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Abstract

Background and objectives: The root system architecture (RSA) of a plant determines

the plant’s ability to capture resources efficiently from the soil and directly linked to plant

performance. The development and distribution of plant’s root systems are determined

by the soil and surrounding environmental conditions. With the emerging methods of

phenotyping techniques and the necessity of improving crop yield with limited resources,

root phenotyping for developing new genotypes is given increasing attention to fulfill the

increasing food demand of the world. Therefore, characterizing the behavior of root system

with its surrounding environment and identifying beneficial traits are of attention in the

agricultural industry. However, obtaining the information about root systems and their

interaction with soil of all stages of root systems of field-grown crops is a challenging task

because of the hidden nature of roots. Traditionally, the root information is extracted from

field root sampling methods, which provide limited information about root growth and

distribution. Therefore, obtaining a wide range of information such as the entire root system

architecture can be identified as one of the main challenges in this regard. Moreover, the

influence of soil and climatic factors on root growth has not been studied extensively. Thus,

estimating distribution and functions of root systems that grow in different soil and climatic

conditions are poorly understood. Root architecture models are becoming increasingly

popular to study root growth and its functions successfully to understand and explain the

mechanisms of root growth functions and to be used as a tool for exposing “hidden” root

systems. Therefore, in this study, we demonstrate the use a RSA model to characterize

root system traits from classical field root sampling schemes based on synthetic experiments

and evaluate the differences in simulated root growth patterns and measured dynamic root

development data in terms of different crops, soil, and environmental conditions.

Materials and Methods: The quantification of parameter sensitivities was conducted

based on a synthetic experiment that mimics the root growth and root sampling procedure

in the real field. The root system architecture (RSA) model CRootBox was used along with

root architecture parameters to simulate winter wheat and maize root systems in a virtual
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field plot, similar to real field practices and subsequently used sampling methods; soil cor-

ing, root counting in trenches and weekly observation of roots through rhizotubes from a

camera to sample roots virtually. Then, the sampling data was converted to root system

measures to investigate the parameters of RSA that are sensitive to root system measures.

Moreover, the principal component analysis (PCA) was carried out to understand the pa-

rameter correlations. The selected most sensitive parameters of RSA of winter wheat from

core sampling method were estimated with the Markov chain Monte Carlo DREAM(𝑍𝑆)

sampler. Since the stochasticity of forward model leads to unstable log-likelihood esti-

mates, we averaged the log-likelihood of 32 forward model runs and modified the MCMC

acceptance mechanism. Furthermore, the log-likelihood was inflated to account the un-

known data dependencies that cause the overfitting problem. After 15000 iterations, we

compared the differences between true parameter values and posterior distribution of esti-

mated parameters. To evaluate the influence of soil and climatic factors on root growth of

winter wheat and maize crops, we carried out field experiments to measure root growth in

two different soil types and collected data from the rhizotron facility in Selhausen, Germany.

The collected data were used to simulate root growth based on functions implemented in

CRootBox RSA model to compare the differences between measured and simulated data,

and to investigate whether root simulation is representative of real field measurements.

Results: The sensitivity analysis results indicate that most of the parameters of zero-

order roots are the most sensitive; especially number (NB), maximum length (maxl0 ),

inter-branch distance (ln0 ), and elongation rate (r0 ) of zero-order toots and the higher-

order roots are less sensitive to characteristic root system measures. The PCA analysis

results indicate parameter pairs, such as number (NB)- inter-branch distance (ln0 ), grav-

itropism (tr0 )-insertion angle (theta0 ) of zero-order roots, are highly correlated. Bayesian

sampling for posterior took a long inversion run time (3 weeks for three chains run in 32

parallel processors). The approximate posterior distributions of NB, maxl0, ln0, r0, theta0

parameters are narrowly centered and the other parameters show large parameter uncer-

tainty. A few of the estimated parameters of zero-order roots show approximate posterior

distributions that are narrowly centered around true parameter values. Yet the other zero-

order and higher-order root parameters are not well resolved and show a large posterior

uncertainty. The field measurements indicate significant differences in root length density

(RLD) between the root growth in silty loam and stony soil. A higher root length density

values were reported in root growth in silty loam soil than the stony soil of both wheat

and maize crops and higher development of roots in depth below 60 cm and lower amounts

of roots within the first 40 cm in silty loam soil was reported. The simulation results are

not representative of measured data and the differences observed in measured data are not
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successfully reproduced by the model.

Conclusions: The root growth of the same type of crop could alter significantly with the

growth medium and surrounding environmental conditions. However, these differences are

not well incorporated into root growth models. Moreover, root length density measurements

that are obtained from minirhizotron methods require reviewing thoroughly for use in

simulation studies due to lack of calibration for converting root density to root length

density values and the influence of tubes, soil conditions that alter root growth patterns of

rhizotron methods should be investigated properly. The classical field sampling methods

contain enough information about the root system traits, or root architectures parameters

of zero-order roots such as NB, maxl0, ln0, r0 and Bayesian inference of core sampling data

could be used to characterize some of the zero-order roots of wheat crop.
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Zusammenfassung

Hintergrund und Zielsetzung: Die Wurzelsystem-Architektur (engl.: root system archi-

tecture, RSA) einer Pflanze bestimmt ihre Fähigkeit, Ressourcen effizient aus dem Boden

zu gewinnen; dies ist direkt mit ihrer Leistungsfähigkeit verbunden. Wachstum und En-

twicklung von Wurzelsystemen wird durch den Boden und die Umgebungsbedingungen

bestimmt. Durch neue Methoden der Phänotypisierung und der Notwendigkeit, erhöhten

Ernteertrag bei begrenzten Ressourcen zu erzielen, wird der Phänotypisierung von Wurzeln

für die Entwicklung neuer Genotypen zunehmende Aufmerksamkeit geschenkt. Daher ist

die Charakterisierung der Wurzelsysteme in Abhängigkeit mit ihrer Umgebung und die

Identifizierung nützlicher Eigenschaften in der Agrarindustrie von Bedeutung. Die Gewin-

nung von Informationen über Wurzelsysteme und deren Wechselwirkung mit dem Boden in

allen ihren Stadien von Feldkulturen ist jedoch aufgrund des unterirdischen Wachstums der

Wurzeln eine Herausforderung. Traditionell werden solche Informationen aus Probenahmen

im Feld extrahiert, die nur begrenzte Informationen über das Wurzelwachstum liefern. Da-

her ist es wichtig, eine breite Palette von Informationen zu erhalten, wie z.B. das gesamte

Wurzelsystem. Systemarchitektur kann als eine der größten Herausforderungen in diesem

Zusammenhang identifiziert werden. Der Einfluss von Boden- und Klimafaktoren auf das

Wachstum von Wurzeln wurde noch nicht umfassend genug untersucht. Daher wurde die

Abschätzung der Verteilung und Funktionen von Wurzelsystemen, die in verschiedenen

Boden- und Klimabedingungen wachsen, bisher nur wenig verstanden. Wurzelarchitek-

turmodelle werden immer beliebter, um das Wurzelwachstum zu untersuchen und um die

Modelle als Werkzeug zur Identifizierung von Wurzelsystemen zu nutzen. Daher zeigen

wir in dieser Studie die Verwendung eines RSA-Modells zur Charakterisierung von Wurzel-

systemmerkmalen aus klassischen Feldprobennahmen, die auf synthetischen Experimenten

basieren. Wir beurteilen die Unterschiede zwischen simulierten Wurzelwachstumsmustern

und gemessenen dynamischen Wurzelentwicklungsdaten in Bezug auf verschiedene Kul-

turen, Böden und Umweltbedingungen.

Materialien und Methoden: Die Quantifizierung der Parameter-Sensitivitäten wurde
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basierend auf einem synthetischen Experiment, welches das Wurzelwachstum und das

Wurzelprobenverfahren im realen Feld nachahmt, durchgeführt. Das Wurzelsystem-Modell

CRootBox wurde zusammen mit Parametern der Wurzel-Architektur verwendet, um Wurzel-

systeme von Winterweizen und Mais in einem virtuellen Feldplot zu simulieren und an-

schließend wurden virtuelle Probenahmemethoden durchgeführt: Bohrkerne, Wurzelzählung

in Ausgrabungen und die Monirhizotron-Technik. Die Daten aus diesen virtuellen Stich-

probennahmen wurden in Messgrößen der Wurzelsysteme umgewandelt, um die Parameter

der RSA zu untersuchen, die für diese Messgrößen sensitiv sind. Darüber hinaus wurde

die Hauptkomponentenanalyse (engl.: principal component analysis, PCA) durchgeführt,

um die Parameterzusammenhänge zu verstehen. Die ausgewählten sensitivsten Parameter

der RSA von Winterweizen aus Bohrkern-Methode wurden mit dem Markov-Kette Monte

Carlo DREAM(𝑍𝑆) Probenehmer geschätzt. Da die Stochastik des Forward-Modells zu in-

stabilen Log-Likelihood-Schätzungen führt, haben wir die Log-Likelihood von 32 Forward-

Modellläufen gemittelt und den MCMC-Akzeptanzmechanismus modifiziert. Darüber hin-

aus wurde die Log-Likelihood erhöht, um die unbekannten Datenabhängigkeiten zu berück-

sichtigen, die das Problem der Überanpassung verursachen. Nach 15000 Iterationen ver-

glichen wir die Unterschiede zwischen wahren Parameterwerten und der posterioren Verteilung

der geschätzten Parameter. Um den Einfluss von Boden- und Klimafaktoren auf das

Wurzelwachstum von Winterweizen- und Maiskulturen zu bewerten, haben wir Feldver-

suche zur Messung des Wurzelwachstums in zwei verschiedenen Bodentypen durchgeführt

und Daten aus der Rhizotronanlage in Selhausen gesammelt. Die gesammelten Daten

wurden verwendet, um das Wurzelwachstum basierend auf Funktionen des RSA-Modells

in CRootBox zu simulieren, um die Unterschiede zwischen Mess- und Simulationsdaten

zu vergleichen und um zu untersuchen, ob die Wurzelsimulation repräsentativ für reale

Feldmessungen ist.

Ergebnisse: Die Ergebnisse der Sensitivitätsanalyse deuten darauf hin, dass die meis-

ten Parameter der Wurzeln nullter Ordnung die sensitivsten sind; vor Allem die Zahl

(NB), die maximale Länge (maxl0 ), die Abstände zwischen den Zweigen (ln0 ) und die

Rate der Längenausdehnung (r0 ) von Wurzeln nullter Ordnung. Ferner sind die Wurzeln

höherwertiger Ordnungen weniger empfindlich gegenüber charakteristischen Messungen des

Wurzelsystems. Die Ergebnisse der PCA-Analyse zeigen, dass Parameterpaare wie die An-

zahl (NB) und die Abstände zwischen den Zweigen (ln0 ) oder der Gravitropismus (tr0 )

und der Einführwinkel (theta0 ) von Wurzeln nullter Ordnung hoch korreliert sind. Die

Bayes’sche Probenahme die A-posteriori-Wahrscheinlichkeit hatte eine lange Inversion-

slaufzeit (3 Wochen für drei Ketten, die in 32 parallelen Prozessoren liefen). Die ungefähren

hinteren Verteilungen der NB, maxl0, ln0, r0, theta0 -Parameter sind eng zentriert und die
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anderen Parameter zeigen eine große Parameterunsicherheit. Einige der geschätzten Pa-

rameter von Wurzeln nullter Ordnung zeigen ungefähre posteriore Verteilungen, die eng um

wahre Parameterwerte zentriert sind. Die anderen Wurzelparameter nullter und höherer

Ordnung sind jedoch nicht gut aufgelöst und weisen eine große posteriore Unsicherheit

auf. Die Feldmessungen zeigen signifikante Unterschiede in der Wurzellängendichte (RLD)

zwischen dem Wurzelwachstum in schluffigen Lehmböden und steinigen Böden. Es wurden

höhere Wurzellängendichtewerte für das Wurzelwachstum in schluffigen Lehmböden als in

steinigen Böden sowohl für Weizen- als auch für Maiskulturen gefunden und ferner eine

höhere Wurzelentwicklung in einer Bodentiefe unterhalb von 60 cm und geringere Wurzel-

mengen innerhalb der ersten 40 cm in schluffigen Lehmböden. Die Simulationsergebnisse

sind nicht repräsentativ für Messdaten und die beobachteten Unterschiede in den Messdaten

werden vom Modell nicht erfolgreich reproduziert.

Schlussfolgerungen: Das Wurzelwachstum der gleichen Kulturpflanze kann sich sig-

nifikant verändern bedingt durch die Bodenstruktur und die Umgebungsbedingungen. Diese

Unterschiede sind jedoch nicht gut in Wurzelwachstumsmodelle integriert. Es wurden Mes-

sungen der Wurzellängendichte durchgeführt, die mit der Minirhizotron-Methoden gewon-

nen wurden; solche Daten müssen, bevor sie ins Simulationen verwendet werden, gründlich

überprüft werden auf Grund fehlender Kalibrierung zur Umwandlung der Wurzeldichte in

die Wurzellängedichte. Ferner muss der Einfluss von Minirizothron-Rohren und von den

Bodenverhältnissen, die das Wurzelwachstumsmuster beeinflussen, genau untersucht wer-

den. Die klassischen Feldstichprobenverfahren enthalten genügend Informationen über die

Eigenschaften des Wurzelsystems oder über die Parameter der Architekturen von Wurzeln

nullter Ordnung, wie z.B. NB, maxl0, ln0, r0. Die Bayes’sche Inferenz der Bohrkern-

Probenahme-Daten könnten verwendet werden, um einige der Wurzeln der Weizenkultur

nullter Ordnung zu charakterisieren.
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Chapter 1

General Introduction

Since the beginning of the nineteenth century, the world population has increased expo-

nentially due to increasing food and resource availability, increasing birth and decreasing

death rates as a result of improving healthcare facilities. Although the population growth

rate is declining since the 1960s, the total population of the world is still rising (Roser

et al., 2019). An increasing population will likely need more natural resources that are

vital to human life. Therefore, to ensure the food supply to feed the entire population

is considered as one of the main challenges in the world (Gilland, 2002; Kc et al., 2018;

Taiz, 2013; Nations, 2019), because the increased demand for food should be supplied with

limited resources. In addition to population growth, other challenges are associated with

extreme climatic conditions, such as flash flooding and drought conditions decrease food

production, as well as land degradation, desertification, diseases, and pest control (Power,

2010; Taiz, 2013). On the contrary, due to emerging methods and technological develop-

ment from 1950 through 1960, lead to significant improvements in the agricultural industry.

This period is commonly referred to as “The Green Revolution”, which introduced the use

of excessive amounts of chemical fertilizers, weed, and pest control chemicals, heavy use

of machinery, stress-resistant varieties with higher yields (Pingali, 2012). Next, the second

green revolution focused on sustainable crop production, taking into account the surround-

ing soil environmental conditions (Leong and Savage, 2013; Lynch, 2007). Thus, more

attention was given to increase food production, especially in developing countries through

crop breeding programs.

In order to meet the requirements of increasing food production, new crop genotypes are

currently developed, which are better equipped to resist biotic and abiotic stresses such

as drought or pests. Phenotyping is commonly referred to as measuring and analyzing
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Chapter 1. General Introduction

the characteristic features of an organism, which is an essential step in breeding programs.

The main challenge in this regard is to identify the beneficial traits that result in this

stress-resistance. Therefore, large amounts of experimental data obtained from different

agricultural fields are required to assess the functions of those beneficial traits. Although

traditionally agricultural programs give higher priority to above-ground variables and shoot

part of crops, the current challenges give rise to an increased focus on plant roots and below-

ground processes.

In order to predict and explain the real-world behavior of root systems, root growth models

are been successfully used (Dupuy et al., 2010). These models are particularly useful in

evaluating the performance of specific architectural root traits to certain environmental

conditions because the use of increasing computational power can be used to include more

variables that can be tested with different scenarios. Moreover, models can use synthetic

data to evaluate the methodological approaches in the field conditions with minimum costs

and to understand the functional mechanisms of root systems. Therefore, the combination

of simulations and field experiments could be used to identify the behavior and significance

of architectural root traits in phenotyping programs. Furthermore, the responses of root

system changes to changing soil environments can be quantified by combining field data

with a simulation model.

1.1 Importance of architectural root traits in plant

phenotyping

The root system architecture of a plant indicates the spatial distribution of its roots that

determines the plants’ ability to capture water, nutrients, and other functions that support

plant growth. The supply of these resources direly affects plant productivity (Lynch, 2007).

RSA further describes the length, angle, growth rate, diameter, number of laterals, of

primary roots, and laterals of root systems. The root distributions of plants are unique in

terms of genotype, species, climate, soil, and environmental conditions (Comas et al., 2013;

de Moraes et al., 2018; Fan et al., 2016; Gorim and Vandenberg, 2017; Voss-Fels et al., 2018).

Some plants have a particular affinity to adapt resource-limited environments, and the soil

environmental conditions prevent plants from growing at its maximum stages. Therefore,

soil information is also critical in this manner. The adaptation of plants, depending on

soil environmental conditions, lead to optimize crop performance, e.g., deep root system

genotypes, helps plants to capture water from deep soil layers, while shallow root systems
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are efficient for capturing water from rainfall or irrigation (Bodner et al., 2015; Wasson

et al., 2014). A similar adaptation can be seen in nutrient capturing efficiency from roots

to reduce competition for nutrients (Del Bianco and Kepinski, 2018; Gregory, 2006; Lynch,

1995, 2013). This affinity of plants leads scientists to identify the beneficial traits and

the performance of each trait contribution for phenotyping programs (Figueroa-Bustos

et al., 2018). Therefore, obtaining information about root traits is becoming increasingly

prevalent, and the lack of phenotypic information and methods to access and evaluate the

functional behavior is one of the main challenges in root phenotyping community (Kuijken

et al., 2015). Although plant breeders traditionally focus on the above-ground processes

of plants, plant-breeding programs that focus on root system traits for developing new

genotypes for improving crop production is becoming increasingly popular (Bardgett et al.,

2014). Therefore, obtaining dynamic information of root traits are in high demand (Ndour

et al., 2017).

1.2 Field root sampling methods

Direct observation of root systems in field-grown plants is a challenging task since it is

hidden in the soil. Since the end of the 19th century, several root sampling methods have

been developed. Soil coring, excavation methods, shovelomics, root intersection counting

and root observation of minirhizotron methods are amongst the most popular approaches

(Maeght et al., 2013). These field-sampling methods generally require long processing time

and are labor-intensive. Traditionally, root sampling methods are used to measure the root

distribution with depth (as root length density) from soil cores (Wasson et al., 2014), root

intersection counting in trench profiles (Vansteenkiste et al., 2014), root arrival curves (root

length density varies with time in continuous measurement) using minirhizotron methods

(Cai et al., 2016; Majdi et al., 1992; Rewald and Ephrath, 2013) and excavation methods

(Böhm, 1979a) to determine the total root mass distribution of plants. Those methods

have advantages and drawbacks depending on the data quality and the costs associated

with processing and analyzing steps (Judd et al., 2015). The soil coring and monolith

methods provide root length density as root length per unit volume of soil (RLD), while

trench counting, core break counting, and rhizotube observation methods calculate the root

intersections (RID) and thus require a conversion from RID to RLD (Kücke et al., 1995).

In general, all these field sampling methods provide aggregated information with minimal

information about root traits (Wasson et al., 2012).
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Excavation methods:

In order to study the entire root system or a specific part of a root system in detail,

excavation methods are used (Böhm, 1979a; Kutschera, 1960). Excavation of a whole root

system requires a considerable amount of time and effort, and a large portion of soil is

excavated from shovels or inserting large diameter cores to shallow depths at the plant

base to obtain information about crown roots (Chen et al., 2017). Excavation methods are

particularly useful in determining the RSA traits of nodal or crown roots such as numbers

and insertion angles for phenotyping studies (Slack et al., 2018). For root sampling of row

crops and obtaining the 3D distribution of root length density, large size monolith sampling

needs to be carried out (Kuchenbuch et al., 2009).

Soil coring:

Soil coring is one of the most widely used methods for root studies (Majdi et al., 1992),

which provides root length density at specific depths, total root length, maximum rooting

depths. The selection of core positions, sample size, sampling depth, number of samples,

sampling volume, and sampling intervals are important for representative estimates of RLDs

(Buczko et al., 2008; Frasier et al., 2016; Kumar et al., 1993) because of the selection of the

sampling size is crucial since the variability of core sampling data could be exceptionally

higher due to spatial variability of the soil and the differences in the distribution of roots in

highly heterogeneous soil. Therefore, the data should be processed carefully to distinguish

between genotypic variability and random error of field sampling data (Wasson et al., 2017).

The main steps of standard operating procedures for soil coring is as follows: inserting cores

to specific depths manually or hydraulically; extracting cores from the soil; cutting long

cores into short segments with specific lengths; removing soil and separate roots; separating

death and live roots based on color; and finally counting roots manually or using a scanner.

The WinRhizo scanning system is widely used to scan and estimate the root lengths,

root counts and root diameters automatically (Bouma et al., 2000; Wasson et al., 2014).

Alternatively, core-break counting approach, which considers the intersection counting of

core segments is adapted to standard core sampling methods to minimize the processing

time significantly (Hodgkinson et al., 2017).

Trench profiles:

Trench profile method is highly useful for obtaining information on the lateral spreading

of root systems of row crops. The location of the trench profile is frequently selected
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perpendicular to rows, and the trenches are dug either by hands or excavators. Then,

the profile wall is prepared to expose roots from soil using a brush and water sprayer to

distinguish roots from surroundings easily, and the root intersections are counted in a mesh

grid (Böhm, 1979b). Since soil cores provide one-dimensional information about root length

density, and the locations of cores have an impact on average root distribution over the

field plot, but in contrast, trench counting provides two-dimensional distribution of root

system such as the root counts changes with the plant base. However, trench methods

do not provide information about root mass, and it is challenging to recognize live roots

among dead roots. Consequently, existing roots from previous crops could be accounted to

the current root counting data (Azevedo et al., 2011). The main advantage of the trench

root counting method is that the root counting is a fast and less laborious method than

the core sampling procedure and the conversion from RID to RLD could be identified as

another drawback since it requires calibration for volume-based conversion (Azevedo et al.,

2011).

Minirhizotron methods:

Observation of root growth using the minirhizotron technique (MR) differs from other

field methods since the MR uses a direct minimally invasive technique to monitor root

systems on the plot scale. This method includes the installation of transparent tubes and

capturing root growth data through specially design cameras as video recordings or images.

The images are processed manually or by using a semi-automatic image processing software

such as RootFly (Zeng et al., 2008) and calculate the root lengths or roots counts within the

area of the image. The MR tubes are installed horizontally, vertically, or inclined to the soil

surface. The main advantage of the MR method is that the ability to measure and capture

root growth at different time steps during all stages of crop growth (Smit et al., 2000),

and besides root decay can be observed. Although MR methods have many advantages

over the other field sampling methods, there are few limitations such as maximum rooting

depth can be not detected by horizontally placed tubes (Cai et al., 2016; Garré et al., 2012;

Majdi, 1996; Postic et al., 2019; Svane et al., 2019). Although MR is less laborious, the

initial cost for installation and long image analysis and processing time can be considered

as significant drawbacks. There are few MR facilities operated in the world. It is found that

the MR method underestimates the total root counts of the first 30 cm and overestimates

the deeper layers (Samson and Sinclair, 1994), due to the influence of tubes (De Ruijter

et al., 1996). The MR methods do not directly provide the information about root length

densities and total root lengths in a unit volume of soil. Instead, it provides the root

counts in image windows or root length densities of the image windows. Moreover, the lack
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of correlation with other field root sampling methods is one of the main drawbacks in MR

methods (Majdi et al., 1992).

1.3 Influence of soil and environmental factors on root

growth

The root distribution of a plant is highly affected by environmental factors, climatic con-

ditions, and properties of the growth medium (soil). Since plant performance strongly

depends on the distribution of the root system that contributes to supply water, nutrients,

and anchor to the soil for plant growth, it is critical to identify the factors that affect the

root growth patterns. The composition of soil such as texture, organic content, and stone

content determines the soil physical properties, i.e., water retention capacity, temperature,

and bulk density. These conditions affect the overall development of root systems (Ben-

gough et al., 2005; Dexter and Hewitt, 1978; Donald et al., 1987; Laboski et al., 1998;

Passioura, 2002; Pierret et al., 2007; White and Kirkegaard, 2010). The main environmen-

tal factors that affect the growth of root system are considered as temperature and soil

moisture dynamics. These two factors affect the soils’ ability to supply water demand for

the plant and the cell extension, cell division, and metabolism. However, the main chal-

lenge is to quantify the effects caused by soil, environmental and climatic conditions, and

how plants respond to these changes and to find ways to optimize the crop yield.

The ability of roots to penetrate and extend through the soil, responds to root-zone soil

temperature because chemical and biological activities in roots and surrounding soil envi-

ronment are affected by temperature changes (Creber et al., 1993). Temperature affects

root length density, maximum rooting depth, root elongation rates, branching intensity,

surface area, growth direction, and lateral branch angles of the root system (Kaspar and

Bland, 1992; Macduff et al., 1986; Nagel et al., 2009; Onderdonk and Ketcheson, 1973; Vin-

cent and Gregory, 1989). Root growth models generally include the effect of temperature

on root elongation (Clausnitzer and Hopmans, 1994).

Soil moisture content fluctuates due to irrigation, precipitation, drought conditions, or

evapotranspiration with time and depth. Water stress has an adverse effect on root devel-

opment since C supply from shoots to roots is disturbed as a result of a reduction in water

and nutrient transport and reductions in plant cell functions. On the other hand, mois-

ture condition in soil contribute also for changes in root-soil penetration resistant or soil
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strength, which determines the root distribution of a plant (Kirby and Bengough, 2002),

because roots need to overcome the mechanical resistant that applies by soil for root ex-

tension (Buttery et al., 1998; Haling et al., 2011). On the other hand, the excess amount

of water in the soil causes anoxic conditions and reduces the root growth. Moreover, roots

have the affinity to grow towards the directions of higher moisture conditions, and this

mechanism is referred to as hydrotropism (Dietrich, 2018).

The bulk density of soil is expressed as the weight of dry soil per unit volume. Bulk den-

sity increases with increasing soil compaction and increasing bulk density of soil increases

the penetration resistance. Since root extension in the soil is linked to soil penetration

resistance, bulk density determines the penetration resistance of soil in combination with

moisture content. Soil’s bulk density typically varies between 1.3-1.7 g cm−3, and bulk

densities higher than 1.7 g cm−3 are not favorable for root growth. When roots penetrate

through hard soil, roots tend to increase the diameter, reduce the elongation rate and re-

duce the maximum root lengths (Bengough et al., 1997, 2005; Gao et al., 2016; Houlbrooke

et al., 1997; Taylor and Brar, 1991; Tracy et al., 2012). Therefore, root water uptake ca-

pacity of plants and nutrient absorption efficiency is reduced and has an overall influence

on crop performance (Masle and Passioura, 1987; Pardo et al., 2000; Tardieu, 1994; Unger

and Kaspar, 1994; Valentine et al., 2012). Moreover, roots buckled when penetrating hard

soil and reduce the maximum rooting depths (Bizet et al., 2016).

Soil macropores may form in soil due to physical (cracks) or biological (biopores) processes.

Cracks are formed mainly in soils with higher clay-silt content because when soils undergo

several cycles of wetting and drying process, and especially clay minerals tend to expand

and shrink. Consequently, it forms several cracks in the soil. These cracks provide a

favorable growth medium for roots because of the lower penetration resistant and pore

spaces contain filled materials with higher amounts of nutrients. Similar to cracks, except

the shape and genesis, earthworms or existing roots create biopores that are enriched

with nutrients and highly favorable for plant growth. When undisturbed, these zones

preserve the original structure for a long period of time and alter root distribution patterns.

Especially, plants grow in soils with low water contents in the upper horizons tend to show

higher rooting depths and extract water from deeper soil and optimize crop performance

due to the presence of biopores in soil.

Soil is composed of water, air and a large portion of minerals and organic matter as the solid

component. The solid phase contains materials with different sizes of particles. Although

soils with large particles or stones are not very productive due to low water retention

capacity, low nutrient content and lack of good contact between roots and soil, some non-
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optimal soils are used in agricultural purposes because of limited availability of arable soils.

In addition to resource capturing, when roots extend through coarse-grained soil, roots

change growth directions to avoid the granular materials that cannot be penetrated by roots

and grow through fine less resistant material (Whiteley and Dexter, 1984). Therefore, the

presence of large consolidated particles or granules significantly affect the rooting patterns

and exhibit significant changes in RSA in comparison to root growth in fine-grained soil

(Fakih et al., 2017; Popova et al., 2013, 2016). The mechanism of root growth in granular

soil is explained as if a root tip meets an obstacle that cannot be penetrated by root, root

tend to deform and find a new direction for root extension (Bizet et al., 2016; Popova et al.,

2013). The ability of roots to buckle or penetrate through soil depends on root type, length,

diameter, and soil depth, in addition to the physical nature of the obstacle (Whiteley and

Dexter, 1984), and the force applied by the root tip on soil particles (Kolb et al., 2017). If

the soil consists of a large number of granules, roots need to buckle numerous times and

thus considerably change the entire structure of the root system, rooting depth and lateral

extent. Therefore, the amount of soil volume that is explored by the soil and the resources

captured by the root system can be reduced significantly.

1.4 RSA models and their parameterization

Root architecture models require root architecture parameters, which consist of informa-

tion about architectural root traits as the input, to reconstruct root systems of a specific

plant that grow in certain soil environmental conditions (Dunbabin et al., 2013). Several

models of root architecture and functions that simulate root systems and their functional

and structural relationships are used in root modelling community such as OpenSimRoot

(Postma et al., 2017), R-SWMS (Javaux et al., 2008), CRootBox (Schnepf et al., 2018),

SPACSYS (Wu et al., 2007), RootTyp (Pagés et al., 2004), and etc. There are similarities

and also differences in those models and are described in (Dunbabin et al., 2013). These

RSA models can be used to interpret the data obtained from cost-intensive field experi-

ments and to simulate water and nutrient uptake efficiency of specific genotypes and thus

identify the genotypes with beneficial traits. The required number of parameters of RSA

for simulations varies with the type of the crop, growth stage, and model complexity asso-

ciated with the objectives of the research. Therefore, the parameterization of RSA models

is helpful to find the trait information and ultimately use for modeling and simulation stud-

ies. The RSA parameters consist of both static and dynamic parameters that include root

elongation rates of primary and branching roots. Therefore, dynamic root growth data is
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required to estimate these parameters (Pagés and Picon-Cochard, 2014; Pagés et al., 2013).

Lab-based methods are widely used to characterize the RSA traits, especially for the early

stages of plants (Atkinson et al., 2019; Hamada et al., 2012; Kalogiros et al., 2016; Leitner

et al., 2014; Meister et al., 2014; Voss-Fels et al., 2018). RSA parameters can be derived

directly from plants growing in germination papers, transparent materials or plant growth in

soil using MRI/X-rays scanning, or direct observation of rhizotron images , based on image

processing methods (Lobet et al., 2015; Bodner et al., 2017, 2018; Bucksch et al., 2014;

Chen et al., 2017; Clark et al., 2011; Landl et al., 2018; Topp et al., 2013; van Dusschoten

et al., 2016), and RSA parameters can be extrapolate from early stages of plants to mature

plants (Zhao et al., 2017) or can be combined with root growth models (Kalogiros et al.,

2016).

Although lab-based or greenhouse methods are widely used in root phenotyping, the main

disadvantage in lab-based methods is that the lack the interaction between plant and sur-

rounding field environmental conditions such as precipitation, solar radiation, wind condi-

tion, and real soil conditions (Gregory, 2009; Paez-Garcia et al., 2015). The other major

drawback is that laboratory tests do not always account for the data from mature plants

and are limited to the early stages of plants because of practical reasons. The trait in-

formation may vary with the growth stages, and therefore, the traits of young plants are

not representative of plants with matures stages (de Dorlodot et al., 2007). Since the trait

data obtained from laboratory methods are not well represented to field-based mature root

systems that have a stronger influence from soil environmental conditions, it is necessary to

obtain trait data from field-grown root systems. Therefore, the importance of field-based

RSA characterization is given higher importance (Araus and Cairns, 2014; Meister et al.,

2014).

Some field-based sampling methods such as excavation methods provide measurements of

RSA parameters from carefully excavated root systems (Kutschera, 1960; Weaver et al.,

1924), or direct sampling schemes are used to estimate root elongation rates and root angles

using large cylindrical cores (Chen et al., 2017). The main limitation of excavation methods

is that the entire process takes an enormous amount of time for analyzing root systems

carefully, and thus parameterization of a large number of genotypes requires an enormous

amount of labor costs. To overcome this challenge, plant scientists focus on developing

methods on improving classical field sampling methods to obtain hidden trait information

in sampling data. Such as trench profiles, minirhizotron, and excavations. Since field root

sampling data contains aggregated information, some studies show that the parameters can

be retrieved with the aid of detailed RSA model calibration and inference methods (Garré
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et al., 2012; Pagés et al., 2012; Vansteenkiste et al., 2014).

Furthermore, parameterization of RSA models considering the influence of growth medium

is even more challenging as RSA parameters and traits differ due to adaptation with soil and

environmental conditions (Rich and Watt, 2013). The generalized functions and modeling

approaches for quantifying the effects of RSA traits with environmental conditions, i.e.,

temperature (Clausnitzer and Hopmans, 1994), soil bulk density (Colombi et al., 2017;

Popova et al., 2016), moisture conditions (Bengough et al., 1997; Dexter and Hewitt, 1978;

Tardieu, 1994), influence of obstacles in soil (Fakih et al., 2017), macropores (Landl et al.,

2017), are introduced by several authors.

Different types of roots behave in different ways to the changes in surrounding environ-

ments, and literature data are limited to specific crops, growth stages, and certain condi-

tions. Thus, simulation results that consider those approaches could associate with higher

uncertainty because the functions that were derived for a specific crop type for certain

environmental effects are not applicable in a similar manner to other crop types or envi-

ronments. However, in general, these approaches that consider the environmental effects

provide a satisfactory overview for the future research directions for field-based root pheno-

typing research, which still requires significant improvements in methodological approaches

such as account whole RSA parameters, and to reduce the error associated with model

stochasticity and parameter uncertainty.

1.5 Aims and Objectives

While laboratory methods provide useful information about detailed RSA of young plants

that grow in control environments, field-grown crops have limited methods to acquire the

RSA information about mature roots systems and the information content is limited only

to aggregated sampling data. Therefore, field root sampling data should be evaluated with

the perspective of quantifying RSA parameters, which could be sensitive to specific root

system measures or sampling methods. However, in this regard, the main obstacle is the

lack of a direct relationship between parameters and respective root system measures in real

field sampling data. In order to overcome this challenge, a modeling approach that mimics

root growth in real field conditions and root sampling procedures can be used as a synthetic

experiment for resembling real field sampling data with the information of respective RSA

parameters.
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Since the simulations of root system development and sampling data do not account for

the soil and environmental effects on sensitivity analysis results and inverse parameter

estimation, the certainty of applications in those approaches could highly depend on the

soil-environmental factors that depend on growth medium and location. Therefore, inves-

tigation of root system dynamics should be carried out in different soils and different water

regimes to evaluate the underlying mechanisms. Moreover, dynamic field root sampling

data is required to estimate the RSA parameters during the different growth stages of

plants and to study the distribution of root systems with dynamic soil and climatic condi-

tions. For this purpose, minirhizotron facilities for root observation can be identified as the

most suitable approach because the effect of different soil types on root growth dynamics

could be quantified along with soil hydraulic properties and climatic data.

The main objective of the research work presented in this thesis is to improve classical field

sampling techniques for obtaining the information of RSA of plants that grow in different

soil and environmental conditions. The main research objective was divided into three

sections as follows:

i) To investigate how sensitive field sampling method results (root length densities from

coring, root intersection counts from trenching, root arrival curves from rhizotubes)

are to the different root architectural parameters using 3D dynamic simulations of

wheat and maize root architectures in a field and virtual field sampling.

ii) To assess a Bayesian inference method to inversely estimate root architectural pa-

rameters using a synthetic data set of wheat root length densities from coring with

known ground-truth and to quantify the uncertainty of the estimated parameters;

iii) To assess and quantify the effect of stone content and related changes in soil physical

properties (temperature, soil water content and matric potential) on root architecture

development based on measurements and simulations for winter wheat and maize.

1.6 Outline of the thesis

The thesis is divided into five chapters:

Chapter 1 presents the current state of the art and the problem formulation: In this chap-

ter, we highlight the importance of root phenotyping to enhance the crop yield and the

current challenges in field root phenotyping community. Furthermore, we briefly explain
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the main field root sampling methods: excavation, soil coring, trench root counting, and

minirhizotron methods and discuss the advantages and drawbacks of each method. More-

over, we summarize the methods that use for parameterization of RSA and their limitations,

and the dependency of RSA of plants on soil environmental conditions.

Chapter 2 describes the parameter sensitivity of the root system architecture model based

on field sampling methods and corresponding root system measures of each root sampling

method. It further describes the effect of sampling size, sampling locations, and the sensi-

tivity dependency of the most sensitive parameters on the other parameters.

Chapter 3 presents the Bayesian inversion approach that used to inversely estimate the

root architecture parameters of winter wheat crop based on soil coring sampling method.

Then, we discuss the uncertainty associated with the inversely estimated parameters due

to model stochasticity and correlated parameters.

Chapter 4 studies the effect of stone content and related soil conditions on simulated

root architecture developments. In this chapter, we compare the simulated root data with

measured dynamic root growth data of wheat and maize crops and soil information that

were obtained from minirhizotron facilities to evaluate the soil and climatic effects on root

growth patterns.

Finally, Chapter 5 summarizes our main research findings of this work and recommenda-

tions for future research directions for improving field sampling schemes to obtain detailed

information about the root system architectures, and how the soil and environmental con-

ditions affect the RSA of a plant and overall root distribution.
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Chapter 2

Parameter sensitivity analysis of a

root system architecture model based

on virtual field sampling

Adapted from: Morandage S, Schnepf A, Leitner D, Javaux M, Vereecken H, Vanderborght

J (2019), Parameter sensitivity analysis of a root system architecture model based on virtual

field sampling. Plant and Soil 438: 101-126. doi: 10.1007/s11104-019-03993-3.
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2.1 Introduction

Agriculture faces the challenge of sustaining an increasing global food demand under in-

creasingly limited resources such as water and nutrients. Since roots are the organs that

plants use to acquire these resources, understanding plant root architectures and their

interaction with the soil is particularly important.

Depending on the environmental conditions, different types of root systems are beneficial

for the uptake of resources from soil. Regarding water uptake, shallow root systems are

proposed to be beneficial in environments where water uptake is driven by rainfall supply

while deep root systems are beneficial in environments where plants rely on water stored in

deeper soil layers (Bodner et al., 2015; Wasson et al., 2014). Knowing the role of root traits

or root architectural parameters for water and nutrient uptake is important for selecting

optimal varieties in water and nutrient limited environments (Gregory, 2006; Lynch, 1995).

Yet, the lack of phenotypic data of different genotypes is the main challenge in plant

breeding programs (Kuijken et al., 2015). Furthermore, until recent years, most breeding

programs have focused on the shoot of plants, whereas the root system has been given less

attention (Bardgett et al., 2014).

Root architectural models reconstruct representations of the root system of a plant based

on its pre-defined root architectural parameters (Dunbabin et al., 2013). The root system

architecture (RSA) represents the arrangement of primary, secondary and higher order root

segments and how they are connected to each other. RSA varies from plant to plant and

species to species depending on the genotype and soil environmental conditions (Comas

et al., 2013). The parameters of these models can be considered to represent root traits

or characteristics of the RSA of a certain plant in a certain soil environment. Lab based

methods are widely used for determining root architectural parameters (Hamada et al.,

2012; Kalogiros et al., 2016; Leitner et al., 2014) but also examples exist that used root

systems that were carefully excavated from the soil (Kutschera, 1960; Weaver et al., 1924).

Using manual or automatized image processing, digitized root systems are obtained (Lobet

et al., 2015), from which root system parameters can be derived directly (Bodner et al.,

2017; Bucksch et al., 2014; Chen et al., 2017; Clark et al., 2011; Landl et al., 2018).

Next to ‘static’ structural parameters, RSA models also describe the dynamic root de-

velopment and use parameters that represent root elongation rates. To estimate these

parameters, dynamic root data are required (Pagés and Picon-Cochard, 2014; Pagés et al.,

2013). However, conditions in labs or greenhouses that have an important impact on plant
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and root growth may differ considerably from real field conditions such as precipitation,

radiation, wind patterns, soil structure and soil depth (Gregory, 2009; Leitner et al., 2010).

Moreover, plant and root growth in small pots is not representative of root systems of

large and/or mature plants. Traits of root systems at mature stage may differ considerably

from traits observed during the early stages of plant development and are therefore difficult

to predict from the early stage traits (de Dorlodot et al., 2007). The variables observed

with different methods in the lab or greenhouse and the RSA parameters that are derived

from these observations are therefore not directly transferable to plants grown under field

conditions.

Studying root systems in the field is a difficult task due to a lack of direct access to the root

system. It is impossible to get information about an entire root system without disturbing

its original morphology because it is completely hidden beneath the soil surface. Several

root sampling methods were developed to gain information about root system dynamics in

the field. These methods are generally time consuming and labor intensive. Classical field

methods are root intersection counting in vertical profile walls of a trench, soil coring, and

non- destructive minirhizotron methods (Leitner et al., 2010). Soil coring is a widely used

field sampling method to obtain the distribution of root length density with depth (Schroth

and Kolbe, 1994). The trench profile method is suitable for studying root distributions in

2-D. The main disadvantage of the trench profile method over core sampling is that the

root biomass cannot be measured. The trench profile method has some difficulties when

counting roots in deep layers and it may be difficult to distinguish between dead and

living roots (Azevedo et al., 2011). Soil coring or trench profile methods do not provide

direct information about the branching of a root system, but provide only the observed

RLD or intersection counts. Although root counts and root length densities are correlated

with each other, their relation depends on the orientation of the roots with respect to the

intersection surface. The orientation of the roots may change with depth and depends

on the plant/crop type. Using RSA models, depth and plant specific calibrations could

be derived that relate the two types of observation (Grabarnik et al., 1998; Vansteenkiste

et al., 2014). Minirhizotron methods are useful to study the root growth at different times

and depths at the same position without destroying the root system (Smit et al., 2000).

Although minirhizotrons provide root arrival curves at specific depths in the soil profile,

rhizotubes could act as obstacles to root growth and the observations can be altered slightly

due to influence of rhizotubes installations (Garré et al., 2012).

However, those sampling techniques do not provide direct information about the RSA

model parameters or of specific root traits of different phenotypes (Wasson et al., 2012).
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Root architectural models can be helpful to interpret data obtained from cost intensive

field experiments. Techniques like parameter fitting or inverse modeling could be applied

to derive RSA model parameters from field observations (Garré et al., 2012). In order

to reconstruct realistic RSA, RSA models typically rely on a large number of parameters.

The inverse estimation of a large number of parameters from indirect information may be

hampered by equifinality, i.e., when several sets of parameter combinations lead to the

same or very similar predictions of the observed variables. Equifinality may occur when

model predictions of the data that are collected are not sensitive to changes of a certain

parameter, or when changes in model predictions due to a change in one parameter can be

compensated by changes of other parameters.

The main objective of this work is to define the sensitivity of different types of observa-

tions, which can be derived from field observations of root systems, to RSA parameters of

the CRootBox model. This analysis identifies sensitive parameters for different observation

types and gives insight in which observation types provide information about which param-

eters. This is important to design field sampling methods. Maize and wheat root systems

will be considered as example crops. Root length densities (RLD) derived from soil cores,

root impact counts (RIC) derived from vertical profile walls, and temporal distributions

of root counts in horizontal rhizotubes that represent root arrival curves (RAC) will be

considered as field observations.

In the material and methods part of the paper, we present the RSA model, how ‘virtual’ ob-

servations were derived from simulations with the RSA model, how the sensitivity analyses

were carried out and how we interpret the sensitivities using principal component analysis

(PCA). In the results section, we first present the simulated or ‘virtual’ observations and

analyze the impact of the sample size on the uncertainty about the observations. Secondly,

we present and discuss the sensitivity of different observations to the RSA parameters

including PCA results.

2.2 Materials and Methods

2.2.1 Simulation of root systems

Despite the fact that virtual experiments are not limited to a certain crop type, we selected

winter wheat and maize as crop types for virtual simulations and sampling due to their

importance as agricultural crops and the availability of root architectural parameters for
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these crops. We explicitly simulated the 3D root architectures of wheat and maize root

systems over a vegetation period in a virtual field plot using the generic RSA model CRoot-

Box (Schnepf et al., 2018). CRootBox is a C++ version of the RootBox model (Leitner

et al., 2010) which requires less computational time and can therefore be used to simulate

multiple root systems over longer periods.

Figure 2.1: Nomenclature of root architectural parameters used in CRootBox model to
simulate root systems of wheat and maize crops. Zero order roots include all crown roots,
seminal roots, brace roots and primary roots (adapted from ISRR nomenclature).

Figure 2.1 illustrates the different RSA parameters used as input parameters of CRootBox,

including basal (lb) and apical (la) zone lengths, branching distances (ln), and branching

angles (theta). Numbers indicate root orders. Our simulated root systems consist of zero

order roots and only two orders of branches. The branching angle represents the angle

between a branch and its parent branch. For zero order roots, the branching angle theta0

represents the angle of the proximal root segment to the vertical axis. The radial angle is

assumed to be random and uniformly distributed between 0 and 2𝜋 . Next to geometrical

parameters, root elongation rates (r) and tropisms (tr) (in this study, we only considered

gravitropism which defines to which extent the direction of the growth of a root tip changes
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due to gravity) have to be defined. Root diameters were not considered for simulations. For

zero order and first order roots, the growth rate is a function of the root length and becomes

zero when the root reaches a maximal length (maxl) ( see (Schnepf et al., 2018) for the

implementation of gravitropism and growth rates as a function of root length). In order to

reproduce the random nature of the root system, RSA parameters are stochastic parameters

with a mean and a standard deviation (see (Leitner et al., 2010; Schnepf et al., 2018) for

the implementation of the random RSA development). A complete list of CRootBox root

architectural parameters is given in Table 2.1.

Table 2.1: List of root architectural parameters of wheat and maize used in root system
simulations and sensitivity analyses (Schnepf et al., 2018). Except the number of zero-order
roots NB, each parameter is a stochastic parameter with a mean and a standard deviation
(values inside the brackets indicate the standard deviations of the parameters).

No Code Root

order

Parameter name Unit Values

Wheat Maize

1 lb0 (std) 0 length of basal zone cm 0.8 (1.2) 0.1 (0.1)

2 la0 (std) 0 length of apical zone cm 4.2 (6.4) 18 (1.8)

3 ln0 (std) 0 branch spacing cm 1.2 (0.5) 0.6 (0.06)

4 maxl0 (std) 0 maximum length cm 130 (30) 110 (30)

5 r0 (std) 0 initial growth rate cm day−1 1.2 (0.6) 2.6(0.6)

6 tr0 (std) 0 tropism 1.2 (0.2) 1.0(0.6)

7 theta0 (std) 0 branching angle rad 1.4 (0.2) 1.0 (0.5)

8 lb1 (std) 1 length of basal zone cm 0.8 (1.0) 0.2 (0.4)

9 la1 (std) 1 length of apical zone cm 1.8 (2.4) 0.4 (0.04)

10 ln1 (std) 1 branch spacing cm 1.0 (1.5) 0.4 (0.3)

11 maxl1 (std) 1 maximum length cm 2.0 (1.0) 2.6 (1.6)

12 r1 (std) 1 initial growth rate cm day−1 0.4 (0.12) 2.0 (0.2)

13 tr1 (std) 1 tropism 1.0 (0.4) 1.0 (0.3)

14 theta1 (std) 1 branching angle rad 1.2 (0.4) 1.2 (0.25)

15 la2 (std) 2 length of apical zone cm 2.2 (0.4) 0.5 (0.2)

16 r2 (std) 2 initial growth rate cm day−1 1.0 (0.2) 2.0 (0.2)

17 tr2 (std) 2 tropism 0.1 (0.6) 1.5 (0.35)

18 theta2 (std) 2 branching angle rad 1.12 (0.4) 1.2 (0.2)

19 NB 0 number of zero order

roots

nos 20 30
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We defined primary roots, seminal roots and crown roots as zero order roots in the simu-

lations. First order roots emerge from the zero order roots and second order roots emerge

from the first order roots. We assumed that zero order roots emerge all together, next to

the seed at the beginning of the growing season. Lateral roots emerge from their parent

branch only after the apical zone has reached a defined length.

A winter wheat (Triticum aestivum) root system typically consists of 10-30 zero order roots

and a secondary fibrous root system with three orders of branching (Wasson et al., 2012).

The root density of wheat is relatively homogeneous in the horizontal direction due to the

high planting density (Couvreur et al., 2014). For some varieties of wheat and depending

on the soil and weather conditions, roots can reach up to 170 cm. The root elongation

rate is typically in the order of 1-1.5 cm day−1 (Colombi et al., 2017). The highest number

of wheat roots are observed within the first 40 cm depth (Hoad et al., 2004). Maize

(Zea mays) is a row crop and thus field-measured root length density of maize varies in

the horizontal direction perpendicular to the rows. The root system of maize consists of

primary, lateral and shoot-borne roots and the elongation rates vary from 1-4 cm day−1.

Maize roots can reach up to 150 cm depth with lateral spreading of 120 cm, depending

on soil texture (Feldman, 1994; Hochholdinger and Tuberosa, 2009). Root architecture

parameters were generally derived from experimental data during the early stages of plants

grown in laboratories under controlled environments but are not necessarily representative

for older plants or for field conditions. Therefore, we followed a trial and error approach

to derive parameters that are representative for plants grown under field conditions. We

systematically changed some parameters (elongation rate (r0 ), maximum length (maxl0 )

and numbers (NB) of zero order roots) such that resulting field-scale values of root length

densities were realistic compared to known literature values. Table 2.1 shows the values

of root architectural parameters of wheat and maize, used as input parameters in the root

growth model. The parameter bounds for the sensitivity analysis were selected as 50% and

150% of the parameter value as the lower and the upper bounds, respectively.

Two different plant configurations were considered for the two crops. Plant density was

determined according to common practices applied in Europe (Kolb et al., 2017). The inter

row distance for wheat was 12 cm with 3 cm plant spacing within a row. 224 wheat plant

root systems were simulated in a plot of 96 cm by 84 cm consisting of 8 rows with 28 plants

in a row. Sowing density of maize is lower than that of wheat. The distance between the

maize rows was 75 cm and the plant spacing in a row was 13 cm. 108 maize plants were

simulated in a plot of 450 cm by 234 cm consisting of 6 rows with 18 maize plants in each

row. The depth of the soil domains was 160 cm. Seeding depths were chosen as 3 cm and 5
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cm for wheat and maize, respectively. The total life spans of wheat and maize plants were

set to 240 and 180 days respectively. Table 2.2 shows the plant configurations and plot

sizes of each crop type. Simulation results were saved as VTK files and Paraview (Ayachit,

2015) was used to visualize the results.

Table 2.2: Virtual field simulation setup: plant seeding positions, plot size and plant
density configuration of wheat and maize.

Plant configuration Wheat Maize

Plot size (width*length*depth) 96 cm*84 cm*160 cm 450 cm*234 cm*160 cm

Number of rows 8 6

Number of plants in a row 28 18

Plant distance in a row 3 cm 13 cm

Distance between two rows 12 cm 75 cm

Total number of plants 224 108

Virtual field sampling:

Classical field sampling schemes; soil coring, trench profiles and minirhizotron observations

were implemented in the virtual field plots to obtain the information about root distri-

butions (Figure 2.1). We used signed distance functions to represent the geometries of

rhizotubes, soil cores and trenches, and made use of the CRootBox feature that allows to

explicitly represent obstacles for root growth (rhizotubes). Table 2.3 shows the sampling

methods, sampling size and sampling locations of virtual wheat and maize plots.
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Figure 2.2: Winter wheat plant positions, plant configuration, plot size and sampling
schemes of virtual cores, trench profile and minirhizotron methods (maize sampling methods
are similar to wheat except the sampling positions and the sampling size). 3D view of the
wheat sampling schemes (A), aerial view of coring and trench profiles (B), vertical profile
of a grid of trench root counting method (C).
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Table 2.3: Description of sampling methods: number and sizes of cores, trenches and
rhizotubes, used in virtual sampling schemes.

Sampling

method

Wheat Maize

Coring𝑎 15(radius=2.1 cm,depth=160 cm) 16(radius=2.1 cm,depth=160 cm)

Trenches𝑏 9 (width=24 cm, depth=160 cm)

grid size= 3*5 cm

9 (width=150 cm, depth=160 cm)

grid size= 5*5 cm

Minirhizotron𝑐 6 tubes (radius = 3.2 cm)

depths 10, 20, 40, 60, 80, 120 cm

20 images per tube

image size=1.65*2.35 cm

6 tubes (radius = 3.2 cm)

depths 10, 20, 40, 60, 80, 120 cm

20 images per tube

image size=1.65*2.35 cm

𝑎 soil core sampling based on (Wasson et al., 2014).

𝑏 trench root counting method based on (Vansteenkiste et al., 2014).

𝑐 rhizotube setup according to Selhausen minirhizotron facility (Cai et al., 2016)

Virtual soil coring:

Cylindrical cores of 4.2 cm diameter and 160 cm length were sampled and subsequently

sliced horizontally in 5 cm intervals to determine the RLD of each sampling volume (69.72

cm3). We adjusted the sampling size similar to real field sampling schemes. For wheat we

chose 3 locations in-between rows for 5 different rows, and for maize, we took 16 virtual cores

with core positions in-between two plants within a row (Figure 2.2). To avoid boundary

effects, zones of 20 cm from the borders of the plot for wheat and 75 cm for maize were

not considered for sampling. Core sampling was performed with monthly time intervals for

8 months for wheat and 6 months for maize. In order to account for the stochasticity of

the model, this sampling procedure was repeated in 100 simulated field plots for each crop

type, resulting in a total number of 1500 soil cores for wheat and 1600 for maize.

Estimation of sample size for root studies:

In order to study the effect of sample size on the mean root length distribution with depth

and to select a representative sample size for the root studies, we calculated the mean and

standard deviation of RLD profiles that are based on a sample size of 1500 cores. With this
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sampling scheme for virtual coring, we are already at the upper limit of what is possible

in real field experiments in terms of number of cores sampled per plot. As a measure of

how good the sample mean root length density is compared to the “true” mean root length

density, we use the relative standard error (RSE) for different sample sizes n with the

sample size. We chose 10% of relative standard error (RSE) of the mean as the criterion to

determine the number of required cores. The RSE was calculated in two ways. The first

method, RSE1, used the theoretical relation between the standard error of the estimate

of the mean, the number samples n, and the standard deviation of the samples, std. The

second method, RSE2, calculated the standard deviations of sets of means, std mean, that

were obtained using different sample numbers.

𝑅𝑆𝐸1 =
©­­«
(

𝑠𝑡𝑑
𝑚𝑒𝑎𝑛

)
100

√
𝑛

ª®®¬ & 𝑅𝑆𝐸2 =

(
𝑠𝑡𝑑 𝑚𝑒𝑎𝑛

𝑚𝑒𝑎𝑛

)
100 (2.1)

A smaller RSE requires a larger number of samples. Under field conditions, it may be

necessary to find a compromise between the required precision and the number of samples

that are economically feasible in practice.

Virtual trenching:

Nine trenches 24 cm wide and 160 cm deep for wheat, and 150 cm wide and 160 cm deep for

maize (TR1-9) were virtually constructed perpendicular to the rows (Figure 2.3) and in each

trench two profiles of root intersections below a single plant row were obtained. Similar to

core sampling, trenches were positioned in the center of the plots to avoid boundary effects.

For the wheat profiles, root intersections were counted in 3 by 5 cm grid cells and in the

maize profiles in 5 cm by 5 cm grid cells (see Figure 2.3 for the spatial arrangement of the

grid cells with respect to the plant rows). The root system simulations and corresponding

virtual samplings were repeated for 100 simulated field plots so that for each grid cell in

a profile, a dataset of 1800 root intersection counts (all orders of roots intersections) was

obtained from which a mean and standard deviation was calculated. Finally, maps of the

mean intersection counts in the grid cells that illustrate the spatial root distribution in the

profiles were made at the end of the growing period.
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Figure 2.3: Setup of the vertical trench profiles and the grid cells in which root intersec-
tions were counted for wheat (left) and maize (right).

Virtual minirhizotron:

To account for the influence of rhizotubes, which act as obstacles to root growth, on the root

distributions, root growth simulations were repeated for a setup with horizontally installed

rhizotubes. To simulate the growth of roots around the rhizotubes or other obstacles,

CRootBox uses signed distance functions to divert the growth direction of a root tip when

it meets an obstacle (Schnepf et al., 2018). The arrangement of the plants in minirhizotron

simulations was identical to the one for the soil coring or trench profile methods.

The configuration of the rhizotube locations and the observations in the rhizotubes were

similar to those at the minirhizotron facility in Selhausen (Germany) (see (Cai et al., 2016)

for detailed information). At the Selhausen test site, rhizotubes of 6.4 cm outer diameter

were installed horizontally at depths of 10, 20, 40, 60, 80 and 120 cm (Cai et al., 2016) and

perpendicular to the plant rows. In order to avoid an impact of overlying rhizotubes on

root observations in deeper rhizotubes, rhizotubes at different depths were 10 cm shifted

horizontally with respect to each other (Figure 2.2). Root observations in a rhizotube

were made by a camera that was positioned at 10 different locations in the tube where 2

images were taken from both sides of the tube by turning the camera 80◦ clockwise and

80◦ counterclockwise with respect to the vertical. The size of the minirhizotron image was

set according to the camera configuration of the Bartz system (VSI /Bartz Technology

Corporation), which is 1.65 cm wide and 2.35 cm long along the arc circle of the rhizotube

(Figure 2.4) for the considered rhizotubes.
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Figure 2.4: Schematic cross section of a rhizotube installed in Selhausen test site and
tube locations of the images used in the simulation study.

For the wheat and maize plots, images were taken from respectively a 50 cm and a 100 cm

long stretch. Sampling positions were chosen within four inner rows of a plot to minimize the

boundary effects. Images were taken weekly over a period of 240 and 180 days for wheat

and maize respectively. Unlike coring or trench profile methods, roots are not directly

sampled in the minirhizotron method. The camera can capture only the roots which are

close to the rhizotubes but it is a challenging task to determine the viewing depth of the

camera which varies with soil type and texture. According to our experience, we assumed

that roots within 1 mm from the tube were seen in the images and the length of the root

segments in the image was divided by the area of the image to derive the RLD (note that

the RLD obtained from rhizotube images has a different unit (cm cm−2) than the RLDs

derived from soil coring (cm cm−3) and can therefore not be compared directly). For each

observation time and tube depth, a RLD was calculated from 2000 images (20 images in a

tube for 100 field plots) and the time series of RLDs at a given depth represents the root

arrival curve (RAC) at that depth.

2.2.2 Sensitivity analysis

As in (Schnepf et al., 2018), we explicitly distinguish between the “model input parame-

ters,” from which we compute the 3D root architecture using CRootBox, and “characteristic
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root system measures”, which we compute from the resulting 3D root architecture. The

former corresponds to individual root traits which could be of interest in e.g. phenotyp-

ing. The latter corresponds to the aggregated information as it can be obtained from root

field measurements. From the simulated observations, a number of characteristics were

derived. How these characteristics change with the parameters of the RSA model was eval-

uated in a sensitivity analysis. The characteristics that we considered for the sensitivity

analysis are listed in Table 2.4. Since coring and trenching methods are destructive in

real field sampling, we selected the results of last time step (240 and 180 days for wheat

and maize respectively) for the sensitivity analysis. However, weekly time steps (total 32

measurements for wheat and 24 measurements for maize) were taken for the minirhizotron

method.

Virtual soil coring provided us with the RLD profiles. From those profiles, we derived

the following additional characteristic root system measures: D99, RMc, and Tc in the

sensitivity analyses. The RLDs were calculated by averaging the root length densities in

the 1500 (1600 for Maize) simulated soil cores for each of the 32, 5 cm core segments. D99

represents the depth above which 99% of the total root length was observed. RMc is the

maximum of the average RLD profile. Tc is the total root length per surface area and was

obtained by integrating the RLD over depth (see Table 2.4 for the descriptions and units

of the root system measures).
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Table 2.4: Description of characteristic root system measures used in sensitivity analysis
along with respective sampling methods.

Sampling

method

Function units Description

Coring RLD cm cm−3 vertical profiles of mean root length densities in

5cm thick slices of soil cores up to 160 cm depth

D99 cm the depth above which 99% of the total root

length is observed

RMc cm cm−3 maximum root length density in the RLD pro-

files.

Tc cm cm−2 total root length per surface area

Trench RX counts

cm−2
root count density in 5 cm wide vertical transects

of the trench profiles

Rz counts

cm−2
root count density in 5 cm thick horizontal tran-

sects of the trench profiles

Tt counts

cm−2
average root count density in the trench profiles

MinirhizotronAt d−1 reciprocal of the median root arrival times at 10,

20, 40, 60, 80, and 120 cm depth

IQR d interquartile range of root arrival times at 10,

20, 40, 60, 80, and 120 cm depth

RMm cm cm−2 maximum root length density in a root arrival

curve.

From the trench profile data, we derived three characteristic root system measures: Tt

which is the total number of intersections in the profile, RX which represents the lateral

root distribution in the direction perpendicular to the rows and Rz which represents root

distribution with depth. RX was calculated for each vertical column of grid cells by sum-

ming up the root intersections in that column. Making use of the symmetric behavior of

the root growth with respect to the vertical axis below the seed, we averaged the values of

the columns at the same distance left and right of the plant row.

From rhizotube observations of the root arrival curves (RAC), we derived the reciprocal

of the median arrival time of the roots at a certain depth, At. The median arrival time

was defined as the time at which the root length density in the RAC reached 50% of the

maximal root density, RMm, of the RAC at that depth. The reciprocal was taken to avoid
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numerical complications for tubes that were below the maximal rooting depth for which

At was equal to zero. The difference between the times at which the densities in the RAC

reached 75% and 25% of the RMm represents the interquartile range of the root arrival

times, IQR, which is inverse proportional to the slope of the RAC. For tubes below the

maximum root depth, IQR was zero.

The Morris one-at-a-time sensitivity analysis method was performed to quantify the sensi-

tivity of different characteristic root system measures to each parameter of the root archi-

tecture model (Morris, 1991). Morris one-at-a-time sensitivity analysis method has been

applied previously to perform sensitivity analysis of root architectural models (Garré et al.,

2012; Pagés et al., 2012). The method calculates elementary effects, EE𝑖 of a certain pa-

rameter p𝑖 on a characteristic root system measure Y(p), as:

𝐸𝐸 𝑖=
𝑌
(
𝒑 + 𝑟𝑎𝑛𝑔𝑒𝑖 𝒆 𝒊Δ𝑖

)
− 𝑌 ( 𝒑)

Δ𝑖

(2.2)

where p represents the model parameter vector with dimension k, range𝑖 is the range of

parameter i, e𝑖 is a unit vector with dimension k that points in the i𝑡ℎ direction and ?Δ𝑖 is

a perturbation factor of the i𝑡ℎ parameter. To account for non-linearities and interactions

between different parameters, the elementary effects of a certain parameter was evaluated

for r different parameter sets p. The mean of the elementary effects, 𝑚𝑖 and of the absolute

values of elementary effects, 𝑚𝑖
∗ represent the overall influence of the parameter when it

varies within its range on the considered characteristic root system measure:
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To evaluate the non-linearity of the relation between Y and the parameter p𝑖 and its

interaction with other parameters, the standard deviation of the elementary effects, 𝑠𝑖, is

calculated:

𝑠𝑖=

√√√∑𝑟
𝑗=1

(
𝐸𝐸

𝑗

𝑖
− 𝑚𝑖

)2
r

(2.5)
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In order to obtain accurate and precise estimates of the sensitivity parameters m𝑖, m𝑖*

and s𝑖, it is important to use a representative sample of the parameter space. However,

for models with many parameters that require a long computation time, the number of

parameter sets that can be used to calculate the parameter sensitivity is limited. We

used the Method of Modified Optimized Trajectories that was proposed by (Ruano et al.,

2012) and that is based on the methods of (Morris, 1991) and (Campolongo et al., 2007).

First, 500 parameter trajectories, which are sets of k+1 parameter vectors p (k is the

number of parameters in the parameter vector, in our case 37), were generated according

to the method proposed by (Morris, 1991). Each parameter could take values on a fixed and

uniform grid that was chosen to have m = 4 levels with the lowest and highest value that are,

respectively, 50% lower and 50% higher than the mean parameter value given in Table 2.1.

Each parameter trajectory was generated starting from a randomly chosen initial parameter

vector on the m-level grid. In the parameter trajectory, only one parameter is changed

between two consecutive parameter vectors and every parameter is changed once in the

trajectory. The parameter change factor ∆i in the trajectory was set according to (Morris,

1991) to m/(2*(m-1)) or 2/3 . To calculate the elementary effects, only 10 trajectories

(r = 10) were selected from 500 generated parameter trajectories so that CRootBox was

run for 380 parameter sets. The 10 sets were selected based on the distances between the

parameter vectors of the different trajectories. The largest distances were chosen so that

the selected parameter vectors spanned the parameter space.

Finally, sensitivity indices or normalized mean absolute elementary effects and normalized

standard deviations were calculated as a percentage of the overall effect of all parameters:

𝜇∗𝑖= 100
𝑚∗

𝑖∑𝑘
𝑖=1𝑚

∗
𝑖

(2.6)

𝜎𝑖= 100
𝑠𝑖∑𝑘

𝑖=1𝑚
∗
𝑖

(2.7)

If the parameter sensitivity is equally distributed among all 37 parameters, each parameter

should contribute 2.7% (100/37) to the overall effect. Therefore, we selected 5%, which

is approximately double the equal parameter sensitivity, as the margin to determine the

sensitivity levels. We defined parameters with sensitivity indices (𝜇∗) greater than 10,

between 5 and 10, and below 5 as the most sensitive, moderately sensitive and non-sensitive

parameters, respectively. Parameters with a sensitivity index 𝜇* > 𝜎 and 𝜇* > 2𝜎/sqrt(r)

were defined as parameters with respectively high and severe non-linear effects (Morris,
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1991).

The parameter sensitivities, 𝜇∗, were presented as the percentage of the total variation of

the observed output variable (root system characteristic measure) due to variation in all

the input parameters (RSA) that can be attributed to the variation in parameter i. To

evaluate the parameter sensitivity against the uncertainty of an observed variable due to

sampling uncertainty, the standard deviation of the observed variable was normalized by

the overall effect of all parameters:

R∗= 100
𝑠𝑡𝑑𝑒𝑣∑𝑘
𝑖=1𝑚

∗
𝑖

(2.8)

where stdev-is the standard deviation of the observed variable or characteristic root system

measure (averages of RLD, of Rz, or of RMm). When R* <𝜇*𝑖, the effect of parameter i

on the observed variable can be distinguished from the uncertainty of the observation.

2.2.3 Principal component analysis of sensitivities

The sensitivity analyses reveal parameters that have a strong influence on certain aggre-

gated root system characteristics that are derived from field sampling. But, the effects of

different parameters on these characteristic root system measures may be strongly corre-

lated. This implies that a change that is induced by one parameter may be compensated

by another parameter. Parameters with strongly correlated effects cannot be derived inde-

pendently by inverse modelling. In order to assess which parameters could be derived from

the observed characteristic root system measures, we carried out a principal component

analysis of the sensitivities.

The relation between model parameters p and model output Y can be represented using a

linear approximation of the model as:

𝑌 (𝑝) = Δ𝑝𝑇 𝐽 + 𝑌 (𝑝0) (2.9)

Where p0 is a reference parameter set and J is the Jacobian of the model that corresponds

with the sensitivity of the model output Y to the parameters p. This linear approximation

is for instance used to estimate parameters using non-linear regression. In analogy to

linear regression, the Jacobian corresponds with the independent variable matrix X. When
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the independent variables (columns of X) are strongly correlated with each other, the

estimates of the parameters become very uncertain (multicollinearity). This implies that

not all parameters of the model can be inferred from the regression and that the model

is overdetermined. In order to avoid multicollinearity, new independent variables that are

linear combinations of the original variables and that are not correlated with each other

can be derived using a principal component analysis (PCA). The principle components

(PC) explain a certain part of the variability of the independent variable dataset and

because of their mutual independence, the total variability in the dataset is the sum of the

variabilities explained by each of the PC’s. The PC’s are ranked in function of the variability

that they explain with the first PC explaining the most. By selecting only the first PC’s

as independent variables for the regression, the dimension of the problem and hence the

number of parameters that are estimated can be reduced. Turning the problem around,

the principal component analysis (PCA) provides information about how many and which

parameters of the model can be estimated from the observed dependent variables Y and

its sensitivities to the parameters p. The coefficients that relate the different independent

variables (sensitivities to the parameters p) to the PC’s, i.e. the loadings, can be plotted

for two PC’s in biplots. The vectors shown in a biplot for different independent variables

(sensitivities to the parameters p) indicate how much of the variability of the two PC’s

is linked to the variability of the independent variables (length of the vector) and how

strongly independent variables are correlated among each other.

As an estimate of the Jacobian, we used the average value of the sensitivities, m𝑖. When

different observation types with different dimensions (e.g. root length in soil cores vs

root counts in a profile or in a rhizotube) are combined, the sensitivities have different

dimensions as well. In order to evaluate the impact of combining different observation

types on the amount of parameters that can be estimated independently, the sensitivities

were normalized by the average length of the sensitivity vectors for a certain observation

type. In other words, we calculated the length of the vectors in each row of X for a certain

observation type Y and took the average of these lengths. Then the values in the X matrix

for that observation type were divided by this average length. We considered as observation

types: root lengths in soil cores; average arrival times, IQRs of arrival time distributions,

and maximum root counts derived from root counts in rhizotubes; and the amount of roots

counted in vertical transects at different distances from the rows. In order to account

for the different number of observations for the different observation types, weights were

assigned to the sensitivities corresponding with different observations. For the cores, 45

observations were available, for the rhizotube observations 18 (3 types and 6 depths) and

for the counts in vertical transects 2 for wheat and 8 for maize.
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A flowchart with the simulations of the root system architectures, sampling methods,

derivation of characteristic root system measures, the sensitivity and PCA analyses is given

in Figure 2.5.

Figure 2.5: Flow chart showing the main steps used in the methodological approach.

2.3 Results

2.3.1 Root systems simulations

Figure 2.6 presents a 3D visualization of the root systems of maize plants at 180 days

after sowing that were simulated using CRootBox in a field plot. Similar simulations were
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done for wheat. Sampling methods and the locations of sampling are also shown in the

figure. Computation time for the virtual field simulations significantly varied with the

RSA parameters and number of root systems that were simulated in the virtual field plots.

Simulation of root growth and sampling in one field plot took 177 seconds for wheat and 878

seconds for maize on a desktop computer with Intel(R) core (TM) i3-4150 cpu @ 3.50GHz

processor and 8.00 Gb RAM.

Figure 2.6: Simulated maize root systems in a virtual field plot until 180 days after sowing
(color scale represents the appearance time of the root segments). Vertical transparent
cylinders represent the soil cores, horizontal cylinders the rhizotubes, and vertical planes the
trenches. Winter wheat simulations followed a similar simulation procedure with different
plant density and sampling locations.

2.3.2 Root sampling

Coring:

Figure 2.7 shows the core sampling results at one-month intervals for maize and wheat,

respectively. Each line of the graph represents the mean root length density and the gray

shaded bands represent the standard deviation of the estimate of the mean root length

density that is based on 15 cores in one realization of a field plot. The standard deviation

of root length densities in the individual soil cores is represented by the red shaded band.

The results of the two plant types, maize and wheat, show different patterns. The maximum
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simulated rooting depth of wheat is 10-20 cm deeper than that of maize whereas the highest

root length density for maize is reached about 10 cm deeper than for wheat.

Figure 2.7: Root length density profiles obtained from 15 soil cores in a field plot with
wheat (left), and maize (right) at 30-day time intervals. The lines represent the average
of the profiles that are simulated in 100 realizations of the plots. The grey shaded areas
represent the standard deviation of the obtained profiles from 15 soil cores in the different
realizations. Red shaded area represents the standard deviation of the root length densities
in the 1500 soil cores at the end of the growing season.

Figure 2.8: Range of root length density profiles obtained from 15 soil cores in a field plot
with wheat (left), and maize (right) at 240 and 180 days respectively, based on the full set
of parameter variations used in sensitivity analysis.
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The individual root length density profiles that are shown in Figure 2.8 represent the

distributions that were simulated for the reference RSA parameter set in Table 2.1. In

order to demonstrate the variability of the root distributions in the sensitivity analysis, we

plotted in Figure 2.8 root length density profiles for the 380 considered parameter sets. This

plot illustrates the flexibility of the RSA model to simulate different root length density

distributions by changing its parameters between 50% and 150% of the standard parameters

set. Depending on the parameters, different shapes of root density distributions: bell

shaped, sigmoid, nearly uniform and exponential; different maximal root depths ranging

from 30 cm to over 160 cm depth; and different maximal root densities: 20 cm cm−3

compared to approximately 2 cm cm−3 for the standard parameter set are obtained.

Estimation of representative sample size:

Figure 2.9 shows the relative standard error of the mean root length density, RSE, versus

the number of cores that was used to calculate the mean. To reach a RSE smaller than 10%,

10 cores are sufficient for wheat except for the deeper soil horizons where root densities are

smaller. This is in agreement with results of wheat field core samples (Hang Lai Thi Thu,

2011). For maize, around 50 cores would be required to reach the 10% RSE threshold in the

upper soil layers, whereas an even higher number of cores would be required for the layers

below 60 cm. RSE may increase due to selection of sampling position such as positions just

below the seed or in between two rows in maize sampling because higher number of roots

are observed close to the seed position and root density decrease with increasing distance

from the plant base. It is important to note that the sample volume also contributes to

the precision of the root length density measurements which increases with the volume of

selected sampling size (larger diameter cores increase the precision of the selected number

of cores, and vice versa).
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Figure 2.9: Relative standard error of the estimated mean root length density of wheat
(left) and maize (right) at different depths obtained from soil cores as a function of the
sample size: lines represent the theoretical relation between the standard error of the mean
and the sample size and symbols are standard errors of sets of means.

Trenching:

Root counting in trenches of the two considered crops shows relatively diverse results for

wheat and maize (Figure 2.10). The winter wheat root distribution is laterally homogeneous

below 10 cm depth, whereas maize shows higher lateral heterogeneity of root counts; root

counts decrease with the increasing distance from the seed position. The highest root count

density was observed close to the seed position.
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Figure 2.10: Spatial distribution of wheat and maize grid-based root counts in virtual
trench profiles. Dots represent the standard deviation of the mean root counts (winter
wheat at 240 days after sowing (left) and maize at 180 days after sowing (right)).

Minirhizotrons:

Simulated root arrival curves to the rhizotubes at different depths represent the variation

of root distribution and density with time (Figure 2.11). Depth profiles of root length

densities derived from rhizotubes had a different shape than those derived from soil cores.

For instance, for wheat at 240 days there is almost no variation of root densities between

10 and 60 cm depth observed in the rhizotubes whereas the profiles derived from soil cores

show a considerable variation with depth. In maize, the rhizotubes indicate the highest

root density at 10 cm depth, whereas the profiles derived from soil cores show the highest

root length density at 20 cm depth. The reason for these differences can be due to the

different locations below the plant rows that are sampled by the rhizotubes and the soil

cores and the impact of the root orientation on the root densities that are observed in the

rhizotubes.
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Figure 2.11: Mean root arrival curves (RAC) in horizontal rhizotubes at different depths
(T1-10 cm, T2-20 cm, T3-40 cm, T4-60 cm, T5-80 cm, T6-120 cm) for winter wheat (left)
and maize (right). Lines are means of root length densities obtained from 2000 images
per observation time (20 locations in 100 tubes in different realizations of the field plots)
and shaded areas represent standard deviations of means estimated from 20 images in one
realization of the field plot (shaded areas)
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2.3.3 Sensitivity Analysis

Figure 2.12: Summary of the sensitivities of the characteristic root system measures,
which are derived from virtual field observations (see Table 2.4), to parameters of the root
system architecture model (Table 2.1) (W: winter wheat, M: maize)). Classes of parameter
sensitivities and non-linearity effects; parameters are categorized into six zones based on
the elementary effects and standard deviations. The continuous line represents 1:1 line and
the dashed line represents = 2σ/sqrt(r) with r=10 is the number of parameter trajectories.

Figure 2.12 shows which characteristic root system measures are influenced by the RSA

parameters. Each parameter is characterized by its normalized mean of absolute elementary

effects and normalized standard deviation and illustrated by the color-code and font type

shown in Figure 2.12. Parameter sensitivities of root system measures that vary with

depth and that are obtained from all three sampling methods; coring (RLD), trenching
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(Rz) and minirhizotron methods (RMm, At) also vary with depth and the change of the

parameter sensitivity with depth differs between different parameters and between the two

crops (Figure 2.13). For instance, for wheat and maize, the sensitivities of RLD, Rz and

RMm to NB (number of zero order roots) decrease with depth whereas their sensitivities

to maxl0 (maximal length of zero order roots) increase with depth. The latter is consistent

with the maximum rooting depth (D99) that shows the highest sensitivity to maxl0 (Figure

A.2). RLD and Rz in maize are sensitive at greater depths to tr0 (gravitropism of zero

order roots) whereas RLD and Rz in wheat close to the soil surface are sensitive to theta0

(insertion angle of zero order roots) (see Figure 2.13). The sampling uncertainty in one

realization of the field plot (i.e. 15(16) cores, 9 trenches, 1m long rhizotubes) relative to

the total effect of all parameters, R*, was for RLD, Rz and RMm always lower than 2%

so that the parameter sensitivities, 𝜇𝑖* shown in Figure 2.13 could be distinguished from

sampling uncertainty.
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Figure 2.13: Normalized means of absolute elementary effects (𝜇*) of the most sensitive
RSA parameters on root length densities at different depths in soil cores (RLD, first row),
on root impact densities at different depths in trench profiles (Rz, second row), and on the
maximum amount of roots observed in rhizotubes at different depths (RMm, third row) for
winter wheat (left) and maize (right) 240 days and 180 days after sowing, respectively.

Figure 2.14: Normalized means of absolute elementary effects (𝜇*) and standard devia-
tions of elementary effects (σ) of the most sensitive RSA parameters on median root arrival
times (At, top) and on the IQR of root arrival times (bottom) observed in rhizotubes at dif-
ferent depths (red, green, blue, black, cyan and magenta colors represent the depths 10, 20,
40, 60, 80, 120 cm respectively) for winter wheat (left) and maize (right).

The sensitivities of root system measures that quantify the total amount of roots such as

42



Chapter 2. Parameter sensitivity analysis of a root system architecture model based
on virtual field sampling

the total root length, Tc, the total number of root impacts in a trench, Tt, or the maximal

root length density, RMc are shown in Figure A.1. These measures show in general largest

sensitivities to NB, ln0 (branching distance on zero order roots), maxl1 (maximal length of

first order roots), and maxl0 (Tt and Tc). From the trench observations, a characteristic

that represents the lateral variations in root impacts, RX, and that is related to the lateral

extent of the root system was derived. For maize, the sensitivity of Rx to NB, tr0 and maxl0

varies with the lateral distance from the plant row whereas for wheat RX and the sensitivity

of RX to the RSA parameters do not vary with lateral distance (see Figure A.3). Finally,

root characteristics that represent the dynamics of the root system development such as the

reciprocal of the median root arrival time, At, and the interquartile range of arrival times,

IQR, at different depths were derived. The sensitivities of At and IQR to RSA parameters

are shown in Figure 2.14. In contrast to the other root system characteristic measures that

were derived from measurements at the end of the simulated root growth period, these

dynamic root characteristics are sensitive to the growth rate of the zero order roots, r0.

The difference between uncertainty of the observed variable to the total sensitivities of

the parameters R*, which is lower than the detectable parameter sensitivities, except Rz

measure of maize trench root counting method (results are not shown).

2.3.4 Principal Component Analysis

The variability of the sensitivities of the core data to the different RSA parameters can

be explained for the largest part by the first two PC’s whereas the third PC explains

less than 5% of the variability (Table 2.5). When rhizotube data are used or when all

data are combined, the variability of sensitivities is spread more over the different PCs.

This indicates that the impact of certain parameters on certain observation can less be

compensated by changing other parameters. The parameter with the highest PC loading

for the first PC is the number of zero-order roots (NB). For the other PCs, the parameters

with the highest loadings differ between the crop and between the type of data that are

considered. However, for the rhizotube data, the growth rate of the zero-order roots, r0,

has the highest loading for the second PC for both wheat and maize. Figure 2.15 and

Figure 2.16 show biplots of parameter loadings for the 1st and 2nd PCs and the 2nd and

3rd PCs using data from respectively soil cores (see Figure 2.15) and rhizotubes (Figure

2.16) for wheat and maize. The alignment of the loading vectors of NB and ln0 with

the first PC axis in the biplots indicates that the first PC is correlated with the NB and

ln0 sensitivities whereas the opposite orientation of the vectors shows that ln0 has the

opposite effect compared to the effects of NB. A larger distance between branches leads to

a lower root length density whereas a larger number of zero order roots leads to a higher
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root density. The close alignment of loading vectors to the second PC (e.g. maxl0 and

tr0 for the core data from respectively wheat and maize and r0 for the rhizotube data)

identifies parameters that have an effect on the observations that is independent of the

parameters that are related to the first PC and that cannot be compensated by changing

these parameters.

Table 2.5: Percentage of variance explained by the first 5 principle components of the
sensitivities when only data from coring (cores), rhizotube measurements (rhizotubes) are
used and when rhizotube, core and impact data are combined (All) The parameter names
with the highest PC loading are given in parenthesis.

PC Cores Rhizotubes All

Wheat

1 73.3 (NB) 51.9 (NB) 55.6 (NB)

2 18.9 (maxl0) 27.5 (r0) 19.0 (r0)

3 4.6 (theta0) 6.5 (la1) 9.4 (maxl0)

4 1.0 3.7 4.9 (theta0)

5 0.6 2.7 2.6

Rest 1.6 7.7 8.5

Maize

1 70.5 (NB) 35.7 (NB) 57.2 (NB)

2 17.9 (tr0) 28.4 (r0) 15.3 (tr0)

3 3.9 (maxl0) 11.7 (la0) 8.1 (r0)

4 2.2 8.0 4.3 (la0)

5 1.5 4.2 4.2

Rest 4 12 10.9
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Figure 2.15: Biplots of parameter loadings for the 1st and 2nd PCs (first row) and the
2nd and 3rd PCs (second row) using data from soil cores for the wheat crop (left column),
and for the maize crop (right column).
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Figure 2.16: Biplots of parameter loadings for the 1st and 2nd PCs (first row) and the
2nd and 3rd PCs (second row) using data from rhizotubes for the wheat crop (left row), and
for the maize crop (right column).

2.4 Discussion

Although the simulated root density distributions results with depth deviate in some cases

from the often suggested exponentially decreasing root density with depth for agricultural

crops (Fan et al., 2016), the main characteristics of root length density profiles obtained

from soil coring such as maximal rooting depths at different times and average root length
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densities show good agreements with experimental data (Wasson et al., 2014). One of

the reasons for the difference in root density profile is that we did not select soil cores just

below the shoot of the plant where simulated root densities are much higher. In comparison

to the coring method, trenches provide detailed information about lateral distributions

across plant rows. A clear lateral distribution of root densities in maize indicates that root

density profiles obtained from root coring may depend on the location where the cores are

taken. If the core sampling scheme does not cover the spatial variability of root densities,

the obtained distribution may not be representative for the laterally averaged root length

density distribution.

Root arrival curves (RAC) to rhizotubes show a remarkable feature in Figure 2.11: the

large standard deviation of the mean root density that is calculated from 20 images in one

tube for one realization of the field plot. The surface area or corresponding soil volume that

is sampled by the images is relatively small so that a large number of images is required to

obtain a precise estimate of the RAC. This can be achieved by taking more images using

longer tubes and/or using more tubes at one depth. The standard error of the mean root

density that was calculated from 120 images taken from three tubes at the same depth in a

winter wheat plot was estimated to be 8% by (Cai et al., 2016). This would correspond with

a standard error of 20% when the mean is estimated from 20 images, which is slightly larger

than what we simulated for winter wheat. In our model simulations, we did not consider

soil heterogeneity which may be an additional factor influencing the spatial variability of

root densities that is observed in the field. The larger variability of RAC estimated from 20

images for maize can be attributed to the larger lateral variation of root densities of maize.

Rhizotubes have often been installed with a certain insertion angle instead of horizontally.

The large number of images that is required to obtain a precise estimate of the RAC at

a certain depth would imply that a large number inserted rhizotubes to obtain a precise

estimate of the RAC.

Sensitivity analyses of the characteristic root system measures that were obtained from the

three different root sampling methods demonstrate that the parameter sensitivity varies

not only with the sampling method, but also with each characteristic root system measure,

which reflect properties such as rooting depth, root mass, and lateral spreading of the root

system in soil. Also, of note are the differences in sensitivities for the two crops. This

can be related on the one hand to different cropping density. On the other hand, the non-

linearity of the model also leads to different sensitivities for root systems with a different

architecture (or a different set of RSA parameters). The variance of the sensitivities is

distributed more over the PCs of the rhizotube data (Table 2.5) which indicates that more
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parameters can be derived from rhizotube data than from soil core data or trench profile

observations. Rhizotube data also provided information about the dynamics of the root

growth. This information could also be obtained when soil cores or trench profiles were

taken at several times but parameter sensitivities were in our study only calculated for

soil coring and trench profile data that were obtained at a single time. When all datasets

were combined, additional information about root length densities from deeper soil layers

(maize) or from closer to the soil surface (wheat) and information about the lateral root

distributions (maize) in the soil core and root impact data, which was not present in the

rhizotube data, gave extra loading to the RSA parameters tr0 (maize) and theta0 (wheat).

Regarding the rankings of sensitivities (Figure 2.15), the number and maximal length of

the zero order roots, NB and maxl0, have a strong influence (red and green numbers) on

a large number of characteristic root system measures. Next come the growth rate r0 and

the branching distance, ln0, of the zero order roots which have a moderate influence on a

large number of characteristic root system measures; and the branching angle, theta0, and

gravitropism, tr0, of the zero order roots and the maximal length of the first order roots,

maxl1, with a moderate influence on a few characteristic root system measures. Of note

is that the parameters that describe the first (except maxl1 ) and second order roots have

a less strong direct influence but their influence depends strongly on other parameters as

indicated by the large normalized standard deviations, 𝜎 (Eq.(2.7)), of their effects. The

higher order root parameters have a severely non-linear impact on some of the characteristic

root system measures (magenta numbers).

Looking at the distribution of the influences of the parameters on the RLD with depth

(Figure 2.13), it seems that the second PC reflects the sensitivity of the root densities

deeper in the soil profile. For wheat, PC2 is strongly linked to the maximal length of

zero order roots, maxl0, whereas for maize, especially the gravitropism of the zero order

roots, tr0, is important. For both maize and wheat, maxl0 and tr0 have positive PC2

loadings which indicates that these parameters influence root densities at larger depths in

the same way, i.e. higher root densities at greater depths can be obtained by longer primary

roots or by roots that grow downwards more vertically due to a higher gravitropism. But

the importance of both parameters for root densities at greater depths differs for the two

crops. maxl0 influences strongly the maximal rooting depth (D99) for both maize and

wheat (Figure A.2).

The third PC is for wheat linked to the angle of the zero order roots, theta0, which influences

the root densities close to the soil surface (see Figure 2.13). It should be noted that for

both maize and wheat, theta0 has negative PC2 loadings which indicates that an increase in
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theta0 (more horizontal roots) leads to a lower root density at larger depths. For maize, the

third PC is more strongly related to maxl0 than to tr0 and reflects the root distributions

at intermediate depths, which are more sensitive to maxl0 (see Figure 2.13).

The total root length Tc, which can be considered to be the product of the root depth and

the root density, is sensitive to all the parameters that are related to PC1, PC2 and PC3.

For wheat, these are NB, ln0, maxl0, theta0 and maxl1, whereas for maize these correspond

to NB, ln0, maxl0, tr0 and maxl1 (Figure A.1). The 𝜎-𝜇* plot for Tc also shows a severe

non-linear sensitivity of the total root length of wheat to the parameters that characterize

higher order roots (maxl1, la1, lb1 ). Since in the PCA the mean sensitivities m𝑖 are

considered, the non-linear effects are not expressed by the PCs.

Comparing the 𝜎-𝜇* plot for Tc (total root length) with that for Tt (total number of

intersections in a trench profile), (Figure A.1) the two plots look very similar. This indicates

that Tc and Tt contain similar information about RSA parameters. Similar conclusions

could be drawn when comparing sensitivity depth profiles for RLDs derived from soil cores

(Figure 2.13), for RLDs derived from minirhizotube observations (RMm in Figure 2.13), and

for RIDs derived from trenches (RZ in Figure 2.13). Although there are some differences in

depth profiles of RLDs/RIDs that are derived from the different methods, these three types

of aggregated information about root systems show a similar sensitivity to RSA parameters.

This indicates that they contain similar information about RSA parameters. This suggests

that adding root coring data to minirhizotube data for the same depth range will not lead

to a lot of additional information that can be used to estimate RSA parameters.

Looking at the sensitivities of the lateral distribution of root impacts densities (RID) in

trench profiles (Figure A.3), it is obvious that for wheat, with a uniform lateral distribution

of root counts, the sensitivity of the RID averaged with depth, RX, to the RSA parameters

does not vary a lot with lateral distance and is very similar to the sensitivity of the total

number of root impacts Tt. However, for maize the sensitivity of RX varies considerably

with lateral distance and RX is more sensitive to tr0 than to NB, which is opposite to the

sensitivity of Tt to tr0 and NB. The tr0 defines how strongly zero order roots are growing

downward or can grow laterally, which explains the sensitivity of RX to tr0. Combining soil

core with trench profile data provides extra information for estimating RSA parameters.

The PCA of the combined dataset showed that the loadings of the parameters tr0 and maxl0

to PC2 and PC3 increased which means that tr0 and maxl0 could be better discriminated

when trench profile data are combined with soil core data (results not shown).

The biplots of the parameter loadings of the PCs that were derived from the sensitivities
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to the rhizotube data (RMc, At, and IQR at different depths) show that the first PC is

related to the same parameters as the first PC of the soil cores (Figure 2.16). This PC is

therefore also related to the average root densities in the soil profile. The second PC is

related to the growth rate, r0, and corresponds with the median arrival time of the roots

at different depths (Figure 2.15). The third PC is related to la1 (the length of the apical

zone of the first order roots) for wheat and to la0 for maize. Since the median root arrival

time near the surface is sensitive to la1 (wheat) and la0 (maize) (Figure 2.15), the third

PC is related to the root arrival time near the soil surface. The influence of the parameters

on the slope of the arrival curve is strongly or severely non-linear, which indicates that the

effect of parameters on the slope of the arrival curve depends strongly on the values of the

other parameters (Figure 2.15).

2.5 Summary and Conclusions

Root systems of a large number of plants in a field setting and different field sampling

methods such as soil coring, root impacts on vertical soil trenches, and images taken from

horizontal rhizotubes were simulated using the RSA model CRootbox. As an example, two

crops with a different planting density and root architecture, maize and wheat were con-

sidered. Making use of the improved computational efficiency of CRootbox, it was possible

to repeat the simulations for a large number of realizations of the field plots and a large

set of RSA parameters. Based on these simulation data, the uncertainty or variability of

root sampling data and the sensitivity of characteristic root system measures, which can be

inferred from field data, to RSA parameters could be assessed. The most sensitive parame-

ters were those of the zero order roots whereas the parameter of higher-order roots showed

non-linear sensitivities, which means that their influence depended on the values of other

parameters. Similar characteristic root system measures that were obtained with different

methods, e.g. depth profiles of root density obtained from soil coring, from root impacts in

vertical trenches, or from images taken in horizontal rhizotubes at different depths, showed

similar sensitivity to the RSA parameters. However, the parameter sensitivity depended on

the crop and the observation types, which implies that specific results cannot be general-

ized. Nevertheless, our results are consistent with an earlier sensitivity analysis of rhizotube

observations to RSA parameters of spring barley (Garré et al., 2012). Although another

RSA model was used, RootTyp (Pagés et al., 2004), the number of zero order roots (NB)

and the root growth rate of the zero order roots (r0 ) were, as in our study, found to be

the most sensitive parameters for, respectively, the root density observed in the rhizotubes
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and the median arrival time of the roots. As also found in our study, the sensitivity of the

slope of the root arrival time to RSA parameters was very non-linear.

Using principal component analyses of the parameter sensitivities, groups of parameters

that had similar or counteracting effects on characteristic root system measures could be

identified and linked to specific characteristic root system measures. The analyses demon-

strated that the total number of zero order roots (NB), the branching distance on the

zero order roots (ln0 ), and the maximal length of the zero order roots (maxl0 ) influenced

characteristic root system measures that are related to the overall root density (maximal

root density, total amount root impacts) in a similar way. An increase in for instance NB

could be compensated by a decrease in maxl0 or an increase in ln0. This provided insight

into which RSA parameters could be identified independently from specific characteristic

root system measures by inverse modeling and which characteristic root system measures

provide extra information to infer additional RSA parameters. Using information about

root development over time, which can be obtained non-invasively from rhizotube images,

is important to estimate root growth rates (r0 ). Root density depth profiles obtained

from horizontally installed rhizotubes can be extended with data from soil coring or from

root impact counts in vertical trenches that provide a higher spatial resolution or give

additional information about the lateral distribution of root densities. The PCA and sensi-

tivity analyses showed the additional value of combining these datasets for the estimation

of parameters like maximum length (maxl0 ), insertion angle (theta0 ) and gravitropism of

zero order roots (tr0 ) from field measurements.

2.6 Outlook

The development of the root system also depends strongly on environmental factors like soil

temperature (Nagel et al., 2009), soil strength (Bingham and Bengough, 2003), shape and

size of soil grains (Lipiec et al., 2016), and the presence of biopores (Perkons et al., 2014).

Some studies showed that root architecture and characteristic root system measures of a

certain plant genotype reflect its adaptation to environmental conditions (Hamada et al.,

2012) such as the effect of tillage system on soil strength, the soil type and soil moisture

condition (Cai et al., 2018; Muñoz Romero et al., 2010; Fan et al., 2017). Therefore, it is

required to include soil information into RSA models. CRootBox does have the capability

to simulate root growth affected by static soil condition as well as to dynamically changing

soil conditions via coupling to soil models (see e.g. example 5 in (Schnepf et al., 2018)). At

the cost of increasing the number of parameters, this shall be considered in future sensitivity
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analyses. In this study, our sensitivity analysis results provide a broad insight about the

sensitivities of classical field sampling data to different root architecture parameters. We

highly recommend investigating the application of root architecture models to retrieve the

specific root traits of different genotypes and their response to environmental conditions

with the aid of an inverse modeling algorithm and to test the suitability of real sampling

schemes to retrieve the root system architecture of a plant. This approach could further

valorize field phenotyping data by linking them to individual root architecture parameters

or root traits. These architectural traits could be plugged into functional structural models

that predict the functional traits of root systems that could be of interest to breeders

(Meunier et al., 2017; Passot et al., 2018).
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3.1 Introduction

Plant root distribution in soil varies with the plant species (Fan et al., 2016), genotypes

(Gorim and Vandenberg, 2017), and soil environmental conditions (de Moraes et al., 2018).

The structure of the root system changes to adapt to soil-environmental conditions, e.g.,

in resource-limited environments (Morris et al., 2017).

Root system architecture describes the morphology and topology of a root system which

is responsible for water and nutrient uptake. Plant functions, such as water and nutrient

uptake, are strongly affected by root system architecture (RSA) (Hochholdinger, 2016).

During the last few decades, plant-breeding programs have improved crop production sig-

nificantly by introducing new varieties. (Del Bianco and Kepinski, 2018), showed the

potential benefits of developing phenotypes such as crops with deep root systems to cap-

ture deep water and nutrients with high efficiency, and (Lynch, 2013) demonstrated the

possibility of extracting deep water and N with the help of hypothetical maize ideotype by

adapting architectural root traits.

Imaging methods have been used successfully to recover RSA parameters of plants grown

in soil (Bodner et al., 2018; Topp et al., 2013; van Dusschoten et al., 2016) which were

subsequently used in RSA models that extrapolate RSA from the seedling to mature plant

stage (Zhao et al., 2017). Methods for root sampling and for characterizing RSA traits, and

their limitations are summarized in (Fang et al., 2012; Judd et al., 2015). In comparison

to field phenotyping, lab-based methods are widely used in root phenotyping due to a

lack of accessibility and reliable methods to characterize the RSA of plants grown in field

conditions (Atkinson et al., 2019; Meister et al., 2014). However, the root traits of young

plants that were grown in the controlled lab environment are not sufficient to determine

traits of mature plants that grow in field soils subject to the real field soil and environmental

conditions (Paez-Garcia et al., 2015). Therefore, field phenotyping methods are becoming

increasingly popular to characterize RSA in real field conditions (Araus and Cairns, 2014;

Meister et al., 2014).

Traditionally, root sampling methods are used to measure the root distribution with depth

(as root length density) from soil cores (Wasson et al., 2014), root intersection counting in

trench profiles (Vansteenkiste et al., 2014), root arrival curves (root length density varies

with time in continuous measurement) using minirhizotron methods (Majdi, 1996), and

excavation methods (Böhm, 1979a), to determine the total root mass distribution of plants.

All these methods have traditionally been used to obtain some limited information about
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the root distribution in the soil. Nevertheless, the data may contain information about the

detailed root system architecture or architectural root traits, i.e., number of primary roots,

the distance between lateral roots, branching angles. However, obtaining RSA parameters

from field data remains a challenge as they represent more aggregated information about

the root system. In addition to classical methods, innovative field sampling methods have

been introduced to obtain more detailed information about the root system (Bucksch et al.,

2014; Wu and Guo, 2014). Although field sampling methods provide limited information, it

is of utter interest to study the possibility of retrieving the hidden information (3-D RSA)

in field sampling data.

Root architecture models consist of dozens of parameters that determine the structure and

the morphology of the root system. Root sampling data contains information about sev-

eral root system architectures as an aggregate. Even though simulated RSA architectures

differ for different parameter sets, these differences may be averaged out in the aggregated

sampling data so that different sets of RSA parameters may produce the same aggregated

output. Therefore, when doing parameter estimation care must be taken to prevent over-

fitting which is associated with parameter uncertainty. In previous work (Morandage et al.,

2019) we identified the most sensitive parameters of root systems of wheat and maize with

respect to aggregated data or root system measures that were derived from soil coring,

trenching and minirhizotron root sampling methods. In that same study, we showed how

the sensitivity of the model output to the different root architectural parameters varies with

the sampling method and considered “root system measures” (such as root length density

at different depths in the soil profile, maximal rooting depth, etc.). We indicated that the

most sensitive parameters could be retrieved potentially by inverse estimation. Moreover,

using a principal component analysis of parameter sensitivities, we identified parameter

groups of which the effect of their changes on the simulated root system measures could be

compensated by changes of other parameters in that group.

In order to represent the fact that root systems of two plants of the same variety or even

with the same genotype differ, random factors or stochasticity are built in RSA models.

This randomness or stochasticity is averaged out in sampling data that aggregate informa-

tion from different plants. But since sampling data contain information of a finite number

of plants, the stochasticity or randomness of these individual plants is not averaged out

completely but remains to some extent in the sampling data. This stochasticity or uncer-

tainty in the sampling data is another source of parameter estimates uncertainty. Therefore,

it is important to assess the uncertainty of the RSA parameters that are obtained from

aggregated sampling data.
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Bayesian inference can be identified as a potential approach for estimating RSA parameters

from aggregated field sampling data and their uncertainty, encoded within the so-called

parameter posterior probability density function (pdf). Although RSAs of plants derived

from lab experiments differ due to differences in plant development stage and growing

conditions from RSA of the sampled plants in the field, (Paez-Garcia et al., 2015), RSA

parameters derived from the lab may provide a good approximation about the prior range

of the parameters or their prior pdf.

The application of Bayesian methods has tested successfully in many fields of studies (Hines,

2015; Vrugt et al., 2009) and has been shown to be a robust approach to estimate param-

eters and their uncertainty, especially when the model outcome depends non-linearly on

the parameters and non-linear parameter interactions exist. Previous sensitivity analyses

(Garré et al., 2012; Pagés et al., 2012; Morandage et al., 2019) showed that this is the case

for RSA models. In comparison to local and/or non-probabilistic optimization algorithms,

the main disadvantage of Bayesian methods is that sampling the posterior distribution

typically requires a large number of forward models runs. In addition, simulation of many

root systems in the field and their sampling incurs large computational costs. Therefore,

Bayesian inversion can take a considerable amount of time. Nevertheless, we show herein

that the use of distributed computing together with a parallel Bayesian inversion algorithm,

e.g., a multi-chain Markov chain Monte Carlo (MCMC) sampler, makes it possible to infer

important RSA parameters from field sampling data. Markov chain Monte Carlo sam-

pling with a symmetric proposal distribution makes us of the prior density and likelihood

function of current and proposed parameter sets to create transitions in the chain. The

value of the likelihood function classically depends on the errors between the simulated

and observed data and the standard deviations of these errors. These standard deviations

reflect the required fitting precision which in ideal conditions of no model errors should be

equal to the uncertainty level(s) of the observed data. The problem that arises for RSA

models that have a stochastic component is that the simulated observations themselves are

stochastic. As mentioned before, this stochasticity can be reduced by increasing the number

of plants that are simulated and used to calculate the aggregated root distribution. Un-

fortunately, this can incur prohibitively large computational costs. Therefore, approaches

must be found to deal with this model stochasticity in a Bayesian inversion method.

Few studies were conducted to estimate the parameters inversely; a density-based model of

root image data of individual root systems was investigated to determine the root growth

parameters (Kalogiros et al., 2016). Although this study showed reasonable estimates with

the measured root growth parameters, experiments were limited to short-lived root growth
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in filter papers that do not resemble real field conditions. (Garré et al., 2012) used dynamic

root growth data measured using minirhizotrons to calibrate the RSA model. The main

limitation of the above approach was that a limited number of parameters of the model

were estimated inversely, and the posterior distribution of the parameter estimates was not

derived. Trench profiles and soil core data were used by (Vansteenkiste et al., 2014) to

estimate the trait information such as total root length and root distribution successfully

from measured and simulated data, and this study did not consider the RSA parameters

extensively. A study was conducted by (Pagés et al., 2012) to show the possibility of re-

trieving some RSA parameters of a plant using field sampling methods. ‘CPU and memory

consumption, especially for big root systems, as well as algorithmic and numerical prob-

lems due to the stochastic characteristics of the RSA model during inversion’ (Pagés et al.,

2012) motivated them to develop a metamodel that was based on a global sensitivity anal-

ysis of the RSA model and that considered main parameter effects as well as parameter

interactions. Furthermore, a recent study presented the use of the approximate Bayesian

computation (ABC) framework to characterize root growth parameters from synthetic and

experimental data that are limited only to early stages of root systems and that use directly

observed RSA instead of aggregated field sampling data (Ziegler et al., 2019).

In this work, we present an approach to inversely estimate root architecture model param-

eters from field sampling data using Bayesian inference. Furthermore, we investigate the

reliability of information about detailed root system architecture provided by our proposed

inverse estimation approach. The rest of this paper is organized as follows. In section

2, we present our proposed inference method and how its performance is evaluated using

plot-scale simulation of root density. In section 3, we study which RSA parameters can be

successfully retrieved from the inversion of soil coring data. This is followed by section 4

which discusses the feasibility and remaining challenges associated with the application of

our approach to real field conditions.

3.2 Materials and Methods

3.2.1 Forward model and virtual root sampling data

The synthetic soil coring root sampling data that are analogous to real field sampling

data, were obtained from simulated root systems in a virtual field plot using known root

architecture parameters. By using data from a virtual experiment instead of using real data,
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we can evaluate how closely the inversely estimated RSA parameters match the known ‘true’

parameters. Based on this comparison, we can conclude which RSA parameters could be

derived by inverse modeling.

We selected the stochastic root architecture model CRootBox (Schnepf et al., 2018)for

root system simulations and root sampling. Please refer to (Schnepf et al., 2018) for

detailed information about the root architecture model CRootBox. The detailed root

system simulation, sampling and the sensitivities of root system measures to parameters of

each sampling scheme are discussed in (Morandage et al., 2019).

For the inversion, we selected the core sampling data obtained from winter wheat root

sampling. Wheat plant root systems were simulated in a 72 cm*45 cm size plot that

consists of seven rows with 16 plants in a row. The inter-row distance was 12 cm with 3

cm plant spacing within a row. Core sampling was performed with monthly time intervals

for eight months. We adjusted the sampling size similar to real field sampling schemes. We

chose 3 locations in-between rows for five different rows (15 core samples in a plot in total).

To avoid boundary effects, zones of 20 cm from the borders of the plot were not considered

for sampling (Figure 3.1(A)). Cylindrical cores of 4.2 cm diameter and 160 cm long were

sampled and subsequently sliced horizontally in 5 cm intervals to determine the RLD of

each sampling volume (69.72 cm3). Thus, core root sampling data are written to a text

file which consists of 15*8*32 values of root length densities (see below) as the output of

the forward model. Figure 3.1(B) indicates the RLD’s of 15 cores separately (black-dashed

lines) and the mean RLD of those 15 cores (solid green line), while Figure 3.1(C) shows

the mean of 32 repetitions (solid blue line) of mean RLD of 15 core samples to understand

the stochastic nature of sampling data of simulated root systems.
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Figure 3.1: Top(A): Simulated winter wheat root systems in a virtual field plot until 240
days after sowing (color scale indicates the appearance time of the root segments and the
vertical transparent cylinders represent the soil cores). Bottom: RLD profiles of simulated
core sampling data. Black dashed lines show the RLD of each core sample separately and
the green line shows the mean RLD of 15 core samples (B), the blue line in (C) indicates
the mean of 32 sets of 15 soil cores and the red line indicates the average of 15 cores that
was chosen and used as measured data for inverse estimation of RSA parameters (C).
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Root length density of 5 cm segments of 160 cm long core samples were taken at monthly

time intervals up to 8 months (8-time step information for 32, 5 cm depth intervals). We

sampled 15 cores from the plot and calculated the mean and standard deviations of those

15 core samples. Therefore, RLD root sampling data consists of 256 mean root length

density values M𝑅𝐿𝐷 (cm cm−3) Eq.(3.1).

𝑀𝑅𝐿𝐷𝑖, 𝑗
=

1

𝑛

𝑛∑︁
𝑘=1

𝑅𝐿𝐷𝑖, 𝑗 ,𝑘 (3.1)

where n is the number of samples per depth (15), i is sampling depth index, j the sampling

time index, and k is the sampling number index. 𝑅𝐿𝐷𝑖, 𝑗 ,𝑘 is a 3d matrix, which stores

root length density (RLD) values obtained from 32 depth intervals (i), and 8 monthly

intervals (j ) in 15 core samples (k), n=15 (number of cores taken from the plot). Since the

variability of the root length densities between the 15 soil samples that were collected at

a certain depth and time also contains information about the root system architecture, we

also calculated standard deviation values for each of the 256 time and depth observations

S𝑅𝐿𝐷 (cm cm−3) Eq.(3.2).

𝑆𝑅𝐿𝐷𝑖, 𝑗
=

√√√∑𝑛
𝑘=1

(
𝑅𝐿𝐷𝑖, 𝑗 ,𝑘 − 𝑀𝑅𝐿𝐷𝑖, 𝑗

)2
𝑛

(3.2)

3.2.2 Selection of the most sensitive parameters of root system

architecture and their prior distribution

We conducted a detailed analysis of sensitivities of 37 root architecture parameters in a

previous study and found that the parameters of zeroth-order roots have higher sensitivities

on root length densities obtained from soil cores (Morandage et al., 2019). Therefore,

we selected numbers (NB), internodal distance (ln0 & ln0s) maximum length (maxl0 &

maxl0s) elongation rate (r0 & r0s), tropism strength (tr0 & tr0s), insertion angle (theta0 &

theta0s) of zero-order roots and internodal distance (ln1 & ln1s), maximum length (maxl1

& maxl1s) first-order laterals,and length of apical zone (la2 & la2s) of second-order laterals

as inferred parameters. All these parameters (except NB) are stochastic in the model and

parameter names ending with s refer to the standard deviation of the parameter. The

stochastic parameter distribution was assumed to be a Gaussian distribution. Since the

literature data does not provide a proper estimation for desired limits and distribution of
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the field derived RSA parameters, we defined the 50% and 150% of true parameter values

as the upper and lower bounds of the 17 inferred parameters and assumed that the priors

are uniformly distributed within these limits. The list of all RSA parameters of winter

wheat and their bounds used in this study are listed in Table 3.1.
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Table 3.1: List of root architectural parameters of wheat used in root system simulations
and the prior range of inferred parameters. Except for the number of zero-order roots NB,
each parameter is a stochastic parameter with a mean and a standard deviation (values
inside the brackets indicate the standard deviations of the parameters). Numbers in the
parameter names refer to the root orders. Underlined values are the parameters used for
inference and the others are fixed to true parameter values.

No Code Root

order

Parameter name Unit Parameter

values

Prior

range

1 lb0 (std) 0 length of basal zone cm 0.8 (1.2)

2 la0 (std) 0 length of apical zone cm 4.2 (6.4)

3 ln0 (std) 0 branch spacing cm 1.2 (0.5) 0.6-1.8

(0.3-0.9)

4 maxl0 (std) 0 maximum length cm 130 (30) 65-195 (15-

45)

5 r0 (std) 0 initial growth rate cm day−1 1.2 (0.6) 0.6-1.8

(0.3-0.9)

6 tr0 (std) 0 tropism 1.2 (0.2) 0.6-1.8

(0.1-0.3)

7 theta0 (std) 0 branching angle rad 1.4 (0.2) 0.7-2.1

(0.1-0.3)

8 lb1 (std) 1 length of basal zone cm 0.8 (1.0)

9 la1 (std) 1 length of apical zone cm 1.8 (2.4)

10 ln1 (std) 1 branch spacing cm 1.0 (1.5) 0.55-1.65

(0.75-2.25)

11 maxl1 (std) 1 maximum length cm 2.0 (1.0) 1.0-3.0

(0.5-1.5)

12 r1 (std) 1 initial growth rate cm day−1 0.4 (0.12)

13 tr1 (std) 1 tropism 1.0 (0.4)

14 theta1 (std) 1 branching angle rad 1.2 (0.4)

15 la2 (std) 2 length of apical zone cm 2.2 (0.4) 1.1-3.3

(0.2-0.6)

16 r3 (std) 2 initial growth rate cm day−1 1.0 (0.2)

17 tr2 (std) 2 tropism 0.1 (0.6)

18 theta2 (std) 2 branching angle rad 1.12 (0.4)

19 NB 0 number of zero order

roots

nos 20 10-30
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3.2.3 Selection of the synthetic measurements

To create the used synthetic measurements, we ran the CRootBox model once using the ref-

erence or “true” parameters presented in Table 3.1. Since the CRootBox model is stochastic

(see section 3.2.1), this creates just one realization of 256 M𝑅𝐿𝐷 and 256 S𝑅𝐿𝐷 values (see

Eq.(3.1), and Eq.(3.2)) associated with the true parameters. However, such a single syn-

thetic dataset would represent repeated root sampling data of the same plants and at the

same locations. Since core sampling is a destructive method, in real field experiments cores

taken at different times come from different locations and sample roots of different plants.

Therefore, the synthetic dataset was constructed from 8 realizations that were each sampled

at a different time. To derive the corresponding 256 + 256 = 512 standard deviations of

the data errors, 𝜎𝑖, that are required by our likelihood function Eq.(3.6), we generated 100

additional forward realizations using the true model parameters and computed the stan-

dard deviation of each of the i=1, . . . , 512 simulated data points (i=1, . . . , 256: M𝑅𝐿𝐷 ;

i=257, .., 512: S𝑅𝐿𝐷) across these 100 realizations.

3.2.4 Bayesian approach

In general, the output of a model F (x), where x = (x 1, x 2. . . , x 𝑑) is a d - dimensional

parameter vector, is compared with observations y to estimate the model parameters:

y = 𝐹 (x) + e (3.3)

where e is an error term that lumps measurement and model errors. When the process

that is observed and the model that is used to describe the process is stochastic, i.e., when

there is an unknown variability in the system that leads to different responses under the

same external conditions, then e also comprises this stochasticity. Often, the parameters

of the model are not known and are estimated by searching for the parameter values that

minimize the norm of e. When using the Bayesian framework to acknowledge parameter

uncertainty, the goal is to derive the posterior probability density function (pdf) of the

model parameters of interest, x, given the observations, y, as expressed by Eq.(3.4)

𝑝(x|y) = 𝑝(y|x)𝑝(x)
𝑝(y) (3.4)
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where p(x|y) is the posterior pdf of x given y, p(y|x) ≡ L(x|y) denotes the likelihood

function of x, p(x) is the prior pdf of x, the normalization factor p(y) =
∫

p(y|x)p(x)dx

is obtained from numerical integration over the parameter space so that p(x|y) scales to

unity. The quantity p(y) is generally difficult to estimate in practice but is not required

for parameter inference. In the remainder of this study, we will focus on the unnormalized

posterior:

𝑝 (x | y) ∝ 𝐿 (x | y) 𝑝(x) (3.5)

Moreover, in case of a uniform prior, Eq.(3.5) simplifies to p(x|y)∝ L(x|y). For numerical

stability, it is often preferable to work with the log-likelihood function, ℓ (x|y), instead of

L(x|y). If we assume the error e to be normally distributed, uncorrelated and heteroscedas-

tic, the log-likelihood function can be written as

ℓ (x|y) = − 𝑛

2
log (2𝜋) −

𝑛∑︁
𝑖=1

𝑙𝑜𝑔 (𝜎𝑖) − 1

2

𝑛∑︁
𝑖=1

[𝑦𝑖 − 𝐹𝑖 (x)]2

𝜎2
𝑖

(3.6)

where n is the number of measurement data and the 𝜎𝑖 are the standard deviations of the

residual errors 𝑒𝑖. Note that in our context, the subscript i refers to a combination of time

and depth.

3.2.5 Markov chain Monte Carlo sampling

The aim of the inference is to estimate the posterior distribution of the model parameters,

x, given the available measurements y: p(x|y). As an exact analytical solution of p(x|y)

is not available, we resort to Markov chain Monte Carlo (MCMC) simulation to generate

samples from this distribution. The basis of this technique is a Markov chain that generates

a random walk through the search space and iteratively finds parameter sets with stable

frequencies stemming from the posterior pdf of the model parameters (see, e.g., (Robert and

Casella, 2013) for a comprehensive overview of MCMC simulation). The MCMC sampling

efficiency largely depends on the proposal distribution used to generate candidate solutions

in the Markov chain. In this study, the state-of-the-art DREAM(𝑍𝑆) (Laloy and Vrugt, 2012;

ter Braak and Vrugt, 2008; Vrugt, 2016) algorithm is used to retrieve posterior samples.

The DREAM(𝑍𝑆) scheme evolves different interacting Markov chains in parallel. A detailed

description of this sampling scheme, including convergence proof, can be found in the cited
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literature and is thus not reproduced here.

The convergence of the MCMC sampling to the posterior distribution can be monitored by

means of the potential scale reduction factor of Gelman and Rubin (Gelman and Rubin,

1992), 𝑅. This requires using multiple Markov chains and is thus well suited for the multi-

chain DREAM(𝑍𝑆) sampler. For each sampled parameter, the Gelman and Rubin (Gelman

and Rubin, 1992) approach compares the average within chain variance to the variance of

all the chains mixed together. The smaller the difference between these two variances, the

closer to 1 is the value of the 𝑅 statistic. A value of 𝑅 smaller than 1.2 for every parameter

of interest is commonly considered as indicating official convergence of the sampling to

a stationary distribution. In this work, 𝑅 is calculated regularly throughout sampling,

using the last 50% of the sampled parameter sets. The mean acceptance rate (AR (%)) of

the proposed transitions in the Markov chains is an important sampling property and is

thus also reported. A too small fraction of accepted moves points out poor mixing of the

chains due to a too wide proposal distribution. In contrast, an overly large acceptance rate

suggests a too narrow proposal distribution, causing the Markov chains to remain in the

close vicinity of their current locations. The optimal AR value depends on the proposal and

target posterior distributions, but a range of 10–40% generally indicates good performance

of DREAM(𝑍𝑆).

3.2.6 Dealing with model stochasticity and non-independent

data errors

To represent the random nature of the root distribution in real field conditions, root ar-

chitecture models internally draw realizations of some of their parameters from prescribed

probability distributions (Tron et al., 2015). In other words, many of the parameters that

are internally used in a given forward simulation by the model are randomly drawn from

prespecified probability distributions. The parameters of these distributions (e.g., mean

and standard deviation in case of a Gaussian distribution) are the actual RSA parameters

and are to be set by the model user. Consequently, repeatedly using the same set of RSA

parameter values leads to an ensemble of different outputs (such as RLD in soil core sam-

ples). With increasing size of the output (i.e., with an increasing number of soil cores that

are taken), the variability of the ensemble in terms of M𝑅𝐿𝐷 and S𝑅𝐿𝐷 (see Eq.(3.1) and

Eq.(3.2)) will asymptotically converge to zero.

When using MCMC for Bayesian inference, the forward model is typically considered as
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deterministic and a given input parameter set thus always has the same log-likelihood.

Hence, DREAM(𝑍𝑆) requires the log-likelihood of a given parameter set not to vary. To deal

with forward model stochasticity, we therefore averaged the simulated data corresponding

to a given input parameter set over a certain number of realizations, before computing

the log-likelihood. Using the true model parameters, we studied how many realizations,

i.e. sets of 15 soil cores, are needed to obtain a relatively stable log-likelihood estimate

(red curve in Figure 3.2). It is observed that from 150 realizations or repetitions of 15

soil cores, the log-likelihood of the true parameters given the used measurements becomes

approximately stable (red curve in Figure 3.2).

Nevertheless, a short preliminary MCMC trial using 150 simulated data realizations to

calculate the log-likelihood led to a substantial overfitting of the measurement data, with

the MCMC returning only log-likelihood values in the approximate 1030 - 1040 range after

some 3000 iterations whereas the true parameter set has a log-likelihood of about 950 (red

curve in Figure 3.2). We hypothesize that this overfitting is mainly due to unknown data

error dependencies (correlations and higher-order dependencies) that are not accounted for

by our classical uncorrelated Gaussian log-likelihood formulation that assumes independent

data errors Eq.(3.6). A way to solve this overfitting problem is to inflate the used log-

likelihood function by multiplying the standard deviations of the data errors by a constant

factor. We did so herein and obtained the value of this inflation factor as follows. We

computed 2 distributions of log-likelihoods, distributions I and II, always using the true

parameter set and our classical uncorrelated Gaussian log-likelihood formulation:

i) Distribution I is the distribution of 200 log-likelihoods that are calculated from 200

white noise realizations used to corrupt the mean log-likelihood (over 150 simulated

data realizations). The white noise distribution has a diagonal covariance matrix

that contains the 512 variances of the data errors computed in section 3.2.1(for this

calculation, the error term, [𝑦𝑖 − 𝐹𝑖 (x)] thus was randomly drawn from the assumed

measurement error distribution). This distribution of log-likelihoods thus corresponds

to the distribution that would be expected if the data errors were truly independent

ii) Distribution II is the distribution of 200 log-likelihoods using each time a different

realization as “observations” and the ensemble mean over 150 simulated realizations

as the forward model simulation. This distribution of log-likelihoods thus somehow

encodes the effect of dependencies between the data errors. In addition, this dis-

tribution is “wider”,i.e., has a larger 95% uncertainty interval, interquartile range

(IQR).
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Based on the comparison between distributions I and II (see Figure 3.3), one can estimate

what the effect of the unknown data error dependencies on our classical uncorrelated Gaus-

sian log-likelihood function is. More specifically, it is seen that for distribution I to have

the same IQR as distribution II, the standard deviations of the data errors used to derive

distribution I need to be multiplied by a value of 2. Therefore, in the remainder of this

study, we inflated the log-likelihood function by multiplying the standard deviations of the

data errors by 2.

Figure 3.2: Evolution of the log-likelihood as a function of the number of repetitions, i.e
sets of 15 soil cores, used to average the simulated data before calculating the log-likelihood.
The red line indicates changes in the classical log-likelihood while the blue line denotes
changes in the inflated log-likelihood.
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Figure 3.3: Distributions I and II used to compute the used inflation factor (see main
text for details).

The inflation strategy described above was found to prevent overfitting, but the re-

quired averaging of the simulated data over 150 realizations makes it unfortunately too

computationally-demanding for the MCMC to converge within a reasonable amount of time,

given our available computational resources. In our case, each forward model run takes

about 1-12 minutes, depending on the parameter combinations. When using DREAM(𝑍𝑆)

with the required minimum of 3 interacting Markov chains together with parallelizing the

150 realizations per proposed parameter set over 32 CPUs, it still incurs a computational

cost of about 9-10 days to perform 500 MCMC iterations (that is, to achieve 167 tran-

sitions in each of the used 3 Markov chains). To make the MCMC sampling affordable

given our available 32 CPUs, we therefore decided to perform 32 realizations only. Aver-

aging the simulated data over 32 realizations instead of 150 makes that the loglikelihood

remains stochastic to some extent. To deal with this remaining stochasticity, we proceeded

as follows.

The likelihood of a certain parameter set x for a given dataset y is calculated from Eq.(3.6),

where F(x) is the prediction by the model of the data. The problem now is that F(x) is

stochastic and should be written as F(x,ε) where ε represents a set of random numbers

that varies from realization to realization. We can write F(x,𝜀) = <F(x)> + 𝛿 where < >

represents the expected value of F(x,ε) and 𝛿 is the deviation from the expected value for

a certain set ε. If we take several sets of 𝜀 (several repetitions) or if we take one large set

of ε, then F(x,ε) converges to <F(x)> and 𝛿 to 0. The problem is that this may require

a large number simulations and ||𝛿|| will for a finite set of ε always be larger than 0. As
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a consequence, ℓ (x|y) will vary for the same parameter set from realization to realization

because of variations in ε . We can define a likelihood of a certain parameter set x and a

certain realization ε of random numbers that represent the random nature or stochasticity

of the root growth for a certain observation dataset as ℓ (x, 𝛆|y) .

In order to investigate the variation of the likelihood of a certain parameter set for a certain

observation dataset that is obtained from a limited set of simulations, the likelihood of the

‘true’ parameter set was evaluated for 20 observation datasets and 15 sets of stochastic

forward simulations of 32 realizations. This was done for 9 different ‘true’ parameter

sets. This means that for each considered parameter set, ℓ (x, 𝛆|y) was evaluated for 15

different ε vectors and 20 y observation vectors. From this data set of 300 ℓ (x, 𝛆|y) values

we calculated the overall mean, the mean standard deviation of the ℓ (x, 𝛆|y) values that

were obtained for a given y but for different ε, stdevℓ 𝛆, and the standard deviation of

ℓ (x, 𝛆|y) values that were averaged over ε, stdevℓ y. The stdevℓ y quantity thus reflects

the impact of the differences between different observation datasets on ℓ due to the noise

on the experimental data (which in turn is caused by the random nature of the root growth

process). In contrast, stdevℓ 𝛆 represents the impact on ℓ of the stochastic noise associated

with the simulation results due to the finite number of samples that are simulated. In Table

3.2, mean ℓ, stdevℓ y, and stdevℓ 𝛆 are shown for 9 parameter sets x. (The parameters

were chosen for simulations by systematically increasing the values from the lower bounds

to the upper bounds, and P1 indicates the lowest, while the P9 indicates the highest values

of the inferred parameters).
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Table 3.2: Mean of log-likelihoods ℓ of the true parameter set that are obtained from a
combination of 20 different observations and 15 sets of forward simulations (each consisting
of 15 realizations), standard deviation of the loglikelihoods due to observation dataset noise
stdevℓ 𝒚, and due to stochastic simulation noise stdevℓ 𝜺 for 9 different parameter sets.
See the main text for the calculation details of stdevℓ 𝒚 and stdevℓ 𝜺.

Mean ℓ stdevℓ y stdevℓ 𝛆

P1 1211 6.8 2.2

P2 1128 8.6 2.6

P3 1046 8.7 2.7

P4 953 10.3 2.4

P5 780 13.2 3.8

P6 615 19.7 3.7

P7 526 16.1 3.5

P8 468 24.7 4.6

P9 429 20.1 6.5

Since the total number of RLD samples that is simulated for each log-likelihood evaluation

is 32 times larger than the number of RLD samples in an observation dataset, stdevℓ 𝛆 is

smaller than stdevℓ y. Table 3.2 also shows that the noise of the simulation results depends

on the parameters. The parameter sets with a smaller loglikelihood have a larger standard

deviation of the root growth parameters, which leads to more stochasticity and therefore

to a larger variation in the loglikelihood.

Since the loglikelihood for a given observation dataset does not depend only on the param-

eter set but also on the set of random numbers, ε, the parameter set x and random number

set ε that jointly lead to the best match between the simulation results and observations

will be selected by the MCMC. As sampling in the MCMC goes on and the algorithm al-

ways finds higher ℓ (x, 𝛆|y) for the same x due to the forward model changing ε, the chance

of finding higher ℓ (x, 𝛆|y) values decreases and it becomes increasingly more difficult for

the MCMC to find likelihoods that are higher (or equally high) for the same x or for a

parameter set that is close to x. This will cause the MCMC to get ‘stuck’ around a certain

x.

To avoid this problem we propose to change the Metropolis acceptance rule of candidate

parameter sets. The underlying idea is that a proposed parameter set, 𝒙2, should be

accepted when its likelihood is not significantly smaller than the likelihood of the current

state, 𝒙1. This can be tested by null hypothesis significance testing (NHST) if we have an
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estimate of the variance of ℓ (x, 𝛆|y) due to variations in ε. The hypotheses to be tested

are:

𝐻0 : ℓ (𝒙2, 𝛆2 |y) ≥ ℓ (𝒙1, 𝛆1 |y)

𝐻1 : ℓ (𝒙2, 𝛆2 |y) < ℓ (𝒙1, 𝛆1 |y)

If we assume that ℓ (x, 𝛆|y) is normally distributed with mean 𝜇 = ℓ (x|y) and standard

deviation ε = stdevℓ 𝛆, then ℓ (𝒙2, 𝛆2 |y) − ℓ (𝒙1, 𝛆1 |y) is normally distributed with mean

ℓ (𝒙2 |y) − ℓ (𝒙1 |y) and standard deviation
√

2 𝜎. Considering testing at the 95% confidence

level (that is, in 5% of the cases when we should accept x2, we reject it) then we should

accept x2 when:

ℓ (𝒙2, 𝛆2 |y) − ℓ (𝒙1, 𝛆1 |y) > −1.69
√

2 𝜎

whereas in classical MCMC (using a symmetric proposal distribution and a uniform prior

distribution) the acceptance rule is

ℓ (𝒙2, 𝛆2 |y) − ℓ (𝒙1, 𝛆1 |y) > 0

According to our proposed approach, every proposal 𝒙2 should thus be accepted with the

following probability:

𝑃 = exp(ℓ (𝒙2, 𝛆2 |y) − ℓ (𝒙1, 𝛆1 |y) + 1.69
√

2 𝜎) (3.7)

Based on the analyses reported in Table 3.2, we suggest to set 𝜎 = 4.

3.3 Results

3.3.1 MCMC sampling and convergence

We ran our Python version of DREAM(𝑍𝑆) (Laloy et al., 2017) in parallel over 32 CPUs for

a total of 15,000 iterations (log-likelihood evaluations). The 𝑅-convergence was satisfied

for every parameter from iteration 5880 on and we thus discarded the first 2940 samples

as burn-in. Figure 3.4 presents the evolution of the acceptance rate and variation of log-

likelihoods throughout sampling. The final mean acceptance rate is about 30%. The

loglikelihood varies from 750 to 800 since the sampling algorithm accepts the proposals

that are slightly smaller than the current proposal when it propagates. Therefore, it clearly
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indicates that our approach prevents the overfitting problem. Moreover, the distribution of

likelihoods after burn-in points to the mean value of 774 with a standard deviation of 13.

Figure 3.4: The trajectory of Log-likelihood and the MCMC acceptance rate throughout
the sampling.

The NB parameter in the CRootBox model is considered as a plant parameter that deter-

mines how many primary roots emerge from the seed or next to the seed. This parameter

is crucial in determining the total root length density of the sampling data. The tracer plot

in Figure 3.5(a) shows that The three chains equilibrated around the true NB value after

some 2000 iterations. The posterior uncertainty associated with NB is however relatively

large (Figure 3.5(b)).

Figure 3.5: Left: Sampling trajectory of the NB parameter in each of the 3 Markov chains.
Each chain is coded with a different color (green, blue, red) and the true value is denoted
by the horizontal black dashed line. Right: Corresponding marginal posterior density plot
computed after discarding the first 2940 samples as burn-in.
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Figure 3.6 shows the evolution of three Markov chains for the 16 remaining parameters (each

chain coded with a different color). The black horizontal lines show the true parameter

values. It is noticeable that the sampled maxl0 parameter values stabilize within the first

200 iterations and narrowly fluctuate around the true value. In addition, the sampled

r0, theta0, ln0, and r0s values also converge to their true counterparts, but with larger

fluctuations. The other sampled parameters show higher posterior variations, especially

the higher-order root parameters.

Figure 3.6: Tracer plots of MCMC sampling trajectories of the three parallel Markov
chains. Each chain is coded by one different color. The dashed black lines show the true
parameter values, and the y-axis indicates the lower and upper bounds of the uniform prior
parameter distributions.

Figure 3.7 shows the marginal posterior probability distribution and maximum a posterior

(MAP) value of each inferred parameter. The blue markers represent true values. The

probability distributions of the maxl0, r0, r0s, ln0, and theta0 parameters are normally

distributed and approximately centered around the corresponding true values. Unlike the

other zero-order parameters, ln0s, maxl0s, tr0, and tr0s parameters are not resolved and

display a wide posterior uncertainty. This is also the case for the higher-order parameters.

Given that the number of collected posterior samples (12,060) is relatively small for such
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a 17-dimensional search space, it is difficult to draw conclusions about the shape of the

distributions for the parameters that are not well resolved.

Figure 3.7: Marginal posterior probability density functions of sixteen parameters. The
horizontal x-axes indicates the prior range of parameter values, and the y-axes present the
probability. Blue marker represents the true parameter value.

3.3.2 Parameter correlations

A principal component analysis of parameter sensitivities was conducted before the

Bayesian inference to have insights of parameter combinations that interact and could pro-

duce problematic inversion results. According to that previous study (Morandage et al.,

2019), the first two principal components explained 92.5 % of the total variability in the

sensitivity of the soil coring data obtained at the end of the growth period (Figure 3.8).

The scatter plots in Figure 3.9 highlight some important parameter correlations, and please

refer to Figure B.1 for a detailed description of parameter correlations. The posterior cor-

relations observed between the parameters (Figure 3.9) are in agreement with the PCA

analysis of sensitivities, especially with the first and second principal components. The pa-

rameters that came out of the PCA to have high loading correspond with the parameters
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that were best resolved by the inversion (NB, maxl0, theta0 ). Since measured data from

different time intervals are used in the inversion while the performed PCA relied on the

last observation time, the r0 parameter, which did not have a higher influence in the PCA

could also be inversely estimated with relatively high accuracy.

Figure 3.8: Biplot of principal component analysis of parameter loadings for the 1st and
2nd PCs of soil coring data (modified after (Morandage et al., 2019)).

The ln0 parameter is related to the internodal distances of first-order roots on the the zero-

order roots and thus controls how many lateral roots (first-order laterals) emerge from the

zero-order roots. An increasing number of zero-order roots (NB) and decreasing internodal

distance (ln0 ) both increase the root density. This implies that an increase in NB can be

compensated by an increase in ln0 (Figure 3.9-A), which is reflected in a higher positive

correlation of the parameter estimates of NB and ln0 as was also indicated by the PCA

analysis (Figure 3.8).

The insertion angles of zero-order roots, theta0 indicate the angle between the starting

point of the root trajectory and vertical (towards the gravity) direction. Wider insertion

angles lead to a broader spreading of the root system, while narrow angles tend to reduce

the lateral spreading of roots. The insertion angle interacts with tropism parameter, tr0

that determines how much the gravitational force influences root trajectory, i.e., higher

values of tropism strength apply higher force on root tips to grow towards vertically along

with the gravity. The higher gravitational force turns root tips towards the downward
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direction and reduces the lateral spreading of the root system. Consequently, the insertion

angle (theta0 ) and gravitropism strength (tr0 ) of zero-order roots show a relatively high

positive linear correlation with R = 0.77 (Figure 3.9-B).

Figure 3.9-C shows a negative correlation between the mean root elongation rate (r0 ) and

the standard deviation of the elongation rate (r0s). The negative correlation indicates

the effect of the combination of parameter mean and its standard deviations. The well

resolved maxl0 parameter (Figure 3.7c) determines the rooting depth of the entire root

system. As shown in Fig. Figure 3.9-D, E, and F, and Figure B.1, the maxl0 parameter

is generally not highly correlated with the other parameters and this is in agreement with

our former PCA analysis. As discussed previously, tr0 and maxl0 parameters influence

the root distribution deeper in the soil profile. As a consequence of interaction, these two

parameters show a moderate negative correlation in both the PCA analysis test and the

joint correlation plots (Figure 3.9-D). The theta0 and NB are also moderately correlated

according to PCA analysis (as shown in Figure 3.8), as well as in the posterior correlation

(Figure B.1). However, the theta0 and maxl0 parameters are not correlated to each other

in posterior sampling (R=0, see and Figure 3.9-E). Furthermore, the parameter pairs, r0 -

tr0 (R=-0-60), and r0 -NB(R=-0.55) show higher negative correlations, while ln0 -theta0

(R=0.47) higher positive correlations (Figure B.1).
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Figure 3.9: Scatter plot and corresponding marginal probability distributions and joint
distribution of selected pairs of RSA parameters and respective with correlation factors.

3.3.3 Validation of inferred RSA parameters

We randomly selected ten sets of parameters from the posterior and the parameter set

with the highest log-likelihood (∼800 units) and ran the model with those parameters to

compare the differences among RLD profiles that were derived from the true parameter set,

measurement data, and estimated parameter sets. Figure 3.10 shows the simulated mean

RLD profile (solid blue line), standard deviations (blue shaded area) of 32 realizations

based on true parameter set, and RLD profiles of the mean (solid black line) and standard

deviations (blue shaded area) for estimated parameters from the posterior sampling data.

The red line indicates the measurement data used for this study. The posterior samples

slightly overestimate the RLD between the depths of -10 cm and -100 cm in the soil profile.

Figure 3.10: Root length density profiles that are simulated from the posterior samples
(black) and from the true parameter set (blue), and the measurement data (red).
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3.4 Discussion

In this study, we identified the potential challenges associated with the inference of RSA

parameters from field sampling data using inverse modeling.

3.4.1 MCMC inversion run time for RSA parameter estimation

The requirement of higher computational demand and computing resources is one of the

main drawbacks of the Bayesian approach (van de Schoot et al., 2014). Since the simulation

of the root distribution in one virtual field plot requires simulating several root systems, our

model took 2 min to 15 minutes in total for one forward model run. Additionally, it requires

32 repetitions to reduce the stochasticity of the model and the inversion algorithm completes

only about 500 iterations per day. Thus, the total sampling run time for 15000 iterations is

approximately 30 days on 32 computing nodes with 4 x AMD Opteron 6300 (Abu Dhabi)

2.3GHz CPU and 8.00 Gb RAM per each node. Although parallel implementation reduces

the inversion time significantly, computing cost is still the limiting factor in the inverse

parameter estimation.

3.4.2 Fixing problematic and highly correlated parameters from

field observations

We highlighted that one of the main obstacles in inference is that the correlation of parame-

ters that lead to difficulties in resolving parameters separately. Therefore, we propose to fix

some parameters that can be measured in the field to improve the prediction uncertainty of

the inferred parameters. Previous studies and field experiments indicate that the number

of zero-order roots can be estimated from field methods by exposing the plant base and

therefore used as a fixed parameter in inference improve the accuracy of other parameters

because NB parameter is one of the most sensitive parameters that determine the total

root length density of soil core data.

The influence of higher gravitropism strength compensates for the influence of higher in-

sertion angle. Therefore, it is difficult to estimate the parameters independently and fixing

one of these parameters would allow to estimate the other. The insertion angle and its

variability can be measured directly from exposed root systems (Landl et al., 2018; Wu

and Guo, 2014). This indicates that improving field methods to extract information about
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parameters is helpful to reduce the uncertainty of the inversely estimated parameters.

3.4.3 Possibility of application on real field root sampling data

Our approach was tested on synthetic root sampling data, derived from root architecture

parameters and root system simulation model. The main advantage of a synthetic ex-

periment is that the influence of soil environmental conditions is neglected and inversely

estimated parameters and true parameters are independent of growth medium. Thus, we

assumed that the soil is homogeneous, and the soil moisture, penetration resistance, and

other chemical and biological conditions did not vary in the soil. Therefore, in our sim-

ulations, RSA of the plant and sampling data are independent of varying soil conditions.

However, these assumptions are not valid for root growth in real field conditions. Therefore,

root architecture models used in root simulations should account for the effects of spatial

and temporal variations in soil conditions and weather influence on root growth. Current

root system architecture models are capable of incorporating soil information. However,

the models should be tested with experimental field data to implement the functions or

influences, which are specific to both plant type and soil conditions. Notably, most com-

monly used root growth functions, i.e., linear or exponential growth should be adjusted to

account for C allocation and shoot-root communications.

3.5 Conclusions

In this study, we demonstrated using a synthetic experiment that soil core sampling data

may contain enough information to inversely retrieve a few parameters (maxl0, NB, maxl0,

r0, theta0 ) of zero-order roots of wheat root system architectures based on a RSA model

that simulates root growth in a field plot. Although the inferred parameters of the higher-

order roots are not appropriately resolved in comparison to the true parameter values and

show higher uncertainty, we argue that our proposed approach could be is an important

step towards retrieving RSA parameters by probabilistic inversion of field root sampling

data. This work also provides useful insights about the challenges associated with the

inverse estimation of RSA parameters by Markov chain Monte Carlo (MCMC) sampling,

such as the long inversion run time and high computational demand, even when using par-

allel computing resources. Challenges associated with the RSA model stochasticity were

addressed by averaging the simulated data associated with each parameter set over multiple
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forward simulations. Since performing enough repetitions to get a fully stable likelihood was

found intractable given our available computational resources, we adapted the Metropolis

acceptance rule that is used to accept proposals in the Markov chain to account for the

remaining likelihood stochasticity. Morevoer, the observed overfitting problem could be

solved by appropriately inflating the error variances in the likelihood. Importantly, we

found that the uncertainty of the estimated parameters and correlated parameters cannot

be resolved separately and therefore, care must be taken for selecting and fixing correlated

parameters. Furthermore, since our simulations do not account for the impact from the

growth medium and assume that roots grow in homogenous soil under the optimum con-

ditions, we strongly recommended that this approach should be tested in future studies

considering root simulations with site-specific soil and environmental conditions.
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4.1 Introduction

Root system architecture models are essential tools to study root growth and functions

because these models are capable of simulating root growth of specific crop types based

on root architecture parameters and soil information (Dunbabin et al., 2013). Since root

systems cannot be observed directly in the field, the detailed root system architecture of

a plant and its interaction with the surrounding soil environment is challenging to study

without modelling approaches. Therefore, in order to identify parameters that characterize

the root system architecture and how it develops as a function of the soil conditions and

properties, experimental field sampling data could be combined with model simulations

using an inverse modeling framework (Morandage et al., 2019; Garré et al., 2012; Pagés

et al., 2012; Ziegler et al., 2019; Vansteenkiste et al., 2014). However, these studies focused

on the estimation of RSA parameters without considering the impact of growth medium

and environmental factors. Therefore, the explicit consideration of those factors is required

for characterizing the alteration of RSAs of field grown crops.

The application of the minirhizotron technique (MR) for minimally invasive observation of

root growth and distribution patterns has been used successfully for a few decades (Rewald

and Ephrath, 2013). The main advantage of this method is the ability to observe root

growth in specific depths and locations of the soil profile during the entire growth period

without damaging the soil domain. Nevertheless, this method has its limitations such as

lack of conversion methods to volume-based root length densities, the influence of tubes on

root growth and underestimation of root distribution with in the first few centimeters of

the soil profile (Majdi, 1996; Smit et al., 2000).

In order to study the effect of root growth in different types of soils in the same climatic

conditions, minirhizotron facilities were established in Selhausen, Germany, where two sites

that are 150 m apart from each other are characterized by a strong difference in stone

content. The fine soil texture class in both sites is a silty loam. However, the stone

contents are 60% and 4%, respectively. In the following, we will use the terms “stony soil”

and “silty loam soil” to refer to the soils of these two sites. The differences in stone content

could change soil temperature, nutrient content, and soil hydraulic properties (Naseri et al.,

2019), which have a direct impact on root distribution and other plant functions. During

the last four years of root observations, significant differences in root mass, root depth

distribution and maximum rooting depth in two different sites were observed (Cai et al.,

2016). The differences between sites are remarkably more significant than the differences

between the years (growing periods) and crops. However, these observations and governing
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factors cannot be explained without proper representation of the underlying root growth

mechanism. Therefore, we examined the properties of soils and climatic conditions and

their influence on root distribution with the help of a root architectural model.

Soil strength or soil penetration resistance is one of the most important factors (Kirby

and Bengough, 2002), which determines the root’s ability to overcome the soil’s resistance

against root extension. Roots may exhibit different characteristics and alterations in their

original morphology, depending on the soil strength and compaction (Correa et al., 2019).

It has been found that the elongation rates of roots decrease with increasing soil strength

(Bengough et al., 1997, 2006; Houlbrooke et al., 1997; Taylor and Brar, 1991; Tracy et al.,

2012), and thus root length density decreases with increasing penetration resistance (Pardo

et al., 2000).

Plowing is conducted before sowing in most agricultural fields to loosen the soil and reduce

mechanical resistance for root growth within the topsoil layer. This implies that soil com-

paction has adverse effects on root development (Buttery et al., 1998; Haling et al., 2011).

As a consequence to lower rooting depths due to compaction, roots cannot extract water or

nutrients from deep soils, and thus limit the plant growth and root water uptake capacity

(Masle and Passioura, 1987; Pardo et al., 2000; Tardieu, 1994; Unger and Kaspar, 1994;

Valentine et al., 2012), and affect the plant yield (Glab, 2011).

Roots require exerting force on soil particles or aggregates to extend through the soil.

Depending on the soil composition, roots tend to change their path, displace obstacles and

extend through it or easily penetrate through fine, less resistant materials (Whiteley and

Dexter, 1984). During root growth, direction, elongation rate, and branching pattern may

vary with the surrounding soil. From the point of view of a root, soil particles can appear

as rigid surfaces, obstacles that cannot be replaced by the root tip, solid particles which

are movable, or as a homogeneous fine soil (Kolb et al., 2017). Presence of large stones

or granules may affect the rooting patterns of the crops because when a root tip meets an

obstacle, which cannot be penetrated or pushed away by the root, root tends to change

its growth direction by bending away from the obstacle to find another path (Bizet et al.,

2016; Fakih et al., 2017; Popova et al., 2013, 2016). Displacement of solid particles by roots

depends on many factors such as soil depth, root diameter, solid diameter, and length of

root segment and root type or plant type (Whiteley and Dexter, 1984).

It is found that the ability of roots to grow through soils is a function of root diameter (dR)

and grain diameter (dG). If the aspect ratio (S = dR/dG) is very small, root apex cannot

displace, deform or penetrate through the obstacle (Kolb et al., 2017). Studies showed
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that the length of lateral roots is shortened by adjacent obstacles and changes its path by

changing growth direction as roots are sensitive to obstacles, even if obstacles are not in

contact with root tips (Falik et al., 2005). Moreover, root growth in-between the space

of the grains depends on existing pressure among the grains and root’s ability to exert

pressure (Wendell et al., 2011). These processes may lead roots to follow highly tortuous

paths and primarily affect the rooting depth and structure of the root system, and thus

the total soil volume explored by the root system could be limited. Therefore, studies on

root growth simulations in granular soil are useful and necessary to provide better insights

on how the distribution of roots changes with increasing amounts of large soil particles in

the soil.

Clays undergo cycles of shrinking and swelling processes due to changes in water content

during the seasonal climatic cycles. Soil cracks are formed in clayey soils as a result of this

phenomenon. Cracks in clayey soils create weak passages, which allow roots to grow with

minimum resistance while anchoring into the crack surfaces. These zones accumulate more

water during rainfall or irrigation events and are more favorable to root functions during

water stress periods than hard less permeable zones (Grismer, 1992). Since soil resistance is

minimum within cracks, roots can reach higher depths (Tardieu, 1994). When undisturbed,

root recolonization may occur due to the presence of pores created by the roots from

previous growing seasons for many years. Similar to roots, other biological activities such

as earthworm burrow create pore networks in the soil. Biopores create preferential paths

of pore network, which are enriched with nutrients, and filled with organic materials and

water that are essential to root growth (Landl et al., 2017; Nakamoto, 2000; Pagenkemper

et al., 2014). Thus, roots can penetrate easily through biopores with minimum resistance,

while anchoring to pore walls (Bengough et al., 2016).

Root growth rate depends not only on soil physical properties such as bulk density, water

content, water potential, porosity and other soil textural properties (Gao et al., 2016; Vaz

et al., 2013, 2011; Whalley et al., 2007) but also the force applied by the root tip on

soil particles (Kolb et al., 2017). Bulk density of soil is a measure of soil compaction,

which increases with the depth and influences root elongation rates (Shierlaw and Alston,

1984; Tardieu, 1994). Moreover, soil penetration resistance increases with decreasing matric

potential (Eavis, 1972; Jin et al., 2013). When undisturbed, the bulk density of soil does not

vary substantially with time. However, on the other hand, moisture content and soil matric

potential vary with time. Soil moisture content fluctuates due to irrigation, precipitation,

drought conditions or evapotranspiration with time and depth. Since the top 30 cm of

the soil profile is highly exposed to atmospheric changes, penetration resistance is highly
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variable with time at the topmost part of soil due to soil drying and wetting process

(Hodgkinson et al., 2017). Therefore, root growth models should consider the temporal

variations of soil strength to simulate root systems in the field successfully.

Soils absorb energy from sunlight and propagate heat energy from the top to deeper layers

of the soil profile. In addition to radiation, the composition of the soil controls the temper-

ature of the soil (Onwuka, 2016). Therefore, soils with different texture and stone content

under the same climatic conditions exhibit different temperatures. Since upper soil layers

are stronger influenced by the dynamics of aboveground environmental conditions than

the deeper soil, much variability can be observed within the first few centimeters of the

soil profile (Illston and Fiebrich, 2017). Previous studies showed that temperature changes

the root system architecture since it has an impact on root length, rooting depth, root

elongation rates, branching intensity, surface area, growth direction, and lateral branch

angles (Kaspar and Bland, 1992; Macduff et al., 1986; Nagel et al., 2009; Onderdonk and

Ketcheson, 1973; Vincent and Gregory, 1989). Several authors studied temperature effects

on the growth of different plants; cotton grass (Ellis and Kummerow, 1982; Tardieu, 1994),

cotton (McMichael and Quisenberry, 1993), alfalfa (Ellis and Kummerow, 1982), oilseed

rape & barley (Macduff et al., 1986), and found that certain crops have a specific optimum

temperature of reaching the maximum growth rate. Increasing temperature does not al-

ways increase the root elongation rate because after reaching the optimum temperature,

root growth starts to decrease with increasing temperature (Drennan and Nobel, 1998;

McMichael and Quisenberry, 1993), i.e., winter wheat shows root length increases with in-

creasing temperature up to about 20 degrees and start to decrease thereafter (Huang et al.,

1991). Furthermore, the optimum, minimum, and maximum limits of root development

temperatures and rates vary with genotypes as well as crop types (Sattelmacher et al.,

1990). Similar to roots, a similar trend was observed in shoot development (Vincent and

Gregory, 1989). Therefore, to simulate temperature effects on root growth, it is important

to consider the temperature dependency during the growth periods and also the depth

dependency of temperature over the period (Hartmann et al., 2018).

Several simulation models were introduced to include soil physical, chemical and climatic

features in the models by several authors, i.e. biopores (Landl et al., 2017), soil strength

(de Moraes et al., 2018; Grant, 1993), root obstacle avoidance (Fakih et al., 2017), tem-

perature (Nagel et al., 2009), and moisture content (de Moraes et al., 2018). The main

challenge in this regard is the lack of dynamic soil and field root sampling data and to

include complex soil structures and dynamics to models due to the lack of comparison

between simulated root systems and field-derived root data.
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In this study, we investigate by numerical modelling how much of the differences in root

system development can be explained by the difference in stone content. We use the

root architecture model CRootBox (Schnepf et al., 2018), in which stones can explicitly

be represented as obstacles to root growth. As the stone content directly affects other soil

properties such as soil temperature, water dynamics, and related soil penetration resistance,

as well as crack formation, we will use dynamic experimental data from the field sites to

inform CRootBox. Local soil environmental conditions reduce elongation rates of individual

roots; this may result in a reduced overall root system length as compared to optimal

conditions. In the field without stones, CRootBox will be informed about the observed

large cracks that will result in changed root growth direction as well as increased elongation

rates inside the cracks to a lower penetration resistance.

This paper is organized as follows. The methodology section describes the selection of

RSA parameters and simulation of winter wheat and maize root systems to compare the

differences between RLD data that are reported in the literature and simulated profiles. In

this section, we explain the experimental field setup and rhizotube root observation and

sampling. Then we introduce the simulation of root growth in static soil conditions and

how the differences in topsoil bulk density, crack intensity, and stone content affect the

rooting depths. The last part of this section contains the root system simulations based

on measured soil properties from stony and silty loam soil in the rhizotron facilities. The

results section includes rhizotubes measurement data, simulations of RLD based on static

soil properties, sensitivity analysis and describe how combined use of those factors based on

dynamic field measurements can reproduce the observed differences in root development

between the two sites for two different crops. The discussion section explains how each

of these factors influences the rooting patterns and the challenges associated with the

application of the minirhizotron method on root studies. Finally, in the conclusions, we

summarize the significant findings of this study.

4.2 Materials and methods

4.2.1 The root architecture model CRootBox

CRootBox root architecture model (Schnepf et al., 2018) was used to simulate the 3D

root architectures of winter wheat and maize root systems for full vegetation periods (240

days for winter wheat and 120 days for maize). CRootBox simulates root systems with
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pre-defined RSA parameters, and each parameter of the RSA model is described by mean

and standard deviation values that assign stochasticity to simulated root systems. If not

otherwise specified, the model CRootBox simulates root systems under optimal conditions.

Root systems can be simulated with or without considering the soil and environmental

factors that affect root growth and distributions. Each of these effects is implemented in

CRootBox such that the RSA parameters are rescaled and root growth is subjected to

changes in soil and environmental conditions of the growth medium and the locality.

4.2.2 Parameterization of the root architecture model for winter

wheat and maize

We parameterized the root system architectures for winter wheat and maize based on pub-

lished RSA model parameters that are available in the parameter database of CRootBox.

The winter wheat root systems were simulated based on parameters used by (Morandage

et al., 2019) except for the emergence times of basal roots. While the focus of (Morandage

et al., 2019) was on individual root traits such as intermodal distance or maximal root

length, in this study we adapted the emergence times of primary roots in order to achieve

dynamically realistic root length densities compared to field data. Thus, we assumed that

basal roots may emerge until the plants reach maturation (180 days) and the emergence

times of 20 basal roots were set to a 9-day time interval between two successive basal roots.

For the simulation of the maize root system architectures, we used the RSA parameter set

of (Postma and Lynch, 2011).

Since the simulations account for model stochasticity, each simulated root system represents

similar but unique characteristic features. Therefore, we performed 100 simulations for each

scenario (we performed only 10 repetitions of simulations for root growth with the influence

of stones due to long simulation time). Since simulations of large number of root systems

in a plot requires a higher computational cost and time, we simulated one root system and

calculated the normalized root length density for a plot, taking into account a planting

density of wheat and maize of 12 cm and 75 cm between rows and 3 cm and 13 cm distance

between two plants, respectively. From the resulting root architectures, we computed root

length density profiles for comparison against observed root length density profiles.
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4.2.3 Field experiments

The experimental site:

We conducted field experiments at the rhizotron facilities in Selhausen, Germany

(50◦52’07.8”N 6◦26’59.7”E). The experimental site consists of two rhizotron facilities, which

are located approximately 150 m apart from each other. The upper rhizotron facility (F1)

consists of silty loam soil with a higher percentage of gravel (>60%), characterized by low

water holding capacity, and the lower rhizotron facility (F2) has a silty loam soil with a

negligible amount of gravel content (<4%). Table 4.1 shows the particle size distribution

of two rhizotron facilities. Each facility covers the area of 68.25 m2 (7 m wide and 9.75 m

long) and is separated into three subplots with three different water treatments. The first

plot was kept dry using a sheltering system, which sheltered out the rainwater. The middle

plot was fed by rainwater. The third plot was irrigated to supply the necessary plant water

demand and to reduce the water stress. In this study, we used only the data collected

from the rain-fed plot. Soil moisture content was measured hourly using the time-domain

Reflectometry, TDR sensors (Campbell Scientific, Inc.), and the TDR data were converted

to water content based on Topp equation (for the F2 facility), and with a combination

of Topp equation and CRIM model (for the F1 facility). The MPS-2 sensors (Decagon

Devices, Inc.) measure the soil water potential along with the soil temperature of both

facilities half-hourly. In addition to MPS-2 sensors, soil water potentials were measured

by the tensiometers (UMS GmbH München) hourly (see (Cai et al., 2016) for a detailed

description of the installation setup and experimental procedure in the minirhizotron facil-

ities in Selhausen). The IR sensors were used to measure hourly canopy temperatures, and

we measured crop heights and LAI weekly during the entire growing seasons, to study the

differences in above-ground shoot development in the two sites. Moreover, climatic data

were collected from the climate station next to the field site.

Grain size analysis and soil classification:

The grain size distribution was obtained from the soil analysis of the Selhausen test site

(Cai et al., 2016; Stadler et al., 2015; Weihermüller et al., 2007) (Table 4.1). The facility

2 (F2) consists of more than 96% of particles which are smaller than 2 mm in diameter.

Therefore, it is unlikely to see an effect of stones on rooting patterns in the F2 facility. The

detailed grain size analysis of fine fractions of both facilities is carried out by the previous

studies (Cai et al., 2016). In order to determine the particle size distribution of stone

fraction (> 2 mm) in the F1 facility, we collected a (240 mm*250 mm*65 mm) size block
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of soil from the F1 facility. The soil sample was dried and stones (> 2 mm) were separated

from fine soil fraction (< 2 mm). The stone fraction was further separated based on the

diameter classes of 2 mm - 6.3 mm, 6.3 mm - 20 mm, and stones that are larger than 20

mm.

Table 4.1: Grain size distribution Selhausen test site according to ISO 14688-1:2002
(2002) modified after (Weihermüller et al., 2007) and (Stadler et al., 2015). The values
with * sign indicate volume fractions and the other values indicate the weight fractions.

Name Particle

size (mm)

Percentage

F1 F2

<30cm >30cm <30cm >30cm

Gravel Coarse 20–63 *05 69 4 2

Medium 6.3–20 *15

Fine 2.0–6.3 *20

Sand 0.063–2.0 *10 (35) 37 13 11

Silt 0.002–0.063 *15 (52) 47 70 68

Clay ≤0.002 *05 (13) 16 17 21

Porosity 30 (33) 25 40 40

Experimental design and agricultural management:

Winter wheat (Triticum aestivum L.) was sown on 26 October 2015 and harvested on 22

July 2016. Maize (Zea mays) was sown on 3 May 2017 and harvested on 12 September

2017. Winter wheat was sown at a population density of 450 plants m−2 with 3 cm distance

between plants in a row and 12 cm distance between rows. A total number of 750 maize

seeds were sown (∼10 plants m−2 ) in 10 rows with inter-row spacing of 75 cm and 13 cm

spacing between two plants within a row.

Minirhizotron root observations:

Root growth was observed through horizontally installed 7 m long 6.4 cm in outer diameter

transparent tubes using a Bartz minirhizotron camera system (VSI /Bartz Technology

Corporation). Rhizotubes are installed horizontally at each facility at six different depths

of 10, 20, 40, 60, 80, and 120 cm below the soil surface. There are three replicate tubes

in each of the three different water treatment plots, with a total number of 54 tubes in

each facility. The camera captures 1.65 cm in length and 2.35 cm wide real size images.
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In each tube, images were taken at 20 positions from the left and right-hand sides of the

tubes. We captured root images at weekly (or biweekly) time intervals during the growing

seasons. We collected images from 22 measurement times during the winter wheat season

and 12 times during the maize season. The collected images were processed using Rootfly

root imaging software (Zeng et al., 2008) to trace all the root images and to calculate root

count densities. The roots counted in each image were divided by the radius of the tube

and width of the image to convert the root count densities to root length densities (see

(Cai et al., 2016) for detailed information about the root length density conversions in

minirhizotron method). Finally, we prepared the root arrival curves of each tube, and the

root length density profiles of both facilities were compared. Furthermore, we calculated

the total root lengthper soil surface area, L T (cm cm−2) Eq.(4.1), of wheat and maize,

and the RLD differences between upper and lower facilities.

L T =

6∑︁
𝑖=1

RLD𝑖 ∗ 𝑑𝑖 (4.1)

where i=6 (RLD measured at each depth), and 𝑑𝑖 represents the soil thickness between the

centers of adjacent tubes (𝑑𝑖= [15, 15, 20, 20, 30, 20] cm).

Trench root counting:

Trench root sampling was performed only for the maize crop to compare the differences

in root distribution against the minirhizotron method. We excavated a 150 cm long and

160 cm deep, vertical trench, perpendicular to maize rows, next to rain-fed plots of both

facilities (F1 & F2), just after the harvesting. The root intersections were counted in 3.75

cm*3.75 cm mesh grid. Although the root counting data indicate the spatial distribution of

roots with depth and distance from maize rows, we calculated only the average root count

variation with depth, summing up the lateral distributions of root count densities as root

counts per square centimeter into a depth profile (Figure C.7).

Visual observation of root systems:

We visually investigated the structural features present in two different soil types at the

end of the maize-growing season. The excavated pit for the trench-root counting was

used to observe the influence of the stones, how the roots develop around the obstacles to

find plausible growth directions in the upper rhizotron facility (F1). In the lower rhizotron

facility, we observed the root growth within the cracks and rooting patterns in the biopores.
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Sample photos were taken to demonstrate the influence the structural features (Figure

C.10).

4.2.4 Influence of static soil physical properties on simulated root

growth patterns

In this section, we describe how root architecture models simulate the effect of prominent

structural features, i.e. stones, cracks, and top soil loosening vs compaction in tilled vs

non-tilled soils, on root length density distributions and maximum rooting depth.

Role of soil cracks on rooting depth:

The influence of cracks on root growth was simulated using the approach of (Landl et al.,

2017). This approach considers cracks or macropores as anisotropies to the preferred root

growth direction. In addition to root orientation in cracks, the root elongation rate was

increased by 200% from its original values when roots grow inside macropores because

the root elongation increase with decreasing bulk densities. We assumed that the loose

materials inside macropores have the bulk density closer to 1 g cm−3 . Therefore, we used

the differences in root elongation rates based on the field soil (1.55 g cm−3) and loosely

packed soil (1 g cm−3) (Valentine et al., 2012). Since cracks and macropores have a similar

influence on root growth patterns, except the differences in shape and the orientations, we

assumed that the proposed approach is valid to simulate root growth in cracks for winter

wheat and maize crops. To test the effect of the number of cracks present in the soil, we

defined a 100 cm*100 cm*160 cm homogeneous soil domain and set seed in the center of

the soil domain at 3 cm depth. In this soil domain, we tested five scenarios with 5 mm

wide uniform cracks that represent increasing crack intensities of 0, 2, 5, 10, 20 cracks m−1.

Stone content and root obstacle avoidance:

The model CRootBox uses signed distance functions to simulate root growth in confined

geometries (Schnepf et al., 2018). The signed distance function determines the distance of

a given point (𝑥) to the nearest boundary of the object Eq.(4.2). If the value is positive

(𝑥) is inside Ω (inside the boundary). Negative sign indicates the outside the boundary or
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zero indicates on the boundary (Osher and Fedkiw, 2003).

𝑓 (𝑥) =
{

𝑑 (𝑥, 𝜕Ω) , 𝑥𝜖Ω+

−𝑑 (𝑥, 𝜕Ω ), 𝑥𝜖Ω− (4.2)

Using such signed distance functions to represent the stones’ geometry explicitly, root tip

heading during growth is changed until the new position of the root tip is outside of any

stones (Figure 4.1). Because of numerous deviations due to impenetrable obstacles, final

root length distribution may substantially alter in comparison to roots grown in fine-grained

soils.

Figure 4.1: Deflection of the root segments due to obstacle avoidance; root grows down-
ward direction towards an obstacle, S1, and cannot be penetrated and change its direction
to find a suitable direction while turn alpha degree left-hand side and prevented by another
stone (S3); therefore it needs to change beta degrees right-hand side and find new growth
direction (A). Packing of stones in different diameter classes to occupy the entire domain
(160*100*100 cm soil block) based on compositions given in Table 4.2 to grow one root
system (B).

In order to study the dependence of root growth as a function of stone content, we selected

five scenarios with increasing packing densities to evaluate how increasing stone content

affects rooting depths (sensitivity analysis with five different packing densities). Based
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on the grain size analysis of the stony soil of the F1 facility, we categorized grain size

distribution as percentages of spheres with 40, 20, 10, 5, and 2.5 mm in radius. We assumed

that the stones, which have a radius smaller than 2.5 mm can be considered as movable

obstacles by roots and do not affect the growth direction of root trajectories, while the

stones with a diameter higher than 5 mm cannot be replaced by roots and therefore, roots

tend to find an alternative path. In CRootBox, we selected grain positions and diameter

classes randomly to place all particles inside the selected soil domain. The size of the soil

domain was chosen as a 160 cm deep and 100 cm*100 cm wide soil block to simulate a root

system inside that domain. The domain was packed based on the composition of stones,

given in Table 4.2 for each scenario. Then, we repeated each scenario ten times to calculate

the mean vertical root distributions with 1 cm depth intervals. Finally, we evaluated the

changes in rooting depth as a function of increasing packing density for both wheat and

maize crops.

Table 4.2: Distribution of particle sizes and respective percentages of stony soils used to
simulate root growth under different scenarios.

Scenario Size (diameter) of the percentage of the particle’s

volume fraction (%)

8 cm 4 cm 2 cm 1 cm 0.5 cm < 0.5 cm

S1 0.00 0.00 0.00 0.00 0.00 100.00

S2 0.625 2.50 5.00 5.00 10.00 75.00

S3 1.25 3.75 7.50 7.50 15.00 62.50

S4 2.50 5.00 10.00 10.00 20.00 50.00

S5 3.75 6.25 12.50 12.50 25.00 37.5

Root system response to different topsoil bulk densities:

The root development of winter wheat and maize were simulated based on the changes in soil

bulk densities of the top 30 cm of the soil profile. We simulated 5 scenarios with increasing

soil bulk densities of 1.3, 14, 1.5, 1.6, 1.7 g cm−3 of the soil profile. Based on the changes in

soil bulk densities, the elongation rates were modified. We obtained root elongation rates

of wheat at different bulk densities based on laboratory studies published by (Colombi

et al., 2017) for wheat and (Popova et al., 2016) for maize (Table 4.3) and rescaled the

elongation rates accordingly (Figure 4.2). However, the root growth patterns in the soil

below the 30 cm depths were not changed as the effect of loosening and hardening is less

influential in deeper soil. It should be noted that the elongation rates of these parameters
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were derived based on the early stages of the plants and we assumed that the other root

architecture parameters are not considerably influenced by soil strength or penetration

resistance. Finally, the root systems of winter wheat and maize crops were simulated 100

times for each scenario to calculate the mean root length density distribution with varying

degrees of soil bulk densities in the topsoil.

Table 4.3: Root elongation rates of winter wheat (Colombi et al., 2017) and maize (Popova
et al., 2016) observed in the soils with different bulk densities.

Scenario Bulk density

(g cm−3)

Elongation rate-

wheat (cm day−1)

Elongation rate-

maize (cm day−1)

S1 1.3 2.28 3.50

S2 1.4 1.67 2.86

S3 1.5 1.18 2.25

S4 1.6 0.80 1.63

S5 1.7 0.40* 1.00

*extrapolated value

4.2.5 Influence of dynamic soil conditions on root growth pat-

terns

Soil temperature:

To adapt root elongation according to measured soil temperatures, we rescaled the op-

timum elongation rates with a temperature-dependent impedance factor calculated using

temperatures measured half-hourly at six different soil depths (10, 20, 30, 60, 80, and 120

cm) (wheat-Figure C.1 & maize-Figure C.4). The field derived temperature values were

obtained from decagon MPS-2 sensors installed in Selhausen rhizotron facility during the

2015 November and 2016 July winter wheat, and from 2017 May to 2017 September for

the maize growing season. The impedance factors were assigned to the CRootBox model

as grid-based values. When roots arrive at a certain depth, elongation rates are rescaled

based on the impedance factor of that depth at the given time, according to (Clausnitzer

and Hopmans, 1994) Eq.(4.3).

𝑖𝑚𝑝𝑡=sin 𝜋(𝑇)𝜎 (4.3)

95



Chapter 4. To which extent can explicit consideration of soil information explain
observed differences in root growth? A simulation study.

where

𝑇=
𝑡𝑒𝑚−tem𝑚𝑖𝑛

tem𝑚𝑎𝑥−tem𝑚𝑖𝑛

𝑎𝑛𝑑 𝜎=
log(0.5)

𝑙𝑜𝑔

(
𝑇𝑜𝑝𝑡−tem𝑚𝑖𝑛

tem𝑚𝑎𝑥−tem𝑚𝑖𝑛

)
for 𝑇𝑜𝑝𝑡 < 0.5 ∗ (tem𝑚𝑖𝑛 + tem𝑚𝑎𝑥)

and

𝑇=
𝑡𝑒𝑚−tem𝑚𝑎𝑥

tem𝑚𝑖𝑛−tem𝑚𝑎𝑥

𝑎𝑛𝑑 𝜎=
log(0.5)

𝑙𝑜𝑔

(
𝑇𝑜𝑝𝑡−tem𝑚𝑎𝑥

tem𝑚𝑖𝑛−tem𝑚𝑎𝑥

)
for 𝑇𝑜𝑝𝑡 > 0.5 ∗ (tem𝑚𝑖𝑛 + tem𝑚𝑎𝑥)

tem is the measured soil temperature, 𝑇𝑜𝑝𝑡 is the genotype-specific optimal temperature for

root growth, tem𝑚𝑎𝑥 is the maximum and tem𝑚𝑖𝑛 is the minimum temperature within which

root elongation occurs. Maximum, minimum and optimum temperature values of winter

wheat were set to 25𝑜C, 2𝑜C, and 16.3𝑜C respectively (Porter and Gawith, 1999), and for

maize were set to 40.1𝑜C, 12.6𝑜C and 26.3𝑜C (Sánchez et al., 2014). We simulated the root

systems, according to the temperature dynamics of stony soils (F1) and silty loam soils

(F2). The root development was measured at given six depths, and root arrival curves of

six depths of the two sites were compared with arrival curves of roots that were simulated

under the optimal conditions.

Moisture content:

We evaluated the temporal changes in penetration resistance as a result of water content

and matric potential. Similar to temperature data, we rescaled the elongation rate, accord-

ing to the impedance factor in two field sites taking measurements of water content and

matric potential variation in 30-minute time intervals at six different depths. Penetration

resistance was modified at each time step based on the water content using the general

equation (Vaz et al., 2013) Eq.(4.4), which depends on the normalized bulk density (𝜌𝑏∗),

and normalized moisture content 𝑠𝑝.

𝑃𝑅=exp[1.5(±0.06)+2.18(±0.09)∗𝜌𝑏∗−4(±0.16)𝑠𝑝] (4.4)

𝑆𝑝 =
𝜃𝑣 − 𝜃𝑝

𝜃𝑠 − 𝜃𝑝
, 𝑎𝑛𝑑 𝜌𝑏∗ =

𝜌𝑏 − 𝜌𝑏𝑚𝑖𝑛

𝜌𝑏𝑚𝑎𝑥 − 𝜌𝑏𝑚𝑖𝑛

96



Chapter 4. To which extent can explicit consideration of soil information explain
observed differences in root growth? A simulation study.

where 𝜃𝑣 is the volumetric water content, 𝜃𝑠- saturation (= porosity), 𝜃𝑝- permanent wilting

point, 𝜌𝑏- bulk density, 𝜌𝑏𝑚𝑖𝑛- minimum soil bulk density, 𝜌𝑏𝑚𝑎𝑥- maximum soil bulk density.

We selected maximum bulk density of 1.6 g cm−3 and a minimum of 1.4 g cm−3 in the F1

and F2 facilities respectively (we assumed that the bulk density of the fine soil material in

the F1 facility are equal to the bulk density of the soil in the F2 facility). The wilting points

of the soils were set to 0.05 and 0.2 for F1 and F2 facilities and the penetration resistant at

each time step and depth was derived based on measured water content (wheat-Figure C.2

& maize-Figure C.5) and porosity values. Then we used Eq.(4.5) with measured soil water

potentials (wheat-Figure C.3 & maize-Figure C.6) to derive the impedance factor for root

elongation (Bengough et al., 1997; Dexter and Hewitt, 1978; Tardieu, 1994).

𝑖𝑚𝑝𝑣 =
𝑅

𝑅𝑚𝑎𝑥

=

(
−𝜓0

𝜓𝑤

+ exp−0.6931(P𝑅/P𝑅 1/2)
)

(4.5)

where Rmax is the maximum rate of root elongation, 𝜓0 is the metric potential, 𝜓𝑤 the

matric potential at wilting point (-1500 kPa), and P𝑅 is the Penetrometer resistance and

P𝑅1/2 is the penetration resistance value at which root elongation rate decreases to half of

its maximum value. The P𝑅1/2 values were obtained from the measurement data of wheat-

(Colombi et al., 2017) and maize-(Bengough et al., 2011) published in the literature. Finally,

we simulated wheat and maize root systems from the rescaled growth rates to calculate

the RLD changes at hourly time intervals. The resultant curves were compared between

and among optimum root growth conditions to investigate the changes in root systems as

a function of soil strength.

Combining all effects based on field data to simulate root development in the

two field sites:

Finally, we combined all the individual effects based on F1 (stony soil) and F2 (silty loam

soil) to simulate root systems and to calculate the final root length density distributions

of wheat and maize root systems. The influence of stones as obstacles is only affecting

root growth in the F1 facility. We adjusted the elongation rates, according to dynamic

changes in temperature, water content, water potential, and soil bulk densities and respec-

tive penetration resistance values. The impedance to single root elongation as affected by

individual physical properties is shown in Figure 4.2 for both wheat and maize. Each of

those impedance factors was multiplied to calculate the combined impedance factors in

simulations.

97



Chapter 4. To which extent can explicit consideration of soil information explain
observed differences in root growth? A simulation study.

Figure 4.2: The relationship between relative root elongation rates (wheat and maize) and
the properties of growth medium; soil temperature (Clausnitzer and Hopmans, 1994), soil
bulk density (wheat (Colombi et al., 2017) and maize (Popova et al., 2016)), and soil water
potential and soil moisture content (Bengough et al., 1997; Dexter and Hewitt, 1978) of
soils with 1.55 g cm−3 of bulk density.

4.3 Results

4.3.1 Comparison between measured root arrival curves of winter

wheat and maize in stony and silty loam soil

Figure 4.3 shows root arrival curves (RAC), root length densities with respect to time,

measured at 10, 20, 40, 60, 80, and 120 cm soil depths of winter wheat (blue lines) and
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maize (green lines) obtained during the 2015-2016 and 2017 growing seasons. Winter wheat

roots arrived at 10, 20, and 40 cm depths in both silty loam (F2) and stony soils (F1) within

the first three weeks after sowing. In general, the F1 facility shows the highest root length

density in the top layer and decreasing with depth. This behavior is the same for both

crops. F2 facility has differently shaped root length density profiles, with the largest value

at a depth of 60-80 cm. In both experimental facilities, winter wheat reached its maximum

root development approximately after 200 days of sowing and maize after 100 days after

sowing. After reaching the maximum growth stages, root decay could be observed.

Figure 4.3: Root length density changes with days after sowing (root arrival curves)
observed in rhizotubes, which are located at T1-10 cm, T2-20 cm, T3-40 cm, T4-60 cm,
T5-80 cm, and T6-120 cm depths.

Winter wheat roots reach up to 40 cm depths of both facilities within the first month after

sowing. However, roots reached at 60 cm depth after 50 days in silty loam soil, while it took

60 days for the roots in the stony soil to reach the same depth. We observed the arrival of

first wheat roots to the tubes located at 80 cm depth in 85 days after sowing, while it took

120 days for the first roots to arrive at the same depth in the F1 facility. The observed

maximum rooting depth of stony soils was 80 cm, and the roots were first observed after

110 days (We observed a negligible number of roots at 120 cm depth in stony soils after

160 days). It took 120 days for roots to arrive at the 120 cm depth of silty loam soil. For

maize, the first root arrival times to the tubes that are located in 40, 60, 80 cm depths of

the F1 facility in comparison to the F2 facility, were delayed 10, 12, 15 days, respectively.
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4.3.2 Simulated and measured root length density (RLD) distri-

butions of winter wheat and maize plants in soils with high

and no stone content

Figure 4.4 compares the root length density profiles obtained from RSA simulations and

minirhizotron images at the end of each growing season of winter wheat and maize crops.

The blue lines indicate the simulated root length density profiles. The grey shaded area

is the envelope of available published root length density profiles, encompassing many

different environmental conditions and thus representing a range of plausible root length

density values. The root length densities obtained from CRootBox model simulations fit

well within that range for both crops. The RLDs obtained from our MR measurements,

however, are only comparable to that range for maize grown in the stony loam soil. Wheat

from MR observations shows a lower RLD in top soil layers compared to literature range

and model simulations in both facilities. MR-based RLD of maize in the silty loam has a

convex shape with maximum value at 60-80 cm depth. Interestingly, this rather unusual

shape was corroborated by the root intersection density (RID) obtained from trenches in

the year 2017 (Figure C.7). Based on the MR data, the total root length of the F2 facility

is 255% for wheat and 350% for maize higher than in the F1 facility at the end of the

growing periods. This indicates that the soil conditions profoundly reduce the root growth

in stony soil.
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Figure 4.4: Root length density distribution of winter wheat and maize at the end of the
growing seasons measured by the minirhizotron method (green) plotted against the simulated
RLD curves (blue). The solid green lines indicate the measurements from the F1 facility,
and the dashed green lines indicate the F2 facility MR measurements. The gray shaded areas
indicate root length density profiles derived based on measured data from the literature of
wheat (Palta et al., 2004; Wasson et al., 2014; Xu et al., 2016; Xiying et al., 2009) and
maize (Buczko et al., 2008; Gao et al., 2010; Mekonnen et al., 1997; Postma and Lynch,
2012; Zhan and P Lynch, 2015; Zhuang et al., 2001).

4.3.3 Root growth in macropores

Figure 4.5 compares the changes in root distribution simulated for in roots grown in ho-

mogeneous soil and soils with macropores. The maximum rooting depth increases with

increasing density of cracks in both crops. However, the maximal increase is <20 cm.
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Figure 4.5: Comparison between simulated root growth patterns in homogeneous soil
(black dashed line) and soils with the influence of crack densities, plotted as root length
density profile at the end of the growing seasons of wheat (left) and maize (right).

4.3.4 Root obstacle avoidance

Simulations of wheat and maize root systems in soil without obstacles (S1) show the highest

rooting depth amongst the scenarios. When packing density (proportion of stone content)

increases, rooting depths decrease and fractions of the root system at shallower depth

increase (Figure 4.6 ), because root trajectories follow highly tortuous paths and decrease

the rooting depths. This observation implies that the root growth towards the direction of

gravity is disturbed by the larger particles. Maximum rooting depths of simulated winter

wheat and maize with the same amount of stones as in the soil of the F1 facility (F1) are

reduced by about 10 cm and 20 cm respectively (blue line) compared to simulations in soil

without stones.
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Figure 4.6: The relationship between root length density destitution (left-wheat and right-
maize) and packing density of stones that are higher than 5 mm in diameter. Particle
compositions are defined as increasing packing density of different sizes of particles; P1-
indicates the root growth without the influence of stones and S4 indicates the experimental
grain size distribution of the upper rhizotron facility (F1), and S2, S3, and S5 consist of
25%, 50% and 125% of S4 fractions respectively

4.3.5 Root growth in loose and compacted topsoil

Figure 4.7 shows the root length density profiles computed from simulated root systems

grown in soils with different topsoil layer (<30 cm) bulk densities. The simulated profiles

indicate that the hardening of topsoil has a significant influence only on the wheat crop as

the bulk densities of 1.7 g cm−3 and 1.6 g cm−3 cause a reduction in root development, and

the loosing soil does not have a long term impact on wheat crops. Maize does not have any

effect on changes in topsoil bulk densities at the end of the growing period. However, the

changes in elongation rates due to changes in topsoil bulk densities cause delays in reaching

the maximum rooting depth and root maturation. In other words, rooting depts may differ

at different growth stages (results are not shown).
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Figure 4.7: Root length density distribution patterns observed with varying degrees of bulk
densities between 1.3 g cm−3 and 1.7 g cm−3 of topsoil layer (<30 cm), which undergoes
hardening and loosening of soil due to plowing and compaction.

4.3.6 Sensitivity analysis of static soil properties on rooting

depth

The effect of changes of crack intensity, stone content, and bulk densities of topsoil layer

on maximum rooting depth is summarized in Figure 4.8. The amount of stones in the soil

and the size of the stones have a considerable influence on the maximum rooting depth of

both wheat and maize crops. The maximum rooting depth of wheat was reduced by about

55 cm, while maize accounts for 40 cm decrease in rooting depth when roots distribute in

soils consist of 62.5 % of stones. Cracks provide favorable conditions for deep root systems,

indicating 15 cm, and 20 cm increase in rooting depths of maize and wheat, respectively.

Although increasing topsoil bulk density causes reductions in total root length densities of

wheat, the maximum rooting depths of wheat and maize crops are not affected.
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Figure 4.8: Sensitivity analysis for the maximum rooting depths (D99) of wheat (solid
lines) and maize (dashed lines) with varying degrees of soil bulk density of topsoil (red
lines), crack intensity(green lines), and stone content (blue lines).

4.3.7 Soil temperature

The measured soil temperature of the stony soil is approximately 2𝑜C higher than the

one of the silty loam soil (Figure C.1 -wheat, and Figure C.4 -maize). The differences

in temperature cause faster root growth in the stony soil (Figure 4.9 ). Winter wheat

undergoes temperatures ranging from 0𝑜C during the winter to 30𝑜C in the spring and maize

experience from 5𝑜C to 35𝑜C temperature during the growth period. Notably, the below

zero temperatures between February and March months cause a reduction in elongation

rates (in some cases, stop the root elongation due to freezing temperatures).

For wheat, the temperatures are far from optimal in both facilities. In the top layers, root

development is only delayed and reaches the same root length density than the optimal

temperature at a later time. In the deepest depth (120 cm), root growth is reduced and

does not catch up at later times. There is also a small difference in root length densities

caused by the temperature difference between the two facilities. Compared to wheat, the

temperatures are not as far from optimal for maize in both facilities. However, less than

optimal temperatures hit the maize in the early phase, just after germination.
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Figure 4.9: Simulated mean root arrival curves for winter wheat during the 2015-2016
growing season (left) and 2017 maize growing season (right) considering the influence of
temperature on root growth in stony soil, F1 (dashed line) and silty loam soil, F2 (+ mark-
ers), plotted against the optimal temperature conditions (solid continuous line) at depths
10, 20, 40, 60, 80, and 120 cm.

4.3.8 Root growth in soils with soil strength as dependent on

measured soil water content

The silty loam soil with higher water holding capacity in the F2 facility shows higher devel-

opments of wheat roots than in the F1 facility in measurement data. Although simulated

root development of F1 and F2 facilities are highly affected by penetration resistance within

the first six months in comparison to optimum soil (Figure 4.10 ), differences in root devel-

opment between two sites do not vary significantly with time. Temporal variation of dry

and wet weather conditions caused higher penetration resistance and stopped root growth

in some time periods. Maize indicates a similar root growth pattern for changes in moisture

conditions. .
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Figure 4.10: Simulated mean root arrival curves for winter wheat during the 2015-2016
growing season (left) and 2017 maize growing season (right) considering the influence of
soil strengths in the fine material of stony soil, F1 (dashed line) and silty loam soil, F2 (+
markers), plotted against the optimal soil conditions (solid continuous line) at depths 10,
20, 40, 60, 80, and 120 cm.

4.3.9 Comparison between field sampling data and simulation

results that include all measured soil information and its

effect on root growth

Figure 4.11 compares the measured RLD data (winter wheat rhizotube root observation

data during the 2015-2016 growing season and maize in 2017) and corresponding root sys-

tem simulation results based on the measured soil information. Simulated winter wheat

root systems in the stony soil are limited to a rooting maximum of 60 cm, while measure-

ments show roots up until a depth of 120 cm. The simulated RLD of the top 10 cm of the

soil profile of wheat roots is almost 4-5 times higher than the measured data. Simulated

and MR-observed RLD of wheat in the silty loam soil have adverse trends with depth. The

simulated RLD of wheat in silty loam soil decreases, while the measured RLD of wheat

increases with depth.

Although the maximum rooting depth of simulated maize root systems is limited to 80 cm
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in stony soil, the simulated and the measured RLD within the first 40 cm of stony soil show

a good agreement. However, simulated and measured root growth in silty loam soil does

not show comparable results, except for the first 10 cm depth. Thus, the observed field root

growth patterns of winter wheat and maize in stony and silty loam soils are not adequately

explained by the simulation results that explicitly consider the soil physical properties in

root growth (see Figure C.8 & Figure C.9 for the simulation of root arrival curves of wheat

and maize respectively based on measured data).

Figure 4.11: Comparison between simulated and measured root length density profiles of
wheat (left) and maize (right) considering the influence of physical properties of stony, F1
and silty loam soil, F2.

Table 4.4 compares the differences between measured and simulated root system measures of

wheat and maize crops. Simulated maximum observable rooting depths of wheat, simulated

based on the measurements of stony soil reach at 80 cm depth while wheat roots reach

120 cm in silty loam soil. This indicates that the simulated wheat root systems of F1

soil underestimate the actual measured rooting depths. Although simulated maize roots

arrived at 120 cm depth in simulations and are comparable with the measured data, the

RLD values are significantly smaller than that of measured data. Total root length densities

of both measured and simulated data are not comparable and the highest difference can be

observed in the simulated and measured roots of maize in silty loam soil. The maximum

root length density of the F1 facility was observed within the first 20 cm in both simulated
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and measured data of wheat and maize crops. However, the F2 facility shows an opposite

pattern in the measurement data such that the simulated maximum RLD values ware

observed at 10 cm depths, while the measured maximum RLD of wheat and maize were

observed at 120 and 80 cm depths respectively in the F2 facility. The median root arrival

time at the different depths indicate that the measured and simulated root system data

has significant differences in arrival time periods.

Table 4.4: Differences in F1 facility in comparison to F2 facility between simulated and
measured root growth patterns of wheat and maize crops concerning the Dmax, Tc, RMm,
and At root system measures.

Root System

measure Wheat Maize

Δ(%,Mes.) Δ(%Sim.) Δ(%Mes.) Δ(%Sim.)

Dmax 0.0% 33% 0.0% 0.0%

Tc 60% 16% 80% 5%

RMm 83% 0.0% 88% 0.0%

10cm 5% 9% 9% 5%

20cm 2% 14% 2% 10%

At 40cm 32% 38% 9% 15%

60cm 74% 31% 12% 123%

80cm 60% – 1% –

120 cm – – 62% –

Dmax- maximum observable rooting depth

Tc- total root length density

RMm- depth at which maximum RLD observed

At- median root arrival times at 10, 20, 40, 60, 80, 120 cm depths
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4.4 Discussion

4.4.1 Similarities between simulated and literature root length

density profiles

The root length density profiles of winter wheat and maize, simulated based on the pub-

lished RSA parameters of winter wheat (Morandage et al., 2019) with slight modification,

and maize (Postma and Lynch, 2011) are comparable with the RLD data published in the

literature. However, we observed that the literature data for RLD’s of wheat and maize is

highly variable and, is challenging to summarize into a narrow distribution. Some studies

show that the RLD values as high as 60 cm cm−3 and lower values such as 0.5 cm cm−3

is also reported for mature root systems (Ephrath et al., 1999; Mekonnen et al., 1997; Zuo

et al., 2006). This means that the root length densities vary with several factors such as

sampling location, soil type, climate, and genotypes. However, most of the data indicate

similar characteristics in the shape of RLD curve; a higher proportion of roots were ob-

served at the first 40 cm of the profile and the RLD decrease with the depth, and the roots

of wheat and maize could reach up to 200 cm deep into the soil profile.

Although the sensors measure the soil hydraulic properties of the bulk soil (stones + fine

soil), roots experience mostly the influence of fine materials of soil, as roots do not explore

the stone fraction of soil. Therefore, soil hydraulic properties that determine the root-soil

penetration resistant in fine soil fraction should be rescaled and the effect of stones should

be excluded from the calculations of effective soil water content and soil matric potential

values (Naseri et al., 2019). However, our simulations of root growth in stony soil do not

account for the influence of stones on soil hydraulic properties on fine soil. Therefore, the

overall root development could have been affected due to a lack of rescaled measured water

content and water potential values.

4.4.2 Differences in RLD’s in simulations, literature data, rhizo-

tube observations, and trench profile data

Our field data are useful to compare the growth rates at different depths during the whole

life cycle of the crops because, in comparison to other field methods, minirhizotron root

observations provide information about the dynamics of root systems. The comparison

between field measurements, based on rhizotron facilities and the literature data (and
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simulated profiles) indicates significant differences depending on the soil and crop types.

The root growth in soil with a higher stone content (F1 facility) shows that only the shapes

of the RLD curves of winter wheat show similar characteristics to literature data, but the

absolute RLD values of minirhizotron data highly underestimate the literature data, which

is almost four times higher than that of MR data. Nevertheless, MR data of maize in F1

facility show a similar shape than the literature data; On the other hand, the MR data

obtained from both winter wheat and maize crops in the experimental site with silty loam

soil (F2) are not comparable with the literature data, regarding both the shape of the

RLD curve and the absolute RLD values. Although we speculate that the installation of

rhizotubes influences the root growth, the root count densities (trench profile data-Figure

C.7) of maize prove that the shapes of root counting data are in agreement with the MR

data. This means that the influence of tubes that act as obstacles to root growth does

not have a significant impact on the accuracy of MR data of maize crop. Furthermore,

our MR data show a good agreement with other studies that are published based on MR

root sampling data, especially the underestimation of RLD at the first 30-40 cm in the soil

profile, such as for wheat (Postic et al., 2019) and maize (Hulugalle et al., 2015; Samson

and Sinclair, 1994). It is reported that the underestimation of RLD at the first 40 cm is a

major limitation, which is identical to MR methods for the other crops as well (Chen et al.,

2018; Liao et al., 2015; Parker et al., 1991; Svane et al., 2019).

Some authors suggested the reasons for lack of correlation between MR data and other

methods is that lack of contact between soil and tubes and the influence of tubes. However,

we observed that this applies only to fine-grained soils and the shape of RLD profile of stony

soil indicates comparable results to other field methods and simulated profiles, except for

the lower root mass. The following reasons may be responsible for the mismatch reported

in our MR data and also the MR method in general, based on our observations: The root

lengths or roots counts that are measured in rhizotube images needed to be converted to root

length densities as the length of roots per cubic centimeter of soil; therefore the methods

proposed in this study and the other studies could result in the erroneous calculations due to

certain assumptions. Next, the Influence of tubes has a major impact on changing the root

growth patterns, such as illumination effects, changing growth directions and stimulates

the growth of lateral branches.

Moreover, the space in between tube and soil matrix could accommodate additional roots

and the accumulation of roots around the tubes might be higher in the deeper zones of the

soil, indicating that the tubes in deeper depth are more favorable for excess development of

roots around rhizotubes. In addition to that, some MR experiments conduct using angular
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or vertical tubes. Therefore, the roots could grow along the downward direction with the

tube and thus show higher root mass around the tubes in comparison to the rest of the

soil domain. However, the tubes in the Selhausen facility are installed horizontally, this

effect may not have a great impact on our observations. Furthermore, when sampling root

systems of row crops such as maize, the sampling locations are highly influential in root

length density values, i.e., image capturing locations that are close to the plant base might

show a higher amount of roots than the locations far apart from the plant base. Therefore,

MR approach requires to make sure that the sampling scheme is representative of the

whole plot. More importantly, the installation of rhizotubes for several growing seasons

prevents agricultural practices such as plowing and field preparation before sowing the

seeds. Therefore, the compaction of topsoil increases with time, in our field the plowing was

not conducted during the last 5 years, and the sowing was mainly performed with creating

holes for the placement of seeds. Therefore, we noticed approximately 7 cm subsidence

in the soil in the F2 facility (the F1 facility indicated only 2-3 cm of soil subsidence).

Therefore, the tube in 10 cm is located at the seeding depth (∼5 cm), and fewer amounts

of roots could be observed by the camera.

Moreover, the F2 facility consists of large amounts of soil cracks (Figure C.10). Therefore,

most of the roots tend to grow along cracks and easily develop roots at the deeper layers of

soil in the F2 facility since the moisture content is higher than the shallow depths. Finally,

the most influential factor and most of the factors are dependent on the lack of plowing

and soil homogenizing processes before sowing. This led to preserving existing macroscopic

structures in the soil for years and forms a hard crust at first 20-30 cm depths. Therefore,

the lack of loose soil prevents the development of roots in the first few centimeters of the

soil. In contrast, the F1 facility does not undergo heavy compaction due to the presence of

large stones.

4.4.3 How differences in stone contents affect the other soil prop-

erties

The results of experimental data predominantly show how much variability in root length

density, rooting depth and growth rate is affected by the growth medium as a result of the

stone content differences in two different soils. Since the plants were grown only 150 m apart

from each other, we can assume that the plants experienced the same climatic conditions.

The presence of stones in the F1 facility causes slight changes in temperature since the heat

capacity of stony soil is higher than silty loam soil. Therefore, we observed approximately
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2𝑜C temperature difference between both facilities. Since the topmost layer is exposed to

atmospheric heat exchanges, the temperature at the top 20 cm in the soil profile fluctuates

rapidly as day and night temperature changes and highly sensitive to seasonal changes. The

slight difference in temperature in two soil types influences a slightly faster root growth in

the F1 facility than the F2 facility. Since the F2 facility has favorable conditions for root

growth in the deeper in the soil profile due to the abundance of water, root penetration

resistance and relative growth rate are faster than the stony soil in the F1 facility and are

further confirmed by the simulation results. Stony soils consist of large pore spaces that

are not connected and the stones prevent lateral extension of root branches and reduce the

total RLD of stony soil.

Although both experimental sites receive the same amounts of water, soil composition

determines the water availability to the plant growth. The water received from rainfall or

irrigation on stony soils drain faster and show higher moisture content only after a rainfall

event at the upper soil layers.Moisture contents in the topmost layers fluctuate rapidly

with the climatic changes such as precipitation and evaporation. The soil moisture content

variation with depth could also be affected considerably with size and the proportion of

stones. The water holding capacity also causes leaching losses of nutrients. Therefore,

root growth and root mass might be reduced in the F1 facility and affect the overall crop

performance. Furthermore, the roots can only absorb a limited amount of nutrients from

the stony soil as a limited volume of soil is explored by the root system because most of

the minerals in stony soil are not water-soluble ions and roots and not directly in contact

with soils due to the presence of larger pores in stony soils (Figure C.10).

4.4.4 Simulations of root systems based on soil type and root

distribution patterns and the potential role of macropores

as a governing factor of deep root systems

Simulations are not sensitive to differences in soil bulk densities on root length density

distribution (see Figure 4.8). This implies that plowing practices do not significantly con-

tribute to the overall root distribution as a result of changes in root elongation rates.

However, in simulations, we assume that the other RSA parameters are not attributed to

changes in bulk densities. This could lead to erroneous interpretations as some studies

indicate the observation of higher root mass in zones with lower bulk densities. Therefore,

further studies are required for simulations of the effect of bulk densities on rooting patterns
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The increasing proportions of stones or granules that are not replaced by the roots tend to

restrict root growth deeper into the soil as shown in Figure 4.6. A systematic increase in

the proportion of stone content reduces the rooting depths up to 70 cm in both crops. This

means that the stones prevent roots from reaching deeper to capture water and nutrients

and the soil exploration capability of roots is reduced by stones. Since the acquisition

of resources is limited, shoot growth is affected and the available carbon supply to root

system can be decreased significantly. Therefore, the measured lower RLD in stony soil

can be explained by the presence of higher stone content in the F1 facility. Moreover, we

assumed that a threshold diameter (5 mm) of stones, which act as obstacles to root growth.

However, in real conditions, many factors such as the adjacent soil matrix, depth and type

roots also determine the root’s ability to replace stones (Whiteley and Dexter, 1984).

Simulated profiles indicate that increasing crack intensities lead to deeper penetration of

roots than that of homogeneous soil. However, the difference is unexpectedly smaller than

the published data that consider the effect of macropores on changes in root growth patterns

(Han et al., 2015; Perkons et al., 2014). The main reason could be that the maximum length

of primary roots reaches to its maximum length faster (shorten the maturation time) due

to excessive root elongation rates and stop growing with time. Because in simulations, only

the root growth rates (root tip elongation rate) are modified when roots grow inside the

macropores, and the changes of other parameters such as lateral branching intensities and

the lengths of branches are not modified to account the effect of macropores due to lack of

experimental data on those effects. Moreover, the influence of abundance of water, nutrients

and other cell functions in macropores that stimulate root growth are not considered in the

simulations. Therefore, models need to be adapted to account for these factors to simulate

the root in accordance with field-grown crops.

The most striking observation of the experimental data is that the root developments in

large quantities below the 60 cm depth in the F2 facility. This observation cannot be

explained by the factors considered in the simulation study. Although we observed roots

up to 120 cm depth using minirhizotron camera, the excavated profiles show that the

maize roots grow up to 170 cm depth in silty loam soil, while maximum rooting depth of

maize does not exceed 100 cm in stony soil. Therefore, we hypothesized that the presence

of macropores (as shown in Figure C.10, most roots were observed in deep cracks and

biopores) in silty loam soil stimulates the root growth deeper in the soil profile as the soil

has higher moisture content and possibly more nutrients.

The main challenge of determining the effect of macropores on root growth is the uncer-

tainty of measurements and lack of understanding of rooting patterns inside macropores in
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the field conditions. Root elongation through cracks and biopores depends on the ability of

the roots to find a crack. The roots grow through crack may re-enter the soil depending on

the strength of the adjacent soil domain, root thickness or size of the crack (Whiteley and

Dexter, 1984). If cracks provide favorable conditions for roots to grow, the probability of

re-entering back to the soil domain is highly decreased. Moreover, the diameter of biopores

and the number of biopores are essential factors to estimate the root distributions. The

presence of a large number of pores in the soil is not a good indication of deep roots, which

depend on the occupancy of roots in the pores and the ability of roots to find pores. More-

over, these features vary with climatic conditions (Hodgkinson et al., 2017). Therefore,

care must be taken to define the size of biopores and methods to estimate the size and

number of biopores, which varies from centimeter to micrometer scale (Wuest, 2001). This

implies that the simulations that are based on simplified assumptions are not sufficient to

quantify the measured differences in root distribution patterns in highly heterogeneous soil.

Therefore, future models should consider the above additional factors for studies on root

growth that consider the influence of soil and environmental conditions.

4.4.5 The alteration of root traits and root system architecture

The most significant observation in field root sampling observed as a function of time is that

the differences in growth speed, maximum rooting depths, distribution of root at different

depths and the total number of roots (root mass).

Rooting depth:

Based on the visual inspection of excavated profiles, we observed a large number of soil

cracks and biopores in the F2 facility (silty loam soil). Although we excavated soils after

the maize growing season, these soil structures were undisturbed after the construction of

the experimental sites. Therefore, we can assume that the soil structures were not altered

considerably with time. Consequently, roots can easily penetrate these weak zones and grow

deep into the soils because the roots face less resistance from surrounding soils and absorb

water and nutrients from the pores or crack walls while anchoring into the pore/crack walls.

We could observe the areas (different positions of root images taken by the camera with

the same tube) where root length densities are very low at the same depths as observed

in rhizotube images (results are not included). These areas can be identified as the zones,

where roots prefer to avoid and to follow paths with lower resistance.
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It is remarkable to observe that most of the root mass of stony soil is located within the first

60 cm in wheat and 40 cm in maize. A very few roots were observed at the 120 cm depth,

which is the maximum observable depth of the rhizotubes. However, root distributions of

silty loam soil indicate that the roots penetrate more than 120 cm depth. Notably, most of

the roots were observed within 60-120 cm depth. This observation indicates that the roots

follow fewer resistant paths and develop longer lateral roots in the deeper layers, which

have higher moisture content. Visual observations show that the presence of cracks and

biopores in silty loam soil and tortuous root growth around large stones (Figure C.10).

Since connected pores or weak zones are not present in the stony soil, penetration of roots

is restricted and reduces the maximum rooting depths.

Root simulations show that the temperature does not play a significant role in rooting

depths. A fewer number of roots (as RLD) were increased at deeper depth in stony soils,

which we did not observe in the field simulations. The main reason could be that the

measured temperature has negligible effects of elongation rates, as the temporal variations

do not contribute much to the final root distribution in comparison to other factors. Inter-

estingly, the observed higher RLD in deeper in the soil in the F2 facility, and higher RLD

in top horizons of the F1 facility cannot be explained based on temperature differences.

The field observations also contradict the simulation results of temperature-dependent root

growth as temperature induces roots to grow deeper in the F1 facility.

The higher impendence in the root elongation rate in the stony soil than the silty loam soil

can be explained as a result of combined effects of higher bulk density, low water content,

and higher matric potential, which increase the root-soil penetration resistance. Since

wheat did not experience water stress during the development stage, we cannot observe

the differences in root length densities simulated by the data obtained from the 2015-2016

period. However, maize shows a smaller RLD at 60 and 80 cm depths in the F1 facility due

to lower matric potential and water content. The maximum rooting depth of simulated

root systems in soil with the stone content similar to the F1 facility indicates that the

rooting depth decrease by about 20 cm and proportional to the stone content. Thus the

simulation results only partially explain the differences in field measurements.

Total root length:

The differences in root distribution can be interpreted mainly based on the properties of

the two different soils. The first 30 cm of the F1 facility consists of 50% of stone content

and soils below 30 cm consist of 69% of stones. A higher percentage of stones could act as
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obstacles to root growth, prevent preferential growth directions of seminal roots, and root

branches. The root length density of the F1 facility is lower than the F2 facility in MR

data and the root counting data validated the MR data because root intersection densities

measured from trench profiles in the stony soil are lower than the silty loam soil (Figure C.7).

Since the F1 facility consists of large fractions of stones, nutrient and water uptake efficacy

could be reduced because of lacking contact between soil and roots due to the presence of

larger pores. Therefore, root development was highly influenced by the differences in stone

content in the soil. This observation cannot be explained using simulation results due to

the lack of additional information in the model, i.e., alterrations of RSA parameters such

as changes in branching patterns, changes in lengths of lateral roots in addition to growth

rates. Therefore, the model needs to include parameters derived from experimental data

to simulate the increase of root length densities due to changes in different soils.

Elongation rate:

When undisturbed, the bulk density of soil increases with the depth. However, our soil

analysis results show that the bulk density of silty loam soil varies between 1.5 g cm−3 and

1.6 g cm−3 with depth. Since the soil in the F2 facility consists of biopores and cracks,

local heterogeneity can be observed in different zones in the same depth. Therefore, a large

number of samples are needed to estimate highly precise bulk density values. Although the

bulk density of soils in our experimental site does not vary systematically with depth, we

observed the changes in soil water potential with the depth during the growing season due

to seasonal changes. Studies found that the soil strength and penetration resistance are

increased with decreasing (more negative) soil matric potential (Taylor and Brar, 1991). We

observed higher matric potentials during the rainy periods in the upper layers while deeper

layers remain wet in the F1 facility. However, during dry periods, different patterns could

be observed. This implies that, although the bulk density does not change with depth,

temporal changes in soil water potentials indirectly change the root elongation rates. On

the other hand in the F1 facility, the methods used in the estimation of bulk density of fine-

grained soils cannot be applied successfully to stony soil because the presence of large stones

leads to difficulties in sampling and inaccurate measurements of soil volume at different

depths.
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4.4.6 Relationship between shoot development and root distri-

bution as a function of properties

The root system of a plant has a direct influence on the overall crop performance. Shoot and

root development of plants are decreased by increasing the percentage of stones or granules

in the soil (Alexander and Miller, 1991). In order to evaluate the shoot-root relationship,

we compared crop developments in the 2015-2016 winter wheat and 2017 maize seasons.

There are significant differences between shoot development in two soils as shown in the

differences in LAI and crop heights (Figure 4.12). At the beginning of the growing periods,

crop development was not highly affected by the differences in stone content; however,

during the development stage, crop shows considerable differences in aboveground crop

development. Root growth in stony soils has a significant restriction in resource capturing,

as the root distribution is limited in space, especially shallower root systems prevent plants

from accessing deep water and nutrients. Since stony soils have low water contents, water

stress can be observed in plants growing in stony soil, and consequently, reduce the plant

development. Similar to water, nutrients are also limited in the same manner as well as the

limited amount of non-bounding ions in soils due to the abundance of stones. Therefore,

stony soils show limited shoot development, lower LAI, and crop heights in both winter

wheat and maize crops than the crops grow in the silty loam soil. Thus crops in stony soil

indicate much less overall plant performance.

Figure 4.12: Leaf area index (LAI) and crop height of winter wheat (left) and maize
(right) change with time in plants grow in stony soil, F1 (solid line) and silty loam soil, F2
(dashed line).

118



Chapter 4. To which extent can explicit consideration of soil information explain
observed differences in root growth? A simulation study.

4.4.7 Suggestions for model improvements

The selected soil properties cannot fully explain the differences in rooting patterns. There

are notable differences in total root lengths and root length density varies with depth,

measured in stony soils and silty loam soils. The current model does not have sufficient

information to account for the differences in RLDs. Because in addition to differences in soil

physical properties, many additional factors contribute to the development of a root system

such as nutrient supply, carbon allocation and shoot development. The main drawback in

most simulation models is that there are simplified assumptions and a lack of functional

relationships derived from experiments for specific crops. Therefore, stepwise improvement

of root models is required to strengthen the understanding between experimental data and

root system simulations by adding more soil and plant-specific information RSA models.

4.5 Conclusions and outlook

In this study, we investigated the differences in root distribution of both wheat and maize

crops as a result of the differences in stone content on crops grown in the same climatic

conditions. The soil with a higher stone content reduces the rooting depths, total root

length den densities, and root arrival times at specific depth of crops, in comparison to

soil with a negligible amount of stones. Moreover, the differences in stone content change

the soil temperature up to 2𝑜C, and soil hydraulic properties also affected as the stony

soil tends to drain water faster than the silty loam soil. In order to simulate these effects,

we implemented the functions published in the literature that explains the changes in

root growth patterns of soil physical properties and simulated virtual field root systems

based on the measured soil information and published root architecture parameters using

root architecture model CRootBox. The simulated RLD profiles of winter wheat and

maize crops based on the RSA parameters can reproduce realistic root system architectures

successfully and are comparable with the measured RLD’s, reported in the literature. There

are significant differences between the RLD data obtained from MR methods of this study

and other studies and core sampling data published in the literature. Our simulation results

imply that the variation of temperature and soil penetration resistant due to changes in

moisture content depending on the season and depth has temporal influences, which cause

delays of roots to reach a certain depth at specific periods and slightly affect the maximum

rooting depth. Next, the macropores in fine-grained soil and the presence of large stones

alter the growth direction and distribution of root systems that ultimately change the root
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length density distribution.

Moreover, the comparison between measured and simulated data indicate that the signif-

icant differences in root development that observed between the two different soil types,

based on the differences in structural and soil physical properties cannot be reproduced

successfully by the model. Especially, the higher root development observed in macropores

simulated by the model is not sensitive enough to reproduce the measured differences. We

speculated that the differences in crop growth and development in the different soils that

could have been caused by water, nutrient stress, and C limitation in the two soils. There-

fore, the results emphasize the need to link RSA models to growth models that represent

the impact of stresses and resource allocation on plant growth and its feedbacks on root

development.
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5.1 General Conclusions

Since obtaining the information about detailed root system architecture and root traits

from field-grown crops are vital for plant breeding programs and for root architecture mod-

els to evaluate the resource capturing efficiency of plant’s root systems and other modeling

approaches, we intended to investigate whether the data obtained from classical field sam-

pling methods contain enough information about root system architecture of plants, and

how each parameter of the root system responds to the observed variation of the field sam-

pling data (chapter 2). With the overview of the parameter sensitivities, the possibility of

estimating the most sensitive parameters was carried out in a Bayesian framework based

on soil core sampling data derived from synthetic experiments (chapter 3). However, our

approach was based on synthetic experiments and the influence of the growth medium was

neglected. Thus we studied the possibility of incorporating soil and climatic factors that

affect root growth patterns to the RSA model and evaluated the differences in root dis-

tribution between simulation results and measured data of winter wheat and maize crops

that were grown in two different soil types at the rhizotron facility in Selhausen, Germany

(chapter 4).

In general, the application of field sampling methods for studying root distribution and

understanding of “the hidden half” of plants has been conducted during the last couple

of decades. The improvements in field sampling techniques for obtaining detailed RSA

information have continuously been investigated. However, the main research gap in this

regard was whether field root sampling data contain enough information about the RSA of

121



Chapter 5. Synthesis

plants and how to develop a systematic sampling procedure and methodological approach

for obtaining such information. The main outcome of this research demonstrates that field

root sampling data contain quantifiable information, especially the parameters of zero-order

roots and could be inferred successfully with the help of root architecture modeling and

Bayesian inference.

5.1.1 Parameter sensitivities and correlations of RSA model

The evaluation of sensitivities of different field sampling methods and respective charac-

teristic root system measures to RSA parameters was conducted based on a virtual root

system simulation and field sampling of winter wheat and maize crops with the help of a

mathematical modeling approach. Although a few studies have been conducted based on

RSA models to characterize virtual field sampling data, in this study, we demonstrated the

use of all RSA parameters for simulations of entire growth periods of mature field-grown

root systems and sampling schemes; coring, trenching, and minirhizotron observations to

represent a realistic field sampling approaches and subsequent field data analysis. With

the help of root architecture model CRootBox, simulation of large number of root sys-

tems with detailed root architecture parameters and root sampling from soil coring, root

impact counting in vertical profiles walls and root image capturing through transparent

rhizotubes, it was possible to produce synthetic field sampling data for this study to resem-

ble real field experimental procedures. The simulated field data could be used to compute

the uncertainty of field sampling data and sensitivities of root system measures to root

system architecture parameters. The sensitivity analysis results revealed that some RSA

parameters, especially the parameters of zero-order roots have higher sensitivities and lower

non-linear effects, while the higher-order roots have lower sensitivities and highly non-linear

effects on characteristic root system measures of different sampling results and the param-

eter sensitivities are specific to crop types and sampling methods.

Overall, the numbers (NB), maximum length (maxl0 ), and inter-branch distance (ln0 ) of

zero-order roots are the most influential parameters that determine the root length density

and total root mass of root systems. The minirhizotron method provides more information

about the dynamic parameters such as elongation rates of zero-order roots (r0 ), while

coring and trench profile methods are more sensitive to parameters associated with the

spatial distribution of root systems. Moreover, the higher sensitivities of the number of

zero-order roots (NB), and elongation rates (r0 ) of our sensitivity analysis results based

on minirhizotron observations are comparable with a similar study conducted by (Garré
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et al., 2012).

Furthermore, principal component analysis of sensitivities was carried out and thus specific

correlations between parameters could be identified with respective root system measures.

The PCA results indicated that parameter pairs, such as the number of zero-order roots

(NB) and inter-branch distances (ln0 ), insertion angle (theta0 ) and gravitropism strength

(tr0 ) of zero-order roots are highly correlated and could be compensated with each other.

Nevertheless, these results could provide useful insights about the sensitivity, non-linearity,

and correlation of parameters, which are vital information for characterizing RSA traits

from field sampling data.

5.1.2 Inference of RSA parameters

With the overview of parameter sensitivities and characteristic root system measures that

reflect the root growth patterns of winter wheat crops, we selected virtual core sampling

data to investigate the possibility of approximation of RSA parameters utilizing a Bayesian

framework. Based on the sensitivity analysis results we selected 17 most sensitive param-

eters out of 37 RSA model parameters of the winter wheat root system to estimate using

Markov chain Monte Carlo DREAMzs sampler. We identified the prior knowledge of the

parameters, selection of most sensitive parameters, the influence of parameter correlations,

and minimize the model stochasticity as the most important steps that need to be addressed

carefully. The major challenge in the inference, namely the model stochasticity, could be

resolved with iterating over multiple times of forward model simulations of each proposed

sample. However, iterating over multiple times requires a significant amount of computa-

tional time and the use of parallel computing resources could minimize the long sampling

run time, which is the primary constraint in Bayesian inference. The next challenge could

be identified as the complex data dependencies that lead to an overfitting problem, which

could be solved by inflating the likelihood and adjusting the MCMC acceptance rule for

accepting MCMC transitions that do not significantly change the likelihood value.

The inference results demonstrated that the maximum length or zero-order roots (maxl0 )

could be estimated with higher accuracy and lower uncertainty from the RLD data of

core samples. Nevertheless, the narrowly centered approximate posterior distributions of

numbers (NB), elongation rate (r0 ), insertion angles (theta0 ) of zero-order roots could also

be estimated, but with higher uncertainty. However, the other zero-order and higher-order

root parameters are not well resolved and indicate higher posterior uncertainty due to higher

correlations among parameters and lower sensitivity. Furthermore, the inference results

123



Chapter 5. Synthesis

are consistent with the results of sensitivity analysis and principal component analysis

(Morandage et al., 2019).

In general, the results further proved that core sampling data contain sufficient information

that reflects some information about root system architectures. Therefore, this approach

could be identified as an auspicious step towards characterizing detailed RSAs of different

genotypes based on large amounts of data collected from field sampling studies (Wasson

et al., 2014)

5.1.3 Differences in measured and simulated root distribution of

soils with different stone contents

The RSA parameters, obtained from the published literature, that used to simulate and

to calculate the root length density profiles of winter wheat and maize root systems are

consistent with most of the measured RLD data published in the literature, indicating that

the CRootBox, root architecture model could be used to simulate analogous to field-grown

root systems. The measured differences between root growth patterns in stony soil and silty

loam soil in the same climatic conditions demonstrate that the root growth, distribution,

and root system architectures of plants are highly attributed to the growth medium. Hence,

it is crucial to study the influence of soil conditions that affect rooting patterns for studying

plant dynamics and simulating root growth in RSA models.

The functions published in the literature to include the soil and environmental factors that

affect changes could be implemented in root architecture model CRootBox to simulate root

systems based on the measured soil information to compare with the measured root growth

patterns in the same conditions. The simulation results indicate that the temporal variation

of temperature and soil moisture conditions have a temporal influence on root growth due to

seasonal changes and at specific depths and slightly change the rooting patterns in different

soil types. However, macroscopic soil structural properties such as stone content and the

presence of macropores are highly influential in determining the maximum rooting depths.

The measured data demonstrate that the deeper and faster root growth patterns of winter

wheat and maize in silty loam soil, while the root length density and rooting depths of both

crops are lower in the stony soil. However, simulations overestimate the root density above

40 cm and underestimate below 40 cm depths in the soil of both crops, in comparison

to rhizotube observations. This indicates that the simulations are not representative of

measured root growth observed in minirhizotron facilities indicating the lack of all stress
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conditions that are present in field conditions in simulation results. Therefore, root growth

models should consider the effects of nutrient stress, and adaptations of root systems in

different environmental conditions should be investigated in detail.

Although the simulations contrasting with measured rhizotube RLD data, the compar-

isons should be made with another sampling method such as soil coring data to investigate

whether the differences are independent of sampling methods. The underestimation of

roots in topsoil and overestimation of roots in deep soil is reported as a major drawback in

the minirhizotron method which was already emphasized in the literature. Nevertheless,

our field measurements imply that this interpretation is valid only for the root growth mea-

surements in fine-grained soil and the shape of the root length density curve of stony soil is

not affected. The main reason could be that the presence of stones prevents the preferential

growth of roots in stony soil. However, our explanations regarding the different patterns

observed in MR data should be further validated and the application of minirhizotron data

for root studies requires calibration with other field root sampling methods.

5.2 Outlook

In this research, we presented the use of virtual experiments to obtain information about

the detailed root system architectures or root traits from field-grown crops. This research

proves that the aggregated information from field root sampling methods, soil coring, trench

root counting, and minirhizotron methods, contain the information related to parameters

of RSA of winter wheat and maize crops. Thus, field sampling schemes could be used to

understand the detailed RSA of crops. Although this study considered only the simulations

of wheat and maize crops, this approach is not restricted to specific crop types, and therefore

applicable to other crop types to understand the influence of each RSA parameter of root

systems on root growth patterns. The Bayesian inference approach was successfully applied

to inversely estimate zero-order root parameters from soil coring data of winter wheat.

Future studies will extend this approach to further field sampling methods and different

crop types. Technical challenges associated with long computation times of the inversion,

dealing with parameter correlations, model stochasticity, lack of prior range of parameters,

and influence of growth medium and environment of plants should also be resolved in

future attempts. Our simulation results of root architecture development as influenced by

measured field-data at high temporal resolution are a step in this direction.
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Figure A.1: Normalized means of absolute elementary effects (𝜇*) and standard devi-
ations of elementary effects (𝜎) of the most sensitive RSA parameters on the maximum
root length density in vertical root length density profiles derived from soil cores (RMc, first
row), on the total root length per surface area derived from soil core measurements (Tc,
second row), and on the average root count density vertical profile walls (Tt, third row).
Blue line: 1:1 line, red line: 𝜎* = 2 𝜎/sqrt(r) line (winter wheat (A) and maize (B) after
240 days and 180 days of simulation time respectively).

Figure A.2: Normalized means of absolute elementary effects (𝜇*) and standard devia-
tions of elementary effects (𝜎) of the RSA parameters on the depth above which 99% of the
total root length is observed (D99) for winter wheat (left) and maize (right) 240 days and
180 days after sowing, respectively. Blue line: 1:1 line, red line: 𝜎* = 2 𝜎/sqrt(r).
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Figure A.3: Normalized means of absolute elementary effects (𝜇*) of the most sensitive
RSA parameters on root impact densities in vertical transects of trench profiles (RX) at
different distances from the stem for winter wheat (left) and maize (right) 240 days and
180 days after sowing, respectively.
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Figure A.4: Biplots of parameter loadings for different PCs when all data are combined
for the wheat crop.

130



Appendix A.

Figure A.5: Biplots of parameter loadings for different PCs when all data are combined
for the maize crop.
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Figure B.1: Correlation matrix of all the inferred parameters. The Heat map shows the
variation of correlations from higher negative correlations (blue) to higher positive correla-
tions (red).
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Figure C.1: Soil temperature changes during the study period of winter wheat growing
season (Nov 2015-Jul 2016) measured by the MPS-2 sensors installed at the F1 facility
(left) and the F2 facility (right).
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Figure C.2: Soil moisture content changes during the study period of winter wheat growing
season (Nov 2015-Jul 2016) measured by the TDR sensors installed at the F1 facility (left)
and the F2 facility (right).

Figure C.3: Soil water potential changes during the study period of winter wheat growing
season (Nov 2015-Jul 2016) measured by the MPS-2 sensors installed at the F1 facility
(left) and the F2 facility (right).
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Figure C.4: Soil temperature changes during the study period of maize growing season
(May 2017-Sep 2017) measured by the MPS-2 sensors installed at the F1 facility (left) and
the F2 facility (right).

Figure C.5: Soil moisture content changes during the study period of maize growing
season (May 2017-Sep 2017) measured by the TDR sensors installed at the F1 facility
(left) and the F2 facility (right).

135



Appendix C.

Figure C.6: Soil water potential changes during the study period of maize growing season
(May 2017-Sep 2017) measured by the MPS-2 sensors installed at the F1 facility (left) and
the F2 facility (right).

Figure C.7: Root intersection density distribution of maize at the end of the growing
season measured by the trenching method. The solid red line indicate the measurements
from the F1 facility, and the dashed red line indicate the F2 facility measurements.
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Figure C.8: Simulated mean root arrival curves for winter wheat during the 2015-2016
growing season (left) and 2017 maize growing season (right) based on measured soil prop-
erties of F1 facility.

Figure C.9: Simulated mean root arrival curves for winter wheat during the 2015-2016
growing season (left) and 2017 maize growing season (right) based on measured soil prop-
erties of F2 facility.
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Figure C.10: Photographs showing macroscopic soil structures and rooting patterns of
maize observed in the upper rhizotron facility (top) and the lower rhizotron facility (bottom).
F1A, F1B, and F1C represent how the roots grow around large stones to find suitable paths.
F2A demonstrates the root growth in a deep vertical crack. F2B shows the root growth on
a vertical crack surface. F2C shows root growth inside a biopore and dead roots from the
previous growing seasons
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Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B., and Otero-Casal, C. (2017).

Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of

Sciences, 114(40):10572–10577.

Fang, S., Clark, R., and Liao, H. (2012). 3D Quantification of Plant Root Architecture In

Situ, pages 135–148. Springer Berlin Heidelberg, Berlin, Heidelberg.

Feldman, L. (1994). The Maize Root, pages 29–37. Springer New York, New York, NY.

Figueroa-Bustos, V., Palta, A. J., Chen, Y., and Siddique, H. M. K. (2018). Characteri-

zation of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root

System Size. Agronomy, 8(7).

Frasier, I., Noellemeyer, E., Fernández, R., and Quiroga, A. (2016). Direct field method

for root biomass quantification in agroecosystems. MethodsX, 3:513–519.

Gao, W., Hodgkinson, L., Jin, K., Watts, C. W., Ashton, R. W., Shen, J., Ren, T., Dodd,

I. C., Binley, A., Phillips, A. L., Hedden, P., Hawkesford, M. J., and Whalley, W. R.

(2016). Deep roots and soil structure. Plant Cell Environ, 39(8):1662–8.

Gao, Y., Duan, A., Qiu, X., Liu, Z., Sun, J., Zhang, J., and Wang, H. (2010). Distribution of

roots and root length density in a maize/soybean strip intercropping system. Agricultural

Water Management, 98(1):199–212.

144



Bibliography
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Truhn, D., Scharr, H., Terjung, S., Walter, A., and Schurr, U. (2009). Temperature

responses of roots: impact on growth, root system architecture and implications for

phenotyping. Functional Plant Biology, 36(11):947–959.

Nakamoto, T. (2000). The Distribution of Wheat and Maize Roots as Influenced by Bio-

pores in a Subsoil of the Kanto Loam Type. Plant Production Science, 3(2):140–144.

Naseri, M., Iden, S. C., Richter, N., and Durner, W. (2019). Influence of Stone Content

on Soil Hydraulic Properties: Experimental Investigation and Test of Existing Model

Concepts. Vadose Zone Journal, 18.

Nations, U. (2019). The Sustainable Development Goals Report 2019.

Ndour, A., Vadez, V., Pradal, C., and Lucas, M. (2017). Virtual Plants Need Water

Too: Functional-Structural Root System Models in the Context of Drought Tolerance

Breeding. Front Plant Sci, 8:1577.

Onderdonk, J. J. and Ketcheson, J. W. (1973). Effect of soil temperature on direction of

corn root growth. Plant and Soil, 39(1):177–186.

Onwuka, B. (2016). Effects of soil temperature on Some Soil properties and plant growth.

Journal of Agricultural Science and Technology.

Osher, S. and Fedkiw, R. (2003). Signed Distance Functions, pages 17–22. Springer New

York, New York, NY.

150



Bibliography

Paez-Garcia, A., Motes, C. M., Scheible, W. R., Chen, R., Blancaflor, E. B., and Monteros,

M. J. (2015). Root Traits and Phenotyping Strategies for Plant Improvement. Plants

(Basel), 4(2):334–55.

Pagenkemper, S. K., Puschmann, D. U., Peth, S., and Horn, R. (2014). Investigation of

Time Dependent Development of Soil Structure and Formation of Macropore Networks

as Affected by Various Precrop Species. International Soil and Water Conservation

Research, 2(2):51–66.
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