
DISCUSSION PAPER SERIES

IZA DP No. 13844

Pietro Garibaldi
Espen R. Moen
Christopher A. Pissarides

Static and Dynamic Inefficiencies in an 
Optimizing Model of Epidemics

NOVEMBER 2020



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 13844

Static and Dynamic Inefficiencies in an 
Optimizing Model of Epidemics

NOVEMBER 2020

Pietro Garibaldi
Collegio Carlo Alberto, University of Torino, IZA and CEPR

Espen R. Moen
Norwegian Business School and CEPR

Christopher A. Pissarides
LSE, University of Cyprus, CEPR and IZA



ABSTRACT

IZA DP No. 13844 NOVEMBER 2020

Static and Dynamic Inefficiencies in an 
Optimizing Model of Epidemics*

In an optimizing model of epidemics several externalities arise when agents shield to avoid 

infection. Optimizing behaviour delays herd immunity but also reduces overall infections 

to approximately the minimum consistent with herd immunity. For reasonable parameter 

values, and with no vaccine, we find that agents delay too much because of a “rat race 

to shield”: they shield too much in the hope that others catch the disease and reach herd 

immunity. This and other externalities drive large wedges between private and social 

outcomes. The expectation of a vaccine reverses the effects, and agents shield too little.

JEL Classification: A12, I10, J18, D61, D62

Keywords: SIR models, matching model, COVID-19, social distancing, 
rat race, herd immunity

Corresponding author:
Pietro Garibaldi
Collegio Carlo Alberto
University of Torino
Via Real Collegio 30
10024 Moncalieri (Torino)
Italy

E-mail: pietro.garibaldi@carloalberto.org

* Research support from Collegio Carlo Alberto is gratefully acknowledged. We thank Per August Moen for 

excellent research assistance, and Espen Henriksen for advise on the computational methods. We thank online 

seminar participants at CEPR, Polytechnic of Torino, Collegio Carlo Alberto, Oslo Macro Group, University of Chicago 

Search Conference, Marseille, Norwegian Business School and the Frisch Centre.



1 Introduction

In this paper we model the transitions in an optimal forward-looking model of an
epidemic, in the three-state SIR framework originally proposed by Kermack and McK-
endrick (1927). We focus on the consequences of optimal behaviour for infections and
herd immunity, and the externalities that arise when private agents act optimally to
shield themselves from the epidemic. Our model and results apply generally to the SIR
model and its subsequent elaborations, and they are not specific to COVID-19.1

Following our derivation of the optimal transition rates, we make two comparisons.
First, we compare the outcomes in the original non-optimizing SIR model and in our
decentralized optimal model. Our second comparison is between the decentralized
optimizing model and a social planning solution, with the social planner having access
to the same information set as private agents. We obtain striking contrasts in both
cases which we derive formally and illustrate with simulations.

In our formulation agents can be in one of four states, but by applying a modelling
trick we collapse the model to one that is close to the original three-state SIR model.
We work in discrete time. In the first state a mass St of agents are healthy but
“susceptible” to the disease; in the second state a mass It of agents are “infected” but
without symptoms, and they can pass the disease on to susceptible individuals with
social contacts; in the third state the It infected individuals develop symptoms, which
are costly in terms of lifetime utility but not time; they cross from the asymptomatic
infected state in period t to recovery in period t + 1 by bearing some cost which is a
fraction of their lifetime utility. We associate this cost with “hospitalization” and refer
to it as the medical cost. Recovered individuals become immune for the rest of their
life.2

Our interest is in deriving the impact that agents have on the transitions across the
SIR states. They respond optimally to the epidemic, with perfect foresight about the
future. With the four states that we described there are three transitions. The last
two, from the asymptomatic to the symptomatic infected state and from the symp-
tomatic state to recovery, cannot be influenced by agents’ actions. The first is a medical
transition and the second depends on treatments which cannot be influenced by the
patient. The transition on which we focus is the one from the susceptible to the asymp-
tomatic infected state, which is influenced by contacts between the susceptible and the
infected. It is influenced by decisions made by both sets of agents. The decisions are
taken without information about their state (whether they are susceptible or asymp-
tomatic) and with full knowledge of future transitions in the event of an infection. For

1In earlier work (Garibaldi Moen and Pissarides, 2020) we focused on optimal policy in the COVID-
19 epidemic.

2We ignore deaths, but taking them into account would have no impact on our results. In some
epidemics recovered individuals may not become immune for life, which we assume here. Relaxation of
this assumption would have an impact on our results, at least quantitatively. In the case of COVID-19
it is still not certain that there is immunity after recovery.
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simplicity of exposition we call individuals who are in either the susceptible state or
the asymptomatic infected state, “vulnerable”, so the mass of vulnerable individuals
is Vt = St + It.

We borrow ideas from search and matching theory (Pissarides, 2000) and show that
there is a well-defined solution in line with the solutions in the literature that followed
Kermack and McKendrick’s (1927) pioneering work. The main difference between our
model and those in the epidemiological literature is that agents in our model are able to
reduce their probability of infection by avoiding contacts with vulnerable individuals.
We model behaviour in such a way that this difference is picked up by a single variable
xt, which we call social action. We normalize social action in the epidemiological
literature model by xt ≡ 1 in all periods of life. In our model we derive an optimal
xt ≤ 1 which varies over time, depending on incentives. When xt < 1 we say that there
is social distancing, or shielding.

Returning now to the two main comparisons that we make in this paper, we first
show that in our model the time that it takes to reach herd immunity is much longer
than in the original SIR model; but the number of people that avoid infection altogether
is much higher. With plausible parameter values we show that in the original SIR model
herd immunity is reached after about 20 weeks whereas in our model the time is closer
to 80 weeks. But in the traditional SIR model only 3.6% of the people avoid the
disease whereas in our model as many as 40% avoid it, a number that is close to the
maximum possible consistent with herd immunity. The simulations show that there is
a clear trade-off between the length of time that it takes to reach herd immunity and
the cumulative number of infections, and with the high costs of the disease that we
consider plausible, optimizing agents choose much longer adjustment paths than would
emerge from a standard SIR model.3

But the adjustment path that results from optimizing decentralized choices is not
optimal. There are two consequences of private actions that are ignored by agents, one
operating across space and the other over time. Across space, individuals ignore the
fact that when they take social action, other people may randomly come into contact
with them and be infected. This gives rise to a static externality. We show that under
the plausible restriction of increasing returns in the contact function, defined here as an
elasticity of contacts with respect to social action greater than one, static externalities
make the social planner recommend more social distancing. But with constant returns
(unit elasticity), the static externalities are internalized.

Over time, when private agents shield they reduce the future infected population
and increase the future susceptible population. These relative population changes
alter the flows across states: the lower infected pool lowers future infections and lowers
congestion in hospitals, whereas the higher susceptible pool slows down the adjustment

3These trade-offs are derived for a recovery (medical) cost that is set equal to 10% of the remaining
lifetime income. Including deaths would obviously be a major factor in the calculations of disease
costs.
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to herd immunity. Private agents ignore these secondary effects of their actions whereas
the social planner takes them into account. We call these dynamic externalities. The
result is a divergence between the decentralized optimum and the social optimum that
can be large. Because of these externalities, the social planner may recommend more
or less social distancing, depending on parameters.

By working in discrete time and deriving the optimal policies from Bellman equa-
tions, we are able to distinguish between the contagion externality, caused by the
impact of private actions on the stock of infected individuals, the medical congestion
externality, caused by the same stock of agents when they go through the hospitaliza-
tion phase, and the immunity externality, caused by the impact of private actions on
the stock of susceptible agents. The externalities interact with each other to produce
deviations between the private and social outcomes that can go either way and can
change in the course of the epidemic. We illustrate these interactions with two impor-
tant cases of deviation, one that we call the rat race to shield and one that arises when
there is an expectation with sufficiently high probability that an effective vaccine will
be discovered.

Consider first decisions made in the absence of a vaccine, when herd immunity is the
only path to eradication of the disease. Because of forward-looking behaviour, agents
know that eventually the economy will reach the herd immunity state with a fraction of
people who never experience the disease. With positive disease costs, they shield more
than other considerations would imply, to increase the probability that they belong to
the infection-free group when the disease is eradicated. This has the features of a rat
race, because if, say, 60% of the people need to get the disease before herd immunity,
an efficient mechanism would be to ignore its impact on social distancing and allocate
the 60% randomly across the population. But instead of racing to be first as in the
traditional rat race, here there is racing to be the last, by shielding. When medical
costs are sufficiently high (as in our simulations of 10% of remaining lifetime utility),
the “rat race to shield” drives a large wedge between the private and social optima,
which dominates deviations due to other externalities. The social planner offsets the
rat race to shield by recommending much more social activity than private agents
choose to do. The contagion externality is of course still present, and for very small
medical costs it could dominate the immunity externality. But in our simulations with
plausible costs of the disease the rat race to shield emerges as a strong externality in
the absence of a vaccine

If a vaccine is expected to arrive with sufficiently high probability, we show that
both private agents and the social planner will want to shield more. When an effective
vaccine arrives both future infections and herd immunity become irrelevant, so the
immunity externality loses its power and the rat race to shield vanishes. In this case
the contagion externality dominates, because it is still present in the interval between
the present time and the actual arrival of the vaccine. With the expectation of a
vaccine our simulations show that the social planner will want to impose more social
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distancing than private agents choose to do.4

There has been a very large output of working papers on COVID-19, and more
generally on epidemics, by economists since the outbreak of the pandemic. We cannot
provide a survey here but we put our paper into context and mention some papers that
address epidemics within models that have common features with ours. We believe
that our main results about externalities have not appeared in any other papers but
there are papers that independently model the trade-offs that we do, pursuing related
objectives. In general, the externality that is frequently encountered in the literature
is akin to our static externality that arises through random contacts.

First, we should note that although most economists became interested in epidemi-
ological models because of Covid-19, a small earlier literature dealt with behavioural
responses to epidemics in the framework of Kermack and McKendrick (1927). Most
papers in this tradition focus on a negative contact externality similar to our static
externality: too little social distancing by self-interested agents that do not internalize
the costs of transmission to others.5

Post-Covid, several papers study the trade-off between the policies needed to con-
tain the disease and the loss of economic activity that they necessitate. Alvarez, Ar-
gente, and Lippi (2020) solve an optimal control problem to find the efficient con-
tainment policy in the presence of Covid-19, but they do not model the decentralized
solution. Eichenbaum, Rebelo, and Trabandt (2020a) solve computationally for the
optimal containment policy in a model in which individuals face a consumption ex-
ternality. Farboodi, Jarosch, and Shimer (2020) use a quadratic contact function and
discuss the impact of the disease on social distancing and the resulting contact exter-
nality. They obtain the longer time needed to reach herd immunity when agents shield.
Rachel (2020) solves for the optimal lockdown and highlights the role of fiscal policy
and infection externalities. The latter has both a static and a dynamic dimension and
has ambiguous overall effects on the planner’s choice. His model, however, is not as
general as ours, in the sense that he derives his results from a two-state social action,
high and low. Nævdal (2020) shows that there are increasing social returns to scale to
social distancing and other efforts to control the epidemic. Aspri, Beretta, Gandolfi and
Wasmer (2020) study the trade off between mortality and the fall of GDP in a SEIARD
model, and simulate various containment policies. Kapicka and Rupert (2020) model

4We should note that since private agents choose a path that yields a cumulative infection rate
close to the minimum consistent with herd immunity, the deviations between the private and social
optimum paths relates mainly to the adjustment to herd immunity and not to the final infectious
outcome.

5See for example, Chen (2012), who like us invokes increasing returns to scale in contacts, and
Rowthorn and Toxvaerd (2019), who use a contact function with fixed proportions and a linear cost
of prevention borne by the individual. Quercioli and Smith (2006) go further and touch on one aspect
of the dynamic externalities. In the pre-Covid research, economists have been working on integrating
behavioural choice into epidemiological models of sexually transmitted diseases, and HIV in particular.
Kremer (1996) and Greenwood, Kircher, Santos and Terlit (2019) are two such examples, but are not
dealing within a SIR environment.
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the labour market dimensions of the pandemic, and solve for the centralized program
that takes into account an infection externality, as agents do not take into account
that, once infected, the probability that others will get infected increases. The labour
market response to the Covid-19 pandemic within a search environment is also studied
by Gregory, Menzio and Wiczer (2020), but without reference to the planner’s solution.
The potential uncertainty about one’s infection status, which plays an important role
in our paper, and the role of testing are studied by Berger, Herkenhoff, and Mongey
(2020) and von Thadden (2020).

Another branch of the recent literature considers heterogeneous agents. Hetero-
geneity is a feature of Covid-19 that we ignore in this paper. Models that deal with it
include Acemoglu, Chernozhukov, Werning, and Whinston (2020), Kaplan, Moll, and
Violante (2020), Alfaro, Faia, Lamersdorf, and Saidi (2020), Brotherhood, Kircher,
Santos, Tertilt (2020) and Favero, Ichino, and Rustichini (2020)

Section 2 describes the model in more detail and derives the individual maximizing
choices in a world were no vaccine is expected to arrive, so that the epidemic will not
end before herd immunity is obtained. Section 3 simulates the epidemic equilibrium in
our model against the standard SIR. Section 4 derives the welfare maximizing chocies
of a central planner. Section 5 analyzes the model when a vaccine is expected to
arrive with some probability. Section 6 simulates the model highlighting the key role
of the static and dynamic externalities in driving a wedge between the decentralized
and social optima. The last section concludes.

2 Decentralized Equilibrium in a Model of Epidemics

In this section we develop a model of transitions with forward-looking individual de-
cision making. We work in discrete time and define the period to be the length of
time that an infected individual has no symptoms. In terms of COVID-19, the length
of the period is therefore about two weeks, although it could be longer. During this
period infected individuals are unaware that they are contagious because of their infec-
tion. At the end of the period of infection symptoms arrive and the individual receives
treatment overnight, which is costly in terms of lifetime utility, waking up in the next
period fully recovered and immune.6 We assume that no vaccine is expected to arrive.

The sequence of events that we study is as follows. In some initial state the entire
population except for a very small number ε are susceptible, with mass S0.7 The ε

6As we mentioned before, full immunity is not a feature of all infections. In the case of COVID-
19, there is some support that infection could leave undetermined long-term effects which can be
quite costly. See for example, https://www.bbc.com/future/article/20200622-the-long-term-effects-
of-covid-19-infection and https://news.umiamihealth.org/en/what-are-the-long-term-effects-of-covid-
19/

7We use S, and later I and R, to denote both the state and the mass of individuals that belong to
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individuals are infected with no symptoms, so they belong to state I. Transitions of
some susceptible individuals from state S to state I the following period depend on
contacts, which arise in a variety of situations, such as work, shopping and leisure
activities. All individuals in state I in period t make a transition to recovery a period
later and join state R, after undergoing treatment between periods t and t + 1. The
transition out of I and the treatment cost between periods depend only on medical
conditions related to the disease that the individual cannot influence. In the absence
of deaths, we make use of the convenient assumption that population is constant and
all individuals in each period t belong to one of three states, S, I and R. We simplify
further by assuming

St + It +Rt = 1 ∀t. (1)

Agents have a utility function defined over two activities, one of which is done at
home and one outside. Home activities include paid work at home, home production,
online shopping and home leisure activities, such as watching TV. Social activities,
include market work and consumption and leisure activities outside the home. Social
contact results only from the second set of activities. We denote the first set of activities
by xh and the second by xs and write the per-period utility function as,

ut = u(xht, xst). (2)

This function is assumed to satisfy the Inada conditions.8 The choice of xht and xst
is constrained by a cost function which we assume for simplicity that it is a convex
utility cost c(xht, xst). We define net utility from all activities by,

φ̂t = φ̂(xht, xst) = u(xht, xst)− c(xht, xst), (3)

assumed to be single peaked.
To simplify further, we note that since home activities do not influence contacts,

and are chosen optimally by each individual, there is an implicit policy function for
xht, derived from,

∂φ̂(xht, xst)

∂xht
= 0 ∀t. (4)

We substitute back xht from this function into equation (3), to obtain an indirect
net-of-cost utility function (suppressing the subscript s),

φt = φ(xt). (5)

it. In general, when reference is to the state there is no subscript but when reference is to the mass
it is dated with a time subscript.

8Our utility function implies that going out yields utility that is independent of the actions of
others. McAdams (2020) explores a situation in which the utility from social action depends on
others taking social action too. This gives rise to multiple equilibria in social distancing.
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This function has an inverted U-shape and we normalize xt such that φ′(xt) = 0 at
xt = 1.

Agents in our framework perceive to be in one of two states: not recovered or
recovered and immune. Not recovered individuals are either healthy but susceptible to
the disease or infected without symptoms. An important assumption of our model is
that there is no information available that can help agents distinguish between states
S and I; in order to highlight this important assumption we introduce a new term for
non-recovered individuals, vulnerable. All vulnerable individuals choose the same xt
that maximizes lifetime returns subject to the probabilities of belonging to state S or I.
Testing the population not in the recovery state would reveal the information needed to
distinguish between the susceptible and the infected agents, but it is assumed absent.

Vulnerable agents enjoy per-period net utility given by (5) and they perceive a risk
of infection from contacts with infected individuals. In general, an agent who is in
state S in period t enters state I in period t+ 1 with probability,

pt+1 = p(xt, x̄t, xr,St, It, Rt), (6)

where xt is the choice of social activity made by the agent, x̄t are the choices of other
vulnerable agents, xr are the choices of recovered agents, and St, It and Rt denote the
mass in each respective state (informally referred to as the number of people in the
state). We assume,

∂p(xt, .)

∂xt
≥ 0,

(7)

p(0, .) = 0,

where p(0, .) is the transition to infection in the state of complete social distancing.
Note that the assumptions made about timing in the transition in equation (6) imply
that pt+1 is the probability that the susceptible agent becomes infected between periods
t and t+ 1 and so it is predetermined at the start of period t+ 1.

We now introduce present discounted values associated with the three states. The
NPV of utility of a recovered individual is denoted by WR

t . Assuming infinite lives and
immunity, the recovered individual chooses xt to maximize the PDV of φ(xt) without
the risk of infection, so the solution is trivially the constant xr = 1 that satisfies
φ′(xr) = 0. With a discount factor β we write

WR =
φ(xr)

1− β
φ′(xr) = 0 (8)

The NPV of utility of an infected individual is denoted by W I
t , while the NPV

of utility of a susceptible individual is denoted by W S
t . Consider now a vulnerable

individual in period t. She chooses xt without knowing whether she is in the infected
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state (with utility W I
t ) or in the susceptible state (with utility W S

t ). The expected
NPV of utility of vulnerable individuals is denoted by W V

t . The vulnerable person
knows that she was susceptible in the previous period t− 1, otherwise she would have
been sick and recovered between t − 1 and t, and she knows the probability pt that
she contracted the virus in that period, which is now predetermined. She chooses the
present-period xt by maximizing the expected value of the PDVs of being in the two
vulnerable states, given her pt :

W V
t = max

xt

{
ptW

I
t + (1− pt)W S

t

}
. (9)

In order to obtain the solution to this problem we need to specify the lifetime val-
ues W I

t and W S
t . Both infected and susceptible individuals obtain utility from activity

φ(xt). An individual who is infected in t will suffer overnight a utility loss from treat-
ment but become recovered in t + 1. We assume that the utility loss from the disease
is proportional to the lifetime utility of a recovered person and write it as δ(It)W

R.
The cost depends on the number of infected people who are receiving treatment at the
same time as the agent, which we call medical congestion. A low It implies that there
is better health care. With fixed hospital space medical care workers (both of which
are outside our model) give more attention to fewer patients; δ′(It) ≥ 0. It therefore
follows that the NPV of utility of an infected individual, W I

t , is,

W I
t = φ(xt) + β(1− δ(It))WR. (10)

Clearly, if the person knew that she was in this state she would have (selfishly) chosen
the same social action xt as a recovered person, shown in (8). But because of the
absence of this information, the xt that enters (10) is the one that is obtained from
(9).

An individual who is susceptible may be in contact with an infected person during
the period, contract the virus, and end up as infected next period. This happens with
probability pt+1 = p(xt). The person continues to be susceptible with the complemen-
tary probability 1− pt+1. It follows that we can write

W S
t = φ(xt) + β

[
pt+1W

I
t+1 + (1− pt+1)W S

t+1

]
= φ(xt) + βW V

t+1. (11)

Substituting (11) and (10) into the maximization problem of a vulnerable individ-
ual, (9), this problem becomes,

W V
t = max

xt

{
φ(xt) + βpt(1− δ(It))WR + β(1− pt)W V

t+1

}
. (12)

Differentiation of (12) for period t+ 1 yields,

9



∂W V
t+1

∂xt
= −βp′(xt)

[
W V
t+2 − (1− δ(It+1))WR

]
. (13)

The first order condition for xt that is obtained from problem (12) is therefore given
by,

φ′(xt) = β2(1− pt)p′(xt)
[
W V
t+2 − (1− δ(It+1))WR

]
. (14)

It trivially follows from our assumptions that
[
W V
t+2 − (1− δ(It+1))WR

]
> 0, which

amounts to saying that healthy individuals are better off than infected ones. It is clear
from the first order conditions that in the case of an infectious disease healthy agents
restrict their activities outside the home to avoid infection. Without an infectious
disease the first order condition for activities outside the home would be φ′(xt) = 0,
as chosen by recovered individuals, yielding a higher xt than the solution in (14). We
refer to this property as social distancing or shielding.

We now specify the contact technology that yields the infection probability p(xt, .).
This parallels the matching function of labour economics (Petrongolo and Pissarides,
2001) but with some important differences. In the matching function of the labour lit-
erature, more workers looking for jobs reduces the success probability of a single worker
because of congestion externalities in the application process. Here more individuals
coming out in the marketplace increases the chances of infection because a single ex-
posed individual can infect many people; the infectious disease is “non-exhaustible,”
in the sense that many people could acquire it from a single person at the same time.

To provide an intuitive derivation of our contact function suppose x̄t stands for the
number of trips outside the house that each person does.9 Assume that with x̄t trips,
each person experiences on average mt contacts, defined by a well-behaved function
mt = m(x̄t), with m′(x̄t) ≥ 0. The function m(.) is similar to the matching function
of labour economics in the sense that it depends on the structure of the marketplace,
including density of population, transportation facilities, types of establishments etc.10

Some of these contacts are between susceptible and infected people, which lead to the
infection of the susceptible agent with some positive probability that depends on the
infectiousness of the disease.

Consider now the choices made by a single individual, who is able to choose the
number of trips outside the home, denoted by xt. Here we follow the method used in
search theory to choose the optimal search intensity (Pissarides, 2000, chapter 5). With
m(x̄t) representing the total number of contacts for x̄t outings, each outing on average

9Appendix 1 derives a special example of a contact function from the urn-ball game, which satifies
the main properties of the general form discussed here.

10The dependence of m(.) on a single variable parallels the contact function used by Peter Diamond
(1992) in his famous “coconut” paper. He assumes that there are b agents with a coconut each coming
into contact pairwise, for a contact technology m(b) with m′(b) > 0. See section 4.2 for more discussion
of the contact function.
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generates m(x̄t)/x̄t contacts. So if the individual chooses to go out of the home xt times,
her contacts are on average xtm(x̄t)/x̄t. These are total contacts. We are interested
in the contacts that can potentially lead to an infection, and these are contacts that
involve a person from set I. Since the susceptible person cannot distinguish a priori who
is in which state, on average the fraction of contacts that are infected is equal to the
fraction of persons in set I in the population. With the normalization of the population
size to unity, we obtain that the probability that a contact is with an infected person
is simply It. Finally, suppose that the probability that a contact between a susceptible
and an infected person leads to the infection of the susceptible person is a medical
constant k. This medical constant is a measure of the infectiousness of the disease,
with k = 0 indicating a non-contagious disease and k = 1 indicating a very contagious
one.

The transition from the susceptible to the infected state for the person who chooses
xt becomes,11

pt+1 = k
xtm(x̄t)

x̄t
It. (15)

This expression satisfies the extreme properties that for a non-infectious disease (k = 0)
or complete social isolation (xt = 0), pt+1 = 0. It follows from this expression that pt
now depends on a smaller set of variables than in the general expression (6). Its partial
derivative satisfies,

∂pt+1

∂xt
= k

m(x̄t)

x̄t
It =

pt+1

xt
. (16)

In moving from individual transitions to the average for a market where all agents
optimize we assume a symmetric Nash equilibrium in which all agents choose the same
policy, so xt = x̄t. For notational simplicity we drop the bar from x̄t and write the
equilibrium pt+1 as,

pt+1 = km(xt)It, (17)

with xt obtained as the solution to (14), under the restriction x̄t = xt and given all the
value equations previously derived and the matching restrictions in (16).

This completes our specification and derivation of the solution equations for the
agents in the model. It is noteworthy that when comparing with the epidemiological
SIR model, our innovation is the insertion of xt in the transition probability pt+1,
which picks up the disincentives that the susceptible individuals have when they go
out of their homes. Some obvious properties of this choice, given our strong functional
assumptions, can easily be derived. There is social distancing (lower xt), for higher

11Another derivation of the probability of meeting at least one infected individual is to reason as
follows. Since for each contact there is a probability (1−It) that the person does not meet an infected
person, there is a probability (1−It)

xm(x̄)/x̄ that the person does not meet any infected persons in her
x outings. If I is a small fraction of the population, this is approximately equal to exp{Ixm (x̄) /x̄},
so the probability of meeting an infected person is 1− exp{.} and for small transition probability this
is approximately equal to the expression in the text.
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k and higher It (more infectiousness of the disease or more infected people) and for
higher unpleasantness from treatment (higher difference between the value of avoiding
infection W S

t and getting infected, W I
t ).

We now complete the description of the decentralized equilibrium by deriving the
transitions implied by our individual models. With transition probability from state
S to state I given by (17), the number of people in state S falls each period by the
fraction in (17). This is also the number of people who join the I state, whereas a
period later every infected individual joins the recovery state R. In discrete time, the
dynamics of the system can be written as,

St+1 = St − km(xt)ItSt (18)

It+1 = km(xt)ItSt (19)

Rt+1 = Rt + It (20)

Because of our assumption that infected people recover in one period, our model implies
that the “basic reproductive number” R0 of the disease is simply R0t = km(xt). From
this we derive the effective reproductive number, or R-number, which is given by StR0t.
This number plays a key role in the dynamics of the disease. From (19), infections begin
to fall when the R-number drops below 1.

We are now in a position to define our decentralized equilibrium.

Definition 1 A decentralized epidemic equilibrium is a set of sequences of state vari-
ables {St, It, Rt}∞t=0, a set of value functions {W V

t ,W
S
t ,W

I
t ,W

R}∞t=0, and a set of se-
quence of probabilities and social contacts {pt, xt}∞t=0 such that, for given initial condi-
tions S0 = 1− ε, I0 = ε, R0 = 0

1. St, It, Rt solve equations (18)-(20)

2. The value functions WR,W V
t ,W

S
t ,W

I
t , solve equations (8), (12), (11), and (10)

3. xt solves the first order condition (14)

4. pt solves equation (17)

3 Matching-SIR vs Original SIR: Simulations

3.1 Parameterization and the basic reproductive number

As we pointed out in the preceding section, our main innovation when compared with
the standard epidemiological SIR model is the optimal choice of xt, which reflects
the disincentives that agents have to mix socially when there is a risk of infection.
Before we examine in detail the properties of our decentralized equilibrium, we compare
the dynamic behaviour of a parameterized version of our model with the standard
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SIR model. We define the standard SIR model in the same way as our model, with
the exception that all agents choose the first-best social activity level that satisfies
φ′(xt) = 0. (In our model, this is chosen only by recovered and immune individuals.)
This conforms with standard practice (see for example, Weiss, 2013) and it highlights
the new elements of our model.

We work with a model that restricts our general framework of section 2 in simplify-
ing ways that enable us to focus on the main differences of the dynamics between the
two models. We regard the main differences as two: the length of time that it takes
to reach herd immunity and the cumulative number of infections. We show that the
optimal decentralized behaviour of xt lengthens substantially the time it takes to reach
herd immunity but it also reduces substantially the cumulative number of infections.

We use the following parameterization of the net semi-indirect payoff function,
φ(xt) = A + lnxt − xt. Therefore the optimal xt for all agents in the standard SIR
model and for recovered agents only in our model satisfies the normalization xr = 1.
The PDV after recovery is WR = (A − 1)/(1 − β). We set A = 1.5 and β = 0.998. If
a period is two weeks, this corresponds to an annual discount rate of 0.05. The other
equations of the model are (12), (14), (18) and (19), with the cost of treatment assumed
to be constant at δ0 = 0.1.

R0t is the basic reproductive number in period t, defined as km (xt) , where xt is
the social activity chosen by the vulnerable individuals who have no immunity. The
meeting technology is assumed to have constant elasticity m(xt) = xαt , so R0t = kxαt ,
with α ≥ 1.12 In the illustrative simulation below we select α = 1 and k = 2.4, so
for the standard SIR, R0t = 2.4 ∀t. For our model, R0t = 2.4 when vulnerable agents
select xt = 1, which takes place before the epidemic starts. All parameters are listed
in Table 1.

We note that in the standard model the dynamics of the effective reproductive
number Rt are governed by the dynamics of the stock St, the number of susceptible
people. With our parameterization, the effective Rt of the standard model is 2.4St.
But in our model Rt is 2.4Stxt, assigning as big a role to the optimal choice of xt as to
St.

3.2 Trajectories

The model’s solution, once it is shocked in the beginning by a very small number
of infections ε = 0.001, is obtained with a shooting algorithm - a standard solution
algorithm for systems of difference equations that are highly non-linear and feature
both initial and terminal conditions (Sargent and Stachurski, 2020).

In a first comparison we plot the dynamic performance of our model and the stan-
dard SIR model in Figure 1. In each chart the red/broken line refers to the decentralized

12Note that we are reinterpreting k in this simulation. It is the product of the infection probability
conditional on a contact and any constants that might belong to m(xt). We economize on notation
by including all constants in k.
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outcome while the blue/continuous line to the standard SIR. As in most figures that
follow, the top chart shows the activity level {xt} in the decentralized equilibrium, the
middle chart the mass of susceptible people, and the bottom chart the mass of infected
people. Figure 1 shows the first 100 periods of the simulation (about four years).

Before the disease the two models have the same activity level, normalized to unity.
But whereas in the standard SIR the activity level remains at that level throughout the
epidemic, in the decentralized simulation it drops a little when the ε infections are first
introduced and then drops dramatically and very quickly to a number below 0.5. This
drop cuts the effective reproductive number in the decentralized equilibrium to 1.2St.
The middle panel plots the stock of susceptible people, initially normalised to one for
both models. In the standard SIR model, with the high activity level continuing, the
stock of susceptible people drops very quickly to the herd immunity level. After about
ten periods (20 weeks) only 3.7% of the susceptible people avoid the infection, which
is virtually a state of herd immunity, reached when 3.6% avoid it. Adjustments are
much slower in the case of the optimizing solution. As people drop the level of activity,
the stock of susceptible people falls smoothly and gradually throughout the epidemic.
After 10 periods, 72.5% of the population are still disease-free. In the bottom panel of
Figure 1 we plot the stock of infected people. While in the case of the standard SIR
the dynamics follow the traditional hump shape, the growth of infected people in the
case of the optimizing SIR is so mild that it is barely discernible, even after four years.

3.3 The state of herd immunity

To illustrate further the properties of the state of herd immunity, let S∞ be the number
of susceptible individuals in the new steady state equilibrium after herd immunity is
obtained. Since in steady state It = 0, we have that R∞ = 1 − S∞, where R∞ is the
number of recovered people (which is equal to the number who historically got the
disease).

In steady state, the effective reproductive number S∞R0 has to be less than or
equal to 1. Hence an upper bound for S∞, Smax, is given by

Smax = R−1
0 . (21)

In the standard SIR model, which is similar to our model with constant x, the maximum
number of infected individuals is obtained when It ≈ It+1 (with equality in continuous
time). Plugging It = It+1 into (19), gives that S = R−1

0 (= Smax). From this point on,
the disease is on retreat, as the effective reproductive number falls below 1. However,
it takes time before the disease burns out, and along the path many more people
are infected. It can be shown (Weiss 2013) that the steady state value of St in the
continuous time SIR model, denoted SSIR, is given by the solution to the equation
lnSSIR = R0(SSIR − 1). This equation can be solved numerically, and for R0 > 1 it
gives that SSIR is substantially lower than Smax.
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When the activity level is set by forward-looking individuals, this is no longer the
case. At the point at which It reaches its maximum level, the individual probability
of attracting the virus for a given activity level is the highest, and the agents respond
by cutting back on social activity. The simulations show that the activity level, and
hence the basic reproductive number, are at their lowest around the period in which
It is at its highest. If we denote by xI the decentralized equilibrium value of x at the
point at which I reaches its maximum level, it follows that the stock of infected people
at this point is approximately equal to Smax/xI > Smax (exactly equal in continuous
time). Hence, at the peak, St > Smax, and then it gradually falls and dips below Smax

as society converges towards a new steady state with herd immunity.
In our simulations of the decentralized equilibrium, S∞ is almost equal to Smax

(Smax = .417 while S∞ is slightly below .4) , meaning that the stock of susceptible
people converges to a value almost equal to the highest level consistent with herd im-
munity. The key result is that forward-looking agents will restrict activity so that herd
immunity is reached at a point close to the lowest possible number of total infections,
even though this action delays the arrival of herd immunity substantially.

The behaviour of herd immunity in the two models is shown in the phase diagram
of Figure 2. The stock of susceptible people is on the horizontal axis and the stock
of infected people is on the vertical axis. The starting point of the epidemic is 1 on
the horizontal axis, when the entire population is susceptible. The arrows plot the
joint dynamic path of {St(xt)} and {It(xt)}, where the optimal xt is obtained from
the. simulations in Figure 1. The black arrows refer to the traditional SIR with
xt = 1, while the red/broken arrows refer to the optimizing SIR. The value of Smax

is also clearly indicated by the vertical line in Figure 2. The black curve reaches the
maximum of infected people at Smax, and thereafter converges to a new steady state,
but in that steady state a large number of individuals have attracted the virus relative
to the number needed for herd immunity.13 The phase diagram of the optimizing SIR
is given by the red/broken curve and converges to a point close to Smax. It is clear
from the phase diagram that the dynamics of the optimizing SIR towards Smax is also
hump-shaped.

13In Figure 2 the black curve increases beyond Smax because time is discrete.
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4 Externalities and Deviations from Social Efficiency

4.1 Formal statement

As in other models of pairwise interaction, we would expect the decision strategies
derived in the preceding section to be subject to externalities and inefficient outcomes.
We derive the socially optimal strategies by assuming the existence of a social planner
who chooses social activities for all agents. The information that the social planner
possesses about agent identities and the future path of the economy coincides with
that of private agents. As with private agents, the planner chooses the same xt for all
vulnerable agents and a separate xrt for the recovered. However, since the recovered
are immune, and they do not influence the transition rates of the susceptible or infected
individuals, the social planner will choose φ′(xrt) = 0 ∀t. This matches private choices
so it can be ignored and we can focus our analysis on the vulnerable agents only.

There are two channels that link social activity to market outcomes. First, the
social planner takes into account the fact that the equilibrium is a symmetric Nash
equilibrium. All vulnerable agents end up choosing the same action and when one
person meets another the other person is also involved in a meeting. These facts are
ignored by private agents in the decentralized equilibrium. We refer to any externalities
that arise from this channel as static externalities.

Second, the planner is also aware that unlike the perceptions of private agents, with
her actions today she influences the future dynamics of St and It, through equations
(18)-(20). Future value functions are influenced by the measures St and It, partly by
influencing infection probabilities and partly through the medical congestion external-
ity. We refer to the externalities due to this channel as dynamic. Further below we
argue that there are three types of dynamic externalities, which we label medical con-
gestion, contagion and immunity. We assume that medical expenses are fully covered
by the individual.

Because the PDV of expected returns for all vulnerable individuals is the same value
function W V

t = W V (xt, St, It), we can derive the social optimum choice of xt by having
the social planner step into the shoes of the vulnerable agent and select xt to maximize
the social W V

t . The relevant transition probability for the social planner is (17), in
which the restriction that all agents choose the same xt is imposed. The planner’s
controls are the activity levels {xt}∞t=0 and the objective the constrained maximization
of the value function

W V
t (St, It, pt) = φ(xt) + βp(xt−1, It−1)WR(1− δ(It))

+β(1− p(xt−1, It−1))W V
t+1(St+1, It+1, pt+1), (22)

subject to the laws of motion (18)-(19).
Consider first the role of xt in the contemporaneous value function W V

t . It influences
the utility φ(xt) directly, but it does not influence the transition probability pt =
p(xt−1, It−1). So the social planner cannot do anything to influence the second term on
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the right-hand side of (22), which is the expected lifetime return of infected agents.
The third term is the expected lifetime return of the vulnerable and the value of xt
that is chosen in t will influence the transition probabilities in period t + 1 and from
there and through the constraints it will influence the measures St′ and It′ in all future
periods t′ > t. Taking those into account we write the first-order condition for xt,

−φ′(xt) = β (1− pt)
{
∂W V

t+1

∂pt+1

∂pt+1

∂xt
+
∂W V

t+1

∂It+1

∂It+1

∂xt
+
∂W V

t+1

∂St+1

∂St+1

∂xt

}
. (23)

The left-hand side of (23) measures the utility cost of the social distancing in the
current period, the deviation of φ′(xt) from the unconditional optimum 0. The right-
hand side gives the gains in expected lifetime returns from the social distancing, which
accrue to the susceptible individuals (the fraction 1 − pt of all vulnerable), from the
next period onwards, discounted to the present at β.

We show:

Proposition 2 The social optimum level of social activity is the solution to the fol-
lowing equations:

−φ
′(xt)

1− pt
= −β2km′(xt)It

[
W V
t+2 − (1− δ(It+1))WR

]
+ β

(
∂W V

t+1

∂It+1

−
∂W V

t+1

∂St+1

)
km′(xt)StIt. (24)

∂W V (St, It, pt)

∂It
= −φ′(xt)

m(xt)

m′(xt)It
− βptδ′(It)WR (25)

∂W V (St, It, pt)

∂St
=

1− pt+1

p′t+1St

[
φ′(xt) + β(1− pt)p′t+1

∂W V
t+1

∂pt+1

]
+ β(1− pt)

∂W V
t+1

∂It+1

(26)

The proof of the Proposition uses the Benveniste-Scheinkman theorem and is given in
Appendix 2. Here we will try to give some intuition for the proof and the expressions
in the Proposition.

In (24), the first term on the right is the expected gain from social distancing. This
term picks up the static efficiency condition and follows immediately from differenti-
ation of (22). In (25) the last term on the right-hand side is the medical congestion
externality and also follows from differentiation of (22). In the first term, one addi-
tional unit of It increases the number of infected people in the next period with the
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same number as m(xt)
m′(xt)It

units of xt.
14 The unit cost of reducing xt is m′(xt). The

marginal cost of increasing It due to the potential for more infections in period t + 1
is the product of the two, which is the first term on the right-hand side of (25). In the
proof in the Appendix this argument, which is the source of the contagion externality,
is made rigorous.

Consider finally (26), which gives rise to the immunity externality. The immunity
externality is associated with a decrease in St. For a given (optimal) sequence of
activity levels xt, xt+1, ..., a unit decrease in St does not influence the pay-offs in period
t, nor the probability pt+1 that a given person is infected in the next period, since
pt+1 = xtkm(xt)It. However, St does influence the number of infected people in period
t+1, It+1 = km(xt)StIt, and hence also the probability of contracting the virus in that
period, pt+2 = It+1km(xt+1), and in later periods as well. Hence we would expect the

expression ∂WV (St,It,pt)
∂St

to be negative. From (24), when It+1 and St+1 move in opposite
directions, as they do when xt changes, the contagion and immunity externalities have
counteracting effects on the planner’s social choice.

It is not so easy to give a precise intuition as to why when considered together with
the other externalities, the immunity sexternality has exactly the form given in (26).
Note however, that the planner can costlessly react to an increase dSt by increasing xt
by 1−p(xt+1)

p′(xt+1)St
dSt units, thereby keeping St+1 unchanged. But this increases It+1 by one

unit and pt+1 by p′(xt)
1−pt+1

p′t+1St
dSt units. The per-unit gain to the planner of increasing

xt is φ′(xt) units. Together this gives (26). This argument is also made rigorous in the

Appendix. Note that
∂WV

t+1

∂It+1
is given by (25), and

∂WV
t+1

∂pt+1
follows readily by taking the

derivative of (22).
We can write the dynamic externalities as

(
∂W V

t+1

∂It+1

−
∂W V

t+1

∂St+1

)
=

∂W V
t+1

∂It
− β(1− pt)

∂W V
t+1

∂It+1

(27)

−1− pt+1

p′t+1St

[
φ′(xt) + β(1− pt)p′t+1

∂W V
t+1

∂pt+1

]
Equations (24) and (27) fully define the first order condition for the optimal xt.

4.2 Discussion of externalities

From an a priori perspective, it is not clear if the planner will want to implement a
higher or a lower activity level than the equilibrium level in the decentralized problem.
The static externalities, as we argue below, are likely to lead the social planner to reduce
social activity but the dynamic ones might give a different outcome. Although the
internalization of the contagion externality leads the planner to reduce social activity

14This follows from the fact that dIt+1 = km(xt)dIt + km′(xt)Itdxt.
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further, the immunity externality gives a push-back which might offset it. Private
agents know that there is a herd immunity state in which some susceptible people do
not catch the disease so if the cost of catching it is high, each individual will have an
incentive to reduce social activity further, in order to avoid being among those who
get ill before herd immunity is reached. This has the elements of a rat race, although
instead of a race to be first it is a race to shield: stay home in the hope that you will be
among the lucky ones that reach the herd immunity state without an infection. This is
likely to become stronger the higher the medical costs to the individual and introduces
a reason that the planner might want to increase social activity above the decentralized
equilibrium.

Similar considerations arise in the dynamic setting for the medical congestion ex-
ternality. In a static perspective, the medical externality leads to a negative externality
that the planner internalizes by reducing social activity. However, the immunity ef-
fect includes future medical externalities, which may be bigger or smaller depending
on whether or not we are on the increasing or decreasing part of It’s trajectory. The
medical congestion externality implies that the planner will want to avoid peaks in
infections, and this will typically imply more social distancing early on when infections
are rising fast.

We explore further these issues in two ways. In this section we give more intuition
to the results and point to likely directions of the externalities by working with an
approximation that gives clear results. In section 6 we simulate the full solution with
reasonable parameter values.

In equation (24), we hold for the moment It+1 and St+1 constant, then the equation
becomes,

φ′(xct) = β2 (1− pt) p′(xct)
[
W V
t+2 − (1− δ(It+1))WR

]
, (28)

where now superscript c denotes the value of xt that the social planner would choose
if only the static externalities were present (since we zeroed the dynamic externalities
by holding It+1 and St+1 constant). Superscript c stands for contacts, the only source
of externalities in this example.

The planner’s static efficiency condition has similar terms to the ones in the decen-
tralized maximization, (14). It is immediate from the comparison of the two conditions
that the decentralized and social solutions coincide if the partial derivative p′(xct) of
the social problem coincides with the partial derivative of the decentralized problem.
From (16) and (17) the condition required is a log-linear meeting technology:

xtm
′(xt)

m(xt)
= 1. (29)

This requirement parallels the familiar elasticity condition from matching theory, often
referred to as the Hosios (1990) condition, which applies to situations of pairwise
matching (see Pissarides, 2000, chapter 8). What does it mean in our context?

To show the significance of increasing returns in contacts, we differentiate the infec-
tion probability of a single agent, (15), with respect to other agents’ actions, x̄t. With
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constant returns in m(x̄t), the partial is zero, so less social distancing by others in
the market does not influence this person’s infection probability. But with increasing
returns, ∂pt+1/∂x̄t > 0; a person is more likely to be infected when other people in
her community reduce their social distancing. This is the essence of the externality: it
arises in situations in which a change in a typical individual’s social distancing has an
impact on other people’s infections probability.15

This argument works conversely as well. When there are unintended contacts in
fixed social space, increasing returns arise as a natural consequence. The justification
is similar to the one used by Peter Diamond (1982). In that paper islanders posses
a coconut which they acquire by climbing a tree but they cannot consume their own
coconut. They have to find another islander with a coconut and swap nuts. Diamond’s
claim was that if the number of islanders climbing trees doubled, a passive islander
was more likely to come out and climb a tree because the probability of finding a trade
would be higher: a positive externality. Subsequent work did not find support for this
claim because as both buyers and sellers double in number they create congestion for
each other and so many swaps are crowded out (Petrongolo and Pissarides, 2001). In
the context of an epidemic it is precisely this congestion that justifies the increasing
returns, because of the non-exhaustive nature of the disease. An infected agent can
pass a disease to a very large number of people but in Diamond’s example she can only
give her coconut to one person. Diamond’s intuition for increasing returns applies to
this model much more than in a model of exchange.16

To give intuition to the dynamic inefficiencies we follow a similar partial reasoning
but now remove the static externalities. This can be done by assuming that the meeting
technology is log-linear. The dynamic externalties Dxt are given by the last term in
(24) multiplied with 1− pt, hence

Dxt ≡ −β(1− pt)km′(xt)StIt
(
∂W V

t+1

∂It+1

−
∂W V

t+1

∂St+1

)
(30)

where the last factor is given by equation (27). Suppose now that in every subsequent
period, the social solution is approximately equal to the decentralized solution. With
a linear meeting technology, the last term in (27) is then close to zero (from the first
order condition in the decentralized solution), so the dynamic externalities simplify to

Dxt ≈ β(1− pt)km′(xt)StIt
(
−
∂W V

t+1

∂It+1

+ β (1− pt+1)
∂W V

t+2

∂It+2

)
. (31)

The intuition is now clear. When the deviation between the private and social
solutions is not too large, the dynamic externalities are approximately given by the
difference between the impact that more infections have on welfare next period, net

15See the pioneering work of Peter Diamond and Eric Maskin (1979), in which they explore meetings
with linear and quadratic “search technologies.”

16The example in the Appendix satisfies this property for given number of social spaces
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of the impact that more infections have a period later. The reason for the change
of sign is that a fall in infections this period, due to more social distancing, raises
the susceptible population next period. A higher susceptible population next period
raises the infections the period after, working against the containment of infections
next period. The first term on the right of (31) picks up the contagion and medical
externalities and if it acted alone it would require more social distancing. The second
term is the immunity externality. The social planner will want to increase social activity
to reduce the susceptible population faster towards the target needed for the herd
immunity.

It is not possible to sign the net effect without quantitative restrictions, even for
this approximation. Without it the last term in (27) that we cancelled out could
be substantial, in which case signing the overall effect would be even more difficult.
Although it would appear that in (31), and if the two marginal effects of higher It+1

and It+2 are approximately the same, the negative one would dominate because the
positive one is discounted by β(1 − pt+1), the simulations in section 6 show that this
could easily be reversed.

5 Vaccination

In this section we introduce the possibility of a sudden end to the epidemic, which
we attribute to the discovery of an effective vaccine. Clearly, the possibility of an end
to infections will influence the behaviour of forward-looking agents. If an individual
succeeds to remain susceptible when the epidemic then she would have avoided an
infection for good. We should therefore expect that for a given vector of state variables,
the prospect of a vaccine makes agents cut back on social activity, as they have more
to gain by waiting. For the same reason it also reduces the planner’s preferred activity
level. In addition, for the planner, the prospect of a vaccine reduces the positive
immunity externalities associated with a higher activity level, so the planner might
increase social distancing by more than forward-looking agents do in response to the
vaccine.

We assume that the introduction of a vaccine follows a Poisson process. The prob-
ability that a vaccine arrives between two consecutive periods is denoted by a constant
λ. The vaccine is 100 percent efficient. Individuals already infected have no use for
the vaccine, as it is no cure.

Denote by W
V V

t the net present value of utility of a vulnerable agent in period t if
a vaccine arrives between t− 1 and t, and W V N

t the utility if it does not arrive. Define

W V V
t ≡ λW

V V

t + (1− λ)W V N
t . It follows that

W
V V

t = max
xt

{
φ(xt) + β(1− pt)WR + βpt(1− δ(It))WR

}
(32)

Both in the market solution and the planner’s solution optimality obtains at the highest
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level of xt, φ
′(xt) = 0. This yields, noting that φ(xr) = (1− β)WR,

W
V V

t = [1− βptδ(It)]WR. (33)

Now suppose the vaccine has not yet arrived in period t. With predetermined proba-
bility pt, the individual is already infected, and her continuation value is (1−δ(It))WR,
independently of whether or not the vaccine arrives. With the complementary prob-
ability, the agent is not infected, and given that a vaccine might arrive next period,
obtains a continuation pay-off of W V V

t+1 . It follows that

W V N
t = max

xt

{
φ(xt) + βpt (1− δ(It))WR + β(1− pt)W V V

t+1

}
(34)

An increase in λ increases W V V , and hence increases the utility loss associated with
getting the disease.

5.1 The decentralized solution

Since W V V
t ≡ λW

V V

t + (1− λ)W V N
t , it follows from (33) and (34) that

∂W V V
t

∂pt
= −λβδ(It)WR − (1− λ)β

[
W V V
t+1 − (1− δ(It))WR

]
= −β

[
W V V
t+1 − (1− δ(It))WR

]
− λβ(WR −W V V

t+1 ). (35)

It follows that the first order condition for the maximum of the agents in the market
is (from 34),

φ′(xt) = (1− pt)β2p′(xt)
{[
W V V
t+2 − (1− δ(It+1))WR

]
+ λ(WR −W V V

t+2 )
}

(36)

The first term inside the brackets on the right corresponds to the term we had earlier,
and reflects the cost of being infected if a vaccine does not materialize before the next
period. The last term reflects the gain to the susceptible if a vaccine materializes,
which the infected will not take part in.

The decentralized equilibrium can be defined analogously with the definition with

no vaccine, given by Definition 1, with W V
t replaced by W V V and W

V V
, and with the

first order condition for xt, (14), replaced by (36).

5.2 The planner

Before a vaccine arrives, the planner maximizes the net present value of utility of
the representative vulnerable person W V N defined by (34). The planner, in contrast
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with the agents in the decentralized solution, considers the laws of motion (18)-(20) as
endogenous. Parallel to (37), the first order condition for xt reads

−φ
′(xt)

1− pt
= β

{
∂W V V

t+1

∂pt+1

∂pt+1

∂xt
+
∂W V V

t+1

∂It+1

∂It+1

∂xt
+
∂W V V

t+1

∂St+1

∂St+1

∂xt

}
(37)

The factor of the first term inside the brackets,
∂WV V

t+1

∂pt+1
, is given by (35). The two

last terms in (37) can be derived in exactly the same way as when there was no vaccine,
taking into account that the probability that there is no vaccine in the next period is
1− λ, and two periods ahead is (1− λ)2. It follows that

∂W V V (St, It, pt)

∂It
= −(1− λ)φ′(xt)

m(xt)

m′(xt)It
− βptδ′(It)WR (38)

∂W S(St, It, pt)

∂St
=

(1− λ)(1− pt+1)

p′t+1St

[
φ′(xt) + β(1− pt)p′t+1

∂W V V
t+1

∂pt+1

]
+(1− λ)β(1− pt)

∂W V V
t+1

∂It+1

We have already noted that since the prospect of a vaccine increases W V V , it makes
the agents more cautious in the decentralized equilibrium, and therefore increases social
distancing. The prospect of a vaccine reduces the dynamic externalities by a factor
1 − λ, except for the medical congestion externality, which depends on the number
of infected agents this period, before the vaccine arrives. But if a vaccine arrives
between this period and the next, it will make both the contagion effect of a higher It
in period t+ 1 and the immunity externality of the lower St+1 in t+ 2 irrelevant. The
immunity externality is reduced by a factor (1 − λ)2, because it arrives two periods
later. This explains our conjecture that the prospect of obtaining a vaccine will reduce
the planner’s optimal activity level more than the activity level of private agents in the
decentralized equilibrium and it will reduce the race to shield and the prospect of the
social planner increasing social distancing.

6 Simulations of Planner’s Problem and External-

ities

In section 4 we showed how the decentralized solution with optimizing agents differs
from the standard SIR model without optimization. In this section we use similar
parameters to highlight the main differences between the decentralized solution and
the planner’s social optimum. We focus on three factors that drive a wedge between
the two sets of solutions. First the role of medical costs and their implications for the
dynamic externalities, second the role of a vaccine and finally the role of increasing
returns in matching that drive a wedge between the static solutions of the two models.
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6.1 The importance of medical costs

Catching the disease involves some cost to the individual. In the absence of deaths,
we modelled the cost as a proportion of lifetime returns after recovery, which is borne
instantaneously, between the infectious and recovered states. In general the medical
cost will depend on how many other people are sick at the same time, because of
limited medical facilities. This dependence, which is ignored by private agents, drives
a wedge between the decentralized and planning solution, which we called the medical
congestion externality. But the overall medical cost, independently of any dependence
on the number of infected people, influences the dynamic externalities which also drive
a wedge between the decentralized and planning solutions.

Let the medical costs in general be δ0 exp(δ1It). The parameter δ1 picks up the
medical congestion cost and we set it equal to zero for the moment, to focus on the
impact of the overall cost. The total medical cost is therefore δ0 and we simulate the
solution for two levels of δ0, a low one of 0.02 and a high one of 0.1. The other parameters
are similar to the ones that we used in section 3 and they are listed in Table 2. As
before the utility function is φ(x) = A + log(x) − x, and transitions are governed by
km(xt) = R0xt, with basic reproductive number R0 = 2.4. With no medical congestion
externality and constant returns to scale in contacts there are two externalities that
drive a wedge between the two solutions, the contagion externality and the immunity
one. The contagion one arises because more infected people next period give rise to
more infections the period after, something ignored by private agents. If this externality
dominates, the social planner will want to impose more social distancing. The immunity
externality arises because by shielding, private agents slow down the transition to herd
immunity. If this externality dominates, the social planner will want to reduce social
distancing.

We simulated the solutions for two levels of costs because for low costs the con-
tagion externality dominates but for high costs the immunity one dominates. Figure
3 shows the net deviation between the two dynamic paths with δ = 0.02. As in the
simulations of section 3, the dotted (red) line refers to the decentralized outcome while
the continuous (blue) line refers to the central planner solution. The top chart shows
the activity level {xt}, the middle chart the mass of susceptible agents and the bottom
chart the mass of infected people.

From Figure 3 we see that the planner tends to impose more social distancing than
the decentralized equilibrium, particularly around the peak of the disease (when It is
at its maximum) and in the beginning of the recovery (Table 2). Figure 4 separates
the immunity and contagion externalities associated with a one unit increase in xt
around the optimal solution, measured in units of utility. To give some idea of the
magnitude of the externalities, the per period utility in the first-best solution with no
virus present, φ(xr), is equal to 3/2. So a net externality of 0.5 is equal to 1/3 of the
per period utility in the first best solution. The Figures show that the immunity and
the contagion externalities are similar in the first few periods, but in later periods the

24



negative contagion externality dominates.
This contrasts sharply with the impact of higher medical costs. For a fixed cost

δ0 = 0.1, Figure 5 shows that the immunity externality clearly dominates. In the
midst of the epidemic (except at the very top) the planner now wants to raise the
social activity level chosen in the decentralized solution, because of a strong immunity
externality. Private agents shield too much when the medical costs are high, delaying
the transition to herd immunity. The reason is that forward-looking agents know that
when the disease is eradicated there will be a substantial proportion of the population
who will never catch the disease. In our simulations, this proportion is around 40%.
With high costs on the 60% who do catch it, private agents withdraw from the market
in the hope that the disease will be eradicated by infecting others. But if all agents
did the same there would be no gain in terms of avoidance of the disease, only a delay
in reaching herd immunity. This is what we termed the rat race to shield. It arises
because private agents ignore the impact of their shielding on the mass of susceptible
agents. The social planner will want to get rid of this rat race by forcing lower social
distancing. It is clear from Figure 6 that the main difference from the case of low
medical cost is the large rise in the immunity externality caused by the high medical
cost. Note that the planner imposes more social distancing in the very first periods
of the epidemic and towards the end of the epidemic. The latter reflects the fact that
the planner wants to reduce the total number of infected people before herd immunity
is reached, and obtains this by reducing the last elements of social distancing slowly.
As a result, the total number of infected people is lower than in the decentralized
solution, but only marginally because it is already close to the maximum allowable in
the decentralized solution.

Figure 7 shows phase diagrams for the optimal path, the decentralized equilibrium
path, and the equilibrium in the original SIR model with xt fixed at 1 in all periods
and δ0 = 0.1 in all cases. We see that the phase diagram for the optimal solution moves
more quickly than the decentralized in the early stages of the epidemic. It eventually
converges to a steady state with herd immunity at a slightly higher level of disease-free
agents. As in the earlier simulations, the SIR trajectory converges to an equilibrium
with a much lower number of susceptible individuals than both the market solution
and the optimal solution do.

We finally consider the impact of medical congestion externalities. For fixed medical
costs, the planner will want to increase social activity, which leads to a peak of infections
early on (Figure 5). But with a medical congestion externality present, this will not
be optimal. A peak in infections overcrowds hospitals and raises the medical costs.
The social planner will now want to flatten the infections curve, so as to avoid high
peaks of medical costs. This is shown in Figure 8. We parameterize δ(I) by writing
δ(I) = δ0e

δ1It . We set δ0 = 0.07 and δ1 = 6, so that medical costs increase fast with It
and the mean overall cost between It = 0 and It at its maximum in the absence of the
medical externality is approximately 0.1, as in the case of fixed medical costs.

Figure 8 shows that the trajectories for the planner and the decentralized solution
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are now similar. The similarity is a coincidence with the particular set of parameters
that we selected for the simulations. In the absence of medical congestion externalities,
agents shield more than the social planner because of the rat race to shield, and in the
presence of the medical congestion externality, they shield less because they ignore the
impact of their illness on the medical costs. The two happen to offset each other for the
medical costs δ0 = 0.07 and δ1 = 6. Other sets of medical cost parameters could yield
different results; in general, we conjecture that a higher δ0 will have a bigger impact
on private shielding and a higher δ1 will have a bigger impact on social shielding.

6.2 Implications of a vaccine

In an epidemic there is always a hope that a vaccine will be discovered that will end the
disease before herd immunity is reached. In the simulations that follow we investigate
how the dynamic paths that we derived so far are affected by this expectation before
the vaccine actually arrives. As we explained in the section preceding this one, the
expectation of a vaccine is likely to increase shielding by both planner and private
agents, as they forgo social activities until medical research comes up with a solution.
Importantly for the externalities that we simulated in the first part of this section, the
social planner will not have as strong an incentive to increase social activity to reach
immunity faster. The immunity externality pushes more people to infection in the
short run, to avoid the long delay to herd immunity that the rat race to shield yields.

In Figure 9 and Table 3 we assume that the per period probability of obtaining
a vaccine is .05. With this probability the mean duration of time before a vaccine
arrives is 20 periods, or approximately 40 weeks. The lines shown in the Figure are
calculated conditional on the vaccine not arriving. As the model predicts, the activity
level in both the optimal solution and the decentralized solution shifts down relative to
the situation without the prospect of a vaccine arriving. However, there is a dramatic
difference in how the two lines change. In Figure 9 the planner is now reducing social
distancing much more than the agents in the decentralized solution. This is due to the
big fall in the wedge caused by the immunity externality. With the prospect of a vaccine
arriving within a year, the contagion externality is the main one that drives a wedge
between the planning and the decentralized solution. This explains the planner’s much
more cautious approach to social distancing in this version of the model than in the
one without the prospect of a vaccine. The interaction between the two externalities
is shown in Figure 10, which should be contrasted with Figure 6. The prospect of a
vaccine virtually eliminates the immunity externality, while it increases the absolute
value of the contagion externality

Of course, with this very cautious policy, in the absence of a vaccine, herd immunity
is much harder to achieve. Even after 100 periods without a vaccine, the fraction of
susceptible individuals in the optimal solution is around .8, and society is still far from
herd immunity.
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6.3 Increasing returns to scale in contacts

So far the simulations of this section focused on the dynamic externalities, the medical,
contagion and immunity. The static externalities were shut out by imposing constant
returns to scale in the contact technology. We now relax this assumption and derive
the implications of increasing returns, which as we argued in section 4, we consider to
be a priori more plausible.

In the theory section it was possible to isolate the impact of increasing returns by
shutting out the dynamic externalities. In the simulations, however, this cannot be
done. As inspection of equation (28) shows, the solution to be simulated depends on
future present-discounted values, which are influenced by the dynamic externalities. So
we approach the problem as follows. For each problem, the decentralized maximization
by agents and the social optimum of the planner, we simulate two equilibrium paths,
one with linear technology as before and one with quadratic technology; i.e., we now
write the contact function: km(xt) = R0x

2
t . As in the simulation of fixed medical

externalities in this section, we set λ = 0 (no vaccine) and δ(I) ≡ .1 (no medical
congestion externalities).

With a quadratic contact function it is straightforward to derive, by substituting
the quadratic expression for m(xt) into (16) and (17), that for private agents p′(xpt ) =
R0x

p
t It whereas for the planner, p′(xst) = 2R0x

s
tIt. We argued that because of this

difference and ignoring the dynamic externalities, the planner will want to impose more
social distancing. But dynamic externalities are present, and applying the quadratic
contact technology in the dynamic expressions (38) shows that both are reduced by a
factor of 2.

In Figure 11 we compare the paths of the decentralized equilibrium with α = 1 and
α = 2. Because with α = 2 the lower xpt reduces the probability of infection by more
(R0x

p
t It versus R0It), the private agent reduces social activity by less when activity

is already low but this reverses when activity rises towards unity. Also, with α = 2
the impact of social distancing on the effective reproductive number is bigger and so
the peak reached by infections is lower than with α = 1. Perhaps the most interesting
result in this comparison, however, is the herd immunity state. Despite these changes
in private activity, the herd immunity state is reached with some delay with α = 2
but the terminal condition, indicating the cumulative number of infections, is the same
as in the case α = 1. Overall, although increasing returns to scale alter some of the
dynamics of the decentralized equilibrium, the equilibrium outcomes do not differ in
important ways from the much simpler case of constant returns. Partly this can be
explained by the fact that even for α = 1, herd immunity is obtained with close to the
highest possible number of susceptible individuals.

There is a more substantial impact of increasing returns on the social solution,
shown in Figure 12. Although the impact on activity is qualitatively the same as in
the private solution, there is enough quantitative difference to lead to a substantial
difference in the number of susceptible individuals for very many periods. With α = 2,
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the effect of reducing xt below 1 in terms of reduced number of contacts is twice as high
as when α = 1. This induces the planner to set xt somewhat below 1 for an extensive
number of periods. As a result, herd immunity (which obtains for St < R−1

0 = 0.417)
is not reached after 100 periods, at which more than 50% of the population is still
susceptible. With α = 1, the new steady state is reached more quickly, and herd
immunity is obtained within 100 periods. As before, adjustment to the herd immunity
state is much faster in the social planning solution in the relatively early stages of the
epidemic, because of the race to shield and the immunity externality, which are strong
with the fixed medical cost of δ0 = 0.1.

7 Conclusions

We have shown that the differences between three alternative paths from the onset of an
epidemic to its eradication can be large and complex. The first path, commonly found
in the epidemiological literature, exposes large numbers of individuals to the disease
and reaches herd immunity quickly. An important result of our paper is that the
other two paths, chosen by private agents in a decentralized equilibrium or by a social
planner, favour much longer adjustment paths by restricting the number of infections.
By limiting per-period infections the other two paths achieve herd immunity close to
the maximum number of susceptible agents (who remain free of the disease) consistent
with herd immunity.

But such a large number of susceptible individuals at herd immunity produces a
“race to shield,” in which agents shield too much at the midst of the disease to increase
the chances that they will be the lucky ones who will avoid the disease altogether.
Obviously not everyone can succeed in this race, so a social planner wants to avoid it
by choosing more social activity.

The expectation of a vaccine makes a large difference to the results. When private
agents expect that a vaccine will arrive they substantially reduce the race to shield.
But they still ignore the fact that if they contract the disease they will infect others
in the future. The social planner takes this contagion externality into account, and
imposes more social distancing, to avoid more infections before the vaccine arrives.
The ranking result that we derived with a race to shield reverses.

We illustrate our results with simulations but as more data become available the
model should be taken to the data. Our model applies generally to epidemiological
models in the SIR tradition of Kermack and McKendrik (1927) and shows that quan-
titatively some parameters make a large difference to the simulated paths, such as the
lifetime cost of the disease, the elasticity with which contacts respond to changes in
social action and the vaccine arrival probability. Information on their relative magni-
tudes is still scant and may be disease-dependent. As our assumptions are consistent
with many with the features of COVID-19, data for this epidemic could shed light on
these magnitudes. Another feature that needs to be taken to the data is the economic
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cost of shielding. In this paper we assume that it is a simple convex function of a single
variable, our measure of social action, but as many authors have shown, it depends on
a multitude of features of occupations and economic structures.17

Finally, our analysis is based on the assumption that recovered individuals stay
immune permanently. If recovered individuals may lose their immunity as time goes
by, this will change our model in several ways. Herd immunity will never be obtained,
and the new steady state will be characterized by equal flows of individuals moving out
of and into the susceptible state. We conjecture that without a vaccine the activity
level never recovers to its first best level. Generally, when immunity is temporary, social
distancing will be larger. In addition the immunity externality weakens, so the planner
increases social distancing more than the agents do in the decentralized solution. These
are topics that should explored in future work.

17Some pertinent references are given in our introduction to this paper.
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Table 1: Parameters used in simulation (decentralized equilibrium)

Parameter Notation Value
Preferences
Discount Factor β 0.998
Constant A 1.500
Infection Characteristics
Basic Reproductive Rate R0 2.400
Infection cost δ0 0.100
Initial infection ε 0.001
Contact Technology
Log-Linear α 1.000
Main activity results
Activity at the outbreak of the epidemic x0 0.868
Activity when infections are at maximum xI 0.430
Activity of the recovered xr 1.000
In standard SIR x = xr throughout the epidemic.
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Table 2: Basic Central Planner Simulations

Parameter Notation low δ0 high δ0
Preferences
Discount Factor β 0.998 0.998
Utility constant A 1.500 1.500
Infection Characteristics
Basic Reproductive Rate R0 2.400 2.400
Infection cost δ0 0.020 0.100
Medical congestion δ1 0.000 0.000
Probability of vaccine λ 0.000 0.000
Initial infection ε 0.001 0.001
Contact Technology

α 1.000 1.000
Activity
Activity at the outbreak of the epidemic x0 0.989 0.959
Activity when infection is maximal xImax 0.531 0.520
Activity of the recovered xr 1.000 1.000
Contagion Externality XI

at t = 0 level -0.015 -0.048
% deviation -0.006 -0.020%

at extremum level -0.914 -1.116
% deviation -0.370 -0.467%

Immunity Externality XS

at t = 0 level 0.007 0.026
% deviation 0.003 0.011%

at extremum level 0.713 3.944
% deviation 0.289 1.665%

Net Externality XI +XS

at t = 0 level -0.008 -0.021
% deviation -0.003 -0.009%

at extremum level -0.517 3.017
% deviation -0.208 1.274%
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Table 3: Planner Simulation with Vaccine

Parameter Notation Value
Preferences
Discount Factor β 0.998
Utility Constant A 1.500
Infection Characteristics
Basic Reproductive Rate R0 2.400
Infection cost δ0 0.100
Medical congestion δ1 0.000
Probability of vaccine λ 0.050
Initial infection ε 0.001
Contact Technology

α 1.000
Activity
Activity at the outbreak of the epidemic x0 0.509
Activity when infection is maximal xImax 0.433
Activity of the recovered xr 1.000
Contagion Externality XI

at t = 0 level -0.940
% deviation -0.385%

at extremum level -1.242
% deviation -0.509%

Immunity Externality XS

at t = 0 level 0.022
% deviation 0.009%

at extremum level 0.062
% deviation 0.025%

Net Externality XI +XS

at t = 0 level -0.918
% deviation -0.376%

at extremum level -1.180
% deviation -0.484%
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Figure 1: Dynamics of the Epidemic in Optimizing SIR: 100 periods
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Figure 2: Joint Phase Diagram for Optimizing SIR and Standard SIR
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Figure 3: Matching-SIR: Planner vs market, low δ (0.02)
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Figure 4: Externalities per unit of x at planner solution, low δ (0.02)
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Figure 5: Matching-SIR: Planner vs market, high δ (0.1)
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Figure 6: Externalities per unit of x at planner solution, high δ
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Figure 7: Phase diagram, high δ
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Figure 8: Planner vs market with medical externalities
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Figure 9: Planner vs market with vaccine, λ = 0.05
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Figure 10: Externalities per unit of x at planner solution with vaccine, λ = 0.05.
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Figure 11: Decentralized equilibrium with constant and increasing returns to scale,
high δ, no vaccine or medical externalities
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Figure 12: Central Planner equilibrium with constant and increasing returns to scale
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Appendix 1: The infections technology

In this Appendix we illustrate the technology of infections with a particular example
that is derived from first principles and satisfies the main properties of our general
function in the text. It is based on the urn-ball game that has been used in labour
theory and it brings out the contrast between the labour matching function and the
epidemiology transmission function.18

Suppose that a social activity is performed in one of N social spaces. By social
space we mean a place where performing an activity requires contact with at least one
other person. For a given population size S + I +R, N is a measure of the density of
the community, with smaller N indicating a more dense community. Social distancing
is also related to this measure: bigger N makes social distancing easier to achieve.
A contact in social space between a susceptible and an infected individual infects the
susceptible individual with probability k ∈ [0, 1].

We now interpret social spaces as urns. Infected individuals hold white balls and
susceptible individuals hold black balls. They all place x̄t balls each in randomly
selected urns. To simplify the exposition we assume that there is no memory of where
a previous ball was placed, so each person places each one of its balls in a randomly
selected urn out of the N available. A susceptible person gets infected with probability
k if any one of the urns that she selected for her black balls contains one or more white
balls.19 We are interested in deriving the probability that there will be a white ball in
at least one of the xt urns selected by the i ∈ S individual, given the x̄t selected by the
infected individuals.

Our assumption of no memory makes the problem equivalent to placing x̄tIt white
balls at random in urns. The probability that an urn avoids a given white ball is
1 − 1/N, so, since there are x̄tIt white balls, the probability that an urn contains no
white balls after all have been placed is,

ht =

(
1− 1

N

)x̄tIt

= e−x̄tIt/N . (39)

Because of large numbers, ht is also the fraction of social spaces that are infection-free
(healthy).

We consider now how the choices of a single susceptible agent influence the proba-
bility that the agent will get infected. The agent selects xt urns to place black balls.
The probability that a single ball avoids an urn containing a white ball is given by

18See Petrongolo and Pissarides, 2001, p. 401-2, for discussion of the use of this game in labour
theory

19Here is the biggest contrast with the labour matching function. A job vacancy (read infected per-
son) can remove at most one unemployed worker from the pool of unemployment (read, susceptible).
An infected person can remove any number that comes into contact with them.
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(39). So the probability that all xt black balls avoid an urn containing a white ball is

hit =
(
e−x̄tIt/N

)xt
. (40)

It follows that 1−hit is the probability that a single agent meets an infected individual
and so the probability that this person gets infected in period t is,

pt+1 = k
(
1− e−xtx̄tIt/N

)
. (41)

Differentiation of pt+1 yields,

∂pt+1

∂xt

xt
pt+1

=
xtx̄tIt
N

e−xtx̄tIt/N

1− e−xtx̄tIt/N
. (42)

This is a number less than 1, in contrast to the formulation in the text, which gives
unit elasticity. For small xt and It it is approximately equal to 1.20

From (41), and since there are St susceptible individuals who choose xt = x̄t, the
aggregate infections function is

Mt+1 = kSt

(
1− e−x2t It/N

)
. (43)

For fixed N, this function exhibits increasing returns to scale in St and It. This result
is saying that bigger social spaces that have proportionally more susceptible and more
infectious individuals do not have a higher infections rate, but a proportional increase in
susceptible and infectious individuals in a given social space does lead to proportionally
more infections. Analogous to this result is the role of N. As it measures density, a
lower N indicates a more dense community and a higher infections rate for given St
and It.

Another property of significance is the dependence of the aggregate infections rate
on the square of the social activities of susceptible and infected individuals. For small
numbers of xtIt/N, as satisfied by our model, the elasticity of infections with respect
to social action is approximately 2 but for larger numbers it is lower.

20An alternative formulation replicates the method used in the text exactly. From (39) the fraction
of black balls (susceptible people) which are placed in urns that contain at least one white ball is
approximately x̄tSt(1− exp(x̄tIt/N)). A single individual supplies a fraction xt/x̄tSt of black balls, so
the probability that this person is infected is kxt(1−exp(x̄tIt/N)), giving the proportionality between
pt+1 and xt.
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Appendix 2

Proof of Proposition 2

In an arbitrary period t, let (Sot , I
o
t , p

o
t ) be an arbitrary, feasible triple of values of

St, It, and pt, with pot =
Iot

So
t +Iot

. From this arbitrary starting point, let the sequence

{Soz , Ioz , poz, xoz}
∞
z=t solve the planner’s problem.

Consider first an increase in the initial condition It from Iot to Iot + ρ, while St and
pt stay fixed at Sot and pot , respectively.21

Define the function xI(ρ) implicitly by the function km(xI(ρ))(Iot + ρ)Sot = Iot+1.
This function exists on an interval [−ρ̄I , ρ̄I ] for some ρ̄I > 0. Clearly xI(0) = xot . It
follows that if the economy starts at Iot + ρ, Sot , and the activity level is xI(ρ), then
St+1 = Sot+1, It+1 = Iot+1, and pt+1 = pot+1. Furthermore,

dxI(0)

dρ
= − m(xot )

m′(xot )I
o
t

=
pot+1

po′St
(44)

Now define the function W̃ V (Sot , It, p
o
t ) (where Sot and pot are fixed, so this is a function

of It only) for I t ∈ (Iot − ρ̄I , Iot + ρ̄I) as

W̃ V (Sot , It, p
o
t ) = φ(xI(It − Iot )) + βpotW

R(1− δ(It))
+β(1− pot )W V

t+1(Sot+1, It+1, p
o
t+1) (45)

Since W V (Sot , It, p
o
t ) is the pay-off in optimum, and xI(0) = xot , it follows that

W̃ V (Sot , It, p
o
t ) ≤ W V (Sot , It, p

o
t ) ∀It ∈ (Iot − ρ̄I , Iot + ρ̄I)

(46)

W̃ V (Sot , I
o
t , p

o
t ) = W V (Sot , I

o
t , p

o
t )

Hence the Benveniste-Scheinkman theorem applies, and we know that

∂W̃ V (Sot , I
o
t , p

o
t )

∂It
=
∂W V (Sot , I

o
t , p

o
t )

∂It
(47)

From this equation, and (44) and (45), it follows that

21Along any path, we must have that pt = It
St+It

for all t. However, mathematically, the planner’s

maximization problem is well defined for also for initial values St, It, pt such that pt 6= It
St+It

. The

dynamic equations ensure that pz = Iz
Sz+Iz

for any z > t. Recall further that the effect of a change in

It and St through pt is captured by the term ∂WV

∂pt
.

45



∂W V (Sot , I
o
t , p

o
t )

∂It
= −φ′(xot )

m(xot )

m′(xot )I
o
t

− βptδ′(Iot )V R (48)

Since the starting point Sot , I
o
t , p

o
t is arbitrary, this shows (25).

Next, consider an increase in St from Sot to Sot + ρ, while It and pt stay fixed at
Iot , p

o
t . Define xS(ρ) implicitly by the equation (Sot + ρ)− km(xS(ρ))Iot (Sot + ρ) = Sot+1.

This function exists on an interval (−ρ̄S, ρ̄S) for some ρ̄S > 0.
By definition it follows that St+1 = Sot+1, It+1 = Iot+1 + ρ, and pt+1 = km(xS(ρ)))Iot .

Furthermore, we have that

dxS(0)

dρ
=

1− kItm(xot )

km′(xot )S
o
t I

o
t

=
1− pot+1

po′t+1S
o
t

(49)

Now define the function Ŵ V (St, I
o
t , p

o
t ) for St ∈ (Sot − ρ̄S, Sot + ρ̄S) as

Ŵ V (St, I
o
t , p

o
t ) = φ(xS(St − Sot )) + βptW

R(1− δ(Iot ))

+β(1− pot )W V
t+1(Sot+1, I

o
t+1 + St − Sot , km(xS(St − Sot ))Iot )

(50)

Now Iot and pot are fixed, so this is a function of St only. Again it follows by construction
that

Ŵ V
t (St, I

o
t , p

o
t ) ≤ W V

t (St, I
o
t , p

o
t ) ∀St ∈ (Sot − ρ̄S, Sot + ρ̄S)

(51)

Ŵ V
t (Sot , I

o
t ) = W V

t (Sot , I
o
t )

so that the Benveniste-Scheinkman theorem applies. Hence

∂Ŵ V (Sot , I
o
t , p

o
t )

∂St
=
∂W V (Sot , I

o
t , p

o
t )

∂St
(52)

Using this and (50) we get that

∂W V (Sot , I
o
t , p

o
t )

∂St
=
dxS(0)

dρ
φ′(xot )

+β(1− pot )
δW V

t+1

δIt+1

+ β(1− pot )po′t+1

dxS(0)

dρ

δW V
t+1

δpt+1

(53)

Together with (49) this shows (26).
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Derivation of dynamic externalities with vaccine, equation (38)

Consider first an increase in It. If a vaccine has arrived, no-one is infected, hence from
equation (33) it follows that

∂W
V V

∂It
= −βptδ′(It)WR (54)

This happens with probability λ. With the complementary probability, a vaccine does
not arrive. In this case we apply the exact same argument as when deriving ∂WV

∂It
above,

Hence, parallel with (48)we get that

∂W V N(St, It, pt)

∂It
= −φ′(xt)

m(xt)

m′(xt)It
− βptδ′(It)V R (55)

Here, and below, xt refers to optimal activity levels (as xot in the proofs above). It thus
follows that

∂W V V (St, It, pt)

∂It
= −(1− λ)φ′(xt)

m(xt)

m′(xt)It
− βptδ′(It)WR (56)

Then consider
∂WV V

t

∂St
. First note that W̄ V V

t is independent of St: If a vaccine arrives
between period t − 1 and t, no-one is infected from period t and onwards, and St is
irrelevant. If a vaccine does not arrive, we can use the exact same procedure as in the
case with no vaccine in order to find the effect on W V N . Parallel with (53) we have
that

∂W V V (St, It, pt)

∂St
= (1− λ)

dxS(0)

dρ
φ′(xt)

+(1− λ)

{
β(1− pt)

δW V V
t+1

δIt+1

+ β(1− pt)po′t+1

dxS(0)

dρ

δW V V
t+1

δpt+1

}
(57)

where xS(0) is defined as in equation (53). Inserting this expression gives (38).
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