩ି௧ሻାௗା௛௧ିඥௗሺସሺଵି௛ሻሺ௣෤ି௖̃ሻିௗሻାሺሺଵିଶ௛ሻ௖̃ାௗି௣෤ା௛ሺଶ௣෤ାఒሺ௩ି௧ሻା௧ሻሻమ

ଶௗ
. 

Under our assumption that �̃� ൏ ℎ𝑣, only the right arm of the hyperbola 𝜎஻஼
ாே஽ைିிூ and the left arm of the 

hyperbola 𝜎஺஼
ாே஽ைିிூ are relevant for the (𝜆 ∈ ሾ0,1ሿ and 𝜎 ∈ ሾ0.5,1ሿሻ space. The vertex of the right arm 

of 𝜎஻஼
ாே஽ைିிூ –  𝜆஻஼

ாே஽ைିிூ  – is provided in equation (20) in the body of the paper, while the vertex of the 

left arm of 𝜎஺஼
ாே஽ைିிூ –  𝜆஺஼

ாே஽ைିிூ – is provided in equation (19).  𝜆஺஼
ாே஽ைିிூ and  𝜆஻஼

ாே஽ைିிூ are both 

monotonically decreasing in 𝑝෤ and the binding constraints (defined by equating  𝜆஺஼
ாே஽ைିிூ and 𝜆஻஼

ாே஽ைିிூ 
to 0) are given in equations (15) and (16), respectively.  

The boundary function 𝜎஻஼
ாே஽ைିிூ remains horizontal as long as �̃� ൏ ℎ𝑣 under any 𝑝෤ ൐ 0, thus, it shapes 

the 𝜆-range for which Strategy C is optimal as long as 𝑝෤ fulfils condition (16). However, condition (15) 

comes into force only when the hyperbola 𝜎஺஼
ாே஽ைିிூ changes from vertical to conjugative horizontal 

and, technically, it happens when the vertex of the left and the right arm of 𝜎஺஼
ாே஽ைିிூ converge. The 
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formula of the left arm of 𝜎஺஼
ாே஽ைିிூ is given by equation (19), while the vertex of the left arm of 

𝜎஺஼
ாே஽ைିிூ is defined as:  

𝜆஺஼
ாே஽ைିிூ∗ ൌ

ሺଵି௛ሻሺ௣෤ି௖̃ሻା௛ሺ௖̃ି௣෤ି௧ሻାௗ

௛ሺ௩ି௧ሻ
൅

ටௗ௛మሺ௩ି௧ሻమ൫ௗାସሺ௛ሺଷ௖̃ି௣෤ሻିሺ௖̃ି௣෤ሻሻ൯

௛మሺ௩ି௧ሻమ
.  

By equating the two vertices and solving the resulting equality for 𝑝෤, we obtain the critical value of the 

price difference 𝑝෤ ൌ 𝑝෤ଵ ൌ �̃� െ
ௗ

ସሺଵି௛ሻ
, provided in equation (21) in the paper. Thus, when 𝑝෤ ൌ 𝑝෤ଵ, 

𝜎஺஼
ாே஽ைିிூ turns from a vertical into a conjugative horizontal hyperbola. 

Step 3. The boundary condition on 𝑑 is derived: To identify the 𝜆-ranges for which each of the three 
strategies is optimal for a given price difference 𝑝෤, we distinguish two sub-cases. The first sub-case 

corresponds to the setting in which  𝜆஻஼
ாே஽ைିிூ passes 0 before 𝜎஺஼

ாே஽ைିிூ turns from a horizontal to a 

vertical hyperbola. The second sub-case covers the opposite case, where 𝜆஻஼
ாே஽ைିிூ passes 0 after 

𝜎஺஼
ாே஽ைିிூ turns from a horizontal to a vertical hyperbola. These two sub-cases are distinguished by the 

critical value of 𝑑 ൌ 𝑑∗∗, which is provided in equation (22) and obtained by solving the following 
system of equations with respect to 𝑝෤: 

ቊ
𝜆஺஼
ாே஽ைିிூ∗ ൌ 𝜆஺஼

ாே஽ைିிூ ,
𝜆஻஼
ாே஽ைିிூ ൌ 0.

 

The first sub-case, corresponding to 𝑑 ൐ 𝑑∗∗, is depicted in Figure 6. Under this constraint, the binding 

price difference constraints are 𝑝෤ଵ ൏ 𝑝෤஻஼ ൏ 𝑝෤஺஼. As a result, when 𝑝෤ ൏ 𝑝෤ଵ,  𝜆 ൌ 𝜆஻஼
ாே஽ைିிூ defines the 

𝜆-range for which Strategy C is optimal from the left and 𝜆 ൌ 1 binds it from the right (panel (a) of 

Figure 7); when 𝑝෤ ∈ ሾ𝑝෤ଵ, 𝑝෤஻஼ሻ,  𝜆 ൌ 𝜆஻஼
ாே஽ைିிூ defines the 𝜆-range for which Strategy C is optimal from 

the left and  𝜆 ൌ 𝜆஺஼
ாே஽ைିிூ binds it from the right (panel (b) of Figure 7); when 𝑝෤ ∈ ሾ𝑝෤஻஼ , 𝑝෤஺஼ሻ, 𝜆 ൌ

0 defines the 𝜆-range for which Strategy C is optimal from the left and  𝜆 ൌ 𝜆஺஼
ாே஽ைିிூ  binds it from the 

right (panel (c) of Figure 7); when 𝑝෤ ൒ 𝑝෤஺஼, no expert follows Strategy C (panel (d) of Figure 7).  

The second sub-case, corresponding to 𝑑 ൏ 𝑑∗∗, is depicted on Figure F1. In this setting, 𝑝෤஻஼ ൏ 𝑝෤ଵ ൏
𝑝෤஺஼ . The resulting 𝜆-ranges in which Strategy C is optimal under different 𝑝෤ intervals are quite similar 
to the 𝑑 ൐ 𝑑∗∗ case, with only some minor differences: When 𝑝෤ ൏ 𝑝෤஻஼  under 𝑑 ൑ 𝑑∗∗, the provision 
areas are shaped similarly as in the 𝑝෤ ൏ 𝑝෤ଵ case under 𝑑 ൐ 𝑑∗∗ (thus, panels (a) of Figures 7 and F1 are 
comparable); when 𝑝෤ ∈ ሾ𝑝෤ଵ, 𝑝෤஻஼ሻ, 𝜆 ൌ 0 defines the 𝜆-range for which Strategy C is optimal from the 
left and 𝜆 ൌ 1 binds it from the right (panel (b) of Figure F1), implying that all experts invest 𝜎ாே஽ைିிூ 
and follow the signal; when 𝑝෤ ∈ ሾ𝑝෤஻஼, 𝑝෤஺஼ሻ, 𝜆 ൌ 0 defines the 𝜆-range in which Strategy C is optimal 

from the left and  𝜆 ൌ 𝜆஺஼
ாே஽ைିிூ binds it from the right (panel (c) of Figures 7 and F1); when 𝑝෤ ൒ 𝑝෤஺஼, 

no expert follows Strategy C (panel (d) of Figures 7 and F1).  
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Figure 6. Provision behavior with endogenous precision, full insurance, and 𝒅 ൏ 𝒅∗∗. 

 

   
ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑  𝑝෤ଵ  ሺ𝑏ሻ  𝑝෤ଵ ൏ 𝑝෤ ൏  𝑝෤஻஼  

   
ሺ𝑐ሻ 𝑝෤஻஼ ൑ 𝑝෤ ൑ 𝑝෤஺஼   ሺ𝑑ሻ 𝑝෤ ൐ 𝑝෤஺஼  

 
Note: The figure shows the effect of introducing insurance on the expert’s investment in information 
acquisition and her provision behavior in the setting with endogenous precision for the case where 𝑑 ൏
 𝑑∗∗ – as defined in equation (22) in the body of the paper. The solid and the dashed black line are as 
defined in Proposition 5 and they show the optimal precision in the ENDO-NI case. The solid and the 
dashed red line in panels (a), (b), (c) and (d) show the optimal precision in the ENDO-FI case. For 𝑝෤ ൒
𝑝෤஺஼  no expert invests in information acquisition and all experts decide for Strategy A – which explains 

why there is no red line in panel (d). The notation on the graph is as follows: Point 1 stands for 𝜆஻஼ ௗ 
ாே஽ைିேூ, 

point 2 for 𝜆஻஼ ௗ 
ாே஽ைିேூ, point 3 for 𝜆஻஼ ௗ 

ாே஽ைିிூ, point 4 for 𝜆஻஼ ௗ 
ாே஽ைିிூ, point 5 for 𝜆஺஼ ௗ 

ாே஽ைିிூ, point 6 for 

𝜆஺஼ ௗ
ாே஽ைିிூ, point 7 for 𝜆஺஼ ௗ 

ாே஽ைିேூ , and point 8 for 𝜆஺஼ ௗ 
ாே஽ைିேூ. The point 𝜆஺஼

ாே஽ைିிூ is the critical λ defined 

in equation (19) and the point 𝜆஻஼
ாே஽ைିிூ is the critical λ defined in equation (20) (in both cases, 𝜆௫஼

ாே஽ைିிூ 

= 𝜆௫஼ௗ
ாே஽ைିிூ   for d ≤ ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ and 𝜆௫஼

ாே஽ைିிூ = 𝜆௫஼ௗ
ாே஽ைିிூ for d > ሺ1 െ ℎሻ�̃� ൅ ℎሺ𝑣 െ �̃�ሻ with 

𝑥 ∈ ሼ𝐴,𝐵ሽ). In constellations falling into panels (a) and (b) experts with 𝜆 ൏ 𝜆஻஼
ாே஽ைିிூ decide for 

Strategy B and in constellations falling into panels (b) and (c) experts with 𝜆 ൐ 𝜆஺஼
ாே஽ைିிூ decide for 

Strategy A. In panels (a), (b) and (c) all other experts invest in diagnosis and follow the signal, while in 
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panel (d) all experts decide for Strategy A. The optimal precision level for those experts investing in 
diagnosis is given by equation (18).  
 
Figure F1. Provision behavior with endogenous precision, full insurance, and 𝑑 ൒  𝑑∗∗. 

 

ሺ𝑎ሻ 0 ൏ 𝑝෤ ൑  𝑝෤஻஼  ሺ𝑏ሻ  𝑝෤஻஼ ൏ 𝑝෤ ൏  𝑝෤ଵ 

ሺ𝑐ሻ 𝑝෥1 ൑ 𝑝෤ ൑ 𝑝෤஺஼ ሺ𝑑ሻ 𝑝෤ ൐ 𝑝෤஺஼  

Note: The figure shows the effect of introducing insurance on the expert’s investment in information 
acquisition and her provision behavior in the setting with endogenous precision for the case where 𝑑 ൒
 𝑑∗∗– as defined in equation (22) in the body of the paper. The explanation for the lines and the notation 
are the same as in Figure 6 (see note to Figure 6). In constellations falling into panel (a) experts with 

𝜆 ൏ 𝜆஻஼
ாே஽ைିிூ  decide for Strategy B and in constellations falling into panels (c) experts with 𝜆 ൐

𝜆஺஼
ாே஽ைିிூ decide for Strategy A. In panels (a), (b) and (c) all other experts invest in diagnosis and follow 

the signal, while in panel (d) all experts decide for Strategy A. The optimal precision level for those 
experts investing in diagnosis is given by equation (18).  
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Appendix G. Parameters of the EET and translation of EET results in parameter values 

 

Parameters in the Equality Equivalence Test 

Table G1. Parameters in the Equality Equivalence Test. 

Advantageous Inequality Block 

LEFT RIGHT 

decision maker’s 
payoff 

passive person’s 
payoff 

decision maker’s 
payoff 

passive person’s 
payoff 

8 ECU 7 ECU 10 ECU 10 ECU 

9 ECU 7 ECU 10 ECU 10 ECU 

10 ECU 7 ECU 10 ECU 10 ECU 

11 ECU 7 ECU 10 ECU 10 ECU 

12 ECU 7 ECU 10 ECU 10 ECU 

 

Disadvantageous Inequality Block 

LEFT RIGHT 

decision maker’s 
payoff 

passive person’s 
payoff 

decision maker’s 
payoff 

passive person’s 
payoff 

8 ECU 13 ECU 10 ECU 10 ECU 

9 ECU 13 ECU 10 ECU 10 ECU 

10 ECU 13 ECU 10 ECU 10 ECU 

11 ECU 13 ECU 10 ECU 10 ECU 

12 ECU 13 ECU 10 ECU 10 ECU 

 

Note: Decision makers had to indicate, for each of the ten decision situations, whether they wanted to 
implement the LEFT or the RIGHT allocation 
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Translation of Decisions in the Equality Equivalence Test into λ Values 

Denote the own material payoff by m and the other’s payoff by o. Suppose subjects in the lab decide in 
line with the utility function u(m,o) = m + λo, as assumed for experts in our model. What can we infer 
about λ from their choices in the EET? 

 

Advantageous Inequality Block (Y-List) 

subject chooses LEFT for 
the first time in  row 

inference regarding λA attributed λA 

1 (always left) λA ≤ -2/3 λA = -5/6 
2 -2/3 ≤ λA ≤ -1/3 λA = -3/6 
3 -1/3 ≤ λA ≤ 0 λA = -1/6 
4 0 ≤ λA ≤ 1/3 λA = 1/6 
5 1/3 ≤ λA ≤ 2/3 λA = 3/6 

never (always right) 2/3 ≤ λA  λA = 5/6 
 

 

Disadvantageous Inequality Block (X-List) 

subject chooses LEFT for 
the first time in row 

inference regarding λD attributed λD 

1 (always left) 2/3 ≤ λD  λD = 5/6 
2 1/3 ≤ λD ≤ 2/3 λD = 3/6 
3 0 ≤ λD ≤ 1/3 λD = 1/6 
4 -1/3 ≤ λD ≤ 0 λD = -1/6 
5 -2/3 ≤ λD ≤ -1/3 λD = -3/6 

never (always right) λD ≤ -2/3 λD = -5/6 
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This following sections contain the instructions translated from German, which were used in 

the online and lab part of the experiment. We read out all instructions out loud in the lab. If 

instructions were different between treatments, this is indicated by squared brackets, includ-

ing the respective treatment condition and the according text in italic letters. To match the 

observations from the online and the lab part, participants created a unique in the online part 

and had to state this ID at the beginning of the lab part. 

A.  Instructions Online Part 

 

Instructions  

 

The first part of the experiment will be conducted online and consists of 10 decisions. In each 

of these 10 decisions, the computer randomly assigns another participant to you. In the fol-

lowing, we will call this participant "Your Passive Person". You will never learn the identity 

of your passive person. You will see below why we call this person a "passive person". 

We state the payoffs in ECU (experimental currency units).  

The exchange rate is 5 ECU = 1 Euro 

 

Each of your 10 choices is a choice between the LEFT and the RIGHT option. Each option 

has consequences for your payoff and the payoff of your passive person. 

Example: 

You will be asked if you prefer to choose the option LEFT, where you will receive 8 ECU 

and your passive person 13 ECU, or option RIGHT, where you will receive 10 ECU. Your 

passive person will also receive 10 ECU. You have to choose one of the two options by click-

ing on the corresponding circle.  

This decision problem would be presented on the screen as follows: 

  



Your decision 

Option ‘Left’     Option ‘Right’ 

Your Payoff Payoff passive per-

son 

  Your Payoff Payoff passive person 

8,00 ECU 13,00 ECU O O 10,00 ECU 10,00 ECU 

 

You have to make a total of 10 decisions (5 are shown per screen). Your total earnings from 

this part are determined as follows: 

Payout as Active Person: In the end, one out of the 10 decision-making situations is selected 

individually and randomly for each participant, and the option chosen in this decision situa-

tion is then actually paid out. E.g., if you have chosen the decision situation described above 

and you have decided on the option RIGHT in this decision situation, you would receive 10 

ECU as an active person. In contrast, your passive person would receive 10 ECU as a passive 

person. 

 

Payout as Passive Person: Just as your Passive Person receives ECU from your decision 

without doing anything, you receive ECU from another participant without doing anything. 

This means you are the passive person for this other participant. It is assured that you will not 

be redeemed twice as an active and passive person. That is, if person X is your passive per-

son, then you are certainly not the passive person of person X. 

You will see 5 of all 10 decisions on one screen. You can make corrections to your choices as 

long as you have not clicked "Next". 

After the 10 decisions, this part of the experiment ends. Which of your 10 decisions is rele-

vant for your payoff and how much you have earned, you will get to know in the EconLab, 

when you participate in the lab part. Also, this online part will be paid at the EconLab in cash. 

 

 

  



B. Instructions Lab Part 

Instructions  

Thank you for your participation in the experiment. Please do not talk to other participants 

until the end of the experiment. 

In this experiment, the payoffs are stated in ECU (experimental currency units). 

The exchange rate is 80 ECU = 1 €. 

Different roles: 

There are two roles in the experiment: client and expert. At the beginning of the experiment, 

you will be randomly assigned one of these roles and keep that role for the entire experiment, 

which means for all periods. At the first decision screen (period 1 of 24), you will see your 

role. 

In each period, one expert is randomly assigned to one client (and vice versa). It is ensured in 

each period that the same client-expert pair is never formed in two consecutive periods. This 

means that a client always interacts with an expert, and you will randomly get a partner in 

each period. 

 

24 Periods 

This experiment consists of 24 periods, each with the same sequence of decisions described 

below. 

Suppose you have been assigned a client's role. In that case, you have a big problem with a 

probability of 40% and a small problem with a probability of 60%. As a client, you will never 

be informed about the problem you actually have. As a client, you can decide if you enter the 

market, which means you want to interact with the expert randomly assigned to you. By en-

tering the market, your problem may be solved by the expert. If your problem is solved, you 

will receive 150 ECU in this period. If your problem is not solved, the expert has to pay you a 

compensation of 50 ECU (more on this below). 

 

[EXO100] 

- If you have been assigned the role of an expert, you will receive in each period a signal 

about what problem your client (randomly matched with you) has. This signal is 100% 



accurate. That is, if e.g., the client has a small problem, then, with 100% probability, you get 

the signal that the problem is small; and similar to the big problem. However, this infor-

mation costs 10 ECU. These costs will be deducted automatically in each period. 

 

[EXO70] 

- If you have been assigned the role of an expert, you will receive in each period a signal 

about what problem your client (randomly matched with you) has. This signal is 70% accu-

rate. If e.g., the client has a small problem, then, with 70% probability, you get the signal that 

the problem is small; and similar to the big problem. However, this information costs 1.6 

ECU. These costs will be deducted automatically in each period. 

 

[ENDO] 

If you have been assigned an expert's role, you will receive a signal each period about the cli-

ent's problem randomly. As an expert, you decide on the precision of the received signal. The 

costs associated with each precision level are given in the following table: 

Precision of the signal Costs 

50% 0 ECU 

60% 0.4 ECU 

70% 1.6 ECU 

80% 3.6 ECU 

90% 6.4 ECU 

100% 10 ECU 

 

For example, suppose you choose a 70% precise signal. In that case, you pay 1.6 ECU and 

get a signal that identifies the problem correctly with a 70% probability. If you select a 50% 

precision, you will not be charged. However, your signal is not informative (because it identi-

fies the actual problem with the same probability as right or wrong). 



 

As an expert, your job is to treat the client. You can choose between a low quality treatment 

and a high quality treatment. The low quality treatment only solves the small problem of the 

client. The high quality treatment solves both the small and the big problem. You always have 

to pay ECU 20 for a low quality treatment and 60 ECU for a high quality treatment. If your 

treatment has not solved the client's problem, then as an expert, you have to pay a compensa-

tion fee of 50 ECU. 

For the treatment of low quality, you will receive from the client a price of 60 ECU. For high 

quality treatment, the price is either 80 ECU, 100 ECU, or 120 ECU: this price varies over pe-

riods, and you will find out the respective price at the beginning of each period. 

- Treatment can only be carried out if the client has decided to enter the market. If the client 

chooses not to enter the market, that is, if he /she decides not to interact with the expert, both 

client and expert receive a payoff of 15 ECU in this period. 

 

Overview of the Decisions of one Period 

Therefore, each period consists of decisions of the expert and the client, which are made sim-

ultaneously and independently of each other. 

Client: 

The client decides if he/she wants to enter 

the market. 

Expert:  

[ENDO] 

1. The expert decides on the signal preci-

sion. 

2. The expert receives the signal about the 

client's problem and decides if he/she wants 

to use the high or low quality treatment. 

[EXO100] and [EXO70] 

The expert receives the signal about the cli-

ent's problem and decides whether he /she 

wants to implement the high or low quality 

treatment. 

 



Only after both made their decisions it is announced whether the client has entered the market 

or not. If the client has not entered, the expert's decisions are irrelevant. In summary, this 

leads to the following payoffs: 

Payoffs 

CLIENT DOES NOT ENTER THE MARKET: both the client and the expert receive 15 

ECU. 

 

CLIENT ENTERS THE MARKET: 

Client: 

If the problem was solved:  150 ECU minus the treatment price 

If the problem was NOT solved: 50 ECU minus the treatment price 

 

Expert: 

[EXO70] If the problem was solved:  treatment price minus treatment cost minus 1,6 

(costs diagnostic precision 70%) 

[EXO100] If the problem was solved:  treatment price minus treatment cost mi-

nus 10 (costs diagnostic precision 100%) 

 

[EXO70] If the problem was not solved: treatment price minus treatment cost minus 50 ECU 

(compensation) minus 1,6 (costs diagnostic precision 70%) 

[EXO100] If the problem was not solved: treatment price minus treatment cost minus 50 ECU 

(compensation) minus 10 (costs diagnostic precision 100%) 

 

[ENDO]  

If the problem was solved: treatment price minus treatment cost minus the cost for the se-

lected signal precision level  

If the problem was not solved: treatment price minus treatment cost minus 50 ECU (compen-

sation) minus cost for the selected signal precision level 

 



Insurance 

Please note that there are two possible market situations in each period: either the client is in-

sured or not. You play a total of 12 periods with and 12 periods without insurance, and you 

will see at the beginning of each period on the screen if the particular period is a period with 

insurance or not. 

In a period without insurance, the situation is the same as previously described. In a period 

with insurance, the client is insured. This means that at the beginning of such a period, the cli-

ent pays an insurance premium of 80 ECU (deducted automatically, even if the client does not 

enter the market). In return, the price for the client's treatment is covered by the insurance. All 

decisions taken by the client and the expert remain the same as in periods without insurance. 

The payoffs of the two parties in periods with insurance are as follows: 

Payoffs in periods with insurance: 

Client: 

CLIENT DOES NOT ENTER THE MARKET: 15 ECU minus 80 ECU (insurance premium) 

= -65 ECU 

 

CLIENT ENTERS THE MARKET: 

If the problem has been solved: 150 ECU minus 80 ECU (insurance premium) = 70 ECU 

If the problem was NOT solved: 50 ECU minus 80 ECU (insurance premium) = -30 ECU 

Expert: 

For the expert, the payoff does not change. It is calculated as in periods without insurance. 

 

Information and Feedback 

In each period, the expert and the client get to know whether the client is insured in this pe-

riod and the prices for the low and high quality. The expert also receives the signal about the 

problem of the client. After the second period, you can see the results of all past periods at the 

bottom of your screen. 

 

 



Total Payoff 

At the beginning of the experiment, you will receive an endowment of 80 ECU. From this en-

dowment, you can also cover possible losses in individual periods. Profits from other periods 

also compensate for losses. 

For the final payoff, each period's endowment and the payoffs are added together and paid in 

cash at the end of the experiment, using the exchange rate 80 ECU = 1 €. Also, you will re-

ceive your payoff from the online part. 

 

  



C. Additional Regressions for Prediction 4 

 
Table C.1 Determinants of efficient Service Provision by Insurance Condition 

 NI FI 
EXO70 -0.07*** 

(0.02) 
-0.06** 
(0.02) 

UT price vector 0.09*** 
(0.02) 

0.14*** 
(0.02) 

OT price vector -0.08*** 
(0.02) 

-0.03 
(0.02) 

Period -0.00 
(0.00) 

-0.00** 
(0.00) 

Risk measure -0.00 
(0.01) 

-0.02*** 
(0.01) 

λD 0.04 
(0.03) 

0.03 
(0.04) 

λA 0.07** 
(0.03) 

-0.01 
(0.02) 

Female -0.01 
(0.03) 

-0.00 
(0.03) 

Age -0.00 
(0.00) 

-0.00 
(0.00) 

N 2688 2688 
Notes: Dependent variable is Follow, equal to 1 if the expert followed the received signal and 0 otherwise. The 
table presents marginal effects estimates from Probit regressions with subject random effects. Standard errors 
are clustered at the matching group level and stated in parentheses. EXO70 is equal to 1 for the EXO70 treat-
ment. UT price vector is equal to 1 if the price for the LQS is 60 and the price for the HQS is 80. OT price 
vector is equal to 1 if the price for the LQS is 60 and the price for the HQS is 120. The omitted benchmark is 
the EM vector with the price of 60 for LQS and of 100 for HQS. The Risk Measure and the prosociality 
parameters λD and λA are defined as in the notes to Table 4. * p < 0.10, ** p < 0.05, *** p < 0.01.  
 
 




