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ABSTRACT

IZA DP No. 13870 NOVEMBER 2020

Quantile Factor Models*

Quantile factor models (QFM) represent a new class of factor models for high-dimensional 

panel data. Unlike approximate factor models (AFM), which only extract mean factors, QFM 

also allow unobserved factors to shift other relevant parts of the distributions of observables. 

We propose a quantile regression approach, labeled Quantile Factor Analysis (QFA), to 

consistently estimate all the quantile-dependent factors and loadings. Their asymptotic 

distributions are established using a kernel-smoothed version of the QFA estimators. Two 

consistent model selection criteria, based on information criteria and rank minimization, are 

developed to determine the number of factors at each quantile. QFA estimation remains 

valid even when the idiosyncratic errors exhibit heavy-tailed distributions. An empirical 

application illustrates the usefulness of QFA by highlighting the role of extra factors in the 

forecasts of US GDP growth and inflation rates using a large set of predictors.
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1 Introduction

The theory and empirical applications of approximate factor models (AFM) have developed very

rapidly in economics and finance since their introduction by Chamberlain and Rothschild (1983).

As is well known, AFM imply that a panel {Xit} of N variables (units), each with T observations,

has the representation Xit = λ′ift + εit, where λi = [λ1i, .., λri]
′ and ft = [f1t, .., frt]

′ are r × 1

vectors of factor loadings and common factors, respectively, with r � N , and {εit} are zero-mean

weakly dependent idiosyncratic disturbances, uncorrelated with the factors. The availability of

fairly straightforward estimation procedures for AFM — e.g. via principal component analysis

(PCA) — has triggered their widespread use in research.1

Inspired by the generalization of linear regression to quantile regression (QR) models, our

starting point in the current paper is to recall that the standard regression interpretation of AFM

as linear conditional mean models of Xit given ft (i.e. E(Xit|ft) = λ′ift), entails two possibly

restrictive features. First, PCA does not capture hidden factors that may shift characteristics

(moments or quantiles) of the distribution of Xit other than its mean. Second, neither the

loadings λi nor the factors ft are allowed to vary across the distribution of each unit in the

panel. The relevance of these features has been recently highlighted in the empirical finance,

macro and micro literatures. For example, in the former, Amengual and Sentana (2020) find

nonlinear tail dependence, co-skewness and co-kurtosis in cross-sectional dependence among

monthly returns on individual US stocks; likewise Ando and Bai (2020) (AB 2020, hereafter)

show that the common factor structures explaining the upper and lower tails of the asset return

distributions in global financial markets have become different since the subprime crisis. On

the macro side, Adrian, Boyarchenko, and Giannone (2019) document that only the estimated

lower conditional quantiles of the distribution of future GDP growth in the US exhibit strong

dependence on current financial conditions. Lastly, in micro theory, de Castro and Galvao (2019)

have recently extended the traditional expected utility model of rational behavior to quantile

utility preferences, where e.g. factor structures determining hedonic pricing of consumption

goods or financial stocks may exhibit large differences across quantiles.

In light of this evidence, our goal here is to develop a common factor methodology for a

class of models, coined quantile factor models (QFM), which is flexible enough to capture the

quantile-dependent objects that standard AFM tools are unable to retrieve. In particular, we

1Early applications of AFM abound in aggregation theory, consumer theory, business cycle analysis, finance,
monetary economics, and monitoring and forecasting; see, inter alia, Bai (2003), Bai and Ng (2008), Stock and
Watson (2011). More recently, the characterization of cross-sectional dependence among error terms in Panel
Data has relied on the use of a finite number of unobserved common factors which originate from economy-wide
shocks affecting units with different intensities (loadings). Interactive fixed-effects models can be easily estimated
by PCA (see Bai 2009) or by common correlated effects (see Pesaran 2006), and there are even generalizations of
these techniques for nonlinear panel single-index models (see Chen, Fernández-Val, and Weidner 2020). Lastly,
the surge of big data and machine learning technologies has made factor models a key tool for dimension reduction
and predictive analytics when using very large datasets (see Athey and Imbens 2019 for a survey).
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focus on the factor structure of a data generating process (DGP) rewritten in QR format as Xit =

λ′i(τ)ft(τ) + uit(τ), with 0 < τ < 1, where the conditional quantile satisfies Quit(τ)[τ |ft(τ)] = 0,

and the number of factors, r(τ) is also allowed to depend on τ .2 To estimate and draw inference

on the quantile-dependent factors and loadings in QFM, we propose an estimation approach

labeled Quantile Factor Analysis (QFA) while, to estimate the number of factors at each τ ,

we derive two novel selection criteria (one based on information criteria and another on rank

minimization). Put succinctly, QFM and QFA could be thought of as capturing the same type

of flexible generalization that QR techniques represent for linear regression models.

Our proposed QFA estimation procedure relies on the minimization of the standard check

function in QR (instead of the conventional quadratic loss function used in AFM) to estimate

jointly the common factors and the loadings at a given quantile τ , once the number of factors

has been selected. However, since the objective function for QFA is not convex in the relevant

parameters, we introduce an iterative QR algorithm to yield estimators of the quantile-dependent

objects. We then derive their average rates of convergence, and prove the consistency of the

two selection criteria. Finally, we establish asymptotic normality for QFA estimators based on

smoothed QR (see e.g., Horowitz 1998 and Galvao and Kato 2016). These results are obtained

under the assumption that {uit(τ)} are independent across i and t conditional on {ft(τ)}, though

our simulation results indicate that QFA still performs well under some mild time-series and

cross-sectional dependence.

The main results from the previous analysis can be summarized as follows: (i) the average

convergence rates of the QFA estimators are the same as the corresponding rates of the PCA

estimators of Bai and Ng (2002) (BN 2002, hereafter), which is a crucial result for proving

the consistency of the two selection criteria; (ii) the QFA estimators based on smoothed QR

are shown to converge at the parametric rates (
√
N and

√
T ) to normal distributions, as in

Bai (2003); (iii) as a byproduct of our approach (and in exchange for some restrictions on the

dependence of the idiosyncratic errors; see Assumption 1 below), the QFA estimators inherit

certain robustness properties of QR to the presence of outliers and heavy-tailed distributions,

which would render PCA invalid; and (iv) the extraction of all quantile-shifting factors (including

those affecting the means of observed variables) through QFA can improve the information

traditionally provided by PCA and related methods in several applied contexts, as illustrated

by our empirical application on density forecasting with a large macro dataset in Section 6.

Related literature

There is a recent literature that attempts to make the AFM setup more flexible. For ex-

ample, Su and Wang (2017) allow the factor loadings to be time-varying whereas Pelger and

Xiong (2018) allow them to be state-dependent. Chen, Hansen, and Scheinkman (2009) pro-

2Throughout the paper we use QW [τ |Z] to denote the conditional quantile of W given Z.
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vide a theory for nonlinear PCA based on sieve estimation to retrieve nonlinear factors. Finally,

Gorodnichenko and Ng (2017) propose an algorithm for the joint estimation of level and volatility

factors simultaneously. Different from these studies which focus on specific DGPs, our approach

here is to remain agnostic about the nature of the true DGP and use the conditional quantiles

of the observed data to capture nonlinearities in factor models.

In addition, there is an emerging literature on panel quantile models where a few unobserv-

able factors explain the co-movements of a wide range of financial asset returns. In parallel and

independent research, there have been two recent papers related to ours. First, Ma, Linton,

and Gao (2020) propose sieve and GLS estimation and inference procedures in semiparametric

quantile factor models where factor loadings/betas are smooth functions of a small number of

observables, under the assumption that the included factors have non-zero means. We depart

from these authors in not requiring the loadings to depend on observables and, foremost, in con-

sidering not only loadings but also factors to be quantile-dependent objects. Second, AB (2020)

use a similar setup to ours, where the unobservable factor structure is also allowed to be quantile

dependent. These authors use Bayesian MCMC and frequentist estimation approaches, the lat-

ter building upon our proposed iterative procedure. However, we differ from their approach in

several respects, most notably: (i) our assumptions on the idiosyncratic errors are less restrictive

since we rely on properties of the density, as in QR, while these authors need several moments

to exist, (ii) our proofs of the main results are different and can be easily extended to deal with

some nonlinear models with smooth object functions, like the probit and logit factor models

considered by Chen, Fernández-Val, and Weidner (2020), and (iii) our novel rank-minimization

estimator for the number of factors behaves better in finite samples and is computationally more

efficient than the information criteria-based methods these authors propose.

Finally, we refer to another ongoing line of research in asset pricing, coined the “idiosyn-

cratic volatility puzzle” by Ang, Hodrick, Xing, and Zhang (2006). This approach assumes a

genuine factor structure in the the idiosyncratic volatility processes of a panel of asset returns,

and basically consists of applying PCA (or cross-sectional averages) to the squared residuals,

once mean factors have been removed from the original variables (a procedure labeled PCA-SQ

hereafter).3 For example, if the DGP were to be known, PCA-SQ would be optimal for some

of our illustrative examples of QFM discussed in subsection 2.2 below. Yet, this procedure will

not be able to extract the whole QFM structure in other instances where the QFA approach

achieves this goal. Moreover, PCA-SQ will also fail when the distributions of the idiosyncratic

errors exhibit heavy tails.

Structure of the Paper

The outline of the paper is as follows: Section 2 defines QFM and provides a list of simple il-

3See, e.g., Barigozzi and Hallin (2016), Herskovic, Kelly, Lustig, and Van Nieuwerburgh (2016) and Renault,
Van Der Heijden, and Werker (2017).
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lustrative examples where this methodology could be applied. In Section 3, we present the QFA

estimator and its computational algorithm, establish the average rates of convergence of the

quantile-dependent objects, and propose two consistent selection criteria to choose the number

of factors at each quantile. Section 4 introduces a kernel-smoothed version of the QFA estima-

tors to derive their asymptotic distributions. Section 5 contains some Monte Carlo simulation

results to evaluate the performance of QFA in finite samples with different assumptions about

the idiosyncratic error terms. Section 6 provides an empirical application of QFA estimation,

regarding a large panel of US macroeconomic variables, where we document the relevance of

extra factors to density forecasting. Finally, Section 7 concludes with a summary and some

directions for further research. Proofs of the main results are collected in the Appendix, while

an Online Appendix contains additional results.

Notation

The Frobenius norm is denoted as ‖ · ‖. For a matrix A with real eigenvalues, ρj(A) denotes

the jth largest eigenvalue. For a real number a, let sgn(a) = 1 if a ≥ 0 and sgn(a) = −1 if

a < 0. For a square matrix A whose jth diagonal element is denoted as Ajj , define sgn(A) as a

diagonal matrix whose jth diagonal element is equal to sgn(Ajj). Following van der Vaart and

Wellner (1996), the symbol . means “left side bounded by a positive constant times the right

side” (the symbol & is defined similarly), and D(·, g,G) denotes the packing number of space G
endowed with semimetric g.

2 The Model and Some Illustrative Examples

This section starts by introducing the main definitions to be used throughout the paper. Next,

we show how to derive the QFM representation of several illustrative DGPs exhibiting different

factor structures.

2.1 Quantile Factor Models

Suppose that the observed variable Xit, with i = 1, 2, .., N and t = 1, 2, ..., T , has the following

QFM structure at some τ ∈ (0, 1):

QXit [τ |ft(τ)] = λ′i(τ)ft(τ) almost surely,

where the common factors ft(τ) is a r(τ) × 1 vector of unobservable random variables, and

λi(τ) is a r(τ) × 1 vector of non-random factor loadings with r(τ) � N . Note that in the

QFM defined above, the factors, the loadings, and the number of factors are all allowed to be

quantile-dependent.
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Alternatively, the above equation implies that

Xit = λ′i(τ)ft(τ) + uit(τ), (1)

where the quantile-dependent idiosyncratic error uit(τ) satisfies the quantile restrictions:

P [uit(τ) ≤ 0|ft(τ)] = τ almost surely.

2.2 Examples

We next provide a few illustrative examples of how QFM can be derived from different specifica-

tions of location-scale shift models and related ones. The idea behind these simple illustrations is

to show instances where, if the true DGPs were to be unknown rather than known, the standard

AFM methodology might fail to capture the full factor structure, whereas the alternative QFM

approach would succeed in doing so.

Example 1. Location-shift model. Xit = αif1t + εit, where {εit} are zero-mean i.i.d errors

independent of {f1t} with cumulative distribution function (CDF) Fε. Let Qε(τ) = F−1
ε (τ) =

inf{c : Fε(c) ≤ τ} be the quantile function of εit, and assume that the median of εit is 0,

i.e., Qε(0.5) = 0. Then, this simple model has a QFM representation (1) by defining λi(τ) =

[Qε(τ), αi]
′, ft(τ) = [1, f1t]

′ for τ 6= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5. However, note

that the standard estimation method (PCA) for this AFM may not be consistent if the distribution

of εit has heavy tails. For example, Assumption C of BN (2002) requires E[ε8it] < ∞, which is

not satisfied if, e.g. εit follows the standard Cauchy or some Pareto distributions.

Example 2. Location-scale-shift model (same sign-restricted factor). Xit = αif1t +

ηif1tεit, where ηif1t > 0 for all i, t and {εit} are defined as in Example 1. This model has a

QFM representation (1) by defining λi(τ) = ηiQε(τ) +αi and ft(τ) = f1t for all τ , such that the

loadings of the factor f1t are the only quantile-dependent objects.

Example 3. Location-scale-shift model (different factors). Xit = α′if1t+(η′if2t)εit, where

{εit} are defined as in Example 1, αi, f1t ∈ Rr1, ηi, f2t ∈ Rr2, and η′if2t > 0. When f1t and f2t do

not share common elements, this model has a QFM representation (1) with λi(τ) = [α′i, η
′
iQε(τ)]′,

ft(τ) = [f ′1t, f
′
2t] for τ 6= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5.

Example 4. Location-scale-shift model with an idiosyncratic error and its cube.

Xit = αif1t + f2tεit + cif3tε
3
it, where εit is a standard normal random variable whose CDF is de-

noted as Φ(·). Let f2t, f3t, ci be positive, then Xit has an equivalent representation in form of (1)

with λi(τ) = [αi,Φ
−1(τ), ciΦ

−1(τ)3]′, ft(τ) = (f1t, f2t, f3t)
′ for τ 6= 0.5, and λi(τ) = αi, ft(τ) =

f1t for τ = 0.5. In particular, if ci = 1 for all i and noticing that the mapping τ 7→ Φ−1(τ)3 is

strictly increasing, then we have QXit [τ |ft(τ)] = αif1t+Φ−1(τ) · [f2t+f3tΦ
−1(τ)2]. Hence, there
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exists a QFM representation (1) with λi(τ) = [αi,Φ
−1(τ)]′ and ft(τ) = [f1t, f2t + f3tΦ

−1(τ)2]′,

where note that the second factor in ft(τ), f2t+f3tΦ
−1(τ)2 is quantile dependent even for τ 6= 0.5.

Not surprisingly, if the researcher was unaware that the data had been generated according

to the above DGPs, the standard PCA methodology would only work in Example 1, insofar as

the idiosyncratic errors satisfy certain moment conditions. In the remaining examples, PCA can

only consistently estimate the factors shifting the locations, failing to capture those extra factors

which shift quantiles other than the means, or their corresponding quantile-varying loadings. In

the sequel, QFA is hence proposed as a novel estimation procedure capable of estimating both

sets of quantile-dependent objects in QFM.

3 Estimators and their Asymptotic Properties

Consider a sample of observations {Xit} generated by (1) for i = 1, . . . , N, and t = 1, . . . , T ,

where the realized values of {ft(τ)} are {f0t(τ)} and the true values of {λi(τ)} are {λ0i(τ)}. We

take a fixed-effects approach by treating {λ0i(τ)} and {f0t(τ)} as parameters to be estimated,

and our asymptotic analysis is conditional on {f0t(τ)}. In Section 3.1, we start by analyzing

the estimation of {λ0i(τ)} and {f0t(τ)} where r(τ) is assumed to be known, while Section 3.2

deals with the estimation of r(τ) for each quantile. To simplify the notation, we suppress the

dependence of f0t(τ), λ0i(τ), r(τ) and uit(τ) on τ in the rest of the paper.

3.1 Estimating Factors and Loadings

A well-known result in the literature on factor models is that {λ0i} and {f0t} cannot be separately

identified without imposing normalizations (see BN 2002). Without loss of generality, we choose

the following normalizations in QFM:

1

T

T∑
t=1

ftf
′
t = Ir,

1

N

N∑
i=1

λiλ
′
i is diagonal with non-increasing diagonal elements. (2)

Let M = (N + T )r, θ = (λ′1, . . . , λ
′
N , f

′
1, . . . , f

′
T )′, and θ0 = (λ′01, . . . , λ

′
0N , f

′
01, . . . , f

′
0T )′

denotes the vector of true parameters, where the dependence of θ and θ0 on M is also suppressed

to save notation. Let A,F ⊂ Rr and define:

Θr =
{
θ ∈ RM : λi ∈ A, ft ∈ F for all i, t, {λi} and {ft} satisfy the normalizations in (2)

}
.

Further, define:

MNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (Xit − λ′ift),
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where ρτ (u) = (τ − 1{u ≤ 0})u is the check function. The QFA estimator of θ0 is defined as:

θ̂ = (λ̂′1, . . . , λ̂
′
N , f̂

′
1, . . . , f̂

′
T )′ = arg min

θ∈Θr
MNT (θ).

It can be easily seen that the way in which our estimator is related to the PCA estimator stud-

ied by BN (2002) and Bai (2003) is analogous to how QR is related to standard least-squares

regressions. However, unlike Bai (2003)’s PCA estimator, our estimator θ̂ does not yield an

analytical closed form. This makes it difficult not only to find a computational algorithm that

would yield the estimator, but also to derive its asymptotic properties. In the sequel, we intro-

duce a computational algorithm called iterative quantile regression (IQR) that can effectively

locate the stationary points of the object function. In parallel, Theorem 1 shows that θ̂ achieves

the same convergence rate as the PCA estimators for AFM.

To describe this algorithm, let Λ = (λ1, . . . , λN )′, F = (f1, . . . , fT )′, and define the object

function in terms of the following averages:

Mi,T (λ, F ) =
1

T

T∑
t=1

ρτ (Xit − λ′ft) and Mt,N (Λ, f) =
1

N

N∑
i=1

ρτ (Xit − λ′if).

Note that MNT (θ) = N−1
∑N

i=1 Mi,T (λi, F ) = T−1
∑T

t=1 Mt,N (Λ, ft), and the main difficulty in

finding the global minimum of MNT is that this object function is not convex in θ. However, for

given F , Mi,T (λ, F ) happens to be convex in λ for each i and likewise, for given Λ, Mt,N (Λ, f)

is convex in f for each t. Thus, both optimization problems can be efficiently solved by several

linear programming methods (see Chapter 6 of Koenker 2005). Based on this observation, we

propose the following iterative procedure:

Iterative quantile regression (IQR):

Step 1: Choose random starting parameters: F (0).

Step 2: Given F (l−1), solve λ
(l−1)
i = arg minλMi,T (λ, F (l−1)) for i = 1, . . . , N ; given Λ(l−1), solve

f
(l)
t = arg minf Mt,N (Λ(l−1), f) for t = 1, . . . , T .

Step 3: For l = 1, . . . , L, iterate the second step until MNT (θ(L)) is close to MNT (θ(L−1)), where

θ(l) = (vech(Λ(l))′, vech(F (l))′)′.

Step 4: Normalize Λ(L) and F (L) so that they satisfy the normalizations in (2).

To examine the connection between the IQR algorithm and the PCA estimator of Bai (2003),

suppose that r = 1, and replace the check function in the IQR algorithm by the quadratic

loss function. Then, it is easy to show that the second step of the algorithm above yields

Λ(l−1) = (X ′F (l−1))/‖F (l−1)‖2 and F (l) = (XΛ(l−1))/‖Λ(l−1)‖2 = XX ′F (l−1)/Cl−1, where X

is the T × N matrix with elements {Xit}, and Cl = ‖F (l)‖2 · ‖Λ(l)‖2. Thus, with proper

normalizations at each step, the iterative procedure is equivalent to the well-known power method

of Hotelling (1933), and the sequence F (0), F (1), . . . will converge to the eigenvector associated
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with the largest eigenvalue of XX ′. In the more general case where r > 1, if we replace the

check function in the IQR algorithm by the quadratic loss function and normalize F (l−1),Λ(l−1)

to satisfy (2) at step 2, it can be shown that the above iterative procedure is similar to the

method of orthogonal iteration (see Section 7.3.2 of Golub and Van Loan 2013) for calculating

the eigenvectors associated with the r largest eigenvalues of XX ′, which is the PCA estimator of

Bai (2003). Therefore, the IQR algorithm and its corresponding QFA estimator can be viewed

as extensions of PCA to QFM.

Similar algorithms have been proposed in the machine learning literature to reduce the

dimensions of binary data, where the check function is replaced by some smooth nonlinear link

functions (see, e.g. Collins, Dasgupta, and Schapire 2001). However, unlike PCA, whether such

methods guarantee finding the global minimum remains an important open question which is

hard to address. Nonetheless, in all of our Monte Carlo simulations we found that the QFA

estimators of the factors using the IQR algorithm always converge to the space of the true

factors, which is somewhat reassuring in this respect.

To prove the consistency of the QFA estimator θ̂, the following assumptions are made:

Assumption 1. (i) A and F are compact sets and θ0 ∈ Θr. In particular, N−1
∑N

i=1 λ0iλ
′
0i =

diag(σN1, . . . , σNr) with σN1 ≥ σN2 · · · ≥ σNr, and σNj → σj as N → ∞ for j = 1, . . . , r with

∞ > σ1 > σ2 · · · > σr > 0.

(ii) The conditional density function of uit given {f0t}, denoted as fit, is continuous, and satisfies

that: for any compact set C ⊂ R and any u ∈ C, there exists a positive constant f > 0 (depending

on C) such that fit(u) ≥ f for all i, t.

(iii) Given {f0t, 1 ≤ t ≤ T}, {uit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} are independent across i and t.

Assumptions 1(i) is essentially the strong factors assumption that is standard in the literature

(see assumption B of Bai 2003). The requirement that σ1, . . . , σr are distinct is similar to

Assumption G of Bai (2003), which is a convenient assumption to order the factors. Assumptions

1(ii) and (iii) resemble assumptions (C1) and (C2) in AB (2020), except that we do not require

moments of uit to exist. Also notice that assumption (iii), which allows for both cross-sectional

and time series heteroskedasticity, requires the idiosyncratic errors to be mutually independent.

This strong assumption stems from the use of Hoeffding’s inequality in the proofs of some

results, which provides a sub-Gaussian tail bound for the sum of bounded independent random

variables. There have been attempts to relax this assumption (see Remark 1.4 below) but it

is difficult to characterize the minimal set of conditions that the error terms should satisfy to

achieve the sub-Gaussian inequality required in our proofs. Notice, however, that in exchange

for the independence assumption, we can dispense with the bounded moment conditions in the

idiosyncratic terms, whose violation renders PCA invalid. At any rate, in subsection 5.2 we run

some Monte Carlo simulations on the performance of our QFA estimation when error terms are

allowed to exhibit mild cross-sectional and serial dependence to check how robust are our results
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to these features.

Write Λ̂ = (λ̂1, . . . , λ̂N )′, Λ0 = (λ01, . . . , λ0N )′, F̂ = (f̂1, . . . , f̂T )′, F0 = (f01, . . . , f0T )′, and

let LNT = min{
√
N,
√
T}. The following theorem provides the average rate of convergence of Λ̂

and F̂ .

Theorem 1. Let Ŝ = sgn(F̂ ′F0/T ). Then under Assumption 1,

‖Λ̂− Λ0Ŝ‖/
√
N = OP (L−1

NT ) and ‖F̂ − F0Ŝ‖/
√
T = OP (L−1

NT ).

Proof. See Appendix A.1.

Note that the sign matrix Ŝ appears above due to the intrinsic sign indeterminacy of factors

and loadings — that is, the factor structure remains unchanged if a factor and its loading are

both multiplied by −1 (see e.g. Theorem 1.b of Stock and Watson 2002 for a similar result). In

particular, it can be shown that ‖F̂ ′F0/T − Ŝ‖ = OP (L−1
NT ).

Remark 1.1: Since our proof strategy is substantially different from that of BN (2002), we

briefly sketch here its main underlying ideas. To facilitate the discussion, for any θa, θb ∈ Θr

define the semimetric d by:

d(θa, θb) =

√√√√ 1

NT

N∑
i=1

T∑
t=1

(λ′aifat − λ′bifbt)2 =
1√
NT

∥∥ΛaF
′
a − ΛbF

′
b

∥∥ ,
and let ωit(λi, ft) = ρτ (Xit − λ′ift)− ρτ (Xit − λ′0if0t),

M∗NT (θ) =
1

NT

N∑
i=1

T∑
t=1

ωit(λi, ft), M̄∗NT (θ) =
1

NT

N∑
i=1

T∑
t=1

E[ωit(λi, ft)].

The semimetric d plays an important role in our asymptotic analysis. We first show that

d(θ̂, θ0) = oP (1). Next, it can be shown that:

M̄∗NT (θ̂) & d2(θ̂, θ0), (3)

and that, for sufficiently small δ > 0,

E

[
sup

θ∈Θr(δ)

∣∣M∗NT (θ)− M̄∗NT (θ)
∣∣] .

δ

LNT
, (4)

where Θr(δ) = {θ ∈ Θr : d(θ, θ0) ≤ δ}. By the definition of θ̂, we have M∗NT (θ̂) ≤ 0, which

implies M̄∗NT (θ̂) ≤ −[M∗NT (θ̂) − M̄∗NT (θ̂)]. It then follows from (3) and (4) that d(θ̂, θ0) =

OP (L−1
NT ) (see Theorem 3.2.5 of van der Vaart and Wellner 1996). Finally, the desired results

follow from the fact that ‖Λ̂− Λ0Ŝ‖/
√
N + ‖F̂ − F0Ŝ‖/

√
T . d(θ̂, θ0).
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Inequality (3) follows easily from a Taylor expansion of M̄∗NT (θ̂) around θ0, together with

Assumption 1(ii). It is worth stressing that the proof of (4) requires the chaining argument

which is commonly used in the theory of empirical processes. In particular, using Hoeffding’s

inequality and the fact that |ρτ (u) − ρτ (v)| ≤ 2|u − v|, it can be shown that, for any given

θa, θb ∈ Θr,

P
[√

NT
∣∣M∗NT (θa)− M̄∗NT (θa)−M∗NT (θb) + M̄∗NT (θb)

∣∣ ≥ c] ≤ e− c2

Kd2(θa,θb) (5)

for some constant K. Then, along the lines of Theorem 2.2.4 of van der Vaart and Well-

ner (1996), it holds that the left-hand side of (4) is bounded (up to a positive constant) by∫ δ
0

√
logD(ε, d,Θr(δ))dε/

√
NT . Finally, we can prove that

∫ δ
0

√
logD(ε, d,Θr(δ))dε . δ

√
M ,

from which inequality (4) follows.

Remark 1.2: Compared to BN (2002), recall that, in exchange for Assumption 1(iii) we do not

require any moment of uit to be finite. Thus, for the canonical AFM (e.g., Example 1) when the

idiosyncratic errors have median equal to zero and satisfy Assumption 1(iii), the QFA estimator

for τ = 0.5 can be interpreted as a least absolute deviation (LAD) estimator which is robust

to heavy tails and outliers. In relation to this issue, it is important to point out that the LAD

estimator is related to robust PCA in the machine learning literature that aims to recover a low

rank matrix from a large panel of observables. For example, the Principal Components Pursuit

method proposed by Candès, Li, Ma, and Wright (2011) features a combination of the L1 norm

(as in LAD) and a nuclear norm on the low rank matrix (see Chapter 3 of Vidal, Ma, and Sastry

2016 and Bai and Ng 2019 for other robust PCA methods). In Section 5 below, we will illustrate

the robustness properties of our QFA estimator at τ = 0.5 by Monte Carlo simulations.

Remark 1.3: As in Theorem 1 of BN (2002), if the true factors and factor loadings are not

assumed to satisfy the normalization (2), it can still be proven that the QFA estimator is

consistent for the true factors and factor loadings up to a rotation matrix. In particular, define

ΣT,F = T−1
∑T

t=1 f0tf
′
0t, ΣN,Λ = N−1

∑N
i=1 λ0iλ

′
0i, and HNT = Σ

−1/2
T,F ΓNT , where ΓNT is the

matrix of eigenvectors of Σ
1/2
T,FΣN,ΛΣ

1/2
T,F . Then it can be shown that

‖Λ̂− Λ0(H ′NT )−1Ŝ‖/
√
N = OP (L−1

NT ) and ‖F̂ − F0HNT Ŝ‖/
√
T = OP (L−1

NT ).

The proof of this result is identical to that of Theorem 1, since it is easy to see that Λ0(H ′NT )−1

and F0HNT satisfy the normalization (2). Notice, however, that the rotation matrix HNT is

slightly different from the rotation matrix of BN (2002) and Bai (2003) because the QFA esti-

mator is implicitly defined as the minimizer of the check function, while the PCA estimator is

explicitly defined through the eigenequation. Moreover, since both λ0i and f0t are τ -dependent,

HNT also varies across quantiles, though we did not explicitly make this matrix quantile depen-
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dent in the previous discussion to simplify notation.

Remark 1.4: Compared to BN (2002), our Assumption 1(iii) is admittedly strong. However,

note that this assumption is made conditional on {f0t}, so cross-sectional and temporal de-

pendence of uit due to the common factors are still allowed for. Moreover, the independence

assumption is only used to establish the sub-Gaussian inequality (5). Thus, Assumption 1(iii)

could be relaxed as long as the sub-Gaussian inequality holds.4

3.2 Selecting the Number of Factors

While in the previous subsection the number of quantile-dependent factors r(τ) was assumed

to be known at each τ , we now propose two different methods to select the correct number

of factors at each quantile with probability approaching one. The first procedure selects the

number of factors by rank minimization while the second one uses information criteria (IC). As

before, the dependence of the quantile-dependent objects on τ , including r(τ), is suppressed for

simplicity.

3.2.1 Model Selection by Rank Minimization

Let k be a positive integer larger than r, and Ak and Fk be compact subsets of Rk. In particular,

let us assume that [λ′0i 01×(k−r)]
′ ∈ Ak for all i.

Let λki , f
k
t ∈ Rk for all i, t and write θk = (λk

′
1 , . . . , λ

k′
N , f

k′
1 , . . . , f

k′
T )′, Λk = (λk1, . . . , λ

k
N )′,

F k = (fk1 , . . . , f
k
T )′. Consider the following normalizations:

1

T

T∑
t=1

fkt f
k′
t = Ik,

1

N

N∑
i=1

λki λ
k′
i is diagonal with non-increasing diagonal elements. (6)

Define Θk = {θk : λki ∈ Ak, fkt ∈ Fk, and λki , f
k
t satisfy (6)}, and

θ̂k = (λ̂k
′

1 , . . . , λ̂
k′
N , f̂

k′
1 , . . . , f̂

k′
T )′ = arg min

θk∈Θk

1

NT

N∑
i=1

T∑
t=1

ρτ (Xit − λk
′
i f

k
t ).

Moreover, define Λ̂k = (λ̂k1, . . . , λ̂
k
N )′ and write

(Λ̂k)′Λ̂k/N = diag
(
σ̂kN,1, . . . , σ̂

k
N,k

)
.

4See van de Geer (2002) for the properties of Hoeffding inequalities for martingales.
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The first estimator of the number of factors r is defined as:

r̂rank =
k∑
j=1

1{σ̂kN,j > PNT },

where PNT is a sequence that goes to 0 as N,T → ∞. In other words, r̂rank is equal to the

number of diagonal elements of (Λ̂k)′Λ̂k/N that are larger than the threshold PNT . We call

r̂rank the rank-minimization estimator because, as discussed in Remark 2.1 below, it can be

interpreted as a rank estimator of (Λ̂k)′Λ̂k/N .

It can then be shown that:

Theorem 2. Under Assumption 1, P [r̂rank = r] → 1 as N,T → ∞ if k > r, PNT → 0 and

PNTL
2
NT →∞.

Proof. See Appendix A.2.

Remark 2.1: In the proof of Theorem 2, we show that, for k > r, it holds that (up to sign)∥∥∥F̂ k,r − F0

∥∥∥ /√T = OP (L−1
NT ) and

∥∥∥Λ̂k − Λ∗0

∥∥∥ /√N = OP (L−1
NT ),

where F̂ k,r is the first r columns of F̂ k and Λ∗0 = [Λ0,0N×(k−r)]. It then follows from Assumption

1 that σ̂kN,j
p→ σj > 0 for j = 1, . . . , r and σ̂kN,j = N−1

∑N
i=1(λ̂ki,j)

2 = OP (1/L2
NT ) for j =

r + 1, . . . , k. Thus, the first r diagonal components of (Λ̂k)′Λ̂k/N converge in probability to

positive constants while the remaining diagonal components are all OP (1/L2
NT ). In other words,

(Λ̂k)′Λ̂k/N converges in probability to a matrix with rank r, and PNT can be viewed as a cutoff

value to choose the asymptotic rank of (Λ̂k)′Λ̂k/N .

3.2.2 Model Selection by Information Criteria

The second estimator of r is similar to the IC-based estimator of BN (2002). Let l denote a

positive integer smaller or equal to k, and Al and F l be compact subsets of Rl. In particular,

for l > r, assume that [λ′0i 01×(l−r)]
′ ∈ Al for all i. Moreover, we can define Θl, θ̂l, f̂ lt , λ̂

l
i, F̂

l

and Λ̂l in a similar fashion.

Define the IC-based estimator of r as follows:

r̂IC = arg min
1≤l≤k

[
MNT (θ̂l) + l · PNT

]
.

We can show that:
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Theorem 3. Suppose Assumption 1 holds, and assume that for any compact set C ⊂ R and any

u ∈ C, there exists f̄ > 0 (depending on C) such that fit(u) ≤ f̄ for all i, t. Then P [r̂IC = r]→ 1

as N,T →∞ if k > r, PNT → 0 and PNTL
2
NT →∞.

Proof. See Appendix A.3.

Remark 3.1: AB (2020) obtain a similar result, but the difference with ours is that we only

need the density function of the idiosyncratic errors to be uniformly bounded above and below,

while AB (2020) requires all the moments of the errors to be bounded. The reason why we can

obtain the same result here with less restrictions is that our proof is based on the novel argument

discussed in Remark 1.1 and on the average convergence rate of the estimators, while the proof

of AB (2020) depends on the uniform convergence rate of the estimators.

Remark 3.2: Let X denote the T ×N matrix of observed variables, and let F̌ l, Λ̌l denote the

matrices of PCA estimators of BN (2002) when the number of factors is specified as l. Then

BN (2002)’s estimator of r can be written as:

r̂ = arg min
1≤l≤k

[
(NT )−1‖X − F̌ lΛ̌l′‖2 + l · PNT

]
,

where k > r and PNT is defined as in Theorem 2 above. It can be shown that IC-based estimator

r̂ is equivalent to the number of diagonal elements in Λ̌k
′
Λ̌k/N that are larger than PNT . Thus,

the two seemly different estimators of the number of factors are equivalent in AFM. However,

due to the differences of the object functions, such equivalence does not hold any longer in QFM.

Remark 3.3: The choice of PNT for r̂rank and r̂IC can be different in practice. In particular, it

can differ from the penalties used by BN (2002). For example, AB (2020) choose

PNT = log

(
NT

N + T

)
· N + T

NT

for r̂IC, similar to ICp1 of BN (2002). However, as shown in AB’s (2020) simulation results, this

choice does not perform too well, even for N,T as large as 300.

Remark 3.4: Even though both r̂rank and r̂IC yield consistent estimators of r, the computational

burden of r̂rank is much lower than that of r̂IC, because for r̂rank we only estimate the model once,

while for r̂IC the model needs to be estimated k times. Thus, in the simulations and empirical

applications below we will focus on r̂rank, while we refer to AB (2020) for the corresponding

simulation results of r̂IC. In particular, we find that the choice

PNT = σ̂kN,1 ·
(
L2
NT

)−1/3
(7)
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for r̂rank works fairly well as long as min{N,T} is 100. As a result, we use this value in all of

our simulations and applications below.

4 Estimators Based on Smoothed Quantile Regressions

The non-smoothness of the check function and the incidental-parameters problem make it diffi-

cult to derive the asymptotic distribution of the QFA estimator θ̂. As in the asymptotic analysis

of conventional QR, one way to overcome these difficulties is to expand the expected score func-

tion (which is smooth and continuously differentiable) and obtain a stochastic expansion for

λ̂i − Ŝλ0i; yet, the following term appears in the expansion which may be non-negligible:

1

T

T∑
t=1

{(
1{Xit ≤ λ̂′if̂t} − E[1{Xit ≤ λ̂′if̂t}]

)
f̂t −

(
1{Xit ≤ λ′0if0t} − τ

)
f0t

}
. (8)

Consequently, the next step is to show that (8) is a higher-order term (i.e. oP (T−1/2)) which

does not affect the asymptotic distribution of λ̂i. However, due to the presence of the indicator

functions in (8), this is not straightforward. To see this, let us consider a similar problem for

the PCA estimators of AFM. Let λ̌i and f̌t be the PCA estimators. In the stochastic expansion

of λ̌i − λ0i, the analogous term to (8) happens to be: T−1
∑T

t=1 εit(f̌t − f0t), where εit is the

idiosyncratic error in the AFM. Note that, based on the result T−1
∑T

t=1 ‖f̌t−f0t‖2 = OP (L−2
NT ),

one can only show that:

∥∥∥∥∥ 1

T

T∑
t=1

εit(f̌t − f0t)

∥∥∥∥∥ ≤
√√√√ 1

T

T∑
t=1

ε2it ·

√√√√ 1

T

T∑
t=1

‖f̌t − f0t‖2 = OP (L−1
NT ).

Hence, one has to use instead the stochastic expansion of f̌t−f0t to show that T−1
∑T

t=1 εit(f̌t−
f0t) = OP (L−2

NT ) (see the proof of Lemma B.1 of Bai 2003). Likewise, to prove that (8) is

oP (T−1/2), establishing the convergence rate of f̂t − Ŝf0t is not enough, and the stochastic

expansion of f̂t − Ŝf0t is required. However, due the non-smoothness of the indicator functions,

it is not immediate how to explore this stochastic expansion in (8).

To overcome this difficulty, we proceed by defining a new estimator of θ0, denoted as θ̃, which

relies on the following smoothed quantile regressions (SQR):

θ̃ = (λ̃′1, . . . , λ̃
′
N , f̃

′
1, . . . , f̃

′
T )′ = arg min

θ∈Θr
SNT (θ),

where

SNT (θ) =
1

NT

N∑
i=1

T∑
t=1

[
τ −K

(
Xit − λ′ift

h

)]
(Xit − λ′ift),
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such that K(z) = 1−
∫ z
−1 k(z)dz, k(z) is a continuous kernel function with support [−1, 1], and

h is a bandwidth parameter that goes to 0 as N,T grow.

Define

Φi = lim
T→∞

1

T

T∑
t=1

fit(0)f0tf
′
0t and Ψt = lim

N→∞

1

N

N∑
i=1

fit(0)λ0iλ
′
0i

for all i, t. We impose the following assumptions:

Assumption 2. Let m ≥ 8 be a positive integer,

(i) Φi > 0 and Ψt > 0 for all i, t.

(ii) λ0i is an interior point of A and f0t is an interior point of F for all i, t.

(iii) k(z) is symmetric around 0 and twice continuously differentiable.
∫ 1
−1 k(z)dz = 1,

∫ 1
−1 z

jk(z)dz =

0 for j = 1, . . . ,m− 1 and
∫ 1
−1 z

mk(z)dz 6= 0.

(iv) fit is m+2 times continuously differentiable. Let f
(j)
it (u) = (∂/∂u)jfit(u) for j = 1, . . . ,m+2.

For any compact set C ⊂ R and any u ∈ C, there exists −∞ < l < l̄ < ∞ (depending on C)

such that l ≤ f
(j)
it (u) ≤ l̄ and f ≤ fit(u) ≤ l̄ for j = 1, . . . ,m+ 2 and for all i, t.

(v) As N,T →∞, N ∝ T , h ∝ T−c and m−1 < c < 1/6.

The above conditions are standard in SQR, with the exception of (v). Note that, as in

Galvao and Kato (2016), we require k(z) to be a higher-order kernel function to control the

higher-order terms in the stochastic expansions of the estimators. However, Galvao and Kato

(2016) assume that m−1 < c < 1/3 (or m ≥ 4), while we need m−1 < c < 1/6 (or m ≥ 8).

This difference arises from the fact that the incidental parameters (λ0i and f0t) in QFM enter

the model interactively, while no interactive fixed-effects appear in the panel quantile models

considered by these authors.

Then, it is shown that the following result holds:

Theorem 4. Let S̃ = sgn(F̃ ′F0/T ). Then under Assumptions 1 and 2,

√
T (λ̃i − S̃λ0i)

d→ N (0, τ(1− τ)Φ−2
i ) and

√
N(f̃t − S̃f0t)

d→ N (0, τ(1− τ)Ψ−1
t ΣΛΨ−1

t )

for each i and t, where ΣΛ = diag(σ1, . . . , σr).

Proof. See the Online Appendix.

Remark 4.1: Similar to the proof of Theorem 1, it holds that

‖Λ̃− Λ0S̃‖/
√
N = OP (L−1

NT ) +OP (hm/2) and ‖F̃ − F0S̃‖/
√
T = OP (L−1

NT ) +OP (hm/2),

where the extra OP (hm/2) term is due to the approximation bias of the smoothed check func-

tion. However, Assumption 2(v) implies that 1/LNT � hm/2, and then it follows that average

convergence rates of Λ̃ and F̃ are both LNT .
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Remark 4.2: Similar to Theorems 1 and 2 of Bai (2003), we show that the new estimator is free

of incidental-parameter biases. This implies that the asymptotic distribution of λ̃i is the same as

if {f0t} were observed, and likewise the asymptotic distribution of f̃t is the same as if {λ0i} were

observed. The proof of this result is not trivial. To see why, first define %(u) = [τ−K(u/h)]u and

Si,T (λ, F ) = T−1
∑T

t=1 %(Xit − λ′ft), then we can write λ̃i = arg minλ∈A Si,T (λ, F̃ ). Expanding

∂Si,T (λ̃i, F̃ )/∂λ around (S̃λ0i, F0S̃) yields

(
1

T

T∑
t=1

%(2)(uit)f0tf
′
0t

)
(λ̃i − S̃λ0i) ≈

1

T

T∑
t=1

%(1)(uit)S̃f0t +
1

T

T∑
t=1

%(1)(uit)(f̃t − S̃f0t)

− 1

T

T∑
t=1

%(2)(uit)f0tλ
′
0i(f̃t − S̃f0t), (9)

where %(j)(u) = (∂/∂u)j%(u). The key step is to show that the last two terms on the right-

hand side of the above equation are both oP (1/
√
T ). This is relatively easier for the PCA

estimator of Bai (2003), since (f̃t − S̃f0t) has an analytical form (like e.g. in equation A.1 of

Bai 2003). In our case, we would also need a stochastic expansion for (f̃t − S̃f0t), which in turn

depends on the stochastic expansion of (λ̃i − S̃λ0i) due to the nature of factor models. As in

Chen et al. (2020), this problem can be partly solved by showing that the expected Hessian

matrix is asymptotically block-diagonal (see Lemma S.6 in the Online Appendix). However,

the proof of Chen et al. (2020) is only applicable to a special infeasible normalization, namely∑N
i=1 λ0iλi =

∑T
t=1 f0tf

′
t , while our proof of Lemma S.6 allows for normalization (2) and can be

generalized to any of the other normalizations considered by Bai and Ng (2013) that uniquely

pin down the rotation matrix.

Remark 4.3: In line with Remark 1.3, if the true parameters did not satisfy the normalizations

(2), the results of Theorem 3 should be stated as

√
T
(
λ̃i − S̃H−1

NTλ0i

)
d→ N

(
0, τ(1− τ)H−1Φ−1

i ΣFΦ−1
i (H−1)′

)
,

√
N
(
f̃t − S̃H ′NT f0t

)
d→ N

(
0, τ(1− τ)H ′Ψ−1

t ΣΛΨ−1
t H

)
,

where HNT is defined in Remark 1.3, ΣF = limT→∞ΣT,F , ΣΛ = limN→∞ΣN,Λ, H = Σ
−1/2
F Γ,

and Γ is the matrix of eigenvectors of Σ
1/2
F ΣΛΣ

1/2
F .

Remark 4.4: Let l(z) be a continuous kernel function with support [−1, 1] where l(j)(z) =

∂jl(z)/∂zj exists and supz∈(−1,1) |l(j)(z)| is bounded for j = 1, 2. Let b a bandwidth. Estimators
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for the asymptotic variance matrices of λ̃i and f̃t can be simply constructed as

Ṽλi = τ(1− τ)Φ̃−2
i where Φ̃i =

1

Tb

T∑
t=1

l(ũit/b) · f̃tf̃ ′t ,

and

Ṽft = τ(1− τ)Ψ̃−1
t Σ̃ΛΨ̃−1

t where Ψ̃t =
1

Nb

N∑
i=1

l(ũit/b) · λ̃iλ̃′i, Σ̃Λ = Λ̃′Λ̃/N,

with ũit = Xit − λ̃′if̃t. In Section S.2 of the Online Appendix we show that under Assumptions

1 and 2, the above estimators of the asymptotic covariance matrices are consistent if b→ 0 and

Nb3 → ∞. Note that this is different from the usual condition Nb2 → ∞ in standard quantile

regressions (see e.g. Powell 1984 and Angrist, Chernozhukov, and Fernández-Val 2006). More-

over, the above estimators are also consistent for the asymptotic covariance matrices discussed

in Remark 4.3.

5 Finite Sample Simulations

We next report the results from several Monte Carlo simulations regarding the performance of

the QFM methodology in finite samples. In particular, we focus on four relevant issues: (i)

how well our preferred estimator of the number of factors and the QFA estimator perform in

relation to other methods when the distribution of the idiosyncratic errors exhibits heavy tails,

(ii) how well the QFA estimator performs in estimating the extra quantile factors that can not

be captured by the PCA estimator, (iii) how robust the QFA estimation procedure is when the

errors terms are serially and cross-sectionally correlated, instead of being independent, and (iv)

how well the asymptotic normal approximations (derived in Theorem 4 for the QFA estimators

based on SQR) behave in finite samples.

5.1 QFA Estimation with Heavy-tailed Idiosyncratic Errors

As pointed out in Remark 1.2, consistency of the QFA estimator does not require the moments

of the idiosyncratic errors to exist. Hence, at τ = 0.5, QFA can be viewed as a robust QR

alternative to the PCA estimators commonly used in practice. By the same token, our proposed

estimators of the number of factors should also be robust to outliers and heavy tails. In this

subsection we check these results in finite samples by means of a few simulations.

To do so, we consider a three-factor model with the following DGP:

Xit =

3∑
j=1

λjifjt + uit,
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where f1t = 0.8f1,t−1 + ε1t, f2t = 0.5f2,t−1 + ε2t, f3t = 0.2f3,t−1 + ε3t, λji, εjt are all independent

draws fromN (0, 1), and uit ∼ i.i.d tν for ν = 1, 2, 3, where tν denotes the student’s t distribution

with ν degrees of freedom.

To select the number of factors, we focus on our preferred rank-minimization estimator

defined in subsection 3.2, having chosen PNT as in (7) and k = 8. To estimate the factors,

we consider the QFA estimator at τ = 0.5 (denoted as F̂ 0.5
QFA) using the IQR algorithm. Since

PCA is not well suited for this type of error distributions, we choose an alternative benchmark

for the QFA performance. This is the estimator proposed by He, Kong, Yu, and Zhang (2020)

(denoted as F̂KEN since it uses Kendall’s tau matrix) which, to the best of our knowledge, is

the only method in the robust PCA literature that can consistently estimate the factors without

imposing moment constraints on the idiosyncratic errors.

With Xt = (X1t, . . . , XNt)
′, the empirical spatial Kendall’s tau matrix (see Section 4.4 of

Fan, Liu, and Wang 2018) is defined as

K̂ =
2

N(N − 1)

∑
t<t′

(Xt −Xt′)(Xt −Xt′)
′

‖Xt −Xt′‖2
.

Then, He et al. (2020) show that the estimated factor loading matrix Λ̂KEN is given by the r

leading eigenvectors of K̂ times
√
N , while the estimator of the factor matrix corresponds to

F̂KEN = X · Λ̂KEN/N .

Table 1 presents the results for N,T ∈ {50, 100, 200} obtained from 1000 simulations.

Columns 2 and 3 report the average estimated number of factors and the frequency of choosing

the right number of factors using our rank-minimization estimator; columns 4 to 6 display the

average adjusted R2 of regressing each of the true factors on F̂KEN to compute the distance

between the space of the estimated factors and the space of the true factors; finally the last

three columns show the average adjusted R2 of regressing each of the true factors on F̂ 0.5
QFA.

There are three main takeaways from these simulation results. First, the rank-minimization

estimator selects the right number of factors with high accuracy as long as min{N,T} ≥ 100,

and its performance is not affected as the distribution of the errors changes from t3 to t1. Second,

the QFA estimator performs very well in capturing the space of the true factors, as measured by

the adjusted R2s, which are always higher than 0.9. Finally, for t3 and t2 errors, the estimator

F̂KEN performs similarly to F̂ 0.5
QFA; however, F̂KEN completely breaks down in the case of i.i.d

t1 errors whereas the QFA estimator continues to work well.5

5The reason why the estimator of He et al. (2020) performs poorly in the case of i.i.d Cauchy errors is that
their estimator is designed for models where (u1t, u2t, . . . , uNt) have a multivariate t distribution, with the tail
behavior being controlled by a single random variable ζt.
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5.2 QFA Estimation with Dependent Idiosyncratic Errors

Next, to check how restrictive is the independence of error terms, adopted in Assumption 1(iii)

for analytical tractability in the proofs (see Remark 1.4 above), we now consider the following

DGP, which provides a slight variation of Example 3 in subsection 2.2:

Xit = λ1if1t + λ2if2t + (λ3if3t) · eit, (10)

where f1t = 0.8f1,t−1 + ε1t, f2t = 0.5f2,t−1 + ε2t, f3t = |gt|, λ1i, λ2i, ε1t, ε2t, gt are all independent

draws from N (0, 1), and λ3i are independent draws from U [1, 2]. Following BN (2002), the

following specification for eit is used:

eit = β ei,t−1 + vit + ρ ·
i+J∑

j=i−J,j 6=i
vjt,

where vit are independent draws from N (0, 1), except in the second case discussed below where

we also allow for heavy tails. The autoregressive coefficient β captures the serial correlation of

eit, while the parameters ρ and J capture the cross-sectional correlations of eit. We consider

three models embedded in the previous specification:

M1: Independent errors: β = 0 and ρ = 0.

M2: Independent errors with heavy tails: β = ρ = 0, and vit ∼ i.i.d t3.

M3: Serially and cross-sectionally correlated errors: β = 0.2 and ρ = 0.2, and J = 3.

For each model and each τ ∈ {0.25, 0.5, 0.75}, we first estimate r̂ using the rank-minimization

estimator, having set k and PNT as in the previous subsection. Second, we estimate r̂ factors

by means of QFA, denoted F̂ τQFA. Finally, we regress each of the true factors on F̂ τQFA and

compute the R2s. This procedure is repeated 1000 times where, for each τ , the averages of r̂

and the R2s in these repetitions are reported.

Table 2 presents the results of these simulations for N,T ∈ {50, 100, 200}. Notice that for

τ = 0.25, 0.75, we have r(τ) = 3 while, for τ = 0.5, we get r(τ) = 2, since the factor f3t does not

affect the median of Xit. For M1 and M2, it can be observed that both the rank-minimization

and the QFA estimators perform very well in choosing the number of quantile-dependent factors

and in estimating them. It should be noticed that at τ = 0.25, 0.75 the estimation of the scale

factor f3t is not as good as the mean factors f1t, f2t for small N and T . However, such differences

vanish as N and T increase. For M3, it can also be inspected that the QFA estimators still fare

satisfactorily, even though the independence assumption is violated in these DGPs. Thus, we

conclude that, despite Assumption 1 (iii), these simulations show that QFA estimation still works

properly when the error terms are allowed to exhibit mild serial and cross-sectional correlations.

Finally, DGP (10) is useful to illustrate the limitations of applying PCA when there are
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extra factors (like f3t above) and the true model is considered to be unknown. Table S.1 in the

Online Appendix reports the estimated number of factors according to ICp1 of BN (2002) and

the R2s of regressing the true factors on the estimated PCA factors. As expected, the R2s are

very high for the mean factors f1t and f2t, but instead are much lower for the extra factor f3t,

which can be captured by QFA.

5.3 Normal Approximations of the Estimators Based on SQR

Our last set of simulations is devoted to evaluating the finite sample behavior of the asymptot-

ically normal distributions derived in Theorem 4 for the QFA estimators based on SQR. To do

so, we consider the following illustrative DGP:

Xit = λift + ftεit,

where ft ∼ i.i.d U(1, 2) normalized by F ′F/T = 1, λi ∼ i.i.d N (0, 1), εit ∼ i.i.d N (0, 1), and

N,T ∈ {50, 200}. Note that, since the results in Theorem 4 are conditional on the factors and

the loadings, both ft and λi are taken as fixed in the simulations. To smooth the indicator

function, we use the following eighth-order kernel function (see Muller, 1984):

k(z) = 1{|z| ≤ 1} · 3465

8192

(
7− 105z2 + 462z4 − 858z6 + 715z8 − 221z10

)
,

while the Epanechnikov kernel l(z) = 0.75(1−z2) ·1{|z| ≤ 1} is applied to estimate the variance.

Figures S.1 and S.2 in the Online Appendix plot together the density function of the stan-

dard normal distribution and the histograms of the standardized estimators of the factors:

V̂ −1
ft

√
N(f̃t − f0t) at τ = 0.25, t = T/2 from 1000 repetitions, where V̂ft is estimated variance

using the formula in Remark 4.4.6 To check how the bandwidths affect the finite distributions

of the estimators, we display results for different choices of the parameters h and b defined in

Remark 4.4. The results show that the asymptotic distributions in Theorem 4 provide reason-

ably good approximations for the finite sample distributions of the estimators based on SQR,

even for N = T = 50, and that they are hardly sensitive to the choice of bandwidths.

6 Empirical Application

In this section we provide empirical evidence showing that QFA could become a useful tool for

predictive exercises regarding macro aggregates7. In particular, we extend the diffusion-index

6We choose the signs of f̃t such that S̃ = 1.
7Further empirical applications of QFA related to causal analysis with climate data and the economic inter-

pretation of quantile-dependent factors in models of stock returns can be found in Chen, Dolado, and Gonzalo
(2020).
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forecasting techniques popularized by Stock and Watson (2002) to explore the predictive power

of the QFA factors. The main goal of this application is to extract a few common factors (by

PCA and QFA) from a large panel of macroeconomic variables, and then analyze the role of

both sets of factors in forecasting real GDP growth and the inflation rate.

We use the FRED-QD dataset which is a quarterly panel of 211 US macroeconomic variables

from 1960Q1 to 2019Q2 (N = 211, T = 238), that emulates the popular dataset used by Stock

and Watson (2002), but also contains several additional time series. All variables in this dataset

are updated in a timely manner and can be downloaded for free.8 Before estimation, each series

is transformed to be stationary using MATLAB codes that are also available on the FRED-QD

data website.9

We initially estimate the number of mean factors by PCA (where the maximum is set equal

to 8 for all estimators) using the standard PCp1 criterion of BN (2002), which selects 8 factors.

Next, we apply our rank-minimization estimator using a grid of quantiles ranging from 0.01

to 0.99. The results of this estimator are presented in Table 3 (column 2). Notice that the

numbers of QFA factors estimated by the rank-minimization criterion varies significantly across

quantiles, pointing to the existence of a nonstandard factor structure in this dataset. Moreover,

the remaining columns in Table 3 report the R2s of regressing each of the QFA factors found

at the different quantiles on the 8 PCA factors. Given their high R2s, it becomes clear that

the QFA factors at τ close to 0.5 and 0.75 are all well explained by the PCA mean factors.

However, this is not the case for other quantiles, where the R2s are much lower. For example,

the first QFA factor at τ = 0.9 (denoted F̂ 0.9
QFA) and those at τ = 0.95, 0.99 (denoted as F̂ 0.95

QFA

and F̂ 0.99
QFA) contain some extra information that could be potentially helpful for forecasting the

above-mentioned variables. Since F̂ 0.95
QFA exhibits a very high correlation with F̂ 0.9

QFA and F̂ 0.99
QFA,

we exclusively focus on the predictive power of F̂ 0.9
QFA and F̂ 0.99

QFA in the subsequent analysis.

Let yt+1 denote the realized value of real GDP growth/inflation at period t + 1. The fore-

casting model we consider is as follows:

yt+1 = α+

pmax∑
j=0

βjyt−j + γ′Ft + εt+1,

where Ft is vector containing several unobserved common factors extracted from this large

dataset. The predicted value of yt+1, based on a vector of estimated factors F̂t, is simply

constructed as ŷt+1 = α̂+
∑p̂

j=0 β̂jyt−j+γ̂
′F̂t, where α̂, β̂j , γ̂ are OLS estimates of the coefficients,

and p̂ is the optimal lag length according to BIC. We compare five different specifications for

Ft: (i) Ft = 0, which is the benchmark AR model, (ii) AR plus F̂t only including F̂PCA, (iii)

8Link to the dataset: http://research.stlouisfed.org/econ/mccracken/. We refer to McCracken and Ng (2016)
for further details.

9Given that the variables in this dataset are measured in different units, they are standardized to have zero
mean and variance equal 1 before estimating the number of factors and the factors themselves.
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AR plus F̂t including F̂PCA and F̂ 0.9
QFA, (iv) AR plus F̂t including F̂PCA and F̂ 0.99

QFA, and (v) AR

plus F̂t including F̂PCA, F̂ 0.9
QFA and F̂ 0.99

QFA. Following Chudik, Kapetanios, and Pesaran (2018),

the initial estimation period is 1960Q1 to 1989Q4 (120 periods), and the forecast evaluation

period is split into great moderation pre-crisis (1990Q1 to 2007Q2) and financial crisis/recovery

(2007Q3 to 2019Q2) sub-periods. A rolling window of 120 periods is used both to estimate the

coefficients and generate the rolling forecasts. In particular, following Chudik et al. (2018), the

number of mean factors in this model is estimated using PCp1 at each rolling window, where

the maximum number of factors is set equal to 5.

The mean squared error (MSE) of these procedures, and their relative MSE (R-MSE) to the

benchmark AR model are reported in Table 4 for the whole evaluation period and each of the

relevant sub-samples. As can be observed, adding the upper tail QFA factors ranks better in

terms of R-MSE than the AR and AR+F̂PCA models for the three periods under considerations.

The gains are not very sizable but still can be considered to be relevant, with reductions in

R-MSE of between 3.5 and 8 percent.

A well-known shortcoming of point forecasts is that their uncertainty is generally unknown;

hence it is difficult to quantify their precision at any given period of time. To address this issue, it

has became customary among central banks to report density forecasts for important macroeco-

nomic variables. In this respect, Adrian et al. (2019) argue that a simple way of producing such

densities is via QR. Following their approach, we next evaluate the predictive power of the QFA

factors for forecasting the densities of real GDP growth and inflation. In particular, we first pre-

dict the conditional quantiles of the target variable yt+h by q̂τ,t+h = α̂τ +
∑p

j=0 β̂τ,jyt−j + γ̂′τ F̂τ,t

for τ ∈ {0.05, 0.25, 0.75, 0.95}, where α̂τ , β̂τ,j , γ̂τ are estimated coefficients by running QR of yt+h

on [1, yt, . . . , yt−p, F̂τ,t], and F̂τ,t is a vector of estimated quantile factors using the IQR algo-

rithm.10 Next, given the predicted quantiles: [q̂0.05,t+h, q̂0.25,t+h, q̂0.75,t+h, q̂0.95,t+h], the predicted

density of yt+h is constructed as the density of a skewed t-distribution by matching the predicted

quantiles.11 Finally, the accuracy of the density forecast is measured by the predictive score,

namely, the predicted density evaluated at the realized value of yt+h. Higher predictive scores

signify more accurate predictions. The out-of-sample density forecasts are constructed using

rolling windows with the most recent 120 observations, and the evaluation period is 1990Q1 to

2019Q2. Moreover, we set p = 3, and consider as the benchmark model the one with F̂τ,t = 0,

where the quantiles of yt+h are predicted only using its own lags.

The four panels in Figure 1 display the predictive scores of the one-quarter-ahead (h = 1) and

one-year-ahead (h = 4) density forecasts for GDP growth (upper panels) and inflation (lower

panels). In both instances, it can be seen that the predictive scores of the“AR + Quantile

Factors” procedure are frequently above those of the “AR benchmark” model, and sometimes

10The number of factors at each of the four chosen quantiles is given in Table 3 (column 2).
11We refer to Adrian et al. (2019) for further details, and to Azzalini and Capitanio (2003) for the definition

and properties of the skewed t-distribution.
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by a large margin. In sum, these empirical results indicate that the QFA factors could indeed

be very informative for density forecasting of highly relevant macroeconomic variables.

7 Conclusions

Inspired by the generalization of linear regressions to quantile regressions (QR), this paper

proposes quantile factor models (QFM) as a new class of factor models in relation to the con-

ventional approximate factor models (AFM). Compared to AFM, both factors and loadings in

QFM are allowed to be quantile-dependent objects which affect other distributional character-

istics of the data (volatility, higher moments, extreme values, etc.), and not (or not only) their

mean. Using tools in the interface of QR, principal component analysis (PCA) and the theory

of empirical processes, we propose an estimation procedure of the quantile-dependent objects in

QFM, labelled Quantile Factor Analysis (QFA), which yields consistent and asymptotically nor-

mal estimators of factors and loadings at each quantile. In addition, we propose novel selection

criteria to estimate consistently the number of factors at each quantile.

The previous theoretical findings receive support in finite samples from a range of Monte

Carlo simulations, including the robustness of QFA when the idiosyncratic errors lack moments.

Furthermore, as illustrated by our empirical application, these extra factors could be useful,

among other issues, for forecasting exercises with factor-augmented regressions.

Among the research issues which have been left out of this paper, four topics stand out: (i)

undertake further analysis on the role of QFA in the propagation of structural shocks in factor-

augmented VAR (FAVAR) models, where recent developments in quantile VAR estimation, as

in White, Kim, and Manganelli (2015), provide useful tools to address this issue; (ii) relax the

independence assumption on the error terms which, in view of our previous simulation results

with mildly dependent errors in QFM, seems feasible; (iii) extend our results for static QFM to

dynamic QFM, where the set of quantile-dependent variables include lagged factors (see Forni,

Hallin, Lippi, and Reichlin 2000 and Stock and Watson 2011); and finally (iv) provide theories

about how to interpret QFA factors in different economic and financial setups.

Appendix A: Proofs of the Main Results

Definitions and Notations: Throughout the Appendix, K1,K2, . . . denote some positive constants

that do not depend on N,T . For any random variable Y , define the Orlicz norm ‖Y ‖ψ as:

‖Y ‖ψ = inf {C > 0 : Eψ (|Y |/C) ≤ 1} ,

where ψ is a non-decreasing, convex function with ψ(0) = 0. In particular, when ψ(x) = ex
2 − 1, the

norm is written as ‖Y ‖ψ2
. We use ‖·‖S to denote the spectral norm, and C(·, g,G) to denote the covering
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number of space G endowed with semimetric g. Moreover, define

WNT (θ) = M∗NT (θ)− M̄∗NT (θ) =
1

NT

N∑
i=1

T∑
t=1

(ωit(λi, ft)− E[ωit(λi, ft)]) ,

where ωit(λi, ft) = ρτ (Xit − λ′ift)− ρτ (Xit − λ′0if0t).

A.1 Proof of Theorem 1

Lemma 1. Under Assumption 1, we have d(θ̂, θ0) = oP (1) as N,T →∞.

Proof. First, for any λi ∈ A and ft ∈ F , expanding E[ρτ (Xit − λ′ift) − ρτ (Xit − λ0if0t)] around c0,it =

λ0if0t, we have

E[ρτ (Xit − λ′ift)− ρτ (Xit − λ0if0t)] = 0.5 · fit(c∗it) · (λ′ift − λ0if0t)
2,

where c∗it is between λ′ift and c0,it. It then follows from Assumption 1(ii) that for all λi ∈ A and ft ∈ F ,

E[ρτ (Xit − λ′ift)− ρτ (Xit − λ0if0t)] & (λ′ift − λ′0if0t)
2

since |λ′ift| and |λ′0if0t| are both bounded. Therefore, for any θ ∈ Θr, we have:

M̄∗NT (θ) & d2(θ, θ0). (A.1)

Second, by the definition of θ̂, we have M∗NT (θ̂) = MNT (θ̂)−MNT (θ0) ≤ 0, or equivalently WNT (θ̂)+

M̄∗NT (θ̂) ≤ 0. It then follows from (A.1) that

0 ≤ d2(θ̂, θ0) . M̄∗NT (θ̂) ≤ sup
θ∈Θr

|WNT (θ)| .

Thus, it remains to be shown that

sup
θ∈Θr

|WNT (θ)| = oP (1). (A.2)

Choose K1 large enough such that ‖λ0i‖, ‖f0t‖, ‖λi‖, ‖ft‖ ≤ K1 for all i, t for any θ ∈ Θr. Let Br(K1)

be a Euclidean ball in Rr with radius K1. For any ε > 0, let λ(1), . . . , λ(J) be a maximal set of points

in Br(K1) such that ‖λ(j) − λ(h)‖ > ε/K1 for any j 6= h where “maximal” signifies that no point can

be added without violating the validity of the inequality. Similarly, let f(1), . . . , f(J) be a maximal set

of points in Br(K1) such that ‖f(j) − f(h)‖ > ε/K1 for any j 6= h. It is well known that J , the packing

number of Br(K1), is equal to K2(K1/ε)
r.

For any θ ∈ Θr, define θ∗ = (λ∗
′

1 , . . . , λ
∗′
N , f

∗′
1 , . . . , f

∗′
T )′, where λ∗i = {λ(j) : j ≤ J, ‖λ(j)−λi‖ ≤ ε/K1}

and f∗t = {f(j) : j ≤ J, ‖f(j) − ft‖ ≤ ε/K1}. Thus, we can write

WNT (θ) = WNT (θ∗) + WNT (θ)−WNT (θ∗).

Note that |ρτ (Xit − λ′ift)− ρτ (Xit − λ∗
′

i f
∗
t )| ≤ 2|λ′ift − λ∗

′

i f
∗
t | ≤ 2‖λi‖‖ft − f∗t ‖+ 2‖f∗t ‖‖λi − λ∗i ‖ ≤ 4ε.
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Thus,

sup
θ∈Θr

|WNT (θ)−WNT (θ∗)| ≤ 4ε. (A.3)

Also, note that |ωit(λ∗i , f∗t )| = |ρτ (Xit−λ∗
′

i f
∗
t )−ρτ (Xit−λ′0if0t)| ≤ 2|λ∗′i f∗t −λ′0if0t|. Then, by Hoeffding’s

inequality we have

P [|
√
NTWNT (θ∗)| > c] ≤ 2e

− c2

2·d2(θ∗,θ0) ,

and by Lemma 2.2.1 of van der Vaart and Wellner (1996) it follows that ‖WNT (θ∗)‖ψ2
. d(θ∗, θ0)/

√
NT .

Since θ∗ can take at most JN+T . (K1/ε)
r(N+T ) different values, and d(θ∗, θ0) . K1, it follows from

Lemma 2.2.2 of van der Vaart and Wellner (1996) that

E
[

sup
θ∈Θr

|WNT (θ∗)|
]
≤
∥∥∥∥ sup
θ∈Θr

|WNT (θ∗)|
∥∥∥∥
ψ2

.
√

log(K1/ε)
√
r(N + T )/

√
NT .

√
log(K1/ε)/LNT .

(A.4)

Finally, by Markov’s inequality and (A.3), for any δ > 0,

P

[
sup
θ∈Θr

|WNT (θ)| > δ

]
≤ P

[
sup
θ∈Θr

|WNT (θ∗)| > δ/2

]
+ P

[
sup
θ∈Θr

|WNT (θ)−WNT (θ∗)| > δ/2

]
≤ 2/δ · E

[
sup
θ∈Θr

|WNT (θ∗)|
]

+ P [4ε > δ/2] .

Thus, (A.2) follows from (A.4) since ε is arbitrary. This concludes the proof.

Next, define Θr(δ) = {θ ∈ Θr : d(θ, θ0) ≤ δ}.

Lemma 2. Under Assumption 1 and for sufficiently small δ > 0, for any θ ∈ Θr(δ), we have

‖Λ− Λ0S‖/
√
N + ‖F − F0S‖/

√
T ≤ K3δ,

where S = sgn(F ′F0/T ).

Proof. First, let U ∈ Rr×r be a diagonal matrix whose diagonal elements are either 1 or −1. Since

F ′F/T = F ′0F0/T = Ir and ‖Λ0‖/
√
N ≤ K4 by Assumption 1(i), we have

‖Λ− Λ0U‖/
√
N = ‖(Λ− Λ0U)F ′‖/

√
NT = ‖ΛF ′ − Λ0F

′
0 + Λ0F

′
0 − Λ0UF

′‖/
√
NT

≤ ‖ΛF ′ − Λ0F
′
0‖/
√
NT + ‖Λ0‖/

√
N · ‖F − F0U‖/

√
T

≤ d(θ, θ0) +K4‖F − F0U‖/
√
T .

Thus, for θ ∈ Θr(δ),

‖Λ− Λ0U‖/
√
N + ‖F − F0U‖/

√
T ≤ δ + (1 +K4)‖F − F0U‖/

√
T . (A.5)
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Second,

‖F − F0U‖/
√
T = ‖F0U− F (F ′F0U/T ) + F (F ′F0U/T )− F‖/

√
T

≤ ‖F0U− F (F ′F0U/T )‖/
√
T + ‖F (F ′F0U/T )− F‖/

√
T = ‖MFF0‖/

√
T + ‖F ′F0/T − U‖, (A.6)

where PA = A(A′A)−1A′ and MA = I− PA.

Third, we have

1√
NT
‖(ΛF ′ − Λ0F

′
0)MF ‖ ≤

√
rank[(ΛF ′ − Λ0F ′0)MF ] · ‖MF ‖S · ‖ΛF ′ − Λ0F

′
0‖S/

√
NT

. ‖ΛF ′ − Λ0F
′
0‖/
√
NT = d(θ, θ0), (A.7)

and since

‖(ΛF ′ − Λ0F
′
0)MF ‖/

√
NT = ‖Λ0F

′
0MF ‖/

√
NT =

√
Tr [(Λ′0Λ0/N) · (F ′0MFF0/T )]

≥
√
σNr

√
Tr (F ′0MFF0/T ) =

√
σNr‖MFF0‖/

√
T , (A.8)

it follows from (A.7) and (A.8) that

‖MFF0‖/
√
T .

√
1

σNr
d(θ, θ0). (A.9)

Similarly, it can be shown that

‖MF0
F‖/
√
T .

√
1

ρmin(Λ′Λ/N)
d(θ, θ0), (A.10)

where ρmin denotes the minimum eigenvalue.

Fourth, we have

1√
NT
‖(ΛF ′ − Λ0F

′
0)PF ‖ ≤

1√
NT
‖ΛF ′ − Λ0F

′
0‖ · ‖PF ‖ =

√
rd(θ, θ0),

so

1√
NT
‖(ΛF ′−Λ0F

′
0)PF ‖ =

1√
NT
‖ΛF ′−Λ0(F ′0F/T )F ′‖ =

1√
N
‖Λ−Λ0(F ′0F/T )‖ ≤

√
rd(θ, θ0). (A.11)

Likewise, it can be shown that

1√
N
‖Λ0 − Λ(F ′F0/T )‖ ≤

√
rd(θ, θ0). (A.12)

26



Fifth, define RT = F ′F0/T . Note that FRT = FF ′F0/T = PFF0, thus

Ir = F ′0F0/T = R′T (F ′F/T )RT + F ′0F0/T −R′T (F ′F/T )RT

= R′TRT + F ′0F0/T − F ′0FRT /T + F ′0FRT /T −R′T (F ′F/T )RT

= R′TRT + F ′0(F0 − FRT )/T = R′TRT + F ′0MFF0/T, (A.13)

because

F ′0FRT /T −R′T (F ′F/T )RT = (F0 − FRT )′FRT /T = F ′0MFFRT /T = 0.

In addition,

Λ′0Λ0/N = R′T (Λ′Λ/N)RT + (Λ′0Λ0/N −R′T (Λ′Λ/N)RT )

= R′T (Λ′Λ/N)RT + Λ′0(Λ0 − ΛRT )/N + (Λ0 − ΛRT )′ΛRT /N. (A.14)

Similarly to the proof of (A.13), we have

Ir = RTR
′
T + F ′(F − F0R

′
T )/T = RTR

′
T + F ′MF0

F/T. (A.15)

From (A.14), it holds that

Λ′0Λ0/N = R′T (Λ′Λ/N)(R′T )−1R′TRT + Λ′0(Λ0 − ΛRT )/N + (Λ0 − ΛRT )′ΛRT /N

= R′T (Λ′Λ/N)(R′T )−1 +R′T (Λ′Λ/N)(R′T )−1(R′TRT − Ir) + Λ′0(Λ0 − ΛRT )/N + (Λ0 − ΛRT )′ΛRT /N,

and then it follows from the above equation and (A.13) that

(Λ′0Λ0/N +DNT )R′T = R′T (Λ′Λ/N), (A.16)

where

DNT = R′T (Λ′Λ/N)(R′T )−1F ′0MFF0/T − Λ′0(Λ0 − ΛRT )/N − (Λ0 − ΛRT )′ΛRT /N.

From (A.9) (A.11) and (A.12), we have that ‖DNT ‖ . d(θ, θ0). Hence, by the Bauer-Fike Theorem (see

Theorem 7.2.2 of Golub and Van Loan 2013), it holds that

|ρmin[Λ′Λ/N ]− ρmin[Λ′0Λ0/N ]| ≤ ‖DNT ‖S ≤ ‖DNT ‖ . d(θ, θ0). (A.17)

Moreover, by Assumption 1(i) and the perturbation theory for eigenvectors (see Section 6.12 of Franklin

2012),

‖R′TVTS− Ir‖ = ‖R′TVT − S‖ . d(θ, θ0), (A.18)

where VT = diag
(
(RT,1R

′
T,1)−1/2, . . . , (RT,rR

′
T,r)

−1/2
)
, and R′T,j is the jth column of R′T .

Furthermore, (A.10) and (A.17) imply that ρmin[Λ′Λ/N ] is bounded below by a positive constant,

and that

‖MF0
F‖/
√
T . d(θ, θ0). (A.19)
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Note that the triangular inequality implies that

‖R′T − S‖ ≤ ‖R′TVT − S‖+ ‖R′TVT −RT ‖ ≤ ‖R′TVT − S‖+ ‖RT ‖ · ‖VT − Ir‖. (A.20)

From (A.15) and (A.19), we get

‖VT − Ir‖ . ‖RTR′T − Ir‖ = ‖MF0
F‖2/T . d2(θ, θ0). (A.21)

For small enough d(θ, θ0), it then follows from (A.18) (A.20) and (A.21) that

‖F ′F0/T − S‖ = ‖RT − S‖ . d(θ, θ0). (A.22)

Finally, setting U = S, it follows from (A.6) (A.9) and (A.22) that for sufficiently small d(θ, θ0)

‖F − F0S‖/
√
T . d(θ, θ0). (A.23)

Then the desired result follows from (A.5) and (A.23).

Lemma 3. Under Assumption 1, for sufficiently small δ, we have

E

[
sup

θ∈Θr(δ)

|WNT (θ)|

]
.

δ

LNT
.

Proof. In the proof of Lemma 1 we have shown that for θa, θb ∈ Θr,∥∥∥√NT |WNT (θa)−WNT (θb)|
∥∥∥
ψ2

. d(θa, θb). (A.24)

Since the process WNT (θ) is separable, it follows from Theorem 2.2.4 of van der Vaart and Wellner

(1996) that

E

[
sup

Θr(δ)

√
NT |WNT (θ)|

]
.

∥∥∥∥∥ sup
Θr(δ)

√
NT |WNT (θ)|

∥∥∥∥∥
ψ2

.
∫ δ

0

√
logD(ε, d,Θr(δ))dε.

Thus, it remains to be shown that∫ δ

0

√
logD(ε, d,Θr(δ))dε = O(

√
N + Tδ). (A.25)

To prove (A.25), first note that Lemma 2 implies that

Θr(δ) ⊂
⋃
U∈S

Θr(δ;U)

where S = {U ∈ Rr×r : U = diag(u1, . . . , ur), uj ∈ {−1, 1} for j = 1, . . . , r} is the set of all the r × r
sign matrices, and Θr(δ;U) = {θ ∈ Θr : ‖Λ − Λ0U‖/

√
N + ‖F − F0U‖/

√
T ≤ K3δ}. Since there are 2r

elements in S and r is fixed, it suffices to show that
∫ δ

0

√
logD(ε, d,Θr(δ;U))dε = O(

√
N + Tδ) for each
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U ∈ S. Without loss of generality, we focus on the case U = Ir.

Second, for any θa, θb ∈ Θr,

d(θa, θb) =
1√
NT
‖ΛaF ′a − ΛbF

′
b‖ =

1√
NT
‖ΛaF ′a − ΛbF

′
a + ΛbF

′
a − ΛbF

′
b‖

≤ 1√
N
‖Λa − Λb‖+

‖Λb‖√
N
· ‖Fa − Fb‖√

T
≤ K5

(
‖Λa − Λb‖√

N
+
‖Fa − Fb‖√

T

)
,

where K5 ≥ 1. Now define

d∗(θa, θb) = 2K5

√
‖Λa − Λb‖2

N
+
‖Fa − Fb‖2

T
.

It follows from
√
a+
√
b ≤ 2

√
a+ b that d(θa, θb) ≤ d∗(θa, θb). Moreover, it follows from

√
a+ b ≤

√
a+
√
b

that Θr(δ; Ir) ⊂ Θr∗(δ) = {θ ∈ Θr : d∗(θ, θ0) ≤ K6δ} where K6 = 2K3K5. It then follows that12

D(ε, d,Θr(δ; Ir)) ≤ D(ε, d∗,Θr(δ; Ir)) ≤ D(ε/2, d∗,Θr∗(δ)) ≤ C(ε/4, d∗,Θr∗(δ)). (A.26)

Next, we find an upper bound for C(ε/4, d∗,Θr∗(δ)) as follows. Let η = ε/4, and θ∗1 , . . . , θ
∗
J be a maximal

set in Θr∗(δ) such that d∗(θ∗j , θ
∗
l ) > η for any j 6= l. Define B(θ, c) = {γ ∈ Θr : d∗(γ, θ) ≤ c}.

Then, the balls B(θ∗1 , η), . . . , B(θ∗J , η) cover Θr∗(δ), and thus C(ε/4, d∗,Θr∗(δ)) ≤ J . Moreover, the balls

B(θ∗1 , η/4), . . . , B(θ∗J , η/4) are disjoint and

J⋃
j=1

B(θ∗j , η/4) ⊂ Θr∗(δ + η/4).

Note that the volume of a ball defined by the metric d∗ with radius c is the volume of an ellipsoid, which

is equal to hM · cM , where hM is a constant that depends on N,T and r, but not on c. Therefore, we

have

J · hM · (η/4)M ≤ hM · (K6(δ + η/4))M ,

which implies

J ≤
(
K6(4δ + η)

η

)M
=

(
K6(16δ + ε)

ε

)M
≤
(
K7δ

ε

)M
(A.27)

for ε ≤ δ. It then follows from (A.26) and (A.27) that

∫ δ

0

√
logD(ε, d,Θr(δ; Ir))dε ≤

∫ δ

0

√
logC(ε/4, d∗,Θr∗(δ))dε ≤

√
(N + T )r

∫ δ

0

√
log(K7δ/ε)dε.

It is easy to show that
∫ δ

0

√
log(K7δ/ε)dε = O(δ) and thus (A.25) follows. This concludes the proof of

Lemma 3.

Proof of Theorem 1:

12Let (T, d) be a semi-metric space. Then for any S ⊂ T , it can be shown that D(ε, d, S) ≤ D(ε/2, d, T ) ≤
C(ε/4, d, T ).
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Proof. The parameter space Θr can be partitioned into shells Sj = {θ ∈ Θr : 2j−1 < LNT ·d(θ, θ0) ≤ 2j}.
If LNT · d(θ̂, θ0) is larger than 2V for a given integer V , then θ̂ is in one of the shells Sj with j > V . In

such a case the infimum of the mapping θ 7→M∗NT (θ) = MNT (θ)−MNT (θ0) over this shell is nonpositive

by the definition of θ̂. From this we conclude that, for every η > 0,

P
[
LNT · d(θ̂, θ0) > 2V

]
≤

∑
j>V,2j−1≤ηLNT

P

[
inf
θ∈Sj

M∗NT (θ) ≤ 0

]
+ P [d(θ̂, θ0) > η].

For arbitrarily small η > 0, the second probability on the RHS of the above equation converges to 0 as

N,T →∞ by Lemma 1.

Next, note that by (A.1), for each θ in Sj we have

−M̄∗NT (θ) . −d2
NT (θ, θ0) ≤ −22j−2

L2
NT

.

Thus, infθ∈Sj M∗NT (θ) ≤ 0 implies that

inf
θ∈Sj

WNT (θ) ≤ −22j−2

L2
NT

,

and therefore

∑
j>V,2j−1≤ηLNT

P

[
inf
θ∈Sj

M∗NT (θ) ≤ 0

]
≤

∑
j>V,2j−1≤ηLNT

P

[
sup
θ∈Sj
|WNT (θ)| ≥ 22j−2

L2
NT

]
.

By Lemma 3 and Markov’s inequality, we have

P

[
sup
θ∈Sj
|WNT (θ)| ≥ 22j−2

L2
NT

]
.
L2
NT

22j
· E

[
sup
θ∈Sj
|WNT (θ)|

]
.
L2
NT

22j
· 2j

L2
NT

= 2−j ,

which implies that ∑
j>V,2j−1≤ηLNT

P

[
inf
θ∈Sj

M∗NT (θ) ≤ 0

]
.
∑
j>V

2−j .

The RHS of the previous expression convergences to 0 as V →∞, implying that LNT · d(θ̂, θ0) = OP (1),

or d(θ̂, θ0) = OP (1/LNT ). The desired result then follows from Lemma 2.

A.2 Proof of Theorem 2

With a little abuse of notation, for θa ∈ Θk and θb ∈ Θr, let

d(θa, θb) = ‖ΛaF ′a − ΛbF
′
b‖/
√
NT.

In this case, d is not a metric because θa and θb belong to different spaces. However, the following proofs

will not be affected if we replace d(θa, θb) by a different notation (say d̄(θa, θb)).

For sufficiently small δ, define Θk(δ) = {θk ∈ Θk : d(θk, θ0) ≤ δ}. Let F k,r denote the first r columns
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of F k, and let F k,−r denote the remaining k − r columns of F k. Λk,r and Λk,−r are defined similarly.

Lemma 4. Suppose that Assumption 1 holds and r < k <∞. Then for any θk ∈ Θk(δ) and sufficiently

small δ, we have

‖F k,r − F0S‖/
√
T . δ, ‖Λk,r − Λ0S‖/

√
N . δ, ‖Λk,−r‖/

√
N . δ.

where S = sgn((F k,r)′F0/T ).

Proof. The proof is similar to the proof of Lemma 2 and it is therefore omitted.

For any θk ∈ Θk, write

M∗NT (θk) =
1

NT

N∑
i=1

T∑
t=1

[ρτ (Xit − λk
′

i f
k
t )− ρτ (Xit − λ′0if0t)],

M̄∗NT (θk) =
1

NT

N∑
i=1

T∑
t=1

E[ρτ (Xit − λk
′

i f
k
t )− ρτ (Xit − λ′0if0t)],

WNT (θk) = M∗NT (θk)− M̄∗NT (θk).

Lemma 5. Suppose that Assumption 1 holds and r < k <∞. For sufficiently small δ, we have:

E

[
sup

θk∈Θk(δ)

∣∣WNT (θk)
∣∣] .

δ

LNT
.

Proof. The proof is similar to the proof of Lemma 3 and it is therefore omitted.

Proof of Theorem 2:

Proof. First, similar to the proof of Lemma 1, we can show that d(θ̂k, θ0) = oP (1). Second, like in the

proof of Theorem 1, it follows from the previous lemma that

d(θ̂k, θ0) = OP (L−1
NT ). (A.28)

Third, similar to the proof of Lemma 2 it can be shown that

|σ̂kN,j − σj | = oP (1) for j = 1, . . . , r. (A.29)

Fourth, by Lemma 4 and (A.28),

k∑
j=r+1

σ̂kN,j = ‖Λ̂k,−r‖2/N . d(θ̂k, θ0)2 = OP (L−2
NT ). (A.30)

Finally, by (A.29) and (A.30), we have

P [r̂rank 6= r] = P [r̂rank < r] + P [r̂rank > r] ≤ P [σ̂kN,r ≤ PNT ] + P [σ̂kN,r+1 > PNT ] = o(1). (A.31)
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It then follows that P [r̂rank = r]→ 1.

A.3 Proof of Theorem 3

Proof. Following the proof of Bai and Ng (2002), it suffices to show that for some C > 0,

MNT (θ̂l)−MNT (θ̂r) > C + oP (1) for l < r, (A.32)

and

MNT (θ̂l)−MNT (θ̂r) = OP (1/L2
NT ) for l > r. (A.33)

Case 1: Consider l < r. Adding and subtracting terms, we have

MNT (θ̂l)−MNT (θ̂r) = M∗NT (θ̂l)−M∗NT (θ̂r) = M̄∗NT (θ̂l) + WNT (θ̂l)−M∗NT (θ̂r).

As in the proof of Lemma 1, it can be shown that |WNT (θ̂l)| = oP (1). Next, since |ρτ (Xit − λ′ift) −
ρτ (Xit − λ′0if0t)| . |λ′ift − λ′0if0t|, it follows from Lemma 1 that

∣∣∣M∗NT (θ̂r)
∣∣∣ . 1

NT

N∑
i=1

T∑
t=1

|λ̂r
′

i f̂
r
t − λ′0if0t| ≤ d(θ0, θ̂

r) = oP (1).

Thus, it remains to be shown that M̄∗NT (θ̂l) ≥ C.

Note that, by Taylor expansion and Assumption 1(ii), it can be shown that M̄∗NT (θ̂l) & d2(θ̂l, θ0).

Next, similar to (A.9) we can show that ‖MF̂ lF0‖/
√
T . d(θ̂l, θ0). It then follows that

M̄∗NT (θ̂l) & ‖MF̂ lF0‖2/T. (A.34)

Note that

‖MF̂ lF0‖2/T = Trace
[
Ir − F ′0F̂ lF̂ l

′
F0/T

2
]
≥ ρmax

[
Ir − F ′0F̂ lF̂ l

′
F0/T

2
]
. (A.35)

By Lemma A.5 of Ahn and Horenstein (2013), we have

ρmax

[
Ir − F ′0F̂ lF̂ l

′
F0/T

2
]

+ ρmin

[
F ′0F̂

lF̂ l
′
F0/T

2
]
≥ ρmin [Ir] . (A.36)

Since F ′0F̂
lF̂ l
′
F0 is a r×r symmetric matrix with rank less or equal to l, we have ρmin

[
F ′0F̂

lF̂ l
′
F0/T

2
]

=

0, and the above inequality implies that

ρmax

[
Ir − F ′0F̂ lF̂ l

′
F0/T

2
]
≥ 1. (A.37)

Thus, (A.32) follows from (A.34) to (A.37).

Case 2: Now consider l > r. Adding and subtracting terms we can write

MNT (θ̂l)−MNT (θ̂r) = WNT (θ̂l)−WNT (θ̂r) + M̄∗NT (θ̂l)− M̄∗NT (θ̂r). (A.38)
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First, similar to the proof of Theorem 2, we can show that for sufficiently small δ,

E

[
sup

d(θl,θ0)≤δ

∣∣WNT (θl)
∣∣] .

δ

LNT
,

and d(θ̂l, θ0) = OP (1/LNT ). It then follows that

WNT (θ̂l) = OP (1/L2
NT ). (A.39)

Second, similar to the proof of Lemma 3 and Theorem 1 we can show that

WNT (θ̂r) = OP (1/L2
NT ). (A.40)

Finally, consider M̄∗NT (θ̂l) − M̄∗NT (θ̂r). Using a Taylor expansion and the assumption that |fit(·)| is

uniformly (in i and t) bounded above, it can be shown that∣∣∣M̄∗NT (θ̂l)
∣∣∣ . d2(θ̂l, θ0) and

∣∣∣M̄∗NT (θ̂r)
∣∣∣ . d2(θ̂r, θ0).

It then follows from d(θ̂l, θ0) = OP (1/LNT ) and d(θ̂r, θ0) = OP (1/LNT ) that

M̄∗NT (θ̂l)− M̄∗NT (θ̂r) = OP (1/L2
NT ). (A.41)

Thus, (A.33) follows from (A.38), (A.39), (A.40) and (A.41). This concludes the proof.
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Appendix B: Tables and Figures

Table 1: AFM with Heavy-tailed Idiosyncratic Errors

uit ∼ i.i.d t3

(N,T ) Aver. r̂rank P [r̂rank = r] f1, F̂KEN f2, F̂KEN f3, F̂KEN f1, F̂
0.5
QFA f2, F̂

0.5
QFA f3, F̂

0.5
QFA

(50,50) 2.428 0.533 0.966 0.945 0.933 0.977 0.963 0.954

(50,100) 2.553 0.617 0.973 0.949 0.938 0.982 0.966 0.958

(50,200) 2.635 0.670 0.975 0.952 0.940 0.983 0.967 0.958

(100,50) 2.497 0.589 0.984 0.972 0.966 0.989 0.982 0.978

(100,100) 2.849 0.864 0.986 0.975 0.969 0.991 0.984 0.980

(100,200) 2.937 0.937 0.988 0.977 0.970 0.992 0.985 0.981

(200,50) 2.538 0.624 0.992 0.986 0.983 0.995 0.991 0.989

(200,100) 2.894 0.904 0.993 0.988 0.985 0.996 0.992 0.990

(200,200) 2.995 0.995 0.994 0.988 0.985 0.996 0.993 0.991

uit ∼ i.i.d t2

(50,50) 2.472 0.562 0.887 0.816 0.769 0.974 0.956 0.946

(50,100) 2.560 0.623 0.907 0.832 0.798 0.979 0.960 0.950

(50,200) 2.642 0.676 0.912 0.840 0.801 0.981 0.963 0.953

(100,50) 2.505 0.593 0.937 0.883 0.845 0.988 0.979 0.974

(100,100) 2.854 0.869 0.946 0.898 0.877 0.990 0.982 0.977

(100,200) 2.940 0.940 0.949 0.904 0.877 0.991 0.983 0.978

(200,50) 2.548 0.632 0.961 0.923 0.906 0.994 0.989 0.985

(200,100) 2.897 0.907 0.968 0.941 0.927 0.995 0.991 0.989

(200,200) 2.995 0.995 0.972 0.945 0.928 0.996 0.992 0.990

uit ∼ i.i.d t1

(50,50) 2.706 0.330 0.049 0.020 0.015 0.956 0.923 0.902

(50,100) 2.518 0.563 0.049 0.017 0.010 0.967 0.939 0.925

(50,200) 2.456 0.566 0.034 0.011 0.007 0.971 0.944 0.930

(100,50) 2.570 0.568 0.024 0.011 0.007 0.981 0.968 0.959

(100,100) 2.867 0.877 0.027 0.009 0.004 0.986 0.972 0.968

(100,200) 2.942 0.943 0.027 0.006 0.004 0.988 0.976 0.970

(200,50) 2.525 0.602 0.012 0.004 -0.001 0.991 0.983 0.980

(200,100) 2.903 0.911 0.013 0.003 0.001 0.994 0.988 0.985

(200,200) 2.994 0.994 0.011 0.003 0.001 0.994 0.989 0.986

Note: Simulation results of 1000 repetitions. The DGP considered in this Table is: Xit =
∑3
j=1 λjifjt + uit, where

f1t = 0.8f1,t−1 + ε1t, f2t = 0.5f2,t−1 + ε2t, f3t = 0.2f3,t−1 + ε3t, λji, εjt ∼ i.i.d N (0, 1), uit ∼ i.i.d tν with ν = 3

(upper panel), ν = 2 (middle panel) and ν = 1 (lower panel). F̂ 0.5
QFA and F̂KEN denote the estimates of the factors

by QFA at τ = 0.5 and the method proposed by He et al. (2020), respectively. Columns 2-3 report the average

estimated number of factors and the frequency of choosing the right number of factors using our rank-minimization

estimator; columns 4-6 report the average adjusted R2 of regressing each of the true factors on F̂KEN ; and the last

three columns report the average adjusted R2 of regressing each of the true factors on F̂KEN .

34



Table 2: Estimation of QFM

M1 τ = 0.25 τ = 0.5 τ = 0.75
(N,T ) r̂ f1t f2t f3t r̂ f1t f2t f3t r̂ f1t f2t f3t

(50,50) 2.19 0.917 0.686 0.340 1.88 0.960 0.808 0.010 2.19 0.917 0.694 0.348
(50,100) 2.32 0.936 0.700 0.413 1.90 0.968 0.863 0.001 2.33 0.939 0.705 0.413
(50,200) 2.51 0.934 0.732 0.521 1.94 0.972 0.892 0.001 2.49 0.933 0.722 0.511
(100,50) 2.25 0.943 0.751 0.403 1.91 0.980 0.856 0.004 2.25 0.944 0.740 0.402
(100,100) 2.68 0.973 0.850 0.680 1.97 0.985 0.948 0.002 2.69 0.974 0.868 0.678
(100,200) 2.86 0.981 0.915 0.797 2.00 0.987 0.971 0.000 2.88 0.981 0.910 0.811
(200,50) 2.29 0.962 0.774 0.456 1.89 0.989 0.853 0.009 2.26 0.956 0.758 0.445
(200,100) 2.75 0.985 0.884 0.766 1.98 0.993 0.967 0.001 2.75 0.984 0.894 0.766
(200,200) 2.99 0.992 0.980 0.933 2.00 0.993 0.987 0.000 2.99 0.991 0.981 0.937

M2 τ = 0.25 τ = 0.5 τ = 0.75
(N,T ) r̂ f1t f2t f3t r̂ f1t f2t f3t r̂ f1t f2t f3t

(50,50) 2.89 0.904 0.747 0.558 2.38 0.952 0.832 0.039 2.87 0.914 0.762 0.558
(50,100) 2.75 0.931 0.771 0.627 1.97 0.961 0.858 0.004 2.75 0.930 0.778 0.631
(50,200) 2.85 0.940 0.818 0.699 1.95 0.965 0.888 0.001 2.85 0.938 0.820 0.693
(100,50) 2.92 0.951 0.815 0.667 2.43 0.976 0.878 0.044 2.93 0.951 0.818 0.665
(100,100) 3.00 0.972 0.912 0.820 2.07 0.982 0.946 0.007 3.00 0.971 0.898 0.816
(100,200) 2.97 0.974 0.937 0.857 2.00 0.984 0.964 0.001 2.98 0.974 0.937 0.858
(200,50) 2.92 0.968 0.836 0.723 2.50 0.988 0.894 0.052 2.96 0.971 0.837 0.733
(200,100) 2.99 0.985 0.932 0.890 2.10 0.991 0.963 0.008 2.98 0.985 0.940 0.887
(200,200) 3.00 0.988 0.976 0.931 2.00 0.992 0.985 0.001 3.00 0.988 0.976 0.931

M3 τ = 0.25 τ = 0.5 τ = 0.75
(N,T ) r̂ f1t f2t f3t r̂ f1t f2t f3t r̂ f1t f2t f3t

(50,50) 2.47 0.903 0.686 0.373 2.14 0.953 0.809 0.025 2.45 0.912 0.692 0.369
(50,100) 2.52 0.931 0.722 0.420 1.98 0.959 0.848 0.005 2.53 0.934 0.721 0.421
(50,200) 2.68 0.936 0.766 0.491 1.95 0.961 0.882 0.002 2.66 0.942 0.755 0.483
(100,50) 2.47 0.939 0.758 0.467 2.05 0.976 0.854 0.017 2.45 0.948 0.746 0.475
(100,100) 2.86 0.975 0.891 0.680 2.04 0.981 0.946 0.005 2.85 0.974 0.892 0.673
(100,200) 2.97 0.980 0.943 0.742 2.00 0.983 0.963 0.000 2.95 0.979 0.934 0.735
(200,50) 2.48 0.958 0.774 0.554 1.98 0.986 0.865 0.018 2.47 0.961 0.774 0.554
(200,100) 2.89 0.987 0.927 0.798 2.00 0.990 0.965 0.002 2.89 0.988 0.926 0.799
(200,200) 3.00 0.990 0.979 0.866 2.00 0.992 0.984 0.000 3.00 0.990 0.979 0.864

Note: Simulation results from 1000 repetitions. The DGP considered in this Table is: Xit = λ1if1t +
λ2if2t+(λ3if3t)·eit, f1t = 0.8f1,t−1+ε1t, f2t = 0.5f2,t−1+ε2t, f3t = |gt|, λ1i, λ2i, ε1t, ε2t, gt ∼ i.i.d N (0, 1),

and λ3i ∼ i.i.d U [1, 2]. eit = βei,t−1 + vit + ρ ·
∑i+J
j=i−J,j 6=i vjt. M1: vit ∼ i.i.d N (0, 1), β = ρ = 0; M2:

vit ∼ i.i.d t3, β = ρ = 0; M3: vit ∼ i.i.d N (0, 1), β = ρ = 0.2, J = 3. For each τ ∈ {0.25, 0.5, 0.75},
the first column reports the averages of the rank estimator r̂, while the second to the fourth columns
report the average adjusted R2 in the regression of (each of) the true factors on the QFA factors F̂ τQFA,
obtained from the IQR algorithm.
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Table 3: Macro Forecasting: Comparison of F̂QFA and

F̂PCA

Elements of F̂ τQFA
τ r̂rank 1 2 3 4 5 6

0.01 1 0.657
0.05 2 0.733
0.10 2 0.796 0.871
0.25 4 0.952 0.932 0.939 0.890
0.50 5 0.993 0.976 0.964 0.945 0.923
0.75 5 0.906 0.945 0.943 0.903 0.882
0.90 2 0.316 0.911
0.95 1 0.261
0.99 1 0.266

Note: The second column reports the estimated number of
factors r̂rank at each τ . The third to the last columns report
the R2 of regressing each column of F̂ τQFA on F̂PCA. For F̂ τQFA
at each τ , the numbers of estimated factors is set to r̂rank, for
F̂PCA, the number of estimated factors is set to 8.

Table 4: Macro Forecasting: MSE of Different Methods

Pre-Crisis Crisis- Post-Crisis Full
MSE R. MSE MSE R. MSE MSE R. MSE

Real GDP Growth
AR Benchmark 4.526 1.000 5.456 1.000 4.904 1.000

AR + F̂PCA 4.282 0.946 5.373 0.985 4.725 0.964

AR + F̂PCA + F̂ 90
QFA 4.155 0.918 5.331 0.977 4.634 0.945

AR + F̂PCA + F̂ 99
QFA 4.354 0.962 5.270 0.966 4.728 0.964

AR + F̂PCA + F̂ 90
QFA + F̂ 99

QFA 4.191 0.926 5.456 1.000 4.688 0.960

Inflation
AR Benchmark 0.266 1.000 0.790 1.000 0.479 1.000

AR + F̂PCA 0.246 0.926 0.732 0.926 0.444 0.926

AR + F̂PCA + F̂ 90
QFA 0.246 0.926 0.732 0.926 0.444 0.927

AR + F̂PCA + F̂ 99
QFA 0.247 0.927 0.739 0.935 0.447 0.932

AR + F̂PCA + F̂ 90
QFA + F̂ 99

QFA 0.245 0.922 0.726 0.919 0.441 0.920

Note: This Table reports the MSE of five alternative 1-quarter-ahead forecasting methods for real
GDP growth and inflation, and their relative MSE (R. MSE) compared with the AR benchmark
model (the lowest R. MSE are shown in bold characters). The out-of-sample forecasting is imple-
mented using rolling windows with 120 observations. The full forecasting evaluation period is from
1990Q1 to 2019Q2, the pre-crisis period is from 1990Q1 to 2007Q2, and the crisis plus post-crisis
period is from 2007Q3 to 2019Q2.

36



Figure 1: Macro Forecasting: Predictive Scores of Density Forecasts for GDP Growth and
Inflation
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Note: The graphs plot the predictive scores of 1-quarter-ahead and 1-year-ahead density forecasts for real

GDP growth and inflation. The evaluation period is from 1990Q1 to 2019Q2, and the out-of-sample forecast-

ing is implemented using rolling windows with 120 observations. The predicted τ -quantiles are constructed

using quantile regressions of the target variable on its owns lags and the estimated quantile factors at τ (de-

noted as F̂ τQFA). The predicted densities are constructed as the density functions of skewed t-distributions by

matching the predicted quantiles of the target variable at τ ∈ {0.05, 0.25, 0.75, 0.95}. The predictive scores

are the predicted densities evaluated at the realized values of the target variable. Higher scores indicate

more accurate forecasts. The dotted blue line plots the predictive scores of the benchmark AR model where

only the lags of the target variable are used to predict the τ -quantiles, while the red line plots the predictive

scores of the model where F̂ τQFA is also used to predict the τ -quantiles.
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