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14. Linear Response and Electron-Phonon Coupling
Rolf Heid

15. Entanglement in Many-Body Systems
Frank Pollmann

16. Quantifying Spatial Correlations in General Quantum Dynamics
Markus Müller

Index



Preface
Topology and entanglement are key concepts in many-body physics. Understanding the as-
sociated emergent phenomena beyond toy models – in the world of real strongly-correlated
materials – requires the mastery of a wealth of different methods. These encompass analyti-
cal tools such as group theory, first principles techniques based on density-functional theory,
materials-specific model-building schemes, as well as advanced modern numerical approaches
for solving realistic many-body models.

This year’s school provides an overview of the state-of-the art of these methods, their suc-
cesses and their limitations. After introducing the basics, lectures will present the core concepts
of topology and entanglement in many-body systems. To make contact to real materials, strate-
gies for building materials specific models and techniques for their solution will be introduced.
Among the latter, the school will cover quantum Monte Carlo methods, construction and opti-
mization of correlated wave-functions, recursion and renormalization group techniques, as well
as dynamical mean-field theory. More advanced lectures will give a pedagogical overview on
topological materials and their physics: topological metals, semimetals, and superconductors.
Towards the end of the school entanglement in quantum dynamics and perspectives in quantum
computation will be discussed.

The goal of the school is to introduce advanced graduate students and up to these modern
approaches for the realistic modeling of strongly correlated materials.

A school of this size and scope requires backing from many sources. This is even more true
this year. As everywhere, the Corona pandemics provided scores of new challenges. Plans had
to be changed and real facilities had to be replaced with virtual ones. We are very grateful for
all the practical and financial support we have received. The Institute for Advanced Simulation
at the Forschungszentrum Jülich and the Jülich Supercomputer Centre provided the major part
of the funding and were vital for the organization and re-organization of the school as well as
for the production of this book. The Institute for Complex Adaptive Matter (ICAM) supplied
additional funds and ideas for successful online formats.

The nature of a school makes it desirable to have the lecture notes available when the lectures
are given. This way students get the chance to work through the lectures thoroughly while their
memory is still fresh. We are therefore extremely grateful to the lecturers that, despite tight
deadlines, provided their manuscripts in time for the production of this book. We are confident
that the lecture notes collected here will not only serve the participants of the school but will
also be useful for other students entering the exciting field of strongly correlated materials.

We are grateful to Mrs. H. Lexis of the Verlag des Forschungszentrum Jülich and to Mrs.
D. Mans of the Grafische Betriebe for providing their expert support in producing the present
volume on a tight schedule. We heartily thank our students and postdocs who helped with
proofreading the manuscripts, often on quite short notice: Elaheh Adibi, Julian Mußhoff, Neda
Samani, and Xue-Jing Zhang.

Finally, our special thanks go to Dipl.-Ing. R. Hölzle for his invaluable advice on the innu-
merable questions concerning the organization of such an endeavor, and to Mrs. L. Snyders for
expertly handling all practical issues.

Eva Pavarini and Erik Koch

August 2020
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1.2 Robert O. Jones

1 Introduction

A practical definition of “strongly correlated” systems covers those that are not described well
by electron density functional (DF) theory. Most seminars and many publications on the subject
mention in the first sentence the widespread use of density functional (DF) theory in materials,
often quoting Walter Kohn: “For periodic solids it is sometimes referred to as the standard
model” [1]. The second sentence, however, lists the systems where DF results with standard
approximations are disastrous (a “metallic” transition metal oxide insulator, almost anything to
do with rare earth or actinide elements, . . . ), emphasizing the importance of describing such
“strongly correlated” materials correctly [2].1 DF theory is nevertheless an essential part of
this school. It is used widely in materials science and chemistry and provides useful results for
countless systems for which the exact wave function cannot be computed. The organizers have
asked me to provide you with a feel for the areas where physical insight can be obtained and
why approximations used in DF calculations can give sensible answers far from their regions of
obvious validity.
The origins of DF theory go back to the early years of quantum mechanics in the late 1920s.
Thomas [3] and Fermi [4] recognized the electron density as a basic variable, and Dirac [5]
showed already in 1930 that the state of an atom can be determined completely within Hartree-
Fock theory by its one-particle density matrix; it is not necessary to specify the wave function.
We follow here the history of density-related methods to the single-particle equations of Kohn
and Sham in 1965 and beyond. In its modern form, the DF formalism shows that ground state
properties of a system of electrons in an external field can be determined from a knowledge
of the density distribution n(r) alone. Much of the work in materials science and chemistry
focuses on the structure and cohesive energies and a property for which DF calculations are
particularly valuable: the total energy E of a system of electrons in the presence of ions located
at RI.
Accurate calculations of the entire energy surfaceE(RI) are possible only for systems with very
few atoms, and this function generally has vast numbers of maxima and minima at unknown
locations. The lowest energy, however, corresponds to the ground state structure, and paths
between minima are essential to our studies of chemical reactions, including their activation
barriers. When I read the autobiography of Francis Crick [6], I was taken by his observation

“If you want to study function, study structure.”

and have used it ever since. This relationship may be self-evident to molecular biologists and
most chemists, but it is also true in many other areas. The DF approach allows us to calculate
E(RI), and hence the structure and many related properties, without using experimental input.
If you are more interested in “real materials” than in mathematical models, this is a crucial
advantage for strongly correlated materials as well.

1An example can be found in the Preface of the 2012 Autumn School: “Density functional theory (DFT) is
considered the Standard Model of solid state physics. The state-of-the-art approximations to DFT, the local-density
approximation (LDA) or its simple extensions, fail, however, even qualitatively, for strongly correlated systems.”
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Olle Gunnarsson and I reviewed the density functional formalism, its history, and its prospects
in 1989 [7], and I returned to the subject and its literature again recently [8]. I have drawn on
this article for some of the present content, and I refer you to it for a much wider discussion
and more extensive literature. The focus here is on electron density functional theory, and
I comment in [8] on DF methods in classical systems and nuclei. My final remarks in [8]
discussed the concern that prominent DF practitioners express about the future of the field, and
I return to this point below. A second review article covers my view of the fascinating history of
the chemical “bond”, starting from the first use of this word in the mid nineteenth century [9].
This is perhaps peripheral to the main interests of the “strongly correlated” community, but the
reader will be surprised at how much he or she did not know. Have you ever really thought
about why atoms usually like being close together and not infinitely far apart?
In my lecture at the Autumn School 2020, I plan to cover much of the ground presented in these
notes. Participants at the school, however, should not be surprised if I make some less than
standard remarks about DF theory and its relationship to other areas of many-electron physics
and chemistry, as well as on some of the personalities involved.

2 The electron density as basic variable

The books by Gino Segrè [10] and Graham Farmelo [11] give fascinating accounts of the very
rapid development of quantum mechanics in the years following 1925. Methods for finding
approximate solutions of the Schrödinger equation followed soon after it was published in 1926
and have had a profound effect on chemistry and condensed matter physics ever since.
The “Hartree approximation” to the many-electron wave function is a product of single-particle
functions,

Ψ(r1, r2, ...) = ψ1(r1) · · ·ψN(rN) (1)

where each ψi(ri) satisfies a one-electron Schrödinger equation with a potential term arising
from the average field of the other electrons. Hartree [12] indeed introduced the idea of a “self-
consistent field”, with specific reference to the core and valence electrons, but his papers do not
mention the approximation (1). However, Slater [13] and Fock [14] recognized immediately
that the product wave function (1) in conjunction with the variational principle led to a gener-
alization of the method that would apply to systems more complex than atoms. They showed
that replacing (1) by a determinant of such functions [13, 14] led to equations that were not
much more complicated than those of Hartree, while satisfying the Pauli exclusion principle.
These determinantal functions, which had been used in discussions of atoms [15] and ferro-
magnetism [16], are known today as “Slater determinants”, and the resulting “Hartree-Fock
equations” have formed the basis of most discussions of atomic and molecular structure since.
In 1929 Dirac wrote [17]:

“The general theory of quantum mechanics is now almost complete, . . . The underlying

physical laws necessary for the mathematical theory of a large part of physics and the whole

of chemistry are thus completely known, and the difficulty is only that the exact application
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of these laws leads to equations much too complicated to be soluble. It therefore becomes

desirable that approximate practical methods of applying quantum mechanics should be de-

veloped, which can lead to an explanation of the main features of complex atomic systems

without too much computation.”

I cannot think of a better short description of density functional theory than an “approximate
practical method of applying quantum mechanics” to explain “complex atomic systems”. I and
many others ignored the point “without too much computation.”
Dirac [17] also sought to improve the model of Thomas [3] and Fermi [4] for calculating atomic
properties based purely on the electron density n(r). In the first “density functional theory”,
Thomas and Fermi assumed that the electrons form a homogeneous electron gas satisfying
Fermi statistics and the kinetic energy has a simple dependence on the density n(r). The TF
equations are:

5

3
Ckn(r)

2
3 + e2

∫
dr′

n(r′)

|r− r′|
+ Vext(r) + λ = 0, (2)

where Ck = 3~2(3π2)
2
3/(10m), Vext is the external potential, and λ is the Lagrange multiplier

related to the constraint of constant particle number. Dirac noted the necessity of incorporating
“exchange” phenomena, as in the Hartree-Fock approach [17], and he included these effects in
the “Thomas atom” [5] by means of the potential

V Dirac
x = −

(
1

π

)(
3π2n(r)

) 1
3 . (3)

This term was derived for a homogeneous gas of density n and should be valid for weak spatial
variations of n(r).2 The modified TF equation is often referred to as the “Thomas-Fermi-Dirac”
equation.
The Thomas-Fermi method and its extensions give rough descriptions of the charge density and
the electrostatic potential of atoms, and its mathematical properties have attracted considerable
attention [18, 19]. However, it has severe deficiencies. The charge density is infinite at the
nucleus and decays as r−6, not exponentially, far from it. Teller [20] and others also showed
that TF theory does not bind atoms to form molecules or solids, which rules out its use in
chemistry or materials science. There is also no shell structure in the TF atom, so that the
periodic variation of many properties with changing atomic number Z cannot be reproduced,
no ferromagnetism [7], and atoms shrink with increasing Z (as Z−1/3) [21]. Nevertheless, it
may be useful in the context of very dense matter [8].
One point made by Dirac [5], however, has been emphasized by many advocates of the DF
method over the years, even if we were unaware of his words of over 80 years ago:

“Each three-dimensional wave function will give rise to a certain electric density. This

electric density is really a matrix, like all dynamical variables in the quantum theory. By

adding the electric densities from all the wave functions we can obtain the total electric

density for the atom. If we adopt the equations of the self-consistent field as amended for

2The exchange energy in a homogeneous (spin-polarized!) electron gas had been derived by Bloch [16] in 1929.
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Fig. 1: Logarithm of spherical average of density in ground state of C atom as a function of the
distance from the nucleus (atomic units) [7].

exchange, then this total electric density (the matrix) has one important property, namely,

if the value of the total electric density at any time is given, then its value at any later time

is determined by the equations of motion. This means that the whole state of the atom is

completely determined by this electric density; it is not necessary to specify the individual

three-dimensional wave functions that make up the total electric density. Thus one can deal

with any number of electrons by working with just one matrix density function.”

The italics are in the original. The derivation is based on the “self-consistent field” or Hartree-
Fock approximation, and the “matrix density function” is known today as the one-particle den-
sity matrix, but the observation that the density follows the equations of motion is much in the
spirit of Ehrenfest’s theorem [22], which has wider validity. Ehrenfest had proved in 1927 what
I have seen referred to as the “time-dependent Hellmann-Feynman theorem”, namely that the
acceleration of a quantum wave packet that does not spread satisfied Newton’s equations of
motion.
The central role played by the density means that we must know what it looks like in real sys-
tems. Figure 1 shows that the spherically averaged density in the ground state of the carbon
atom falls monotonically from the nucleus and does not show the radial oscillations that occur
if we plot r2n(r). The charge density in small molecules is also rather featureless, with maxima
at the nuclei, saddle points along the bonds, and a generally monotonic decay from both. The
electron density in molecules and solids also shows relatively small departures from the over-
lapped densities of the constituent atoms. Energy differences, including binding, ionization, and
cohesive energies, are the focus of much DF work and result from subtle changes in relatively
featureless density distributions. It is amazing that this is sufficient to determine ground state
properties.
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3 An “approximate practical method”

The basis of a quantum theory of atoms, molecules, and solids was in place at the beginning
of the 1930’s. Linear combinations of atomic orbitals formed molecular orbitals, from which
determinantal functions could be constructed, and linear combinations of determinants (“con-
figuration interaction”) would provide approximations to the complete wave function. Dirac
had noted already, however, that this procedure could not be implemented in practice, so that
approximations are essential. Furthermore, numerical techniques for solving the Schrödinger
equation in extended systems were still to be developed.

Wigner and Seitz [23] developed a method for treating the self-consistent problems in crystals,
and the “Wigner-Seitz cell” is known to all condensed matter physicists. The first application to
metallic sodium used a pseudopotential for the Na ion, and calculations of the lattice constant,
cohesive energy, and compressibility gave satisfactory results. Of particular interest for our
purposes, however, is the calculation of the probability of finding electrons with parallel spins
a distance r apart (Fig. 2). This function obtains its half-value for r = 1.79 d′ or 0.460 d for a
body-centered cubic lattice with cube edge d, which is close to the radius of the “Wigner-Seitz
sphere” ( 3

8π
)
1
3 d = 0.492 d. The exclusion principle means then that two electrons with parallel

pins will very rarely be at the same ion. This argument does not depend significantly on the
potential and should apply to a Fermi gas subject to periodic boundary conditions [23]. The
corresponding curves for spin up and spin down electrons, as well as for both spins combined,
were discussed in the 1934 review article of Slater [24].

The picture that results is simple and appealing: the exclusion principle means that an elec-
tron with a given spin produces a surrounding region where there is a deficiency of charge of
the same spin. This region contains one unit charge and is referred to as the “Fermi” [23] or
“exchange” hole [25]. In the Hartree-Fock scheme, the exchange hole is different for each elec-
tronic function, but Slater [25] developed a simplified “exchange potential” that depended only
on the density

V Slater
x = −

(
3

2π

)(
3π2n(r)

) 1
3 . (4)

The Slater approximation (4) was proposed at the time that electronic computers were becoming
available for electronic structure calculations and proved to be very useful in practice. Methods
for solving the Schrödinger equation had been developed—but not implemented—somewhat
earlier, including the augmented plane wave (APW) [26] and Korringa-Kohn-Rostoker ap-
proaches [27, 28].

The exchange potential of Slater (4) is 3/2 times that derived by Dirac and Bloch (3) for a
homogeneous electron gas, but Slater [29] pointed out that an effective potential proportional
to the cube root of the density could be obtained by arguments based on the exchange hole
that do not depend on the free electron gas arguments used in the original derivation [25]. The
exchange hole discussed above for a spin up electron contains a single electron. If we assume
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Fig. 2: Probability that electrons in Na metal with parallel spins are r/d′ apart (d′3 = V0/(3π
2),

where V0 is the atomic volume). After Wigner and Seitz [23].

that it can be approximated by a sphere of radius R↑, then

(
4π

3

)
R3
↑n↑ = 1 ; R↑ =

(
3

4πn↑

) 1
3

(5)

where n↑ is the density of spin up electrons. Since the electrostatic potential at the center of such

a spherical charge is proportional to 1/R↑, the exchange potential will be proportional to n
1
3
↑ .

This argument was used by Slater to counter a misconception (unfortunately still widespread)
that local density approximations based on the homogeneous electron gas are only appropriate
if the electron density is nearly homogeneous.

In 1954, Gáspár [30] questioned the prefactor of the effective exchange potential (Eq. 4). If
one varies the spin orbitals to minimize the total energy in the Thomas-Fermi-Dirac form, one
obtains a coefficient just 2

3
as large. Gáspár applied this approximation to the Cu+ ion and

found good agreement with Hartree-Fock eigenfunctions and eigenvalues. Slater noted that
Gáspár’s method was “more reasonable than mine” [31], but the larger value was used in most
calculations in the following years.
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4 Electron density functional formalism

The variational principle on the energy was the basis of the derivation of the density functional
formalism given by Hohenberg and Kohn (HK) [32]. First, they showed that there is a one-
to-one relationship between the external potential Vext(r) and the (nondegenerate) ground state
(GS) wave function Ψ , and then that there is a one-to-one relationship between Ψ and the ground
state density n(r) of an N -electron system,

n(r) = N

∫
dr2..drN Ψ ∗(r, r2, ..rN) Ψ(r, r2, ..rN) , (6)

where the spin coordinates are not shown explicitly. Knowledge of the density then determines
the external potential to within a constant, so that all terms in the Hamiltonian are known.
Since the Hamiltonian operator determines completely all states of the system, n(r) determines
excited states as well as the ground state.
These ideas can be applied to the total energy using the variational principle. For this purpose,
HK defined the functional F [n(r)], which is “universal” in the sense that it is valid for any
external potential Vext,

F [n] =
〈
Ψn
∣∣T + Vee

∣∣Ψn〉, (7)

and showed that the energy functional E[n, Vext] satisfies a variational principle

EGS = minn(r) E[n, Vext], (8)

where
E[n, Vext] =

∫
dr Vext(r) n(r) + F [n] . (9)

The minimization is performed in HK over all non-degenerate densities that can be derived from
the ground state of some external potential (“V -representable”). Levy [33] generalized this to a
minimization over all densities, including degeneracies.

4.1 Single-particle description of a many-electron system.

The task of finding good approximations to the energy functional E[n] is simplified greatly if
we use the decomposition introduced by Kohn and Sham [34],

E[n] = T0[n] +

∫
dr n(r)

(
Vext(r) +

1

2
Φ(r)

)
+ Exc[n]. (10)

T0 is the kinetic energy that a system with density n would have if there were no electron-
electron interactions, Φ is the classical Coulomb potential for electrons, and Exc defines the
exchange-correlation energy. T0 is not the true kinetic energy T , but it is of comparable mag-
nitude and is treated here without approximation. This removes many of the deficiencies of the
Thomas-Fermi approach, such as the lack of a shell structure of atoms or the absence of chem-
ical bonding in molecules and solids. In the expression (10) all terms other than the exchange-
correlation energy Exc can be evaluated exactly, so that approximations for this term are crucial
in density functional applications.
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The variational principle applied to (10) yields

δE[n]

δn(r)
=

δT0
δn(r)

+ Vext(r) + Φ(r) +
δExc[n]

δn(r)
= µ, (11)

where µ is the Lagrange multiplier associated with the requirement of constant particle number.
If we compare this with the corresponding equation for a system with an effective potential
V (r) but without electron-electron interactions,

δE[n]

δn(r)
=

δT0
δn(r)

+ V (r) = µ, (12)

we see that the mathematical problems are identical, provided that

V (r) = Vext(r) + Φ(r) +
δExc[n]

δn(r)
. (13)

The solution of Eq. (12) can be found by solving the Schrödinger equation for non-interacting
particles, (

− 1

2
∇2 + V (r)

)
ψi(r) = εiψi(r), (14)

yielding

n(r) =
N∑
i=1

|ψi(r)|2 (15)

The condition (13) can be satisfied in a self-consistent procedure.
The solution of this system of equations leads to the energy and density of the lowest state, and
all quantities derivable from them. The formalism can be generalized to the lowest state with
a given symmetry [35]. Instead of seeking these quantities by determining the wave function
of the system of interacting electrons, the DF method reduces the problem to the solution of a
single-particle equation of Hartree form. In contrast to the Hartree-Fock potential,

VHF ψ(r) =

∫
dr′ VHF(r, r

′)ψ(r′), (16)

the effective potential, V (r) is a local (i.e. multiplicative) operator.
The numerical advantages of solving the Kohn-Sham equations [34] are obvious. Efficient
methods exist for solving single-particle Schrödinger-like equations with a local effective po-
tential, and there is no restriction to small systems. With a local approximation to Exc, the
equations can be solved as readily as the Hartree equations. Unlike the Thomas-Fermi method,
where the large kinetic energy term is approximated, the valence kinetic energy and the core-
valence and valence-valence electrostatic interactions are treated exactly. However, Exc is the
difference between the exact energy and terms we can evaluate exactly, and approximations are
unavoidable.
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4.2 Exchange-correlation energy Exc and the xc-hole

Kohn and Sham [34] proposed using the “local density (LD) approximation”

ELD
xc =

∫
dr n(r) εxc[n(r)], (17)

where εxc[n] is the exchange and correlation energy per particle of a homogeneous electron gas
with density n. This approximation is exact in the limits of slowly varying densities and very
high densities. The authors noted that this approximation “has no validity” at the “surface” of
atoms and in the overlap regions of molecules and concluded [34]:

“We do not expect an accurate description of chemical bonding.”

The generalization to spin-polarized systems is

ELSD
xc =

∫
dr n(r) εxc[n↑(r), n↓(r)], (18)

where εxc[n↑, n↓] is the exchange and correlation energy per particle of a homogeneous, spin-
polarized electron gas with spin-up and spin-down densities n↑ and n↓, respectively.3 The “Xα”
approximation

EXα
x = −3

2
αC

∫
dr
(
(n↑(r))

4/3 + (n↓(r))
4/3
)
, (19)

where C = 3(3/4π)1/3 was used in numerous calculations in the late 1960s and 1970s. The
α-dependence of energy differences for a given atom or molecule is weak for values near 2/3,
the value of Bloch [16], Dirac [5], Gáspár [30] and Kohn and Sham [34]. We have noted
that the electron density in molecules and solids is generally far from that of a homogeneous
electron gas, and the validity of calculations based on properties of a gas of constant density has
often been questioned. We now discuss some general properties of Exc using arguments closely
related to the “exchange hole” picture of Wigner and Seitz [23] and Slater [25, 29].
The crucial simplification in the density functional scheme is the relationship between the inter-
acting system, whose energy and density we seek, and the fictitious, non-interacting system for
which we solve Eq. (14), (15). This can be studied by considering the interaction λ/|r− r′| and
varying λ from 0 (non-interacting system) to 1 (physical system). This is done in the presence
of an external potential Vλ [35], such that the ground state of the Hamiltonian

Hλ = −
1

2
∇2 + Vext(r) + Vλ + λVee (20)

has density n(r) for all λ. The exchange-correlation energy of the interacting system can then
be expressed as an integral over the coupling constant λ [36]

Exc =
1

2

∫
dr n(r)

∫
dr′

1

|r− r′|
nxc(r, r

′−r), (21)

3The calculation by Bloch [16] in 1929 of ferromagnetism in a free-electron model of a metal was the first
where the exchange energy was expressed as the sum of terms proportional to n

4/3
↑ and n

4/3
↓ .
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with

nxc(r, r
′−r) ≡ n(r′)

∫ 1

0

dλ
(
g(r, r′, λ)− 1

)
. (22)

The function g(r, r′, λ) is the pair correlation function of the system with density n(r) and
Coulomb interaction λVee. The exchange-correlation hole nxc describes the fact that an electron
at point r reduces the probability of finding one at r′, andExc is simply the energy resulting from
the interaction between an electron and its exchange-correlation hole. This is a straightforward
generalization of the work of Wigner and Seitz [23] and Slater [25] discussed above.
Second, the isotropic nature of the Coulomb interaction Vee has important consequences. A
variable substitution R ≡ r′−r in (21) yields

Exc =
1

2

∫
dr n(r)

∫ ∞
0

dR R2 1

R

∫
dΩ nxc(r,R). (23)

Equation (23) shows that the xc-energy depends only on the spherical average of nxc(r,R), so
that approximations for Exc can still give an exact value, even if the description of the non-
spherical parts of nxc is arbitrarily inaccurate. Third, the definition of the pair-correlation func-
tion leads to a sum-rule requiring that the xc-hole contains one electron, i.e., for all r,∫

dr′ nxc(r, r
′−r) = −1. (24)

This means that we can consider −nxc(r, r
′−r) as a normalized weight factor and define the

radius of the xc-hole locally for a particular value of r,〈 1

R

〉
r
= −

∫
dR

nxc(r,R)

|R|
. (25)

This leads to
Exc = −

1

2

∫
dr n(r)

〈 1

R

〉
r
. (26)
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Fig. 3: Magnitude of exact (solid) and LSD (red, dashed) exchange holes nxc(r, r
′−r) for spin

up electrons in an N atom for r = 0.13 a.u. (a) Hole along line through nucleus (arrow) and
electron (r−r′ = 0). (b) spherical averages of holes, and 〈1/R〉 [Eq. (25)] [7].
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Provided Equation (24) is satisfied, Exc is determined by the first moment of a function whose
second moment we know exactly and depends only weakly on the details of nxc [35]. Provided
that the spherical average of the exchange-correlation hole is correct, approximations to Exc

can then lead to good total energies, even if other details are described very poorly. This is
shown by the example in Figure 3, where the exchange hole in a nitrogen atom is shown for a
representative value of r for both the local density and exact (Hartree-Fock) cases. The holes
are qualitatively different: The LD hole is spherically symmetric and centered on the electron,
while the exact hole has a large weight at the nucleus and is very asymmetric. Nevertheless, the
spherical averages are very similar, and the exchange energies differ by only around 10%.

5 DF theory to 1990

5.1 Condensed matter

Condensed matter physicists were generally pleased to have justification for the “local density”
calculations they had been performing for years, and numerous electronic structure theorists
moved seamlessly from performing “Xα” or “Hartree-Fock-Slater” calculations into the density
functional world (the names of some program packages also changed seamlessly). However,
Fig. 4 shows that there was remarkably little impact of DF calculations prior to 1990. Volker
Heine, a prominent condensed matter theorist, looked back on the 1960’s in this way [37]:

“Of course at the beginning of the 1960s the big event was the Kohn Hohenberg Sham

reformulation of quantum mechanics in terms of density functional theory (DFT). Well, we

recognize it now as a big event, but it did not seem so at the time. That was the second

big mistake of my life, not to see its importance, but then neither did the authors judging

from the talks they gave, nor anyone else. Did you ever wonder why they never did any

calculations with it?”

There were also prominent critics of density functional and related computational techniques,
and one of the best known solid state theoreticians, Philip Anderson, made devastating com-
ments in 1980 [38]:

“There is a school which essentially accepts the idea that nothing further is to be learned in

terms of genuine fundamentals and all that is left for us to do is calculate. [. . . ] One is left,

in order to explain any phenomenon occurring in ordinary matter, only with the problem of

doing sufficiently accurate calculations. This is then the idea that I call “The Great Solid

State Physics Dream Machine” . . . This attitude is closely associated with work in a second

field called quantum chemistry.”

Anderson associated the “Dream Machine” with the name of John Slater and described the DF
method as a “simplified rather mechanical kind of apparatus” that “shows disturbing signs of
become a victim of the ‘Dream Machine’ syndrome” [38]. While noting that DF calculations
can be valuable in some contexts, he continued:
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Fig. 4: Number of publications per year (1980-2019) on topics “density functional” or “DFT”,
according to Web of Knowledge (June 2020). The inset shows data near 1990 on an expanded
scale [39].

“ . . . a great deal of the physics is concealed inside the machinery of the technique, and that

very often once one has the answers that these techniques provide, one is not exactly clear

what the source of these answers is. In other words the better the machinery, the more likely

it is to conceal the workings of nature, in the sense that it simply gives you the experimental

answer without telling you why the experimental answer is true.”

These are harsh words, and some DF practitioners are still angry about the damage that they
caused. They did, however, apply to some electronic structure calculations at the time, and
I return to them in Sec. 7. The increasing availability of computing resources made possible
calculations that had previously been inaccessible, and not all users of the method were critical
of the approximations involved.

5.2 Chemistry

It took many years for DF calculations to be taken seriously by most chemists, and the reasons
were often convincing: (1) Unlike the TF theory, the Kohn-Sham expression for the energy is
not really a “functional” of the density, since the kinetic energy term is treated exactly and is de-
fined by an effective potential that leads to the density, (2) the original functional of Hohenberg
and Kohn is not even defined for all n, because not all densities can be derived from the ground
state of some single-particle potential [33, 40], (3) approximations to the exchange-correlation
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energy are unavoidable, and their usefulness can be assessed only by trying them out, and (4)
there is no systematic (perhaps better described as “mechanical”) way to approach the exact
solution of the Schrödinger equation and, of course, the exact energy.
This last point was (and is) emphasized by many. In principle, the Hartree-Fock method could
be extended to multiple determinants (“configuration interaction”) and, coupled with a large
basis set, lead to the exact wave function and all properties obtainable from it. This is an
attractive proposition, and the dramatic improvements in computing power (three orders of
magnitude per decade) might make the reservations of Dirac [17] less formidable. It was often
emphasized that solutions of the Schrödinger equation led to the “right answer for the right
reason.” Nevertheless, obtaining numerically exact total energies from calculations of the wave
function remains a major challenge to this day, and it is not surprising that several groups looked
at alternatives.
Hartree-Fock-Slater calculations (Xα calculations with α = 0.7) on small molecules were car-
ried out from the early 1970’s, particularly by Evert Jan Baerends and collaborators in Amster-
dam, and some of the first DF calculations on small molecules were performed by Olle Gun-
narsson [35]. John Harris and I had not expected that the local density approximations would
give reasonable results for molecules, but we (with Olle) developed a full-potential LMTO code
for small molecules and clusters [41]. These calculations led to good geometries and reasonable
binding energies in most cases. In spite of the shortcomings of the local density description of
Exc, it became possible to perform calculations without adjustable parameters on families of
molecules and small clusters that had previously been inaccessible. I was unprepared for so
many unexpected and exciting results, my own examples including the trends in the binding
energies of group 2 dimers [42, 43] and the structures of small phosphorus clusters [44]. Most
condensed matter physicists were neither surprised nor interested, but theoretical chemists re-
mained sceptical or critical, or they ignored these developments entirely. This situation contin-
ued throughout the 1980s and into the 1990s.
The Seventh International Congress of Quantum Chemistry in Menton, France, from 2–5 July
1991, marked a major turning point in the fortunes of DF methods in chemistry. Density-
related methods were discussed in detail, and communication between their proponents and the
sceptics improved. Becke described his development of a non-local exchange functional that
promised improvements over local approximations [45], and this approximation was tested for
the atomization energies of small molecules immediately after the meeting. Many—including
the authors— were surprised by the results [46]:

“In summary, these initial results indicate that DFT is a promising means of obtaining

quantum mechanical atomization energies; here, the DFT methods B-VWN and B-LYP

outperformed correlated ab initio methods, which are computationally more expensive.”

and [47]

“The density functional vibration frequencies compare favorably with the ab initio results,

while for atomization energies two of the DFT methods give excellent agreement with

experiment and are clearly superior to all other methods considered.”
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The ab initio methods mentioned were Hartree-Fock, second order Møller-Plesset (MP2), and
quadratic configuration interaction with single and double substitutions (QCISD). In addition to
the growing body of results on molecules and clusters that were beyond the scope of calculations
of correlated wave functions, this change in attitude by one of the most prominent theoretical
chemists led to a dramatically new attitude towards the DF method in chemistry.

5.3 Situation in 1990

The number of citations to density functional theory and related topics was very small prior to
1990 and exploded thereafter (see Figure 4). However, work was already in place by 1990 that
has proved to be crucial to the ultimate acceptance of the method, and I now outline some of it.
More details can be found elsewhere [8, 48].
The generalizations to finite temperatures and to spin systems were carried out soon after the
original work of Hohenberg and Kohn [32]. The former was provided by Mermin [49], who
showed that, in a grand canonical ensemble at given temperature T and chemical potential µ,
the equilibrium density is determined by the external potential Vext, and the equilibrium density
minimizes the grand potential. Single-particle equations can be derived for a fictitious system
with kinetic energy T0 and entropy S0, with Exc replaced by the exchange-correlation contribu-
tion to the free energy.
The extension to spin systems [50] or an external magnetic field requires the introduction of the
spin indices α of the one-electron operators ψα(r) and replacing Vext by V αβ

ext (r), and the charge
density n(r) by the density matrix ραβ(r) = 〈Ψ |ψ+

β (r)ψα(r)|Ψ〉. All ground state properties are
functionals of ραβ , and E is stationary with respect to variations in ραβ . The expression for the
energyExc is analogous to Equations (21), (22). A current- and spin density functional theory of
electronic systems in strong magnetic fields was formulated by Vignale and Rasolt [51]. Time-
dependent density functional theory, which has proved to be invaluable in discussing excited
states, was described by Runge and Gross [52].
Most of the early DF calculations on small clusters and molecules used the LD and/or LSD
approximations. Although the results were generally encouraging, it was soon clear that local
density calculations can lead to unacceptable errors. Examples were the exchange energy differ-
ence between states with different nodal structures [53], including the s-p promotion energies
in first-row atoms, particularly O and F. Dispersion forces—the weak, non-local interactions
between closed shells systems—are a particular problem for such approximations. The long-
range interaction between separated atoms or molecules is absent, and yet the LD approximation
overestimates the binding energy in many such systems, e.g. He2 [42]. It is not surprising that
new approximations were developed, and corrections involving density gradients were soon
available for the correlation [54, 55] and exchange energies [45]. The semi-empirical exchange
energy approximation of Becke [45] had the correct asymptotic behavior for atoms.
The combination of DF calculations with molecular dynamics (Car-Parrinello method) [56]
made simulations of bulk systems at elevated temperatures possible, and simulated annealing
techniques could be used to study the energy surfaces of molecules and clusters. My 1991



1.16 Robert O. Jones

article [57] showed that unexpected structures could result. An essential part of DF work prior
to 1990 was, of course, the gradual generation of a data base of results for molecules and
clusters.

6 1990–present

There have been over 200,000 publications on the topics “density functional” and “DFT” be-
tween 1990 and June 2020 (Figure 4), and I leave detailed surveys of this vast literature to
others. I mention here some aspects that should be of general interest and give an example of
the possibilities provided by the combination of DF calculations with molecular dynamics.

6.1 Progress and problems

One of the first signs of growing acceptance of DF methods in chemistry was the incorporation
of such calculations into popular ab initio program packages, with GAUSSIAN leading the way.
It seems that Michael Frisch, first author of that package, was a willing convert. At the end of
a talk at the ACS National Meeting in San Francisco (13 April 1997) on “Ab initio calculations
of vibrational circular dichroism and infrared spectra using SCF, MP2, and density functional
theories for a series of molecules,” an unknown (to me) member of the audience asked:

“What about Hartree-Fock?”

Michael Frisch answered:

“It does not matter what you want to calculate, and it does not matter what functional you

use; density functional results are always better than Hartree-Fock.”

The availability of such codes and the possibility of comparing the results of different types of
calculation were important to establishing the credentials of DF calculations in chemistry.
There has been progress in all the above areas. Time-dependent DF theory has become a stan-
dard way to calculate excited states and is an option in most DF program packages. The com-
bination of density functional calculations with molecular dynamics is likewise a part of many
such packages. The combination of DF calculations for a chemically active region with classical
molecular dynamics for the surrounds (the “QM/MM approach”) [58] has found applications
in many systems in biology, organic and solid state chemistry [59]. Classical force fields that
lead to simulations with near-DF accuracy can be developed by a neural network or machine-
learning representation of the results of (very many) DF calculations on small systems [60],
and this has been an active field of research recently [61, 62]. Reviews of orbital-dependent
functionals and constrained DF theory are provided in [8].
These and other developments are very welcome, but the most contentious issue has been the de-
velopment of approximations to the exchange-correlation energy that overcome the weaknesses
of the local density approximations. The LD [Eq. (17)] and LSD [Eq. (18)] approximations lead
to overbinding of many molecules, poor exchange energy differences if the nodal structures of
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the orbitals change, and the Kohn-Sham eigenvalues often underestimate measured optical band
gaps significantly. Nevertheless, calculations that used them provided insight into many physi-
cal problems, and the reasons for the errors (and ways to assess their magnitude) became clear.
However, if insight is not enough and reliable numbers are needed, improved approximations
are necessary.
The first generalized gradient approximations [45, 54, 55] did lead to better results, and hybrid
functionals including exact exchange were introduced by Becke in 1993 [63]. This form of
Ex has three parameters, and its combination with Ec of Lee, Yang, and Parr [55] (B3LYP)
remains one of the most common approximations used in chemical applications [64]. Many
other empirical and hybrid functionals have been developed since, with parameters usually fit
to thermochemical data for particular groups of molecules. The use of experimental data for
fitting functional forms is understandable [65]. The additional parameters led to improvement
over the LD and LSD results, and the use of “training sets” of atomic and molecular systems to
optimize the parameters improved the calculated results for particular sets of molecules [66].
An alternative path has been followed by others, particular Perdew and collaborators, who de-
veloped a sequence (“Jacob’s ladder”) of approximations without experimental input, where
each “rung” built on the experience of lower level and satisfies particular physical constraints.
The gradient corrected form of Perdew, Burke, and Ernzerhof [67] (PBE) incorporates the LSD
form below it, and the “meta-GGA” form of Tao, Perdew, Staroverov, and Scuseria (TPSS) [68],
where n↑ and n↓ are joined by their gradients and the kinetic energy density of the occupied
Kohn-Sham orbitals, built on both. The agreement with experiment improves (and the com-
plexity of the calculations increases) as one climbs the “ladder” [69].
It should be emphasized that the Jacob’s ladder approach is systematic and not empirical [70].
Starting with a proof of the existence of a functional, we can derive formally exact relationships
that we can develop into constraints on approximate forms. If these forms are flexible enough,
we can fit their free parameters to appropriate norms of energies or densities. These should not
include binding energies, which are always susceptible to error cancellation between exchange
and correlation. A recent member of the family is the “SCAN” (strongly constrained and appro-
priately normed) semilocal functional of Sun et al. [71]. Medvedev et al. [70] note that many
(empirically fitted) functionals developed since the year 2000 lead to improved energies but
densities that are more removed from the exact results.
Two areas have remained particular challenges for DF calculations. The first are the weak
dispersion or van der Waals forces mentioned above, where there has been substantial progress
during recent years. The development of a functional that changes seamlessly on going from
weakly interacting units to a combined system has been a goal of many, and one successful
project has been that of Langreth and coworkers [72]. Their functional incorporates results
for electron gas slabs and the electron gas itself, is free of experimental input, and has been
implemented in several program packages. An empirical correction to DF results has been
made by Grimme [73], an alternative has been suggested by Tkatchenko and Scheffler [74].
“Strongly correlated” systems often involve transition element or rare earth atoms, and the
potential energy can dominate over the kinetic energy. Local density approximations can give
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qualitatively incorrect descriptions of these materials, and the use of model Hamiltonians has
been a popular way to avoid them. A common approach has been to add an on-site Coulomb
repulsion (“Hubbard U”) in the “LSD+U” scheme [75]. The parameter U can be estimated
within a DF framework [76] or fit to experiment.
There are developments in the quantum Monte Carlo (QMC) studies of interacting electron
systems that are relevant for DF work. The full configuration interaction (FCI) implementation
of QMC uses Monte Carlo sampling of Slater determinants and circumvents the Fermion sign
problem. It has been applied to the homogeneous electron gas [77] and to simple solids [78].
For a recent application to the solid phases of hydrogen under pressure, see [79]. Condensed
matter scientists have much experience with periodic boundary conditions and plane wave or-
bital expansions, and this has aided the implementation of the method in extended systems.
Another example is the reformulation of the constrained search approach in DF theory [33, 40]
in terms of the density and the (N−1)-conditional probability density, which can be treated by
ground state path integral QMC [80]. It remains to be seen whether the computational demands
usually associated with QMC can be reduced.
The terms “ab initio” and “first principles” are used differently in the “chemical” and “materi-
als” worlds. For most chemists, the expressions means solutions of the Schrödinger equation
for the system of interacting electrons (e.g. by QMC), for materials scientists it can be a DF
calculation without (or even with) adjustable parameters. I carry out “density functional” cal-
culations and describe them as such, and I am happy to use the term “ab initio” for solutions of
the Schrödinger equation, as done by chemists.

6.2 An application

In 1871, Charles Darwin saw the formation of protein molecules under extreme—prebiotic—
conditions as a possible path of evolution of life on Earth [81]:

“ . . . But if (and what a big if) we could conceive in some warm little pond with
all sorts of ammonia and phosphoric salts,—light, heat, electricity, &c present, that
a protein compound was chemically formed, ready to undergo still more complex
changes, at the present day such matter would be instantly devoured, or absorbed,
which would not have been the case before living creatures were formed.”

DF simulations can be used to test whether biological molecules can be produced by chem-
ical processes that do not require biological synthesis machines like ribosomes. Schreiner et
al. [82] studied possible reactions of N-carboxy anhydrides (a form of activated amino acids) in
water under high pressures and temperatures in the presence of pyrites, FeS2 (the controversial
“iron-sulfur world” of Wächtershäuser [83]). The presence of an FeS2 surface changes the free
energetics of the steps of the carbonyl sulfide (COS)-mediated polymerization of glycine car-
ried out under different thermodynamic conditions (Fig. 5), and it stabilizes the peptide product
against hydrolysis.
The reactions studied are just a few of many possible scenarios for the production of molecules
that are essential to life on Earth, but they demonstrate the value of simulations under conditions
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Fig. 5: (Schematic) Glycine (left), activated glycine (center), and the glycine-glycine dipeptide
(right) between an FeS2 surface (below) and water (blue). COS: carbonyl sulfide.

that are difficult to attain experimentally. They also show that simulations without adjustable
parameters can be performed on biological systems that were absolutely out of the question
with earlier generations of computers. Of course, there are many such systems for which the
simulation sample sizes currently accessible with DF methods are simply inadequate. Classical
force fields with appropriately chosen parameters are likely to remain the method of choice for
such systems for some time yet.

7 Summary. Quo vadis?

The astonishing growth of density functional calculations since 1990 resulted in the award of the
1998 Nobel Prize for Chemistry to Walter Kohn. Although he noted that “very deep problems”
remain, Philip Anderson felt that this award may indicate that [2]

“the labours and controversies [. . . ] in understanding the chemical binding in materials had

finally come to a resolution in favor of ‘LDA’ and the modern computer”.

The LD and LSD approximations have well documented drawbacks, and the resulting numbers
(binding energies, band gaps, . . . ) should be treated with caution. However, the approximations
satisfy important physical criteria, such as the sum-rule on the exchange-correlation hole, and
our long experience with them helps us to judge when the results may be wrong and by how
much. The bonding patterns are correct in most cases, which is no doubt one reason why LD ap-
proximations and their modifications are still used. They make possible the simultaneous study
of numerous related systems, such as families of molecules or materials, with the computational
resources needed to determine the wave function of a single much smaller system.
Figure 4 shows that density functional theory will be with us for the foreseeable future, and we
can be sure that some exciting results lie ahead. Why then should two of the most cited workers
in the field have serious reservations about the future of DF theory? Kieron Burke [64] wrote
that “it is clearly both the best of times and the worst of times for DFT” and wondered whether
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it is time for a “paradigm shift”. A newcomer to the field might indeed despair of understanding
why one of the countless approximations forExc, even those with a sound physical basis, should
be favored over another, or the real physical reasons behind a particular result.
The concerns of Axel Becke [84] are just as real. It is obvious that great progress has been
made in applying DF methods to systems that seemed beyond us only 10 or 15 years ago, and
the use of Hartree-Fock-like exchange in many modern functionals has helped communication
between the different fields where DF methods are used. However, Becke (and many others,
including me) have focused for years on the “Kohn-Sham” version of DF theory (“occupied
orbitals only”), which is a major reason for the popularity of the method. Should we move our
focus away from the relatively featureless electron density with its small and subtle changes?
Can the combination with density matrix functional methods lead to a new breakthrough? Will
the inherent accuracy of wave function-based methods prove to be decisive as computational
resources expand? 4 Many years ago, a colleague predicted that DF methods would ultimately
lose out to solutions of the Schrödinger equation as computer power increased. He was not
impressed by my view that DF calculations would always be far ahead in the size of system we
could calculate (I think I said 5–10 years, but it is more), and he moved on. I stayed.
The comments by Burke and Becke were made some years ago, but not everyone noticed them.
The number of DF applications continues to rise (Fig. 4), and there are developments in im-
portant areas, such as functionals for use with “orbital-free” calculations [85] or understanding
range-separated hybrid functionals [86]. Nevertheless, there is still much debate and little con-
sensus on the “best” functional approximations, and the search for schemes that produce better
numbers automatically continues. Comparisons of the results of calculations with those of other
approximations and with experiment abound. Are DF calculations in chemistry and materials
science now following the “Dream Machine” scenario foreseen for the solid state world by
Anderson in 1980 [38]?
Density functional theory deserves better than to be a background justification for empirical
curve fitting, which implies a lack of confidence in the theory, or the development of a chain of
approximations seeking the “right” numbers, with less concern for their physical origin. Its long
and fascinating history involves some of the best known names in physics. It may not provide
precise answers to some questions using simple descriptions of the exchange-correlation energy,
but its ability to outperform methods that seek exact solutions of the Schrödinger equation is
not threatened. We shall continue to obtain insight into all sorts of problems that we cannot
imagine today.

4The fundamental limitations of wave function based methods are discussed by [1]. He noted that “in chemistry
DFT complements traditional wave function based methods particularly for systems with very many atoms (≥ 10).”
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Acc. Chem. Res. 35, 455 (2002)

[59] H. Lin, D.G. Truhlar, Theor. Chem. Acc. 117, 185 (2007)

[60] J. Behler, M. Parrinello, Phys. Rev. Lett. 97, 146401 (2007)

[61] G.C. Sosso, M. Salvalaglio, J. Behler, M. Bernasconi, and M. Parrinello,
J. Phys. Chem. C 119, 6428 (2015)

[62] F.C. Mocanu, K. Konstantinou, T.H. Lee, N. Bernstein, V.L. Deringer, G. Csányi, and
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1 Introduction

Chemists and condensed matter physicists are lucky to have a reliable “grand unified theory”
— the many-electron Schrödinger equation — capable of describing almost every phenomenon
we encounter. If only we were able to solve it! Finding the exact solution is believed to be “NP
hard” in general [1], implying that the computational cost almost certainly scales exponentially
with N . Until we have access to a working quantum computer, the best we can do is seek good
approximate solutions computable at a cost that rises less than exponentially with system size.
Another problem is that our approximate solutions have to be surprisingly accurate to be useful.
The energy scale of room-temperature phenomena is kBT ≈ 0.025 eV per electron, and the en-
ergy differences between competing solid phases can be as small as 0.01 eV per atom [2]. Quan-
tum chemists say that 1 kcal mol−1 (≈ 0.043 eV) is “chemical accuracy” and that methods with
errors much larger than this are not good enough to provide quantitative predictions of room
temperature chemistry. Yet the natural energy scale built in to the many-electron Schrödinger
equation is 1 Hartree (≈ 27.2 eV) per electron,1 which is about 630 times larger. The total en-
ergy of a medium-sized atom can be hundreds of Hartrees, so we need to be able to calculate
energies to at least five significant figures. Describing low-temperature many-body phenomena
such as magnetism, superconductivity, heavy fermions, and spin liquids requires another couple
of orders of magnitude. Single-precision arithmetic (accurate to about seven significant figures)
is not good enough.
Thinking about a simple non-interacting electron gas shows that calculating the properties of
solids to very high precision also requires very large simulations. Suppose that you want to
reach an accuracy of 0.1 eV per electron in an electron gas with Fermi energy EF = 10 eV ≈
0.37 Hartrees. Since

E =
1

2
k2,

[
E =

~2k2

2m
in MKS units

]
(1)

the energy ratio E/EF = 0.01 implies a wave vector ratio k/kF = 0.1. The Fermi wave vec-
tor kF =

√
2EF ≈ 0.86 a−10 , so the wave vector k associated with an accuracy of 0.1 eV is

0.086 a−10 . The corresponding length scale is 2π/k ≈ 73 a0. Given that the electron density
n = k3F/(3π

2) is around 0.021 a−30 , you need to solve the Schrödinger equation for a simulation
cell containing of order nλ3 ≈ 8,000 electrons, which is rarely possible in interacting systems.
A great deal of effort has gone into understanding and correcting the finite-size errors that arise
when smaller simulation cells are used [3].
The obvious conclusion is that attempting to study chemical reactions by starting from the
many-electron Schrödinger equation is a fool’s errand; it would be much better to work with

1This chapter uses dimensionless equations involving only the numerical values of physical quantities. The
numerical values are as measured in Hartree atomic units, where Planck’s constant h = 2π (so ~ = 1), the
permittivity of free space ε0 = 1/4π (so 4πε0 = 1), the electron mass m = 1, and the elementary charge e = 1.
Distances are made dimensionless by dividing by the Hartree atomic unit of length, a0 = 4πε0~2/(me2) ≈
0.529 · 10−10 m, which is also known as the Bohr radius. Energies are made dimensionless by dividing by the
Hartree atomic unit of energy, ~2/(ma20) = e2/(4πε0a0) ≈ 27.2 eV.
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a low-energy effective theory. Most of the strongly correlated phenomena of interest in many-
body physics take place at energy scales smaller than 0.025 eV and are indeed treated using
low-energy theories (even the Hubbard model, which ignores all but a few bands near the Fermi
level, is a low-energy theory by electronic structure standards), but we have at present no reliable
low-energy theory of chemical bond breaking and formation. The pseudo-potential approxima-
tion allows the core electrons to be eliminated from the Schrödinger equation with only a small
loss in accuracy, but that is as far as we can go. If we want to use quantum theory to understand
the mechanical properties of solids or follow chemical reactions in real time, the only option is
to solve the Schrödinger equation to extraordinarily high precision.
How might we accomplish this? The most widely used electronic structure method is den-
sity functional theory (DFT) [4–6], which is reasonably accurate and can, with enough effort,
be scaled to thousands of electrons. Although the Hohenberg-Kohn theorem shows that DFT
is in principle capable of producing exact ground-state energies and electron densities, this
guarantee is of little value in practice because we do not know the exact exchange-correlation
functional. DFT calculations for weakly correlated Fermi liquids give excellent qualitative
results and reasonably good quantitative results, but current exchange-correlation functionals
are far from capable of delivering chemical accuracy consistently. DFT’s main contribution
to the study of strong-correlation effects has been as a useful framework on which to build
more sophisticated approaches. Dynamical mean-field theory, the GW approximation, and the
Bethe-Salpeter equation [7] are examples of these.
Guessing the form of the many-electron wave function has proved to be a surprisingly successful
approach to complicated many-electron problems. The Bethe Ansatz [8] for one-dimensional
systems, the BCS theory of superconductivity [9], and Laughlin’s treatment of the fractional
quantum Hall effect [10] are all good examples. When seeking ground states, a common ap-
proach is to guess a trial wave function Ψ with a number of adjustable parameters and vary the
parameters until the energy expectation value,

E[Ψ ] =
〈Ψ |Ĥ|Ψ〉
〈Ψ |Ψ〉

, (2)

is minimized. According to the variational principle, this is the best you can do given the
constraints imposed by the assumed functional form.
The greatest successes of guessing the wave function have been in many-body theory, but this
article is about approximate wave functions used in electronic structure theory and quantum
chemistry. The aim here is to guess the ground-state wave function accurately enough to identify
the most stable molecular and crystal structures, study chemical and biochemical reactions, and
follow atomic rearrangements in solids, such as those associated with fracture processes or the
motion of dislocations. It is rare to achieve chemical accuracy in systems larger than small
molecules, but it is possible to outperform DFT in most cases. For the most part we will work
in the Schrödinger picture, using trial wave functions of the form Ψ(x1, x2, . . . , xN), where
xi = (ri, σi) is shorthand for the combined spatial and spin coordinates of electron i.
Before we can use the variational principle to optimize the parameters of a trial wave function,
we need to be able to work out the energy expectation value E[Ψ ]. This is not an easy task when
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the number of electrons N is 10, never mind when it is 100 or 1000. In the variational quantum
Monte Carlo (VMC) method [11, 7], the energy expectation value is rewritten as

E[Ψ ] =

∫ (
ĤΨ(x1, . . . , xN)

Ψ(x1, . . . , xN)

)(
|Ψ(x1, . . . , xN)|2∫
|Ψ |2 dx1 . . . dxN

)
dx1 . . . dxN , (3)

where integrals over x are understood to include a spin sum:∫
dx′ =

∑
σ′

∫∫∫
d3r′. (4)

The ĤΨ/Ψ term is called the local energy, and the |Ψ |2/
∫
|Ψ |2 term, which is positive and

integrates to one, is interpreted as a probability density in coordinate space. Points in this space
are specified by giving 3N position variables and N binary spin variables.
As long as it is possible to evaluate the local energy, one can obtain statistical estimates of the
value ofE[Ψ ] using Monte Carlo integration. The Metropolis algorithm [7,11] is used to sample
random coordinate-space points from the probability density |Ψ |2/

∫
|Ψ |2, and the values of the

local energy at the sampled points are averaged. Neither the Metropolis algorithm (which uses
only ratios of the probability density at different points) nor the evaluation of the local energy
require knowledge of the normalization of the wave function, so wave functions used in VMC
simulations do not need to be normalized. Other more sophisticated and accurate quantum
Monte Carlo (QMC) methods, including diffusion quantum Monte Carlo (DMC) [11, 7] and
auxiliary-field QMC [12], are also used to simulate molecules and solids and produce much
more accurate results, but all require trial wave functions as a starting point.
To whittle down the amount of material, I have had to leave out several important types of trial
wave function: the subject is larger than is apparent from this article. I have omitted all dis-
cussion of pairing wave functions such as the BCS wave function [9], geminals [13] and Pfaffi-
ans [14]. Until recently I would have said that attempts to use pairing wave functions to describe
non-superconducting electrons had produced disappointing results, but a new preprint [15] has
changed my mind. I have also omitted the family of trial wave functions that developed from
the density matrix renormalization group [16] and includes matrix product states and tensor
network states [17]. These are very important in low-dimensional model systems and becoming
more important in quantum chemistry.

2 Slater determinants

Non-interacting electrons

Let us start by thinking about a molecule or periodically-repeated simulation cell containing N
non-interacting electrons. The many-electron Hamiltonian is

Ĥ =
N∑
i=1

(
−1

2
∇2

ri
+ V (xi)

)
=

N∑
i=1

ĥ(xi), (5)
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where ĥ(xi) = −1
2
∇2

ri
+ V (xi) acts on the coordinates of electron i only. In the simplest

plausible model of a molecule or solid, the effective potential might look like this:

V (x) = Vnuc(r) + VHartree(r) = −
∑
I

ZI
|r− dI |

+

∫
n(x′)

|r− r′|
dx′, (6)

where ZI is the atomic number of the (fixed, classical) nucleus at position dI , and n(x) =

n(r, σ) is the number density of spin σ electrons at point r. In Hartree-Fock theory [18, 5, 7],
V (x) also contains a non-local spin-dependent exchange potential. In the Kohn-Sham equations
of density functional theory (DFT) [4–6], it contains a local exchange-correlation potential.
The many-electron Schrödinger equation for the N non-interacting electrons,

ĤΨ(x1, x2, . . . , xN) = E Ψ(x1, x2, . . . , xN), (7)

is a separable partial differential equation with solutions of the form

Ψ(x1, x2, . . . , xN) = ϕ1(x1)ϕ2(x2) . . . ϕN(xN). (8)

(Such solutions are not totally antisymmetric, but let us ignore this problem for the time being.)
Substituting the trial solution into the Schrödinger equation gives

(ĥ ϕ1)ϕ2 . . . ϕN + ϕ1(ĥ ϕ2) . . . ϕN + . . .+ ϕ1 ϕ2 . . . (ĥ ϕN) = E ϕ1 ϕ2 . . . ϕN . (9)

If we now divide by ϕ1ϕ2 . . . ϕN we get,

ĥ(x1)ϕ1(x1)

ϕ1(x1)
+
ĥ(x2)ϕ2(x2)

ϕ2(x2)
+ . . .+

ĥ(xN)ϕN(xN)

ϕN(xN)
= E. (10)

The first term depends only on x1, the second only on x2, and so on, but the sum must be the
constant E. This is only possible if each and every term is constant:

ĥ1ϕ1 = ε1ϕ1, ĥ2ϕ2 = ε2ϕ2, . . . , ĥNϕN = εNϕN , (11)

with
E = ε1 + ε2 + . . .+ εN . (12)

Functions such as ϕi(x), obtained by solving a one-electron Schrödinger equation of the form
ĥϕi = εiϕi, are called one-electron orbitals or one-electron energy eigenfunctions.
Although Ψ is not antisymmetric, we can easily construct an antisymmetric linear combination
of solutions with the N electrons distributed among the N one-electron orbitals in different
ways

Ψ(x1, x2, . . . , xN) =
1√
N !

∑
P

(−1)ζPϕP1(x1)ϕP2(x2) . . . ϕPN(xN). (13)

Every term in the linear combination is an eigenfunction of Ĥ with the same eigenvalue E, so
the linear combination is also an eigenfunction with eigenvalue E.
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• The list P1, P2, . . . , PN is a permutation P of the list 1, 2, . . . , N . The sum is
over all permutations, with ζP the total number of pair interchanges needed to build the
permutation P . The value of (−1)ζP is +1 when P is an even permutation and −1 when
P is an odd permutation.

• The 1/
√
N ! is a normalizing factor.

• When N = 2,

Ψ(x1, x2) =
1√
2
[ϕ1(x1)ϕ2(x2)− ϕ2(x1)ϕ1(x2)] =

1√
2

∣∣∣∣∣ ϕ1(x1) ϕ1(x2)

ϕ2(x1) ϕ2(x2)

∣∣∣∣∣ . (14)

• Generally,

Ψ(x1, x2, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ1(x2) . . . ϕ1(xN)

ϕ2(x1) ϕ2(x2) . . . ϕ2(xN)

. . .

. . .

ϕN(x1) ϕN(x2) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣
. (15)

Wave functions of this type are called Slater determinants. (For bosons we can use anal-
ogous symmetrized sums of products called permanents.)

• If two or more of ϕ1, ϕ2, . . . , ϕN are the same, two or more rows of the determinant are
the same and the wave function is zero; this is how the Pauli exclusion principle follows
from the antisymmetry. If two electrons of the same spin approach the same point in
space, even when all of the ϕi are different, two columns of the determinant become
the same and the wave function is again zero. The antisymmetry built in to the Slater
determinant helps to keep spin-parallel electrons apart.

• If we add a component of ϕ2 to ϕ1,

ϕ̃1(x) = ϕ1(x) + c ϕ2(x), (16)

the Slater determinant is unchanged:

D̃(x1, x2, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ̃1(x1) ϕ̃1(x2) . . . ϕ̃1(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
=

1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(x1) ϕ1(x2) . . . ϕ1(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
+

�������������������

1√
N !

∣∣∣∣∣∣∣∣∣∣
cϕ2(x1) cϕ2(x2) . . . cϕ2(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
. . . . . . . . . . . .
. . . . . . . . . . . .

ϕN (x1) ϕN (x2) . . . ϕN (xN )

∣∣∣∣∣∣∣∣∣∣
= D(x1, x2, . . . , xN ). (17)

This shows that no generality is lost by assuming that the one-electron orbitals are or-
thonormal.
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Interacting electrons

In the interacting N -electron Schrödinger equation, the one-electron operator V (x) (which de-
pends on the electron density in DFT and the one-electron density matrix in Hartree-Fock the-
ory) is replaced by the electron-electron interaction(

N∑
i=1

(
−1

2
∇2
i + Vnuc(ri)

)
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

1

|ri−rj|

)
Ψ(x1, x2, . . . , xN) = E Ψ(x1, x2, . . . , xN).

(18)
I have assumed for simplicity that spin-orbit interactions can be neglected, so the Hamiltonian
is independent of spin. Reintroducing the electron-electron interaction may look like a small
change but it has large consequences: the Schrödinger equation is no longer separable and the
many-electron wave functions are no longer Slater determinants. Unlike the non-interacting
Schrödinger equation, the interacting version cannot be solved exactly for systems of more than
a few electrons, even using the world’s most powerful computers.

Slater determinants as basis functions

Although Slater determinants are not exact solutions of the many-electron Schrödinger equation
with interactions, we can still use them as basis functions. Suppose that ϕ1(x), ϕ2(x), . . . . . .
are a complete orthonormal basis for the one-particle Hilbert space. A common way to choose
the ϕi(x) is to solve a one-electron or mean-field Schrödinger equation, usually obtained from
density functional or Hartree-Fock theory, and use the resulting one-electron orbitals.
Given a complete basis for the one-electron Hilbert space, the set of all products of the form

ϕi1(x1)ϕi2(x2) . . . ϕiN (xN) (19)

is a complete basis for the N -particle Hilbert space. If the N particles are electrons or other
fermions, only antisymmetrized products are required and we can express the wave function as
a linear combination of Slater determinants

Ψ(x1, x2, . . . , xN) =
∑
i

CiDi(x1, x2, . . . , xN), (20)

where the sum is over all distinct determinants, the vector index i = (i1, i2, . . . , iN) identifies
the N one-electron basis function ϕi1 , ϕi2 , . . ., ϕiN , appearing in determinant Di, and the Ci are
expansion coefficients. Interchanging any two basis functions leaves Di unaltered (bar a sign),
so we can restrict the summation to vector indices i for which i1 < i2 < . . . < iN .2

Another way to index Slater determinants is to use the occupation number representation, in
which every determinant is defined by a list of binary numbers, one for each one-electron basis

2It is interesting to think about how this works in an infinite system. Even if the set of one-electron basis
functions is countable, the set of all ordered subsets of the set of one-electron basis functions is not, implying that
we cannot index the determinants using natural numbers. Perhaps attempting to describe large systems using wave
functions is not such a good idea?
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function. If basis function ϕi appears in the determinant (is “occupied”), the i’th binary number
is set to 1; otherwise, it is set to 0.
Slater determinants are the “building blocks” of many-fermion physics, including most of the
approximate many-electron wave functions we will be looking at.

Slater determinants and second quantization

The properties of Slater determinants underlie the properties of the creation and annihilation
operators, ĉ†p and ĉp, which are defined by their actions in the determinantal basis:

ĉ†p|Di1,i2,...,iN 〉 = |Dp,i1,i2,...,iN 〉, ĉp|Dp,i1,i2,...,iN 〉 = |Di1,i2,...,iN 〉. (21)

If the determinant |Di1,i2,...,iN 〉 already contains orbital ϕp, acting with ĉ†p produces a determi-
nant |Dp,i1,i2,...,iN 〉 with two identical rows. The result is therefore equal to zero. Similarly, if
|Di1,i2,...,iN 〉 does not contain ϕp, then ĉp finds nothing to annihilate and ĉp|Di1,i2,...,iN 〉 = 0.
Whenever you are working with creation and annihilation operators, you are in fact manipulat-
ing Slater determinants.
The fermion anti-commutation relations follow from the antisymmetry of the determinantal
basis. For example, given any determinant containing ϕq in the kth row but not containing ϕp,
where p 6= q, we have

ĉ†pĉq|Di1,...,ik−1,q,ik+1,...,iN 〉 = (−1)k−1ĉ†pĉq|Dq,i1,...,ik−1,ik+1,...,iN 〉
= (−1)k−1|Dp,i1,...,ik−1,ik+1,...,iN 〉 (22)

and

ĉq ĉ
†
p|Di1,...,ik−1,q,ik+1,...,iN 〉 = ĉq|Dp,i1,...,ik−1,q,ik+1,...,iN 〉

= (−1)kĉq|Dq,p,i1,...,ik−1,ik+1,...,iN 〉
= (−1)k|Dp,i1,...,ik−1,ik+1,...,iN 〉, (23)

implying that (
ĉ†pĉq + ĉq ĉ

†
p

)
|Di1,...,ik−1,q,ik+1,...,iN 〉 = 0. (24)

If Di1,...,iN already contains ϕp or does not contain ϕq, the operators ĉ†pĉq and ĉq ĉ
†
p annihilate it

and Eq. (24) still holds. Since the basis of Slater determinants is complete, it follows that

ĉ†pĉq + ĉq ĉ
†
p = 0, p 6= q. (25)

If you have never worked through a detailed explanation of how the properties of fermion cre-
ation and annihilation operators arise from the properties of the Slater determinants on which
they act, try Chapter 1 of Negele and Orland [19] for a physicist’s perspective or Chapter 1 of
Helgaker, Jorgensen and Olsen [20] for a chemist’s perspective.
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Exchange and correlation

If we write the full many-electron Hamiltonian,

Ĥ =
N∑
i=1

(
−1

2
∇2
i + Vnuc(ri)

)
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

1

|ri − rj|
, (26)

in the form

Ĥ =
N∑
i=1

ĥ(xi) +
1

2

N∑
i=1

N∑
j=1
(j 6=i)

v̂(xi, xj), (27)

and evaluate its expectation value E = 〈D|Ĥ|D〉 in a normalized Slater determinant D of
orthonormal one-electron functions ϕi, it is in principle straightforward, although in practice
tedious [7, 18, 20], to show that

E =
N∑
i=1

〈ϕi|ĥ|ϕi〉+
1

2

N∑
i=1

N∑
j=1
(j 6=i)

(
〈ϕiϕj|v̂|ϕiϕj〉 − 〈ϕjϕi|v̂|ϕiϕj〉

)
, (28)

where

〈ϕi|ĥ|ϕj〉 =
∫
ϕ∗i (x) ĥ(x)ϕj(x) dx, (29)

〈ϕiϕj|v̂|ϕkϕl〉 =
∫∫

ϕ∗i (x)ϕ
∗
j(x
′) v̂(x, x′)ϕk(x)ϕl(x

′) dx dx′. (30)

In the case of Coulomb interactions, when v̂(x, x′) = 1/|r − r′|, the first contribution to the
electron-electron interaction energy is

1

2

∫∫ ∑
i |ϕi(x)|2

∑
j( 6=i) |ϕj(x′)|2

|r− r′|
dxdx′. (31)

This is known as the Hartree energy and is equal to the sum of the classical Coulomb inter-
action energies of the charge densities associated with the one-electron orbitals appearing in
the determinant. We could have guessed it would appear. The second contribution to the in-
teraction energy, which is known as the exchange energy because the order of the orbitals in
the bra is reversed relative to their order in the ket, describes how the Pauli principle affects
the electron-electron interactions. The antisymmetry built into the Slater determinant prevents
spin-parallel electrons from getting close to each other, and this decreases the positive (i.e.,
repulsive) Coulomb energy of the electrons. The exchange term is therefore negative.
If the spins in a solid line up, so that there are more electrons of one spin than the other, the ex-
change energy (which acts only between electrons of the same spin) becomes more negative and
the total electron-electron interaction energy (which is positive) is lowered. At the same time,
the one-electron contribution to the total energy rises because electrons have been promoted
from lower-energy occupied minority-spin orbitals to higher-energy unoccupied majority-spin
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orbitals. In some solids, the lowering of the Coulomb energy wins and the spins polarize spon-
taneously. This is more likely when the hopping kinetic energy is small because the atoms
are far apart and the energy bands are narrow. Exchange interactions are the primary cause of
magnetism.
Real electrons are also kept apart by the repulsive Coulomb interactions between them. This
effect, called correlation, is not included in a simple Slater determinant wave function. The
Hartree energy of the Slater determinant is low when the electronic charge distribution is
smooth, which helps to keep electrons away from regions in which there are lots of other elec-
trons on average, but does not keep individual pairs of electrons apart. In a real solid, electrons
are kept apart both by the Pauli principle (exchange), which is included in the Slater determi-
nant, and by the Coulomb interaction (correlation), which is not.
One way to understand exchange and correlation is in terms of the pair density n(r, σ; r′, σ′),
defined such that n(r, σ; r′, σ′) d3rd3r′ is proportional to the probability of finding a spin σ

electron in the volume element d3r at r and a (different) spin σ′ electron in the volume element
d3r′ at r′. The closely related pair-correlation function, g(r, σ; r′, σ′), is defined by

n(r, σ; r′, σ′) = n(r, σ)g(r, σ; r′, σ′)n(r′, σ′). (32)

If the volume elements d3r and d3r′ are far apart, the numbers of electrons in d3r and d3r′ are
statistically independent; one therefore expects lim|r′−r|→∞ g(r, σ; r′, σ′) = 1.
Figure 1 shows the pair-correlation functions of pairs of spin-parallel and spin-antiparallel elec-
trons in a uniform electron gas, calculated assuming that the wave function is a Slater determi-
nant of plane waves. The way in which antisymmetry keeps pairs of spin-parallel electrons apart
is clear, as is the failure of pairs of spin-antiparallel electrons to avoid each other. Antisymme-
try alone is not sufficient to correlate (in the statistical sense) the positions of spin-antiparallel
electrons.
Basic notions of probability theory tell us that

n(r, σ; r′, σ′) d3rd3r′ = n(r, σ|r′, σ′) d3r × n(r′, σ′) d3r′, (33)

where n(r, σ|r′, σ′) d3r is proportional to the conditional probability of finding a spin σ electron
in d3r given that there is a spin σ′ electron in d3r′. Since there are N−1 electrons in the system,
excluding the one frozen at r′, the conditional density satisfies the sum rule∑

σ

∫
n(r, σ|r′, σ′) d3r = N − 1. (34)

Describing statistical correlations in terms of conditional probabilities is very natural, but it is
often easier to think about the exchange-correlation hole, nxc(r, σ|r′, σ′), defined by

n(r, σ|r′, σ′) = n(r, σ) + nxc(r, σ|r′, σ′). (35)

The density of spin σ electrons at r would be n(r, σ) in the absence of the frozen spin σ′ electron
at r′, so the exchange-correlation hole provides a very direct picture of the change (normally a
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Fig. 1: Pair-correlation functions of pairs of spin-parallel and spin-antiparallel electrons in a
uniform electron gas, calculated assuming that the wave function is a single Slater determinant
of plane waves. The antisymmetry of the wave function helps to keep pairs of spin-parallel
electrons apart but does not affect the pair-correlation function of pairs of spin-antiparallel
electrons.

reduction) in electron density caused by the presence of the frozen electron. It follows from the
definition of the exchange-correlation hole and the conditional-probability sum rule that∑

σ

∫
nxc(r, σ|r′, σ′) d3r = −1. (36)

Every electron of charge −e is thus surrounded by a hole of charge +e. If the hole is close to
the electron, which is not always the case, the entire quasi-particle — the electron plus its hole
— is charge neutral and might be expected to have only short-ranged interactions. This helps
explain why the models of non-interacting electrons used in undergraduate solid-state physics
courses work so well.
Figure 2 shows two views of the spin-summed exchange-correlation hole,

∑
σ nxc(r, σ|r′, σ′),

around a single electron frozen at the point r′ in the middle of a bond in silicon [21]. The graphs
were calculated using the VMC method and a Slater-Jastrow wave function (see later), which
includes both exchange and correlation effects.

3 The Hartree-Fock approximation

Although the many-electron eigenfunctions of real molecules and solids can in principle be
written as linear combinations of (huge numbers of) Slater determinants, we will see later that
the number of determinants required rises exponentially with the number of electrons. This
forces us to try something less ambitious. In the Hartree-Fock approximation, the variational
principle is used to find the single Slater determinant that best approximates the many-electron
ground state [18, 20, 6]. It turns out that the one-electron orbitals appearing in the best possible
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Fig. 2: Two views of the exchange-correlation hole around an electron in the middle of a bond
in silicon. The zig-zag chains of atoms lie in the Si (110) plane. From Ref. [21].

single determinant obey a mean-field Schrödinger-like equation,

ĥ(x)ϕn(x) +
N∑
j=1
(j 6=n)

∫
dx′ ϕ∗j(x

′) v̂(x, x′)ϕj(x
′)ϕn(x)

−
N∑
j=1
(j 6=n)

∫
dx′ ϕ∗j(x

′) v̂(x, x′)ϕn(x
′)ϕj(x) = λn ϕn(x), (37)

known as the Hartree-Fock equation. The electron-electron interactions have been replaced
by an effective potential with two contributions: the first summation describes the action of
the Hartree potential on orbital ϕn(x) and the second the action of the exchange potential.
Notice that the exchange potential is actually an integral operator. The j=n terms in both
summations cancel if they are included, so the form of the Hartree-Fock differential equation is
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independent of n. Another partial explanation for the success of one-electron concepts such as
band-structures, atomic orbitals, and π and σ bonds, in interacting systems where these ideas
appear to make little sense, is that the Hartree-Fock approximation is often reasonably accurate.
Other mean-field-like methods, such as DFT, work better than Hartree-Fock for many purposes,
but the wave function in DFT is an artificial construct introduced to help calculate the kinetic
energy of a fictitious system of non-interacting electrons with the same position-dependent
number density as the interacting system and has little to do with the true many-electron wave
function [4–6]. Our aim here is to devise approximate many-electron wave functions for atoms,
molecules and solids, so Hartree-Fock theory is a better starting point.
The Hartree-Fock Hamiltonian depends on the one-electron orbitals obtained by solving the
Hartree-Fock equation, so we have a chicken and egg problem: we cannot find the orbitals until
we know the Hamiltonian; but we cannot work out the Hamiltonian until we know the orbitals.
As usual in mean-field theories, we have to iterate until the inputs and outputs of the mean-field
equation are consistent with each other:

1. Guess the set of one-electron orbitals ϕj (j = 1, . . . , N ) and construct the corresponding
Hartree-Fock Hamiltonian.

2. Solve the Hartree-Fock equation to find a new set of one-electron orbitals. (This is quite
tricky because the exchange term is an integral operator with a Coulomb kernel that di-
verges as |r− r′| → 0, but it can be done.)

3. Use the new set of one-electron orbitals to construct a new Hartree-Fock Hamiltonian.

4. Repeat steps 2 and 3 until the set of one-electron orbitals no longer changes from cycle
to cycle.

There is no guarantee that iterative algorithms of this type are stable, and clever tricks are
sometimes required to make them converge, but self-consistent solutions can be found within a
reasonable amount of computer time for systems of up to a few hundred electrons.
Until about 20 years ago, Hartree-Fock theory was widely used to study molecules, even though
it is far from being able to reach chemical accuracy. DFT has now become dominant, partly
because DFT calculations are easier to do and normally more accurate, and partly because our
imperfect knowledge of the exchange-correlation functional leaves more scope for tweaking
the calculations to make them give the right answers! A common tweak is to mix fractions of
the Hartree-Fock exchange energy into the DFT exchange-correlation functional, making DFT
calculations more similar to Hartree-Fock calculations. “Hybrid” density functionals including
a portion of exact exchange are not consistently able to achieve chemical accuracy, but are often
accurate enough to provide useful results. Hartree-Fock methods were not much used in solids
until fairly recently because the calculations were difficult; their main use now is in wide band-
gap insulators, where the results are not too bad. For metals, Hartree-Fock is something of a
disaster, but hybrid exchange-correlation functionals including screened exchange interactions
are popular and successful.
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4 Configuration expansions

Configuration-interaction methods

We saw in Sec. 2 that any many-electron wave function can be expressed as a linear combination
of Slater determinants (also known as configurations):

Ψ(x1, x2, . . . , xN) =
∑
i

CiDi(x1, x2, . . . , xN). (38)

This expansion underlies most of the approximate wave functions used in traditional quantum
chemistry. In the full-configuration-interaction (FCI) method [20], the sum over determinants is
made finite by choosing a finite set ofM (≥ N) one-electron basis functions (normally Hartree-
Fock or DFT one-electron orbitals) and approximating Ψ as a linear combination of the MCN

distinct N -electron Slater determinants that can be built using them. The vector of expansion
coefficients that minimizes the energy expectation value,

E =
〈Ψ |Ĥ|Ψ〉
〈Ψ |Ψ〉

=

∑
i,jC

∗
i 〈Di |Ĥ|Dj 〉Cj∑

kC
∗
kCk

, (39)

is easily shown to be the lowest eigenvector of the matrix eigenvalue problem∑
j

HijCj = ECi, (40)

where Hij = 〈Di|Ĥ|Dj〉 is an MCN×MCN matrix. The use of the variational principle is
exactly as in one-electron quantum theory, but the basis functions are many-electron Slater de-
terminants rather than one-electron orbitals and it is more difficult to work out the Hamiltonian
matrix elements.
Unfortunately, the number of determinants required to approximate the ground state to a given
accuracy rises exponentially with the system size, making FCI calculations impractical for any-
thing but the smallest molecules. Suppose (very optimistically) that you can obtain a reasonably
good description of the ground state of a single helium atom using a one-electron basis set con-
taining 1s and 2s orbitals only. Since every atom holds four spin-orbitals (1s ↑, 1s ↓ , 2s ↑,
2s ↓), the FCI basis for a system of N/2 helium atoms and N electrons contains

MCN = 2NCN =
(2N)!

N !N !
(41)

determinants. Using Stirling’s approximation, ln(n!) ≈ n lnn− n for large n, gives

2NCN ≈ e(2 ln 2)N , (42)

which rises exponentially with N. Even in this minimal and inaccurate basis set, calculating
the many-electron ground state of a system of 5 helium atoms and 10 electrons requires finding
the lowest eigenvector of a matrix with more than a million rows and columns. Dealing with
10 helium atoms requires a Hamiltonian matrix with over 1012 rows and columns and 1024
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elements. The size of the matrix can often be reduced using symmetry arguments, and the Hij

matrix is sparse because applying the Hamiltonian to a determinant changes at most two of the
one-electron orbitals, but increasing the system size soon makes the state vector too large to
store and manipulate.
It seems reasonable to hope that most of the Slater determinants in the vast FCI basis set are
unnecessary and can be neglected. Even when the He atoms are far enough apart to be indepen-
dent, however, simple truncation schemes do not work well.
The exact (within the FCI basis) Sz = 0 ground state of a single He atom is a linear combination
of four determinants,

Ψ(x, x′) = C1

∣∣∣∣∣ ϕ1s(r)χ↑(σ) ϕ1s(r
′)χ↑(σ

′)

ϕ1s(r)χ↓(σ) ϕ1s(r
′)χ↓(σ

′)

∣∣∣∣∣+ C2

∣∣∣∣∣ ϕ2s(r)χ↑(σ) ϕ2s(r
′)χ↑(σ

′)

ϕ2s(r)χ↓(σ) ϕ2s(r
′)χ↓(σ

′)

∣∣∣∣∣
+ C3

∣∣∣∣∣ ϕ1s(r)χ↑(σ) ϕ1s(r
′)χ↑(σ

′)

ϕ2s(r)χ↓(σ) ϕ2s(r
′)χ↓(σ

′)

∣∣∣∣∣+ C4

∣∣∣∣∣ ϕ1s(r)χ↓(σ) ϕ1s(r
′)χ↓(σ

′)

ϕ2s(r)χ↑(σ) ϕ2s(r
′)χ↑(σ

′)

∣∣∣∣∣ , (43)

where χ↑(σ) = δσ,↑ and χ↓(σ) = δσ,↓ are the usual up-spin and down-spin Sz eigenstates.
The exact (within the basis) ground state of a system of 10 well separated He atoms is an
antisymmetrized product of the ground states of each individual atom:

Ψ(x1, x2, . . . , x20) = NÂ
[
Ψ1(x1, x2)Ψ2(x3, x4) . . . , Ψ10(x19, x20)

]
=
N
N !

∑
P

(−1)ζPΨ1(xP1, xP2)Ψ2(xP3, xP4) . . . Ψ10(xP19, xP20), (44)

where Â is the antisymmetrization operator and N is a normalizing constant. The atomic
ground states Ψ1(x1, x2), Ψ2(x3, x4), . . ., Ψ10(x19, x20) are all of the same form but translated
with respect to one another because they are centered on different atoms. Every atom has a finite
probability, pexcited = |C2|2 + |C3|2 + |C4|2, of being found in an excited configuration in which
at least one of the two electrons is occupying a 2s orbital. If the states of all 10 atoms were
measured repeatedly, the average number found in excited configurations would be 10pexcited.
If the number of He atoms in the system were doubled, the expected number found in excited
configurations would also double.
Suppose that you try to describe the Sz = 0 ground state of the system of 10 isolated He
atoms using an FCI singles and doubles basis set, consisting of the Hartree-Fock ground-state
determinant, in which all 20 electrons are occupying 1s orbitals, plus the 14,250 distinct Sz = 0

determinants with one or two of the twenty electrons occupying 2s orbitals. Three of the 118
determinants occurring in the Sz = 0 FCI singles and doubles basis set for a system of three He
atoms are illustrated in Fig. 3. In one of these configurations an electron has been transferred
from one atom to another; this excitation is very unlikely to happen when the atoms are far apart
but might become more important as they approach each other.
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1s

2s

Fig. 3: Three of the 118 Sz = 0 configurations appearing in the FCI singles and doubles wave
function for three He atoms. Only the 1s and 2s orbitals on each atom are included in the
one-electron basis set. The configuration on the left is the Hartree-Fock ground state; the one
in the middle contains a single electron-hole excitation; and the one on the right contains two
excitations.

No configuration within the singles and doubles basis set contains more than two excited elec-
trons, so no more than two of the 10 He atoms can be found in (charge neutral) excited con-
figurations at any one time. If the expected number of excited atoms (10pexcited) is substantially
less than 2 that might be sufficient, but what happens as the system size is increased? For large
enough systems (and large enough is often very small), the expected number of atoms in excited
configurations will exceed 2 and the basis set will be inadequate.

All naive attempts to truncate the FCI basis set introduce analogues of this problem, the most
obvious symptom of which is that the calculated energy of a system of N well-separated atoms
is greater than N times the energy of one atom. (Remember that FCI is a variational method,
so lower energies are better energies.) In the language of quantum chemistry, the truncated FCI
method is not size consistent; in the language of condensed matter physics, the results are not
extensive. The problem gets worse as the number of atoms increases, with the fraction of the
correlation energy recovered reducing to zero as the system size tends to infinity. If you try to
fix the problem by increasing the maximum number of excited electrons in proportion to the
system size, the truncated FCI method becomes exponentially scaling.

Even when the FCI eigenvalue problem is too large to solve using the conventional methods of
linear algebra, molecules with up to a few tens of electrons can often be treated using the FCI
QMC method [22,23], in which the contributions to the numerator and denominator of Eq. (39)
are sampled stochastically without ever storing the complete eigenvector. This approach has
also been used to study very small solid-state simulation cells subject to periodic boundary con-
ditions [24]. Unfortunately, the fermion sign problem [25] imposes another limitation on the
number of electrons and the maximum system size remains disappointingly small. Another way
to increase the system size is to use one of several selected-CI approaches [26–29], which iter-
atively identify determinants that make important contributions to the ground state, neglecting
the rest. The selection can reduce the rate at which the basis set increases with system size, but
selected-CI methods remain exponentially scaling.

To summarize, although FCI methods can produce extraordinarily accurate results for light
atoms and small molecules, they are of little value for large molecules or solids.
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Coupled-cluster methods

The coupled-cluster method [20,30] offers a better way of truncating the FCI Hilbert space. To
motivate the idea, consider two well-separated He atoms, A andB, at positions dA and dB. The
four-electron Hamiltonian is

Ĥ =
4∑
i=1

(
−1

2
∇2

ri
+ Vnuc(ri−dA) + Vnuc(ri−dB)

)
+

1

2

4∑
i=1

4∑
j=1
(j 6=i)

1

|ri − rj|
. (45)

What happens when we apply this Hamiltonian to the product ΨA(x1, x2)ΨB(x3, x4) of the two
atomic ground states? (The product is not a valid four-electron wave function because it is not
antisymmetric on exchange of electrons between atoms, but we will antisymmetrize it later on.)
If the two atoms are far enough apart, all interactions involving pairs of charged particles on
different atoms can be neglected and we get

ĤΨA(x1, x2)ΨB(x3, x4) ≈
[
ĤA(x1, x2) + ĤB(x3, x4)

]
ΨA(x1, x2)ΨB(x3, x4)

= 2Eatom ΨA(x1, x2)ΨB(x3, x4), (46)

where HA and HB are the two-electron Hamiltonians for the two separate atoms. Applying the
antisymmetrization operator Â to both sides of this equation gives

ÂĤΨA(x1, x2)ΨB(x3, x4) ≈ 2Eatom ÂΨA(x1, x2)ΨB(x3, x4). (47)

The Hamiltonian is totally symmetric on exchange of particles, so it commutes with Â to leave

Ĥ
[
ÂΨA(x1, x2)ΨB(x3, x4)

]
≈ 2Eatom

[
ÂΨA(x1, x2)ΨB(x3, x4)

]
. (48)

We have reached the obvious result: the energy of two well-separated atoms is the sum of
the atomic energies and the wave function is an antisymmetrized product of the atomic wave
functions.
Within an FCI expansion, the ground states on atoms A and B can be expanded in Slater deter-
minants constructed using orbitals on those two atoms:

ΨA(x1, x2) =
∑
iA

CiADiA(x1, x2), ΨB(x3, x4) =
∑
iB

CiBDiB(x3, x4), (49)

where iA lists the occupied orbitals on atom A and iB lists the occupied orbitals on atom B.
Applying the antisymmetrization operator to a product of two Slater determinants, DiA(x1, x2)

DiB(x3, x4), produces a single larger determinant containing all of the orbitals involved, so

ΨAB(x1, x2, x3, x4) =
∑
iA,iB

CiACiBDiA,iB(x1, x2, x3, x4). (50)

An analogous result holds for any system consisting of well-separated fragments.
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An easier way to reach the same conclusions is to use second-quantized notation, where

Ĥ =
∑
i,j

ĉ†ihij ĉj +
1

2

∑
i,j,k,l

ĉ†i ĉ
†
jVijklĉlĉk, (51)

with

hij =

∫
ϕ∗i (x)

(
−1

2
∇2 + Vnuc(r−dA) + Vnuc(r−dB)

)
ϕj(x) dx,

Vijkl =

∫∫
ϕ∗i (x)ϕ

∗
j(x
′)

1

|r− r′|
ϕk(x)ϕl(x

′) dx dx′. (52)

When the two atoms are far enough apart, hij is negligible unless ϕi and ϕj are on the same
atom and Vijkl is negligible unless ϕi, ϕj , ϕk, and ϕl are all on the same atom. Furthermore, if
ϕi and ϕj are both on atom A, the Vnuc(r−dB) contribution to hij is negligible and vice versa.
Under these assumptions,

Ĥ ≈ ĤA + ĤB. (53)

Let us write the two-electron ground states of atoms A and B, treated separately, as

|ΨA〉 = Ψ̂ †A|VAC〉, |ΨB〉 = Ψ̂ †B|VAC〉. (54)

For the Sz = 0 ground state of Eq. (44), for example, we would have

Ψ̂ †A = C1 ĉ
†
A,1s,↑ĉ

†
A,1s,↓ + C2 ĉ

†
A,2s,↑ĉ

†
A,2s,↓ + C3 ĉ

†
A,1s,↑ĉ

†
A,2s,↓ + C4 ĉ

†
A,1s,↓ĉ

†
A,2s,↑,

Ψ̂ †B = C1 ĉ
†
B,1s,↑ĉ

†
B,1s,↓ + C2 ĉ

†
B,2s,↑ĉ

†
B,2s,↓ + C3 ĉ

†
B,1s,↑ĉ

†
B,2s,↓ + C4 ĉ

†
B,1s,↓ĉ

†
B,2s,↑. (55)

Since ĤA commutes with Ψ̂ †B, ĤB commutes with Ψ̂ †A, and Ψ̂ †A commutes with Ψ̂ †B (they would
anti-commute if Ψ̂ †A and Ψ̂ †B both created odd numbers of electrons, but the argument below is
easily generalized to the anti-commuting case), we find that Ψ̂ †AΨ̂

†
B|VAC〉 is the approximate

four-electron ground state:

ĤΨ̂ †AΨ̂
†
B|VAC〉 ≈ (ĤA + ĤB)Ψ̂

†
AΨ̂
†
B|VAC〉

= Ψ̂ †BĤAΨ̂
†
A|VAC〉+ Ψ̂ †AĤBΨ̂

†
B|VAC〉

= Ψ̂ †BEatom Ψ̂
†
A|VAC〉+ Ψ̂ †AEatom Ψ̂

†
B|VAC〉 = 2Eatom Ψ̂

†
AΨ̂
†
B|VAC〉. (56)

The problem with the FCI singles and doubles wave function is that it neglects the contributions
made by strings of four creation operators, two on atom A and two on atom B, appearing in
Ψ̂ †AΨ̂

†
B. The coupled-cluster trial wave function adopts a product form from the beginning,

cleverly ensuring that Ψ̂ †AB reduces to Ψ̂ †AΨ̂
†
B when fragments A and B are far enough apart.

Instead of creating states from the vacuum, it is convenient to start from a single N -electron
determinant,D0, normally taken to be the Hartree-Fock ground state. OnceD0 has been chosen,
we can separate the orbitals (and corresponding creation and annihilation operators) into two
types: the N orbitals appearing in D0 are denoted ϕi; and the M−N orbitals not appearing in
D0 (known as “virtuals”) are denoted ϕa. The choice of suffix (i, j, k, . . . for occupied orbitals;
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a, b, c, . . . for unoccupied orbitals) indicates the type of any given orbital, creation operator, or
annihilation operator.
Any determinant in the FCI basis set may be created from D0 by making a number (rang-
ing from 1 to N ) of electron-hole excitations of the form X̂a

i = ĉ†aĉi. The excitation opera-
tor X̂a

i replaces the orbital ϕi appearing in D0 by the previously unoccupied orbital ϕa. We
can also define operators that create multiple electron-hole pairs, such as the double excitation
X̂ab
ij = ĉ†aĉ

†
bĉiĉj = −ĉ

†
aĉiĉ

†
bĉj = −X̂a

i X̂
b
j . Because the excitation operators are constructed using

annihilation operators for orbitals in D0 and creation operators for orbitals not in D0, creation
and annihilation operators for the same orbital never occur. The excitation operators therefore
commute with one another. No orbital in D0 can be annihilated more than once and no orbital
not in D0 can be created more than once, so products of excitation operators are often zero. For
example, X̂a

i X̂
a
i = 0.

In the coupled-cluster method, the many-electron wave function is written in the product form

|Ψ〉 =

[ ∏
a,i

(
1 + tai X̂

a
i

)][ ∏
b>a,j>i

(
1 + tabij X̂

ab
ij

)]
. . . |D0〉, (57)

where the coupled-cluster amplitudes tai and tabij , . . ., are variational parameters. If the system
consists of two well-separated fragments, A and B, all amplitudes involving orbitals on both
fragments will be zero. After moving the terms involving fragment A to the front of the product
of operators, the coupled-cluster wave function takes the separable form Ψ̂ †AΨ̂

†
B|D0〉, where Ψ̂ †A

and Ψ̂ †B are just as they would be for an isolated fragment. The coupled-cluster approach is
therefore size consistent.
The product of any excitation operator X̂ with itself is zero, so

1 + tX̂ = 1 + tX̂ +
1

2!

(
tX̂
)2

+ . . . = etX̂ . (58)

This allows us to rewrite the coupled-cluster Ansatz in the more commonly encountered expo-
nential form

|Ψ〉 =

[ ∏
a,i

et
a
i X̂

a
i

][ ∏
b>a,j>i

et
ab
ij X̂

ab
ij

]
. . . |D0〉

= exp

(∑
a,i

tai X̂
a
i +

∑
a>b,i>j

tabij X̂
ab
ij + . . .

)
|D0〉 = exp

(
T̂
)
|D0〉. (59)

Truncating the exponent at the single excitation level, including only the
∑

i,a t
a
i X̂

a
i term,

leads to the coupled-cluster singles (CCS) method; truncating at double excitations yields the
coupled-cluster singles and doubles (CCSD) method; and so on. Regardless of the truncation
level, the expectation value of the energy of n well-separated molecules is n times the expecta-
tion value of the energy of one molecule. The exponential form ensures that the wave function
always includes determinants (but not all determinants) with up to N electron-hole pair exci-
tations. When the maximum excitation level reaches N , the coupled-cluster method becomes
equivalent to FCI.
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method R = Rref R = 2Rref

HF 0.217822 0.363954
CCSD 0.003744 0.022032
CCSDT 0.000493 −0.001405
CCSDTQ 0.000019 −0.000446

Table 1: Difference between the energy of a water molecule calculated using the coupled-
cluster method and the FCI energy in the same basis set. The convergence is very rapid at
the equilibrium bond length, Rref = 1.84345a0, but slower when the bond length is doubled.
The bond angle is fixed at 110.565o and energies are in Hartree atomic units. Note that the
coupled-cluster energy may lie below the FCI energy. Coupled-cluster results are not necessar-
ily variational. Data from Ref. [31].

Table 1 shows how the calculated energy of a water molecule converges as a function of the
excitation level. The convergence is very rapid at the equilibrium bond length of 1.184345 a0
but slower when the bond length is doubled. Despite running into difficulties if there are multi-
ple very different determinants with similar energies, as is often the case when bonds are being
broken, the CCSD method hits a sweet spot between the demands of computational efficiency
and accuracy. Adding the effect of triples perturbatively yields the CCSD(T) method, often
known as the “gold standard” of quantum chemistry, which frequently produces excellent re-
sults. Straightforward implementations of the CCSD and CCSD(T) methods scale steeply with
system size, the effort being proportional to N6 for CCSD and N7 for CCSD(T), but corre-
lations are local and it is possible to do better than this. Coupled-cluster methods are even
beginning to become useful in solids.

It would be nice if it were possible to treat the CC wave function variationally, evaluating
the corresponding energy expectation value and adjusting the amplitudes to minimize the total
energy. Unfortunately, however, the presence of arbitrary numbers of electron-hole pairs (at all
truncation levels) makes the computational effort scale factorially with system size. To motivate
a more practical approach, let us suppose for the time being that the cluster operator T̂ has not
been truncated and that |Ψ〉 = eT̂ |D0〉 is the exact ground-state wave function:

(
Ĥ − E0

)
eT̂ |D0〉 = 0. (60)

Multiplying by e−T̂ gives (
e−T̂ ĤeT̂ − E0

)
|D0〉 = 0. (61)

We can therefore view the coupled-cluster method as a search for the operator eT̂ that makes the
reference determinant |D0〉 the ground state of the similarity-transformed Hamiltonian ĤT =

e−T̂ ĤeT̂ . Note that ĤT is not Hermitian, so its left and right eigenstates need not be the same;
|D0〉 is a right eigenstate.
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In the CCSD method, we replace the cluster operator by a truncated approximation,

T̂ ≈
∑
a,i

tai X̂
a
i +

∑
a>b,i>j

tabij X̂
ab
ij , (62)

so that Eq. (61) is only approximately correct. To make it as correct as possible, we insist that
it is satisfied in the subspace consisting of |D0〉 and the determinants

|Da
i 〉 = X̂a

i |D0〉 = ĉ†aĉi|D0〉, (63)

|Dab
ij 〉 = X̂ab

ij |D0〉 = ĉ†aĉ
†
bĉiĉj|D0〉. (64)

(Since eT̂ also contains products of excitation operators, this does not ensure that Eq. (61) is
satisfied exactly.) The result is the CCSD equations:

〈D0|ĤT − E0|D0〉 = 〈D0|ĤT |D0〉 − E0 = 0, (65)

〈Da
i |ĤT − E0|D0〉 = 〈Da

i |ĤT |D0〉 = 0, (66)

〈Dab
ij |ĤT − E0|D0〉 = 〈Dab

ij |ĤT |D0〉 = 0, a>b, i>j. (67)

The second and third lines provide exactly as many equations as there are amplitudes, allowing
us to find the tai and tabij . The first line then determines the approximate ground-state energy.
Furthermore, because the determinants appearing in the bras contain no more than two electron-
hole pairs, the matrix elements can all be evaluated with an effort that scales as a power of the
system size.

5 Slater-Jastrow wave functions

Cusps

Quantum chemists often find it useful to divide correlation effects into two separate types.
The division is not clear or absolute, but helpful nevertheless. Static correlation arises when
the ground state contains substantial components of several significantly different determinants
with similar energy expectation values. For small molecules, static correlation can in principle
be dealt with by including all of the important determinants in the basis set, although the number
required may grow exponentially with system size. Configuration-expansion methods such as
single-reference CCSD, that make excitations from a single determinant, often find strong static
correlations difficult to deal with. Dynamic correlation arises from the Coulomb repulsions
between nearby electrons. An important contribution is made by the non-analytic cusps in the
many-electron wave function at points where pairs of electrons coalesce [32, 33].
The simplest case of a wave function cusp occurs when an electron approaches a nucleus; a
good example is provided by the 1s energy eigenfunction of a hydrogen atom, ϕ1s(r) =

1√
π
e−r.

The electron-nucleus cusps can easily be built into the one-electron orbitals (although not when
the orbitals are expanded in a smooth analytic basis set of Gaussians or plane waves, as is often
done for computational reasons). The electron-electron cusps are difficult to represent in a basis
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of Slater determinants and cause FCI expansions to converge very slowly. This is the problem
that Slater-Jastrow wave functions solve.
The forms of the cusps can be understood in general [32, 33]. Consider what happens when
particles 1 and 2, with masses m1 and m2 and charges Z1 and Z2, approach each other. Trans-
forming into center-of-mass and difference coordinates, rcm = (m1r1 +m2r2)/(m1+m2) and
r = r1−r2, the N -particle Schrödinger equation becomes(
− 1

2µ
∇2

r −
1

2M
∇2

rcm
−

N∑
i=3

1

2mi

∇2
ri
+

1

2

N∑
i=1

N∑
j=1
(j 6=i)

ZiZj
rij

)
Ψ(r, rcm, σ1, σ2, x3, . . . , xN)

= EΨ(r, rcm, σ1, σ2, x3, . . . , xN), (68)

where µ = m1m2/(m1+m2) is the reduced mass and M = m1+m2 is the total mass of the two
particles involved. As r1 → r2 with rcm, r3, r4, . . ., rN held fixed, the Z1Z2/r divergence in the
potential energy must be cancelled by a corresponding divergence in the ∇2

r part of the kinetic
energy. In other words, we require

1

Ψ(r)

(
− 1

2µ
∇2

r +
Z1Z2

r

)
Ψ(r) (69)

to remain finite as r → 0, where Ψ(r) is shorthand for Ψ(r, rcm, σ1, σ2, x3, . . . , xN).
Near the origin, we can use the familiar representation of Ψ(r) as a linear combination of spher-
ical harmonics and radial functions,

Ψ(r) =
∞∑
l=0

l∑
m=−l

cl,mYl,m(ϑ, ϕ)r
lRl(r)

=
∞∑
l=0

l∑
m=−l

cl,mYl,m(ϑ, ϕ)r
l
(
1 + b

(l)
1 r + b

(l)
2 r

2 + · · ·
)
, (70)

where the cl,m and b(l)i are expansion coefficients that depend on rcm, σ1, σ2, x3, . . ., xN . Starting
from this representation, a few lines of algebra show that

1

Ψ

(
− 1

2µ
∇2

r +
Z1Z2

r

)
Ψ =

1

Ψ

∑
l,m

cl,mYl,m

(
− 1

2µr2
∂

∂r

1

r

∂

∂r
+
l(l+1)

2µr2
+
Z1Z2

r

)
Rl

=

∑
l,m cl,mYl,m

((
Z1Z2 −

l+1

µ
b
(l)
1

)
rl−1 + · · ·

)
∑

l,m cl,mYl,m (rl + · · · )
. (71)

The largest terms in the denominator at small r are the ones corresponding to the smallest
angular momentum for which cl,m is non-zero. Denoting this angular momentum by l0, we see
the right-hand side of Eq. (71) diverges as r → 0 unless

Z1Z2 −
l0+1

µ
b
(l0)
1 = 0. (72)



Wavefunctions 2.23

We can therefore express Ψ(r) for small r as

Ψ(r) = rl0
l0∑

m=−l0

cl0,mYl0,m

(
1 +

µZ1Z2

l0+1
r

)
+ rl0+1

l0+1∑
m=−(l0+1)

cl0+1,mYl0+1,m +O(rl0+2). (73)

Any wave function that describes particles interacting via Coulomb forces must be of this form.
We are interested in three specific cases of this general result.

Electron-nucleus cusps: When an electron (mass m = 1, charge −1) approaches a nucleus
(mass M , charge +Z), symmetry imposes no restrictions on the value of l and one gen-
erally expects l0 = 0. Equation (73) then reduces to

Ψ(r) = c0,0Y0,0
(
1− Zr

)
+ r

1∑
m=−1

c1,mY1,m +O(r2), (74)

where we have noted that M � 1 and hence that µ ≈ 1. Since

Y1,−1 ∝
x−iy
r

Y1,0 ∝
z

r
, Y1,1 ∝

x+iy

r
,

we can rewrite Eq. (74) as

Ψ(r) = aen
(
1− Zr

)
+ ben · r+O(r2), (75)

where aen = c0,0Y0,0 and the r-independent vector ben depends on c1,−1, c1,0 and c1,1. The
−Zr contribution to the first term provides the cusp at the origin.

Electron-electron cusps, antiparallel spins: If a spin-up electron meets a spin-down electron,
the wave function has singlet and triplet components in general. As long as the singlet
component is non-zero, the spatial wave function need not be antisymmetric on exchange
of r1 and r2 and l0 is again 0 in the general case. Proceeding as for the electron-nucleus
cusp, setting µ = 1/2 and Z = −1, yields:

Ψ(r) = a↑↓ee

(
1 +

1

2
r

)
+ b↑↓ee · r+O(r2). (76)

Electron-electron cusps, parallel spins: If two electrons of the same spin meet, the spin wave
function must be a triplet, implying that the spatial wave function must be antisymmetric.
Only terms with odd values of l can appear in Eq. (70) and one expects l0 to be 1 in the
general case. The l = 2 term vanishes because it is even, so Eq. (73) becomes:

Ψ(r) = r
1∑

m=−1

c1,mY1,m

(
1 +

1

4
r

)
+O(r3)

=
(
b↑↑ee · r

)(
1 +

1

4
r

)
+O(r3). (77)
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Fig. 4: The cusps in the S=0 ground-state wave function of He, as learnt by a deep neural
network. The cusps were not built in to the wave function in advance but discovered by the
network in its attempts to minimize the total energy. According to Eqs. (75) and (76), the
coefficients of the nuclear-electron and antiparallel electron-electron cusp terms should be −2
and 0.5; the learnt values were −1.9979(4) and 0.4934(1). From Ref. [34].

Figure 4 shows the electron-electron and electron-nucleus cusps for a helium atom. The wave
function was represented as a deep neural network [34] (see later), the parameters of which
were adjusted to minimize the variational ground-state energy. No attempt was made to force
the network to generate the correct cusps; it discovered them spontaneously in its attempts to
minimize the total energy. Its success in doing so confirms that the cusps have a significant
effect on the total energy and adds weight to the assertion that it is a bad idea to use trial wave
functions without cusps.

The Jastrow factor

We have explained that Slater determinants behave smoothly as electrons approach each other
and cannot easily represent the electron-electron cusps. This failure increases the energy expec-
tation value and slows down the convergence of configuration expansions. Cusp-related errors
often limit the accuracy of otherwise well-converged FCI and coupled-cluster calculations.
A good way to add cusps to a Slater determinant is to use a Jastrow factor [35, 11, 7]. The
determinant D(x1, x2, . . . , xN) is replaced by a Slater-Jastrow wave function,

ΨSJ(x1, x2, . . . , xN) = eJ(x1,x2,...,xN )D(x1, x2, . . . , xN), (78)

where J is a totally symmetric function of the electron coordinates. The Jastrow factor affects
the normalization in a manner that is not easy to calculate, so we have made no attempt to
normalize ΨSJ. Fortunately, QMC methods do not require normalized trial wave functions.
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The simplest approximation assumes that

J(x1, x2, . . . , xN) = −
1

2

N∑
i=1

N∑
j=1
(j 6=i)

u(xi, xj) (79)

is a sum of two-electron terms. In a typical example, u(xi, xj) increases in value as |ri − rj|
decreases, suppressing the value of the wave function when pairs of electrons approach each
other. The determinant incorporates the antisymmetry that helps to keep like-spin electrons
apart; the Jastrow factor adds a partial description of the correlations caused by the repulsive
Coulomb interactions, which keep both like- and unlike-spin electrons apart.
By making sure that u(xi, xj) has the right behavior as |ri − rj| → 0, we can also use the
Jastrow factor to make ΨSJ satisfy the cusp conditions. As in our previous discussion of cusps,
we express ΨSJ as a function of r, rcm, σ1, σ2, x3, . . . , xN , where r = r1−r2 and rcm = 1

2
(r1+r2).

We then consider how the wave function depends on r at fixed σ1, σ2, x3, . . ., xN . Writing
Ψ(r, rcm, σ1, σ2, x3, . . . , xN) as Ψ(r) to simplify the notation, we have ΨSJ(r) = e−u(r)D(r).

Antiparallel spins: The antiparallel cusp condition,

Ψ(r) = a↑↓ee

(
1 +

1

2
r

)
+ b↑↓ee · r+O(r2), (80)

can be imposed using a spherical Jastrow function, u(r)→ u(r).
Expanding u(r) and D(r) about the origin,

u(r) = u(0) + u′(0)r + . . . , and D(r) = D(0) + r · ∇rD|r=0 + . . . , (81)

we get

ΨSJ(r) = e−u(r)D(r) =
(
1− u′(0)r + . . .

)
e−u(0)

(
D(0) + r · ∇rD|r=0 + . . .

)
= a↑↓ee

(
1− u′(0)r

)
+ b↑↓ee · r+O(r2), (82)

where a↑↓ee = e−u(0)D(0) and b↑↓ee = e−u(0) ∇rD|r=0.
In order to satisfy the spin-antiparallel cusp condition, all we require is that

∂u

∂r

∣∣∣∣
r=0

= −1

2
. (83)

Parallel spins: The parallel cusp condition,

Ψ(r) =
(
b↑↑ee · r

)(
1 +

1

4
r

)
+O(r3), (84)

can also be imposed using a spherical Jastrow function. D(0) is now zero, so (82) becomes

ΨSJ(r) =
(
1−u′(0)r+ · · ·

)
e−u(0)

(
r · ∇rD|r=0+ · · ·

)
=
(
b↑↑ee · r

) (
1−u′(0)r

)
+O(r3),

(85)
with b↑↑ee = e−u(0) ∇rD|r=0. This has the correct cusp if

∂u

∂r

∣∣∣∣
r=0

= −1

4
. (86)
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Fig. 5: The left-hand figure shows the pseudo-valence electron density of germanium as calcu-
lated using a determinant of DFT orbitals. The middle figure shows the effect of introducing a
Jastrow factor containing spherical two-electron u(|ri−rj|) terms. The cusps (which cannot be
seen here) are improved and the energy expectation value is lowered, but the electron density
is changed significantly. The right-hand figure shows the effect of including one-electron χ(ri)
terms in addition to the spherical u(|ri−rj|) terms. The cusps remain correct but the density is
pushed back towards the original HF density, which was quite accurate.

Writing the spherical Jastrow function u(x1, x2) = u(r1, σ1, r2, σ2) as uσ1σ2(r), we can sum-
marize these results as follows:

∂uσ1σ2(r)

∂r

∣∣∣∣
r=0

=

{
−1

2
, σ1=− σ2,

−1
4
, σ1= σ2.

(87)

If the one-electron orbitals are expanded in a basis of smooth functions such as plane waves or
Gaussians, it is often best to incorporate the electron-nucleus cusps into the Jastrow factor too.
This requires adding terms dependent on |ri−dI | to J , where dI is the position of nucleus I .
The large-r behavior of u(r) in solids can be derived within the random phase approximation
[35]. The result is that u(r) ∼ 1/ωp r as r → ∞, where n is the average electron density and
ωp =

√
4πn is the plasma frequency of a uniform electron gas of that density.

The Jastrow function does not have to be pairwise or spherical. We can, for example, add any
smooth function of r to the spherical pairwise term u(r) without affecting the cusps. We can
also add to J a totally symmetric one-electron contribution of the form

∑
i χ(xi), which can

provide a convenient way to optimize the electron spin density n(x) = n(r, σ). An example
is shown in Fig. 5. Finally, we can add terms that depend on the positions of more than two
charged particles. The usual practice in QMC simulations [36] is to choose a fairly general
parametrized Jastrow factor incorporating the cusps and adjust the parameters to minimize the
energy expectation value.
Although one-determinant Slater-Jastrow wave functions do not achieve chemical accuracy,
they are easy to use and often account for 80–90% or more of the correlation energy missed by
Hartree-Fock theory. The O(N3) system-size scaling of Slater-Jastrow based variational QMC
simulations is favorable enough that they can be used to study periodic supercells containing of
order 1000 electrons.
When studying small molecules, it is straightforward to carry out Slater-Jastrow QMC simula-
tions with large linear combinations of Slater determinants, all multiplied by a Jastrow factor,
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thus accounting for static correlation as well as dynamic correlation. Dealing with static corre-
lation in solids is an unsolved problem in general, as the number of configurations required rises
exponentially with system size, but one-determinant Slater-Jastrow VMC calculations are often
used and often produce surprisingly good results. Jastrow factors are not so easy to combine
with conventional quantum chemical methods such as coupled cluster, but alternative “R12”
approaches are available [37].

6 Beyond Slater determinants

Attempting to describe the wave functions of solids as linear combinations of Slater determi-
nants, with or without a Jastrow factor, is a futile task because the number of determinants
required rises exponentially with system size. As a result, the vast majority of solid-state QMC
simulations have used single-determinant trial wave functions. Single-determinant VMC results
are not very much more accurate than DFT, but DMC simulations [11, 7] with one-determinant
Slater-Jastrow trial wave functions have produced much of the most accurate data available for
weakly correlated bulk solids, including the electron gas data used to parametrize the local den-
sity approximation. Until recently, it has been difficult to ascertain the quality of DMC results
for solids because experiments are of limited accuracy and no better methods were known, but
auxiliary-field QMC (which also requires a trial wave function) is now producing slightly better
results for some molecules and solids and coupled-cluster approaches are making progress.
Given the limitations of multi-determinant expansions, it is no surprise that efforts have been
made to find better starting points. An old idea that still has value is the backflow transformation
introduced by Richard Feynman in 1954 [38]. Feynman’s approach was inspired by the way a
classical fluid flows around an obstruction and his application was to liquid 4He, but the idea
is general enough to work for electrons too. It was first used in a QMC simulation of the
interacting electron gas in 1994 [39].
In a backflow wave function, the electron positions in the Slater determinant are replaced by
“quasi-particle” coordinates that depend on the positions of other nearby electrons

qi = ri + ξi(x1, x2, . . . , xN) = ri +
∑
j ( 6=i)

ηijrij, (88)

where rij = ri − rj and ηij depends on rij = |ri − rj| and on the relative spins of electrons i
and j. The Slater matrix is otherwise unchanged, but every entry in every row and column now
depends on the coordinates of every electron, which slows down QMC calculations by a factor
of N. Although the backflow wave function is still a determinant, it is not a Slater determinant
and cannot be expanded as a linear combination of a small number of Slater determinants; it is
something new.
One advantage of the use of parametrized backflow transformations is that they provide a con-
venient way to adjust the nodal surface of the trial wave function. Given a choice of the spin
coordinates (σ1, σ2, . . . , σN), the nodal surface is the (3N−1)-dimensional surface in the 3N -
dimensional space of positions (r1, r2, . . . , rN) on which the wave function is zero. It matters
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Fig. 6: Nodes encountered when moving one of the electrons in a two-dimensional homoge-
neous gas of 101 like-spin electrons. The positions of the other 100 electrons, indicated by the
green circles, are held fixed. The Hartree-Fock and backflow nodes are in black and orange,
respectively. The top panel shows results for a weakly correlated electron gas with density pa-
rameter rs = 0.5; the bottom panel shows results for a less dense and more strongly correlated
electron gas with rs = 10. From Ref. [40].

because the quality of the nodal surface is the only factor that limits the quality of DMC results:
if the nodal surface is exact, DMC gives the exact ground-state energy. Figure 6 shows how the
nodes of an optimized backflow wave function differ from those of the Hartree-Fock determi-
nant [40]. The differences are subtle but improve the quality of the results substantially. As far
as can be ascertained, energies calculated using backflow DMC simulations of electron gases
at densities comparable to those found in most solids are almost exact. Results for light atoms,
where we know the ground-state energy almost exactly, are somewhat less impressive but Fig. 7
shows that backflow remains useful, reducing the error in the total energy of a Slater-Jastrow
wave function by more than 50%.
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Fig. 7: Errors in the energies of various atoms as calculated using a variety of different one-
determinant VMC trial wave functions. Hartree atomic units are used. The data used to plot
the cyan and orange lines comes from Ref. [41]; the other three lines show data from Ref. [34].

Backflow is a good idea but we can take it much further [34]. Nothing requires the orbitals in a
Slater determinant to be functions of the coordinates of a single electron only, nor need they be
functions of a single three-dimensional (plus spin) quasi-particle coordinate, as in a backflow
wave function. The only requirement is that interchanging any two coordinates, xi and xj ,
exchanges the corresponding columns of the determinant and thus changes the sign of the wave
function. This freedom allows us to replace the one-electron orbitals ϕi(xj) by multi-electron
functions of the form

ϕi(xj;x1, . . . , xj−1, xj+1, . . . , xN) = ϕi(xj; {x/j}), (89)

where x/j is shorthand for all of the coordinates except xj . As long as ϕi(xj; {x/j}) is invariant
under any change in the order of the arguments after xj , the resulting wave function,

D =

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1, {x/1}) ϕ1(x2, {x/2}) . . . ϕ1(xN , {x/N})
ϕ2(x1, {x/1}) ϕ2(x2, {x/2}) . . . ϕ2(xN , {x/N})

. . . . . .

. . . . . .

ϕN(x1, {x/1}) ϕN(x2, {x/2}) . . . ϕN(xN , {x/N})

∣∣∣∣∣∣∣∣∣∣∣
, (90)

is totally antisymmetric.
Surprisingly, it can be shown that any totally antisymmetric wave function can be represented as
a single generalized determinant of this type [34]. The proof does not explain how to construct
the generalized determinant we need, but the fact that it exists is reassuring: the exponential
wall that makes expanding many-electron wave functions in conventional Slater determinants
so difficult might not apply when generalized determinants are used. The NP hardness of the
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many-electron problem is bound to rear its ugly head somewhere, but it is going to take a
different form and the exponential rise in difficulty with system size might be less steep.
Trial wave functions of the type introduced in Eq. (90) are so general that it is hard to see how
to parametrize them. This is a common problem with trial wave function construction: the more
general the functional form, the more parameters you need and the less you know about which
ones to choose. Until a few years ago, this would have ruled out using generalized determinants,
but recent progress in machine learning [42, 43] has made it much easier to find parametrized
representations of extremely complicated functions without having to choose the functional
form or parameters explicitly. Deep neural networks [44] are general function approximators,
able in principle to represent any function in any number of dimensions. Furthermore, via the
magic of automatic differentiation and back propagation, optimizing the parameters that define
a neural network is remarkably efficient.
In Ref. [34], generalized determinants were represented using a new neural network architec-
ture, the Fermi Net, designed to guarantee the necessary exchange symmetries but otherwise
being very general. The method used was VMC, conventional in all respects except for the
wave function. The Fermi Net was the wave function and was used to calculate the value and
first and second derivatives of the wave function at arbitrary points in coordinate space. This
is all that is required to implement the Metropolis algorithm and allow the calculation of the
local energy. The parameters of the network were adjusted to minimize the energy expectation
value, exactly as prescribed by the variational principle. Learning from the variational princi-
ple differs from the more frequently encountered concept of learning from data; the Fermi-Net
optimization generates its own input on the fly and can never run out of training data.
Using neural networks to represent wave functions is a fashionable idea and several other ap-
proaches are being explored [45–47]. Here I concentrates on Fermi Net because I played a
minor role in helping to develop it and because it is in some way the most accurate approach
proposed so far. The field is so young, however, that I would not be surprised to see better
approaches come along soon.
The Fermi Net takes electron spins σi, positions ri, the vectors between electrons ri−rj , and
electron-nucleus vectors ri−dI as input. The network is only capable of representing smooth
analytic functions of position (this is on purpose; the VMC method runs into difficulties if the
gradient or value of the trial wave function is discontinuous), so it is unable to represent the
cusps exactly. To circumvent this problem, the distances |ri−rj| and |ri−dI | are also provided
as inputs. The distance function |r| has its own cusp at the origin, enabling the network to
represent the electron-electron and electron-nucleus cusps as smooth functions of the inter-
particle distances. As was shown in Fig. 4, it accomplishes this very effectively. Note that the
Fermi-Net wave function takes positions as input and returns values of the wave function as
output. No one-electron or many-electron basis set is required.
Although this approach to machine learning wave functions has only been applied to atoms and
small molecules to date, the results have been spectacularly good. Fermi-Net wave functions
are clearly much better than any other known type of VMC trial wave function used in such
systems.
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Fig. 8: Convergence with the number of determinants of the total energy (in Hartrees) of the CO
and N2 molecules. The Slater-Jastrow, Slater-Jastrow-backflow, and Fermi-Net wave functions
were all represented as neural networks. From Ref. [34].

Figure 7 compares the accuracies of several different one-determinant VMC methods. The
dark blue and cyan lines show results obtained with a single-determinant Slater-Jastrow wave
function. They differ only because the dark blue results were generated using a neural-network
representation of the Slater-Jastrow wave function whereas the cyan line used an explicitly
parametrized functional form [41]. The generality and freedom inherent in the neural network
allows it to slightly outperform the conventional implementation. The orange and pink lines are
related in the same way. Both show results for a single-determinant Slater-Jastrow-backflow
wave function, but the orange line used a conventional representation and the pink line a neural
network representation. The green line shows the Fermi-Net results. Even though only one
determinant was used, they are quite close to chemical accuracy indicated by the grey bar.
Figure 8 illustrates the convergence of the total energy of two molecules, CO and N2, as a func-
tion of the number of determinants used. All results were obtained using neural-network wave
functions of the corresponding type, so these are fair comparisons. The results obtained with
16 Fermi-Net determinants are close to chemical accuracy. From now on, all of the calculations
reported used 16 Fermi-Net determinants and a neural network with approximately 700,000
variational parameters. This may sound extreme, but the number of amplitudes required for
comparably accurate CCSD(T) calculations is even larger.
Figure 9 shows results for various molecules with up to 30 electrons. All of the methods inves-
tigated are less accurate for larger systems, but the Fermi Net is again the best and the growth
of the Fermi Net errors with system size appears to be more systematic.
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Fig. 9: Errors in the total energies (in Hartrees) of various molecules with up to 30 electrons
calculated using Fermi Net, CCSD, and CCSD(T). High-quality QZ and 5Z basis sets were used
for the coupled-cluster calculations. From Ref. [34].

Fig. 10: Energy (in Hartrees) of theH10 chain calculated using a wide variety of different meth-
ods for a range of inter-atomic distances (in Bohr radii). All energies are measured relative to
the MRCI + Q + F12 CBS energy. The mauve shaded region indicates the estimated uncertainty
in the reference result. Fermi Net results from Ref. [34]; all other results from Ref. [48].
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The H10 chain was the subject of an important recent benchmark paper [48] comparing practi-
cally every accurate method known at the time. Figure 10 shows the total energy as a function
of the inter-atomic spacing. At each spacing, all energies are measured relative to a reference
obtained by extrapolating the MRCI + Q + F12 result to the complete basis set (CBS) limit.
The mauve shaded region indicates the estimated uncertainty in the reference energy. All of the
data except for the Fermi-Net results came from Ref. [48]. Despite the newness and conceptual
simplicity of our neural-net based approach, it comfortably outperforms most of its rivals.
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1 Interatomic potentials for materials simulation

The computation of phase diagrams or mechanical properties of materials needs millions of
force evaluations for thousands of atoms, requirements which make these simulations unfeasible
with density functional theory (DFT). For many problems in materials science, chemistry, or
physics it is essential to simplify the description of the interatomic interaction in order that
large and long time atomistic simulations become possible.
The development of interatomic potentials is not a new field. Potentials became important when
the first computers were available to carry out atomistic simulations. Until about the 1980’s the
development of interatomic potentials was largely empirical. The electrons were regarded as
a glue that mediates the interaction of the atomic cores and the mathematical modeling of the
glue was based on intuition and trial and error. Interatomic potentials for materials that are
the focus of this chapter were developed along different strategies than force fields for biology
and polymer science. Guidance for the development of interatomic potentials for materials
was then obtained from DFT or tight-binding electronic structure methods. The assumption
of a constant semi-infinite recursion chain (discussed in Sec. 3.1) leads to the second-moment
potentials [1–3]. The square-root embedding function of the Finnis-Sinclair potential [4],

Ei =
√
ρi +

1

2

∑
j

V (rji) , (1)

is explained from the root mean square width of the second moment (see Sec. 3.4), where
ρi =

∑
j φ(rji) is the local density of atomic sites and where φ and V are pairwise functions

of the interatomic distance between atoms i and j. The observation that the atomic energy is
a non-linear function of the charge density [5, 6] also motivated the embedded atom method
[7], where instead of the square-root function of the Finnis-Sinclair potential a general, quasi-
concave embedding function is used. While the Finnis-Sinclair and embedded atom method
potentials compute the densities as a pairwise sum over neighbors, Tersoff included an angularly
dependent three-body term for modeling directional bond formation in semiconductors [8, 9],
so that the energy is written as a non-linear function that depends on a three-body contribution
ρi =

∑
jk φ(rrrji, rrrki). Later angular terms were also introduced in the modified embedded atom

method [10].
Since then many different potentials were developed, with more complex many-body contribu-
tions and improved descriptions of bond formation. From the many developments I will present
two strategies:

1. the derivation of interatomic potentials from a systematic coarse graining of the electronic
structure,

2. the development of general parametrizations of the many-atom interactions for interpo-
lating reference data.

The bond-order potentials (BOPs) are derived by first simplifying DFT to the tight-binding (TB)
approximation. Then local, approximate solutions of the TB models are developed from which
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expressions for the effective interaction between atoms are obtained. In this way the analytic
BOPs provide a rigorous derivation of interatomic potentials for semiconductors [11, 12] and
metals [13, 14], where the BOPs for metals will be discussed in this chapter. At their lowest
order of approximation the BOPs recover the Tersoff [8, 9] and Finnis-Sinclair [4] potentials,
respectively.
In contrast, the development of more formal, general parametrizations is often based on large
numbers of DFT data that enable the application of methods from statistical learning for interpo-
lating the reference data. This has led to the development of machine-learning interatomic po-
tentials, such as neural networks potentials [15] or Gaussian process regression for the Gaussian
approximation potentials [16]. The field is very active with many recent developments [17–36].
The machine-learning potentials reproduce DFT reference data sets with excellent accuracy.
As machine-learning potentials are not derived or motivated by physical or chemical intuition,
the excellent accuracy of the machine-learning potentials comes at the cost of interpretability.
Machine-learning potentials employ a descriptor that quantifies the local atomic environment.
The atomic energy or other atomic properties are then learned as a non-trivial function of the
descriptor by training with reference data. The atomic cluster expansion (ACE) provides a for-
mally complete descriptor of the local atomic environment [34,37] and may be used to compare
and re-expand different machine-learning interatomic potentials.
In section 2, I will discuss the derivation of the TB approximation from DFT. In Sec. 3 the mo-
ments theorem will be introduced. Several local expansions that implicitly or explicitly exploit
the moments theorem will then be summarized, before the analytic BOPs will be introduced. In
Sec. 4, I will discuss the ACE for the many-atom expansion of the interatomic interaction.

2 Coarse graining the electronic structure for
interatomic potentials

The TB approximation is obtained from a second-order expansion of the DFT functional. I will
first discuss the second-order expansion of the DFT energy and then introduce the TB approxi-
mation. This section follows closely the review in Ref. [38]. It builds on many earlier develop-
ments. Here I highlight a few references only, some of which were key for the development of
modern TB, others which provide excellent reviews [39–47].

2.1 Second-order expansion of the density functional

The contributions to the Hohenberg-Kohn-Sham DFT energy functional [48, 49] are given by

E = TS + EH + EXC + Eext , (2)

with TS the kinetic energy of the non-interacting electrons, EH the Hartree energy, EXC the
exchange-correlation energy and Eext the interaction of the electrons with the nuclei. The
Coulomb interaction between the cores of the nuclei still needs to be added for the compu-
tation of total energies. Next, the eigenstates ψn are expanded in basis functions ϕi. In general
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the basis functions are non-orthogonal,

Sij = 〈ϕi|ϕj〉 and δij = 〈ϕi|ϕj〉 with |ϕi〉 =
∑
j

S−1ij |ϕj〉 , (3)

with the overlap matrix S. The basis function indices may be raised with the inverse of the
overlap matrix and lowered with the overlap matrix, which enables a more compact notation in
the following. The eigenstates are then written as

|ψn〉 =
∑
i

ci(n)|ϕi〉 , and ci(n) =
∑
j

S−1ij c
(n)
j , (4)

with expansion coefficients ci(n). The matrix elements of the density matrix are given by

ρij = 〈ϕi|ρ̂|ϕj〉 =
∑
n

fn〈ϕi|ψn〉〈ψn|φj〉 =
∑
n

fnc
i(n)(cj(n))∗ , (5)

with the occupation numbers fn of the eigenstates ψn. Here I take fn = 1 for occupied states
below the Fermi level and fn = 0 for empty states above the Fermi energy. The charge density
is expressed as

ρ(rrr) =
∑
ij

ρijϕi(rrr)ϕ
∗
j(rrr) . (6)

If expressed in eigenstates, the density matrix is diagonal

ρnn′ = fnδnn′ . (7)

The DFT energy can be categorized in first-, second-, and higher-order contributions in terms
of the density matrix. The kinetic energy of non-interacting electrons is linear in the density
matrix,

TS =
∑
n

fn〈ψn|T̂ |ψn〉 = TTTρρρ , (8)

where here and in the following the trace is implicitly included in the matrix products,

TTTρρρ =
∑
ij

Tijρ
ji . (9)

The matrix elements of TTT are given by

Tij = 〈ϕi|T̂ |ϕj〉 . (10)

The external energy that contains the interaction of the electrons with the ionic cores is also
written as a first-order term

Eext =

∫
V ext(rrr)ρ(rrr) drrr = VVV extρρρ , (11)

with
V ext
ij =

∫
ϕ∗i (rrr)Vext(rrr)ϕj(rrr) drrr . (12)
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The Hartree energy EH is of second order in the density matrix ρρρ or the density ρ,

EH =
1

2

∫
ρ(rrr)ρ(rrr′)

|rrr − rrr′| drrrdrrr
′ =
∑
ijkl

1

2
JHijkl ρ

ijρkl =
1

2
JJJHρρρρρρ , (13)

with the Coulomb integral

JHijkl =
1

2

∫
ϕ∗i (rrr)ϕj(rrr)ϕ

∗
k(rrr
′)ϕl(rrr

′)

|rrr − rrr′| drrrdrrr′ . (14)

The exchange-correlation energy EXC is in general parametrized as a non-linear functional of
the density ρ and gradients of the density and therefore the only contribution to the DFT energy
that contains terms beyond second order. Here I just write a formal series expansion as

EXC = VVV XCρρρ+
1

2
JJJXCρρρρρρ+

1

6
KKKXCρρρρρρρρρ+ · · · . (15)

As the exchange correlation energy summarizes corrections due to many-electron interactions,
it is relatively short ranged. For example, while JJJH decays as 1/r for large separations between
the orbitals, we expect that the term JJJXC is limited to distances of the order of the interatomic
separation.
By grouping terms of the same order,

VVV = TTT + VVV ext + VVV XC , JJJ = JJJH + JJJXC , KKK = KKKXC , (16)

the DFT energy is written as a polynomial expansion in the density matrix

E = VVV ρρρ+
1

2
JJJρρρρρρ+

1

6
KKKρρρρρρρρρ+ · · · . (17)

2.1.1 Hamiltonian and band energy

The elements of the Hamiltonian matrix are obtained from the derivative of the energy with
respect to the density matrix

HHH =
∂E

∂ρρρ
= VVV + JJJρρρ+

1

2
KKKρρρρρρ+ · · · . (18)

The energy may then be represented as the band energy Eband = HHHρρρ and a double-counting
contribution,

E = HHHρρρ− 1

2
JJJρρρρρρ− 1

3
KKKρρρρρρρρρ− · · · . (19)

The band energy may be decomposed into contributions from different orbitals simply as

Eband ,i =
∑
j

Hijρ
ij and Eband =

∑
i

Eband ,i . (20)

This is called the intersite representation of the band energy as it involves two orbitals i and j.
By making use of

∑
j Hijc

j(n) = Enc
(n)
i , where En is the eigenvalue of eigenstate ψn, and
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inserting in the band energy, one arrives at Eband =
∑

i

∑
n fnEnc

(n)
i (ci(n))∗. It is customary to

define the local and global density of states

ni(E) =
∑
n

c
(n)
i (ci(n))∗ δ(En−E) , and n(E) =

∑
i

ni(E) =
∑
n

δ(En−E) , (21)

such that

Eband ,i =

∫ EF

E ni(E) dE and Eband =

∫ EF

E n(E) dE , (22)

with the Fermi energy EF . This is called the onsite representation of the band energy as it
involves only one orbital i.

2.1.2 Perturbation expansion

Often one is interested in the response of a material to a perturbation. Then instead of expanding
the DFT energy about ρ = 0, one would like to discuss the energy associated to the deviation
of the density from a particular density ρ(0)(rrr) [39, 40]. I re-expand the series Eq. (17) about a
reference density matrix ρρρ(0) such that

ρρρ = ρρρ(0) + δρρρ . (23)

From Eq. (17) one then obtains

E = E(0) +HHH(0)δρρρ+
1

2
JJJ ′δρρρ δρρρ+

1

6
KKK ′δρρρ δρρρ δρρρ+ · · · , (24)

where JJJ ′ and KKK ′ refer to the second and third-order expansion coefficients about ρρρ(0). The
Hamiltonian is given by

HHH = HHH(0) +JJJ ′δρρρ+
1

2
KKK ′δρρρδρρρ+ · · · , with HHH(0) = VVV +JJJρρρ(0) +

1

2
KKKρρρ(0)ρρρ(0) + · · · . (25)

2.2 Tight-binding approximation

In the TB approximation one takes the view that bond formation takes place when atomic-like
orbitals overlap. In practice this means that one builds TB models on a minimal basis of atomic-
like orbitals. The one-electron eigenstates are expanded as linear combinations of atomic-orbital
type (LCAO) basis functions. Orbital |iα〉 is located on atom i and has a well defined angular
momentum character, so that α comprises α = n, l,m. The basis functions are written as

ϕiα(rrr) = Rnl(|rrr−rrri|)Y m
l (θ, φ) , (26)

where the radial functions Rnl depend only on the distance to the position rrri of atom i and Y m
l

are spherical harmonics or real linear combinations of spherical harmonics. Differently from
an LCAO basis that is used in DFT, where often several radial basis functions are employed for
a given angular momentum, in TB one typically uses only one radial function for each angular
momentum and only includes orbitals that are dictated by the chemistry of the problem at hand.
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FIG. 1. (Color online) Illustration of the downfolding of a triple-ζ (3-ζ ) basis to an optimal single-ζ basis. Left plot: The original 3-ζ GPAW

pseudo-atomic orbitals (PAOs) basis. Right plot: the optimal basis function for Fe in the simple cubic (with a lattice constant of a = 2.50 Å),
the fcc (a = 3.46 Å) and the bcc (a = 2.87 Å) structures. The structures all have a nearest-neighbor distance of 2.5 Å and the basis functions
are virtually indistinguishable. The confinement potentials corresponding to "EPAO = 0.1 eV are shown in black. Also shown with a dashed
line is the optimal basis function for the Fe dimer at an interatomic distance of 2.5 Å.

simple TB models that we wish to construct. We therefore use
the dual basis sets of grid points20 and atomic orbitals17 im-
plemented in the GPAW code. We first calculate self-consistent
total energies and potentials using the systematic grid basis.
We then obtain the eigenstates |ψn⟩ expanded in a 3-ζ basis,
given by Eq. (2), by performing a single diagonalization in the
potential obtained by the grid calculation. Figure 2 illustrates
the very good agreement between the density of states (DOS)
calculated with the grid basis and with a 3-ζ basis.

B. Optimized atomic orbitals

The optimized minimal (1-ζ ) basis is obtained from the
multiple-ζ basis by a downfolding of the LCAO eigenstates
for a given atomic configuration. In a nonorthogonal minimal

basis {|ϕIµ⟩}, the contravariant basis {⟨ϕIµ|} provides a simple
expression for the closure relation,

⟨ϕIµ| =
∑

Jν

S−1
IµJν⟨ϕJν |,

∑

Iµ

|ϕIµ⟩⟨ϕIµ| = 1̂, (4)

with the overlap matrix S = ⟨ϕIµ|ϕJν⟩. The closure relation
may be seen as a projection operator, which, if applied on
|ψn⟩, measures to what extent |ψn⟩ can be represented in the
basis. We thus write the projection of |ψn⟩ expanded in the
multiple-ζ basis {|φIjµ⟩}, given by Eq. (2), on the minimal
basis {|ϕIµ⟩} as

Pn =
∑

Iµ

⟨ψn|ϕIµ⟩⟨ϕIµ|ψn⟩, P = N−1
e

∑

n

fnPn, (5)

FIG. 2. (Color online) Comparison of the density of states (DOS) of nonmagnetic iron calculated using three different basis sets. The
lattice constants for the calculations are a = 3.46 Å (fcc) and a = 2.87 Å (bcc). The structures have a nearest-neighbor distance of 2.5 Å.

184119-2

Fig. 1: Derivation of a single s and a single d radial function for Fe (right) from multiple s and
d basis functions (left). Taken from Ref. [50].

For example, for carbon or silicon four orbitals are used, one s orbital and three p orbitals. This
makes the TB approximation a chemically and physically intuitive method for analyzing bond
formation in materials.
The TB approximation builds on the perturbation expansion of the Hohenberg-Kohn-Sham
functional discussed in the previous section. The reference charge density ρρρ(0) and the reference
Hamiltonian HHH(0) in Eq. (24) are formally obtained by placing charge neutral, non-magnetic
atoms on positions for which the calculation is carried out and then overlapping the charge den-
sities of the atoms. The expansion of the energy Eq. (24) is typically terminated after second
order, which implies that the Hamiltonian Eq. (25) is a linear function of the density matrix. As
argued before, this should be a good approximation to DFT as only the exchange-correlation
energy includes contributions that are of higher than third order and these contributions are
partly taken into account in Eq. (24).
The radial functions of the TB orbitals must be modified from the radial functions of a free atom
in order that a good representation of the original DFT eigenfunctions may be achieved. In a
solid the atomic charge densities contract when the charge densities of neighboring atoms are
overlapped and therefore the radial function of the TB orbitals must also contract. Optimal ra-
dial functions may be obtained by downfolding from DFT eigenstates [50,51]. Fig. 1 illustrates
the downfolding of several radial functions onto a single radial function in Fe.

2.2.1 Parametrized Hamiltonian

Often the Slater-Koster two-center approximation is used to parametrize the Hamiltonian matrix
HHH(0). The matrix element 〈iα|Ĥ|jβ〉 is assumed to depend only on the position of atoms i and
j and the orbitals α and β. Clearly, this is a crude approximation and in general the matrix
element 〈iα|Ĥ|jβ〉 will depend on other close-by atoms [52], but it is often surprising how
much can be achieved with the simple two-center approximation. Fig. 2 shows the Hamiltonian
matrix elements for Fe that were obtained from the DFT eigenstates.
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FIG. 3. (Color online) Bond integrals: (a) nonorthogonal !EPAO = 0.1 eV, (b) orthogonal !EPAO = 0.1 eV, and (c) nonorthogonal
!EPAO = 0.4 eV. The solid lines in (b) show a fit to simple exponentials to the orthogonal !EPAO = 0.1 eV dimer curves.

d-valent TB model, we will retain only the ddσ , ddπ , and
ddδ integrals.

In Fig. 3 we show the bond integrals β that were calculated
from the optimal minimal basis using Eq. (12). The bond
integrals are discontinuous and poorly transferable. It has
earlier been shown that the inclusion of screening makes the
bond integrals β continuous at the nearest-neighbor and next-
nearest-neighbor distances.2,15,35,36 This prompted us to define
the bond integrals based on a Hamiltonian orthogonalized by
a symmetric Löwdin procedure,37

H̃ = S−1/2HS−1/2, (13)

where H corresponds to the full Hamiltonian in the sd-
minimal basis. Compared to other orthogonalization schemes,
the Löwdin orthogonalization has two important advantages:
the orthogonal orbitals bear the same symmetry as the
nonorthogonal original vectors,4 and they are the closest in a
least-squares sense.38 Figure 3(b) shows that the bond integrals
obtained by using H̃ in Eq. (12) are both transferable and
continuous. The very good agreement shown in Fig. 3(b),
even with the Fe dimer, is somewhat surprising. It has
already been shown in Fig. 1 that the optimal d basis is
transferable for a given interatomic distance. Therefore the
poor transferability observed in Fig. 3(a) can only be due to
three-center, 〈ϕI |VK |ϕJ 〉, contributions to the Hamilton matrix
elements leading to an environmental dependence of the two-

center integrals. The effect of the Löwdin orthogonalization
must be a screening of the three-center integrals.

A qualitative rationalization of the transferability can be
found by comparing H̃ to the D matrix used in an analy-
sis of chemical pseudopotential theory.39 Large three-center
contributions will be associated with large two-center overlap
integrals, thereby screening the large three-center integrals.
This interpretation is confirmed in Fig. 3(c), where radial
extents of the basis functions, and thereby the three-center
contributions, are reduced. Using !EPAO = 0.4 eV instead
of !EPAO = 0.1 eV reduces the radial extent of the d orbitals
from 5.1 to 3.9 Å. Consequently the unscreened bond integrals
show transferability and are continuous.

The bond integrals are fitted to simple exponentials as

βddλ(R) = addλ exp(−bddλR), λ = σ,π,δ. (14)

Due to the transferability of the bond integrals, shown in
Fig. 3, we simply use the bond integrals obtained for the
dimer; the parameters are given in Table I. At the nearest-
neighbor distance of the bcc and fcc structure of around
2.5 Å, the relative strength of the bond integrals, ddσ : ddπ :
ddδ = −0.60 : 0.41 : −0.08 eV, shows a surprisingly good
agreement with the canonical d-band ratio of −6 : 4 : −1.40

The transferability to the dimer also forms a link to the
widely used density-functional-based tight-binding (DFTB)
approach,13 where the bond integrals are evaluated from a
dimer calculation using a single-ζ basis in a potential from

184119-4

Fig. 2: Hamiltonian matrix elements for a d-valent orthogonal TB model of Fe in different
crystal structures. The solid lines show a fit to an exponential function. Taken from Ref. [50].

2.2.2 Charge transfer

In TB one frequently assumes that only the diagonal elements of δρρρ contribute to the second-
order term 1

2
JJJδρρρδρρρ. The diagonal elements are the charges in each orbital

qiα = Niα −N (0)
iα , (27)

that correspond to Mulliken charges in a non-orthogonal basis. The index 0 indicates the popula-
tion of orbital |iα〉 in a non-magnetic free atom. This approximation has important implications
for the structure of the TB model. From Eq. (24) and Eq. (25) the energy is given by

E = E(0) +
∑
iαjβ

H
(0)
iαjβnjβiα +

∑
iαjβ

1

2
Jiαjβqjβqiα , (28)

and the Hamiltonian as

Hiαjβ = H
(0)
iαjβ + Jiαkγ qkγSiαjβ . (29)

The modification ofHHH may thus be written as(
Eiα − E(0)

iα

)
Siαjβ with Eiα − E(0)

iα = Jiαkγ qkγ . (30)

Charge transfer modifies the onsite matrix elements Eiα but leaves the rest of the Hamiltonian
unchanged from its reference state H(0)

iαjβ . Sometimes multipole expansions are used for non-
spherical charges with an explicit parametrization of the angular contributions of JJJ in the above
equations.
Often, in an even simpler approximation, only the total charge on each atom qi =

∑
α qiα

is considered and the second-order term takes the form
∑

ij
1
2
Jijqiqj . Then from Eq. (29) all

onsite levels on an atom are shifted in parallel upon charge transfer. In literature it is sometimes
incorrectly assumed that this automatically corresponds to a point charge approximation.
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2.3 Bond formation in the tight-binding approximation

Following Eq. (28) two different types of bond formation are represented in a TB model, the
formation of covalent bonds through the modification of the off-diagonal elements of the den-
sity matrix δρiαjβ with iα 6= jβ and ionic interactions driven by charge transfer through the
modification of the diagonal elements of the density matrix δρiαiα = qiα. I will discuss the
decomposition of the TB energy in physically and chemically intuitive and transparent contri-
butions in the following.

2.3.1 Bond energy

The bond energy summarizes the energy that is stored in the bonds between different atoms

Ebond =
∑
iαjβ

(
Hiαjβ − EiαSiαjβ

)
njβiα = Eband −

∑
iα

EiαNiα . (31)

Differently from the band energy, the bond energy is invariant with respect to a shift of the en-
ergy scale. Using Eq. (29) the bond energy is closely related to the linear term in the TB energy

HHH(0)nnn = Ebond +
∑
iα

E
(0)
iα Niα . (32)

Equivalent to the intersite representation of the bond energy above is the onsite representation,

Ebond =
∑
iα

∫ EF

−∞

(
E−Eiα

)
niα(E) dE . (33)

The population of the density of states below Eiα leads to a negative contribution to the bond
energy, i.e., corresponding to the filling of bonding states. Once states above Eiα have to be
populated, the bond energy decreases, corresponding to a filling of anti-bonding states. The
integral over the complete band is zero, 0 = Ebond =

∑
iα

∫∞
−∞

(
E−Eiα

)
niα(E) dE, which

helps to show that the bond energy is always smaller or equal to zero,

Ebond ≤ 0 . (34)

2.3.2 Promotion energy

When bonds are formed, the onsite levels are re-populated. In the free atom the number of
electrons per orbital is denoted by N (0)

iα . For charge neutral atoms the promotion energy is then
written as

Eprom =
∑
iα

E
(0)
iα

(
Niα−N (0)

iα

)
. (35)

In contrast to the bond energy, the promotion energy is strictly positive as the electrons in the
free atom occupy the energetically lowest orbitals.
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2.3.3 Free atom energy

For the evaluation of the binding energy the energies of the free atoms are subtracted

EB = ETB − ETB
free atoms . (36)

From Eq. (28) the TB energy of non-magnetic, charge neutral free atoms is given by

ETB
free atoms =

∑
iα

E
(at)
iα N

(0)
iα −

1

2

∑
iαβ

JiαiβN
(0)
iα N

(0)
iβ , (37)

where E(at)
iα are the eigenstates of the free atom i and the population of the atomic orbitals is

equal to the population in the reference state, N (0)
iα .

2.3.4 Preparation energy

The preparation energy takes into account modifications of the onsite levels when the free atoms
are brought together and their charge density is overlapped to the reference charge density ρρρ(0),

Eprep =
∑
iα

(
E

(0)
iα −E(at)

iα

)
N

(0)
iα . (38)

2.3.5 Charge transfer

Charge transfer leads to two further contributions to the energy and a somewhat modified ex-
pression for the promotion energy above. Because of the onsite level difference between atoms
there is an energy linear in charge, and further the second-order contribution to the TB energy
Eq. (28). The two terms are denoted as an electrostatic interaction of charges on different atoms

Ees =
1

2

i6=j∑
ij

Jijqiqj , (39)

and an ionic onsite contribution for charging each atom

Eion = Ēiqi +
1

2

∑
i

Jiiq
2
i . (40)

The energy Ēi is obtained as a weighted average of the reference onsite levels on atom i and
corresponds to the electronegativity of the atom. The parameter Jii further determines resistance
against charge transfer from the charge neutral state.

2.3.6 Repulsive energy

The repulsive energy summarizes all terms that do not explicitly depend on the modification of
the density matrix δnnn. For this reason Eprep is also absorbed in the repulsive energy

Erep = −1

2

j 6=j∑
iαjβ

JiαjβN
(0)
iα N

(0)
jβ + Enuc + Eprep , (41)

where Enuc corresponds to the Coulomb repulsion of the bare atomic cores.
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2.3.7 Summary of the energy in the tight-binding approximation

In summary, the second-order expansion of DFT, Eq. (24), cast in a TB binding energy is re-
written in the form

EB = Ebond + Eprom + Eion + Ees + Erep . (42)

The TB expansion suggests a representation of bond formation in the steps summarized in the
following table. Typically, the steps 1–3 are repulsive, while step 4 is attractive and drives bond
formation.

1 Erep → overlap atomic charge densities

2 Eion → charge atoms

3 Eprom → re-populate atomic energy levels

4 Ebond + Ees → chemical and electrostatic interactions

3 The moments theorem and local expansions

For the derivation of interatomic potentials I next turn to local solutions of the TB model. In
particular, the moments theorem will allow us to relate the local electronic structure to the local
atomic environment, which is critical for analyzing the interaction between atoms.
The moments of the local density of states may be defined as

µ
(N)
iα =

∫
ENniα(E) dE . (43)

The moments may be used to characterize the density of states. The zeroth moment is just the
norm, µ(0)

iα = 1. The first moment gives the center of the density of states. From the second
moment the root mean square width of the density of states may be obtained and from the third
moment its skewness. The fourth moment characterizes the bimodality of the local density
of states, etc. If all moments are known, then the density of states may be reconstructed and
therefore may be viewed as a function of its moments,

niα(E) = niα(E, µ
(0)
iα , µ

(1)
iα , µ

(2)
iα , . . . ) . (44)

The idea of reconstructing the density of states from its moments (or equivalent information)
is the basis for the different methods that will be discussed in the following. In order that such
a reconstruction can be efficient, the moments of the density of states need to be accessible.
Here the moments theorem that I will briefly derive in the following provides the critical link. I
assume for ease of notation that the basis functions are orthonormal

〈iα|jβ〉 = δijδαβ . (45)
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By using the definition of the density of states from Eq. (21) the moments may be rewritten as

µ
(N)
iα =

∫
ENniα(E) dE =

∑
n

EN
n 〈iα|n〉〈n|iα〉

∫
δ
(
En−E

)
dE

=
∑
n

〈iα|ĤN |n〉〈n|iα〉 = 〈iα|ĤN |iα〉 , (46)

where I used the completeness of the eigenstates 1̂ =
∑

n |n〉〈n|. A further manipulation
enables a geometric interpretation

µ
(N)
iα = 〈iα|ĤN |iα〉 =

∑
jβkγ...

〈iα|Ĥ|jβ〉〈jβ|Ĥ|kγ〉〈kγ|Ĥ . . . Ĥ|iα〉

=
∑
jβkγ...

HiαjβHjβkγHkγ... . . . H...iα , (47)

with a complete basis 1̂ =
∑

iα |iα〉〈iα|. The last identity tells us that the N th moment may be
obtained from the product of N Hamiltonian matrix elements. The N th moment may therefore
be described as the sum of all self-returning hopping path of length N that start and end on the
same basis function.
Along the same lines it is straightforward to show that the moments of the spectrally resolved
density matrix

niαjβ(E) =
dρiαjβ
dE

, or ρiαjβ =

∫ EF

niαjβ(E) dE , (48)

may be obtained as

ξ
(N)
iαjβ =

∫
ENniαjβ(E) dE = 〈iα|ĤN |jβ〉 . (49)

The N th moment ξ(N)
iαjβ of the spectrally resolved density matrix is thus given by all interference

paths of N products of the Hamiltonian matrix that start and end on orbitals |iα〉 and |jβ〉,
respectively.
As the Hamiltonian matrix elements depend on the positions of the atoms, the moments theorem
relates the atomic structure to the electronic structure. For the reconstruction of the local density
of states, the lowest moments contribute basic information on the width and shape of the density
of states, while higher moments may be used to reconstruct increasingly finer details. This is
intuitive: the matrix elements Hiαjβ decay roughly exponentially with distance between the
atoms i and j, which means that the low moments only sample the local environment of an
atom and higher moments incorporate information of an increasingly distant neighborhood of
orbital |iα〉.
In the following I will discuss methods for the reconstruction of the band energy from the atom-
ically local neighborhood. These methods were developed originally for linear-scaling DFT
or TB. The methods have different starting points, but implicitly or explicitly they all corre-
spond to a reconstruction of the density of states from its moments. For the analytic bond-order
potentials we use the moments to derive a hierarchical analytic expansion of the interatomic
interaction.
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Fig. 3: Illustration of the semi-infinite recursion chain Hamiltonian.

3.1 Recursion and numerical bond-order potentials

In the recursion method the Hamiltonian matrix is transformed to tridiagonal form, from which
the Green function may be obtained as a continued fraction [53, 54]. Given a starting orbital
|u0〉 = |iα〉 first a basis transformation is carried out,

bn+1|un+1〉 =
(
Ĥ−an

)
|un〉 − bn|un−1〉 , (50)

with
bn = 〈un|Ĥ|un−1〉 , and an = 〈un|Ĥ|un〉 . (51)

The recursion is initialized with b0 = 0 and leads to orbitals |un〉 that have remarkable proper-
ties: the resulting Hamiltonian matrix is tridiagonal, i.e., it only has entries on the diagonal and
next to the diagonal,

〈un|Ĥ|um〉 =



a0 b1 0 0 0 0 . . .

b1 a1 b2 0 0 0 . . .

0 b2 a2 b3 0 0 . . .

0 0 b3 a3 b4 0 . . .

0 0 0 b4 a4 b5 . . .

0 0 0 0 b5 a6
. . .

...
...

...
...

... . . . . . .


, and 〈un|um〉 = δnm . (52)

The tridiagonal Hamiltonian may be viewed as semi-infinite, one-dimensional chain and is
illustrated in Fig. 3. The recursion also shows that every Hamiltonian may be represented as a
one-dimensional semi-infinite chain with nearest-neighbor interactions.
The moments of the density of states Eq. (43) may be obtained from self-returning paths along
the tridiagonal Hamiltonian matrix as

µ
(0)
iα = 1 ,

µ
(1)
iα = a0 ,

µ
(2)
iα = a20 + b21 ,

µ
(3)
iα = a30 + (a0 + a1)b

2
1 ,

µ
(4)
iα = a40 + b41 + (a20 + a21 + a0a1 + b22)b

2
1 ,

...
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3.1.1 Green function expansion

The Green function is defined as

Ĝ =
(
E1̂− Ĥ

)−1
. (53)

The matrix elements of the Green function in eigenstates are given by

〈ψn|Ĝ|ψm〉 =
δnm

E − En
. (54)

This is easily verified by inserting the identify 1̂ =
∑

n′ |ψn′〉〈ψn′ | into

δn,m = 〈ψn|ψm〉 = 〈ψn|(E1̂−Ĥ)Ĝ|ψm〉

=
∑
n′

〈ψn|E1̂−Ĥ|ψn′〉〈ψn′|Ĝ|ψm〉 =
E − En
E − Em

δnm . (55)

The Green function matrix elements in basis functions are given by

Giαjβ(E) =
∑
nm

〈iα|ψn〉〈ψn|Ĝ|ψm〉〈ψm|jβ〉 =
∑
n

〈iα|ψn〉〈ψn|jβ〉
E − En

. (56)

With the help of the recursion chain Eq. (50) the diagonal elements of the Green function matrix
may be expressed in the form of a continued fraction [53],

Giαiα(E) = G00(E) =
1

E − a0 −
b21

E − a1 −
b22

E − a2 −
b23

E − a3 −
b24

E − a4 −
b25
. . .

. (57)

Next the Green function is related to the density matrix by making use of the identity

− 1

π
Im
∫

1

E − En
dE =

∫
δ(E−En) dE , (58)

so that comparing to Eq. (21) and Eq. (48) results in the identities

niα(E) = − 1

π
ImGiαiα(E) and niαjβ(E) = − 1

π
ImGiαjβ(E) . (59)

The Green function may therefore be used for the computation of the band or bond energy. This
is used in the numerical bond-order potentials (BOPs) that will be introduced next.
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3.1.2 Numerical bond-order potentials

We are interested in the local calculation of the band energy or, for the TB approximation, the
bond energy associated to orbital |iα〉. This is achieved by terminating the recursion expansion
of the Green function after a few recursion levels n: The recursion coefficients am and bm for
m > n are replaced by a constant terminator

am = a∞ , bm = b∞ for m > n . (60)

The terminator in the Green function may be summed analytically and leads to termination of
the continued fraction at level n by

E − an−1 − T (E) , (61)

with

T (E) =
1

2

(
E−a∞ −

√
(E−a∞)2 − 4b2∞

)
(62)

obtained from the functional equation T (E) = b2∞/(E−a∞ − T (E)) for the ininite continued
fraction with constant coefficients.
The corresponding density of states is different from zero only in the interval between a∞−2b∞
and a∞ + 2b∞. A local expansion of the bond energy is now obtained as

Ebond,iα = − 1

π
Im
∫ EF E − Eiα

E − a0 −
b21

E − a1 −
b22

. . . −
. . .

E − an−1 − T (E)

. (63)

The integration of the Green function is carried out numerically, therefore the name numerical
BOPs.
For the evaluation of forces the off-diagonal elements of the Green function are also required.
These are obtained by defining

|u0〉 =
1√
2

(
|iα〉+ eiϑ|jβ〉

)
, (64)

with ϑ = cos−1 λ and therefore

G00 = λGiαjβ +
1

2

(
Giαiα +Gjβjβ

)
. (65)

A particular termination of the expansion ensures that the onsite and intersite representation of
the bond energy are identical [55]. Details of the numerical BOPs are available in Refs. [56–58].
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3.2 Kernel polynomial method

In the Kernel Polynomial Method (KPM) [59–61] the density of states is represented as

niα(ε) =

∫
K(ε, ε′)niα(ε′) dε′ , (66)

where the energy has been rescaled as

ε =
E − a∞

2b∞
. (67)

It is clear that this identity only holds if the kernel fulfills K(ε, ε′) = δ(ε−ε′). In order to
achieve an approximate, local representation of niα(ε) the kernel is expanded in Chebyshev
polynomials of the first kind

K(ε, ε′) =
1

π

1√
1−ε2

(
g
(0)
T + 2

nmax∑
n=1

g
(n)
T Tn(ε)Tn(ε′)

)
. (68)

The factors g(n)T are chosen in such a way that for every nmax the kernel is positive,K(ε, ε′) ≥ 0,
while it is also as narrow as possible for an efficient convergence to the Dirac delta function
when nmax is increased. Typically g(n)T smoothly decays as a function of n from g

(0)
T = 1 to

g
(nmax )
T = 0. Fig. 4 illustrates different damping factors.

By inserting the expansion for the Kernel in Eq. (66), an expansion for the density of states is
obtained as

niα(ε) =
1

π

1√
1−ε2

(
g
(0)
T + 2

nmax∑
n=1

g
(n)
T Tn(ε)µTn

)
, (69)

with the Chebyshev moments

µTn =

∫ 1

−1

Tn(ε)niα(ε) dε . (70)

As the Chebyshev polynomials may just be written in powers of ε, the Chebyshev moments are
linear combinations of the moments of the density of states, Eq. (21).
The damping factors g(n)T that ensure a positive expansion of the density of states remove much
of the contribution of higher moments. One way to avoid this is to add higher moments that are
generated based on a maximum entropy principle [63].

3.3 Fermi operator expansion

In DFT it is customary to introduce an electronic temperature. This is done in part for practical
reasons, as temperature dampens details of the Fermi surface in a metal and leads to faster con-
vergence of the k-space integration over the Brillouin zone as a function of the k-mesh density.
For the Fermi operator expansion the electronic temperature provides the starting point for the
expansion. With temperature, the band energy and the number of electrons are computed as

Eband =

∫
ε f(ε, µ)n(ε) dε and N =

∫
f(ε, µ)n(ε) dε (71)
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If the kernel in Eq. (26) is strictly positive, K (nmax)(ε,ε′) ! 0,
then, because the density of states is positive too, niα(ε) ! 0,
the resulting approximate density of states, in principle, also
fulfills n

(nmax)
iα (ε) ! 0. A positive kernel may be obtained by

using the trigonometric form of the Chebyshev polynomials,
Eq. (9), such that the kernel is represented as

K (nmax)(ε,ε′) = 1
π

1
sin φ

{

g
(0)
T +

nmax∑

n=1

g
(n)
T [cos n(φ − φ′)

+ cos n(φ + φ′)]

}

, (29)

where we used 2 cos φ cos φ′ = cos(φ − φ′) + cos(φ + φ′).
Therefore, in order to establish the positivity of the kernel,
it suffices to show that

D(α) = g
(0)
T + 2

nmax∑

n=1

g
(n)
T cos nα ! 0 , (30)

for arbitrary α. Examples of positive kernels are the Fejer
kernel,

g
(n)
T = 1 − n

nmax
, (31)

and the Jackson kernel that is used in the KPM,21

g
(n)
T = nmax − n + 1

nmax + 1

(
cos π

n

nmax + 1

+ sin π
n

nmax + 1
cot π

1
nmax + 1

)
. (32)

In practice, a positive kernel does not necessarily mean that the
representation of the density of states is positive everywhere, as
the band center and band width, a(∞)

iα and b
(∞)
iα , are parameters

that need to be chosen prior to the expansion. If, for example,
the bandwidth is chosen too narrow, then the kernel cuts out
only part of the true density of states. Therefore the expansion
coefficients τ

(n)
iα that one would obtain from carrying out the

integral over the kernel explicitly no longer agree with the
expansion coefficients that are calculated from the moments
theorem. Thus, if the expansion coefficients that are obtained
based on the moments theorem are entered into Eq. (28), the
density of states may become negative although the kernel is
positive. Therefore the choice of a

(∞)
iα and b

(∞)
iα is critical for

a sensible expansion of the density of states. Here, we use the
Gerschgorin circle theorem35 to guarantee that the band width
and band center are chosen in such a way that the complete
spectrum niα(E) is covered and therefore the expansion of the
density of states is strictly positive, see Appendix B.

We show how to achieve an explicitly positive representa-
tion of the density of states in the analytic bond-order potentials
by following the KPM and expanding the kernel in Chebyshev
polynomials of the second kind:

K (nmax)(ε,ε′) = 2
π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U Un(ε)Un(ε′)

]

,

(33)

such that the density of states may be written in the form of
Eq. (2) modified by the kernel expansion coefficients g

(n)
U ,

n
(nmax)
iα (ε) = 2

π

√
1 − ε2

[

g
(0)
U +

nmax∑

n=1

g
(n)
U σ

(n)
iα Un(ε)

]

. (34)

By using Un = sin(n + 1)φ/ sin φ, the representation of the
kernel is equivalent to

K (nmax)(ε,ε′) = 1
π

1
sin φ′

{
nmax+1∑

n=1

g
(n−1)
U [cos n(φ − φ′)

− cos n(φ + φ′)]

}

, (35)

where we used 2 sin φ sin φ′ = cos(φ − φ′) − cos(φ + φ′). By
comparing to Eq. (29), we may choose to identify

g
(n)
U = g

(n+1)
T

/
g

(1)
T , n = 1, . . . ,nmax, (36)

where the coefficients g
(n+1)
T are the coefficients of an expan-

sion in terms of Chebyshev polynomials of the first kind that
includes terms up to order nmax + 1. In Fig. 2, the kernel that
is obtained in this way is illustrated.

An explicitly positive kernel may be obtained as follows.
As φ and φ′ are limited to the interval [0,π ] and because of the
symmetry of the cosine function, we may rewrite the kernel
(33) as

K (nmax)(ε,ε′) = 1
2π

1
sin φ′

[
nmax+1∑

n=1

g
(n−1)
U (cos nα − cos nβ)

]

,

(37)

with α = |φ − φ′| and β = π − |φ + φ′ − π |, where 0 "
α " β " π . Therefore the kernel is positive if

nmax+1∑

n=1

g
(n−1)
U cos nα !

nmax+1∑

n=1

g
(n−1)
U cos nβ . (38)

FIG. 2. (Color online) Jackson kernel, Eq. (32), for Chebyshev
polynomials of the first kind for nmax = 50 (black squares), and
the corresponding kernels, Eqs. (36) (red circles) and (40) (blue
triangles), for Chebyshev polynomials of the second kind.
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Fig. 4: Damping factors used in the KPM (Jackson kernel) and analytic BOPs for nexp = 50.
Taken from Ref. [62].

with the energy scale Eq. (67), where µ is the electron chemical potential and

f(ε, µ) =
1

1 + exp
(
ε−µ
kBT

) , (72)

the temperature dependent Fermi-Dirac distribution function and n(ε) the density of states. At
T = 0 K the smearing is zero and f(ε, µ) corresponds to the Heaviside step function Θ(ε, εF )

which is one below the Fermi energy εF and zero above. In the Fermi operator expansion (FOE)
method [64, 65] the density matrix is locally approximated by writing it as

ρiαjβ =

∫
f(ε, µ)niαjβ(ε)dε , (73)

and then expanding f in a polynomial

f(ε, µ) =
∑
k

ckε
k . (74)

By making use of Eq. (49) the density matrix is written as

ρiαjβ =
∑
k

ck ξ
(k)
iαjβ , and Eband =

∑
iαjβ

∑
k

ck ξ
(k)
iαjβHjβiα =

∑
iα

∑
k

ckµ
(k+1)
iα . (75)

In practice the Fermi-Dirac distribution function is expanded in Chebyshev polynomials

f(ε) =
1

π
√

1−ε2
(
µT0 + 2

nmax∑
n=1

µTnTn(ε)

)
. (76)

with the Chebyshev moments µTn , Eq. (70), and the band energy accordingly. Another repre-
sentation of the Fermi operator expansion, the rational representation, may be related to the
recursion expansion.
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3.4 Analytic bond-order potentials

The analytic BOPs combine the recursion expansion and the KPM. I start from a scaled energy
Eq. (67) that allows us to work with Chebyshev polynomials that are defined on the interval
[−1, 1]. The analytic BOPs use the Chebyshev polynomials of the second kind as the they are
orthogonal with respect to the square root function

2

π

∫ +1

−1
Un(ε)Um(ε)

√
1−ε2 dε = δnm . (77)

The square root function is also the density of states of the semi-infinite recursion chain when
all matrix elements are identical a0 = a1 = · · · = a∞ and b1 = b2 = · · · = b∞. If the reference
energy is shifted to a0 = 0, then b21 = µ

(2)
iα . As b1 = b∞ determines the width of the density of

states, the bond energy scales as
√
µ
(2)
iα and the Finnis-Sinclair potential, Eq. (1), is immediately

obtained. Therefore, by choosing the Chebyshev polynomials of the second kind, the analytic
BOPs incorporate the Finnis-Sinclair potential at the lowest order of approximation.
The Chebyshev polynomials of the second kind fulfill the recursion relation

Un+1(ε) = 2εUn(ε)− Un−1(ε) , (78)

with U0 = 1 and U1 = 2ε.
The expansion coefficients for the density of states are obtained by projection,

σ
(n)
iα =

∫ +1

−1
Un(ε)niα(ε) dε , (79)

and the density of states is expressed as

niα(ε) =
2

π

∑
n

√
1−ε2 σ(n)

iα Un(ε) . (80)

The expansion coefficients σ(n)
iα are computed using the moments theorem Eq. (43) as

σ
(n)
iα = 〈iα|Un(ĥ)|iα〉 , (81)

with the scaled Hamiltonian

ĥ =
Ĥ − a∞

2b∞
. (82)

In practice nmax expansion coefficients are computed, which corresponds to evaluating nmax

moments of the density of states. Thus the expansion Eq. (80) becomes

niα(ε) =
nmax∑
n=0

√
1−ε2 σ(n)

iα Un(ε) , (83)

or using ε = − cosφ,

niα(ε) =
nmax∑
n=0

σ
(n)
iα sin(n+1)φ . (84)
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If a Fourier series expansion is abruptly terminated because only the first nmax expansion coef-
ficients are taken into account, this may lead to significant oscillations that are known as Gibbs
ringing. In particular, these oscillations may be so large that the expansion of the density of
states Eq. (84) may become negative.
The Gibbs ringing may be removed and a strictly positive expansion of the density of states may
be enforced by damping the expansion coefficients,

niα(ε) =
nmax∑
n=0

gn σ
(n)
iα sin(n+1)φ . (85)

The damping factors gn are similar to the damping factors in KPM and decrease monotonically
from g0 = 1 to gnmax = 0 [62, 66], see Fig. 4. They damp oscillations and avoid Gibbs ringing
and potentially negative values of the density of states. As the damping factors decrease to zero
for nmax , they remove most of the contribution from higher moments. Therefore more moments
need to be calculated, i.e., nmax needs to be increased. As the calculation of the moments is the
most time consuming part in the energy and force evaluation, one would like to keep nmax as
small as possible.
This may be resolved by terminating the expansion Eq. (85). One first evaluates moments up
to nmax from the Hamiltonian using the moments theorem. Further moments from nmax+1 up
to nexp � nmax are then computed using an estimated model Hamiltonian that has the form of
a semi-infinite chain with nearest neighbor bonds only [62]. Because of the simple structure
of the semi-infinite chain, only very few matrix elements need to be multiplied and therefore
the computation of the moments along the chain is very fast. The resulting expansion takes the
form

niα(ε) =
nmax∑
n=0

gn σ
(n)
iα sin(n+1)φ+

nexp∑
n=nmax+1

gn σ
(n)
iα sin(n+1)φ . (86)

The damping factors decay monotonically from g0=1 to gnexp=0. For nexp�nmax the damping
factors for the first few moments are close to one and the contributions of the corresponding
moments are hardly affected. This means that the expansion as a function of nmax converges
quickly to the tight-binding reference. In practice one uses nexp ≈ 20×nmax . This leads to a
good quality of the reconstructed DOS already at a small number of calculated moments.
The density of states Eq. (86) may be integrated analytically,

Ebond ,iα = 2b∞

nexp∑
n=0

gn σ
(n)
iα

(
χ̂n+2(φF )− γ0χ̂n+1(φF ) + χ̂n(φF )

)
, (87)

with γ0 = (Eiα−a∞)/b∞ and χ̂0 = 0,

χ̂1 = 1− φF
π

+
1

2π
sin(2φF ) . (88)

The response functions take the form

χ̂n(φF ) =
1

π

(
sin(n+1)φF

n+1
− sin(n−1)φF

n−1

)
. (89)
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Finally, the number of electrons in orbital Niα is obtained as

Niα =

nexp∑
n=0

gn σ
(n)
iα χ̂n+1(φF ) , (90)

with the Fermi phase εF = − cosφF . For the gradients of the bond energy Ebond ,iα and the
number of electrons Niα efficient analytic expressions may be obtained [14, 62]. The analytic
BOPs have been extended further to include non-collinear magnetism [14, 67]. The analytic
BOPs scale-linearly with the number of atoms. An efficient and parallel implementation is
available [68] that enables simulations with millions of atoms.

3.5 Examples for the analytic bond-order potentials

3.5.1 Bond order

The density matrix is also called the bond order, a factor of two is usually between the two
quantities in non-magnetic systems. I transform the orbitals |iα〉 and |jβ〉 in a new basis of
bonding and anti-bonding dimer states to analyze bond formation

|+〉 =
1√
2

(
|iα〉+ |jβ〉

)
bonding state , (91)

|−〉 =
1√
2

(
|iα〉 − |jβ〉

)
anti-bonding state . (92)

The density matrix may then be obtained from the difference of the number of electrons in
bonding and anti-bonding states

ρiαjβ = 〈iα|ρ̂|jβ〉 =
1

2

(
N+ −N−

)
, (93)

with N+ = 〈+|ρ̂|+〉 and N− = 〈−|ρ̂|−〉 and Niαiα +Njβjβ = (N++N−) the number of elec-
trons in the bond. If we assume a non-magnetic calculation and take into account spin degen-
eracy, then 0 ≤ Niαiα ≤ 2 and the same for Njβjβ . This allows one to put limits on the density
matrix

|ρiαjβ| ≤ Niαjβ and |ρiαjβ| ≤ 2−Niαjβ , (94)

with Niαjβ = (Niαiα+Njβjβ)/2. Fig. 5 shows the density matrix for close packed transition
metals as a function of band filling.

3.5.2 Structural stability

The analytic BOPs may be employed for the analysis of the structural stability of different
phases. To this end one compares the structures at the same repulsive energy, following the
structural energy difference theorem [44]. Fig. 6 shows the structural energy differences for a
number of close packed phases.
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!kU
bond = 20b!!

i
"

−1

"F

#" − 1/2#i0$!kni#"$d"

= 20b!"
−1

"F

"!
i

!kni#"$d" . #78$

The second equality follows because we have made the ex-
cellent approximation for metals that each atom remains lo-
cally charge neutral, so that !kNi vanishes. Substituting the
expansion for the density of states, Eq. #39$, the gradient
becomes

!kU
bond#nmax$ = 10b! !

m=0

nmax

!
n=0

m

pmn!k!
i

$̂i
#n$

%%&̂m+2#'F$ + &̂m#'F$& . #79$

The derivative of the dimensionless moments !k$̂i
#n$ may be

further simplified,

!k!
i

$̂i
#n$ =

1
5!

i(
'i((!kĥ

n(i()

=
1
5!

i(
'i((nĥn−1!kĥ(i()

=
1
5 !

i(j)
n*̂i(j)

#n−1$!khj)i(, #80$

where ĥ= #Ĥ−a!$ / #2b!$ and we have taken into account that
the trace of a product of operators is invariant with respect to
cyclic exchange of arguments. Finally, by introducing

+̃i(j)
#nmax$ = 2 !

m=0

nmax

!
n=0

m

pmnn*̂i(j)
#n−1$%&̂m+2#'F$ + &̂m#'F$& , #81$

with *̂i(j)
#−1$ =0, the forces may be written in a form similar to

Hellmann-Feynman forces,

Fk
bond = − !kU

bond#nmax$ = − !
i(j)

+̃i(j)
#nmax$#!kHj)i($ . #82$

We prove in the Appendix that as nmax tends to infinity,
+̃#nmax$→+, so that we recover the exact Hellmann-Feynman
force Eq. #20$. It remains for future research to investigate
the magnitude of the errors made by using site-dependent
coefficients ai! and bi! in our analytic BOP expansion.

V. CONCLUSION

In this paper we have derived analytic expressions for the
bond energy and forces within d-valent transition-metal sys-
tems. This has been achieved by expanding the on-site den-
sity of states in terms of Chebyshev polynomials of the sec-
ond kind weighted by the semielliptic density of states
corresponding to the well-known second-moment approxi-
mation. The resulting expansion generalizes the second-
moment approximation to the density of states by including
higher moments that enter the expansion linearly. We showed
using Stoner theory that including contributions up to the
sixth moment in the density of states was sufficient to repro-
duce the very different behavior observed between the ferro-
magnetic moments of bcc 3d-valent iron and its close-packed
fcc and hcp phases under pressure. The corresponding sixth-
moment expansion for the bond energy associated with a
given site was also found to display the hcp→bcc→hcp
→ fcc structural trend across the nonmagnetic 4d and 5d
transition-metal series.

We have derived an analytic expression for the bond order
by using BOP theory to write the intersite Green’s function
as a derivative of an on-site Green’s function. The resultant
expansion coefficients are linear combinations of the inter-
ference paths that link the atoms at the two ends of the bond.
We showed that the corresponding intersite representation
for the bond energy can be constrained to be identical to that
within the on-site representation. An analytic expression for
the forces is obtained in terms of a linear combination of the
interference paths. It is proved to converge to the Hellmann-
Feynman force as higher moments are included.

These analytic BOPs not only generalize the previous
second-moment Finnis-Sinclair and fourth-moment Carlsson
potentials to include higher moments, but they also give ex-
plicit analytic expressions for the valence dependence of the
prefactors associated with the different moment contribu-
tions. Thus they are applicable to both the study of property
trends across the transition-metal elements and alloy behav-
ior. These potentials are currently being fitted to bcc transi-
tion metals in order to perform large scale MD simulations of

FIG. 5. Comparison of first nearest-neighbor ,, -, and . bond
orders within sixth-moment approximation with k-space TB results
for bcc, fcc, and hcp as a function of the d valence. Dark #light$
curves correspond to Eq. #76$ with #without$ constraint contribu-
tion. As the latter contribution is small, light curves are visible only
for bcc - bond order.

RALF DRAUTZ AND D. G. PETTIFOR PHYSICAL REVIEW B 74, 174117 #2006$
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Fig. 5: Bond order as a function of band filling for close-packed transition metals. The TB
approximation is compared to BOPs. Taken from Ref. [13].

3.5.3 Ti phase diagram

Fig. 7 shows the free energy differences between competing phases in Ti. The phase diagram
predicted from analytic BOPs is in very good agreement with experiment and DFT, despite the
fact that the energy differences between the competing phases are of the order of only a few
meV.

3.5.4 Parametrization

For the parametrization of the analytic BOPs, first the Hamiltonian matrix elements are obtained
from downfolding on DFT wavefunctions [50, 51], see Figs. 1 and 2. The Hamiltonian is then
parametrized and together with the repulsive energy fitted to reproduce DFT reference data.
Software that largely automatizes the parametrization procedure is available [68, 71].
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FIG. 9. (Color online) (Left panels) Convergence of structural
energy differences for exact BOP expansion with respect to maximum
number of moments mmax. The bottom panel gives TB reference
structural energy differences as shown from the right panel of
Fig. 6. All energy differences are given with respect to fcc and
plotted against number of d electrons. (Right panels) Convergence
of structural energy differences for first-order BOP expansion with
respect to maximum number of moments mmax. The bottom panel
gives first-order TB reference structural energy differences. All
energy differences are given with respect to fcc and plotted against
number of d electrons in fcc.

the fine structure of the Laves DOS, for example, would only
be picked up by the rapidly oscillating high-order Chebyshev
polynomials in the BOP expansion Eq. (39). Their neglect is
responsible for the remaining errors in the bottom left panel of
Fig. 10. As an aside, we see in the top left panel of Fig. 11 that
the linear approximation to the expansion coefficients leads to
a sizable shift in the bonding and antibonding peaks in the bcc
DOS to lower energies. This results in the deep minimum of
the (bcc-fcc) BOP structural energy difference curve in the left
panel of Fig. 9 being shifted from Nd around 4.1 (nonlinear)
to 3.4 (linear) with an accompanying error in the energy 50%
that of the structural energy difference itself.

The errors made by using the first-order expression,
Eq. (42), can be investigated explicitly for the TB case.

FIG. 10. (Color online) (Left panels) Errors in exact BOP
structural energy difference curves for mmax = 6,8,10 with respect
to exact TB result shown in bottom left panels of Fig. 9. Errors
are plotted against number of d electrons. (Right panels) Errors in
first-order BOP structural energy difference curves for mmax = 6,8,10
with respect to first-order TB result shown in bottom right panel of
Fig. 9. Errors are plotted against number of d electrons in fcc.

These errors are shown in the bottom panel of Fig. 12,
which has been obtained by comparing the exact with the
first-order TB structural energy difference curves in the
bottom left and bottom right panels of Fig. 9. We see
that the errors are all positive with the bcc half-filled band
displaying a sizable error compared to the other structure
types. This can be understood by looking at the second-
order error,58 which is neglected in the first-order expression,
Eq. (42), namely,
{(

U II
bond−U I

bond

)
−

(
U II

bond−U I
bond

)(1)}(2) = 1
2nI

(
EI

F

)
(!EF )2,

(48)

where !EF = EII
F − EI

F . We have replaced the band energy
on the left-hand side with the bond energy as they are identical
for our non-self-consistent TB model. The top panel of Fig. 12
shows the band-filling variation in the normalized values of
!EF for the different structure types, while the middle panel

224116-13

Fig. 6: Structural energy differences for a number of close-packed phases (left panel). mmax

indicates the moment at which the expansion was terminated, the lowest panels show the TB
reference. The right panel shows a first order expansion. For details Ref. [69], from which this
figure was also taken.

volumes, and Upot
0( ) is the energy of the equilibrium ω or hcp phases. The thermal averages in

equation (16) were calculated from MD trajectories in the NVT ensemble with a duration of
10 ps after complete equilibration with a Langevin thermostat for 5 different volumes. For the
ω phase we employed a 4×4×6 supercell while for the hcp phase a 6×6×4 supercell,
with a total of 288 atoms for both structures. For each temperature, the obtained free energy-
volume curves were fitted using the Birch–Murnaghan equation [99, 100] to determine the
value of the zero-pressure (Helmholtz) free energy.

Since the bcc structure is not stable at 0 K, temperature integration as in equation (16) is
not possible. To calculate the free energy of the bcc phase, we instead employed the standard
Frenkel–Ladd method [101] to integrate the free energy difference between our potential U 1

and a reference potential U 0,
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with k=5 eVÅ−2. The thermal averages � MU U1 0⟨ ⟩ were again calculated in the NVT
ensemble for 10 ps using a 6×6×6 bcc cubic supercell with 432 atoms. The volume was
varied for each temperature so that the total pressure was zero. The integral in equation (17)
was evaluated using 15 values of the switching parameter λ.

Figure 7 presents the Helmholtz free energy differences between ω and hcp and between
bcc and hcp as a function of temperature. The energy difference between ω and hcp at 0 K
reduces to 3 meV at−1if the zero point energy is considered. Our BOP predicts a phase

Figure 7. Helmholtz free energy differences with respect to the hcp phase as a function
of temperature. At zero pressure the phase with the lowest free energy is the most stable
phase.
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was evaluated using 15 values of the switching parameter λ.

Figure 7 presents the Helmholtz free energy differences between ω and hcp and between
bcc and hcp as a function of temperature. The energy difference between ω and hcp at 0 K
reduces to 3 meV at−1if the zero point energy is considered. Our BOP predicts a phase

Figure 7. Helmholtz free energy differences with respect to the hcp phase as a function
of temperature. At zero pressure the phase with the lowest free energy is the most stable
phase.
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Fig. 7: Free energy differences as computed for Ti with analytic BOPs. Taken from Ref. [70].
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4 Many atom expansions

In the first part of this chapter I discussed the derivation of simplified electronic structure models
from DFT. A local expansion of the TB energy then led to explicit interatomic potentials.
While a lot of insight can be gained from the analysis of bond formation in the BOPs and robust
parametrizations may be achieved with few parameters, the accuracy and transferability of the
BOPs are also limited by the coarse-graining approximations from DFT to TB and BOP.

In the past years an important focus in the field of atomistic modeling was the parametrization
of DFT reference data with very high accuracy, i.e., errors of less than a few meV. The TB and
BOP expansions introduced in the previous sections are not competitive here, as the approxi-
mations made down the coarse-graining hierarchy from DFT to TB to BOPs introduce errors
that are larger than a few meV. As I will discuss in the following, one can develop models
that incorporate some of the spirit of TB for obtaining meV accurate parametrizations of DFT
reference data.

For the parametrization of large DFT datasets with very high accuracy typically methods that
are rooted in machine-learning are employed, for example, neural network potentials that are
based on neural networks [15] or Gaussian process regression in the Gaussian approximation
potentials [16]. All machine-learning methods have in common that the target property, for
example, the atomic energy, is obtained as a complex, non-linear function of some mathemat-
ical descriptions of the local atomic environment. The detailed mathematical structure of the
descriptors are mostly obtained by intuition. One may view the empirical mathematical struc-
ture of the descriptors as the Achilles’ heel of machine-learning interatomic potentials and a
formally complete descriptor of the local atomic environment is desirable. The atomic cluster
expansion [34, 37] achieves a formally complete description of the local atomic environment
and will be introduced in the following.

4.1 Atomic cluster expansion

The atomic cluster expansion (ACE) provides a complete descriptor for the local environment
of an atom [34, 37]. Each atom i has a configuration that in the simplest case of an elemental
material and excluding charge transfer or magnetism is fully characterized by the distance vec-
tors to all neighboring atoms j, rrrji = rrri−rrrj , and where rrri and rrrj are the positions of the atoms
i and j, respectively. The collection of all the distance vectors is the configuration

σσσ = (rrr1i, rrr2i, rrr3i, . . . ) . (95)

A scalar product between functions f(σσσ) and g(σσσ) is defined as

〈f |g〉 =

∫
dσσσ f ∗(σσσ) g(σσσ)ω(σσσ) , (96)
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where ω(σσσ) is a weight function. Next complete basis functions that depend only on a single
bond are introduced

〈φv(σ)|φu(σ)〉 = δvu , (97)∑
v

[φv(rrr)]
∗φv(rrr

′) = δ(rrr−rrr′) . (98)

For establishing a hierarchical expansion furthermore φ0 = 1, which may be understood as an
atom without properties, i.e., the vacuum state.
A cluster α with K elements contains K atoms α = (j1, j2, . . . , jK), where the order of en-
tries in α does not matter and indices are pairwise different i 6= j1 6= j2 6= jK . The vector
ν = (v0; v1, v2, . . . , vK) contains the list of single-atom basis functions in the cluster, and only
single-atom basis functions with v > 0 are considered in ν. A cluster basis function is then
given by

Φαν = φv1(rrrj1i)φv2(rrrj2i) . . . φvK (rrrjK i) . (99)

The orthogonality and completeness of the single-atom basis functions transfers to the cluster
basis functions

〈Φαν |Φβµ〉 = δαβδνµ , (100)

1 +
∑
γ⊆α

∑
ν

[Φγν(σσσ)]∗Φγν(σσσ
′) = δ(σσσ−σσσ′) , (101)

where α is an arbitrary cluster and the right-hand side of the completeness relation is the product
of the relevant right-hand sides of Eq. (98). The expansion of an element of the energy of atom i

may therefore be written in the form

Ei = J0 +
∑
αν

JανΦαν(σσσ) , (102)

and the expansion coefficients Jαν obtained by projection

Jαν = 〈Φαν |G(σσσ)〉 . (103)

Writing the expansion Eq. (102) explicitly in single-atom basis functions leads to

Ei =

i6=j∑
j

∑
v1

Jv1φv1(rrrji) +
1

2

i6=j1 6=j2∑
j1j2

∑
v1v2

Jv1v2φv1(rrrj1i)φv2(rrrj2i)

+
1

3!

i6=j1 6=j2...∑
j1j2j3

∑
v1v2v3

Jv1v2v3φv1(rrrj1i)φv2(rrrj2i)φv3(rrrj3i) + . . . . (104)

This may be rewritten in a slightly different way with unrestricted sums and updated expansion
coefficients

Ei =
∑
j

∑
v1

cv1φv(rrrji) +
1

2

∑
j1j2

∑
v1v2

cv1v2φv1(rrrj1i)φv2(rrrj2i)

+
1

3!

∑
j1j2j3

∑
v1v2v3

cv1v2v3φv1(rrrj1i)φv2(rrrj2i)φv3(rrrj3i) + . . . , (105)
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where only i is excluded from the summations over j1, j2, . . . . The expansion Eq. (105) is
identical to Eq. (104), with expansion coefficients cν that are different from the expansion co-
efficients Jν in Eq. (104). The expansion coefficients cν are simple functions of Jν that may be
obtained by taking into account that products of basis functions of the same argument may be
expanded into linear combinations of single basis functions, for example, φv1(rrrji)φv2(rrrji) =∑

v avφv(rrrji), etc., such that the self-interactions are removed by an appropriate modification of
a lower-order expansion coefficient. The relation between Jν and cν is also outlined in Ref. [72].
I next introduce the atomic density

ρi(σ) =

j 6=i∑
j

δ(σ−σj) , (106)

and the atomic base that is obtained as

Av = 〈ρi|φv〉 =

j 6=i∑
j

φv(rrrj) . (107)

This allows us to rewrite the expansion Eq. (105) in the form

Ei =
∑
ν

cνAAAν with AAAν = Av1Av2Av3 . . . (108)

where the index ν collects the required indices v1, v2, v3, . . . from Eq. (105).
By construction the expansion is invariant with respect to permutation of identical atoms. The
change from Eq. (104) to Eq. (105) further means that the atomic expectation values of the
many-atom correlation functions Φαν may be expressed exactly by products of expectation val-
ues of single-bond basis functions. This enables a very efficient implementation as the effort
for evaluating the many-atom correlation functions scales linearly with the number of neighbors
irrespective of the order of the correlation functions.
The expansion Eq. (107) is general, which also means that in general it is not invariant under
rotation. Rotationally invariant expansions may be obtained as outlined in the following. First,
the single-bond basis functions are chosen as basis functions of the irreducible representations
of the rotation group. In practice, this corresponds to linear combination of atomic orbitals
(LCAO) basis functions as in TB, Eq. (26),

φinlm(rrr) = Rnl(|rrr−rrri|)Y m
l (θ, φ) . (109)

Rotationally invariant products are obtained with the help of generalized Clebsch Gordan coef-
ficients

Bν =
∑
mmm

(
lll

LLL
0

)
N

An1l1m1An2l2m3An3l2m3 . . . , (110)

with lll = (l1, l2, l3, . . . ), mmm = (m1,m2,m3, . . . ) and LLL are intermediate angular momenta that
arise from products of the spherical harmonics [34, 37, 72–74]. The expansion for the energy
may then be represented as

Ei =
∑
ν

cνBBBν . (111)
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Fig. 8: Comparison of predictions from ACE to DFT reference. The energies are compared
over three orders of magnitude. The graph shows many thousand data points and outliers are
visible in particular. Taken from Ref. [34].

4.2 Relation to other descriptors

The completeness of the ACE allows one to make contact with other frequently used descriptors.
Here I list a few popular descriptors and machine-learning potentials that may be rewritten in
the form of an ACE [34, 37]:

• Steinhardt parameters: the Steinhardt parameters [75] are frequently employed for struc-
ture classification.

• Symmetry functions: neural network potentials use 2-body and 3-body functions, called
symmetry functions, as descriptors for the atomic environment [15].

• Smooth overlap of atomic positions (SOAP): the SOAP descriptor [76] is employed, for
example with the Gaussian approximation potential (GAP) [16]. A tensorial version of
SOAP is also available [27].

• Spectral neighbor analysis potential (SNAP): the SNAP employs the SOAP descriptor
with hyperspherical harmonics [21].

• Moment tensor potentials (MTP): the MTPs [22] provide an expansion of the interatomic
energy in terms of Cartesian tensors.

4.3 Parametrization

Compared to TB and BOP models, the ACE provides less physical insight but greater flexibility
for the accurate parametrization of arbitrary interatomic interactions. This means that a larger
number of reference data needs to be available for fitting the ACE expansion coefficients cν .
Fig. 8 shows the comparison of the ACE predictions for copper compared to DFT reference
data. More than 50000 DFT total energy calculations were used for the parametrization of the
ACE. The reference data set comprises many different bulk crystal structures, with and without
defects, at various volumes and deformations in addition to small clusters with 2 to 25 Cu atoms.
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Knowledge and insight gained from TB and BOP can be used for the parametrization of ACE.
For the Cu example, the ACE was built on the Finnis Sinclair potential Eq. (1). However, instead
of computing the density ρi and the repulsion

∑
j Vij/2 from pairwise functions, density and

repulsion were represented by a general ACE expansion. The non-linear square-root embedding
function helps to converge the ACE faster as compared to a linear expansion as the non-linear
dependence of the bond energy on coordination is immediately taken into account. Furthermore,
the radial functions Rnl may be related to the minimal basis radial functions of TB models.

5 Summary and conclusions

This chapter exemplifies two strategies for obtaining interatomic potentials in materials science.
The derivation of BOPs from DFT encompasses a systematic coarse-graining of the electronic
structure that provides insight into bond formation and is amenable to physical and chemical
interpretation. In contrast, ACE is a formal many-atom expansion that is flexible to model bond
formation accurately but with many fitting parameters, so that large numbers of DFT reference
data are required.
The TB approximation is obtained from DFT as a second-order expansion with respect to the
density matrix of overlapping spherical atomic charge densities. A physically transparent mech-
anism of bond formation is obtained by grouping the terms in the expansion in bond energy and
electrostatic interactions that drive the formation of covalent, polar and ionic bonds, the charg-
ing of the atoms and the promotion of electrons out of their atomic state, and a repulsive energy
that keeps the atoms apart.
The moments theorem allows one to relate the atomic structure to the electronic structure. I
introduced several methods that implicitly or explicitly make use of the moments theorem to
reconstruct the bond energy from the local atomic environment. The recursion method first
transforms the Hamiltonian to tridiagonal form, which enables a continued fraction representa-
tion of the Green function. The numerical BOPs make use of the recursion method for a local
construction of the bond energy. The KPM expands the kernel into Chebyshev polynomials for
a local expansion of the bond energy. Closely related is the FOE that starts from the expansion
of a temperature dependent electronic broadening function. Finally, the analytic BOPs pro-
vide explicit analytic expressions for energies and forces that may also be used to analyze bond
strengths and structural stability. The analytic BOPs reproduce the DFT energies very well and
enable the simulations of phase diagrams in good agreement with experiment. Software for
simulations with millions and for the efficient parametrization of new models is available.
The ACE provides a formal many-atom expansion that enables parametrizations with arbitrary
accuracy given that sufficient reference data is available. The completeness of the ACE also
means that other descriptors and machine-learning potentials may be represented in the form of
an ACE. The parametrization of the ACE was discussed briefly and illustrated for copper.
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Phys. Rev. B 84, 155119 (2011)

[52] E.J. McEniry, R. Drautz, and G.K.H. Madsen,
J. Phys.: Condens. Matter 25, 115502 (2013)

[53] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 225 (1950)

[54] R. Haydock in H. Ehrenreich, F. Seitz, and D. Turnbull (eds.)
Solid State Physics (Academic Press, New York, 1980) Vol. 35, p. 215

[55] M. Aoki, Phys. Rev. Lett. 71, 3842 (1993)

[56] A.P. Horsfield, A.M. Bratkovsky, D.G. Pettifor, and M. Aoki, Phys. Rev. B 53, 1656 (1996)

[57] A.P. Horsfield, A.M. Bratkovsky, M. Fearn, D.G. Pettifor, and M. Aoki,
Phys. Rev. B 53, 12694 (1996)

[58] M. Aoki, D. Nguyen-Manh, D.G. Pettifor, and V. Vitek, Prog. Mat. Sci. 52, 154 (2007)
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1 Introduction

1.1 Why effective Hamiltonians?

Effective Hamiltonians (EHs) occupy an important place in quantum chemistry. EHs serve a
multitude of different purposes. On the one hand, they are vital in the formulation of new
approximate methods that lead to new computationally efficient tools. On the other hand, they
allow one to recast highly complex problems that are difficult to understand into seemingly
simpler problems that are amenable to human analysis. In this latter application, they unfold
their full power by creating models that can be used to highlight the physical essence of the
problem at hand. In many cases, the emerging model Hamiltonians are of low dimension and
can be solved by hand or with very little computational effort. The crucial step is that the matrix
elements of the EH can be recast in terms of effective parameters. The latter are adjustable and
can, for example, be fitted to experiments or higher-level calculations. The benefit of EH theory
is here that: a) the model Hamiltonians are derived from more complete Hamiltonians; hence
the theory provides explicit and concrete expressions that allow the calculation of the model
parameters and b) being derived from first principles, these model Hamiltonians are solidly
grounded in fundamental physics. Thus, the effective Hamiltonians derived in this way do not
just represent a curve fitting exercise of uncertain physical content and interpretation as would
be the case for model Hamiltonians that are only based on physical intuition or conjecture.

The effective Hamiltonian concept can even be taken a step further and effective Hamiltonians
can be derived from more elaborate effective Hamiltonians that themselves are derived from
first-principles physics. The important point is that there is an unbroken chain of logic that
leads by pure deduction from first physical principles to a simple, intuitively appealing, and
physically sound model that can be used to interpret the results of measurements or even the
behavior of entire classes of substances or materials. The benefit of having model Hamiltonians
derived in this way can hardly be overemphasized since the theory does not only provide a con-
crete and unambiguous way to compute the model parameters, but it also makes it clear under
which conditions the model Hamiltonian is valid and when it is expected to break down. A con-
crete example for such a situation that will be discussed in more detail in section 3.2 is the spin
Hamiltonian (SH) used to interpret magnetic measurements (electron paramagnetic resonance,
EPR or nuclear magnetic resonance, NMR) on molecules or solids. The SH is derived conve-
niently from the time-independent relativistic many-particle Schrödinger equation (technically
the Dirac-Coulomb-Breit (DCB) Hamiltonian). It leads to a low-dimensional model Hamil-
tonian that contains the SH parameters as adjustable parameters. These are the g-matrix, the
hyperfine coupling (HFC) matrix, the zero-field splitting (ZFS, in physics often referred to as
the magnetic anisotropy), the quadrupole splitting, the chemical shift and the nuclear spin-spin
coupling. For interacting magnetic systems, the familiar Heisenberg exchange Hamiltonian is
obtained from the theory.

However, once there are enough spins in a given system (for example in clusters containing
a dozen to a few dozen open-shell transition metal ions), even the SH dimensions become
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unmanageable and can reach dimensions of hundreds of millions. Quite frequently, one is only
interested in the lowest few eigenstates of such a system that are thermally accessible over a
given temperature range. In this case, one wants to describe these few magnetic sublevels with
an effective Hamiltonian that can be derived from the enormous SH of the entire system. The
parameters that enter this secondary SH are then functions of all the spins and SH parameters of
the full system. A very simple concrete example would be an S = 5/2 system with strong ZFS
(relative to external magnetic fields). Such a system contains 2S+1 = 6 magnetic sublevels
that, by means of Kramers degeneracy, form three so-called “Kramers doublets”. The latter
can each be described by an effective Hamiltonian with spin S = 1/2. Hence, three pseudo
S = 1/2 systems substitute for the entire S = 5/2 system. We refer to the specialist literature
for further details [1, 2].
In this chapter, we will provide an introduction into the theory of effective Hamiltonians. We
will cover formal aspects in section 2 before proceeding to actual chemical applications in
section 3 that will discuss both computational tools for the calculation of static (“strong” in
physics language) and dynamic electron correlation as well as EHs derived to parameterize
and understand magnetic properties. An example for the combination of both strategies will
conclude our chapter.

1.2 An introduction into quantum-chemical notation

Since we will present the material covered in this chapter mostly from a quantum chemistry
point of view, it is convenient to briefly discuss the point of departure of the theory and introduce
the necessary notation along the way.

1.2.1 One-particle and many-particle Hamiltonians

We start from the nonrelativistic many-particle Hamiltonian in the Born-Oppenheimer (BO)
approximation (clamped nuclei), which is simply given by

ĤBO =
∑
i

ĥ(xi) + 1
2

∑
i 6=j

1

|ri−rj|
+ 1

2

∑
A 6=B

ZAZB
|RA−RB|

(1)

with the one-electron part of the Hamiltonian given by the sum of the kinetic energy and
nucleus-electron attraction terms,

ĥ(xi) = −1
2
∇2
i −

∑
A

ZA
|RA−ri|

. (2)

Here, we consider a system consisting ofN electrons andM nuclei. The electrons are described
by the coordinates xi = (ri, σi), where ri is the set of three position variables for the i’th
electron and σi represents its spin degree of freedom (spin-up, α, ↑ or spin-down, β, ↓). The
nuclei are assumed to be at rest at positions RA and have nuclear charges ZA (for the A’th
nucleus). Hartree atomic units (4πε0 = ~ = e = me = 1) [3] are used throughout.
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In this chapter, we will remain within the confines of the time-independent Schrödinger equation

ĤBOΨI(x|R) = EI(R)ΨI(x|R), (3)

where x and R denote the collection of all electronic and nuclear degrees of freedom respec-
tively and the notation Ψ(x|R) indicates that the many particle wavefunction depends explic-
itly on the electron coordinates and parametrically on the nuclear coordinates. In order to
be concise, we will follow the convention of using uppercase letters and indices for many-
electron quantities and lowercase letters, symbols, and indices for one-electron quantities. Thus,
I = 0, ...,∞ enumerates the possible electronic eigenstates of the BO Hamiltonian.
While conceptionally simple, the BO Schrödinger equation cannot be solved analytically even
for a two-electron system such as the helium atom. However, very powerful approximations
have been developed over the course of the last century. Many of them begin with a model of
effective independent particles (Hartree-Fock method, HF). In the HF method one replaces the
many-particle equation by an effective one-particle equation of the form

F̂ ({ψ})ψi(x) = εiψi(x). (4)

The HF equations are readily derived from the BO Schrödinger equation and the variational
principle [3]. The effective one-particle operator F̂ depends on its own solutions (the set of
one-particle functions {ψ}) and yields the orbital energies εi and orbitals ψi(x). Given the
dependence of F̂ on its own solutions, the HF equations must be solved by iteration starting
from a set of trial orbitals. We will write down an explicit form of the Fock operator after
introducing second-quantized notation (see Eq. (13) below).
In general, the HF equations do not only have N solutions, but an infinite number of solutions.
The lowest N orbitals are referred to as “occupied orbitals” of the system and they are usually
denoted with the indices i, j, k, l. The remaining orbitals are the leftover solutions of the varia-
tional principle and are referred to as unoccupied or “virtual” orbitals with indices customarily
denoted by a, b, c, d. This corresponds to the particle-hole convention frequently encountered
in physics. General orbitals are given the indices p, q, r, s.
The set of occupied orbitals {ψ} are the building blocks of the HF wavefunction, which is an
antisymmetrized product (“Slater determinant”)

ΨHF(x1 . . .xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · · ψN(x1)

ψ1(x2) ψ2(x2) · · · ψN(x2)
...

... . . . ...
ψ1(xN) ψ2(xN) · · · ψN(xN)

∣∣∣∣∣∣∣∣∣∣
≡ |ψ1...ψN |. (5)

Occasionally, an overbar is used in order to indicate occupation of an orbital with a spin down
electron, while no overbar indicates a spin-up electron, e.g. |ψ1ψ̄1...ψ̄i...ψj...ψN |. The HF wave-
function is a mean-field approximation to the mind-boggling complexity of the exact ground
state many-particle wavefunction.
It is our experience that much confusion arises from not properly differentiating between the
many-particle and single-particle levels. Hence, in this chapter, we will make a dedicated effort
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to be clear at which level we are arguing. We note in passing that only the eigenspectrum of
the many-particle Hamiltonian (and the associated properties of the many-particle wavefunc-
tions) are directly related to observable quantities. The orbitals and orbital energies are not
observables and they are not related to observable quantities. For the purpose of the theory,
they are simply auxiliary quantities used to construct better and better approximations to the
many-particle wavefunction(s) of the system. In chemistry, the term “state” is reserved for the
many-particle eigenfunctions of the Schrödinger equation (or approximations thereof). Orbitals
are not referred to as “states”. Hence, in chemical language, there also can be no notion of
“occupied states” or “unoccupied states”.

1.2.2 Electron correlation and the correlation energy

While the HF method yields a fairly good approximation to the total energy of the system
(about 99.8% correct), the remaining 0.2% error are very large on the chemical energy scale.
For a somewhat larger system the error can easily reach 10 Eh which translates to more than
270 eV. Hence, in absolute terms, the error of the HF approximation is very large and one
needs to proceed beyond the HF approximation. By definition, the difference between the exact
energy and the HF energy is referred to as the “correlation energy”

Ecorr = Eexact − EHF. (6)

By definition, the correlation energy is always negative. If the system is conceptionally well-
described by a single Slater determinant, then all of the correlation energy is referred to as “dy-
namic” correlation energy. The physical picture being that the instantaneous electron-electron
interaction provides a correction to the mean-field HF method. If, however, the system is not
well described by a single Slater determinant, the energy gained by choosing a qualitatively cor-
rect “ansatz” is referred to as “static” correlation energy. An example would be the H2 molecule
towards its dissociation limit that requires two Slater determinants for a qualitatively correct de-
scription. From this description, it is already evident that the distinction between static and
dynamic correlation is vague, ill-defined, and not unique. We will not dwell on the subject here.
The shortcomings of the HF model are conceptually readily remedied. To this end, we will
make use of second-quantization notation and introduce the electron replacement operators

aqp = a†qap, (7)

where a†q and ap are the familiar fermion creation and annihilation operators, respectively. Since
most of the presented theory as well as the BO Hamiltonian do not explicitly contain spin
operators, it is convenient to define the spin-traced excitation operators (also called “generators
of the unitary group”)

Eq
p = aq̄p̄ + aqp. (8)

The operator Eq
p is a singlet excitation operator, i.e., it does not change the total spin of the state

on which it acts.
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Obviously, these operators refer to a specific one-particle basis. This is usually taken to be
the set of HF orbitals. The HF orbitals themselves can not, however, be exactly calculated in
practice. In quantum chemistry, it is common to expand them into a fixed, finite set of atom-
centered basis functions {ϕ} as

ψi(x) =
∑
µ

cµiϕµ(x). (9)

The actual functional form of the basis function is usually taken to be of the Gaussian type but
details would lead too far astray here.
In terms of the second-quantized operators, the BO Hamiltonian reads

ĤBO =
∑
p,q

hpqE
p
q + 1

2

∑
p,q,r,s

gqspr(E
p
qE

r
s − Ep

sδqr). (10)

Since the BO Hamiltonian can be written entirely in terms of singlet excitation operators, it is
clear that it conserves the total spin S. In Eq. (10), the nuclear repulsion term has been dropped
for convenience. Furthermore, the one- and two-electron integrals have been introduced:

hpq =
〈
ψp|ĥ|ψq

〉
, (11)

gqspr =
(
ψpψq|ψrψs

)
≡
〈
ψpψr|ψqψs

〉
. (12)

In chemistry the round bracket notation (11|22) is more common, while in physics the bracket
notation 〈12|12〉 is usually preferred (‘1’ and ‘2’ refer to the coordinates of electrons 1 and
2, respectively). The second-quantized BO operator is only equivalent to its first-quantized
counterpart in the limit that the one-particle basis is mathematically complete. This is never the
case in practice and consequently, the second-quantized BO Hamiltonian can be regarded as the
projection of the BO Schrödinger equation onto the finite one-particle basis.
With the definition of the one- and two-electron integrals, we can give an explicit form of the
Fock operator. It is represented by the matrix

Fpq = hpq +
∑
k

[〈
ψpψk|ψqψk

〉
−
〈
ψpψk|ψkψq

〉]︸ ︷︷ ︸
≡〈pk||qk〉

, (13)

where the antisymmetrized two-electron repulsion integral 〈pk||qk〉 has been introduced. The
negative term in the sum over k is the “exchange” term. It arises from the electrostatic repulsion
of the electrons among each other in conjunction with the antisymmetry requirements of the
fermionic many-particle wavefunction. It does not represent an “exchange force”.
Given the second-quantized notation, it is straightforward to write down an expansion of the
many-particle ground-state wavefunction:

|Ψ0〉 = |ΨHF〉+
∑
i,a

Ca
i |Φai 〉+

(
1
2!

)2
∑
i,j,a,b

Cab
ij

∣∣Φabij 〉+
(

1
3!

)2
∑

i,j,k,a,b,c

Cabc
ijk

∣∣Φabcijk〉+ ... (14)

Here, the building blocks |Φa...i... 〉 are determinants in which one-, two-, three- . . . up toN orbitals
have been replaced in the HF determinant, e.g.

|Φai 〉 = aai |ΨHF〉 (15)
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etc. In the language of second quantization, the HF determinant acts as the “Fermi vacuum”.
The coefficients Ca

i ... are wavefunction parameters that must be determined in one way or
another. If this is done variationally, one refers to the method as “configuration interaction”
(CI). If perturbation theory is used, “many body perturbation theory” (MBPT) arises. If CI is
done with all possible Slater determinants, the method of Full CI (FCI) arises. It represents
the exact solution of the Schrödinger equation in the chosen finite basis. Since the number of
possible Slater determinants grows factorially, this method is restricted to very small systems.
However, it serves as an invaluable benchmark for approximate methods.
Truncated CI expansion have the very undesirable property of not being size-consistent, i.e., the
energy of two non-interacting systems is not the sum of the energy of the individual systems
calculated in the same approximation. Hence, truncated CI has essentially been abandoned.
The method of coupled-cluster (CC) theory does not suffer from this shortcoming. Here, one
uses an exponential ansatz

|Ψ0〉 = exp(T̂ ) |ΨHF〉 (16)

with the cluster operator being the sum of one-, two-, . . . particle excitation operators,

T̂ = T̂1 + T̂2 + ... =
∑
i,a

tai a
a
i + 1

4

∑
i,j,a,b

tabij a
b
ja
a
i + ... (17)

CC theory is nonlinear and therefore more complex than CI. However, it is size-consistent and
extensive at any truncation level of the cluster operator and consequently the method of choice.
Truncated MBPT is also size-consistent and frequently used in chemistry.

1.2.3 Relativistic and external field terms

In order to relate to the material presented in section 3, we need to briefly mention extensions
to the BO Hamiltonian. Next to many other terms, these corrections arise either from relativity
or the presence of external electric or magnetic fields.
All relativistic terms can be derived from the DCB Hamiltonian and are usually grouped into
spin-free (“scalar”) and spin-dependent terms. Among the numerous terms that arise, the most
important relativistic term for our discussion is the spin-orbit coupling (SOC). The SOC is
in general a complex two-electron operator. Here, we represent it in a spin-orbit mean-field
(SOMF) approximation [4, 5] that can be written in the form

ĤSOC ≈
∑
i

hSOC
i ŝi. (18)

Here, ŝi is the spin of the i’th electron and hSOC is an effective SOC operator with purely
imaginary matrix elements.
Since the BO Hamiltonian is spin-free, it commutes with the total spin Ŝ =

∑
i ŝi and conse-

quently, the eigenfunctions of the BO Hamiltonian can be labeled according to two additional
quantum numbers S (the total spin) and M = S, S−1, ...,−S (the projection of the total spin
onto the z axis). At the level of the BO Hamiltonian all M -components (“magnetic sublevels”)
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of a given S and electronic state I are exactly degenerate (they form a “spin multiplet”). This
degeneracy is lifted by the SOC which mixes states of different S and M . It is essential to prop-
erly differentiate between the total spin Ŝ and the individual spins ŝi when discussing magnetic
properties.
Other contributions to the Hamiltonian will be briefly visited in section 3.2.

2 Theory of effective Hamiltonians

2.1 Effective Hamiltonians via similarity transformation

Let H be the “complete” Hamiltonian describing a quantum system, e.g. the BO or DCB
Hamiltonians introduced above. Its eigenvalues and eigenstates fulfill the time-independent
Schrödinger equation

H|ΨI〉 = EI |ΨI〉. (19)

As already mentioned in the introduction, it can be inconvenient to work with this Hamiltonian
if it has a large number of eigenstates and eigenvalues, since usually one is only interested in
the low-energy part of the spectrum. One can then define an “exact” effective Hamiltonian that
acts in a subspace of reduced dimensionality and reproduces the exact eigenvalues for a limited
number of eigenstates of H ,

Heff|Ψ̃I〉 = EI |Ψ̃I〉. (20)

The eigenstates |Ψ̃I〉 need not be identical to the true eigenstates |ΨI〉. However, they are usually
required to provide a qualitatively correct physical description of the true eigenstates.
One can formulate effective Hamiltonian theory very generally on the basis of similarity trans-
formations. This was done by Shavitt and Redmon [6] and we follow their treatment in the
following. The theory was also summarized in a recent dissertation [7]. Let H be the com-
plete Hilbert space on which H acts. A given basis of this Hilbert space is then divided into
two orthogonal subsets: The “model space” H0 with projector P =

∑
I∈model |ΦI〉〈ΦI | and the

complementary or outer space Houter with projector Q = 1−P =
∑

K∈outer |ΦK〉〈ΦK |. In the
following, we use indices I, J, ... to refer to states in the model space and indices K,L, ... to
refer to states in the outer space. The model space will be the space on which the effective
Hamiltonian acts. Once the model space is chosen, an arbitrary operator A can be decomposed
as [6]

A = AD + AX , (21)

where
AD = PAP +QAQ (22)

is called its block diagonal part and

AX = PAQ+QAP (23)

is called its block off-diagonal part. The essence of effective Hamiltonian theory can now be
described as finding a so-called decoupling operator U such that the similarity-transformed
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Hamiltonian
H̃ = U−1HU (24)

is block-diagonal [6]. The effective Hamiltonian is then defined as the model-space part of the
similarity-transformed Hamiltonian, i.e.

Heff = PH̃P. (25)

If one assumes that the energies EI and model-space states |Ψ̃I〉 fulfill the eigenvalue equation
(20), it is easy to show that

HU |Ψ̃I〉 = UH̃|Ψ̃I〉 = EIU |Ψ̃I〉. (26)

This shows that |ΨI〉 = U |Ψ̃I〉 are exact eigenfunctions and the EI the corresponding exact
eigenenergies of the full Hamiltonian H . The requirements formulated so far still leave many
different possible choices for the decoupling operator U .

2.2 Choice of the decoupling operator: Bloch and van Vleck

We already mentioned that the eigenstates of the effective Hamiltonian are usually required to
give a qualitatively correct description of the true eigenstates.
One common choice that fulfills this requirement consists in setting UD = 1 [6], where UD is
defined as the block diagonal part (see Eq. (22)) of the decoupling operator U . This leads to

|Ψ̃I〉 = P |ΨI〉, (27)

i.e., the eigenstates of the effective Hamiltonian are orthogonal projections of the exact eigen-
states on the model space. For this choice, the effective Hamiltonian, which is named after
Bloch [8], can be written

Heff = PHΩ, (28)

where the so-called wave operator Ω is defined as

Ω = UP. (29)

The wave operator is a solution of the equation

ΩHΩ = HΩ, (30)

which is a nonperturbative version [9] of the so-called generalized Bloch equation [10]. Since
its eigenstates are – as projections on the model space – in general not orthogonal, the Bloch
effective Hamiltonian is in general not Hermitian.
Another choice for U is given by the canonical Van Vleck approach [6], where the decoupling
operator is defined as

U = exp(G) (31)
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with G being an anti-Hermitian (G† = −G) and block off-diagonal (GD = 0) operator. Since
G is anti-Hermitian, U is unitary with this choice (U †U = 1). Hence, the eigenstates of the
effective Hamiltonian are orthogonal,

〈Ψ̃I |Ψ̃J〉 = 〈Ψ̃I |U †U |Ψ̃J〉 = 〈ΨI |ΨJ〉 = δIJ . (32)

This also means that the effective Hamiltonian in the canonical Van Vleck approach is Her-
mitian. One can show that the eigenstates of the Bloch (label B) and the canonical van Vleck
(label C) effective Hamiltonians are related by symmetric orthonormalization [6],

|Ψ̃C
I 〉 =

∑
J

|Ψ̃B
J 〉S

−1/2
JI . (33)

Here, SJI = 〈Ψ̃B
J |Ψ̃B

I 〉 is the positive-definite overlap matrix of the Bloch eigenstates. It should
be mentioned that the canonical van Vleck effective Hamiltonian turns out to be identical to
the effective Hamiltonian introduced by des Cloizeaux [11], as discussed by Klein [12] and
Brandow [13, 14].
If the eigenstates and eigenvalues of the effective Hamiltonians are known, it is possible to write
them via a spectral decomposition. The Bloch effective Hamiltonian can be written as

Heff
B =

∑
I

|Ψ̃B
I 〉EI〈Ψ̃D

I |, (34)

where
|Ψ̃D
I 〉 =

∑
J

|Ψ̃B
J 〉S−1

JI (35)

defines the state that is dual (also called contravariant) to the state |Ψ̃B
I 〉. The dual states are the

unique set of states that are biorthogonal to the original set of Bloch eigenstates,

〈Ψ̃D
I |Ψ̃B

J 〉 = δIJ . (36)

The canonical van Vleck / des Cloizeaux effective Hamiltonian can be written as

Heff
C =

∑
I

|Ψ̃C
I 〉EI〈Ψ̃C

I |. (37)

The quality of the chosen model space can be quantitatively defined by the norm of the projected
states |Ψ̃B

I 〉, which is given by the diagonal of the overlap matrix SII . The closer these norms are
to 1, the less severe is the non-Hermiticity of the Bloch effective Hamiltonian and the smaller
is the difference between the Bloch and canonical van Vleck effective Hamiltonian.

2.3 Partitioning method

Another approach to the construction of effective Hamiltonians, called the partitioning method,
was introduced by Löwdin [15–17]. It starts by dividing the Hilbert space into a model space
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A (corresponding to H0 from above) and a remainder B (corresponding to Houter from above).
The time-independent Schrödinger equation can then be written in block matrix form as(

HAA HAB

HBA HBB

)(
CA

CB

)
= E

(
CA

CB

)
. (38)

This can be rewritten in terms of two coupled equations

HAACA + HABCB = ECA, (39)

HBACA + HBBCB = ECB. (40)

From Eq. (40) one can obtain

CB = (E −HBB)−1HBACA, (41)

which can be inserted into Eq. (39) to eliminate CB and obtain

Heff
AA(E)CA = ECA. (42)

The energy-dependent A-space effective Hamiltonian is given by

Heff
AA(E) = HAA + HAB(E −HBB)−1HBA. (43)

One can see that the effective Hamiltonian consists of the A block of the original Hamiltonian
“dressed” with the matrix HAB(E −HBB)−1HBA. The inverse (E −HBB)−1 exists if E does
not overlap with the spectrum of HBB. Diagonalization of the effective Hamiltonian Eq. (43)
gives CA, the projection of the exact eigenstate with energy E on the model space. A drawback
is that the effective Hamiltonian is a function of the exact energy E, which is unknown unless
one solves the full problem first.

2.4 Intermediate effective Hamiltonians

In section 2.2 we made the assumption that there is a one-to-one mapping between eigenstates
|Ψ̃I〉 of the effective Hamiltonian in the model space and the same number of exact eigen-
states |ΨI〉. Sometimes this identification is ambiguous or not even possible. For example,
the qualitatively correct description of the electronic ground state of the Be atom requires two
electron configurations. Apart from the dominant (1s)2(2s)2 configuration, also (1s)2(2p)2 is
needed [18]. This means that at least these two configurations should be included in the model
space. However, it is not possible to identify a bound excited state of the Be atom that has
(1s)2(2p)2 as its dominant configuration [19]. In such a case, the effective Hamiltonian is not
well-defined and its perturbative expansion (see the next section) will often diverge.
To solve this problem, Malrieu and coworkers have introduced the concept of intermediate
effective Hamiltonians (IEH) [20]. One defines an IEHH int by the requirement that the equation

H intP |ΨI〉 = EIP |ΨI〉 (44)
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from Bloch effective Hamiltonian theory is only fulfilled for a number Nm of exact eigenstates
|ΨI〉 that is smaller than the dimension of the model space. The whole model space is divided
into the “main model space” containing Nm determinants that dominate the states of interest
and the “intermediate space” containing all remaining determinants. They explicitly contribute
to the solutions of interest and act as a “buffer space” between the main model space and the
outer space. Eq. (44) apparently does not define the IEH uniquely; hence there is a large variety
of different intermediate Hamiltonians.
If the IEH gives only a single exact energy and projection of an exact eigenstate, it is called
a state-specific intermediate Hamiltonian. An example of this is the partitioning technique
effective Hamiltonian (Eq. (43)) introduced in the last section [19].

2.5 Perturbative expansion of effective Hamiltonians

The definitions of the effective Hamiltonians given in the previous sections all require that the
solution of the full problem is known first, i.e., they do not provide a computational simplifi-
cation. Perturbation theory provides a means to construct these effective Hamiltonians without
prior knowledge of the exact solutions. Here, the Hamiltonian is separated into a zeroth-order
Hamiltonian and a perturbation,

H = H0 + V. (45)

The eigenvalues and eigenstates of the zeroth-order Hamiltonian must be known,

H0|Ψ (0)
I 〉 = E

(0)
I |Ψ

(0)
I 〉, (46)

and V is supposed to be small compared to H0.
The derivation of the final equations would go beyond the scope of the present chapter. There-
fore, we just present the results together with the relevant literature references. We also restrict
ourselves to expansions up to second order, which are most relevant in practice.

2.5.1 Quasidegenerate perturbation theory

The expansion of the Bloch effective Hamiltonian in orders of the perturbation operator V (also
known as quasidegenerate perturbation theory, QDPT) gives up to second order [6]

〈Ψ (0)
I |H

eff(0−2)
B |Ψ (0)

J 〉 = HIJ +
∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E
(0)
J − E

(0)
K

. (47)

This effective Hamiltonian is the “bare” Hamiltonian within the model space plus a “dressing”,
a form that was already observed for the partitioning technique effective Hamiltonian above.
From the presence of the index J in the denominator, it becomes apparent that the effective
Hamiltonian is not Hermitian. Up to second order (but not at higher orders), it turns out that the
canonical Van Vleck / des Cloizeaux effective Hamiltonian is simply the Hermitization of the
corresponding Bloch second-order effective Hamiltonian [6],

H
eff(0−2)
C =

1

2

(
H

eff(0−2)
B + H

eff(0−2)
B

†)
. (48)
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If all states in the model space have the same 0th order energy E(0)
I = E(0), the 2nd order Bloch

and canonical van Vleck effective Hamiltonians are identical and given by

H
eff(0−2)
IJ = HIJ +

∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

. (49)

This is the common degenerate perturbation theory (DPT) expression up to second order. For
a one-dimensional model space (where the effective Hamiltonian is equal to the energy), this
reduces to the well-known nondegenerate Rayleigh-Schrödinger perturbation theory formula.

2.5.2 Expansion of the partitioning technique effective Hamiltonian

One can show that [17](
E−HBB

)−1
=
(
E−H(0)

BB

)−1
+
(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1

+
(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1
VBB

(
E−H(0)

BB

)−1
+ . . .

(50)

If this is inserted into Eq. (43), one obtains the well-known Brillouin-Wigner (BW) perturbation
series. Truncated at the 2nd order, the BW effective Hamiltonian is

Heff
AA(E) ≈ HAA + HAB

(
E−H(0)

BB

)−1
HBA. (51)

In a basis of eigenstates |Ψ (0)
I 〉 ∈ A and |Ψ (0)

K 〉 ∈ B of the 0th order Hamiltonian, one can use
〈Ψ (0)

K |H
(0)
BB|Ψ

(0)
L 〉 = E

(0)
K δKL to write the effective Hamiltonian as

Heff
IJ(E) ≈ HIJ +

∑
K∈B

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E − E(0)
K

. (52)

If a good approximation E(0) to the exact energy E is known, this can be simplified to an
energy-independent effective Hamiltonian

Heff
IJ ≈ HIJ +

∑
K∈B

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

(53)

that is equivalent to the so-called “shifted Bk” [21] method. If there is a one-to-one map be-
tween the states spanning the model space A and the same number of exact eigenstates of the
Hamiltonian, then the same model space can be used for all of them, but the state-specific ef-
fective Hamiltonians Eq. (53) are in general different for each of those states. However, in
the special case that the same E(0) is a reasonable zeroth-order energy for all the states in the
model space, Eq. (53) can be considered as an effective Hamiltonian delivering all energies and
projections on the model space simultaneously. One can see that this is identical to the DPT
expression discussed in the previous section.
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2.5.3 Generalized degenerate perturbation theory

We finally mention the perturbative expansion of the first state-specific intermediate Hamilto-
nian introduced by Malrieu et al. in their seminal paper [20]. It is called generalized degenerate
perturbation theory (GDPT). Up to second order, the intermediate Hamiltonian is given by

H
int(0−2)
IJ = HIJ +

∑
K

〈Ψ (0)
I |H|Ψ

(0)
K 〉〈Ψ

(0)
K |H|Ψ

(0)
J 〉

E(0) − E(0)
K

. (54)

This is equivalent to the shifted-Bk effective Hamiltonian (see Eq. (53)) as was already re-
cognized by Malrieu and coworkers [20]. This expression also forms the basis for the recently
introduced dynamic correlation dressed complete active space method (DCD-CAS(2)) [22,23].
The results of this section show that often one can end up with similar or even identical final
expression using quite different starting points.

3 Examples for effective Hamiltonians

3.1 The Heisenberg exchange

The Heisenberg-Dirac-van Vleck (HDvV) Hamiltonian [24–26] is a model Hamiltonian which
is one of the simplest and most widely used Effective Hamiltonian. The Heisenberg Hamilto-
nian is a model that can describe interactions between unpaired electrons (belonging to metal
atoms or organic radicals) localized on spatially separated atomic centers or groups of atoms
constituting a molecule. Such a model is of considerable importance not only in the understand-
ing of the electronic structure and properties of single molecule magnets (SMMs) but also for
the design of molecules capable of showing a high-spin ground state. The Heisenberg-Dirac-
van Vleck Hamiltonian reads

ĤHeisenberg = −2JabŜa · Ŝb. (55)

It is an effective Hamiltonian that works in the basis of spin states of the interacting sites and
contains the adjustable parameter Jab that is determined by fitting magnetization data (or other
magnetic measurements). The task at hand is to elucidate how this parameter can be understood
and also quantitatively calculated in terms of first-principles electronic structure theory.

3.1.1 Partitioning of the Hamiltonian and definition of Model space

Consider the simplest valence space made up of two electrons of opposite spin on centers A
and B that are spatially separated. The Hilbert space of these two electrons in two orbitals is
spanned by the Slater determinants{

|ab̄〉 , |āb〉 , |aā〉 , |bb̄〉
}
,

where a and b refer to the valence local orbitals on centers A and B with a and ā denoting
the orbital at A occupied by an α or a β electron respectively. The determinants of the type
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{
|ab̄〉 and |āb〉

}
belong to a configuration with one electron per center. These configurations

are referred to as ‘Neutral’ configurations. On the other hand the centers with two (zero) elec-
trons on a site are known as ‘Ionic’ configurations. The Ionic configurations can be expected
to be high in energy as the two electrons occupy orbitals that are spatially closer and therefore
suffer greater Coulomb repulsion compared to the Neutral configuration where they are spa-
tially separated. Therefore, in local orbital basis, the low energy spectrum will be dominated
by states made up dominantly of the Neutral configurations which will be well separated from
states made up of Ionic configurations. The task of the Heisenberg Hamiltonian is then to de-
scribe the ground state of such systems in terms of the Neutral determinants only taking into
account the effect of the Ionic states in an effective manner.
The full Hamiltonian in terms of the four determinants can be written as


|ab̄〉 0 Kab tab tab
|āb〉 Kab 0 tab tab
|aā〉 tab tab U Kab

|bb̄〉 tab tab Kab U

, (56)

where we have taken the energy of the Neutral determinants as origin of energy. The matrix-
elements of the Hamiltonian are as follows: the tab is the matrix-element 〈ab̄|H|bb̄〉 and de-
scribes the movement of the electrons from site A to B, the direct exchange integral between
orbitals a and b is represented by Kab = (ab|ba), and finally the Coulomb integral (electron-
electron repulsion) on orbitals a and b is given by U = (aa|aa) = (bb|bb).
The low energy spectrum of this Hamiltonian, i.e., one singlet and one triplet state, is domi-
nated by the Neutral determinants whereas the higher energy states are dominated by the Ionic
determinants. This intuition leads to a natural partition of the Hamiltonian given above into a
model space and an outer space. The model space here is made of the two Neutral determinants
whereas the outer space constitutes the two ionic determinants. The two determinants in the
model space give rise to a singlet state and a triplet configuration which can be written as

|T0〉 =
1√
2

(
|ab̄〉+ |āb〉

)
, (57)

|SN〉 =
1√
2

(
|ab̄〉 − |āb〉

)
, (58)

where T0 signifies theMS = 0 component of the triplet state and the SN signifies that the singlet
is made up of neutral determinants. Note that both the singlet and triplet configurations are of
gerade(g) symmetry. The outer space is made up of purely singlet configurations composed of
ionic configurations which can be written in g and u symmetry combinations such as

|SgI 〉 =
1√
2

(
aā− bb̄

)
, (59)

|SuI 〉 =
1√
2

(
aā+ bb̄

)
. (60)
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In this basis, the above Hamiltonian given in Eq. (56) is transformed as follows


|T0〉 −Kab 0 0 0

|SN〉 0 Kab 2tab 0

|SgI 〉 0 2tab U+Kab 0

|SuI 〉 0 0 0 U+Kab

. (61)

Here, we have also partitioned the Hamiltonian into a model space which is the upper left block
and the outer space which is the lower right one. Notice that the neutral singlet SN only interacts
with the ionic singlet of the same spatial symmetry i.e., SgI . There are a few important points
that one realizes from the above form of the Hamiltonian which are as follows:

• Naturally, the triplet state T0 does not interact with any of the other three states and
therefore it does not change in energy. However, the energy of the triplet state is already
lower than the singlet state by 2Kab which means that in the absence of the interaction
with the outer space (for, e.g., due to symmetry reasons), the ground state naturally tends
towards a triplet state. This implies that the system can behave as a ferromagnet due the
orthogonality of a and b orbitals which can be artificially or physically enforced.

• The singlet state, on the other hand, interacts with the ionic singlet state of gerade g
symmetry. Therefore it is influenced by the outer space configurations. This always
results in the stabilization of the lowest singlet state. In the case of large interaction
between a and b given by 〈ab̄|H|bb̄〉, this might invert the energetic ordering of the triplet
and singlet states leading to a low spin singlet ground state and an antiferromagnetic
coupling.

3.1.2 Derivation of the Effective Spin Hamiltonian via QDPT

Here we shall describe how the Heisenberg Hamiltonian given in Eq. (55) can be derived by
using QDPT, as described in 2.5.1, and applied to the partitioned Hamiltonian given in Eq. (61).
In order to see the expression for the “effective” interaction Jab, it is instructive to investigate
the g symmetry block of the Hamiltonian given in Eq. (62) [27], |T0〉 −Kab 0 0

|SN〉 0 Kab 2tab
|SgI 〉 0 2tab U+Kab

. (62)

In order to derive the Heisenberg Hamiltonian, we first begin by defining the basis representa-
tions of the model space. The model space of the Heisenberg Hamiltonian contains only neutral
configurations, i.e., configurations which show only isotropic spin-spin interaction. Therefore,
we can adopt a more compact notation which only takes into account the spin degrees of free-
dom of the electron occupying orbitals a and b such as{

|1
2
,Msa〉

}
= {|↑〉a , |↓〉a} , (63){

|1
2
,Msb〉

}
= {|↑〉b , |↓〉b} . (64)
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Subsequently, the operators Ŝa, Ŝb can be defined as

Ŝa = Ŝ+
a + Ŝ−a + Ŝza, (65)

Ŝb = Ŝ+
b + Ŝ−b + Ŝzb , (66)

where the operators Ŝ+, Ŝ− are the spin ladder operators and the Ŝz gives the z component of
the spin S. Here, Ŝa and Ŝb operators act on model space representations |1

2
,Msa〉 and |1

2
,Msb〉

respectively.
Given this basis of the model space, operators and the Hamiltonian defined in Eq. (55), the
matrix form of the model Hamiltonian can be written as[ ]

|↑, ↓〉 Jab −Jab
|↓, ↑〉 −Jab Jab (67)

with ↑ and ↓ representing the Ms = 1
2

and Ms = −1
2

components of S = 1
2

respectively. The
value of Jab can then be derived from QDPT based upon Eq. (62) at second order and takes the
following form

2Jab = 2Kab −
4t2ab
U
. (68)

Therefore, using the above expression for Jab, the Heisenberg Hamiltonian can finally be de-
rived as given in Eq. (55). Note that the operators Ŝa and Ŝb in Eq. (55) only describe the
isotropic spin-spin interaction between the two electron spins assuming they are fixed on cen-
ters A and B respectively.

3.1.3 Physical interpretation of Jab

Using the above derivation, one can analyze the physics described by the Heisenberg exchange
Jab, which is an effective parameter. As shown in Eq. (68), Jab contains the effect of both the
direct exchangeKab and what is known as the kinetic exchange effect represented by the second
term of Eq. (68):

Direct Exchange: 2Jdirect
ab = 2Kab, (69)

Kinetic Exchange: 2Jkinetic
ab = −4t2ab

U
. (70)

Therefore, the nature of the exchange between sites A and B will be described by these two
factors. The direct exchange Kab has the effect of making Jab more positive, i.e., stabilizing the
high-spin state (triplet), whereas the kinetic exchange terms leads to a more negative Jab and
therefore stabilizes the low-spin state (singlet).
This also suggests how one can control and predict the nature of coupling by looking at the
geometry (and hence the symmetry) of a given molecule. As described in the previous section
if one orients the two magnetic orbitals a and b, such that their interaction is 0 due to symmetry,
the term 〈ab̄|H|bb̄〉 vanishes and the coupling is only due to the direct exchange Kab which is
always positive leading to a ferromagnetic coupling. In this manner, we can also predict new
materials with the desired coupling and ground state. The “effective” Hamiltonian parameter
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Jab therefore results from a competition between these two contributions and shows how one
can compress information efficiently without any loss in the described physics. Herein lies the
power of effective and model Hamiltonian.
Here we have derived the Heisenberg Hamiltonian for the simplest case of two electrons in
two valence orbitals. The Heisenberg Hamiltonian can of course be applied to multi-center
molecules with more than one electron per center in which case the general form of the Hamil-
tonian is similar to Eq. (55) with summation over all nearest neighbors 〈ab〉. Note that in the
case of a large number of interacting centers, a first principles treatment of the resulting molec-
ular system becomes complicated due to the presence of a large number of open-shell electrons
coupling to give a low-spin ground state. However, the physics of the problem remains largely
the same.
A final point concerns the physics contained in the coupling term Jab which is simple enough to
describe in the case of two electrons. Such systems can be realized in Copper dimers and have
been extensively studied by first principles calculations [28–30]. The detailed physical effects
contained in Jab turn out to be quite more complicated in reality and have been a subject of
study for a long time [27].

3.2 The spin Hamiltonian in EPR and NMR spectroscopy

The spin Hamiltonian (SH) is a major asset in the analysis of magnetic resonance experiments.
The massive simplification that the SH offers, is that it only contains the effective electron spin
(Ŝ), the nuclear spins (̂I), and external magnetic fields (B) but makes no explicit reference to
electronic coordinates, molecular geometry, or any of the intricacies that render the application
of the exact (relativistic) many particle Hamiltonian so difficult. The price to pay for this enor-
mous simplification is that the SH contains adjustable parameters that are usually fitted to the
results of magnetic measurements. A fairly standard SH may be written:

Ĥspin = βBgŜ + ÎAŜ + ŜDŜ + ÎQÎ + ... (71)

(β is the Bohr magneton). The individual terms are:

• βBgŜ is the molecular Zeeman term that describes the interaction of the electron spin
with an external magnetic field B.

• ÎAŜ represents the hyperfine interaction that describes the interaction of an electron spin
with the nuclear spin of a given nucleus.

• ŜDŜ is the zero-field splitting (ZFS) that describes the interaction of the unpaired elec-
trons among themselves.

• ÎQÎ is the quadrupole splitting that describes the interaction of the electric field gradient
with the quadrupole moment of a nucleus.
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All quantities g, A, D and Q are 3×3 tensors. Their elements are the adjustable parameters
mentioned above. The SH acts on the space of spin functions

|SMIMI〉 = |SM〉 ⊗ |IMI〉 (72)

that has the (small) dimension of (2S+1) (2I+1). The matrix elements of the SH are straight-
forward to calculate using standard angular momentum operator algebra. The corresponding
eigenvalue problems are of low dimension and can usually be solved with paper and pencil or
very quickly numerically with a computer. The effective Hamiltonian approach enters the stage
upon asking the question: “how are the SH parameters related to the actual electronic structure
of my system?” Or, in other words, how do they relate to the (relativistic) eigenfunctions of the
molecular Schrödinger equation. Below, we will derive the equation for g as an illustration of
how the general argument proceeds.
The most straightforward connection is based on exploiting the partitioning method of section
2.3; see Eqs. (42), (43), and (53). To proceed from these equations, we need to define the nature
of the ‘A’ and ‘B’ spaces and how we define the full Hamiltonian. Let us assume that we have
solved the non-relativistic (BO) Schrödinger equation exactly, such that we know the entire
spectrum of eigenstates:

ĤBO

∣∣ΨSMI 〉
= EI

∣∣ΨSMI 〉
. (73)

Of course, this is entirely impractical, but we will still proceed along these lines for the sake of
the conceptual argument. Since the BO Hamiltonian is spin-free, the total spin of the system and
its projection on the z-axis are good quantum numbers and hence, we can label the eigenstates
as
∣∣ΨSMI 〉

. At the level of the BO Hamiltonian, these states are (2S+1)-fold degenerate. This
degeneracy is then lifted by relativistic effects and external magnetic fields. If we are interested
in the splittings of the ‘magnetic sublevels’ M = S, S−1, ...,−S of the electronic ground state
then it follows naturally to define the ‘A’ set as the 2S+1 states belonging to the ground state
multiplet (we assume that there are no other degeneracies than the spin degeneracies). The ‘B’
set then consists of the infinite number of excited states. The splittings induced by external
magnetic fields and relativistic effects are relatively small – usually (but not always) on the
order of only 1 cm−1 (roughly 5 · 10−6 atomic units). On the other hand, the excited states are
often > 5000–10000 cm−1 above the ground state. Hence, it is sensible to replace the unknown
energy E in the effective Hamiltonian Eq. (43) by E0, the energy of the ground state multiplet.
Second, we need to define the full Hamiltonian operator. Since we are only interested in g, we
only need to consider two additional terms. One is the molecular Zeeman operator

ĤZe = βB
∑
i

(
geŝi + l̂i

)
. (74)

This operator consists of the spin-Zeeman (ge = 2.002319... is the free electron g-value) and
orbital Zeeman operator. Note carefully that ŝi is the spin of the i’th electron, rather than
the total spin Ŝ =

∑
i ŝi. The angular momentum operator l̂i is referred to the global origin.

The second term we need is the spin-orbit coupling (SOC) operator. In principle, this is a
two-electron operator, but it can be reasonably well approximated by an effective one-electron
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operator as given by Eq. (18). The operator hSOC
i can take many different forms like the SOMF

operator mentioned in the introduction. One crude approximation is the effective nuclear charge
Hamiltonian that has the form

hSOC,ENC
i =

α2

2

∑
A

Zeff
A

|RA−ri|3
l̂Ai , (75)

where α is the fine structure constant, the sum A is over all nuclei in the system at positions RA

with effective charges Zeff
A . l̂Ai is the angular momentum operator of the i’th electron relative to

the A’th nucleus. We now have to insert the full Hamiltonian

Ĥ = ĤBO + ĤZe + ĤSOC (76)

and wavefunctions
∣∣ΨSMI 〉

into the effective Hamiltonian and pick out terms that are bilinear
in B and Ŝ since those will define the g-tensor. The effective Hamiltonian is given by (see
Eq. (53))〈

ΨSM0

∣∣Ĥeff

∣∣ΨSM ′

0

〉
=
〈
ΨSM0

∣∣Ĥ∣∣ΨSM ′

0

〉
−
∑
I>0

∆−1
I

〈
ΨSM0

∣∣Ĥ∣∣ΨS′M ′′

I

〉〈
ΨS

′M ′′

I

∣∣Ĥ∣∣ΨSM ′

0

〉
, (77)

where ∆I = EI−E0 is the energy difference between the I’th multiplet and the ground state at
the level of the BO Hamiltonian. A little reflection will quickly reveal that:

• The only first-order term (first term on the right-hand side of Eq. (77)) comes from the
spin-Zeeman term and equals the free electron g-value.

• In the infinite sum over excited states, only those terms with S ′ = S can contribute since
the orbital Zeeman operator is spin-independent and the spin-Zeeman operator does not
couple the ground and excited states.

• Contributions to the g-tensor will only arise from cross terms between ĤZe and ĤSOC

since these are the only ones that have the correct bilinear structure in B and Ŝ

Thus, the relevant part of the effective Hamiltonian becomes〈
ΨSM0

∣∣Ĥeff

∣∣ΨSM ′

0

〉
= βBge ·

〈
ΨSM0

∣∣S∣∣ΨSM ′

0

〉
− βB

∑
I>0

∆−1
I

{〈
ΨSM0

∣∣∣∑
i

ĥSOC
i ŝi

∣∣∣ΨS′M ′′

I

〉〈
ΨS

′M ′′

I

∣∣∣∑
i

l̂i

∣∣∣ΨSM ′

0

〉
+ c.c.

}
.

(78)

This is to be compared to the matrix element of the SH (focusing on the z-component)〈
SS
∣∣βBzgzzŜz

∣∣SS〉 = βBzgzzS, (79)

from which it readily follows that

gzz = ge −
1

S

∑
I>0(S′=S)

∆−1
I

{〈
ΨSS0

∣∣∣∑
i

ĥSOC,z
i ŝzi

∣∣∣ΨSSI 〉〈ΨSSI ∣∣∣∑
i

l̂zi

∣∣∣ΨSS0

〉
+ c.c.

}
. (80)
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The generalization to all components of the g-tensor is straightforward with the aid of the
Wigner-Eckart theorem, but the details would lead too far astray here. We note in passing
that g is not symmetric. However, gTg behaves like a proper symmetric second-rank tensor
and hence, in the EPR community it is common practice to refer to it as the g-tensor. Along the
same lines, all parts of the SH can be derived.

3.3 The size-consistent self-consistent configuration interaction method

In this section, we will demonstrate that effective (in this case intermediate) Hamiltonian ap-
proaches are not only useful to derive effective, parameterized models, but that they can also
pave the way for new and accurate electronic structure methods. The method that we have
chosen to highlight in this respect is the ‘size-consistent-self-consistent configuration interac-
tion’ (SC2-CI) method of Malrieu and coworkers [31, 32]. It is an elegant way to derive a
size-consistent electron correlation theory that is similar in spirit to the older coupled-electron
pair approaches (CEPA) and might be viewed as a step towards full coupled cluster theory with
single- and double excitations (CCSD). Let us re-iterate the principle of CI: we start from a
reference determinant |Φ0〉 and expand the many-particle wavefunction in terms of excited de-
terminants in which one-, two-, ... occupied spin-orbitals have been replaced by virtual orbitals,

|Ψ〉 = |Φ0〉+
∑
ia

Ci
a |Φai 〉+ 1

4

∑
ijab

Cij
ab

∣∣Φabij 〉+
∣∣Ψhigher

〉
, (81)

where
∣∣Ψhigher

〉
collectively denotes triple-, quadruple- and higher substitutions. As explained

in the introduction, in untruncated form, this ansatz leads to an exact solution of the many
particle Schrödinger equation in the chosen one-particle basis. However, it is well-known that
the most important substitutions in this expansion are the doubly excited determinants. Hence,
it is tempting to truncate the ansatz to single- and double substitutions, thus defining the |ΨCISD〉
wavefunction by setting

∣∣Ψhigher

〉
= 0. This is still a somewhat computationally manageable

theory, since the number of single and double substitutions ‘only’ grows as the fourth power of
system size and the solution of the CISD equations features O(N6) scaling.

3.3.1 A model system

In order to see what is wrong with this method, consider first a single H2 molecule in a minimal
basis set consisting only of the bonding σ and anti-bonding σ∗ orbital. Neglecting the single
substitutions, we only have two determinants: |Φ0〉 = |σσ̄| , |ΦD〉 = |σ∗σ̄∗|. In this basis, the
CID matrix becomes

HA =

[ ]
σ σ̄ 0 K

σ∗σ̄∗ K ∆ , (82)

where ∆ = 〈ΦD|H|ΦD〉 − 〈Φ0|H|Φ0〉 and K = 〈σ σ̄||σ∗σ̄∗〉. The solution of the eigenvalue
equation gives the correlation energy as

Ecorr = 1
2

(
∆−

√
∆2+4K2

)
, (83)
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which is the exact solution. Now, consider adding a second H2 molecule at infinite distance. In
this case our many particle basis consists of the three determinants

|Φ0〉 ,
∣∣ΦAD〉 , ∣∣ΦBD〉 , (84)

where superscripts in ‘ΦAD’ and ‘ΦBD ’ denote locally excited H2 molecules. This leads us to the
Hamiltonian

HD
A+B =

 |ΦA0 〉 |ΦB0 〉 0 K K

|ΦAD〉 |ΦB0 〉 K ∆ 0

|ΦA0 〉 |ΦBD 〉 K 0 ∆
(85)

and hence the correlation energy

Ecorr = 1
2

(
∆−

√
∆2+8K2

)
, (86)

which is clearly wrong, because for non-interacting H2 molecules, the correlation energy should
be exactly twice the monomer correlation energy. This severe shortcoming is known as a lack of
‘size-consistency’. Electron correlation methods that are not size-consistent are next to useless
in practice since they will give inconsistent results as a function of system size. Now, let us try
to remedy the situation by including further (higher) substitutions. The first that comes to mind
is the simultaneous pair substitution

∣∣ΦQ

〉
=
∣∣ΦABD

〉
, which gives the Hamiltonian including

quadruple substitutions |ΦQ〉:

HDQ
A+B =




|ΦA0 〉 |ΦB0 〉 0 K K 0

|ΦAD〉 |ΦB0 〉 K ∆ 0 K

|ΦA0 〉 |ΦBD 〉 K 0 ∆ K

|ΦAD〉 |ΦBD 〉 0 K K 2∆

. (87)

Diagonalizing this Hamiltonian gives us the ground state energy for the A+B system as

EA+B
corr =

(
∆−

√
∆2+4K2

)
, (88)

which is the expected value, i.e., EA+B
corr = 2EA

corr. It is an elementary, yet rewarding mathemat-
ical excise to demonstrate that the inclusion of the quadruple substitutions indeed restores the
size consistency of the calculation. What can we learn from this model system? First of all, that
truncated CI is not size-consistent and that it is essential to remedy this shortcoming. Second,
that the inclusion of higher substitutions restores this size consistency. This was a trivial exer-
cise in this model system. However, in a real system the number of triple-, quadruple- and even
higher substitutions becomes overwhelming very quickly. Hence, it is necessary to develop ap-
proximations that approximately include the effect of the higher substitutions without explicitly
including them.
This is precisely the idea of the SC2-CI method: we use the concept and language of interme-
diate Hamiltonians to divide the many particle space into three subspaces:
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• The main model space that consists of only the reference determinant.

• The intermediate or “buffer” space that consists of the single- and double substitutions.

• The “outer space” consisting of the triple and quadruple substitutions.

Clearly, the task at hand is to incorporate the effect of the higher substitutions in an approximate
manner. The task at had is thus to derive an effective Hamiltonian that incorporates these effects.
This will come in the form of a “dressed” CISD Hamiltonian matrix, the diagonalization of
which yields a size-consistent result that approximately incorporates the effects of the triple
and quadruple substitutions.

3.3.2 The model problem treated via intermediate Hamiltonian theory

Before we show the connection between intermediate Hamiltonian theory and the SC2-CI equa-
tions, it is instructive to analyze the wavefunction of the above A + B model system with
quadruply excited configurations. The Hamiltonian for A+B given above has the ground state
wavefunction

|Ψ〉 = C0 |ΦA0 〉 |ΦB0 〉 − CDA
|ΦAD〉 |ΦB0 〉 − CDB

|ΦA0 〉 |ΦBD 〉+ CQ |ΦAD〉 |ΦBD 〉 . (89)

It can be readily derived that the explicit form of this wavefunction is

|Ψ〉 =
X2

(1 +X2)

(
|ΦA0 〉 |ΦB0 〉 −

1

X
|ΦAD〉 |ΦB0 〉 −

1

X
|ΦA0 〉 |ΦBD 〉+

1

X2
|ΦAD〉 |ΦBD 〉

)
(90)

with X = (2K +
√

4K2+∆2)/∆. The products of the monomer wavefunctions occurring in
this equation should be understood as being properly antisymmetrized. Importantly, it follows
from Eq. (90) that the coefficient of the quadruply-excited configuration CQ is exactly a product
of the coefficient of the two doubly-excited ones CDA

and CDB
. This suggests a path towards

a simplification that includes the higher order excitations without explicitly including them and
hence towards the SC2-CI formulation.
First, we begin by writing the CIDQ problem with a linearly parametrized function given in
Eq. (89). The eigenvalue equation then is written as

H |Ψ〉 = E |Ψ〉 , (91)

H |ΨHF〉+ H |ΨD〉+ H |ΨQ〉 = E
(
|ΨHF〉+ |ΨD〉+ |ΨQ〉

)
. (92)

Here, the functions |ΨHF〉, |ΨD〉, and |ΦQ〉 denote the reference, doubles, and quadruples com-
ponent of the wavefunction respectively such as

|ΨHF〉 = CHF |ΦA0 ΦB0 〉 , (93)

|ΨD〉 = CDB
|ΦA0 ΦBD 〉+ CDA

|ΦADΦB0 〉 = CDB
|ΨDB
〉+ CDA

|ΨDA
〉 , (94)

|ΨQ〉 = CQ |ΦADΦBD 〉 = CQ |ΨQAB
〉 . (95)



4.24 Frank Neese, Lucas Lang, Vijay Gopal Chilkuri

The correlation energy Ecorr is given by∑
D∈DA,DB

C2
DEcorr = 〈ΨD|H|ΨHF〉+ 〈ΨD|H|ΨD〉+ 〈ΨD|H|ΨQ〉 . (96)

From Eq. (96) it becomes clear that the task here is to avoid the last term 〈ΨD|H|ΨQ〉 and at the
same time obtaining a size-consistent solution. Here, we can leverage the understanding from
the above discussion and make the following assumptions:

• The coefficients of quadruply excited configurations can be seen as products of doubly
excited coefficients.

CQ = CDA
CDB

=⇒ |ΨQ〉 =
1

2

∑
DX

∑
DY 6=DX

CDX
CDY
|ΨDX
〉 .

• The matrix-elements between the doubles and quadruples 〈ΨDX
|H|ΨQAB

〉 have the same
magnitude as that between the ΦHF and doubles, i.e.

〈ΦDX
|H|ΦDX

ΦDY
〉 = 〈ΦHF|H|ΨDY

〉 . (97)

These two assumptions are exact in the case of two non-interacting molecules A and B. With
these two assumptions, we can then simplify the expression for the correlation energy Eq. (96)
such that

〈ΨDX
|H|ΨQ〉 =

1

2

∑
DZ

∑
DY 6=DZ

CDZ
CDY
〈ΨDX

|H|ΦDZ
ΦDY
〉= 1

2
CDX

∑
DY

CDY
〈ΨDX

|H|ΦDX
ΦDY
〉 ,

(98)

〈ΨDX
|H|ΦDX

ΦDY
〉 = 〈ΨHF|H|ΨDY

〉 , =⇒ 〈ΨDX
|H|ΨQ〉 = CDX

Ecorr.

Using this result and substituting it in Eq. (91) we finally get the coupled electron pair approxi-
mation of type 0 (CEPA-0) equations which are given by

CDX
E = 〈ΨX |H|ΨHF〉+ 〈ΨX |H|ΨD〉+ CDX

Ecorr, (99)

CDX
EHF = 〈ΨX |H|ΨHF〉+ 〈ΨX |H|ΨD〉 . (100)

Hence, we recover a size-consistent form of CID without actually physically including the
quadruply excited configurations.
Now looking at Eq. (99) one can show that it can also be written in an equivalent form in terms
of a modification of the doubles part of the Hamiltonian. In fact, one can show that in our model
system HD

A+B above, if one replaces the diagonal energies of the doubly excited configurations
∆ with an equivalent ‘dressed’ diagonal energy ∆̃ given by

∆̃ = ∆+
1

2

(
∆−

√
∆2+4K2

)
= ∆+ EA

corr = ∆+
1

2
EA+B

corr (101)
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then the CID matrix looks like an intermediate effective Hamiltonian obtained by a diagonal
‘dressing’ of the intermediate space of the CID Hamiltonian

H̃D
A+B =

 |ΦA0 〉 |ΦB0 〉 0 K K

|ΦAD〉 |ΦB0 〉 K ∆̃ 0

|ΦA0 〉 |ΦBD 〉 K 0 ∆̃
. (102)

This diagonally dressed Hamiltonian is exactly equivalent to the CEPA-0 equations and gives
the expected correct Energy, i.e.,

H̃D
A+B |Ψ〉 =ẼD

A+B|Ψ〉, (103)

ẼD
A+B = EDQ

A+B =
(
∆−

√
∆2+4K2

)
= 2EA. (104)

Therefore, a size-consistent CID Hamiltonian can be thought of as an intermediate Hamiltonian
with a single configuration |ΨHF〉 in the model space with all the doubles |ΨD〉 being treated in
the intermediate space and with the quadruples being the out-of-space configurations. Hence,
in this sense, a size-consistent SC2-CI consists of a state-specific (i.e., dependent on the specific
model space |ΨHF〉) dressing of the intermediate space configurations.

3.3.3 General case using intermediate effective Hamiltonians

In the previous section, we highlighted the basic idea of the role of intermediate Hamiltonian
theory in the derivation of the SC2-CI equations for a model system. Here we derive the equa-
tions for SC2-CI in the general case following along the same steps as described above. In the
general case, the model space will consist of the 0’th order wavefunction Ψ0 and all the doubly
excited configurations with respect to Ψ0 given by ΨD make up the buffer space. The outer space
will be made up of the quadruply excited configurations. This results in the same Schrödinger
equation as before

Ĥ |Ψ0〉+ Ĥ |ΨD〉+ Ĥ |ΨQ〉 = E
(
|Ψ0〉+ |ΨD〉+ |ΨQ〉

)
. (105)

The goal here is to devise a diagonal dressing 〈ΨDX
|Ṽ|ΨDX

〉 such that the intermediate Hamilto-
nian H̃ given in Eq. (107) is size-consistent. This dressing is defined by the following equations

H̃ = P ·H ·P + Ṽ, (106)∑
DI

C̃I 〈ΨX |H̃|ΨDI
〉 = EC̃X , (107)∑

DI

C̃I 〈ΨX |H|ΨDI
〉+

∑
QJ

C̃J 〈ΨX |H|ΨQJ
〉 = EC̃X . (108)

For this we proceed similarly to the previous case with the same two assumptions as before
but we shall be careful about the indices here. The main task is the derivation of the last term
on the LHS of Eq. (108). Using the assumption that the coefficients of the quadruples can be
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expressed as products of the coefficients of the doubles (Eq. (98)), we can simplify the dressing
〈ΨDX

|Ṽ|ΨDX
〉 as shown below

〈ΨDX
|H|ΨQ〉 =

1

2

∑
DZ

∑
DY

CDZ
CDY
〈ΨDX

|H|ΦD
ZΦ

D
Y 〉 , (109)

〈ΨDX
|H|ΨQ〉 = CDX

∑
DY ∈DDX

CDY
〈Ψ0|H|ΨDY

〉 , (110)

〈ΨDX
|H|ΨQ〉 = CDX

〈ΨDX
|Ṽ|ΨDX

〉 , (111)

〈ΨDX
|Ṽ|ΨDX

〉 =
∑
DY

CDY
〈Ψ0|H|ΨDY

〉 −
∑

Y /∈DDX

CDY
〈ΨDX

|H|ΨDY
〉 , (112)

〈ΨDX
|Ṽ|ΨDX

〉 = Ecorr −
∑

DY /∈DDX

CDY
〈ΨDX

|H|ΨDY
〉 . (113)

Here ‘DX’ and ‘DY ’ collectively denote a 4-tuple of indices (i, j, a, b) that denote double sub-
stitutions from occupied orbitals i and j to virtual orbitals a and b. Importantly, the summation
over DY in the above equations is over those doubles that are ‘disconnected’ DY ∈ DDX

with re-
spect to the doubly excited configuration ΨDX

. The ‘disconnected’ refers to two tuples (i, j, a, b)

and (k, l, c, d) where no index in the first tuple is identical to any index in the second tuple. This
is a direct consequence of the Pauli exclusion principle since the quadruply substituted deter-
minant is written as a product of doubly substituted. Hence, after performing a given double
substitution, the second double substitution will only lead to a non-zero result if the spin-orbital
that is depopulated by the second substitution is not already empty or the virtual orbital that is
populated by the substitution is not already populated. This is only the case if no index is re-
peated. Substitutions that violate this requirement are known as ‘exclusion principle violating’
(EPV) terms. Therefore, the final expression of the dressing with the correct consideration of
the EPV terms is as follows:

〈ΨDX
|H|Ψ0〉+ 〈ΨDX

|H|ΨD〉+ C̃DX

(
Ecorr−∆EPV

DX

)
= C̃DX

(EHF+Ecorr) . (114)

The last thing to do is to derive the expression for the EPV terms of the diagonal dressing ∆EPV
DX

.
Note that now the dressing becomes dependent on the doubly excited configuration ΨDX

which
makes the result dependent on orbitals i, j, a, bwhich are the four orbitals involved in the double
substitution |ΨDX

〉 = Ea
i E

b
j |Ψ0〉. The expression for the EPV term may be written as

∆EPV
X =

∑
klcd∈ijab

CDY
〈Ψ0|HEc

kE
d
l |Ψ0〉 . (115)

The EPV terms enumerated by considering the number of ways, in which one-, two-, three-
or all four indices in the two tuples can coincide. There are four total different type of tuples
k, l, c, d which satisfy the rule k, l, c, d ∈ i, j, a, b depending on one, two, three or four indices
in common. The intermediate quantities required for these cases are as follows:

• One common occupied index i (analogously for virtual)

e1(i) =
∑
kcd

〈Ψ0|HEd
kE

c
i |Ψ0〉 , (116)
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• one occupied pair (i,j) common (analogous for virtual pairs)

e2(i, j) =
∑
cd

〈Ψ0|HEd
jE

c
i |Ψ0〉 , (117)

• a triple of indices identical (i,j,a) common (analogous of i,a,b)

e3(i, j, a) =
∑
c

〈Ψ0|HEc
jE

a
i |Ψ0〉 , (118)

• all four indices common

e4(i, j, a, b) = 〈Ψ0|HEb
jE

a
i |Ψ0〉 . (119)

Using these intermediate quantities, we can finally write general equations for the full SC2-
CISD as follows [31, 32]

∆EPV
DX

= e1(i) + e1(j) + e1(a) + e1(b)

+ e2(i, j) + e2(i, a) + e2(i, b) + e2(j, a) + e2(j, b) + e2(a, b)

+ e3(i, j, a)− e3(i, j, b)− e3(i, a, b)− e3(j, a, b)

+ e4(i, j, a, b).

(120)

Thus, we have the general SC2-CISD equations which include the correct contributions resulting
from a careful consideration of the spurious EPV terms.

3.3.4 Further generalization and connection to Coupled Cluster Theory

The SC2-CI represents a logical progression from the highly flawed CISD method towards a
more accurate and size-consistent theory. It exactly restores size consistency by taking care
of all EPV terms. However, it still has one significant shortcoming: the lack of unitary non-
invariance. The Hartree-Fock wavefunction and even the CISD wavefunction is invariant under
unitary transformations of the occupied or virtual orbitals among themselves. The SC2-CI, ow-
ing to the way the higher substitutions are incorporated, does not have this property. Again, this
is quite problematic for chemical applications of this theory. However, if one takes inspiration
from this development, it is not difficult to envision how one can work around this problem. In
fact, with some contemplation, one could arrive at the conclusion that the essential feature is to
approximate higher substitutions as products of lower substitutions. Thus triples are products
of singles- and doubles, quadruples arise from products of doubles with other doubles etc. The
easiest way to formalize this, is to define the n-fold substitution operators T̂n:

T̂1 =
∑
ia

tiaa
†
aai T̂2 = 1

4

∑
ijab

tijaba
†
aaia

†
baj ... (121)

Here, the t-amplitudes take the place of the CI coefficients. Thus, triple substitutions would
be approximated as T̂1T̂2, quadruples as T̂ 2

2 and so on. Importantly, these higher excitation do
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not lead to additional wavefunction parameters. The singles and doubles amplitudes is all that
is required. The simplest such theory is the QCISD theory of Pople and coworkers. It may
be thought of as the simplest way to restore size consistency and unitary invariance in CISD.
However, this is not how it historically came about. In fact, one can generalize the idea of
using products of excitation operators in a beautiful way by using the coupled cluster ansatz
briefly mentioned in the introduction, in which the many-particle wavefunction is written as an
exponential

|Ψ〉 = exp(T̂ ) |Φ0〉 , with T̂ = T̂1 + T̂2 + ... (122)

Expanding the exponential leads to

exp(T̂ ) = 1̂ + T̂ + 1
2
T̂ 2 + ... = 1̂ + T̂1 + T̂2 + 1

2
T̂ 2

1 + T̂1T̂2 + 1
2
T̂ 2

2 + ... (123)

Thus, all products of excitations are automatically included. It can readily be shown that the
theory remains size consistent at any truncation level of the cluster operator. There would be
much more to say about coupled cluster theory. However, here we only wanted to illustrate that
physical reasoning based on effective Hamiltonians can lead in a natural way to its formula-
tion. Today, coupled cluster theory is a mainstay of quantum chemistry and perhaps the most
advanced and most successful wavefunction-based electronic structure method in existence.

3.4 Ab initio ligand field theory
3.4.1 Ligand field theory

The analysis of experimental results like optical absorption spectra shows that the low-energy
states of many mononuclear transition metal complexes can be qualitatively understood as linear
combinations of a certain set of Slater determinants. They all share the same doubly occupied
MOs (ligand orbitals and core orbitals on the metal) and have different occupations of a set of
5 MOs that resemble the d orbitals of free transition metal atoms or ions. For simplicity, these
MOs are also called d orbitals with the understanding that they are partially delocalized onto
the ligands. Ligand field theory (LFT) is a parametrization of an effective Hamiltonian that
describes this manifold of ‘ligand field states’ in terms of intuitively appealing parameters.
The form of the model can be derived as follows [33]: Within the Slater determinant basis
introduced above, one can replace the BO Hamiltonian H (apart from a constant energy shift)
by the effective Hamiltonian

Heff =
∑
i∈d

F core
i +

∑
i<j∈d

1

rij
, (124)

where
F core = h+

∑
i

(2Ji−Ki). (125)

Note that the i in Eq. (124) denotes electrons in d orbitals, while i in Eq. (125) denotes doubly
occupied orbitals. Ji and Ki in Eq. (125) are Coulomb and exchange operators. This means
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that this effective Hamiltonian describes the movement of the d electrons in the mean field of
the closed-shell core and ligand orbitals.

For constructing the matrix representation of the effective Hamiltonian Eq. (124) in the ba-
sis of all Slater determinants introduced above, one needs all one-electron integrals F core

pq =

〈dp|F core|dq〉 and two-electron integrals (dpdq|drds). Since the core Fock operator is Hermitian,
there are a total of 15 parameters arising from the one-electron integrals. Furthermore, there are
(considering permutational symmetry) 120 independent two-electron integrals.

In the simplest ligand field model, one makes the assumption that the d orbitals have full spher-
ical symmetry (i.e., they transform like the spherical harmonics belonging to quantum number
l = 2). In this case, there are only 3 independent parameters in terms of which one can express
all two-electron integrals. These parameters are either the Slater-Condon parameters F0, F2, F4

or the Racah parameters A,B,C [33]. In ligand field theory, one usually denotes the one-
electron part of the effective Hamiltonian as the one-electron ligand field matrix hLFT

pq instead
of a “core Fock operator”. In high-symmetry situations, the number of parameters is highly
reduced. For example, in tetrahedral or octahedral complexes, hLFT

pq is fully determined (apart
from an irrelevant constant energy shift) by a single number: the ligand field splitting ∆ (often
also denoted by 10Dq), which is the orbital energy difference between the e(g) and the t2(g)

orbital sets.

Traditionally, the parameters of the model are fitted to experimental data like electronic ex-
citation energies, thermochemical data, EPR spectra, or magnetization data. Particularly in
low-symmetry situations (where all elements of hLFT

pq appear as distinct parameters), this fit is
often underdetermined. Furthermore, one is fitting quantities that depend nonlinearly on the
ligand field parameters. This means that there can be many local minima in parameter space
and the fit is not unique. Therefore, the extracted ligand field parameters are not well-defined
and can possibly lack physical meaning.

One should also note that since the Slater determinant basis used in the definition of the lig-
and field model is far from being complete, it describes the true spectrum only approximately
if Eqs. (124) and (125) are understood literally. Fitting to experimental data (or to ab initio
effective Hamiltonians as described below) can go beyond this simple picture and lead to pa-
rameters that for example include the effect of electron correlation. They can be considered as
“renormalized parameters” [34].

3.4.2 Ab initio ligand field theory

The ab initio ligand field theory (AILFT) approach is based on the observation that the matrix
elements of the ligand field effective Hamiltonian are linear functions of the parameters of the
model [35]. When combining all the parameters in a single vector p, one can write this as

HLFT
IJ (p) =

∑
k

HLFT,k
IJ pk. (126)
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Combining I and J into a single compound index (such that the effective Hamiltonian becomes
a vector), this can also be written in matrix-vector form,

HLFT(p) = Ap, (127)

where the matrix A is defined as AIJ,k = HLFT,k
IJ .

The basic idea of AILFT is now to construct an ab initio effective Hamiltonian Heff that de-
scribes the same part of the electronic spectrum as the LFT model Hamiltonian. One then
optimizes the parameters p such that the model Hamiltonian resembles the ab initio effective
Hamiltonian as much as possible. This can be achieved by minimizing the sum of squared de-
viations of all matrix elements, i.e.,

∑
IJ

(
Heff
IJ −HLFT

IJ (p)
) !

= min (least-squares fitting). Since
the matrix elements are linear functions of the parameters, this problem has a unique solution
that is given by [36, 37]

p = A+Heff, (128)

where A+ is the Moore-Penrose pseudoinverse of A. If the number of effective Hamiltonian
matrix elements is larger than the number of parameters (which is usually the case), the pseu-
doinverse can be written as A+=(ATA)−1AT . Inserting this into Eq. (128), one arrives at

p = (ALFT)−1bLFT, (129)

ALFT
kl =

∑
IJ

HLFT,k
IJ HLFT,l

IJ , (130)

bLFT
k =

∑
IJ

HLFT,k
IJ Heff

IJ . (131)

These are the equations derived in the original description of the AILFT approach [35]. This
ab initio approach for obtaining ligand field parameters is distinguished from traditional ap-
proaches by the fact that the model is linear (i.e., the fit is unique) and that the system is not
underdetermined. This is because the full effective Hamiltonian provides much more informa-
tion than just the energies.
The most straightforward ab initio effective Hamiltonian that can be used in the AILFT context
is the CASCI Hamiltonian, where the metal d orbitals are chosen as active orbitals. In terms of
its spectral resolution, it can be written as

HCASCI = CCASCIECASCIC
T
CASCI, (132)

where CCASCI is the matrix of CASCI coefficients and E is the diagonal matrix of energies.
The problem in this case is that dynamic correlation, which is important for quantitative results,
is missing. A straightforward way to incorporate dynamic correlation on top of a CASSCF
calculation is 2nd order multireference perturbation theory (MRPT). Popular variants of MRPT
are CASPT2 [38, 39] and NEVPT2 [40–42]. The standard version of these methods is state-
specific, i.e., they are performed for each CASSCF root individually. A variant of AILFT based
on state-specific NEVPT2 was introduced in which the ab initio effective Hamiltonian is in
analogy to Eq. (132) defined as

Heff
NEVPT2 = CCASCIENEVPT2C

T
CASCI. (133)
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By definition, this effective Hamiltonian has again simply the CASCI wavefunctions as eigen-
states, while its energies include dynamic correlation at 2nd order in perturbation theory. A
downside of this approach is that often large root-mean-square deviations (RMSDs) between
the NEVPT2 energies and the energies of the fitted LFT model were observed, indicating that
the LFT model is not well suited to parametrize the NEVPT2 effective Hamiltonian of Eq. (133).
In contrast to this, there are also so-called multistate methods that can describe the dynamic-
correlation-induced mixing of states in the model space. Recently, new versions of AILFT
based on two such methods, the DCD-CAS(2) method [22, 23] and a Hermitian version of
quasidegenerate NEVPT2 (HQD-NEVPT2) [43], were implemented and tested. It turns out
that the possibility of state mixing can lead to better fits and lower RMSDs than at the NEVPT2
level. This leads to ligand field models that are closer to the physical picture provided by the ab
initio calculations.
LFT has the advantage that it allows for the rationalization of complicated properties like ex-
citation energies, EPR spectra, magnetization curves, and many other experimental results in
terms of parameters whose behavior can be intuitively understood. In particular, the reduction
of the size of the Racah parameters can be interpreted as a manifestation of the “nephelauxetic
effect”, i.e., the expansion of the size of the d orbitals due to covalency. A popular tool for
analysis of the one-electron ligand-field matrix is the angular overlap model (AOM) [44,45]. In
this case, the model parameters are eσ and eπ, which are measures for the strength of σ and π
bonding between the metal center and the ligand.
AILFT has been used in many studies over the last few years to rationalize the spectra and
other properties of transition metal complexes. For example, it was used in the analysis of the
magnetostructural correlations in pseudotetrahedral cobalt(II) complexes [46], the analysis of
the ligand field of the azido ligand [47], and for the rationalization of experimental results on a
cobalt single ion magnet [48]. Furthermore, AILFT was used to gain understanding of periodic
trends in lanthanide [49, 50] and actinide [50] ions and complexes.
For further information on AILFT, we refer to two recent review articles [51, 52].

4 Conclusions

We hope that in this chapter, we have provided a useful entry point into the fascinating world of
effective Hamiltonians. We have briefly touched upon many and diverse aspects of the subject.
However, the serious student will need to consult the cited literature in order to work out any
of the topics in full detail. Nevertheless, we hope that it came across that effective Hamilto-
nians are an incredibly versatile and powerful concept. They help us to conceptualize difficult
electronic structure problems, they help us to connect in a clear and concise way to experimen-
tal reality and they may inspire us to develop more accurate electronic structure theories – to
reiterate only a few possible applications. Clearly, the avenues that can be explored are nearly
endless. Consequently, we hope that future generations of theoreticians will embrace effective
Hamiltonians in their research and make ample use of the creative possibilities that their offer.
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5.2 Erik Koch

1 Atomic configurations

Given their modest size and symmetry, atoms are among the simplest many-electron problems.
On the other hand, they are of outstanding importance as the building blocks of all matter, with
their level structure determining the to a large extent the electronic structure in the condensed
state. Their symmetry, combined with the early availability of high-accuracy spectral data, made
it possible to analyze the electronic structure of atoms and ions already before the Schrödinger
equation was known [1]. Knowing the (non-relativistic) Hamiltonian for an N -electron ion of
charge Z−N (in atomic units, see App. A)

H =
N∑
i=1

(
−1

2
∆i −

Z

|~ri|

)
+
∑
i<j

1

|~ri − ~rj|
(1)

does, however, not mean that we can determine its ground state exactly. To get an impression
of the complexity of the problem presented by a system of many interacting electrons, we may
consider a simple iron atom, Fe, with N = Z = 26 electrons. Its wave-function is a function of
3×26 coordinates. Writing a numerical approximation to it, even on a coarse discretization grid
of 10 grid-points per coordinate would require us to store 1076 amplitudes, for which we would
need a classical memory device containing more atoms than exist in the visible universe—a
practical impossibility. We thus need “approximate practical methods” [2] to deal with the
problem.
The approximate practical approach for dealing with the atomic many-body problem consists of
treating the electron-electron repulsion in two steps. First, equation (1) is solved in the central-
field approximation. This provides us with orbitals ϕn,l,m,σ(~r) = un,l(r)/r Yl,m(ϑ, ϕ)χσ. If
we were to stop at the mean-field level, we might look for unrestricted mean-field solutions
that break the spherical and spin symmetry to lower the mean-field energy. When we continue
the calculation by reintroducing the electron-electron interaction, we stay with the symmetry-
restricted mean-field solutions, as the many-body treatment otherwise would have to restore the
broken symmetries.
Filling the central-field orbitals by the Aufbauprinzip already gives the structure or the periodic
table: orbitals are filled—roughly—with increasing quantum numbers n+l and for given n+l

with increasing principle quantum number n:

1s 2s 3s 4s 5s 6s 7s · · ·

2p 3p 4p 5p 6p · · ·

3d 4d 5d 6d · · ·

4f 5f · · ·

The reordering of the atomic shells relative to the hydrogen levels is a result of the mean-field:
inner electrons screen the nuclear charge, so that electrons further away from the nucleus see
only a small effective charge. Since un,l(r→0) ∼ rl+1 orbitals with higher angular momentum l

have a lower probability of coming close to the nucleus, so their energy tends to go up.
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In the central-field approximation the orbital energy only depends on the quantum numbers n
and l, but not on m and σ. Thus, when a shell (n, l) is filled with less than 2(2l+1) electrons,
there will be many different ways of distributing the electrons over spin-orbitals, all of the same
energy. Thus open shells are highly degenerate.
This degeneracy is lifted when we re-introduce the electron-electron interaction in degenerate
perturbation theory, or, when including more than the degenerate orbitals, in a variational way.
The actual perturbation is the two-body interaction minus the mean-field (double-counting cor-
rection) ∑

i

VMF (~ri) :=

〈
1

2

∑
j 6=i

1

|~ri−~rj|

〉
. (2)

When the mean-field density is close to the true density as, e.g., in a density-functional calcula-
tion, the long-range Hartree potential is already properly included VMF , so that the perturbation
becomes short-ranged—of the order of the exchange-correlation hole. This perturbation arising
from the electron-electron repulsion splits a configuration lN of N electrons in an (n, l)-shell
into multiplet terms. They are characterized by their total orbital momentum L and spin S quan-
tum numbers and are in general still highly degenerate. The total spin is usually given by its
multiplicity 2S+1 so that the multiplet term is written as 2S+1L. When the relativistic spin-orbit
coupling is included in a second step of degenerate perturbation theory, these terms split into
multiplet levels, which are characterized by the additional total angular momentum as 2S+1LJ .
This two-step degenerate perturbation approach is called LS or Russell-Saunders coupling and
works well when the splitting due to spin-orbit coupling is much smaller than that due to the
electron-electron repulsion.
Doing perturbation theory in the opposite order, i.e., calculating the splitting of the open shell
lN under spin-orbit interaction and then doing perturbation theory for the electron-electron re-
pulsion on the degenerate spin-orbit levels is called jj coupling. It is appropriate in extremely
heavy atoms, where the spin-orbit splitting dominates the multiplet splitting. In practice this is
not realized for stable atoms. In heavy atoms the spin-orbit interaction can, however, become
sufficiently strong that LS coupling breaks down and one has to treat electron-electron repul-
sion and spin-orbit coupling on the same footing, i.e., in a single step of degenerate perturbation
theory. This is called intermediate coupling.
In the following we will start by analyzing the two-body electron-electron repulsion that makes
theN -electron atom a many-body problem. We will see that the multiplet terms are almost com-
pletely determined by symmetry—which was instrumental in making the analysis of spectra be-
fore the introduction of the Schrödinger equation possible. We will then turn to the construction
of the electron-electron Hamiltonian bring it into matrix form and investigate its properties, in
particular under an electron-hole transformation. This will involve a number of technical con-
cepts, in particular the addition theorem for spherical harmonics and its implications as well as
Gaunt coefficients, which are explained in separate appendices. Finally, we will briefly discuss
the much simpler one-body spin-orbit interaction and its interplay with the electron-electron
repulsion. For an introduction to multiplets with a focus of different aspects of the theory, see
also the excellent lecture of Robert Eder on multiplets in transition metal ions in [3].
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2 Multiplets

We start by considering the splitting of an open shell of N electrons in orbitals ϕn,l,m,σ of
angular momentum l. There are 2(2l+1) such spin-orbitals and, by the antisymmetry of the
N -electron wave function,

(
2(2l+1)
N

)
degenerate states in the shell lN . The computational ap-

proach of dealing with the electron-electron repulsion is to write Hee

∑
i<j 1/|~ri−~rj| in second

quantization in the N -electron space spanned by the spin-orbitals and diagonalize the result-
ing

(
4l+2
N

)
-dimensional matrix numerically. The techniques for this exact diagonalization are

explained in [4]. As a result we will find a highly degenerate spectrum.

The degeneracies are the consequence of the symmetries of the perturbation: Hee is invariant
under inversions and simultaneous rotations of all electrons, as well as independent of spin. This
means, in particular, that it commutes with the total spin ~S =

∑
i
~Si operator and total orbital

momentum ~L =
∑

i
~Li, where ~Li = ~ri × ~pi. Thus, there will be simultaneous eigenstates of

Hee , ~L, and ~S. The symmetry-based approach to calculating multiplet terms and their energies
is thus based on constructing the eigenstates |L,M ; S,Σ〉 of the total angular momenta, span-
ning the multiplet term 2S+1L. When the terms are unique, the |L,M ; S,Σ〉 are automatically
eigenstates of Hee . When there is more than one term with quantum numbers L and S, Hee

needs only be diagonalized on this small space. Written in multiplet states, Hee is thus block
diagonal, with most blocks being one-dimensional.

Constructing eigenstates of L and S can, however, be quite tedious: the resulting states when
adding more that two angular momenta depend on the order in which the momenta are added,
and the resulting states need to be antisymmetrized. The traditional approach [5–10] proceeds
by constructing the multiplet states for the lN shell from the states for the simpler lN−1-shell
by adding the angular momentum of the additional electron and antisymmetrizing the resulting
function. To ease this task, there are tables of coefficients of fractional parentage [10]:

Fractional parentage coefficients were introduced by Racah [7] to facilitate com-
putation of matrix elements for complicated configurations. They are important
because all antisymmetric states of N electrons can be expressed as linear combi-
nations of the states obtained by angular-momentum coupling one additional elec-
tron to the antisymmetric states of N−1 electrons. The coefficients of these linear
combinations are the fractional parentage coefficients.

The problem simplifies drastically when we work in a formalism that only allows us to express
physical quantities, i.e., when working in second quantization [11]: all states must be antisym-
metric and all operators must be symmetric: total orbital momentum can be represented, while
unphysical operators acting on only a single electron cannot (if such an operator would be phys-
ical, we could use it to distinguish the electron it acts on from the others...). The procedure starts
by identifying the state with maximum M and Σ (i.e., that vanishes under L+ and S+ so that it
is a states with L = M and S = Σ). Using ladder operators L− and S− then produces the other
states of multiplet 2S+1L, after which the procedure is repeated with the remaining states.
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2.1 Constructing multiplet states

The key tools for constructing multiplet state are the ladder operators of total orbital momentum

L̂± =
∑
l,m,σ

√
(l±m+1)(l∓m) c†l,m−1,σ cl,m,σ

and total spin
Ŝ+ =

∑
l,m

c†l,m,↑ cl,m,↓ and Ŝ− =
∑
l,m

c†l,m,↓ cl,m,↑.

In addition we have to fix some order of the orbitals in our basis determinants, which we choose
to be sorted according to their eigenvalues m,σ: operators with spin ↑ to the left of ↓ and, for
given spin, m to the left of m′ when m > m′.

2.1.1 Multiplet terms of p2

To see how multiplets are identified and their states are constructed in practice, we look at the
simple case of two electrons in a p shell. To start, we arrange the

(
6
2

)
= 15 basis determinants

according to their eigenvalues of Lz and Sz:

Σ

1 0 −1

2 p† 1↑p
†
1↓|0〉

1 p†1↑p
†
0↑|0〉

p† 1↑p
†
0↓|0〉

p† 0↑p
†
1↓|0〉

p†1↓p
†
0↓|0〉

M 0 p†1↑p
†
−1↑|0〉

p† 1↑p
†
−1↓|0〉

p† 0↑p
†
0↓|0〉

p†−1↑p
†
1↓|0〉

p†1↓p
†
−1↓|0〉

−1 p†0↑p
†
−1↑|0〉

p† 0↑p
†
−1↓|0〉

p†−1↑p
†
0↓|0〉

p†0↓p
†
−1↓|0〉

−2 p†−1↑p
†
−1↓|0〉

For the states with Σ = 1 both electron spins are up, so that applying S+ produces zero. From
the relation ~J2 = J2

z−Jz+J−J+ for general angular momenta ~J , it then follows that these states
are eigenstates of ~S2 with S = 1. Similarly, when a state vanishes under L+ it is an eigenstate
of ~L2. We can thus identify a state |L,M ; S,Σ〉

|1, 1; 1, 1〉 = p†1↑p
†
0↑|0〉 (3)

from which we can construct more eigenstates |1, 1; 1, Σ〉 by applying S− =
∑

m p
†
m↓pm↑,

using [S−, p
†
mσ] = δσ,↑ p

†
m↓. For example

√
2 |1, 1; 1, 0〉 = S− |1, 1; 1, 1〉 =

(
−p†0↑p

†
1↓ + p†1↑p

†
0↓
)
|0〉,

where in the last term we have brought the operators in the order required by our choice of
basis. Note how the factor on the left just ensures normalization of the state on the right.
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Also using L−, we can construct all nine states |1,M ; 1, Σ〉 of the 3P multiplet term

3P Σ

1 0 −1

1 p†1↑p
†
0↑|0〉 1√

2

(
p† 1↑p

†
0↓ − p

†
0↑p
†
1↓
)
|0〉 p†1↓p

†
0↓|0〉

M 0 p†1↑p
†
−1↑|0〉 1√

2

(
p† 1↑p

†
−1↓ − p

†
−1↑p

†
1↓
)
|0〉 p†1↓p

†
−1↓|0〉

−1 p†0↑p
†
−1↑|0〉 1√

2

(
p† 0↑p

†
−1↓ − p

†
−1↑p

†
0↓
)
|0〉 p†0↓p

†
−1↓|0〉

Similarly, we see that
|2, 2; 0, 0〉 = p†1↑p

†
1↓|0〉 (4)

from which by repeated application of L− =
√

2
∑

σ

(
p†0σp1σ + p†−1σp0σ

)
we can construct all

five states of the 1D term

1D Σ = 0

2 p†1↑p
†
1↓ |0〉

1 1√
2

(
p†1↑p

†
0↓ + p†0↑p

†
1↓
)
|0〉

M 0 1√
6

(
p†1↑p

†
−1↓ + 2p†0↑p

†
0↓ + p†−1↑p

†
1↓
)
|0〉

−1 1√
2

(
p†0↑p

†
−1↓ + p†−1↑p

†
0↓
)
|0〉

−2 p†−1↑p
†
−1↓ |0〉

The remaining state in the 3-dimensional eigenspace M=0, Σ=0 must be a singlet state 1S. We
can construct it by finding the state orthogonal to |1, 0; 1, 0〉 and |2, 0; 0, 0〉:

1S |0, 0; 0, 0〉 =
1√
3

(
−p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
)
|0〉 . (5)

The procedure is quite remarkable. Simply counting the number of basis determinants with
given M and Σ we could identify states of maximum Lz and Sz eigenvalues and see that p2

splits into 3P , 1D, and 1S. Constructing the multiplet states explicitly then involved merely
ladder-operator algebra. For the 3P and 1D multiplets the starting state |L,L; S, S〉 turned out
to be just a Slater determinant. Only the singlet state had to be constructed by orthogonalizing
to the already constructed states.
The p2-shell is, of course, quite a simple case. Adding two angular momenta is a unique proce-
dure. Already for three angular momenta this is no longer true: Adding two spins gives a triplet
S=1 and one singlet S=0 state. Adding another spin to the triplet gives a quadruplet S=3

2
and

a doublet S=1
2
, adding the third spin to the singlet gives another doublet. While the triplet is

unique, the choice of the basis in the two-doublet space is arbitrary. It is usually resolved by
specifying in which order the spins are added: (~S1+~S2)+~S3 results in doublet states different
from those obtained by adding, e.g., ~S1+(~S2+~S3). For shells of more than two electrons we
might therefore expect that there will be multiplets that appear several times. Because of the
antisymmetry constraint this does, however, not happen in any of the p-shells. The first time we
see multiple multiplets is for d3, which we study next.
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2.1.2 Multiplet states of d3

The d3-shell has considerably more states than p2. We can reduce the discussion from
(
10
3

)
=

120 down to the 35 basis states with M ≥ 0 and Σ ≥ 0, since the space spanned by these
contains all states that vanish under L+ and S+.

Σ

3
2

1
2

5 d†2↑d
†
1↑d
†
2↓|0〉

4 d†2↑d
†
1↑d
†
1↓|0〉 d†2↑d

†
0↑d
†
2↓|0〉

3 d†2↑d
†
1↑d
†
0↑|0〉

d†2↑d
†
1↑d
†
0↓|0〉

d†2↑d
†
0↑d
†
1↓|0〉

d†2↑d
†
−1↑d

†
2↓|0〉

d†1↑d
†
0↑d
†
2↓|0〉

M 2 d†2↑d
†
1↑d
†
−1↑|0〉

d†2↑d
†
1↑d
†
−1↓|0〉

d†2↑d
†
0↑d
†
0↓|0〉

d†2↑d
†
−1↑d

†
1↓|0〉

d†1↑d
†
0↑d
†
1↓|0〉

d†2↑d
†
−2↑d

†
2↓|0〉

d†1↑d
†
−1↑d

†
2↓|0〉

1
d†2↑d

†
1↑d
†
−2↑|0〉

d†2↑d
†
0↑d
†
−1↑|0〉

d†2↑d
†
1↑d
†
−2↓|0〉

d†2↑d
†
0↑d
†
−1↓|0〉

d†2↑d
†
−1↑d

†
0↓|0〉

d†1↑d
†
0↑d
†
0↓|0〉

d†2↑d
†
−2↑d

†
1↓|0〉

d†1↑d
†
−1↑d

†
1↓|0〉

d†1↑d
†
−2↑d

†
2↓|0〉

d†0↑d
†
−1↑d

†
2↓|0〉

0
d†2↑d

†
0↑d
†
−2↑|0〉

d†1↑d
†
0↑d
†
−1↑|0〉

d†2↑d
†
0↑d
†
−2↓|0〉

d†2↑d
†
−1↑d

†
−1↓|0〉

d†1↑d
†
0↑d
†
−1↓|0〉

d†2↑d
†
−2↑d

†
0↓|0〉

d†1↑d
†
−1↑d

†
0↓|0〉

d†1↑d
†
−2↑d

†
1↓|0〉

d†0↑d
†
−1↑d

†
1↓|0〉

d†0↑d
†
−2↑d

†
2↓|0〉

From |3, 3; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
0↑|0〉 we can construct the twenty states in 4F .

Using L− =
∑

σ

(
2d†−2σd−1σ +

√
6 d†−1σd0σ +

√
6 d†0σd1σ + 2d†1σd2σ

)
and remembering that L−

on the left-hand side ensures normalization we obtain

|3, 3; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
0↑ |0〉

|3, 2; 3
2
, 3
2
〉 = d†2↑d

†
1↑d
†
−1↑ |0〉

|3, 1; 3
2
, 3
2
〉 = 1√

5

(√
3 d†2↑d

†
0↑d
†
−1↑ +

√
2 d†2↑d

†
1↑d
†
−2↑
)
|0〉

|3, 0; 3
2
, 3
2
〉 = 1√

5

(
d†1↑d

†
0↑d
†
−1↑ + 2 d†2↑d

†
0↑d
†
−2↑
)
|0〉

The state |Ψ⊥〉 orthogonal to |3, 1 3
2
, 3
2
〉 in the two-dimensional eigenspace must vanish under

L+, since it is orthogonal also to L−L+|3, 1; 3
2
, 3
2
〉 so that 0 = 〈L+Ψ⊥|3, 2; 3

2
, 3
2
〉. It is thus

|1, 1; 3
2
, 3
2
〉 =

1√
5

(√
2 d†2↑d

†
0↑d
†
−1↑ −

√
3 d†2↑d

†
1↑d
†
−2↑
)
|0〉

from which we can construct the twelve states of 4P .
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Starting from |5, 5; 1
2
, 1
2
〉 = d†2↑d

†
1↑d
†
2↓|0〉 we obtain the twenty-two 2H states, e.g.,

|5, 5; 1
2
, 1
2
〉 = d†2↑d

†
1↑d
†
2↓ |0〉

|5, 4; 1
2
, 1
2
〉 = 1√

5

(√
3 d†2↑d

†
0↑d
†
2↓ +
√

2 d†2↑d
†
1↑d
†
1↓
)
|0〉

|5, 3; 1
2
, 1
2
〉 = 1√

15

(√
2 d†1↑d

†
0↑d
†
2↓ +
√

3 d†2↑d
†
−1↑d

†
2↓ +
√

8 d†2↑d
†
0↑d
†
1↓ +
√

2 d†2↑d
†
1↑d
†
0↓
)
|0〉

...

There remains one state orthogonal to |5, 4; 1
2
, 1
2
〉 in the eigenspace for M=4, Σ=1

2

|4, 4; 1
2
, 1
2
〉 =

1√
5

(√
2 d†2↑d

†
d↑d
†
0↓2−

√
3 d†2↑d

†
1↑d
†
1↓
)
|0〉

from which we can construct the eighteen states in 2G. Similarly, in the four-dimensional
eigenspace of M=3, Σ=1

2
there remains one state orthogonal to the already constructed states

|5, 3; 1
2
, 1
2
〉, |4, 3; 1

2
, 1
2
〉, and |3, 3; 3

2
, 1
2
〉 ∝ S−|3, 3; 3

2
, 3
2
〉

|3, 3; 1
2
, 1
2
〉 =

1√
12

(
2 d†1↑d

†
0↑d
†
2↓ −
√

6 d†2↑d
†
−1↑d

†
2↓ + d†2↑d

†
0↑d
†
1↓ − d

†
2↑d
†
1↑d
†
0↓
)
|0〉

from which we obtain the fourteen 2F states.
In the next step we encounter a new situation: the eigenspace ofM=2,Σ=1

2
is six-dimensional,

but so far we could only construct four states out of it: |5, 2; 1
2
, 1
2
〉, |4, 2; 1

2
, 1
2
〉, |3, 2; 1

2
, 1
2
〉, and

|3, 2; 3
2
, 1
2
〉. Any state out of the remaining two-dimensional orthogonal space will vanish under

L+ and S+, i.e., it will be an eigenfunction of the type |2, 2; 1
2
, 1
2
〉, so that there will be two 2D

multiplets. This ambiguity is, of course, lifted in a natural way by diagonalizing the Hamiltonian
on the two dimensional space and using the resulting energy eigenstates to construct the two
multiplets. If we insist on defining states independently of the Hamiltonian, we need to define a
recipe for lifting the ambiguity. This route has been taken by Racah by introducing the concept
of seniority [8]. Before discussing this, we finish the determination of the multiplets of a d3-
shell by noting that after constructing the two 2D multiplet states, there is still one undetermined
state in the M=1, Σ=1

2
eigenstate, which gives rise to a 2P multiplet.

Thus the 120-fold degenerate d3-shell splits into 4F , 4P , 2H , 2G, 2F , 2×2D, and 2P .

2.1.3 Seniority and Kramers pairs

The key to understanding seniority are the Kramers pair creators

K†l :=
1√

2l+1

l∑
m=−l

(−1)m l†m↑l
†
−m↓ (6)

which create electron-pairs in a singlet state (note the analogy to Cooper pairs), i.e., [~L, K†l ] =

0 = [~S, K†l ]. For the z-components this is straightforward[
Lz, l

†
m↑l
†
−m↓
]

=
[
Lz, l

†
m↑
]
l†−m↓ + l†m↑

[
Lz, l

†
−m↓
]

= (m−m) l†m↑l
†
−m↓ = 0[

Sz, l
†
m↑l
†
−m↓
]

=
[
Sz, l

†
m↑
]
l†−m↓ + l†m↑

[
Sz, l

†
−m↓
]

=
(
1
2
−1

2

)
l†m↑l

†
−m↓ = 0
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For the other components, we use the ladder operators. The principle is most easily seen for the
simple case of l = 1:[
L+, −p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
]

= −
√

2p†1↑p
†
0↓ +
√

2p†1↑p
†
0↓+
√

2p†0↑p
†
1↓ −
√

2p†0↑p
†
1↓ = 0[

S+, −p†1↑p
†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
]

= −p†1↑p
†
−1↓ + 0− p†−1↑p

†
1↓ = 0

This means that K† adds two electrons to a state without changing its angular momentum. The
simplest example is the singlet state of p2 in equation (5): K†1|0〉 ∝ |0, 0; 0, 0〉. For d3 we can
obtain a 2D state by adding a Kramers pair to a 2D state in d1, e.g.,

|2, 2; 1
2
, 1
2
〉d1 = d†2↑|0〉, (7)

which after normalization gives the state

|2, 2; 1
2
, 1
2
〉1 =

1

2

(
−d†2↑d

†
1↑d
†
−1↓ + d†2↑d

†
0↑d
†
0↓ − d

†
2↑d
†
−1↑d

†
1↓ + d†2↑d

†
−2↑d

†
2↓
)
|0〉. (8)

The corresponding 2D multiplet in d3 is assigned seniority 1 as it originates from the multiplet
in the d1 shell. The second 2D multiplet in d3, which can now be uniquely constructed from the
remaining (orthogonal) state in the eigenspace of M=2, Σ=1

2
, is assigned the seniority 3

|2, 2; 1
2
, 1
2
〉3 = (9)

1√
84

(
3d†2↑d

†
1↑d
†
−1↓−3d†2↑d

†
0↑d
†
0↓−d

†
2↑d
†
−1↑d

†
1↓+5d†2↑d

†
−2↑d

†
2↓+
√

24d†1↑d
†
0↑d
†
−1↓−4d†1↑d

†
−1↑d

†
2↓
)
|0〉.

This approach works for all d shells and the grand-parentage relations can be read off table 1. It
also shows that there are far to few grandparents to define unique multiplets in f systems. The
situation becomes quite involved, quoting [10], page V:

Because more than one multiplet of a given L, S may occur, some further differen-
tiation of the multiplets is required. For this purpose we have followed consistently
the classification scheme of Racah [8] wherein additional quantum numbers, usu-
ally not of physical significance, are introduced by reference to the properties of
certain mathematical groups. Specifically, the groups used are those denoted by
R5 in the case of the configuration dn and by R7 and G2 for the configurations fn.
The so-called seniority quantum number is consistent with this scheme. Even with
these additional quantum numbers, some duplications occur for fn configurations,
which were resolved arbitrarily by Racah in his work on the electrostatic energy of
fn configurations [8].

In practice it is more economical to directly work with energy eigenstates. For this we need, of
course, the representation of the electron-electron interaction in our basis of spherically sym-
metric orbitals. Before turning our attention to the Hamiltonian, however, let us briefly discuss
the particle-hole transformation between configurations lN and l2(2l+1)−N which is apparent
from the table of multiplets.
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s
0,s

2
1S

s
1

2S

p
0,p

6
1S

p
1,p

5
2P

p
2,p

4
1S

1D
3P

p
3

2P
2D

4S

d
0,d

6
1S

d
1,d

9
2D

d
2,d

8
1S

1D
1G

3P
3F

d
3,d

7
2P

2×
2D

2F
2G

2H
4P

4F

d
4,d

6
2×1S

2×
1D

1F
2×
1G

1I
2×
3P

3D
2×
3F

3G
3H

5D

d
5

2S
2P

3×
2D

2×
2F

2×
2G

2H
2I

4P
4D

4F
4G

6S

f
0,f

1
4

1S

f
1,f

1
3

2F

f
2,f

1
2

1S
1D

1G
1I

3P
3F

3H

f
3,f

1
1

2P
2×
2D

2×
2F

2×
2G

2×
2H

2I
2K

2L
4S

4D
4F

4G
4I

f
4,f

1
0

2×1S
4×
1D

1F
4×
1G

2×
1H

3×1I
1K

2×1L
1N

3×
3P

2×
3D

4×
3F

3×
3G

4×
3H

2×3I
2×
3K

3L
3M

5S
5D

5F
5G

5I

f
5,f

9
4×
2P

5×
2D

7×
2F

6×
2G

7×
2H

5×2I
5×
2K

3×2L
2×
2M

2N
2O

4S
2×
4P

3×
4D

4×
4F

4×
4G

3×
4H

3×4I
2×
4K

4L
4M

6P
6F

6H

f
6,f

8
4×1S

1P
6×
1D

4×
1F

8×
1G

4×
1H

7×1I
3×
1K

4×1L
2×
1M

2×
1N

1Q
6×
3P

5×
3D

9×
3F

7×
3G

9×
3H

6×3I
6×
3K

3×3L
3×
3M

3N
3O

5S
5P

3×
5D

2×
5F

3×
5G

2×
5H

2×5I
5K

5L
7F

f
5

2×2S
5×
2P

7×
2D

1
0×
2F

1
0×
2G

9×
2H

9×2I
7×
2K

5×2L
4×
2M

2×
2N

2O
2Q

2×4S
2×
4P

6×
4D

5×
4F

7×
4G

5×
4H

5×4I
3×
4K

3×4L
4M

4N
6P

6D
6F

6G
6H

6I
8S

Table
1:

M
ultipletterm

s
of
l N

shells.The
lastentry

in
each

row
is

the
H

und’s
rule

ground
state.
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2.1.4 Electron-hole symmetry

Because of the Pauli principle,
(
c†
)2

= 0, the state of a filled shell

|n, l〉 :=
−l∏
m=l

c†n,l,m,↑

−l∏
m=l

c†n,l,m,↓|0〉 =:
∏
m,σ

c†n,l,m,σ|0〉 (10)

behaves as vacuum state for the creators c†n,m,l,σ, while the annihilators create holes in the shell,
e.g., s0↑|n, 0〉 = s0↑ s

†
0↑s
†
0↓|0〉 = s†0,↓|0〉 or p1↓|n, 1〉 = −p†1↑p

†
0,↑p

†
−1↑p

†
0,↓p

†
−1↓|0〉, or in general

cn,l,m,σ|n, l〉 = (−1)l−m+1/2−σ
∏
m′,σ′

(
c†n,l,m′,σ′

)1−δm,m′δσ,σ′ |0〉. (11)

Applying a lexicographically ordered product of operators h̃†n,l,m,σ := (−1)l−m+1/2−σcn,l,m,σ
specified by occupation numbers nn,l,m,σ ∈ {0, 1} on |n, l〉 thus simply creates the correspond-
ing holes in the shell ∏

m,σ

(
h̃†n,l,m,σ

)nmσ |n, l〉 =
∏
m,σ

(
c†n,l,m,σ

)1−nmσ |0〉. (12)

For more than half-filling, this is an economical way of representing the 2(2l+1)−N -electron
states as N -hole states. To work in this hole-representation, we also have to express the observ-
ables in the new operators, e.g.,

Lz =
∑

mc†n,l,m,σcn,l,m,σ = −
∑

mh̃†n,l,m,σh̃n,l,m,σ (13)

and likewise for Sz. We can make the operators have the same form in electron- and hole-
representation by defining

h†n,l,−m,−σ := h̃†n,l,m,σ = (−1)l−m+1/2−σcn,l,m,σ (14)

so that

Lz =
∑

mc†n,l,m,σcn,l,m,σ =
∑

mh†n,l,m,σhn,l,m,σ (15)

Sz =
∑

σ c†n,l,m,σcn,l,m,σ =
∑

σ h†n,l,m,σhn,l,m,σ (16)

while

L± =
∑
n,l,m,σ

√
(l±m+1)(l∓m) c†n,l,m±1,σ cn,l,m,σ

=
∑
n,l,m,σ

√
(l±m+1)(l∓m)h†n,l,−m,−σ hn,l,−m∓1,−σ

=
∑

n,l,m′,σ′

√
(l∓m′)(l±m′+1)h†n,l,m′±1,σ′ hn,l,m′,σ′ (17)

and similarly for S±. Thus ~L and ~S operate in the same way on N -electron basis states∏(
c†n,l,m,σ

)nmσ |0〉 as they do on the corresponding N -hole basis
∏(

h†n,l,−m,−σ
)nmσ |n, l〉. We
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can thus translate any N -electron state constructed in the previous sections into an N -hole
state with the same quantum numbers by simply replacing the basis states. The corresponding
2(2l+1)−N -electron state is then obtained from the relation (12), where we have to remember
to invert the ordering of the N -hole operators, which just gives an overall sign of (−1)N−1.
As an example we consider the p2 singlet (5)

|0, 0; 0, 0〉2 =
1√
3

(
−p†1↑p

†
−1↓ + p†0↑p

†
0↓ − p

†
−1↑p

†
1↓
)
|0〉 .

Replacing p†mσ → h†−m,−σ and |0〉 → |n, 2〉, the corresponding 2-hole/4-electron state is

|0, 0; 0, 0〉4 =
1√
3

(
−h†−1↓h

†
1↑ + h†0↓h

†
0↑ − h

†
1↓h
†
−1↑
)
|n, 2〉

= − 1√
3

(
−p†0↑p

†
−1↑p

†
1↓p
†
0↓ + p†1↑p

†
−1↑p

†
1↓p
†
−1↓ − p

†
1↑p
†
0↑p
†
0↓p
†
−1↓
)
|0〉,

Using the Kramers pair (6) it is easily verified that this is indeed the p4 singlet ∝
(
K†1
)2|0〉.

2.2 Hamiltonian matrix elements

So far we have merely used the symmetries of the Hamiltonian to construct its eigenstates. For
d- and f -shells we saw, however, that certain multiplet terms can appear several times. In these
cases we might use, e.g., seniority to get a unique prescription for constructing the states in those
terms. The seniority states are, however, in general no longer eigenstates of the Hamiltonian.
To proceed further we need to look at the Hamiltonian in more detail.
As we are working in the spherical mean-field basis, the spin-orbitals

ϕn,l,m,σ(~r) =
un,l(r)

r
Yl,m(ϑ, ϕ) χσ (18)

diagonalize Heff = −∇2/2− Z/|~r|+ VMF (r) and we consider the operator

∆H =
∑
i<j

1

|~ri−~rj|
−
∑
i

VMF (|~ri|) (19)

In second quantization the spherical mean-field has matrix elements

〈n, l,m, σ|VMF |n′, l′,m′, σ′〉 = δl,l′ δm,m′ δσ,σ′

∫
dr un,l(r)VMF (r)un′,l(r) . (20)

For an lN -shell spanned byN spin-orbitals with the same quantum numbers n and l the spherical
mean-field is thus proportional to the identity, giving a mere shift of the entire shell. We can
therefore neglect it when we are only interested in the splitting of the shell. The matrix elements
of the electron-electron repulsion are, obviously, more interesting. Abbreviating the quantum
numbers of a spin-orbital as α := nα, lα,mα, σα and using the expansion of the Coulomb
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repulsion in products of spherical harmonics (85) we get〈
α, β

∣∣∣ 1

|~r−~r ′|

∣∣∣γ, δ〉 =

∫
d3r d3r′ ϕα(~r )ϕβ(~r ′)

1

|~r−~r ′|
ϕγ(~r

′)ϕδ(~r ) δσα,σδ δσβ ,σγ

=
∑
k

F
(k)
α,β,γ,δ

4π

2k+1

k∑
µ=−k

〈Yα|Yk,µ Yδ〉 〈YβYk,µ|Yγ〉 δσα,σδ δσβ ,σγ (21)

with the Slater integrals

F
(k)
α,β,γ,δ :=

∫ ∞
0

dr uα(r)uδ(r)

∫ ∞
0

dr′ uβ(r′)uγ(r
′)

min(r, r′)k

max(r, r′)k+1
. (22)

For a shell with fixed n and l they simplify to

F
(k)
n,l :=

∫ ∞
0

dr
∣∣un,l(r)∣∣2( 1

rk+1

∫ r

0

dr′ r′k
∣∣un,l(r′)∣∣2 + rk

∫ ∞
r

dr′
∣∣un,l(r′)∣∣2
r′k+1

)
(23)

with F (0)
n,l > F

(2)
n,l > · · · > 0. In practice the ratios of the Slater integrals turn out to be quite

close to those obtained for hydrogen orbitals, e.g., F (4)
3,2 /F

(2)
3,2 ≈ 15/23. The µ sum-rule for the

Gaunt coefficients (App. D) implies mδ−mα = µ = mβ−mγ , so that also using the l sum-rule
and the notation (94) we can write the electron-electron repulsion in an lN shell as

Hee =
1

2

∑
mσ,m′σ′

∑
k=0,2,...,2l

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
m+∆m,mc

(k,l,l)
m′−∆m,m′ l

†
m+∆m,σ l

†
m′−∆m,σ′ lm′,σ′ lm,σ

(24)
The direct terms, ∆m = 0, have a simple classical interpretation: expanding the charge density
of orbital ϕn,l,m(~r ) using (90) into multipole components, we see that the diagonal matrix
elements of the Hamiltonian U (k)

m.m′ := F
(k)
n,l c

(k,l,l)

m,m c
(k,l,l)
m′,m′ are nothing but electrostatic interaction

energies: k=0 the monopole-monopole interaction, k=2 dipole-dipole, etc. For σ = σ′ there
are additional density-density terms when ∆m = m′−m, with, using (95), matrix elements
J
(k)
m,m′ := F

(k)
n,l

(
c
(k,l,l)
m,m′

)2. The diagonal part of (24) can then be written as

Hdiag =
1

2

∑
m,σ,m′,σ′

∑
k

(
U

(k)
m,m′ − δσ,σ′J

(k)
m,m′

)(
nm′σ′ − δm,m′δσ,σ′

)
nmσ. (25)

Exchange terms appear only for equal spins, and the subtraction of the self interaction is already
ensured by the matrix elements, since U (k)

m,m = J
(k)
m,m.

The k = 0 contribution to Hee is easily evaluated using c(0,l,l)m,m′ = δm,m′

H(k=0)
ee =

F
(0)
n,l

2

∑
m,σ,m′σ′

(
1− δσ,σ′δm,m′

)
nm′σ′nmσ. (26)

We see that any state with N electrons H(0)
ee contributes F (0)

n,l N(N−1)/2 to the energy; i.e., the
monopole-monopole interaction gives the charging energy of the shell but does not contribute
to the splitting.
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Because of the spin-independence of the electron-electron repulsion, Hee is block-diagonal in
the spin-indices. In the ↑↓-sector we have, e.g., for a p-shell, using c(2,1,1)m,m′ from App. D

H
(k=2)
Sz=0 =



p−1↑p−1↓
p−1↑p 0↓
p−1↑p 1↓
p 0↑p−1↓
p 0↑p 0↓
p 0↑p 1↓
p 1↑p−1↓
p 1↑p 0↓
p 1↑p 1↓



†

F
(2)
n,1

52



1

−2 3

1 −3 6

3 −2

−3 4 −3

−2 3

6 −3 1

3 −2

1





p−1↑p−1↓
p−1↑p 0↓
p−1↑p 1↓
p 0↑p−1↓
p 0↑p 0↓
p 0↑p 1↓
p 1↑p−1↓
p 1↑p 0↓
p 1↑p 1↓


(27)

where we have ordered the operators in the same way as in the basis states. In the particular
ordering we chose, terms with ∆m appear on the 2l ∆m-th side diagonal. Note how fixing the
order of the operators (σ=↓ and σ′=↑) not only removes the prefactor 1/2 but also makes the
matrix of coefficients a two-electron matrix H

(k)
↑↓ rather than a tensor in orbital space (App. B).

The average direct interaction is defined via the trace of this (2l+1)2-dimensional sector of the
two-body matrix, which is invariant under basis changes that respect the spin symmetry,

U (k)
avg :=

∑
k

TrH
(k)
↑↓

(2l+1)2
=

1

(2l+1)2

∑
m,m′

U
(k)
m,m′ =

∑
k

F
(k)
n,l

(
Tr c(k,l,l)

2l+1

)2

= F
(0)
n,l δk,0 (28)

where we used (84) in evaluating Tr c(k,l,l) = δk,0. We define the sum Uavg :=
∑

k U
(k)
avg = F

(0)
n,l .

The ↑↑- and ↓↓-sectors have identical matrices H(k)
↑↑ = H

(k)
↓↓ of dimension (2l+1)2l/2, e.g.,

H
(k=2)
Sz=+1 =

p0↑p−1↑p1↑p−1↑
p1↑p 0↑


†

F
(2)
n,1

52

−5

−5

−5


p0↑p−1↑p1↑p−1↑
p1↑p 0↑

 . (29)

Since the matrix elements are spin-independent, these matrices are closely related to H
(k)
↑↓ :

Defining the rectangular matrix M(m̃′>m̃), (m′,m) =
(
δm̃′,m′δm̃,m− δm̃′,mδm̃,m′

)
/
√

2, e.g., for l=1

M :=
1√
2

 0 1 0 −1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 0 0 1 0 −1 0

 (30)

which maps ↑↓-states into the corresponding ordered ↑↑ basis states, we get

H
(k)
↑↑ = MH

(k)
↑↓ M

† = H
(k)
↓↓ . (31)

The average exchange interaction is defined similar to (28) in a basis-independent way via

U (k)
avg−J (k)

avg :=
∑
k

TrH
(k)
↑↑ + TrH

(k)
↓↓

(2l+1)2l
=

1

2l(2l+1)

∑
m,m′

(
U

(k)
m,m′−J

(k)
m,m′

)
(32)
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so that

J (k)
avg =

1

2l(2l+1)

∑
m,m′

J
(k)
m,m′ −

1

2l
U (k)

avg =
1

2l

2l∑
k=2

F
(k)
n,l c

(k,l,l)
0,0 (33)

by using addition theorem (83) and multipole expansion (85) to rewrite the angular integrals

∑
k

∑
m,m′

J
(k)
m,m′ =

∫
d3r d3r′

∣∣un,l(r)∣∣2
r2

∣∣un,l(r′)∣∣2
r′2

∣∣∣∑
m

Yl,m(ϑ, ϕ)Yl,m(ϑ′, ϕ′)︸ ︷︷ ︸√
(2l+1)/4πYl,0(arccos(r̂·r̂′),0)

∣∣∣2 1

|~r − ~r′ |︸ ︷︷ ︸∑
k

rk<

rk+1
>

Pk(r̂·r̂′)

.

The average exchange for the different shells is thus, using the (99) from App. D, given by

Javg =
∑
k

J (k)
avg =



1

5
F

(2)
n,1 p-shell

1

14
F

(2)
n,2 +

1

14
F

(4)
n,2 d-shell

2

45
F

(2)
n,3 +

1

33
F

(4)
n,3 +

50

32·11·13
F

(6)
n,3 f -shell

(34)

2.2.1 Electron-hole symmetry

We have already seen that the eigenstates of the total angular momenta for a shell with N

electrons and N holes are related by the simple transformation (14). Replacing the electron
operators in (24) by the corresponding hole operators, renaming indices m̃ = −m−∆m and
m̃′ = −m′+∆m, and using the symmetries (95) and (96) of the Gaunt coefficients, we obtain

Hee =
1

2

∑
m̃σ̃,m̃′σ̃′

∑
k

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
−m̃,−m̃−∆mc

(k,l,l)
−m̃′,−m̃′+∆mhm̃,σ̃ hm̃′,σ̃′ h

†
m̃′−∆m,σ̃′ h

†
m̃+∆m,σ̃

=
1

2

∑
m̃σ̃,m̃′σ̃′

∑
k

F
(k)
n,l

k∑
∆m=−k

(−1)∆mc
(k,l,l)
m̃+∆m,m̃c

(k,l,l)
m̃′−∆m,m̃′

(
h†m̃+∆m,σ̃ h

†
m̃′−∆m,σ̃′ hm̃′,σ̃′ hm̃,σ̃

+
(
δ∆m,0 − δm̃,m̃−∆m δσ̃,σ̃′

)(
1− nhm̃,σ̃ − nhm̃′,σ̃′

))
. (35)

The two-body part has the same form as when written in electron operators. The additional
terms arising from normal-ordering the hole operators give the difference between the N -
electron and the N -hole states, the superscript on the density operators is a reminder that they
give the hole occupations. These terms involve only diagonal matrix elements such that we can
write them in a concise form using the basis-independent averages (28) and (34), giving the
relation between the energy of a state with N electrons and the conjugate K−N -electron state,
where K = 2(2l+1) is the number of spin-orbitals in the shell:

E(K−N) = E(N) +

(
K−1

2
Uavg −

K−2

4
Javg

)(
(K−N)−N

)
. (36)
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2.2.2 Racah parameters

For expressing energies in a compact way several conventions have been introduced. Condon
and Shortley (table 16 of [12]) introduced parameters that include the least common prefactors
of the Gaunt matrices (p. 30 in App. D) in the Slater integrals

p-shell: F0 := F
(0)
n,1

F2 := F
(2)
n,1/5

2

d-shell: F0 := F
(0)
n,2

F2 := F
(2)
n,2/7

2

F4 := F
(4)
n,2/(3·7)2

f -shell: F0 := F
(0)
n,3

F2 := F
(2)
n,3/(3·5)2

F4 := F
(4)
n,3/(3·11)2

F6 := F
(6)
n,3

(
5/(3·11·13)

)2
so that, e.g., the diagonal terms in (25)

U
(k)
m,m′/Fk = c

(k,l,l)

m,m c
(k,l,l)
m′,m′ and J

(k)
m,m′/Fk =

(
c
(k,l,l)
m,m′

)2 (37)

in the basis of spherical harmonics become integer matrices (App. D):

p-shell:

U (2) = F2

 1 −2 1

−2 4 −2

1 −2 1

 J (2) = F2

 1 3 6

3 4 3

6 3 1

 (38)

d-shell:

U (2) =F2


4 −2 −4 −2 4

−2 1 2 1 −2

−4 2 4 2 −4

−2 1 2 1 −2

4 −2 −4 −2 4

 J (2) =F2


4 6 4 0 0

6 1 1 6 0

4 1 4 1 4

0 6 1 1 6

0 0 4 6 4



U (4) =F4


1 −4 6 −4 1

−4 16 −24 16 −4

6 −24 36 −24 6

−4 16 −24 16 −4

1 −4 6 −4 1

 J (4) =F4


1 5 15 35 70

5 16 30 40 35

15 30 36 30 15

35 40 30 16 5

70 35 15 5 1



(39)
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f -shell:

U (2)

F2

=



25 0 −15 −20 −15 0 25

0 0 0 0 0 0 0

−15 0 9 12 9 0 −15

−20 0 12 16 12 0 −20

−15 0 9 12 9 0 −15

0 0 0 0 0 0 0

25 0 −15 −20 −15 0 25


J (2)

F2

=



25 25 10 0 0 0 0

25 0 15 20 0 0 0

10 15 9 2 24 0 0

0 20 2 16 2 20 0

0 0 24 2 9 15 10

0 0 0 20 15 0 25

0 0 0 0 10 25 25



U (4)

F4

=



9 −21 3 18 3 −21 9

−21 49 −7 −42 −7 49 −21

3 −7 1 6 1 −7 3

18 −42 6 36 6 −42 18

3 −7 1 6 1 −7 3

−21 49 −7 −42 −7 49 −21

9 −21 3 18 3 −21 9


J (4)

F4

=



9 30 54 63 42 0 0

30 49 32 3 14 70 0

54 32 1 15 40 14 42

63 3 15 36 15 3 63

42 14 40 15 1 32 54

0 70 14 3 32 49 30

0 0 42 63 54 30 9



U (6)

F6

=



1 −6 15 −20 15 −6 1

−6 36 −90 120 −90 36 −6

15−90 225−300 225−90 15

−20 120−300 400−300 120−20

15−90 225−300 225−90 15

−6 36 −90 120 −90 36 −6

1 −6 15 −20 15 −6 1


J (6)

F6

=



1 7 28 84 210 462 924

7 36 105 224 378 504 462

28 105 225 350 420 378 210

84 224 350 400 350 224 84

210 378 420 350 225 105 28

462 504 378 224 105 36 7

924 462 210 84 28 7 1


(40)

In addition, Racah introduced sets of parameters

d-shell: [6], Eq. (77)
A := F0 − 72F4

B := F2− 5 F4

C := 5·7F4

(41)

f -shell [8], Eq. (66)

E0 :=F0 − 2·5F2− 3·11F4− 2·11·13F6

9E1 := 2·5·7F2 + 3·7·11F4 + 2·7·11·13F6

9E2 := F2− 3F4 + 7 F6

3E3 := 5F2 + 2·3F4− 7·13F6

(42)

which are “different from those adopted empirically” in [6], Eq. (96)

A :=F0 − 3·7F4− 22·32·13F6

5B := 5F2 + 2·3F4− 7·13F6

5C := 7F4 + 2·3·7F6

D := 2·3·7·11F6

(43)
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2.2.3 Hund’s rules

Quite remarkably, Friedrich Hund was able formulate rules for determining the multiplet term
of lowest energy even before the many-body Schrödinger equation was known. Using addition
of angular momenta and Pauli principle to analyze spectral data, he found that [1]

1. The lowest term has maximum multiplicity, i.e., maximum total spin S

2. For given multiplicity, the lowest term has largest total orbital momentum L

We can understand these two rules heuristically: 1. Because of the Pauli principle electrons of
the same spin have a lower probability of close encounters, reducing their repulsion due to the
exchange hole. 2. An electron configuration of larger total orbital momentum must have the
electrons contribute in a more coordinated way to the angular momentum, helping them avoid
each other.
Because the Hund’s rule states are defined by maximum S and, given S, maximum L, they
must vanish under application of the ladder operators S+ and L+. Hence at least some states
of the Hund’s rule term must be Slater determinants. They are easily constructed. Using the
occupation number representation in our chosen sorting of the basis

|nl↑, nl−1↑, · · · , n−l↑, nl↓, . . . , n−l↓〉 :=
(
l†l,↑
)nl↑ · · · (l†−l,↑)n−l↑(l†l,↓)nl↓ · · · (l†−l,↓)n−l↓∣∣0〉 (44)

the Hund’s rule determinant with maximum Σ and M for N electrons are given by filling the
orbitals from left to right, i.e., setting the first N occupations to one. For the p-shell this gives
Φp1=|100000〉, Φp2=|110000〉, Φp3=|111000〉, Φp4=|111100〉, and Φp5=|111110〉. The total
spin and angular momentum of the Hund’s term are

SHund(lN) = Ñ/2 , LHund(lN) =
(
(2l+1)−Ñ

)
Ñ/2 with Ñ = (2l+1)−

∣∣(2l+1)−N
∣∣. (45)

To find the energy of Hund’s determinants we only need the diagonal elements of the Hamilto-
nian (25) that are collected in the U and J matrices

EHund = 〈ΦHund |Hee |ΦHund〉 =
∑

mσ<m′σ′:occ

(
Um,m′ − δσ,σ′Jm,m′

)
, (46)

where the sum is over the ordered pairs of occupied orbitals. For shells with less than two
electrons there are obviously no pairs of occupied orbitals, so that the energy vanishes. For
higher fillings we get, using the matrix elements given in Sec. 2.2.2, e.g.,

EHund(p2) = F0 − 5F2 EHund(p3) = 3F0 − 15F2

EHund(d2) = F0 − 8F2 − 9F4 EHund(d3) = 3F0 − 15F2 − 72F4

EHund(d4) = 6F0 − 21F2 − 189F4 EHund(d5) = 10F0 − 35F2 − 315F4

For N > 2l+1 there are also pairs of opposite spin, for which the exchange term does not
contribute. They are most easily calculated using the electron-hole relation (36).
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2.2.4 Moments and spectral variance

The Slater-Condon integrals give no direct measure of the size of the multiplet splitting: with
identical parameters the splitting changes, e.g., substantially with the number of electrons N in
the shell. A measure of the width of the spectrum is its variance 〈E2〉 − 〈E〉2, with the average
defined by 〈

f(E)
〉

:=
1

dimH

∑
n

f(En) , (47)

where dimH =
(
K
N

)
is the dimension of the Hilbert space. Quite remarkably, we can determine

these moments from the representation of the Hamiltonian in terms of a two-body matrix H

with blocks given by, e.g., (27) and (29), obtaining information about the N -electron spectrum
without having to do any many-body calculations.
By the invariance of the trace, the average energy 〈E〉 involves only the diagonal terms in the
N -electron Hamiltonian. For a density-density term nmσnm′σ′ to contribute, the two orbitals
must be occupied. In the Slater determinant basis for N electrons in K = 2(2l+1) spin-orbitals
this fixes two electrons in two orbitals, so that for any m,σ > m′, σ′ there are

(
K−2
N−2

)
such

configurations, hence(
K

N

)
〈E〉 :=

∑
n

En = TrN Hee =

(
K−2

N−2

)
TrH (48)

which simplifies with
(
n
k

)
= n

k

(
n−1
k−1

)
to

〈E〉 =
N(N−1)

K(K−1)
TrH . (49)

Since Uavg and Javg are defined via the traces of the blocks H↑↓ and H↑↑ = H↓↓, we can write

TrH = (2l+1)2Uavg + 2 · (2l+1)2l/2
(
Uavg − Javg

)
= (2l+1)

(
(4l+1)Uavg − 2lJavg

)
, (50)

so that the center of gravity of the multiplet terms of lN is〈
E(lN)

〉
=
N(N−1)

2

(
Uavg −

2l

4l+1
Javg

)
. (51)

To calculate the second moment, we split the N -electron Hamiltonian into its diagonal, and the
parts that create single and double excitations: Hee = Hdiag+Hsingle+Hdouble . To contribute to
the trace of H2

ee calculated in the Slater determinant basis, every excitation must be undone, i.e.,(
K

N

)
〈E2〉 = TrN H

2
diag + TrN H

2
single + TrN H

2
double . (52)

The traces over theN -electron space can, again, be reduced to traces over two-electron matrices
H = Hdiag + Hsingle + Hdouble . A double excitation involves two electrons moving from
occupied to unoccupied orbitals, so that the reduction to TrH2

double involves a combinatorial
factor

(
K−4
N−2

)
TrN H

2
double =

(
K−4

N−2

) ∑
α<β, γ>δ

{α,β}∩{γ,δ}=∅

∣∣H(αβ)(γδ)

∣∣2 =

(
K−4

N−2

)
TrH2

double . (53)
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Single excitations are one-body-like, so it is convenient to define the single-electron part of H
by collecting all the matrix elements contributing to the same excitation α← β, e.g., c†αnγcβ(
H1

)
α,β

:=
∑
α,β<γ

H(αγ)(γβ)−
∑

α<γ<β

H(αγ)(βγ)−
∑

β<γ<α

H(γα)(γβ)+
∑
γ<α,β

H(γα)(βγ) =
∑
γ

H(αγ)(γβ), (54)

where the last sum has no ordering but we know that sorting the indices (αγ) and (γβ) gives
the appropriate signs. For α 6= β, H1 contains all single excitations, so

TrN H
2
single =

(
K−3

N−2

) ∑
α 6=β,γ

∣∣H(αγ)(γβ)

∣∣2 +

(
K−4

N−3

) ∑
α 6=β,γ 6=γ̃

H(αγ)(γβ)H(βγ̃)(γ̃α)

=

(
K−4

N−2

)
TrH2

single +

(
K−4

N−3

) ∑
α 6=β,γ,γ̃

H(αγ)(γβ)H(βγ̃)(γ̃α) (55)

where we used
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
to split the first term and add part of it to the second to

eliminate the constraint γ 6= γ̃. For the diagonal contribution we get three terms, depending on
how many orbitals are involved in the density-density operators

TrNH
2
diag = (56)

=

(
K−2

N−2

)∑
α<β

H2
(αβ)(βα)+

(
K−3

N−3

)∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=1

H(αβ)(βα)H(α̃β̃)(β̃α̃)+

(
K−4

N−4

)∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=0

H(αβ)(βα)H(α̃β̃)(β̃α̃)

=

(
K−4

N−2

)
TrH2

diag+

(
K−4

N−3

)(
2
∑
α<β

H2
(αβ)(βα)+

∑
α<β;,α̃<β̃

|{α,β}∩{α̃,β̃}|=1

H(αβ)(βα)H(α̃β̃)(β̃α̃)

)
+

(
K−4

N−4

)(
TrHdiag

)2

where the first and second term were split as above. Writing the middle terms as unsorted sums
over orbitals and combining them with the corresponding single-excitation term, we get

TrN H
2 =

(
K−4

N−2

)
TrH2 +

(
K−4

N−3

)
TrH2

1 +

(
K−4

N−4

)(
TrH

)2
, (57)

This expression holds for a general two-body operator [13]. For the electron-electron interac-
tion Hee it simplifies further, since there are no single excitations (they would change the Lz
eigenvalue), so that we obtain for the N -dependence of the splitting

varl(N) :=
〈E2〉 − 〈E〉2

N(N−1)(4l+2−N)(4l+1−N)
(58)

varp(N) =
9

20
F2

2 (59)

vard(N) =
5·13

2

(
F2

9

)2

+
5

8

(
F2

9
− 5F4

)2

(60)

varf (N) = 3·5·7
(
F2

2

11·13
+

5F4
2

22·13
+
(
7F6

)2)
+

5

2

(
11
F2

13
+ 9

F4

13
− 7F6

)2

. (61)
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3 Spin-orbit coupling

We started our discussion with the non-relativistic N -electron Hamiltonian (1). It only operates
on the electron coordinates. In the non-relativistic theory, spin is added to the wave function in
an ad-hoc way. An electron spin is, in fact, required by relativity, and has, through the Pauli
principle, a major effect on the “non-relativistic” electronic structure. Relativistic corrections
to the Hamiltonian, on the other hand, tend to be quite weak, as they scale with powers of the
inverse speed of light, 1/c ≈ 1/137 in atomic units. The most prominent relativistic effect
splitting the levels in an open shell is the coupling of the orbital- with its spin-moment, the
spin-orbit coupling

HSO =
∑
i

ξ(ri) ~Li · ~Si with ξ(r) =
1

2c2 r

dVMF (r)

dr
. (62)

It is a one-body interaction, that is easily diagonalized by a Clebsch-Gordan transformation
from our spin-orbitals ϕn,l,m,σ to orbitals of given total angular momentum ~Ji = ~Li+~Si, giving
two sets of orbitals with total angular momentum quantum numbers j=l±1/2 and µ=− j. . . j:

j†
n,l±1

2
,µ; l;

1
2

:=

√
l∓µ+1

2

2l+1
c†
n,l,µ+

1
2
,↓
±

√
l±µ+1

2

2l+1
c†
l,µ−1

2
,↑
. (63)

In this basis we can easily calculate the variance of the spin-orbit-split spectrum:

varSO
l (N)

N((4l+2)−N)
=

l(l+1)

4(4l+1)

∫ ∞
0

dr |un,l(r)|2 ξ(r). (64)

The variance does, however, not show a simple quadratic dependence on N since, unlike the
Slater integrals, the spin-orbit matrix elements increase strongly within a period. In fact, as-
suming a hydrogen-like system, they scale, for given quantum numbers n and l, as Z4.
For light atoms the splitting is much smaller than the multiplet splitting, so that it can be treated
by perturbation theory, splitting the multiplet terms 2S+1L into multiplet levels 2S+1LJ charac-
terized by their total angular momentum J . By the third of Hund’s rules, the lowest level is the
one with J = |L−S|when the shell is less than half-filled, while it has J = L+S forN > 2l+1

(HSO changes sign under the electron-hole transformation (14)). This two-step perturbation ap-
proach is called LS or Russell-Saunders coupling. The opposite approach, called jj coupling,
of first doing perturbation theory inHSO and then inHee is only of theoretical interest, since the
spin-orbit coupling only becomes dominant for atoms that are so heavy that they are unstable.
Still, as HSO does not commute with ~L and ~S individually, it couples different multiplet terms.
For heavy atoms, where the spin-orbit splitting can become appreciable compared to the multi-
plet splitting, we have to treat Hee and HSO on the same footing, i.e., to diagonalize their sum
on the states of an open shell. This approach is called intermediate coupling. Since the Hamil-
tonian in intermediate coupling has a significantly lower symmetry, the levels can no longer be
(almost) uniquely characterized by angular momentum quantum numbers, so that the approach
is more numerical in nature. Nevertheless, often the Russell-Saunders levels can give a good
indication of the character of the intermediate-coupling levels.
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4 Conclusions

We have seen that the description of even a single atom or ion poses a complex many-body
problem. Atoms are round [14], so the algebra of angular momenta is key to understanding
the structure of their electronic states: Arguments based on angular momenta together with
the Pauli exclusion principle allowed Friedrich Hund to formulate rules for the ground-state
multiplets even before the Schrödinger equation was known.
Starting from the N -electron Schrödinger equation, we saw that switching from a wave func-
tion picture to the representation of many-body states in second quantization provided a crucial
simplification by allowing us to represent only physical states and observables, making the
construction of the multiplet states of the electron-electron interaction a problem of simple op-
erator algebra. Writing the two-body interaction not as a tensor but as a matrix in 2-electron
space makes it easy to perform basis transformations, define basis independent quantities like
Uavg and Javg from its trace, and even calculate the moments of the N -electron Hamiltonian en-
tirely in terms of a small 2-body matrix. Finally we saw how simple it is in second quantization
to relate states with the same number of electrons and holes.
A relativistic effect modifying the multiplet terms originates from the coupling of the orbital
momentum with the electron spin. It is a single-body effect that is usually weak, so that it
can be well described in degenerate perturbation theory on the multiplet terms. This is the
LS- or Russell-Saunders coupling. The opposite procedure of first diagonalizing the spin-orbit
Hamiltonian and then introducing the electron-electron repulsion on the degenerate spin-orbit
terms, called jj coupling, is only of theoretical interest. For heavy atoms the spin-orbit splitting
can, however, become large enough that HSO has to be treated on the same footing as Hee ,
which is the intermediate coupling scheme.
A systematic study of the interaction parameters including practical parametrizations can be
found in [13]. Of particular practical relevance is the analysis of the relative importance of the
electron-electron interaction versus the spin-orbit coupling across the periodic table, based on
the ratio of the variance of the splitting induced by the respective interaction.
Our main interest in atoms is, of course, as the building block of matter. It is quite remarkable
that a large part of their electronic structure survives in the solid, where atomic levels broaden
into bands so that an understanding of the constituent atoms allows us to gain deep insights into
the electronic structure of the resulting material [14].
Putting an atom in a crystal environment, of course does change its level structure. Particularly
interesting is the effect of the potential created by the neighboring ions, which lifts the degener-
acy of the levels in an atomic shell already on the single-electron level. Filling those crystal-field
levels, following the Aufbauprinzip, results in low-spin states, competing with Hund’s first rule,
which favors high spin. A nice discussion of this can be found in [3].
To try out the methods explained in this chapter, you may perform practical calculations at

https://www.cond-mat.de/sims/multiplet/

https://www.cond-mat.de/sims/multiplet/
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A Atomic units

Practical electronic structure calculations are usually done in atomic units, a.u. for short. While
the idea behind the atomic units is remarkably simple, in practice there is often some confusion
when trying to convert to SI units. We therefore give a brief explanation.

The motivation for introducing atomic units is to simplify the equations. For example, in SI
units the Hamiltonian of a hydrogen atom is

H = − ~2

2me

∇2 − e2

4πε0 r
. (65)

When we implement such an equation in a computer program, we need to enter the numerical
values of all the fundamental constants. We can avoid this by inventing a system of units
in which the numerical values of the electron mass me, the elementary charge e, the Planck-
constant ~, and the dielectric constant 4πε0 are all equal to one. In these units the above equation
can be programmed as

H = −1

2
∇2 − 1

r
. (66)

This immediately tells us: 1 a.u. mass = me and 1 a.u. charge = e. To complete the set of
basis units we still need the atomic unit of length, which we call a0, and of time, t0. To find the
values of a0 and t0 we write ~ and 4πε0 (using simple dimensional analysis) in atomic units:
~ = 1mea

2
0/t0 and 4πε0 = 1 t20e

2/(mea
3
0). Solving this system of equations, we find

1 a.u. length = a0 = 4πε0~2/mee
2 ≈ 5.2918 · 10−11 m

1 a.u. mass = me = ≈ 9.1095 · 10−31 kg
1 a.u. time = t0 = (4πε0)

2~3/mee
4 ≈ 2.4189 · 10−17 s

1 a.u. charge = e = ≈ 1.6022 · 10−19 C

The atomic unit of length, a0, is the Bohr radius. As the dimension of energy is mass times
length squared divided by time squared, its atomic unit ismea

2
0/t

2
0 = mee

4/(4πε0)
2~2. Because

of its importance the atomic unit of energy has a name, the Hartree. One Hartree is minus twice
the ground-state energy of the hydrogen atom, about 27.211 eV.

It would be tempting to try to set the numerical value of all fundamental constants to unity.
But this must obviously fail, as the system of equations to solve becomes overdetermined when
we try to prescribe the numerical values of constants that are not linearly independent in the
space of basis units. Thus, we cannot, e.g., choose also the speed of light to have value one, as
would be practical for relativistic calculations. Instead, in atomic units it is given by c t0/a0 =

4πε0~c/e2 = 1/α, where α is the fine structure constant. Thus c = α−1 a.u. ≈ 137 a.u.
The Bohr magneton is µB = 1/2 a.u. The Boltzmann constant kB, on the other hand, is
independent of the previous constants. Setting its value to one fixes the unit of temperature to
1 a.u. temperature = mee

4/(4πε0)
2~2kB = Ha/kB ≈ 3.158 · 105 K.
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B Second quantization

The formalism of second quantization for electrons is the generalization of the Dirac formalism
of single-electron quantum mechanics to many-electron system. The key idea is to eliminate
the coordinates of the wave function and absorb them in the representation of the operators
instead. Wave functions are then written in terms of Dirac states using the Dirac delta function:
ϕn(x) = 〈x|n〉. In second quantization, field operators Ψ̂(x) take the role of 〈x|, so that ϕn(x) =

〈0|Ψ̂(x) c†n|0〉, where the orbital is represented by

c†n :=

∫
dxϕn(x) Ψ̂ †(x) , (67)

|0〉 is the zero-electron (vacuum) state defined by

Ψ̂(x)|0〉 = 0 and 〈0|0〉 = 1 , (68)

and the field operators are defined to fulfill the anticommutation relations
(
{a, b} := ab+ ba

)
{
Ψ̂(x), Ψ̂(x′)

}
= 0 and

{
Ψ̂(x), Ψ̂ †(x′)

}
= δ(x−x′) . (69)

From the adjoint of the first anticommutator follows, in particular, that
(
Ψ̂(x)†

)2
= 0, which

is the Pauli exclusion principle in second quantization. These relations define the formalism
completely.
The representation of single-electron functions generalizes to N -electron Slater determinants

Φα1...αN (x1 . . . xN) =
1√
N !

∣∣∣∣∣∣∣
ϕα1(x1) · · · ϕαN (x1)

...
...

ϕα1(xN)· · ·ϕαN (xN)

∣∣∣∣∣∣∣ =
1√
N !

〈
0
∣∣Ψ̂(x1) · · · Ψ̂(xN) c†αN · · · c

†
α1

∣∣0〉.
(70)

Their overlap is∫
dx1 · · · dxN Φα1...αN (x1 . . . xN)Φβ1...βN (x1 . . . xN)

= 〈0|cα1 · · · cαN c
†
βN
· · · c†β1|0〉 =

∣∣∣∣∣∣∣
〈α1|β1〉 · · · 〈α1|βN〉

...
...

〈αN |β1〉· · · 〈αN |βN〉

∣∣∣∣∣∣∣
(71)

so that N -electron Slater determinants constructed from a complete orthonormal set of single-
electron orbitals form an orthonormal basis of the N -electron Hilbert space, when only Slater
determinants with some given ordering of the orbitals, e.g., α1 < α2 < . . . < αN , are chosen.
The key point of (70) is that the second quantized form allows us to split the coordinates form the
orbital content. The latter is the generalization of the Dirac state. Introducing the occupation
number representation with ni ∈ {0, 1} to make the chosen sorting of the orbitals and the
corresponding operators manifest, a Slater state is written as

|n1, n2, . . .〉 :=
∏
i

(
c†ni
)ni |0〉. (72)



Multiplets and Spin-Orbit 5.25

The coordinates are then included in with the operators, giving the operators in second quanti-
zation. For a one-electron observable

∑N
i=1M1(xi) we find (see [4] for the derivations)

M̂1 =

∫
dx Ψ̂(x)†M(x) Ψ̂(x) , (73)

for a two-electron operator
∑

i<jM2(xi, xj) we get

M̂2 =
1

2

∫
dx

∫
dx′ Ψ̂(x)†Ψ̂(x′)†M(x, x′) Ψ̂(x′)Ψ̂(x) . (74)

Quite remarkably, while the operators in first quantization contain an explicit N -dependence,
the form of the same operator in second quantization is independent of the particle number.
This makes second quantization so suitable for working in Fock space, as, e.g., in BCS theory.
Another crucial advantage of working in the second-quantization formalism is that it only allows
us to express physical, i.e., antisymmetric, wave functions and physical operators, i.e., those
that act on all electrons in the same way (e.g., total angular momenta, but not angular momenta
acting on an individual electron, which would violate the indistinguishability of electrons [4]).
Given a complete orthonormal orbital basis {ϕn}, we can invert (67) to write the field-operators
Ψ̂ † as a linear combination of the orbital operators c†n. Inserting this into (73), we get

M̂1 =
∑
αβ

〈α|M1|β〉 c†αcβ (75)

where the 〈α|M |β〉 are the matrix elements of the one-body operator in the orbital basis. Simi-
larly, we obtain

M̂2 =
1

2

∑
αβγδ

〈αβ|M2|γδ〉 c†αc
†
βcγcδ (76)

with the four-index tensor

〈αβ|M2|γδ〉 :=

∫
dx

∫
dx′ ϕα(x)ϕβ(x′)M(x, x′)ϕγ(x

′)ϕδ(x). (77)

Realizing that exchanging the two creation or annihilation operators in (76) connects the same
many-body states, we can collect all four such terms by imposing an ordering on the operators:

M̂2 =
∑

α<β;γ>δ

(
〈αβ|M2|γδ〉 − 〈αβ|M2|δγ〉︸ ︷︷ ︸

=:M(αβ)(γδ)

)
c†αc
†
βcγcδ . (78)

Instead of a tensor, the M(αβ)(γδ) form a matrix in the two-electron-like space spanned by sorted
pairs of operators. This makes them quite convenient to handle. Changes in the orbital basis
like c†α =

∑
n c
†
nUn,α described by a unitary single-electron matrix U are then easily written as

unitary transformation in two-electron space

c†αc
†
β =

∑
n,m

c†nc
†
mUn,αUm,β =

∑
n<m

c†nc
†
m

(
Un,αUm,β − Um,αUn,β

)
(79)

which effects the basis change in the two-electron matrix M(αβ)(γδ).
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C Addition theorem for spherical harmonics

Using the completeness of the spherical harmonics, we can expand any function of a single co-
ordinate f(~r )=

∑
m,l al,m(r)Yl,m(ϑ, ϕ). Similarly, we can expand functions of two coordinates

f(~r, ~r ′) =
∑
l,m

al,m(r, r′, ϑ′, ϕ′)Yl,m(ϑ, ϕ) =
∑
l,m

(∑
l′,m′

a l,m,
l′,m′

(r, r′)Yl′,m′(ϑ
′, ϕ′)

)
Yl,m(ϑ, ϕ).

The expansion simplifies considerably when the function is invariant under simultaneous rota-
tions of ~r and ~r ′, i.e., when

(
~L + ~L′

)
s(~r, ~r ′) = 0. This is, e.g., the case for any function that

depends only on the scalar products of ~r and ~r ′, e.g.,

iLx s(~r·~r ′) =

(
ry

∂

∂rz
−rz

∂

∂ry

)
s(rxrx′+ryry′+rzrz′) = s′(~r·~r ′)

(
ryrz′−rzry′

)
= −iL′xs(~r·~r ′).

Then s(~r, ~r ′) must be an eigenfunction of
(
~L+~L′

)2 with eigenvalue 0. From adding angular
momenta we know that the products may only contain an ltot = 0 contribution when l = l′. In
addition,

(
Lz+L

′
z

)
s(~r, ~r ′) = 0, i.e., m′=−m, so that

s(~r, ~r ′) =
∑
l,m

al,m(r, r′)Yl,−m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) .

Using
(
~L+~L′

)2
= ~L2+ ~L′

2
+2LzL

′
z+L+L

′
−+L−L

′
+ with L±Yl,m =

√
(l±m+1)(l∓m)Yl,m±1

we obtain a homogeneous linear system of equations

0 =
(
~L+ ~L′

)2
s(~r, ~r ′)

=
∑
l,m

(
al,m

(
2l(l+1)−2m2

)
+ al,m−1(l+m)(l−m+ 1) + al,m+1(l−m)(l+m+1)

)
Y ′l,−mYl,m

with the non-trivial solution al,m(r, r′) = (−1)mal(r, r
′). Hence

s(~r, ~r ′) =
∞∑
l=0

al(r, r
′)

l∑
m=−l

(−1)mYl,−m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) (80)

=
∞∑
l=0

al(r, r
′)

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) (81)

where (80) is reminiscent of a Kramers pair singlet (6). The expansion coefficients are easily
calculated when choosing coordinates such that ~r ′ = r′ẑ, i.e., ϑ′ = 0

al(r, r
′) =

∫ 2π

0

dϕ

∫ 1

−1
d cosϑYl,0(ϑ, ϕ)

√
4π

2l+1
s(~r, r′ẑ) (82)

For s(~r, ~r ′) = Pl(r̂ · r̂′) we find the addition theorem for spherical harmonics

Pl(r̂·r̂′) =

√
4π

2l+1
Yl,0(arccos(r̂·r̂′), 0) =

4π

2l+1

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ) . (83)
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Setting r̂′ = r̂, it follows as a corollary that the charge density of closed shells is spherical

l∑
m=−l

∣∣Yl,m(ϑ, ϕ)
∣∣2 =

2l+1

4π
. (84)

For the electron-electron repulsion we obtain the multipole expansion

1

|~r−~r ′|
=

1√
r2−2~r·~r ′+r′2

=
∞∑
l=0

rl<
rl+1
>

Pl(r̂·r̂′) =
∞∑
l=0

rl<
rl+1
>

4π

2l+1

l∑
m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ),

(85)
where the choice r< := min(r, r′) and r> := max(r, r′) makes the power series converge. The
series is obtained from the generating function of the Legendre polynomials

1√
1− 2xt+ t2

=
∞∑
n=0

Pn(x) tn . (86)

To convince ourselves that the Pn(x) are indeed the Legendre polynomials, we expand the left-
hand side in powers of t and find P0(x) = 1 and P1(x) = x. Taking the derivative of (86) with
respect to t gives

x− t(
1− 2xt+ t2

)3/2 =
∞∑
n=1

nPn(x) tn−1.

multiplying by 1− 2xt+ t2, inserting (86) on the left-hand side, and comparing coefficients for
n>0, gives the recursion relation for the Legendre polynomials

(n+1)Pn+1(x) = (2n+1)xPn(x)− nPn−1(x) . (87)

Likewise, a plane wave can be expanded into spherical plane waves

ei
~k·~r = 4π

∞∑
l=0

il jl(kr)
l∑

m=−l

Yl,m(ϑ′, ϕ′)Yl,m(ϑ, ϕ), (88)

using the integral representation of the spherical Bessel functions

al(r, k) = 2π

∫ 1

−1
dxPl(x) eikr x = 4π il jl(kr). (89)
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D Gaunt coefficients

Gaunt coefficients appear when expanding products of spherical harmonics

Yl,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) =
∞∑
k=0

k∑
µ=−k

〈
Yk,µ

∣∣Yl,mYl′,m′〉Yk,µ(ϑ, ϕ) . (90)

Because of the product rule, the angular momentum operators act on the product of the spherical
harmonics the same way as they act on independent angular momenta, e.g.,

L+ Yl,m Yl′,m′ =
(
L+ Yl,m

)
Yl′,m′ + Yl,m

(
L+ Yl′,m′

)
. (91)

Thus, for fixed l, l′, and k, the integrals of three spherical harmonics
〈
Yk,µ

∣∣Yl,mYl′,m′〉 fulfill
the same recursion relation as the Clebsch-Gordan coefficients 〈k, µ; l; l′|l,m; l′,m′〉 (Wigner-
Eckart theorem). In particular, evaluating

〈
Yk,µ

∣∣Lz|Yl,mYl′,m′〉 shows that the integrals vanish
for µ 6= m+m′ and consequently are real. More generally, the products Yl,m Yl′,m′ behaves as
if we were adding two angular momenta l and l′, so that the

〈
Yk,m+m′

∣∣Yl,mYl′,m′〉 vanish for
k < |l−l′| and k > l+l′. The difference to adding angular momenta is that the products of
spherical harmonics are not orthonormal (e.g., 〈Y0,0Y0,0|Yl,mYl,−m〉 = (−1)m/4π), so that the
space spanned by the Yl,mYl′,m′ for fixed l and l′ may be smaller than (2l+1)×(2l′+1). In fact,
from the inversion symmetry Yl,m(π−ϑ, ϕ+π) = (−1)l Yl,m(ϑ, ϕ) of the spherical harmonics
we see by changing the variables of integration that〈

Yk,µ
∣∣Yl,mYl′,m′〉 = (−1)k+l+l

′〈
Yk,µ

∣∣Yl,mYl′,m′〉 (92)

so that the coefficients also vanish when k+l+l′ is odd, and (90) consequently simplifies to

Yl,m(ϑ, ϕ)Yl′,m′(ϑ, ϕ) =
∑

k=|l−l′|, |l−l′|+2,..., l+l′

〈
Yk,m+m′

∣∣Yl,mYl′,m′〉Yk,m+m′(ϑ, ϕ) . (93)

Using Yl,m = (−1)m Yl,−m we can write the Gaunt coefficients in a form more convenient for
the use in the electron-electron repulsion part of the Hamiltonian

c
(k,l,l′)
m,m′ :=

√
4π

2k+1

〈
Yl,m

∣∣Yk,m−m′Yl′,m′〉 = (−1)m
′

√
4π

2k+1

〈
Yk,m′−m

∣∣Yl,−mYl′,m′〉 . (94)

They can be readily written as matrices c(k,l,l′) with indices m and m′, where matrix elements
with |m−m′| = |µ| > k (on the µth side-diagonal) vanish so that c(k,l,l′) is a 2k+1-diagonal
(2l+1)× (2l′+1) matrix, in particular c(k=0,l,l′)

m,m′ = δl,l′ δm,m′ . Matrices with exchanged l↔l′ are
related by

c
(k,l,l′)
m,m′ = (−1)m+m′ c

(k,l′,l)
−m′,−m and c

(k,l,l′)
m,m′ = (−1)m−m

′
c
(k,l′,l)
m′,m (95)

where in the last relation we used that the Gaunt coefficients are real. Combining the two
transformations gives the inversion symmetry of each ck,l,l

′ matrix

c
(k,l,l′)
m,m′ = c

(k,l,l′)
−m,−m′ . (96)
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For the special case l′=l eq. (95) give the symmetries of c(k,l,l) under reflection along the anti-
diagonal and the diagonal, respectively.

Using

L±Yl,m =
√

(l±m+1)(l∓m)Yl,m±1 ,

the elements of the matrix c(k,l,l
′) are related via

〈
Yl,m|L± Yk,m−m′∓1Yl′,m′

〉
by√

(l∓m+1)(l±m)c
(k,l,l′)
m∓1,m′=

√
(k±(m−m′)(k∓(m−m′)+1)c

(k,l,l′)
m,m′ +

√
(l′±m′+1)(l′∓m′)c(k,l,l

′)
m,m′±1

(97)
which relates matrix elements according to the patterns for L+ and for L−. With one of
the prefactors vanishing, these relations become simple two-point recursions along the border of
the matrix (m′ = ±l′ for the L+ or m = ±l for the L− formula), as well as along the outermost
side-diagonals (m−m′ = k+1 for L+ or m−m′ = −k−1 for L−).

Filling the matrix c(k,l,l
′) according to (97) starting, e.g., from c

(k,l,l′)
−l,−l′ = 1, using theL+ recursion

to fill the top row and then the L− recursion to fill the subsequent rows from right to left, we get
the matrix of Clebsch-Gordan coefficients

〈k,m+m′; l; l′|l,m; l′,m′〉 = (−1)m
′
c̄
(k,l,l′)
−m,m′

by normalizing any of the (side)diagonals of c to get c̄ (since the µ-th side diagonal holds the
expansion coefficients of |k, µ; l; l′〉).
To obtain the Gaunt matrices, we still need the reduced matrix element. A simple approach for
small values of l and l′ is to use

Yl,0(ϑ, ϕ) =

√
2l+1

4π
Pl(cosϑ)

and calculate c(k,l,l
′)

0,0 by explicit integration over the corresponding Legendre polynomials, e.g.,

c
(k,l,l)
0,0 =

√
4π

2k+1

〈
Yl,0
∣∣Yk,0 Yl,0〉 =

2l+1

2

∫ 1

−1
dxPl(x)2 Pk(x) (98)

Using the recursion relation for the Legendre polynomials (87) with starting points P0(x) = 1

and P1(x) = x, we get by explicit integration over the product of polynomials

l 1 2 3

k 2 2 4 2 4 6

c
(k,l,l)
0,0

2

5

2

7

2

7

22

3 · 5
2

11

22 · 52

3 · 11 · 13

(99)

from which we obtain the Gaunt matrices for p-, d-, and f -shells listed below. There are, of
course, more refined methods that remain fast and accurate also for large angular momenta [13].
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p-shell:

c
(2,1,1)
m,m′ =

1

5

 −1
√

3 −
√

6

−
√

3 2 −
√

3

−
√

6
√

3 −1


d-shell:

c
(2,2,2)
m,m′ =

1

7


−2

√
6 −2 0 0

−
√

6 1 1 −
√

6 0

−2 −1 2 −1 −2

0 −
√

6 1 1 −
√

6

0 0 −2
√

6 −2



c
(4,2,2)
m,m′ =

1

3·7


1 −

√
5

√
15 −

√
35

√
70√

5 −4
√

30 −
√

40
√

35√
15 −

√
30 6 −

√
30

√
15√

35 −
√

40
√

30 −4
√

5√
70 −

√
35

√
15 −

√
5 1


f -shell:

c
(2,3,3)
m,m′ =

1

3·5



−5 5 −
√

10 0 0 0 0

−5 0
√

15 −
√

20 0 0 0

−
√

10 −
√

15 3
√

2 −
√

24 0 0

0 −
√

20 −
√

2 4 −
√

2 −
√

20 0

0 0 −
√

24
√

2 3 −
√

15 −
√

10

0 0 0 −
√

20
√

15 0 −5

0 0 0 0 −
√

10 5 −5



c
(4,3,3)
m,m′ =

1

3·11



3 −
√

30
√

54 −
√

63
√

42 0 0√
30 −7

√
32 −

√
3 −

√
14

√
70 0√

54 −
√

32 1
√

15 −
√

40
√

14
√

42√
63 −

√
3 −

√
15 6 −

√
15 −

√
3

√
63√

42
√

14 −
√

40
√

15 1 −
√

32
√

54

0
√

70 −
√

14 −
√

3
√

32 −7
√

30

0 0
√

42 −
√

63
√

54 −
√

30 3



c
(6,3,3)
m,m′ =

5

3·11·13



−1
√

7 −
√

28
√

84 −
√

210
√

462 −
√

924

−
√

7 6 −
√

105
√

224 −
√

378
√

504 −
√

462

−
√

28
√

105 −15
√

350 −
√

420
√

378 −
√

210

−
√

84
√

224 −
√

350 20 −
√

350
√

224 −
√

84

−
√

210
√

378 −
√

420
√

350 −15
√

105 −
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1 Introduction

Following the discovery of copper oxide superconductors with their spectacularly high super-
conducting transition temperatures by Bednorz and Müller [1], the problem of the doped Mott
insulator has become a central issue in solid state physics. Still, after more than 30 years of re-
search and thousands of papers devoted to this subject, there is no generally accepted theory for
this problem. So what exactly do we mean by ‘doped Mott insulator’ and why is this problem
so hard to solve?
Let us consider a two-dimensional square lattice with lattice constant a = 1, which consists of
N = L2 sites and impose periodic boundary conditions with period L along both the x- and
y-direction. We denote the number of electrons with spin σ byNσ, the total number of electrons
by Ne = N↑+N↓. Also, we denote densities per site by n, for example ne = Ne/N . To explain
the idea of a Mott-insulator it would be neither necessary that the system is two-dimensional,
nor that we have a square lattice, but this is the suitable geometry to describe the CuO2 planes in
copper oxide superconductors. We assume that there is one s-like atomic orbital |φi〉 centered
at each lattice site i. Orbitals on different sites are assumed to be orthogonal, 〈φi|φj〉 = δi,j ,
but there may be nonvanishing matrix elements of the Hamiltonian – that means the kinetic and
potential energy – between them, 〈φi|H|φj〉 = −ti,j . We assume that the orbital |φ〉 is the same
for each lattice site, whence the matrix element 〈φi|φj〉 depends only on the distance between
i and j: ti,j = tRi−Rj

. We also assume that the atomic orbital |φi〉 decays exponentially,
〈r|φi〉 ∝ e−|r−Ri|/ζ , so we expect tR ∝ e−|R|/ζ and ti,j will differ appreciably from zero only
for close neighbors. Introducing operators c†i,σ which create an electron of z-spin σ in orbital
|φi〉 the Hamiltonian reads

H0 = −
∑
i,j

ti,j
∑
σ

c†i,σcj,σ =
∑
k

∑
σ

εk c
†
k,σck,σ.

The second expression for H0 is obtained by Fourier transformation

c†k,σ =
1√
N

∑
j

eik·Rj c†j,σ ⇒ εk = − 1

N

∑
i,j

ti,j e
ik·(Ri−Rj) = −

∑
R

tR eik·R. (1)

Here k =
(

2nπ
L
, 2mπ

L

)
with −L/2 < m,n ≤ L/2 is a wave vector in the first Brillouin zone.

Unless otherwise stated we will from now on assume that ti,j is different from zero only for
nearest neighbors i and j and denote its value by t, whence εk = −2t

(
cos(kx) + cos(ky)

)
.

The number of wave vectors k equals N and the ground state for N electrons is obtained by
‘filling the band from below’, that means occupying those N/2 wave vectors k which minimize
the sum

∑
k εk with two electrons of opposite spin. The band therefore is half-filled, the Fermi

surface covers precisely half of the Brillouin zone and we have a metal.
In the discussion so far we have ignored the Coulomb interaction between the electrons. Re-
calling that the atomic orbital 〈r|φi〉 ∝ e−|r−Ri|/ζ , we expect that if the orbital is occupied by
two electrons of opposite spin, the electrostatic energy is U ∝ e2/ζ , whereas it is ∝ e2/a if
the electrons are in orbitals on different sites. If we take the limit of a ‘small atomic orbital’,
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i j

(a) (b) (c)

Fig. 1: An exchange process in a Mott insulator.

ζ → 0, we find U/t → ∞ – accordingly we neglect the Coulomb repulsion ∝ e2/a between
electrons in different orbitals. Taking the extreme limit U/t =∞ and returning to the problem
of finding the ground state with N electrons we find that there is precisely one electron in each
of the N orbitals (putting two electrons into the same orbital increases the energy by the large
amount U ). The electrons thus are ‘frozen in’ and cannot react to an applied electric field, so
that the system is an insulator. This is the prototype of a Mott insulator: a system which would
be a metal in the band picture, but is an insulator due to the strong Coulomb repulsion between
electrons in ‘small’ atomic orbitals. It should be noted that for noninteracting electrons (U = 0)
and t = 0 the electrons would be unable to move as well and the system would be an insulator.
However, any arbitrarily small value of twould immediately lead to the formation of a band and
a Fermi surface, whereas in the presence of a large U switching on t � U would not change
the insulating nature of the ground state.
The discussion above already shows one of the reasons why the problem of the Mott-insulator
is so difficult. Whereas the ground state for U = 0 is unique and easy to write down – the filled
Fermi sea – a well-defined ground state for U/t = ∞ does not even exist: namely in this limit
each site is occupied by one electron, which can have a spin of σ = ±1

2
. The way in which the

spins are distributed over the sites is not determined, however, and for N↑ = N↓ = N/2 the
number of ways to distribute the ↑-spins (which automatically fixes the ↓-spins) is

nd =

(
N

N↑

)
≈
√

2

πN
2N ,

where the Stirling formula has been used. This shows the enormous degree of degeneracy.
If we reduce U/t from infinity to a large but finite value, the spins on the individual sites start
to ‘communicate’ with each other via the process shown in Figure 1. An electron from site i
may hop to a neighbor j and form an intermediate state with an empty orbital at i and a doubly
occupied orbital at j, see Fig. 1(b). Since the energy of this intermediate state is U, it will be
short lived and one of the two electrons in j will hop to the empty site i, resulting in one of
the two states in Fig. 1(c). The upper state is identical to the initial state, Fig. 1(a), but there
is a gain in kinetic energy of order t2/U due to the back-and-forth hopping of the electron.
Since this back-and-forth hopping is possible only if the spins at i and j are antiparallel to each
other, it is energetically favorable if spins on nearest neighbors are antiparallel. In the lower of
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the two states in Fig. 1(c) both spins have flipped their direction as compared to Fig. 1(a), so
that the spins in the Mott insulator are not static, but have a dynamics of their own. A more
quantitative treatment shows that the ‘virtual’ hopping processes in Fig. 1 can be described by
the Heisenberg antiferromagnet

HHAF = J
∑
〈i,j〉

Si · Sj = J
∑
〈i,j〉

(
Szi S

z
j +

1

2

(
S+
i S
−
j + S−i S

+
j

))
. (2)

Here J = 4t2/U,
∑
〈i,j〉 denotes a sum over all 2N nearest neighbor pairs, and Si is the operator

of electron spin at site i, and the spin raising and lowering operators S± = Sx ± iSy have been
introduced to rewrite the term Si,xSj,x + Si,ySj,y. Although the electrons in a Mott insulator are
localized, their spins therefore acquire a ‘life of their own’, that means a nontrivial ground state
and a spectrum of spin-excitations. This problem is even compounded by doping the system,
that means removing electrons and thus create mobile vacancies. The appropriate model to
describe this is the famous t-J model

Ht−J = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c.

)
+ J

∑
〈i,j〉

Si · Sj, (3)

where the Hubbard operator ĉ†i,σ = c†i,σ(1−ni,σ̄) creates an electron only on an empty site.
The t-J model was originally derived rigorously as the strong coupling version of the Hubbard
model by Chao, Spałek, and Oleś [2], and later shown to be the proper theoretical description of
the CuO2 planes in cuprate superconductors by Zhang and Rice [3]. For application to the CuO2

planes, the appropriate parameter values are t ≈ 350 meV and J ≈ 140 meV, so J/t = 0.4. The
Hilbert space of the t-J model consists of states where each site is occupied either by a vacancy
or a spin. The first term exchanges a vacancy and a spin on nearest neighbors, the second term is
the Heisenberg exchange between spins. We therefore expect that the system continues to have
spin excitations, but by their very motion through the ‘spin background’ the vacancies interact
with these, which will modify both, the motion of the holes and the dynamics of the spins.

2 Planar model at half-filling

2.1 Magnons

To illustrate these somewhat vague remarks we now discuss the reasonably well understood
case of the undoped Heisenberg antiferromagnet, Ne = N , and the motion of a single vacancy
in a Heisenberg antiferromagnet, Ne = N−1. We consider the Hamiltonian Eq. (2) for one
electron per site. If only the terms ∝ Szi S

z
j were present, the ground state of (2) would be the

Néel state, shown in Figure 2(a). In this state, the square lattice is divided into two sublattices
whereby all sites of the A-sublattice are occupied by an ↑-electron, those of the B-sublattice by
a ↓-electron (we assume that the A-sublattice is the one containing the site (0, 0)). The energy
of this state is 2N

(
−J

4

)
= −NJ/2. The Néel state, however, is not an eigenstate of the full

Hamiltonian (2): acting, e.g., with one of the products J
2
S−i S

+
j contained in the second term
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i j

(c) (d)

i j i j

lk k l

i j

(a) (b)

Fig. 2: The Néel state (a) is not the ground state of the Heisenberg antiferromagnet. By acting,
e.g., with the term J

2
S−i S

+
j in (2) the state (b) is generated, which is orthogonal to the Néel

state. Acting further with J
2
S−k S

+
l produces (c) and then acting with J

2
S−j S

+
k gives (d).

in (2), the spins at the sites i and j are inverted, resulting in the state shown in Figure 2(b) which
is orthogonal to the Néel state. Interestingly, the inverted spins have very much the character
of particles in that they can propagate: first, the term J

2
S−k S

+
l appends two additional inverted

spins – see Figure 2(c) – and then the term J
2
S−j S

+
k removes two inverted spins, to produce

the state in Figure 2(d). The net result of this two-step process is that one of the inverted spins
seems to have moved from site j to site l. The particle-like nature of the inverted spins has led to
the name magnons for them. One can then envisage how this will go on: magnons are created in
pairs at various places in the system, then separate and propagate independently by the append-
and-remove process, but when two magnons meet they can also ‘pair-annihilate’ each other by
the inverse process Figure 2(b)→(a). There are then two possible outcomes of this scenario: the
density of magnons may reach an equilibrium value, where pair-creation and pair annihilations
balance each other, so that the underlying antiferromagnetic order persists and we have a Néel
state hosting a ‘gas of magnons’ – or the process may go on until the ordered state is wiped out
and we get an entirely new state without order. It turns out that in dimensions D ≥ 2 the first
scenario is realized, and the resulting gas of magnons in antiferromagnetic Mott insulators can
be described very well by linear spin wave theory. This is frequently derived by means of the
Holstein-Primakoff transformation [4] but for the extreme quantum limit of spin 1/2, which we
are considering here, a simpler and more transparent derivation is possible.
We interpret the Néel state in Figure 2(a) as the vacuum state |0〉 for magnons and model an
inverted spin at the site i of theA sublattice by the presence of a Boson, created by a†i . Similarly,
an inverted spin on the site j of the B sublattice is modeled by the presence of a Boson created
by b†j . The state in Figure 2(b) thus would be represented as a†ib

†
j|0〉. We use Bosons to represent

the magnons because spin-flip operators such as S+
i and S−j commute for different sites i and

j and these are the operators which create or annihilate the magnons. Since any given spin can
be inverted only once, a state like (a†i )

2|0〉 is meaningless. Accordingly, we have to impose the
constraint that at most one Boson can occupy a given site. This is equivalent to an infinitely
strong on-site repulsion between the magnons and we call this the hard-core constraint. An
inverted spin on either sublattice is parallel to its z = 4 nearest neighbors and the energy
changes from −J/4 to +J/4 for each of these z bonds. Accordingly, we ascribe an energy of
formation of zJ/2 to each Boson. The spin-flip part creates or annihilates pairs of magnons on
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(π,0)

(π,π)

(a) (b) (c)

Q

(0,0)

k’

k

Fig. 3: (a) The ordered moments in the Néel state make the two sublattices inequivalent, so
that the new lattice vectors connect only the sites of one sublattice. The new unit cell is rotated
by 45o and has twice the size of the original one. (b) Accordingly, the new Brillouin zone is
rotated by 45o as well and has half the size of the original one. (c) Every vector k′ outside the
antiferromagnetic Brillouin zone can be written as k′ = k + Q with a k inside the zone.

nearest neighbors, with the matrix element being J/2, so that the Hamiltonian for the magnons
becomes

HSW =
zJ

2

(∑
i∈A

a†i ai +
∑
i∈B

b†i bi

)
+
J

2

∑
i∈A

∑
n

(
a†i b

†
i+n + bi+n ai

)
. (4)

Here n are the z vectors which connect a given site with its z nearest neighbors. In fact, we have
made a slight mistake in writing down (4): when two inverted spins reside on nearest neighbors,
the number of frustrated bonds is 2z−1 rather than 2z. This could be incorporated into HSW as
an attractive interaction between magnons on nearest neighbors, but here we ignore this.
The Hamiltonian (4) is a quadratic form but we recall that the Bosons are not free particles, but
have to obey the hard-core constraint. However, for the moment we ignore this and treat the
Bosons as if they were free particles – we will return to this issue later on. Fourier transforming
(4) then gives

HSW =
zJ

2

∑
k

(
a†kak + b†kbk + γk

(
a†kb
†
−k + b−kak

))
(5)

with

a†k =

√
2

N

∑
j∈A

eik·Rja†j and γk =
1

z

∑
n

eik·n =
1

4

(
2 cos(kx) + 2 cos(ky)

)
.

Here k is a wave vector in the antiferromagnetic Brillouin zone (AFBZ), see Figure 3. We can
solve (5) by a Bosonic Bogoliubov transformation, i.e., we make the ansatz

α†k = uk a†k + vk b−k,

β†−k = uk b
†
−k + vk ak,

⇒ a†k = uk α
†
k − vk β−k,

b−k = −vk α†k + uk β−k.
(6)

Demanding that [αk, α
†
k] = [βk, β

†
k] = 1 gives the condition u2

k − v2
k = 1, which actually has

been used to revert the equations on the left hand side of (6) to obtain the right-hand side. Next,
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we demand that when expressed in terms of the α†k and β†k the Hamiltonian takes the form

H =
∑
k

ωk

(
α†kαk + β†kβk

)
+ const.

It follows that [H,α†k] = ωkα
†
k. We now insert the ansatz (6) into this equation, use the Bosonic

commutation relations for a† and b†, and equate the coefficients of a†k and b−k on both sides of
the resulting equation. This leads to the following non-Hermitean eigenvalue problem(

zJ
2
−γk

γ∗k − zJ
2

)(
uk
vk

)
= ωk

(
uk
vk

)
. (7)

The eigenvalues and eigenvectors of (7) are easily calculated and one finds

ωk =
zJ

2

√
1−γ2

k, and uk =

√
1+νk
2νk

, vk =

√
1−νk
2νk

, (8)

where νk =
√

1−γ2
k. In particular, for k → 0 we find γk → 1 − (k2

x+k
2
y)/4 = 1−k2/4 so

that νk → |k|/
√

2 and ωk → J
√

2|k|. This shows that the spin waves reach zero frequency at
k = (0, 0) and have a cone-shaped dispersion in the neighborhood.
Spin waves can be observed experimentally by inelastic neutron scattering (INS) which, as
scattering experiments usually do [5], ultimately measures a dynamical correlation function, in
the case of INS the dynamical spin correlation function S(k, ω). Denoting the eigenstates of
the system under consideration by |ν〉 (with ν=0 the ground state) then at zero temperature it is
given by

S(k, ω) =
∑
ν

∣∣〈ν|S+
k |0〉

∣∣2δ(ω−(Eν−E0)
)
, with S+

k =
1√
N

∑
i

eik·Ri S+
i .

This expression describes the following scattering process: initially, the sample is in its ground
state |0〉 with energy E0 and Sz = 0. A neutron enters the sample with wave vector K, kinetic
energy T , and spin ↑. Its magnetic moment interacts with that of the spin density of a ↓-electron
in some atomic wave function |φi〉, so that both, the electron and the neutron, flip their spins.
The sample remains in an excited state |ν〉 with momentum k, energy Eν and Sz = 1, whereas
the neutron leaves the sample with wave vector K−k, energy T − (Eν−E0) and spin ↓. In our
case, the |ν〉 are the eigenstates of the spin wave Hamiltonian, so we need to translate the spin
operator S+

k into ‘spin wave language’. The operator S+
i raises the spin at site i, so if i belongs

to the B-sublattice S+
i creates a magnon, S+

i = b†i , whereas if i belongs to the A-sublattice S+
i

annihilates a magnon, S+
i = ai. Accordingly we have

S+
k =

1√
N

∑
i∈A

eik·Ri ai +
1√
N

∑
i∈B

eik·Ri b†i =
1√
2

(
a−k + b†k

)
=

1√
2

(
uk−vk

)(
α−k + β†k

)
,

where the inverse transformation in (6) was used in the last step as well as u−k = uk and
v−k = vk. When acting onto the magnon vacuum |0〉, the term ∝ α−k gives nothing, whereas
the term ∝ β†k creates a single magnon. The possible final states |ν〉 thus are β†k |0〉 with energy



6.8 Robert Eder

Eν = E0+ωk. However, using this expression for all momenta in the Brillouin zone, we
would be making a mistake: namely the momenta k of the magnons in (6) are restricted to
the AFBZ whereas the momentum transfer k in the scattering experiment can be anywhere in
the whole Brillouin zone. This is easily remedied, however, if we note that each momentum
k′ outside the AFBZ can be written as k + Q, with Q = (π, π) and k within the AFBZ, see
Figure 3(c). Since eiQ·Ri = 1 for all sites of the A-sublattice (remember that the A-sublattice
was the one containing (0, 0)) and eiQ·Ri = −1 for all states of the B-sublattice, we have
S+
k+Q = (a−k − b

†
k)/
√

2 = (uk + vk)(α−k − β
†
k)/
√

2. Inserting everything we find

S(k, ω) =
1

2

(
uk − vk

)2
δ(ω−ων), S(k+Q, ω) =

1

2

(
uk + vk

)2
δ(ω−ων).

Let us assume that the momentum transfer is k = Q + δk or k = δk, with a small δk. In both
cases, ωk → J

√
2|δk|, whereas the square of the scattering matrix element

∣∣〈ν|S+
k |0〉

∣∣2 =
1

2

(
uδk ± vδk

)2
=

1

2

1± |γδk|√
1− γ2

δk

→


√

2

|δk|
, +

|δk|
4
√

2
, −

The matrix element, which gives the peak-intensity in the inelastic neutron spectrum, thus ap-
proaches zero for momentum transfer 0, but diverges for momentum transfer Q. A comparison
to an actual INS experiment is shown in Figure 4. It is quite obvious that the agreement with ex-
periment is excellent, both with respect to the spin wave dispersion and the k-dependence of the
peak intensity, and in fact spin wave theory is a highly successful description of the properties
of antiferromagnetic Mott insulators. The bandwidth of ωk is roughly 300 meV and from (8)
one can see that spin wave theory predicts a bandwidth of 2J , so J ≈ 150 meV. This is slightly
larger than the value given above, but to get a really good fit the authors of Ref. [6] actually have
included an additional ring exchange term whereas their nearest neighbor J = 138mmeV.
To conclude this section, we return to the issue of the hard-core constraint which the a† and b†

Bosons had to obey and which we had simply ignored. To address this question, we calculate
the density of these Bosons, i. e.,

na =
2

N

∑
k

〈
a†kak

〉
=

2

N

∑
k

v2
k =

2

N

∑
k

1− νk
2νk

.

Numerical evaluation for a 2D square lattice gives na = 0.19. The probability that two of the
Bosons occupy the same site and violate the constraint therefore is ≈ n2

a = 0.04 � 1 and our
assumption of relaxing the constraint is justified a posteriori.
Summarizing the discussion so far we have seen that in a Mott-insulator the sites carry a spin
of ±1

2
. These spins can communicate with each other by means of virtual charge fluctuations

and this is described by the Heisenberg antiferromagnet. In dimensions D ≥ 2 this leads to
antiferromagnetic order in the ground state and a new type of excitations, magnons or spin
waves, which correspond to spins standing opposite to the antiferromagnetic order.



Doped Mott Insulators 6.9

(3/4,1/4) (1/2,1/2) (1/2,0) (3/4,1/4) (1,0) (1/2,0)
0

50

100

150

200

250

300

350

E
n

e
rg

y 
(m

e
V

)

A

(3/4,1/4) (1/2,1/2) (1/2,0) (3/4,1/4) (1,0) (1/2,0)
0

5

10

15

20

Wavevector (h,k)

I S
W

(Q
) 

(µ
B2
 f
.u

.-1
)

B

h

k

0

1

1

0.5

0.5

M

XΓ Γ

C

Fig. 4: Comparison of spin wave theory to INS results for La2CuO4. The top part shows
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the prediction of spin wave theory. Note the cone-shaped dispersion around (0, 0) and (π, π)
and the divergence/vanishing of the spectral weight at these points. Reprinted with permission
from [6], Copyright 2001 by the American Physical Society.

2.2 One hole in an antiferromagnet

Let us next consider the first step of ‘doping the system’ and consider the case of a single
vacancy in a system described by the t-J model, Eq. (3). A single hole will not change the
magnetic order due to interaction of the remaining N−1 spins, so we assume antiferromagnetic
order and decompose the t-J Hamiltonian Eq. (3) as H = Ht +HI +H⊥ whereby

Ht = −t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ +H.c

)
, HI = J

∑
〈i,j〉

Szi S
z
j , H⊥ =

J

2

∑
〈i,j〉

(
S+
i S
−
j +H.c.

)
,

and choose H0 = Ht+HI as our unperturbed Hamiltonian. As already stated, in the absence of
any hole the ground state of H0 is the Néel state with energy EN = −NJ/2. If now an electron
is removed from site i belonging to the ↑-sublattice – see Figure 5(a). This raises the exchange
energy by zJ/4, because z bonds change their energy from−J/4 to 0. We choose the exchange
energy of the resulting state,EN+zJ/4, as the zero of energy. Then, the hopping term in (3) can
become active and the spin from a neighboring site i1 is transferred to i, resulting in the state
in Figure 5(b). Since the shifted spin has ‘switched sublattices’, however, it now is opposite
to the antiferromagnetic order. In fact, this inverted spin at site i is nothing but a magnon as
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Fig. 5: A hole hopping in the Néel state creates a ‘string’ of misaligned spins.

discussed in the preceding section, so that the hopping vacancy ‘radiates off’ magnons [7, 8].
Since the displaced spin at site i is parallel to z−1 neighbors, the exchange energy increases by
(z−1)J/2. And this continues as the vacancy moves through the Néel state, see Figure 5(c): in
each step another spin is shifted to the opposite sublattice, so that the vacancy leaves behind a
trace of misaligned spins and the exchange energy increases roughly linearly with the distance
travelled by the hole. We call a state which is created by the motion of a vacancy in the Néel
state a ‘string state’ and denote it by |i0, i1, . . . , iν〉. Here i0 is the site where the hole was
created, i1, i2, iν−1 are the sites visited by the hole, whereas iν is the site where the vacancy is
located. We call ν the length of the string, for example Figure 5(c) shows a string of length 4.
There are z different string states with ν = 1, whereas in any subsequent hop starting from
a string state of length ν, z−1 new string states of length ν+1 are generated. The number of
different strings of length ν therefore is nν = z(z−1)ν−1 for ν ≥ 1 whereas n0 = 1. Since
each displaced spin is parallel to z−2 neighbors – see Figure 5 – the magnetic energy increases
by J(z−2)/2 per displaced spin, except for the first hop away from i where it increases by
J(z−1)/2. Accordingly, the exchange energy for a string of length ν > 0 his

Iν =
(z−1)J

2
+ (ν−1)

(z−2)J

2
=
J

2

(
(z−1) + (ν−1)(z−2)

)
, (9)

and I0 = 0. It may happen that the path which the hole has taken is folded or self-intersecting
in which case (9) clearly is not correct. However it will be correct for ‘most’ possible paths of
the hole, in particular it is correct for ν ≤ 2 so that we will use this expression. Neglecting
the possibility of self-intersection or folding of the string is an approximation known as Bethe-
lattice. Since the magnetic energy increases linearly with the number of hops the hole has
taken, we conclude that under the action ofH0 the hole is self-trapped. To describe the resulting
localized state we make the following ansatz

|Φi〉 =
∞∑
ν=0

αν
∑

i1,i2,...,iν

|i, i1, i2, . . . , iν〉, (10)

where it is understood that the second sum runs only over those ν-tuples of sites which corre-
spond to a true string starting at i. Since we assume that the magnetic energy is the same for all
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i j i j

Fig. 6: By acting with the term J
2
S+
i S
−
j the first two defects created by the hole can be ‘healed’

and the starting point of the string be shifted to a neighbor.

strings of length ν, the coefficient αν depends only on the length of the string. The coefficients
αν in (10) are to be determined by minimizing the expectation value of H0. The norm and
magnetic energy are

〈Φi|Φi〉 =
∞∑
ν=0

nνα
2
ν =

∞∑
ν=0

β2
ν , (11)

〈Φi|HI |Φi〉 =
∞∑
ν=0

nνIνα
2
ν =

∞∑
ν=0

Iνβ
2
ν , (12)

where we have introduced βν = αν/
√
nν . To obtain the expectation value of the kinetic energy

we consider a string state of length ν ≥ 1 which has the coefficient αν . By acting with the
hopping term we obtain z−1 strings of length ν+1, with coefficient αν+1, and 1 string of length
ν−1, with coefficient αν−1. For ν = 0 we obtain z strings of length 1. In this way we find

〈Φi|Ht|Φi〉 = t

(
zα0α1+

∞∑
ν=1

nναν
(
αν−1+(z−1)αν+1

))
= 2t

∞∑
ν=0

nν+1αναν+1 = 2
∞∑
ν=0

t̃ν βνβν+1,

(13)
where t̃0 =

√
z t and t̃ν =

√
z−1 t for ν > 0. The prefactor on the right-hand side is t instead

of −t as one might have expected from (3) because the hopping term has to be rearranged
as −t ĉ†i,σ ĉj,σ = t ĉj,σ ĉ

†
i,σ to describe the hopping of a hole. As already stated, the βν now

are determined from the requirement that the expectation value Eloc = 〈Φi|H0|Φi〉/〈Φi|Φi〉 be
stationary under variation of each βν

∂Eloc
∂βν

=
1

〈Φi|Φi〉2

[
∂〈Φi|H0|Φi〉

∂βν
〈Φi|Φi〉 − 〈Φi|H0|Φi〉

∂〈Φi|Φi〉
∂βν

]
=

1

〈Φi|Φi〉

[
∂〈Φi|H0|Φi〉

∂βν
− Eloc

∂〈Φi|Φi〉
∂βν

]
= 0.

Setting the square bracket equal to zero and using Eqs. (11), (12), and (13) we obtain [9](
t̃νβν+1 + t̃ν−1βν−1

)
+ Iνβν = Elocβν ,

with the boundary condition β−1 = 0. This results in a tridiagonal Hamilton matrix for the βν
and after cutting off at a sufficiently large ν, Eloc and the βs can be obtained by a simple
numerical matrix diagonalization.
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So far it seems that the hole in the Néel state is localized. It is easy to see, however, that the
term H⊥ which we have neglected so far can assist the trapped hole in escaping from the string
potential, see Figure 6. Namely by acting on the first two sites of a string, the spins which
were inverted by the hole are inverted a second time and thus fit with the Néel order again:
H⊥|i, i1, i2, i3, . . . , iν〉 = J

2
|i2, i3, . . . , iν〉. The initial site of the string thus is shifted to a

(2, 0)- or (1, 1)-like neighbor while simultaneously the length ν is decreased by two. The term
H⊥ may also append two new defects to a string, H⊥|i2, i3, . . . , iν〉 = J

2
|i, i1, i2, i3, . . . , iν〉

thus increasing the length by 2 and again shifting the starting point to a (2, 0)- or (1, 1)-like
neighbor. Using again the Bethe lattice approximation we find the matrix element

〈Φi+2x̂|H⊥|Φi〉 = J
∞∑
ν=0

(z−1)ν αναν+2 =
J

z

(√
z

z−1
β0β2 +

∞∑
ν=1

βνβν+2

)
= J ·m,

whereas 〈Φi+x̂+ŷ|H⊥|Φi〉 = 2J · m because a string to a (1, 1)-like neighbor can pass either
trough (1, 0) or (0, 1) and the contributions from these two different paths are additive.
When the full Hamiltonian H0 + H⊥ is taken into account the hole therefore can propagate
through the entire lattice and we describe this by the Bloch state

|Φk〉 =

√
2

N

∑
j∈A

e−ik·Rj |Φi〉. (14)

This is reminiscent of an LCAO wave function such as (1), but the role of the atomic orbital |φi〉
here is played by the self-trapped function |Φi〉. Since the matrix element ofH⊥ between (1, 1)-
like neighbors is twice that between (2, 0)-like neighbors we obtain the dispersion

Ek = Eloc + 2Jm · 4 cos(kx) cos(ky) + Jm · 2
(

cos(2kx) + cos(2ky)
)

= Eloc − 4Jm+ 4Jm
(

cos(kx) + cos(ky)
)2 (15)
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Fig. 8: Hopping processes involving a term ∝ t′ that connects (1, 1)-like neighbors.

This expression shows several remarkable features which reflect the unusual nature of hole
motion. First, there is the constant term Eloc ∝ t. As we have seen, in the absence of the
spin-flip term H⊥, the hole is self-trapped in a linearly ascending ‘effective potential’ due to
magnetic frustration. The hole executes a rapid zig-zag motion on a timescale τloc ∝ t−1,
and Eloc is the gain of kinetic energy due to this zig-zag motion. Figure 7 shows that Eloc ≈
−2.4 t at J/t = 0.4, which is an appreciable fraction of −4t, the lowest possible kinetic energy
which a freely propagating electron can have in an empty 2D lattice. On the longer time scale
τdeloc ∝ J−1, the spin-flip term shifts the center of the zig-zag motion to a 2nd or 3rd nearest
neighbor, and the zig-zag motion starts anew. It follows that the bandwidth for coherent motion
is not proportional to the hopping integral t, but to the smaller exchange constant J . The total
bandwidth is 16Jm and since m is around 0.14 for J/t = 0.4 – see Figure 7 – the bandwidth is
roughly 2J . With J = 140 meV as appropriate for cuprates, we expect W ≈ 300 meV, almost a
factor of 10 smaller than the width of the free tight-binding dispersion, which is 8t ≈ 2.8 eV. Ek

has a degenerate minimum along (π, 0)→ (0, π) and symmetry equivalent lines, its maxima are
at (0, 0) and (π, π). It has ‘antiferromagnetic symmetry’, Ek+Q = Ek, which is to be expected
since we are considering hole motion in an antiferromagnetic background.

In order to compare our theory to experiment we need to take into account that in the actual
CuO2-planes there are appreciable additional hopping integrals t′ between (1, 1)-like and t′′

between (2, 0)-like neighbors. Since these terms connect pairs of neighbors which are on the
same sublattice, they do not create frustration and it might seem that they immediately dominate
the hole motion. However, this is not the case and the reason can be seen in the next Figure.
Fig. 8(a) shows a ‘string of length 0’, that means a hole at site i and the hopping term ∝ t′ can
transport the hole to the (1, 1)-like neighbor i2 without creating a magnon. On the other hand,
8(c) shows a ‘string of length 1’, that means a hole which has executed one nearest neighbor
hopping process and is now at site i1, with a single magnon at site i. Again, the t′-term can
transport the hole to the (1, 1)-like neighbor i3, but it cannot transport the magnon along with
the hole. Therefore, the hopping terms ∝ t′, t′′ can transport only the ‘bare hole’, and since this
has the coefficient α0 in the self-trapped states |Φi〉, these terms are renormalized by a factor
α2

0. Accordingly, they give the following contribution to the hole dispersion relation

Elr(k) = 4t′α2
0 cos(kx) cos(ky) + 2t′′α2

0

(
cos(2kx) + cos(2ky)

)
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Fig. 9: The band structure for the t-J model with additional hopping terms compared to the
experimental valence band structure for the antiferromagnetic insulator Sr2CuO2Cl2 [10]. Pa-
rameter values are t = 350 meV, J = 140 meV, t′ = −120 meV, and t′′ = 60 meV.

which has to be added to (15). Note again the opposite sign of the hopping terms as compared
to the original Hamiltonian (3) because the Fermion operators have to be exchanged to transport
a hole. Figure 9 shows a comparison of the modified hole dispersion and the experimental band
structure obtained by Angle Resolved Photoemission Spectroscopy (ARPES) on the insulating
CuO-compound Sr2CuO2Cl2 [10]. The band structure for a hole has to be turned upside down
to compare to ARPES because the minimum of the hole-bandstructure is the maximum of the
electron-band structure. The agreement is reasonable whereby it has to be kept in mind that in a
wide area around (π, π) and also close to (0, 0) the band structure cannot be observed because
the band has vanishing spectral weight in ARPES. In any way, the drastic reduction of the
bandwidth can be seen clearly.
Looking back, the above discussion illustrates the general remarks in the introduction. In a Mott
insulator each site carries a spin and spins on neighboring sites are coupled by the exchange
term. This leads to a tendency for neighboring spins to be antiparallel and the appearance of
spin excitations, which in the antiferromagnetic phase take the form of spin waves. Doped
holes then have to move through this ‘spin background’ and by their very motion constantly
interact with the magnetic excitations. As we have seen this leads to a drastic modification
of the hole motion and band structure. And in fact, this also goes the other way round: since
the holes are constantly ‘stirring’ the spins, these react and change their arrangement so as to
make hole motion easier and allow for a gain kinetic energy. In cuprate superconductors the
antiferromagnetic state which could be described by the above theory breaks down for hole
concentrations of only a few per cent. Even in the resulting disordered state, the spin exchange
term in the t-J Hamiltonian still favors antiparallel orientation of spins on nearest neighbors and
in fact neutron scattering experiments show that there it still has short range antiferromagnetic
order that means the spin correlation function 〈Si · Si+R〉 ∝ eiQ·R e−|R|/ζ . This is reminiscent
of the density correction function in a molten crystal, where locally the correlations between
atoms resemble that of the original solid but there is no more long range crystalline order.
Accordingly, such a state is called a ‘spin liquid’ and this is what we want to discuss next.
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3 Spin liquids

3.1 Dimer basis

As a prelude we follow Sachdev and Bhatt [11] as well as Gopalan, Rice, and Sigrist [12] and
consider a dimer of two sites, labeled 1 and 2, and assume that both of them are occupied by
one electron each, with their spins coupled by the exchange term H = J S1 · S2. According
to the rules for addition of angular momenta, the two spins of 1

2
can be coupled to the total

spin S = 1 (spin triplet) or S = 0 (spin singlet). The singlet and the three components of the
triplet are eigenstates of the square of the operator of total spin S = S1+S2 with eigenvalue
S(S+1): S2 = S2

1 + 2S1 · S2 + S2
2 = S(S+1), and using that S2

1 = S2
2 = 1

2

(
1
2

+ 1
)

= 3
4

we find S1 · S2 = 1
2
(S(S+1) − 3

2
). Accordingly, S1 · S2 gives −3

4
when acting on the singlet

and 1
4

for a triplet. Due to the limited size of the Hilbert space of the dimer, constructing
states with definite total spin thus is equivalent to diagonalizing the exchange term, and we
find the eigenenergies −3J/4 for the singlet, and J/4 for the three components of the triplet.
The eigenstates themselves can be found by using the standard technique for adding angular
momenta and are given by [11, 12]

|s〉 =
1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉,

|tx〉 =
1√
2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉,

|ty〉 =
i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
|0〉,

|tz〉 =
1√
2

(
c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
|0〉. (16)

with |s〉 the singlet and |tx〉, |ty〉, and |tz〉 the three components of the triplet. Thereby the three
|tα〉 in (16) are not eigenstates of the total z-spin – rather they are linear combinations of these
eigenstates which obey Sα|tβ〉 = iεαβγ |tγ〉, for example:

Sx|ty〉 =
1

2

2∑
i=1

(S−i + S+
i )

i√
2

(
c†1,↑c

†
2,↑ + c†1,↓c

†
2,↓

)
=

i

2
√

2

(
c†1,↓c

†
2,↑ + c†1,↑c

†
2,↓ + c†1,↑c

†
2,↓ + c†1,↓c

†
2,↑

)
= i|tz〉.

This means that the three states |tα〉 transform like a vector under spin rotations which will be
convenient later on. We also note that under the exchange of the two sites, 1 ↔ 2, we have
|s〉 → |s〉 but |tα〉 → −|tα〉. Let us now return to the problem of describing a ‘spin liquid’
and first consider the undoped Heisenberg antiferromagnet on a 2D square lattice with N sites.
A state which on one hand is disordered and on the other hand is an exact spin singlet can be
obtained in the following way: let the N sites be partitioned into N/2 dimers, whereby each
dimer comprises two nearest neighbor sites, see Figure 10 (a), and assume moreover that the
two spins in each dimer are coupled to form a singlet. This state is a product state
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Fig. 10: (a) A dimer covering of the plane – spins on sites covered by an ellipse are coupled
to a singlet. (b) By acting with the exchange along the bond connecting the dimers l and m
both dimers are excited into the triplet state. (c) By acting with the exchange along the bond
connecting the dimers m and n bond m is de-excited to the singlet whereas dimer n is excited
to the triplet – the triplet has propagated.

|Ψ0〉 =
∏

(i,j)∈D

1√
2

(
c†i,↑c

†
j,↓ − c

†
i,↓c
†
j,↑

)
where D is the set of N/2 pairs (i, j) of nearest neighbor sites corresponding to the given dimer
covering. |Ψ0〉 is an eigenstate of the ‘depleted Hamiltonian’ Hd = J

∑
(i,j)∈D Si · Sj with

eigenvalue Ed,0 = (N/2) · (−3J/4). Since 〈Si · Sj〉 = 0 if i and j belong to different dimers
– as will be shown in a moment – this is also the expectation value of the full Hamiltonian in
the state |Ψ0〉. Next, let us consider what happens if we act onto |Ψ0〉 with the exchange along a
bond not included in the set D, that means a bond connecting spins in different dimers – such
as the bond indicated in Figure 10(b). Due to the product nature of |Ψ0〉 it is sufficient to discuss
what happens when the spin operator acts on a singlet, e.g.,

S1,x|s〉 =
1

2

(
S−1 + S+

1

) 1√
2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉 =

1

2
√

2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉. (17)

Comparing with (16), the expression on the right-hand side is seen to be 1
2
|tx〉. Next, we ex-

change 1 ↔ 2 on both sides of (17), whence S1,x → S2,x, |s〉 → |s〉, and |tx〉 → −|tx〉, and
obtain S2,x|s〉 = −1

2
|tx〉. Since the triplets where constructed to transform like a vector, this

holds true for the other Cartesian components as well: S1,α|s〉 = ±1
2
|tα〉, α ∈ {x, y, z}. Acting

with the term JSi · Sj along a bond which connects sites i and j in different dimers therefore
simultaneously excites both dimers to the triplet state, with a prefactor of ±J/2 (the prefactor
will be discussed more precisely below). The new state is again an eigenstate ofHd, with eigen-
value Ed,0 + 2J and obviously is orthogonal to |Ψ0〉 – which also proves that the expectation
value 〈Si · Sj〉 vanishes if the sites i and j belong to different dimers. Next, we consider what
happens when the exchange term acts along the bond indicated in Figure 10(c). We already
know that bond n will be excited to the triplet state but we need to study what happens when
the spin operator acts on the triplet in bond m:

S1,x|tx〉 =
1

2

(
S+

1 + S−1
) 1√

2

(
c†1,↓c

†
2,↓ − c

†
1,↑c
†
2,↑

)
|0〉 =

1

2
√

2

(
c†1,↑c

†
2,↓ − c

†
1,↓c
†
2,↑

)
|0〉, (18)

which is nothing but 1
2
|s〉. Therefore, acting with the exchange term along the bond indicated

in Figure 10(c), the dimer m is de-excited to the singlet state according to (18), whereas the
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dimer n is excited to the triplet state according to (17). Comparing now with Figure 2 we see
a quite analogous pattern arising: both, the Néel state and the dimer state |Ψ0〉 are the ground
state of a part of the Hamiltonian, namely the longitudinal part J

∑
〈i,j〉 Si,zSj,z in the case of

the Néel state and the depleted Hamiltonian Hd for the dimer state. Switching on the remainder
of the Hamiltonian then creates ‘fluctuations’: these were the inverted spins or magnons in the
case of the Néel state, and the excited dimers in the case of the singlet soup. The fluctuations
increase the energy: by zJ/2 for a magnon, and by J for a triplet. After having been created
these fluctuations then propagate through the lattice. This suggests that we proceed as in the
case of spin wave theory and interpret the triplets as effective Bosonic particles (we use Bosons
because a triplet is composed of two electrons). To be more quantitative, we need to introduce
some conventions: We assume that the bonds are labeled by a number n ∈ {1, . . . , N/2}. Since
the triplet has negative parity under the exchange of sites, 1 ↔ 2, we need to specify which of
the sites i and j in a given dimer corresponds to the site 1 in Eq. (16) and which one to the site 2.
We adopt the convention that for a bond in x-direction (y-direction) the left (lower) site always
corresponds to the site 1. We call the site which corresponds to 1 the 1-site of the dimer and the
site which corresponds to 2 the 2-site of the dimer. For each site i we define λi = 1 if it is the
1-site of its respective dimer, and −1 if it is the 2-site. Then, if a given dimer m is occupied by
a singlet, we consider it as occupied by a Bosonic particle, created by s†m, whereas if the dimer
is in one of the three triplet states we consider it as occupied by a Boson, created by t†m,α with
α ∈ {x, y, z}. We have already seen that the three triplet states transform like a vector under
spin rotations and it follows that the corresponding creation operators form a vector operator
[Sα, t

†
β] = iεαβγt

†
γ , and by Hermitean conjugation it is found that the annihilation operator tm

is a vector operator as well. By calculating the action of the spin operator on triplet states we
then find the representation of the spin operator

Sj →
λj
2

(
s†t + t†s

)
− i

2
t† × t.

The x-component of the correspondence Sj → λj
2

(
s†t + t†s

)
was demonstrated in (17) and

(18). We recall that we found S1,x|s〉 = 1
2
|tx〉 whereas S2,x|s〉 = −1

2
|tx〉 and the factor of λi

keeps track of this sign. From the discussion after (17) we see that such a sign – and hence a
factor of λi – will occur whenever the Hamiltonian induces a transition between states which
have opposite parity under 1↔ 2. The overall form of the terms on the right-hand side follows
from the fact that S is a Hermitean vector operator, so the right-hand side has to be one as well.
Indeed, it is easy to verify that the right-hand side is Hermitean, and the vector product t†× t is
the only way to contract two vector operators into a single one. By forming the scalar product,
we can now write the exchange term along a bond connecting the sites i and j such that site i
belongs to dimer m, site j to dimer n

J Si · Sj →
Jλiλj

4

(
s†mtm + t†msm

) (
s†ntn + t†nsn

)
− J

4
(t†n × tn) · (t†m × tm)

− iJ

4

(
λi
(
s†mtm + t†msm

)
· (t†n × tn) + λj

(
s†ntn + t†nsn

)
· (t†m × tm)

)
, (19)
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The right-hand side comprises all possible ways to construct a spin scalar from the vectors
t and t† and only the numerical prefactors need to be determined. Lastly, using the identity
εαβγεαµν = δβµδγν − δβνδγµ the double-cross product in (19) can be written as

− J

4
(t†n × tn) · (t†m × tm) =

J

4

∑
α 6=β

(
t†m,αtn,α t

†
n,βtm,β − t

†
m,αt

†
n,α tn,βtm,β

)
. (20)

3.2 Spin ladders

Before proceeding with our discussion of the planar model, we make a short digression to spin
ladders [12, 13]. As one might have expected, these consist of two parallel spin chains – the
‘legs’ of the ladder – which are coupled by an exchange along the ‘rungs’ of the ladder, see
Figure 11. Such systems can actually be realized in suitably designed copper oxide compounds
such as SrCu2O3 [14]. Here we consider such a ladder with Nr rungs and periodic boundary
conditions in x-direction, the exchange constants along the rungs, J1, and along the legs, J2,
may be different and we assume J1 > J2. This selects the ‘natural’ dimer covering in Figure
11(b), because singlets along the rungs give a lower energy than those along the legs. We define
the coordinate axes as indicated, whence our convention for assigning the 1-site and 2-site in a
dimer gives the λ’s as in the Figure. Any two successive rungs m and m+1 are connected by
two bonds, and one of them connects the two 1-sites, the other one the two 2-sites, so that the
products λiλj in the first term in (19) all are equal to 1. On the other hand, the terms of 3rd order
in triplets in the second line of (19) contain only one factor of λ and therefore cancel between
the two bonds connecting the rungs m and m+1. The Hamiltonian becomes [12]

H = J1

∑
m

t†m · tm +
J2

2

∑
m

[(
t†m · t

†
m+1smsm+1 +H.c

)
+
(
t†m+1 · tmsm+1s

†
m +H.c

)]
+
J2

2

∑
α 6=β

(
t†m,αtm+1,α t

†
m+1,βtm,β − t

†
m,αt

†
m+1,α tm+1,βtm,β

)
− 3J1Nr

4
. (21)

The first term describes the increase in energy due to replacing a singlet by a triplet and the
particles have to obey the constraint s†msm+ t†m · tm = 1 separately for each rung m. Except for
the first one, all terms in this Hamiltonian are 4th order in the Boson operators, so to make any
progress we need to make approximations. As a first step, we assume that the singlet Bosons
are condensed into the state with momentum k=0. This implies that all singlet operators s†m, sm
can be replaced by a real number s, the singlet condensation amplitude. Next, we replace the
constraint on particle number for each rung by a single constraint for all rungs

Nrs
2 +

∑
m

t†m · tm −Nr = 0. (22)

It needs to be stressed that this approximation is both drastic and questionable: once the s†m,
sm are replaced by a mere number, the Hamiltonian contains terms such as J2s2

2
t
†
m+1
· tm, i.e., a

free hopping term for the triplets. On the other hand, the original constraint s†msm+ t†m · tm = 1

implies that at most one triplet can be on any rung – so that the triplets also have to obey a
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Fig. 11: A spin ladder.

hard-core constraint as the magnons. Physically, condensation of the singlets means that they
form a kind of inert background and have no excitation spectrum of their own. If this is correct,
one might hope that the approximation still is reasonable as long as the density of triplets is low
– we made a similar argument for the magnons in linear spin wave theory. Lastly, the terms
which are of 4th order in triplet operators are treated in mean-field approximation:

H4 =
J2

3

[(
t†m+1 · tm 〈t†m · tm+1〉 − t†m · t

†
m+1 〈tm+1 · tm〉

)
+H.c.

]
− A

= J2

[(
η t†m+1 · tm − ζ t†m · t

†
m+1

)
+H.c.

]
− A.

Here we have introduced the mean-field parameters η = 〈t†m,αtm+1,α〉 and ζ = 〈tm+1,αtm,α〉,
which are the same for all α due to spin rotation symmetry, and A = 3J2(η2 − ζ2). Lastly, we
multiply the constraint (22) by a Lagrange multiplier µ and subtract it from the Hamiltonian.
The Hamiltonian is now in a quadratic form and after Fourier transformation becomes

HMF =
∑
k

εk t
†
k · tk +

1

2

∑
k

∆k

(
t†k · t

†
−k +H.c

)
− nrA− µNr(s

2−1)

=
∑
k>0

(
εk (t†k · tk + t†−k · t−k) +∆k (t†k · t

†
−k + t−k · tk)

)
−NrA− µNr(s

2−1),

εk = J1 + J2

(
s2+2η

)
cos(k)− µ, ∆k = J2

(
s2−2ζ

)
cos(k). (23)

Note that the Lagrange multiplier µ appears in both, the additive constant and the term εk where
it may be viewed to act as an additive renormalization J1 → J1−µ of the energy of formation
of a triplet. Each of the blocks for a given k > 0 can be diagonalized by the ansatz

τ †k = ukt
†
k + vkt−k

τ−k = vkt
†
k + ukt−k

⇒ t†k = ukτ
†
k − vkτ−k

t−k = −vkτ †k + ukτ−k
(24)

where again u2
k−v2

k = 1. The requirement [H, τ †k,ν ] = ωkτ
†
k,ν again leads to a 2×2 eigenvalue

problem and we obtain

ωk =
√
ε2
k −∆2

k, uk =
∆k√

2ωk(εk − ωk)
, vk =

√
εk − ωk

2ωk
. (25)

Reinserting (24) into HMF one finds after a somewhat lengthy calculation that

HMF =
∑
k>0

(
ωk(τ

†
k · τk + τ †−k · τ−k) + 3(ωk − εk)

)
− 3NrJ2(η2 − ζ2)− µNr(s

2 − 1).
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Fig. 12: Left: mean-field parameters obtained by self-consistent solution of the system of equa-
tions (26) as functions of J2/J1 [13]. Right: triplet dispersion ωk in (25) calculated self-
consistently for J1 = 1.09 meV and J2 = 0.30 meV compared to the experimental dispersion
for the spin ladder compound (C5D12N)2CuBr4 [16].

It remains to determine the singlet condensation amplitude s, the mean-field parameters η and ζ ,
and the Lagrange multiplier µ. We consider s, η and ζ as freely adjustable parameters in the
Hamiltonian, whence a well-known theorem from thermodynamics [15] tells us that these pa-
rameters will adjust themselves such as to minimize the Helmholtz Free Energy F = U − T ·S
of the system. The same holds true for the Lagrange multiplier µ. We restrict ourselves to the
case of zero temperature, where F = U , the expectation value of HMF in its ground state. The
ground state is the vacuum for the τ †-Bosons, so we can drop the terms (τ †k · τk + τ †−k · τ−k)
and find

U =
3

2

∑
k

(ωk−εk)− 3NrJ2(η2 − ζ2)− µNr(s
2 − 1).

Setting the derivatives with respect to the four parameters equal to zero we find

s2 = 1− 3

N

∑
k

εk − ωk
2ωk

, µ =
3J2

N

∑
k

εk − ωk − ωk
2ωk

cos(k),

η =
1

N

∑
k

εk − ωk
2ωk

cos(k), ζ = − 1

N

∑
k

∆k

2ωk
cos(k).

(26)

This set of self-consistency equations can be solved numerically and the results are shown in
Figure 12. We note that s2 is close to unity, and Eq. (22) then tells us that the density of
triplets is low so that the majority of rungs is in the singlet state. The Lagrange multiplier µ
is large and negative. As stated above, µ may be considered as an additive correction to the
triplet energy J1,eff = J1+|µ|. Apparently J1 is enhanced considerably: due to the hard-core
constraint, presence of a triplet on rung m blocks this rung, that means no other triplets can
be created on this rung and no other triplet can hop to this rung. It follows that there will be
a loss of kinetic energy ∝ J2 of the triplets, and this has to be added to the energy cost J1

for adding a triplet to the system. Consistent with this interpretation, this correction becomes



Doped Mott Insulators 6.21

more important for larger J2. Finally, the mean-field parameters η and ζ are rather small and
could be neglected – this is a consequence of the low density of triplets, 1−s2. Figure 12 also
shows a comparison of the mean-field dispersion ωk to the experimental dispersion obtained by
INS for the compound (C5D12N)2CuBr4, in which the Cu2+ ions indeed form spin ladders [16].
With the choice J1 = 1.09 meV and J2 = 0.30 meV the mean-field theory gives quite a good
description of experiment, but it should be noted that for other compounds where J2/J1 is closer
to one the agreement is less satisfactory.

3.3 Planar system

We now return to the planar system and first restrict ourselves to a pure spin system without
holes. As we have seen above, the ground state of the half-filled system has antiferromagnetic
order and is well described by spin wave theory, so considering the planar Heisenberg model
without antiferromagnetic order is strictly speaking unphysical. However, we continue the dis-
cussion of the singlet soup because we want to construct a theory for a disordered spin state and
its excitations, so as to set the stage for adding the mobile holes. In exactly the same way as for
spin ladders we can use the expressions (19) for the Heisenberg exchange to rewrite the Heisen-
berg Hamiltonian exactly in terms of the singlets and triplets for any given dimer covering of
the plane such as in Figure 10(a). On the other hand we do not gain very much in this way,
because even writing down a dimer covering for a macroscopic system is not feasible, let alone
solve the corresponding Hamiltonian. One might consider choosing a particular ‘simple’ dimer
covering, such as periodically repeating the spin ladder in Figure 11 in y-direction. However,
since one is forced to make approximations, the special symmetry of the covering will make
itself felt in the approximate solutions as an artificial supercell structure, leading to a reduction
of the Brillouin zone and an unphysical backfolding of bands.
On the other hand, rewriting the Hamiltonian in terms of the singlet and triplet Bosons provides
an exact representation of the Heisenberg model for any dimer covering of the plane. This
means that, for example, the result for the spin correlation function

〈
Sj(t) · Si

〉
cannot depend

on the specific dimer covering in which the calculation is carried out. Put another way, the
way in which a spin excitation propagates through the network of dimers from site i → j

during the time t does not depend at all on the geometry of the particular dimer covering.
This suggests to construct a translationally invariant approximate Hamiltonian by averaging the
dimer Hamiltonian over all possible coverings.This means that now every bond in the lattice
may be occupied by a Boson and the averaged Hamiltonian for two bonds m and n connected
by the exchange term is h̄m,n = ζ hm,n with hm,n given in (19) and

ζ =
Nm,n

Nd

. (27)

Here Nm,n is the number of dimer coverings which contain the bonds n and m whereas Nd

is the total number of dimer coverings. The resulting Hamiltonian obviously is translationally
invariant and isotropic. We estimate ζ by a crude approximation: consider two adjacent bonds
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Fig. 13: Estimation of the renormalization factor ζ .

as in Figure 13. By symmetry the bond m is covered by a dimer in exactly 1/4 of all dimer cov-
erings and we restrict ourselves to these. Assuming for simplicity that the number of coverings
containing one of the three possible orientations of the adjacent bond n are equal, we estimate
ζ = 1/12. From now on, we proceed in the same way as in the case of spin ladders. As a first
step we assume that the singlets are condensed and replace all operators s†m, sm in (19) by a
real number s. To keep things simple we, moreover, discard the interaction terms in (19), that
means the terms of 3rd or 4th order in the triplet operators. The terms of 4th order could again
be treated in mean-field approximation but as we have seen in the discussion of spin ladders the
corresponding mean-field parameters η and ζ were quite small. With these simplifications the
Hamiltonian becomes

H = J̃
∑
m

t†m · t†m +
ζs2

4

∑
m,n

∑
i∈m
j∈n

Ji,j λi λj

(
t†m · t†n + tn · tm + t†m · tn + t†n · tm

)
. (28)

The sum runs over all 2N bonds in the averaged system, Ji,j = J when i and j are nearest
neighbors and zero otherwise. The first term describes the change in energy when a singlet
on bond m is replaced by a triplet, and initially we set J̃ = J . The second term describes
the propagation of the triplets. Being a quadratic form, (28) is readily diagonalized by Fourier
transform – we only need to specify a convention for the position of a bond: if bond m connects
the sites i and j we define Rm = (Ri+Rj)/2. Moreover we have to keep in mind that we have
two species of bonds, namely bonds in x-directions and bonds in y-direction. We specify this
by an additional subscript for the Fourier transformed operators, e.g., t†k,µ with µ ∈ {x, y}. The
products λiλj are given in Figure 14 from which we readily can read off

H =
∑
k

∑
µ,µ′∈{x,y}

(
t†k,µ

(
J̃δµµ′ + εµ,µ′(k)

)
tk,µ′ +

1

2

(
t†k,µ εµ,µ′(k) t†−k,µ′ +H.c.

))
with

εx,x(k) = ζs2J

(
cos(ky)−

1

2
cos(2kx)− cos(kx) cos(ky)

)
,

εx,y(k) = ζs2J

(
sin
(3kx

2

)
sin
(ky

2

)
+ sin

(kx
2

)
sin
(3ky

2

))
,
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Fig. 14: The factors of λiλj for all bonds connected to the bond m by a nearest neighbor bond.
In a) both bonds are along the x-direction so that these pairs contribute to εx,x whereas in b)
one bond is along y-direction so that these pairs contribute to εx,y. In a) both bonds connecting
parallel bonds have λiλj = 1.

εy,x = εx,y, and εy,y is obtained from εx,x by kx ↔ ky. To diagonalize H we repeat the
procedure for spin ladders and make the ansatz (with ν ∈ {1, 2})

τ †ν,k =
∑

µ∈{x,y}

(
uν,k,µ t†k,µ + vν,k,µ t−k,µ

)
,

τν,−k =
∑

µ∈{x,y}

(
v∗ν,k,µ t†k,µ + u∗ν,k,µ t−k,µ

)
, (29)

Demanding [H, τ †ν,k] = ων,kτ
†
ν,k gives the non-Hermitean 4×4 eigenvalue problem(

J̃+εk −εk
ε∗−k −J̃−ε∗−k

)(
uν,k
vν,k

)
= ων,k

(
uν,k
vν,k

)
. (30)

For a matrix like the one on the left hand side it is easy to show that if (u, v) is an eigenvector
with eigenvalue ω, then (v∗, u∗) is an eigenvector with eigenvalue −ω so that the eigenvalues
come in pairs of±ω. We multiply (30) by ων,k and replace products such as ων,kuν,k or ων,kvν,k
on the left hand side of the resulting equations by the expressions given by the original version
of (30). Since the commutator [J̃+εk, εk] = 0 we obtain(

J̃2 + 2J̃εk
)
uν,k = ω2

ν,k uν,k,

and the same equation for vν,k. It follows that ων,k =
√
J̃2 + 2J̃λν,k, where λν,k are the

eigenvalues of the Hermitean 2×2 matrix εk, and both, uν,k and vν,k, must be the corresponding
eigenvector, albeit multiplied by different prefactors. The eigenvalues of εk are λ1,k = −ζs2J/2

and λ2,k = ζs2J(3/2 + 2γk − 4γ2
k), with γk given in (5).

In principle we should now repeat the self-consistency procedure for spin ladders but for the
sake of simplicity we switch to a more phenomenological description, using the discussion
of spin ladders as a guideline. There we saw that the energy needed to convert a singlet into a
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Fig. 15: Left: Spin excitation dispersion relation ωk using the parameter values J̃ = 1.7 J and
different s2ζ . Right: ωk calculated for J̃ = 1.7 J , s2ζ = 0.16 and J = 140 meV compared to the
hourglass dispersion measured in La1.875Ba0.125CuO4 [17]. The data points labeled ‘Magnon’
correspond to the triplet dispersion, the points labeled ‘p.h.’ correspond to particle-hole exci-
tations which are absent in our theory.

triplet was increased to J1+|µ| – see (23) – whereby |µ| could be quite appreciable for J2 → J1,
see Figure 12. We had interpreted this as an additional cost in kinetic energy because a triplet
would block a given rung. Clearly the same would happen also for the planar system, and
accordingly we assume that the prefactor of the first term in (28) is J̃ > J which we take as
a first adjustable parameter. Next, we will not attempt to calculate the singlet condensation
amplitude s but consider the product s2ζ as a single adjustable parameter. We recall that ζ
was determined somewhat vaguely anyway. Our theory now has two adjustable parameters,
which we use to fix two physical quantities, the total bandwidth of the spin excitations, and
the spin gap (to be explained below). Lastly, we recall that we have two eigenvalues λν,k
for each wave vector k, whereby λ1,k has the peculiar feature of being independent of k. A
more detailed analysis shows [18], that the band derived from the dispersionless eigenvalue
also has zero spectral weight in the spin correlation function. This suggests, that this band is an
artifact of the enlargement of the basis by doubling the number of bonds. We therefore drop this
dispersionless band and retain only the band of spin excitations resulting from λ2,k. Figure 15
then shows the resulting triplet dispersion ωk. The parameter J̃ has been adjusted to set the total
bandwidth to 2J , the bandwidth for antiferromagnetic spin waves. ωk has its minimum at (π, π)

and the energy at this wave vector is frequently called the spin gap, ∆S . With increasing value
of s2ζ , ∆S closes rapidly and one can envisage how for ∆S → 0 the cone-shaped dispersion
of antiferromagnetic spin waves at (π, π) is recovered. Experimentally, INS on many cuprate
compounds shows an ‘hourglass’ dispersion around (π, π) – an example is shown in Figure
15. This is frequently interpreted [19] as a magnon-like collective mode above the neck of the
hour-glass co-existing with particle-hole excitations of the Fermi gas of free carriers below the
neck. The part above the neck of the hourglass thus should correspond to our triplet band and
the comparison in Figure 15 shows reasonable agreement.
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3.4 Doped holes

Having developed a description for a disordered spin system we are finally ready to include
doped holes into our theory. To that end we introduce dimers which contain a single electron
or no electron at all. We again consider a dimer with sites 1 and 2, but now assume that the
dimer contains one electron with spin σ. This means that instead of the exchange term now the
hopping term is active: Ht = −t

∑
σ

(
ĉ†1,σ ĉ2,σ +H.c.

)
and there are two eigenstates of Ht

|f±,σ〉 =
1√
2

(
ĉ†1,σ ± ĉ

†
2,σ

)
|0〉, (31)

which obviously obey Ht|f±,σ〉 = ∓t|f±,σ〉. To extend our theory to doped system, we intro-
duce a new type of effective particle to represent dimers occupied by one electron. Namely
if dimer m is in one of the states |f±,σ〉 we consider it as occupied by a Fermion, created by
f †m,±,σ. We choose a Fermion, because the number of electrons in such a dimer is one. We also
introduce one more Boson, created by e†, to represent an empty dimer. In order to include these
particles we need to transcribe the electron creation and annihilation operators ĉ†i,σ and ĉi,σ. The
two spin components of any Fermion creation operator can be combined into a two-component
vector or spinor a† =

(
a†↑, a

†
↓
)T . The spin components of any Fermion annihilation operator

also can be combined into a spinor a =
(
a↑, a↓

)T but under spin rotations this type of spinor
transforms as iτya† [20]. Using this notation we can write (with j ∈ {1, 2})

cj → :
1

2

(
s iτy + λjt · τ iτy

) (
f †+ − λjf

†
−

)
+

1√
2
e†
(
f+ + λjf−

)
: (32)

where : · · · : denotes normal ordering. As was the case for the triplets, the overall form of
the terms on the right-hand side can be guessed by making use of the transformation properties
under spin rotations. Namely the ‘spinor product’ t · τa is the way to construct a new spinor
from a vector operator t and given spinor a. The factors of λj again are associated with states of
opposite parity under 1↔ 2. From now on we omit the terms involving the e†-Bosons because
for low hole concentration the probability to find two holes in the same dimer will be small. We
rewrite the hopping term, again along a bond connecting the sites i and j such that site i belongs
to dimer m, site j to dimer n:

−t
∑
σ

ĉ†i,σ ĉj,σ →
t

4

(
(s†msn + λiλjt

†
m · tn)

(∑
σ

f †n,j,σfm,i,σ

)
(33)

−
(
λit
†
msn + λjs

†
mtn
)
· v(n,j),(m,i) − iλiλj

(
t†m × tn

)
· v(n,j),(m,i)

)
,

where the combination fm,i,σ = fm,+,σ−λi fm,−,σ and the vector

v(n,j),(m,i) =
∑
σ,σ′

f †n,j,σ τσ,σ′ fm,i,σ′

obeys [Sα, vβ] = iεαβγ vγ . Again, the right-hand side is a linear combination of all possible
ways to construct a spinor from another spinor and one or two vector operators. Next, we make
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analogous approximations as in the case of the triplet Hamiltonian. We average the Hamiltonian
over dimer coverings, again introducing the factors of ζ . We discard the terms in the second
line of (33) which describe the emission/absorption of a triplet by a Fermion or the scattering
of a Fermion from a triplet. The terms in the first line of (33) are treated in mean-field approx-
imation, that means we replace the singlet operators s†m, sm by the real number s, the singlet
condensation amplitude. A full mean-field decomposition would also produce expectation val-
ues such as

〈
t†m · tm

〉
, but such expectation values were discarded above and we do the same

here. All in all we obtain in this way

HF = −t
∑
m,σ

(
f †m,+,σfm,+,σ − f

†
m,−,σfm,−,σ

)
+
s2ζt

4

∑
m,n

∑
i∈m
j∈n

∑
σ

f †n,j,σfm,i,σ, (34)

where the sums over m and n run over all 2N bonds in the system.
We now arrive at the crucial point which distinguishes the present theory from most others:
how do we count the electrons? Obviously, each f †m,±,σ-Fermion contains one hole and has a
z-spin of σ. Accordingly, in a given dimer covering the number of Fermions must be equal to
the number of doped holes, Nh = N−Ne

Nh =
∑
m,σ

(
f †m,+,σfm,+,σ + f †m,−,σfm,−,σ

)
, (35)

where the sum is over the N/2 dimers. We have obtained an approximate theory by averaging
over dimer coverings, so that each of the 2N bonds in the plane can be occupied by a Boson
or Fermion. The physically relevant quantity, however, is the density of holes per site, whereas
the number of dimers looses its significance due to the averaging approximation. We therefore
retain the condition (35), but with the sum over m now over all 2N bonds in the system. This
condition implies, that the bands obtained by diagonalizing (34) have to be filled from below
with Nh holes, and since the f †m,±,σ-Fermions have a spin of 1

2
, the Fermi surface covers a

fraction of nh/2 of the Brillouin zone. As the Mott-insulator is approached, ne → 1 or nh → 0,
the volume of the Fermi surface approaches zero.
We continue with the discussion of the band structure. We are interested mainly in the lower-
most bands – these are the ones which will accommodate the doped holes – so for simplicity we
drop the f †m,−,σ-Fermions, because their energy is 2t above that of the f †m,+,σ-Fermions, whereas
the dispersive terms are ∝ s2ζt ≈ 0.2t. With this last approximation Fourier transformation
gives HF =

∑
k,σ v

†
k,σH̃kvk,σ with the vector vk,σ = (fk,x,+,σ, fk,y,+,σ)T . The k-dependence of

the 2×2 matrix H̃k can again be read off from Figure 14, but with all λ = 1. We obtain

H̃x,x = −t+ s2ζt

(
cos(ky) + cos(kx) cos(ky) +

1

2
cos(2kx)

)
H̃x,y = s2ζt

(
cos
(3kx

2

)
cos
(ky

2

)
+ cos

(kx
2

)
cos
(3ky

2

))
,

H̃y,x = H̃x,y and H̃y,y is obtained from H̃x,x by kx ↔ ky. The eigenvalues of H̃k are ε1,k =

−t+ s2ζt/2 and ε2,k = −t+ s2ζt(−3/2 + 2γk + 4γ2
k). More detailed investigation shows [18]
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Fig. 16: Left: Dispersion dispersion relation −ε2,k for s2ζ = 0.16. Holes would occupy the
maxima of this band – indicated in the Figure – so that the zero of energy corresponds roughly
to the Fermi energy for small doping. Right: Adding additional hopping terms between (1, 1)
and (2, 0)-like neighbors lifts the degeneracy of the band maximum (indicated in blue) and the
Fermi surface takes the form of a hole pocket (indicated in red) [18]. The values are t′ = −0.2t,
t′′ = 0.1t and the hole concentration δ = 1−ne = 0.1.

that the dispersionless band ε1,k has zero weight in the electron spectral function, so again we
interpret this as an artifact of the enlargement of the basis states and discard it. As we have seen
above the band structure resulting from (34) has to be filled with holes from below, that means
at T = 0 the condition for the Fermi energy EF is

nh =
2

N

∑
k

Θ
(
ε2,k−EF

)
.

Figure 16 shows −ε2,k, that means the band is again turned upside down as it would be seen
in ARPES. The maxima therefore correspond to the minima of ε2,k, and this is the location
in k-space where the doped holes would accumulate. ε2,k depends on k only via γk, so that
lines of constant γk automatically are lines of constant ε2,k, in particular the maximum of the
inverted dispersion is a roughly circular contour around (π, π). The Fermi surface therefore
would be a ring with a width ∝ nh, which does not agree with ARPES results. This is a
drawback of the present approximation and it is likely that even a small perturbation would
lift the degeneracy of the maximum and lead to a unique maximum around which the Fermi
surface would be centered. One such perturbation could be the additional hopping terms ∝
t′, t′′ discussed above and inclusion of the terms indeed lifts the degeneracy and leads to a
Fermi surface which takes the form of a hole pocket centered along the (1, 1) direction, see
Fig. 16. Comparing to experiment, the pocket is shifted towards (π, π) – one might speculate
that including the coupling between holes and triplets, described by the omitted terms in (33)
might improve this, but at present this is speculation.
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4 Summary and outlook

As explained in the introduction, the hallmark of a Mott insulator is the breakdown of the Fermi
surface due to the effectively enhanced Coulomb repulsion in ‘small’ atomic orbitals: if the
number of electrons is equal to the number of sites, N, the electrons are caught in a ‘traffic jam’
and form a spin system instead of a half-filled band with a Fermi surface. The spins interact via
virtual hopping processes of electrons as described by the Heisenberg exchange, which leads to
antiferromagnetic correlations and spin excitations.

In the description of the doped Mott insulator given in the preceding sections, the electrons
continue to form a mere spin system: the majority of electrons are coupled to inert (‘condensed’)
singlets, a few singlets are excited to the triplet state, so that most electrons still contribute only
their spin degrees of freedom. This is not surprising, because for a low density of vacancies,
most electrons still are completely surrounded by other electrons and thus ‘stuck’. Instead,
the true mobile Fermions in the system are the f †-particles, which may be viewed as tightly
bound states of a spinless hole and one spin, and their number equals the doped holes. Since the
f †-particles have a spin of 1

2
, their Fermi surface covers a fraction nh/2 of the Brillouin zone,

where nh = 1−ne is the concentration of holes. We recall that for free electrons the fraction of
the Brillouin zone covered by the Fermi surface is ne/2, which differs drastically from nh/2.

On the other hand, the state where the electrons are ‘jammed’ and form an inert background can
persist only over a limited range of the hole concentration nh. A crude estimate for the range
of stability of this phase can be obtained by noting that once the hole concentration reaches
1/z = 0.25, on average each electron will find an empty site on one of its z neighbors to which
it can hop without creating a double occupancy. With increasing nh it therefore will become en-
ergetically favorable for the electrons to form the all-electron Fermi surface of the free electron
gas, although the strong scattering will lead to correlation narrowing of the quasiparticle band
and strong incoherent weight in the single-particle spectral function. In fact, in the limit ne → 0

it is known [5] that one recovers a Fermi surface with volume ne/2 but enhanced effective mass.

Accordingly, at some critical hole concentration nh,c we expect a phase transition from the
doped Mott-insulator with a hole-like Fermi surface of fractional volume nh/2 described by the
above theory, to a renormalized all-electron Fermi liquid with an electron-like Fermi surface of
fractional volume ne/2. And, in fact, the experimental situation has pretty much converged to
this scenario: a transition between two nonmagnetic Fermi liquids of spin-1

2
particles without

any obvious order but different Fermi surface volume, which occurs at a hole concentration
nh,c ≈ 0.22. This is discussed in detail in Ref. [18]. Assuming that this T = 0 phase tran-
sition ‘shrouds itself in superconductivity’ as quantum phase transitions often do, one arrives
at the phase diagram in Figure 17. In fact, unlike many other quantum phase transitions, the
transition in the cuprates appears to be between two phases which are homogeneous, isotropic
and nonmagnetic and differ only in the Fermi surface volume, so that there is no obvious order
parameter. This would be consistent with the above scenario. The detailed description of this
transition and how it can give rise to the spectacularly high superconducting transition temper-
atures is probably the key problem in understanding cuprate superconductors.
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Fig. 17: Schematic phase diagram for the cuprate superconductors. There is a quantum critical
point at the hole concentration nh,c ≈ 0.22 which at T = 0 corresponds to a transition between
two Fermi liquids of different fractional Fermi surface volume VFS . The transition gives rise to a
superconducting dome (sc) in the phase diagram, and a quantum critical region with non-Fermi
liquid behavior above it (qc).
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1 Introduction & motivation: Localized versus itinerant

The textbook division of the electronic states in quantum matter ranges between the two princi-
pal categories: (i) localized (bound, atomic) states and (ii) extended (delocalized, band, Fermi-
liquid, free-particle-like) states. The two classes of states are depicted schematically in Fig. 1.
While the question of existence of space-bound states in solids are described and character-
ized experimentally to a very good accuracy [1], the transformation of those atomic states into
emerging delocalized states in solid state physics (or in general, in condensed matter physics)
is still under debate. The classical textbooks on the latter subject with a successful imple-
mentation of wave mechanics to molecular and metallic systems start with the Bloch theorem
establishing the periodic nature of the single-electron states in solids under the influence of the
corresponding translation-symmetric single-particle potential. The first success of the methods
of the LCAO, Hückel, etc. approaches was quite impressive given a total negligence of the in-
terparticle interactions. Those interactions are not only of Coulomb type, but also of the, e.g.,
van der Waals type which appear in molecular or solid-state systems.

The question of including interparticle interactions in the context of periodic solid-state sys-
tems was posed qualitatively by Nevill Mott (for review see [2,3]). Mott based his argument on
earlier experimental observations: for example, cobalt oxide, CoO, according to the elementary
Wilson classification of electronic states, should be regarded as a metallic system, since it pos-
sesses an odd number of valence electrons. Quite to the contrary, it was recognized as one of
the best insulators known then. The argument was that probably the repulsive electron-electron
interaction is responsible for a destruction of coherent periodic Bloch states, as it favors sep-
arating the particles from each other as far as possible, i.e., fixing them on the atomic states
they originate from. Additionally, Mott argued later that the transition between atomic-type and
itinerant (Bloch-type) states should be discontinuous (first-order), since the Coulomb interac-
tion is long-range, so the transition must take place from zero-concentration limit (insulating
ground state) to the metallic state of sizable electron concentration, to warrant screening of the
increasing - energy Coulomb interaction. In such a situation, those insulators should not only
be clear-cut from metals with odd number of valence electrons, but also from the full-band
Wilson-type insulators. In that, two features of such Mott (or Mott-Hubbard) systems should be
singled out. First, as they contain unpaired spins, their magnetic ordering is tightly connected
with them, usually of antiferromagnetic type as was discussed clearly by Anderson, see eg., [4]
and Goodenough [5]. Second, the Mott localization should be common to any condensed matter
system, such as quark-gluon plasma [6] or even cold-atom bosonic systems, and should appear
if only the repulsive interparticle interaction is strong compared to their bare band (kinetic) en-
ergy. This shows a universal character of the related physics, particularly to those system in
which such a matter-insulator (localization-delocalization) transition is observed. A textbook
example of an electronic system with such a transitions is the vanadium sesquioxide doped with
chromium, (V1 – xCrx)2O3 (see Fig. 2 and [7])

The aim of this chapter is to characterize first briefly the most striking properties of Mott-
Hubbard systems of macroscopic size and then turn to the question of the localization in cor-
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       (a)   metal

border of the metal-insulator 
(Mott-Hubbard) transition 

        (b)    Mott-Hubbard  
                   insulator

plane waves 
(Bloch or 
Fermi-liquid states)

atomic states

–e

Fig. 1: Schematic representation of metallic (Fermi-liquid) (a) and Mott-Hubbard insulating
(localized) states (b). Note that in the state (a) electrons derive from the parent atoms, which
form a background lattice of cations (red solid points). The spins of unpaired electrons form as
a rule an antiferromagnetic lattice.

related nanosystems. The atomicity and itineracy of the valence electrons in the latter case can
then be seen clearly on example of exact results, at least for model systems. This analysis should
provide us with additional arguments for the universality of the Mott phenomenon within the
physics of quantum condensed matter.

2 Essence of Mott-Hubbard localization: A physical picture

In this section we define the concept of almost an localized Fermi liquid and the thermodynamic
character of the Mott-Hubbard transition for electrons in a single narrow band. This picture is
based on the Hubbard model and its direct variational analysis.
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Fig. 2: a) Temperature dependence of the electrical resistivity (in logarithmic scale) vs. 1/T
for Cr-doped V2O3. A very sharp transition from antiferromagnetic insulating (AFI) to para-
magnetic metallic (PM) phase is followed by a reverse PM→ PI at higher temperature, which
in turn is followed by PI → PM’ crossover transition to a reentrant metallic (PM’) phase at
still higher temperatures; b) Phase diagram for the same system in the T -x plane; the hatched
area depicts the hysteretic behavior accompanying the discontinuous transitions (taken from
Ref. [7, 8], with small modifications. Both AFI→ PM and PM→ PI represent examples of the
Mott-Hubbard transition (see main text).

2.1 Definitions

The ground-state energy of a periodic system of fermions can be described by starting from the
system of atomic configurations and, subsequently, adding other dynamic interactions which
appear in the emerging condensed state. Namely, its energy per atomic state can be simply
expressed in the form of [9]

EG
N

= εa + 〈T 〉+ 〈V 〉+ 〈V12〉 ≡ E1 + E2, (1)

where εa is the single particle energy in an atomic (Wannier) state, 〈T 〉 and 〈V 〉 are the average
kinetic and potential energies in, whereas 〈V12〉 is the expectation value of the two-particle
interaction. The single-particle part E1 comprises the first three terms, and E2 ≡ 〈V12〉. In
such a periodic system near the delocalization-localization transition, we usually assume that
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εa = 0; i.e., it is regarded as a constant (reference) value which is often disregarded unless stated
explicitly (see next sections). In this manner, the remaining terms characterize solely the energy
contributions of relevant fermions in the condensed state with respect to that in the atomic state.
Note also that usually E1 < 0. Next, one can define two physically distinct regimes:

1◦ |E1|&E2: Fermi-liquid (metallic) regime, ranging from a simple-metal region (|E1|�E2),
through the Fermi-liquid regime, to the delocalization-localization threshold |E1|≈E2;

2◦ |E1| � E2: strong-correlation (Mott-Hubbard) regime.

Let us characterize briefly each of them and introduce the states in these regimes. Connected
with this we start from an atomic (Wannier) representation of the involved states and interac-
tions, in the situation 1◦. The starting point is described then by either a gas of fermions or
a Landau Fermi liquid, and associated with both of them momentum representation and the
Fermi-Dirac statistics (distribution) in its canonical form. In discussing the correlated system,
we start as a rule from the Wannier representation (see below). This means that, in general, we
can start from two complementary representations of the single-particle quantum-mechanical
states, i.e., either from the Bloch representation, in which the momentum uncertainty is zero,
or from the Wannier representation, in which the proper quantum number characterizing the
state is a fixed lattice position, at which the wave function is centered. The above division
into the two asymptotic regimes |E1| � E2 and |E1| � E2 is illustrated in Fig. 1, where the
complementary nature of the single-particle states is represented for the example of a solid with
metallic (delocalized) states of electrons (a) or correlated (atomic, Mott) states (b) for the case
with one relevant valence electron per parent atom. Additionally, we have marked a dividing
line (the Mott-Hubbard boundary) between the two macrostates. The momentum representation
is described by set of the Bloch functions {Ψpσ(r)} with (quasi)momentum p = ~k and spin
quantum number σ = ±1 ≡↑, ↓, whereas the position representation is expressed by the corre-
sponding set of Wannier states {wiσ(r)}. These two representations are equivalent in the sense
that they are related by the lattice Fourier transformation. However, in the situation depicted in
Fig. 1, when we have a sharp boundary (usually first-order phase-transition line) between the
states shown in (a) and (b), this equivalence is broken and, in effect, the unitary symmetry U(N )
does not apply. The macroscopic state (a) near the transition is represented, strictly speaking, by
a modified Landau-Fermi liquid (the so-called almost localized Fermi liquid, ALFL), whereas
the Mott-insulating state is well accounted for as a localized-spin (Heisenberg) antiferromagnet.
From the above qualitative picture one can infer that with approaching the metal → insu-
lator boundary, i.e., with the formation of a localized-spin state, the kinetic energy of the
renormalized-by-interaction particle progressive motion throughout the system is drastically
reduced and, as a result, it reduces to zero in the localized (insulating) state. Effectively, one
can say that then the Landau quasiparticle effective mass m∗ →∞. This feature illustrates the
situation that strong enough interactions (called in this context strong correlations) limit the sta-
bility of the Landau-Fermi quasiparticle picture, as is exemplified explicitly by the appearance
of the Mott-Hubbard phase transition. Also, a proper quantitative description of the transition
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requires a model with a simultaneous generation of the effective exchange interactions (kinetic
exchange [10] in the one-band case or superexchange in the multi-orbital situation). In the sub-
sequent Sections 2 and 3 we provide a quantitative analysis of these statements. The starting
point of these considerations is the parametrized microscopic Hamiltonian provided below. We
limit our discussion to the Hubbard model as an illustration of the more complicated analysis
of nanophysical systems in Sections 4 and 5.

2.2 Correlated (nano)materials

The following are examples of bulk systems belonging to 1◦ or 2◦

1◦ Mott-Hubbard systems: ((V1 – xCrx)2O3 [7]), NiS2 – xSex [11], organic metals [12];

2◦ Mott (antiferromagnetic) insulators: NiO, CoO, La2CuO4, YBa2Cu3O7 etc., strongly cor-
related metals, high temperature superconductors: La2 – xSrxCuO4, YBa2Cu3O7 –δ, heavy
fermion systems: CeAl3, CeCu2Si2, UBe13, CeCoIn5, etc.

These are the most typical systems and can be regarded as almost localized Fermi-liquids. There
are also systems with quantum phase transitions and non-Landau (non-Fermi) liquid states, but
those are regarded as a separate class as then the quantum fluctuations are as important on the
correlations. Those systems are not tackled in detail here.
At this point we would like to say a few words about the correlated nanosystems. The atomic
(bound) states are localized by definition. The basic question is what happens when we form,
e.g., a nanochain or nanoring. How can such a small system become a nanometal (e.g., a
monoatomic quantum wire), when we vary the interatomic distance? In other words, at what
point does the set of discrete atomic states form a nanoliquid? We address this type of questions
after analyzing first the nature of the delocalization in bulk systems.

2.3 From Landau-Fermi liquid to Mott-Hubbard insulator through an
almost localized Fermi liquid

The Landau theory of Fermi liquids represents a standard reference point in the theory of in-
teracting fermions (for recent references see [13–15]). Here we characterize only briefly their
characteristics, particularly those which appear or are relevant to theory of correlated systems.
The principal assumption of the theory is that we are interested in the changes of ideal-Fermi-
gas-properties, which are induced by the inter-particle interactions and associated with thermal
excitations at low temperatures. In other words, we express the change of the total energy of
the system due to the appearing interaction in the Landau form

δE '
∑
kkkσ

εkkkσ δnkkkσ +
1

2

∑
kkkkkk′

fσσ
′

kkkkkk′ δnkkkσ δnkkk′σ′ ≡
∑
kkkσ

Ekkkσδnkkkσ, (2)

where εkkkσ is the single-particle energy (with respect to the chemical potential µ) and fσσ′

kkkkkk′ (gen-
erally spin-dependent) is the effective interaction between those particles; it has the form of
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spin-dependent density-density interactions. Explicitly, the bare-particle energy in the Zeeman
field Ha is εkkkσ ≡ εkkk − gµBHaσ − µ and in the isotopic liquid (not generally true for fermions
in lattice systems) we have that fσσ′

kkkkkk′ = f skkkkkk′(kkk · kkk′/k2F ) + σσ′fa(kkk · kkk′/k2F ), where kF is the
Fermi wave vector and f s,a express spin-independent and spin-dependent parts, respectively.
The next assumption is that we take into account the interaction-induced scattering processes
for particles at the Fermi surface, i.e, put that kkk · kkk′/k2F = cos θkkkkkk′ and subsequently we can
express the interaction parameters in terms of a Legendre polynomial expansion

f (s,a)(cos θ) =
∞∑
l=0

f
(s,a)
l Pl(cos θ). (3)

There are three basic assumptions in the Landau formulation of the Fermi-liquid theory. First,
the interparticle scattering is important only very near or, strictly speaking, at the Fermi sur-
face due to the Pauli principle, i.e., the circumstance that particles can scatter only from oc-
cupied states |kkkσ〉 into unoccupied ones. Second, a well defined Fermi surface remains in-
tact even if the scattering processes are included (this is the Luttinger theorem proved later
on the grounds of perturbation expansion and assuming validity the Dyson theorem, which
is not always valid for correlated systems). Third, there is a one-to-one correspondence be-
tween the initial (bare energy states, εkkkσ) and the effective (quasiparticle) states with energies
Ekkkσ ≡ εkkkσ + 1

2

∑
kkkkkk′σ′ fσσ

′

kkkkkk′ δnkkk′σ′ . Moreover, the Fermi energy value EF ≡ µ at T = 0 can be
regarded as the reference energy for both the bare- and quasi-particle states. Effectively, this
means that the interaction processes, practically active only at the Fermi surface, do not influ-
ence the Fermi surface volume. Finally, from the third assumption it follows that the statistical
distribution for the quasiparticles can be taken in the form of the Fermi-Dirac distribution for
those states, i.e., f(Ekσ) = [exp (βEkσ) + 1]−1.

The additional ingenious feature of the theory is the circumstance that the principal properties
of a Fermi liquid, such as liquid 3He, can be expressed solely by the first three parameters of
expansion (3): f s0 , f s1 , and fa0 , what makes this theory, even though phenomenological in its
nature, fully testable in its original form, at least for the isotropic quantum liquid 3He. What is
more important, the assumption about the Fermi-Dirac distribution applicability has been tested
on two systems: experimentally, for liquid 3He (cf. Fig. 3ab) and theoretically by considering
the evolution of the statistical distribution function, calculated exactly for model nano-chains
and nano-rings of hydrogen atoms, as a function of interatomic distance [16,17] (see later here).

Nevertheless, as shown in Fig. 3a and b, the effective-mass concept (m∗3) for 3He atoms breaks
down and consequently, the linear specific heat γ ceases to exist at the liquid-solid transition
(cf. Fig. 3b). These effects cannot be accounted for within the Landau-Fermi liquid theory.
We discuss that question next within the Hubbard model by introducing first the concept of an
almost localized Fermi liquid and, as a consequence, a discontinuous delocalization-localization
(metal-insulator) phase transition. These aspects are regarded as the fundamental features of
correlations.
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a) b)

Fig. 3: Principal characteristics of liquid 3He as a Fermi liquid: a) the Fermi-Dirac distribution
measured by neutron scattering at ambient pressure and temperature T = 0.37 K [18]; b) the
linear-specific-heat coefficient γ in units of gas constant R and inferred from it effective atom
mass enhancement m∗3/m3, both as a function of external pressure [19]. The vertical dashed
line marks the liquid-solid transition, regarded in this case as a discontinuous Mott transition
to the localized state of whole atoms. The spin 1/2 is attached to the nuclei for this case of
two-electrons atoms in 1s2 configuration.

2.4 The concept of almost localized Fermi liquid (ALFL)

One can notice from Fig. 3b that the Fermi-liquid state characterized there by the linear specific-
heat coefficient (in units of gas constant R), γ/R and the resulting effective-mass enhancement
m∗3/m3 of the 3He atom in this milieu, both loose their meaning at the liquid-solid transition,
which takes place at the relatively low external pressure ' 36 bar. At this point the atoms
freeze into well-defined crystal positions and their individual quantum mechanical states are
characterized from now on by a set of Wannier functions {w(r · ri)} centered at well-defined
lattice sites {ri}. It must be underlined that in this case there is no external single-particle
potential trapping the particles, as it is the case for electrons in solids. Such a solidification is
regarded thus as an example of a spontaneous breakdown of translational symmetry, albeit in a
discontinuous manner. Our task in this section is to briefly discuss the delocalization states in
the metallic liquid of electrons close to the transition to the localized state, and next, explain its
first-order phase-transition nature.
We model the system by starting from the Hubbard Hamiltonian (4) and calculate first the
system ground-state energy per atomic site 〈H〉/N . The interaction between correlated particles
in the simplest form is given by the single-band Hubbard model [20, 21] with εa = 0 (i.e.,
tii = 0; hence the primed summation in the first term),

H̃ =
∑
ijσ

′
tij â

†
iσ âjσ + U

∑
i

n̂i↑ n̂i↓, (4)

in which tij ≡ 〈wi|H1|wj〉 < 0 represents the single-particle parameter phrased as the hopping
parameter, (and with the bandwidth of bare states W ≡ 2z

∣∣∑
j(i) tij

∣∣,where j(i) means the
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summation over neighboring sites to i), and U is the magnitude of intraatomic interactions
the so-called Hubbard term. For strongly correlated electrons we can rephrase the conditions
1◦ and 2◦. Namely, situations with W ? U or W ' U represent the systems below and at
the Mott-Hubbard transition, respectively, whereas the W � U case represents the strong-
correlation limit 2◦. Note again that the primed summation in (4) excludes the i = j term∑

iσ tijn̂iσ = t0Ne, when the system is transitionally invariant (tii = t0 ∀i); then,Ne =
∑

iσ n̂iσ
is the total number of particles of N atomic sites (n ≡ Ne/N is the so-called band filling). If
we regard that the reference atomic energy of each of the electrons does not change near the
metal-insulator transition (W ' U ), then to N0 can be thought of an irrelevant constant term
(reference energy) and disregarded. This assumption must be revised (see later) as one includes
an ab initio calculations, i.e., when the parameters are also calculated explicitly. But, first we
analyze the situation as a function of U/W for the half-filled (n = 1) situation.
When approaching the localization-delocalization transition we expect that the single-particle
and interaction parts become of comparable amplitude. Due to this circumstance, we as-
sume that the hopping probability 〈â†iσ âjσ〉 is renormalized by the interaction to the form
〈â†iσ âjσ〉 ≡ q〈â†iσ âjσ〉0, where 〈â†iσ âjσ〉0 is the hopping probability for noninteracting (uncor-
related) particles and q is the so-called renormalization (band narrowing) factor: q → 1 when
U → 0 and q → 0 when U → UC , where UC is the critical interaction value for the transition
to the localized state to the take place. Explicitly, we can write down the system internal energy
in the form (for U 6 UC) [22, 23]

EG
N

=
1

N

∑
kkkσ

Ekkk f(Ekkk) + Ud2, (5)

where Ekkk ≡ qεkkk, d2 ≡ 〈n̂i↑ n̂i↓〉, and f(Ekkk) in the Fermi-Dirac function for renormalized
particles regarded still as quasiparticles. In this expression d2 is regarded as a variational pa-
rameter to be calculated self-consistently. Therefore, the whole problem reduces to determining
microscopically q ≡ q(d2). This can be carried out by considering Gutzwiller’s variational
approach [24], but also from physical considerations [25]. It turns out that for the half-filled
(n = 1) state (i.e., with one particle per atomic site) and for systems with electron-hole symme-
try this factor can be calculated in the elementary manner [25] which yields the simple result
q(d2) = 8d2(1−2d2). Additionally, we have that for a constant density of states, the chemical
potential can be set µ ≡ 0 and thus for Ha = 0 we have

ε̄ ≡ 1

N

∑
kkkσ

(Ekkk/q) = −W
4
, (6)

where Ekkk/q ≡ εkkk represents, as before, the single particle energy of bare particles at the tem-
perature T = 0; also, the effective-mass renormalization is m∗ = mB/q, where mB is the bare
band mass.
By minimizing energy (6) with respect to d2 we obtain both the physical ground-state energy and
the quasiparticle energy spectrum {Ekkk}. This in turn, allows us to calculate concrete ground-
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state and thermodynamic properties. Explicitly [23, 26, 27],

d2 =
1

4

(
1− U

UC

)
, (7)

EG
N

=
1

4

(
1− U

UC

)2

ε̄ , (8)

m∗

m0

=
1

1−
(
U
UC

)2 ≡ 1

q0
≡ 1 +

1

3
F s
1 , (9)

γ = γ0
m∗

m0

= γ0
1

q0
≡ γ0

(
1 +

1

3
F s
1

)
, (10)

χ = χ0
1

q0

[
1− ρ0(µ)U · 1+U/2Uc

(1+U/Uc)
2

] ≡ χ0
m0

(m∗) (1 + F 0
a )
, (11)

χ

γ
=
χ0

γ0

1

1− ρ0(µ)U · 1+U/2Uc

(1+U/Uc)
2

, (12)

with UC ≡ 8|ε̄| = 2W (the second value is for constant density of states). Additionally, to
calculate the magnetic susceptibility χ, the full Gutzwiller approach have been used [24]. When
U → UC → 0, d2 → 0, the ground-state energy EG → 0, the effective mass m∗ →∞, and the
magnetic susceptibility to linear specific heat coefficient χ/γ → 4. We see that at the transition,
the interaction (> 0) and the single particle (< 0) parts compensate each other, the mass for
translational motion throughout the system diverges, and the magnetic susceptibility is roughly
proportional to γ. The U = UC point thus represents the dividing line between the itinerant and
atomic states of the matter and the freezing of particles into a lattice breaks the whole system
translational invariance (at least, in liquid 3He case). A full microscopic approach requires the
explicit determination of the parameters U and ε̄ as a function of pressure. Low-temperature
corrections to eq. (7)–(12) have been detailed elsewhere [23, 15]. The expression appearing on
the right of the ≡ sign give the results from Landau theory.
One may say that the picture formed by the expressions (7)–(12) represents, as in any Fermi-
liquid theory, a basic quasiparticle picture, with the additional boundary of its applicability for
U < UC . In fact, this picture can be mapped into the Landau-Fermi-liquid parametrization of
the physical properties at T = 0 [28]. The question remains what are the collective spin- and
charge-excitation spectra in the present case. This subject is a matter of our present studies and
will not be detailed here [29, 30].

2.5 Delocalization-localization (Mott-Hubbard) transition

As has been mentioned in the preceding section, the delocalization-localization transition at
T = 0 takes place at U = UC ≈ W . The question is when this transition will appear at
arbitrary T > 0. This question is a nontrivial one, since near the transition, the renormalized
single-particle and interaction energy not only almost compensate each other, but also each of
the two terms vanishes separately. In such a situation, small perturbations such as the thermal



Mott Physics in Correlated Nanosystems 7.11

Fermi liquid

Critical point

Localized fermions
(spins)

0.8                         0.9                               

0.12

0.11

0.10

0.09

0.08

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Quantum 
critical pointFermi liquid

a) b)

Fig. 4: a) Phase diagram at T 6= 0 for almost localized fermions in the temperature T versus
relative interaction magnitude U/UC plane. Note the presence of two critical points: classical
at T = Tc and quantum at T = 0. This phase diagram does not include the magnetic phases
(see below [22]); b) an analogous phase diagram for nuclear matter [31]. In both cases, the
dashed lines represent extrapolations to the high-temperature regime.

or atomic disorder, applied magnetic field, or even the onset of magnetic order may balance out
two quantum-mechanical contributions towards either insulating (localized) or itinerant (ALFL,
metallic) state. We discuss the effect of nonzero temperature.
Starting from the internal energy (3) we define the free energy functional of the itinerant corre-
lated system [22, 23] as follows

F
N

=
1

N

∑
kkkσ

Ekkk fkkkσ + Ud2 +
kBT

N

∑
kkkσ

(
fkkkσ ln fkkkσ + (1−fkkkσ) ln(1−fkkkσ)

)
, (13)

where fkkkσ is the Fermi-Dirac function for quasiparticles with energies Ekkkσ and the last term
is the entropy in the given, not necessarily, the equilibrium state, which we determine sub-
sequently by minimizing F . This expression allows also for developing the low-temperature
(Sommerfeld-type) expansion defined as the regime with kBT/qW � 1. In effect, the first
non-trivial terms in the paramagnetic state have the form

F
N

= −qW
4

+ Ud2 − γ0T
2

q
+O(T 4). (14)

After a minimizing the functionalF with respect to the d2, we obtain the physical free energyF
of ALFL. A detailed analysis of the low-T expansion is provided in [23], where the Gutzwiller-
Brinkman-Rice approach is generalized to T > 0. Note that the expressions describe the free
energy functional for an almost localized Fermi liquid to be minimized with respect to d2. As
before, we assume that µ ≡ 0, which means that electron-hole symmetry holds. The next step
is to introduce the concept of discontinuous phase transitions in the context of this fermion
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itinerant state instability. We regard the ALFL as a well-defined phase in the thermodynamic
sense and the lattice of localized electrons (spins) as the other. Then, the discontinuous phase
boundary between them is determined from the coexistence condition F = FI , where FI is the
free energy of the insulating state and has a very simple form if the spins are disordered

FI
N

= −kBT ln 2, (15)

where kB ln 2 is the entropy of S = 1/2 spins. From the coexistence condition, we obtain two
transition temperatures

kBT± =
3q0
2π2

W

ln 2±

[
(ln 2)2 − π2

3

(
1− U

UC

)2
/

q0

]1/2 . (16)

The two solutions coalesce at T+ ≡ T− = Tc for U = Ulc, i.e., for the lowest critical value of
the interaction for the transition to take place, which is determined from the condition

Ulc
UC

= 1−
√

3 ln 2

π
. (17)

The corresponding classical critical transition temperature at which the transition takes a con-
tinuous form and at U = Ulc is

kB Tc =
3 ln 2

2π2
W

[
1−

(
Ulc
UC

)2
]
. (18)

For U 6 Ulc the metallic (Fermi liquid) state is stable at all T . In effect, the regime of the tran-
sition accuracy is determined by conditions Ulc 6 U 6 UC . Disregarding the magnetic phases
one then has the following overall phase sequence. For T < T− the system is a paramagnetic
metal (PM). For Ulc < U < UC and T− < T < T+ the system is a paramagnetic insulator
(a lattice of fluctuating spins S=1/2). For T > T+ re-entrant metallic behavior is observed (a
crossover transition). Such a sequence is indeed observed for V2O3 doped with Cr [7] and for
liquid 3He (cf. Figs 2. and 3b). The most important factor is the sequence of transformations
between localized and itinerant (liquid) states of the valence electrons as a function of temper-
ature and interaction, as shown schematically in Fig. 4a. For comparison, an analogous phase
diagram appears for the quark-gluon plasma, this time calculated as a function of the chemical
potential (cf. Fig. 4b).
The physical reason for switching between the states M and I is illustrated in Fig. 5 Namely, at
temperature close to T = 0 the entropy of the disordered localized moments is large (+kB ln 2

per carrier), whereas for the Fermi liquid, it decreases linearly with T to zero. Hence, at T = T−
the entropy part of the free energy for localized particles outweighs that of the Fermi liquid
(ALFL), even though at T = 0, the opposite is true. However, as the temperature is raised,
the Fermi liquid entropy grows and asymptotically at high temperature approaches the value
2kB ln 2 per carrier. Thus, the detailed shape of the phase boundary is determined by the in-
terplay between the competing energy and entropy contributions, as is the case for classical
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-0.1 -

0.10.10

Fig. 5: Temperature dependence of the free energy per particle (F/WN ) in the Fermi-liquid
(parabolas a-d) and in the Mott-Hubbard localized state (straight line e). The crossing points
LM and JK represent, respectively, M → I and I → M’ transitions. In the low-temperature
analysis the I→ M’ transition is weakly discontinuous.

continuous phase transition. In summary, the continuous evolution of the system at T = 0 in
approaching UC from below should be contrasted with the discontinuous nature of the transfor-
mation for T > 0. Thus, the point U = UC for T = 0 is indeed a quantum critical point, at
least within this analysis in which d2 = 〈ni↑ni↓〉 plays the role of the order parameter in the
expression for the Ginzburg-Landau functional (18) for almost localized correlated fermions
and when the antiferromagnetic order is absent.

At the end of this section, we would like to quote our results on metal-insulator transition
including simultaneous presence of antiferromagnetism which with the increasing interaction
magnitude evolves from band (Slater-type, AFS) to the localized spin (Mott, AFI) antiferro-
magnetism. The part of the phase diagram depicted in Fig. 4a appears only above the Néel
temperature, where the antiferromagnetic states (AFS, AFI) cease to exist, here, in a discontin-
uous manner. The situation is shown in Fig. 6. In the inset we quote the experimental results
Fig. 2b obtained for (V1 – xCrx)2O3, with the doping x as the horizontal axis. The agreement is
qualitatively good, which is rewarding since a very simple model was considered. This means
that the inter-particle configurations are the crucial factor to a large extent an independent of the
electronic (band) structure.

The presence of the proposed classical critical point (CP) in Figs. 4a and 6 have been also
beautifully confirmed much later [32]. It has a mean-field character, exactly the type predicted
by our mean-field-like approach [33, 22, 23], which represented the very first realistic attempt
to extend theory of metal-insulator transition of the Mott-Hubbard type at T > 0. Our results
were confirmed much later [34] within the dynamic mean-field approach (DMFT).
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PM

PM’
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TC

Fig. 6: Phase diagram of the type presented in Fig. 4, with inclusion of antiferromagnetic
Slater (AFS) and Mott (AFI) phases. Note that W = UC/2. Inset: experimentally observed [7]
phase diagram in the T -x plane for (V1 – xCrx)2O3. After Ref. [22]. The quantum critical point
appearing in Fig. 4a is wiped out by the presence of antiferromagnetic order.

3 Exact diagonalization – ab initio approach (EDABI) to
correlated systems with simple examples

3.1 The method

The notion of a simultaneous determination of the single-particle wave-function (1st quantiza-
tion aspect), combined with a precise account of inter-particle correlations (2nd quantization
aspect) arose in the author’s thinking about many-particle systems because of the following
circumstances. In the proper particle language in quantum mechanics (2nd quantization repre-
sentation) the physical particle is represented by the field operator Ψ̂σ(r) which has the form

Ψ̂σ(r) ≡
∑

ϕiσ(r) âiσ, (19)

where the set {ϕiσ(r)} represents a complete set of single particle wave-functions (not neces-
sarily orthogonal with the corresponding set of quantum numbers {iσ} (here the spin quantum
number σ = ±1 has been singled out explicitly to underline its fermionic nature (the argument
holds equally well for bosons). The explicit 2nd quantized form of the Hamiltonian is [35]

Ĥ =
∑
σ

∫
d3r Ψ̂ †σ(r)H1(r)Ψ̂σ(r) +

1

2

∑
σσ′

∫
d3r d3r′ Ψ̂ †σ(r)Ψ̂ †σ′(r

′r′r′)V(r− r′r′r′)Ψ̂ †σ′(r
′r′r′)Ψ̂σ(r). (20)

In this expression H1(r) represents the Hamiltonian for a single particle in wave mechanics,
whereas V (r−r′r′r′) is the interaction for a single pair of particles. Ψ̂ †σ(r)Ψσ(r) is the particle
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density operator, whereas Ψ̂ †σ(r) represents creation operator of a physical particle in the system
at point r and with spin σ. This is the reason why we call the 2nd quantization representation
the particle language form of quantum approach.
In the situation when both H1(r) and V (r−r′r′r′) are not explicitly spin independent, the Hamil-
tonian (20) can be brought to the following form

Ĥ =
∑
ijσ

tij â
†
iσ âjσ +

1

2

∑
ijkl
σσ′

Vijkl â
†
iσ â
†
jσ′ âlσ′ âkσ, (21)

where
tij ≡ 〈ϕiσ|H1|ϕjσ〉 and Vijkl = 〈ϕiϕj|V |ϕkϕl〉. (22)

In this situation ϕiσ(r) = ϕi(r)χσ, we have the spin-independent hopping matrix elements
tij , as well as the spinless interaction parameters Vijkl. The dynamical system behavior is deter-
mined by the corresponding operator parts of (21), the matrix elements (22) contain the arbitrary
(expect complete) set of the wave functions.
In canonical modeling of the properties with the help of (21) one takes into account only the
first few terms of the first part of Ĥ1(r) (the hopping part) and the quantities t0=tii , t〈i,j〉 = t

are regarded as parameters of the model. Likewise, one takes only a few dominant terms in
the interaction part and the corresponding Vijkl elements are treated also as free parameters. If
one selects the Wannier basis, i.e., ϕi(r) ≡ wi(r) = w(r−ri), then we can select the hoping
parameters t0, t = t〈i,j〉, and t′′ ≡ t〈〈i,j〉〉, corresponding to the atomic reference energy and
hoping amplitudes of particles between nearest and next-nearest neighbors, respectively.
The parametrized model created in the above way contains, as a rule, an incomplete quantum
mechanical basis, as in general the set {wi(r)} = {win(r)}, where n is the type of atomic orbital
and in effect the multi-orbital (multi-band) system is derived. Hence, the results may depend on
the type of orbital-based model we start with. But even if this general situation is not the case,
the general question is how to determine the wave functions contained in the matrix elements
(22)? One way is to start from a set of orthogonalized atomic orbitals, e.g., hydrogen-like Slater
orbitals, as we discuss it below. However, the question still remains, particularly if the selected
basis is not complete, whether such a basis should not be optimized in some way. This question
is of crucial importance in the case of correlated systems when the two terms in (21) provide
contributions of the same magnitude (see the preceding section). In particular, in the limit of
strong correlations the interaction part even dominates over the single-particle contribution.
In such a situation our proposal now is as follows. Because of the interaction predominance we
first diagonalize the parametrized Hamiltonian (21) in the Fock space and only subsequently
minimize the ground state energy E ≡ 〈Ĥ〉/N obtained in such a manner with respect to iσ.
We developed the whole EDABI method for the Wannier functions {wi} by treating this energy
as a functional of {ϕiσ}. In other words, we determine the single-particle renormalized wave-
functions, now adjusted in the correlated state, by solving the effective wave equation obtained
from the variational principle for the functional of the form

E{wi(r)} ≡ EG{wi(r)} − µN −
∑
i>j

λij

(∫
d3rw∗i (r)wj(r)− δij

)
, (23)
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where
N =

∑
σ

∫
d3r
〈
Ψ̂ †σ(r)Ψ̂σ(r)

〉
=
∑
ijσ

∫
d3rw∗i (r)wj(r)

〈
â†iσâjσ

〉
, (24)

and Ne = N is the number of particles in the system, whereas λij are the Lagrange multipliers,
to keep the single-particle basis orthonormal.
The general form of this equation in the stationary case and in the ground-ensemble formalism is

δ(EG − µN)

δw∗i (r)
−∇δ(EG − µN)

δ(∇w∗i (r))
−
∑
i>j

λij wj(r) = 0. (25)

We make a fundamental postulate concerning this equation: As this equation does not contain
explicitly the (anti)commutation relations between the creation and operators, it is equally valid
for both fermions and bosons and determines a rigorous, within the class of the states included
in the definition of Ψ̂σ(r), the renormalized wave equation for a single-particle wavefunction in
the ground state, in the milieu of remaining (N−1) particles.
In this expressions the Lagrange multipliers λij plays the role of single-particle energy in the
correlated state. Note also that the variational derivatives are taken also with respect to the
averages

〈
â†iσâjσ

〉
and

〈
â†iσâ

†
jσ′ âlσ′ âkσ

〉
, so is not just the optimization of parameters tij and

Vijkl. Parenthetically, the same type of formal wave-function determination (together with its
normalization) has been proposed by Schrödinger in his pioneering work on wave mechanics
(Schrödinger, 1926). Also, the optimized quantity is the system energy, not the Lagrangian,
which represents the classical system Hamiltonian (its expectation value).
Finally, a general N -particles state |ΦN〉 in the Fock space can be defined through the corre-
sponding N -particle wavefunction Ψα(r1, . . . , rN) in the Hilbert space as [36]

|ΦN〉 =
1√
N !

∫
d3r1 . . . rN ΨN(r1, . . . , rN) Ψ̂ †σ1(r1) · · · Ψ̂ †σN rN)|0〉, (26)

where |0〉 is the vacuum state. One can reverse this relation and a simple algebra yields the
following expression for the wavefunction Ψα(r1, . . . , rN) in the terms of |ΦN〉

Ψα(r1, . . . , rN) =
1√
N !
〈0|Ψ̂σ1(r1) · · · Ψ̂σN (rN)|ΦN〉, (27)

with α ≡ {σ1, . . . , σN}. In other words, to obtain the wavefunction in the coordinate repre-
sentation, we not only annihilate N particles from the Fock state |ΦN〉, but also project out the
thus obtained result onto the Fock vacuum state and normalize it by the factor (N !)−1/2. Usu-
ally, the formula (27) is not used; as we proceed from the first to second quantization. Now, the
crucial point is based on the observation that if we substitute in the field operator Ψ̂(r) the renor-
malized wavefunctions obtained from equation (24), then we should automatically obtain the
renormalized field operator and, as a consequence, the renormalized multiparticle wavefunction
Ψα(r1, . . . , rN) from relation (27). This last step of inserting the renormalized field operator
completes the procedure of a formal treatment of the many-particle system, which avoids writ-
ing down explicitly theN -particle Schrödinger equation. The approach is summarized in Fig. 7.
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Fig. 7: Flowchart describing the scheme of the EDABI method. For details see main text. When
selecting the single-particle set, the top-most block should be disregarded. The renormalized
many-particle wave function Ψ ren0 (r1, . . . , rN) is explicitly constructed for few-particle systems
in the next section.

This scheme provides an exact renormalized single-particle wavefunction from equation (24)
and the exact N -particle wavefunction, provided we have diagonalized the second-quantized
model Hamiltonian for the problem at hand.

3.1.1 Supplement: Finite basis approximation from the field operator:
difference with the multiconfiguration interaction (MCI) approach

The field operator Ψ̂(r) defined in terms of the sum over a complete basis {wi(r)} contains
an infinite number of single-particle states. We assume that, in general, we represent the field
operator by M wavefunctions {wi(r)}. Explicitly,

Ψ̂(r) ≡
∞∑
i=1

wi(r) âi '
M∑
i=1

wi(r) âi, (28)

with i representing a complete set of quantum numbers and M being a finite number. This ap-
proximation represents one of the most fundamental features of constructing theoretical models.
The neglected states usually represent highly exited (and thus negligible) states of the system.
We can then write the approximate N -particle wavefunction (N 6M ) in the following manner

Ψα(r1, . . . , rn) =
1√
N !

M∑
i1,...,iN=1

〈0|âiN . . . âi1|ΦN〉wi1(r1) . . . wiN (rN) (29)

Recognizing that within the occupation-number space spanned on the states {|ik〉}k=1...M we
have the N -particle state in the Fock space of the form

|ΦN〉 =
1√
N !

M∑
j1,...,jN=1

Cj1...jN â
†
j1
. . . â†jN |0〉, (30)
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where Cj1...jN represents the coefficients of the expansion to be determined from a diagonaliza-
tion procedure. Substituting (30) into (29) we obtain

Ψα(r1 . . . , rn) =
1√
N !

M∑
i1,...,iN=1

M∑
j1,...,jN=1

〈0|âi1 . . . âiN â
†
j1
. . . â†jN |0〉Cj1...jNwi1(r1) . . . wiN (rN).

(31)
The expression provides N ! nonzero terms each equal to (−1)P , where P represents the sign of
the permutation of quantum numbers (j1 . . . jN ) with respect to a selected collection (i1 . . . iN ).
In other words, we can write that

Ψα(r1 . . . , rn) =
1√
N !

M∑
i1,...,iN=1

Ci1...iN (A, S)wi1(r1) . . . wiN (rN). (32)

We have the same expansion coefficients for both the wavefunction in the Fock space |ΦN〉
and that in the Hilbert space Ψα(r1, . . . , rn)! Therefore, the above expression represents the
multiconfigurational-interaction wavefunction of N particles distributed among M states with
the corresponding weights Ci1...iN for each configuration, and (A, S) represents respectively
the antisymmetrization (Slater determinant) or the symmetrization (simple product function
wi1(r1) . . . wiN (rN) for the fermions and bosons, respectively. Whereas the MCI used in quan-
tum chemistry [...] is based on variational optimizations of the coefficients Ci1...iN , here the
coefficients C are determined from diagonalization in the Fock space, spanned by M states in
Hilbert space. The presence of wave equation (24) thus supplements the usual MCI approach.
Next, we discuss selected elementary examples from atomic and molecular physics before turn-
ing to modeling extended correlated systems.

3.2 Elementary examples from atomic physics

One of the principal attractive features of EDABI method is the ability to construct atomic or-
bitals with a precise account for inter-electronic interactions. Here this program is illustrated on
example of lightest atomic systems, as well as by an elementary example of the wave equation
for renormalized wave functions.

3.2.1 A didactic example: He and Li atom

We start by selecting as {wi(r)} just two 1s-type Slater orbitals for the He atom Φσ(r) =

(α3/π)1/2 exp(−αr)χσ, where α is the effective inverse radius of the states. In other words, the
simplest trial field operator is of the form

Φ̂(r) = Φ↑(r)â↑ + Φ↓(r)â↓, (33)

where aσ is the annihilation operator of particle in the state Φσ(r). The Hamiltonian in second
quantization for this two-element basis has then the form

H = εa(n̂↑ + n̂↓) + Un̂↑n̂↓, (34)
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where n̂σ = â†σâσ, whereas
εa = 〈Φσ|H1|Φσ〉, (35)

and
U = 〈ΦσΦσ|V |ΦσΦσ〉 (36)

are the matrix elements of the single-particle part defined as

H1 = − ~2

2m
∇2

1 −
~2

2m
∇2

2 −
2e2

κ0r1
− 2e2

κ0r2

a.u.≡ −∇2
1 −∇2

2 −
4

r1
− 4

r2
(37)

and of the Coulomb interaction

V =
e2

κ0 |r1−r2|
a.u.≡ 2

|r1−r2|
, (38)

with the corresponding definitions in atomic units after the second equality sign. The only
eigenvalue of (34) is obtained for the state â†↑â

†
↓|0〉 and is E = 2εa + U . This total energy

is then minimized with respect to α to obtain the well-known Bethe and Salpeter variational
estimate of both α and the ground state energy EG, as discussed before. However, we may look
at the problem differently. The true wavefunction is obtained from the Euler equation for the
functional E = E{Ψσ} under the proviso that the wave function is normalized. This means that
we minimize the functional

E{Φσ(r)} =
∑
σ

∫
d3rΦ∗σ(r)H1(r)Φσ(r) +

1

2

∑
σ

∫
d3rd3r′|Φσ(r)|2V12(r− r′)|Φσ(r)|2. (39)

In effect, the renormalized wave equation takes the form of the unrestricted Hartree equations
for Φσ(r) (

∇2 − 2e2

κ0r

)
Φσ(r) + Φσ(r)

∫
d2r′

e2

κ0|r−r′|
|Φσ(r′)|2 = λΦσ(r). (40)

Thus, we can see that taking in the simplest case just two spin 1s-type orbitals we obtain either
the well-known Bethe-Salpeter variational estimate for α and EG for He atom: α = 27/(16a0)

and EG = −5.695 Ry, where a0 ' 0.53 Å is the 1s Bohr orbit radius. We see that the He atom
is the smallest in the Universe!
The proposed expression (33) for the field operator is the simplest one, but it leads to nontrivial
results even though the trial atomic basis {Φσ(r)} is far from being complete in the quantum-
mechanical sense. However, we can improve systematically on the basis by selecting a richer
basis than that in (33). The further step in this direction is discussed next. Namely, we can
expand the field operator in the basis involving the higher order irreducible representations of
the rotation group with n=2, which in the variational scheme involve including, apart from the
Ψ1s(r) orbital, also the higher Ψ2s(r) and Ψ2pm(r) orbitals, with m = ±1, 0 (i.e., the next shell);
all of them involving the adjustment of the corresponding orbital characteristics αi, i = 1s, 2s

and 2pm. The field operator is then

Ψ̂(r)=
∑
σ

(
w1s(r)χ1σâ1σ +w2s(r)χ2σâ2σ +

+1∑
m=−1

w2pm(r)χmσâ2pmσ

)
≡
∑
iσ

wi(r)χiσâiσ, (41)
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Table 1: Optimized Bohr-orbit radii ai = α−1i of 1s, 2s, and 2p orbitals (in units of a0), the
overlap S between renormalized 1s and 2s states, and the ground state energy for the lightest
atoms and ions (five Slater orbitals taken).

a1s a2s a2p S EG (Ry)
H 1 2 2 0 -1
H– 0.9696 1.6485 1.017 -0.1 -1.0487
He 0.4274 0.5731 0.4068 -0.272 -5.79404
He– 1.831 1.1416 0.4354 -0.781 -5.10058
Li 0.3725 1.066 0.2521 0.15 -14.8334
Be+ 0.2708 0.683 0.1829 0.109 -28.5286

where the wi(r) are orthogonalized orbitals obtained from the nonorthogonal atomic1 basis
{Ψi(r)} in a standard manner. The Fock space spanned by 2+2+6=10 trial spin orbitals con-
tains D=

(
2M
Ne

)
dimensions, where M=5 and N=Ne=2, 3 is the number of electrons for He and

Li, respectively. This means that D=45 and 120 in those two cases and we have to diagonalize
the Hamiltonian matrices of that size to determine the ground and the lowest excited states.

One should note that we construct and subsequently diagonalize the 〈i|Ĥ|j〉 matrix in the Fock
space for (fixed) parameters εa, tij , and Vkl. After the diagonalization has been carried out, we
readjust the wave function and start the whole procedure again until the absolute minimum is
reached (cf. Fig. 7).

By diagonalizing the corresponding Hamiltonian matrices and subsequently, minimizing the
lowest eigenvalue with respect to the parameters αi – the inverse radial extensions of the cor-
responding wave functions, we obtain the results presented in Table 1 (the values a2pm are all
equal within the numerical accuracy ∼ 10−6). For example, the ground state energy of He is
EG = −5.794 Ry, which is close to the accepted “exact” value −5.8074 Ry, given the simplic-
ity of our approach. Further improvement is feasible by either including the n=3 states or by
resorting to a Gaussian trial basis. These are not analyzed here.

First, we can represent the ground-state two-particle spin-singlet wavefunction for the He atom
taking Ψ̂(r) in the form (41), which has the following form [37]

|ΨHe
0 〉 '

(
− 0.799211 â†1s↓â

†
1s↑ + 0.411751 â†1s↓â

†
2s↑ − 0.411751 â†1s↑â

†
2s↓ (42)

− 0.135451 a†2s↓â
†
2s↑ + 0.0357708 â†2p0↓â

†
2p0↑ + 0.0357641 â†2p1↓â

†
2p−1↑

− 0.0357641 â†2p1↑â
†
2p−1↓

)
|0〉.

1Note that the atomic orbitals 1s and 2s are not orthogonal to each other for arbitrary values of their spatial
extents 1/αi. The 2p orbitals are orthogonal to each other and to s orbitals, since they contain a nontrivial angular
dependence expressed via spherical harmonics Y m

l (θ, ϕ).
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Similarly, the Sz = +1/2 state for Li atom is of the form

|ΨLi0 〉 '
(

0.997499 â†1s↓â
†
1s↑â

†
2s↑ − 0.0570249 â†1s↑â

†
2s↓â

†
2s↑ (43)

+ 0.0039591 â†1s↑â
†
2p0↓â

†
2p0↑ + 0.00395902 â†1s↑â

†
2p1↓â

†
2p−1↑

− 0.00395894 â†1s↑â
†
2p1↑â

†
2p−1↓ − 0.023783 â†2s↑â

†
2p0↓â

†
2p0↑

− 0.0237806 â†2s↑â
†
2p1↓â

†
2p−1↑ + 0.0237806 â†2s↑â

†
2p1↑â

†
2p−1↓

)
|0〉.

We see that the probability of encountering the configuration 1s2 in He is less than 2/3, whereas
the corresponding configuration 1s22s for Li almost coincides with that for the hydrogen-like
picture. The reason for the difference is that the overlap integral between 1s and 2s states
S = 〈1s|2s〉 in the former case is large and the virtual transitions 1s 
 2s do not involve a
substantial change of the Coulomb energy. Those wave functions can be used to evaluate any
ground-state characteristic by calculating 〈ΨG|Ô|ΨG〉 for Ô represented in the 2nd quantized
form. For example, the atom dipole moment operator is d̂ = e

∫
d3r Ψ̂ †(r)x Ψ̂(r), etc.

The second feature is connected with determination of the microscopic parameters Vijkl in our
Hamiltonian, since their knowledge is crucial for atomic cluster calculations, as well as the
determination of physical properties of extended systems as a function of the lattice parameter.
Namely, we can rewrite the Hamiltonian for the case of a single atom within the basis (41) as

H =
∑
iσ

εin̂iσ + t
∑
σ

(
â†2σâ1σ + â†1σâ2σ

)
+

5∑
i=1

Uin̂i↑n̂i↓ +
1

2

∑
i6=j

Kijn̂in̂j

−1

2

∑
i6=j

Jij

(
Si · Sj −

1

2
n̂in̂j

)
+
∑
i6=j

Jij â
†
i↑â
†
i↓âj↓âj↑ +

∑
i6=jσ

Vijn̂iσâ
†
iσâjσ.

(44)

t is the hopping integral between 1s and 2s states, Ui are the intraorbital Coulomb interactions,
Kij are their interorbital correspondents, Vij is the so-called correlated hopping integral, and
Jij is the direct exchange integral, for states i and j = 1, . . . , 5. The principal parameters for
the atoms and selected ions are provided in Table 2. We can draw the following interpretation
from this analysis. The calculated energy difference ∆E for He between the ground-state sin-
glet and the first excited triplet is −2.3707 − (−5.794) ' 3.423 Ry (the singlet 1s↑2s↓ is still
1 Ry higher). The corresponding energy of the Coulomb interaction in the 1s2 configuration is
U1 = 3.278 Ry, a value comparable to ∆E. Additionally, the Coulomb interaction in 1s↑2s↓
state is ≈ 1.5 Ry, a substantially lower value. The relative energetics tells us why we have a
substantial admixture of the excited 1s↑2s↓ state to the singlet 1s2. In other words, a substan-
tial Coulomb interaction ruins the hydrogen-like scheme, although the actual values could be
improved further by enriching the trial basis.

One may ask how the renormalized wave equation would look in the present situation. The
answer to this question is already not brief for the basis containing M=5 starting states {wi(r)}
and will not be tackled here.
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Table 2: Microscopic parameters (in Ry) of the selected atoms and ions all quantities are
calculated for the orthogonalized atomic states. t is the 1s-2s hopping magnitude, Ui is the
intraorbital Coulomb interaction (i = 1s(1), 2s(2),m = 0(3), and m = ±1(p)), whereas Kij

and Jij are the interorbital Coulomb and exchange interaction parameters.

t U1 U2 U3 Up K12 K13 K23 J12 J13 J23
H− 0.057 1.333 0.369 0.77 0.728 0.519 0.878 0.457 0.061 0.138 0.035
He 1.186 3.278 1.086 1.924 1.821 1.527 2.192 1.289 0.212 0.348 0.115
He− -1.1414 1.232 0.764 1.798 1.701 0.929 1.421 1.041 0.269 0.28 0.102
Li -0.654 3.267 0.533 3.105 2.938 0.749 3.021 0.743 0.06 0.606 0.014
Be+ -0.929 4.509 0.869 4.279 4.049 1.191 4.168 1.175 0.105 0.837 0.025

3.3 H2 molecule and H2
– ion

In this Subsection we consider H2 molecule. For the illustration of the method we have plotted
in Fig. 8 the level scheme for the H2 and H2

– systems. We consider first the situation with only
one 1s-like orbital per atom. For H2 we have

(
4
2

)
= 6 two-particle states. For that purpose, we

start with the parametrized Hamiltonian (44), where subscripts i and j label now the two atomic
sites and hence U1 = U2 = U, K12 = K, J12 = J, V12 = V, and ε1 = ε2 = εa. Note that the
Hamiltonian (44) in the two-site (H2) case contains all possible intersite interactions.
The lowest eigenstate for H2 is the spin-singlet state

EG ≡ λ5 = 2εa +
1

2
(U+K) + J − 1

2

(
(U−K)2 + 16(t+V )2

)1/2
, (45)

and the corresponding singlet ground state in the Fock space has the form

|G〉 =
1√

2D(D−U+K)

(
4(t+V )√

2

(
â†1↑â

†
2↓ − â

†
1↓â
†
2↑
)
− (D−U+K)√

2

(
â†1↑â

†
2↓ + â†1↓â

†
2↑
))
|0〉,

(46)
where

D ≡
(
(U−K)2 + 16(t+V )2

)1/2
.

The lowest spin-singlet eigenstate has an admixture of the ionic state
(
â†1↑â

†
2↓ + â†1↓â

†
2↑
)
/
√

2.
Therefore, to see the difference with either the Hartree-Fock or Heitler-London approach to
H2 is that we construct the two-particle wavefunction for the ground state according to the
prescription

Φ0(r1, r2) ≡
1√
2
〈0|Ψ̂(r1)Ψ̂(r2)|G〉. (47)

Taking Ψ̂(r) =
∑2

i=1

∑↓
σ=↑ Φi(r)χσ(r), we obtain that

Φ0(r1, r2) =
2(t+V )√

2D(D−U+K)
Φc(r1, r2)−

1

2

√
D−U+K

2D
Φi(r1, r2), (48)

where the covalent part is

Φc(r1, r2) =
(
w1(r1)w2(r2) + w1(r2)w2(r1)

)(
χ↑(r1)χ↓(r2)− χ↓(r1)χ↑(r2)

)
, (49)
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Fig. 8: Level scheme of the H2 ground state and the lowest H2
– states as a function of the

interatomic distance R.

whereas the ionic part takes the form

Φi(r1, r2) =
(
w1(r1)w1(r2) + w2(r1)w2(r2)

)(
χ↑(r1)χ↓(r2)− χ↓(r1)χ↑(r2)

)
. (50)

The ratio of the coefficients before Φc(r1, r2) and Φi(r1, r2) can be termed as the many-body
covalency γmb. This value should be distinguished from the usual single-particle covalency γ
appearing in the definition of the orthogonalized atomic orbital wi(r)

wi(r) = β
(
Φi(r)− γΦj(r)

)
, (51)

with j 6= i. The two quantities are drawn in Fig. 9. The many-body covalency γmb represents a
true degree of multiparticle configurational mixing.
In Table 3 we list the energies and the values of the microscopic parameters for H2 system with
optimized orbitals. One should notice a drastic difference for the so-called correlated hopping
matrix element V in the two cases. The same holds true for the direct exchange integral J
(ferromagnetic). This exchange integral is always decisively smaller than that for the antiferro-
magnetic kinetic exchange, Jkex ≡ 4(t+V )2/(U−K).

3.3.1 Hydrogen clusters HN

As the next application we consider hydrogen-cluster HN systems. We take the atomic-like 1s

orbitals {Φi(r)} of an adjustable size a ≡ α−1, composing the orthogonalized atomic (Wannier)
functions {wi(r)}i=1,...,N . The cluster of N atoms with N electrons contains

(
2N
N

)
states and the

second-quantized Hamiltonian is of the form (44), with three- and four-site terms added. The
three- and four-site interaction terms are difficult to calculate in the Slater basis (see below).
Therefore, we have made an ansatz [38] namely, we impose the condition on the trial Wannier
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Fig. 9: The single-particle (γ) and many-body (γmb) covalency factors for the H2 wave func-
tions. For details see main text. Note that the many-body covalency is stronger than its single-
particle correspondent (orbital mixing).

function that the three- and four-site matrix elements Vijkl vanish. This allows for an explicit
expression of the three- and four-site matrix elements V ′ijkl in the atomic representation via the
corresponding one- and two-site elements. In Fig. 10 we present the results for the ground- and
excited-states energies for the square configuration, N = 4 atoms. The states are grouped into
manifolds, which are characterized by the number, 0, 1, and 2, of double occupancies, appearing
in the system. The horizontal lines mark the ground state, states with one and two double
electron occupancies in the atomic limit (i.e., for large interatomic distance). The manifolds
thus correspond to the Hubbard subbands introduced for strongly correlated solids [21]. As
far as we are aware of, our results are the first manifestation of the energy manifold evolution
into well separated subbands with the increasing interatomic distance. The first two subbands
correspond to HOMO and LUMO levels determined in quantum-chemical calculations. In.
Fig. 11 we draw the renormalized Wannier function profiles for the N = 6 atoms. Note the
small negative values on the nearest-neighbor sites to assure the orthogonality of the functions
centered on different sites. In the same manner, the electron density profiles can be obtained as
a function of intraatomic distances.

On these examples one can see that both the ab initio electronic-structure calculations can be
carried out with a simultaneous precise evaluation of microscopic parameters characterizing the
particle dynamics and interactions between them. No double counting of the interaction appears
at all in either aspect of the calculations. The accuracy of calculating the atomic or molecular
structure in the ground state can be reached with accuracy of the order of 1% relatively easy.
In the next two sections extend the method to characterize the Mott physics in nanoscopic one-
and two-dimensional systems.
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Table 3: Ground-state energy and microscopic parameters (in Ry) for H2. The last column rep-
resents the kinetic-exchange integral characterizing the intersite antiferromagnetic exchange.

R/a EG/N εa t U K V [mRy] J [mRy] 4(t+V )2

U−K [mRy]
1.0 -1.0937 -1.6555 -1.1719 1.8582 1.1334 -13.5502 26.2545 7755.52
1.5 -1.1472 -1.7528 -0.6784 1.6265 0.9331 -11.6875 21.2529 2747.41
2.0 -1.1177 -1.722 -0.4274 1.4747 0.7925 -11.5774 16.9218 1130.19
2.5 -1.0787 -1.6598 -0.2833 1.3769 0.6887 -12.0544 13.1498 507.209
3.0 -1.0469 -1.5947 -0.1932 1.3171 0.6077 -12.594 9.8153 238.939
3.5 -1.0254 -1.5347 -0.1333 1.2835 0.5414 -12.8122 6.9224 115.143
4.0 -1.0127 -1.4816 -0.0919 1.2663 0.4854 -12.441 4.5736 55.8193
4.5 -1.006 -1.4355 -0.0629 1.2579 0.4377 -11.4414 2.8367 26.9722
5.0 -1.0028 -1.3957 -0.0426 1.2539 0.3970 -9.9894 1.6652 12.9352
5.5 -1.0012 -1.3616 -0.0286 1.2519 0.3623 -8.3378 0.9334 6.1455
6.0 -1.0005 -1.3324 -0.01905 1.251 0.3327 -6.7029 0.5033 2.8902
6.5 -1.00024 -1.3073 -0.0126 1.2505 0.3075 -5.2242 0.2626 1.3452
7.0 -1.0001 -1.2855 -0.0083 1.2503 0.2856 -3.9685 0.1333 0.6197
7.5 -1.00004 -1.2666 -0.0054 1.2501 0.2666 -2.9509 0.066 0.2826
8.0 -1.00002 -1.25 -0.0035 1.25006 0.25 -2.1551 0.032 0.1277
8.5 -1.00001 -1.2353 -0.0023 1.25003 0.2353 -1.5501 0.01523 0.0572
9.0 -1. -1.2222 -0.0015 1.25001 0.2222 -1.1005 0.0071 0.0254
9.5 -1. -1.2105 -0.0009 1.25001 0.2105 -0.7725 0.0033 0.0112

10.0 -1. -1.2 -0.0006 1.25 0.2 -0.5371 0.0015 0.0049

4 Mott-Hubbard physics for nanochains:
Exact analysis with EDABI

Here we analyze the electronic system properties for a system composed of N = 6÷ 14 hydro-
gen atoms in a linear chain or a ring and draw some universal conclusions about “the Mottness”.
We start with a bit simplified Hamiltonian, but containing the same principal physics. Namely,

Ĥ = εa
∑
iσ

n̂i + t
∑
iσ

(
â†iσ âiσ +H.c.

)
+U

∑
i

n̂i↑ n̂i↓+
∑
i<j

Kijn̂i n̂i +
∑
i<j

Vion(rj−ri). (52)

The first term represents the atomic energy (we include it explicitly, since εa changes with the
varying lattice constant). The second describes the kinetic energy of the system with nearest-
neighbor hopping t. Next two terms express the intra- and interatomic Coulomb interaction.
The last term is the Coulomb repulsion between the ions located at positions {ri}, included for
the same reasons as the atomic energy εa. Vion is the proton-proton classical repulsion term.
Here we recall only the definitions of single- and two-particle parameters tij and Vijkl, which
are

εa = tii = 〈wi|T |wi〉, t = ti,i+1 = 〈wi|T |wi+1〉, (53)

and
U = Viiii = 〈wiwi|V |wiwi〉 , Kij = Vijij = 〈wiwj|V |wiwj〉 . (54)
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Fig. 10: Ground- and excited-states energies for the H4 square configuration as a function of the
interatomic distance. The position of subsequent Hubbard subbands (distant by U ) are marked.
The lowest two are HOMO-LUMO split energy levels.

The operator T represents the full single-particle lattice potential, i.e.,

T (r) = − ~2

2m
∇2 −

∑
j

e2

|r−rj|
a.u.
= −∇2 −

∑
j

2

|r−rj|
, (55)

where a.u. means the expression in atomic units. V = e2/|r1−r2| is the usual Coulomb potential
(we do not include any screening by, e.g., core electrons as we want to discuss the model
situation, but in a rigorous manner). Analogously, the Coulomb repulsion between ions is
Vion = V (r1−r2).
The interatomic Coulomb term in the Hamiltonian can be represented as∑

i<j

Kijninj =
∑
i<j

Kij(ni−1)(nj−1)−
∑
i<j

Kij + 2Ne
1

N

∑
i<j

Kij

= HK +Ne
1

N

∑
i<j

Kij + (Ne−N)
1

N

∑
i<j

Kij,
(56)

where we use the relationNe=
∑

i ni and introduce the symbolHK for the longer-range Coulomb
interaction. Substituting (56) into (52) and representing the ionic repulsion in the form∑

i<j

2

Rij

= Ne
1

N

∑
i<j

2

Rij

− (Ne−N)
1

N

∑
i<j

2

Rij
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Fig. 11: Single Wannier function for the H6 configuration for the ground state and at the optimal
interatomic distance. Note the negative values at the nearest neighboring sites, as well as its
anisotropic character due to the 6-fold symmetry.

(in Rydbergs), where Rij = |rj−ri|, we obtain that

H = Neε
eff
a +Ht +HU +HK + (Ne−N)

1

N

∑
i<j

(
Kij −

2

Rij

)
, (57)

where the kinetic energy and intraatomic Coulomb interaction terms are Ht and HU , and the
effective atomic energy is defined (in Ry) as

εeff
a ≡ εa +

1

N

∑
i<j

(
Kij +

2

Rij

)
. (58)

The effective atomic energy contains the electron attraction to the ions, as well as the mean-field
part of their repulsion (Kij), and the ion-ion interaction. Such a definition preserves correctly
the atomic limit, when the distant atoms should be regarded as neutral objects. In practice, the
above form is calculated numerically with the help of Richardson extrapolation for N → ∞.
One can find it converges exponentially with N , whereas bare εa is divergent harmonically, due
to ∼ 1/r Coulomb wells in the single-particle potential (55).
The last term in the Hamiltonian (57) vanishes for the half-filled band caseNe = N . It also does
not affect the system charge gap (as it depends linearly on Ne), and the correlation functions
away from half filling. Therefore, we can write down the system Hamiltonian in the more
compact form

H = εeff
a

∑
i

ni + t
∑
iσ

(
a†iσai+1σ + H.c.

)
+ U

∑
i

ni↑ni↓ +
∑
i<j

Kijδniδnj, (59)

where δni ≡ ni−1. Thus, all the mean-field Coulomb terms are collected into εeff
a .
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Table 4: Wannier-basis parameters for 1D chain calculated in the Gaussian STO-3G basis,
with adjustable size, as a function of lattice parameter a (a0 is the Bohr radius). The values of
the optimal inverse orbital size αmin are also provided.

a/a0 αmina0 β γ 〈wi|wi+2〉 ∆
1.5 1.363 1.41984 0.32800 0.21689 0.34735
2.0 1.220 1.23731 0.26301 0.10590 0.50525
2.5 1.122 1.14133 0.20965 0.05725 0.63980
3.0 1.062 1.08190 0.16246 0.03089 0.75691
3.5 1.031 1.04394 0.12013 0.01573 0.85349
4.0 1.013 1.02216 0.08568 0.00768 0.92009
4.5 1.007 1.01010 0.05795 0.00343 0.96170
5.0 1.004 1.00429 0.03779 0.00144 0.98327
6.0 1.001 1.00063 0.01451 0.00021 0.99749
7.0 1.000 1.00007 0.00483 2.3·10−5 0.99972
8.0 1.000 1.00001 0.00139 1.9·10−6 0.99998

10.0 1.000 1 7.3·10−5 5.3·10−9 1

In the framework of the tight-binding approximation (TBA) one can postulate Wannier func-
tions in a simple form, which is validated by an exponential drop of Wannier functions. The
orthogonality relation 〈wi|wi±1〉 = 0 and the normalization condition 〈wi|wi〉 = 1 leads to
coefficients of the expansion

γ =
S1

(1+S2) +
√

(1+S2)2 − S1(3S1+S3)
, (60)

and
β =

(
1− 4γS1 + 2γ2(1+S2)

)−1/2
, (61)

where we define the overlap integral of atomic functions Sm = 〈Ψi|Ψi+m〉 (the normalization
S0 = 〈Ψi|Ψi〉 = 1 is assumed). The above expressions are well-defined if the quantity under the
square root of Eq. (60)

∆ ≡ (1+S2)
2 − S1(3S1+S3) > 0, (62)

(cf. Table 4). The actual limit of TBA comes with nonzero overlap integral of Wannier func-
tions, when including the second-neighbor contribution (see Table 4), i.e.,

〈wi|wi+2〉 = β2γ2.

The above non-orthogonality may strongly affect the second neighbor hopping, as a zero-
overlap is crucial for the convergence of hopping integral on a lattice providing the single-
particle potential of the form (55). However, as the only term involving second neighbors in our
Hamiltonian (59) is the interatomic Coulomb repulsion K2, the presented TBA approach seems
sufficient for the purpose (for details see [16]).
We already mentioned, that the atomic energy εa is divergent with the lattice size N and define
the convergent effective quantity εeff

a (58).
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Table 5: Microscopic parameters (in Ry) of the 1D chain, calculated in the Gaussian STO-3G
basis. Corresponding values of the optimal inverse orbital size αmin are provided in Table 4.
The Richardson extrapolation to N →∞ was used.

R/a0 εeff
a t U V [mRy] J [mRy] K1 K2 K3

1.5 0.0997 -0.8309 2.054 -43.93 30.92 1.165 0.667 0.447
2.0 -0.5495 -0.4423 1.733 -23.81 21.06 0.911 0.501 0.334
2.5 -0.7973 -0.2644 1.531 -14.95 15.13 0.750 0.401 0.267
3.0 -0.9015 -0.1708 1.407 -10.99 10.91 0.639 0.334 0.222
3.5 -0.9483 -0.1156 1.335 -9.41 75.6 0.557 0.286 0.191
4.0 -0.9705 -0.0796 1.291 -8.74 4.93 0.493 0.250 0.167
4.5 -0.9815 -0.0549 1.270 -8.10 2.92 0.442 0.222 0.148
5.0 -0.9869 -0.0374 1.258 -7.07 1.57 0.399 0.200 0.133
6.0 -0.9908 -0.01676 1.249 -4.29 0.34 0.333 0.167 0.111
7.0 -0.9915 -0.00710 1.247 -1.96 0.05 0.286 0.146 0.095
8.0 -0.9917 -0.0027 1.247 -0.70 5·10−3 0.250 0.125 0.083

10.0 -0.9917 -2.5·10−3 1.247 -0.05 2·10−5 0.200 0.100 0.067

The values of the model parameters, corresponding to the lattice spacing a/a0 = 1.5 ÷ 10,
are presented in Table 5. The data correspond to the optimal values of the inverse orbital size
αmin as displayed in Table 4. We also provide there the values of the correlated hopping V and
the Heisenberg-exchange integral J to show that one could indeed disregard the corresponding
terms in the Hamiltonian (59).
One can note that the values of t calculated in the Gaussian STO-3G basis (listed in Table 5)
differ from those obtained in the Slater basis by less then 0.5% when using the same values
of the inverse orbital size α. However, the differences grow significantly, if α is optimized
independently for the Slater basis and the three- and four-site terms are not included in the
atomic basis.

4.1 Results

We now consider a nanoscopic linear chain of N = 6 ÷ 14 atoms, each containing a single
valence electron (hydrogen-like atoms), including all long-range Coulomb interactions (3- and
4-site terms are also included in the adjustable Gaussian STO-3G basis).

4.1.1 Crossover from metallic to Mott-Hubbard regime

The Hamiltonian (59) is diagonalized in the Fock space with the help of the Lanczos method.
As the microscopic parameters εeff

a , t, U , and Kij are calculated numerically in the Gaussian
STO-3G basis, the inverse orbital size α of the 1s-like state is subsequently optimized to obtain
the ground state energy EG as a function of the interatomic distance a.
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Their effects on convergence of the results for the ground-state energy EG and the optimal
inverse orbital size αmin are shown in Figure 12 for N = 6 ÷ 10 atoms. These results were
used to extrapolate the value of the variational parameter αmin to larger N to speed up the
computations. Figure 12 illustrates also the Mott-Hubbard localization criterion. Namely, for
the interatomic distance a ≈ 3 a0 the energy of the ideal metallic state (M), determined as

EM
G = εeff

a −
4

π
|t|+ 1

N

∑
i<j

Kij〈δniδnj〉, (63)

where the density correlation function 〈δniδnj〉, taken for the 1D electron-gas on the lattice

〈δniδnj〉 = −2
sin2(π |i−j| /2)

(π |i−j|)2
(64)

(for the half-filled band), crosses over to that representing the Mott insulating state (INS), with

EINS
G = εeff

a . (65)

One usually adds the second-order perturbation correction to the energy of the insulating state
(65) in the well-known form [39]

4t2

U−K1

(
〈Si · Si+1〉 −

1

4

)
, (66)

the Bethe-Ansatz result is 〈Si · Si+1〉−1/4 = − ln 2 for the quantum Heisenberg antiferromag-
net. Here we only compare the two simplest approaches, leading to the energies (63) and (65).
The critical value of a is very close to obtained for the 1s Slater-type orbitals. The validity of
the above Mott-Hubbard criterion for this one-dimensional system is quantitative, as the energy
of the antiferromagnetic (so Slater-type) Hartree-Fock solution (HF) is lower than those of the
paramagnetic M and INS states. Therefore, a detailed verification of this criterion would be
estimating the charge-energy gap and transport properties of this correlated system directly.

4.1.2 Evolution of Fermi-Dirac distribution into continuous spread of localized states

We consider now on the principal and exact results for model linear chains of hydrogen atoms.
Those results can be viewed as concerning quantum monoatomic nano-wires composed of el-
ements with one valence electron, and the inner-shell electrons treated as part of ionic case.
Before presenting the physical properties we characterize briefly the methodology of our ap-
proach. First, the single-particle basis is selected in such a way that each of the starting atomic
wave function (Slater orbital) is composed of three Gaussians STO-3G of adjustable size. Out
of them one constructs the Wannier basis with the help of which we determine the trial values
of the microscopic parameters of Hamiltonian (59). Second, in accordance with the scheme
presented in Fig. 7, we diagonalize the Hamiltonian in the Fock space for N 6 14 atoms us-
ing the Lanczos algorithm. At the end, we optimize the orbital size α−1 and thus the results
can be presented as a function of interatomic distance, which mimics the gradual transforma-
tion of collective (itinerant) states at small distances into a set of atomic states, emplifying the
Mott-Hubbard insulator.
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Fig. 12: The ground state energy per atom for the linear chain of N = 6 ÷ 10 atoms with
periodic boundary conditions. The Gaussian-type orbitals (STO-3G basis) with their adjustable
inverse size α−1 have been used. The energies of the ideal metallic (M), ideal insulating (INS),
and Hartree-Fock (HF) solutions for an infinite system are shown for comparison. The inset
provides the optimal inverse orbital size αmin.

Few words about the modified boundary conditions should be added. We take periodic condi-
tions for the systems with N = 4n+2 atoms and antiperiodic for N = 4n+4. In the case of odd
N the phase is defined with value between the above two cases, where the wavefunction phase
changes ϕ by 2π and π, respectively). In Fig. 13 we present the statistical distribution function
nkσ for N = 6÷ 14 atoms in the chain. This is one of our principal results. The solid state lines
represent a singular polynomial fit [40]

nkσ = nF + A |kF−k|Θ sgn (k−kF ) , (67)

with a non-universal (interaction dependent) exponent Θ ranging from 0.4 (for a = 2a0) to
Θ ' 1.5 for a & 4a0. Also, a finite jump of∆nF is observed at the Fermi momentum providing
a quasi-particle type normalization factor ZkF .
The situation of this nano-Fermi liquid can be characterized equally well a by Tomonaga-
Luttinger-model (TLM) scaling [16] of this nanoliquid as depicted is Fig. 14. In conclusion,
although the two types of fitting procedures work almost equally well, the intermediate charac-
ter of the nanoliquid between the Fermi and T-L limits has the value of its own.
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Fig. 14: Tomonaga-Luttinger-liquid scaling for half-filled nano-chains of N = 6÷14 atoms
with long-range Coulomb interactions: (a) momentum distribution in linear and (b) in log-log
scale: continuous lines represent the fitted singular expansion in powers of ln(π/|kF−k|a).
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Fig. 15: Exemplary electronic structure of electrons in a nanochain of N = 10 (left panel) and
N = 11 (right panel) atoms as a representation of spectral-density-peak positions. The solid
lines represent the Hartree-Fock results, the dashed lines the result for noninteracting electrons.
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Fig. 16: Parity effect on spin ordering: spin-spin correlations for nanochains of N = 10 (a)
and N = 11 (b) atoms. The values of the interatomic distance R are specified in atomic units
(a0 = 0.529 Å).

A direct demonstration of the emerging electronic structure is exemplified in Fig. 15, which
was obtained by calculating from the definition of the spectral density for N=10 (left panel)
and N=11 (right panel). The main novel feature is the splitting accusing at the nominal Fermi-
momentum points. The solid line is the calculated electronic structure in the Hartree-Fock ap-
proximation and the dashed line is the band structure for noninteracting electrons with t values
obtained from EDABI. The striking feature of this electronic structure is the splitting occurring
at kF=±π/a signaling the onset of the antiferromagnetic superstructure appearing even for this
very small system in the ground state. An explanation of this surprising feature emerges directly
from the calculation of the spin-spin correlation function 〈SSSi ·SSSj〉, as illustrated in Fig. 16. We
see that the correlations persist throughout the whole system length. In such circumstance the
system behaves as if it possessed a long-range order, a truly collective behavior of a system with
Ne∼10 electrons, but with long-range interaction (Coulomb interaction) included.
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Fig. 17: Schematic representation of stacked verticallyH2 molecular 2D layer forming a square
lattice. The bond length and the intermolecular distance are marked by R and a, respectively.
There are eight atoms in the supercell (dark blue spheres). The supercell is repeated period-
ically to conform periodic boundary conditions (PBC). Shaded spheres indicate atoms which
are continuations resulting from the PBC implementation. The indices α, β distinguish the
component atoms of each molecule.

5 Recent developments

Here we would like to mention an application of the EDABI method to the problem of metal-
lization of molecular hydrogen. First, the insulator-metal transition (hydrogen metallization of
the insulating molecular hydrogen into metal) is a discontinuous transition from a diamagnet
into a paramagnet, so this transition should be describable in our local language. Second, we
have extended the cluster EDABI analysis to a bulk system, both in one- and two-dimensions.
Here we present only the results for the latter situation.

In Fig. 17 we the present schematically the H2 molecules stacked vertically and forming a
square lattice, which is divided into super-cells specified explicitly there. The extent Hubbard
Hamiltonian of a single supercell is diagonalized exactly, and repeated periodically, with the in-
termolecular Coulomb interaction between the cells included (for details see [41]). The system
enthalpy is calculated as a function of pressure and the relevant renormalized Wannier functions
{wui (r)}, with µ = 1, 2 characterizing the adjusted wave functions of the individual 1s atomic
states in the molecule, are determined in the whole procedure. As a result, the phase diagram in
the pressure-enthalphy plane is determined and comprises molecular-molecular and molecular-
atomic solid discontinuous phase transitions. This phase diagram is drawn in Fig. 18. Those
results may serve as a starting point to a more comprehensive analysis of the complex phase
diagram of solid hydrogen. The molecular to atomic solid transition can be characterized as
an example of a Mott-Hubbard transition, albeit from molecular solid to metal [41]. In brief,
this example also shows that the EDABI method may be applied to real systems and to the
localization-delocalization transition of a nonstandard nature. As the most recent example of
an EDABI application we display the total energy of LiH and LiH · H2 clusters (M. Hendzel,
private communication) within an extended basis involving starting 1s, 2s, and 2p orbitals of
variable size. The values are close to the experimental values for those systems: −16.1611 and
−17.8942 Ry, respectively. We should see progress along these lines in the near future.
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Fig. 19: Total energy for LiH (squares) and LiH · H2 clusters as a function of unit cell volume
as obtained from EDABI [M. Hendzel, unpublished].
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6 Conclusions

The Exact Diagonalization Ab Inito (EDABI) method has been developing slowly and so far
is useful mainly in describing in a precise manner model systems. Its principle aim has been
to determine properties of correlated systems by incorporating also the calculations of model
parameters, such as the Hubbard U, the hopping integrals tij , etc., into the general scheme of
electronic structure calculations. It is particularly well suited for a description of nanosystems,
in which a crossover from atomic to itinerant character of electronic states occurs as a sign of
the Mott-Hubbard behavior. The studied evolution with the lattice parameter emulates the pres-
sure dependence of the basic quantum properties and correlation functions. On the examples
discussed in sections 4 and 5 collective (bulk) properties are exhibited in a direct manner. Fu-
ture studies should show to what extent the results can be analyzed experimentally. Finally, we
summarize the fundamental features of the EDABI method:

1◦ The 1st and 2nd quantization aspects of the collective (nano)systems are tackled in a con-
sistent manner, i.e., without encountering the problem of double counting interactions, as
is the case in the present versions of DFT+U and DFT+DMFT treatments.

2◦ In the approach we first diagonalize the second-quantized Hamiltonian for selected trial
single-particle wavefunction basis and optimize it subsequently in the correlated state.
In other words, the usual quantum-mechanical procedure of determining their e.g., the
system energy is carried out in a reverse order (the correlations are as crucial as the single-
particle wave function evaluation).

3◦ The method allows to analyze within a single scheme atomic, molecular, and extended
systems via studies of nanoscopic systems of the increasing size.

Progress in calculating precisely properties of collective systems composed of more complex
atoms will be effective within is method only with the implementation of computing capabili-
ties, perhaps coming with the advent advanced quantum computing.

Acknowledgments

I am grateful to my former students: Adam Rycerz, Edward M. Görlich, Roman Zahorbeński,
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1 Introduction

The electronic many-body problem, in the non-relativistic limit and in the Born-Oppenheimer
approximation, is described by the Hamiltonian

Ĥe = −1

2

∑

i

∇2
i −

∑

i

∑

α

Zα
|ri−Rα|

+
∑

i>j

1

|ri−rj|
+
∑

α>α′

ZαZα′

|Rα−Rα′|
, (1)

where {ri} are electron coordinates, {Rα} nuclear coordinates and Zα the nuclear charges.
Using a complete one-electron basis, for example the basis {φa(r)}, where {a} are the quantum
numbers, we can write this Hamiltonian in second quantization as

Ĥe = −
∑

ab

tabc
†
acb

︸ ︷︷ ︸
Ĥ0

+
1

2

∑

aa′bb′

Uaa′bb′ c
†
ac
†
a′cb′cb

︸ ︷︷ ︸
ĤU

.

Here the hopping integrals are given by

tab = −
∫
dr φa(r)

(
−1

2
∇2−

∑

α

Zα
|r−Rα|

︸ ︷︷ ︸
ven(r)

)
φb(r),

while the elements of the Coulomb tensor are

Uaa′bb′ =

∫
dr2

∫
dr2 φa(r1)φa′(r2)

1

|r1−r2|
φb′(r2)φb(r1).

In principle, all complete one-electron bases are equivalent. In practice, since, in the general
case, we cannot solve the N -electron problem exactly, some bases are better than others. One
possible choice for the basis are the Kohn-Sham orbitals, {φKS

a (r)}, obtained, e.g., in the local
density approximation (LDA).1 In this case, it is useful to replace the electron-nuclei interaction
ven(r) with the DFT potential vR(r), which includes in addition the Hartree term vH(r) and the
(approximate) exchange-correlation potential vxc(r)

vR(r) = ven(r) +

∫
dr′

n(r′)

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

so that

t̃ab = −
∫
dr φKS

a (r)
(
−1

2
∇2 + vR(r)

)
φKS
b (r). (2)

To avoid double counting (DC), we have however to subtract from ĤU the term ĤDC, which
describes the Coulomb terms already included in the hopping integrals

Ĥe = −
∑

ab

t̃ab c
†
acb

︸ ︷︷ ︸
Ĥ0=ĤLDA

e

+
1

2

∑

aba′b′

Ũaa′bb′ c
†
ac
†
a′cb′cb − ĤDC

︸ ︷︷ ︸
∆ĤU

.

1For the purpose of many-body calculations the differences between LDA, GGA, or their plain extensions are
in practice negligible; for simplicity, in the rest of the lecture, we thus adopt LDA as representative functional.
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For weakly-correlated systems, in the Kohn-Sham basis, the effects included in ∆ĤU can, in
first approximation, either be neglected or treated as a perturbation. This implies that ĤLDA

e ∼
Ĥeff , where Ĥeff is the effective model which provides a good description of the system (at least)
at low energy, and which describes emergent effective “elementary particles” and their interac-
tions. Hypothetically, one could imagine that Ĥeff is obtained via a canonical transformation,
so that Ĥeff ∼ Ŝ−1Ĥe Ŝ, although the exact form of the operator Ŝ is unknown.
A defining feature of strong-correlation effects is that they cannot be described via a single-
electron Hamiltonian, however. A model of form ĤLDA

e does not capture the Mott metal-
insulator transition, no matter what the specific values of the parameters t̃ab are.2 Thus for
strongly-correlated materials the low-energy effective model must have a different form. For
Mott systems a canonical Hamiltonian is the Hubbard model

Ĥ = −
∑

σ

∑

ii′

ti,i
′
c†iσci′σ + U

∑

i

n̂i↑n̂i↓, (3)

which includes, in addition to a single-electron term, the on-site Coulomb repulsion. This
Hamiltonian captures the essence of the Mott transition. At half filling, for U = 0 it describes a
paramagnetic metal, and for ti,i′(1−δi,i′)=0 an insulating set of paramagnetic atoms. Unfortu-
nately, differently from Hamiltonians of type ĤLDA

e , Hubbard-like models cannot be solved ex-
actly in the general case. Remarkably, till 30 years ago, no method for describing the complete
phase diagram of (3) in one coherent framework, including the paramagnetic insulating phase,
was actually known. This changed between 1989 and 1992, when the dynamical mean-field
theory (DMFT) was developed [1–4]. The key idea of DMFT consists in mapping the Hubbard
model onto a self-consistent auxiliary quantum-impurity problem, which can be solved exactly.
The mapping is based on the local dynamical self-energy approximation, very good for realistic
three-dimensional lattices—and becoming exact in the infinite coordination limit [1, 2].
DMFT was initially applied only to simple cases, due to limitations in model building, computa-
tional power, and numerical methods for solving the auxiliary impurity problem (the quantum-
impurity solvers). In the last twenty years remarkable progress lifted many of these limitations.
First, reliable schemes to build realistic low-energy materials-specific Hubbard-like models
have been devised, in particular using Kohn-Sham localized Wannier functions. This is as-
tonishing, given that we do not know the exact operator Ŝ which gives the effective low-energy
Hamiltonian, and thus a truly systematic derivation is not possible. Second, key advances in
quantum-impurity solvers and increasingly more powerful supercomputers made it possible to
study always more complex many-body Hamiltonians. The approach which emerged, consist-
ing in solving within DMFT materials-specific many-body Hamiltonians constructed via LDA,
is known as the LDA+DMFT method [5–7]. This technique (and its extensions) is now the
state-of-the-art for describing strongly-correlated materials. In this lecture I will outline the
basic ideas on which the method is based, its successes and its limitations. This manuscripts
extends the one of last year’s school—in which more details on the model building aspects can
be found—to the calculation of linear response functions.

2One can obtain an insulator by reducing the symmetry, e.g, by increasing the size of the primitive cell. This
Slater-type insulator has however different properties than a Mott-type insulator.
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2 From DMFT to LDA+DMFT

We will start by introducing the basics of DMFT. First we will consider a case for which
analytic calculations can be performed, the two-site Hubbard Hamiltonian. This is a toy model,
useful to illustrate how the method works, but for which, as we will see, DMFT is not a good
approximation. Indeed, the Hubbard dimer is the worst case for DMFT, since the coordination
number is the lowest possible. Next we will extend the formalism to the one-band and then to the
multi-orbital Hubbard Hamiltonian. For three-dimensional lattices the coordination number is
typically large and thus DMFT is an excellent approximation. Finally, we will discuss modern
schemes to construct materials-specific many-body models. They are based on Kohn-Sham
Wannier orbitals, calculated, e.g, using the LDA functional. The solution of such models via
DMFT defines the LDA+DMFT method.

2.1 DMFT for a toy model: The Hubbard dimer

The two-site Hubbard model is given by

Ĥ = εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i

n̂i↑n̂i↓,

with i = 1, 2. The ground state for N = 2 electrons (half filling) is the singlet3

|G〉H =
a2(t, U)√

2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉+

a1(t, U)√
2

(
c†1↑c

†
1↓ + c†2↑c

†
2↓

)
|0〉 (4)

with

a2
1(t, U) =

1

∆(t, U)

∆(t, U)− U
2

, a2
2(t, U) =

4t2

∆(t, U)

2

∆(t, U)− U ,

and

∆(t, U) =
√
U2 + 16t2.

The energy of this state is

E0(2) = 2εd +
1

2

(
U −∆(t, U)

)
.

In the T → 0 limit, using the Lehmann representation (see Appendix B), one can show that the
local Matsubara Green function for spin σ takes then the form

Gσ
i,i(iνn) =

1

4

(
1 + w(t, U)

iνn − (E0(2)− εd+t−µ)
+

1− w(t, U)

iνn −
(
E0(2)− εd−t−µ

)

+
1− w(t, U)

iνn −
(
− E0(2) + U+3εd+t−µ

) +
1 + w(t, U)

iνn −
(
− E0(2) + U+3εd−t−µ

)
)
,

3Eigenstates and eigenvalues of the Hubbard dimer for arbitrary filling can be found in Appendix A.1.
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where νn = π(2n+1)/β are fermionic Matsubara frequencies, µ = εd + U/2 is the chemical
potential, and the weight is w(t, U) = 2a1(t, U)a2(t, U). The local Green function can be
rewritten as the average of the Green function for the bonding (k = 0) and the anti-bonding
state (k = π), i.e.,

Gσ
i,i(iνn) =

1

2

(
1

iνn + µ− εd + t−Σσ(0, iνn)︸ ︷︷ ︸
Gσ(0,iνn)

+
1

iνn + µ− εd − t−Σσ(π, iνn)︸ ︷︷ ︸
Gσ(π,iνn)

)
.

The self-energy is given by

Σσ(k, iνn) =
U

2
+
U2

4

1

iνn + µ− εd − U
2
− eik 3t

.

The self-energies Σσ(0, iνn) and Σσ(π, iνn) differ due to the phase eik = ±1 in their denomi-
nators. The local self-energy is, by definition, the average of the two

Σσ
l (iνn) =

1

2

(
Σσ(π, iνn) +Σσ(0, iνn)

)
=
U

2
+
U2

4

iνn + µ− εd − U
2

(iνn + µ− εd − U
2

)2 − (3t)2
.

The difference

∆Σσ
l (iνn) =

1

2

(
Σσ(π, iνn)−Σσ(0, iνn)

)
=
U2

4

3t

(iνn + µ− εd − U
2

)2 − (3t)2
,

thus measures the importance of non-local effects; it would be zero if the self-energy was inde-
pendent of k. Next we define the hybridization function

F σ(iνn) =

(
t+∆Σσ

l (iνn)
)2

iνn + µ− εd −Σσ
l (iνn)

which for U = 0 becomes

F σ
0 (iνn) =

t2

iνn
.

By using these definitions, we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)−Σσ
l (iνn)

. (5)

It is important to point out that, as one may see from the formulas above, the local Green
function and the local self-energy satisfy the following local Dyson equation

Σσ
l (iνn) =

1

Gσ
i,i(iνn)

− 1

Gσ
i,i(iνn)

,

where Gσ
i,i(iνn) is given by

Gσ
i,i(iνn) =

1

iνn + µ− εd − F σ(iνn)
.
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Thus, one could think of mapping the Hubbard dimer into an auxiliary quantum-impurity model,
chosen such that, within certain approximations, the impurity Green function is as close as
possible to the local Green function of the original problem. How can we do this? Let us adopt
as auxiliary model the Anderson molecule

ĤA = εs
∑

σ

n̂sσ − t
∑

σ

(
c†dσcsσ + c†sσcdσ

)
+ εd

∑

σ

n̂dσ + Un̂d↑n̂d↓. (6)

The first constraint would be that Hamiltonian (6) has a ground state with the same occupations
of the 2-site Hubbard model, i.e., at half filling, nd = ns = 1. Such a self-consistency condition
is satisfied if εs = µ = εd + U/2. This can be understood by comparing the Hamiltonian
matrices of the two models in the Hilbert space with N = 2 electrons. To this end, we first
order the two-electron states of the Hubbard dimer as

|1〉 = c†1↑c
†
2↑|0〉, |4〉 = 1√

2
(c†1↑c

†
2↓ − c†1↓c†2↑)|0〉,

|2〉 = c†1↓c
†
2↓|0〉, |5〉 = c†1↑c

†
1↓|0〉,

|3〉 = 1√
2
(c†1↑c

†
2↓ + c†1↓c

†
2↑)|0〉, |6〉 = c†2↑c

†
2↓|0〉.

In this basis the Hamiltonian of the Hubbard dimer has the matrix form

Ĥ2(εd, U, t) =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εd+U




.

The ground state, the singlet given in Eq. (4), can be obtained by diagonalizing the lower
3×3 block. For the Anderson molecule, ordering the basis in the same way (1 → d, 2 → s),
this Hamiltonian becomes

ĤA
2 (εd, U, t; εs) =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




.

Comparing the lower 3×3 block of ĤA
2 (εd, U, t; εs) with the corresponding block of Ĥ2(εd, U, t)

we can see that, unless εs = µ = εd + U/2, the two ionic states |5〉 and |6〉 have different
energies; hence, for εs 6= µ, the two sites are differently occupied in the ground state.
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By setting εs = µ we find that ĤA
2 (εd, U, t;µ) = Ĥ2(εd+

U
4
, U

2
, t). The N = 2 ground state of

ĤA
2 (εd, U, t;µ) has thus the form of the ground-state for the Hubbard dimer

|G〉A =
a2(t, U/2)√

2

(
c†d↑c

†
s↓ − c†d↓c†s↑

)
|0〉+

a1(t, U/2)√
2

(
c†d↑c

†
d↓ + c†s↑c

†
s↓

)
|0〉,

and the condition ns =nd = 1 is satisfied. Since εs 6= εd, however, the eigenstates of ĤA for
one electron (N = 1) or one hole (N = 3) are not the bonding and antibonding states.4 The
impurity Green function is then given by

Gσ
d,d(iνn) =

1

4

(
1 + w′(t, U)

iνn − (E0(2)− E−(1)− µ)
+

1− w′(t, U)

iνn − (E0(2)− E+(1)− µ)

1 + w′(t, U)

iνn − (E−(3)− E0(2)− µ)
+

1− w′(t, U)

iνn − (E+(3)− E0(2)− µ)

)
,

where

E0(2)− E±(1)− µ = −
(
E±(3)− E0(2)− µ

)
= −1

4

(
2∆(t, U/2)±∆(t, U)

)
,

and

w′(t, U) =
1

2

32t2 − U2

∆(t, U)∆(t, U/2)
.

After some rearrangement we obtain a much simpler expression

Gσ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)−Σσ
A(iνn)

.

The impurity self-energy equals the local self-energy of the Hubbard dimer

Σσ
A(iνn) =

U

2
+
U2

4

iνn
(iνn)2 − (3t)2

.

The hybridization function is given by

Fσ0 (iνn) =
t2

iνn
.

For U = 0, Gσ
d,d(iνn) equals the non-interacting impurity Green function

G0σ
d,d(iνn) =

1

iνn + µ− εd −Fσ0 (iνn)
.

The impurity Green function thus satisfies the impurity Dyson equation

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4The complete list of eigenvalues and eigenvectors of the Anderson molecule for εs = εd + U/2 and arbitrary
electron number N can be found in Appendix A.2.
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Fig. 1: Green functions of the Hubbard dimer (t = 1, U = 4) and the Anderson molecule
(εs = εd+U/2) in the zero temperature limit. Left panels, blue: Hubbard dimer with local self-
energy only, i.e., with ∆Σσ

l (ω) = 0. Left panels, orange: Anderson molecule. Right panels:
Exact Green function of the Hubbard dimer. Dashed lines: Poles of the Green function of the
Anderson molecule (left) or Hubbard dimer (right).

In Fig. 1 we show the impurity Green function of the Anderson molecule (orange, left panels)
and the local Green function of the 2-site Hubbard model, in the local self-energy approximation
(blue, left panels) and exact (blue, right panels). Comparing left and right panels we can see
that setting ∆Σσ

l (ω) = 0 yields large errors. The left panels demonstrate, however, that the
spectral function of the Anderson molecule is quite similar to the one of the Hubbard dimer
with ∆Σσ

l (ω) = 0. The small remaining deviations come from the fact that, for the Hubbard
dimer, in the impurity Dyson equation, the non-interacting impurity Green function is replaced
by Gσ

i,i(iνn) in the local self-energy approximation, i.e., with the bath Green function

Gσi,i(iνn) =
1

iνn + µ− εd −Fσl (iνn)
,

where

Fσl (iνn) =
t2

iνn + µ− εd −Σσ
A(iνn)

.
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We are now in the position of explaining how DMFT works for the Hamiltonian of the Hubbard
dimer, choosing the Anderson molecule Hamiltonian (6) as the auxiliary quantum-impurity
model. The procedure can be split in the following steps

1. Build the initial quantum-impurity model with G0σ
d,d(iνn) = G0σ

i,i (iνn). The initial bath is
thus defined by energy εs = εd and hopping t.

2. Calculate the local Green function Gσ
d,d(iνn) for the auxiliary model.

3. Use the local Dyson equation to calculate the impurity self-energy

Σσ
A(iνn) =

1

G0σ
d,d(iνn)

− 1

Gσ
d,d(iνn)

.

4. Calculate the local Green function of the Hubbard dimer setting the self-energy equal to
the one of the quantum-impurity model

Gσ
i,i(iνn) ∼ 1

2

(
1

iνn + µ− εd + t−Σσ
A(iνn)

+
1

iνn + µ− εd − t−Σσ
A(iνn)

)
.

5. Calculate a new bath Green function Gσi,i(iνn) from the local Dyson equation

Gσi,i(iνn) =
1

Σσ
A(iνn) + 1/Gσ

i,i(iνn)
.

6. Build a new G0σ
d,d(iνn) from Gσi,i(iνn).

7. Restart from the second step.

8. Iterate till self-consistency, i.e., here till nσd = nσi and Σσ
A(iνn) does not change any more.

The Anderson molecule satisfies the self-consistency requirements for εs = µ. The remaining
difference between Gσ

d,d(iνn), the impurity Green function, and Gσ
i,i(iνn), the local Green func-

tion of the Hubbard dimer in the local self-energy approximation, arises from the difference in
the associated hybridization functions

∆Fl(iνn) = Fσl (iνn)−Fσ0 (iνn) = t2p2

(
− 2

iνn
+

1

iνn − εa
+

1

iνn + εa

)

where p2 = U2/8ε2
a and εa =

√
9t2 + U2/4. If we use the Anderson molecule as quantum-

impurity model we neglect ∆Fl(iνn); the error made is small, as shown in the left panels of
Fig. 1. To further improve we would have to modify the auxiliary model adding more bath
sites. Remaining with the Anderson molecule, let us compare in more detail its spectral func-
tion with the exact spectral function of the Hubbard dimer. Fig. 2 shows that the evolution as a
function of U is different for the two Hamiltonians. Anticipating the discussion of later sections,
if we compare to the spectral function of the actual lattice Hubbard model, we could say that the
Anderson molecule partially captures the behavior of the central “quasi-particle” or “Kondo”
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Fig. 2: Imaginary part of the Green function of the Anderson molecule (orange) and Hubbard
dimer (blue) in the zero temperature limit. For the Hubbard dimer the exact Green functions
are used, as in the right panels of Fig. 1. Parameters: t = 1, εs = µ. Top: U = 0 (left) and
U = 4t (right). Bottom: Evolution with increasing U from 0 to 4t in equal steps.

peak with increasing U, although the Kondo effect itself is unrealistically described; as a matter
of fact, the Kondo energy gain (the “Kondo temperature”) is perturbative (∝ t2/U ) in the case
of the Anderson molecule, while it is exponentially small for a Kondo impurity in a metallic
bath. On the other hand, the Hubbard dimer captures well the Hubbard bands and the gap in the
large-U limit. The example of the Anderson molecule also points to the possible shortcomings
of DMFT calculations for the lattice Hubbard model (3) in which the quantum-impurity model
is solved via exact diagonalization, however using a single bath site or very few; this might
perhaps be sufficient in the limit of large gap,5 but is bound to eventually fail approaching the
metallic regime. Indeed, this failure is one of the reasons why the solution of the Kondo prob-
lem required the development of—at the time new—non-perturbative techniques such as the
numerical renormalization group. Finally, the example of the Hubbard dimer shows that DMFT
is not a good approximation for molecular complexes with two (or few) correlated sites. This
is because in such systems the coordination number is the lowest possible, the worst case for
dynamical mean-field theory. In three dimensional crystals, instead, the coordination number is
typically large enough to make DMFT an excellent approximation.

5For a discussion of bath parametrization in exact diagonalization and the actual convergence with the number
of bath sites for the lattice Hubbard model see Ref. [8].
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2.2 Non-local Coulomb interaction

In Sec. 2.1 we have seen that the local Coulomb interaction gives rise, alone, to non-local self-
energy terms, which can be very important. What is, instead, the effect of the non-local part
of the Coulomb interaction? For a Hubbard dimer, extending the Coulomb interaction to first
neighbors leads to the Hamiltonian

Ĥ =εd
∑

iσ

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓

+
∑

σσ′

(
V − 2JV − JV δσσ′

)
n̂1σn̂2σ′ − JV

∑

i6=i′

(
c†i↑ci↓c

†
i′↓ci′↑ + c†i′↑c

†
i′↓ci↑ci↓

)
,

where the parameters in the last two terms are the intersite direct (V ) and exchange (JV )
Coulomb interaction. For two electrons the Hamiltonian, in a matrix form, becomes

ĤNL
2 =




2εd+V−3JV 0 0 0 0 0

0 2εd+V−3JV 0 0 0 0

0 0 2εd+V−3JV 0 0 0

0 0 0 2εd+V−JV −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U −JV
0 0 0 −

√
2t −JV 2εd+U




.

Since JV > 0, the effect of JV is to lower the energy of triplet states with respect singlet states.
This might change the nature of the ground state. If, however, JV is sufficiently small, the
ground state remains a singlet. Setting for simplicity JV = 0, we can notice that ĤNL

2 equals
Ĥ2(ε′d, U

′, t), the corresponding N= 2-electron Hamiltonian of the JV =V= 0 Hubbard dimer,
with parameters ε′d = εd + V/2 and U ′=U−V. The N= 2 ground state is thus still given by
Eq. (4), provided, however, that we replace U with U ′ in the coefficients. Eventually, in the
limiting case U=V, ĤNL

2 equals the corresponding Hamiltonian of an effective non-correlated
dimer. What happens away from half filling? For N= 1 electrons, eigenvectors and eigenvalues
are the same as in the V= 0 case; for N= 3 electrons all energies are shifted by 2V. This leads
to further differences in the local Green function with respect to the V=0 case—in addition
to those arising from replacing U with U ′; to some extent, these additional changes can be
interpreted as a hopping enhancement from t to t + V/2. Putting all these results together, we
could thus say that, in first approximation, the (positive) intersite coupling V effectively reduces
the strength of correlations.
In conclusion, strong-correlation effects typically appear when the local term of the electron-
electron repulsion dominates, i.e., when it is much larger than long-range terms. Instead, a
hypothetical system in which the Coulomb interaction strength is independent on the distance
between sites (here U=V ) is likely to be already well described via an effective weakly corre-
lated model. Of course, in real materials, the effects of long-range Coulomb repulsion can be
much more complicated than in the two-site model just discussed, but the general considerations
made here remain true even in realistic cases.
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2.3 Quantum-impurity solvers: Continuous-time quantum Monte Carlo

For the case of the Anderson molecule exact diagonalization is the simplest quantum-impurity
solver and the one that provides most insights. Methods based on quantum Monte Carlo (QMC)
sampling are often, however, the only option for realistic multi-orbital and/or multi-site mod-
els. Here we explain how to obtain the impurity Green function of the Anderson molecule via
hybridization-expansion continuous-time QMC [9], a very successful QMC-based quantum-
impurity solver. In this approach, the first step consists in splitting the Hamiltonian into bath
(Ĥbath), hybridization (Ĥhyb), and local (Ĥloc) terms

ĤA = εs
∑

σ

n̂sσ

︸ ︷︷ ︸
Ĥbath

−t
∑

σ

(
c†dσcsσ + c†sσcdσ

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥloc

.

Next, we write the partition function Z as a perturbation series in the hybridization. To this end,
we define Ĥ0 = Ĥbath + Ĥloc and rewrite the partition function as

Z =Tr
(
e−β(Ĥ0−µN̂)V̂ (β)

)

where the operator V̂ (β) is given by

V̂ (β) = eβ(Ĥ0−µN̂)e−β(Ĥ0+Ĥhyb−µN̂) =
∑

m

∫ β

0

dτ1· · ·
∫ β

τm−1

dτm

︸ ︷︷ ︸∫
dτm

(−1)m
∏1

l=m
Ĥhyb(τl)

︸ ︷︷ ︸
Ôm(τ )

,

and

Ĥhyb(τl) = eτl(Ĥ0−µN̂)Ĥhybe
−τl(Ĥ0−µN̂) = −t

∑

σ

(
c†dσl(τl)csσl(τl) + c†sσl(τl)cdσl(τl)

)
.

In this expansion, the only terms that contribute to the trace are even order ones (m = 2k) and
they are products of impurity (d) and bath (s) creator-annihilator pairs. We can thus rewrite

∫
dτ 2k −→

∫
dτ k

∫
dτ̄ k Ô2k(τ ) −→

∑

σ,σ̄

Ô2k
σ,σ̄(τ , τ̄ )

where

Ô2k
σ,σ̄(τ , τ̄ ) = (t)2k

k∏

i=1

(
c†dσ̄i(τ̄i)csσ̄i(τ̄i)c

†
sσi

(τi)cdσi(τi)
)
.

The vector σ = (σ1, σ2, ..., σk) gives the spins {σi} associated with the k impurity annihilators
at imaginary times {τi}, while σ̄ = (σ̄1, σ̄2, ..., σ̄k) gives the spins {σ̄i} associated with the
k impurity creators at imaginary times {τ̄i}. It follows that the local and bath traces can be
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decoupled and the partition function can be rewritten as

Z

Zbath

=
∑

k

∫ k

dτ

∫ k

dτ̄
∑

σ,σ̄

dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ )

dkσ̄,σ(τ , τ̄ ) = (t)2k Trbath

(
e−β(Ĥbath−µN̂s)T Π1

i=kc
†
sσi

(τi)csσ̄i(τ̄i)
)
/Zbath

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d)T Π1

i=kcdσi(τi)c
†
dσ̄i

(τ̄i)
)
,

where Zbath = 1 + 2e−β(εs−µ) + e−2β(εs−µ) and

cdσ(τ) = eτ(Ĥloc−µN̂d)cdσe
−τ(Ĥloc−µN̂d), csσ(τ) = eτ(Ĥbath−µN̂s)csσe

−τ(Ĥbath−µN̂s).

The trace involving only bath operators is simple to calculate, since Ĥbath describes an inde-
pendent-electron problem, for which Wick’s theorem holds. It is given by the determinant

dkσ̄,σ(τ , τ̄ ) = det
(
Fkσ̄,σ(τ , τ̄ )

)

of the k×k non-interacting hybridization-function matrix, with elements
(
Fkσ̄,σ(τ , τ̄ )

)
i′,i

= F 0
σ̄i′ ,σi

(τ̄i′−τi)

where

F 0
σ̄,σ(τ) = δσ̄,σ

t2

1 + e−β(εs−µ)
×
{
−e−τ(εs−µ) τ > 0,

+e−(β+τ)(εs−µ) τ < 0.

This is the imaginary time Fourier transform of the hybridization function introduced previously

F 0
σ̄,σ(iνn) =

t2

iνn − (εs−µ)
δσ̄,σ.

The calculation of the local trace is in general more complicated. In the case discussed here,
the Hamiltonian does not flip spins. Thus only terms with an equal number of creation and
annihilation operators per spin contribute to the local trace, and we can express the partition
function in expansion orders per spin, kσ. This yields [10]

Z

Zbath

=

(∏

σ

∞∑

kσ=0

∫ kσ

dτσ

∫ kσ

dτ̄σ

)
dkσ̄,σ(τ , τ̄ )tkσ,σ̄(τ , τ̄ )

where the vectors σ = (σ↑,σ↓) and σ̄ = (σ̄↑, σ̄↓) have (k↑, k↓) components, and for each kσ
component σi = σ̄i = σ. Thus

tkσ,σ̄(τ , τ̄ ) = Trloc

(
e−β(Ĥloc−µN̂d) T

∏
σ

∏1

i=kσ
cdσ(τσi)c

†
dσ(τ̄σ̄i)

)
.

The latter can be calculated analytically. To do this, first we parametrize all configurations for a
given spin via a timeline [0, β) plus a number of creator/annihilator pairs which define segments
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β 0

k=0

!2 !1 !2!1

k=1

!1!2 !2!1

!2 !1
k=2

!1 !2 !2

!2 !1

!1

Fig. 3: Representative configurations contributing to the local trace at zeroth, first and second
order. The timelines for spin up are red and those for spin down are blue. The filled circles
correspond to the insertion of a creator (time τ1), and the empty circles to the insertion of an
annihilator (time τ2). Dotted lines represent the vacuum state for a given spin, full lines the
occupied state. The grey boxes indicate the regions in which l↑,↓ 6= 0.

on the timeline. At zeroth order two possible configurations exist per spin, an empty timeline,
which corresponds to the vacuum state |0〉, and a full timeline, which corresponds to the state
c†dσ|0〉. A given configuration yields at order k = k↑ + k↓

tkσ,σ̄(τ , τ̄ ) =

(∏

σ

skσσ

)
e−

∑
σσ′ ((εd−µ)δσσ′+

U
2

(1−δσ,σ′ ))lσ,σ′

where lσ,σ′ is the length of the overlap of the τ segments for spins σ and σ′, respectively, while
sσ = sign(τσ1−τ̄σ1) is the fermionic sign. Possible configurations at order k = 0, 1, 2 are
shown in Fig. 3. At order k = 0, summing up the contribution of the four configurations shown
in Fig. 3 yields the local partition function Zloc = 1 + 2e−β(εd−µ) + e−β(2(εd−µ)+U). Order k = 1
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is already more complicated. The bath trace in this case is

d1
σ̄σ(τ1, τ2) = F 0

σ̄σ(τ1, τ2) = −t
2

2
δσ,σ̄ sign(τ1−τ2).

The local trace is instead given by

t1σσ̄(τ2, τ1) = Trloc

(
e−β(Ĥloc−µN̂d)T cdσ(τ2)c†dσ(τ1)

)
. (7)

We can now calculate the contribution at half filling of the four k = 1 configurations shown in
Fig. 3. In the case k↑ = 1 and k↓ = 0 we have

t1↑↑(τ2, τ1) =





e−(τ2−τ1)(εd−µ) = e+τ21U/2

−e−β(2(εd−µ)+U)+(τ1−τ2)(εd−µ+U) = −e−τ21U/2

−e−(β−(τ1−τ2))(εd−µ) = −e(β+τ21)U/2

e−(τ2−τ1)(εd−µ+U)−β(εd−µ) = e(β−τ21)U/2

where τ21 = τ2 − τ1 and µ = εd + U/2. Similar results can be obtained for k↑ = 0 and k↓ = 1.
Summing up all terms up to order one we find

Z

Zbath

∼Zloc +
∑

σ

∫ β

0

dτ2

∫ β

0

dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)

∼Zloc

(
1− 1− eβU2

1 + e
βU
2

2t2

U
β

)
.

The exact formula of the partition function can be obtained from the eigenvalues and eigenvec-
tors in the Appendix A.2; its Taylor expansion in powers of t/U yields, at second order, the
expression above. Eq. (7) shows in addition that, for k = 1, the local trace is proportional to
the local Green function, Gσ

d,d(τ). Indeed, Gσ
d,d(τ) can be calculated using the configurations

just described—provided that we start from k = 1 and we divide by the hybridization function.
More specifically, for k = 1 and τ > 0 we have

Gσ
d,d(τ) ∼ − 1

β

∫ β

0

∫ β

0

dτ2dτ1 d
1
σσ(τ1, τ2)t1σσ(τ2, τ1)︸ ︷︷ ︸

w1

δ
(
τ − (τ2−τ1)

) 1

F 0
σσ(τ1−τ2)

.

Taking all k values into account, the partition function can be expressed as the sum over all
configurations {c}, i.e., in short

Z =
∑

c

wc =
∑

c

|wc| sign wc.

In a compact form, we can write wc = dτc dc tc where dτc =
∏

σ

∏kσ
i dτσidτ̄σ̄i , and dc and tc

are the bath and local traces for the configuration c. This expression of the partition function
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shows that we can interpret |wc| as the sampling weight of configuration c. A generic observable
Ô can then be obtained as the Monte Carlo average on a finite number of configurations Nc

〈Ô〉 =

∑
c〈Ô〉c|wc| sign wc∑
c |wc| sign wc

=

∑
c sign wc〈Ô〉c |wc|/

∑
c |wc|∑

c sign wc |wc|/
∑

c |wc|
≈

1
Nc

∑Nc
c 〈Ô 〉csign wc

1
Nc

∑
c sign wc

.

The term 1
Nc

∑
c sign wc in the denominator is the average fermionic sign. When this is small,

much longer runs are required to obtain data of the same quality; eventually the computational
time can become so long that the calculation is in practice impossible—in these cases we have
a sign problem. In practice, the QMC simulation starts from a random configuration c. Next we
propose an update c→ c′. Within the Metropolis algorithm, the acceptance ratio is

Rc→c′ = min

(
1,
pc′→c
pc→c′

|wc′|
|wc|

)

where pc→c′ is the proposal probability for the update c → c′. In the approach described here,
known as segment solver, the basic updates are addition and removal of segments, antisegments
(segments winding over the borders of the timeline, see Fig. 3), or complete lines. As example,
let us consider the insertion of a segment for spin σ. A segment is made by a creator and an
annihilator. The creator is inserted at time τin; the move is rejected if τin is in a region where
a segment exists. If created, the segment can have at most length lmax, given by the distance
between τin and the time at which the next creator is, hence

pc→c′ =
dτ̄

β

dτ

lmax

.

The proposal probability of the reverse move (removing a segment) is instead given by the
inverse of the number of existing segments

pc′→c =
1

kσ + 1

The acceptance ratio for the insertion of a segment becomes then

Rc→c′ = min

(
1,
βlmax
kσ+1

∣∣∣∣
dc′

dc

tc′

tc

∣∣∣∣
)
.

For the impurity Green function, here the most important observable, the direct average yields

〈Ô〉c = 〈Gσ
d,d〉c =

∑

σ′

kσ∑

i=1

kσ∑

j=1

∆(τ, τσ′j−τ̄σ′j)
(
Mk′σ

)
σ′j,σ′i

δσ,σσ′jδσ,σ̄σ′i

where Mk =
(
Fk
)−1 is the inverse of the hybridization matrix and

∆(τ, τ ′) = − 1

β

{
δ(τ − τ ′) τ ′ > 0

−δ(τ − (τ ′+β)) τ ′ < 0
.
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2.4 DMFT for the one-band Hubbard model

The Hubbard Hamiltonian (3) is in principle the simplest model for the description of the Mott
metal-insulator transition. In the tight-binding approximation it becomes

Ĥ = εd
∑

σi

n̂iσ − t
∑

σ〈ii′〉

c†iσci′σ + U
∑

i

n̂i↑n̂i↓, (8)

where 〈ii′〉 is a sum over first neighbors. As discussed in the introduction, for U = 0, at
half-filling, this Hamiltonian describes a metallic band. For t = 0 it describes an insulating
collection of disconnected atoms. Somewhere in between, at a critical value of t/U, a metal
to insulator transition must occur. In this section we will discuss the DMFT solution of (8)
and the picture of the metal-insulator transition emerging from it. The first step consists in
mapping the original many-body Hamiltonian into an effective quantum-impurity model, such
as the Anderson Hamiltonian

ĤA =
∑

kσ

εskn̂kσ

︸ ︷︷ ︸
Ĥbath

+
∑

kσ

(
V s
k c
†
kσcdσ + h.c.

)

︸ ︷︷ ︸
Ĥhyb

+ εd
∑

σ

n̂dσ + Un̂d↑n̂d↓

︸ ︷︷ ︸
Ĥimp

.

In this model the on-site Coulomb repulsion U appears only in the impurity Hamiltonian, Ĥimp,
while the terms Ĥbath and Ĥhyb, describe, respectively, the bath and the bath-impurity hybridiza-
tion. In the next step, the quantum-impurity model is solved. Differently from the case of the
Anderson molecule, this cannot be done analytically. It requires non-perturbative numerical
methods, such as exact diagonalization, the numerical renormalization group, or QMC. Here
we describe the DMFT self-consistency loop for a QMC quantum-impurity solver. Solving
the quantum-impurity model yields the impurity Green function Gσ

d,d(iνn). From the impurity
Dyson equation we can calculate the impurity self-energy

Σσ
A(iνn) =

(
G0σ
d,d(iνn)

)−1 −
(
Gσ
d,d(iνn)

)−1
.

Next, we adopt the local approximation, i.e., we assume that the self-energy of the Hubbard
model equals the impurity self-energy. Then, the local Green function is given by

Gσ
ic,ic(iνn) =

1

Nk

∑

k

1

iνn + µ− εk −Σσ
A(iνn)

,

where Nk is the number of k points. The local Dyson equation is used once more, this time
to calculate the bath Green function Gσ(iνn), which in turn defines a new quantum-impurity
model. This procedure is repeated until self-consistency is reached, i.e., the number of electrons
is correct and the self-energy does not change anymore (within a given numerical accuracy). In
this situation we have

Gσ
ic,ic(iνn) ∼ Gσ

d,d(iνn).

It is important to underline that self-consistency is key to the success of DMFT in describing
the metal-to-insulator transition. This can, perhaps, be best understood looking at the effects of
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Fig. 4: The metal-insulator transition in ferromagnetic Hartree-Fock. The calculation is for a
square lattice tight-binding model with dispersion εk = −2t(cos kx + cos ky).

self-consistency in a simpler approach, the static mean-field Hartree-Fock method.6 The latter
consists in replacing the Coulomb interaction with the one-electron operator

Un̂i↑n̂i↓ → U(n̂i↑n̄i↓ + n̄i↑n̂i↓ − n̄i↑n̄i↓),
where n̄iσ is the expectation value of n̂iσ. Choosing the same primitive cell as in dynamical
mean-field theory (n̄iσ = n̄σ), the Hartree-Fock self-energy matrix is given by

Σσ
i,i′(iνn) = U

(n
2
− σm

)
δi,i′ ,

where σ = +1 for spin up and σ = −1 for spin down andm = (n̄↑− n̄↓)/2. The approximation
is then identical to replacing the Hubbard Hamiltonian with

ĤHF =
∑

kσ

[
εk + U

(
1

2
− σm

)]
n̂kσ. (9)

This shows that heff = 2Um plays the role of an effective magnetic field (Weiss field). The
self-consistency criterion is

n̄σ = n̄iσ = 〈n̂iσ〉HF,

where the expectation value 〈n̂iσ〉HF is calculated using the Hamiltonian ĤHF, which in turn
depends on n̄σ via m. This gives the self-consistency equation

m =
1

2

1

Nk

∑

kσ

σe−β(εk+U( 1
2
−σm)−µ)

1 + e−β(εk+U( 1
2
−σm)−µ)

.

If we set m = 0 the equation is satisfied; for such a trivial solution the static mean-field cor-
rection in Eq. (9) merely redefines the chemical potential and has therefore no effect. For
sufficiently large U, however, a non-trivial solution (m 6= 0) can be found. If m 6= 0 the spin
up and spin down bands split, and eventually a gap can open. This is shown in Fig. 4. The
static mean-field correction in Eq. (9) equals the contribution of the Hartree diagram to the self-
energy, Σσ

H(iνn) = Un̄−σ. In many-body perturbation theory, however, n̄σ = 1/2, i.e., m = 0.
6Keeping in mind that many self-consistent solutions obtained with the Hartree-Fock method are spurious.
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Fig. 5: VOMoO4: LDA+DMFT spectral function at finite temperature for 0 ≤ U ≤ 4. Energies
are in eV and spectral functions in states/spin/eV. The calculations have been done using a
continuous-time hybridization-expansion QMC solver [10]. A detailed LDA+DMFT study of
the electronic and magnetic properties VOMoO4 can be found in Ref. [11].

In the self-consistent static mean-field approximation, instead, m can differ from zero, and a
phenomenon not described by the mere Hartree diagram can be captured, ferromagnetism in a
correlated metal. If mU is larger than the bandwidth, the system can even become an insulator.

In DMFT the role of the Weiss field is played by the bath Green function Gσi,i(iνn). The emerging
picture of the Mott transition is described in Fig. 5 for a representative single-band material. In
the U = 0 limit, the spectral function A0(ω) is metallic at half filling (top left panel). For
finite U, if we set Σσ

A(ω) = 0 as initial guess, the DMFT self-consistency loop starts with
A(ω) = A0(ω). For small U/t, the converged spectral function A(ω) is still similar to A0(ω).
This can be seen comparing the U = 0.5 and U = 0 panels in Fig. 5. Further increasing U/t,
sizable spectral weight is transferred from the zero-energy quasi-particle peak to the lower (LH)
and upper (UH) Hubbard bands, centered at ω ∼ ±U/2. This can be observed in the U = 1

panel of Fig. 5. The system is still metallic, but with strongly renormalized masses and short
lifetimes, reflected in the narrow quasi-particle (QP) peak. Finally, for U larger than a critical
value (U ≥ 1.5 in the figure) a gap opens and the system becomes a Mott insulator. When this
happens the self-energy diverges at low frequency, where

Σσ
A(ω+i0+) ∼ U

2
+

A

ω + i0+
.

In the large U/t limit the gap increases linearly with the Coulomb repulsion, i.e., Eg(1) ∼
U −W, where W is the bandwidth.
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2.5 DMFT for multi-orbital models

The multi-orbital Hubbard-like Hamiltonian has the form

Ĥ = Ĥ0 + ĤU

Ĥ0 = −
∑

ii′

∑

σ

∑

mm′

ti,i
′

mσ,m′σ′ c
†
imσci′m′σ′

ĤU =
1

2

∑

i

∑

σσ′

∑

mm′

∑

pp′

Umpm′p′ c
†
imσc

†
ipσ′cip′σ′cim′σ,

where m,m′ and p, p′ are different orbitals and the Coulomb tensor is local. The DMFT ap-
proach can be extended to solve models of this form, mapping them to multi-orbital quantum-
impurity models. The main changes with respect to the formalism introduced in the previous
section are then the following

εk → (Hk)mσ,m′σ′ (iνn + µ)→ (iνn + µ) 1̂mσ,m′σ′

ti,i
′ → ti,i

′

mσ,m′σ′ εd → εi,i
′

mσ,m′σ′ = −ti,imσ,m′σ′

where 1̂ is the identity matrix. As a consequence, the local Green function, the bath Green
function, the hybridization function and the self-energy also become matrices

Gσ(iνn)→ Gσ,σ′m,m′(iνn) Gσ(iνn)→ Gσ,σ′

m,m′(iνn) Σσ(iνn)→ Σσ,σ′

m,m′(iνn).

The corresponding generalization of the self-consistency loop is shown schematically in Fig. 6.
Although the extension of DMFT to Hubbard models with many orbitals might appear straight-
forward, in practice it is not. The bottleneck is the solution of the generalized multi-orbital
quantum-impurity problem. The most flexible solvers available so far are all based on QMC.
Despite being flexible, QMC-based approaches have limitations. These can be classified in
two types. First, with increasing the number of degrees of freedom, calculations become very
quickly computationally too expensive—how quickly depends on the specific QMC algorithm
used and the actual implementation. Thus, going beyond a rather small number of orbitals and
reaching the zero-temperature limit is unfeasible in practice. The second type of limitation is
more severe. Increasing the number of degrees of freedom leads, eventually, to the infamous
sign problem; when this happens, QMC calculations cannot be performed at all. In order to
deal with limitations of the first type, it is crucial to restrict QMC calculations to the essential
degrees of freedom; furthermore, we should exploit symmetries, develop fast algorithms and
use the power of massively parallel supercomputers to reduce the actual computational time.
For the second type of problems not a lot can be done; nevertheless, it has been shown that a
severe sign problem might appear earlier with some basis choices than with others [10]. Al-
though eventually we cannot escape it, this suggests that the model set up can be used as a tool
to expand the moderate sign-problem zone. For what concerns symmetries, in the paramagnetic
case and in absence of spin-orbit interaction or external fields, an obvious symmetry to exploit
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Fig. 6: LDA+DMFT self-consistency loop. The one-electron Hamiltonian is built in the basis
of Bloch states obtained from localized Wannier functions, for example in the local-density
approximation (LDA); this givesHLDA

k . The set {ic} labels the equivalent correlated sites inside
the unit cell. The local Green-function matrix is at first calculated using an initial guess for the
self-energy matrix. The bath Green-function matrix is then obtained via the Dyson equation
and used to construct an effective quantum-impurity model. The latter is solved via a quantum-
impurity solver, here quantum Monte Carlo (QMC). This yields the impurity Green-function
matrix. Through the Dyson equation the self-energy is then obtained, and the procedure is
repeated until self-consistency is reached.

is the rotational invariance of spins, from which follows

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn),

where X = G, G,Σ. In addition, if we use a basis of real functions, the local Green-function
matrices are real and symmetric in imaginary time τ , hence

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m′(iνn) = δσ,σ′ Xm′,m(iνn).

Finally, often the unit cell contains several equivalent correlated sites, indicated as {ic} in Fig. 6.
In order to avoid expensive cluster calculations, we can use space-group symmetries to construct
the matrices G, G,Σ at a given site i′c from the corresponding matrices at an equivalent site, e.g.,
ic = 1. Space-group symmetries also tell us if some matrix elements are zero. For example, for
a model with only t2g (or only eg) states, in cubic symmetry, in the paramagnetic case and in
absence of spin-orbit interaction or external fields, we have

Xσ,σ′

m,m′(iνn) = δσ,σ′ Xm,m(iνn) δm,m′ .
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2.6 LDA+DMFT: Model building

How do we build realistic Hubbard-like models for correlated materials? The state-of-the art
approach relies on constructing, for a given system, materials-specific Kohn-Sham Wannier
functions φKS

imσ(r). These can be obtained via electronic structure calculations based on density-
functional theory [5–7], e.g., in the LDA approximation.7 After we have built the complete one-
electron basis, the first steps in model-building are those already described in the introduction.
We recall here the essential points and then discuss the next stage. The many-body Hamiltonian
can be expressed as Ĥ = Ĥ0 + ĤU − ĤDC, with

Ĥ0 = ĤLDA = −
∑

σ

∑

ii′

∑

mm′

ti,i
′

m,m′c
†
imσci′m′σ,

ĤU =
1

2

∑

ii′jj′

∑

σσ′

∑

mm′pp′

U iji′j′

mp m′p′c
†
imσc

†
jpσ′cj′p′σ′ci′m′σ.

The double-counting correction ĤDC arises from the fact that the hopping integrals are cal-
culated replacing the electron-nuclei interaction ven(r) with the self-consistent DFT reference
potential

vR(r) = ven(r) +

∫
dr′

1

|r−r′|︸ ︷︷ ︸
vH(r)

+ vxc(r),

which includes the long-range Hartree term vH(r) and the exchange-correlation contribution
vxc(r). To avoid to count these terms twice, we thus subtract from ĤU the effects already
included in Ĥ0

ĤU → ∆ĤU = ĤU − ĤDC.

Unfortunately we do not know which important correlation effects are indeed included in Ĥ0 via
vR(r), and therefore the exact expression of ∆ĤU is also unknown. The remarkable successes
of the LDA suggest, however, that in many materials the LDA is overall a good approximation,
and therefore, in those systems at least, the term ∆ĤU can be completely neglected. What
about strongly-correlated materials? Even in correlated systems, most likely the LDA works
rather well for the delocalized electrons or in describing the average or the long-range Coulomb
effects. Thus one can think of separating the electrons into uncorrelated and correlated; only
for the latter we do take the correction ∆ĤU into account explicitly, assuming furthermore that
∆ĤU is local or almost local [5], since we know that it is the local term which is responsible
for most non-trivial many-body effects. Typically, correlated electrons are those that partially
retain their atomic character, e.g., those that originate from localized d and f shells; for conve-
nience, here we assume that in a given system they stem from a single atomic shell l (e.g., d for

7Using GGA or similar functionals in place of LDA yields minor differences in the many-body Hamiltonian;
instead, using LDA+U or similar approximations yields Hartree-Fock-like effects that would have to be subtracted
via the double-counting correction.
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transition-metal oxides or f for heavy-fermion systems) and label their states with the atomic
quantum numbers l and m = −l, . . . , l of that shell. Thus

U iji′j′

mpm′p′ ∼
{
U l
mpm′p′ iji′j′ = iiii ∧ mp,m′p′ ∈ l

0 iji′j′ 6= iiii ∨ mp,m′p′ /∈ l.

Within this approximation ∆ĤU is replaced by ∆Ĥ l
U = Ĥ l

U − Ĥ l
DC, where Ĥ l

DC is, e.g., given
by the static mean-field contribution of Ĥ l

U . There is a drawback in this procedure, however.
By splitting electrons into correlated and uncorrelated we implicitly assume that the main ef-
fect of the latter is the renormalization or screening of parameters for the former, in particular
of the Coulomb interaction. The computation of screening effects remains, unfortunately, a
challenge. The calculation of exact screening would require the solution of the original many-
body problem, taking all degrees of freedom into account, an impossible task. Commonly-
used approximate schemes are the constrained LDA approximation (cLDA) and the constrained
random-phase approximation (RPA) [5–7]. Both methods give reasonable estimates of screened
Coulomb parameters for DMFT calculations. Typically cRPA calculations include more screen-
ing channels and are performed for less localized bases than cLDA calculations; thus cRPA
parameters turn out to be often smaller than cLDA ones. To some extent, the difference can be
taken as an estimate of the error bar.
After we have selected the electrons for which we think it is necessary to include explicitly the
Hubbard correction, we have to build the final Hamiltonian for DMFT calculations. To this end,
it is often convenient to integrate out or downfold, in part or completely, the weakly correlated
states. There are different degrees of downfolding. The two opposite extreme limits are (i) no
downfolding, i.e., keep explicitly in the Hamiltonian all weakly-correlated states (ii) massive
downfolding, i.e., downfold all weakly correlated states. If we perform massive downfolding,
e.g., downfold to the d (or eg or t2g) bands at the Fermi level, the Hamiltonian relevant for
DMFT takes a simpler form. The LDA part is limited to the selected orbitals or bands, which,
in the ideal case, are decoupled from the rest

ĤLDA = −
∑

σ

∑

ii′

∑

mαm
′
α

ti,i
′

mα,m
′
α
c†imασ ci′m′ασ.

The local screened Coulomb interaction for this set of orbitals is the on-site tensor

Ĥ l
U =

1

2

∑

i

∑

σσ′

∑

mαm′α

∑

mβm
′
β

Umαmβm′αm′β c
†
imασ

c†imβσ′cim′βσ′
cim′ασ.

It is important to point out that the level of downfolding does not modify the hardness of the
quantum-impurity problem. If, for example, in studying a transition-metal oxide, we plan to
treat only 3d bands as correlated, it does not matter if we perform calculations with a Hamilto-
nian containing also, e.g., O p states, or we rather downfold all states but the 3d and work with
a set of Wannier basis spanning the 3d-like bands only. The number of correlated orbitals in the
quantum-impurity problem is the same.8

8The choice might influence how severe the QMC sign problem is, however.
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Fig. 7: NMTO Wannier-like orbitals for t2g states in LaTiO3 obtained via massive downfolding
to the t2g bands. The t2g-like orbitals have O p tails at the neighboring O sites reflecting the
distortions of the lattice. The figure has been taken from Ref. [12].

One advantage of massive downfolding is that the double-counting correction typically becomes
a shift of the chemical potential, and it is therefore not necessary to calculate it explicitly. A
second important advantage is that the interpretation of the final results is simpler. Instead, a
disadvantage is that the basis functions are less localized, and therefore the approximation of
the Coulomb interaction to a local operator might be less justified, and in some cases it might be
necessary to include non-local Coulomb terms. The effect of downfolding on the localization of
Wannier functions is illustrated for example in Fig. 7. Finally, another disadvantage of massive
downfolding is that the energy window in which the model is valid is more narrow.

All advantages and disadvantages considered, what is then the best way of performing DMFT
calculations? There is no universal answer to this question; it depends on the problem we are
trying to solve and the system we are studying. Independently of the degree of downfolding
we choose, it is important to point out that a clear advantage of Wannier functions in gen-
eral is that they carry information about the lattice, bonding, chemistry, and distortions. This
can be seen once more in Fig. 7, where orbitals are tilted and deformed by the actual struc-
ture and chemistry of the compound. Indeed, one might naively think of using an “universal”
basis, for example atomic functions, the same for all systems, and thus calculating the hop-
ping integrals using simply the electron-nuclear interaction ven(r). Besides the complications
arising from the lack of orthogonality, such a basis has no built-in materials-specific informa-
tion, except lattice positions. It is therefore a worse starting point for describing the electronic
structure, even in the absence of correlations: larger basis sets are required to reach the same
accuracy. From the point of view of LDA+DMFT, an advantage of an universal basis would
be that it is free from double-counting corrections; on the other hand, however, exactly because
we do not use the LDA potential and LDA orbitals to calculate the hopping integrals, we also
cannot count on the successes of LDA in the description of average and long-range Coulomb
effects. The hopping integrals would not even include the long-range Hartree term. For these
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reasons ab-initio Wannier functions remain so far the basis of choice. They can be built via the
N th-Order Muffin-Tin Orbital (NMTO) method [12], the maximal-localization scheme [13],
or projectors. Fig. 7 shows examples of NMTO-based Wannier functions. No matter what
construction procedure is used, a common characteristic of ab-initio Wannier functions is that
they are site-centered and localized.9 A question naturally arises: How crucial is it to use lo-
calized functions as one-electron basis? This is an important point, since we have seen that
strong-correlation effects arise in systems in which the on-site Coulomb interaction is much
larger than longer-range terms. Let us consider therefore two opposite extreme limits. The
first is the case in which the basis functions are independent of the lattice position (i.e., they
are totally delocalized). For such a basis choice the Coulomb interaction parameters would
be the same for every pair of lattice sites, no matter how distant. Thus a Hubbard-like model
would be hard to justify. In the second extreme case, we adopt a hypothetical basis so localized
that ψimσ(r)ψi′m′σ′(r) ∼ δi,i′ δ(r−Ti). Even for such a basis choice, the unscreened Coulomb
interaction is not local, but given by

U iji′j′

mp m′p′ ∝
δi,i′δj,j′

|Ti−Tj|
,

hence it decays slowly with distance, although the (divergent) on-site term dominates. More
generally, we can conclude that by increasing the localization of the basis we enhance the im-
portance of the on-site Coulomb repulsion with respect to long-range terms; this better justifies
Hubbard-like models—although we have to remember that most of the long-range part of the
Coulomb interaction is in any case subtracted via the double-counting correction ĤDC. The
extreme case of the δ(r−Ti) functions also illustrates, however, how far we can go. A major
problem with the extremely localized basis discussed above is that it would make it impossible
to properly describe bonding, since the hopping integrals would be zero. Although such a basis
is, of course, never used to build many-body models, there is a tempting approximation that
has similar flaws. If one uses DFT-based electronic-structure techniques that tile the space in
interstitial and non-overlapping atomic spheres (e.g., the LAPW method), it is tempting to use
as basis for correlated electrons the atomic functions defined inside the atomic spheres. These
functions are, by construction, much more localized than Wannier orbitals (even when no down-
folding is performed in the Wannier construction). However, they do not form a complete basis
set in the space of square-integrable functions. This is obvious because such a basis does not
even span the LDA bands; to reproduce the bands we need, in addition, functions defined in
the interstitial region. This is illustrated in Fig. 8 for a simple example of two quantum well
potentials.10 We therefore cannot use it to write the many-body Hamiltonian in the usual form
Ĥ0 + ĤU . In conclusion, a basis which, as ab-initio Wannier functions, is complete and indeed
spans the bands, is better justified, although we somewhat lose in localization.

9Differences in localizations between the various construction procedures are actually small for the purpose of
many-body calculations, provided that the same bands are spanned in the same way.

10Another, but less severe, problem of atomic sphere truncations is that the results will depend on the sphere
size, in particular when atomic spheres are small.
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Fig. 8: The problem of two quantum wells. The figure shows (schematically) for each well
the wavefunction of a bound state. If we consider only the part of the wavefunction inside its
own well (red in the figure), the differential overlap (and hence the hopping integral) between
functions centered on different wells would be zero.

3 Linear response functions

Linear response functions are key to understand many experimental results. In this section
we explain how to calculate them within the LDA+DMFT approach. First we introduce the
generalized susceptibility, which yields the linear response to a given external perturbation.
Next we present the method used to calculate it and discuss the approximations adopted. Last
we analyze in detail the case of the magnetic susceptibility for the one-band Hubbard model.

3.1 The generalized susceptibility

Let us start by introducing the site susceptibility in imaginary time. This is given by

χP̂ i
ν
Ôi
′
ν′

(τ ) =
〈
T ∆P̂ i

ν(τ1, τ2)∆Ôi′

ν′(τ3, τ4)
〉

0
, (10)

where τ = (τ1, τ2, τ3, τ4). The site operators are defined via the equations

P̂ i
ν(τ1, τ2) =

∑

α

pνα c
†
iα′(τ2)ciα(τ1), ∆P̂ i

ν(τ1, τ2) = P̂ i
ν(τ1, τ2)−〈P̂ i

ν(τ1, τ2)〉

Ôi′

ν′(τ3, τ4) =
∑

γ

oν
′

γ c†i′γ′(τ4)ci′γ(τ3), ∆Ôi′

ν′(τ3, τ4) = Ôi′

ν′(τ3, τ4)−〈Ôi′

ν′(τ3, τ4)〉.

The labels α = (α, α′), γ = (γ, γ′) are collective flavors. For the multi-band Hubbard model
they may include spin (σ) and orbital (m) quantum number, plus a fractional lattice vector
identifying a correlated basis atom in the unit cell (ic). The weight factors oνα and pν′γ , in general
complex numbers, identify the type of response. We can then rewrite Eq. (10) as

χP̂ i
ν
Ôi
′
ν′

(τ ) =
∑

αγ

pναo
ν′

γ χiα,i′γ(τ ),

with

χiα,i′γ(τ ) =
〈
T ciα(τ1)c†iα′(τ2)ci′γ(τ3)c†i′γ′(τ4)

〉
−Giα,iα′(τ1, τ2)Gi′γ,i′γ′(τ3, τ4). (11)
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Fig. 9: Diagram contributing to the linear susceptibility for a non-interacting system. The red
lines indicates that the creator/annihilator is originally from the operator P̂ν′ and the green lines
indicate that the creator/annihilator is from the operator Ôν . The corresponding frequencies
and momenta are explicitly assigned.

Performing the Fourier transform from imaginary time to Matsubara frequencies we obtain

χiα,i′γ(ν) =
1

16

∫∫∫∫
dτ eiν·τχiα,i′γ(τ ), (12)

where ν = (ν1,−ν2, ν3,−ν4). Due to the conservation of energy, only three of the four νi
frequencies are independent. Hence, for convenience we set ν1 = νn, ν2 = νn + ωm, ν3 =

νn′ + ωm, and ν4 = νn′ . Next we perform the Fourier transform from site to momentum space.
Due to the conservation of lattice momentum, only three of the four ki-vectors are independent.
After redefining k1 = k, k2 = k+q, k3 = k′+q and k4 = k′, we find the expression

χP̂ν Ôν′ (q;ν) =
∑

αγ

pναo
ν′

γ

∑

ii′

ei(Ti−Ti′ )·qχiα,i′γ(ν) =
∑

αγ

pναo
ν′

γ

1

N2
k

∑

kk′

[χ(q; iωm)]kνnα,k′νn′γ

︸ ︷︷ ︸
[χ(q;ωm)]νnα,νn′γ

.

In this expression, by summing over k and k′ we obtained [χ(q;ωm)]νnα,νn′γ . The physical
linear response function is given by the sum over the fermionic Matsubara frequencies

χP̂ν Ôν′ (q; iωm) =
∑

αγ

pναo
ν′

γ

1

β2

∑

nn′

[
χ(q;ωm)

]
νnα,νn′γ

. (13)

In the case, e.g., of the magnetic susceptibility, the operators P̂ i
ν and Ôi′

ν′ are the three compo-
nents of the magnetization operator. In the single-orbital limit (α = α′ = σ and γ = γ′ = σ′),
we thus have, e.g.,

ozα = −gµB〈σ|σ̂z|σ〉, pzα = −gµB〈σ′|σ̂z|σ′〉.
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lines from the operator Ôν′ . The box labeled with Γ is the vertex function, the one labeled with
χ the full susceptibility, and χ0 is the pair-bubble term.

3.2 DMFT and Bethe-Salpeter equation

To calculate the generalized interacting linear response function introduced in the previous sec-
tion we can use, in principle, standard many-body perturbation techniques. Let us consider a
system described by the multi-band Hubbard model Ĥ0 + ĤU , where Ĥ0 is the non-interacting
part. We can formally construct a perturbation series for χP̂ν Ôν′ (q; iωm) in the interaction ĤU .

The zero-order contribution is the linear response function for Ĥ0. Thus, due to Wick’s theorem

[
χ0(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
− βNkGkαγ′(iνn)Gk′+qα′γ(iνn′+iωm) δn,n′δk,k′

]

︸ ︷︷ ︸[
χ0(q;iωm)

]
kνnα,k′νn′γ

. (14)

The Feynman diagram corresponding to [χ0(q;ωm)]kνnα,k′νn′γ is shown in Fig. 9. Once we
switch-on the interaction, many-body perturbation theory leads to the Bethe-Salpeter (BS) equa-
tion, pictorially shown in Fig. 10. The susceptibility can then be expressed as follows

[
χ(q; iωm)

]
νnα,νn′γ

=
1

N2
k

∑

kk′

[
χ0(q; iωm) +

1

N2
k

χ0(q; iωm)Γ (q; iωm)χ(q; iωm)
]
kνnα,νn′k

′γ
.

For systems for which the dynamical mean-field is a good approximation, however, it is more
convenient to construct a diagrammatic series starting from the DMFT linear response function
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Green Function Susceptibility

local self-energy approximation local vertex approximation

local Dyson equation local Bethe-Salpeter equation

k-dependent Dyson equation matrix q-dependent Bethe-Salpeter equation matrix

G(k; i⌫n) = G0(k; i⌫n) + G0(k; i⌫n)⌃(k; i⌫n)G(k; i⌫n)

G(i⌫n) = G0(i⌫n) + G0(i⌫n)⌃(i⌫n)G(i⌫n)

� (q; i!m) ! � (i!m)

�(q; i!m) = �0(q; i!m) + �0(q; i!m)� (q; i!m)�(q; i!m)

�(i!m) = �0(i!m) + �0(i!m)� (i!m)�(i!m)

⌃(k; i⌫n) ! ⌃(i⌫n)

Fig. 11: Analogies between the calculation of the Green function G(k; iνn) in the local-self-
energy approximation (left) and the calculation of the response function χ(q; iωm) in the local
vertex approximation (right). Each term in the general Bethe-Salpeter equation can be viewed
as a square matrix of dimension NkNnNα, where Nk is the number of k points, Nn the number
of fermionic Matsubara frequencies, Nα the number of flavors.

rather than from the non-interacting term. If we do so, χ0(q;ωm) is still given by Eq. (14), but
with G replaced by the DMFT Green function matrices. Hence

[χ0(q; iωm)]νnα,νn′γ = −βδnn′
1

Nk

∑

k

Gαγ′(k; iνn)Gα′γ(k+q; iνn+iωm).

There is, however, a catch: the vertex Γ (q; iωm) is unknown. In the infinite dimension limit it
has been shown that the vertex can be replaced by a local quantity [4, 14]. Assuming that, in
the spirit of the dynamical mean-field approximation, for a real 3-dimensional system we can
do the same, we set

Γ (q; iωm) −→ Γ (iωm).

Thus, dropping for simplicity the flavor indices, after performing the k sums, the Bethe-Salpeter
equation becomes

χ(q; iωm) = χ0(q; iωm) + χ0(q; iωm)Γ (iωm)χ(q; iωm).

By solving it we find, formally

χ−1(q; iωm) = χ−1
0 (q; iωm)− Γ (iωm). (15)

To actually obtain χ(q; iωm) from this equation we need to calculate first the local vertex. The
latter can be obtained using a further approximation, i.e., assuming that (15) is also satisfied if
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Fig. 12: VOMoO4: Static magnetic susceptibility χ(q; 0)/χA(0) in the qx, qy plane for repre-
sentative qz values, T ∼ 380 K and U = 5 eV. The normalization χA(0) ∼ µ2

eff/kBT is the
atomic susceptibility in the large βU limit. Top panels: Γ = 0. Bottom panels: Γ 6= 0. Special
points: Γ1 = (2π, 0), X= (π, 0) and M= (π, π). Rearranged from Ref. [11].

we replace the q-dependent susceptibilities with their local counterparts, defined as

χ0(iωm) =
1

Nq

∑

q

χ0(q; iωm),

χ(iωm) =
1

Nq

∑

q

χ(q; iωm).

The first term is calculated directly from the DMFT Green function χ0(q; iωm). The second
term, χ(iωm), is obtained via the quantum-impurity solver in the final iteration of the DMFT
self-consistency loop. By inverting the local BS equation we have

Γ (iωm) = χ−1
0 (iωm)− χ−1(iωm). (16)

Replacing Γ (iωm) into Eq. (15) yields the q-dependent susceptibility. It has to be noticed that,
although the two equations (15) and (16) look innocent, solving them numerically is a deli-
cate task because the local susceptibility is in general not diagonal in n, n′ and does not decay
very fast with the frequencies. There are, however, various ways to reduce the computational
costs, e.g., via extrapolations [11] or using compact representations based on auxiliary polyno-
mials [15,16]. The method just illustrated for the calculation of linear response functions in the
local vertex approximation bears resemblance with the approach adopted for the calculation of
the Green functions in the local self-energy approximation. These analogies are schematically
pointed out in Fig. 11. Instead, in Fig. 12 we show as an example the case of the static magnetic
susceptibility for a one-band system, the S = 1/2 frustrated Mott insulator VOMoO4. The fig-
ure shows both the “bubble” term χ0(q; iωm) (top panels) and the full susceptibility χ(q; iωm)

(bottom panels). The two differ sizably in absolute value. In addition, as we will discuss later,
the χ0(q; iωm) term alone is very weakly dependent on the temperature. The expected Curie-
Weiss-like behavior is only recovered when Γ (iωm) is taken into account.
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3.3 The local susceptibility: Legendre representation

The core of the approach described in the previous section is the calculation of the local sus-
ceptibility tensor, χαααγγγ(τττ). In DMFT all local observables 〈Ô〉 are obtained via the quantum-
impurity solver, for example the continuous-time hybridization expansion QMC technique pre-
sented in Section 2.3. Susceptibilities, however, require sizably longer computational time than
Green-function matrices. Thus, instead of calculating directly χαααγγγ(τττ), it is convenient to express
the tensor elements in a basis of orthogonal functions fml (τ), chosen such that the representation
is as compact as possible. A successful choice [15, 16] is

fml (τ) = e−iφm(τ)

{ √
2l+1 pl(x(τ)), τ > 0

−(−1)m
√

2l+1 pl(x(τ+β)), τ < 0

where pl(x(τ)) is a Legendre polynomial of degree l, with x(τ) = 2τ/β − 1; here the factor
(−1)m in the second row ensures anti-periodicity for all values of m, which is the index for
the bosonic Matsubara frequency ωm. Via the orthogonality properties of the polynomials we
obtain

χαααγγγ(iωm) =
1

β2

∑

ll′

f−ml (0+) χl,l
′

αααγγγ(iωm) f−ml′ (0+). (17)

The expansion coefficients in Eq. (17) take the form

χl,l
′

αααγγγ(iωm) =

∫ β

0

dτ23

∫ β

0

dτ12

∫ β

0

dτ34 e
−iωmτ23fml (τ12)χαα

′

γγ′ (τ14, τ24, τ34, 0)fml′ (τ34), (18)

where τij = τi−τj , with τ14 = τ12+τ23+τ34, and τ24 = τ23+τ34. The phase defining the gauge
is φm(τ) = ωmτ/2 and does not depend on l. As we have seen, in quantum Monte Carlo the
observables are obtained as the average over the visited configurations c. Splitting (18) into two
terms [16] we have

〈
χl,l

′

αααγγγ(iωm)
〉
c

=
〈
Cl,l′αααγγγ (iωm)

〉
c
− βδm,0

〈
Gl
ααα

〉
c

〈
Gl′

γγγ

〉
c
.

The first term can be expressed as

〈
C l,l′

αααγγγ (iωm)
〉
c
=

1

β

NB∑

bb′dd′

kb,kd∑

i,j

kb′ ,kd′∑

i′,j′

fml (τdj−τ̄bi)fml′ (τd′j′−τ̄b′i′)cdb,d
′b′

ji,j′i′ (iωm)δααα,(αdj ,ᾱbi)δγγγ,(αd′j′ ,ᾱb′i′ )

where

cdb,d
′b′

ji,j′i′ (iωm) =(wdbjiw
d′b′

j′i′ − wd
′b
j′iw

db′

ji′ ) e
−iωm(τ̄bi−τd′j′ ).

Here the imaginary times τbi and τ̄bi all vary in the interval [0, β). The letters b and d label the
NB flavors decoupled by symmetry, e.g., {↑, ↓}. Finally, wdbji = δb,dMkb

bj,bi, where the matrix
Mkb = [Fkb0 ]−1 is the inverse of the hybridization function matrix Fkb0 for expansion order kb.
The Green functions in the second term are instead given by

〈
Gl
ααα

〉
c

= − 1

β

NB∑

b

kb∑

ij

f 0
l (τbj−τ̄bi)wbbji δααα,(αbj ,ᾱbi).
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3.4 Magnetic susceptibility for the single-band Hubbard model

The magnetic susceptibility is the linear response to an external magnetic field. The associated
site susceptibility is

χi,i
′

zz (τ ) =
〈
T M̂ i

z(τ)M̂ i′

z (0)
〉

0
−
〈
M̂ i

z

〉
0

〈
M̂ i′

z

〉
0
,

where M̂ i
z = −gµBŜiz is the magnetization for lattice site i. Its Fourier transform is

χzz(q; iωm) =
∑

ii′

eiq·(Ti−Ti′ )
∫
dτ eiωmτχi,i

′

zz (τ)

=
〈
M̂z(q;ωm)M̂z(−q; 0)

〉
0
−
〈
M̂z(q)

〉
0

〈
M̂z(−q)

〉
0
, (19)

where ωm is a bosonic Matsubara frequency. For the one-band Hubbard model, the magnetiza-
tion operator can be expressed in the basis of Bloch functions as

M̂z(q) = −gµB
2

∑

k

∑

σ

σc†k+qσckσ, (20)

where σ = 1 for spin up and σ = −1 for spin down. To obtain the magnetic response function
we thus have to calculate the imaginary-time tensor with elements

[
χ(q; τ )

]
kσ,k′σ′

=
〈
T ckσ(τ1)c†k+qσ(τ2)ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0

(21)

−
〈
T ckσ(τ1)c†k+qσ(τ2)〉0〈T ck′+qσ′(τ3)c†k′σ′(τ4)

〉
0
.

The associated imaginary-time magnetic susceptibility is then given by

χzz(q; τ ) = (gµB)2 1

4

∑

σσ′

σσ′
1

β

1

N2
k

∑

kk′

[χ(q; τ )]kσ,k′σ′

︸ ︷︷ ︸
χσσσ′σ′ (q;τ )

. (22)

After we Fourier transform with respect to imaginary time and sum over the fermionic Matsub-
ara frequencies, we have

χzz(q; iωm) = (gµB)2 1

4

∑

σσ′

σσ′
1

β2

∑

nn′

χn,n
′

σσσ′σ′(q; iωm), (23)

where

χn,n
′

σσσ′σ′(q; iωm) =
1

16

∫∫∫∫
dτ eiν·τχσσσ′σ′(q; τ ). (24)

For ωn = 0 we obtain the static magnetic susceptibility.
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3.4.1 Non-interacting limit

In the non-interacting limit we can use Wick’s theorem to simplify Eq. (21). It follows that the
elements of the two-particle Green function tensor vanish if k 6= k′. In the paramagnetic case,
Eq. (22) then becomes

χzz(q; τ ) = −(gµB)2 1

4

1

β

1

Nk

∑

k

∑

σ

Gkσ(τ14)Gk+qσ(−τ23).

For the frequency-dependent magnetic susceptibility Eq. (23) we have instead

χzz(q; iωm) = (gµB)2 1

4

1

β2

∑

nn′

∑

σ

χn,n
′

σσσσ(q; iωm),

where
∑

σ

χn,n
′

σσσσ(q; iωm) = −β 1

Nk

∑

k

∑

σ

Gkσ(iνn)Gk+qσ(iνn+iωm) δn,n′ . (25)

The actual dynamical susceptibility is then given by

χzz(q; iωm) = − (gµB)2 1

4

1

Nk

∑

k

∑

σ

nσ(εk+q)− nσ(εk)

εk+q − εk + iωm
.

In the q → 0 and T → 0 limit, setting ωm = 0 we recover the static Pauli susceptibility

χzz(0; 0) =
1

4
(gµB)2 ρ(εF ),

ρ(εF ) = −
∑

σ

1

Nk

∑

k

dnσ(εk)

dεk

∣∣∣∣
T=0

.

Figure 13 shows (at half filling) the non-interacting spin susceptibility in the x-y plane for a
d-dimensional hypercubic lattice with dispersion

εk = −2t
d∑

n=1

cos kd.

In d = 1 and for T → 0, χzz(q; 0) diverges at the antiferromagnetic vector qC = (π/a, 0, 0); in
two dimensions this happens at qC=(π/a, π/a, 0); in three dimensions at qC=(π/a, π/a, π/a),
not shown in the figure. These are perfect nesting vectors, for which

εk+qC = −εk,

so that

χ0(qC ; 0) ∝ 1

4

∫ εF

−∞
dε
ρ(ε)

ε
.

Under these conditions an arbitrarily small U can cause a magnetic transition with magnetic
vector qC , e.g., via a Stoner-like mechanism.
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Fig. 13: The ratio χ0(q; 0)/χ0(0; 0) in the x-y plane for a hypercubic lattice with t = 0.4 eV
(T ∼ 230 K) at half filling. From left to right: one, two, and three dimensions.

3.4.2 Atomic limit

Let us now consider the opposite extreme, the atomic limit. First we adopt a simple approach,
i.e., we directly calculate the right-hand side of Eq. (19) by summing up the contributions of the
atomic states, |0〉, c†↑|0〉, c†↓|0〉, c†↑c†↓|0〉; since all atoms are decoupled, only on-site terms i = i′

contribute. At half filling we thus have

χzz(q; iωm) = (gµB)2 1

4kBT

eβU/2

1 + eβU/2
δωm,0. (26)

The same expression can be obtained following the general procedure outlined in the previous
pages, i.e., starting from the two-particle Green function tensor χσσσ′σ′(q; τ), defined in Eq. (22)
for the single-band Hubbard model. In the atomic limit, it is convenient to work in real space,
since

χσσσ′σ′(q; τ ) =
1

β

∑

i

χiσσ,iσ′σ′(τ ).

Thanks to the symmetries of the tensor in imaginary time, it is sufficient to calculate χiσσ,iσ′σ′(τ )

for positive times 0 < τj4 < β, where τj4 = τj−τ4 with j = 1, 2, 3. Due to the time ordering
operator we have, however, to consider separately six different imaginary-time sectors. In the
Appendix one can find a list of all these sectors and their contributions. For simplicity, we
discuss here explicitly only the case τ14 > τ24 > τ34 > 0 and label the corresponding τττ -vector
as τ+. Calculating the trace we obtain

χiσσ,iσ′σ′(τ
+) =

eτ12U/2+τ34U/2 + δσσ′e
(β−τ12)U/2−τ34U/2

2(1 + eβU/2)
−Gσ

i,i(τ12)Gσ′

i,i(τ34).
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In the paramagnetic case the mean-field terms Gσ
i,i(τ12)Gσ′

i,i(τ34) cancel out in the actual mag-
netic linear response function, so here we do not give their form explicitly. For a single atom,
the contribution of the τ+ sector to the imaginary-time magnetic susceptibility is

χzz(τ
+) = (gµB)2 1

4

1

β

∑

σσ′

σσ′χiσσ,iσ′σ′(τ
+) =

(gµB)2

4β

1

(1 + eβU/2)
e(β−τ12−τ34)U/2.

Summing up the contributions of all imaginary-time sectors and performing the Fourier trans-
form we obtain χn,n

′

σσσ′σ′(iωn), defined in Eq. (24). For U 6= 0 this tensor is non-diagonal in the
fermionic Matsubara frequencies. For ωn = 0 we have [11]
∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (27)

where

Mn =
1

iνn − y
− 1

iνn + y
. (28)

We can now calculate the magnetic susceptibility via Eq. (23), recovering the expected result,
Eq. (26). The resulting atomic magnetic susceptibility is thus proportional to 1/kBT , i.e., has
a Curie-like behavior; furthermore it is zero at finite frequency. The temperature dependence
can be remarkably different from the U = 0 limit. Indeed, if the density of states is flat around
the Fermi level, as it is often the case in three-dimensional lattices, the non-interacting Pauli
susceptibility χzz(0; 0) is weakly temperature dependent. A strong temperature dependence
can be found, however, if, e.g., a logarithmic van-Hove singularity is at the Fermi level, as in
the example discussed in the previous subsection for the square lattice at half filling.

3.4.3 DMFT: χ0(q;ω) and the Bethe-Salpeter equation

In order to calculate the magnetic susceptibility with DMFT, we first need χ0(q;ω). Here for
simplicity we consider only the two-dimensional case with εk = −2t(cos kx + cos ky). In the
atomic limit we can rewrite the local Green function as

Gσ
i,i(iνn) =

1

iνn + µ− εd −Σσ
l (iνn)

,

where the local self-energy is given by

Σσ
l (iνn) =

U

2
+
U2

4

1

iνn + µ− εd − U
2

, (29)

and µ = εd + U
2

at half filling. In the Mott insulating regime, i.e., for small but finite t/U, we
can assume that the local self-energy has the same form (29), with U2/4 replaced by a quantity
which plays the role of a dimensionless order parameter [17] for the insulating phase

1

rU

4

U2
=

∫ +∞

−∞
dε

ρ(ε)

ε2
. (30)
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Fig. 14: Graphical solution of the equation ω − εk = Σσ
l (ω) yielding the poles E+

k and E−k of
the Green function defined in Eq. (31).

Here ρ(ε) is the density of states per spin. The integral in Eq. (30) diverges in the metallic
phase. The Green function can then be rewritten as

Gσσ(k; iνn) =
1

iνn −Σσ
l (iνn)− εk

=
1

E+
k−E−k

[
E+
k

iνn − E+
k

− E−k
iνn − E−k

]
(31)

where E+
k and E−k are the two roots of the equation ω −Σσ

l (ω)− εk = 0,

E±k =
1

2
εk ±

1

2

√
ε2
k + rU U2.

By performing the Matsubara sums, one finds

χ0
zz(q; 0) = (gµB)2 1

4

∑

σ

1

β2

∑

n

χn,nσσσσ(0)

= (gµB)2 1

2

1

Nk

∑

k

[
−I++

k,q − I−−k,q︸ ︷︷ ︸
Ak,q

+ I+−
k,q + I−+

k,q︸ ︷︷ ︸
Bk,q

,
]

where, setting α = ± and γ = ±,

Iαγk,q =
Eα
k E

γ
k+q(

E+
k − E−k

)(
E+
k+q − E−k+q

) n(Eα
k )− n(Eγ

k+q)

Eα
k − Eγ

k+q

.

In the q → 0 limit

Ak,0 = β

[
(E+

k )2

ε2
k + rU U2

n(E+
k )
(
1− n(E+

k )
)

+
(E−k )2

ε2
k + rU U2

n(E−k )
(
1− n(E−k )

)]

Bk,0 =
rU U

2

2(ε2
k + rU U2)3/2

(
n(E−k )− n(E+

k )
)
.

In the large βU limit, the Ak,0 term, proportional to the density of states at the Fermi level,
vanishes exponentially; the Bk,0 term yields the dominant contribution. Hence

χ0
zz(0; 0) ∼ (gµB)2 1

4

1

Nk

∑

k

rU U
2

(ε2
k+rU U2)3/2

∼ (gµB)2 1

4
√
rU U

[
1− 3

2

1

Nk

∑

k

ε2
k

rU U2
+ . . .

]
.
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The right-hand side is equal to the atomic term χ0
zz(0) minus a correction of order t2/U3. As

we can see, χ0
zz(0; 0) is small and weakly dependent on the temperature. In the Mott-insulating

regime, due to the superexchange interaction, the two-dimensional Hubbard model exhibits
an antiferromagnetic instability at qC = (π/a, π/a, 0). Let us then calculate χ0

zz(qC ; 0) and
compare it with χ0

zz(0; 0). Since, as we have seen, εk+qC = −εk, we find

Ak,qC =
1

2

rU U
2

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk

Bk,qC =
1

2

ε2
k

ε2
k + rU U2

n(E+
k−εk)− n(E+

k )

εk
− 1

2

1√
ε2
k + rU U2

(
n(E+

k )− n(E−k )
)
,

and therefore

χ0(qC ; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

1

Nk

∑

k

ε2
k

rUU2

)
.

Thus χ0(q; 0) is indeed larger at q = qC than at q = 0; it is however weakly temperature
dependent and does not exhibit Curie-Weiss instabilities. The calculation presented above can
be generalized to any q vector [11], obtaining the expression

χ0(q; 0) ∼ (gµB)2 1

4
√
rUU

(
1− 1

2

J0√
rUU

− 1

4

Jq√
rUU

)
, (32)

where Jq = J
(

cos qx + cos qy
)
, and the super-exchange coupling is J = 4t2/U . To make

progress we now need the local vertex. This requires, as we have seen, the solution of the self-
consistent quantum-impurity model via the quantum-impurity solver. Here, for the purpose of
illustrating how the approach works, we approximate the local susceptibility with the atomic
susceptibility in the large βU limit. Furthermore we work with the susceptibilities obtained
after the Matsubara sums have been performed. Thus

χ0
zz(0) ∼ (gµB)2 1

4
√
rUU

, χzz(0) ∼ 1

4kBT
.

The local vertex is then approximately given by

Γ ∼ 1

χ0
zz(0)

− 1

χzz(0)
∼ 1

(gµB)2

[
4
√
rUU

(
1 +

1

2

J0√
rUU

)
− 4kBT

]
.

The last step consists in solving the Bethe-Salpeter equation

χzz(q; 0) =
1

(χ0
zz(q; 0))−1 − Γ ∼

(gµB)2

4

1

kBT + Jq/4
=

(gµB)2

4kB

1

T−Tq
.

This shows that including the local vertex correction we recover the Curie-Weiss behavior, as
expected for a system described by local spins coupled by a Heisenberg-like exchange; we
also correctly find the antiferromagnetic instability, since qC is the vector for which the critical
temperature Tq is the largest. In conclusion, we have seen that Γ (iωm) is essential to properly
describe the magnetic response function of strongly-correlated systems. This can be seen in
Fig. 12 for the Mott insulator VOMoO4. In the figure we can compare the very weak linear
magnetic response χ0(q; 0) (upper panels) with the LDA+DMFT result χ(q; 0) (lower panels).
The latter is not only strongly enhanced with respect to χ0(q; 0), but also exhibits the expected
Curie-Weiss like behavior, as can be seen in Fig. 15 for q = 0.
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Fig. 15: VOMoO4: The Curie-Weiss behavior of the uniform magnetic susceptibility at half
filling, obtained with the LDA+DMFT approach. Rearranged from Ref. [11].

4 Conclusion

The LDA+DMFT approach and its extension has proved very successful for describing corre-
lated materials. It has shown us that materials details do matter, contrarily to what often was
assumed in the past; for example a crystal field much smaller than the bandwidth can favor the
Mott metal-insulator transition [18]. The method is becoming progressively more and more
versatile. It is now possible, e.g., to study multi-orbital Hubbard-like models including the
full Coulomb vertex and the spin-orbit interaction. Successful extension schemes, e.g., clus-
ter methods, account, at least in part, for the q-dependence of the self-energy. In this lecture,
we have seen how to use the LDA+DMFT approach to calculate not only Green and spectral
functions but also linear-response functions. In the scheme presented, the local susceptibil-
ity is obtained via the quantum-impurity solver at the end of the self-consistency loop; the
q-dependent susceptibility is, instead, calculated solving in addition the Bethe-Salpeter equa-
tion in the local-vertex approximation. As representative case we have studied the magnetic
susceptibility of the one-band Hubbard model at half filling. The extension of the LDA+DMFT
approach to the calculation of generalized susceptibilities makes it possible to put the method
and the approximations adopted to more stringent tests. This is key for further advancing the
theoretical tools for the description of strong correlation effects in real materials.
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Appendix

A Eigenstates of two-site models

A.1 Hubbard dimer

The Hamiltonian of the Hubbard dimer is given by

Ĥ = εd
∑

σ

∑

i=1,2

n̂iσ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ U

∑

i=1,2

n̂i↑n̂i↓.

It commutes with the number of electron operator N̂ , with the total spin Ŝ and with Ŝz. Thus
we can express the many-body states in the atomic limit as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εd

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 2εd

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 2εd

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 2εd

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 2εd

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εd + U

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 3εd + U

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 3εd + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 4εd + 2U

Let us order the N = 1 states as in the table above, first the spin up and then spin down block.
For finite t the Hamiltonian matrix for N = 1 electrons takes then the form

Ĥ1 =




εd −t 0 0

−t εd 0 0

0 0 εd −t
0 0 −t εd



.
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This matrix can be easily diagonalized and yields the bonding (−) and antibonding (+) states

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
εd + t 2

|1, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
εd − t 2

where dα(N) is the spin degeneracy of the α manifold.
For N = 2 electrons (half filling), the hopping integrals only couple the three S = 0 states, and
therefore the Hamiltonian matrix is given by

Ĥ2 =




2εd 0 0 0 0 0

0 2εd 0 0 0 0

0 0 2εd 0 0 0

0 0 0 2εd −
√

2t −
√

2t

0 0 0 −
√

2t 2εd + U 0

0 0 0 −
√

2t 0 2εd + U




.

The eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = a1|2, 0, 0〉0 − a2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U +∆(t, U)) 1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd 3

|2, 0, 0〉− = a2|2, 0, 0〉0 + a1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + 1

2
(U −∆(t, U)) 1

where

∆(t, U) =
√
U2 + 16t2,

and

a2
1 = a2

1(t, U) =
1

∆(t, U)

∆(t, U)− U
2

a2
2 = a2

2(t, U) =
4t2

∆(t, U)

2

(∆(t, U)− U)
,

so that a1a2 = 2t/∆(t, U). For U = 0 we have a1 = a2 = 1/
√

2, and the two states |2, 0, 0〉−
and |2, 0, 0〉+ become, respectively, the state with two electrons in the bonding orbital and the
state with two electrons in the antibonding orbital; they have energy E±(2, 0) = 2εd ± 2t; the
remaining states have energy 2εd and are non-bonding. For t > 0, the ground state is unique
and it is always the singlet |2, 0, 0〉−; in the large U limit its energy is

E−(2, 0) ∼ 2εd − 4t2/U.
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In this limit the energy difference between the first excited state, a triplet state, and the singlet
ground state is thus equal to the Heisenberg antiferromagnetic coupling

Eo(2, 1)− E−(2, 0) ∼ 4t2/U = Γ.

Finally, for N = 3 electrons, eigenstates and eigenvectors are

|3, S, Sz〉α Eα(3) dα(3, S)

|3, 1/2, σ〉+ = 1√
2

(
|1, 1/2, σ〉1 + |1, 1/2, σ〉2

)
3εd + U + t 2

|3, 1/2, σ〉− = 1√
2

(
|1, 1/2, σ〉1 − |1, 1/2, σ〉2

)
3εd + U − t 2

If we exchange holes and electrons, the N = 3 case is identical to the N = 1 electron case.
This is due to the particle-hole symmetry of the model.

A.2 Anderson molecule

The Hamiltonian of the Anderson molecule is given by

Ĥ = εs
∑

σ

n̂2σ − t
∑

σ

(
c†1σc2σ + c†2σc1σ

)
+ εd

∑

σ

n̂1σ + Un̂1↑n̂1↓.

In the atomic limit, its eigenstates states can be classified as

|N,S, Sz〉 N S E(N,S)

|0, 0, 0〉 = |0〉 0 0 0

|1, 1/2, σ〉1 = c†1σ|0〉 1 1/2 εd

|1, 1/2, σ〉2 = c†2σ|0〉 1 1/2 εs

|2, 1, 1〉 = c†2↑c
†
1↑|0〉 2 1 εd + εs

|2, 1,−1〉 = c†2↓c
†
1↓|0〉 2 1 εd + εs

|2, 1, 0〉 = 1√
2

(
c†1↑c

†
2↓ + c†1↓c

†
2↑

)
|0〉 2 1 εd + εs

|2, 0, 0〉0 = 1√
2

(
c†1↑c

†
2↓ − c†1↓c†2↑

)
|0〉 2 0 εd + εs

|2, 0, 0〉1 = c†1↑c
†
1↓|0〉 2 0 2εd + U

|2, 0, 0〉2 = c†2↑c
†
2↓|0〉 2 0 2εs

|3, 1/2, σ〉1 = c†1σc
†
2↑c
†
2↓|0〉 3 1/2 εd + 2εs

|3, 1/2, σ〉2 = c†2σc
†
1↑c
†
1↓|0〉 3 1/2 2εd + εs + U

|4, 0, 0〉 = c†1↑c
†
1↓c
†
2↑c
†
2↓|0〉 4 0 2εd + 2εs + U
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For N = 1 electrons the Hamiltonian can be written in the matrix form

Ĥ1 =




εd −t 0 0
−t εs 0 0
0 0 εd −t
0 0 −t εs


 .

The eigenstates are thus

|1, S, Sz〉α Eα(1, S) dα(1, S)

|1, 1/2, σ〉+ = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 1
2

(
εd + εs +

√
(εd−εs)2 + 4t2

)
2

|1, 1/2, σ〉− = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 1
2

(
εd + εs −

√
(εd−εs)2 + 4t2

)
2

where dα(N) is the spin degeneracy of the α manifold. For εs = εd + U/2 the eigenvalues are

E±(1, S) = εd +
1

4

(
U ±∆(t, U)

)
,

while the coefficients are α1 = a1(t, U) and α2 = a2(t, U).

For N=2 electrons, the hopping integrals only couple the S=0 states. The Hamiltonian is

Ĥ2 =




εd+εs 0 0 0 0 0

0 εd+εs 0 0 0 0

0 0 εd+εs 0 0 0

0 0 0 εd+εs −
√

2t −
√

2t

0 0 0 −
√

2t 2εd+U 0

0 0 0 −
√

2t 0 2εs




For εs = εd + U/2 the eigenvalues and the corresponding eigenvectors are

|2, S, Sz〉α Eα(2, S) dα(2, S)

|2, 0, 0〉+ = b1|2, 0, 0〉0 − b2√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U + 2∆(t, U

2
)
)

1

|2, 0, 0〉o = 1√
2

(
|2, 0, 0〉1 − |2, 0, 0〉2

)
2εd + U 1

|2, 1,m〉o = |2, 1,m〉 2εd + U
2

3

|2, 0, 0〉− = b2|2, 0, 0〉0 + b1√
2

(
|2, 0, 0〉1 + |2, 0, 0〉2

)
2εd + U

2
+ 1

4

(
U − 2∆(t, U

2
)
)

1

where b1 = a1(t, U/2) and b2 = a2(t, U/2). These states have the same form as in the case
of the Hubbard dimer; the ground state energy and the weight of doubly occupied states in
|2, 0, 0〉− differ, however. Finally, for N = 3 electrons, the eigenstates are

|3, S, Sz〉α Eα(3, S) dα(3, S)

|3, 1/2, σ〉+ = α2|1, 1/2, σ〉1 + α1|1, 1/2, σ〉2 3εd + U + 1
4

(
U +∆(t, U)

)
2

|3, 1/2, σ〉− = α1|1, 1/2, σ〉1 − α2|1, 1/2, σ〉2 3εd + U + 1
4

(
U −∆(t, U)

)
2
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B Lehmann representation of the local Green function

For a single-orbital model, the local Matsubara Green function for a given site i is defined as

Gσ
i,i(iνn) = −

∫ β

0

dτeiνnτ
〈
T ciσ(τ)c†iσ(0)

〉
,

where T is the time-ordering operator, β = 1/kBT , and νn a fermionic Matsubara frequency.
Let us assume we know all eigenstates |Nl〉 and their energy El(N), for arbitrary number of
electrons N . Thus, formally

Gσ
i,i(iνn) =− 1

Z

∑

Nl

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)c†iσ(0)
∣∣Nl

〉
,

where Z =
∑

Nl e
−∆El(N)β is the partition function, ∆El(N) = El(N) − µN with µ the

chemical potential, and c†iσ(0) = c†iσ. We now insert a complete set of states, obtaining

Gσ
i,i(iνn) =− 1

Z

∑

ll′NN ′

∫ β

0

dτeiνnτe−∆El(N)β
〈
Nl

∣∣ciσ(τ)|N ′l′
〉〈
N ′l′
∣∣c†iσ
∣∣Nl

〉

=− 1

Z

∑

ll′NN ′

∫ β

0

dτe−∆El(N)βe(iνn+∆El(N)−∆El′ (N ′))τ
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2

=
1

Z

∑

ll′NN ′

e−∆El′ (N
′)β + e−∆El(N)β

iνn +∆El(N)−∆El′(N ′)
∣∣〈N ′l′|c†iσ|Nl〉

∣∣2.

Due to the weight
∣∣〈N ′l′ |c†iσ(0)|Nl〉

∣∣2 only the terms for whichN ′ = N+1 contribute. Thus, after
exchanging the labels l′N ′ ↔ lN in the first addend, we obtain the Lehmann representation

Gσ
i,i(iνn)=

∑

ll′N

e−β∆El(N)

Z

( ∣∣〈(N−1)l′|ciσ|Nl〉
∣∣2

iνn −∆El(N)+∆El′(N−1)
+

∣∣〈(N+1)l′ |c†iσ|Nl〉
∣∣2

iνn −∆El′(N+1)+∆El(N)

)
.

Let us consider as example the atomic limit of the Hubbard model at half filling. In this case
all sites are decoupled; there are four eigenstates per site, the vacuum |0〉, with ∆E(0) = 0, the
doublet |1σ〉 = c†iσ|0〉, with ∆Eσ(1) = −U/2, and the doubly-occupied singlet |2〉 = c†i↑c

†
i↓|0〉,

with ∆E(2) = 0. Furthermore, Z = 2(1 + eβU/2) and

∣∣〈(N−1)l′ |ciσ|Nl〉
∣∣2=

{
1 if |Nl〉=|2〉 ∨ |1σ〉
0 otherwise

∣∣〈(N+1)l′|c†iσ|Nl〉
∣∣2=

{
1 if |Nl〉=|0〉 ∨ |1−σ〉
0 otherwise

Thus, after summing up the four non-zero contributions, we find

Gσ
i,i(νn) =

1

2

(
1

iνn + U/2
+

1

iνn − U/2

)
.
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C Atomic magnetic susceptibility

Let us consider an idealized single-level atom described by the Hamiltonian

Ĥ = εd
(
n̂↑ + n̂↓

)
+ Un↑n↓.

The eigenstates of this system, |ΨNi 〉, as well as their expectation values at half filling are

|ΨNi 〉 N ∆Ei =
〈
ΨNi
∣∣Ĥ − µN̂

∣∣ΨNi
〉

|0〉 0 0

c†σ|0〉 1 −U
2

c†↑c
†
↓|0〉 2 0

The magnetic susceptibility in Matsubara space is given by

[
χzz(iωm)

]
nn′

= β
1

4
(gµB)2

∑

P

sign(P )fP

fP (iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34fP (τ14, τ24, τ34)

where P = A,B, . . . are the six possible permutations of the indices (123) and

fP (τ14, τ24, τ34) =
1

Z

∑

σσ′

σσ′Tr e−β(Ĥ−µN̂)
[
ôP1(τ14)ôP2(τ24)ôP3(τ34)c†σ′

]

=
1

Z

∑

σσ′

σσ′
∑

ijkl

e−β∆Ei〈i|ôP1|j〉〈j|ôP2 |k〉〈k|ôP3|l〉〈l|c†σ′ |i〉

×
[
e∆Eijτ14+∆Ejkτ24+∆Eklτ34

]
,

where ∆Eij = ∆Ei −∆Ej . For the identity permutation the operators are ôP1 = cσ, ôP2 = c†σ,
and ôP3 = cσ′ and the frequencies are ω1 = νn, ω2 = −ωm−νn, ω3 = ωm+νn′ . This expression
can be used to calculate the magnetic susceptibility of any one-band system whose eigenvalues
and eigenvectors are known, e.g., via exact diagonalization. In the case of our idealized atom

fE(τ14, τ24, τ34) =
1

(1 + eβU/2)
eβU/2 e−(τ12+τ34)U/2 =

1

(1 + eβU/2)
gE(τ14, τ24, τ34).

The frequencies and functions fP (τ14, τ24, τ34) for all permutations are given in the table below

ωP1 ωP2 ωP3 gP (τ14, τ24, τ34) sign(P )

E(123) νn −ωm − νn ωm + νn′ eβU/2 e−(τ12+τ34)U/2 +

A(231) −ωm − νn ωm + νn′ νn eβU/2 e−(τ12+τ34)U/2 +

B(312) ωm + νn′ νn −ωm − νn −e+(τ12+τ34)U/2 +

C(213) −ωm − νn νn ωm + νn′ −eβU/2e−(τ12+τ34)U/2 −
D(132) νn ωm + νn′ −ωm − νn e+(τ12+τ34)U/2 −
F (321) ωm + νn′ −ωm − νn νn e+(τ12+τ34)U/2 −
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The missing ingredient is the integral

IP (x,−x, x;iωP1 , iωP2 , iωP3) =

∫ β

0

dτ14

∫ τ14

0

dτ24

∫ τ24

0

dτ34 e
iωP1τ14+iωP2τ24+iωP3τ34ex(τ14−τ24+τ34)

= +

∫ β

0

dτ14

∫ τ14

0

dτ

∫ τ14−τ

0

dτ ′ e(iωP1+iωP2+iωP3+x)τ14−i(ωP2+ωP3 )τe−(iωP3+x)τ ′

= +
1

iωP3 + x

1

−iωP2 + x

[
1

iωP1 + x

1

n(x)
+ βδωP1+ωP2

]

+
1

iωP3 + x

1− δωP2+ωP3

i(ωP2 + ωP3)

[
1

iωP1 + x
− 1

i(ωP1 + ωP2 + ωP3) + x

]
1

n(x)

+ δωP2+ωP3

1

iωP3 + x

{[
1

(iωP1 + x)

]2
1

n(x)
− β

[
1

(iωP1 + x)

]
1− n(x)

n(x)

}
.

where x = ±U/2, depending on the permutation. Summing up all terms we obtain the final
expression for ωm = 0. Setting y = U/2 we have in total [11]

∑

σσ′

σσ′ χn,n
′

iσσ,iσ′σ′(0) =Mn′
dMn

dy
+Mn

dMn′

dy
− βn(y)

[
δn,n′ + δn,−n′

]
dMn

dy
+ βn(−y)MnMn′

−1

y

{
Mn′ − β

[
n(y)δn,−n′ − n(−y)δn,n′

]}
Mn (33)

where

Mn =
1

iνn − y
− 1

iνn + y
. (34)

The finite frequency term (not given here) vanishes once we sum over n, n′.
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9.2 Alexander Lichtenstein

1 Introduction: Reference systems

In this lecture we give an introduction to the theoretical description of strongly correlated mate-
rials based on non-local extensions of the dynamical mean-field theory (DMFT). This scheme
combines the numerically exact DMFT solution of the effective impurity problem with an an-
alytical non-local perturbation scheme. The frequency dependent effective impurity DMFT
problem nowadays can be efficiently solved within the continuous time quantum Monte Carlo
(CT-QMC) scheme [1]. Therefore the perturbation theory needs to be formulated in the ac-
tion path-integral formalism. We give a brief introduction to the path integral over fermionic
Grassmann fields and formulate a general scheme for the expansion around the DMFT solution
using a special dual-space transformation. We discuss here a general way to include nonlocal
correlations beyond the DMFT, based on the generalized Hubbard model [2] and describe the
dual-fermion formalism [3].

Consider the noninteracting, “kinetic” part Ht of the Hubbard model first [4]. This is fixed
by specifying the hopping-matrix elements tij between sites i and j. In the absence of the
local Hubbard-interaction term, Ht is easily diagonalized. For a Hubbard model on a lattice,
diagonalization is achieved by Fourier transformation of the hopping parameters to k-space, and
one has the normal “band structure” for a single-orbital model, particularly the simple εk = tk
with band-width W. If, on the other hand, only the local part of the Hamiltonian is kept, i.e.,
the Hubbard interaction HU with interaction strength U and the local term of Ht is fixed by
the on-site energy ε0, the diagonalization of the Hamiltonian is again trivial and reduces to the
diagonalization of a single “Hubbard atom”.

The great success of the DMFT approach is related to it numerically interpolating between these
two limits [5]. For the Hubbard model on an infinite-dimensional Bethe lattice at half-filling
the DMFT gives the exact description of the Mott-transition [6] between the weak-coupling
(U/W�1) metallic state and the strong-coupling (U/W�1) insulating paramagnetic state [7].
In a nutshell, DMFT maps the correlated Hubbard lattice problem onto the self-consistent solu-
tion of an effective Anderson impurity problem with a single interacting Hubbard atom (inter-
action strength U ) in a non-interacting fermionic bath (which mimics the rest of the crystal).

Now we can think of how to incorporate nonlocal correlations beyond the DMFT: since the
Hubbard and the Anderson-impurity model share the same interaction part, one can think of the
Hubbard model as the impurity model plus a residual term ∝ (tk−∆ν) and treat this perturba-
tively. Since this term is frequency dependent, we need a novel perturbation theory based on the
action formalism. One may view this idea as a generalization of the Kohn-Sham idea in density
functional theory (DFT) [8] of an optimal reference system, but with a crucial difference. Here,
not an interacting homogeneous electron gas, but an effective impurity model, tailored to the
problem of strong correlations, serves as the reference system, see Fig. 1. Since in zeroth or-
der of this perturbative expansion, i.e., on the level of the DMFT problem, we already have an
interacting problem and since the perturbation is momentum and frequency dependent, one is
forced to replace the Hamiltonians by actions within the path-integral formalism. Note that the
fermion path-integral can also be used to formulate the DMFT itself [5,9]. Now, the separation
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Fig. 1: Schematic representation of the reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by fermionic
bath, specified by the hybridization function ∆. (iii) GW+DMFT with a correlated atom in a
fermionic (∆) and a bosonic bath (Λ) due to effects of the frequency-dependent screening of
long-range Coulomb (V ) interactions.

of the local and nonlocal terms is achieved by a Hubbard-Stratonovich transformation applied
to the single-particle (tk−∆ν)-term [3]. This provides us with a new action. Moreover, it is
formally possible to integrate-out the original local degrees of freedom and in this way gener-
ated an effective action in the transformed, so-called dual-fermion representation [3]. Note that
integrating out the local degrees of freedom is not only a formal step but can be achieved in
practice, by solving the impurity problem within the numerically exact CT-QMC method.

The dual action consists of a bare dual propagator (non-local part of the DMFT Green function)
G̃0

k,ν and a local but frequency-dependent effective potential related to scattering processes of
two, three, and more dual particles on the impurity site. The simplest two-particle dual potential
coincides with the fully connected part of the screened impurity interaction vertex γωνν′ , which
can be calculated with the impurity CT-QMC solver as a function of bosonic (ω) and fermionic
(ν, ν ′) Matsubara frequencies. Normally, correlations between three particles on the DMFT
impurity site are much weaker than two-particle correlations and can be ignored. The same ap-
plies to higher-order terms. One can think of the dual-fermion formalism as an expansion in the
order of local multi-particle correlation functions. This means that “bare” interactions between
dual fermions are related with the connected part of the screened impurity vertex. Standard di-
agrammatic techniques can be applied for calculations of the bold dual propagator G̃k,ν , which
allows to obtain the nonlocal self-energy for the original fermions [3] and to describe nonlocal
correlations beyond the DMFT.

The dual-fermion approach is not necessarily bound to a specific starting point. However, the
DMFT starting point is very efficient. Namely, it corresponds to the elimination of all local
diagrams for any n-particle correlation of dual fermions when using the DMFT self-consistency
equation. In the dual space, this simply reduces to

∑
k G̃

0
k,ν = 0 and means that, on average
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over the whole Brillouin zone, ∆ν optimally approximates the electron spectrum εk, including
its local correlation effects. Therefore, the noninteracting dual fermions correspond to strongly
correlated DMFT quasiparticles, and the remaining nonlocal effects can be quite small and
reasonably described by perturbative summations of dual diagrams. This also explains the
notion “dual fermions”.

2 Functional approach

We introduce a general functional approach which will cover the density functional (DFT),
dynamical mean-field, (DMFT) and Baym-Kadanoff (BK) theories [9]. Let us start from the
full many-body Hamiltonian describing electrons moving in the periodic external potential of
ions V (r) with chemical potential µ and interacting via Coulomb law: U(r− r′) = 1/|r− r′|.
We use the atomic units ~ = m = e = 1. In the field-operator representation the Hamiltonian
has the form

H=
∑
σ

∫
dr ψ̂†σ(r)

(
−∇

2

2
+V (r)−µ

)
ψ̂σ(r)+

1

2

∑
σσ′

∫
dr

∫
dr′ψ̂†σ(r)ψ̂

†
σ′(r

′)U(r−r′) ψ̂σ′(r′)ψ̂σ(r)

(1)
We can always use a single-particle orthonormal basis set in solids ϕn(r), for example Wannier
orbitals with full set of quantum numbers, e.g., site, orbital and spin index: n = (i,m, σ) and
expand the fields in creation and annihilation operators

ψ̂(r) =
∑
n

ϕn(r) ĉn ψ̂†(r) =
∑
n

ϕ∗n(r) ĉ
†
n. (2)

Going from fermionic operators to the Grassmann variables {c∗n, cn}we can write the functional
integral representation for partition function of the many-body Hamiltonian in the imaginary
time domain using the Euclidean action S

Z =

∫
D[c∗, c] e−S , S =

∑
12

c∗1(∂τ + t12)c2 +
1

2

∑
1234

c∗1c
∗
2 U1234 c4c3, (3)

where the one- and two-electron matrix elements are defined as

t12 =

∫
drϕ∗1(r)

(
−1

2
∇2 + V (r)− µ

)
ϕ2(r) (4)

U1234 =

∫
dr

∫
dr′ ϕ∗1(r)ϕ

∗
2(r
′)U(r−r′)ϕ3(r)ϕ4(r

′).

and we use the following short definition of the sum∑
1

· · · ≡
∑
im

∫
dτ · · · (5)

The one-electron Green function is defined via a simple non-zero correlation function for fermions

G12 = −
〈
c1c
∗
2

〉
S
= − 1

Z

∫
D[c∗, c] c1c∗2 exp(−S). (6)
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=
c G- +

Fig. 2: Representation of the full two-particle Green function in terms of trivial products of
single-particle Green function and the full vertex function Γ.

The main problem of strongly interacting electronic systems are related to the fact that the
higher-order correlation functions do not separate into products of lower order correlation func-
tion. For example the two-particle Green function or generalized susceptibility (X) is defined
in the following form [10]

X1234 =
〈
c1c2c

∗
3c
∗
4

〉
S
=

1

Z

∫
D[c∗, c] c1c2c∗3c∗4 exp(−S), (7)

and can be expressed graphically through the Green functions and the full vertex function Γ1234

[10, 11] (see Fig. 2)

X1234 = G14G23 −G13G24 +
∑

1′2′3′4′

G11′G22′Γ1′2′3′4′G3′3G4′4 (8)

In the case of non-interacting electron systems, the high-order correlations X are reduced to
the antisymmetrized product of lower-order correlations G, which correspond to the first two
terms (Hartree- and Fock-like) with the vertex function Γ in Eq. (8) equal to zero. In strongly
correlated electron systems the last part with the vertex is dominant and even diverges close to
the electronic phase transitions.
The Baym-Kadanoff functional [12] gives the one-particle Green function and the total free
energy at its stationary point. In order to construct the exact functional of the Green function
(Baym-Kadanoff) we modify the action by introducing the source term J

S[J ] = S +
∑
12

c∗1J12c2. (9)

The partition function Z, or equivalently the free energy of the system, F, becomes a functional
of the auxiliary source field

Z[J ] = e−F [J ] =

∫
D[c∗, c] e−S′[J ]. (10)

Variation of this source function gives all correlation functions, for example the Green function

G12 =
δF [J ]

δJ21

∣∣∣∣
J=0

. (11)

If we use the definition of the generalized susceptibility as a second variation of the F [J ] func-
tional instead of Z[J ] we will get only the connected part of the X-function, which is repre-
sented by the last term in Eq. (8).
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The Baym-Kadanoff functional can be obtained by the Legendre transform from variable J toG

F [G] = F [J ]− Tr(JG), (12)

We can use the standard decomposition of the free energy F into the single-particle part and the
correlated part

F [G] = Tr lnG− Tr (ΣG) + Φ[G], (13)

were Σ12 is the single particle self-energy and Φ[G] is the correlated part of the Baym-Kadanoff
functional and is equal to the sum of all two-particle irreducible diagrams. At the station-
ary point this functional gives the free energy of the system. In practice, Φ[G] is not known
for interacting electron systems, which is similar to the problem in density functional theory.
Moreover, this general functional approach reduces to DFT, if one uses only the diagonal part
in space-time of the Green function, which corresponds to the one-electron density

n1 = G12 δ12 = 〈c∗1c1〉S, (14)

with the Kohn-Sham potential VKS = Vext+VH+Vxc playing the role of the “constrained field”.
Here Vext is the external potential and VH the Hartree potential. In principle the exchange-
correlation potential Vxc is known only for the homogeneous electron gas, therefore in all prac-
tical applications one uses a so-called local density approximation to DFT. In this case the DFT
functional defined as

FDFT [n] = T0[n] + Vext[n] + VH [n] + Vxc[n] (15)

where T0 is kinetic energy of non-interacting systems. Finally, if we define the total electron
density as

n(r) =
∑
i

ϕ∗i (r)ϕi(r)

the local density approximation to the DFT reads

T0[n] + Vext[n] =
∑
i

∫
drϕ∗i (r)

(
−1

2
∇2 + Vext(r)− µ

)
ϕi(r) (16)

VH [n] =
1

2

∫
drn(r)U(r−r′)n(r′) (17)

Vxc[n] =

∫
drn(r)ε(n(r)) (18)

where ε(n) is the exchange-correlation density for the homogeneous electron gas, which can be
calculated within a QMC-scheme [13].
In the DFT scheme we lose information about the non-equal time Green function, which gives
the single particle excitation spectrum as well as the k-dependence of the spectral function,
and restrict ourselves to only the ground state energy of the many-electron system. Moreover,
we also lose also information about all collective excitations in solids, such as plasmons or
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Fig. 3: Generic Hubbard lattice for correlated lattice fermions with the local Coulomb interac-
tion U and hopping parameters t: m can label different orbitals or lattice sites.

magnons, which can be obtained from a generalized susceptibility or from the second variation
of the free-energy.
One can probably find the Baym-Kadanoff interacting potential Φ[G] for simple lattice models
using quantum Monte Carlo (QMC). Unfortunately due to the sign problem in lattice simula-
tions this numerically exact solution of the electronic correlations is not feasible. On the other
hand, one can obtain the solution of a local interacting quantum problem in a general fermionic
bath, using the QMC scheme, which has no sign problem if it is diagonal in spin and orbital
space. Therefore, a reasonable approach to strongly correlated systems is to keep only the local
part of the many-body fluctuations. In such a Dynamical Mean-Field Theory (DMFT) one can
obtain numerically the correlated part of the local functional. In this scheme we only use the
local part of many electron vertex and obtain, in a self-consistent way, an effective functional
of the local Green function. In the following section we discuss the general dual fermion (DF)
transformations [3] which help us to separate the local fluctuations in many-body system and
show a perturbative way to go beyond the DMFT approximations.

3 Dual fermion approach with a general reference system

We start with a general lattice fermion model with the local Hubbard-like interaction vertex U.
Generalization to the multi-orbital case is straightforward [14]. All equations will be written
in matrix form, giving an idea of how to rewrite the dual fermion (DF) formula to the multi-
orbital or multi-site case. The general strategy is related with the formally exact separation of
the local and non-local correlation effects. We introduce auxiliary dual fermionic fields which
will couple local correlated impurities or clusters back to the original lattice [3].
Using the path-integral formalism (Appendix A) the partition function of a general fermionic
lattice system (Fig. 3) can be written in following form as a functional integral over Grassmann
variables [c∗, c]

Z =

∫
D[c∗, c] exp

(
−SL[c∗, c]

)
.

The original lattice action of interacting lattice fermions, similar to Eq. (3), can be written in
Matsubara space as a sum of the lattice one-electron contributions with the Fourier transformed
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U

D

Fig. 4: Schematic view on the real-space DMFT reference system.

hopping tk (or energy spectrum in the single-orbital case) and the local interaction part U

SL[c
∗, c] = −

∑
kνσ

c∗kνσ
(
iν+µ−tk

)
ckνσ +

∑
i

∫ β

0

dτ U n∗iτ↑niτ↓ . (19)

In the following, ν = (2n+1)π/β, (ω = 2nπ/β), n = 0,±1, . . . are the fermionic (bosonic)
Matsubara frequencies, β is the inverse temperature, τ ∈ [0, β) the imaginary time, and µ the
chemical potential. The index i labels the lattice sites, m refers to different orbitals, σ is the
spin projection and the k-vectors are quasimomenta. In order to keep the notation simple, it is
useful to introduce the combined index |1〉 ≡ |i,m, σ, τ〉 and assume summation over repeated
indices. Translational invariance is assumed for simplicity in the following, although a real
space formulation is straightforward. The local part of the action, SU , may contain any type of
local multi orbital interaction.
In order to formulate an expansion around the best possible reference action, Fig. 4, a quan-
tum impurity (cluster) problem is introduced by a general frequency-dependent hybridization
function ∆ν and the same local interaction

S∆[c
∗
i , ci] = −

∑
ν ,σ

c∗iνσ
(
iν+µ−∆ν

)
ciνσ +

∑
ν

Un∗iν↑niν↓ , (20)

where ∆ν is the effective hybridization matrix describing the coupling of the impurity to an
auxiliary fermionic bath. The main motivation for rewriting the lattice action in terms of a
quantum impurity model is that such a reference system can be solved numerically exactly
for an arbitrary hybridization function using the CT-QMC methods [1]. Using the locality of
the hybridization function ∆ν , the lattice action Eq. (19) can be rewritten exactly in terms of
individual impurity models and the effective one-electron coupling (∆ν−tk) between different
impurities, Fig. 5,

SL[c
∗, c] =

∑
i

S∆[c
∗
i , ci]−

∑
kνσ

c∗kνσ
(
∆ν−tk

)
ckνσ . (21)

We will find the condition for the optimal choice of the hybridization function later. Although
we can solve the individual impurity model exactly, the effect of spatial correlations due to
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Fig. 5: Schematic view on the non-local DF perturbation beyond a DMFT solution.

the second term in Eq. (21) is very hard to treat, even perturbatively, since the impurity ac-
tion is non-Gaussian and on cannot use of the Wick theorem. The main idea of the dual
fermion transformation is to change of variables from strongly correlated fermions (c∗, c) to
weakly correlated “dual” Grassmann fields (d∗, d) in the path-integral representation for the
partition function of Eq. (3), followed by a simple perturbation treatment. The new variables
were introduced through the following Hubbard-Stratonovich(HS)-transformation with the ma-
trix ∆̃kν = (∆ν−tk)

ec
∗
1 ∆̃12 c2 = det ∆̃

∫
D [d∗, d] e−d

∗
1∆̃
−1
12 d2−d∗1c1−c∗1d1 . (22)

We can immediately seen that using this HS-transformation we “localize” the [c∗i , cj] fermions:
while on the left-hand side they are still “hopping” through the lattice, on the right-hand side
they are localized on one site [c∗i , ci].
With this reference system the lattice partition function becomes

Z

Zd
=

∫
D[c∗, c, d∗, d] exp

(
− S[c∗, c, d∗, d]

)
(23)

with Zd = det ∆̃. The lattice action transforms to

S[c∗, c, d∗, d] =
∑
i

Si∆ +
∑
k,ν,σ

d∗kνσ
(
∆ν−tk

)−1
dkνσ . (24)

Hence the coupling between sites is transferred to a local coupling to the auxiliary fermions

Si∆[c
∗
i , ci, d

∗
i , di] = S∆[c

∗
i , ci] +

∑
ν,σ

(
d∗iνσ ciνσ + c∗iνσ diνσ

)
(25)

For the last term we use the invariance of the trace so that the sum over all states labeled by k

could be replaced by the equivalent summation over all sites by a change of basis in the second
term. The crucial point is that the coupling to the auxiliary fermions is purely local and Si∆
decomposes into a sum of local terms. The lattice fermions can therefore be integrated out from
Si∆ for each site i separately. This completes the change of variables

1

Z∆

∫
D[c∗, c] exp

(
−Si∆[, c∗i , ci, d∗i di]

)
= exp

(
−
∑
ν σ

d∗iνσ gνdiνσ − Vi[d∗i di]
)
, (26)
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where Z∆ is the partition function of the impurity action Eq. (20) and gν is the exact impurity
Green function

g12 = −〈c1c∗2〉∆ =
1

Z∆

∫
D[c∗, c] c1c∗2 e−S∆[c∗,c]. (27)

The above equation may be viewed as the defining equation for the dual potential V [d∗, d]. The
choice of matrices in Eq. (22) ensures a particularly simple form of this potential. An explicit
expression is found by expanding both sides of Eq. (26) and equating the resulting expressions
by order. Formally this can be done up to all orders and in this sense the transformation to the
dual fermions is exact. For most applications, the dual potential is approximated by the first
non-trivial interaction vertex

V [d∗, d] =
1

4

∑
1234

γ1234 d
∗
1d
∗
2d4d3 , (28)

where for the local vertex the combined index 1 ≡ {mνσ} comprises orbital degrees of freedom
(or cluster sites), frequency, and spin. γ is the exact, fully antisymmetric, reducible two-particle
vertex of the local quantum impurity problem. With the present choice of normalization in the
HS-transformation we did not “amputate” the impurity “legs” or g12 Greens function which will
be very useful choice for CT-QMC calculations of local vertex for multi-orbital case. It is given
then by connected part of the local two-particle correlations function

γ1234 = χ1234 − χ0
1234 (29)

with the two-particle Green function of the local impurity (reference system) being defined as

χ1234 = 〈c1c2c∗3c∗4〉∆ =
1

Z∆

∫
D[c∗, c] c1c2c∗3c∗4 e−S∆[c∗,c] . (30)

The disconnected part of a generalized susceptibility reads

χ0
1234 = g14g23 − g13g24 . (31)

The single- and two-particle Green functions can be calculated using the CT-QMC Monte Carlo
algorithms [1]. After integrating-out the lattice fermions, the dual action depends on the new
variables only and for the one-orbital paramagnetic case reads

S̃[d∗, d] = −
∑
k νσ

d∗kνσ G̃
−1
0kν dkνσ +

∑
i

Vi[d
∗
i , di] (32)

while the bare dual Green function is has the form

G̃0
kν =

((
tk−∆ν

)−1 − gν)−1. (33)

This formula involves only the local Green function gν of the impurity model. It is important to
note, that the HS-transformation to dual fermion variables, allows us to “perform the analytical
amputation” of impurity “legs” which causes enormous problems in the multi-orbital CT-QMC
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Fig. 6: Feynman diagram for the 1st-order dual fermion perturbation for the self-energy Σ̃:
a line represents the non-local G̃43 and a box is the local γ1234.

formalism. Transformation to the original DF-normalization where both dualGd and real Green
function have the same dimension unit reads

Gd = g G̃ g = GDMFT − g GDMFT =
(
gν+∆ν−tk

)−1
. (34)

The Dual Fermion transformation allows us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasiparticles. This is related with the fact that the bare dual Green function Eq. (34) related
with the small non-local part of the DMFT lattice Green function and the main two-particle
part of the bare interaction among dual fermions Eq. (28) is exactly equal to the fully screened
impurity vertex of the reference system. The rest of the dual fermion problem is related with an
optimal perturbation scheme for such an effective action Eq. (32).

4 Superperturbation in dual space

For the general multi-orbital multi-site dual fermion perturbation technique we use the particle-
hole notation for local vertex and write the exact spin and imaginary-time structure of general-
ized connected susceptibility [3, 15]

γσσ
′

1234(τ1, τ2, τ3, τ4) = −〈c1σc∗2σc3σ′c∗4σ′〉∆ + gσ12g
σ′

34 − gσ14gσ32δσσ′ .

Then the bare vertex of the dual-fermion perturbation is related with the full impurity vertex,
which in Matsubara space depends on two fermionic, (ν, ν ′), and one bosonic, (ω), frequencies.
We also symmetrize the vertex for the charge density d- and spin s-channels

γ
d/m
1234(ν, ν

′, ω) = γ↑↑1234(ν, ν
′, ω)± γ↑↓1234(ν, ν ′, ω).

Now we can write the first-order, local in site (i), DF-correction to the dual self-energy (Fig. 6)

Σ̃
(1)i
12 (ν) =

∑
ν′,3,4

γd1234(ν, ν
′, 0) G̃ii

43(ν
′) (35)
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Fig. 7: Schematic representation of the DMFT reference system for correlated lattice models.

We now can use the freedom to chose the hybridization function ∆ν in order to eliminate the
main first-oder dual fermion correction Eq. (35). Since the vertex function γ1234 is purely local,
it is enough to ensure that the local part of dual Green function vanishes G̃loc=0. This is exactly
equivalent to the DMFT self-consistency condition for the hybridization function ∆ν (Fig. 7)∑

k

(
g−1ν +∆ν − tk

)−1
= gν . (36)

The effective impurity model, Eq. (20), which is fully determined by the local hybridization
function ∆ν on the fermionic Matsubara frequencies iνn is solved using the numerically exact
CT-QMC scheme [1] from which the exact local Green function gν is obtained. The self-
consistency DMFT condition for the hybridization function equates the local part of the lattice
Green function and with that of the impurity, which shows that DMFT minimizes, in local
sense, the distance |tk−∆ν |. It is worthwhile to point here that the “free” or non-interacting dual
fermions are equivalent to the full solution of the DMFT problem. This is why dual fermions
are only “weakly interacting” so that this perturbation scheme can be very efficient, provided a
good reference system.
The second order Feynman diagram for DF-perturbation (Fig. 8) in real space (Rij) has density-
and spin-channel contributions with corresponding constants (cd = −1/4 and cm = −3/4)

Σ̃
(2)ij
12 (ν) =

∑
ν′ω

∑
3-8

∑
α=d,m

cαγ
α,i
1345(ν, ν

′, ω) G̃ij
36(ν + ω)G̃ji

74(ν
′ + ω) G̃ij

58(ν
′) γα,j8762(ν

′, ν, ω).

Using the exact relation between dual Green function and real Green function (Appendix B),
we can express the total lattice self-energy as the sum of the reference contribution Σ0 (e.g. the
impurity) and corrections Σ ′, which are related with the dual self-energy Σ̃

Σkν = Σ0
ν +Σ ′kν (37)

Σ ′kν = g−1ν −
(
gν + Σ̃kν

)−1
. (38)

We point out that this expression is related with the exact transformation between dual- and
real-space and has nothing to do with a correction for missing tree-particle vertices [2].



Beyond DMFT 9.13

ν ν ′ ν

σ σ′ σ′ σ
ν ′+ω

ν+ω

1 5

3 4
i j

8 2

7 6

Fig. 8: Feynman diagram for the 2nd-order dual fermion perturbation for the self-energy Σ̃.

What is much more important for numerical calculations, is that starting from the full DF-Green
function, G̃−1kν = G̃−10kν − Σ̃kν , and exact the relation of Appendix B, Eq. (55), we can directly
write an expression for the lattice Green function including only the reference impurity Green
function and the dual self-energy [2]

Gkν =
((
gν + Σ̃kν

)−1 − ∆̃kν

)−1
. (39)

This formula is perfectly suitable for the CT-QMC calculations for realistic multi-orbital corre-
lated matter, where from the noisy Monte-Carlo data one needs only local one- and two-particle
Green functions, without knowledge of a local self-energy and an “amputated” vertex function.
In principle, one can go beyond second-order perturbation theory and include dual ladder dia-
grams [15], dual parquet diagrams [16], or even try to sum up all dual diagrams with the two-
particle vertex γ1234 stochastically, using a diagrammatic Monte Carlo in dual space [17, 18].
We can also make the diagrammatic series self-consistent, using the “bold” line and update the
bare dual Green function with the dual self-energy. Finally, one can also “upgrade” the ref-
erence system, which is not anymore “best” for dual fermion theory, but only for the DMFT
approach with non-interacting dual fermions.

5 Numerical examples

As the first example of the DF-perturbation, we discuss the simple, but non-trivial case of a
“two-site” model (Fig. 9) with one correlated site with Hubbard interaction U and one single
electron site or a “bath” with the energy level ε coupled by the hybridization V. The refer-
ence system is described by the following parameters: U=2, ε0=0 and V0=0.5. The system,
calculated by first-order DF-perturbation, has the same interaction U and ε, but 50% larger hy-
bridization V=1.5V0. We use an exact-diagonalization solver and find not only the local Green
function at the correlated site G0 for the reference system, but also the exact G for the target
system with an effective broadening corresponding to the first Matsubara frequency. One can
also use the Lehmann representation not only for the single-particle Green function, but also
for two-particle correlators [19] and moreover integrated over the Matsubara frequency for sim-
plest diagram Eq. (35) analytically [20]. For the dual-fermion calculation we use the Matsubara
superperturbation first-order correction for inverse temperature β=5 and the Padé analytical
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Fig. 9: Schematic representation of dual-fermion superperturbation test for a two-site model.

continuation to the real axes [5]. Results of the first-order DF superperturbation are shown
in Fig. 10 together with reference and target DOS. We can conclude that even the first-oder
DF-correction gives the Green function in very good agreement with the exact one.
The real test for correlated fermions corresponds to a half-filled two-dimensional Hubbard
model on the square lattice with a 2×2 plaquette as the reference system (Fig. 11). We used the
2×2 supercell scheme with 4 atoms in the unit cell in oder to describe the lattice on the left-hand
side of Fig. 11 with the following 4×4 hopping matrix with the nearest neighbor hopping t and
next nearest neighbor hopping p

tk =


ε tK0+ pL−+ tK−0

tK0− ε tK−0 pL−−

pL+− tK+0 ε tK0−

tK+0 pL++ tK0+ ε


where the functions Kmn

k and Lmnk with [m(n)] = −(1), 0,+(1) are defined as

Kmn
k = 1 + ei(mkx+nky)

Lmnk = 1 + ei(mkx+nky) + eimkx + einky

-4 -2 0 2 4
0.0

0.1

0.2

0.3

D
O

S

Energy

DF

G0
G

Fig. 10: Density of states for the dual-fermion first-order scheme together with the reference
and target Green function for the two-site model.
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ij

Fig. 11: Schematic representation of a plaquette cluster-reference system for the square lattice.

The standard reference system (Fig. 11) corresponds to the Green function, averaged over the
supercell Brillouin zone, which is equivalent to the self-consistent cluster-DMFT scheme [21].
Another possibility for the reference system is related with the k = 0 Green function, which
corresponds to the decoupled lattice of plaquettes with periodic boundary condition

∆0 = tk=0 =


ε 2t 4p 2t

2t ε 2t 4p

4p 2t ε 2t

2t 4p 2t ε

 . (40)

Note that the spectrum of this hopping Hamiltonian Eq. (40) is equal to the original cubic tight-
binding model

εk = 2t
(
cos kx + cos ky

)
+ 4p cos kx cos ky

in the 4 k-points: Γ=(0, 0), X=(π, 0), Y=(0, π) and M=(π, π) which corresponds to the 2×2
grid in the original Brillouin zone. In this sense, we can view the dual fermion perturbation
from the plaquette reference system [21] as a DF-multigrid interpolation from the 2×2 k-mesh
in the original cubic lattice to, e.g., 64×64 k-points (for this case one needs to use the 32×32
mesh in our supercell). This is exactly the task for the present numerical test.
In order to calculate the bare dual Green function we use a slightly modified version of Eq. (33)
(since ∆k = ∆0−tk = 0, for some k-points, e.g. for k = 0)

G̃0
k,ν = ∆k

(
1− gν∆k

)−1
.

With this choice of reference system, one can again stay only with the exact diagonalization
scheme to calculate the dual Green function and the plaquette vertex function. We choose the
strong-coupling parameters with U=W=8, t=− 1, p=0 and the temperature T=1/3 for which
there is a diagrammatic QMC results [18]. In the Fig. 12 we plot the density of states (DOS)
for three different Green functions: ED for the reference plaquette, cluster perturbation (CP)
which corresponds to Eq. (39) with Σ̃kν=0, and the results for the second-order plaquette dual-
fermion. We use Padé-analytical continuation from the Matsubara to the real energy axis [5].
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Fig. 12: Density of states for dual fermion perturbation from plaquette for U=W=8 (DF-
red) in comparison with exact diagonalization for periodic plaquette (ED-blue) and cluster
perturbation theory (CP-green).
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Fig. 13: Real (left) and imaginary (right) part of the self-energy for the DF plaquette scheme in
comparison with diagrammatic-QMC results [18] at the first Matsubara frequency.

We conclude that the DOS for dual fermion theory differs strongly from the results of the simple
perturbation (CP) and the original reference system (ED), and has a broad four-peaks structure,
characteristic for the lattice QMC results [22].

Fig. 13 shows the DF-plaquette second-order lattice self-energy Eq. (38) for the standard k-
dependent path Γ -X-M -Γ in the two-dimensional Brillouin zone, together with numerically
exact lattice diagrammatic QMC [18]. The almost perfect agreement for the real-part of the self-
energy Σ(k, ν=πT ) underlines the strength of the dual-fermion superperturbation technique
starting from a “reasonable” plaquette reference system.

Finally, we plot in Fig. 14 the full Brillouin zone 64×64 k-mesh of the real and imaginary part
of DF-plaquette self-energy periodize to original square lattice, in order to have an impression
of the complex behavior for strongly correlated lattice fermion systems.
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Fig. 14: Full Brillouin zone 64×64 k-mesh for the real (left) and imaginary (right) part of the
DF plaquette self-energy at the first Matsubara frequency.

6 Conclusion: Recent developments

We discussed the path-integral expansion for correlated lattice systems beyond the local DMFT
approximation using transformations to dual variables. We would like to mention other re-
cent developments in this field. Very important generalization of the dual variable approach
are related with the dual-boson approach [23, 2], which properly includes effects of non-local
interactions. This scheme allows the very efficient treatment of charge [24] and spin [25] col-
lective fluctuations, and their effects on electronic spectrum and vice versa. Careful analyses
of the two-particle divergence using dual variables [26] and fast calculations of the polarization
function in correlated solids [27] show the strength of proper path-integral perturbation starting
from the best local approximation. The efficient version of dual perturbation based on partial
bosonization [28] has a strong potential for development of the realistic GW-like scheme with
proper charge- and spin-fluctuations.
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Appendices

A Path-integrals for fermions

We first introduce a formalism of the path integral over fermionic fields [11]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [29]. Due to the Pauli
principle the many-body Hilbert space is spanned by only two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creations ĉ†i operators
with anticommutation relations

{
ĉi, ĉ

†
j

}
= δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 and ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 . (41)

Moreover, the density operator and the Pauli principle have the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci

ĉi |c〉 = ci |c〉 . (42)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the below and one can rewrite one of equations from Eq. (41)
in the following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the multiplication rules [30]

cicj = −cjci and c2i = 0 . (43)

It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators {

c, ĉ} = {c, ĉ†
}
= 0 .

An arbitrary function of one Grassmann variable can be represented by only the first two Taylor
coefficients

f(c) = f0 + f1c . (44)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑
i ciĉ

†
i |0〉 . (45)

Let us show this for the simple case of one fermionic state

ĉ |c〉 = ĉ
(
1− cĉ†

)
|0〉 = ĉ

(
|0〉 − c |1〉

)
= −ĉc |1〉 = c |0〉 = c |c〉 . (46)
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One can also define a “left” coherent state 〈c| as the left-eigenstates of creation operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .

Note that new eigenvalue c∗i is just another Grassmann number, not the complex conjugate of ci.
The left coherent state can be obtained similar to Eq. (45)

〈c| = 〈0| e−
∑
i ĉic

∗
i .

A general function of two Grassmann variables can, analogously to Eq. (44), be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (47)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with “right-order” of such a derivative and remember the anti-commutation
rules, i.e.,

∂

∂c2
c1c2 = −c1 .

For the case of the general two-variable function in Eq. (47) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(
f01 − f11c∗

)
= −f11 = −

∂

∂c

∂

∂c∗
f(c∗, c).

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists of the following rules [30]∫

1 dc = 0 and
∫
c dc = 1 ,

which just shows that the integration over a Grassmann variable is equivalent to differentiation∫
· · · dc→ ∂

∂c
· · ·

The coherent states are not orthonormal and the overlap of any two such states is equal to

〈c|c〉 = e
∑
i c
∗
i ci

which is easy to see for the case of one particle

〈c|c〉 =
(
〈0| − 〈1| c∗

)(
|0〉 − c |1〉

)
= 1 + c∗c = ec

∗c.

An important property of coherent states is the resolution of unity∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉〈c| = 1̂ =

∫∫
dc∗dc

|c〉 〈c|
〈c|c〉

.
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For simplicity we demonstrate this relation only for one fermion state∫∫
dc∗dc e−c

∗c |c〉〈c| =
∫∫

dc∗dc(1− c∗c)
(
|0〉 − c |1〉

)(
〈0| − 〈1| c∗

)
=

= −
∫∫

dc∗dc c∗c
(
|0〉〈0|+ |1〉〈1|

)
=
∑
n

|n〉〈n| = 1̂ .

Matrix elements of normally ordered operators are very easy to calculate in the coherent basis
by operating with ĉ† on the states to the right and ĉ to the left:

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 . = H(c∗, c) e
∑
i c
∗
i ci (48)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trace-formula” for arbitrary fermionic operators in normal order
(in one-fermion notation)

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗dc e−c

∗c 〈n| c〉〈c| Ô |n〉 =

=

∫∫
dc∗dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉〈n| c〉 =
∫∫

dc∗dc e−c
∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states come from the commutation of the (c∗)
and (c) coherent state in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are ready now to write the partition function for the grand-canonical quantum ensemble with
H = Ĥ − µN̂ and inverse temperature β. One has to use the N -slices Trotter decomposition
for the partition function in [0, β) with imaginary time τn = n∆τ = nβ/N (n = 1, ..., N ), and
insert N times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗dc e−c

∗c
〈
− c
∣∣e−βH∣∣c〉

=

∫
ΠN
n=1dc

∗
ndcn e

−
∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
ndcn e

−∆τ
∑N
n=1[c

∗
n(cn−cn−1)/∆τ+H(c∗n,cn−1)]

In the continuum limit (N →∞)

∆τ
N∑
n=1

· · · →
∫ β

0

dτ · · · , cn−cn−1
∆τ

→ ∂τ and ΠN−1
n=0 dc

∗
ndcn → D [c∗, c]

with antiperiodic boundary conditions for fermionic Grassmann variables in imaginary time
c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)
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we end up in the standard path-integral formulation of the partition function

Z =

∫
D [c∗, c] e−

∫ β
0 dτ [c∗(τ)∂τ c(τ)+H(c∗(τ),c(τ))] . (49)

It is useful to mention the general form of the Gaussian path-integral for a non-interacting
“quadratic” fermionic action, which is equivalent to the Hubbard-Stratonovich transformation
used in the dual-fermion derivation Eq. (22). For an arbitrary matrixMij and Grassmann vectors
J∗i and Ji one can calculate analytically the following integral

Z0 [J
∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj−

∑N
i=1(c∗i Ji+J∗i ci) = detM e

∑N
i,j=1 J

∗
i (M

−1)ijJj . (50)

To prove this relation one need first to change variables in order to eliminate J∗i and Ji and
expand the exponential function (only N -th oder is non-zero)

e−
∑N
i,j=1 c

∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N
.

Finally, different permutations of c∗i and cj and integration over Grassmann variables will give
detM . As a small exercise we will check such integrals for the first two many-particle dimen-
sions. For N=1 it is trivial∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c]

(
− c∗1M11c1

)
=M11 = detM

and for N=2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

=
1

2!

∫
D [c∗c]

(
−c∗1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2

)2
=M11M22−M12M21 = detM.

For a change of variables in the path integral one uses the following transformation with unit
Jacobian: c→ c+M−1J and

c∗Mc+ c∗J + J∗c =
(
c∗ + J∗M−1)M (

c+M−1J
)
− J∗M−1J .

Using the Gaussian path-integral it is very easy to calculate any correlation function for a non-
interaction action (Wick-theorem)

〈
cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J
∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

=M−1
ij

〈cicjc∗kc∗l 〉0 =
1

Z0

δ4Z0 [J
∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

=M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path-integral over
bosonic fields is equal to inverse of the M -matrix determinant [11].
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B Exact relations between Green functions

After appropriate diagrammatic results for the dual self-energy and the dual Green function
have been obtained, they have to be transformed back to the corresponding physical quantities
in terms of real lattice fermions. The fact that dual fermions are introduced through the exact
Hubbard-Stratonovich transformation, Eq. (22), allows to establish exact identities between
dual and lattice Greens function [3, 15].
The relations between the n-particle cumulants of dual and lattice fermions can be established
using the cumulant (linked cluster) technique. To this end one may consider two different,
equivalent representations of the following generating functional

eF [J∗J,L∗L] = Zd
∫
D[c∗c, d∗d] e−S[c∗c,d∗,d]+J∗1 c1+c∗2J2+L∗1d1+d∗2L2 . (51)

Integrating-out the lattice fermions from this functional similar to (26) (this can be done with
the sources J and J∗ set to zero) yields

eF [L∗,L] = Z̃d
∫
D[d∗, d] e−Sd[d

∗,fd+L∗1d1+d
∗
2L2 (52)

with Z̃d = Z/Z̃ . The dual Green function and the two-particle correlator related with non-local
susceptibilities are obtained from (52) by suitable functional derivatives, e.g.,

G̃12 = −
δ2F

δL2δL∗1

∣∣∣∣
L∗=L=0

(53)

where G ⊗ G is the antisymmetrized direct product of Green functions, so that the angular
bracket is the connected part of the dual two-particle Green function. Conversely, integrating
out the dual fermions from Eq. (51) using the HS-transformation, one obtains an alternative
representation, which more clearly reveals the connection of the functional derivatives with
respect to the sources J , J∗, and L, L∗. The result is

F [J∗J, L∗L] = L∗1(∆− t)12L2 (54)

+ ln

∫
D[c∗, c] exp

(
−S[c∗, c] + J∗1 c1 + c∗2J2 + L∗1(∆−t)12c2 + c∗1(∆−t)12L2

)
.

In analogy to (53), the cumulants in terms of lattice fermions are obviously obtained by func-
tional derivative with respect to the sources J and J∗ with L and L∗ set to zero. Applying the
derivatives with respect to L, L∗ to (54) with J = J∗ = 0 and comparing to (53), e.g., yields
the identity

G̃12 = −(∆−t)12 + (∆−t)11′G1′2′(∆−t)2′2. (55)

Solving for G provides the rule how to transform the dual Green function to the physical quan-
tity in terms of lattice fermions.
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1 Introduction
Some intensive observables of the electronic ground state in condensed matter have a geometri-
cal or even topological nature. In crystalline systems at the noninteracting (or mean-field) level
the term “geometrical” refers to the geometry of the occupied manifold of the state vectors,
parametrized by the Bloch vector k in reciprocal space. A state-of-the-art account about several
of such observables can be found in the recent outstanding book by D. Vanderbilt [1].
In the present Review I present, instead, the known geometrical observables beyond band-
structure theory, in order to deal with the general case of disordered and/or correlated many-
electron systems. The term “geometrical” refers therefore to a Hilbert space (defined below in
Sect. 3) different from the Bloch space.
It is now clear that the geometrical observables come in two very different classes. The observ-
ables of class (i) only make sense for insulators, and are defined modulo 2π (in dimensionless
units), while the observables of class (ii) are defined for both insulators and metals, and are
single-valued.
As for class (i), two observables are known: electrical polarization and the “axion” term in
magnetoelectric response [1]. For both observables the modulo 2π ambiguity is fixed only
after the termination of the insulating sample is specified. Furthermore in the presence of some
protecting symmetry only the values zero or π (mod 2π) are allowed: the observable becomes
then a topological Z2 index. So far, the expression of the axion term is only known within band-
structure theory: therefore in the present Review I only discuss electrical polarization, whose
many-body expression was first obtained in 1998 [2]. The geometrical nature of polarization is
thoroughly investigated in Sect. 4, while in Sect. 5 it is shown that 1d polarization in inversion-
symmetric systems is a Z2 invariant.
After discussing polarization, I will address four observables of class (ii); they do not include the
case of orbital magnetization, whose geometrical expression is known since 2006 at the band-
structure level [3], but which to date lacks a corresponding many-body formulation. Of these
four observables two are time-reversal (T) even and two are T-odd; the latter are nonzero only
if the material breaks T-symmetry. The T-even are the Drude weight and the Souza-Wilkens-
Martin sum rule; the T-odd ones are the anomalous Hall conductivity and the magnetic cir-
cular dichroism sum rule. It may appear surprising that I include spectral sum rules in the
class of ground-state observables: this is because, owing to a fluctuation-dissipation theorem,
a frequency-integrated dynamical probe becomes effectively a static one. The corresponding
physical property cannot be actually measured with a static probe, but is nonetheless a genuine
ground-state property. All of the four single-valued observables—despite being ground-state
properties—have to do with the conductivity tensor σαβ(ω); therefore, before addressing them,
in Sect. 6, I display the full many-body Kubo formulæ. They comprise four terms: real and
imaginary, symmetric (longitudinal) and antisymmetric (transverse).
The content of Sects. 7 and 8 is a thorough discussion of the four class-(ii) geometrical observ-
ables and of their consequences, in particular for the theory of the insulating state. A synoptic
view of all five observables object of this Review is provided in the concluding Sect. 9. Some
boring derivations are confined to the Appendix.
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2 What does it mean “geometrical” in quantum mechanics?

The founding concept in geometry is distance. Let |Ψ1〉 and |Ψ2〉 be two quantum states in the
same Hilbert space: it is expedient to adopt for their pseudodistance the expression

D2
12 = − ln |〈Ψ1|Ψ2〉|2. (1)

It is “pseudo” because it violates one of the distance axioms in calculus textbooks; such viola-
tion does not make any harm in the present context.
Eq. (1) vanishes when the states |Ψ1〉 and |Ψ2〉 coincide, while it diverges when the states |Ψ1〉
and |Ψ2〉 are orthogonal. The states |Ψ1〉 and |Ψ2〉 are defined up to an arbitrary phase factor:
fixing this factor amounts to a gauge choice. Eq. (1) is clearly gauge-invariant.
The distance in Eq. (1) can equivalently be rewritten as

D2
12 = − ln〈Ψ1|Ψ2〉 − ln〈Ψ2|Ψ1〉, (2)

where the two terms are not separately gauge-invariant. While the distance is obviously real,
each of the two terms in Eq. (2) is in general a complex number. If we write

〈Ψ1|Ψ2〉 =
∣∣〈Ψ1|Ψ2〉

∣∣ eiϕ21 , (3)

then the imaginary part of each of the two terms in Eq. (2) assumes a transparent meaning:

− Im ln 〈Ψ1|Ψ2〉 = ϕ12, ϕ21 = −ϕ12. (4)

Besides the metric, an additional geometrical concept is therefore needed: the connection,
which fixes the relative phases between two states in the Hilbert space.
The connection is arbitrary and cannot have any physical meaning by itself. Nonetheless, af-
ter the 1984 groundbreaking paper by Michael Berry [4], several physical observables are ex-
pressed in terms of the connection and related quantities. When the state vector is a differen-
tiable function of some parameter κ, then the differential phase and the differential distance
define the Berry connection and the quantum metric, respectively:

ϕκ,κ+dκ = Aα(κ)dκα, D2
κ,κ+dκ = gαβ(κ)dκαdκβ, (5)

Aα(κ) = i〈Ψκ|∂καΨκ〉, gαβ(κ) = Re 〈∂καΨκ|∂κβΨκ〉 − 〈∂καΨκ|Ψκ〉〈Ψκ|∂κβΨκ〉; (6)

summation over repeated Cartesian indices is understood (here and throughout). The Berry
curvature is defined as the curl of the connection

Ωαβ(κ)dκαdκβ = [∂καAβ(κ)− ∂κβAα(κ)]dκαdκβ = −2 Im〈∂kαΨκ|∂kβΨκ〉dκαdκβ. (7)

The connection is a 1-form and is gauge-dependent; the metric and the curvature are 2-forms
and are gauge-invariant. The above fundamental quantities are defined in terms of the state
vectors solely; we will also address a 2-form which involves the Hamiltonian as well. Suppose
that H is the Hamiltonian and E0 its ground eigenvalue: we will consider

G = 〈Ψ |(H − E0)|Ψ〉, (8)

which vanishes for |Ψ〉 = |Ψ0〉; an essential feature of G is that it is invariant by translation
of the energy zero. The geometrical quantity of interest is the gauge-invariant 2-form which is
obtained by varying |Ψ〉 in the neighborhood of |Ψ0〉.
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3 Many-body geometry

We address here the geometry of the many-body state vectors by generalizing the Hilbert space
defined by W. Kohn in a milestone paper published in 1964 [5], well before any geometrical or
topological concepts entered condensed matter physics.
For the sake of simplicity we deal with the case where a purely orbital Hamiltonian can be
established. Following Kohn, we consider a system of N interacting d-dimensional electrons
in a cubic box of volume Ld, and the family of many-body Hamiltonians parametrized by the
parameter κ

Ĥκ =
1

2m

N∑
i=1

[
pi +

e

c
A(ri) + ~κ

]2
+ V̂ , (9)

where V̂ includes one-body and two-body potentials. We assume the system to be macroscop-
ically homogeneous; the eigenstates |Ψnκ〉 are normalized to one in the hypercube of volume
LNd. The vector potential A(r) summarizes all T-breaking terms as, e.g., those due to spin-orbit
coupling to a background of local moments. The vector κ, having the dimensions of an inverse
length, is called “flux” or “twist” and amounts to a gauge transformation. In order to simplify
the notation we will set Ĥ0 ≡ Ĥ, |Ψn0〉 ≡ |Ψn〉, and En0 ≡ En.
Bulk properties of condensed matter are obtained from the thermodynamic limit: N → ∞,
L → ∞, N/Ld constant. All of the observables discussed here include κ-derivatives of the
state vectors |Ψnκ〉: it is important to stress that the differentiation is performed first, and the
thermodynamic limit afterwards. This ensures that a given eigenstate is followed adiabatically
while the flux is turned on. Kohn’s Hamiltonian can be adopted within two different boundary
conditions, thus defining two different Hilbert spaces.

3.1 Open-boundary-conditions Hilbert space

Within the so-called “open” boundary conditions (OBCs) one assumes that the cubic box con-
fines the electrons in an infinite potential well; we will indicate as |Ψ̃nκ〉 the OBCs eigenstates,
square-integrable over RNd. Within OBCs the effect of the gauge is easily “gauged away”: the
energy eigenvalues En are gauge-independent, while the eigenstates are |Ψ̃nκ〉 = e−iκ·r̂|Ψ̃n〉,
where r̂ =

∑
i ri is the many-body position (multiplicative) operator, which is well defined on

this Hilbert space.

3.2 Periodic-boundary-conditions Hilbert space

Within Born-von-Kármán periodic boundary conditions (PBCs) one assumes that the many-
body wavefunctions are periodic with period L over each electron coordinate ri independently,
whose Cartesian components ri,α are then equivalent to the angles 2πri,α/L. The potential V̂
and the vector potential A(r) enjoy the same periodicity: this means that the macroscopic E
and B fields vanish. It is worth observing that the position r̂ is not a legitimate operator in
this Hilbert space: it maps a vector of the space into something which does not belong to the
space [2].
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As said above, setting κ 6= 0 amounts to a gauge transformation; since PBCs violate gauge-
invariance, the eigenvectors |Ψnκ〉 and the eigenvaluesEnκ have a nontrivial κ-dependence [5].
The macroscopic ground-state current density is

jκ = − e

~Ld
〈Ψ0κ|∂κĤκ|Ψ0κ〉 = −

e

~Ld
∂κE0κ ; (10)

it vanishes at any κ in insulators;1 within OBCs it vanishes even in metals.
An important comment is in order. Here we follow Kohn, by keeping the boundary conditions
fixed and “twisting” the Hamiltonian; other authors [6] have addressed the many-body geometry
by keeping the Hamiltonian fixed, and “twisting” the boundary conditions. The equivalence
between the two approaches is rather straightforward.

4 Macroscopic electrical polarization

Macroscopic electrical polarization only makes sense for insulators which are charge-neutral
on average, and is comprised of an electronic (quantum) term and a nuclear (classical) term.
Each of the terms separately depends on the choice of the coordinate origin, while their sum
is translationally invariant; we also assume that the system is T-invariant, such that all κ = 0

wavefunctions are real.

4.1 Bounded samples within open boundary conditions

We consider, for the time being, the electronic term only. Within OBCs the observable has a
pretty trivial definition:

P(el) = − e

Ld
〈Ψ̃0| r̂ |Ψ̃0〉. (11)

I am going to transform Eq. (11) into a geometric form: using |Ψ̃0κ〉 = e−iκ·r̂|Ψ̃0〉, one gets

P(el) =
ie

Ld
〈Ψ̃0|∂κΨ̃0〉 = −

e

Ld
Ã(0). (12)

The Berry connection is gauge dependent and cannot express a physical observable per se; we
have in fact arrived at Eq. (12) by enforcing a specific gauge. The most general κ-dependence of
the state vector is |Ψ̃0κ〉 = e−iϑ(κ,r̂)|Ψ̃0〉, where ϑ(κ, r̂) = κ·r̂+φ(κ) where the gauge function
φ(κ) is arbitrary; Eq. (12) makes sense only if we impose a gauge which makes ϑ(κ, r̂) odd in
r̂ at any κ.

4.2 Unbounded samples within periodic boundary conditions

We may try to adopt within PBCs the same definition as in Eq. (12)

P(el) =
ie

Ld
〈Ψ0|∂κΨ0〉 = −

e

Ld
A(0), (13)

1A mobility gap implies that no infinitesimal perturbation to the Hamiltonian can induce a macroscopic current.
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an obviously gauge-dependent expression. If, for instance, we evaluate the κ-derivative by
means of perturbation theory

|∂κΨ0〉 =
∑
n6=0

|Ψn〉
〈Ψn|∂κĤ|Ψ0〉
E0 − En

, (14)

we get 〈Ψ0|∂κΨ0〉 = 0. In fact the parallel-transport gauge is implicit in the standard perturba-
tion formula. In order to fix the gauge in a similar way as we did in the OBCs case, we realize
that e−iκ·r̂|Ψ0〉 in general does not belong to the Hilbert space, bar in the cases where the κ

components are integer multiples of 2π/L. It is easy to verify that in such cases e−iκ·r̂|Ψ0〉 is
the ground eigenstate of Ĥκ with eigenvalue E0. We choose a κ in this set:

κ1 = (2π/L, 0, 0). (15)

Since the connection is by definition the differential phase, Eqs. (4) and (5) yield, to leading
order,

Ax(0)
2π

L
' −Im ln 〈Ψ0|Ψ0κ1〉; (16)

Eq. (13) then yields
P (el)
x =

e

2πLd−1
Im ln 〈Ψ0|Ψ0κ1〉. (17)

The state |Ψ0κ〉 is by definition the eigenstate of Ĥκ which is obtained by following |Ψ0〉 adi-
abatically while the flux κ is turned on; owing to Eq. (10), its energy in insulators is E0 (κ-
independent). Therefore in insulators—and in insulators only—|Ψ0κ1〉 is the ground eigenstate
of Ĥκ1; we fix its gauge by choosing |Ψ0κ1〉 = e−iκ1·r̂|Ψ0〉, in the same way as we did in the
OBCs case:

P (el)
x =

e

2πLd−1
Im ln 〈Ψ0|e−iκ1·r̂|Ψ0〉 = −

e

2πLd−1
Im ln 〈Ψ0|ei

2π
L

∑
i xi |Ψ0〉. (18)

The polarization is intensive, ergo the logarithm scales like N1−1/d, while the modulus of its
argument tends to one from below. It is worth observing that the present gauge choice can be
regarded as the many-body analogue of the periodic gauge in band-structure theory [1]: see
Eq. (64) below, and the related footnote. Eq. (18) is the so-called single-point Berry-phase
formula [2]; for a crystalline system of noninteracting electrons it yields the (by now famous)
Berry-phase formula in band-structure theory [7], first obtained by King-Smith and Vanderbilt
in 1993 [1, 8] (see also the Appendix).
When the Hamiltonian is adiabatically varied, |Ψ0〉 acquires an adiabatic time-dependence. It
can be proved that j(el)x , defined as

j(el)x = Ṗ (el)
x =

e

2πLd−1
Im

(
〈Ψ̇0|e−iκ1·r̂|Ψ0〉
〈Ψ0|e−iκ1·r̂|Ψ0〉

+
〈Ψ0|e−iκ1·r̂|Ψ̇0〉
〈Ψ0|e−iκ1·r̂|Ψ0〉

)
, (19)

coincides indeed—to leading order in 1/L—with the adiabatic current density which traverses
the sample [2, 7].
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A theorem for end-charge quantization in quasi-one-dimensional stereoregular chains is formulated
and proved. It is a direct analog of the well-known theorem for surface charges in physics. The
theorem states the following: !1" Regardless of the end groups, in stereoregular oligomers with a
centrosymmetric bulk, the end charges can only be a multiple of 1 /2 and the longitudinal dipole
moment per monomer p can only be a multiple of 1 /2 times the unit length a in the limit of long
chains. !2" In oligomers with a noncentrosymmetric bulk, the end charges can assume any value set
by the nature of the bulk. Nonetheless, by modifying the end groups, one can only change the end
charge by an integer and the dipole moment p by an integer multiple of the unit length a. !3" When
the entire bulk part of the system is modified, the end charges may change in an arbitrary way;
however, if upon such a modification the system remains centrosymmetric, the end charges can only
change by multiples of 1 /2 as a direct consequence of !1". The above statements imply that—in all
cases—the end charges are uniquely determined, modulo an integer, by a property of the bulk alone.
The theorem’s origin is a robust topological phenomenon related to the Berry phase. The effects of
the quantization are first demonstrated in toy LiF chains and then in a series of trans-polyacetylene
oligomers with neutral and charge-transfer end groups. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2799514$

I. INTRODUCTION

Push-pull polymers have received much attention due to
their highly nonlinear electronic and optical responses. Such
molecules usually contain a chain of atoms forming a conju-
gated !-electron system with electron donor and acceptor
groups at the opposite ends. Upon an electronic excitation a
charge is transferred from the donor to the acceptor group,
leading to remarkable nonlinear properties. What is surpris-
ing, however, is that—as will be shown in the present
work—nontrivial features already appear when addressing
the lowest-order response of such molecules to the static
electric fields, i.e., their dipole moment. A model push-pull
polymer is shown in Fig. 1. Note that instead of addressing
computationally challenging excited states, we would rather
much prefer to focus on the ground state properties. There-
fore, in the case of the push-pull system shown in Fig. 1, we
simulate the charge transfer not by moving an electron but by
moving a proton from the COOH to NH2 groups located at
the opposite ends.

The most general system addressed here is, therefore, a
long polymeric chain, which is translationally periodic !ste-
reoregular, alias “crystalline”" along, say, the z direction,
with period a. We are considering insulating chains only, i.e.,
chains where the highest occupied molecular orbital–lowest
unoccupied molecular orbital gap stays finite in the long-

chain limit. The chain is terminated in an arbitrary way, pos-
sibly with some functional group attached, at each of the two
ends. In the case of a push-pull polymer, such groups are a
donor-acceptor pair. Therefore, the most general system is
comprised of Nc identical monomers !“crystal cells”" in the
central !“bulk”" region, augmented by the left- and right-end
groups. If the total length is L, the bulk region has a length

a"Electronic mail: kkudin@princeton.edu

FIG. 1. !Color online" Two states of a prototypical push-pull system. The
long insulating chain of alternant polyacetylene has a “donor” !NH2" and
“acceptor” !COOH" groups attached at the opposite ends. The charge trans-
fer occurring in such systems upon some physical or chemical process is
simulated here by moving a proton from the COOH to NH2 groups: in !a"
we show the “neutral” structure and in !b" the “charge-transfer” one. The
two structures share the same “bulk,” where the cell !or repeating monomer"
is C2H2, and the figure is drawn for Nc=5.

THE JOURNAL OF CHEMICAL PHYSICS 127, 194902 !2007"

0021-9606/2007/127"19!/194902/9/$23.00 © 2007 American Institute of Physics127, 194902-1
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Fig. 1: A centrosymmetric polymer
with two different terminations: al-
ternant trans-polyacetylene. Here
the “bulk” is five-monomer long.
After Ref. [9].

The nuclear term can be elegantly included in Eq. (18). If X` is the x coordinate of the `-th
nucleus with charge eZ`, then

Px = −
e

2πLd−1
Im ln 〈Ψ0|ei

2π
L
(
∑
i xi−

∑
` Z`X` )|Ψ0〉, (20)

clearly invariant under translation of the coordinate origin. This expression also applies if the
quantum nature of the nuclei is considered, and |Ψ0〉 includes the nuclear degrees of freedom.

4.3 Multivalued nature of polarization

We define the single-point Berry phase γx, including the nuclear contribution, as

γx = Im ln 〈Ψ0|ei
2π
L
(
∑
i xi−

∑
` Z`X` )|Ψ0〉, Px = −

e

2πLd−1
γx. (21)

Following Eq. (16), the single-point Berry phase scales like N1−1/d. Given that γx is arbitrary
modulo 2π, bulk polarization within PBCs is a multivalued vector. This may appear a disturbing
mathematical artifact, but is instead a key feature of the real world. In the following we ana-
lyze separately three different cases: 1d systems, 3d crystalline systems, and 3d noncrystalline
systems at the independent-electron level.

4.3.1 One-dimensional polarization

The polarization P of a quasi-1d system (e.g. a stereoregular polymer) has the dimensions
of a pure charge; in the unbounded case within PBCs P is arbitrary modulo e. The modulo
ambiguity is fixed only after the sample termination is specified: we are going to show this in
detail on the paradigmatic example of polyacetylene, where the Berry phase yields P=0 mod e.
We consider two differently terminated samples of trans-polyacetylene, as shown in Fig. 1:
notice that in both cases the molecule as a whole is not inversion symmetric, although the bulk
is. The dipoles of such molecules have been computed for several lengths from the Hartree-Fock
ground state, as provided by a standard quantum-chemistry code [9]. The dipoles per monomer
are plotted in Fig. 2: for small lengths both dipoles are nonzero, as expected, while in the large-
chain limit they clearly converge to a quantized value. Since the lattice constant is a = 4.67

bohr, the dipole per unit length is P = 0 and P = e for the two cases. The results in Fig. 2 are
in perspicuous agreement with the Berry-phase theory: in the two bounded realizations of the
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final statement is that the end charges Qend of the most gen-
eral polymeric chain, whose bulk region is centrosymmetric,
may only assume !in the large-Nc limit" values which are
integer multiples of 1 /2. We have previously anticipated this
statement !Sec. II" and demonstrated it heuristically !Sec. III"
using a simple binary chain as test case. Although we used
for pedagogical purposes a strongly ionic system, the theo-
rem is general and holds for systems of any ionicity. Further-
more, in all cases, the actual value of Qend is determined,
within the set of quantized values, by the chemical nature of
the system.

E. The correlated case

Throughout this work, we have worked at the level of
single-particle approaches, such as HF or DFT. The specific
tools used in our detailed proof !i.e., localized Boys’/
Wannier orbitals" prevent us from directly extending the
present proof to correlated wave function methods. Nonethe-
less, the exact quantization of end charges !in the large-
system limit" still holds, as a robust topological phenom-
enon, even for correlated wavefunctions. In this respect, the
phenomenon is similar to the fractional quantum Hall effect,
where correlated wavefunctions are an essential ingredient.16

We have stated above that the bulk dipole per cell !or per
monomer" p0 is defined in terms of Berry phases; more de-
tails about this can be found in our previous paper,26 where a
QC reformulation of the so-called “modern theory of
polarization”7–10 is presented. The ultimate reason for the
occurrence of charge quantization is the modulo 2! arbitrari-
ness of any phase, as, e.g., in Eq. !17". A correlated wave
function version of the modern theory of polarization, also
based on Berry phases, does exist.10,27,28 The quantization
features, as discussed here for polymeric chains, remain un-
changed. While not presenting a complete account here, we
provide below the expression for p0 in the correlated case.

Suppose we loop the polymer onto itself along the z
coordinate, with the loop of length L, where L equals a times
the number of monomers. Let " !r1 ,r2 , . . . ,rN" be the many-
body ground state wave function, where spin variables are
omitted for the sake of simplicity. Since z is the coordinate
along the loop, " is periodic with period L with respect to
the zi coordinate of each electron. We define the !unitary and
periodic" many-body operator

Û = ei!2!/L"#i=1
N zi, !18"

nowadays called the “twist” operator,28 and the dimension-
less quantity

# = Im ln$" %Û%" & . !19"

This #, defined modulo 2!, is a Berry phase in disguise,
which is customarily called a “single-point” Berry phase.27

In order to get p0 in the correlated case, it is enough to
replace the sum of single-band Berry phases occurring in Eq.
!17" with the many-body Berry phase #, as defined in Eq.
!19".

Notice that the large-L limit of Eq. !19" is quite non-
trivial, since as L increases, Û approaches the identity, but
the number of electrons N in the wave function " increases;

nonetheless, this limit is well-defined in insulators !and only
in insulators".29,30 In the special case where " is a Slater
determinant !i.e., uncorrelated single-particle approaches",
the large-L limit of # converges to the sum of the Berry
phases of the occupied bands, each given by Eq. !13". This
result is proved in Refs. 10 and 27. Therefore, for a single-
determinant " , the correlated p0 defined via # in Eq. !19"
coincides !in the large-L limit" with p0 discussed throughout
this paper.

V. CALCULATIONS FOR A CASE OF CHEMICAL
INTEREST

Our realistic example is a set of fully conjugated trans-
polyacetylene oligomers with the C2H2 repeat unit !a
=4.670 114 817 4 a.u.", such as shown in Fig. 1. For the
monomer unit, the bond distances and angles are r!CvC"
=1.363Å, r!C–C"=1.428Å, r!C–H"=1.09Å, $!CCC"
=124.6°, and $!CvC–H"=117.0°. Note that due to alter-
nating single-double carbon bond length, such a system is
insulating. The chain with the equal carbon bonds would be
conducting and, therefore, the theorem would not be appli-
cable. The calculations were carried out at the RHF/30-21G
level of the theory with the GAUSSIAN 03 code,6 up to Nc
=257 C2H2 units in the largest oligomer !Fig. 4". In order to
save computational time, all the monomers were taken to be
identical, i.e., each one with the same geometry. For the
structure with the noncharged groups 'Fig. 1!a"(, we compute
p!257"=8.0% 10−7, i.e., both p, and Qend vanish, with a very
small finite-size error. The charge-transfer structure 'Fig.
1!b"( yields instead p!257"=4.669 728 2, which corresponds
to Qend=1 to an accuracy of 8.0% 10−5. Thus, by modifying
the end groups, one can observe the quantization theorem in
a conjugated system, and again, the quantization is extremely
accurate. For comparison, we have also carried out full peri-
odic calculations31 of the dipole moment via the Berry-phase
approach,26,32 utilizing 1024 k points in the reciprocal space.
Since these calculations were closed shell, the electronic di-
pole was computed for only one spin and then doubled. If the

FIG. 4. Longitudinal dipole moment per monomer p!Nc" of the trans-
polyacetylene oligomers, exemplified in Fig. 1, as a function of Nc: dia-
monds for the neutral structure 'NN( 'Fig. 1!a"( and squares for the charge-
tranfer structure '& ¯' ( 'Fig. 1!b"(. The double arrow indicates their
difference, which is exactly equal to one quantum.

194902-7 Dipole moment quantization in polymers J. Chem. Phys. 127, 194902 !2007"
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Fig. 2: Quantization of polarization
in polyacetylene: dipole per monomer
(a.u.) as a function of the number of
monomers in the chain, for the two
different terminations. After Ref. [9].

same quasi one-dimensional periodic system the dipole per unit length assumes—in the large-
system limit—two of the values provided by the theory. Insofar as the system is unbounded the
modulo e ambiguity in the P value cannot be removed.

4.3.2 Three-dimensional crystalline polarization

In the 3d case Eq. (21) yields
Px = −

e

2πL2
γx, (22)

which clearly cannot be used as it stands in the L → ∞ limit. Notwithstanding, polariza-
tion is a well defined multivalued observable whenever the system is crystalline: with this we
mean that a uniquely defined lattice can be associated with the real sample. The lattice is an
abstraction, which is uniquely defined even in cases with correlation, quantum nuclei, chemi-
cal disorder—i.e. crystalline alloys, a.k.a. solid solutions—where the actual wavefunction may
require a supercell (multiple of the primitive lattice cell).
For the sake of simplicity we consider—without loss of generality—a simple cubic lattice of
constant a. The supercell side L is an integer multiple of a: L = Ma. The integral is over a
3N -dimensional hypercube of sides L:

〈Ψ0|ei
2π
L
(
∑
i xi−

∑
` Z`X` )|Ψ0〉 =

∫
hcube

N∏
i=1

dri e
i 2π
L
(
∑
i xi−

∑
` Z`X` )|〈r1, r2 . . . rN |Ψ0〉|2. (23)

Owing to the crystalline hypothesis, the integral is equal the sum of M2 identical integrals: see
the Appendix for a proof. Therefore we may define a reduced matrix element and a reduced
Berry phase

γ̃x = Im ln
1

M2

∫
hcube

N∏
i=1

dri e
i 2π
L
(
∑
i xi−

∑
` Z`X` )|〈r1, r2 . . . rN |Ψ0〉|2, (24)

in terms of which
Px = −

e

2πa2
γ̃x. (25)

the polarization of a crystal is therefore a well defined multivalued crystalline observable, am-
biguous modulo e/a2 in each Cartesian component in the case of a simple cubic lattice.
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A generic lattice is dealt with by means of a coordinate transformation [10]; the bulk value of
P is then ambiguous modulo eR/Vcell, where R is a lattice vector and Vcell is the volume of a
primitive cell. By definition a primitive cell is a minimum-volume one: this choice is mandatory
in order to make P a well defined multivalued observable. As in the 1d case, the modulo am-
biguity is resolved only after the sample termination is specified; there are some complications,
though. The theory, owing to PBCs and to the hypothesis of macroscopic homogeneity, yields
the polarization P in zero E field; instead shape-dependent depolarization fields are generally
present in a polarized 3d sample. The depolarization field is zero for a sample in the form of
a slab, and with P parallel to the slab (transverse case) [11]. The second complication is the
possible occurrence of metallic surfaces. Both complications are ruled out in the quasi-1d case
discussed above.

4.3.3 Infrared spectra of liquid and amorphous systems

Whenever a lattice cannot be defined, Eq. (22) shows that P itself is not a ground-state ob-
servable in the thermodynamic limit. Nonetheless the single-point Berry phase of Eq. (22), at
finite size L, is instrumental for evaluating polarization differences, or macroscopic currents;
the latter are the key entry in the theory of infrared spectra. It is enough to choose L larger than
the relevant correlation lengths in the material; Eq. (22) can then be used to access polarization
differences ∆P much smaller than e/L2.
For the sake of completeness we show here the form of Eq. (22) when |Ψ0〉 is the Slater deter-
minant of N/2 doubly occupied k = 0 (supercell-periodical) Kohn-Sham orbitals |uj〉 = |ψj〉.
One defines the connection matrix

Sjj′ = 〈uj|ei
2π
L
x|uj′〉; (26)

by including the nuclei and accounting for double orbital occupancy the polarization, in terms
of the instantaneous Kohn-Sham orbitals, is

Px(t) = −
e

2πL2
γx = −

e

2πL2
Im ln

[
(det S)2e−i

2π
L

∑
` Z`X`

]
. (27)

The key quantity in the infrared spectra is the imaginary part of the isotropic dielectric response.
The Kubo-Greenwood formula yields

ε”(ω) =
2πω

3L3kBT

∫ ∞
−∞

dt
〈
d(t)·d(0)

〉
, (28)

where d = L3P is the dipole of the simulation cell and the brackets indicate the thermal average.
In a Car-Parrinello simulation the integrand is evaluated at discrete time steps, and only small
polarization differences are needed: at any discretized time n∆t the polarization is

P(n∆t) = P(0)+[P(∆t)−P(0)]+[P(2∆t)−P(∆t)]+· · ·+[P(n∆t)−P((n−1)∆t)]. (29)

Not surprising, the material whose infrared spectrum has been most studied is liquid water. The
very first Car-Parrinello infrared spectrum for liquid water appeared in 1997 [12]; many other
followed over the years.
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5 Topological polarization in one dimension

In presence of inversion symmetry P = −P , ergo either P = 0 or P = e/2, mod e. This fea-
ture has clearly a one-to-one mapping to Z2, the additive group of the integers modulo two. The
polarization of a centrosymmetric polymer is in fact topological: one cannot continuously trans-
form a Z2-even insulator into a Z2-odd—by enforcing inversion symmetry—without passing
through a metallic state. Arguably, this is the simplest occurrence of a Z2 topological invariant
in condensed matter physics. Similar arguments lead to the quantization of the soliton charge
in polyacetylene, whose topological nature was discovered by Su, Schrieffer, and Heeger back
in 1979 [13]; they also considered more generally non-singlet cases (here we always assume a
nondegenerate singlet ground state).
Fig. 2 shows that quantization occurs in the large-L limit only: this is an OBCs feature. Within
PBCs quantization occurs even at finite L: in all inversion symmetric cases, the matrix element
in Eq. (20) is always real: either positive (Z2-even) or negative (Z2-odd).
The above results clearly demonstrate that polyacetylene is a Z2-even topological case. A
paradigmatic Z2-odd case instead is a one-dimensional “ionic crystal”: a linear chain of al-
ternating equidistant anions and cations. In the long-chain limit P = e/2 mod e, independently
of the ionicity of the two atoms; this happens, e.g., for the two-band Hubbard model discussed
next, at low U values.
A topological quantum transition—occurring in a paradigmatic highly correlated system—was
identified long ago in Refs. [14] and [15], although no topological jargon was in fashion at the
time. Here I reinterpret topology-wise the original results.
The model system addressed was the two-band Hubbard model (at half filling):

H=
∑
jσ

[
(−1)j∆c†jσcjσ − t

(
c†jσcj+1σ + H.c.

)]
+ U

∑
j

nj↑nj↓. (30)

We assume ∆ > 0, and neutralizing classical charges equal to +1 on all sites; the system is
clearly inversion-symmetric at any U .

Fig. 3: Squared localization length
for the Hamiltonian in Eq. (30) at
half filling for t/∆ = 1.75: the
plot shows the dimensionless quan-
tity D = (2πN/L)2λ2. The sys-
tem undergoes a quantum phase tran-
sition from band-like insulator (Z2-
odd) to Mott-like insulator (Z2-even)
at U/t = 2.27. After Ref. [15].
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Preliminarily, it is expedient to investigate the trivial t = 0 case. At small U the anion site (odd
j) is doubly occupied, and the energy per cell is−2∆+U ; at U > 2∆ single occupancy of each
site is instead energetically favored. As for polarization, it is easily realized that the system is
Z2-odd in the former case and Z2-even in the latter. At the transition point Uc = 2∆ the ground
state is degenerate and the spectrum is gapless, ergo the system is “metallic”. If the hopping t
is then switched on adiabatically, the Z2 invariant in each of the two topological phases cannot
flip unless a metallic state is crossed.
Finite t simulations have been performed in Ref. [15] for several U values, where the explicitly
correlated ground-state wavefunction has been found by exact diagonalization, at fixed t/∆ =

1.75. The insulating/metallic character of the system was monitored by means of the squared
localization length

λ2 = − L2

4π2N
ln |〈Ψ0|ei

2π
L

∑
i xi |Ψ0〉|2, (31)

which will be addressed in detail in Sect. 7.2.1 below. For the time being, suffices to say that in
the large-N limit λ2 stays finite in all kinds of insulators while it diverges in metals.
The results of the simulations are shown in Fig. 3. The t=0 arguments presented above guaran-
tee that at low U values the system is a band-like insulator (Z2-odd) , while at high U values it
is a Mott-like insulator (Z2-even). The sharp transition occurs at the singular point Uc = 2.27t;
there is no metal-insulator transition, only an insulator-insulator transition, while the system is
metallic at the transition point. If we start from the pure band insulator at U = 0, there is a
single occupied band and a doubly occupied Wannier function, centered at the anion site: there-
fore P = e/2 mod e [1]. Suppose now we switch on the Hubbard U continuously: the Wannier
function is no longer defined, while the polarization P , Eq. (20), is well defined at any U value
(except Uc). At the transition point the gap closes and P flips to the 0 (mod e) value for U>Uc.
Remarkably, it was found that the static ionic charges (on anion and cation) are continuous
across the transition, while they are instead obviously discontinuous in the t=0 case. It was
also found that the dynamical (Born) effective charge on a given site changes sign [14] at the
transition; in retrospect, we now understand that such a sign change in a linear-response prop-
erty was indeed the fingerprint of the flip of the topological Z2 index in the ground state.

6 Kubo formulæ for conductivity

Although this review only concerns ground-state properties, it is expedient to display the whole
Kubo formulæ for the dynamical conductivity σαβ(ω). We define the κ = 0 many-body velocity
operator and its matrix elements:

v̂ =
1

~
∂κĤ =

1

m

N∑
i−1

[
pi +

e

c
A(ri)

]
(32)

Rn,αβ = Re 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉, In,αβ = Im 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉, (33)



10.12 Raffaele Resta

where Rn,αβ is symmetric and In,αβ antisymmetric; we further set ω0n = (En−E0)/~. The
longitudinal (symmetric) conductivity is:

σ
(+)
αβ (ω) = Dαβ

[
δ(ω) +

i

πω

]
+ σ

(regular)
αβ (ω), (34)

Dαβ =
πe2

Ld

(
N

m
δαβ −

2

~
∑
n6=0

Rn,αβ

ω0n

)
, (35)

Re σ(regular)
αβ (ω) =

πe2

~Ld
∑
n 6=0

Rn,αβ

ω0n

[
δ(ω−ω0n) + δ(ω+ω0n)

]
, (36)

Im σ
(regular)
αβ (ω) =

2e2

~Ld
∑
n 6=0

Rn,αβ

ω0n

ω

ω2
0n−ω2

. (37)

It will be shown below that the Drude weight Dαβ can be regarded as a geometrical property
of the many-electron ground state; it vanishes in insulators. The real part of the longitudinal
conductivity obeys the f -sum rule∫ ∞

0

dω Re σαβ(ω) =
Dαβ

2
+

∫ ∞
0

dω Re σ(regular)
αβ (ω) =

ω2
p

8
δαβ =

πe2n

2m
δαβ, (38)

where n = N/Ld is the electron density and ωp is the plasma frequency.
Dissipation can be included phenomenologically in the Drude term by adopting a single-relaxation-
time approximation, exactly as in the classical textbook case [16, 17], i.e.

σ
(Drude)
αβ (ω) =

τ

π

Dαβ

1−iωτ
, (39)

whose τ →∞ limit coincides with the first term in Eq. (34).
In the special case of a band metal (i.e. a crystalline system of non interacting electrons)
σ
(regular)
αβ (ω) is a linear-response property which accounts for interband transitions, and is non-

vanishing only at frequencies higher than a finite threshold; the threshold also survives after
the electron-electron interaction is turned on, owing to translational symmetry and the related
selection rules. In absence of translational symmetry the selection rule breaks down: in dis-
ordered systems—and in disordered systems only [18]—σ

(regular)
αβ (0) may be nonzero (and the

Drude weight may vanish).
Transverse conductivity is nonzero only when T-symmetry is absent. The Kubo formulæ for the
transverse (antisymmetric) conductivity are

Re σ(−)
αβ (ω) =

2e2

~Ld
∑
n6=0

In,αβ
ω2
0n−ω2

(40)

Im σ
(−)
αβ (ω) =

πe2

~Ld
∑
n6=0

In,αβ
ω0n

[
δ(ω−ω0n)− δ(ω+ω0n)

]
. (41)
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7 Time-reversal even geometrical observables

7.1 Drude weight

Electron transport in the diffusive regime is a balance between free acceleration and dissipation
[17]; the Drude weight Dαβ (also called adiabatic charge stiffness) is an intensive property of
the pristine material, accounting for the former side of the phenomenon only.
In the case of a flat one-body potential (i.e. electron gas, either free or interacting) the velocity
operator v̂ is diagonal over the energy eigenstates: the matrix elements Rn,αβ in Eq. (35) van-
ish and Dαβ assumes the same value as in classical physics [19, 16], i.e., Dαβ = πe2(n/m)δαβ .
Given Eq. (38), switching on the potential (one-body and two-body) has the effect of transfer-
ring some spectral weight from the Drude peak into the regular term. For free electrons the
acceleration induced by a constant E field is−e/m, and the accelerating current is−e times the
mechanical acceleration. Dαβ measures then the free acceleration of the many-electron system
induced by a field E constant in space, although in the adiabatic limit only (it is an ω = 0 linear
response) [20]; equivalently, it measures the (inverse) inertia of the electrons.
The form of Eq. (35) does not explicitly show that Dαβ is a ground-state property. In order
to show that, I adopt the symbol “ .=” with the meaning “equal in the dc limit”, and I define
σ
(D)
αβ (ω)

.
= ∂jα(ω)/∂Eβ(ω). Conductivity requires the vector-potential gauge: we consider the

response to a vector potential A(ω) in the dc limit

σ
(D)
αβ (ω)

.
=

∂jα
∂Aβ

∂A

∂E
. (42)

The κ-dependent current was given above in Eq. (10); we notice that

∂jα
∂Aβ

=
e

~c
∂jα
∂κβ

= − e2

~2cLd
∂2E0(κ)

∂κα∂κβ

∣∣∣∣
κ=0

dA

dE
.
= −c

[
πδ(ω) +

i

ω

]
, (43)

where the second expression comes from the causal inversion of E(ω) = iωA(ω)/c [18]; we
thus arrive at Kohn’s famous expression [5]

Dαβ =
πe2

~2Ld
∂2E0

∂κα∂κβ
, σ

(D)
αβ (ω) = Dαβ

[
δ(ω) +

i

πω

]
(44)

where we remind that it is crucial to set κ = 0 in the derivative before taking the large-L limit.
From Eq. (10) it is obvious that Dαβ vanishes in insulators.
The expression in Eq. (44) is not yet geometrical; we arrive at an equivalent geometrical form
starting from the identity 〈Ψ0κ| (Ĥκ−E0κ) |Ψ0κ〉 ≡ 0, taking two derivatives, and setting κ=0:

∂2E0κ
∂κα∂κβ

=
N~2

m
δαβ − 2Re 〈∂καΨ0κ| (Ĥκ−E0κ) |∂κβΨ0κ〉 (45)

Dαβ =
πe2N

mLd
δαβ −

2πe2

~2Ld
Re 〈∂καΨ0| (Ĥ−E0) |∂κβΨ0〉, (46)

The two terms in Eq. (46) have a very transparent meaning: the first one measures the free-
electron acceleration; the geometrical term measures how much such acceleration is hindered
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by the one-body and two-body potentials. As observed above, the geometrical term is zero even
for the interacting electron gas; whenever instead the one-body potential is not flat, then both
one-body and two-body terms in V̂ concur in hindering the free acceleration.
The geometrical term in Eq. (46) can also be cast as a sum rule for longitudinal conductivity:
from Eq. (38) we have

πe2

~2Ld
Re 〈∂καΨ0| (Ĥ−E0) |∂κβΨ0〉 =

∫ ∞
0

dω Re σ(regular)
αβ (ω). (47)

On the experimental side, the partitioning of σ(+)
αβ (ω) into a broadened Drude peak and a regular

term σ
(regular)
αβ (ω) is not so clearcut as one might wish [17].

7.2 Souza-Wilkens-Martin sum rule and the theory of the insulating state

The insulating behavior of a generic material implies thatDαβ = 0 and that Re σ(regular)
αβ (ω) goes

to zero for ω → 0 at zero temperature. For this reason Souza, Wilkens, and Martin (hereafter
quoted as SWM) proposed to characterize the metallic/insulating behavior of a material by
means of the integral [21]

I
(SWM)
αβ =

∫ ∞
0

dω

ω
Re σ(+)

αβ (ω), (48)

which diverges for all metals and converges for all insulators; in a gapped insulator the integrand
is zero for ω < εgap/~. Owing to a fluctuation-dissipation theorem, the SWM integral is a
geometrical property of the insulating ground state.

7.2.1 Periodic boundary conditions

Dealing with dc conductivity obviously requires PBCs; whenever the Drude weight is nonzero,
the integral in Eq. (48) diverges because of the δ(ω)/ω integrand. Therefore determining
whether I(SWM)

αβ converges or diverges is completely equivalent to determining whether Dαβ

is zero or finite; it will be shown that the PBCs metric is related to σ(regular)
αβ (ω) only.

We insert a complete set of states into Eq. (6) at κ = 0 to obtain the intensive quantity

gαβ =
1

N
gαβ(0) =

1

N
Re
∑
n 6=0

〈∂καΨ0|Ψn〉〈Ψn|∂κβΨ0〉. (49)

We then evaluate the κ-derivatives via perturbation theory in the parallel transport gauge

|∂καΨ0〉 = −
∑
n 6=0

|Ψn〉
〈Ψn|v̂α|Ψ0〉

ω0n

, gαβ =
1

N

∑
n 6=0

Re〈Ψn|v̂α|Ψ0〉〈Ψn|v̂β|Ψ0〉
ω2
0n

(50)

From the Kubo formula, Eq. (36), we have∫ ∞
0

dω

ω
Re σ(regular)

αβ (ω) =
πe2

~Ld
∑
n6=0

Rn,αβ

ω2
0n

=
πe2N

~Ld
gαβ, (51)
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where the N →∞ limit is understood. The intensive quantity gαβ , having the dimensions of a
squared length, in the case of a band insulator is related to the gauge-invariant quadratic spread
ΩI of the Wannier functions [1]: for an isotropic solid

gxx =
ΩI

nbd
, (52)

where nb is the number of occupied bands. It is seen from Eq. (51) that gαβ does not discrim-
inate between insulators and metals: it is finite in both cases. The story does not ends here,
though.
In 1999 Resta and Sorella have defined a squared localization length λ2 as a discriminant for the
insulating state [15]: as a function of N , λ2 converges to a finite value in all insulators, and di-
verges in all metals. In the original paper the approach was demonstrated for the two-band Hub-
bard model of Eq. (30) and its quantum transition. Many years after the divergence/convergence
of λ2 has been successfully adopted for investigating the Mott transition in the paradigmatic case
of a linear chain of hydrogen atoms [22]. In insulators λ2 is a finite-N approximant of gxx, but
when the same definition is applied to metals λ2 has the virtue of diverging. We assume an
isotropic system and we consider once more κ1 = (2π/L, 0, 0); since the metric is by definition
the infinitesimal distance, Eqs. (1) and (5) yield to leading order

Ngxx

(
2π

L

)2

' − ln |〈Ψ0|Ψ0κ1〉|2, gxx ' −
L2

4π2N
ln |〈Ψ0|Ψ0κ1〉|2. (53)

If the system is insulating, we may replace |Ψ0κ1〉 = e−iκ1·r̂|Ψ0〉 as we did in Eq. (18) above:

gxx ' −
L2

4π2N
ln |〈Ψ0|ei

2π
L

∑
i xi |Ψ0〉|2. (54)

The right-hand side coincides indeed with λ2, Eq. (31), originally introduced in Ref [15]. Given
that gxx is intensive, the logarithm in Eq. (53) scales like N1−2/d.
Next we address the metallic case. In a band metal |Ψ0〉 is a Slater determinant of Bloch orbitals,
and not all the k vectors in the Brillouin zone are occupied. A selection rule then guarantees
that 〈Ψ0|ei

2π
L

∑
i xi |Ψ0〉 vanishes even at finite N [23, 24]; therefore λ2 is formally infinite. In

disordered or correlated materials the selection rule breaks down, and λ2 diverges in the large-N
limit only. This can be seen as follows: Whenever the Drude weight is nonzero, then Eq. (44)
guarantees that |Ψ0κ1〉 is an eigenstate of Ĥκ1 orthogonal to e−iκ1·r̂|Ψ0〉; to lowest order in κ1

we have
0 = 〈Ψ0|eiκ1·r̂|Ψ0κ1〉 ' 〈Ψ0|eiκ1·r̂|Ψ0〉, (55)

which proves the divergence of λ2. In the large-L limit the modulus of the matrix element∣∣〈Ψ0|eiκ1·r̂|Ψ0〉
∣∣ approaches one from below in insulators, while it approaches zero in metals.

7.2.2 Open boundary conditions

The SWM integral is more useful in practical computations within OBCs. A bounded sample
does not support a dc current, and Dαβ = 0 at any finite size: this is consistent with the fact that
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Eq. (10) vanishes within OBCs. An oscillating field E(ω) in a large sample linearly induces
a macroscopic polarization P(ω); since j(t) = dP(t)/dt, we define a “fake” conductivity by
means of the relationship

σ̃αβ(ω) = −iω
∂Pα(ω)

∂Eβ(ω)
. (56)

The Kubo formulæ for this OBCs response function are

Re σ̃αβ(ω) =
πe2

~Ld
∑
n6=0

Rn,αβ

ω0n

[
δ(ω−ω0n) + δ(ω+ω0n)

]
. (57)

Despite the formal similarity with Eq. (36), σ̃αβ(ω) is very different—at finite size—from
σ
(regular)
αβ (ω): different eigenvalues, different matrix elements and selection rules; also, σ̃αβ(ω)

saturates the f -sum rule, while σ(regular)
αβ (ω) by itself does not (in metals). Then it is easy to

show that the SWM integral is related to the OBCs metric in the same way as in Eq. (51):∫ ∞
0

dω

ω
Re σ̃αβ(ω) =

πe2

~Ld
∑
n6=0

Rn,αβ

ω2
0n

=
πe2N

~Ld
g̃αβ, (58)

where again the N → ∞ limit is understood. The OBCs metric per electron g̃αβ coincides
with that for PBCs in insulators, but has the virtue of diverging in metals [25]. What actually
happens is that the low-frequency spectral weight in the OBCs σ̃αβ(ω) is reminiscent of—and
accounts for—the corresponding Drude peak within PBCs, thus leading to a diverging I(SWM)

αβ .
Within OBCs one has |∂κΨ0〉 = −ir̂|Ψ0〉, hence Eq. (6) yields

g̃αβ =
1

N

(
〈Ψ0|r̂αr̂β|Ψ0〉 − 〈Ψ0|r̂α|Ψ0〉〈Ψ0|r̂β|Ψ0〉

)
, (59)

and the “Re” is not needed. This is clearly a second cumulant moment of the dipole (per elec-
tron): the symbol 〈rαrβ〉c has been equivalently used in some previous literature. Alternatively,
g̃αβ measures the quadratic quantum fluctuations of the polarization in the ground state [21].
An equivalent expression for g̃αβ is in terms of the one-body density n(r) and the two-body
density n(2)(r, r′) [25]

g̃αβ =
1

2N

∫
dr dr′ (r−r′)α(r−r′)β

[
n(r)n(r′)− n(2)(r, r′)

]
.

= − 1

2N

∫
dr dr′ (r−r′)α(r−r′)β n(r)nxc(r, r

′), (60)

where nxc(r, r
′) is by definition the exchange-correlation hole density. Therefore g̃αβ is a second

moment of the exchange-correlation hole, averaged over the sample.
Finite-size model-Hamiltonian OBCs calculations have provided—by means of g̃αβ—insight
into the Anderson insulating state in 1d [26,27], and into the Anderson metal-insulator transition
in 3d [28].
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8 Time-reversal odd geometrical observables

8.1 Anomalous Hall conductivity and Chern invariant

Edwin Hall discovered the eponymous effect in 1879; two years later he discovered the anoma-
lous Hall effect in ferromagnetic metals. The latter is, by definition, the Hall effect in absence of
a macroscopic B field. Nonvanishing transverse conductivity requires breaking of T-symmetry:
in the normal Hall effect the symmetry is broken by the applied B field; in the anomalous one
it is spontaneously broken, for instance by the development of ferromagnetic order. The theory
of anomalous Hall conductivity in metals has been controversial for many years; since the early
2000s it became clear that, besides extrinsic effects, there is also an intrinsic contribution, which
can be expressed as a geometrical property of the electronic ground state in the pristine crystal.
Without extrinsic mechanisms the longitudinal dc conductivity would be infinite; such mecha-
nisms are necessary to warrant Ohm’s law, and are accounted for by relaxation time(s) τ ; in the
absence of T-symmetry, extrinsic mechanisms affect the anomalous Hall conductivity (AHC) as
well. Two distinct mechanisms have been identified: they go under the name of “side jump” and
“skew scattering” [29]. The side-jump term is nondissipative (independent of τ ). Since a crys-
tal with impurities actually is a (very) dilute alloy, we argued that the sum of the intrinsic and
side-jump terms can be regarded as the intrinsic term of the alloy [30]. As a matter of principle,
such “intrinsic” AHE of the dirty sample can be addressed either in reciprocal space [30,31], or
even in real space [32]. Finally the skew-scattering term is dissipative, proportional to τ in the
single-relaxation-time approximation. Here we deal with the intrinsic geometrical term only.
As pointed out by Haldane in a milestone paper that appeared in 1988 [33], AHC is also allowed
in insulators, and is topological in 2d: therein extrinsic effects are ruled out. In fact in insulators
the dc longitudinal conductivity is zero, and—as a basic tenet of topology—any impurity has no
effect on the Hall conductivity insofar as the system remains insulating. The effect goes under
the name of quantum anomalous Hall effect (QAHE); the synthesis of a 2d material where the
QAHE occurs was only achieved from 2013 onwards [34, 35].
The Kubo formula of Eq. (40) immediately gives the intrinsic AHC term as

Re σ(−)
αβ (0) =

2e2

~Ld
∑
n6=0

′ Im 〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω2
0n

. (61)

In a similar way as for Eqs. (50) and (51), we easily get the expression

Re σ(−)
αβ (0) = −

e2

~Ld
Ωαβ(0), (62)

where Ωαβ(0) is the many-body Berry curvature, Eq. (7). It holds for metals and insulators, in
either 2d or 3d; the large-system limit is understood. In the band-structure case Ωαβ(0)/L

d is
simply related to the Fermi-volume integral of the one-body Berry curvature [1, 31].
Next we consider the 2d case: in any smooth gauge the curvature per unit area can be written as

1

L2
Ωxy(0) =

1

L2

(
L

2π

)2 ∫ 2π
L

0

dκx

∫ 2π
L

0

dκy Ωxy(κ), (63)
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where the integral and the prefactor are both dimensionless. Even this formula holds for both
insulators and metals, but we remind that |Ψ0κ〉 is obtained by following |Ψ0〉 as the flux κ is
adiabatically turned on; the behavior of the integrand in Eq. (63) is then qualitatively different
in the insulating vs. metallic case.
From now on we deal with the insulating case only. Since the Drude weight is zero, the energy
is κ independent; furthermore the integral in Eq. (63) is actually equivalent to the integral
over a torus and is therefore quantized. In order to show this, we observe that whenever the
components of κ − κ′ are integer multiples of 2π/L, the state ei(κ−κ

′)·r̂|Ψ0κ〉 is an eigenstate
of Ĥκ′ with the same eigenvalue

|Ψ0κ′〉 = ei(κ−κ
′)·r̂|Ψ0κ〉. (64)

Since Ωxy(κ) is gauge-invariant, an arbitrary phase factor may relate the two members of
Eq. (64). It is worth stressing that in the topological case a globally smooth gauge does not
exist; in other words we can enforce Eq. (64) as it stands (with no extra phase factor) only
locally, not globally.2

The integral in Eq. (63) is quantized (even at finite L) and is proportional to the many-body
Chern number, as defined by Niu, Thouless and Wu (NTW) in a famous paper [6]

C1 =
1

2π

∫ 2π
L

0

dκx

∫ 2π
L

0

dκx Ωxy(κ), Re σ(−)
xy (0) = −e

2

h
C1. (65)

In the present formulation we have assumed PBCs at any κ, and—following Kohn [5]—we have
“twisted” the Hamiltonian. The reverse is done by NTW: the Hamiltonian is kept fixed, and the
boundary conditions are “twisted”. It is easy to show that the two approaches are equivalent:
within both of them the two components of κ become effectively angles, the integration is over
a torus, and the integral is a topological invariant.
The AHC is therefore quantized in any 2d T-breaking insulator, thus yielding the QAHE.
Originally, NTW were not addressing the QAHE; the phenomenon addressed was instead the
fractional quantum Hall effect, where the electronic ground state is notoriously highly corre-
lated [36]. While the topological invariant is by definition integer, the fractional conductance
owes—according to NTW—to the degeneracy of the ground state in the large-L limit. Also, in
presence of a macroscopic B field, gauge-covariant boundary conditions and magnetic transla-
tions must be adopted.

8.2 Magnetic circular dichroism sum rule

Since a very popular (and misleading) paper appeared in 1992 [37], magnetic circular dichro-
ism (MCD) has been widely regarded among synchrotron experimentalists as an approximate
probe of orbital magnetization M in bulk solids. It became clear over the years that this is an

2The gauge choice of Eq. (64) is the many-body analogue of the periodic gauge in band-structure theory.
Therein it is well known that, in the topological case, it is impossible to adopt a gauge which is periodic and
smooth on the whole Brillouin zone: an “obstruction” is necessarily present. See Ch. 3 in Ref. [1].
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unjustified assumption, thanks particularly to Refs. [38], [39], and [40]. The differential ab-
sorption of right and left circularly polarized light by magnetic materials is known as magnetic
circular dichroism; the object of interest is the frequency integral of the imaginary part of the
antisymmetric term in the conductivity tensor

I
(MCD)
αβ = Im

∫ ∞
0

dω σ
(−)
αβ (ω); (66)

a kind of fluctuation-dissipation theorem relates I(MCD)
αβ to a ground-state property. The Kubo

formula, Eq. (41), immediately yields

I
(MCD)
αβ =

πe2

~Ld
∑
n6=0

In,αβ
ω0n

=
πe2

~L3
Im
∑
n6=0

〈Ψ0|v̂α|Ψn〉〈Ψn|v̂β|Ψ0〉
ω0n

; (67)

this expression holds both within OBCs and PBCs, although with different eigenvalues, differ-
ent matrix elements, and different selection rules (at any finite size). In both cases, I(MCD)

αβ can
be cast as a geometric property of the electronic ground state, via the substitution

|∂κΨ0〉 = −
∑
n6=0

|Ψn〉
〈Ψn|v̂|Ψ0〉

ωn0
(68)

(Ĥ−E0)|∂κΨ0〉 = −
∑
n6=0

|Ψn〉〈Ψn|v̂|Ψ0〉. (69)

By comparing the last expression to Eq. (67) the geometrical formula is

I
(MCD)
αβ =

πe2

~2L3
Im 〈∂καΨ0|(Ĥ−E0)|∂κβΨ0〉. (70)

The PBCs many-body expression for I(MCD)
αβ , Eq. (70), unfortunately cannot be compared with

a corresponding formula for M. To this day such a formula does not exist: the orbital magne-
tization of a correlated many-body wavefunction within PBCs is currently an open (and chal-
lenging) problem. A thorough comparison has been done at the band-structure level only, where
both I(MCD)

αβ and M have a known expression, as a Fermi-volume integral of a geometrical in-
tegrand [39, 40].
A direct comparison between I

(MCD)
αβ and M was instead provided within OBCs as early as

2000 by Kunes and Oppeneer [38]; we are going to retrieve their outstanding result within the
present formalism. As already observed, within OBCs one has |∂κΨ0〉 = −ir̂|Ψ0〉, ergo

I
(MCD)
αβ =

πe2

~2L3
Im 〈Ψ0|r̂α(Ĥ−E0)r̂β|Ψ0〉 = −

iπe2

2~2L3
Im 〈Ψ0|r̂α[Ĥ, r̂β]|Ψ0〉

= − πe2

2~L3
〈Ψ0|(r̂αv̂β − r̂β v̂α)|Ψ0〉. (71)

The ground-state expectation value in Eq. (71) was originally dubbed “center of mass angu-
lar momentum”. By expanding the many-body operators r̂ and v̂, the matrix element is the
ground-state expectation value of

∑
ii′ ri × vi′ , while the orbital moment of a bounded sample
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is proportional to the expectation value of
∑

i ri × vi. The two coincide only in the single-
electron case; this is consistent with the band-structure findings. Indeed it has been proved that
I
(MCD)
αβ and M coincide only for an isolated flat band: a disconnected electron distribution with

one electron per cell (and per spin channel) [40].
The MCD sum rule I(MCD)

αβ is an outstanding ground-state observable per se, because of rea-
sons not to be explained here, and which are at the root if its enormous experimental success.
Notwithstanding, there is no compelling reason for identifying it, even approximately, with
some form of orbital magnetization. The two observables I(MCD)

αβ and M provide a quantita-
tively different measure of spontaneous T-breaking in the orbital degrees of freedom of a given
material.

9 Conclusions

The known geometrical observables come in two very different classes: those in class (i) only
make sense for insulators, and are defined modulo 2π (in dimensionless units), while those in
class (ii) are defined for both insulators and metals, and are single-valued. Such outstanding
difference owes—at the very fundamental level—to the fact that the observables in class (i) are
expressed by means of gauge-dependent (2n−1)-forms, while those in class (ii) are expressed
in terms of gauge-invariant 2n-forms.
I have thoroughly discussed here the only observable in class (i) whose many-body formula-
tion is known: macroscopic polarization [2]; it is rooted in the Berry connection, a gauge-
dependent 1-form, called Chern-Simons 1-form in mathematical speak. The many-body con-
nection, Eq. (5), may yield a physical observable only after the gauge is fixed: in the present
case, I adopted the many-body analogue of the periodic gauge in band-structure theory. I have
also discussed the multivalued nature of bulk polarization, whose features in either 1d or 3d are
somewhat different.
Another class-(i) geometrical observable is known in band-structure theory, where it is ex-
pressed as the Brillouin-zone integral of a Chern-Simons 3-form: this is the so called “axion”
term in magnetoelectric response [1]. The corresponding many-body expression is not known;
it is even possible that it could not exist as a matter of principle [41]. In the presence of some
protecting symmetry a class-(i) observable may only assume the values zero or π (mod 2π):
the observable becomes then a topological Z2 index: a Z2-odd crystalline insulator cannot be
“continuously deformed” into one Z2-even without passing through a metallic state and without
breaking the protecting symmetry.
Four geometrical observables of class (ii), having a known many-body expression, have been
discussed in the present Review. All are single valued, and all are rooted in gauge-invariant
2-forms; the following table summarizes them:

Time-reversal odd Time-reversal even
Anomalous Hall conductivity Souza-Wilkens-Martin sum rule

Magnetic circular dichroism sum rule Drude weight
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The four observables are expressed by means of the κ = 0 values of the geometrical 2-forms F
and G, defined as

F = [ 〈∂καΨ0κ|∂κβΨ0κ〉 − 〈∂καΨ0κ|Ψ0κ〉〈Ψ0κ|∂κβΨ0κ〉 ] dκαdκβ, (72)

G = 〈∂καΨ0κ| (Ĥκ − E0κ) |∂κβΨ0κ〉 dκαdκβ. (73)

Both forms are extensive; the real symmetric part of F coincides with the quantum metric,
Eq. (6), while its imaginary part (times −2) coincides with the Berry curvature, Eq. (7).
The T-odd observables in the table are obtained from the antisymmetric imaginary part of F
(AHC) and G (MCD sum rule); similarly, the T-even observables are obtained from the real
symmetric part of F (SWM sum rule) and G (Drude weight). All of these observables have
an elegant independent-electron crystalline counterpart: within band-structure theory they are
expressed as Fermi volume integrals (Brillouin-zone integrals in insulators) of gauge-invariant
geometrical 2-forms in Bloch space [42]. There is one very important T-odd geometrical observ-
able missing from the above table: orbital magnetization. Its expression within band-structure
theory is known since 2006, for both insulators and metals [1,3]. Very bafflingly, a correspond-
ing expression in terms of the many-body ground state does not exist to this day.
The two T-even observables have an important meaning in the theory of the insulating state [24].
The Drude weight is zero in all insulators, and nonzero in all metals; to remain on the safe side,
the statement applies to systems without disorder [18]. Instead the geometrical term in the
SWM sum rule within PBCs does not discriminate between insulators and metals; nonetheless
I have shown that a discretized formulation of the same observable—proposed by Resta and
Sorella back in 1999 [15]—does discriminate. Furthermore it is expedient to alternatively cast
the SWM sum rule in the OBCs Hilbert space: even in this case the geometrical observable
acquires the virtue of discriminating between insulators and metals [24, 28].
Among the five observables dealt with in this Review, only two may become topological. I have
shown that the polarization of a 1d (or quasi-1d) inversion-symmetric insulator is a topological
Z2 invariant (in electron-charge units): Fig. 2 perspicuously shows that polyacetylene is a Z2-
even topological case. In modern jargon, the Z2 invariant is “protected” by inversion symmetry.
Notably, the—closely related—topological nature of the soliton charge in polyacetylene was
discovered long ago [13]. The second geometrical observable which may become topological
is the AHC: this occurs in 2d insulators whenever T-symmetry is absent. Therein the AHC
in natural conductance units3 is a Z invariant (Chern number): the effect is known as QAHE
(quantum anomalous Hall effect) [34,35]. The same Z invariant plays the key role in the theory
of the fractional quantum Hall effect [6].
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Appendix
As in the main text we address a simple cubic lattice of constant a, with L = Ma; here we
consider the electronic term only. We define [r] = (r1, r2 . . . rN), and we indicate with the
simple integral symbol

∫
a multidimensional integral over the segment (0, L) in each variable.

Then the integral over the hypercube is

〈Ψ0|ei
2π
L

∑
i xi |Ψ0〉 =

∫ N∏
i=1

dri e
i 2π
L

∑
i xi |〈[r]|Ψ0〉|2 (74)

=

∫
dy1dz1

∫
dx1

N∏
i=2

dri e
i 2π
L

∑
i xi |〈[r]|Ψ0〉|2. (75)

Under the crystalline hypothesis, the inner integral is a lattice-periodic function of (y1, z1), hence

〈Ψ0|ei
2π
L

∑
i xi |Ψ0〉 =M2

∫
cell

dy1dz1

∫
dx1

N∏
i=2

dri e
i 2π
L

∑
i xi |〈[r]|Ψ0〉|2. (76)

As defined in the main text, the reduced Berry phase is then

γ̃(el)x = Im ln
∫
cell

dy1dz1

∫
dx1

N∏
i=2

dri e
i 2π
L

∑
i xi |〈[r]|Ψ0〉|2. (77)

This holds for a correlated wavefunction in a perfect lattice; in case of chemical disorder one
instead averages over the disorder by evaluating Eq. (75) on the large supercell and then dividing
it by M2 before taking the “Im ln”. A similar reasoning applies to the nuclear term as well:
hence Eq. (24) in the main text.
At the independent-electron level |Ψ0〉 is the Slater determinant of N Bloch orbitals. We get rid
of trivial factors of 2 by addressing spinless electrons; furthermore we consider the contribution
to P (el)

x of a single occupied band. The km Bloch vectors are

m ≡ (m1,m2,m3), km = 2π/L (m1,m2,m3), ms = 0, 1, . . . ,M−1. (78)

The Bloch orbitals |ψkm〉 = eikm·r|ukm〉 are normalized over the crystal cell of volume a3. It
is expedient to define the auxiliary Bloch orbitals |ψ̃km〉 = ei

2π
L
x|ψkm〉, and |Ψ̃0〉 as their Slater

determinant; we also define q = (2π/L, 0, 0). Then

〈Ψ0|ei
2π
L

∑
i xi |Ψ0〉 = 〈Ψ0|ei

∑
i q·ri |Ψ0〉 = 〈Ψ0|Ψ̃0〉 =

(
det S

)
/M3N , (79)

where S is the N×N overlap matrix, in a different normalization

Smm′ = M3〈ψkm|ψ̃km′ 〉 =M3〈ukm|ei(q+km′−km)·r|ukm′ 〉
= M3〈ukm|ukm′ 〉 δq+km′−km =M3〈ukm|ukm−q〉 δmm′ . (80)

The normalization factors cancel: we have in fact

〈Ψ0|ei
2π
L

∑
i xi |Ψ0〉 =

1

M3N
det S =

M−1∏
m1,m2,m3=0

〈ukm|ukm−q〉, (81)

γ̃(el)x =
1

M2

M−1∑
m2,m3=0

Im ln
M−1∏
m1=0

〈ukm|ukm−q〉; (82)

the multi-band case is dealt with in detail in Ref. [11].
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1 Introduction

The last decade has witnessed tremendous progress in our understanding of topological band
theory. Soon after the discovery of topological insulators [1], it has been realized that topology
plays also a significant role in gapless systems, i.e., in topological semimetals [2–7]. Topologi-
cal semimetals exhibit protected band crossings near the Fermi energy with nonzero topological
charges. While the existence of these band crossings has been recognized early on during the
development of band theory [8], their fundamental importance has been understood only re-
cently. In the course of the last few years it has been shown that topological band crossing
give rise to a variety of interesting phenomena, such as, intrinsic anomalous Hall effects [6],
exotic surface states [5], large thermopower, and unusual responses related to quantum anoma-
lies [9]. Because of these properties, topological semimetals could potentially be used for new
device applications [10]. E.g., the helical nature of the surface states can be used for low-
dissipation transport [11]. The spin-momentum locking of the surface states can be utilized for
low-consumption spintronic devices and magnetic memory devices [12]. The high photosen-
sitivity of topological semimetals is of importance for the construction of ultrafast photodetec-
tors [13]. Moreover, many topological semimetals have large thermoelectric responses, which
could be of use for high-efficiency energy converters or thermal detectors [14].

There are two different types of topological band crossings, namely, accidental band crossings
and symmetry-enforced band crossings. Accidental band crossings are protected by symmor-
phic crystal symmetries and are only perturbatively stable [2]. That is, they can be adiabatically
removed by large symmetry-preserving deformations of the Hamiltonian, for example, through
pair annihilation. Dirac points and Dirac lines are examples of accidental band crossings, which
are protected by parity-time inversion, reflection, or rotation symmetry [7, 15]. Another exam-
ple is Weyl points, which can be stable even in the absence of symmetries [5, 6]. Accidental
band crossings also occur in the Bogoliubov bands of superconductors [2]. Symmetry-enforced
band crossings [16–22], however, arise in the presence of nonsymmorphic symmetries and are
globally stable, i.e., they cannot be removed even by large deformations of the Hamiltonian.
That is, these band crossings are required to exist due to nonsymmorphic symmetries alone,
independent of material details, such as chemical composition or energetics of the bands.

In these lectures we will discuss both types of band crossings, first focusing on accidental band
crossings in Sec. 2 and then studying symmetry-enforced band crossings in Sec. 3. A particular
focus will be on nodal-line semimetals, where the band crossings occur along one-dimensional
lines in the BZ, close to or at the Fermi energy. But we will also discuss Weyl semimetals,
where the band crossings occur at isolated points in the Brillouin zone (BZ).

In the following we will focus on weakly interacting semimetals, which can be described within
the single-particle picture. Using the band theory of solids [23], the electronic wavefunctions
ψ in a crystal of a semimetal can be classified by their crystal momentum k, which is defined
in the periodic BZ. Bloch’s theorem tells us that ψ can be expressed in terms of Bloch states
|um(k)〉, which are defined in a single unit cell of the crystal. These Bloch states are eigenstates
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of the Bloch Hamiltonian H(k),1

H(k) |um(k)〉 = Em(k) |um(k)〉 , (1)

where m represents the band index. The eigenvalues Em(k) in the above equation are called
Bloch bands and the set {Em(k)} is referred to as the band structure of the solid.
In this lecture we are interested in the crossings between two different bands, Em(k) and
Em′(k), say. That is, we want to know under which conditions the two energies Em(k) and
Em′(k) become degenerate at certain points or lines in the BZ. The main focus will be on elec-
tronic band structures of solids. However, the band crossings discussed here can also occur in
different contexts, for example, for photonic bands of dielectric superlattices [24], for phonon
bands in crystals, for magnon bands in ordered antiferromagnets [25], or for Bogoliubov bands
in superconductors [1, 2].
The remainder of these notes are organized as follows. In Sec. 2.1 we will begin by deriving
a classification of accidental band crossings protected by time-reversal symmetry, particle-hole
symmetry, and/or chiral symmetry. As concrete examples of such accidental band crossings,
we will consider, among others, Weyl and nodal-line semimetals (Secs. 2.2 and 2.3). For these
examples we will discuss the bulk-boundary correspondence, which relates the nontrivial topol-
ogy of the band crossing in the bulk to the appearance of surface states. We will also review
the quantum anomalies that arise in the low-energy descriptions of these semimetals. Sec-
tion 3 is devoted to the study of symmetry-enforced band crossings. We will first explain some
general properties of nonsymmorphic symmetries and show how these can lead to symmetry-
enforced band crossings. Subsequently, two examples of nonsymmorphic band crossings will
be discussed: Weyl lines protected by glide reflection in Sec. 3.2 and Dirac lines protected
by off-center symmetries in Sec. 3.3. For each of these examples, we present some material
realizations and discuss implications for experiments.

2 Accidental band crossings

Accidental band crossings occur, for example, when a hole-like and an electron-like parabolic
band in a two-dimensional material overlap, forming two band crossings, as shown in Fig. 1.
This band crossing is stable if the two bands have a non-trivial topology and/or opposite sym-
metry. In general these accidental crossings share the following features:

• They are protected by symmorphic crystal symmetries and/or nonspatial symmetries.
Here, symmorphic symmetry means a symmetry which leaves at least one point of the
real-space crystal invariant. Symmorphic symmetries are point-group symmetries of the
crystal, such as rotation or reflection. Nonspatial symmetry refers to a symmetry that
dose not transform different lattice sites into each other. I.e., a symmetry that acts locally
in real space, such as time-reversal or particle-hole symmetry.

1For superconductors the Bloch Hamiltonian should be replaced by a Bogoliubov-de Gennes Hamiltonian.
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Fig. 1: When an electron- and hole-like band of different symmetry overlap, they form two
accidental band crossings. The color shading indicates some “pseudo-spin” degree of freedom
of the Bloch states |un(k)〉, which depends on crystal momentum k.

• Accidental band crossings exhibit local topological charges ntop. These topological charges
are defined in terms of contour integrals, e.g.,

ntop =
1

2π

∮
C
F(k) dk ∈ Z, (2)

where the integration is along the contour C, which encloses the band crossing point or
line. Here, F(k) represents a general curvature function, such as the Berry curvature or
the winding number density. These topological charges are quantized to integer values,
i.e., ntop ∈ Z. For point crossings, the sum of the topological charges of all crossings
formed by a given pair of bands needs to be zero, due to a fermion-doubling theorem [26].

• Accidental band crossings are only perturbatively stable. That is, small symmetry-pre-
serving perturbations can move the band crossings in the BZ, but cannot remove them,
by opening up a gap. However, large symmetry-preserving deformations can completely
remove the band crossings. E.g., for point crossings one can pair annihilate two point
crossings with opposite topological charge by a large symmetry-preserving deformation.

It follows from the last point above, that classifications of accidental band crossings based on
symmetry and topology only tell us whether for a given set of symmetries a band crossing is
possible. I.e., these classifications only tell us whether a given set of symmetries protect band
crossings or not. They do not tell us whether these crossings actually occur, which depends on
the detailed energetics of the bands (i.e., on how the bands disperse through the BZ).
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2.1 Classification of band crossings

Topological band crossings of the accidental type can be classified using the Dirac-matrix
Hamiltonian method [2, 27, 28]. This method relies on the fact that close to a band crossing
the Bloch Hamiltonian H(k), Eq. (1), can in general be approximated by a Dirac Hamiltonian,
i.e., by

HD(k) =
d∑
j=1

kjγj, (3)

where d is the spatial dimension and γj are gamma matrices obeying the anti-commutation
relations

{γi, γj} = 2δij1, j = 0, 1, . . . , d. (4)

Using Eq. (4), we find that H2
D =

∑d
j=1 k

2
j1. Hence, the energy spectrum of HD(k) is given by

E = ±

√√√√ d∑
j=1

k2j , (5)

which exhibits a band crossing at k = 0, where the bands become degenerate with E = 0.
(I.e., the Dirac Hamiltonian has no gap.) The Dirac-matrix Hamiltonian method analyzes the
stability of the gapless Dirac-Hamiltonian (3) against gap-opening deformations. That is, one
studies whether there exists a gap-opening mass term mγ0, i.e., an additional gamma matrix γ0
with {γ0, γj} = 0 (j = 1, 2, . . . , d), with which HD(k) can be deformed. If such a mass term
exists, then the band crossing can be removed. I.e., by adding mγ0 to HD the spectrum deforms

intoE = ±
√
m2 +

∑d
j=1 k

2
j , which has no band crossing anymore at k = 0. This indicates that

the band crossing is topologically trivial. However, if there does not exist an additional gamma
matrix γ0, then the band crossing is topologically nontrivial and stable against deformations.
The classification of band crossings is done in terms of the following three characteristics
(cf. Table 1):

(i) Spatial and nonspatial symmetries of the Bloch Hamiltonian H(k).

(ii) The co-dimension p = d− dBC of the band crossing, where dBC is the dimension of the
band crossing. (I.e., dBC = 0 for point crossings, dBC = 1 for line crossings, etc.)

(iii) How the band crossing transforms under the nonspatial (anti-unitary) symmetries, which
map k → −k. That is, we need to distinguish whether the band crossing is mapped
onto itself under the nonspatial symmetries or not, see Fig. 2. For this reason we need
to differentiate between band crossings at high-symmetry points and off high-symmetry
points of the BZ.

Before performing the classification, let us first discuss how the spatial and nonspatial symme-
tries restrict the form of the Dirac Hamiltonian (3).
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Fig. 2: The classification of stable band crossings depends on how the band crossings trans-
form under nonspatial (anti-unitary) symmetries. (a) The band crossing is left invariant under
nonspatial symmetries. (b) Two band crossings are pairwise related by the nonspatial symme-
tries, which map k→ −k.

2.1.1 Symmetry operations

We consider the classification in terms of both nonspatial and spatial symmetries.

Nonspatial symmetries. Nonspatial symmetries are symmetries that act locally in real space,
i.e., they do not transform different lattice sites into each other. There are three different non-
spatial symmetries that need to be considered: anti-unitary time-reversal symmetry (TRS) and
particle-hole symmetry (PHS), as well as chiral (i.e., sublattice symmetry) [2, 29]. Here, “anti-
unitary” refers to the fact that these symmetries can be written as a product of a unitary matrix U
with the complex conjugation operator K. In momentum space, time-reversal and particle-hole
symmetry act on the Bloch (or Bogoliubov-de Gennes) Hamiltonian as

T −1H(−k)T = +H(k), and C−1H(−k)C = −H(k), (6a)

respectively, where T and C are the anti-unitary operators for time-reversal and particle-hole
symmetry. Both T and C can square either to +1 or−1, depending on the type of the symmetry
(see last three columns of Table 1). Chiral symmetry, on the other hand, is implemented by2

S−1H(k)S = −H(k), (6b)

where S is a unitary operator. Symmetries (6) define the ten Altland-Zirnbauer (AZ) symmetry
classes (i.e., the “ten-fold way”) [2, 30, 31], which are listed in Table 1. The first column in
Table 1 gives the name of the ten AZ symmetry classes. The labels T , C, and S in the last three
columns indicate the presence (“+”, “−”, and “1”) or absence (“0”) of time-reversal symmetry,
particle-hole symmetry, and chiral symmetry, respectively, as well as the sign of the squared
symmetry operators T 2 and C2.
Combining Eqs. (6) with Eq. (3), we find that when the Dirac Hamiltonian obeys TRS, PHS, or
chiral symmetry, the gamma matrices in Eq. (3) must satisfy

{γi, T } = 0, [γi, C] = 0, {γi,S} = 0, (7)

2Note that combining TRS with PHS yields a chiral symmetry.
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Table 1: Classification of stable band crossings in terms of the ten AZ symmetry classes [2],
which are listed in the first column. The first and second rows give the co-dimensions p =
d− dBC for band crossings at high-symmetry points [Fig. 2(a)] and away from high-symmetry
points of the BZ [Fig. 2(b)], respectively.

at high-sym. point p=8 p=1 p=2 p=3 p=4 p=5 p=6 p=7
T C S

off high-sym. point p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=1
A 0 Z 0 Z 0 Z 0 Z 0 0 0

AIII Z 0 Z 0 Z 0 Z 0 0 0 1
AI 0 0a 0 2Z 0 Za,b

2 Zb
2 Z + 0 0

BDI Z 0 0a 0 2Z 0 Za,b
2 Zb

2 + + 1
D Zb

2 Z 0 0a 0 2Z 0 Za,b
2 0 + 0

DIII Za,b
2 Zb

2 Z 0 0a 0 2Z 0 − + 1
AII 0 Za,b

2 Zb
2 Z 0 0a 0 2Z − 0 0

CII 2Z 0 Za,b
2 Zb

2 Z 0 0a 0 − − 1
C 0 2Z 0 Za,b

2 Zb
2 Z 0 0a 0 − 0

CI 0a 0 2Z 0 Za,b
2 Zb

2 Z 0 + − 1
a

For these entries there can exist bulk band crossings away from high-symmetry points that are protected by Z
invariants inherited from classes A and AIII. (TRS or PHS does not trivialize the Z invariants.)

b
Z2 invariants protect only band crossings of dimension zero at high-symmetry points.

where i = 1, 2, . . . , d. Similarly, any mass term mγ0 that leads to the opening of a gap at the
band crossing must satisfy

[γ0, T ] = 0, {γ0, C} = 0, {γ0,S} = 0. (8)

Spatial symmetries. Spatial symmetries are symmetries that act non-locally in position space,
i.e., they transform different lattice sites into each other. Point-group symmetries are an ex-
ample of spatial symmetries. Here, we shall focus on reflection symmetries with the unitary
operator R. For concreteness we assume that R lets x → −x. The invariance of the Bloch
Hamiltonian (1) under this reflection implies

R−1H(−k1, k̃)R = H(k1, k̃), (9)

where k̃ = (k2, . . . , kd) and the unitary reflection operator R can only depend on k1, since it is
symmorphic [cf. Eq. (44)]. Note that for spin-1

2
particles (e.g., Bloch electrons with spin-orbit

coupling) R transforms the spin degree of freedom as

RŜxR
−1 = Ŝx and RŜy,zR

−1 = −Ŝy,z, (10)

where Ŝi = ~
2
σ̂i is the spin operator. Hence, the spin part of R is given by iσx.3 In general, R

contains also an internal part which rearranges the positions of the atoms in the unit cell.
3The reason to include the factor i here is to ensure that R2 = −1, since R2 effectively corresponds to a spin

rotation by 2π. However, in general, there is a phase ambiguity in the definition ofR, since a phase can be absorbed
in the electronic creation/annihilation operators.
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Combining Eq. (9) with Eq. (3), we find that when the Dirac Hamiltonian obeys reflection
symmetry, the gamma matrices in Eq. (3) must satisfy

{γ1, R} = 0, [γj, R] = 0, where j = 2, 3, . . . , d, (11)

and the mass term must satisfy [γ0, R] = 0.

2.1.2 Band crossings at high-symmetry points

We will now use the Dirac-matrix Hamiltonian method4 to classify band crossings at high-
symmetry points of the BZ, i.e., at time-reversal invariant momenta (TRIMs) of the BZ, e.g.,
the Γ point. This classification approach consists of the following steps:

1. Write down a d-dimensional gapless Dirac Hamiltonian HD of the form of Eq. (3), that is
invariant under all the considered symmetries. The matrix dimension of the gamma ma-
trices should be minimal, i.e., large enough such that all symmetries can be implemented
in a nontrivial way, but not larger.

2. Check whether there exists a symmetry-allowed mass term mγ0, which anticommutes
with HD. If yes, then the band crossing can be gapped out. This indicates that the band
crossing is topologically trivial, which is labeled by “0” in Table 1. If no, then the band
crossing is topologically stable (i.e., protected by the symmetries), which is labeled by
“Z or “Z2” in Table 1.

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, we have to consider multiple copies of the Dirac Hamiltonian HD. Doubled
versions of HD can be obtained as

Hdb
D =

∑
i∈A

kiγi ⊗ σz +
∑
i∈Ac

kiγi ⊗ 1, (12)

where the first summation is over an arbitrary subset A ⊆ {1, 2, ..., d} and the second
summation is over the complement of this subset Ac. We then have to check whether
there exist gap-opening terms for these enlarged Dirac Hamiltonians. If there exists a
mass term for all possible versions of Hdb

D , then the band crossing is classified by a Z2

invariant. If the band crossing is stable for an arbitrary number of copies of HD, then it is
classified by a Z number, see Table 1.

To make this more explicit, let us discuss some specific cases.

4This approach is closely related to the problem of Clifford algebra extensions [2, 28], which puts it on a
rigorous footing.
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Class A in 2D. First, we consider a band crossing in a two-dimensional system without any
symmetries, corresponding to class A in Table 1. The generic low-energy 2×2 Hamiltonian for
such a band crossing at k = 0 readsHA

2D =
∑

k Ψ
†
kH

A
2DΨk, where

HA
2D = kxσx + kyσy (13)

and Ψk = (c1k, c2k)T is a spinor with two orbital degrees of freedom. Since this band crossing
can be gapped out by the mass term mσz, it is topologically trivial and therefore unstable. This
is indicated by a “0” in the fourth column of Table 1.

Class A in 3D. Next, we study a zero-dimensional band crossing in three-dimensions without
any symmetries. This type of band crossing is realized in Weyl semimetals [2, 5, 6]. The low-
energy 2×2 Hamiltonian takes the formHA

3D =
∑

k Ψ
†
kH

A
3DΨk, with

HA
3D = kxσx + kyσy + kzσz. (14)

It is impossible to find a mass term for this Hamiltonian, because there exist only three gamma
matrices of rank 2. (There exists no “fourth Pauli matrix” that anticommutes with HA

3D.) There-
fore, the band-crossing is stable. To determine whether the Weyl crossing (14) has a Z or Z2

classification, we need to consider all possible doubled versions of HA
3D, cf. Eq. (12). We can

consider, for example, the following doubled version of HA
3D

HA,db1
3D = kxσx ⊗ σz + kyσy ⊗ σ0 + kzσz ⊗ σ0, (15)

where ⊗ denotes the tensor product between two Pauli matrices. For this doubled version of
HA

3D, there exist two mass terms, e.g., σx ⊗ σx and σx ⊗ σy, which gap out the band crossing.
However, there exists another doubled version of HA

3D, namely

HA,db2
3D = kxσx ⊗ σ0 + kyσy ⊗ σ0 + kzσz ⊗ σ0, (16)

whose band crossing is stable. We find that there does not exist any mass term for HA,db2
3D ,

which gaps out the band crossing. Since we have found one doubled version of HA
3D which has

a stable (four-fold degenerate) band crossing, we conclude that Weyl band crossings exhibit a
Z classification. (One can show that there exist also multiple copies of HA

3D with stable band
crossings.) This is indicated by the label “Z” in the fifth column of Table 1.
The Weyl points described by Eq. (14) are monopoles of Berry flux, i.e., they realize hedgehog
defects of the Berry curvature (see Fig. 4). The stability of these Weyl points is guaranteed by
a quantized Chern number (see Sec. 2.2).

Class A + R in 2D. Let us now add reflection symmetry to the game. We consider again a
two-orbital system with the low-energy HamiltonianHA+R

2D =
∑

k Ψ
†
kH

A+R
2D Ψk, where

HA+R
2D = kxσx + kyσy, (17)
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which is symmetric under reflection symmetry R−1HA+R
2D (−kx, ky)R = HA+R

2D (kx, ky), with
R = σy. This Hamiltonian describes the low-energy physics of a single Dirac cone of graphene.
We observe that the only possible gap-opening mass term mσz, which anticommutes with
HA+R

2D , is symmetry forbidden, since it breaks reflections symmetry (R−1σzR = −σz). Hence,
the band-crossing of HA+R

2D at k = 0 is stable and protected by reflection symmetry. We find
that also the doubled version of HA+R

2D ,

HA+R,db
2D = kxσx ⊗ σ0 + kyσy ⊗ σ0, (18)

is stable, since there exists no reflection-symmetric mass term. For example, m̂ = σz ⊗ σx
breaks reflection, since (σy ⊗ σ0)−1m̂(σy ⊗ σ0) 6= m̂. Therefore, the reflection-symmetric band
crossing (17) has a Z classification. This is indicated by the label “MZ” in the fifth column of
Table VIII of Ref. [2].

Class AII in 2D. Next, we study a band crossing in two-dimensions with time-reversal sym-
metry (T 2 = −1), corresponding to class AII in Table 1. The low-energy Dirac Hamiltonian
reads again

HAII
2D = kxσx + kyσy. (19)

But now we impose time-reversal symmetry (6a) with the operator T = iσyK, which squares
to −1 (class AII). This type of time-reversal symmetric band crossing is realized at the surface
of three-dimensional topological insulators with spin-orbit coupling. The only possible mass
term, which anticommutes with HAII

2D , is mσz. However, mσz breaks time-reversal symmetry
(since, T −1mσzT 6= mσz) and is therefore forbidden by symmetry. Hence, Eq. (19) describes
a topologically stable band crossing in class AII. Next, we examine different doubled versions
of HAII

2D , i.e.,

HAII,db
2D =

(
HAII

2D 0

0 HAII
2D
′

)
, (20)

where HAII
2D
′ ∈ {±kxσx ± kyσy,±kxσx ∓ kyσy}, see Eq. (12). (The time-reversal operator for

these double Hamiltonians is T = iσy ⊗ σ0K.) It is not difficult to show that for each of the
four versions of HAII,db

2D there exists at least one symmetry-preserving mass term, which gaps
out the band crossing. For example, for the first version of HAII,db

2D with HAII
2D
′
= +kxσx+kyσy,

the mass term is σz ⊗ σy. Thus, the band crossings described by HAII,db
2D is unstable. Therefore,

we conclude that Eq. (19) has a Z2 classification, see fourth column of Table 1.

2.1.3 Band crossings off high-symmetry points

In this section we classify band crossings that are located away from high-symmetry points, i.e.,
away from the TRIMs of the BZ, see Fig. 2(b). These band crossings can be moved around in
the BZ, as they are not pinned at the TRIMs. They transform pairwise into each other by the
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nonspatial anti-unitary symmetries (time-reversal and particle-hole symmetry). For this reason,
we have to take into account the full momentum dependence of the Hamiltonian in the entire
BZ. That is, within the Dirac-matrix Hamiltonian approach, we need to consider the following
type of Hamiltonian [27]

HD =

p−1∑
i=1

sin kiγi +
(
p− 1−

p∑
i=1

cos ki

)
γ̃0, (21)

which contains the momentum-dependent mass term γ̃0, cf. Eq. (3). The Dirac Hamiltonian (21)
describes dBC-dimensional band crossings (with dBC = d− p), which are located at

k = (0, . . . , 0,±π/2, kp+1, . . . , kd). (22)

We observe that the band crossings (22) are located away from the high-symmetry points
(0, 0, 0, . . . , 0), (π, 0, 0, . . . , 0), (0, π, 0, . . . , 0), etc. of the BZ. The classification of these band
crossings proceeds in a similar way as in Sec. 2.1.2. It consists of the following steps:

1. Write down a d-dimensional Dirac Hamiltonian HD of the form Eq. (21) with p=d−dBC ,
which satisfies all the considered symmetries. The rank of the gamma matrices in Eq. (21)
should be large enough, such that all symmetries can be implemented in a nontrivial way,
but not larger.

2. Check, whether

• there exists an additional momentum-independent mass term Γ̃ , which anticom-
mutes with HD and which is invariant under all symmetries.

• there exists an additional momentum-dependent kinetic term sin kpγp, which anti-
commutes with HD and which respects all symmetries.

If the answer is yes for either of the above two points, then the band crossing can be
gapped out. Hence, the band crossing is topologically trivial (entries labeled by “0” in
Table 1). If the answer is no for both of the above points, then the band crossing is
topologically stable (entries labeled by “Z” or “Z2” in Table 1).

3. To determine whether there is a single or multiple band crossings protected by the sym-
metries, consider multiple copies of HD, similar to Eq. (12).

Using this approach it was shown that only Z-type invariants can ensure the stability of band-
crossings off high-symmetry points [2]. (Z2-type invariants do not give rise to stable band
crossings off high-symmetry points.) To exemplify this, we discuss some specific cases.
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2.2 Weyl semimetal

We study the band crossing points of a three-dimensional Weyl semimetal [2, 5, 6], which be-
longs to symmetry class A (cf. Sec. 2.1.2). The Hamiltonian is defined on the cubic lattice and
is given byHA

3D =
∑

k ΨkH
A
3DΨk, with (cf. Eq. (21) with p = 3)5

HA
3D = sin kxσx + sin kyσy + (2− cos kx − cos ky − cos kz)σz, (23)

and the spinor Ψk = (c1k, c2k), which has two orbital degrees of freedom (e.g., s and p orbitals),
but no spin-degree of freedom, since the semimetal is assumed to be magnetically ordered. The
spectrum of Eq. (23) is given by

Ek = ±
√

(sin kx)2 + (sin ky)2 + (2− cos kx − cos ky − cos kz)2. (24)

HA
3D exhibits two band crossing points at E = 0 (called Weyl points), which are located at

(0, 0,±π/2). As in Sec. 2.1.2, we find that these Weyl nodes are topologically stable, since
there does not exist any fourth gamma matrix of rank two. (I.e., there exist no additional mass
or kinetic terms.) We also find that the doubled version HA

3D ⊗ σ0 has stable band crossings.
Hence, the classification is of Z type, see third column of Table 1.
The stability of the Weyl points is guaranteed by a quantized Chern number

C =
1

2π

∮
C
F(k)dk, where F(k) = ∇k ×Ak (25)

is the Berry curvature of the occupied band and C is a two-dimensional closed integration con-
tour. The Berry connection Ak is defined as Ak = i〈u−(k)|∇k|u−(k)〉, with |u−(k)〉 the Bloch
state of the occupied band. The Weyl points act as sources and drains of Berry curvature, i.e.,
the vector field F(k) points inwards at one Weyl point and outwards at the other. The Chern
number (25) measures how much Berry flux passes through the contour C. For contours that
enclose one of the two Weyl points the Chern number is C = ±1. For contours that do not
enclose a Weyl point, the Chern number is zero C = 0.
For Hamiltonian (23) the Chern number can be rewritten in the simple form6

C(kz) =
1

4π

∮
Ckz

dkxdky d̂k ·
[
∂kxd̂k × ∂ky d̂k

]
, with d̂k =

d(k)

|d(k)| , (26)

and dx(k) = sin kx, dy(k) = sin ky, and dz(k) = (2 − cos kx − cos ky − cos kz). Here, for
simplicity, we choose C to be parallel to the kxky-plane, see Fig. 4(a). The vector d̂k in Eq. (26)
defines a map from k to the unit sphere S2, see Figs. 3(a) and 3(b). The Chern number C(kz),
Eq. (26), measures how many times the d̂k-vector wraps around S2 as k sweeps through the
contour Ckz . (Note that for k restricted to a spherical contour C, d̂k represents a map from S2

to S2, whose topology is given by the second homotopy group π2(S2) = Z [32].) Let us now
study how C(kz), Eq. (26), changes as a function of kz. Two different regions of kz can be
distinguished:

5Note that this model has an inversion symmetry, i.e., (σz)−1HA
3D(−k)σz = HA

3D(k), which ensures that the
two Weyl points are at the same energy.

6The fact that there is a non-zero Chern number can also be diagnosed from the parity eigenvalues at the
TRIMs [5]. The parity eigenvalues at the Γ point are opposite to those at all the other TRIMs. From this it follows
that the Chern number C(kz = 0) must be non-zero.
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dy

dx

dz dz

dx

dy

(a) (b)

(c) (d)
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Fig. 3: (a),(b) show the regions covered by the dk-vector, Eq. (26), on the unit sphere. (c),
(d) depict the textures of dk in the kxky-plane, i.e., in the contour Ckz . (a), (c) corresponds to
C(kz) = 0, while (b), (d) represents C(kz) 6= 0.

Trivial region. For |kz| > π/2, the d̂k-vector covers only a small region around the north
pole of S2, i.e., it points mostly upwards. Hence, d̂k does not wrap around S2, leading to a zero
Chern number C(kz) = 0, see left-hand side of Fig. 3. This follows also from the fact that the
contour C can be continuously shrunk to zero, without crossing through the singularities of the
Weyl points. Thus, the integral (26) must vanish.

Topological region. For |kz| < π/2, however, the d̂k-vector wraps once around the unit
sphere S2. That is, it points along all directions as k sweeps through Ckz , producing a Skyrmion
texture in the kxky-plane, see right-hand side of Fig. 3. As a consequence, the Chern number
is nonzero, i.e., C(kz) = ±1, which endows the Weyl points with a nonzero topological charge
(also know as “chirality”). This agrees with the fact that the contour C cannot be continuously
shrunk to zero, without crossing through the Weyl point singularities. Hence, the integral (26)
must be nonzero.

Due to the periodicity of the BZ, we can consider the contour Ckz to enclose either the upper or
the lower part of the BZ, see Fig. 4(a). Both ways of closing the contour must give consistent
results. A contour Ckz with |kz| > π/2, which can be shrunk to zero, can also be viewed
as enclosing both Weyl points. Hence, the Chern numbers of the two Weyl points must add
up to zero, i.e., they must have opposite topological charges, which is a manifestation of the
fermion-doubling theorem [26].
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Fig. 4: (a) The Weyl points (red spheres) are sources and drains of Berry flux (red arrows). In
the surface BZ there exists a Fermi arc state (yellow), which connects the projection of the two
Weyl points. The blue plane indicates the integration contour Ckz of Eq. (26). (b) Schematic
energy dispersion of the Fermi arc state in the (100) surface BZ. The Fermi arc surface state
(yellow) smoothly connects to the linearly dispersing bulk bands (blue) of the two Weyl points.

2.2.1 Fermi arc surface states

We now discuss the surface states of Weyl semimetals, which arise due to the nontrivial topology
of the Weyl points. For this we consider again Hamiltonian (23) restricted to a planar contour
Ckz which is perpendicular to the kz axis [blue plane in Fig. 4(a)]. As we have seen above,
for any contour Ckz with |kz| < π/2 the Chern number is C = ±1. Thus, each of the two-
dimensional HamiltoniansHA

3D,kz
(kx, ky) ,with |kz| < π/2, represents a two-dimensional Chern

insulator. These Chern insulators all have chiral edge modes, which on the surface perpendicular
to, e.g., the x direction, have a linear dispersion with E ' vky. Hence, there is a collection of
chiral edge modes on the (100) surface, which all disperse in the same direction. They form an
arc in the surface BZ, connecting the projection of the two Weyl points (yellow arc in Fig. 4).
This arc smoothly connects to the bulk bands, as shown in Fig. 4(b). We note that these arc
states cannot exist in purely two-dimensional systems, as they would contradict the continuity
of the band structure (bands cannot terminate at a point). At surfaces, however, these arc states
are allowed, since their end points smoothly connect with the bulk bands.

2.2.2 The chiral anomaly

Since the two Weyl points of opposite Chern number (i.e., opposite chirality) are separated by
a large momentum in the BZ, one might naively expect that the number of electrons n± at each
Weyl point with C = ±1 are separately conserved. In other words, one might think that besides
the regular electric charge e(n++n−), also the chiral charge e(n+−n−) is conserved. Indeed,
within a classical low-energy description of Weyl semimetals the chiral charge is preserved.
However, at the quantum level this symmetry is broken, giving rise to an anomaly, i.e., the
chiral anomaly [5, 6]. That is, in the presence of electric fields E and magnetic fields B the
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number of electrons n± at a given Weyl point is changed as

d

dt
n± = ± e

2

h2
E ·B. (27)

Therefore, an electric field together with a magnetic field can generate (or destroy) chiral charge,
i.e., they can pump electric charges from one Weyl point to the other, leading to valley polariza-
tions. The total electric charge, however, remains preserved in this process. The chiral anomaly
has a number of experimental consequences, such as anomalous Hall effect and negative mag-
netoresistance [6].

2.3 Dirac nodal-line semimetal

As a second example, we study a nodal-line band crossing in a three-dimensional semimetal
with time-reversal symmetry (class AI) and reflection symmetry [33, 35, 36]. The Hamiltonian
is defined on the cubic lattice and is given by HAI+R

3D =
∑

k Ψ
†
kH

AI+R
3D Ψk, where the spinor

Ψk = (cpk, cdk)T describes spinless Bloch electrons (no spin-orbit coupling) originating from p

and d orbitals and HAI+R
3D reads (cf. Eq. (21) with p = 2)7

HAI+R
3D = sin kzσ2 + [2− cos kx − cos ky − cos kz]σ3. (28)

The spectrum of this Hamiltonian

Ek = ±λk = ±
√

(2− cos kx − cos ky − cos kz)2 + (sin kz)2, (29)

exhibits a band-crossing at E = 0, which is located along a nodal ring within the kz = 0

plane, see Fig. 5(a). Such a nodal-line band crossing at the Fermi energy is realized in Ca3P2,
CaAgP, and other materials [2,15,33]. Eq. (28) is time-reversal symmetric with the time-reversal
operator T = σ0K, and reflection symmetric, R−1HAI+R

3D (kx, ky,−kz)R = HAI+R
3D (kx, ky, kz),

with the reflection operator R = σz. There is also an inversion symmetry, P−1HAI+R
3D (−k)P =

HAI+R
3D (k), with the inversion operator P = σz. We observe that the only possible mass term

mτx that anticommutes withHAI+R
3D is symmetry forbidden, since it breaks reflection symmetry

(R−1mσxR = −mσx) and space-time inversion symmetry [ (T P)−1mσx(T P) = −mσx].
Hence, the nodal line band crossing is stable and protected by reflection symmetry and PT
symmetry. However, the band crossing of the doubled version of HAI+R

3D

HAI+R,db
3D = sin kzσ2 ⊗ σ0 + [2− cos kx − cos ky − cos kz]σ3 ⊗ σ0. (30)

is protected only by reflection but not by PT symmetry, since the mass term m̂ = σx ⊗ σy is
symmetric underPT [(σz⊗σ0K)−1m̂(σz⊗σ0K) = m̂], but breaksR [(σz⊗σ0)−1m̂(σz⊗σ0) 6=
m̂]. From this we conclude that nodal rings of type (28) have a Z classification in the presence
of reflection symmetry, but only a Z2 classification in the presence of PT symmetry.

7Here, we have included both cos kx and cos ky terms in order to deform the nodal line of Eq. (21) into a
nodal ring.
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Fig. 5: (a) Hamiltonian (28) describes an electron- and a hole-like band, which cross each
other along a nodal loop (red ring). The green line represents the contour L of Eq. (31). The
red area in the surface BZ indicates the region where surface states exist. (b) Schematic energy
dispersion of the drumhead surface state in the (001) surface BZ. The drumhead surface state
(green) smoothly connects to the bulk bands (blue and red) of the nodal ring.

The topological invariant, which guarantees the stability of the nodal ring, is the Berry phase.
The Berry phase is defined as a one-dimensional contour integral over the Berry connection (for
a related mirror invariant, see Ref. [33])

PL = −i
∮
L
dkl 〈u−(k)| ∇kl |u−(k)〉 . (31)

Here, |u−(k)〉 is the filled Bloch eigenstate of Eq. (28), which is given by

|u−(k)〉 =
1√

2λk(λk−Mk)

(
λk−Mk

i sin kz

)
, (32)

withMk = 2−cos kx−cos ky−cos kz. Note that the Berry phase is only defined up to mod 2π.
One can show that reflection symmetry R and space-time inversion PT lead to the quantization
of the Berry phase, i.e., PL ∈ {0, π} [33]. For contours L that do not interlink with the nodal
ring, the Berry phase (31) is zero, since the contour can be continuously shrunk to a single point.
For a contour L that does interlink with the nodal ring the Berry phase evaluates to PL = π.
In this case, the contour cannot be continuously shrunk to zero without crossing the nodal ring.
Hence, the nodal ring is stable to small changes in the parameters, as long as mirror or PT
symmetry is not broken.
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Fig. 6: (a) The nodal-line semimetal is decomposed into a family of two-dimensional subsystems
(blue plane) parametrized by the angle φ. (b) In the presence of an electric field (violet arrow),
the nonzero Berry curvature (red arrows) leads to a transverse Hall current (green arrows).
Figures adapted from Ref. [35].

2.3.1 Drumhead surface state

We now discuss the surface states of nodal-line semimetals, that arise due to the nontrivial
topology of the nodal ring. For this purpose we consider Hamiltonian (28) restricted to a line
contour Lkx,ky , which is perpendicular to the kxky-plane, i.e., along the kz direction [green line
in Fig. 5(a)]. As we have seen above, for any contour Lkx,ky , with cos kx + cos ky > 1, the
Berry phase is P = π. Hence, each of the one-dimensional Hamiltonians HAI+R

3D;kx,ky
(kz), with

cos kx + cos ky > 1, represents a one-dimensional topological insulator with non-zero Berry
phase. These one-dimensional topological insulators all have midgap end states [34]. As a
consequence, there is a collection of end states on the (001) surface, which form a drumhead
that smoothly connects to the projected bulk bands [green area in Fig. 5(b)]. This drumhead state
is not allowed to exist in purely two-dimensional systems, as it would violated the continuity
of the band structure (bands cannot terminate at lines). At a surface, however, such drumhead
states can exist, since their edges smoothly connect to the bulk bands.

2.3.2 The parity anomaly

To discuss the parity anomaly, we divide the nodal-line semimetal into a collection of two-
dimensional subsystems parametrized by the angle φ ∈ [0, π), as shown in Fig. 6(a). Each of
these subsystems contains two Dirac points with opposite sign of Berry phase χ = sgn(P ),
which are related by time-reversal symmetry. The quantum field theory of a single Dirac point
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of such a subsystem coupled to an electromagnetic field Aµ includes the term

Sφ,χCS = χ
e2

4π

∫
d2xdt εµνλAµ∂νAλ. (33)

This Chern-Simons term only arises at the quantum level and is a manifestation of the parity
anomaly, since it breaks PT symmetry. Varying the Chern-Simons term with respect to Aµ,
gives the anomalous transverse current

jφ,χµ = χ
e2

4π
εµνλ∂νAλ (34)

for a single Dirac point in subsystem φ with chirality χ. Hence, electromagnetic fields generate
a topological current, which flows perpendicular to the applied field. These transverse currents
are depicted in green in Fig. 6. For a field along the ky axis, the transverse currents flow
downward on the side of the ring with ky > 0, while they flow upward on the opposite side.
This leads to an accumulation of charge on opposite surfaces of nodal-line semimetals. Since
the contributions on opposite sides of the nodal ring cancel out, the topological currents can only
be measured by a device that filters electrons based on their momenta [35]. Alternatively, the
topological currents can be induced and probed by axial gauge fields, which couple oppositely
to electrons with opposite momenta [36].

3 Symmetry-enforced band crossings

In this section we study symmetry-enforced band crossings that are movable (but not removable)
[16–22]. These movable band crossings, which are required to exist by symmetry alone, exhibit
the following properties:

• They are protected by nonsymmorphic crystal symmetries, possibly together with non-
spatial symmetries. A nonsymmorphic symmetry is a symmetry G = {g, t}, which
combines a point-group symmetry g with a translation t by a fraction of a Bravais lattice
vector (see Sec. 3.1).

• Symmetry-enforced band crossings are characterized by a global topological charge,
which measures the winding of the eigenvalue of G as we go through the BZ. As shown
in Fig. 7, one needs to go twice (or n times) through the BZ in order to get back to the
same eigenvalue.

• Symmetry-enforced band crossings are globally stable. That is, they cannot be removed,
even by large symmetry-preserving deformations. They are required to exist by symmetry
alone, independent of any other material details (e.g, chemical composition or energetics
of the bands).
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Fig. 7: Nonsymmorphic symmetries lead to symmetry-enforced band crossings. The color shad-
ing indicates how the eigenvalue of the nonsymmorphic symmetry changes as a function of crys-
tal momentum. Note that one needs to go through the BZ twice (or n times), in order to get back
to the same eigenvalue.

Strategy for materials discovery. The last point above allows us to construct the following
strategy to discover new materials with topological band crossings [21, 22], which consists of
three steps:

(i) First, we identify the space groups (SGs) whose nonsymmorphic symmetries enforce the
desired band crossings. This can be done by either (i) computing the algebraic relations
obeyed by the symmetry operators or (ii) by computing the compatibility relations be-
tween irreducible symmetry representations (irreps).

(ii) Second, we perform a database search for materials in these SGs. The most comprehen-
sive database on inorganic crystals is the Inorganic Crystal Structure Database (ICSD)
from the Leibniz Institute in Karlsruhe (https://icsd.fiz-karlsruhe.de). Other databases,
which also contain band structures, are the AFLOW database (http://aflowlib.org), the
Materials Project database (https://www.materialsproject.org), the database for material
sciences at the IOP of the Chinese Academy of Science (http://materiae.iphy.ac.cn), and
the Topological Materials Database (https://topologicalquantumchemistry.com).

(iii) Third, we compute the electronic band structure of these materials to check whether the
band crossings are near the Fermi energy.

In Secs. 3.2.3 and 3.3.2 we will present two materials that have been found using the above
strategy.

3.1 Nonsymmorphic symmetries lead to enforced band crossings

Nonsymmorphic symmetries G = {g|t} combine a point-group symmetry g with a translation
t by a fraction of a Bravais lattice vector, see Fig. 8. Without loss of generality, we can assume
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Fig. 8: This figure illustrates two nonsymmorphic symmetries: A glide reflection in panel (a)
and a two-fold screw rotation in panel (b).

that the fractional translation t is parallel to the invariant space of g, i.e., that gt = t. The
reason for this is that any component of t that is not invariant under g can be removed by a
suitable choice of unit cell (i.e., a suitable choice of reference for g). (An exception to this rule
will be discussed in Sec. 3.3.) Applying an n-fold nonsymmorphic symmetry n times yields a
translation, i.e.,

Gn = {gn|nt} = ±p Ta, p ∈ {1, 2, . . . , n−1}, (35)

where Ta is the translation operator for the Bravais lattice vector a and g is an n-fold point-
group symmetry. The ± sign on the right-hand side of Eq. (35) originates from gn, which
equals −1 for spin-1/2 quasiparticles (Bloch electrons with spin-orbit coupling) and +1 for
spinless quasiparticles (Bloch electrons without spin-orbit coupling). Two simple examples of
nonsymmorphic symmetries are illustrated in Fig. 8:

• a glide reflection M = {m|t}, with M2 = ±Ta

• a two-fold screw rotation C2 = {cn|t}, with (C2)
2 = ±Ta

In the band structure of materials with nonsymmorphic symmetries, the operators G = {g|t}
can enforce band degeneracies in the g-invariant space of the BZ, i.e., on lines or planes which
satisfy gk = k. In these g-invariant spaces, the Bloch states |um(k)〉 can be constructed in such
a way that they are simultaneous eigenfunctions of both G and the Hamiltonian. To derive the
G-eigenvalues of the Bloch states |um(k)〉, we observe that

Gn = ±e−ipk·a, (36)

which follows from Eq. (35). Hence, the eigenvalues of G are

G |ψm(k)〉 =

{
eiπ(2m+1)/ne−ipk·a/n |ψm(k)〉 , for spin 1/2,

ei2πm/n e−ipk·a/n |ψm(k)〉 , for spin 0,
(37)
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where m ∈ {0, 1, . . . , n−1}. Because of the phase factor e−ipk·a/n in Eq. (37) the eigensectors
of G can switch, as k moves along the g-invariant space. From this it follows that pairs of
bands must cross at least once within the invariant space.8 With this we have found the basic
mechanism that leads to symmetry-enforced band degeneracies [16–19],
Let us now explain in more detail how a screw rotation leads to a symmetry-enforced band
crossing in a simple one-dimensional system with two atoms per unit cell. In momentum space
such a system is described by a two-band Hamiltonian H(k). The screw rotation symmetry
(π rotation, followed by half translation) takes the form [16]

G(k)H(k)G−1(k) = H(k), G(k) =

(
0 e−ik

1 0

)
, (38)

where the exponential factor e−ik accounts for the fact that one of the two atoms is moved to
the next unit cell. Here, we consider the case of spin-0 quasiparticles (Bloch electrons without
spin-orbit coupling), hence G(k) does not contain a spin part. Now, since G2(k) = σ0e

−ik the
eigenvalues of G are ±e−ik/2, i.e., we can label the two bands of H(k) by the eigenvalues of
G(k)

G |ψ±(k)〉 = ±e−ik/2 |ψ±(k)〉 , (39)

cf. Eq. (37) with n = 2 and p = 1. We see that the eigenvalues are momentum dependent and
change from ± at k = 0 to ∓ at k = 2π, as we go through the BZ. Hence, the two eigenspaces
get interchanged and the bands must cross at least once, see Fig. 7.
It is also possible to mathematically prove that there needs to be at least one crossing [16].
The proof is by contradiction. First, we observe that G(k) does not commute with σ3 (it anti-
commutes). Therefore, H(k) cannot contain a term proportional to σ3, since it is symmetry
forbidden. Moreover, we can drop terms proportional to the identity, since they only shift the
energy of the eigenstates, but do not alter the band crossings. For this reason the Hamiltonian
can be assumed to be off-diagonal and can be written as

H(k) =

(
0 q(k)

q∗(k) 0

)
. (40)

With this parametrization, the spectrum of H(k) is symmetric around E = 0 and is given by
E = ±|q(k)|. For this reason, any band crossing must occur at E = 0. Applying the symmetry
constraint (38), we find that q(k) must satisfy

q(k)eik = q∗(k). (41)

We now need to show that any periodic function q(k) satisfying the constraint (41) must have
zeros, corresponding to a band crossing point. To see this, we introduce the complex variable

8Here we assume that here are no additional degeneracies due to other symmetries.
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z := eik and the complex function f(z) := q(k). From Eq. (41) it follows that zf(z) = f ∗(z).
Assuming that f(z) is nonzero on the unit circle S1, then

z = f ∗(z)/f(z), (42)

which, however, leads to a contradiction. This is because for z ∈ S1 the two sides of Eq. (42)
both define functions from S1 to S1. But the left hand side has winding number 1, while the
right hand side has even winding number, since f ∗(z)/f(z) = e−2iArg[f(z)]. Thus, f(z) and
q(k) must vanish at some k by contradiction. Therefore, there must be a band crossing point
somewhere in the BZ.

3.2 Weyl nodal-line semimetal

Next we discuss how a glide reflection symmetry can enforce two-fold degeneracies along a
line. Materials with these line degeneracies are called Weyl nodal-line semimetals. For con-
creteness, we consider a system with spin-orbit coupling, which is invariant under the hexagonal
SG 190 (P 6̄2c). This SG contains a glide reflection symmetry of the form

Mx : (x, y, z)→ (−x, y, z + 1
2
)iσx, (43)

where the Pauli matrix σx operates in spin space. Applying this glide reflection twice yields
minus a unit translation in the x direction, i.e., −T̂x, where the minus sign is due to the spin
part. The glide reflection (43) leaves two planes in the BZ invariant, namely the kx = 0 plane
and the kx = π plane, see Fig. 9(a).

3.2.1 Symmetry eigenvalues

We now use the arguments from Sec. 3.1 to show that the glide reflectionMx leads to symmetry-
enforced degeneracies along a line within the kx = π plane. Within the kx = π plane, the Bloch
bands can be chosen to be eigenstates of Mx with the eigenvalues

Mx |ψ±(k)〉 = ±ie−ikz/2 |ψ±(k)〉 , (44)

which follows from Eq. (37) with p = 1 and n = 2. Next, we add time-reversal symmetry to the
game, since we want to study nonmagnetic systems. Time-reversal symmetry sends the crystal
momentum k to −k and acts on the Hamiltonian as (see Sec. 2.1.1)

T −1H(−k)T = +H(k), (45)

with the operator T = iσyK and K the complex conjugation operator. Time-reversal symmetry
leaves two points in the kx = π plane invariant [blue and red dots in Fig. 9(a)], which are called
time-reversal invariant momenta (TRIMs). At these TRIMs the bands are two-fold degenerate
due to Kramers theorem, i.e., they form Kramers pairs. Away from the TRIMs, however, the
bands are in general non-degenerate. (Note that spin-orbit coupling lifts the spin degeneracy.)
Since T contains the complex conjugation operator K, the Kramers pairs at the TRIMs are
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FIG. 9: Weyl nodal line with hourglass dispersion. (a) Weyl nodal line in the kx = ⇡ plane protected by the

glide mirror symmetry Mx, Eq. (3.9). (b) Band connectivity diagram for a line connecting M and L within

the kx = ⇡ plane, which is left invariant by Mx. The bands are Kramers degenerate at M and L. The color

shading indicates the Mx eigenvalues (3.10) of the Bloch bands. (c) The Bloch bands along any path within

the kx = ⇡ plane, connecting M to L, exhibit the band connectivity shown in (b).

where the Pauli matrix �x operates in spin space. Here we consider spin-1/2 quasiparticles, i.e.,

Bloch electrons with spin-orbit coupling. Applying this glide reflection twice yields minus a unit

translation in the x direction, i.e., �T̂x, where the minus sign is due to the spin part. The glide

reflection (3.9) leaves two planes in the BZ invariant, namely the kx = 0 plane and the kx = ⇡

plane, see Fig. 9(a).

a. Symmetry eigenvalues. Within the invariant planes kx = 0 and kx = ⇡, the Boch bands

can be chosen to be eigenstates of the glide mirror operator Mx with the eigenvalues

Mx | ±(k)i = ±ie�ikz/2 | ±(k)i , (3.10)

which follows from Eq. (3.3) with p = 1 and n = 2.

Next, we add time-reversal symmetry to the game, since we want to study nonmagnetic systems.

Time-reversal symmetry sends the crystal momentum k to �k and acts on the Hamiltonian as

T�1H(�k)T = +H(k), (3.11)

with the operator T = i�yK and K the complex conjugation operator. Time-reversal symmetry

leaves two points in the kx = 0 and kx = ⇡ planes invariant, see blue and red dots in Fig. 9(a).

These points are called time-reversal invariant momenta (TRIMs). Due to spin-orbit coupling, the

energy bands | m(k)i are in general non-degenerate, except at the TRIMs, where time-reversal

symmetry enforces twofold degeneracies, due to Kramers theorem (Appendix A). Since T contains
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Fig. 9: (a) Weyl nodal line in the kx = π plane protected by the glide mirror symmetry Mx,
Eq. (43). (b) Band connectivity diagram for a line connecting M and L within the kx = π
plane, which is left invariant by Mx. The bands are Kramers degenerate at M and L. The color
shading indicates the Mx eigenvalues (44) of the Bloch bands. (c) The Bloch bands along any
path within the kx = π plane, connecting M to L, exhibit the band connectivity shown in (b).
Figures adapted from Ref. [21].

formed by bands whose Mx eigenvalues are complex conjugate pairs. Using Eq. (44), we find
that at the L point of the kx = π plane the Mx eigenvalues are +1 and −1, while at the M point
they are +i and −i. (Similar arguments hold for the TRIMs in the kx = 0 plane.) Hence, at M
the Kramers pairs are formed by bands with opposite Mx eigenvalues [blue dot in Fig. 9(a)],
while at L they are formed by bands with the same Mx eigenvalues [red dot in Fig. 9(a)]. This
is shown in Fig. 9(b), where the Mx eigenvalues are indicated by the color shading. We see that
since the Kramers pairs switch partners as we go from M to L, the bands must cross at least
once forming a group of four connected bands with an hourglass dispersion. Because this holds
for any one-dimensional path within the kx = π plane, connecting M to L, the kx = π plane
must contain a Weyl line degeneracy, as shown in Fig. 9(c).

3.2.2 Compatibility relations

The existence of symmetry-enforced band crossings can also be inferred from the compatibility
relations between irreducible representations (irreps) at different high-symmetry points of the
BZ [37]. To show this we consider again a system in SG 190 with spin-orbit coupling. But
before doing so, we first need to review some basic properties of double SGs and their double-
valued irreps [38].
Band structures of nonmagnetic materials with spin-orbit coupling (i.e., materials with a time-
reversal symmetry T 2 = −1) are invariant under the symmetries of double SGs. Correspond-
ingly, the symmetry operators under which these band structures transform are given by the
double-valued irreps of the double SGs. If we consider the band structure at a particular high-
symmetry point k (or high-symmetry line), then the symmetries are reduced to a subgroup of the
double SG. This subgroup is denoted by Gk and is called the little group at k. Because the Bloch
Hamiltonian restricted to k commutes with this little group Gk, the bands at k can be labeled
by the double valued irreps of Gk, which are denoted by D̄k. If we move continuously away
from a high-symmetry point k1 to a nearby point k2, then the symmetries are lowered. That is,



11.24 Andreas P. Schnyder

Irreps \Element E Mx

M5

(
+1 0

0 +1

) (
+i 0

0 −i

)
L2 +1 −1
L3 +1 −1
L4 +1 +1
L5 +1 +1

C
′
3 +1 e

i
2
(π+kz)

C
′
4 +1 e−

i
2
(π−kz)

Table 2: Double valued irreps of SG 190 (P 6̄2c) without time-reversal at the TRIMs M and
L and within the mirror plane kz = π, denoted by C’. Due to the partial translation of Mx,
the irreps for C’ have momentum-dependent phases. For the labeling of the irreps we use the
convention of Ref. [37].

the little group Gk2 is smaller than the little group Gk1 , and forms a subgroup Gk2 ⊂ Gk1 . As a
consequence, representations D̃k2 of Gk2 can be inferred (i.e., subduced) from the little-group
irreps D̄k1 , i.e., we have

D̃k2 = D̄k1 ↓ Gk2 . (46)

Decomposing the subduced representations D̃k2 into irreps yields the compatibility relations
between the irreps D̄k1 and D̄k2 [37–39]. From these compatibility relations one can deduce
the connectivity of the Bloch bands in the BZ.

We will now show how this works for SG 190. We start be determining the little group irreps
at the TRIMs M and L, and within the mirror plane kx = π (denoted by C’). Table 2 lists the
double-valued irreps without time-reversal symmetry. We find that at the M point there is only
one double-valued irrep, namely M̄5, which is two-dimensional and pseudoreal. At the L point
there are four different irreps: L̄2, L̄3, L̄4, and L̄5, which are one-dimensional and complex.
The irreps for C’ are all one-dimensional and have k-dependent phases, due to the translation
part of the glide reflection Mx, Eq. (43). At the TRIMs M and L we need to construct time-
reversal symmetric irreps (i.e., real irreps) using Table 2. We note that pseudoreal irreps are
time-reversal symmetric by themselves. Complex irreps, on the other hand, must be paired up
into complex-conjugate pairs to make them time-reversal symmetric [38, 39]. Hence, at the L
point we need to pair L̄2 with L̄3 and L̄4 with L̄5, see Fig. 10(a). With this, all time-reversal
symmetric irreps at the TRIMs are two dimensional, in agreement with the Kramers theorem,
which leads to two-fold degeneracies. As we move away from the TRIMs to a point in C’,
these two-dimensional irreps decompose into one-dimensional irreps, in such a way that the
compatibility relations are satisfied.

To figure out how the Kramers pairs split up, we therefore need to derive the compatibility
relations between the irreps at M, L, and C’. For this purpose, we use the following relation
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Fig. 10: (a) Compatibility relations for SG 190 between the little-group irreps at M, L, and C’
(kx = π plane). (b) Band connectivity diagram for SG 190 for a path within the kx = π plane
connecting M to L. Figures adapted from Ref. [21].

between the characters χ of the irreps9

χ[Dl(g)] =
2∑
i=1

χ[C
′
mi

(g)], (47)

for any group element g. Here, χ[Dl(g)] is the character of the irrep Dl at the TRIM M or
L, while {C ′m1

, C
′
m2
} is the set of irreps that Dl decomposes into, as we move away from

the TRIMs to a point on C’. Relation (47) follows from continuity, which requires that the
characters of the irreps are preserved, as we continuously move away from a TRIM to a point
on C’. By use of Eq. (47), we infer that the time-reversal symmetric irrep at M (where kz = 0)
decomposes into

M5 → C
′
3 + C

′
4, (48a)

while for the real irreps at L (where kz = π) we have

L2L3 → C
′
3 + C

′
3,

L4L5 → C
′
4 + C

′
4. (48b)

The above two relations represent the compatibility relations between the irreps at the TRIMs
(M and L) and C’. They determine the connectivity of the bands on the path M–C’–L. That is,
as we move from M to C’ and then on to L, the Kramers pairs at M must split up and then
pair up again, such that the compatibility relations (48) are satisfied. Therefore the bands must
connect as shown in Fig. 10(b). That is, the irreps switch partners as we move within C’ from
M to L. As a consequence, the band connectivity is nontrivial with sets of four connected bands
that show an hourglass dispersion, with at least one movable crossing between M and L. Hence,
each quartet of bands within the C’ plane forms at least one Weyl nodal line, which fully agrees
with the results of Sec. 3.2.1, cf. Fig. 9(b).

9The character of a group irrep associates with each group element the trace of the corresponding irrep matrix.
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Fig. 11: (a) Electronic band structure of ZrIrSn along the high-symmetry path H–L–M, cf. Fig 9.
The band crossings along M–L (violet dots) are part of Weyl nodal lines within the kx = π plane.
(b) Dispersion of the pair of bands that form the Weyl nodal line at E ' −0.64 eV. The nodal
line (red dots) encloses the L point.

3.2.3 Example material: ZrIrSn

Having found that all band structures with strong spin-orbit coupling in SG 190 exhibit Weyl
nodal lines, we now apply the strategy of page 19 to find real materials that exhibit these line
degeneracies. To do so, we consult the ICSD database (https://icsd.fiz-karlsruhe.de) to find ma-
terials with heavy elements (indicating strong spin-orbit coupling) that crystallize in SG 190.
This was performed in Ref. [21] and it was found that ZrIrSn is a good example. ZrIrSn con-
tains only heavy elements resulting in strong spin-orbit coupling. Indeed, the calculated band
structure [Fig. 11(a)] shows that the spin-orbit coupling leads to a large band splitting away
from the TRIMs, by about 100 meV. As predicted in the previous section, along the M–L path
we observe groups of four connected bands with an hourglass dispersion and at least one cross-
ing. As shown in Fig. 11(b), these crossings are part of Weyl nodal lines in the C’ plane, i.e.,
two-fold degeneracies on rings which enclose one of the TRIMs.
Similar to the Dirac nodal-line semimetal of Sec. 2.3, the topology of this Weyl nodal ring is
described by a π Berry phase [33], which leads to drumhead surface states. Furthermore, the
bands that form nodal rings carry large Berry curvatures, which leads to anomalous transport
properties, for example, anomalous magnetoelectric responses or large Hall effects.

3.3 Dirac nodal-line semimetal

As a second example, we study how off-center symmetries can enforce four-fold degeneracies
along a line, i.e., how they can enforce the existence of Dirac nodal lines. In Sec. 2.3, we
have already discussed a Dirac nodal-line semimetal with an accidental nodal ring, which is
protected by symmorphic symmetries (i.e., reflection or PT symmetry). Here, however, we
discuss Dirac nodal lines that are symmetry enforced by off-center symmetries. Moreover, we
shall consider systems with strong spin-orbit coupling, which was neglected in Sec. 2.3. For
concreteness, we consider spin-orbit coupled systems which are symmetric under the hexagonal
SG 176 (P63/m). This SG contains the glide reflection

M̃z : (x, y, z)→ (x, y,−z + 1
2
)iσz, (49a)
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where σz acts in spin space, and the inversion symmetry

P : (x, y, z)→ (−x,−y,−z). (49b)

These two symmetries form together a pair of so-called off-center symmetries [20, 21]. We
observe hat the translation part t = 1

2
ẑ of the glide reflection (49a) is perpendicular to the

m̃z invariant space (i.e., the xy mirror plane). As mentioned on page 20, this type of glide
reflection can be transformed into a symmorphic symmetry by a different choice of unit cell
i.e., by shifting the origin by 1

4
ẑ. However, this shift in origin also affects P , leading to a

translation part in P . Since M̃z and P have different reference points, it is not possible to
choose the origin such that both M̃z and P are without translation parts. A pair of two such
symmetries with different reference points are called off-center symmetries.

3.3.1 Commutation relations

We now show that the momentum dependence of the commutation relation between M̃z and
P enforces the existence of fourfold degenerate nodal-lines. The glide reflection M̃z leaves
two planes in the hexagonal BZ invariant, namely the kx = 0 plane and the kx = π plane,
see Fig. 12(a). Within these planes the Bloch states can be labeled by the M̃z eigenvalues ±i
(remember that M̃2

z = −1). I.e., we have

M̃z |ψ±(k)〉 = ±i |ψ±(k)〉 . (50)

To derive the commutation relation between M̃z and P , we apply the symmetry operators M̃z

and P in succession,

(x, y, z)
P−→ (−x,−y,−z)

M̃z−−→ (−x,−y,+z + 1
2
)iσz,

(x, y, z)
M̃z−−→ (x, y,−z + 1

2
)iσz

P−→ (−x,−y,+z − 1
2
)iσz.

This tells us that M̃zP and PM̃z differ by a unit translation in the z direction. Hence, by letting
M̃zP and PM̃z act on the Bloch states (50), we get the commutation relation in k-space

M̃zP |ψ±(k)〉 = eikzPM̃z |ψ±(k)〉 . (51)

It follows that the two symmetry operators commute in the kz = 0 plane, while they anticom-
mute in the kz = π plane. Since we are interested in nonmagnetic systems, we now also need
to study the commutation relation between the off-center symmetries (49) and the time-reversal
operator T = iσyK. Because T commutes with both M̃z and P , we have

M̃zPT |ψ±(k)〉 = eikzPT M̃z |ψ±(k)〉 . (52)

Thus, the Kramers pair |ψ±(k)〉 and PT |ψ±(k)〉 have the same M̃z eigenvalues for kz = π

(since M̃z [PT |ψ±(k)〉] = −PT [±i |ψ±(k)〉] = ±iPT |ψ±(k)〉), while for kz = 0, they have
opposite M̃z eigenvalues. Hence, if two Kramers pairs of bands with opposite M̃z eigenvalues
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(a) (b) (c)
ZHANG, CHAN, CHIU, VERGNIORY, SCHOOP, AND SCHNYDER PHYSICAL REVIEW MATERIALS 2, 074201 (2018)

FIG. 10. Electronic band structure of ZrIrSn in SG P 6̄2c (No.
190). The band crossings along the M-U -L path are part of Weyl
nodal lines within the kx = π plane, which are protected by the glide
mirror symmetry Mx . These Weyl nodal lines enclose one of the two
time-reversal invariant momenta M or L, as shown in the inset for the
crossing near E ≃ −0.64 eV.

lines [type-(i)], and LaBr3, which exhibits fourfold-degenerate
Dirac nodal lines [type-(ii)].

1. ZrIrSn

ZrIrSn crystallizing in SG P 6̄2c (No. 190) [69] is an exam-
ple of a hexagonal material with Weyl nodal lines protected by a
mirror glide symmetry. In Fig. 10 we present the first-principles
band structure of ZrIrSn. Along the M-U -L line, which is
invariant under the mirror glide symmetry Mx , we observe
groups of four connected bands, which cross each other at least
once. Since these crossings must occur for any path within the
kx = π plane connecting M to L (cf. Sec. II B), they form
Weyl nodal lines. The shape of the Weyl nodal line for the
crossing near E ≃ −0.64 eV is shown in the inset of Fig. 10.
All the other Weyl nodal lines have similar shapes and enclose
one of the TRIMs M or L in the kx = π plane. We emphasize
that all the bands within the kx = π plane form such Weyl
nodal lines, since their existence is enforced by the mirror glide
symmetry. The topological properties of these Weyl nodal lines
are characterized by a nonzero Berry phase [13], which, by the
bulk-boundary correspondence, leads to drumhead states at the
surface of ZrIrSn. Moreover, due to the absence of inversion,
the bands in ZrIrSn carry a nonzero Berry curvature, which
is particularly large close to the Weyl nodal lines. In slightly
doped samples of ZrIrSn this should give rise to anomalous
transport properties, such as, e.g., large anomalous Hall effects
or anomalous magnetoelectric responses [37].

2. LaBr3

An example of a hexagonal material with Dirac nodal lines
is LaBr3 in SG P 63/m (No. 176) [70]. As indicated in Table I,
materials in this SG exhibit fourfold-degenerate nodal lines
within the kz = π plane protected by the off-centered symme-
tries M̃z and P . To verify this, we perform first-principles band-
structure calculations of LaBr3 to obtain the band structure
shown in Figs. 11 and 18(c). All the bands of LaBr3 are
Kramers degenerate, since SG P 63/m (No. 176) contains a PT

FIG. 11. First-principles band structure of LaBr3 in SG P 63/m

(No. 176). The band crossings along the A-L-H -A path are part of
Dirac nodal lines, which are symmetry enforced by the off-centered
symmetries M̃z and P (cf. Sec. III). The inset shows the Dirac nodal
lines within the kz = π plane formed by the two topmost valence
bands. All the other bands form similar nodal lines; cf. Fig. 18(b).

symmetry that squares to −1. Along the A-L-H -A path, within
the kz = π plane, there are groups of two Kramers degenerate
bands that cross each other several times. These band crossings
are part of a fourfold-degenerate Dirac nodal line, whose shape
resembles a star (inset of Fig. 11), in complete agreement with
the theoretical analysis of Sec. III. These Dirac nodal lines are
protected from hybridizing, since the bands that cross have
opposite M̃z eigenvalues. Note that such star-shaped Dirac
nodal lines are formed by all the bands at all energies, since
their existence follows from symmetry alone, independent
of the energetics of the bands. Thus, probing this insulating
material below the Fermi energy (which might be possible if
flakes of this layered compound are deposited on a metallic
substrate) with angle-resolved photoemission spectroscopy
would reveal the star-shaped band crossings.

In closing, we note that LiScI3 [77] crystallizing in SG P 6̄c2
(No. 188) is an example of a material with Weyl nodal lines
within the kxkz plane. Unfortunately, the spin-orbit coupling in
this material is rather weak, leading to a band splitting of only
about ∼10 meV. We therefore do not discuss this material in
any further detail here.

V. CONCLUSIONS

In this work, we have classified all possible nonsymmorphic
band degeneracies in hexagonal materials with time-reversal
symmetry and strong spin-orbit coupling. Our classification
approach is based on representation theory of space groups
and the algebraic relations between symmetry operators. We
find that 13 out of the 27 hexagonal space groups (SGs) support
topological band crossings protected by nonsymmorphic sym-
metries (Table I). Among them there are ten SGs with Weyl
nodal points (Nos. 169-173 and 178-182), two SGs with Weyl
nodal lines (Nos. 188 and 190), and one SG with Dirac nodal
lines (No. 176). The stability of these band crossings is ensured
by quantized topological numbers, i.e., by a Chern number or
a π -Berry phase. We emphasize that the appearance of these
band crossings is enforced by symmetry alone, i.e., they occur

074201-10

Fig. 12: (a) Dirac nodal-lines in the kz = π plane, which connect the A and L points. (b) Two
Kramers degenerate bands with opposite M̃z eigenvalues cross each other to form a Dirac nodal
line. (c) Electronic band structure of LaBr3 along the high-symmetry path A–L–H–A. The band
crossings along H–A are part of Dirac nodal lines within the kz = π plane. The inset shows the
shape of the Dirac nodal line for the two top most bands in the main panel. Figures adapted
from Ref. [21].

cross within the kz = π plane, they form a Dirac nodal line. This Dirac nodal line cannot
gap out, since the two Kramers pairs have opposite M̃z eigenvalues. For kz = 0, however, the
crossing of two Kramers pairs of bands is not protected, since the two Kramers pairs have the
same M̃z eigenvalue.
Such a Dirac nodal line is in fact required to exist by symmetry alone, i.e., it occurs in any
material with the off-center symmetries (M̃z, P ) and, in particular, in any material with spin-
orbit coupling crystallizing in SG 176, irrespective of the chemical composition. To show that
the Dirac nodal line is symmetry enforced, we consider the degeneracies at the TRIMs within
the kz = π plane, i.e., at A and L [Fig. 12(a)]. At these two TRIMs the bands are four-fold
degenerate, i.e., they form quartets of four degenerate states, which have the M̃z eigenvalues

M̃z |ψ±(K)〉 = ±i |ψ±(K)〉 , (53a)

M̃zP |ψ±(K)〉 = ∓iP |ψ±(K)〉 , (53b)

M̃zT |ψ±(K)〉 = ∓iT |ψ±(K)〉 , (53c)

M̃zPT |ψ±(K)〉 = ±iPT |ψ±(K)〉 , (53d)

where K ∈ {A,L}. These four Bloch states are mutually orthogonal to each other, because
they are either Kramers partners or they have opposite M̃z eigenvalues. Moving away from
the TRIMs, the degenerate quartet splits, in general, into two Kramers pairs of bands. Due to
inversion and time-reversal symmetry, the dispersion of the Kramers pairs of bands is symmetric
with respect to the TRIMs. That is, the Kramers pairs of bands at K+k and K−k have the same
energy, but opposite M̃z eigenvalues, as shown in Fig. 12(b). It now follows from continuity,
that each quartet of states at K cannot exist in isolation, but must be part of a Dirac nodal
line connecting two TRIMs, see Fig. 12(a). This Dirac nodal line must be symmetric under
inversion, time-reversal, and all other point-group symmetries of the SG, but is otherwise free
to move within the kz = π plane. That is, the Dirac nodal line is movable, but not removable.
For SG 176, which has a sixfold rotation symmetry, the Dirac nodal lines are shaped like stars,
see Figs. 12(a) and 12(c).
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3.3.2 Example material: LaBr3

We have shown that all materials crystallizing in SG 176 have star-shaped nodal lines within the
kz = π plane. In order to look for materials, we consult again the ICSD database and search for
compounds with heavy elements crystallizing in SG 176. In Ref. [21] it was found that LaBr3
is a good example. Figure 12(c) shows the first-principles band structure of LaBr3 along the
high-symmetry lines A–L–H–A . All bands are Kramers degenerate, due to the presence of PT
symmetry. Along the H–A line we observe band crossings, which are part of Dirac nodal lines,
whose shape resembles a star [inset of Fig. 12(c)].

4 Conclusions and future directions

In this chapter, we have reviewed accidental and symmetry-enforced band crossings. We have
presented a classification of accidental band crossings in terms of symmetries and we have dis-
cussed how nonsymmorphic symmetries can lead to symmetry-enforced band crossings. We
have presented a number of examples, ranging from Weyl semimetals with point nodes to Dirac
semimetals with line nodes. From these discussions it is clear that symmetry together with
topology fundamentally restricts the possible forms of band structures, i.e., in particular, their
connectivity and their degeneracies. We have discussed this in terms of the momentum depen-
dence of the symmetry eigenvalues, and in terms of compatibility relations between irreducible
representations. An alternative approach is to study the properties of symmetric Wannier func-
tions, which form space group representations. In this approach topological bands are identified
as those, whose symmetric Wannier functions are not exponentially localized [40]. Combining
this with symmetry based indicators, it is possible to perform high-throughput searches for
topological materials [41–43].
While topological band structures of time-reversal invariant materials have been investigated
extensively, topological band structures of magnetic systems still need to be understood better.
Another avenue for future research is the study of how electron-electron correlations change
the topology of materials. On the one hand, correlations can connect two topological band
structures (or phases) that are distinct in the single-particle picture, on the other hand they can
give rise to entirely new topological phenomena [2]. Finally, on the experimental front, there is
a crucial need for better topological materials. In particular semimetals, where the Fermi energy
is closer to the band crossing, and where there are no other bands close to the Fermi energy. The
reader is invited to look for new topological semimetals by himself using the strategy detailed
on page 19.
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1 Introduction

Superconductivity is undoubtedly one of the most remarkable and enigmatic ground states of
electronic matter. At sufficiently low temperature electrons of a metal condense into a coherent
state of Cooper pairs and open a single-quasiparticle excitation gap. This has been the notion
of the BCS theory of 1957 which counts among the most comprehensive descriptions of many-
electron properties in condensed matter physics. While the original BCS theory is based on the
simplest intrinsic structure of Cooper pairs, superconductivity appearing in systems with strong
electron correlation realizes more complex pair wave states whose internal structure expand
the space of superconducting phases and phenomena tremendously. As we will discuss below,
we distinguish between conventional and unconventional superconducting states [1–3]. The
former are found in the standard textbook superconductors such as the elemental metals Pb, Al
or Nb and many compounds. Unconventional superconductivity, on the other hand, occurs in
materials classes like the cuprate high temperature superconductors such as YBa2Cu3O7 and
the heavy Fermion compounds represented by UBe13, UPt3 and CeCoIn5, which all also show
strong magnetic correlations [4–7]. An intensely studied case is Sr2RuO4 whose nature of
superconductivity is debated at present [8, 9].
In this lecture we would like to address a special subclass among the unconventional supercon-
ductors which display topological properties. The first phases in this class where actually not
superconductors, but the neutral superfluid 3He whose phases rest on the same Cooper pairing
paradigm as all known superconductors. 3He has two phases in the absence of a magnetic field,
the A-phase and the B-phase, which both have topological properties and distinguish them-
selves by their symmetry [10]. While the B-phase preserves maximal possible symmetries of
the fluid, the A-phase spontaneously violates time reversal symmetry (TRS) and is know as a
“chiral superfluid”. Both phases can generate topologically protected edge states, a trade mark
of topological insulators. In the following we will put our focus on chiral superconducting
phases which break TRS and explain some of the important features and phenomena. We will
also touch briefly upon TRS conserving topological superconductors. In this lecture it is ex-
pected that the basics of BCS superconductivity are known, but otherwise the technical level
will be kept rather low. There are textbooks and numerous review articles which go deeper into
technical details [11–14]. Early works by G. Volovik date back more than three decades [15].

2 Unconventional superconductivity

2.1 Pair wave function

We first address the nature of an unconventional superconductor by analyzing the structure of
its ground state and at the same time introduce the standard notations. For simplicity we restrict
ourselves here exclusively to systems with a single electronic band whose states are Bloch states
|k, s〉 created (annihilated) by the operators ĉ†ks (ĉks). The BCS-like ground state is a coherent
state of electron pairs (Cooper pairs) with vanishing total momentum, such that we can define a
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pair wavefunction,
Fss′(k) =

〈
ĉ−ks′ ĉks

〉
(1)

where 〈· · · 〉 denotes the expectation value for the ground state or a thermal average, in general.
Obviously, the particle number is not conserved as is the essence of a coherent state. The
wavefunction is 2×2-matrix in spin space and satisfies the relation F̂ (k)=−F̂ (−k)T due to the
Pauli principle, i.e., the pair wave function is odd under exchange of the two electrons. If time
reversal and inversion symmetry are preserved in the normal state, we distinguish the two cases

F̂ (k) =

 f0(k) σ̂
0iσ̂y with f0(k) = f0(−k)

f(k) · σ̂iσ̂y with f(k) = −f(−k)
(2)

where the upper stands for an even-parity spin-singlet and lower for an odd-parity spin-triplet
pairing state, represented by a scalar (f0(k)) and vector (f(k)) wavefunction. Here σ̂ denotes
the Pauli matrices and σ̂0 the two-dimensional unit matrix.
We distinguish conventional and unconventional Cooper pairing by the sum of f0(k) over the
Brillouin zone (BZ)

I0 =
∑
k∈BZ

f0(k) and I =
∑
k∈BZ

f(k) (3)

which is proportional to the real space on-site amplitude of the pair wavefunction.1 The notion
conventional only applies to even parity states with I0 6= 0. All states with I0 = 0 or I =

0 are called unconventional. Obviously, all odd-parity states are unconventional. The fact
that paired electrons avoid to meet on the same position, gives these states an advantage over
conventional pairs in systems with strong electron repulsion. In such a case, standard electron-
phonon mediated pairing interaction, which is essentially a contact interaction, is ineffective
in causing unconventional pairing states and other pairing mechanism yielding longer-ranged
interactions are necessary, such as spin fluctuation exchange.

2.2 Symmetry properties

Within Landau theory of second-order phase transitions the low-temperature ordered phase is
characterized by an order parameter describing the spontaneous symmetry breaking. This order
parameter belongs to an irreducible representation of the normal state symmetry group, for
superconductivity involving the crystal point group (P), spin rotation (SU(2)), and TRS (T )
which can be broken in unconventional superconducting states beside U(1)-gauge symmetry
(coherent state). The general pair wave function can be written as a superposition

F̂ (k) =

NΓ∑
n=1

ηnF̂Γ,n(k) (4)

1The real space pair wavefunction is given by the Fourier transform (with Ω as the volume)

Φ̂(r−r′) = 1

Ω

∑
k∈BZ

F̂ (k)eik·(r−r
′)
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where the {F̂Γ,1(k), · · · , F̂Γ,NΓ (k)} form the basis set of the irreducible representation Γ of di-
mension NΓ , and ηn are complex coefficients. The symmetry operations are most conveniently
performed within the notation introduced in Eq. (2), where rotation operations g ∈ P (spin and
lattice are tied together through spin-orbit coupling) lead to

g ◦ F̂ (k) ⇒
{
g ◦ f0(k) = f0(Rgk)

g ◦ f(k) = Rgf(Rgk)
(5)

with Rg is the corresponding real space rotation matrix. Inversion yields I ◦f0(k) = f0(−k) =
f0(k) and I ◦ f(k) = f(−k) = −f(k). Time reversal and U(1)-operation, K and Φ, respec-
tively, give

K ◦ fµ(k) = fµ(k)
∗ and Φ ◦ fµ(k) = fµ(k)e

iφ . (6)

Assuming that a given superconducting phase belongs to a single representation, we can asso-
ciate its symmetry properties easily with the behavior of the corresponding basis functions. The
conventional superconducting phase is in the non-degenerate trivial representation of even par-
ity, constituting the state of highest possible symmetry – only U(1)-gauge symmetry is broken.
Otherwise, in Eq. (3) the sum I0 would vanish.
A particularly important feature is the degeneracy, connected with the dimension NΓ , because
it allows for intriguing phenomena which are not available in conventional superconductors.
For a concrete and simple example, we consider here the case of NΓ = 2 which is important for
topologically non-trivial superconductors with chiral pairing. For this purpose we look at the
tetragonal point group, D4h, which has two-dimensional irreducible representations Eg and Eu,
with even and odd parity, respectively. The basis functions reflecting the symmetry operations
are in their most simple form

Eg : f0,Γ,x(k) = kzkx f0,Γ,y(k) = kzky

Eu : fΓ,x(k) = ẑkx fΓ,y(k) = ẑky
(7)

where f of the odd parity state is oriented along the z-axis corresponding to the spin-triplet
state with the spin state (S, Sz) = (1, 0) corresponding to “equal spin” pairing.
Only a discrete set of superpositions of these basis states are stable. The possible superconduct-
ing phases for these degenerate pairing state basis can be found using the Landau free energy
expansion in the order parameter. The complex coefficients ηn of Eq. (4), which has two com-
ponents η = (ηx, ηy), can play the role of the order parameter. The free energy then contains
the following terms,

F [η] = a(T )|η|2 + b1|η|4 +
b2

2

{
η∗2x η

2
y + η2

xη
∗2
y

}
+ b3|ηx|2 |ηy|2 (8)

which include all independent scalar combinations of η transforming underEg,u up to 4th order.
There are only three fourth-order terms. Here a(T ) = a′(T − Tc) (both components have the
same critical temperature) and b1, b2 and b3 are real coefficients. All coefficients constitute
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material specific input to the theory. Under the constraint that the free energy is bound from
below, we find the following three phases

ηA ∝
{

(1,+i)

(1,−i)

}
, ηB ∝

{
(1,+1)

(1,−1)

}
, ηC ∝

{
(1, 0)

(0, 1)

}
, (9)

which all are two-fold degenerate. The phaseA is chiral and breaks TRS, while the other two are
nematic and break crystal rotational symmetry. Which of the three phases is realized depends on
microscopic details not accessible to our symmetry arguments. A weak-coupling approach yield
generally theA-phase as most stable as it has least zero nodes. In the following we will focus on
this phase, because it includes the best known topologically non-trivial superconducting phase.

3 Topological properties of a two-dimensional
chiral superconductor

In this section we start out with a superconductor within a two-dimensional or a quasi-two-
dimensional metal, where the latter is characterized by having an essentially cylindrical Fermi
surface (FS) as we will encounter also in Sect. 5. As mentioned above we restrict to a single
band model and assume basic knowledge of the BCS theory.

3.1 Nambu space representation

In a first step we introduce the Nambu representation of the microscopic Hamiltonian in mean
field form (up to added constant terms)

Hmf =
1

2

∑
k

Ĉ†kHkĈk (10)

with the Nambu spinor Ĉk =
(
ĉk↑, ĉk↓, ĉ

†
−k↑, ĉ

†
−k↓
)T and the Hamiltonian matrix

Hk =

(
ξkσ̂

0 ∆̂k

∆̂†k −ξ−kσ̂0

)
(11)

with ξk as the band energy measured relative the chemical potential µ (ξk = 0 defines the FS)
and the gap function

∆̂k = iσ̂y
{
σ̂0d0(k) + σ̂ · d(k)

}
=

(
−dx(k)+idy(k) dz(k)+d0(k)

dz(k)−d0(k) dx(k)+idy(k)

)
(12)

with d0(k) even and d(k) odd functions of k. The Nambu representation doubles the electronic
spectrum by adding the (redundant) hole spectrum. The coherent state corresponds to a hy-
bridization of electrons and holes through the off-diagonal elements ∆̂k, which are connected
with the pair wavefunction within mean field theory through the pairing interaction

V̂ =
1

2

∑
k,k′

∑
s1,s2,s3,s4

V s1s2s3s4
k,k′ ĉ†ks1 ĉ

†
−ks2 ĉ−k′s3 ĉk′s4 . (13)
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The relation is given by
∆kss′ = −

∑
k′

∑
s̃,s̃′

V ss′s̃s̃′

k,k′ Fs̃′s̃(k) (14)

such that the symmetry properties of the ∆̂k and F̂ (k) are identical.
The Hamiltonian in Eq. (10) with (11) yields the spectrum

Ek =
√
ξ2
k + |∆k|2 with |∆k|2 =

1

2
Tr ∆̂†k∆̂k (15)

for the Bogoliubov quasiparticles Âk = (âkα, âkβ, â
†
−kα, â

†
−kβ) obtained by the unitary trans-

formation

Ĉk = UkÂk with Uk =

(
ûk v̂k
v̂∗−k û∗−k

)
(16)

with Uk U
†
k = 1. We derive Uk through the condition

U †kHkUk =

(
Ekσ̂

0 0

0 −E−kσ̂0

)
. (17)

Note that ûk and v̂k constitute wave functions of the electron and the hole-like components of
the quasiparticles, respectively, as can be seen from

ûk =
1√
2

√
1 +

ξk
Ek

, v̂k = − ∆̂k√
2|∆k|

√
1− ξk

Ek

. (18)

3.2 Topological invariant – Chern number

We now turn to the chiral A-phase we introduced above and restrict ourselves to the odd parity
case, because the even-parity state cannot be realized in a purely two-dimensional system as
it involves kz-dependence, indicating extensions of Cooper pairs along the z-axis. Because it
will be useful later, we consider here a tight-binding model on a square lattice with a simple
nearest-neighbor hopping dispersion

ξk = −2t
(
cos kx + cos ky

)
− µ (19)

where t is the hopping matrix element and the lattice constant is unity. The Cooper pairs shall
originate from a nearest-neighbor pairing interaction, which leads to the pair wave function and
the gap function

f±(k) = F0ẑ
(
sin kx ± i sin ky

)
and d±(k) = ∆0ẑ

(
sin kx ± i sin ky

)
(20)

transforming within Eu of the tetragonal point group. It is easy to see that for this gap structure
using Eq. (12) the gap matrix H(k) in Eq. (11) can be decomposed into two disconnected parts
with two-dimensional Hamiltonian matrices,

h(k) =

(
ξk dz(k)

d∗z(k) −ξk

)
= hk · τ̂ (21)
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ky kx

mk

Fig. 1: Mapping from the Brillouin zone to the unit sphere: The representation of the Hamilto-
nian hk as a unit vector mk = hk/|hk| allows us to map the two-dimensional BZ in k-space
to a unit sphere.

corresponding to the spinors
(
ĉk↑, ĉ

†
−k↓
)

and
(
ĉk↓, ĉ

†
−k↑
)
, where τ are Pauli matrices for the

particle-hole space. Note that this can be considered now a spinless subspaces. The three-
dimensional vector

hk =
[
Im (dz(k), Re (dz(k), ξk

]
(22)

is a mapping of the two-dimensional BZ (torus) to a sphere with unit vectormk=hk/|hk| (Fig. 1).
Withmk we define

Ωz
k =

1

2
mk ·

[
∂kxmk × ∂kymk

]
(23)

which is known as the z-component of the Berry curvature Ωk. We use now Ωz
k to define a

topological invariant, the Chern number, to characterize the chiral state. The Chern number C
is obtained from Ωz

k by an integral over the BZ

NC = 2π

∫
BZ

d2k

(2π)2
Ωz

k (24)

and is an integer for a topologically non-trivial state. Geometrically this corresponds to (half
of) the area element on the sphere, such that the integral (24) results in the number of timesmk

wraps around the sphere when k covering the (torus of) the BZ.
The calculation of C in this way looks rather tedious. Fortunately, there is a considerably
simpler way to determine the Chern number which relies on the knowledge of the gap function
on the FS:

NC =
1

2π

∮
FS

dk ·∇k arg[dz(k)] (25)

which corresponds to the non-trivial phase winding of the gap function (analogous for the pair
wavefunction) around the FS. It is rather easy to see that for µ < 0 the FS is closed around
the BZ center and the phase of dz(k) acquires a winding of 2π going around the FS in positive
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Fig. 2: Charges of the gap function d+
z (k) in the first BZ. The Chern charges are +1 for the red

circles and −1 for the blue points. The Chern number is obtained from Eq. (25) by counting
the charge which is encircled by the Fermi surface as a path running in the positive orientation.
(a) Below half filling: FS closed around center of the BZ and has C = +1; (b) At half filling:
the gap function vanishes on the FS at the blue points on the BZ boundary, such that Eq. (25)
is not defined; (c) Above half filling: the FS closes around a red corner point of the BZ, which
leads to C = −1 when considering that effective path orientation is negative. Note that (b) is
the point of a Lifshitz transition from an electron- to a hole-like FS, which is at the same time a
topological transition between different Chern numbers, where the gap vanishes.

direction for the gap function in Eq. (20), with d+
z (k) = ∆0(sin kx+ i sin ky). The gap function

d−z (k) yields a winding −2π. The sign of NC indicates the sign of chirality.
A further convenient feature of the gap function is the appearance of zeros in the BZ or bound-
ary. Because the gap function is periodic in k-space we find for the odd-parity state

dz(k) = −dz(−k) = −dz(−k+G) (26)

where G is a reciprocal lattice vector. If the condition k = −k+G is satisfied, dz(k) = 0,
which is in the give case true for the four inequivalent pointsK1,...,4 = (0, 0), (π, 0), (0, π), (π, π).
We can attribute these zeros a charge corresponding to a winding number.

dz(k =Kn+q) = ∆0q e
iQnθq (27)

with Q1 = Q4 = +1 and Q2 = Q3 = −1 for d+
z (k) (see Fig. 2). The total charge vanishes,∑4

n=1Qn = 0. These “Chern charges” are very handy to determine the Chern number through
Eq. (25) by examining which charges are encircled in which way. In Fig. 2 we consider three
cases of band filling assuming a simple tight-binding model with nearest-neighbor hopping with
ξk given in Eq. (19). The case (a) displays a simple electron-like FS (µ < 0) which encircles the
charge Q1 at the BZ center in a positive orientation (arrows). Note we always define “positive
orientation” with respect to BZ center. In case (c) the FS (µ > 0) is hole-like, going around the
charge Q4 at the BZ corner. We can calculate C by shifting the BZ in a way to make K4 the
center which, however, leaves the orientation of encircling negative and leads to C = −1. On
the other hand, we may stick with Fig. 2(c) and follow the path around the BZ center, which
consists of the disconnected green FS lines and join them by a path along the BZ boundary
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Fig. 3: Charges of the various gap functions in the first BZ. (a) Next-nearest neighbor pairing
with the gap function d+

z (k) of Eq. (29) has NC=+1 for FS 1 and C=−3 for FS 2. (b) Chiral
d-wave state, d±0 (k) of Eq. (30) in a hexagonal system has a charge Q1=2 at the BZ center and
Q2,3=−1 at the BZ corners for positive chirality. (c) s+id-wave state of Eq. (31) which has
four zeros whose charges cancel to zero for all Fermi surfaces of tetragonal crystal symmetry.

passing through the (blue) charges at K2 and K3. In this way we get the Chern number by
taking each of the four charge contributions at these BZ boundaries only half, as they are cut.
This then yields a full contribution from the charge at the center and four halves from the BZ
boundary

NC = +1 +
1

2
(−4) = −1 (28)

consistent with the other view point considering only the charge at K4. The case (b) of half
filling (µ=0) corresponds to the Lifshitz transition between the electron- and hole-like FS
and leads to a zero in the gap functions, dz(K2,3)=0. Here, the Chern number jumps dis-
continuously and we encounter a topological transition. In Fig. 2 we considered a state with
one chirality, d+

z (k) = ∆0(sin kx + i sin ky) which changes under time reversal operation to
d−z (k) = ∆0(sin kx − i sin ky) with all the charges switching sign.
Larger Chern numbers can be obtained by alternative pairing states, e.g., for Cooper pairing of
electrons on next-nearest neighbor sites in a square lattice, which lead to a gap function

d±z (k) = ∆0

(
cos ky sin kx ± i cos kx sin ky

)
. (29)

This state belongs to the same representation Eu as (20), but is different in terms of topology
reflected by the Chern number. This gap functions has additional zeros in the BZ besides the
ones found above, K1,...,4. They lie at the four points K5,...,8 = π

2
(±1,±1), π

2
(±1,∓1). The

charges rearrange: Q1,...,4=±1 and Q5,...,8=∓1 for d±z in Eq. (29). Again the total charge van-
ishes. We encounter here also Chern numbers of NC=∓3 for the electron-like FS 2 enclosing
the inner five zeros (see Fig. 3(a)).
Another case is the so-called chiral d-wave state which is an even-parity spin singlet pairing
state. The two necessary components of the basis functions, k2

x−k2
y and kxky, are not degenerate

in the tetragonal system, but only in a lattice of hexagonal symmetry with point group D6h

where they belong to the two-dimensional representation E2u, Considering here also a nearest-
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neighbor type of pairing state (on a triangular lattice) we obtain a gap function of the form

d±0 (k) = ∆0

3∑
n=1

e±i2πn/3 cos(k · Tn) (30)

with T1 = (0, 1), T2 = (
√
3/2,−1/2) and T3 = (−

√
3/2,−1/2). We find zeros at the BZ

center and corners, K1 = (0, 0) and K2,3 = (0, 1), (
√
3/2, 1/2), respectively, as shown in

Fig. 3(b). The corresponding charges are Q1 = ±2 and Q2,3 = ∓1 ensuring again that the total
sum vanishes. The electron-like FS (1) as well as the hole-like FS (2) would, therefore, have
NC = ±2. There is no topological phase transition possible at the Lifshitz transition, since the
FS never passes through a gap zero going from FS 1 to FS 2.
Finally we would like to introduce an example of a superconducting phase with broken TRS
which is not chiral. This is the well-known s+idx2−y2-wave state. In the tetragonal crystal
lattice the two constituents are not degenerate, as they belong to different one-dimensional
representations, A1g and B1g. So we assume that for some coincidence both states are compet-
itive, although they may have different strength and also different critical temperatures (super-
conducting double transition). We consider this state built up from nearest-neighbor pairing,
d0,s(k) = cos kx + cos ky also known as extended s-wave state, and d0,d(k) = cos kx − cos ky.
This leads to

d0(k) = ∆s

(
cos kx + cos ky

)
± i∆d

(
cos kx − cos ky

)
(31)

which has zeros at K1,2 = ±π
2
(1, 1) and K3,4 = ±π

2
(1,−1) whose charges are opposite,

Q1,2 = ±1 and Q3,4 = ∓1 such that the Chern number by symmetry vanishes always, as in
Fig. 3(c) for both typical FS (1 and 2).
Note that due to the fact that we have used the reduced Hamiltonian in the discussion following
Eq. (21) we should include the spin degeneracy in the Chern number, such that NC is multiplied
by a factor 2, in general.

3.3 Symmetry criterion

Whether an unconventional pairing state is chiral or not can be decided also simply by con-
sidering a rather simple symmetry property. As we mentioned before, the ideal condition to
get a TRS breaking state is found when the pair wave function belongs to a degenerate irre-
ducible representation of the crystal point group. The chiral superconducting state has a chiral
axis which is in the case considered above the z-axis. Looking at the most simple form of a
chiral state, kx ± iky, we recognize the spherical harmonic Y1,±1(k) which corresponds to an
angular momentum Lz=±~. In any point group the angular momentum can be associated with
irreducible representations ΓL. In a chiral superconducting state we may attach a net “angular
momentum” with the Cooper pair, e.g.,

〈L〉 =
〈
Tr
(
∆̂†k(k ×∇k)∆̂k

)〉
BZ

(32)

where 〈· · · 〉BZ is an average over the BZ. The symmetry related criterion for a finite 〈L〉 is that
the decomposition of Γ⊗ΓL⊗Γ includes the trivial representation where Γ is the representation
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of the pairing state. For the point group D4h the angular momentum parallel to z-axis belongs
to the A2g, such that for the chiral p-wave order parameter in Eu follows

Eu ⊗ A2g ⊗ Eu = A1g ⊕ A2g ⊕B1g ⊕B2g (33)

which includes the trivial representation A1g. Thus, it is possible to construct a chiral pairing
state within the representation Eu of D4h. The same is true for the representation E2g in D6h.
On the other hand, the s+id state is composed of A1g and B1g in D4h and

(A1g ⊕B1g)⊗ A2g ⊗ (A1g ⊕B1g) = A2g ⊕ A2g ⊕B2g ⊕B2g (34)

which does not contain A1g. Thus we cannot form a chiral state from order parameters in these
two representations. Interestingly, uniaxial deformation along the axis [110] would change the
condition, reducing the symmetry to D2h with the corresponding representations A1g and B1g.
But now the Lz is also in the representation B1g and the decomposition within the point group
D2h includes the trivial representation. Returning back to the Chern number, we see in Fig. 3(c)
the deformation may change the Fermi surface in way (elliptically elongated along [1, 1] and
squeezed [1,−1]) such that only the zeros of charges of the same sign are encircled.

4 Edge states in chiral superconductors

In the context of topological phases often the concept of bulk-edge correspondence is mentioned
[12, 13]. In chiral superconductors this manifests itself in the presence of chiral quasiparticle
modes at the surface with energies below the bulk gap. There is a relation between the Chern
number and the basic structure of the edge states as we will point out below, after discussing
a specific case. In this section we will also analyze a few physical properties connected with
these surface modes.

4.1 Edge states

One of the simplest cases to discuss the structure of edge states is a chiral p-wave state. For this
purpose we consider the Bogoliubov-de Gennes equation which allows us to analyze inhomoge-
neous superconducting phases and local excitation spectra. We will work here with the reduced
particle-hole space in the two-spinor representation as given in Eq. (21). To illustrate the edge
states it is sufficient to use the Andreev approximation where we focus on the momentum range
very close to the FS and separate the fast spatial dependence due to the Fermi wave vector from
the slow ones: ξk ≈ ~vF · (k−kF ) (see for example Ref. [16]). In a real space formulation this
leads to the differential equations(

~vF · (i∇−kF ) ∆kF

∆∗kF −~vF · (i∇−kF )

)(
ukF (r)

vkF (r)

)
= E

(
ukF (r)

vkF (r)

)
(35)

where ukF (r) and vkF (r) are the electron and hole component of the wave function, respec-
tively, of the stationary eigenstates. These eigenstates are labeled by the Fermi momenta kF
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indicating the direction of a quasi-classical trajectory of motion, characteristic to the Andreev
approximation. With this we can introduce the field operators like

Ψ̂(r) =
∑
kF

(
âkFukF (r) + â†−kF vkF (r)

)
(36)

where (âkF , â
†
−kF ) are (spinless) Bogoliubov quasi particle operators. We locate the surface at

x=0 (normal vector parallel to x-axis) and assume specular scattering. Then we can take the
ansatz for the wave function(

ukF (r)

vkF (r)

)
= b1

(
A+

kF+

rkF+A
−
kF+

)
e+iqxx+ikF+·r + b2

(
r∗kF−A

−
kF−

A+
kF−

)
e−iqxx+ikF−·r (37)

with the boundary condition that the wave function vanishes at the surface, x=0 as can be
achieved with the proper choice of b1,2. Moreover,∫ ∞

0

dx

∫ L

0

dy
(
|ukF (r)|2 + |vkF (r)|2

)
= 1 (38)

where periodic boundary condition can be assume along y-direction for a system of length L.
The parameters in Eq. (37) are A±kF = [E ±

√
E2−|∆kF |2]1/2, kF± = kF (± cos θkF , sin θkF )

rkF = ∆∗kF /|∆kF |, and iqx = ±
√
E2−|∆kF |2/~vFx (|qx| � kF ). Within the Andreev ap-

proximation the continuous energy spectrum of the extended quasiparticle state is given by
E = ±

√
(~vFqx)2+|∆kF |2. However, there are also states with subgap energies (|E| < |∆kF |)

which are bound states at the surface, called Andreev bound states. Their energy is obtained by
solving the equation

rkF+r
∗
kF− =

E +
√
E2−|∆kF |2

E −
√
E2−|∆kF |2

⇒ E = Eky = Im [∆kF ]
∣∣∣
kF ·ŷ=ky

(39)

where we use the momentum kFy parallel to the surface to label the dispersion as we assume
translational invariance along y-direction. Note that the expression Eky=Im [∆kF ] has to be
used with care and is only valid as such for states with |NC |=1. For higher Chern numbers
the solution of Eq. (39) has to take the winding of the gap function properly into account (see
Fig. 4(c) for the example of NC=− 3).
We introduce the electron operator φ̂ky specifically for the edge state,

γ̂ky=

∫
d2r
(
φ̂kyu

∗
kF
(r)− φ̂†−kyv∗kF (r)

)
and γ̂†−ky=

∫
d2r
(
φ̂†−kyukF (r)− φ̂kyvkF (r)

)
(40)

which then lead to the edge state Hamiltonian,

Hsf =
∑
ky

Eky γ̂
†
ky
γ̂ky . (41)

The same spectrum we obtain also for the other part of the original Hamiltonian, so that we
could label γ̂ky additionally with a spin index. Note that for the zero-energy mode (Eky=0=0) we
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Fig. 4: Chiral edge states: (a) Closed quasi-classical trajectories of electrons (green) and
holes (blue) connected through Andreev reflections yield subgap bound states at the surface.
Schematic structure of the quasiparticle spectrum: (b) Chiral edge mode with energies below
the quasiparticle continuum (green) for NC= + 1 [situation as in Fig. 2 (a) and 3 (a) FS 1].
(c) Chiral edge modes for NC=− 3 [situation as shown in Fig. 3 (a) FS 2].

find that ukF (r)=ukF (r)
∗=vkF (r)=vkF (r)

∗. Thus, the creation and annihilation operator are
identical γ̂0=γ̂

†
0. This mode has no electrical charge as electron and hole compensate perfectly.

This mode has then the property of a Majorana fermion [12, 13].
Taking ∆kF=dz(kF ) from Eq. (20) we find for the subgap energies

Eky = ±∆0 sin ky (42)

which yields a chiral mode whose orientation is connected directly with the chirality, i.e., the
sign of the slope corresponds to sign of the Chern number NC (see Fig. 4 (b)). The num-
ber of surface modes crossing zero energy in with a certain orientation is connected with
rkF = exp[−i arg{dz(kF )}] in Eq. (39) which provides a direct relation to the Chern num-
ber in Eq. (25). The Chern number as a winding number determines the number of chiral
branches which connect the lower with the upper continuum of the spectrum of Bogoliubov
quasiparticles as can be seen upon examination of Eq. (39) [17]. This means eventually,

NC =
∑
ky

sign[vy(ky)] δ(Eky) (43)

where NC corresponds to the net number of zero-energy crossings of given sign of velocity
~vy(ky)=dEky/dky. The relation constitutes the concept bulk-edge correspondence and shows
that the character of the surface bound states are related to the topological properties of the bulk
state. This is analogous to the integer Quantum Hall state, for our chiral p-phase the ν=1 case.
It is instructive to look at the quasi-classical trajectories as displayed in Fig. 4 (a). An electron
with given momentum bounces off specularly from the surface back towards the bulk super-
conductor and is through an Andreev reflection turned into hole which essentially retraces the
original path of the electron. With the Andreev reflection of the hole the path is completed
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Fig. 5: Spontaneous supercurrent at surface. (a) Charge currents induced by the chiral edge
state extend on a length ξ (coherence length) into the bulk (oscillations are of Friedel-type with
wave vector kF . (b) The magnetic field (green shading) induced by the edge current (blue) is
screened by counter currents (red) on a length scale λ, the London penetration depth.

such that we can view this as closed orbit involving both an electron and a hole component,
obviously as an electron-hole superposition constituting Bogoliubov quasiparticles as of the su-
perconductor. The localization length along the x-axis is the order of the bulk coherence length
ξ ≈ ~vF/|∆0| as obtained from the wave function in Eq. (37). In the following we will consider
the phenomenological implications.

4.2 Surface currents

Fig. 4 (a) reveals a further property of the chiral edge state. The closed quasi-classical trajectory
for a given kFy carries a net electrical current parallel to the surface, because electrons and
holes move in opposite direction. Restricting to the Andreev bound states the expression for the
current density is given by

Jy(x) = −2e

L

∑
ky=kF ·ŷ

vFy

(
|ukF (x)|2f(Eky)− |vkF (x)|2f(−Eky)

)
= −2e

L

∑
ky

vFy

(
|ukF (x)|2 + |vkF (x)|2

)
f(Eky)

(44)

with ~vF=∇kξk
∣∣
k=kF

. By symmetry the current density has only a non-vanishing y-component.
The relations Eky = −E−ky and vFy(ky) = −vFy(−ky) ensure that the electronic (uk) and hole
(vk) part add up in the same direction. Like the bound state this current is confined to a coher-
ence length ξ at the surface, as shown in Fig. 5. The magnetic field generated by this current is
screened (Meissner-Ochsenfeld effect) by counter currents on a length scale of London penetra-
tion depth λ, such that the integrated current at the surface vanishes (see Fig. 5(b)). The current
induced by the edge states depends on details of the band structure through vF . Moreover, it is
important to note that also the quasiparticles of the continuum contribute to the current, which
lead to some quantitative changes and are ignored in Eq. (44). Consequently, the magnitude of
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the current is not uniquely connected with the topology of the chiral state. In contrast to the
Quantum Hall state where the chiral edge mode is made up of electrons, here it is a part of the
Bogoliubov quasiparticle spectrum. Bogoliubov quasiparticles are due to the hybridization of
electrons and holes and, consequently, do not conserve charge [18–20]. As we will show below
there is no connection to the Chern number sometimes even not on qualitative level.
It has been discussed whether the chirality would yield a spontaneous Hall effect, a transverse
voltage as response to a supercurrent. The discussion of this phenomenon is rather complex and
exceeds our analysis. The effect is very small and we refer to Ref. [21].

4.3 Quasiparticle current and thermal Hall effect

The analogy to the Quantum Hall effect, however, seems to hold for the Bogoliubov quasiparti-
cles, whose spectrum and current is uniquely connected to the topology of the state. Unlike the
charge, the energy of quasiparticles is conserved and we can consider the energy (heat) current
carried by the edge states, as defined by

J (Q)
y (x) =

1

L

∑
kFy

EkFyvky

(
|ukF (r)|2 + |vkF (r)|2

)
f(EkFy) (45)

where the quasiparticle velocity is given by ~vy(ky) = ∂Eky∂ky. Integrating over x with the
normalization condition (38) we obtain

I(Q)(T ) =

∫
dky
2π

Ekyvy(ky)f(Eky) . (46)

In the low-temperature limit (kBT � ∆0 ∼ kBTc) we may use Sommerfeld expansion for the
temperature dependence

I(Q)(T ) =

∫
dky
2π

vy(ky)

(
EkyΘ(−Eky)− kBT

β2E2
ky

4 cosh2(βEky/2)
+ · · ·

)
≈ I

(Q)
0 − kBT

~

∫
dE

2π

β2E2

4 cosh2(βE/2)
= I

(Q)
0 − π

6

(kBT )
2

~
.

(47)

Thus, the first correction to the (non-universal) zero-temperature current is universal, as it does
not contain any material-dependent parameters.
Let us now consider a Hall-bar geometry, shown in Fig. 6, where the two edges have by sym-
metry opposite quasiparticle currents. Due the gap of the bulk state, the electronic heat current
is carried only by the edge states. Therefore, the total heat current along the bar consists of the
contribution of both surface which flow in opposite direction. A finite current only appears, if
the temperature is different on the two surfaces and the leading contribution is

I(Q)
tot = I

(Q)
1 + I

(Q)
2 =

π

6

k2
B

~
(
T 2

2−T 2
1

)
= −π

6

k2
BT

~
∆T = κyx∆T (48)

with T1 = T−∆T/2 and T2 = T+∆T/2. This is the Righi-Leduc effect, the heat current
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Fig. 6: Hall bar for the Righi-Leduc effect or thermal Hall effect: Difference in temperature on
the two edges induce a heat current along the bar. For chiral edge states this yields a quantum
thermal Hall effect.

induced by a transverse temperature difference is quantized with the same universal contribution
for each chiral edge mode [14, 22–24], such that we can write

κxy = −κyx =
π

6

k2
BT

~
NC . (49)

Thus, assuming positive chirality (kx+iky) for the case in Fig. 3(a) the FS 1 and 2 would yield
NC=2 and NC=− 6, respectively, including the spin. Note that the universal linear-T behavior
is valid only in the limit of very small T and the leading correction ∼ e−∆0/kBT (∆0/kBT )

2 is
due to thermally activated quasiparticles.

The thermal Hall effect reveals the topological nature of the superconducting phases while
neither the spontaneous supercurrent at the surface nor the spontaneous Hall effect are universal
and may even be too small to measure. An illustrative example for this discrepancy can be seen
in the behavior when crossing the Lifshitz transition for the situation of Fig. 2 (a-c). The spectra
of the surface bound states are shown in Fig. 7 (a) and (b) where the former corresponds to the
electron-like and the latter to the hole-like Fermi surface. In both cases the Fermi velocity vFy
entering the surface current expression in Eq. (44) has the same sign for negative energies Eky .
Thus, in both cases the surface current I runs in the same direction despite the fact that the
two situations correspond to Chern numbers of opposite sign. Thus, the Lifshitz transition
between to two FS topologies upon rising µ leaves at most a slight anomaly in the supercurrent
as function of µ. The surface current is not tied to the Chern number, but changes sign under
the time reversal operation. In contrast, the thermal Hall conductance κxy/T changes from one
universal value to the other, as the quasiparticle velocity vy changes sign for the two kinds of
edge states.
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Fig. 7: Topology versus currents: Chiral edge states for (a) electron-like and (b) hole-like FS
have dispersions with opposite velocity. (c) The direction of the charge current (electron – hole
flow) is unchanged (only small anomaly at the Lifshitz transition at µ = 0), while the thermal
Hall conductance κxy/T changes sign between two universal values (width of the transition
shrinks with lowering T ).

5 Chiral superconductivity in three dimensions

In a genuinely three-dimensional material the generic case of a chiral superconductor is not
topologically non-trivial because is has to have zero nodes in the gap. We would like to con-
sider here in a simple way, how one can characterize the properties of such superconductors
nevertheless, using some of the tools introduced above.
For our discussion we use again a system with simple tetragonal point group D4h with a gap
function of chiral p-wave state, d(k) = ∆0ẑ(sin kx± i sin ky) without any kz-dependence. The
chiral axis is along the z-axis. We now define a sliced Chern number (SCN) by cutting through
the three-dimensional BZ for fixed kz. The cross section includes again 2D FS (FS(kz)) which
allow us to determine a Chern number through the winding number

nC(kz) =
1

2π

∮
FS(kz)

dk ·∇karg[dz(k)] (50)

which is an integer and depends on the charges of the encircled gap zero lines crossing the
BZ (along z-direction). The overall “Chern number” is then obtained through the integration
over kz

NC =
a

2π

∫ +π/a

−π/a

dkz
2π

nC(kz) . (51)

Now let us look at two generic examples, shown in Fig. 8. For a weak dispersion along the z-
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Fig. 8: Fermi surfaces in three-dimensional systems: (a) Quasi-two-dimensional metal with
open (cylindrical) FS and no gap zeros yields an integer Chern number with a Fermi arc (blue
line) crossing the whole surface BZ (green ky-kz-plane). (b) Genuine three-dimensional metal
with closed Fermi surface has point nodes at the poles. The Fermi arc is limited by the projection
of the nodal points and the non-integer Chern number reflects the restricted length.

axis the FS will be open and cylindrical (a) such that none of the zeros of the gap function dz(k)
crosses the FS anywhere. This corresponds to a quasi-two-dimensional system. Thus, the bulk
quasiparticle spectrum remains fully gapped and nC(kz) = ±1 for all kz in the BZ, as shown in
Fig. 8 (c) leading to NC = ±1, an integer number indicating a topologically non-trivial state.
On the other hand, a strong dispersion along the z-axis yields a closed Fermi surface (Fig. 8 (b)).
There are only cross section of the Fermi surface for −kFz < kz < +kFz where nC(kz) = ±1.
Here the gap function dz(k) has point nodes in the gap at the two poles of the FS (kx = ky = 0).
The Chern number is NC = ±kFza/π, i.e., non-integer.
What information does the Chern number NC carry? These superconductors have chiral edge
states connected with nC(kz), whose spectrum looks as depicted in Fig. 4(b), for a surface with
normal vector along x-direction. For the standard chiral p-wave state we can find for all kz
with nC(kz) = ±1 that there is one ky value where Eky = 0 which we may call a Fermi point.
The sign of the sliced Chern number nC(kz) gives these Fermi points an orientation. In the
ky-kz-plane they form a so-called Fermi arc which in case (a) crosses the whole BZ while it has
a finite length for case (b). The Chern number NC is a measure for the length of the Fermi arc.
The Chern number NC appears again in the thermal Hall effect,

κxy =
π

6

k2
BT

~

∫
dkz
2π

nC(kz) =
π

6

k2
BT

~
NC . (52)

A universally quantized value is only found for truly topological phases as for the quasi-two-
dimensional case (a) in Fig. 8. Note that for the case (b) the presence of point nodes in the gap
introduces stronger corrections to linear-T law of κxy which has a T 3 dependence.
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6 Topological superconducting phases with TRS

Another class of topological superconductors conserves time reversal symmetry and belong to
the odd-parity pairing states, as long as parity is a symmetry. In many aspects these supercon-
ductors are related to the B-phase of superfluid 3He.

6.1 Two-dimensional systems

We return to two-dimensional superconductors and consider here as an example the spin-triplet
superconducting phase belonging to one-dimensional representation of the tetragonal point
group D4h. These are given by the gap functions

dA1u(k) = ∆0

(
x̂ sin kx + ŷ sin ky

)
, dA2u(k) = ∆0

(
x̂ sin ky − ŷ sin kx

)
,

dB1u(k) = ∆0

(
x̂ sin kx − ŷ sin ky

)
, dB2u(k) = ∆0

(
x̂ sin ky + ŷ sin kx

)
.

(53)

All four states (53) are equal-spin pairing states with spin parallel / antiparallel to the z-axis.
We focus here on dA1u(k) which has the following gap matrix

∆̂k =

 ∆k↑↑ ∆k↑↓

∆k↓↑ ∆k↓↓

 =

 −∆0

(
sin kx−i sin ky

)
0

0 ∆0

(
sin kx+i sin ky

)
 (54)

such that the Nambu space can again be decomposed into two subspace with the spinors (ĉks, ĉ−ks)
with s = ±1 for spin up and down, respectively. It is obvious that each subspace has a “chiral”
gap function with a definite “Chern number”

NC,s =
1

2π

∮
F

Sdk ·∇karg[∆kss] (55)

which is spin dependent with NC,+1=−NC,−1. The net Chern number taking both spins to-
gether, NC=

∑
sNC,s = 0, vanishes, since TRS is conserved. Nevertheless, bulk-edge corre-

spondence is reflected by the presence of “spin chiral edge states” of opposite orientation for
the two spin subspaces (see Fig. 9(a)): Eky ,s = Im [∆kF ,ss]. These edge states can be obtained
again by means of the Bogoliubov-de Gennes equations used above. They are called helical as
propagation direction and spin of the quasiparticles are tied together.
Analogous to Sect. 4.1 we introduce again quasiparticle operators for the edge state which have
now a spin index, Γ̂ky =

(
γ̂ky↑, γ̂ky↓

)
. The surface Hamiltonian reads,

Hsf =
∑
ky ,s

Eky ,s γ̂
†
ky ,s

γ̂ky ,s =
∑
ky ,s,s′

Eky ,ss′ γ̂†ky ,sγ̂ky ,s′ . (56)

Here Eky ,ss′ follows from the symmetry general relation (n̂×k‖) ·σss′ = kyσ
z
ss′ where n̂=(100)

is the surface normal vector and k‖ the momentum parallel to the surface.
For the time being we restrict here to the situation of an electron like FS closed around the BZ
center, for simplicity.
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Fig. 9: Helical edge states: (a) The energy dispersion is spin dependent with opposite quasi-
particle velocity for up and down spin. (b) This yields spin currents at the surface.

6.2 Surface currents and universal properties

Due to TRS conservation there is no spontaneous supercurrent along the surface unlike in the
case of a chiral superconducting phase. The helical spectrum of the Andreev bound states results
in a spin current in turn. Following the same way as in Eq. (44) we find that after the integration
over x the total surface current for the spin s is given by

Iy,s =
1

L

∑
ky

vFy(ky)f(Eky ,s) . (57)

With the relations, Eky ,s=−Eky ,s̄=E−ky ,s̄ and vFy(ky)=− vFy(−ky) follows that Iy,s=− Iy,s̄.
Therefore obviously the supercurrent vanishes, i.e., Iy = Iy,↑+Iy,↓ = 0. However, we obtain a
net spin current along the edge

I(s)
y =

~
2

(
Iy,↑−Iy,↓

)
=

~
L

∑
ky

vFy(ky)f(Eky ,↑) (58)

whereby this current runs in the opposite direction on the two edges of a bar as shown in
Fig. 9(b). This current would also contain contributions from the continuum not included in
Eq. (57). Like the chiral supercurrents these spin currents are not universal. Unlike the super-
current, the spin current does not lead to screening currents.
On the other hand, there is an analog to the quantized thermal Hall effect for chiral supercon-
ductors. Very much in the same way as in Sect. 4.3 we can derive a relation like in Eq. (48),

κ(s)
xy = −κ(s)

yx =
π

3

k2
BT

~
(59)

whereby the response to the transverse temperature difference in the Hall bar is a “spin heat
current”

I(Q,s)
y =

∫
dky
2π

Ekyvy(ky)
(
f(Eky↑)−f(Eky↓)

)
. (60)

Considering this in a Hall bar geometry again, this would constitute a quantized thermal spin
Hall effect. An experimental verification would very likely be rather challenging.
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Fig. 10: Edge states for the Balian-Werthammer state d(k) = ∆0ν̂ · k: (a) The edge states
are helical with Dirac-type cone dispersion on the two surface BZ (here kx-ky). The arrows
(orange) show the spin texture. (b) These edge states yield spin currents with transverse spin
orientation on all surfaces.

6.3 Three-dimensional systems

The prime example of a topological phase in this category is the Balian-Werthammer (BW)
state which corresponds to the B-phase of superfluid 3He [3,10]. It is an odd-parity state with a
gap function

d(k) =

 ∆0

(
x̂kx + ŷky + ẑkz

)
(I)

∆0

(
x̂ sin kx + ŷ sin ky + ẑ sin kz

)
(II)

(61)

where case (I) corresponds to a fully rotationally symmetrical system like 3He and case (II) is
the analogous state in a simple cubic lattice with nearest-neighbor pairing. Unlike all the other
odd-parity states considered above this is not an equal-spin pairing state. The spin configuration
is locked to the momentum space (like for the states in Eq. (53) which constitutes a dynamical
“spin-orbit coupling”). The gap function has no zeros on a closed Fermi surface in case (I) and
in case (II) there is a finite number of zero points in the BZ. The analysis of the topology by
slicing the BZ reveals that “topological invariants” only exist for k · ν̂ = 0 (ν̂ slicing normal
vector) or at the BZ boundary for case (II). Thus, we do not have Fermi arcs unlike in the case
of time reversal symmetry breaking chiral superconductors.
It is straightforward to derive the edge states from the corresponding Bogoliubov-de Gennes
equations [25, 12]. The corresponding surface Hamiltonian for case (I) reads

Hsf =
∑
k‖,s,s′

(n̂× k‖) · σss′ γ̂†k‖,sγ̂k‖,s′ (62)

which shows a helical spectrum with a cone shaped dispersion around the center of the surface
BZ. In Fig. 10(a) we show the momentum dependence of the subgap quasiparticle energy for the
normal vector along the z-axis. This leads to surface spin currents as displayed in Fig. 10(b).
In this case we have only a Fermi point in the surface BZ. In case (II) it is possible to have
additional such cones at points of the BZ boundary some of which show a reversed spin pattern.
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AZ class SU(2) TRS parity examples edge states
D × × odd spinless chiral p-wave chiral

DIII × © odd BW p-wave helical
A 4 × odd spinful chiral p-wave chiral

AIII 4 © odd nematic zero-energy
C © × even chiral d-wave chiral
CI © © even nematic zero-energy

Table 1: Six classes of Bogoliubov-de Gennes Hamiltonians: We distinguish behavior under
spin SU(2) and TRS operation – “©” present, “×” absent, “4” restricted SU(2) with Sz
preserved. We use examples discussed in parts above.

7 Symmetry classification

In the context of topological phases, in particular topological insulators, single-particle Hamil-
tonians have been categorized into ten symmetry classes and led to the so-called periodic table
of topological matter. Among these we find also the classes to which superconductors belong,
the subgroup of the Bogoliubov-de Gennes Hamiltonians [26,27]. In this section we would like
briefly to locate the examples we have given above within this classification scheme, because
it is often used in literature. The basis of the classification are properties of the Hamiltonian as
given in Eq. (11) under the discrete symmetries of time-reversal, particle-hole, and sublattice
(so-called chiral) symmetry. In Table 1 we give the list of the six relevant classes which are
labeled according to the Altland-Zirnbauer (AZ) classes [28].
We will now consider briefly the different classes.
Classes without spin rotation symmetry SU(2): Class D violating TRS is in 2D systems char-
acterized by an integer Chern number. An example is a spinless chiral p-wave superconductor,
e.g., the reduced Hamiltonian in Eq. (21) which possesses chiral edge states. The class DIII
conserves TRS and includes the superconducting states discussed in Sect. 6 which generate
helical edge states in two and three dimensions.
Classes with conserved spin Sz-component: We find the spinful chiral p-wave superconductor
including both spin components in H(k) possessing integer Chern numbers in 2D systems.
This belongs to class A without TRS and has chiral edge states. Class AIII with TRS contains
the odd-parity states like nematic phase B and C in Eq. (9). These states have zeros in the gap.
They can develop zero-energy Andreev bound states for certain surfaces as can be seen from
our analysis in Sect. 4.1. For all trajectories with ∆kF+

=−∆kF− we find from Eq. (39) E=0.
Classes with full spin rotation symmetry: Here we find the even-parity spin-singlet supercon-
ductors where Cooper pairs do not have any spin dependence. The class C breaks TRS and
incorporates the chiral d-wave state, dx2−y2+idxy-wave, which is characterized by a Chern num-
ber in 2D and possesses chiral edge states. An alternative chiral d-wave state in 3D systems has
dxz+idyz-symmetry with a line node. Nematic d-wave states like dx2−y2 and dxy belong to class
CI. Analogous to the nematic odd-parity states, they have zero-energy Andreev bound states
for certain surface orientations.
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8 Realizations of topological superconducting phases

As mentioned in the introduction unconventional superconductivity is most likely found in ma-
terials with strongly correlated electrons. While such superconductors are known since the late
1970’s it is still a highly non-trivial task to identify the structure of Cooper pairs.
A few experimental methods are considered important in the context of topological supercon-
ductivity. For the detection of spontaneously broken TRS in superconductors there are two
widely trusted methods. These are the zero-field muon spin relaxation (see, e.g., Ref. [29]) and
the polar Kerr effect (see, e.g., Ref. [30]). The former measures the depolarization rate of the
spins of injected muons. For numerous superconductors we find an increase of the depolariza-
tion rate indicating that the superconductor produces intrinsically a spontaneous magnetic field
distribution associated with broken TRS. The polar Kerr effect observes the rotation of the po-
larization axis of reflected light relative to the incident polarization. By symmetry such an effect
is possible for chiral superconductors for incident beams along the chiral axis. The estimate of
the magnitude of the observed signals, however, is a complex theoretical problem [30].
Among the superconductors labeled as TRS breaking by these two methods, we find several
which are candidates for chiral superconductivity. In this respect the most intensively inves-
tigated is Sr2RuO4 which has been suggested to be a chiral p-wave superconductor [8, 31].
During the last year, however, new experimental data led to a debate whether Sr2RuO4 is
indeed an odd-parity superconductor. SrPtAs has been discussed as a candidate for chiral
d-wave superconductivity of the dx2−y2+idxy-wave type [32, 33]. Chiral d-wave supercon-
ductivity of the dzx+idzy-wave type has been proposed for the heavy Fermion superconduc-
tor URu2Si2 [30, 34]. Chiral superconductivity may also be realized in UPt3, another heavy
Fermion compound, as a chiral f -wave channel, with a gap function, d(k) = ẑkz(kx+iky)2 or
d(k) = ẑ(kx+iky)(5k

2
z−1) [35, 36].

While magnetic properties have been observed through µSR and polar Kerr effect in many of
these superconductors, so far attempts, focussed mainly on Sr2RuO4, to directly detect the mag-
netic fields produced by surface currents, using scanning probes, have only delivered negative
results [37, 38]. This may reflect the fact that the generated magnetic fields are not univer-
sal and too small for the conditions in the experiment [18–20]. On the other hand, quasipar-
ticle tunnelling data for Sr2RuO4 show zero-bias anomalies indicating the presence of edge
states [39, 40]. Note, however, that these experiments cannot distinguish chiral from helical
edge states easily.
Since magnetism is considered adversary to superconductivity, the superconducting phases ap-
pearing in the ferromagnetic heavy Fermion systems, UGe2, URhGe and UCoGe, have attracted
also much attention [41,42]. These systems break TRS even in the normal state and the Cooper
pairs form in a spin polarized environment, most likely with odd-parity. This has been the basis
of proposals of superconducting phases with topological properties (for a recent work see [43]).
A most recent case of an U-based superconductors which possibly realizes chiral pairing is
UTe2, a heavy Fermion metal close to a ferromagnetic quantum critical point [44].
Unconventional superconductivity in materials without an inversion center in their crystal lattice
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represent another intriguing class, because parity is not a symmetry for Cooper pairs anymore.
Also here topological features have been discussed (see for example [45]). A brief overview of
the many realizations of topological bulk superconductors can be found in Ref. [46].

9 Conclusion

This brief lecture notes give only a very selected insight into a very dynamical and fast evolving
field. The very active subject of artificially structured systems designed to show topological
superconductivity have been completely omitted. In particular, one-dimensional systems, so-
called nano-wires, provide a way to generate Majorana edge modes in a controlled way and are
considered as potential building blocks for so-called topological quantum computers [47, 48].
Also nodal structures of the pair wavefunction or the gap functions are a subject of topological
matter [49, 50].
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1 Introduction

Superconductivity is understood as a condensation of pairs of electrons. As such, it is a
rather subtle case of spontaneous symmetry breaking involving off-diagonal long range order
(ODLRO), and is usually described in terms of spontaneously broken electromagnetic U(1)
gauge symmetry [1]. This chapter is about superconductors that break other symmetries, specif-
ically point-group symmetries, in addition to U(1) gauge symmetry. For lack of space and time,
we focus on the theoretical classification of such states, not on experimental evidence or phe-
nomenology.

1.1 Notation

Let us first establish the notation. We consider a crystalline solid with Nb “active” electron
bands. Electron states are usually described in the Bloch-band basis, with wave functions
ϕk,a(x) for band a and wave vector k, or in a Wannier-orbital basis, with wave functions
wm(x−r) for the Wannier orbital m = 1, . . . , Nb centered at the lattice site r. We are used
to the latter in the context of strongly correlated electrons. In second-quantized language, we
express various physical observables in terms of creation and annihilation operators. In partic-
ular, the operator Ψσ(x) annihilates an electron of spin projection σ (σ = ↑, ↓) at the continuous
position x and obeys the anticommutation relations{

Ψσ(x), Ψ
†
σ′(x

′)
}
= δσσ′ δ(x−x′)

{
Ψσ(x), Ψσ′(x

′)
}
= 0 . (1)

The operator Ψσ(x) can be expressed in the Bloch basis as

Ψσ(x) =
∑
k,a,σ

da,σ(k)ϕk,a(x) where {da,σ(k), d†b,σ′(k′)} = (2π)3δ(k−k′) δa,b δσ,σ′ , (2)

or in the Wannier basis as

Ψσ(x) =
∑
r,m,σ

cr,m,σ wm,σ(x−r) where {cr,m,σ, c†r′,m′,σ′} = δr,r′ δm,m′ δσ,σ′ . (3)

A non-interacting Hamiltonian for the free propagation of such electrons takes, in the Wannier
basis, the general form

H0 =
∑

r,r′,m,m′,σ

tm,m
′

r,r′ c†r,m,σ cr′,m′,σ (4)

(we ignore the spin-orbit (SO) interaction for the moment). If cm,σ(k) is the Fourier transform
of cr,m,σ, the above Hamiltonian may be written in a simpler form, diagonal in k because of
translation invariance on the lattice

H0 =
∑

k,m,m′,σ

tm,m
′
(k) c†m,σ(k) cm′,σ(k) (5)

(we will call this description the orbital basis). Finally, the k-dependentNb×Nb matrix tm,m′(k)
may be diagonalized by a unitary matrix Va,m(k), which brings us to the annihilation operator
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dk,a(k) in the Bloch basis
da,σ(k) =

∑
m

Va,m(k) cm,σ(k) (6)

in terms of which the non-interacting Hamiltonian becomes completely diagonal

H0 =
∑
k,a,σ

εa(k) d
†
a,σ(k) da,σ(k) . (7)

In practice, band structure calculations provide us with the band energies εa(k) and the wave
functions ϕk,a(x), from which Wannier functions can be obtained with some degree of arbitrari-
ness, although a maximal localization principle can be followed [2]. Alternatively, the Wannier
basis can be the starting point, using a tight-binding approximation.

1.2 Pairing

The fundamental object of superconductivity is a pair of electrons, or Cooper pair. A generic
annihilation operator for a Cooper pair takes the following form, in a translation invariant sys-
tem1

∆̂ =

∫
d3r d3r′ ∆σσ′(r−r′) Ψσ(r)Ψσ′(r′) . (8)

Because of the Pauli principle, i.e., anticommutation relations (1), we can impose an antisym-
metry condition on the amplitude

∆σσ′(r−r′) = −∆σ′σ(r
′−r) . (9)

In the Bloch basis, this pairing operator and the antisymmetry condition are expressed as

∆̂ =
∑

k,a,b,σ,σ′

∆aσ,bσ′(k) daσ(k) dbσ′(−k) ∆aσ,bσ′(k) = −∆bσ′,aσ(−k) . (10)

Likewise, in the Wannier basis,

∆̂ =
∑

r,r′,m,m′,σ,σ′

∆rmσ,r′m′σ′ crmσ cr′m′σ′ ∆rmσ,r′m′σ′ = −∆r′m′σ′,rmσ (11)

and, in the orbital basis,

∆̂ =
∑

k,m,m′,σ,σ′

∆mσ,m′σ′(k) cmσ(k) cm′σ′(−k) ∆mσ,m′σ′(k) = −∆m′σ′,mσ(−k) . (12)

A general order parameter function (or pairing function) can be expressed as a linear combina-
tion of basis functions. We can use a basis made of products of k-dependent, orbital-dependent
and spin-dependent factors. In the orbital basis, this takes the form

∆m,σ;m′,σ′(k) =
∑
αβγ

ψαβγ f
α(k)Oβ

mm′ S
γ
σσ′ . (13)

1We ignore here the possibility of pairing waves, i.e., of Cooper pairs having a finite momentum. The Fulde-
Ferrell-Larkin-Ovchinnikov state in an example where such pairing may occur. For another example, see Ref. [3].
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where the amplitudes ψαβγ determine the precise form of pairing, given a suitable choice for
the basis functions fα(k) (momentum space), Oβ

mm′ (orbital space) and Sγσσ′ (spin space). In
the Bloch basis, the expansion would be similar

∆a,σ;b,σ′(k) =
∑
αβγ

χαβγ f
α(k)Bβ

ab(k)S
γ
σσ′ , (14)

with a different set of amplitudes χαβγ , and k-dependent basis functions Bβ
ab(k) in “band

space”. The reason the basis functions Oβ
mm′ do not depend on k is that Wannier functions

can be chosen to have a clear “orbital character” in space, like atomic orbitals, which transform
in a well-defined way under rotations and reflections (Section 4.2 will provide an example of
this). Consequently, the band basis functions Bβ

ab must depend on k; this makes the discussion
of inter-band superconductivity more complex in the Bloch basis than in the orbital basis.
Each of the spatial, orbital (or band) and spin parts can be either symmetric or antisymmetric
under the exchange of quantum numbers, but he overall combination must be antisymmetric.
For instance, in the absence of SO coupling, spin is conserved and pairing occurs either in the
singlet (spin 0) channel or in the triplet (spin 1) channel. In the case of a single band, the spatial
part f(k) must then be even (f(−k) = f(k)) for singlet pairing, and odd (f(−k) = −f(k))
for triplet pairing. This remains so in the case of intra-orbital (or intra-band) pairing, i.e.,
when Oβ

mm′ = 0 for m 6= m′, but inter-orbital pairing brings other possibilities, and spin-orbit
interactions complicate the matter further.

1.2.1 Spin part

The conventional way to describe the spin part is as follows

Sσσ′ = dγ(d̂γ)σσ′ d̂γ = i(τγτ2) , (15)

where the set of Pauli matrices τ1,2,3 is augmented by the identity matrix τ0. The three compo-
nents γ = 1, 2, 3 form the symmetric, triplet part of the pairing function, whereas the antisym-
metric, singlet part is represented by the component γ = 0.
Under a rotation in spin space, the 3-vector (dx, dy, dz) (or (d1, d2, d3)) transforms as a pseudo-
vector (i.e., invariant under spatial inversion) and constitutes the triplet component, whereas
d0 behaves like a pseudo-scalar (it changes signs under inversion) and constitutes the singlet
component. In the absence of SO coupling, the system being invariant under spin rotations, the
pairing function fully factorizes into a spin part and the rest. In other words, all terms in the
expansion (13) have the same spin part, and the pairing state can be characterized by a fixed
vector (dx, dy, dz) (triplet pairing) or by d0 (singlet pairing).

1.2.2 Spatial part

The spatial part f(k) of the pairing function could equally well be described in real space

f(k) =
∑
r

fre
ik·r (16)
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where fr is, so to speak, the pairing amplitude for electrons separated by a lattice vector r.
The spatial extent of the Cooper pair is called the coherence length, denoted ξ. This roughly
means that fr typically drops exponentially as a function of r with a characteristic length ξ. For
short coherence lengths, fr is dominated by the smallest values of r: on-site (r=0) and nearest-
neighbor amplitudes. Pure on-site pairing means fr = δr,0 and therefore a k-independent
amplitude. The celebrated d-wave pairing on a square lattice with unit lattice vectors x̂ and ŷ

means f±x̂ = −f±ŷ, all other amplitudes being zero, and therefore f(k) = cos kx− cos ky.

1.3 Mean-field approximation and nodal lines

In the mean-field approximation, a constant and uniform pairing field is assumed to pervade the
system. The effective Hamiltonian for singlet superconductivity then takes the following form,
in the Bloch basis

H0 =
∑
k,a,σ

εa(k) d
†
a,σ(k) da,σ(k) +

∑
k,a,b

∆ab(k)
[
da↑(k) db↓(−k)− da↓(k) db↑(−k)

]
(17)

(We assume that the chemical potential µ is included in the dispersion relation εa(k) as an
additive constant.) In order to diagonalize this Hamiltonian, one introduces an extended array
of annihilation operators2

Ψ(k) =
(
d1↑(k), . . . , dNb↑(k), d

†
1↓(−k), . . . , d†Nb↓(−k)

)
. (18)

The second half of the array Ψ(k) is basically the particle-hole transformation of the first half;
this procedure is attributed to Nambu. Because we are dealing with fermions, the components
of Ψ(k) still obey anticommutation relations and we can treat them as bona fide annihilation
operators. One can then express H0 as

H0 =
∑
k

Ψ †(k)H(k)Ψ(k) (19)

whereH(k) is a 2Nb×2Nb matrix with the following block structure:

H(k) =

 ε(k) ∆†(k)

∆(k) −ε(−k)

 (20)

where ε(k) is the diagonal matrix with elements εa(k) and ∆(k) is the matrix of band compo-
nents ∆ab(k).
To complete the analysis, we need to diagonalize the Hermitian matrix H(k) via a Bogoliubov
transformation. Because of the particular structure of the matrix H(k), its eigenvalues come
in pairs of opposite signs and the ground state (the superconducting condensate) is obtained by

2This particular form works well when the d-vector is d0 or dz . In other cases, or when spin is not conserved,
one must proceed to a full Nambu doubling of the degrees of freedom,
i.e., Ψ(k) =

(
d1↑(k), . . . , dNb↑(k), d1↓(k), . . . , dNb↓(k), d

†
1↓(−k), . . . , d

†
Nb↓(−k), d

†
1↑(−k), . . . , d

†
Nb↑(−k)

)
.
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filling all the negative energy levels. The resulting new set of annihilation operators annihilate
quasiparticles on top of the superconducting ground state.
As a simple example, let us consider a one-band model (Nb = 1). ε→ ε and ∆→ ∆ are then
scalar functions and the eigenvalues of Hamiltonian (20) are then easily computed to be

ξ(k) = ±
√
ε2(k) +∆2(k) (21)

Recall that the chemical potential is included in the function ε(k), so that the Fermi surface is
defined by the condition ε(k) = 0. Low-energy quasiparticles will exist on top of the condensate
if ξ(k) = 0 for some values of k that we call nodes. In this simple, one-band case, nodes exist
when both scalar functions ε(k) and ∆(k) vanish. For instance, in the well-known case of d-
wave superconductivity on a square lattice, ∆(k) ∝ cos kx− cos ky and the nodes are located
along the diagonals of the Brillouin zone : kx = ±ky. When more than one band is present,
complications occur (see Sect. 4.3 below).

2 Elements of group theory

2.1 Groups

Since group theory is not necessarily familiar to all, we will review the basics in this section,
with en emphasis on finite groups.3

A group G is a set {a, b, c, . . .} endowed with a multiplication law satisfying the following
constraints:

1. Group multiplication is associative: (ab)c = a(bc).
2. There is a neutral element e such that ea = ae = a ,∀a ∈ G.
3. Each element a has an inverse a−1 such that aa−1 = a−1a = e.

It is implicit that if a, b ∈ G, then ab ∈ G (closure under the group multiplication).
These rules are obeyed by the set of all nonsingular square matrices of order n, calledGL(n). A
subgroupH ofG is a subset ofG that is also a group under the same multiplication law, i.e., that
is closed under group multiplication. For instance, the group O(n) is the subgroup of GL(n)
made of orthogonal matrices. A group is continuous if its elements form a topological space,
i.e., a space with the notion of continuity. In particular, a Lie group is also a differentiable
manifold (O(n) is a Lie group). By contrast, a discrete group has well-separated elements,
and a finite group has a finite number of such elements. In general group multiplication is not
commutative; when it is, the group is said to be Abelian, otherwise it is nonabelian. A subset of
elements of G are called generators if all elements of the group (with the exception of e) may
be obtained by repeated products within the subset.
The point groups of solid-state physics are finite subgroups of O(n), and as such are sets of
rotations and reflections closed under repeated application. We will often refer to the elements

3There is a large selection of textbooks on group theory. Let us point out the classic Hamermesh text [4], as
well as the more recent “nutshell” text by A. Zee [5].
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+ + + +

+ + + +

n = 2 n= 3 n= 4 n= 6

Cn

Dn

Cnv

Cnh

Dnh

Dnd

Fig. 1: Graphical definition of the most common point groups. The group elements are those
that leave each figure unchanged. Decorations added to vertices are geometrical features that
rest on the plane of the page (gray), stick out of it (white) or into it (black). The darker colored
objects are underneath the lighter ones. Objects marked with a + sign have a top face distinct
from their bottom face and thus have no mirror symmetry about the plane or rotation axes lying
in the plane.
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of these groups as transformations, as they can be viewed as acting on an object or physical
configuration. The most common point groups can be defined as transformations on simple
objects as illustrated on Fig. 1:4

1. Cn (cyclic group): the group elements are rotations by 2π/n about the z axis (perpendic-
ular to the plane).

2. Dn (dihedral group): in addition to the rotations of Cn, the group contains n rotations of
π about n axes lying on the xy plane.

3. Cnv (pyramidal group): in addition to the rotations of Cn, the group contains n reflections
across n mirror planes perpendicular to the xy plane.

4. Cnh (reflection group): in addition to the rotations of Cn, the group contains a reflection
across the xy plane.

5. Dnh (prismatic group): in addition to the 2n rotations of Dn, the group contains a reflec-
tion across the xy plane.

6. Dnd (antiprismatic group): Similar to Dnh, except that the n π-rotation axes lying on the
xy plane are not the intersection of the xy plane with the n mirror planes perpendicular
to the xy plane. Rather, these axes are alternating with these intersections.

2.2 Representations

In general, we are dealing with group representations, i.e., realizations of the group elements
in terms of d-dimensional matrices acting on some space (that space V is called the module
of the representation). A group element a is represented by a matrix R(a) and that corre-
spondence is a homomorphism with respect to the group operation: R(ab) = R(a)R(b). Two
representations R and R′ are said to be equivalent if they are related by a change of basis,
i.e., R(a) = SR′(a)S−1,∀a ∈ G. For a finite group, it can be shown that any representation
is equivalent to a unitary representation, i.e., a representation made of unitary (or orthogonal)
matrices, such that R(a−1) = R−1(a) = R†(a). A simple example of a representation for the
group C4v is given in Table 1.
A representation is said to be reducible if a basis exists in the module V of the representation
such that all elementsR(a) have the same block-diagonal structure. This means that the module
can be seen as the direct sum of two submodules: V = V1 ⊕ V2, each of V1,2 being the support
for a representation in its own right. In other words, the two submodules are not mixed with
one another when acted upon by the group elements. Otherwise, the representation is said to
be irreducible. One of the common tasks of group theory is the reduction of representations in
terms of irreps (as irreducible representations are often called). The representation shown in
Table 1 happens to be irreducible.

4In a crystalline solid, one should in principle consider the full space group, which contains translations as well
as rotations and reflections. But translation invariance amounts to say that the gap function depends on a single
wave vector k, and the presence of the lattice implies that it should be unchanged when replacing k by k + Q,
where Q is an element of the reciprocal lattice.
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Table 1: A simple example of group representation for C4v: the matrices act on the coordinates
(x, y). Cn is a rotation by 2π/n in the x-y plane. σx, σy, σd and σd′ are reflections across the
planes x = 0, y = 0, x = −y and x = y, respectively.

g R(g) g R(g) g R(g) g R(g)

e

(
1 0

0 1

)
C4

(
0 1

−1 0

)
C−14

(
0 −1
1 0

)
C2

(
−1 0

0 −1

)

σx

(
−1 0

0 1

)
σy

(
1 0

0 −1

)
σd

(
0 1

1 0

)
σd′

(
0 −1
−1 0

)

A capital result of group theory are Schur’s lemmata:

1. If R and R′ are two irreps of different dimensions d 6= d′, then no nonzero rectangular
matrix A exists such that R(a)A = AR′(a) ∀a ∈ G.

2. If R and R′ are two irreps of the same dimension d = d′ and if a square matrix A exists
such that R(a)A = AR′(a) ∀a ∈ G, then the two representations are equivalent.

The consequence of these two lemmata is the following. Consider a module V upon which a
reducible representation acts. Then V = V1 ⊕ V2 is a direct sum, and so is each element of
the representation: R(a) = R1(a) ⊕ R2(a). Let H be a matrix acting on V that commutes
with all the group elements, i.e., HR(a) = R(a)H . If the representations R1 and R2 are not
equivalent, then H is necessarily block diagonal too, i.e., has no matrix elements between V1
and V2. Typically, in quantum mechanics, H is a Hamiltonian acting on a Hilbert space andG is
a group of transformations that commute with H , i.e., that leave the Hamiltonian invariant. The
construction of irreps then allows us to consider smaller spaces (the blocks) that are not mixed
with one another under time evolution. Said otherwise, energy eigenstates and eigenvalues can
be classified according to the irreps of the symmetry group of the problem.

2.3 Character tables

An important tool in identifying irreps of finite groups is the notion of character. Let us start
by defining conjugacy classes. Two elements a and b of a group G are conjugate to one another
if there is another element c such that a = cbc−1. Intuitively, this means that the two trans-
formations a and b are of the “same type”, as c can be seen as a change of basis (or point of
view), after which the two transformations a and b are equivalent. For instance, in the group
C4v, a = σx and b = σy are related by the rotation c = C4: they are conjugate. Evidently, if a is
conjugate to b and b is conjugate to a third element c, then a is also conjugate to c: conjugacy is
an equivalence relation and therefore the group G can be split into separate conjugacy classes.
Obviously, the identity e is a conjugacy class by itself. In C4v, the two mirror reflections col-
lectively denoted σv (σx and σy) form a class, as do the two reflections σd and σd′ and the two
rotations C4 and C−14 ; finally, the single rotation by π (C2) is a class by itself. Thus, C4v has 5
conjugacy classes and 8 elements.
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Table 2: Character table of C4v, with a list of the simplest (i.e., lowest degree) basis functions.
The basis functions of the two-dimensional representation E form a doublet, written here and
elsewhere in this chapter within square brackets [· · · , · · ·]. The last column shows the gap basis
functions derived in Sect. 3.1.

e 2C4 C2 σx,y σd,d′ basis functions gap functions

A1 1 1 1 1 1 1 1

A2 1 1 1 −1 −1 Rz , xy(x
2−y2) sin kx sin ky(cos kx− cos ky)

B1 1 −1 1 1 −1 x2−y2 cos kx− cos ky

B2 1 −1 1 −1 1 xy sin kx sin ky

E 2 0 −2 0 0 [Rx,Ry] , [x, y] [sin kx, sin ky]

The character χ(a) of an element a in a representation R is the trace of that matrix: χ(a) =

trR(a). Because of the cyclic property of the trace, two conjugate elements have the same
character in a given representation, and therefore characters are properties of conjugacy classes,
not of individual elements. We can therefore envisage a matrix-like table, called a character
table, where the different irreps are laid out in rows and the different conjugacy classes in
columns, each cell containing the character χ(µ)

i for the conjugacy class i within the irrep µ.
See, for instance, Table 2 for C4v, Table 3 for D4h and Table 4 for C6v. Note that the dimension
of each irreducible representation is naturally given by the character of the identity class e.
Schur’s lemma can be used to demonstrate the following orthogonality relation

K∑
i

gi
g
χ
(ν)∗
i χ

(µ)
i = δµν , (22)

where g stands for the number of elements of the group G, gi is the number of elements in
conjugacy class i, and K is the number of conjugacy classes. This relation states that the
different rows of the character table are orthogonal (if weighted by gi). This implies that there
cannot be more than K rows in the table, as the rows are vectors of dimension K. Indeed, it can
be shown that the number of non-equivalent irreps is precisely equal to K and that

K∑
µ

d2µ = g (23)

where dµ is the dimension of irrep µ. Finally, the orthogonality of the rows of the character
table also applies to its columns:

K∑
µ

gi
g
χ
(µ)∗
i χ

(µ)
j = δij . (24)

These powerful orthogonality relations allow us to decompose any reducible representation
R into a direct sum of irreps. Indeed, a general reducible representation can in principle be



Classification of Superconducting States 13.11

Table 3: Character table of D4h, with a list of the lowest degree basis functions.

e 2C4 C2 2C ′2 2C ′′2 i 2S4 σz σx,y σd,d′ basis functions

A1g 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz , xy(x
2−y2)

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2−y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 [Rx,Ry] , z[x, y]

A1u 1 1 1 1 1 −1 −1 −1 −1 −1 xyz(x2−y2)
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1 xyz

B2u 1 −1 1 −1 1 −1 1 −1 1 −1 z(x2−y2)
Eu 2 0 −2 0 0 −2 0 2 0 0 [x, y]

expressed as

R =
K⊕
µ

aµR
(µ) . (25)

The a priori unknown integer aµ (the multiplicity of R(µ) in R) can be determined by use of the
orthogonality relation (22), using the known characters χi of the reducible representation R

aµ =
K∑
i

gi
g
χ
(µ)∗
i χi . (26)

The reducible representation R acts on a module V which, likewise, is a direct sum of irre-
ducible modules

V =
K⊕
µ

V (µ). (27)

A vector ψ belonging to the module V will be affected by the transformation a ∈ G as ψ →
R(a)ψ. It can be shown that the components of ψ along the submodule V (µ) associated to the
irrep µ can be obtained by applying on ψ the following projection operator

P (µ) =
∑
a

dµ
g
χ(µ)∗(a)R(a) (28)

where χ(µ)(a) is the character of element a in representation µ. In other words, the vector P (µ)ψ

belongs to the submodule V (µ) and, when acted upon by any transformation a ∈ G, will stay in
this submodule. Projection operators are exceedingly useful in constructing basis functions (or,
in superconductivity applications, gap functions) from tensor products.
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2.4 Example: TheD4h character table

Let us illustrate the ideas behind character tables with a more complex example than C4v: The
point group D4h. This group has the following K = 10 conjugacy classes:

1. The identity e
2. Two rotations C4, i.e., of angle π/2, about the z axis.
3. A rotation C2, i.e., of angle π, about the z axis.
4. Two rotations C ′2 (π) about the x and y axes.
5. Two rotations C ′′2 (π) about the diagonal axes x± y.
6. One space inversion i
7. Two pseudo-rotations S4 of π/4 (rotations times inversion).
8. A reflection σz across the z = 0 plane.
9. 2 reflections σx,y across the x = 0 and y = 0 planes.

10. 2 reflections σd,d′ across planes y = −x and y = x.

Correspondingly, there are K = 10 irreps, divided into two groups: the g-type representations
(first five rows on Table 3) that are even under the space inversion i, and the u-type represen-
tations, which are odd under i. For each representation, Table 3 gives an example of func-
tions (homogeneous polynomials in x, y, z), or of rotations (Rx, Ry, Rz), that transform under
that representation (in general, the elements of O(n) acting on homogeneous polynomials in
{x, y, z} will produce another homogeneous polynomial of the same degree. Consequently,
homogeneous polynomials of a given degree can be arranged into irreps. Likewise, an orthog-
onal matrix O will act on a rotation matrix R as R → ORO−1 and produce another rotation
matrix about a different axis (equivalently, one could express infinitesimal rotations in terms of
pseudo-vectors, and the group elements will act on these pseudo-vectors). Rotations therefore
transform under the group and can also be arranged into irreps.
Let us go through some of these representations:

• A1g is the trivial representation, of dimension 1. Each group element is represented by
the number 1.
• A2g, of dimension 1, is odd under π-rotations C ′2 and C ′′2 , as well as under the reflections
σx,y and σd,d′ . A rotationRz about the z axis belongs to this representation; in particular,
it changes sign when rotated by π with respect to a horizontal axis, but not when reflected
across the xy plane. It also changes sign when reflected across a vertical mirror plane.
The quartic polynomial xy(x2−y2) behaves the same way; note that xy does not, because
it is even under σd,d′ .
• B1g is odd under the π/2 rotations C4, under the π-rotations C ′′2 about the diagonals,

under the π/2 pseudo-rotations S4, and under the diagonal reflections σd,d′ . It is well
represented by the quadratic polynomial x2−y2 and by what we commonly call d-wave
superconductivity on a square or cubic lattice.
• B2g is similar, except that it is odd under the other set of reflections and π/2 rotations, as

if rotated by 45◦ compared to B1g. It is represented by the monomial xy and by d-wave
superconductivity, this time with a dxy form factor instead of dx2−y2 .
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• Eg is a two-dimensional representation, represented by the doublet of pseudo-vectors
[Rx,Ry], or by the doublet of monomials [zx, zy].
• The u-type representations have the same characters as the g-type representations for

proper transformations (the first 5 columns), and opposite characters for the improper
transformations (the last 5 columns). Proper transformations have determinant +1 and
describe actual transformation that a rigid object may undergo, whereas improper trans-
formation have determinant −1 and can always be viewed as a proper transformation
times the inversion i.

2.5 Tensor products

Given two representations R(1)
ij (a) and R

(2)
ij (a) of dimensions d1 and d2, acting respectively

on modules V1 et V2, the product representation of dimension d1d2 acts on the tensor product
module V1 ⊗ V2 and is made of the tensor products of the matrices of the two representations

Rik,jl(a) = R
(1)
ij (a)R

(2)
kl (a) or R(a) = R(1)(a)⊗R(2)(a) . (29)

A product representation is in general reducible, even if the two factors are irreducible. Re-
ducing a product representation to its irreducible components is an important problem of group
theory. The direct sum

R(µ) ⊗R(ν) =
⊕
ρ

Cρ
µν R

(ρ) (30)

is called the Clebsch-Gordan series. For one-dimensional representations (including all repre-
sentations of Abelian groups), this series is trivial since it contains a single term. For multidi-
mensional representations, the series can be inferred from the character table, by noting that the
character of a product representation is the product of the characters of its factors

χi(R
(µ) ⊗R(ν)) = χ

(µ)
i χ

(ν)
i =

∑
ρ

Cρ
µνχ

(ρ)
i . (31)

Applying the orthogonality relation (22) to this relation yields

Cρ
µν =

K∑
i=1

gi
g
χ
∗(ρ)
i χ

(µ)
i χ

(ν)
i . (32)

The states of the product module V1⊗V2 associated with each component of the Clebsch-Gordan
series can be obtained by applying the projection operators (28). An example application of
projection operators is given in Sect. 3.1.

2.6 Back to superconductivity: The Landau free energy

We will assume that Landau’s theory of phase transitions qualitatively describes the supercon-
ducting transition as temperature is lowered. This theory assumes that the broken symmetry
state is described by an order parameter ψ, which vanishes in the normal state and develops a
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ψ
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T > Tc
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T = Tc

ψ

f

T < Tc

Fig. 2: Behavior of the Landau free energy functional across a continuous (a.k.a. second order)
phase transition.

nonzero value in the broken symmetry state. It further assumes that a local free energy func-
tional f [ψ] may be defined and that the physical, uniform value of ψ corresponds to a minimum
of f (see Fig. 2).
If the precise form of ψ, i.e., the precise pattern of symmetry breaking, is not known, then we
may assume that ψ may be decomposed on a basis of possible pairing functions. Going back to
Eq. (13), let us combine the three indices α, β, γ into a single index r:

∆m,σ;m′,σ′(k) =
∑
r

ψr∆
(r)
m,σ;m′,σ′(k) (33)

The Landau free energy functional is then a power expansion in terms of the coefficients ψr:

f [ψ] = ars(T )ψ
∗
rψs + brspq(T )ψ

∗
rψ
∗
sψpψq + · · · (34)

where the ellipsis stands for gradient- and higher-degree terms, and T is the temperature.
The Landau functional should have the same symmetries as the underlying Hamiltonian. If
these symmetries form a group G of transformations, Schur’s lemma tells us that organizing the
basis functions ∆(r) according to irreps of G makes the matrix a(T ) block-diagonal: a(T ) =⊕

µ a
(µ)(T ), i.e., it has no matrix elements between functions belonging to different irreps.

Within each representation, the matrix a(µ)(T ) may be diagonalized, and at some point upon
lowering T one of its eigenvalues, initially all positive, may change sign, which signals the
superconducting phase transition and a minimum of f [ψ] at ψ 6= 0. This is going to first occur
in one of the representations and will define the symmetry character of the superconducting
state.5

For this reason it is important to arrange the possible gap functions into irreps of the symmetry
group G. It amounts to a classification of possible superconducting states. Of course, a precise
physical theory—a microscopic Hamiltonian—is needed in order to determine in which irrep
superconductivity actually appears; but this is not the subject of this chapter.
Since the basis functions are products of spin, orbital and spatial factors, the group theoretical
analysis can be done on each of these factors separately, followed by suitable tensor products.
In the absence of SO coupling, the system is invariant under rotations in spin space; this leads
to a clear separation between singlet and triplet gap functions, and only the combined orbital
and spatial factors need to be classified according to the point group G.

5This is the simplest scenario, but nothing forbids competing minima, and hence additional phase transitions,
to appear at lower temperatures.
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3 Single-band superconductors

Let us continue our exploration by focusing first on single-band superconductors. In the absence
of SO coupling, the classification of gap functions according to the point group is then limited
to the spatial part. The exponentials eik·r form a set of basis functions f r(k) for the spatial part.
Under an element g of the point group, k → gk and eik·r is mapped into eigk·r = eik·(g

−1r).
Given a lattice vector r, the set of functions labeled by S = {gr}, g ∈ G will transform
amongst themselves and will form a (generally reducible) representation. The matrices associ-
ated with that representation simply perform permutations of the element of the set S and are
obtained from the unit matrix by a permutation of the rows. Moreover, since the point groups
are subgroups of O(n), all the elements of S will have the same modulus.
In the one-band case, the Pauli principle forces the singlet pairing functions to be even in k,
whereas triplet functions are odd in k. We will focus in what follows on a simple example. A
more thorough discussion can be found in Ref. [6].

3.1 C4v symmetry

Let us illustrate the situation of a two-dimensional system on a square lattice withC4v symmetry.
The character table is shown on Table 2. Let us consider in succession the representations
generated from the vectors r=0 (on-site), r=x̂ (first neighbor) and r=x̂+ŷ (second neighbor).
The representation generated from r=0 contains a single function, equal to 1, belonging to A1.
The one generated from r=x̂ contains the four functions(

eikx , eiky , e−ikx , e−iky
)

(35)

in terms of which the group generators are

R(C4) =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 R(σx) =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 (36)

The other elements of the representation are

R(C2) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 R(σy) =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 R(C−14 ) =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



R(σd) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 R(σd′) =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 R(e) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


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From these expression we can compute the projection operators (28). An explicit computation
shows that

P (A1) =
1

4


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

, P (B1) =
1

4


1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

, P (E) =
1

2


1 0 −1 0

0 1 0 −1
−1 0 1 0

0 −1 0 1


whereas P (A2) and P (B2) vanish. The basis functions we seek are the eigenvectors of these
projectors with eigenvalue +1

A1 : (1, 1, 1, 1) B1 : (1,−1, 1,−1) E : (1, 0,−1, 0) & (0, 1, 0,−1) (37)

which, in terms of the basis (35), are

A1 : cos kx+cos ky B1 : cos kx− cos ky E : [sin kx, sin ky] . (38)

The representation generated from r = x̂+ ŷ contains the four functions(
ei(kx+ky), ei(kx−ky), e−i(kx+ky), e−i(kx−ky)

)
. (39)

By repeating the same procedure, one finds following basis functions

A1 : cos kx cos ky B2 : sin kx sin ky E : [sin(kx+ky), sin(kx−ky)] . (40)

We need to go to the fourth neighbor r = 2x̂+ŷ in order to get a basis function belonging toA2:

A2 : sin kx sin ky(cos kx− cos ky) (41)

The simplest basis functions for the spatial part of the gap function are shown in the last column
of Table 2. Since we are dealing with a single band model, the nodes are solely determined by
the structure of the gap function ∆(k) obtained directly from the functions of Table 2.
The A1 representation corresponds to isotropic (or s-wave) pairing. The B1 representation is
the well-known d-wave pairing, and the B2 representation is a variant, rotated by 45◦. The A2

representation constitutes a more exotic case corresponding to g-wave pairing. Assuming a
constant modulus |k|, the gap functions associated to the one-dimensional representations of
Table 2 have the following shape as a function of polar angle in the kx-ky plane:

+

A1

+

−+

−

+

− +

−

B1A2

+

−
+

−

B1

+−

+ −

B2
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The gap functions associated with these representations have respectively 0, 8, 4, and 4 nodes
(or zeros) as a function of angle from 0 to 2π. The sign of the function in each lobe is indicated.
The E representation is odd under inversion and is therefore associated with triplet supercon-
ductivity. The gap function in that case is the doublet [sin kx, sin ky]. Each member of the
doublet has two nodal directions. However, it is possible to combine them into complex func-
tions sin kx ± i sin ky, each behaving like an effective one-dimensional representation of C4v,
mapped onto one another by complex conjugation or, physically speaking, time reversal. These
complex combinations have no nodes, as the real and imaginary parts do not vanish at the same
angle. These gap symmetries are respectively called px, py and px±ipy. The corresponding
angular dependences are illustrated below, again assuming a constant modulus |k|:

px

+−
+

−

py |px ± ipy|

3.2 C∞ symmetry

In the continuum approximation, i.e., for very long coherence lengths, it is legitimate to assume
that a two-dimensional model might have continuous rotation invariance about the z axis. The
rotation symmetry, combined with a mirror symmetry across any vertical plane, is effectively
the n→∞ limit of Cnv. The irreps of C∞v are

1. A1 : the character is 1 for every rotation and reflection.

2. A2 : the character is 1 for every rotation and −1 for every reflection.

3. En (n ∈ N∗) : the character is 2 cos(nθ) for a rotation of angle θ and 0 for reflections.
This is realized by the 2×2 rotation matrices R(θ) and reflection operators Σ(θ)

R(θ) =

 cos θ sin θ

− sin θ cos θ

 Σ(θ) =

cos θ sin θ

sin θ − cos θ

 (42)

The basis functions corresponding to En are the pairs [cosnϕ, sinnϕ], ϕ being the polar coor-
dinate on the kx-ky plane. These functions have n nodal lines each. The spatially even represen-
tations (A1 and E2m) correspond to singlet superconductivity and the odd representations (A2

and E2m+1) to triplet superconductivity. The representations n = 0, 1, 2, . . . are traditionally
labeled s, p, d, f , g, etc, like the orbital quantum number in atomic physics. The gap functions
in many point groups are labeled likewise, according to the number of nodal lines (e.g., C4v

above).
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4 Multi-band superconductors

4.1 Band vs orbital basis

Let g denote an element of the point group G. In the absence of SO coupling, its effect on the
annihilation operator cr,m,σ (Wannier basis) is the following

cr,m,σ → c′r,m,σ =
∑
m′

Umm′(g) cgr,m′,σ (43)

where gr is the mapping of site r under g and U(g) constitutes a Nb-dimensional representation
of the group G acting on orbital space. The matrix U(g) is independent of r by translation
invariance, and therefore the same transformation applies in the orbital basis

cm,σ(k)→ c′m,σ(k) =
∑
m′

Umm′(g) cm′,σ(gk) . (44)

The same symmetry operation is expressed differently in the band basis. From Eq. (6), we find

d′a(k) =
∑
b

Ũab(g,k) db(gk) (45)

where gk is the image of k under g and

Ũab(g,k) =
∑
m,m′

Va,m(k)V
∗
b,m′(k)Umm′(g) . (46)

The matrix Ũab(g,k) depends on k. Hence the orbital basis makes the group-theoretical analysis
much simpler, compared to the band basis, as mentioned above. This is therefore the basis we
will use in the following. The physical relevance of the two bases is discussed in Sect. 6.

4.2 The case of Sr2RuO4

This formalism for inter-orbital superconductivity can be applied to a model for Sr2RuO4 [7–9],
summarized in Fig. 3. It is defined on a square lattice, with three Ru t2g orbitals per site. In
the figure, these three orbitals (dyz, dxz and dxy) have been drawn on separate planes for clarity.
The main hopping terms are illustrated in the figure, but are not so important for our purpose,
except for their defining a noninteracting Hamiltonian with D4h symmetry (see Table 3). We
use the group D4h even though the model is two-dimensional because (i) we want to cover a
three-dimensional extension of the model with weak inter-plane coupling and (ii) the orbitals
themselves transform in a nontrivial way under the reflection σz across the xy plane. The
treatment summarized here is taken from [10].
The group D4h can be generated by successive applications of the elements C4, σx, and σz.
From Fig. 3 it is obvious that these operations have the following effect on the three orbitals

U(C4) =


0 1 0

−1 0 0

0 0 −1

 U(σx) =


1 0 0

0 −1 0

0 0 −1

 U(σz) =


−1 0 0

0 −1 0

0 0 1

 (47)
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−π 0 π
−π

0

π

α
β

γ

Fig. 3: Left panel: Schematic view of the SRO unit cell. The three orbitals have been vertically
separated for clarity (the model considered is purely two-dimensional). The labels 1,2,3 cor-
respond, respectively, to the dyz, dxz, and dxy orbitals. The different hopping terms (t1,2,3 and
λ) are illustrated. Right panel: Fermi surface of Sr2RuO4 in the simple model illustrated on
the left. The α and β bands are a mixture of the dxz and dyz orbitals, whereas the γ band is
pure dxy.

These matrices form, with the rest of the elements of the group, a reducible 3-dimensional
representation. From the characters one infers it to be B2g ⊕ Eg.
The orbital part of the pairing function can be expanded in terms of the following 3×3 matrices

âx =


1 0 0

0 0 0

0 0 0

 b̂x =


0 0 0

0 0 1

0 1 0

 ĉx =


0 0 0

0 0 1

0 −1 0



ây =


0 0 0

0 1 0

0 0 0

 b̂y =


0 0 1

0 0 0

1 0 0

 ĉy =


0 0 1

0 0 0

−1 0 0

 (48)

âz =


0 0 0

0 0 0

0 0 1

 b̂z =


0 1 0

1 0 0

0 0 0

 ĉz =


0 1 0

−1 0 0

0 0 0


A general basis state for pairing in orbital space may then be expressed via three vectors a, b,
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and c as
Omn = a · âmn + b · b̂mn + c · ĉmn . (49)

The orbital part Omm′ transforms as follows under a group operation g

Omm′ →
∑
n,n′

Umn(g)Um′n′(g)Onn′ or O → U(g)OUT (g) . (50)

These 9 matrices (48) belong to a 9-dimensional representation of D4h, obtained by taking the
tensor products of the matrices (47) with themselves. The content of this representation can
easily be shown to be 2A1g⊕B1g⊕B2g⊕Eg for symmetric states (spin singlets), and A2g+Eg
for antisymmetric states (spin triplets). Again, this classification ignores the spatial part (or
rather, supposes that it is invariant).
We can combine these orbital gap functions with spatial functions classified according to Ta-
ble 3, by taking tensor products and reducing them to irreps using projection operators. Ref. [10]
provides tables of singlet and triplet states belonging to each representation, with and without
inter-orbital pairing. These tables are too lengthy to reproduce here, but let us consider two
examples:

1. Singlet pairing may occur in the constant (k-independent) b̂z state, which belongs to the
B2g representation ofD4h, and is basically pairing between electrons belonging to the dxz
and dyz orbitals. This admixture of orbitals occurs in bands α and β of Sr2RuO4 (see right
panel of Fig. 3), mostly along the diagonals of the Brillouin zone. This pairing would lead
to nodes at the intersection of the α and β branches of the Fermi surface with the kx and
ky axes (dashed lines on the Fig. 3), as the pairing changes sign under C4 rotations (from
Table 3). It therefore has d-wave character.

2. TheE2u representation contains many simple triplet gap functions, including sin kz[b̂x, b̂y]

and âz[sin kx, sin ky]. This corresponds to what is usually called p ± ip superconductiv-
ity in this context. The âz[sin kx, sin ky] function involves only the γ band and would
vanish at two points along the γ band Fermi surface (hence the p-wave epithet). The
sin kz[b̂x, b̂y] function vanishes at the equator (kz = 0) and involves admixtures of the
dxy and dxz bands (b̂x) and of the dxy and dyz bands (b̂y).

4.3 Are nodes imposed by symmetry?

In the one-band case, a symmetry-imposed node occurs in a pairing function that vanishes in
some direction because it is odd under certain symmetry operations in the irreducible represen-
tation it belongs to. For instance, in the representation B1g of D4h or C4v, the pairing function
must be odd under a diagonal reflection σd, and must accordingly vanish along the diagonals,
which is indeed the case of the standard d-wave function cos kx− cos ky. The pairing function
being a scalar, its zeros correspond to nodes. The one-band case is simple because translation
invariance allows us to express the order parameter as a scalar function of the wave vector k.
However, strictly speaking, the notion of symmetry-imposed nodes does not make sense in the
case of multi-orbital models, with or without spin-orbit coupling.
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In a multi-orbital model, the pairing function is a multi-component object: a matrix. That matrix
may be odd under a certain symmetry operation, but that does not imply that it must vanish at
a fixed point of that operation in momentum space, because the odd character can reside in the
orbital part instead of the spatial part. Indeed, the odd character translates into the following
transformation property for the pairing function, in the case of, say, the reflection σd

∆ν(kx, ky, kz)→ ∆′ν(kx, ky, kz) = U(σd)νν′ ∆ν′(ky, kx, kz) (51)

where the index ν labels basis vectors in orbital space (i.e., not the same as the original orbital
basis with indices m,m′) and U the orbital part of the representation. In the B1g representation,
we therefore have the condition ∆′ν(kx, ky, kz) = −∆ν(kx, ky, kz), or [U(σd)∆(ky, kx, kz)]ν =

−∆ν(kx, ky, kz), which translates into [U(σd)∆(kx, kx, kz)]ν = −∆ν(kx, kx, kz) along the di-
agonal. In the single-orbital case, U=1 and that condition implies ∆(kx, kx, kz) = 0. In the
multi-orbital case, the orbital part ∆ of the pairing function may be an eigenvector of U with
eigenvalue −1, and this imposes no condition at all on ∆ν(kx, kx, kz). For instance, in our
model for Sr2RuO4, the pairing function âx−ây, which is wave vector independent, belongs
to B1g. The matrix U in that case exchanges ax and ay and is equivalent to −1 in orbital space,
which leaves an even (here constant) spatial part.
Another example: the inter-orbital pairing function ĉx sin kx + ĉy sin ky belongs to A1u and de-
scribes a singlet state that is odd under the reflection σz across the xy-plane. Indeed, under this
reflection, the orbitals dxz and dyz change sign, and so, according to Eq. (50), do the compo-
nents ĉx and ĉy, while the functions sin kx and sin ky are unaffected. The matrix-valued pairing
function then takes the form

∆(kx, ky, kz) =


0 0 sin ky

0 0 sin kx

− sin ky − sin kx 0

 (52)

(we ignore spin, which is in a singlet state in this example). The transformation law of that
pairing function under σz is ∆ → ∆′ = U(σz)∆UT (σz), where U(σz) is given in Eq. (47).
Therefore ∆′ = −∆, as it should be in representation A1u. Accordingly, while that pairing
function may have nodes, e.g., as a function of kz, their precise shape or location is not imposed
by symmetry.

4.4 The graphene lattice

As a different type of multiband system, let us consider the graphene lattice. It can be seen as a
triangular Bravais lattice of elementary hexagons with a basis of two sites (A and B) and lattice
basis vectors e1 and e2; see Fig. 4.
If the two atoms on sublattices A and B are identical, the point group of the lattice is C6v, when
considered from the middle of a hexagonal plaquette. This group has 12 elements in 6 conjugacy
classes. All elements may be generated by a π/3 rotation C6 and a reflexion σv with respect
to the horizontal axis of Fig. 4. The character table is shown in Table 4. The particularity
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a1

a2

a3

e1e2

e3

BA

Fig. 4: The graphene lattice, with two sites (A and B) per unit cell. The lattice basis vectors
e1,2 are shown, as well as the elementary bond vectors ai. The lattice vector e3 is conveniently
defined as e3 = −e1−e2.

Table 4: Character table of C6v, with a list of the nearest-neighbor pairing functions for each
irrep, expressed as function of ki=k·ei. Irreps A2 and B2 need longer-range pairing to appear.

e 2C6 2C3 C2 3σv 3σd basis functions
A1 1 1 1 1 1 1 1 , cos k1+cos k2+cos k3

A2 1 1 1 1 −1 −1
B1 1 −1 1 −1 1 −1 sin k1+sin k2+sin k3

B2 1 −1 1 −1 −1 1

E1 2 1 −1 −2 0 0 [sin k1− sin k2 , sin k1− sin k3]

E2 2 −1 −1 2 0 0 [cos k1− cos k2 , cos k1− cos k3]

of this system is that the group transformations do not leave the unit cell intact (a unit cell
may be defined as a pair of neighboring A and B sites, and the ambiguity in defining these
pairs breaks the C6v symmetry). This makes the separation (13) into orbital and momentum
variables awkward. In this case it is therefore preferable to work directly in real space and to
incorporate orbital and Wannier indices into a single spatial index r, belonging to the A or B
sublattices (the sites r therefore do not form a Bravais lattice). If we ignore the spin part, the
pairing amplitude is then simply a function ∆r,r′ . Translation invariance imposes the condition
∆r+ei,r′+ei = ∆r,r′ . We will define b = r′−r as the bond vector, and it turns out that this vector
uniquely characterizes the pairing amplitude, even though the set of b vectors does not form a
Bravais lattice. We can therefore express the pairing function as ∆b and the action of a group
element g ∈ G on such a function may be represented as

∆b −→
∑
b′

Rb,b′(g)∆b′ (53)

Because the point group preserves the norm of b, we can restrict our analysis to sets of bond
vectors of the same length.
The simplest possibility beyond the trivial one-site pairing b = 0 is nearest-neighbor pairing,
with b=±ai (i=1, 2, 3) where the elementary bond vectors ai are defined on Fig. 4. It is also
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Fig. 5: The simplest pairing functions on the graphene lattice. Each pairing (singlet or triplet)
lives on nearest-neighbor bonds. The color (blue = +, red = −) represents the sign of the
pairing amplitude. Note that rotating by π/3 exchanges the A and B sublattices, and therefore
changes the sign of the triplet amplitude cA↑cB↓ + cA↓cB↑, which justifies, in particular, the
f -wave label.

the predominant pairing to expect in a strongly correlated model with a large on-site repul-
sion U . These six bonds are associated with a multiplet of six pairing functions ∆b = δb,±ai

(i=1, . . . , 3). The explicit representation matrices R(g) are simple to construct, and so are the
projection operators P (µ) associated with the 6 irreps of C6v.
The mathematics are the same as for a one-band model defined on a triangular lattice. In that
case, the pairing functions are written, in the usual language, in the last column of Table 4, as a
function of the wavevector components ki = k · ei. There is a simple correspondence between
these functions and the graphene pairing functions ∆b:

e±ikj ←→ δb,±aj
(54)

For instance, the nearest-neighbor graphene pairing function belonging to the B1 representation
would be

∆b(B1) = δb,a1 − δb,−a1 + δb,a2 − δb,−a2 + δb,a3 − δb,−a3 . (55)

The functions associated with A1 and E2 are even under a spatial inversion (here equivalent to
the π-rotation C2), and are therefore appropriate for singlet pairing, whereas those associated
with B1 and E1 are odd and are appropriate for triplet pairing. These possibilities are illustrated
schematically in Fig. 5, taken from Ref. [11]. Based on the number of times the bond amplitude
changes sign as a function of angle, representations A1, B1, E1, and E2 can be labeled as s, f ,
p, and d-wave, respectively.
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5 Superconductors with spin-orbit interaction

5.1 One-band model with Rashba coupling

Let us consider a simple one-band model on a square lattice with a Rashba SO coupling

H0 =
∑
k

C†k

(
ε(k) + κ

(
τy sin kx − τx sin ky

))
Ck (56)

where Ck = (ck↑, ck↓). Assuming nearest-neighbor hopping t, the dispersion relation is ε(k) =
−2t(cos kx+cos ky). This model has C4v symmetry and, without the SO interaction, the gap
functions are classified in accordance with Sect. 3.1. Because of the κ term, under a point group
transformation g, both the orbital and spin indices are affected

cr,σ → c′r,σ =
∑
σ′

Sσσ′(g) cgr,σ′ (57)

where gr is the image of r by g. Under the π/2 rotation C4, we can apply the usual expression
for SU(2) spin rotations and

S(C4) = cos
π

4
+ iσz sin

π

4
=

1√
2

1+i 0

0 1−i

 (58)

As for the reflection σx, it maps (kx, ky) into (−kx, ky) and therefore should have the following
effect

S† τx S = τx S† τy S = −τy . (59)

A solution is to set S(σx) = iτx.
The matrices S(g) generated from S(C4) and S(σx) from a spin representation of C4v. Such
representations are not listed in the character table 2. In particular, within such a spin represen-
tation, the fourth power S(C4)

4 is −1, not 1.6 The tensor product of this spin representation
with itself yields symmetric and antisymmetric unitary representations, characterized by the
d-vector basis (15), namely:

1. A1, with gap function d̂0 (singlet)
2. A2, with gap function d̂z (triplet).
3. E, with gap function [d̂x, d̂y] (triplet).

(the projection operator technique illustrated in Sect. 3.1 can be applied equally well to this
situation.) The first (A1) is antisymmetric under exchange of the quantum numbers of the two
electrons, the other two (A2 and E) are symmetric. These unitary representations can in turn be
tensored with orbital and spatial representations, provided the overall pairing function is anti-
symmetric. Table 5 lists the simplest gap functions coming from this exercise. In particular, the
usual singlet d-wave function belonging to B1 would generically have a small triplet admixture
with the function d̂x sin ky + d̂y sin kx. Would this affect the nodes? In general yes, if the
strength of the Rashba SO coupling κ is large enough.

6This is the analog for point groups of the properties of spin rotations in the continuum. In some sense, such
spin representations are the “square roots” of the usual representations: their tensor products with themselves are
unitary representations. They are projective (or ray) representations.
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Table 5: On-site and first-neighbor gap functions for a square lattice with C4v symmetry and
spin-orbit coupling.

Irrep Basis functions

A1 d̂0 , (d̂x sin ky−d̂y sin kx)
A2 d̂x sin kx+d̂y sin ky

B1 d̂0(cos kx− cos ky) , d̂x sin ky+d̂y sin kx

B2 d̂x sin kx−d̂y sin ky
E1 d̂z[sin kx, sin ky]

5.2 Sr2RuO4

The case of Sr2RuO4 provides us with a more complex application of the above ideas. The
spin-orbit term appropriate for Sr2RuO4 is

HSO = i
κ

2

∑
r

∑
l,m,n

εlmn c
†
r,l,σ cr,m,σ′ τn,σσ′ (60)

where τn is the nth Pauli matrix, acting on spin indices. Under a general D4h transformation,
the spin-orbit term becomes

i
κ

2

∑
r

∑
l,m,n

εl′m′n U
∗
l′l Um′m c†r,l,σ cr,m,σ′ S

∗
ασ Sα′σ′ τn,αα′ . (61)

In order for the spin-orbit term to be invariant, the spin rotation matrix S must belong to a spin
representation of the group such that

S† τn S = Rnn′ τn′

εl′m′n U
∗
l′l Um′m = R−1nn′ εlmn′

(62)

It can be shown that, for the generators of D4h,

S(C4) =
1√
2

1+i 0

0 1−i

 S(σx) =

0 i

i 0

 S(σz) =

 i 0

0 −i

 (63)

We then proceed like in the previous section: we build tensor product representations for pairs
of electrons, and tensor those with irreps for the spatial part of the gap function. The resulting
gap functions are numerous. Singlet and triplet gap functions can coexist in the same irrep, and
new ones arise. For instance, in the B1g (a.k.a. d-wave) representation, we find the singlet gap
function âzd̂0(cos kx− cos ky) and the triplet gap function ĉzd̂z(cos kx− cos ky). Since spin is
not conserved separately, not only do singlet and triplet components coexist in the same irrep,
but different directions of the d-vector can also coexist. For instance, the function ĉxd̂x + ĉyd̂y
also belongs to the same representation. Details can be found in [10].
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6 Final remarks

Group theory is a powerful tool for classifying superconducting pairing states, especially in
the presence of many orbitals. However, it must be kept in mind that it makes no dynamical
predictions. It does not inform us on which of the gap functions is preferred on the basis
of a particular model; other tools are necessary. We can, however, venture in the following
general considerations in the presence of many bands: For weakly correlated materials, the
band description is more natural than the Wannier (orbital) description. We would then expect
pairing to occur at weak energies, i.e., for wave vectors close to the Fermi surface. Since
pairing occurs between opposite wave vectors, this nearly restricts it to occur within each band
separately (assuming time reversal symmetry, i.e., that −k belongs to the Fermi surface if k
does). What appears as inter-orbital pairing might then be merely intra-band pairing.
On the other hand, for strongly correlated materials, pairing may occur on a wider energy scale,
in which case the relation to Fermi surfaces is less important and the Wannier description is
more appropriate. In that case, we also expect pairing to have a shorter range and the short-
range pairing functions found in the general method exposed here are more relevant. The case
of Sr2RuO4 is particularly interesting: that material is undoubtedly strongly correlated. At the
same time, its three bands (α, β, γ) have Fermi surfaces that almost touch along the diagonals
(Fig. 3). In an intermediate-coupling situation, inter-orbital pairing would therefore be expected
to occur in the vicinity of these diagonal areas where the three Fermi surfaces almost meet.
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1 Introduction

Electron and phonon quasiparticles are the fundamental constituents of solids. Knowledge of
their interaction provides deeper insight in many physical properties. In metals, the electron-
phonon coupling (EPC) profoundly alters low-energy electronic excitations, and gives impor-
tant contributions to transport and thermodynamic properties. Coupling to phonons creates
naturally an attractive interaction among electronic quasiparticles, triggering eventually the oc-
currence of a superconducting state. Recent decades have seen the rise of powerful computa-
tional tools to calculate these fundamental properties from first principles. In particular, density
functional theory (DFT) and its extensions have been very successful in providing a deeper
understanding of materials properties.
The purpose of this lecture is to introduce the modern linear-response technique within the
DFT framework, which gives access to EPC properties on a microscopic level, and to establish
the connections to derived physical quantities. In Section 2, we will present an overview of
the linear-response scheme, which is called density functional perturbation theory (DFPT). In
Section 3, this approach is applied to the case of a crystalline solid, and we show how EPC
properties can be calculated. Applications to various physical observables related to the EPC
will be presented in Section 4. Finally, in Section 5, we will take a brief look at more complex
extensions of DFT and how they can be used for an improved description of the EPC.
Throughout this Chapter, Rydberg atomic units ~=2me=e

2/2=1 as well as kB=1 are used.

2 Linear response in density functional theory

In this Section, we will develop the machinery of the linear response in the context of density
functional theory. The description will be kept rather general, but with having in mind to apply
it to the case of a crystalline solid, which will be addressed in more detail in the following
Section.

2.1 Adiabatic perturbations

There often exists an intimate relationship between physical observables and changes of ground
state properties under perturbations. To be specific, let us consider interacting electrons moving
in the potential of a periodic arrangement of atoms. In its ground state it has the energy E0.
This system can be perturbed in various ways. Examples are the displacement of an atom out of
its equilibrium position δR, or a distortion of the crystal by applying a homogeneous strain η.
Application of a homogeneous electric field, E is a further example.
In all these cases, the perturbation can be arbitrarily small. The electronic system reacts adia-
batically, if it remains in the ground state under a small perturbation λ. The ground state energy
becomes a function of λ: E0 = E0(λ). Many physical quantities are then linked directly to
derivatives of this function,

Qn =
dnE

dλn

∣∣∣∣
λ→0

. (1)
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type of perturbation λ order n physical property Q
displacements of atoms 1 atomic force

δR 2 force constants
≥ 3 anharmonic force constants

homogeneous strain η 1 stress
2 elastic constants
≥ 3 higher order elastic constants

homogeneous electric field E 1 dipole moment
2 polarizability

δR+ η 2+1 Grüneisen parameter
δR+ E 1+2 Raman scattering cross section

Table 1: Examples of external perturbations and physical quantities connected to derivatives
of the ground-state energy.

Table 1 lists examples of such relationships between perturbations and physical observables.
Some physical quantities are connected to mixed derivatives of two different perturbations. A
well known example is the Raman scattering cross section, which involves both atomic dis-
placement and homogeneous electric field as perturbations.
Density functional theory is ideally suited to exploit this relationship between physical observ-
ables and derivatives of the ground-state energy, because it targets ground-state properties by
design.

2.2 Basics of density functional theory

The foundations of density functional theory (DFT) have been laid in the seminal works by
Hohenberg, Kohn, and Sham [1,2] in the mid 60’s, and are outlined in numerous reviews [3–5].
Here we focus on the essential features which we need later.
Hohenberg and Kohn [1] proved, that the ground-state energy of a system of interacting elec-
trons moving in an external potential vext(r) is obtained by minimizing the functional

E[n] = F [n] +

∫
d3r vext(r)n(r) (2)

with respect to the electron density n(r). At its minimum, n(r) is the true electron density of the
interacting system. The functional F [n] is universal, i.e., independent of the external potential.
An important step for practical applications was done by Kohn and Sham [2]. By using the
minimum principle they showed that one can define a fictitious system of non-interacting elec-
trons, which in its ground state possesses the same inhomogeneous density as the interacting
system [2]. The energy functional is expressed as

F [n] = Ts[n] + EH [n] + EXC [n] , (3)

where Ts represents the kinetic energy of the non-interacting electrons

Ts[n] =
∑
i

fi

∫
d3r ψ∗i (r)

(
−∇2

)
ψi(r) (4)
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and EH [n] the Hartree energy

EH [n] =

∫
d3r

∫
d3r′

n(r)n(r′)

|r−r′|
. (5)

The complexity of the original many-body problem is transferred to the exchange-correlation
energy EXC . It is also a functional of the density, and has the important property that it is
universal and thus does not depend on the external potential. However, it functional form is in
general unknown.
For the non-interacting electron system, the density can be expressed in terms of the single-
particle wave functions ψi,

n(r) =
∑
i

fi
∣∣ψi(r)∣∣2 , (6)

where fi denotes the occupation number of the state ψi.
From the variational property of the energy functional, one can derive the single-particle equa-
tion (Kohn-Sham equation) (

−∇2 + veff(r)
)
ψi(r) = εi ψi(r) . (7)

Here, εi denotes the energy of the single-particle state ψi. The effective potential veff(r) is a
functional of the density and given as a sum of the external potential and a screening potential

veff [n] = vext + vscr[n] = vext + vH [n] + vXC [n] . (8)

The latter is obtained as functional derivatives of the last two terms in the total energy func-
tional (3). It consists of the Hartree potential

vH(r)[n] =
δEH
δn(r)

=

∫
d3r′

2n(r′)

|r−r′|
, (9)

which describes an average electrostatic potential originating from the other electrons, and the
exchange-correlation potential vXC(r) = δEXC/δn(r).
Essentially, the original complex many-body problem is mapped onto a much simpler non-
interacting electron system. The remaining task is to solve a set of single-particle equations
(6)–(8), which has to be done in a self-consistent manner.
The big success of DFT partly rests on the empirical fact that already simple approximations to
vXC often give very accurate results. One ansatz is the local-density approximation (LDA)

vLDAXC (r) =
d
(
n εhom

XC (n)
)

dn

∣∣∣∣
n=n(r)

, (10)

where εhom
XC (n) represents the exchange-correlation energy density of the homogeneous inter-

acting electron gas. Another is the generalized-gradient approximation (GGA), where a depen-
dence of vXC on both local density and local gradient of the density is considered. For both
types of local approximations, various parameterizations derived from analytical and numerical
studies exist [4, 6–8].
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2.3 Linear-response formulation

Here we show how the perturbative approach is set up within the DFT framework. We will first
present some general considerations before applying them to the more specific cases in the next
Section.

2.3.1 Energy derivatives

Let us consider a situation where the external potential vext depends on a set of adiabatic pertur-
bation parameters Λ = {λa, a = 1, . . . , p}. Each vΛext determines an electronic ground state with
density nΛ(r), for which the energy functional EΛ[n] = F [n] +

∫
d3r vΛext(r)n(r) is minimal

δEΛ[n]

δn(r)

∣∣∣∣
n=nΛ

= 0 . (11)

The ground-state energy is then given by

EΛ
0 = EΛ[nΛ] = F [nΛ] +

∫
d3r nΛ(r)vΛext(r) , (12)

which depends on the perturbation via the external potential and implicitly via the density. Its
derivative then contains two contributions

∂EΛ
0

∂λa
=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
+

∫
d3r

δEΛ[n]

δn(r)

∣∣∣∣
n=nΛ

∂nΛ(r)

∂λa

=

∫
d3r nΛ(r)

∂vΛext(r)

∂λa
. (13)

The second term vanishes because of Eq. (11). Thus the first derivative depends on the ground-
state density only. This represents the DFT equivalent of the well known Hellmann-Feynman-
Theorem [9].
Because Eq. (13) is valid for each finite Λ, one can take the second-order derivatives

∂2EΛ
0

∂λa∂λb
=

∫
d3r

∂nΛ(r)

∂λb

∂vΛext(r)

∂λa
+

∫
d3r nΛ(r)

∂2vΛext(r)

∂λa∂λb
. (14)

Usually, the parametric dependence of vΛext on Λ is known, and its derivatives can be obtained
easily. The hard part is to calculate the derivatives of the electron density. Eq. (14) demon-
strates, that knowledge of the first-order variation of n is sufficient to access the second-order
derivatives of the total energy. This aspect is very important for practical purposes, as one has
to consider merely the linear response of the electron system.
As shown above, the first derivative of the energy depends solely of the unperturbed ground-
state density, while second-order derivatives require knowledge of the density and its first-order
derivatives. Both results are special cases of the so-called (2n+1) theorem, which states that all
derivatives of the total energy up to (2n+1)-th order with respect to the adiabatic perturbation
can be calculated from the knowledge of all derivatives of the Kohn-Sham eigenstates and
density up to n-th order. The proof given by Gonze et al. [10–12] essentially rests on the
variational property of the energy functional.
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2.3.2 Linear response within the Kohn-Sham scheme

Let us now discuss how the linear response of the density is actually calculated with the DFT
framework. It involves standard perturbation techniques under the condition that the effective
potential entering the Kohn-Sham equations depends on the ground-state density. To this end
we are interested in the linear response of the Kohn-Sham system(

−∇2 + veff(r)
)
ψi(r) = εiψi(r) . (15)

A small perturbation in the effective potential, δveff , gives rise to a first-order variation of the
single-particle wave functions

δψi(r) =
∑
j(6=i)

〈j|δveff |i〉
εi−εj

ψj(r) . (16)

Using a similar expression for δψ∗i (r) gives

δn(r) =
∑
i

fi
(
ψ∗i (r) δψi(r) + δψ∗i (r)ψi(r)

)
=
∑
i6=j

fi−fj
εi−εj

〈j|δveff |i〉ψ∗i (r)ψj(r) . (17)

On the other hand, δn contributes to the variation of the effective potential

δveff(r) = δvext(r) + δvscr(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′)

I(r, r′) ≡ δvscr(r)

δn(r′)
=
δvH(r)

δn(r′)
+
δvXC(r)

δn(r′)
=

2

|r−r′|
+

δ2EXC
δn(r) δn(r′)

. (18)

Eqs. (17) and (18) must be solved self-consistently to obtain the first-order variation of the
density.
It is instructive to establish a relationship between δn and δvext. It can be derived by first writing
the linear relationship (17) between δn and δveff more explicitly

δn(r) =

∫
d3r′ χ0(r, r

′) δveff(r
′) (19)

χ0(r, r
′) =

∑
i6=j

fi−fj
εi−εj

ψ∗i (r)ψj(r)ψ
∗
j (r
′)ψi(r

′) . (20)

Here, χ0 represents the charge susceptibility of the non-interacting Kohn-Sham system. It is
expressed solely by ground-state quantities [13]. Although obtained by perturbation theory,
Eq. (20) is exact because the Kohn-Sham equations describe non-interacting electrons.
In combination with Eq. (18) this leads to

δveff = δvext + I χ0 δveff , (21)

which can be solved for δveff

δveff =
(
1−I χ0

)−1
δvext = ε−1 δvext , (22)
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where ε = 1−I χ0 denotes the static dielectric matrix and describes the screening of the ”bare”
perturbation. Using Eq. (19), one finally arrives at

δn = χ0 ε
−1 δvext , (23)

which in principle allows the calculation of the second derivative, Eq. (14).
The problem is now reduced to a calculation of ε−1. Direct evaluation of Eq. (23) has several
caveats. Firstly, it involves inversion of the matrix ε(r, r′), which for periodic systems is most
conveniently done in Fourier space. It is, however, often numerically expensive, because a
proper convergence requires a large number of Fourier components, and the size of the matrix
becomes prohibitively large. Secondly, to obtain χ0 via Eq. (20) involves summation also over
unoccupied orbitals, which either converge slowly, or are not accessible at all, as in band-
structure methods employing minimal basis sets (e.g. LMTO).

2.3.3 Modern formulation: Density functional perturbation theory

An important progress has been achieved by a new formulation of the linear-response approach,
which avoids some of the aforementioned problems of the dielectric matrix approach. It is called
density functional perturbation theory (DFPT) and has been proposed independently by Zein et
al. [14–16] and Baroni et al. [17, 18]. A concise description can be found in [19]. We will give
a short outline for the case of a non-metallic system.
In the expression (17) for the first-order density variation, the prefactor (fi−fj)/(εi−εj) re-
stricts the sum to combinations where one state comes from the valence space and the other
from the conduction space. Using time-reversal symmetry, this can be rewritten as

δn(r) = 2
∑
vc

1

εv−εc
〈c|δveff |v〉ψ∗v(r)ψc(r) . (24)

Now one defines the quantity

|∆v〉 =
∑
c

1

εv−εc
|c〉 〈c|δveff |v〉 , (25)

which collects the summation over the conduction bands. The linear response of the density is
rewritten as

δn(r) = 2
∑
v

ψ∗v(r)∆v(r) . (26)

To avoid an explicit evaluation of the sum in ∆v, one makes use of the following property(
HKS−εv

)
|∆v〉 = −

∑
c

|c〉〈c|δveff |v〉 = −Pc δveff |v〉 = (Pv−1)δveff |v〉 . (27)

Here, HKS = −∇2+veff is the KS Hamiltonian. Pc =
∑

c |c〉〈c| denotes the projector onto the
conduction space, and Pv = 1−Pc the projector onto the valence space. Eq. (27) represents a
linear equation for∆v, where only valence-state quantities enter. Solution of this linear equation
turns out to be numerically much more efficient than the expensive summation over conduction
states.
In practice, Eqs. (26), (27) together with (18) define a set of self-consistent equations which is
typically solved in an iterative manner.
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3 Electron-phonon coupling

The most common application of DFT linear response approaches addresses the calculation of
lattice dynamical properties, i.e., phonons, and their interaction with electrons. Here we discuss
the underlying concepts.

3.1 General considerations

Our starting point will be the adiabatic or Born-Oppenheimer approximation. The coupling
between electrons and ions is governed by the large ratio of the ionic mass (M ) and electronic
mass (m). It allows a partial decoupling of the dynamics of the ions and the electrons by a
systematic expansion in terms of the small parameter κ = (m/M)1/4 [20, 21]. To lowest order,
the total wave function of the coupled electron-ion system can be written as a product Ψ(r,R) =

χ(R)ψ(r;R), where r and R denote the sets of electron and ion coordinates, respectively. The
electronic wave function obeys the equation(

Te + Vee + Ve-i(R)
)
ψn(r;R) = En(R)ψn(r;R) , (28)

where Te and Vee denote the kinetic energy and Coulomb interaction of the electron system,
respectively. Ve-i represents the electron-ion interaction. Through this term, wave functions
and energies depend parametrically on the ionic positions R, and as a consequence also the
electronic ground-state energy E0(R). The latter enters the effective potential

Ω(R) = Vii(R) + E0(R) , (29)

which governs the statics and dynamics of the ions in adiabatic approximation. Here Vii(R)

denotes is the ion-ion (Coulomb) interaction. Ω is the starting point of the microscopic theory of
lattice dynamics (see review articles [22–24]). Dynamical properties are derived by a systematic
expansion ofΩ in atom displacements u around a chosen reference configuration, Ri = R0

i+ui,
leading to

Ω(R) = Ω(R0) +
∑
iα

Φa(i)uiα +
1

2

∑
iαjβ

Φαβ(i, j)uiαujβ + . . . . (30)

Greek indices α and β denote Cartesian coordinates, while i and j are atom indices. The term of
first order is the negative of the force acting on an atom in the reference configuration, i.e., Fiα =

− ∂Ω
∂Riα

∣∣∣
0
= −Φα(i). It vanishes if one chooses as reference the equilibrium configuration, which

minimizes Ω. The second-order coefficients given by

Φαβ(i, j) =
∂2Ω

∂Riα∂Rjβ

∣∣∣∣
0

(31)

are the so-called force constants.
To get a coupling of the dynamics of electrons and ions, one has to go beyond the adiabatic
approximation. It is described by an electron-ion vertex and appears to first order in κ. One can
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show that it results in off-diagonal matrix elements among the electronic eigenstates ψn and has
the form

〈n|δRV |n′〉 . (32)

The operator δRV stands for the linear change of the potential felt by the electrons under a
displacement of an atom from its rest position.
In the following, we will show how these general considerations come to life within a density
functional theory context. To this end, we will do this specifically for the very important case
of a solid, i.e., a periodic arrangement of atoms.

3.2 Density functional perturbation theory
3.2.1 Phonon properties from DFPT

In adiabatic approximation, Eq. (28) describes interacting electrons moving in the potential
determined by the ionic positions. This can be (approximately) solved by the DFT approach.
We now consider the case of a solid, and assume that ions in their rest positions are sitting on
a periodic lattice. KS eigenstates are now Bloch states |kν〉 characterized by momentum k and
band index ν, respectively, and are solutions of HKS|kν〉 = εkν |kν〉.
In a periodic crystal, ions are characterized by two indices i=(ls), which denote the unit cell (l)
and the ions inside a unit cell (s), respectively. For periodic boundary conditions, the Fourier
transform of the force constant matrix is related to the dynamical matrix

Dsαs′β(q) =
1√

MsMs′

∑
l

Φαβ(ls, 0s
′) e−iq(R0

ls−R
0
0s′ ) , (33)

which determines the equation for the normal modes or phonons∑
s′β

Dsαs′β(q) ηs′β(qj) = ω2
qj ηsα(qj) . (34)

ωqj and ηsα(qj) denote the energy and polarization of the normal mode determined by the
wavevector q and the branch index j.
According to Eqs. (29) and (30), the force constants consist of two contributions, the ion-ion
and the electronic contribution. The ion-ion part stems from the Coulomb interaction of ions
positioned on a periodic lattice and can be evaluated with standard methods (Ewald summation).
The second part comes from the second derivative of the electronic energy and is thus accessible
by density functional perturbation theory. To this end we consider periodic displacements of the
ions from their equilibrium positions, Rls = R0

ls + uls, of the form

ulsα = dsα e
iqR0

ls + d∗sα e
−iqR0

ls , (35)

The complex amplitudes dsα allow to vary the relative phase of the displacement. It is conve-
nient to denote the corresponding derivatives by δqsα ≡ ∂

∂dsα
and δ−qs′β ≡ ∂

∂d∗sα
. The electronic

contribution to the dynamical matrix can be then written as a mixed derivative

Dsαs′β(q) =
1√

MsMs′
δqsαδ

−q
s′βE

∣∣∣∣
u=0

. (36)
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Commonly, the external potential is expressed as a superposition of atomic potentials vs cen-
tered at the instantaneous positions of the ions

vext(r) =
∑
ls

vs(r−Rls) . (37)

Its first-order variation, evaluated at the equilibrium positions, is given by

δqsαvext(r) = −
∑
l

∇r
αvs(r−R0

ls) e
iqR0

ls = −eiqr
∑
l

eiq(R0
ls−r)∇r

αvs(r−R0
ls) . (38)

The quantity defined by the lattice sum has the periodicity of the original lattice. Thus the
derivative δqsα can be considered to carry a momentum q.
When using a Bloch representation for the electronic eigenstates, the variation of the effective
potential, δqsαveff , connects states of momentum k with those of momentum k+ q. The Fourier
transform of the first order density variation takes the form

δqsαn(q+G) = − 4

V

∑
kv

〈
kv
∣∣e−i(q+G)r

∣∣∆q
sα(kv)

〉
, (39)

where V denotes the crystal volume. The quantity appearing on the right hand side is closely
related to the first-order variation of the valence state |kv〉 and is defined by (see Eq. (25))

|∆q
sα(kv)〉 =

∑
c

|k+qc〉〈k+qc|δqsαveff |kv〉
εk+qc−εkv

. (40)

It is obtained by solving the inhomogeneous linear equations (see Eq. (27))(
HKS − εkv

)
|∆q

sα(kv)〉 =
(
P k+q
v − 1

)
δqsαveff |kv〉 . (41)

Eqs. (39) and (41) together with (18) constitute a set of equations, which is solved self-consistently
for a fixed q to obtain δqsαn. As a by-product, also δqsαveff is calculated.
The electronic contribution to the dynamical matrix takes the form

δqsαδ
−q
s′βE =

∑
G

[
δqsαn(G+q) δ−qs′βvext(G+q) + δqsαδ

−q
s′βvext(G)

]
. (42)

3.2.2 Electron-phonon vertex from DFPT

We have seen that the lowest-order electron-ion interaction describes scattering of electronic
states via the operator δRV which denotes the change of the potential felt by the electrons
due to an ionic displacement. If the potential V is the bare electron-ion potential V 0, then
δRV = ∇V 0|R0u. In the context of DFPT, Eq. (32) would then be identified with

gqλk+qν′,kν =
∑
sα

Aqj
sα〈k+qν ′|δqsαvext|kν〉 with Aqj

sα =
ηsα(qj)√
2Msωqj

, (43)

where a transformation to the normal-mode coordinates is performed. Physically, g represents
the probability amplitude of scattering a single electron by a simultaneous creation or annihila-
tion of a single phonon. In the form given above this is called the bare vertex.
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Fig. 1: Diagrammatic representation of the screened electron-phonon vertex within the DFT
framework. Blue zigzag lines represent phonons, black lines electron propagators, and the
dashed lines the effective electron-electron interaction.

However, in solids, and in particular in metals, the bare electron-ion potential is screened by the
other electrons. Screening also alters the vertex significantly. Within linear response theory this
operator takes the form

δRV = ε−1∇V 0|R0u . (44)

ε−1 is the inverse dielectric matrix, which is a measure of the screening. Note that in Eq. (44), the
screening operator does not commute with the gradient operation, and thus can not be written
in terms of the gradient of a screened potential.
It is instructive to look at it from a many-body perturbation perspective. Fig. 1 shows a dia-
grammatic representation of the screened vertex. The bare vertex is given by the first graph on
the right hand side, and is screened by virtual electron-hole excitations coupled via an effective
interaction. From the relationship (21) between the external (bare) and effective (screened) per-
turbation, we can see that within the DFPT framework, the electron-hole bubble is represented
by the charge-susceptibility of the non-interaction Kohn-Sham system (20). The effective in-
teraction is given by the kernel I defined in Eq. (18) and incorporates besides the Coulomb
interaction also contributions from exchange and correlation.
In essence this leads to a replacement of the external potential by the screened or effective one

gqλk+qν′,kν =
∑
sα

Aqj
sα〈k+qν ′|δqsαveff |kν〉 . (45)

Applying the self-consistent procedure described above results in the linear response of the
effective potential δqsαveff , which is then used to calculate the electron-phonon matrix elements.
The self-consistency procedure automatically takes into account the important screening ef-
fects. Eq. (45) thus enables the calculation of the screened EPC matrix elements on a micro-
scopic level, including their full momentum dependence and resolving the contributions from
different electronic bands and phononic modes. For further details one can refer to the book of
Grimvall [25].

4 Applications

4.1 Fröhlich Hamiltonian and many-body perturbation

When developing a perturbative treatment of the mutual influence of the electronic and phononic
subsystems in a solid, the question arises, what are the proper noninteracting quasiparticles to
start with. The correct answer requires to know the solution to some extent. As we will see,
electronic states are significantly influenced by lattice vibrations mostly in close vicinity of the
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Fermi energy. It is therefore appropriate to start with electrons moving in a static potential of
a rigid ion lattice, without any renormalization by the lattice vibrations. On contrast, the bare
vibrations of the ion lattice would be a bad starting point, because they are strongly altered by
the screening of the electrons. This screening must be built into the description of the harmonic
lattice vibrations which defines the noninteracting phonons.
Therefore, a good starting point is the Fröhlich Hamiltonian, which in second quantization
reads

H = He +Hph +He-ph . (46)

The electron system is described by noninteracting quasi-particles with dispersion εkν . These
quasiparticles are considered to be the stationary solutions of band electrons in a perfect periodic
lattice, and include already renormalization from Coulomb interaction.

He =
∑
kνσ

εkν c
†
kνσckνσ . (47)

Here ckνσ (c†kνσ) are the annihilation (creation) operators for an electronic state with momentum
k, band index ν, spin σ, and band energy εkν .
The lattice Hamiltonian is expressed in terms of quantized harmonic vibrations, and represents
noninteracting phonons

Hph =
∑
qj

ωqj

(
b†qjbqj +

1

2

)
, (48)

where bqj (b†qj) are the annihilation (creation) operators for a phonon with momentum q, branch
index j, and energy ωqj . Phonons are the quanta of the normal mode vibrations. The operator
of atom displacements is expressed as ulsα = eiqR

0
ls1/
√
Nq

∑
qj A

qj
sα

(
bqj + b†−qj

)
, where Nq is

the number of points in the summation over q.
The third term describes the lowest-order coupling between electrons and phonons,

He-ph =
∑
kνν′σ

∑
qj

gqjk+qν′,kν c
†
k+qν′σckνσ

(
bqj + b†−qj

)
. (49)

gqjk+qν′,kν is the electron-phonon matrix element, Eq. (45) and describes the probability ampli-
tude for scattering an electron with momentum k from band ν to a state with momentum k+q

in band ν ′ under the simultaneous absorption (emission) of a phonon with momentum q (−q)
and branch index j.
To simplify the treatment, we will use a compact notation combining momentum and band or
branch index into a single symbol: k=(kν), k′=(k′ν ′), and q=(qj). The EPC matrix elements
are then denoted as

gqk′,k = gqjk′ν′,kν δk′,k+q , (50)

which implicitly takes into account momentum conservation.
This general form of the Fröhlich Hamiltonian is the starting point for a many-body perturbation
theory [26], where H0 = He +Hph denotes the Hamiltonian of the unperturbed quasiparticles,
and He-ph represents the perturbational part.
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The bare Green functions of the unperturbed Hamiltonian H0 = He +Hph are

G0(k, iωn) =
1

iωn − εk
(51)

D0(q, iνm) =
1

iνm − ωq
− 1

iνm + ωq
. (52)

where ωn = (2n+1)π T and νm = 2mπ T , with n, m integer values, denote fermionic and
bosonic Matsubara frequencies, respectively. Electronic energies are measured with respect to
the chemical potential. The Dyson equations

G(k, iωn)
−1 = G0(k, iωn)

−1 −Σ(k, iωn) (53)

D(q, iνm)
−1 = G0(q, iνm)

−1 −Π(q, iνm) (54)

connect bare and renormalized Green functions via the electron and phonon self-energy, Σ and
Π , respectively. In the following we will have a closer look at the leading contributions of EPC
to these electron and phonon self-energies.

4.2 Renormalization of electronic properties

The lowest-order diagram of the electron self-energy represents a virtual exchange of a phonon

Σep(k, iωn) = −T
∑
m

1

Nq

∑
k′,q

gqk′,kG0(k
′, iωn−iνm)(gqk′,k)

∗D0(q, iνm) . (55)

After performing the Matsubara sum over νm one obtains

Σep(k, iωn) =
1

Nq

∑
k′,q

|gqk′,k|
2

(
b(ωq) + f(εk′)

iωn+ωq−εk′
+
b(ωq) + 1−f(εk′)
iωn−ωq−εk′

)
. (56)

Σep depends on temperature T via the Fermi and Bose distribution functions, f(ε) = (eε/T+1)−1

and b(ω) = (eω/T−1)−1, respectively.
To discuss the quasiparticle renormalization, we consider the retarded Green function, which is
obtained by analytic continuation of Eq. (53) to real axis via iωn → ε+ iδ with an infinitesimal
positive δ. It is connected to the analytic continuation of the self-energy via the Dyson equation

G(k, ε) =
(
ε− εk −Σ(k, ε)

)−1
. (57)

It is straightforward to perform the analytic continuation of Σep(k, iωn → ε+iδ) in the form
given in Eq. (56) and to derive the expression for the imaginary part

ImΣep(k, ε)=−
π

Nq

∑
k′,q

|gqk′,k|
2
(
δ(ε−εk′+ωq)

(
b(ωq)+f(εk′)

)
+δ(ε−εk′−ωq)

(
b(ωq)+1−f(εk′)

))
(58)

It determines the quasiparticle linewidth (inverse lifetime) by

Γk = −2ImΣ(k, εk) , (59)



14.14 Rolf Heid

while the shifted quasiparticle energy is determined by the real part via εk = εk − ReΣ(k, εk).
ReΣep is obtained via the Kramers-Kronig relation ReΣep(k, ε)=1/π

∫
dε′ ImΣep(k, ε

′)/(ε−ε′).
This can be rewritten by introducing two spectral functions

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2δ(ε−εk′±ω) . (60)

They depend on the electronic state k via the EPC vertex. The imaginary part can then be cast
in the form

ImΣep(k, ε) = −π
∞∫

0

dω
(
α2F+

k (ε, ω)
(
b(ω)+f(ω+ε)

)
+α2F−k (ε, ω)

(
b(ω)+f(ω−ε)

))
. (61)

The physical interpretation of this expression is as follows. When a quasiparticle hole is cre-
ated at the state k (ε < εF ), electrons can scatter from states with higher or lower energies,
respectively, accompanied by either emission or absorption of a phonon. The probabilities are
given by α2F−k and α2F+

k , respectively, weighted with the appropriate bosonic and fermionic
distribution functions. A similar description holds when a quasiparticle (electron) is created at
energies above the Fermi level.
Due to the small scale of the phonon energies, emission and absorption spectra are often rather
similar as one can ignore the phonon energy ωq in the δ-function of (60). Then

α2F±k ≈ α2Fk(ε, ω) =
1

Nq

∑
q

δ(ω−ωq)
∑
k′

|gqk′,k|
2δ(ε−εk′) . (62)

For this quasielastic approximation the expression for the EPC-induced linewidth simplifies to

Γk = π

∞∫
0

dω
(
α2Fk(εk, ω)

(
2b(ω) + f(ω+εk) + f(ω−εk)

))
. (63)

The spectral function α2Fk contains the essential information related to the electron-phonon
coupling of the specific electronic state k = (kν). A convenient measure for the strength of the
EPC is the dimensionless coupling parameter

λk = 2

∫
dω

α2Fk(εk, ω)

ω
. (64)

It characterizes the strength of the coupling of a specific electronic state to the whole phonon
spectrum, and depends both on the momentum and band character of the electronic state.
An example for a calculation of λk is given in Fig. 2. The topological insulator Bi2Se3 pos-
sesses at its (0001) surface a metallic surface state with a very characteristic dispersion, a so-
called Dirac cone. Its origin lies in the topological nature of the bulk band structure, and has
very unusual properties, in particular a peculiar spin polarization. The study showed that the
EPC coupling constant increases linearly with energy for states in the upper cone, but remains
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Fig. 2: Renormalization of electronic states in the surface a Dirac cone of the topological insu-
lator Bi2Se3. Calculations were done for a slab consisting of 3 quintuple layers (QL) separated
by a large vacuum. (a) Bandstructure of the (0001) surface; shaded area indicated surface-
projected bulk states. (b) Coupling constants of electronic states as function of binding energy.
After [27].

small enough (λ < 0.15), such that the electronic quasiparticles are not much disturbed by the
coupling to phonons [27].
There are two relations which connect this parameter to experimentally accessible quantities.
The first is related to the real part of the self-energy for an electronic band crossing the Fermi
level

λk =
∂ReΣep(k, ε)

∂ε

∣∣∣∣∣
ε=0F ,T=0

. (65)

Thus the coupling constant is given by the slope of ReΣep right at the Fermi energy in the
limit T→ 0. λk is also called the mass-enhancement parameter, because the quasiparticle ve-
locity is changed to v∗k = vk/(1+λk) and can be interpreted as an enhanced effective mass
m∗k = mk(1+λk), where mk denotes the unrenormalized mass. Eq. (65) is often utilized in
ARPES measurements of bands crossing the Fermi level, which attempt to extract the energy
dependence of the real part of the self-energy.
A second route to determine the coupling constant of an electronic state is via the temperature
dependence of the linewidth. In Eq. (63), the T -dependence it contained solely in the Bose and
Fermi distribution functions. For temperatures larger than the maximum phonon frequencies,
it becomes almost linear in T, and its slope is determined by the average coupling parameter
defined above

Γk ≈ 2πλkT . (66)

This relationship has been widely used to extract λk from measurements of Γk(T ), in particular
for surface electronic states.
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4.3 Phonon renormalization

The EPC also renormalizes the phononic quasiparticles. Measurement of the phonon linewidth
provides another way to gain experimental information about the coupling strength. We will
briefly sketch this approach here.
The finite linewidth γq (half-width at half maximum), or inverse lifetime of a phonon mode is
connected to the imaginary part of the phonon self-energy by γq = −2ImΠq(ωq). The leading
contributing to Πq(ω) is given by virtual electron-hole excitations expressed as

Πq(iνm) = T
∑
n

1

Nk

∑
k,k′

|gqk′,k|
2G0(k, iωn)G0(k

′ν ′, iωn+iνm)

=
1

Nk

∑
k′,k

|gqk′,k|
2 f(εk)− f(εk′)
iνm + εk − εk′

. (67)

Analytic continuation results in

γq = 2π
1

Nk

∑
k′,k

|gqk′,k|
2
(
f(εk)−f(εk′)

)
δ
(
ωq + (εk−εk′)

)
. (68)

This expression contains the T -dependence via the Fermi distribution functions f . Because
phonon energies are typically small compared to electronic energies, the energy difference
εk−εk′ is also small, and one can approximate

f(εk)− f(εk′) ≈ f ′(εk) (εk−εk′)→ −f ′(εk)ωq (69)

with f ′ = df/dε. In the limit T → 0, f ′(εk) → −δ(εk), and by neglecting ωq inside the
δ-function, the expression further simplifies to

γq = 2πωq
1

Nk

∑
k′,k

|gqk′,k|
2 δ(εk) δ(εk′) . (70)

This approximate formula for the linewidth, first derived by Allen [28], is widely used in nu-
merical calculations. As will be discussed below, γq in the form of Eq. (70) enters directly the
expression for the coupling strength of a phonon mode relevant for superconductivity. Thus
measurements of the phonon linewidths, for example by inelastic neutron or x-ray scattering
experiments, provide information about the importance of a phonon mode for the pairing. One
has to keep in mind, however, that γq only represents the contribution from EPC, while the
experimental linewidth also contains other contributions like those from anharmonic decay pro-
cesses. Furthermore, approximation (70) does not hold in the limit q → 0 for metals, because
the phonon frequency in Eq. (68) cannot be neglected anymore for intraband contributions,
which involve arbitrarily small energy differences εk−εk′ .
An example of a combined study of EPC by DFPT and neutron-scattering experiments is shown
in Fig. 3 for YNi2B2C [29, 30]. This member of the nickelborocarbide family is a strong cou-
pling superconductor (TC=15.2 K), and exhibits pronounced phonon anomalies related to large
and momentum dependent EPC. Good agreement for both renormalized phonon frequencies
and linewidths as function of momentum indicates a good predictive power of the DFPT calcu-
lation for this compound.
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Fig. 3: Lattice dynamics of YNi2B2C. Left panel: theoretical phonon dispersion and linewidths
(vertical bars) from DFPT. Right panel: time-of-flight neutron scattering results for the disper-
sion (a) and linewidth (c) of a prominent phonon branch compared with predictions from DPFT
in (b) and (d), respectively. After [29, 30].

4.4 Transport

The electron-phonon interaction plays an important role for electronic transport properties. The
general approach is based on Boltzmann transport theory (see, e.g., [25, 31–33]) and is briefly
sketched in the following. To be specific, we discuss the contribution of the EPC to the case of
electrical conductivity. In a semi-classical picture, when one applies an external electric field E,
electrons become accelerated. By collisions with other objects (like defects, phonons or other
electrons) they are scattered, until finally a steady state is reached. It is characterized by a new
distribution Fk which differs from the Fermi distribution fk = f(εk) in equilibrium. Knowledge
of Fk allows to calculate the electronic current density via (for definiteness, we assume a field
along x)

jx = −
2e

V

1

Nk

∑
k

Fk(vk)x (71)

and the diagonal component of the electrical conductivity σxx = jx/Ex
The new occupation Fk is determined using the well known Boltzmann transport equation

− eE ∂Fk
∂kx

=

(
∂Fk
∂t

)
coll

. (72)

The left-hand side describes the change in occupations induced by the electric field, which is
balanced by the rate of change of the occupation due to collisions given on the right-hand side.
Using Fermi golden rule the latter is expressed as(

∂Fk
∂t

)
coll

=
∑
k′

(
Pk′k Fk′ (1−Fk)− Pkk′ Fk (1−Fk′)

)
. (73)
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Here, Pkk′ denotes the probability of scattering an electron from state (k) to (k′). The first term
(∝ Pk′k) describes events, where electrons are scattered into state (k), and the second those,
where electrons are scattered out of that state. Pkk′ must satisfy a detailed balance condition

Pk′k fk′ (1−fk) = Pkk′ fk (1−fk′) (74)

such that the RHS of Eq. (72) vanishes in equilibrium.
When the scattering process is due to the electron-phonon interaction, the probability depends
on the EPC vertex and the availability of phonons

Pkk′ =
2π

N
|gqk′k|

2
(
b(ωq) δ(εk′−εk−ωq) +

(
b(ωq)+1

)
δ(εk′−εk+ωq)

)
(75)

The first term describes a phonon annihilation, the second a phonon creation process.
For small applied fields, it is sufficient to look at the first-order change of the occupation with
the electric field Ex

Fk = fk + f 1
k , f 1

k ∝ Ex (76)

and to resort to the linearized Boltzmann equation, where the left-hand side is approximated by

− eEx
∂Fk
∂kx
→ −eEx

∂fk
∂kx

= −eEx
∂fk
∂εk

∂εk
∂kx

= −eEx
∂fk
∂εk

(vk)x . (77)

The right-hand side simplifies in O(Ex) to∑
k′

(
Pk′k

(
f 1
k′(1−fk)− fk′f 1

k

)
− Pkk′

(
f 1
k (1−fk′)− fkf 1

k′

))
=
∑
k′

(
− f 1

k

(
Pk′k fk′ + Pkk′(1−fk′)

)
+ f 1

k′

(
Pk′k(1−fk) + Pkk′ fk

))
=
∑
k′

Pkk′
(
− f 1

k

1−fk′
1−fk

+ f 1
k′
fk
fk′

)
(78)

In the last step, use of the detailed balance relation (74) was made.
To proceed further, one applies the so-called energy relaxation time approximation. It consists
of neglecting the occupation changes of the in-scattered electrons: f 1

k′ = 0. Then the RHS
consists only of the first term, which using Eq. (75) just gives −f 1

k/τk. Here τk = 1/Γk is the
lifetime or inverse linewidth of the electronic state (k) as derived in Eq. (63). Now the linearized
Boltzmann equations with (76) and (77) can be solved easily

f 1
k = eEx

∂fk
∂εk

(vk)xτk (79)

which finally gives for the conductivity

σxx = −
2e

V Ex

1

Nk

∑
k

Fk(vk)x = −
2e

V Ex

1

Nk

∑
k

f 1
k (vk)x =

2e2

V

1

Nk

∑
k

(
−∂fk
∂εk

)
(vk)x(vk)xτk

(80)
Direct evaluation of this equation from first principles is quite demanding, as it requires the
calculation of Vk and in particular τk for each relevant k. It has been used to assess the mobility
of carriers in doped semiconductors [34, 35].
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For metals, a simplified expression often works very well. Here, the k-dependent lifetime is
replaced by an effective relaxation time τ , which is determined using a variational procedure to
solve the Boltzmann equation [31]. In the case of pure electron-phonon scattering, it takes the
form [36–38]

1

τ
= 2π

∫
dx

x

sinh2 x
α2

trF (ω) (81)

with x = ω/2T . The properties of the electron-phonon scattering are encoded in the transport
spectral function

α2
trF (ω) =

1

Nq

∑
q

δ(ω−ωq)
1

N(0)

1

Nk

∑
kk′

|gqk′k|
2 ηk′k δ(εk) δ(εk′) , (82)

where N(0) = 1/Nk

∑
k δ(εk) is the electronic density of states per spin at the Fermi energy.

α2
trF (ω) is very similar to the isotropic Eliashberg function α2F appearing in the theory of

phonon-mediated superconductivity (see Eq. (87)). The only difference lies in the efficiency
factor

ηk′k = 1− vkvk′

|vk|2
, (83)

which accounts for a dependence on the scattering direction. Then the conductivity becomes

σxx = τ
2e2

V

1

Nk

∑
k

(
−∂fk
∂εk

)
(vk)x(vk)x = τ

2e2N(0)

V

〈
v2
x

〉
(84)

〈
v2
x

〉
denotes the Fermi-surface average of (vk)2

x, and an isotropic average has been taken. Along
these lines, first DFPT calculations for simple metals appeared already in 1998 [39].

4.5 Phonon-mediated pairing

Superconductivity is a macroscopic quantum phenomenon of the electron system. Its origin
lies in an instability of the Fermi liquid state and leads to a new ground state of correlated
paired electrons (Cooper pairs). The superconducting state has the important property that the
quasiparticle spectrum is gapped. The size of the gap plays the role of an order parameter.
In their seminal paper, Bardeen, Cooper, and Schrieffer (BCS) [40] have shown that this state
is stabilized, whenever there exists an attractive interaction among two electrons. Such an
attractive interaction is always provided by the electron-phonon coupling, which thus represents
a natural source for pairing in any metal. EPC is known to be the pairing mechanism in most
superconductors, which are commonly termed classical superconductors to distinguish them
from more exotic materials where other types of pairing mechanism are suspected.
The BCS theory treated the EPC only in a simplified form appropriate for the weak coupling
limit. A more complete theory has been soon after worked out applying many-body techniques
(for a review see, e.g., Scalapino [41]) . The resulting Eliashberg theory [42] extends the frame-
work of BCS into the strong coupling regime and allows quantitative predictions.
Central to the theoretical formulation is a set of coupled equations, the so-called Eliashberg
equations. A detailed derivation and justification of the approximations involved is given in the
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review of Allen and Mitrovic [43]. One of its simplest form are the so-called isotropic gap equa-
tions. They are obtained by taking Fermi-surface averages of relevant quantities, i.e., ignoring
the explicit momentum dependence, but keeping their frequency dependence. The justification
comes from the observation that superconducting properties like the gap function are often very
isotropic. In real materials, defects are always present and tend to average anisotropic gaps.
On the imaginary axis the isotropic gap equations read

iωn
(
1−Z(iωn)

)
= −πT

∑
n′

Λ(ωn−ωn′)
ωn′√

ω2
n′+∆(iωn′)2

∆(iωn)Z(iωn) = πT
∑
n′

Λ(ωn−ωn′)
∆(iωn′)√

ω2
n′+∆(iωn′)2

. (85)

Here, ∆(iωn) is the frequency-dependent gap function and Z(iωn) the frequency-dependent
quasiparticle renormalization factor. The pairing interaction is encoded in the kernel

Λ(νm) =

∫
dω

2ωα2F (ω)

(νm)2 + ω2
, (86)

where the electron-phonon coupling properties are described by the isotropic Eliashberg func-
tion

α2F (ω) =
1

Nq

∑
q

δ(ω−ωq)
1

N(0)

1

Nk

∑
kk′

|gqk′k|
2δ(εk) δ(εk′) , (87)

The isotropic Eliashberg function has the structure of a phonon density of states, weighted with
squared EPC matrix elements averaged over states at the Fermi surface.
The set of non-linear equations (85) must be solved self-consistently for a given tempera-
ture T and pairing function α2F . The superconducting state is characterized by a solution with
∆(iωn)6=0. The largest T which still allows such a solution defines the critical temperature Tc.
The interaction kernel Λ(νm) entering both equations is an even function of νm. It takes its
largest value at νm = 0

λ = Λ(0) = 2

∫
dω

α2F (ω)

ω
. (88)

λ is called the (isotropic) coupling constant and is a dimensionless measure of the average
strength of the electron-phonon coupling. Depending on its value, materials are characterized
as strong (λ > 1) or weak coupling (λ < 1) . Due to the factor 1/ω in the integral, low-energy
modes contribute more to the coupling strength than high-energy modes.
An important feature of the Eliashberg gap equations is that they only depend on normal-state
properties, which specify a particular material. These comprise the electronic band structure,
phonons, and the EPC vertex. Therefore, DFPT enables materials-specific predictions of super-
conducting properties from first principles.
One can establish a connection between α2F and the phonon linewidths derived in the limit
T → 0, Eq. (70), namely

α2F (ω) =
1

2πN(0)

1

Nq

∑
q

γq
ωq
δ(ω−ωq) , (89)
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Fig. 4: DFPT results for the superconductor SrPt3P. Left: phonon dispersion and relative
linewidths (vertical red bars); middle: phonon density of states; right: calculated isotropic
α2F . DFPT predicts a soft, but strong-coupling phonon branch, which is the origin of the large
peak in α2F at low energies, and of a large coupling constant of λ ≈ 2. After [46].

which leads to the formula for the isotropic coupling constant

λ =
1

πN(0)

1

Nq

∑
q

γq
ω2
q

. (90)

The dimensionless prefactor γq/ωq in (89) can be interpreted as a measure of the coupling due
to an individual phonon mode. The Eliashberg function is then given as a sum over all phonon
branches and averaged over phonon momenta.
The residual Coulomb interaction among the quasiparticles can, however, not be completely
neglected in the discussion of phonon-mediated superconductivity. It has a repulsive character
and tends to reduce or completely suppress the pairing. It was shown by Morel and Anderson
[44], that the Coulomb repulsion can be taken into account by replacing in the equation for the
gap function the kernel by

Λ(iωn−iωn′)→
(
Λ(iωn−iωn′)− µ∗(ωc)

)
Θ(ωc−|ωn′|) . (91)

A cutoff ωc is introduced which must be chosen to be much larger than phononic energies.
µ∗ is called the effective Coulomb pseudopotential. In praxis, µ∗ is commonly treated as a
phenomenological parameter of the order of ≈ 0.1 for normal metals. A more satisfactory
approach, which actually allows to incorporate the Coulomb effects from first principles, is the
density-functional theory of superconductors [45].
As an example, Fig. 4 shows results for the non-centrosymmetric, strong-coupling superconduc-
tor SrPt3P (TC = 8.4 K). DFPT predicts that the pairing is driven mainly by a low-frequency
mode, which carries more than 80% of the coupling. The existence of the low-frequency mode
was confirmed by high-resolution inelastic X-ray experiments [46].
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5 Extensions: LDA+U and beyond

In the previous Sections, we have demonstrated how the linear response technique is applied
to the calculation of lattice dynamical properties and the evaluation of the electron-phonon
vertex. This technique has been implemented for various band structure techniques. They usu-
ally rely on local approximations to the exchange-correlation functional (either LDA of GGA
variants), which allows a straightforward evaluation of derivatives of the exchange-correlation
potential vxc. Yet, weaknesses of the local approximations are well known. Examples are an
underestimation of band gaps in semiconductors, the failure to catch the long-range part of the
van der Waals interaction, or the inadequate description of the Mott-Hubbard physics in strongly
correlated materials. Various modifications have been proposed to improve these deficiencies.
In many cases, they amount to a replacement of the local exchange-correlation potentials or
functional by a more complex quantity, and thus has direct consequences for the evaluation of
the linear response. In the following, we will use the DFT+U method, which is one of the sim-
plest extension, as an example to discuss the type of complications arising in such schemes. At
the end we will briefly touch more elaborate approaches.
The DFT+U method intends to improve the DFT description of electronic structures in the
presence of pronounced local correlation. Examples are atoms with open d or f shells. The
method has been introduced almost 30 years ago [47, 48] and is nowadays implemented in a
variety of DFT codes. A more recent review can be found in [49].
Starting point is the definition of a correlated subspace, usually constructed from atom-like or-
bitals, Φa(r). The index a = (lmσ) represents a collection of quantum numbers characterizing
the orbital. The DFT+U functional is expressed as

E = Elocal + EU . (92)

Elocal is the DFT energy functional in a local approximation, i.e., with EXC approximated by
the LDA or GGA exchange-correlation energy. EU is a correction of the form

EU =
1

2

∑
abcd

〈ab|vc|cd〉
(
ρacρbd − ρadρbc

)
− Edc[{ρab}] . (93)

EU is a function of the orbital density matrix of the correlated orbitals, which is calculated from
the Kohn-Sham eigenstates ψi as

ρab =
occ∑
i

〈i|b〉〈a|i〉 . (94)

〈ab|vc|cd〉 denotes the matrix elements of the Coulomb potential and thus encodes the local
electron-electron interaction. There exists different variants of the functional form of this
Coulomb kernel, but in all cases, it is expressed in terms of a few parameters only. The most
common ones are U and J , which represent the effective Coulomb and exchange interactions,
respectively.
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The term Edc is the famous double counting term which attempts to correct for the fact that
Elocal already contains part of the local electron-electron interaction. Different expressions for
the double counting term exist, but it is always given by a quadratic polynomial in ρab.
The Kohn-Sham equations are augmented by an additional potential

veff = vext + vscr[n(r)] + v̂U [{ρab}] (95)

given by
v̂U =

∑
ab

vab|a〉〈b| =
∑
ab

vabQ̂ab (96)

with
vab =

δEU
δρba

=
∑
cd

(
〈ac|vc|bd〉 − 〈ad|vc|cb〉

)
ρcd − (vdc)ab . (97)

v̂U is a non-local operator containing the operator Q̂ab = |a〉〈b| of the local correlated subspace.
When solving the self-consistent Kohn-Sham equations, ρab can formally be considered as ad-
ditional degrees of freedom besides the density n(r). In each step, after solving the Kohn-Sham
equation to obtain the KS wave functions, both the density and the orbital density matrix are
updated, and finally a new effective potential is calculated with the help of Eqs. (96) and (97).
What are the consequences for the linear-response calculations? Let us first consider the linear
change of the orbital density matrix under an external adiabatic perturbation. It consists of two
parts

δρab = δρ
(el)
ab + δρ

(b)
ab (98)

with

δρ
(el)
ab =

occ∑
i

({
δ〈i|
}
Q̂ba|i〉+ 〈i|Q̂ba

{
δ|i〉
})

δρ
(b)
ab =

occ∑
i

〈i|δQ̂ba|i〉 . (99)

δρ
(el)
ab results from the variation of the KS wave functions, while δρ(b)

ab derives from a change of
the local basis by the perturbation. The latter comes into play when a perturbation modifies the
correlated subspace. This happens, for example, when an atom is displaced and the correlated
subspace attached to this atom is moved along.
Derivatives of the total energy involve additional contributions fromEU . In first order it reads as

∂E

∂λ
→
∑
ab

δEU
δρab

(
∂ρ

(b)
ab

∂λ

)
. (100)

This form is a consequence of the Hellmann-Feynman theorem, which ensures, that no contri-
bution from the first-order variation of the wave functions enters. Only the explicit dependence
of the correlated subspace on the perturbation plays a role. This is not true anymore for the
second derivative of the energy

∂2E

∂λ1∂λ2

→
∑
abcd

δ2EU
δρabδρcd

(
∂ρ

(b)
ab

∂λ1

)(
∂ρcd
∂λ2

)
+
∑
ab

δEU
δρab

∂

∂λ2

(
∂ρ

(b)
ab

∂λ1

)
. (101)
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Fig. 5: Phonon dispersion of NiO for LDA (left panel) and LDA+U (right panel) using U=5 eV.
Experimental data (red circles) are taken from [51].

Both terms now contain first-order variations of the KS wave functions. They are solutions of
the linear Eq. (27), but with δveff augmented by an additive contribution from the orbital density
matrix

δveff(r) = δvext(r) +

∫
d3r′ I(r, r′) δn(r′) +

∑
abcd

Iab,cd δρcd Q̂ab +
∑
ab

vab δQ̂ab , (102)

where

Iab,cd =
∂vab
∂ρcd

=
∂2EU

∂ρab∂ρcd
. (103)

Combined with Eq. (99) this closes the DFPT self-consistency cycle. The above expressions
exhibit an increased complexity as compared to the standard DFPT. This is the reason why up
to now, only one implementation has been reported [50].
Finally, the EPC vertex can be corrected by taking into account both the modified wave func-
tions and the augmented change of the effective potential (102).
The effect of the +U correction can be quite dramatic not only for electronic structure, but also
for derived quantities like the lattice dynamics. An example is given in Fig. 5, which compares
the phonon spectrum of NiO obtained with LDA and LDA+U. NiO is a textbook example of
a charge-transfer insulator, where local correlations in the open d shell of Ni are decisive. In
its ground state, it orders antiferromagnetically along the cubic [111] direction of the rock-salt
structure, and possesses a large optical gap of 3.1 eV. While LDA can reproduce the AF state,
it severely underestimates the gap (0.4 eV). The gap is increased by adding the +U correction.
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For a test calculation with U = 5 eV, the gap increases to 2.8 eV. At the same time, the phonon
spectrum hardens significantly (see Fig. 5). Its origin lies in an effectively reduced screening
when the LDA+U correction is applied. This significantly improves agreement with experiment.
Similar trends were also found for MnO [50].
To conclude this Section, we will take a brief look at more advanced corrections to the local
approximation in DFT, and discuss recent attempts to use them in linear response and electron-
phonon interaction. Three classes will be considered:

1. Hybrid functionals: the local approximation to the exchange energy, EX(n), is replaced
by the exact, non-local exchange. This corrects some deficiencies of the local approxi-
mations, and improves the description of wave functions and energies (e.g. gaps in semi-
conductors). The prize to pay is a drastically increased numerical effort in evaluating
both exchange energy and potential, preventing up to now a full DFPT implementation.
Phonons and EPC have been addressed using frozen phonon techniques [52–54], but they
require the use of supercells and give only limited information on the momentum depen-
dence.

2. GW approach: the KS equations describe a fictitious system of non-interacting electrons,
and KS states differ in general from the true quasiparticle wave functions and energies.
The latter are determined from a quasiparticle equation, which replaces vXC in the KS
equation by a self-energy operator Σ̂. The GW method evaluates Σ̂ based on the lowest-
order term of the electron-electron interaction. Σ̂ is expressed in terms of the Green
function “G”) and screened electron-electron interaction (“W”). This approach, too, is
numerically very expensive, but improves the description of quasiparticle properties. It
has been used to improve the EPC vertex in the context of frozen-phonon techniques [53].
Very recently a more elaborate linear-response formulation was developed [55]. It starts
from a LDA/GGA self-consistent DFPT calculation to obtain the first-order change of the
KS wave functions. This is subsequently used to calculate δΣ̂ and to correct the EPC
vertex via

δvGWeff = δvDFTeff − δvXC + δΣ̂ . (104)

This perturbative scheme has the advantage to get the EPC matrix elements for arbitrary
momenta without the need of a supercell.

3. DFT + Dynamical mean-field theory (DMFT): local correlations are cast into a frequency-
dependent self-energy Σ(ω) by solving a many-body impurity problem. The impurity
system is embedded in a crystalline environment, whose electronic structure is described
by DFT. Kotliar and coworkers developed a formulation based on a generating functional,
from which both DFT and DMFT equations are derived in a unified framework [56].
Based on this description, a linear response approach has been formulated and applied to
a lattice dynamical properties [57]. The method is, however, involved and numerically
challenging.
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6 Summary

The purpose of this tutorial was to give an introduction into modern linear-response techniques,
give access to fundamental properties of electrons, phonons, and their interactions from first
principles. In many respects, this approach has matured into a powerful tool, which is applied
routinely to a large variety of material classes. We have also discussed examples of physical
quantities, which are influenced or even determined by EPC in a direct way, thus providing
experimental probes to critically assess theoretical predictions. While for many compounds
DFPT predictions for the EPC strength turn out to be rather reliable, larger deviations are ex-
pected in cases, when standard DFT already fails to properly describe the electronic subsystem.
First promising steps have been taken to incorporate more sophisticated treatments of electron
correlations in order to improve the description of EPC in systems, where strong correlations
play a crucial role.
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1 Introduction

The notion of quantum entanglement goes back to the early years of quantum mechanics and
was subject of several papers by Schrödinger [1]. At the same time Einstein, Podolsky, and
Rosen discussed their famous “Gedankenexperiment” that attempted to show that quantum me-
chanical theory was incomplete [2]. Quantum entanglement is a physical phenomenon that
occurs when particles interact in a way such that the quantum state of each particle cannot be
described independently of the state of the others—including when the particles are separated
by a large distance. For a long time, it was a topic discussed mostly in quantum optics and
for systems with few degrees of freedom. In the last decades, however, it has seen a revival
with input from very different areas, including the theory of black holes, quantum information
and communication, the numerical investigation of quantum-many body systems, as well as the
characterization of topological quantum states and quantum phase transitions.
In this chapter, we will introduce some basics of many-body entanglement and focus on a
few selected applications. We begin by introducing basic notions of entanglement in many-
body systems and discuss the area law, which is commonly obeyed by ground states of local
Hamiltonians [3]. We then discuss different concepts in which the area law and the resulting
locality of the ground state turn out to be extremely helpful for the investigation of quantum-
many body phenomena: First, we show that one-dimensional area law states can represented
using matrix-product states (MPSs), allowing for efficient simulations of ground state properties
and time-evolution [4,5]. Second, we investigate the entanglement properties of gapped ground
states and how they transform under symmetries, providing a framework for the classification of
SPT phases [6,7]. Third, we identify universal scaling properties of the entanglement entropies
that allow us to characterize quantum phase transitions [8]. Finally we show how to apply all
the concepts above to investigate the phase diagram of a spin-1 chain.

2 Many-body entanglement

In the following, we introduce the concept of entanglement entropy and entanglement spectra
in many-body systems. Let us consider the bipartition of the Hilbert space H = HA⊗HB of
an N -body quantum system as illustrated in Fig. 1(a), where HA (HB) describes all the states
defined in subsystem A and B, respectively.
We perform a so-called Schmidt decomposition, in which we decompose a (pure) state |Ψ〉∈H as

|Ψ〉 =
∑
α

Λα |α〉A ⊗ |α〉B , |α〉A(B) ∈ HA(B), (1)

where the states {|α〉A(B)} form an orthonormal basis of (the relevant subspace of) HA (HB)
and Λα ≥ 0. The Schmidt decomposition is unique up to degeneracies and for a normalized
state |Ψ〉 we find that

∑
α Λ

2
α = 1. Note that the Schmidt decomposition is equivalent to the

singular-value decomposition of the coefficient matrix ψij for chosen local bases |i〉A and |i〉B,
respectively. An important aspect of the Schmidt decomposition is that it gives direct insight
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(a) (b)

N

(d)(c)

Many body Hilbert space

Area law states

Fig. 1: (a) Bipartition of a system into two parts A and B. The shaded area A has a boundary
∂A of with surface area |∂A|. (b) Significant quantum fluctuations in gapped ground states
occur only on short length scales. (c) 1D area law states make up a very small fraction of the
many-body Hilbert space but contain all gapped ground states. (d) Comparison of the largest
Schmidt values of the ground state of the transverse field Ising model (g = 1.5) and a random
state for a system consisting of N = 16 spins. The index α labels different Schmidt values.

into the bipartite entanglement (i.e., the quantum entanglement between degrees of freedom in
HA and HB) of a state: If no entanglement between the two subsystems is present, the state
is a product state and the Schmidt decomposition has only one single non-zero Schmidt value
(Λ1 = 1 and Λα>1 = 0). If the degrees of freedom of the two subsystems are entangled, we
necessarily have multiple non-zero Schmidt values in the decomposition.
A useful measure to quantify the amount of entanglement is the so-called entanglement entropy,
which is defined as the von-Neumann entropy S = −Tr

(
ρA log(ρA)

)
of the reduced density

matrix ρA. The reduced density matrix of an entangled (pure) quantum state |ψ〉 is the density
matrix of a mixed state defined on the subsystem,

ρA ≡ TrB (|ψ〉 〈ψ|) . (2)

A simple calculation shows that it has the Schmidt states |α〉A as eigenstates and the Schmidt
coefficients are the square roots of the corresponding eigenvalues, i.e., ρA =

∑
α Λ

2
α |α〉A 〈α|A

(equivalently for ρB). Hence, the entanglement entropy can be directly expressed in terms of
the Schmidt values Λα,

S = −Tr
(
ρA log(ρA)

)
= −

∑
α

Λ2
α logΛ

2
α. (3)
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Note that we would get the same entanglement entropy from the reduced density matrix ρB. If
there is no entanglement between the two subsystems, we find S = 0; and S > 0 if there is any
entanglement.
More generally, we can also consider Rényi entropies of the reduced density matrix

Sn =
1

1−n log Tr
(
(ρA)

n
)
. (4)

For the special case n → 1, we recover the von-Neumann entropy. In analogy to the entan-
glement entropy, we find Sn>0 for an entangled and Sn=0 for an unentangled state for all n.
Rényi entropies with integer n have the advantage that they can be evaluated by introducing
n replicas—a tool that was originally introduced in analytical calculations [9]. This technique
is also suitable to obtain Rényi entropies for Monte Carlo simulations [10] or even experimen-
tally [11, 12]
Another useful quantity is the so-called entanglement spectrum {εα} [13], which is defined in
terms of the spectrum {Λ2

α} of the reduced density matrix by εα = −2 logΛα.
To demonstrate the concepts above, we consider a simple system consisting of two spin-1/2
with a bipartition in which the first spin is in subsystem A and the second in subsystem B.
The first example is a wave function

|ψ〉 =
1

2

(
|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉

)
(5)

with Schmidt decomposition

|ψ〉 = 1 · 1√
2

(
|↑〉+ |↓〉

)
⊗ 1√

2

(
|↑〉+ |↓〉

)
, (6)

representing a product state with entanglement entropy S = 0. The second example is a wave
function

|ψ〉 =
1

2

(
|↑↓〉+ |↓↑〉

)
(7)

with Schmidt decomposition

|ψ〉 =
1√
2
·
(
|↑〉⊗|↓〉

)
+

1√
2
·
(
|↑〉⊗|↓〉

)
, (8)

representing a maximally entangled state with entanglement entropy S = log 2.

2.1 Area law

As we will discuss now, ground states of (gapped) local Hamiltonians are very special with
respect to their entanglement properties—they fulfill an area law. It turns out that this allows
on one hand for efficient numerical simulations and on the other hand provides the basis for the
characterization of universal properties of quantum phases.
Let us first mention that a “typical” state in the Hilbert space has a volume law, i.e., the en-
tanglement entropy grows proportionally with the volume of the partitions. In particular, it has
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been shown in Ref. [14] that in a system of N sites with on-site Hilbert space dimension d, a
randomly drawn state |ψrandom〉 has an entanglement entropy of S ≈ N/2 log d−1/2 for a bipar-
tition into two parts of N/2 sites. Highly excited eigenstates of generic (ergodic) Hamiltonians
typically show the same behavior.
In contrast, ground states |ψ0〉 of gapped and local Hamiltonians follow an area law, i.e., the
entanglement entropy grows proportionally to the area of the cut [3]1

S = α|∂A|+ . . . , (9)

where α in the leading term is a non-universal coefficient and |∂A| denotes the surface area of
the cut.
For the special case of a one dimensional chain of length N that is cut into two equal halves as
shown in Fig. 1(b) this implies that S(N) is constant for N & ξ (with ξ being the correlation
length). This can be intuitively understood from the fact that a gapped ground state contains
only fluctuations within the correlation length ξ and thus only degrees of freedom near the cut
are entangled. A rigorous proof of the area law for 1D gapped and local Hamiltonians is given
in Ref. [15]. Since typical states have a volume law, ground states are very special states and
can be found within a very small corner of the Hilbert space, as illustrated in Fig. 1(c).
An important observation is that in slightly entangled states, only a relatively small number
of Schmidt states contribute significantly to the weight of the state. This is demonstrated in
Fig. 1(d) by comparing the largest 20 Schmidt values of an area law state and a volume law
state for a bipartition of an N=16 chain into two half-chains. As an example of an area law
state, we considered here the ground state of the transverse field Ising model

H = −
∑
n

σznσ
z
n+1 + gσxn, (10)

with σxn and σzn being the Pauli operators and g > 0. This Z2 symmetric model has a quantum
phase transition at gc = 1. As shown in Fig. 1(d) for a representative example of g = 1.5,
the entire weight of the ground state is essentially contained in a few Schmidt states. Generic
states fulfilling the area law show a similar behavior and thus the above observation provides
an extremely useful approach to compress quantum states by truncating the Schmidt decompo-
sition. In particular, for all ε > 0 we can truncate the Schmidt decomposition at some finite χ
(independent of the system size) such that∥∥∥ |ψ〉 − χ∑

α=1

Λα |α〉L ⊗ |α〉R︸ ︷︷ ︸
|ψtrunc〉

∥∥∥ < ε (11)

This particular property of area law states is intimately related to the matrix-product state (MPS)
representation of 1D quantum states, as we will discuss in the next chapter. The situation is very
different for a highly entangled (volume law) random state: All the Schmidt values are roughly
constant for all 2N/2 states and thus the 20 dominant states contain a vanishing weight (assuming
an equal weight of configurations, we find Λ2

α ≈ 1/2N/2 per Schmidt state).
1The condition of a gap can in certain cases be released but generically leads to sub-leading log corrections. In

systems with a Fermi surface, the area law breaks down.
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2.2 Entanglement in free-particle models

While it is generically very hard to obtain the entanglement entropy in many-body systems, it
can be easily obtained for free-particle models [16,17]. This is particularly useful as it allows us
to study many interesting aspects of entanglement in various settings—for example, universal
properties that might occur independently of the presence or absence of interactions.
For free-particle states, the reduced density matrix ρA of a bipartite system can be written as

ρA =
1

Z
e−HA , withHA =

∑
i∈A

εi f
†
i fi, (12)

where f †i (fi) creates (annihilates) a single particle with energy εi with respect to the so-called
“entanglement Hamiltonian”HA. The constant Z ensures the correct normalization Tr ρA = 1.
Note that HA is not simply the physical Hamiltonian H restricted to the subsystem A and
therefore Eq. (12) is not a true Boltzmann formula.
Let us now consider a non-interacting fermionic Hamiltonian of the form

H =
∑
i,j

ti,j c
†
icj. (13)

For a given filling factor, the ground state is a Slater determinant describing the filled Fermi
sea. Following Wick’s theorem, all many-particle correlation functions factorize into products
of one-particle functions, for example〈

c†ic
†
jckcl

〉
=
〈
c†icl
〉〈
c†jck

〉
−
〈
c†ick

〉〈
c†jcl
〉
. (14)

We can thus write the reduced density matrix in the form

ρA = K exp
(
−
∑
i,j∈A

hi,j c
†
icj

)
(15)

with some constant K. We now need to find a matrix hi,j chosen such that ρA reproduces
the correct single-particle correlation function Ci,j =

〈
c†icj
〉

for i, j ∈ A. This is done in a
common diagonal representation of both matrices: We diagonalize Ci,j in subsystem A with
eigenvalues ζn and corresponding eigenstates ϕn(i). The transformation

ci =
∑
n

ϕn(i)fn (16)

yields for the single-particle correlation function
〈
f †nfn′

〉
= ζn δn,n′ . To obtain this from the

reduced density matrix ρA, the entanglement Hamiltonian HA must have the diagonal form
Eq. (12) with the single-particle entanglement spectrum

εn = log

(
1− ζn
ζn

)
. (17)

The many body entanglement entropy is then given by the sum of the contributions of each
fermionic mode

S = −
∑
n

(
ζn log ζn + (1−ζn) log(1−ζn)

)
. (18)
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To demonstrate the ideas, we consider a model of spinless fermions on a 1D chain of N sites
with periodic boundary conditions described by the Hamiltonian

H = −t
∑
j

(
c†jcj+1 +H.c

)
. (19)

The following simple Python script calculates the entanglement entropy for the ground state at
half filling for a bipartition into two halves (i.e., A ≡ 1 . . . N/2 and B ≡ N/2+1 . . . N ):

import numpy as np
N = 20
t = 1
H = np.zeros((N,N))
for i in range(N):

H[i,np.mod(i+1,N)] = -t
H[np.mod(i+1,N),i] = -t

E,U = np.linalg.eigh(H)
C = np.dot(U[:N//2,:N//2],np.conj(U[:N//2,:N//2].T))
z = np.linalg.eigvalsh(C)

print ("S = ",-np.sum(z*np.log(z) + (1-z)*np.log(1-z)))

3 Efficient representation and matrix-product states (MPSs)

We will now introduce MPSs, which allow for an efficient representation of area law states
in 1D. When working with MPSs, it is very helpful to use a diagrammatic tensor representation,
which is illustrated in Fig. 2 (a) and (b). In this notation, a tensor with n indices is represented
by a symbol with n legs.

We consider a chain with N sites and label the local basis on site n by |jn〉 with jn = 1, . . . , d,
e.g., for a spin-1/2 we have d = 2 local states |↑〉 , |↓〉. Using the tensor product of local basis
states, a generic (pure) quantum state can then be expanded as

|ψ〉 =
∑

j1,j2,...jN

ψj1j2···jN |j1, j2, . . . , jN〉 . (20)

Note that the order-N tensor ψj1,...,jn has dN complex entries which makes it prohibitively ex-
pensive to store or manipulate exactly even for moderate system sizes. For example, even on a
large supercomputer, a simple S=1/2 system with d=2 can only be simulated exactly for up to
N≈40 sites. Since numerical investigations of quantum-many body systems often require much
larger systems, it is important to find ways to “compress” the quantum states to a manageable
size—this is exactly what we will be able to do using MPS!
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Fig. 2: (a) Diagrammatic representations of a vector v, a matrix M , and the coefficients of a
general many-body state ψj1j2...jn . (b) The connection of two legs symbolizes a tensor contrac-
tion, here (Mv)a =

∑
bMabvb, i.e., summing over the relevant indices. (c) The amplitude of

the wave function is decomposed into a product of matrices M [n]jn . The indices α1 and αN+1

are trivial, which we indicate by dashed lines. (d) Diagrammatic representation of the AKLT
state. The S = 1 sites are decomposed into two S = 1

2
that form singlets between neighboring

sites. With open boundary conditions, the S = 1
2

spins on the left and right are free edge modes
leading to a four-fold degeneracy of the ground state.

In an MPS, the coefficients ψj1,...,jn of a pure quantum state are decomposed into products of
matrices of the form [18–20]

|ψ〉 =
∑

j1,...,jN

∑
α2,...αN

M [1]j1
α1α2

M [2]j2
α2α3

. . .M [N ]jN
αNαN+1

|j1, j2, . . . , jN〉 (21)

≡
∑

j1,...,jN

M [1]j1M [2]j2 . . .M [N ]jN |j1, j2, . . . , jN〉 . (22)

Here, each M [n]jn is a χn×χn+1 dimensional matrix, i.e., we have a set of d matrices for each
site, which we usually group into a tensor of order 3 as shown in Fig. 2(b). The superscript [n]
denotes the fact that for a generic state we have a different set of matrices on each site. The in-
dices αn of the matrices are called “bond”, “virtual”, or “auxiliary” indices, to distinguish them
from the “physical” indices jn. The matrices at the boundary are vectors, that is χ1=χN+1=1,
such that the matrix product in Eq. (22) produces a 1×1 matrix, i.e., a single number ψj1,...,jn .
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3.1 Simple examples of MPS

To become more familiar with the MPS notation, let us consider a few examples.
Product state: The state |ψ〉 = |ϕ[1]〉 ⊗ |ϕ[2]〉 ⊗ · · · ⊗ |ϕ[n]〉 can easily be written in the form of
Eq. (22); since it has no entanglement, the bond dimension is simply χn = 1 on each bond and
the 1×1 “matrices” are given by

M [n]jn =
(
ϕ
[n]
jn

)
. (23)

Concretely, the ground state of the transverse field Ising model given in Eq. (10) at infinite field
g → ∞ is a product state |← · · · ←〉 ≡

(
1√
2
|↑〉 − 1√

2
|↓〉
)
⊗ · · · ⊗

(
1√
2
|↑〉 − 1√

2
|↓〉
)

, which
we write as an MPS using the same set of matrices on each site n,

M [n]↑ =
(

1√
2

)
and M [n]↓ =

(
−1√
2

)
. (24)

For the Néel state | ↑↓↑↓ . . .〉, we need different sets of matrices on odd and even sites,

M [2n−1]↑ =M [2n]↓ =
(
1
)

and M [2n−1]↓ =M [2n]↑ =
(
0
)

(25)

for n = 1, . . . , N/2.
Dimerized state: A product of singlets 1√

2

(
|↑↓〉− |↓↑〉

)
⊗· · ·⊗ 1√

2

(
|↑↓〉− |↓↑〉

)
on neighbor-

ing sites can be written with 1×2 matrices on odd sites and 2×1 matrices on even sites given by

M [2n−1]↑ =
(

1√
2

0
)
, M [2n−1]↓ =

(
0 −1√

2

)
, M [2n]↑ =

(
0

1

)
, M [2n]↓ =

(
1

0

)
. (26)

Spin-1 AKLT state: Affleck, Kennedy, Lieb, and Tasaki (AKLT) [21] constructed a Hamilto-
nian for which the ground state is an exact MPS of bond dimension χ=2. The Hamiltonian reads

H =
∑
j

~Sj ~Sj+1 +
1

3

(
~Sj ~Sj+1

)2
= 2

∑
j

(
P S=2
j,j+1 −

1

3

)
, (27)

where ~S are spin S = 1 operators and P S=2
j,j+1 is a projector onto the S = 2 sector of the spins on

sites j and j+1. This model is in a topologically nontrivial phase with remarkable properties
of the ground state—we will get into this later. To construct the ground state, we note that the
projector P S=2

j,j+1 does not give a contribution if we decompose the S = 1 spins on each site into
two S = 1

2
spins and form singlets between spins on neighboring sites, as illustrated in Fig. 2(d).

While the ground state is unique on a ring with periodic boundary conditions, in a chain with
open boundary conditions the S = 1

2
spins on the edges do not contribute to the energy and

thus lead to a 4-fold degeneracy of the ground state. Given the structure of the ground state,
we can construct the corresponding MPS: We start by writing the product of singlets with the
matrices of Eq. (26) and add arbitrary spin-1

2
states ϕL and ϕR on the left and right. We apply

the projectors P S=1 to map the two spin-1
2

onto the physical spin-1 site, and contract the three
tensors on each site to obtain the MPS structure. For sites 1 < n < N in the bulk, we obtain

M [n]+1 =

√
4

3

(
0 0
1√
2

0

)
M [n]0 =

√
4

3

(
1
2

0

0 −1
2

)
M [n]−1 =

√
4

3

(
0 − 1√

2

0 0

)
. (28)

Here, we included the factor
√

4
3

to normalize the MPS.
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[ ]

[ ]

[ ]

Fig. 3: Iterative conversion of a state |ψ〉 given by a rank-N tensor ψi1,...,iN using successive
Schmidt decompositions in a diagrammatic representation. The horizontal lines represent the
bond (Schmidt indices) α, β, γ, . . . and the vertical lines represent the physical indices jn ∈
{1, . . . , d}. Connected lines between tensors denote summation over the corresponding indices
(see text for details).

3.2 Area law and MPS

In general any state in a finite system can be decomposed exactly into the MPS form of Eq. (22).
However, the caveat is that for a generic state (with a volume law entanglement), the required
bond dimension χmax := maxn χn increases exponentially with the number of sites N . It turns
out that all area law states can be very well approximated by MPS with a finite bond dimension
χmax [22, 23].
For illustration, we will show now how a state can be brought into an MPS form starting from
a full many-body state |ψ〉. For this, we perform successive Schmidt decompositions as shown
diagrammatically in Fig. 3. We start by performing a Schmidt decomposition Eq. (1) of the
state |ψ〉 into the first site and the rest such that

|ψ〉 =
d∑

α1=1

Λ[1]
α1
|α1〉[1]|α1〉[2,...,N ]. (29)

The states |α1〉[1] and |α1〉[2,...,N ] form an orthogonal basis for the left and right part, respectively.
The first matrix A[i]j1

α1 in the MPS is the matrix relating the left Schmidt states |α1〉[1] with the
local states |j1〉 (describing the local states on the first site) and is given by A[1]j1

α1 = 〈j1|α1〉[1].
The resulting mixed representation of the state reads

|ψ〉 =
d∑

j1=1

d∑
α1=1

A[1]j1
α1

Λ[1]
α1
|j1〉|α1〉[2,...N ]. (30)

Next we proceed to the next bond and perform a Schmidt decomposition of the state such that

|ψ〉 =
d2∑

α2=1

Λ[2]
α2
|α2〉[1,2]|α2〉[3,...,N ]. (31)

The second matrix A[2]j2
α1α2 then relates the mixed basis states |α1〉[1]|j2〉 with the left Schmidt

states |α2〉[1,2] and is given byA[2]j2
α1α2 =

[
〈α1|[1]〈j2|

]
|α2〉[1,2]. The resulting mixed representation

of the state reads

|ψ〉 =
d∑

α1=1

d2∑
α2=1

d∑
j1,j2=1

A[1]j1
α1

A[2]j2
α1α2

Λ[2]
α2
|j1, j2〉|α2〉[3,...,N ]. (32)
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This procedure can now be continued until reaching the right end of the chain. We choose the
last matrix A[N ]jn to relate the states ΛαN

|αn〉[N ] to the local basis |jn〉. Then it is easy to see
that we finally arrive at a representation of the state that has exactly the form Eq. (22).
Generically, the matrix dimension increases exponentially as we proceed toward the center of
the chain. However, for area law states, we can make an approximation by neglecting the
Schmidt states that have a very small Schmidt values. For the ground state of the Ising model
discussed above, we can find a very good approximation of the ground state as MPS by keeping
only a maximal bond dimension of∼20 with a truncation error that is of the order of the machine
precision (independent of the system size).

3.3 Canonical form

The MPS representation Eq. (22) is not unique. Consider the bond between sites n and n+1,
which defines a bipartition into L = { 1, . . . , n } and R = {n+1, . . . , N }. Given an invertible
χn+1×χn+1 matrix X , we can replace

M [n]jn → M̃ [n]jn :=M [n]jnX−1, M [n+1]jn+1 → M̃ [n+1]jn+1 := XM [n+1]jn+1 (33)

and still represent the same state |ψ〉. This freedom can be used to define a convenient “canon-
ical form” of the MPS, following Ref. [24, 25]. Without loss of generality, we can decompose
the matrices M̃ [n]jn = Γ̃ [n]jnΛ̃[n+1], where Λ̃[n+1] is a square, diagonal matrix with positive en-
tries Λ̃[n+1]

αn+1 on the diagonal. Performing partial contractions gives a representation looking very
similar to the Schmidt decomposition (1)

|ψ〉 =
∑

j1,...,jN

M [1]j1 . . .M [n−1]jn−1Γ̃ [n]jn Λ̃[n+1] M̃ [n+1]jn+1M [n+2]jn+2 . . .M [N ]jN |j1, . . . , jN〉

=
∑
α̃n+1

Λ̃
[n+1]
α̃n+1
|α̃n+1〉L ⊗ |α̃n+1〉R , where (34)

|α̃n+1〉L =
∑
j1,...,jn

(
M [1]j1 . . .M [n−1]jn−1Γ̃ [n]jn

)
1,α̃n+1

|j1, . . . , jn〉 , (35)

|α̃n+1〉R =
∑

jn+1,...,jN

(
M̃ [n+1]jn+1M [n+2]jn+2 . . .M [N ]jN

)
α̃n+1,1

|jn+1, . . . , jN〉 . (36)

However, for general M and Γ̃ [n], the states |α̃n+1〉L/R will not be orthonormal. Note that we
can interpret the X in Eq. (33) as a basis transformation of the states |α̃n+1〉R in Eq. (36). The
idea of the canonical form is to choose the X in Eq. (33) such that it maps |α̃n+1〉R to the
Schmidt states |αn+1〉R. Using the Schmidt values Λ[n+1]

αn+1 on the diagonal of Λ̃[n+1] → Λ[n+1],
we find that Eq. (34) indeed gives the Schmidt decomposition. Repeating this on each bond
yields the canonical form

|Ψ〉 =
∑

j1,...,jN

Γ [1]j1Λ[2]Γ [2]j2Λ[3] · · ·Λ[N ]Γ [N ]jN |j1, . . . , jN〉 . (37)
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It turns out that the canonical form of MPS is extremely useful for different purposes. First,
fixing the gauge degree of freedom allows for a more efficient optimization of MPS in numerical
algorithms. Second, it provides convenient analytical properties for exactly proving certain
universal properties, which we will use later on in the context of symmetry protected phases.

3.4 Time Evolving Block Decimation (TEBD)

Now that we know how to represent quantum states as MPS, we would like to manipulate them
and use them for studying microscopic models. A very useful algorithm is the Time Evolving
Block Decimation (TEBD) algorithm [26], which allows evaluating the time evolution of a MPS

|ψ(t)〉 = U(t) |ψ(0)〉 . (38)

The time evolution operator U can either be U(t) = exp(−itH), yielding a real time evolution,
or an imaginary time evolution U(τ) = exp(−τH). The latter can be used to evaluate (finite
temperature) Green functions or as a first, conceptually simple way to find the ground state of
the Hamiltonian H through the relation

|ψGS〉 = lim
τ→∞

e−τH |ψ0〉
‖e−τH |ψ0〉‖

. (39)

The TEBD algorithm makes use of the Suzuki-Trotter decomposition [27], which approximates
the exponent of a sum of operators with a product of exponents of the same operators. For
example, the first and second order expansions read

e(X+Y )δ = eXδeY δ +O(δ2), (40)

e(X+Y )δ = eXδ/2eY δeXδ/2 +O(δ3). (41)

Here X and Y are operators, and δ is a small parameter. To make use of these expressions, we
assume that the Hamiltonian is a sum of two-site operators of the form H =

∑
n h

[n,n+1], where
h[n,n+1] acts only on sites n and n+1, and decompose it as a sum

H =
∑
n odd

h[n,n+1]

︸ ︷︷ ︸
Hodd

+
∑
n even

h[n,n+1]

︸ ︷︷ ︸
Heven

. (42)

Each term Hodd and Heven consists of a sum of commuting operators, therefore eHoddδ =∏
n odd e

h[n,n+1]δ and similar for Heven. We now divide the time into small time slices δt � 1

(the relevant time scale is in fact the inverse gap) and consider a time evolution operator U(δt).
Using, as an example, in the first order decomposition (40), the operator U(δt) can be expanded
into products of two-site unitary operators

U(δt) ≈
[ ∏
n odd

U [n,n+1](δt)

][ ∏
n even

U [n,n+1](δt)

]
, (43)

where U [n,n+1](δt) = e−i δt h
[n,n+1] . The successive application of these two-site unitary opera-

tors to an MPS is the main part of the algorithm and explained in the following.
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(i)

(ii)

(iii)

(iv)

Fig. 4: Update to apply a two-site unitary U and recover the canonical MPS form (see text for
details). Note that we do not explicitly label the positions of the individual tensors in favor for
a less cluttered presentation.

Local unitary updates of an MPS. One of the advantages of the MPS representation is that
local transformations can be performed efficiently. Moreover, the canonical form discussed
above is preserved if the transformations are unitary [24].
A one-site unitary U simply transforms the tensors Γ of the MPS

Γ̃ [n]jn
αnαn+1

=
∑
j′n

U jn
j′n
Γ [n]j′n
αnαn+1

. (44)

In such a case the entanglement of the wave-function is not affected and thus the values of
Λ do not change. The update procedure for a two-site unitary transformation acting on two
neighboring sites n and n + 1 is shown in Fig. 4. We first find the wave function in the
basis spanned by the left Schmidt states |αn〉L, the local basis |jn〉 and |jn+1〉 on sites n
and n + 1, and the right Schmidt states |αn+2〉R, which together form an orthonormal basis
{ | αn〉L ⊗ | jn〉 ⊗ | jn+1〉 ⊗ | αn+2〉R }. Calling the wave function coefficients Θ, the state
is expressed in a mixed bases as

|ψ〉 =
∑

αn,jn,jn+1,αn+2

Θjnjn+1
αnαn+2

|αn〉L |jn〉 |jn+1〉 |αn+2〉R . (45)

Using the definitions of the canonical form, Θ is given by

Θjnjn+1
αnαn+2

=
∑
αn+1

Λ[n]
αn
Γ [n],jn
αnαn+1

Λ[n+1]
αn+1

Γ [n+1],jn+1
αn+1αn+2

Λ[n+2]
αn+2

. (46)
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Writing the wave function in this basis is useful because it is easy to apply the two-site unitary
in step (ii) of the algorithm

Θ̃jnjn+1
αnαn+2

=
∑
j′nj
′
n+1

U
jnjn+1

j′nj
′
n+1

Θ
j′nj
′
n+1

αnαn+2 . (47)

Next we have to extract the new tensors B̃[n], B̃[n+1] and Λ̃[n+1] from the transformed tensor
Θ̃ in a manner that preserves the canonical form. We first “reshape” the tensor Θ̃ by com-
bining indices to obtain a dχn × dχn+2 dimensional matrix Θ̃jnαn;jn+1αn+2 . Because the basis
{ | αn〉L ⊗ | jn〉 } is orthonormal, as for the right, it is natural to decompose the matrix using
the singular value decomposition (SVD) in step (iii) into

Θ̃jnαn;jn+1αn+2 =
∑
αn+1

Ã
[n]
jnαn;αn+1

Λ̃[n+1]
αn+1αn+1

B̃
[n+1]
αn+1;jn+1αn+2

, (48)

where Ã[n], B̃[n+1] are isometries and Λ̃[n+1] is a diagonal matrix. Indeed, the suggestive notation
that the new tensors are in mixed canonical form is justified, since the SVD yields a Schmidt
decomposition of the wave function for a bipartition at the bond between sites n and n+1.
The isometry Ã[n] relates the new Schmidt states |αn+1〉L to the combined bases |αn〉L ⊗ |jn〉.
Analogously, the Schmidt states for the right site are obtained from the matrix B[n+1]. Thus
the diagonal matrix Λ̃[n+1] contains precisely the Schmidt values of the transformed state. In a
last step (iv), we reshape the obtained matrices Ã[n], B̃[n+1] back to tensors with 3 indices and
recover the right canonical form by

Γ̃ [n]jn
αnαn+1

= (Λ[n])−1αn
Ã

[n]
jnαn;αn+1

and Γ̃ [n+1]jn+1
αn+1αn+2

= B̃
[n+1]
αn+1;jn+1αn+2

(Λ[n+2])−1αn+2
. (49)

After the update, the new MPS is still in the canonical form. The entanglement at the bond
between n and n+1 has changed and the bond dimension increased to dχ. Thus the amount of
information in the wave function grows exponentially if we successively apply unitaries to the
state. To overcome this problem, we perform an approximation by fixing the maximal number
of Schmidt terms to χmax. In each update, only the χmax most important states are kept in step
(iii), i.e., if we order the Schmidt states according to their size we simply truncate the range
of the index αn+1 in Eq. (48) to be 1 . . . χmax. This approximation limits the dimension of the
MPS and the tensors B have at most a dimension of χmax × d× χmax. Given that the truncated
weight is small, the normalization conditions for the canonical form will be fulfilled to a good
approximation. In order to keep the wave function normalized, one should divide by the norm

after the truncation, i.e., divide by N =
√∑

jn,jn+1,αn,αn+2

∣∣Θjnjn+1
αnαn+2

∣∣2.
Using the TEBD algorithm, we can now perform real and imaginary time evolution of MPS.
While the imaginary time evolution provides a tool to find ground states, it turns out that a
variational optimization is often more efficient. This is done using the density-matrix renormal-
ization group (DMRG) method [28]. The DMRG replaces step (ii) in the TEBD algorithm, in
which the two site gate is applied, with a variational optimization of the local tensors. This can
be done using for example the Lanczos algorithm. Instead we refer to the existing literature for
further details [4, 5].
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4 Symmetry-protected topological (SPT) phases

Symmetry and topology are cornerstones in the characterization of quantum phases of matter.
The classification of phases in terms of spontaneously broken symmetries is well known, for ex-
ample the ferro- and paramagnetic phase of the transverse field Ising model. Topological phases
of matter are more subtle and require new frameworks for their theoretical understanding.
We consider a gapped one-dimensional system with bosonic degrees of freedom of length L that
is invariant under a global symmetry group G. An example of such symmetry is the Z2 sym-
metry

⊗
j σ

x
j of the transverse field Ising model Eq. (10). Note that the classification scheme

needs the symmetries to be well-defined even when having open boundaries, which for a unitary
symmetry

⊗
j uj(g) with g ∈ G is guaranteed if it is a product over local symmetry operations

uj(g) on sites (or unit cells), referred to as an on-site symmetry. More general symmetries
(such as for example spatial inversion symmetry) will require a more general “entanglement
based” approach which we will discuss below. If we assume that the symmetry is not spon-
taneously broken, then for periodic boundary conditions the ground state must be unique and
hence invariant, i.e.,

|ψ〉 =
[⊗

n

un(g)

]
|ψ〉. (50)

However, if we have open boundary conditions, then the absence of spontaneous symmetry
breaking in the bulk still allows for the symmetry operation to act non-trivially near the edges.
Since the bulk is invariant and thus not affected by the symmetry operation, we can formally
write this as

⊗
j uj(g) = UL(g)UR(g)—which is valid in the ground state subspace. These

effective operators UL and UR are exponentially localized near the boundaries on a length-scale
set by the correlation length. In the thermodynamic limit (L → ∞) UL(g) and UR(g) have
no overlap and since the Hamiltonian is local, this means that UL(g) and UR(g) do not change
the energy of a state in the ground state subspace. We refer to this as symmetry fractional-
ization. The same holds for any other unbroken symmetry h ∈ G, so we can equivalently
write UL(h)UR(h). Any group relation between g and h then implies a relation between the
edge symmetries. In particular, {UL(g), UL(h), . . . } then obey the same group relations as G,
possibly up to a phase factor. In the bosonic case, where UL and UR commute, both edges
completely decouple and the physical symmetry is then projectively represented on each edge
(see next section for details about projective representations). Such a projective representation
has discrete labels that cannot change smoothly. Since any non-trivial projective representation
has a minimal dimension > 1, it protects degenerate modes on the edge.

4.1 Projective representations

Let us consider a group G with group elements gi ∈ G and discuss how to classify different
SPT phases. The matrices U(gi) form a projective representation of G if

U(gi)U(gj) = ω(gi, gj)U(gigj), (51)
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where ω(gi, gj) ∈ U(1) represent the so-called factor set. Thus a projective representation is a
linear representation modulo a U(1) phase factor. In the case that all phase factors are unity, the
representation is a linear representation of the group. Because of the associativity of the group,
i.e., the elements of G fulfill gi(gjgk) = (gigj)gk, the factor set must satisfy

ω(gj, gk)ω(gi, gjgk) = ω(gigj)ω(gigj, gk). (52)

Transforming the matrices as Ũ(gi) = β(gi)U(gi), β(gi) ∈ U(1) yields a new factor set

ω̃(gi, gj) =
β(gigj)

β(gi)β(gj)
ω(gi, gj). (53)

Two projective representations Ũ(g) and U(g) that are related by such a transformation are
considered to be equivalent and belong to the same class.
It was Isaac Schur who derived in 1904 a classification of different types of projective repre-
sentation using so called “Schur multipliers” to label different classes. These correspond to the
second cohomology group H2(G,U(1)) of a group G. Instead of discussing the details of the
proof, we refer for a general introduction to Ref. [29] and consider some simple examples.

(1) Group ZN. The generators of the group are exp(iπ/N) rotations and the group elements
are {1, R,R2, . . . , RN}. For a projective representation of the group we can assign an arbitrary
phase such that UN(R) = exp(iϕ). However, a simple rescaling U(R) by exp(iϕ/N) can
always transform the projective representation to a linear one. Thus this group has only one
class and all projective representation can be transformed into a linear one.

(2) Group Z2 × Z2. This group is generated by π rotations Rx and Rz about two orthogonal
axes. Clearly,R2

x = R2
z = 1 andRzRx = RxRz, thus the group elements are {1, Rx, Rz, RxRz}.

The group Z2 × Z2 has two different classes of projective representations which can be distin-
guished by the gauge invariant phase factor

U(Rx)U(Rz)U
−1(Rx)U

−1(Rz) = exp(iϕ)

with ϕ = 0, π. Clearly, as each element occurs with its inverse, the phase of the commutator
cannot be change by rephasing the operators.
Both cases can be realized using a representation of the rotations in terms of spin operators by
U(Rx) = exp(iπSx) and U(Rz) = exp(iπSz). The S = 1 representation with

Sx =
1√
2

 0 1 0

1 0 1

0 1 0

 , Sz =

 −1 0 0

0 0 0

0 0 1

 . (54)

is a linear (ϕ = 0) representation. The S = 1/2 spin matrices

Sx =
1

2

(
0 1

1 0

)
, Sz =

1

2

(
1 0

0 −1

)
. (55)

form a projective (ϕ = π) representation. This can be seen easily as U(Rx) = σx and U(Rz) =

σz anti-commute (σx, σz are the Pauli matrices).
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4.2 MPS representations of SPT phases

For the study of SPT phases, it will be useful to derive how symmetry operations act on MPS in
the canonical form. Let us consider an on-site symmetry operation which is applied to all sites

|ψ̃〉 =
[⊗

n

un(g)

]
|ψ〉, (56)

where un(g) is acting on site n with g being an element of the symmetry group G under which
the state |ψ〉 is invariant. In the MPS formulation, the transformation corresponds to contracting
the symmetry operation with all physical legs as shown in Fig. 5(a). In Ref. [30] it was shown
that for an MPS in canonical form the matrices Γ j transform under symmetry operations g as∑

j′

ujj′(g)Γ
j′ = eiθgU †(g)Γ jU (g), (57)

with a diagrammatic representation as shown in Fig. 5(b). Here U(g) is a unitary matrix which
commutes with the Λ matrices, and eiθ(g) is a phase.2 It is clear that this is a sufficient condition
for the MPS to be symmetric. To show that it is a necessary condition, one has to apply the
Schwarz inequality and use conditions of the canonical form [30].
Equivalently to the discussion above, it can be shown that the matricesU(g) form a χ-dimensional
linear or projective representation of the symmetry group of the wave function and eiθ(g) is a
linear (1D) representation [6]. The matrices U(g) are actually a representation of the symmetry
operations in the basis of Schmidt states (this can be seen by going back to the definition of
the canonical form). Note that we assumed a translationally invariant MPS but we can directly
generalize the concept to the general case by allowing site dependent U(g).
Similar relations can be derived for symmetries that are not on-site operations. For a time
reversal transformation Γ j is transformed to (Γ j)∗ (complex conjugate) on the left hand side
(including possible spin rotations). In the case of inversion symmetry Γ j is transformed to
(Γ j)T (transpose) on the left hand side of Eq. (57). We refer to Refs. [6, 7] for further details.

4.3 Simple examples of different SPT phases

We will now consider two different MPSs for a spin-1 chain that belong to different symmetry
protected phases protected by the Z2 × Z2 symmetry, i.e, π rotations about the x and z axis.
Clearly, the onsite representation of the Z2 × Z2 in terms of the S = 1 degrees of freedom is a
linear one. Let us now analyze how the MPS representation of two different states transforms
under the Z2 × Z2 symmetry.
Spin-1 AKLT state: The AKLT state has SO(3) symmetry and Z2×Z2 is a subgroup thereof.
Since the MPS representation Eq. (28) is very simple, we can directly extract the projective
representation by applying the symmetry operations and find that

U(Rx) = σx, U(Rz) = σz

2As U(g) commutes with Λ, it also commutes with the reduced density matrices ρL and ρR.
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Fig. 5: (a): Transformation of an MPS under an on-site symmetry g applied to all sites.
(b): Representation of a symmetry operation in terms of the MPS.

and θ = π (To arrive at this result, one can simply apply the on-site symmetry operations to the
MPS). The representation of Z2 × Z2 is a projective one with the gauge invariant phase factor
U(Rx)U(Rz)U

†(Rx)U
†(Rz) = −1.

Spin-1 product state: A product state of Sz = 0 eigenstates of the form |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉
is invariant under Z2 × Z2 and the MPS transforms trivially under Z2 × Z2 rotations

U(Rx) = 1, U(Rz) = 1

with U(Rx)U(Rz)U
†(Rx)U

†(Rz) = 1 and θ = 0.
As argued above, these phase factors characterize the two phases as they cannot be changed un-
less the symmetry is broken or the system undergoes a phase transition. Thus we have identified
two representatives of different SPT phases.

4.4 Degeneracies in the entanglement spectrum

Here we discuss some practical ideas of how to detect SPT in numerical simulations in terms
of the entanglement spectrum. Topological phases with non-trivial projective representations
necessarily have degeneracies in the entanglement spectrum. That is, all eigenvalues of the
reduced density matrices ρL and ρR for the bipartition of the system into two half-chains are
degenerate.
To see this, let us assume that the ground state is represented as a MPS and is symmetric
under a symmetry group G. Using the Eq. (57), we find the symmetry representation U(g)

in terms of the auxiliary indices which commutes with the reduced density matrices. If the
U(g) for g ∈ G form a projective representation of the symmetry group, we can find a set of
non-commuting elements such that for example U(gi)U(gj)U(gi)†U(gj)† = exp(iϕ). The non-
trivial commutation relations require that the irreducible representations have dimensions larger
than one, which yields degeneracies in the spectrum of ρL and (ρR). For example, if ϕ = π, the
spectrum is doubly degenerate, since ρL and ρR commute with the two unitary matrices Ux, Uz
which anti-commute among themselves.
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5 Universal entanglement scaling at critical points

In the previous section, we mainly focused on local and gapped Hamiltonians for which we
found an area law. We will now shift our attention to ground states at critical points where
the correlation length diverges and the state becomes scale invariant. The microscopic details
become irrelevant for the long wavelength physics and according to the universality hypothesis,
certain quantities only depend on basic properties like the symmetry of the system.
Many critical points in one-dimensional systems can be described by conformal field theories
(CFT). A CFT is a quantum field theory that is invariant under conformal transformations (i.e.,
transformations that locally preserve angles, but not necessarily lengths). The number of in-
dependent conformal transformations is infinite for 1+1D, which makes conformal symmetry
highly constraining in this case. As a result, conformally invariant critical points in 1+1 dimen-
sions can be described by a small number of parameters. One of the key quantities in this context
is the central charge c, which is a universal quantity that quantifies the low energy degrees of
freedom of the theory. For example, for free bosons c = 1, whereas the Ising universality class
has c = 1/2.
We will now show that the central charge is intimately linked to the bipartite entanglement
entropy [9,8]. Let us compute the entanglement entropy for the bipartition of a 1+1 dimensional
lattice model from the reduced density matrix ρA. Since the eigenvalues lie in the interval [0, 1]
and Tr ρA = 1, Tr ρnA is convergent and analytic for all Re n > 1. Hence we can obtain the
entanglement entropy using

S = − lim
n→1

∂

∂n
Tr ρnA. (58)

While calculating Tr ρnA for a generic n is not feasible, it is possible for positive integer n using
the replica trick and then analytically continuing it to a general complex value. In particular, the
calculation for positive integer n reduces to that of a partition function on a Riemann surface
that is analytically achievable in a quantum field theory. Using this approach, it is now possible
to obtain the entanglement entropy for a 1+1 dimensional CFT in different settings:
First, we consider the case in which we cut out ` consecutive sites from an infinite chain for
which we find [9]

S =
c

3
log

(
`

a

)
+O(1). (59)

Here c is the central charge and a is an ultraviolet cutoff, corresponding to a lattice spacing.
Thus the entanglement entropy does not exhibit an area law but instead diverges logarithmically.
Moreover, the Rényi entropies are given by

Sn =
c

6

(
1 +

1

n

)
log

(
`

a

)
+O(1). (60)

Second, we consider the case in which we cut a finite chain of length L into two pieces of length
` and L− ` for which we obtain

S =
c

6
log

(
2L

πa
sin

π`

L

)
+O(1), (61)
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with the special case for a bipartition into two equally sized halves,

S =
c

6
log

(
`

a

)
+O(1). (62)

The coefficient in front of the logarithm is thus half of the one where we cut out a finite block
from an infinite system. These above two formulas are particularly useful for extracting the
central charge from finite size numerics.
Third, we consider an infinite system that is close to a critical point, where the correlation length
is large but finite. In this case one can often still effectively describe the system by a conformal
field theory. One then obtains for the entanglement entropy [31]

S =
c

6
log

(
ξ

a

)
+O(1). (63)

The latter formula is very useful for infinite-system MPS based simulations of critical points,
where a finite bond dimension induces a finite correlation length. In this entanglement scaling
approach, a simulation at the critical point is performed with increasing bond dimension, which
can be used to extract the central charge [32, 33].

6 Case study: Phase diagram of a spin-1 chain

We now demonstrate the usefulness of the entanglement based quantities we derived in the
preceding sections to numerically study the phase diagram of a spin-1 chain. For this we will
first use MPS based methods to obtain the ground state and then analyze its properties using
entanglement spectroscopy and entanglement scaling.
We will investigate the phase diagram of the Hamiltonian

H = J
∑
j

~Sj · ~Sj+1 +D
∑
j

(Szj )
2, (64)

where the first term is the spin-1 Heisenberg coupling (J > 0) and the second term is a single
ion anisotropy (D > 0). This model has various symmetries that can protect SPT phases,
including time reversal, inversion symmetry, and Z2 × Z2 spin rotation symmetry. The phase
diagram of this model is well known (Ref. [34] and citations therein) and thus it serves as a
good testing case.
In order to understand the phase diagram, let us first consider the limiting cases:

• For D � J , the model reduces to the antiferromagnetic spin-1 Heisenberg model and the
ground state is in the Haldane phase [35], which also contains the AKLT state |ψAKLT〉
[21]. Based on the consideration made in Section 4, we know that the ground state is in a
non-trivial SPT phase.

• For D � J , the ground state is adiabatically connected to a simple product state
|ψlarge D〉 = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, which is thus in a trivial phase.
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Fig. 6: (a) Half-chain entanglement entropy for the spin-1 chain Eq. (64) of length L = 128
as function of the bond dimension χmax used for the MPS simulations for different D. (b) Half-
chain entanglement entropy for different systems sizes as function of D. The dashed line indi-
cates the location of the exact critical point [34]. (c) Entanglement spectrum as function of D
with a characteristic degeneracy in the Haldane phase. (d) Scaling of the entanglement entropy
at the critical point, allowing us to extract a central charge c = 1.

Consequently, there has to be a phase transition between the two limiting cases.
We use the DMRG [28] method to variationally optimize an MPS ansatz for the ground state
of the Hamiltonian and implement the code in Python with the TeNpy package [5]. A minimal
code that finds the MPS representation for a spin-1 chain reads:

from tenpy.networks.mps import MPS
from tenpy.models.spins import SpinModel
from tenpy.algorithms import dmrg

M = SpinModel({"S":1,"L": 16,"bc_MPS": "finite",
"Jx": 0,"Jy": 0,"Jz": 0,"D":2})

psi = MPS.from_product_state(M.lat.mps_sites(), [1]*16, "finite")
dmrg_params = {"trunc_params": {"chi_max": 30, "svd_min": 1.e-10}}
info = dmrg.run(psi, M, dmrg_params)
print("S[j] =", psi.entanglement_entropy())

For numerical stability, we add a small field at the first and last site to prevent the edge modes
from coupling to each other. To test the convergence and figure out the required bond dimension
χmax, we plot the half-chain entanglement entropy S in Fig. 6(a). We find that S converges for
relatively small χmax for the system sizes considered. Indeed, based on the area law, we expect
that the required bond dimension is independent of system size in gapped phases. However, the
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entanglement entropy diverges logarithmically at critical points and thus the bond dimension has
to be increased as we increase the system size (typically χmax ∼ Lκ for some model specific
exponent κ > 0). The logarithmic divergence of the entanglement entropy provides a useful
signature to determine critical points in phase diagrams as seen in Fig. 6(b). We can clearly dis-
tinguish the area law behavior in the gapped phases from the critical point. Similar techniques
have been used in the literature to pinpoint the critical point at DC/J = 0.96845(8) [34]. The
entanglement spectrum shown in Fig. 6(c) shows the characteristic degeneracy throughout the
Haldane phase and only accidental degeneracies in the large D phase. Note that we could also
use non-local order parameters to distinguish the two phases [36, 37]. Lastly we focus on the
properties of the critical point and investigate the entanglement scaling in Fig. 6(d). Using
Eq. (62), we extract a central charge of c = 1, compatible with the universality of a Gaussian
transition [38].
The tools applied in this case study can (in principle) be applied to determine the phase diagram
of any one-dimensional model Hamiltonian. The main obstacle is that the ground state might
be highly entangled, preventing an accurate representation as an MPS. This is particularly the
case when considering critical phases, especially if the central charge is large.

7 Conclusions and further developments

In these lecture notes, we discussed a few aspects of many-body entanglement. After a general
introduction, we introduced the area law which is commonly obeyed by ground states of local
Hamiltonians, i.e., the leading term of the entanglement entropy grows at most proportionally
with the boundary between the two partitions. This is in contrast to the volume law which is
found for random or highly excited states. The area law and resulting locality of the ground state
are extremely helpful to investigate the intricate structure of quantum many-body states and their
emergent quantum orders. To demonstrate this, we focused on three different applications to
one-dimensional quantum spin systems: First, we showed that area law states can be efficiently
represented using MPSs—which are the basis for several algorithms that allow to simulate
large quantum systems. Second, we investigated the entanglement properties of ground states
and how they transform under symmetries, providing a framework for the classification of SPT
phases. Third, we identified universal scaling properties of the entanglement entropies.
We obviously only covered a small fraction of this fast moving and rich field. Let us close by
briefly mentioning some exciting aspects that could not be covered in theses notes.

Topological entanglement. The entanglement entropy for a simply connected region for a
two-dimensional system has the general form S = α|∂A| − γ + . . . , where α in the leading
term is a non-universal coefficient and |∂A| is the perimeter of the subsystem. The sub-leading
term γ, also known as the topological entanglement entropy, is universal and reflects the any-
onic content that characterizes the topological order [39, 40]. This is directly related to the
total quantum dimension (D) of the underlying topological field theory as γ = logD. The
topological entanglement is a very useful quantity to detect topological orders.
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Many-body localization. So far we only discussed entanglement of ground states but the
concept is also very useful to characterize non-equilibrium properties. One of the most remark-
able predictions of quantum mechanics is that an arbitrarily weak random potential is sufficient
to localize all energy eigenstates of a single particle moving in one dimension. Recent work
has proposed that, if there are electron-electron interactions but the electronic system is isolated
from other degrees of freedom, there can be a many-body localization (MBL) transition even in
a one-dimensional system for which all the single-particle states are localized [41]. Entangle-
ment is useful to characterize MBL in different ways: First, while the highly excited eigenstates
of generic Hamiltonians fulfill a volume law, the eigenstates of a fully MBL systems obey an
area law [42]. Thus the entanglement of eigenstates serves as an “order parameter” to detect a
transition from an extended to an MBL phase. Second, the dynamical properties of the entan-
glement entropy allow us to distinguish a non-interacting (Anderson) localized system from an
MBL system. While the entanglement following a quantum quench saturates for the former, it
shows a logarithmic growth as function of time for the latter [43].
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1 Introduction

Correlated dynamics play a key role in many aspects of our world, ranging from collective be-
havior of swarms of animals, correlations in the fluctuations of share prices at the stock market,
to dynamical processes determining our weather. In physics, correlations in the dynamics of
interacting many-body systems lie at the heart of our understanding of collective dynamical
phenomena. Understanding the role of correlations in quantum systems is both a fundamen-
tal challenge and of high practical relevance for the control of multi-particle quantum systems,
for example in the context of the ongoing efforts to build large-scale quantum computers and
quantum simulators [1, 2]. Whereas most research has been focusing on various types of corre-
lations that can be present in the states of quantum systems, in this lecture, our main focus will
be on correlations that can be present in the dynamics of quantum systems. In particular, we
will be discussing some basics of quantum dynamics in closed and open quantum systems, and
introduce and discuss a general and rigorous method to quantify the amount of correlations in
general dynamics of quantum systems. We will then apply these methods to various physical
examples, such as the correlated decay of excited atoms coupled to the radiation field, and to the
characterization of noise characteristics in real experimental trapped-ion quantum computers.

1.1 Temporal vs spatial correlations

Between what types of correlations in the dynamics of quantum systems can we distinguish?
Quantum systems can display a wide variety of dynamical behaviors, in particular in open
quantum systems, which are systems that are coupled to the surrounding environment. One
interesting feature which has attracted much attention is the presence of memory effects (non-
Markovianity) in the time evolution. Such temporal effects typically arise for strong enough
coupling between the system and its environment, or when the environment is structured [3–5].
Whereas memory effects (or time correlations) can be present in any quantum system exposed to
noise, another extremely relevant feature, which we will focus on in this lecture, are correlations
in the dynamics of different parts of composite, i.e., multi-partite quantum systems. Since
different parties of a partition are often, though not always, identified with different places
in space, we will in the following refer to these correlations between subsystems of a larger
quantum system as spatial correlations.
Spatial correlations in the dynamics give rise to a wide plethora of interesting phenomena, such
as super-radiance [6] and decoherence-free subspaces [7–9], which we will also discuss as part
of this lecture, and other phenomena like super-decoherence [10] and sub-radiance [11].
Moreover, clarifying the role of spatial correlations in the performance of a large variety of
quantum processes is a highly active area of research, e.g. in quantum computing. There,
spatially correlated noise can substantially reduce the parameter regimes and lower the error
thresholds below which errors can be successfully fought off by quantum error correction tech-
niques [12–14]. Other areas of interest are understanding the role of spatial correlations in the
quantum dynamics underlying photosynthesis and excitation transfer [15, 16], and applications
in quantum metrology [17].
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As already mentioned, numerous works have aimed at quantifying up to which extent quantum
dynamics deviates from the Markovian behavior. However, much less attention has been paid
to developing quantifiers of spatial correlations in the dynamics. This may be partially due to
the well-known fact that under many, though not all practical circumstances, dynamical correla-
tions can be detected by studying the time evolution of correlation functions of properly chosen
observables OA and OB, acting respectively on the two parties A and B of a composite system
S of interest. Indeed, any correlation C(OA,OB) = 〈OA ⊗OB〉 − 〈OA〉〈OB〉 detected during
the time evolution of an initial product state, ρ = ρA ⊗ ρB, witnesses the correlated character
of the dynamics. Here, ρA and ρB denote the initial density operators of the two subsystems.
However, it is a priori not easy to guess suitable observables. Furthermore there exist highly
correlated dynamics, which cannot be realized by a combination of local processes and which
do not generate any such correlation, e.g. a swap process between two parties.
Thus, it is important to develop methods which allow one to detect the presence or absence
of spatial correlations in the dynamics, without a priori knowledge of the underlying micro-
scopic dynamics, and which do not require one to resort to adequately chosen “test” observables
and initial “test” quantum states. Such methods should furthermore provide a rigorous ground
to quantitatively compare the amount of spatial correlations in different dynamical processes.
These characteristics are essential for a “good” correlation quantifier that can be used to study
spatial correlations in quantum dynamics from a fundamental point of view, to clarify their role
in physical processes, as well as to measure and quantify spatial correlations in the dynamics of
experimental quantum systems.
In this lecture, we will introduce first basic concepts of correlations in quantum states and
quantum dynamics, and then introduce methods to quantify the degree of correlation in general
quantum dynamics.

1.2 Correlations in quantum states

Before discussing quantum dynamics, let us, however, take a step back and first consider cor-
relations that can be present in quantum states: a famous example of quantum-mechanically
perfectly correlated states are Bell states [12], also called EPR-pairs, named after Einstein,
Podolsky and Rosen [18]. An example is the following state of two qubits A and B

∣∣Φ+
〉
AB

=
1√
2

(
|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B

)
=

1√
2

(
|00〉AB + |11〉AB

)
, (1)

where |0〉 and |1〉 denote the computational basis states of each qubit (or spin-1/2 particle).
Here and in the following we will mostly suppress the tensor-product symbol, for simplicity
and compactness of notation. If now, say, the first qubit is measured in the computational
basis, i.e., the state is projected onto either |0〉1 or |1〉1 (the eigenstates of the Pauli matrix
Z = |0〉〈0| − |1〉〈1|), each of the two possible measurement outcomes +1 (for |0〉1) and −1

(for |1〉1) will be obtained with probability 1/2. If the second qubit is also measured, it will
be found with certainty in the same state as the first qubit – the measurement outcomes will
be perfectly correlated. Note that this measurement statistics could also be explained by purely
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classical correlations: think of a machine that with probability of 50% prepares both qubits
in |00〉AB, and with 50% in |11〉AB – the resulting measurement statistics would be the same.
But what happens if the qubits of the Bell state (1) are measured in the X-basis instead, i.e.,
the observable Pauli matrix X = |0〉〈1| + |1〉〈0| is measured? The Bell state can be equally
written as

∣∣Φ+
〉
AB

=
1√
2

(
|00〉AB + |11〉AB

)
=

1√
2

(
|++〉AB + |−−〉AB

)
(2)

with |±〉 =
(
|0〉 ± |1〉

)
/
√

2 denoting the eigenstates of X , X |±〉 = ± |±〉. Thus, the mea-
surement outcomes for measurements in this different basis are also perfectly correlated! This
feature is a signature of the entangled nature of this two-qubit state: in fact, there exists no
basis, in which |Φ+〉AB can be written as a product of single-qubit states |ψ1〉A and |ψ2〉B,
|Φ+〉 6= |ψ1〉A ⊗ |ψ2〉B – therefore, the two qubits are entangled.
How can one then quantify the amount of correlations in a bi-partite quantum state? This can
be done by means of the quantum mutual information, which is a generalization of the Shannon
mutual information in the classical case [12], which quantifies the mutual dependence between
two random variables. Let us start by considering the density matrix ρS describing the joint
state of a system S, which is composed of two parts A and B. The von Neumann entropy S(ρS)

of the state ρS is defined by
S(ρS) := −TrρS log(ρS) (3)

The density operator ρS can be written in terms of its eigenstates |ψi〉, ρS =
∑

i pi |ψi〉〈ψi|,
with pi ≥ 0 and

∑
i pi = 1. Then the expression for the von Neumann entropy reduces to

S(ρS) = −∑i pi log pi. For the system S in a pure state |ψ〉, ρS = |ψ〉 〈ψ|, and S(ρS) = 0.
The reduced density operators, associated to parts A and B of the composite system, ρS|A and
ρS|B, are obtained by performing the partial trace [12] over the respective complementary parts

ρS|A = TrB(ρS), ρS|B = TrA(ρS). (4)

For the Bell state of Eq. (1), the reduced density operators correspond to the fully mixed state

ρS|A =
1

2

(
|0〉〈0|A + |1〉〈1|A

)
, ρS|A =

1

2

(
|0〉〈0|B + |1〉〈1|B

)
, (5)

and thus the von Neumann entropies evaluate to S(ρS|A) = S(ρS|B) = log 2.
Now, the quantum mutual information of a state ρS is given by

I(ρS) = S(ρS|A) + S(ρS|B)− S(ρS). (6)

For the Bell state of Eq. (1) the quantum mutual information assumes its maximum value for
a two-qubit system, I(ρS) = 2 log 2, indicating that the Bell states are indeed maximally cor-
related quantum states. On the other hand, for any product state, i.e., if ρS = ρS|A ⊗ ρS|B,
the quantum mutual information vanishes, which indicates that the subsystems A and B are
independent. In order words, outcomes of local measurements on subsystems A and B are in
the latter case completely uncorrelated, and thus from measuring one subsystem no information
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about the state of the other subsystem can be inferred. Thus, quantum mutual information, as its
classical counterpart, indicates by how much knowing about one part of a larger system reduces
the uncertainty about the other part.
Finally, how can correlations in quantum states be detected in practice, i.e., in an experiment?
As discussed, they reveal themselves in correlations in the measurement statistics of suitably
chosen observables: Non-vanishing values for correlation functions such as C(OA,OB) =

〈OA⊗OB〉−〈OA〉〈OB〉 signal the presence of correlations. For the example of the Bell state of
Eq. (1), the choice of, e.g.,OA = ZA andOB = ZB is suitable, since 〈ZA〉 = TrA(ZAρS|A) = 0,
and similarly for qubit B, whereas 〈ZA ⊗ ZB〉 = +1. In contrast, for a product state such as
e.g. |0〉A ⊗ |0〉B, the correlator expectation value vanishes, C(ZA, ZB) = 0.

2 Quantum dynamics

2.1 Closed- and open-system quantum dynamics

After this brief discussion about correlations that can be present in quantum states, let us turn
our attention to quantum dynamics. General time evolution of a quantum system S, which
can be coupled to an environment, can be described by quantum operations ES [3]. Here, we
will focus on completely positive and trace-preserving (CPT) maps, often also called Kraus
maps, which map valid physical density matrices describing the state of the system S onto other
physical density matrices

ES : ρS 7→ ES(ρS) =
∑

i

Ki ρSK
†
i . (7)

Here, the set of so-called Kraus operators {Ki} fulfill
∑

iK
†
iKi = 1S. Note that this includes

the case of time evolution in closed quantum systems, where ρS 7→ US ρS U
†
S, i.e., one Kraus

operator corresponds to the unitary time evolution operator US and all other Kraus operators
vanish.
As an example for open-system dynamics let us briefly discuss dephasing dynamics of a single
qubit or spin-1/2 system. This dynamics is present in many physical systems, and it is a limiting
factor in almost all architectures that are being used for quantum processors. Such dynamics
can be generated for instance by fluctuating fields (e.g. magnetic background fields) in the lab.
We can thus describe the dephasing process using a single fluctuating variable B(t), referred to
in the following as effective magnetic field

HG(t) =
1

2
B(t)Z. (8)

For simplicity, we assume the random fluctuation in the values of the effective magnetic field to
obey a Gaussian distribution P (B), which implies that

〈
exp

[
±i
∫ t

0

B(t′)dt′
]〉

= exp

[
−1

2

〈(∫ t

0

B(t′)dt′
)2
〉]

. (9)
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If one additionally assumes a stationary autocorrelation function of the noise source

〈
B(t+τ)B(t)

〉
=
〈
B(τ)B(0)

〉
, (10)

and furthermore a δ-correlation of the noise, one obtains that

〈
B(τ)B(0)

〉
=
〈
[B(0)]2

〉
δ(τ). (11)

Using these properties, one finds
〈[∫ t

0

B(t′)dt′
]2〉

=
〈
[B(0)]2

〉
t = γt, (12)

where we have defined the dephasing rate γ =
〈
[B(0)]2

〉
.

For an arbitrary initial (pure) state, ρ(0) = |ψ(0)〉〈ψ(0)|, with |ψ(0)〉 = α |0〉 + β |1〉, the state
at time t will be given by an average over the noise realizations

ρ(t) =

∫
|ψ(t)〉〈ψ(t)|P (B) dB = |α|2 |0〉〈0|+ |β|2 |1〉〈1|+ e−

1
2
γt
(
αβ∗ |0〉〈1|+ α∗β |1〉〈0|

)
.

(13)
This allows us to identify this process as the dephasing channel [12]

ES : ρS 7→ (1−p)ρS + pZρSZ, (14)

i.e., as a quantum operation with the two Kraus operators K0 =
√

1−p1 and K1 =
√
pZ

and the identification p = 1
2
(1 − e− 1

2
γt). Thus, for long times (t → ∞, p → 1/2), the initial

coherence (off-diagonal elements of the density matrix (13)) completely vanishes and the qubit
ends in an incoherent mixture of the computational basis states.

2.2 Detection of correlated dynamics

Let us now generalize our previous discussions in Sec. 1.2 about two qubits and consider a
general bipartite quantum system S = AB undergoing some dynamics given by a completely
positive and trace preserving (CPT) map ES. Without loss of generality we will assume that the
dimension of both subsystems A and B is the same, dim(HA) = dim(HB) = d, and therefore
dS := dim(HS) = d2. The dynamics ES is said to be uncorrelated with respect to the subsystems
A and B if it can be decomposed as ES = EA⊗EB, with individual CPT maps EA and EB acting
on the subsystems A and B, respectively. Otherwise we call it correlated.
Simple examples of correlated dynamics from the field of quantum information are, e.g., two-
qubit entangling gates, such as the prototypical two-qubit controlled-NOT (or CNOT) gate [12]

CNOT = |0〉〈0|A ⊗ 1B + |1〉〈1|A ⊗XB (15)

which flips the state of the target qubit (B), |0〉 ↔ |1〉, if and only if the control qubit (A) is in
the |1〉 state. For suitably chosen input product states, e.g. |ψ(0)〉 = |+〉1 ⊗ |0〉2, this unitary
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gate creates (maximally) correlated output states such as the Bell state of Eq. (1), therefore the
CNOT gate is clearly a correlated quantum dynamics!
Similarly, spatially homogeneous or global (magnetic) field fluctuations, acting with the same
strength on a register of two or more qubits, described by a Hamiltonian

HG(t) =
1

2
B(t)

∑

k

Zk (16)

result in spatially correlated dephasing dynamics. This dynamics ES on the qubit register can-
not be described by a product of independent dephasing processes, ES 6= ⊗kEk, with Ek acting
on the k-th qubit. It is left as an exercise to work out the generalization of Eq. (14) for this
scenario of correlated dephasing dynamics. Again, working with suitably chosen input states,
e.g. |ψ(0)〉 = ⊗k |+〉k, should allow one to distinguish between spatially correlated and uncor-
related dephasing.
In fact, this idea holds true in general: any correlation C(OA,OB) = 〈OA ⊗OB〉 − 〈OA〉〈OB〉
detected during the time evolution of an initial product state, ρS = ρA ⊗ ρB, witnesses the
correlated character of the dynamics. However, for this to work, one needs to be lucky or have
a priory knowledge about the dynamics and thereby be able to choose suitable observables and
input states, for which correlated dynamics generates non-vanishing correlations in the final
quantum state generated by the dynamics. Furthermore, note that there exist highly correlated
dynamics, which cannot be realized by a combination of local processes, which however do not
generate any such correlation. A simple example is the swap process between two parties. Such
dynamics can either act on internal degrees of freedom, induced, e.g., by the action of a swap
gate acting on two qubits [12], or can correspond to (unwanted) external dynamics, caused,
e.g., by correlated hopping of atoms in an optical lattice [19] or the melting of an ion Coulomb
crystal and subsequent recooling dynamics with a possibly different rearrangement of particles
in trapped-ion architectures [20].

3 Rigorous quantifier for correlations in quantum dynamics

In light of this discussion, let us therefore now discuss a systematic and rigorous method to cap-
ture and quantify spatial correlations in quantum dynamics, not requiring any a-priori knowl-
edge or assumptions about the dynamics taking place on the composite quantum system.

3.1 Choi-Jamiołkowski isomorphism

The central tool of our construction is the Choi-Jamiołkowski isomorphism [21, 22, 12]. This
is a one-to-one correspondence of a given quantum dynamics of a system to an equivalent
representation in the form of a quantum state in an enlarged Hilbert space. As we will see, this
mapping will allow us to use tools developed for the quantification of correlations in quantum
states, as we discussed above in Sec. 1.2, for our purpose of quantifying correlations in the
quantum dynamics taking place in the bi-partite system S = AB. For this mapping, consider a
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Fig. 1: Schematics of the method. Left: the system S is prepared in a maximally entangled state
|ΦSS′〉 with the auxiliary system S′. This state is just a product of maximally entangled states
between AA′ and BB′, see Eq. (17). Middle: the system undergoes some dynamics ES. Right:
if and only if this process is correlated with respect to A and B, the total system SS′ becomes
correlated with respect to the bipartition AA′|BB′. The degree of correlation of the dynamics
can then be measured by the normalized mutual information, see Eq. (20).

second d2-dimensional bipartite system S′ = A′B′, essentially a “copy” of system S. Next, let
|ΦSS′〉 be the maximally entangled state between S and S′,

|ΦSS′〉 :=
1

d

d2∑

j=1

|jj〉SS′ =
1

d

d∑

k,`=1

|k`〉AB ⊗ |k`〉A′B′ . (17)

Here, |j〉 denotes the state vector with 1 at the j-th position and zero elsewhere, i.e., the canon-
ical basis in the d2-dimensional Hilbert space of S and its “copy” S′. Similarly, |k〉A and |l〉B
denote the canonical basis of the d-dimensional subsystems A, B, and A′, B′. The Choi-
Jamiołkowki representation of some CPT map ES on S is then given by the d4-dimensional
quantum state

ρCJ
S := ES ⊗ 1S′

(
|ΦSS′〉〈ΦSS′|

)
. (18)

This means it is obtained by acting with the quantum operation ES on S, and the identity op-
eration 1S′ on S′, as shown schematically in the middle part of Fig. 1. The entire information
about the dynamical process ES taking place in S is now contained in this unique state ρCJ

S in
the enlarged d4-dimensional space.

To become familiar with the Choi-Jamiołkowki representation of a quantum process, it is a use-
ful exercise to show that for a system S consisting of a single qubit, which undergoes dephasing
dynamics as described by Eq. (14), the Choi-Jamiołkowki state (18) reads

ρCJ
S =

1

2

(
|00〉〈00|SS′ + |11〉〈11|SS′

)
+

1

2
(1−2p)

(
|00〉〈11|SS′ + |11〉〈00|SS′

)
. (19)
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3.2 Construction of a correlation measure

In order to formulate a faithful measure of spatial correlations for dynamics, we adopt a re-
source theoretic approach (see, e.g., [23, 24] where this approach is used in the context of
entanglement theory). The idea is that one may consider correlated dynamics as a resource
to perform whatever task that cannot be implemented solely by (composing) uncorrelated evo-
lutions EA ⊗ EB. Then, suppose that the system S undergoes some dynamics given by the
map ES. Now, consider the (left and right) composition of ES with some uncorrelated maps
LA ⊗ LB and RA ⊗ RB, which act before and after ES, so that the total dynamics is given by
E ′S = (LA ⊗ LB)ES(RA ⊗RB). It is clear that any task that we can do with E ′S by composition
with uncorrelated maps can also be achieved with ES by composition with uncorrelated maps.
Hence, we assert that the amount of correlation in ES is at least as large as in E ′S. In other words,
the amount of correlations of some dynamics does not increase under composition with uncor-
related dynamics. This is the fundamental law of this resource theory of spatial correlations for
dynamics, and any faithful measure of correlations should satisfy it. For the sake of comparison,
in the resource theory of entanglement, entanglement is the resource, and the fundamental law
is that entanglement cannot increase under application of local operations and classical commu-
nication (LOCC) [23]. For example, the entangled state of Eq. (1) can be transformed via the
local unitary XB on qubit B into another Bell state 1√

2
(|01〉AB + |10〉AB), with the same amount

of entanglement. However, a product state of two qubits, not having any entanglement, cannot
be transformed into an entangled state by local operations such as single-qubit gate operations
or local measurements on A and B, or classical communication between the two single-qubit
subsystems A and B. In this spirit, we introduce a measure of correlations for dynamics [25]
via the (normalized) quantum mutual information of the Choi-Jamiołkowski state ρCJ

S , Eq. (18),

Ī(ES) :=
I(ρCJ

S )

4 log d
:=

1

4 log d

(
S
(
ρCJ
S |AA′

)
+ S

(
ρCJ
S |BB′

)
− S

(
ρCJ
S

) )
. (20)

Here, S(·) := −Tr[(·) log(·)] is again the von Neumann entropy, now evaluated for the reduced
density operators ρCJ

S |AA′ := TrBB′(ρCJ
S ) and ρCJ

S |BB′ := TrAA′(ρCJ
S ); see Fig. 1. In essence,

here we apply the quantum mutual information and von Neumann entropy we have seen in
Sec. 1.2 for quantum states, now to the Choi-Jamiołkowski state, which is equivalent to the
quantum dynamics taking place on system S.
But why is the quantity Ī(ES) a good and faithful measure of how correlated the dynamics given
by ES is? The reason is that it satisfies the following desired properties:

i) The quantity Ī(ES) = 0 if and only if ES corresponds to uncorrelated dynamics, ES =

EA ⊗ EB. This follows from the fact that the Choi-Jamiołkowski state of an uncorrelated
map is a product state with respect to the bipartition AA′|BB′ (no proof given here).

ii) The quantity Ī(ES) ∈ [0, 1]. It is clear that Ī(ES) ≥ 0, moreover it reaches its maximum
value when S(ρCJ

S ) is minimal and S
(
ρCJ
S |AA′

)
+S

(
ρCJ
S |BB′

)
is maximal. Both conditions

are met when ρCJ
S is a maximally entangled state with respect to the bipartition AA′|BB′,

leading to I(ρCJ
S ) = 2 log d2.
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iii) The fundamental law of the resource theory for correlations in quantum dynamics is sat-
isfied, namely that

Ī(ES) ≥ Ī
(
(LA ⊗ LB)ES(RA ⊗RB)

)
, (21)

stating that the amount of correlations of the dynamics ES decreases or at most stays
the same, if the dynamics is composed with uncorrelated dynamics. Stated differently,
if a process is a composition of a correlated and an uncorrelated part, the amount of
correlations in the composition has to be equal or smaller than the amount of correlation
that is inherent to the correlated part. Here, equality in the above inequality is reached for
composition with uncorrelated unitary dynamics, LA(·) = UA(·)U †A, LB(·) = UB(·)U †B,
RA(·) = VA(·)V †A, andRB(·) = VB(·)V †B.

Leaving aside the normalization factor 1/(4 log d), the quantifier (20) can be intuitively under-
stood as the amount of information that is needed to distinguish the actual dynamics ES from
the individual dynamics of its parts ES1 ⊗ ES2 [12]. Namely, the information that is lost when
ES1 ⊗ ES2 is taken as an approximation of ES. The normalized quantity Ī ∈ [0, 1] quantifies this
information relative to the maximum value it can take on all possible processes.
For clarity, we remark that the use of an ancilla system S′ is merely underlying the mathe-
matical construction of the isomorphism. It is not required in an experimental determination
of Ī . Rather than reconstructing the Choi-Jamiołkowski state ρCJ

S from quantum state tomog-
raphy [12] on the enlarged system SS′, one can equivalently determine ρCJ

S by reconstructing
the dynamics ES by means of quantum process tomography on the physical system S alone.
For a system S of N qubits, due to the Choi-Jamiołkowski isomorphism the number of real
parameters to determine, 4N(4N−1), is in both cases the same and grows exponentially with
the number of qubits.

3.3 Maximally correlated quantum dynamics

Before computing Ī for some cases of physical interest it is worth studying which dynamics
achieve the maximum value Īmax = 1. From the resource theory point of view, these dynamics
can be considered as maximally correlated since they cannot be constructed from other maps
by composition with uncorrelated maps [because of Eq. (21)]. One can show the following
property of maximally correlated dynamics:

Theorem 1. If for a map ES the property that Ī(ES) = 1 holds, it must be unitary ES(·) =

US(·)U †S, USU
†
S = 1.

Proof. As aforementioned, the maximum value, Ī(ES) = 1, is reached if and only if ρCJ
S is a

maximally entangled state with respect to the bipartition AA′|BB′, |Ψ(AA′)|(BB′)〉. Then

ES ⊗ 1S′
(
|ΦSS′〉〈ΦSS′ |

)
= |Ψ(AA′)|(BB′)〉〈Ψ(AA′)|(BB′)| (22)

is a pure state. Therefore ES must be unitary as the Choi-Jamiołkowski state is pure if and only
if it represents a unitary map.
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What are examples of maximally correlated dynamics? One example for such dynamics is the
swap operation, exchanging the states of the two parties A and B, US = UA↔B, and thus also
any unitary of the form of (UA ⊗ UB)UA↔B(VA ⊗ VB).

However, not every US that is maximally correlated falls into this class. For example, the
unitary operation of two qubits U ′S = |21〉〈12|+ i

(
|11〉〈21|+ |12〉〈11|+ |22〉〈22|

)
is maximally

correlated, however, it cannot be written as (UA⊗UB)UA↔B(VA⊗ VB), since that would imply
vanishing Ī(U ′SUA↔B) whereas Ī(U ′SUA↔B) = 1/2 6= 0.

What about, e.g., the 2-qubit controlled-NOT (CNOT) gate? Interestingly, operations able to
create highly correlated states such as the CNOT gate achieve a correlation value of 1/2 and thus
do not correspond to maximally correlated dynamics. Note that whereas a CNOT gate creates,
for appropriately chosen two-qubit initial states, maximally entangled states, there are other
states which are left completely uncorrelated under its action. The measure Ī captures, com-
pletely independently of initial states and of whether possibly created correlations are quantum
or classical, the fact that correlated dynamics cannot be realized by purely local dynamics.

This leads to the following question: Among the quantum processes of a given system which
correspond to maximally correlated dynamics, is there one from which any other dynamics can
be obtained – something like the mother of all dynamics?

In some resource theories, such as bipartite entanglement, this is the case: there the maximal
element (e.g. a Bell state in a 2-qubit system) can generate any other element by applying
the operations which fulfill its fundamental law, e.g. LOCC. This is not the case here, i.e.,
maximally correlated evolutions cannot generate any arbitrary dynamics by composition with
uncorrelated operations. Indeed, if Emax

S were able to generate any other dynamics it would,
in particular, be able to generate any unitary evolution US, (LA ⊗ LB)Emax

S (RA ⊗ RB)(·) =

US(·)U †S. However, this would imply that LA⊗LB, Emax
S and (RA⊗RB) are unitary evolutions

as well, so that (UA ⊗ UB)Umax
S (VA ⊗ VB) = US, with Emax

S (·) = Umax
S (·)Umax†

S . Since Ī(ES) is
invariant under the composition of uncorrelated unitaries, this result would imply that for any
correlated unitary US, Ī(US) would take the same value, Ī(Umax

S ), and this is not true, as we
have seen for the examples of the swap operation and the CNOT gate.

4 Quantifying dynamical correlations in physical systems

4.1 Correlated dynamics of atoms in the electromagnetic vacuum

Let us now illustrate the behavior of Ī(ES) for the paradigmatic example of two identical two-
level atoms interacting with the vacuum of the electromagnetic radiation field.

The free Hamiltonian of the atoms of transition frequency ω is

HS =
ω

2

(
Z1 + Z2

)
(23)

with Zj the Pauli-matrix for the j-th atom. In addition, the environmental free Hamiltonian
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corresponds to the modes of the radiation field and is given by

HE =
∑

k

∑

λ=1,2

ωka
†
λ(k)aλ(k), (24)

where k and λ stand for the wave vector and the two polarization degrees of freedom, respec-
tively. We have taken natural units ~ = c = 1. The dispersion relation in free space is ωk = |k|,
and the field operators a†λ(k) and aλ(k) describe the creation and annihilation of photons with
wave vector k and polarization vector eλ. These fulfill k · eλ = 0 and eλ · eλ′ = δλ,λ′ .
The atom-field interaction is described in dipole approximation by the Hamiltonian

HSE = −
∑

j=1,2

[
σ−j d ·E(rj) + σ+

j d
∗ ·E(rj)

]
. (25)

Here, d is the dipole matrix element of the atomic transition, rj denotes the position of the j-th
atom, and the raising and lowering operators σ+

j and σ−j are defined as σ+
j = (σ−j )† = |e〉j j〈g|

for its exited |e〉j and ground |g〉j states. Furthermore, the electric field operator is given (in
Gaussian units)

E(r) = i
∑

k,λ

√
2πωk

V eλ(k)
(
aλ(k)eik·r − a†λ(k)e−ik·r

)
, (26)

where V denotes the quantization volume. Under a series of standard assumptions known as
the Markovian weak-coupling limit [3] the dynamics of the atoms is governed by a Lindblad
master equation of the form

dρS
dt

= L(ρS) = −iω
2

(
Z1 + Z2, ρS

)
+
∑

i,j=1,2

ajk

(
σ−k ρSσ

+
j − 1

2
{σ+

j σ
−
k , ρS}

)
. (27)

After taking the continuum limit ( 1
V
∑

k → 1
(2π)3

∫
d3k) and performing the integrals, the coef-

ficients ajk are given by (see e.g. Sec. 3.7.5 of Ref. [3])

ajk = γ0
(
j0(xjk) + P2(cos θjk)j2(xjk)

)
. (28)

Here, γ0 = 4
3
ω3|d|2, and j0(x) and j2(x) are spherical Bessel functions [26]

j0(x) =
sinx

x
, j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx, (29)

and
P2(cos θ) =

1

2

(
3 cos2 θ − 1

)
(30)

is a Legendre polynomial, with

xjk = ω|rj−rk| and cos2(θjk) =
|d · (rj−rk)|2
|d|2|rj−rk|2

. (31)

Notice that if the distance between atoms r = |r1 − r2|, is much larger than the wavelength
associated with the atomic transition r � 1/ω, we have ajk ' γ0δij and only the diagonal



Spatial Correlations in Quantum Dynamics 16.13

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600

0

0.1

0.2

0.3

0.4

Fig. 2: Maximum value of Ī as a function of the distance r for two two-level atoms radiating in
the electromagnetic vacuum. As expected, the amount of correlations in the dynamics decreases
with r. In the inset, Ī is represented as a function of time for different distances r between atoms
(ω = |d|/2 = 1, θ=0). With increasing time, correlations in the dynamics build up, which for
longer times decay to zero, except for the limit vanishing distance r→ 0 between the two atoms.

terms γ0 = 4
3
ω3|d|2 are relevant. Then, the master equation describes two-level atoms inter-

acting with independent environments, and there are no correlations in the emission of photons
by the first and the second atom. In the opposite case, when r � 1/ω, every matrix element
approaches the same value aij ' γ0, in the master equation the atomic transitions can be ap-
proximately described by the collective jump operators J± = σ±1 +σ±2 , and the pair of atoms
becomes equivalent to a four-level system with Hamiltonian ωJz = ω

2
(Z1+Z2) at the mean po-

sition (r1 − r2)/2 interacting with the electromagnetic vacuum. This emission of photons in a
collective way is known as super-radiance. It can be effectively described in terms of collective
angular momentum operators and was first studied in the 1950s by Robert H. Dicke [6].
To quantitatively assess this behavior of uncorrelated/correlated dynamics as a function of the
interatomic distance r, we can numerically compute the measure of correlations Ī according
to Eq. (20). To this end, we consider a maximally entangled state |ΦSS′〉 between two sets S

and S′ of two qubits according to the maximally correlated state as given for the general case
in Eq. (17). Namely, here S is the set of the two physical qubits, i.e., the two two-level atoms
1 and 2, and the “copy” system S′ is made up of two auxiliary qubits 1′ and 2′ as sketched in
Fig. 1. Next, the part S of the maximally entangled state |ΦSS′〉〈ΦSS′ | is evolved according to
the master equation (27) while keeping the part S′ constant, to obtain ρCJ

S (t). This can be done,
for instance, by numerically integrating the master equation dρCJ

S (t)

dt
= L ⊗ 1[ρCJ

S (t)], with the
initial condition ρCJ

S (0) = |ΨSS′〉〈ΨSS′|, where L is for the present example specified in Eq. (27).
Tracing out qubits 2 and 2′ of ρCJ

S (t) yields ρCJ
S (t)|11′ , and similarly tracing out qubits 1 and 1′

yields ρCJ
S (t)|22′ . Finally, this allows one to compute the von Neumann entropies of ρCJ

S (t)|11′ ,
ρCJ
S (t)|22′ and ρCJ

S (t) to calculate Ī(t) according to Eq. (20).
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The results are shown in Fig. 2. Despite the fact that the value of Ī depends on time (the
dynamical map is formally given by ES = etL), the correlation quantifier Ī decreases as r
increases, as expected. Furthermore, the value of Ī approaches zero for long times t (see inset
plot), except in the limiting case of vanishing distance r = 0 between the two atoms. This is
because for r 6= 0 the dynamics becomes uncorrelated in the asymptotic limit, limt→∞ etL =

E ⊗ E . Here, the single-qubit Kraus maps describing the dynamics of the composite two-
atom system are given by E(·) = K1(·)K†1 + K2(·)K†2 with Kraus operators K1 =

(
0 0
1 0

)
and

K2 =
(
0 0
0 1

)
. It can be checked from the form of this map that therefore for long times both

atoms will eventually end up in the product state formed of both atoms in the ground state |g〉.
However, for r = 0, limt→∞ etL is a correlated map. Thus, we obtain perfect agreement between
the rigorous measure of correlations Ī and the physically expected behavior of two distant atoms
undergoing independent decay.

4.2 Noise characterization of an experimental quantum computer

In the following, we will apply the correlation quantifier to a second physical scenario. We
will use it to study the dynamics of spatial correlations of noise processes that are present in a
trapped ion quantum computer, which has been built by our collaborators in the experimental
ion-trap group at Innsbruck, Austria [27], and for which we quantitatively characterized its
spatial noise correlations in a recent joint project [28]. To date, trapped ions are one of most
advanced platforms for quantum information processing, and a highly promising platform to
build reliable and scalable quantum computers. Figure 3 shows the schematic of a linear-ion
trap quantum processor.
Let us briefly describe the experimental platform used to implement the correlation characteri-
zation protocol. Each qubit is encoded in the 4S1/2 and 3D5/2 electronic states of a single 40Ca+

ion of a string of ions trapped in a macroscopic linear Paul trap [27]. Doppler cooling of the ion
crystal is performed on a short-lived cycling transition between the 4S1/2 and the 4P1/2 levels,
as illustrated in Fig. 4. The same transition is used to detect the qubit state via the electron
shelving scheme. Two additional repumping lasers ensure that the ion does not get trapped in a
dark state and enable resetting from the long-lived 3D5/2 state. A more detailed description of
the tool-set and the experimental setup used can be found in [27].
To manipulate the state of the qubit, two different laser beams are used: A global beam ef-
fectively illuminates all ions in the chain with equal power and allows rotations of all qubits
simultaneously. Therefore interactions of the following form are possible:

Rφ(θ) = exp

(
−iθ

2
Sφ

)
, (32)

where Sφ =
∑N

k=0(Xk cosφ+Yk sinφ) withXk and Yk being single-qubit Pauli matrices acting
on qubit k.
To perform local operations on single qubits an addressed beam is available. This tightly fo-
cused beam is steered along the linear ion chain via an electro-optical deflector. By driving the
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Fig. 3: Schematics of a linear-ion-trap quantum computer. A linear Paul trap formed of metal-
lic blades and endcap electrodes (left and right of the trap) is used to apply a combination of
static electric and oscillating radio-frequency fields, to create an confining potential in all three
directions for the charged ions. Ions can be laser-cooled so that they form at sufficiently low
temperatures self-assembled Coulomb crystals, such as shown in the fluoresence picture of a
linear ion crystal. Here, the ion positions are determined by the interplay of mutual Coulomb
repulsion between the ions and external confinement through the trapping fields. A pair of
(meta-)stable electronic states are used to encode one qubit in each of the ions. Tightly fo-
cused and collectively applied laser beams are then used to initialise the register of qubits to a
well-defined initial state at the beginning of a quantum computation, to apply single-qubit gate
operations and to read out the final state at the end of a quantum algorithm by a collecting the
light from state-dependent fluorescence imaging via a CCD camera. Two- or multi-qubit entan-
gling gate operations can be implemented by coupling the electronic dynamics to the collective
vibrational modes (phonons) of the ion crystal, which can thereby act as quantum bus.

To manipulate the state of the qubit two different laser beams are used: A global beam ef-
fectively illuminates all ions in the chain with equal power and allows rotations of all qubits
simultaneously. Therefore interactions of the following form are possible:

R�(✓) = exp

✓
�i
✓

2
S�

◆
, (31)

where S� =
PN

k=0(Xk cos�+Yk sin�) with Xk and Yk being single-qubit Pauli matrices acting
on qubit k.

To perform local operations on single qubits an addressed beam is available. This tightly fo-
cused beam is steered along the linear ion chain via an electro-optical deflector. By driving the

Fig. 3: Schematics of a linear-ion-trap quantum computer. A linear Paul trap formed of metallic
blades and endcap electrodes (at the left and right end of the trap) is used to apply a combi-
nation of static electric and oscillating radio-frequency fields, to create a confining potential
in all three directions for the charged ions. Ions can be laser-cooled so that they form at suf-
ficiently low temperatures self-assembled Coulomb crystals, such as shown in the fluorescence
picture of a linear ion crystal. Here, the ion positions are determined by the interplay of mutual
Coulomb repulsion between the ions and external confinement through the trapping fields. A
pair of (meta-)stable electronic states is used to encode one qubit in each of the ions. Tightly
focused as well as collectively applied laser beams are then be applied to the ions. These can be
used to initialize the register of qubits to a well-defined initial state at the beginning of a quan-
tum computation, to apply single-qubit gate operations and to read out the final state at the end
of a quantum algorithm by collecting the light from state-dependent fluorescence imaging via a
CCD camera. Two- or multi-qubit entangling gate operations can be implemented by coupling
the electronic dynamics to the collective vibrational modes (phonons) of the ion crystal, which
can thereby act as a quantum bus.

qubit transition on resonance or in a detuned way, two types of rotations can be realized:

R
(k)
φ (θ) = exp

(
−iθ

2
(Xk cosφ+ Yk sinφ)

)

and

S(k)
z (θ) = exp

(
−iθ

2
Zk

)
.

This control toolset allows one to prepare the qubits in the required initial state, encode them in
different Zeeman sublevels and perform quantum process tomography. Entangling gates belong
also to the gate set of the quantum processor [27], but are not needed for the noise correlation
characterization protocol and therefore not discussed here.
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Fig. 4: Electronic level scheme of 40Ca+. The green and blue squares and circles indicate dif-
ferent qubit encodings, denoted A and B, respectively. Squares are marking the qubit state |1〉
whereas the state |0〉 is highlighted with circles. The corresponding frequency shifts of the tran-
sitions caused by the magnetic field are −2.80 MHz/G and +3.36 MHz/G for the qubits marked
with green and blue symbols respectively. For configuration 1 described in the enumeration in
the main text for both qubits the encoding marked in green is used. The asymmetry in scenario
2 is introduced by encoding one of the qubits in the states illustrated in blue. For the third
configuration both qubits again use the encoding marked in green and the spontaneous decay
from |0〉 to |1〉 is enhanced. Figure from [28].

Let us now discuss how the temporal development of the spatial correlation estimator Ī can be
used to determine the degree of spatial correlations in a two-qubit register. For this, we perform
full quantum process tomography on qubit registers with varying degree of correlations. The
electronic hyperfine level structure of the 40Ca+ (see Fig. 4) is rich enough to allow the experi-
mentalists to choose and investigate the noise characteristics for qubits encoded in various pairs
of computational basis states. Here, the idea is that the degree of noise correlations between
individual qubits can be tuned by encoding them in Zeeman states with differing magnetic field
susceptibility. As a consequence, different sensitivities to noise from magnetic field fluctuations
is expected. Concretely, there exist multiple possibilities to encode a qubit in the Zeeman levels
of the 4S1/2 and 3D5/2 states as shown in Fig. 4. The susceptibility of the qubits to the magnetic
field ranges from−2.80 MHz/G to +3.36 MHz/G, which allows the experimentalists to tune not
only the coherence time of the individual qubits but also the correlations between qubits, when
magnetic field fluctuations are the dominant source of noise.
Understanding the dephasing dynamics, and in particular noise correlations, in registers con-
taining qubits in different encodings is essential in the context of error mitigation and quantum
error correction: this understanding will be needed to determine the viability of an approach to
build, e.g., functional logical qubits formed of entangled ensembles of physical qubits, which
can be used to fight errors by means of quantum error correction techniques.
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4.3 Experimental determination of spatial dynamical correlations

In the following we will consider dephasing dynamics that is caused by a magnetic field acting
on a string of two ions. The various qubit-states have different susceptibilities to magnetic field
fluctuations, given by the Landé g factors gi of the involved Zeeman substates. The phase that
qubit i accumulates during the time evolution is therefore given by

φi(t) =

∫ t

0

dτB(τ)µbgi

with the time-dependent magnitude of the magnetic field B(τ) and the Bohr magneton µb. The
magnetic field fluctuations can be modeled by multiple random implementations of B(t). The
time evolution for a single implementation can then be expressed as

U(φ1) = exp
(
−iφ1(σ

z
1+gσz2)

)
(33)

with the ratio of the Landé factors g=g2/g1. In order to estimate the dynamics under a dephasing
decay, one needs to average the evolution over many noise realizations with random phases.
In the experiment we investigated the following qubit configurations that implement dephasing
and spontaneous decay dynamics:

1. Configuration 1: For the realization of maximally correlated dephasing dynamics, both
qubits are encoded in the

∣∣4S1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉
states. This en-

coding is referred to as encoding A hereinafter, and corresponds to the green markers in
Fig. 4. Both qubits have a susceptibility to the magnetic field of −2.80 MHz/G, leading
to identical susceptibility coefficients (g = 1) (see Eq. (33)).

2. Configuration 2: To introduce an asymmetric dephasing dynamics, one qubit is encoded
in A and the second is encoded in the states

∣∣3D1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉

respectively. This encoding is referred to as encoding B hereinafter, and corresponds
to the blue markers in Fig. 4. Their different susceptibilities to magnetic field noise of
−2.80 MHz/G and +3.36 MHz/G introduce unequal dephasing and therefore are expected
to affect correlations between the qubits, corresponding to the susceptibility coefficients
(g = −0.83).

3. Configuration 3: Uncorrelated dynamics can be engineered in this experimental sys-
tem by introducing spontaneous decay. In this scenario, both qubits are encoded in En-
coding A. A laser pulse resonant with the 3D5/2 ↔ 4P3/2 transition at 854 nm short-
ens the effective lifetime of the exited state by inducing a spontaneous decay to the
4S1/2,mS = −1/2 level via the short-lived 3P3/2,mS = −3/2 level. Since spontaneous
emission of visible photons by the ions at a distance of several micrometers corresponds
to an uncorrelated noise process, as we have seen in Sec. 3, this controllable pump process
implements an uncorrelated noise process that can be modeled as spontaneous decay. The
effective lifetime depends on the laser power and is in our case set to be Tspont = 7(1)µs.
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Fig. 5: Dynamics of the spatial correlation quantifier Ī for different qubit encodings.
Three cases are depicted: Both qubits encoded in |4S1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉
(blue triangles), one qubit encoded in |4S1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉 and
|3D1/2, mS=−1/2〉 ↔ |3D5/2, mS=−5/2〉 (green circles) and both qubits subject to uncor-
related dynamics via spontaneous decay (red diamonds). The horizontal axis is normalized to
the coherence time for the first two cases and to the decay time for the third case. Results from
a Monte Carlo based numerical simulations with 500 samples are depicted with shaded areas
in the corresponding color. Figure from [28].

The small quantum register consisting of only two qubits allows one to perform full process
tomography [12] to fully reconstruct the dynamics ES in the two-qubit system. From this, the
correlation measure Ī (see Eq. (20)) can be directly determined. In the present platform, the
amplitude of the magnetic field fluctuations is non-stationary as it depends on the entire lab-
oratory environment, e.g., due to fluctuating currents flowing through wires, which therefore
cannot be controlled accurately. However, the apparatus allows one to engineer a stationary
magnetic field noise as the dominating noise source (a situation where laser and magnetic field
noise have to be taken into account is described in [28]). Thus we could control and tune the
single qubit coherence time. The stationary magnetic field noise is engineered by our experi-
mental colleagues by applying a white-noise current to the coils that generate the magnetic field
at the ions’ positions. The noise amplitude is set such that the coherence time of the qubit en-
coded in

∣∣4S1/2, mS=−1/2
〉

and
∣∣3D5/2, mS=−5/2

〉
is reduced from 59(3) ms to 1.98(7) ms.

The increase of magnetic field noise by a factor of ≈ 30 ensures that laser phase-noise is neg-
ligible on these timescales. From the measured data, a process matrix fully describing ES was
reconstructed using an iterative maximum likelihood method to ensure trace preservation and
positivity of the process matrix.
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The results for the estimated quantifier for spatial correlations as defined in Eq. (20) Ī are shown
in Fig. 5 for the decoherence processes of the different configurations described above. These
processes are described by an exponential decay and show different timescales. To compare
the data from the different configurations we express the free evolution time in units of the
respective decay times τ . The temporal development of Ī is studied for evolution times of up
to 5 times the decoherence time for configurations 1 and 2 and up to 1.6 times the lifetime for
configuration 3, as the differences in the dynamics of different correlation strength are most
pronounced on those timescales.
It can be seen in Fig. 5 that the symmetric configuration (Configuration 1), depicted with blue
triangles and labeled with “sym.”, shows the highest degree of correlations that reaches a steady
state for long evolution times. The correlations converge to a saturation value of 11.2(8) %,
which is in agreement with the theoretical value of 12.5 % (as expected in the limit of perfectly
correlated dephasing) within 2 standard deviations. It is left and suggested as an exercise to
determine this value of Ī = 1/8 for the case of perfectly correlated two-qubit dephasing dy-
namics, as we discussed above in Sec. 2.2 and described by the fluctuating field Hamiltonian
Eq. (16).
Measurements using the asymmetric configuration (Configuration 2), depicted with green
circles and labeled with “asym.”, show similar dynamics to the symmetric setting for times
up to twice the coherence time. For longer evolution times, however, a significant decrease in
correlations is observed.
The third investigated scenario (Configuration 3) implementing engineered uncorrelated dy-
namics by adding spontaneous decay, is depicted with red diamonds. The correlations do not
exceed a value of 3.1(6) % in this case. This is significantly lower than the maximum of Ī for
fully and partially correlated dephasing dynamics.
The blue shaded area in the figure shows simulated results where random phase fluctuations
are acting on a two-qubit system. Whereas there is qualitative agreement between simulations
and measurements, there are still statistically significant deviations, especially in the case of
uncorrelated dynamics, of up to approximately 4σ. We assume that this overestimation of the
spatial correlations in the system dynamics by the quantifier is due to mis-calibration and drifts
of experimental parameters. For instance a mismatch between the actual and the calibrated
Rabi frequency would lead to additional correlated errors during the process tomography. This
effect is most pronounced for Configuration 3, where the dynamics are expected to show no
correlations at all.

4.4 Decoherence-free subspaces and entanglement-based magnetometry

What can one learn from the build-up of strong correlations in the dynamics of qubits, as ob-
served in particular for the symmetric encoding in Fig. 5 in the previous section? And can
one use this information for useful applications? Can these correlations be harnessed to protect
fragile qubit states from decoherence caused by correlated dephasing dynamics? The answer is
yes!
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measure magnetic-field gradients while rejecting common-
mode fluctuations [26–28].
Quantum entanglement can be harnessed to extend

sensing capabilities [29,30]. Entangled Greenberger–
Horne–Zeilinger or NOON states can, in principle, yield
a sensitivity beyond the standard quantum limit [31–33].
However, an increased sensitivity also implies an increased
noise-induced decoherence [34]. Hence, the beneficial
effect of entanglement is generally compromised unless
measurement schemes are designed to reject noise in favor
of the desired signal. With trapped ions, entangled
sensor states of the type ðj↑↓iþ eiφj↓↑iÞ=

ffiffiffi
2

p
have been

employed to measure local magnetic-field gradients [35,36]
as well as the magnetic dipole interaction between the
constituents’ valence electrons [37].
In this article, we present a magnetic gradiometer, where

entangled ions are moved to different locations x1 and x2
along the trap axis of a segmented linear Paul trap. The dc
magnetic-field difference ΔBðx1; x2Þ between the ion
locations can be inferred from the phase accumulation rate
of these sensor states via the linear Zeeman effect

Δωðx1; x2Þdc ≡ _φdc ¼
gμB
ℏ

ΔBðx1; x2Þ: ð1Þ

Since the net magnetic moment of the two constituent ions
vanishes, common-mode noise is rejected such that the
coherence time can exceed 20 s [35,36,38,39]. Combined
with the fine-positioning capabilities offered by trapped
ions, this enables magnetic-field sensing in a parameter
regimewhich could previously not be accessed:We sense dc
field differences at around 300 fT precision and 12 pT=

ffiffiffiffiffiffi
Hz

p

sensitivity, and the spatial resolution is limited by the size of
the ion’s ground-state wave function of about 13 nm.
In Sec. II, we describe the procedure for measuring the

relative phase φ of sensor states, apply it to determine phase
accumulation rates Δωðx1; x2Þ in Sec. III, and discuss the
limitations in Sec. IV. An efficient measurement scheme
utilizing Bayesian frequency estimation is presented in
Sec. V. In Sec. VI, we extend our sensing scheme to infer
both dc and ac magnetic-field differences from the mea-
sured phase accumulation rates. Finally, in Sec. VII, we
compare our results to state-of-the-art magnetic-field meas-
urement techniques and discuss applications of our sensor.

II. EXPERIMENTAL PROCEDURE

We trap two 40Caþ ions in a segmented linear Paul trap
[40], featuring 32 control electrode pairs along the trap
axis x. The distance between the center of neighboring
electrodes is 200 μm. A dc trapping voltage of −6 V leads
to an oscillation frequency of the ions of about 1.5 MHz
along the trap axis, corresponding to a 1σ width of the
ground-state wave function of about 13 nm.
A quantizing magnetic field at an angle of 45° to the trap

axis is created by Sm2Co17 permanent magnets, splitting

the ground-state Zeeman sublevels j↓i≡ jS1=2; mj ¼ − 1
2i

and j↑i≡ jS1=2; mj ¼ þ 1
2i by about 2π × 10.4 MHz. The

trap setup is shielded from ambient magnetic-field fluctua-
tions by a μ-metal magnetic shielding enclosure, yielding a
coherence time of about 300 ms [41] in a Ramsey-type
experiment.
Laser cooling, coherent spin manipulations, and read-out

[42] take place in the laser interaction zone (LIZ) of the trap
(Fig. 1). An experimental cycle starts with Doppler laser
cooling a two-ion crystal on the S1=2 ↔ P1=2 cycling
transition near 397 nm. All collective transverse modes
of vibration of the ion crystal are cooled close to the
motional ground state via resolved sideband cooling on the
stimulated Raman transition between j↑i and j↓i. State
initialization to j↑↑i is achieved via frequency-selective
pumping utilizing the narrow S1=2 ↔ D5=2 quadrupole
transition near 729 nm.
A pair of copropagating laser beams, detuned by 2π ×

300 GHz from the cycling transition, serves to drive spin
rotations without coupling to motional degrees of freedom.
After state initialization, a π=2 pulse on both ions creates
the superposition state j↑↑iþ ij↑↓iþ ij↓↑i − j↓↓i. Then,
an entangling geometric phase gate [43] is carried out.
A spin-dependent optical dipole force transiently excites
collective vibrations only for parallel spin configurations,
such that the j↑↑i and j↓↓i states acquire a phase of π=2.
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FIG. 1. Experimental procedure for measurements of inhomo-
geneous magnetic fields. After creation of the sensor state at the
LIZ, the two constituent ions are separated and shuttled to the
desired trap segments L and R. In order to measure the
accumulated phase during the interrogation time T, the ions
are individually shuttled to the LIZ to perform basis rotations that
allow for state read-out via electron shelving and fluorescence
detection in either the X̂1X̂2 or X̂1Ŷ2 basis. For basis rotations,
electron shelving, and fluorescence detection, the relevant energy
levels are shown.
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Fig. 6: Experimental procedure implemented in [29] for measurements of inhomogenous mag-
netic fields in a segmented ion trap. After the creation of the sensor Bell state by means of
single- and two-qubit gates in the laser interaction zone (LIZ), the two constituent ions are
separated and shuttled to the desired trap segments L and R. In order to measure the accumu-
lated phase during the interrogation time T , the ions are individually shuttled back to the LIZ
to perform basis rotations that allow for state read-out via electron shelving and fluorescence
detection in either the X1X2 or Y1Y2 measurement basis. For basis rotations, electron shelving,
and fluorescence detection, the relevant energy levels are shown in the small inset figures at the
right. Figure reproduced from [29].

The key idea of how this works can be understood by considering a fluctuating magnetic field
which acts with exactly the same magnitude, and thus perfectly spatially correlated on all
qubits, as discussed above and described by Hamiltonian of Eq. (16). A single-qubit super-
position state |ψ〉k = α |0〉k + β |1〉k will under such noise dephase over time and end up in a
classical mixture |ρ〉k = |α|2 |0〉〈0|k + |β|2 |1〉〈1|k. If we, however, consider instead a Bell state
of two qubits,

|ψ〉12 = α |01〉12 + β |10〉12 , (34)

we find that under the time evolution generated by the collective dephasing Hamiltonian Eq. (16)
such a superposition remains an eigenstate of the time evolution operator at all times. Or in other
words, no relative phase in the superposition state (34) is accumulated. Therefore, under this
correlated dephasing noise, the basis states |01〉12 and |10〉12 span a two-dimensional so-called
decoherence-free subspace (DFS): this is a subspace of the two-qubit Hilbert space, within
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measurements, i.e., jφðT; x1; x2Þ − φmeasðT; x1; x2Þj < π. In
order to check if the phase has been incremented or
decremented properly, we verify that the residuals of all
points are well below π. Figure 2 shows an example
measurement at maximum ion distance d ¼ 6.2 mm and
the residuals δφ for each point. In this measurement, phases
of over 40 000 rad have been accumulated during inter-
rogation times of up to Tmax ¼ 1.5 s, but the residuals jδφj
of all measurement points are well below π.
The maximum interrogation time Tmax is ultimately

limited by the coherence time Tcoh of the sensor state.
The coherence time is therefore analyzed in the following
section.

IV. COHERENCE TIMES

We characterize the coherence time Tcoh of the sensor
state for two settings: The ions are kept (i) in a common
potential well at a distance of about 4.2 μm and (ii) in
separate harmonic wells at the maximum possible distance
of 6.2 mm. The coherence time is inferred from measure-
ments of the contrast C for varying interrogation times T.
For each interrogation time, we repeat the experimental

procedure 400 times for each of the two measurement
operators.
For case (i), a coherence time Tcoh > 12.5 s is observed

[Fig. 3(a)]. In this regime, residual heating of the radial
modes of motion compromises the fidelity of electron
shelving and therefore the spin read-out. In separate
measurements, we characterized the spin read-out effi-
ciency for the input states j↑↑i and j↓↓i, and confirmed
that the observed contrast loss is entirely caused by
read-out.
For the maximum possible ion distance, a Gaussian

contrast decay is observed, with a coherence time in the
1–2-s range. For Gaussian contrast decay, the best sensi-
tivity for our phase measurement scheme is achieved at an
interrogation time corresponding to a contrast of 0.85
(see Ref. [44]).
The contrast decay at maximum ion distance is presum-

ably caused by a slow drift of the magnetic-field minimum
position along the trap axis. In order to verify our
presumption, we measured this drift consecutively for
two different ion separation distances of d ¼ 6.2 mm
and d ¼ 3.2 mm over the course of 6 hours [Fig. 3(b)].
For the former case, a typical drift rate of 1 Hz=h is
observed. We verified that this drift rate corresponds to a
contrast decay within 2s. For an ion distance of
d ¼ 3.2 mm, the drift rate is suppressed by a factor of
about 1.6 as compared to the maximum ion distance. The
spatial dependence of the observed drift rates is consistent
with movement of the ion trap relative to the magnetic field
in the 200-nm range, equivalent to thermal expansion of our
vacuum chamber due to a temperature change of
roughly 0.1 °C.

V. BAYESIAN FREQUENCY ESTIMATION

In order to speed up the incremental measurement
scheme for determining Δωðx1; x2Þ described in Sec. III,
we implement an adaptive scheme for frequency estimation
based on a Bayesian experiment design algorithm [51,52].
In general, such algorithms control the choice of a

measurement parameter—in our particular case, the inter-
rogation time—which, in each measurement run, guaran-
tees the optimum gain of information on the parameter to be
determined. These algorithms are beneficial in situations
where only a few parameters are to be determined, an
accurate model relating the design parameters to the
measurement outcome holds, and the measurement is
“expensive” in terms of resources such as time.
In Bayesian statistics, for a given phase measurement to

be carried out, the combined result of all previous mea-
surements is expressed with the prior probability distribu-
tion function (PDF) pðΔω;φ0Þ. Initially, we assume a
uniformly distributed prior PDF, limited to a reasonable
parameter range Δω ∈ fΔωmin;Δωmaxg and φ0 ∈ f−π; πg.
After a phase measurement with the outcome fn;mg, the
combined result is described by the posterior PDF,

Read-out limit

(a)

(b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

S
en

so
r 

st
at

e 
co

nt
ra

st
 C

Interrogation time T (s)

-1.5

-1

-0.5

0

0 50 100 150 200 250 300 350

F
re

qu
en

cy
 s

hi
ft 

(H
z)

Elapsed time (min)

d = 6.2 mm
d = 3.2 mm

d = 6.2 mm
d = 4.2 µm

FIG. 3. (a) Sensor state contrast C versus interrogation time T at
the maximum ion distance of d ¼ 6.2 mm (red dots) and at an ion
distance of d ¼ 4.2 μm (blue squares). For illustration, the black
curve and gray region indicate a third-order polynomial fit to a
separate read-out fidelity measurement and its confidence bands.
(b) Simultaneous drift of the measured frequency difference for
ion distances d ¼ 6.2 mm (blue circles) and d ¼ 3.2 mm (purple
triangles) over a duration of about 6 hours with an interrogation
time of T ¼ 150 ms. For d ¼ 3.2 mm, the measured drift is
suppressed by a factor of about 1.6 as compared to the maximum
ion distance.
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031050-4

Fig. 7: (a) Sensor state contrast C as a function of the interrogation time during which the two
ions of the sensor Bell state (34) are exposed to the magnetic fields at their respective positions,
spatially separated by a distance of d = 6.2 mm (red dots) and d = 4.2 µm (blue squares). For
illustration, the black curve and gray region indicate a third-order polynomial fit to a separate
read-out fidelity measurement and its confidence bands (see [29]). (b) Simultaneous drift of the
measured frequency difference for ion distances d = 6.2 mm (blue circles) and d = 3.2 mm
(purple triangles) over a duration of about 6 hours with an interrogation time of T = 150 ms.
Figure reproduced from [29].

which the noise acts trivially and quantum information can be stored and protected for longer
times than in single physical qubits. Alternatively, one can view the state of Eq. (34) as a
minimal “logical qubit” formed of two physical qubits, with effective logical basis states |0〉L =

|01〉12 and |1〉L = |10〉12, and which offers protection against spatially correlated dephasing
noise. Using such two-qubit DFS spaces in two ions, quantum information and entanglement
can be preserved for timescales of minutes, as impressively demonstrated already in 2005 [9],
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and which is to be contrasted to typical single-qubit coherence times of (tens) of milliseconds.
What happens if the dephasing noise is spatially correlated, however, these correlations are not
perfect? Can this be exploited as a measurement tool? In Ref. [29] it was shown that under
these circumstances Bell states of the form (34) can be used as highly sensitive probe states to
detect small spatially inhomogeneous dc magnetic fields. As discussed above, common-mode
magnetic-field fluctuations are not seen by the entangled sensor state. In contrast, inhomoge-
neous components of the field can be detected! This gives rise to excellent sensitivity to small
differences in local magnetic fields in different areas of the trap, separated by distances as large
as 0.61mm. For comparison typical inter-ion distances in an ion Coulomb crystal are a few mi-
crometer. The experimental setup and field gradient probing protocol is summarized in Fig. 6.
Figure 7 shows experimental results of this technique, which allows to probe magnetic field
differences over distances of several mm, and with spatial resolution as small as about 20 nm,
and with accuracies down to 300 fT and sensitivities down to 12 pT/

√
Hz.

5 Lower bounds, multi-partite systems, and outlook

The exact determination of the correlation quantifier Ī requires as input the process ES, which
can be reconstructed from quantum process tomography [12]. For small systems formed of
only two qubits, this is feasible, it becomes, however, impractical for larger systems due to the
exponential number of measurements required. The good news is that a lower estimate for Ī
can be obtained by performing correlation measurements on the subsystems S1 and S2. Here,
the central result is that the normalized quantity Ī(ES) is bounded from below by

Ī(ES) ≥ 1

8 ln d

C2
ρ′(O1,O2)

‖O1‖2‖O2‖2
, (35)

with two local quantum observablesO1 andO2 and Cρ′(O1,O2) = 〈O1⊗O2〉ρ′−〈O1〉ρ′〈O2〉ρ′ .
Here, ρ′ = ES(ρ) is the evolution of an initial product state ρ according to the dynamical map
ES, while ‖ · ‖ denotes the operator norm (the absolute value of the maximum eigenvalue) and
we have taken the logarithms inside Ī(ES) in Eq. (20) to be binary logarithms log2 (otherwise
the natural logarithm ln d on the right hand side becomes multiplied by a different factor).
So far, we have focused our discussion on the characterization of correlations in the dynamics of
bipartite quantum systems. The approach to measure and estimate bipartite correlations can be
extended to the multi-partite case. In this situation, one has to specify what kind of correlations
are the matter of interest. For instance, one may be interested in the amount of correlations
shared between two parties of the system or between all parties. Figure 8 illustrates a generic
situation where correlations among all systems are investigated. For example, suppose we con-
sider the total amount of correlations, i.e., the amount of correlations shared by all parties. In
that case, if the system S has M parties S1, S2, . . . , SM , we can introduce respective ancillary
systems S′1, S

′
2, . . . , S

′
M as we did in the bipartite case, and prepare a collection of M maximally

entangled states between S1 and S′1, S2 and S′2, etc. [see Fig. 8(A)]. The dynamics is then ap-
plied on the system S we want to study. The amount of total (normalized) correlations in the
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Fig. 8: Schematic illustration of the multipartite correlation measure. (A) Choi-Jamiołkowski
representation of the dynamics. The system is prepared in a product of maximally entangled
states of 2M parties {Sj|S′j} and the dynamics affects only the subsystems Sj . If and only if
the dynamics are correlated, the bipartitions {SiS′i|SjS′j} will be entangled, yielding a nonzero
correlation measure Ī . (B) Schematic depiction of the procedure to estimate a lower bound of Ī .
There, the system is initially prepared in a separable state ρS1 ⊗ ρS2 · · · ⊗ ρSM and correlations
in the dynamics show up as correlations C (see Eq. (38)) in the measurement of suitably chosen
observables Oj . Figure reproduced from [28].

dynamics can then be assessed by

Ī(ES) :=
1

2M log d
S
(
ρCJ
S

∥∥∥ρCJ
S |S1S′1 ⊗ . . .⊗ ρ

CJ
S |SMS′M

)

:=
1

2M log d

{[
M∑

i=1

S
(
ρCJ
S |SiS′i

)
]
− S

(
ρCJ
S

)
}
, (36)

where ρCJ
S |SiS′i = Tr{∀Sj 6=iS

′
j 6=i}(ρ

CJ
S ).

A lower bound for the multipartite setting can be applied as shown in Fig. 8(B), by measuring
correlations. Mathematically the same steps as in the bipartite case [see Eq. (35)] can be applied,
resulting in

Ī(E) ≥ 1

4M ln d

C2
ρ′(O1, . . . ,OM)

‖O1‖2 . . . ‖OM‖2
. (37)

Here, ρ(t) is the joint state after the evolution of an initial product state, O1, . . . ,OM are local
observables for the parties S1, . . . , SM , respectively, and the correlation function is

Cρ(t)(O1, . . . ,OM) = 〈O1 . . .OM〉ρ(t) − 〈O1〉ρ(t) . . . 〈OM〉ρ(t). (38)

This multipartite bound makes investigating correlation dynamics accessible in systems that are
too large for full quantum process tomography, as here the number of measurements increases
only linearly compared to the exponential scaling for full quantum process tomography.
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Fig. 9: Illustration of one scalable route from macroscopic linear Paul traps (upper left) to-
wards large-scale ion-trap quantum processors. Ions can be stored in segmented traps (upper
right), where ion crystals can be controlled locally, and ions can be split, moved around and
merged with ion-crystals in different trapping regions. This allows one to control increasingly
larger qubit registers with high flexibility. Such linear traps can be coupled via junctions, along
which ions can be moved from one trap into neighboring zones, where they can be stored (S) or
manipulated (M). This will allow one to assemble traps into larger two-dimensional trap arrays,
which can be used to host and control large registers of qubits for quantum error correction and
eventually large-scale fault-tolerant quantum computation.

In summary, based on the mapping of quantum dynamics to quantum states in an enlarged
Hilbert space via the Choi-Jamiołkowski isomorphism, in this lecture we have discussed a rig-
orous and systematic method to quantify the amount of spatial correlations in general quantum
dynamics. Furthermore, we have applied the theoretical concepts developed to paradigmatic
physical models and demonstrated their usefulness for the characterization of noise in experi-
mental quantum processors. We expect that noise characterization techniques such as the ones
discussed in this lecture will be of fundamental importance for the study of dynamics in a large
variety of quantum systems. From a practical and more applied standpoint, such tools are likely
to be essential to make further progress in developing and characterizing increasingly larger and
scalable qubits registers, as shown for trapped ions in Fig. 9, to make the dream of large-scale
quantum computers and simulators become a reality.
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