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ABSTRACT
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Diagnostic Tests for Homoskedasticity in 
Spatial Cross-Sectional or Panel Models
We propose an Adjusted Quasi-Score (AQS) method for constructing tests for 

homoskedasticity in spatial econometric models. We first obtain an AQS function by 

adjusting the score-type function from the given model to achieve unbiasedness, and 

then develop an Outer-Product-of-Martingale-Difference (OPMD) estimate of its variance. 

In standard problems where a genuine (quasi) score vector is available, the AQS-OPMD 

method leads to finite sample improved tests over the usual methods. More importantly 

in non-standard problems where a genuine (quasi) score is not available and the usual 

methods fail, the proposed AQS-OPMD method provides feasible solutions. The AQS tests 

are formally derived and asymptotic properties examined for three representative models: 

spatial cross-sectional, static or dynamic panel models. Monte Carlo results show that the 

proposed AQS tests have good finite sample properties.
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1. Introduction

Spatial econometrics has experienced phenomenal growth in the last decade. Most of the

estimation and inference methods are developed under the assumption that the errors in the

model are homoskedastic. Therefore, it is important to test the validity of this assumption.

Surprisingly, this type of test is largely unavailable in the spatial econometrics literature except

Anselin (1988, p. 122), which is in stark contrast to the big literature on heteroskedasticity

tests in the traditional (non-spatial) econometrics literature.

We in this paper endeavor to provide a general methodology for addressing the het-

eroskedasticity testing problem in spatial econometrics. We approach this problem by as-

suming, as in Breusch and Pagan (1979) and Anselin (1988), that the heteroskedasticity is

induced by some exogenous variables such as certain covariates, the size of spatial units, and

the number of neighbors, etc., through an unknown function so that the error variance has

the form �2h(z0↵). The function h is such that h(0) = 1 and hence a test of heteroskedasticity

becomes a test of null hypothesis H0 : ↵ = 0. This leads naturally to the consideration of the

score type of tests as their implementations require only the estimation of the simpler null

models. Another advantage of such an approach is that by rejecting the null the ‘source’ of

heteroskedasticity is ‘identified’ so that the model estimation and inference may proceed with

heteroskedasticity of a chosen form of h in the spirit of Breusch and Pagan (1979).1 However,

the construction of classical LM tests depends upon the true score vector and information ma-

trix, which are often unavailable for reasons given below, and hence the conventional methods

fail. Moreover, the existence of spatial dependence often causes the LM tests to perform un-

satisfactorily in finite samples even if the true scores and information matrix are available.2

It is therefore highly desirable to have a general method that meets these challenges – able to

provide not only the desired tests for homoskedasticity but also satisfactory ones.

This paper introduces a general method for constructing tests for homoskedasticity in

spatial econometric models, namely the Adjusted Quasi-Score (AQS) method. We first ob-

tain an AQS function by adjusting the score-type function from the given model to achieve

unbiasedness/consistency, and then decompose the AQS function into a sum of vector mar-
1
A strand of research that parallels our testing approach is the developments of estimation and inference

procedures that are robust against cross-sectional heteroskedasticity of unknown form. See, among others, Lin

and Lee (2010), Kelejian and Prucha (2010), Liu and Yang (2015b), Moscone and Tosetti (2011), Badinger and

Egger (2011, 2015), Debarsy, Jin and Lee (2015), and Kuersteiner and Prucha (2020).
2
See Baltagi and Yang (2013a,b), and Yang (2015a) for tests of spatial e↵ects in linear or panel models.
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tingale di↵erences and hence an Outer-Product-of-Martingale-Di↵erence (OPMD) estimate of

its variance. In “standard problems”, such as the spatial linear regression (SLR) model where

a genuine (quasi) score vector is available, the AQS method leads to finite sample improved

tests over the usual methods by adjusting the concentrated (quasi) score to remove the e↵ect

of estimating the linear and scale (nuisance) parameters. The role played by OPMD here is

to provide a simple alternative in estimating the variance-covariance (VC) matrix of the AQS

vector. However, the AQS-OPMD idea goes much beyond this – it provides feasible solutions

to “non-standard problems” where the usual methods fail due to the lack of (i) a valid (quasi)

score and (ii) a feasible method for VC matrix estimation.

For example, for a spatial panel data (SPD) model with fixed e↵ects, the transformation

method (Lee and Yu, 2010) cannot be used to remove the unobserved fixed e↵ects if any of

the following requirements is not met: balanced panel, additive fixed e↵ects, time-invariant

spatial weights, and time-invariant covariate and/or spatial e↵ects. In these cases, the best we

can have is the concentrated (quasi) likelihood/score function with the fixed e↵ects (additive

or interactive) being concentrated out. This concentrated (quasi) score vector does not lead to

consistent estimation due to the well-known incidental parameters problem (IPP) of Neyman

and Scott (1948). However, it can be adjusted to ‘remove’ the e↵ect of estimating the inci-

dental parameters, yielding an AQS vector that is unbiased and consistent.3 Another (more

important) example is the dynamic spatial panel data (DSPD) model with short panels. In

this case, even if all the requirements as for SPD models are met, one is still unable to achieve

either (i) or (ii) due to the well-known initial values problem (IVP), another form of IPP (see,

e.g., Hsiao, 2014). In a dynamic panel data model (Hsiao et al., 2002) and a DSPD model with

only spatial error (Su and Yang, 2015), initial values are modeled to give a ‘full’ likelihood

function, but this approach cannot be applied to a general DSPD model as pointed out by

Yang (2018a). In this case, the best we can have is the ‘conditional’ (quasi) likelihood/score

treating the initial values as exogenously given. This conditional (quasi) score does not lead to

consistent estimation unless the time dimension (T ) is also large along with the cross-section

dimension (n) but even in this case it incurs an asymptotic bias (Yu et al., 2008). However, it

can again be adjusted, as in Yang (2018a) for a homoskedastic FE-DSPD model, to ‘remove’

the e↵ect of IVP and to give a set of AQS functions for the heteroskedastic DSPD model that

are unbiased and consistent – leading to valid AQS tests for homoskedasticity.
3
This method finds root in Neyman and Scott (1948, Sec. 5) on modified likelihood equations.
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Therefore, the proposed AQS-OPMD method does not only lead to homoskedasticity tests

that improve the conventional LM tests, but also gives the desired tests (and their improved

versions) for situations where IPP arises and hence the conventional methods fail. To provide

a full illustration of the generality and versatility of the proposed method, the AQS tests are

formally derived and asymptotic properties examined for three representative spatial models:

cross-section, static and dynamic panels. Monte Carlo results show that the improved versions

of the proposed tests have good finite sample properties. To facilitate practical applications

of our proposed tests, a guide to applied researchers is given at the end of the paper.

The rest of the paper is organized as follows. Section 2 presents the score-type tests

as well as their improved versions to test for homoskedasticity in a spatial cross-sectional

model. Section 3 presents these tests as well as their improved versions for a static SPD

model, and critically discusses their extensions to unbalanced panels, SPD models with time-

varying spatial weights and regression/spatial coe�cients, and SPD models with interactive

fixed e↵ects. Section 4 presents AQS tests and their improved versions for a DSPD model

with fixed e↵ects and short panels. Section 5 presents Monte Carlo results. Section 6 is a

guide to applied researchers and Section 7 concludes. Proofs of all theorems are relegated to

appendices which are available as supplemental material to save space.

2. Tests for Homoskedasticity: Spatial Linear Model

To help with a quick appreciation of the general ideas and principles behind the method-

ology adopted in constructing tests for homoskedasticity in spatial econometrics models, we

start with a simple SLR (spatial linear regression) model to demonstrate how the simple

OPMD-variant of the score test can be obtained, how it can be turned into a non-normality

robust quasi score (QS) test, and how it can be adjusted to give finite sample improved score

and QS tests. The SLR model takes the form:

Yn = �1W1nYn + Xn� + Un, Un = �2W2nUn + Vn, (2.1)

where Yn is an n⇥ 1 vector of observations on the dependent variable, Xn is an n⇥ p matrix

of observations on the p explanatory variables. Wjn, j = 1, 2, are the n⇥n weighting matrices

capturing the interactions among the n spatial units. They are assumed to be exogenously

given with zero diagonal elements. (�,�1,�2) are the common model parameters representing

the covariate and spatial e↵ects, respectively. Vn is an n⇥1 vector of independent disturbances
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which may exhibit unknown heteroskedasticity. In particular, the elements {vni} of Vn have

zero mean but heteroskedastic variances �2h(z0
ni
↵) with the k ⇥ 1 vectors zni and ↵ being,

respectively, the heteroskedasticity variables and the heteroskedasticity parameters.

The heteroskedasticity function h(·) is an unknown smooth function such that h(0) = 1.

Thus, when ↵ = 0, the model becomes homoskedastic. A test for homoskedasticity against

heteroskedasticity becomes as in Breusch and Pagan (1979) a test of:

H0 : ↵ = 0 vs. Ha : ↵ 6= 0. (2.2)

The literature on heteroskedasticity testing is big, but largely for non-spatial models, except

Anselin (1988, p. 122) who presents a test for a simple cross-sectional spatial error model. The

variables in zni may contain some elements of the xni, the ith value of the set of regressors.

In spatial models, zni may contain variables that relate to the spatial weight matrices, e.g.,

the number of non-zero elements in each row of W1n (number of neighbors), etc. This makes

the test of H0 in the context of spatial models more appealing. In certain spatial models such

as models with large group interaction (Lee, 2004, 2007), the elements of Wn depend on n

and hence the values zni of the heteroskedasticity variables may also depend on n. The values

of the exogenous variables xni are allowed to be n-dependent as well, because the models

considered are allowed to contain spatial Durbin e↵ects (Anselin, 1988, p. 40).4

2.1. Score and Quasi-Score Tests

Let Hn(↵) = diag({h(z0
ni
↵)}), where diag(·) forms a diagonal matrix based on the given

elements or a given vector. Denote ✓ = (�0,�2,�0)0, � = (�1,�2)0 and  = (✓0,↵0)0. The full

Gaussian loglikelihood function for  is given by:

`SLR( ) = �
n

2 log(2⇡�2) + log |B1n(�1)|+ log |B2n(�2)|� 1
2 log |Hn(↵)|

�
1

2�2 V 0
n(�,�)H�1

n (↵)Vn(�,�),
(2.3)

where Vn(�,�) = Yn(�) � Xn(�2)�, Yn(�) = B2n(�2)B1n(�1)Yn, Xn(�2) = B2n(�2)Xn, and

Brn(�r) = In � �rWrn, r = 1, 2. Maximizing `SLR( ) at the null, or `SLR( )|H0 , gives the ML

estimator (MLE) or quasi MLE (QMLE) ✓̃n of ✓ for the null model. Jin and Lee (2013) show

that ✓̃n is
p

n-consistent and asymptotically normal under regularity conditions.

The (quasi) score function SSLR( ) = @

@ 
`SLR( ) has the form:

4
Model 2.1 can be extended by adding higher-order spatial lags in Yn and Un. See, e.g., Elhorst (2014) and

Lee and Yu (2016) for discussions on spatial Durbin models and the associated issue of parameter identification.
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SSLR( ) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1
�2 X

0
n(�2)H�1

n (↵)Vn(�,�),

1
2�4 V 0

n(�,�)H�1
n (↵)Vn(�,�)� n

2�2 ,

1
�2 V 0

n(�,�)H�1
n (↵)B2n(�2)W1nYn � tr[G1n(�1)],

1
�2 V 0

n(�,�)H�1
n (↵)G2n(�2)Vn(�,�)� tr[G2n(�2)],

1
2�2 ḣ(z0

ni
↵)

P
n

i=1

h�
v
2
ni(�,�)

h(z0ni↵) � �
2
�

zni
h(z0ni↵)

i
,

(2.4)

where Grn(�r) = WrnB�1
rn (�r), r = 1, 2, and ḣ(x) = d

dx
h(x). If the errors vni are normally

distributed, then `SLR( ) is the true loglikelihood and SSLR( ) the true score, and the three

classical principles, Wald, LR and Score (LM) can be used to test the general hypothesis, H0 :

g( ) = 0. In particular the score test takes the standard form TS = S0SLR( ̃n)⌃�1
n ( ̃n)SSLR( ̃n),

where  ̃n is the null estimate of  , and ⌃n( 0) = �E[ @
@ 

SSLR( 0)] is the information ma-

trix. See Anselin (1988, Ch. 6) for a general discussion. For our homoskedasticity tests,

 ̃n = (✓̃0n, 00
k
)0, where 0k is a k ⇥ 1 vector of zeros. Partition, according to (✓,↵), SSLR( ) =

(S0SLR,✓( ), S0SLR,↵( ))0 and ⌃n( ) = {⌃n,✓✓( ),⌃n,✓↵( );⌃n,↵✓( ),⌃n,↵↵( )} and note that

SSLR,✓( ̃n) = 0. The score tests reduces to TS = S0SLR,↵( ̃n)⌃�1
n,↵↵.✓

( ̃n)SSLR,↵( ̃n), where

⌃n,↵↵.✓( ) = ⌃n,↵↵( ) � ⌃n,↵✓( )⌃�1
n,✓✓

( )⌃n,✓↵( ).5 When the errors are non-normal, the

score test may be invalid and its robust version is desired. Furthermore, the score tests may

have poor finite sample performance, in particular in the presence of spatial dependence.

We first give an OPMD-variant of the score test in line with the general AQS-OPMD

methodology adopted in this paper. The score at the null, S�SLR(✓) = SSLR( )|H0 , has a simpler

form as h(0) = 1 and ḣ(0) is a constant (see (B.1), Appendix B). Let ✓0 be the true value of ✓.

For ease of exposition, we drop the arguments of a quantity evaluated at the true parameter

values, e.g., Vn = Vn(�0,�0), Brn = Brn(�r0), Grn = Grn(�r0), etc. The score vector S�SLR(✓0)

is simplified into the following general form using W1nYn = G1nB�1
2n

Vn + G1nB�1
2n

Xn�0:

S�SLR(✓0) =

8
>>>>>>>>>><

>>>>>>>>>>:

⇧01Vn,

V 0
n�1Vn � E(V 0

n�1Vn),

V 0
n�2Vn � E(V 0

n�2Vn) + V 0
n⇧2,

V 0
n�3Vn � E(V 0

n�3Vn),
1

2�2
0
ḣ(0)

P
n

i=1

⇥�
v2
ni
� �2

0

�
zni

⇤
,

(2.5)

5
See Anselin (1988, p. 122) for a special case of TS where only the spatial error (�2) is present in the model.

A popular variant of TS is to use the observed information matrix, � @
@ SSLR( ̃n), in place of ⌃n( ̃n). Another

one, the Outer-Product-of-Gradients, is not available as it requires the observations Yni to be independent.
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where ⇧1 = 1
�

2
0
Xn, and ⇧2 = 1

�
2
0
B2nG1nB�1

2n
Xn�0; �1 = 1

2�4
0
In, �2 = 1

�
2
0
B2nG1nB�1

2n
, and

�3 = 1
�

2
0
G2n; and ‘E’ corresponds to the null model and the true parameter ✓0.

For a general n-dimensional square matrix �n, denote its strictly upper, strictly lower,

and diagonal matrices by �u
n, �l

n and �d
n. We have, V 0

n�nVn = V 0
n(�u

n + �l
n + �d

n)Vn =

V 0
n(�u0

n + �l
n + �d

n)Vn = V 0
n⇠n + V 0

n�d
nVn, where ⇠n = (�u0

n + �l
n)Vn. It follows that,

V 0
n�nVn � E(V 0

n�nVn) =
P

n

i=1

⇥
vni⇠ni + (v2

ni
� �2

0)�n,ii

⇤
⌘
P

n

i=1 gni(✓0), (2.6)

where {�n,ii} are the diagonal elements of �n. Note that the elements vni are independent and

that ⇠ni is Fn,i�1-measurable, where {Fn,i} is the increasing sequence of �-fields generated by

(vn1, . . . , vni), for i = 1, . . . , n. It follows that {gni(✓0),Fn,i} form an MD sequence.

By (2.6), the quadratic forms in (2.5) have the MD decompositions: V 0
n�rVn�E(V 0

n�rVn) =
P

n

i=1 gr,ni, r = 1, 2, 3, where gr,ni is as gni(✓0) in (2.6). These give an MD decomposition

S�SLR(✓0) =
P

n

i=1 gni(✓0), (2.7)

where gni(✓0) = (g0
ni,✓

(✓0),g0ni,↵
(✓0))0, gni,✓(✓0) = {⇧01i

vni, g1,ni, g2,ni + ⇧2ivni, g3,ni}
0, and

gni,↵(✓0) = 1
2�2

0
ḣ(0)(v2

ni
� �2

0

�
zni. Clearly, {gni(✓0),Fn,i}

n

i=1 form a vector MD sequence.

Thus, ⌦n ⌘ Var[S�SLR(✓0)] =
P

n

i=1 E[gni(✓0)g0ni
(✓0)], and its sample analogue,

P
n

i=1 g̃nig̃
0
ni

,

gives a consistent estimator in that 1
n

P
n

i=1 g̃nig̃
0
ni
�

1
n
Var[S�SLR(✓0)] = op(1), where g̃ni is the

null estimate of gni.6 This gives the OPMD-variant of the score test in two equivalent forms:

TSLR = (
P

n

i=1 g̃
0
ni

)
�P

n

i=1 g̃nig̃
0
ni

��1(
P

n

i=1 g̃ni), (2.8)

=
�P

n

i=1 g̃
0
ni,↵

�⇥P
n

i=1(g̃ni,↵ � K̃ng̃ni,✓

��
g̃ni,↵ � K̃ng̃ni,✓

�0⇤�1�Pn

i=1 g̃ni,↵

�
, (2.9)

where K̃n =
�P

n

i=1 g̃ni,↵g̃
0
ni,✓

��P
n

i=1 g̃ni,✓g̃
0
ni,✓

��1.7 Obviously, TSLR is invariant to the un-

known ḣ(0) appearing in gni,↵(✓0), and hence it can be removed or simply set to 1.

The score test statistic, TSLR, is derived under the normality assumption and hence may not

be robust. We now introduce a quasi score (QS) test allowing distributional misspecification.

Note that the construction of the QS test depends upon S�SLR,↵(✓̃n) and its VC matrix. Under

mild conditions, Taylor expansions lead to the following asymptotic MD representation:

1p
n
SSLR,↵(✓̃n) = 1p

n
SSLR,↵(✓0)� 1p

n
⌃n,↵✓⌃�1

n,✓✓
SSLR,✓(✓0) + op(1), (2.10)

= 1p
n

P
n

i=1(gni,↵ � �ngni,✓) + op(1), (2.11)

6
Note that g̃ni is obtained from gni(✓0) by replacing ✓0 by ✓̃n and Vn = Vn(�0,�0) by Ṽn = Vn(�̃n, �̃n).

7
This first form is more general as it can be applied to test a general linear or nonlinear constraint on all

parameters under normality. The latter form connects directly to the robust QS test given latter.
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where �n = ⌃n,↵✓⌃�1
n,✓✓

. It is clear that {gni,↵ � �ngni,✓, Fn,i} form an MD sequence. Thus,

Var[ 1p
n
SSLR,↵(✓̃n)] = 1

n

P
n

i=1 E[(gni,↵ � �ngni,✓)(gni,↵ � �ngni,✓)0] + o(1), (2.12)

leading immediately to an OPMD estimator of the Var[ 1p
n
SSLR,↵(✓̃n)], and an OPMD form of

the QS test for homoskedasticity robust against non-normality:

T r
SLR =

�P
n

i=1 g̃
0
ni,↵

�⇥P
n

i=1(g̃ni,↵ � �̃ng̃ni,✓

��
g̃ni,↵ � �̃ng̃ni,✓

�0⇤�1�Pn

i=1 g̃ni,↵

�
, (2.13)

where �̃n = ⌃̃n,↵✓⌃̃�1
n,✓✓

, with ⌃̃n,↵✓ and ⌃̃n,✓✓ being either the plug-in estimates of ⌃n,↵✓

and ⌃n,✓✓, or simply � @

@✓0 S
�
SLR,↵(✓̃n) and � @

@✓0 S
�
SLR,✓(✓̃n). The expressions for @

@✓0 S
�
SLR,↵(✓)

and @

@✓0 S
�
SLR,✓(✓) can easily be obtained from (2.4), and are given in Appendix B following

the proof of Theorem 2.1. When the errors are normal, ⌃n = ⌦n (the information matrix

equality, or IME). Then, T r
SLR = TSLR if the OPMD estimate of ⌦n is used. The asymptotic null

distributions of the tests are established under the following standard regularity conditions:

Assumption 2.1. The disturbances {vni, i = 1, . . . , n} are independent with means 0,

variances �2h(z0
ni
↵), and E|vni|

4+✏ <1 for some ✏ > 0.

Assumption 2.2. The elements of Xn and zni, i = 1, . . . , n, are nonstochastic and are

uniformly bounded, and limn!1
1
n
X 0

nXn exists and is nonsingular.

Assumption 2.3. W1n and W2n are uniformly bounded in both row and column sums in

absolute value, and their diagonal elements are zero.

Assumption 2.4. B�1
1n

and B�1
2n

are uniformly bounded in both row and column sums in

absolute value, uniformly in � in a neighborhood of its true value.

Theorem 2.1. Under Assumptions 2.1-2.4, if ✓̃n is
p

n-consistent for ✓0 under H0, and

1
n
⌃n,✓✓ and

1
n
⌦n are positive definite (p.d.) for large enough n, then, T r

SLR|H0

D
�! �2

k
when the

errors are either normal or non-normal; TSLR|H0

D
�! �2

k
when the errors are normal.

The proof of Theorem 2.1 is given in Appendix B. The key tools used in the proof are

the Central Limit Theorem (CLT) for Linear-Quadratic (LQ) forms of Kelejian and Prucha

(2001), or its alternative version given in Lemma A.5, and the Weak Law of Large Numbers

(WLLN) for MD arrays in, e.g., Davidson (1994, p. 299). The former leads to the result
1p
n
S�SLR(✓0)

D
�! N(0, limn!1

1
n
⌦n), and the latter to the result 1

n

P
n

i=1 g̃nig̃
0
ni
�

1
n
⌦n

p
�! 0.

2.2. Adjusted Score and Adjusted Quasi-Score Tests

We have shown how the OPMD method leads to a simple variant of the score test, and how

it leads quickly to a non-normality robust QS test. We now show how the AQS and OPMD
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methods together lead to finite sample improved tests. The � and �2 are linear and scale

parameters, their constrained estimates given � and ↵ (nonlinear parameters) have analytical

expressions, and hence they can be concentrated out to give the concentrated (quasi) score

(CS or CQS) functions for � and ↵.8 However, the CS or CQS functions are no longer

unbiased due to the additional variability inherited from the estimation of � and �2, which

constitutes a major source of bias or size distortion in the subsequent estimation and testing

of the nonlinear parameters (Yang, 2015b, Liu and Yang, 2015a). Therefore, an adjustment

(bias-correction) of the CS or CQS functions would potentially lead to tests with improved

finite sample performance (Baltagi and Yang, 2013a,b).

Working with (2.4), we obtain the constrained estimates of � and �2, given � and ↵ = 0:

�̃n(�) = [X0n(�2)Xn(�2)]�1
X
0
n(�2)Yn(�) and �̃2

n(�) = 1
n
Y
0
n(�)Mn(�2)Yn(�), (2.14)

where Mn(�2) = In�Xn(�2)[X0n(�2)Xn(�2)]�1
X
0
n(�2). Substituting �̃n(�) and �̃2

n(�) into the

last three components of (2.4), we obtain the concentrated scores at the null:

Sc

SLR(�,↵)|H0 =

8
>>>>><

>>>>>:

�̃�2
n (�)

�
Y
0
n(�)Mn(�2)

⇥
B2n(�2)G1n(�1)B�1

2n
(�2)� Ḡ1n(�1)In

⇤
Yn(�)

 
,

�̃�2
n (�)

�
Y
0
n(�)Mn(�2)

⇥
G2n(�2)� Ḡ2n(�2)In

⇤
Mn(�2)Yn(�)

 
,

�̃�2
n (�)

�
ḣ(0)Z 0n⇣̃n(�)

 
,

(2.15)
where Zn = {z0

ni
}n⇥k, ⇣̃n(�) = 1

2{v
2
ni

(�̃n(�),�)��̃2
n(�)}, and Ḡrn(�r) = 1

n
tr[Grn(�r)], r = 1, 2.

Under mild conditions, the constrained QMLE �̃n defined in Section 2.1 is equivalent to

the solution of the following estimating equations: Y
0
n(�)Mn(�2)

⇥
B2n(�2)G1n(�1)B�1

2n
(�2) �

Ḡ1n(�1)In

⇤
Yn(�) = 0 and Y

0
n(�)Mn(�2)

⇥
G2n(�2) � Ḡ2n(�2)In

⇤
Mn(�2)Yn(�) = 0, obtained

from the first two components of (2.15). However, neither estimation function has zero ex-

pectation, which constitutes a major source of finite sample bias of �̃n (Yang, 2015b; Liu and

Yang, 2015a), and a major source of size distortion for the tests of homoskedasticity (allowing

spatial e↵ects) constructed in Section 2.1, and the tests for spatial e↵ects (Baltagi and Yang,

2013a,b; Yang, 2015a, 2018b). Noting that �̃2
n(�0)

p
! �2

0, we construct a test that potentially

has better finite sample properties. This is done by working on the numerators of (2.15) or

the quantities in the curling brackets, i.e., �̃2
n(�)Sc

SLR(�,↵)|H0 .

Under H0 and �0, we can easily see that Y
0
nMn(B2nG1nB�1

2n
�Ḡ1nIn)Yn = V 0

n�1Vn+⇧0Vn,

and Y
0
nMn(G2n � Ḡ2nIn)MnYn = V 0

n�2Vn, where ⇧ = Mn(B2nG1nB�1
2n
� Ḡ1nIn)Xn�0, �1 =

8
Nonlinear parameters are those whose estimates can only be obtained through numerical maximization or

root-finding. Concentration simplifies the numerical process, especially when the dimension of � is large.

9



Mn(B2nG1nB�1
2n
�Ḡ1nIn) and �2 = Mn(G2n�Ḡ2nIn)Mn. These show that the expectations of

the first two components of the numerator of (2.15) are, respectively, �2
0tr(�r), r = 1, 2. Also,

for the numerator of the last component of (2.15), we have Vn(�̃n(�0),�0) = MnYn = MnVn.

It follows that E[v2
ni

(�̃n(�0),�0)] = E[(MniVn)2] = �2
0

P
n

j=1 M2
n,ij
⌘ �2

0mi, where Mni denotes

the ith row of Mn and Mn,ij the ijth element of Mn. Define

⇣̃⇤n(�) = 1
2{

1
mi(�2)v

2
ni

(�̃n(�),�)� n

n�p
�̃2

n(�)}n⇥1. (2.16)

The set of adjusted (concentrated) quasi scores (AQS) at H0 thus have the simple form:

S⇤SLR(�) =

8
>>>>><

>>>>>:

Y
0
n(�)�1(�)Yn(�)� n

n�p
�̃2

n(�)tr[�1(�)],

Y
0
n(�)�2(�)Yn(�)� n

n�p
�̃2

n(�)tr[�2(�)],

Z 0n⇣̃
⇤
n(�).

(2.17)

It is easy to see that E[S⇤SLR(�0)|H0 ] = 0, and hence S⇤SLR(�0) may lead to a potentially improved

score-type test. To find its variance estimator, noting that �̃2
n(�0) = 1

n
V 0

nMnVn, we have at H0:

Y
0
n�1Yn �

n

n�p
�̃2

n(�0)tr(�1) = V 0
n�⇤1Vn + V 0

n⇧, and Y
0
n�2Yn �

n

n�p
�̃2

n(�0)tr(�2) = V 0
n�⇤2Vn,

where �⇤r = �r �
1

n�p
tr(�r)Mn, r = 1, 2. Using (2.6) and noting that E(V 0

n�⇤rVn) = 0,

we have V 0
n�⇤rVn =

P
n

i=1 g⇤
r,ni

, r = 1, 2, where g⇤
r,ni

⌘ g⇤
r,ni

(✓0) = vni⇠⇤ni
+ (v2

ni
� �2

0)�⇤n,ii
,

{⇠⇤
ni
} = ⇠⇤n = (�⇤u0r +�⇤lr )Vn, and �⇤

n,ii
are the diagonal elements of �⇤r . The {g⇤

r,ni
,Fn,i} form

an MD sequence. The elements of ⇣̃⇤n(�) are asymptotically independent. Define,

g
⇤
ni(✓0) = {g⇤1,ni +⇧ivni, g⇤2,ni, z0ni⇣̃

⇤
ni(�0)}0. (2.18)

Then, S⇤SLR(�0) =
P

n

i=1 g
⇤
ni

(✓0), and it can be shown that

1
n
Var[S⇤SLR(�0)] = 1

n

P
n

i=1 E[g⇤
ni

(✓0)g⇤0ni
(✓0)] + o(1).

A score-type test statistic, or the AQS test, for testing H0 : ↵ = 0 takes the following form:

T r⇤
SLR =

�P
n

i=1 g̃
⇤0
ni,↵

�⇥P
n

i=1(g̃
⇤
ni,↵

� �̃⇤ng̃⇤ni,�

��
g̃
⇤
ni,↵

� �̃⇤ng̃⇤ni,�

�0⇤�1�Pn

i=1 g̃
⇤
ni,↵

�
, (2.19)

where �̃⇤n = ⌃̃⇤
n,↵�

⌃̃⇤�1
n,��

, ⌃̃⇤
n,↵�

= � @

@�
S⇤SLR,↵(�̃n), and ⌃̃⇤

n,��
= � @

@�
S⇤SLR,�(�̃n). These deriva-

tives can be obtained from (2.17) after some tedious algebra, and their detailed expressions are

given in Appendix B following the proof of Theorem 2.2.9 When the errors are normally dis-

tributed, one could simply use ⌃̃⇤
n,↵�

=
P

n

i=1 g̃
⇤
ni,↵

g̃
⇤0
ni,�

and ⌃̃⇤
n,��

=
P

n

i=1 g̃
⇤
ni,�

g̃
⇤0
ni,�

, leading

to an adjusted score (AS) test, denoted by T ⇤SLR for easy reference.10

9
Numerical derivatives can be used in place of analytical ones:

@
@�1

S⇤
SLR(�) = [S⇤

SLR(� + (✏, 0)
0
) � S⇤

SLR(�)]/✏

and
@
@�2

S⇤
SLR(�) = [S⇤

SLR(�+ (0, ✏)0)� S⇤
SLR(�)]/✏, where ✏ is a small positive number, e.g., 0.00001.

10
This is justified by an IME with respect to the underlining distribution (adjusted likelihood) that generates

10



The process of deriving T ⇤SLR or T r⇤
SLR starts from the concentrated score where the vari-

ability from the estimation of � and �2 is captured. Then one recenters the numerator of the

concentrated scores, and then rescales the ‘recentered’ score. Thus, these tests are expected

to perform better in finite samples than TSLR or T r
SLR. Note that unlike the case with joint

scores, S⇤SLR,�(�̃n) is not identically zero, as �̃n is not the solution of the estimating equation

S⇤SLR,�(�) = 0. In this case, an adjusted estimator that solves the AQS equations, i.e.,

�̃⇤n = arg{S⇤SLR,�(�) = 0}, (2.20)

should be used to ensure good finite sample performance of the AQS test. This is confirmed

by the Monte Carlo results presented in Section 5. The asymptotic null behavior of T ⇤SLR and

T r⇤
SLR is summarized in the following theorem:

Theorem 2.2. Under the assumptions of Theorem 2.1, T r⇤
SLR|H0

D
�! �2

k
when the errors

are either normal or non-normal; and T ⇤SLR|H0

D
�! �2

k
when the errors are normal.

3. Tests for Homoskedasticity: Spatial Panel Data Model

As indicated in the introduction, tests for homoskedasticity for spatial panel data (SPD)

models are largely unavailable, even the three classical tests under normality. In this section,

we first demonstrate how the AQS-OPMD methodology quickly leads to the desired tests using

a ‘standard’ SPD model with fixed e↵ects (FE), and then (more importantly) we demonstrate

how it handles the complications caused by the existence of incidental parameters, the FE,

when panels become ‘non-standard’ and hence the conventional method cannot be applied.

3.1. Homoskedasticity Tests: Standard FE-SPD Model

The ‘standard’ FE-SPD model, with a balanced panel, time-invariant spatial weights,

time-invariant parameters and additive fixed e↵ects, takes the form:

Ynt = �1W1nYnt + Xnt� + µn + at1n + Unt, Unt = �2W2nUnt + Vnt, t = 1, 2, . . . , T, (3.1)

where, in period t, Ynt denotes the n ⇥ 1 vector of observations on the dependent variable,

Xnt the n ⇥ p matrix of observations on p nonstochastic, unit and time varying regressors,

and Vnt the n ⇥ 1 vector of idiosyncratic errors {vit}, which are independent across i and t

the AQS (2.17). Alternatively, the generalized IME can be applied to give ⌃̃
⇤
n,↵� =

Pn
i=1 g̃⇤

ni,↵g̃
0
ni,� and

⌃̃
⇤
n,�� =

Pn
i=1 g̃⇤

ni,�g̃
0
ni,�, where g̃ni,� is the restricted estimate of the �-element of the full gni in (2.7).

However, the numerical results show that the former performs better in finite samples.
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with means 0 and variances �2h(z0
ni
↵). The parameters �, �1 and �2 are defined in the same

way as in model (2.1), and µn represents the vector of unit-specific e↵ects and {at} the time-

specific e↵ects, which may correlate arbitrarily with unit and time varying regressors – the

fixed e↵ects. The two appear in the model additively giving rise to the additive FE model.11

Again, a test for homoskedasticity across the cross-section dimension corresponds to the

test of the null hypothesis H0 : ↵ = 0. For ease of exposition, we focus on the SDP model

unit-specific FE only, i.e., dropping the time-specific FE.12 We present an OPMD-variant of

the score test, and a non-normality robust quasi score (QS) test. Then, we give a pair of

adjusted score (AS) and adjusted quasi score (AQS) tests with finite sample improvements.

Formal asymptotic theories are presented with the proofs relegated to Appendix C.

3.1.1. The ML or QML estimation

The ML or QML estimation of the FE-SPD model under H0 : ↵ = 0 proceeds with the

transformation approach followed by Lee and Yu (2010) and Yang et al. (2016). To eliminate

the individual e↵ects, define JT = (IT �
1
T

lT l0
T
) and let [FT,T�1,

1p
T

lT ] be the orthonormal

eigenvector matrix of JT , where FT,T�1 is the T ⇥ (T � 1) submatrix corresponding to the

eigenvalues of one, IT is a T ⇥ T identity matrix and lT is a T ⇥ 1 vector of ones. For any

n⇥T matrix [An1, . . . , AnT ], define the n⇥ (T �1) transformed matrix as [A⇤
n1, . . . , A

⇤
n,T�1] =

[An1, . . . , AnT ]FT,T�1. This leads to the transformed vectors: Y ⇤
nt, U⇤

nt, V ⇤
nt, and X⇤

nt,j
for the

jth regressor, for t = 1, . . . , T � 1. Let X⇤
nt = [X⇤

nt,1, X
⇤
nt,2, . . . , X

⇤
nt,k

]. We have:

Y ⇤
nt = �1W1nY ⇤

nt + X⇤
nt� + U⇤

nt, U⇤
nt = �2W2nU⇤

nt + V ⇤
nt, t = 1, . . . , T � 1. (3.2)

After the transformation, the e↵ective sample size becomes N = n(T � 1). Letting YN =

(Y ⇤0
n1, . . . , Y

⇤0
n,T�1)

0, and similarly for UN , VN and XN . Denoting WrN = IT�1⌦Wrn, r = 1, 2,

where ⌦ is the Kronecker product, the transformed model (3.2) is compactly written as:

YN = �1W1NYN + XN� + UN , UN = �2W2NUN + VN , (3.3)

which is identical in form to the SLR model. Hence, the estimation of the FE-SPD model is

similar. The key di↵erence is that the elements {v⇤
it
} of the transformed error vector VN may

not be totally independent unless the original errors are independent and normal. When the
11

Similar to the SLR model, the FE-SPD model can also be extended by adding spatial Durbin terms,

higher-order spatial lags of response and disturbance.
12

At the end of this subsection, we outline how the results can be extended to allow for time-specific FE. We

further discuss how the results can be extended to allow for time-wise heteroskedasticity.
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original errors are independent but non-normal, {v⇤
it
} are independent across i by definition

but only uncorrelated across t, as (V ⇤0
n1, . . . , V

⇤0
n,T�1)

0 = (F 0
T,T�1 ⌦ In)(V 0

n1, . . . , V
0
nT

)0, and

E(V ⇤0
n1, . . . , V

⇤0
n,T�1)

0(V ⇤0
n1, . . . , V

⇤0
n,T�1)

= �2(F 0
T,T�1 ⌦ In)(IT ⌦Hn(↵))(FT,T�1 ⌦ In)

= �2(IT�1 ⌦Hn(↵)) ⌘ �2
HN (↵),

(3.4)

where Hn(↵) is defined in Section 2. It follows that the full quasi Gaussian loglikelihood

function for  = (�0,�2,�0,↵0)0 (required for the derivation of the score-type tests later) is,

`SPD( ) = �
N

2 log(2⇡�2) + log |B1N (�1)|+ log |B2N (�2)|

�
1
2 log |HN (↵)|� 1

2�2 V
0
N

(�,�)H�1
N

(↵)VN (�,�),
(3.5)

where VN (�,�) = YN (�)�XN (�2)�, YN (�) = B2N (�2)B1N (�1)YN , XN (�2) = B2N (�2)XN ,

and BrN (�1) = IN � �rWrN , r = 1, 2. Maximizing `SPD( )|H0 gives the (Q)MLE ✓̃N of

✓ = (�0,�2,�0)0 in the null model, which is
p

N -consistent as shown in Lee and Yu (2010).

3.1.2. The score and quasi-score tests

The same idea as in Section 2.1 can be followed to give a score or QS test of homoskedas-

ticity in the FE-SPD model. However, it should be noted that when the original errors are

non-normal, the transformed errors are independent along the cross-sectional dimension only,

not along the time dimension although they are still uncorrelated. While this makes the deriva-

tions of the results and the proof of the theorems more di�cult, it emphasizes the advantage

of the proposed OPMD method. This is because under the transformed QML approach, the

explicit VC matrix of the score vector involves the unknown 3rd and 4th moments of the

original errors vit, but only the estimated residuals on the transformed scale are available.

The (quasi) score function SSPD( ) = @

@ 
`SPD( ) can be easily derived, which gives S�SPD(✓) =

SSPD( )|H0 as follows, using that facts that h(0) = 1 and ḣ(0) is a constant free of i and t:

S�SPD(✓) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

1
�2 X

0
N

(�2)VN (�,�),

1
2�4 V

0
N

(�,�)VN (�,�)� N

2�2 ,

1
�2 V

0
N

(�,�)B2N (�2)W1NYN � tr[G1N (�1)],

1
�2 V

0
N

(�,�)G2N (�2)VN (�,�)� tr[G2N (�2)],

1
2�2 ḣ(0)

P
T�1
t=1

P
n

i=1

⇥
v⇤2
it

(�,�)� �2
⇤
zni.

(3.6)

where GrN (�r) = IT�1 ⌦ Grn(�r), r = 1, 2. At the null and the true parameter values

13



✓0 = (�00,�2
0,�

0
0)0, H

�1
N

(0) = IN , VN (�0,�0) = VN , B2N (�20) = B2N , and GrN (�r0) = GrN .

To derive a variance estimator, as in (2.5) we express S�SPD(✓0) in terms of VN and ✓0:

S�SPD(✓0) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

⇧01VN ,

V
0
N
�1VN � E(V0

N
�1VN ),

V
0
N
�2VN � E(V0

N
�2VN ) + V

0
N
⇧2,

V
0
N
�3VN � E(V0

N
�3VN ),

1
2�2

0
ḣ(0)

P
T�1
t=1

P
n

i=1(v
⇤2
it
� �2

0)zni,

(3.7)

where ⇧1 = 1
�

2
0
XN (�2), ⇧2 = 1

�
2
0
B2NG1NB

�1
2N

XN (�2)�, �1 = 1
2�4

0
IN , �2 = 1

�
2
0
B2NG1NB

�1
2N

,

and �3 = 1
�

2
0
G2N . In an identical way leading to (2.7), we can write S�SPD(✓0) =

P
N

j=1 gNj(✓0),

where j (= 1, . . . , N) is the combined index for (i, t) with i = 1, . . . , n for each t = 1, . . . , T�1,

and the detailed expression of gNj(✓0) is given in (C.1) of Appendix C.

If the original errors {vit} are iid normal, then the transformed errors {v⇤
it
} or {v⇤

j
} are

iid normal, and based on the same reasoning as for the SLR model, {gNj(✓)} form an MD

sequence with respect to the increasing �-fields {FN,j} generated by (v⇤1, . . . , v⇤j ). Thus, a

consistent estimator for ⌦N = 1
N

Var[S�SPD(✓0)] is

e⌦N = 1
N

P
N

j=1 g̃Nj g̃
0
Nj

, (3.8)

where g̃Nj = gNj(✓̃N ). The OPMD-version of the score statistic, for testing H0: ↵ = 0, has

two equivalent forms identical to those in (2.8) and (2.9) for the SLR model:

TSPD =
�P

N

j=1 g̃
0
Nj

�⇥P
N

j=1 g̃Nj g̃
0
Nj

⇤�1�Pn

j=1 g̃Nj

�
, (3.9)

=
�P

N

j=1 g̃
0
Nj,↵

�⇥P
N

j=1(g̃Nj,↵ � K̃N g̃Nj,✓

��
g̃Nj,↵ � K̃N g̃Nj,✓

�0⇤�1�Pn

j=1 g̃Nj,↵

�
, (3.10)

where K̃N =
�P

n

J=1 g̃Nj,↵g̃
0
Nj,✓

��P
n

j=1 g̃Nj,✓g̃
0
Nj,✓

��1. Again, the unknown constant ḣ(0)

appearing in the score element for ↵ cancels out, and hence it can simply be set to 1.

If {vit} are iid but not normal, {v⇤
it
} or {v⇤

j
} are not guaranteed to be totally independent

in the sense that there may exist a higher-order dependence among {v⇤
it
}. If this higher-order

dependence does not a↵ect the asymptotic properties of the OPMD estimate given in (3.8),

then, similar to the QS test given in (2.13), a QS test for homoskedasticity in the FE-SPD

model, allowing the errors to be non-normally distributed, can be obtained by replacing K̃N in

(3.10) by e�N = ⌃̃N,↵✓⌃̃
�1
N,✓✓

, where ⌃N,↵✓ = �E[ @
@✓0 S

�
SPD,↵(✓0)] and ⌃N,✓✓ = �E[ @

@✓0 S
�
SPD,✓(✓0)].

The resulting test is denoted by T r
SPD for easy reference. The analytical expressions for
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@

@✓0 S
�
SPD,↵(✓) and @

@✓0 S
�
SPD,✓(✓) are given in Appendix C.

However, we show in Appendix C that the correlation between v⇤
it

and v⇤2
is

and in particular

the correlation between v⇤2
it

and v⇤2
is

induce correlation between gN,it(✓0) and gN,is(✓0), t 6= s,

which may not be ignored when the skewness and excess kurtosis of vit are not zero. It is shown

in Appendix C that⌦N =
P

N

j=1 E(gNjg
0
Nj

)+
P

N

j=1

P
N

k( 6=j)=1 E(gNjg
0
Nk

) =
P

N

j=1 E(gNjg
0
Nj

+

dNjd
�0
Nj

), and hence an extended OPMD estimate of ⌦N , taking into account the possible

correlation between gN,it(✓0) and gN,is(✓0), t 6= s, is given as follows:

e⌦r
N

=
P

N

j=1

�
g̃Nj g̃

0
Nj

+ d̃Njd̃
�0
Nj

�
, (3.11)

where g̃Nj is given in (3.8), and d̃Nj and d̃
�
Nj

are the null estimates of dNj and d
�
Nj

, with

dN,it =
�
⇧01,it

v⇤
it
, (v⇤2

it
��2

0)�1,it, (v⇤2it
��2

0)�2,it +⇧2,itv⇤it, (v
⇤2
it
��2

0)�3,it,
1

2�2
0
z0
ni

(v⇤2
it
��2

0)
 0, and

d
�
N,it

=
P

T�1
s( 6=t)=1 dN,is. The coe�cients �r,it represent the diagonal elements of �r, r = 1, 2, 3.

Now, similar to (2.10) an asymptotic expansion for S�SPD,↵(✓̃N ) leads to

Var[S�SPD,↵(✓̃N )] = ⌦N,↵↵ � �N⌦N,✓↵ �⌦N,↵✓�
0
N + �N⌦N,✓✓�

0
N + o(N), (3.12)

and using the expression for ⌦N given above, it can be expressed as

Var[S�SPD,↵(✓̃N )] =
P

N

j=1 E(sNjs
0
Nj

+ fNjf
�0
Nj

) + o(N), (3.13)

where sNj,↵ = gNj,↵ � �NgNj,✓, fNj,↵ = dNj,↵ � �NdNj,✓, and f
�
Nj,↵

= d
�
Nj,↵

� �Nd
�
Nj,✓

; and

(g0
Nj,✓

,g0
Nj,↵

)0 = gNj , (d0
Nj,✓

,d0
Nj,↵

)0 = dNj , and (d�0
Nj,✓

,d�0
Nj,↵

)0 = d
�
Nj

. Either of these two

forms can be used to construct the test, and we choose the latter to be in line with the OPMD

notion. A test statistic fully robust against non-normality is thus:

T rr
SPD =

�P
N

j=1 g̃
0
Nj,↵

�⇥P
N

j=1(s̃Nj s̃
0
Nj

+ f̃Nj f̃
�0
Nj

)
⇤�1�PN

j=1 g̃Nj,↵

�
, (3.14)

where s̃Nj , f̃Nj , f̃
�
Nj

are estimates of sNj , fNj and f
�
Nj

at the null.

In a similar manner as for the SLR model, asymptotic normality of S�SPD(✓0) can be estab-

lished using the CLT for LQ forms given in Lemma A.5, and the consistency of the variance

estimator can be established using the WLLN for MD arrays in Davidson (1994, p. 229).

Theorem 3.1. Extending Assumption 2.1 to {vit} and Assumption 2.2 to XN , and keep-

ing Assumptions 2.3 and 2.4, if ✓̃N is
p

N -consistent under H0, and
1
N
⌃N,✓✓ and

1
N
⌦N are

p.d. for large enough N , then as n goes large (where T can be large or fixed),

(i) TSPD|H0

D
�! �2

k
when the errors are normal;

(ii) T rr
SPD|H0

D
�! �2

k
when the errors are either normal or non-normal.
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3.1.3. The adjusted score and adjusted quasi-score tests

Following the same idea of Section 2.2, one can derive a potentially improved test for

homoskedasticity for the FE-SPD model by working with the concentrated (quasi) scores and

treating the elements of VN as completely independent (recall: they are independent across i

but only uncorrelated across t in general unless the original errors are normal). Referring to

Sections 3.1.1 and 3.1.2 for notation, the constrained estimates of � and �2 are

�̃N (�) = [X0
N

(�2)XN (�2)]�1
X
0
N

(�2)YN (�) and �̃2
N

(�) = 1
N

Y
0
N

(�)MN (�2)YN (�),

where MN (�2) = IN � XN (�2)[X0N (�2)XN (�2)]�1
X
0
N

(�2). Similar to (2.16), define

⇣̃⇤
N

(�) = 1
2

�
1

mj(�2)v
2
Nj

(�̃N (�),�)� N

N�p
�̃2

N
(�), j = 1, · · · , N

 
N⇥1

, (3.15)

where mj(�2) =
P

N

`=1 M
2
N,j`

(�2). We obtain the set of AQS functions by adjusting the

numerators of the concentrated quasi-scores with � and �2 being concentrated from (3.6):

S⇤SPD(�) =

8
>>>>><

>>>>>:

Y
0
N

(�)�1(�)YN (�)� N

N�p
�̃2

N
(�)tr[�1(�)],

Y
0
N

(�)�2(�2)YN (�)� N

N�p
�̃2

N
(�)tr[�2(�2)],

Z
0
N

⇣̃⇤
N

(�),

(3.16)

where�1(�) = MN (�2)[B2N (�2)G1N (�1)B�1
2N

(�2)�Ḡ1N (�1)IN ],�2(�2) = MN (�2)[G2N (�2)�

Ḡ2N (�2)IN ]MN (�2), ḠrN (�r) = 1
N

tr[GrN (�r)], r = 1, 2, and ZN = 1T�1 ⌦ Zn. We see

that E[S⇤SPD(�0)|H0 ] = 0, and that under H0 at the true ✓0, the first two components of

S⇤SPD(�0) can be written as V
0
N
�
⇤
1VN +V

0
N
⇧ and V

0
N
�
⇤
2VN , where ⇧ = MN [B2NG1NB

�1
2N
�

Ḡ1NIN ]XN (�20)�0, and �⇤r = �r �
1

N�p
tr(�r)MN , r = 1, 2. Define g

⇤
Nj

(✓0), j = 1, . . . , N , in

the same way as g
⇤
ni

(✓0) in (2.18), we have an AQS test for H0 for the FE-SPD model:

T r⇤
SPD =

�P
N

j=1 g̃
⇤0
Nj,↵

�⇥P
N

j=1(g̃
⇤
Nj,↵

� �̃⇤
N
g̃
⇤
Nj,�

��
g̃
⇤
Nj,↵

� �̃⇤
N
g̃
⇤
Nj,�

�0⇤�1�PN

j=1 g̃
⇤
Nj,↵

�
, (3.17)

where �̃⇤
N

= ⌃̃
⇤
N,↵�

⌃̃
⇤�1
N,��

, ⌃̃⇤
N,↵�

= �
@

@�
S⇤SPD,↵(�̃N ), and ⌃̃⇤

N,��
= �

@

@�
S⇤SPD,�(�̃N ). These

derivatives can be easily obtained from (3.16), and are given in Appendix C. Numerical

derivatives may provide much simpler and yet quite accurate alternatives, as indicated in

Footnote 9 for the SLR model. When the errors are normally distributed, one may simply use

⌃̃
⇤
N,↵�

=
P

N

j=1 g̃
⇤
Nj,↵

g̃
⇤0
Nj,�

and ⌃̃⇤
N,��

=
P

N

J=1 g̃
⇤
Nj,�

g̃
⇤0
Nj,�

based on an IME corresponding to

an ‘adjusted likelihood’, leading to an adjusted score test, denoted by T ⇤SPD for easy reference.13

13
Alternatively, the generalized IME can be applied to give ⌃̃⇤

N,↵� =
PN

j=1 g̃⇤
Nj,↵g̃

0
Nj,� and ⌃̃⇤

N,�� =
PN

J=1 g̃⇤
Nj,�g̃

0
Nj,�, where g̃Nj,� is the �-component of g̃Nj defined in (3.8), but Monte Carlo results show

that the early version works better in finite samples.
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Again, better finite sample properties of the tests based on the AS or QS functions can be

achieved using the adjusted estimator: �̃⇤
N

= arg{S⇤SPD,�(�) = 0} in place of the regular

estimator �̃N as it is typical that S⇤SPD,�(�̃N ) 6= 0.

Unlike the SLR model, the statistic T r⇤
SPD may not be fully robust against non-normality.

Similar to the developments leading to T rr
SPD, a robust estimator of ⌦⇤

N
= Var[S⇤SPD(�0)] is

e⌦r⇤
N

=
P

N

j=1(g̃
⇤
Nj

g̃
⇤0
Nj

+ d̃
⇤
Nj

d̃
⇤�0
Nj

), (3.18)

where d
⇤
N,it

=
�
(v⇤2

N,it
��2

0)�⇤1,it
+⇧itv⇤it, (v

⇤2
N,it
��2

0)�⇤2,it
, zni⇣̃N,it)}, and d

⇤�
N,it

=
P

T�1
s( 6=t)=1 d

⇤
N,it

.

The coe�cients �⇤
r,it

represent the diagonal elements of �⇤r , r = 1, 2. Again Var[S⇤SPD,↵(�̃N )]

has two equivalent forms similar to (3.12) and (3.13). We take the latter and an AQS test

statistic fully robust against non-normality takes a similar form as T rr
SPD:

T rr⇤
SPD = (

P
N

j=1 g̃
⇤0
Nj,↵

�⇥P
N

j=1(s̃
⇤
Nj

s̃
⇤0
Nj

+ f̃
⇤
Nj

f̃
�⇤0
Nj

)
⇤�1�PN

j=1 g̃
⇤
Nj,↵

�
, (3.19)

where s̃
⇤
Nj

= g̃
⇤
Nj,↵

� �̃⇤
N
g̃
⇤
Nj,�

, f̃
⇤
Nj

= d̃
⇤
Nj,↵

� �̃⇤
N
d̃
⇤
Nj,�

, and f̃
�⇤
Nj

= d̃
�⇤
Nj,↵

� �̃⇤
N
d̃
�⇤
Nj,�

; and

(g̃⇤0
Nj,�

, g̃⇤0
Nj,↵

)0 = g̃
⇤
Nj

, (d̃⇤0
Nj,�

, d̃⇤0
Nj,↵

)0 = d̃
⇤
Nj

, and (d̃�⇤0
Nj,�

, d̃�⇤0
Nj,↵

)0 = d̃
�⇤
Nj

.

Theorem 3.2. Under the assumptions of Theorem 3.1, T rr⇤
SPD|H0

D
�! �2

k
when the errors

are normal or non-normal; T ⇤SPD|H0

D
�! �2

k
when the errors are normal.

3.1.4. Tests with temporal heterogeneity and heteroskedasticity

As a panel data model allows for a much richer structure than a cross-section model, we

extend the above theory and method to a richer FE-SPD model. Besides allowing higher-order

spatial lags in the response and the disturbance as indicated in Footnote 11, two immediate

extensions are to allow time-specific FE and temporal heteroskedasticity, in addition to the

individual-specific FE and the cross-sectional or spatial heteroskedasticity.

First, the temporal heteroskedasticity can be added to the FE-SPD model consid-

ered above by simply allowing {vit} to be independent (0,�2h(z0
n,it
↵)) with the values of the

heteroskedasticity variables zn,it changing with both i and t. In this case, (3.4) becomes,

E(V ⇤0
n1, . . . , V

⇤0
n,T�1)

0(V ⇤0
n1, . . . , V

⇤0
n,T�1) = �2(F 0

T,T�1 ⌦ In)HnT (↵)(FT,T�1 ⌦ In) ⌘ �2
HN (↵),

where HnT (↵) = {h(z0
n,it
↵)}. Thus, introducing time-wise heteroskedasticity induces time-

wise non-zero correlation among {v⇤
it
} although the cross-sectional independence is kept.

Changes will occur in the expressions for the ↵-components of the score functions. How-

ever, there will be no additional technical complications as under the null, HN (↵)|H0 = IN
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and {vit} become independent across both i and uncorrelated across t.

Further allowing time-specific FE in the FE-SPD model considered above gives it an

added feature of being able to control (partially) for temporal heterogeneity as well. When

the two types of FEs appear in the model additively, and when the spatial weight matrices

are row-normalized, another layer of orthonormal transformation can be applied to wipe

out the time FE (Lee and Yu, 2010; Yang et al., 2016). Let Fn,n�1 be the orthonormal

eigenvector matrix of Jn = In �
1
n
lnl0n corresponding to the eigenvalues of one. For n ⇥ 1

vectors Ant, t = 1, . . . , T , where Ant can be Ynt, Vnt, and a column of Xnt, define

[A⇤n�1,1, . . . , A
⇤
n�1,T�1] = F 0

n,n�1[An,1, . . . , An,T ]FT,T�1,

and W ⇤
rn = F 0

n,n�1WrnFn,n�1. Let N = (n � 1)(T � 1) and define YN , XN , UN and VN

accordingly. Then, the transformed model takes an identical form as (3.3). We have, when

heteroskedasticity exists along both cross-section and time dimensions,

E(VNV
0
N ) = �2(F 0

T,T�1 ⌦ F 0
n,n�1)HnT (↵)(FT,T�1 ⌦ Fn,n�1) ⌘ �2

HN (↵).

Under the null we have HN (↵)|H0 = IN . Model estimation and the construction of the tests

proceed as above. When the original errors are non-normal, additional complications will

occur in the derivation of the QS tests, due to the lack of independence among the elements of

VN in both cross-section and time dimensions. For the same reason, proofs of the asymptotic

properties of these tests will be more complicated as well. Along the line of (3.11), an extended

OPMD estimator for the VC matrix of the QS function can be developed to give a QS test.

The finite sample improved versions of the tests (AS and AQS) can be developed along the

same line as well. Details are available upon request from the authors.

3.2. Homoskedasticity Tests: Extended FE-SPD Models

Major extensions to the FE-SPD model occur when one or more of the following features

are allowed in the model: (i) time-varying spatial weight matrices, (ii) time-varying regression

and spatial coe�cients, (iii) unbalanced panels, and (iv) interactive fixed e↵ects (IFE). As

discussed in the introduction, adding any of these features in the FE-SPD model would render

the conventional transformation method inapplicable in dealing with the incidental parameters

– the FEs. Estimation of the structural parameters based on the concentrated (quasi) scores

(with FEs being concentrated) would lead to inconsistent or asymptotically biased estimation

and thereby inconsistent or asymptotically biased homoskedasticity tests. However, with
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proper adjustments to remove the e↵ects of estimating the fixed e↵ects, the adjusted (quasi)

scores lead to asymptotically valid tests for homoskedasticity. We now present some critical

discussion on these important extensions. Many developments are straightforward following

the discussion, which are available upon request from the authors, but a full and rigorous

study of these extensions can only be done through future research.

(i) Time-varying spatial weights. When the spatial weight matrices in Model (3.1)

are allowed to change with t to give W1nt and W2nt, the transformation method cannot be

applied to handle the individual FE, µn. In fact, after the transformation µn is wiped out but

the ‘spatial lag’ structure is lost and a proper (quasi) likelihood function cannot be found.

In this case, we may start with the joint (quasi) Gaussian loglikelihood `( , µn) of ( , µn),

and concentrate out µn to give the concentrated (quasi) loglikelihood `c( ) = `( , µ̃n( )),

where µ̃n( ) is the constrained estimate of µn, given  :

µ̃n( ) = 1
T

P
T

t=1(B1nt(�1)Ynt �Xnt�),

where B1nt(�1) = In � �1W1nt. Then, we obtain the concentrated (quasi) score Sc( ) =
@

@ 
`c( ). It is easy to show that E[Sc( 0)] =

�
00p,�

n

2�2
0
,� 1

T
tr[B1N (�1)],� 1

T
tr[B2N (�2)], 00k

�0,

where N = n ⇥ T , B1N (�1) = blkdiag{B1nt(�1)}, and similarly, B2N (�2) is defined. Here,

the operator blkdiag{· · · } forms a block-diagonal matrix based on the given matrices. These

give the AS or AQS function as S�( 0) = Sc( 0) � E[Sc( 0)], and the construction of the

AS and AQS tests, for testing H0: ↵ = 0, proceeds with S�( )|H0 . The OPMD estimate of

Var[S�( 0)|H0 ] is obtained in a similar way as (3.11). If necessary, the improved versions of

the AS and AQS tests can be obtained by further concentrating S�( ) with respect to � and

�2, and then re-adjusting in a similar manner.

(ii) Time-varying parameters. In the SPD model, we allow the regression coe�-

cients and the spatial lag coe�cient to vary with time, i.e., in Model (3.1) � is replaced

by �t and �1 by �1t. The spatial weight matrices can be time-varying as well. Clearly,

with these extensions the conventional transformation method cannot be applied. Denote

� = (�01, . . . ,�0T )0, �1 = (�11, . . . ,�1T )0, � = (�01,�2)0, and  = (�0,�2,�0,↵0)0. Redefine

B1nt(�1t) = In��1tW1nt, t = 1, . . . , T , and B1N (�1t) = blkdiag{B1nt(�1t)}, with N , B2nt(�2)

and B2N (�2) being unchanged. We obtain the joint (quasi) Gaussian loglikelihood `( , µn)

of ( , µn), and the concentrated (quasi) loglikelihood `c( ) = `( , µ̃n( )), where

µ̃n( ) = 1
T

P
T

t=1(B1nt(�1t)Ynt �Xnt�t),
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and the concentrated (quasi) score Sc( ) = @

@ `
c( ). One can show that

E[Sc( 0)] =
⇥
00

pT
,� n

2�2
0
,� 1

T
{tr(B1nt(�1t)), t = 1, . . . , T},� 1

T
tr(B2N (�2)), 00k

⇤0
.

These give the AS or AQS function as S�( 0) = Sc( 0)�E[Sc( 0)], and the construction of

the AS and AQS tests, for testing H0: ↵ = 0, proceeds with S�( )|H0 . The OPMD estimate

of Var[S�( 0)|H0 ] is obtained in a similar way as (3.11). If necessary, the improved versions

of the AS and AQS tests can be derived by further concentrating S�( ) with respect to �

and �2, and then re-adjusting in a similar way.

(iii) Unbalanced panels. Suppose only nt out of n spatial units appeared in period t.

Let Dt be a selection matrix obtained from the n⇥ n identity matrix In by deleting its rows

corresponding to the ‘missing’ spatial units in period t. The FE-SPD model becomes:

Ynt = �1W1ntYnt + Xnt� + Dtµn + Unt, Unt = �2W2ntUnt + Vnt, t = 1, 2, . . . , T. (3.20)

where Ynt is nt ⇥ 1, Wrnt, r = 1, 2, are nt ⇥ nt, etc. Thus, Wrnt cannot be time-invariant.

With an unbalanced panel, we are facing a similar problem as the case of time-varying

spatial weights since no transformation can be used to eliminate the FE. Under a random

‘missing’ scheme (randomly dropping out and randomly joining in), our AQS method may

again be able to provide a feasible solution to the testing problem for this model by adjusting

the concentrated (quasi) scores to account for the direct estimation of the fixed e↵ects.

Let N =
P

T

1 nt. Define WrN = blkdiag{Wrn1, . . . ,WrnT }, r = 1, 2. The model can be

written in matrix form: YN = �1W1NYN+XN�+DNµn+UN , UN = �2W2NUN+VN . The

joint (quasi) Gaussian loglikelihood `( , µn) and its concentrated version `c( ) = `( , µ̃n( ))

can be easily obtained, where

µ̃n( ) = [B02N
(�2)B2N (�2)]�1

B
0
2N

(�2)B2N (�2)[B1N (�1)YN �XN�],

with B2N (�2) = B2N (�2)DN , and BrN (�r) = IN � �rWrN , r = 1, 2. Along similar lines,

one can obtain the AQS function to remove the e↵ect of estimating µn, derive the (extended)

OPMD estimate of its VC matrix, and obtain the desired tests.

(iv) Interactive fixed e↵ects. The unit-specific and the time-specific fixed e↵ects may

appear in Model (3.1) interactively, i.e., µnat, where at can be an r ⇥ 1 vector and µn an

n ⇥ r matrix. This gives rise to an SPD model with interactive fixed e↵ects or multi-factor

structure. In this case, the transformation method again cannot be used to deal with these

incidental parameters, even though the other aspects of the standard FE-SPD model remain,
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unless r = 1. With the spatial weights varying over time, the transformation approach does

not o↵er a solution to our testing problem even when r = 1. The proposed AQS method o↵ers

a feasible solution, at least when T is fixed. Let `( , µn,aT ) be the joint (quasi) Gaussian

loglikelihood of ( , µn,aT ), where aT = (a1, . . . , aT )0. Consider time-varying spatial weight

matrices Wrnt, r = 1, 2. When r = 1, the results in case (i) can be extended upon dividing at

on both sides of the model, i.e., given ( ,aT ), `( , µn,aT ) is partially maximized at

µ̃n( ,aT ) = 1
T

P
T

t=1
1
at

(B1nt(�1)Ynt �Xnt�),

which gives the concentrated (quasi) loglikelihood `c( ,aT ) = `( , µ̃n( ,aT ),aT ). The rest

follows the AQS idea with proper constraints imposed on aT to ensure parameter identifiability.

When r > 1, this simple method does not apply, and a general solution is:

µ̃n( ,aT ) =
�
B1nt(�1)Ynt �Xnt�, t = 1, . . . , T

 
aT (a0

T
aT )�1.

After a proper reparameterization on the T ⇥ r matrix aT to ensure parameter identifiability

(see, Bai and Ng, 2013), the same ideas may lead to the desired AQS function, and thus the

desired tests for homoskedasticity.

4. Tests for Homoskedasticity: Dynamic SPD Model

As discussed in the introduction, the AQS-OPMD idea goes much beyond merely providing

a simpler method of constructing tests for homoskedasticity and its finite sample improved

version in standard scenarios where the conventional methods are available – it provides

feasible solutions to “non-standard problems” where the usual methods fail due to the lack of

(i) a valid (quasi) score and (ii) a feasible method for VC matrix estimation. The dynamic

spatial panel data (DSPD) model with short panels provides a perfect example of this. In

this case, even if all the requirements as for a standard SPD model are met, one is still unable

to achieve either (i) or (ii) due to the well-known initial values problem (IVP), as argued

in the introduction. The conditional (quasi) score, treating the initial values as exogenously

given, may be the best we can get, but it does not lead to consistent estimation when T is

fixed and it incurs an asymptotic bias when T goes large with n (Yu et al., 2008). Again,

this conditional quasi score can be adjusted to ‘remove’ the e↵ect of IVP and to give an AQS

vector for the heteroskedastic DSPD model that is unbiased and consistent. Furthermore, the

OPMD method provides a feasible estimate of the VC matrix of the AQS vector – together

the AQS and OPMD methods lead to asymptotically valid tests for homoskedasticity.
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4.1. The Dynamic FE-SPD Model and its M-Estimation

The dynamic SPD (DSPD) model with fixed e↵ects, hereafter FE-DSPD, takes the fol-

lowing form after first-di↵erencing to eliminate the individual-specific fixed e↵ects:

�Ynt = ⇢�Yn,t�1 + �1W1n�Ynt + �2W2n�Yn,t�1 +�Xnt� +�Unt, (4.1)

�Unt = �3W3n�Unt +�Vnt, t = 2, . . . , T.

It extends the FE-SPD model by adding the dynamic term ⇢Yn,t�1 and the space-time lag

term �2W2nYn,t�1, and the FE-DSPD model considered in Yang (2018a) by allowing for

cross-sectional heteroskedasticity, i.e., Vnt ⇠ (0,�2
Hn(↵)), t = 1, . . . , T . It also allows the

time-specific e↵ects and the spatial Durbin e↵ects as in Yang (2018a), of which both appear

in the model in the form of additional regressors embedded in �Xnt. A test for cross-sectional

homoskedasticity again corresponds to the test of the null hypothesis H0 : ↵ = 0.

Stacking the vectors and matrices in (4.1) for t = 2, . . . , T , i.e.,�YN = {�Y 0
n2, . . . ,�Y 0

nT
}
0,

�YN,�1 = {�Y 0
n1, . . . ,�Y 0

n,T�1}
0, and similarly for �XN and �VN , where N = n(T � 1).

Let WrN = IT�1 ⌦Wrn, r = 1, 2, 3, BrN (�r) = IT�1 ⌦ Brn(�r), r = 1, 3, and B2N (⇢,�2) =

IT�1 ⌦B2n(⇢,�2), where Brn(�r) = In � �rWrn, r = 1, 3, and B2n(⇢,�2) = ⇢In + �2W2n. Let

Znj be the diagonal matrix formed by the jth column Znj of Zn, where Zn is the n⇥k matrix

of the k heteroskedasticity variables. Denote � = (�1,�2,�3)0, � = (⇢,�0)0, and ✓ = (�0,�2, �0)0.

Define CN = CT�1 ⌦ In, where CT�1 is a (T � 1) ⇥ (T � 1) constant matrix with 2 on the

main diagonal and �1 on the two parallel diagonals and 0 otherwise.

If Vnt are independent N(0,�2
Hn(↵)), then�VN ⇠ N [0,�2CT�1⌦Hn(↵)]. From this, one

can easily obtain the conditional (quasi) Gaussian loglikelihood `(✓,↵) for (✓,↵), given �Yn1,

and the conditional (quasi) Gaussian score function SDSPD(✓,↵) = @

@(✓0,↵0)0 `(✓,↵). Assume,

Initial conditions (Assumption A, Yang, 2018a): (i) the processes started m periods

before the start of data collection, the 0th period, and (ii) if m � 1, �Yn0 is independent of

future errors {Vnt, t � 1}; if m = 0, Yn0 is independent of future errors {Vnt, t � 1}.

Under the above very minimum knowledge about the processes in the past, and as-

suming further that B�1
1n

(�10) and B�1
3n

(�30) exist, one derives the analytical expression for

E[SDSPD(✓0, 0)] by following the method in Yang (2018a), which is a function of only the com-

mon parameters ✓ and the observables and has the (⇢,�1,�2)-elements being non-zero and of

order O(n). This shows that SDSPD(✓0, 0) needs to be corrected, and that it can be corrected

as S�DSPD(✓0) = SDSPD(✓0, 0)� E[SDSPD(✓0, 0)], leading to the desired AQS function at the null:
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S�DSPD(✓) =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

1
�2�X

0
N
C
0�1
N

B
0
3N

(�3)�VN (�, �),
1

2�4�V
0
N

(�, �)C�1
N
�VN (�, �)� N

2�2 ,

1
�2�V

0
N

(�, �)C�1
N

B3N (�3)�YN,�1 + tr(C�1
N

DN,�1),
1
�2�V

0
N

(�, �)C�1
N

B3N (�3)W1N�YN + tr(C�1
N

DNW1N ),
1
�2�V

0
N

(�, �)C�1
N

B3N (�3)W2N�YN,�1 + tr(C�1
N

DN,�1W2N ),
1
�2�V

0
N

(�, �)(C�1
T�1 ⌦G3n(�3))�VN (�, �)� (T � 1)tr(G3n(�3)),

1
2�2�V

0
N

(�, �)(C�1
T�1 ⌦ Znj)�VN (�, �)� (T�1)

2 Z 0
nj

1n, j = 1, . . . , k,

(4.2)

where �VN (�, �) = B3N (�3)[B1N (�1)�YN �B2N (⇢,�2)�YN,�1 ��XN�],

DN,�1 =

0

BBB@

In, 0, . . . 0, 0
Bn � 2In, In, . . . 0, 0
...

... . . . ...
...

B
T�4
n (In � Bn)2, B

T�5
n (In � Bn)2, . . . Bn � 2In, In

1

CCCA
B
�1
1N

(�1),

and DN =

0

BBB@

Bn � 2In, In, . . . 0
(In � Bn)2, Bn � 2In, . . . 0
...

... . . . ...
B

T�3
n (In � Bn)2, B

T�4
n (In � Bn)2, . . . Bn � 2In

1

CCCA
B
�1
1N

(�1),

G3n(�3) = W3nB�1
3n

(�3) and Bn ⌘ Bn(⇢,�1,�2) = B�1
1n

(�1)B2n(⇢,�2). Let S�DSPD,✓(✓) and

S�DSPD,↵(✓) be, respectively, the ✓- and ↵-component of S�DSPD(✓). The solution of S�DSPD,✓(✓) = 0

gives the M -estimator ✓̃M of ✓ in the null model, and its asymptotic properties are given in

Yang (2018a). The unknown constant ḣ(0) in S�DSPD,↵(✓) is dropped for the same reason.

4.2. The AQS Test for Homoskedasticity

Note that Bn and hence DN,�1 and DN depend on (⇢,�1,�2), and are denoted in the same

way at the true parameter values (⇢0,�10,�20). For other parametric quantities at the true

parameter values, shorthand notation will again be used, e.g., B1N for B1N (�10) and G3n for

G3n(�30). Now, from Lemma 3.2 of Yang (2018a), we have

�YN = R �YN1 + ⌘ + S�VN , and �YN,�1 = R�1�YN1 + ⌘�1 + S�1�VN , (4.3)

where�YN1 = 1T�1⌦�Yn1, R = blkdiag(Bn,B2
n, . . . ,BT�1

n ), R�1 = blkdiag(In,Bn, . . . ,BT�2
n ),

⌘ = BB
�1
1N
�XN�0, ⌘�1 = B�1B

�1
1N
�XN�0, S = BB

�1
1N

B
�1
3N

, S�1 = B�1B
�1
1N

B
�1
3N

,

B =

0

BBB@

In 0 . . . 0 0
Bn In . . . 0 0
...

... . . . ...
...

B
T�2
n B

T�3
n . . . Bn In

1

CCCA
, and B�1 =

0

BBB@

0 0 . . . 0 0
In 0 . . . 0 0
...

... . . . ...
...

B
T�3
n B

T�4
n . . . In 0

1

CCCA
.
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From (4.3), one immediately obtains,

S�DSPD(✓0) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇧01�VN ,

�V
0
N
�1�VN �

N

2�2 ,

�V
0
N
 1�YN1 +⇧02�VN +�V

0
N
�2�VN + tr(C�1

N
DN,�1),

�V
0
N
 2�YN1 +⇧03�VN +�V

0
N
�3�VN + tr(C�1

N
DNW1N ),

�V
0
N
 3�YN1 +⇧04�VN +�V

0
N
�4�VN + tr(C�1

N
DN,�1W2N ),

�V
0
N
�5�VN � (T � 1)tr(G3n),

�V
0
N
�5+j�VN �

(T�1)
2 Z 0

nj
1n, j = 1, . . . , k,

(4.4)

where �5+j = 1
2�2

0
(C�1

T�1 ⌦ Znj), j = 1, . . . , k,

⇧1 = 1
�

2
0
C
�1
N

B3N�XN ,  1 = 1
�

2
0
C
�1
N

B3NR�1, �2 = 1
�

2
0
C
�1
N

B3NS�1

⇧2 = 1
�

2
0
C
�1
N

B3N⌘�1,  2 = 1
�

2
0
C
�1
N

B3NW1NR, �3 = 1
�

2
0
C
�1
N

B3NW1NS

⇧3 = 1
�

2
0
C
�1
N

B3NW1N⌘,  3 = 1
�

2
0
C
�1
N

B3NW2NR�1, �4 = 1
�

2
0
C
�1
N

B3NW2NS�1

⇧4 = 1
�

2
0
C
�1
N

B3NW2N⌘�1, �1 = 1
2�4

0
C
�1
N

, �5 = 1
�

2
0
(C�1

T�1 ⌦G3n)

The expression for S�DSPD(✓0) given in (4.4) shows clearly that the usual plug-in method for

estimating ⌃N = Var[S�DSPD(✓0)] does not work as the analytical expression of ⌃N involves the

unobservables contained in �Yn1, ⌘�1 and ⌘. We show that an OPMD estimate of ⌃N can

be derived when T is fixed, following the methods of Yang (2018a).

Now, for the general matrices ⇧, � and  appearing in (4.4), denote by ⇧t, �ts and

 ts their submatrices partitioned according to t, s = 2, . . . , T . Define  t+ =
P

T

s=2 ts, t =

2, . . . , T , ⇥ =  2+(B30B10)�1, �Y �
n1 = B30B10�Yn1, and �Y ⇤

n1t
=  t+�Yn1. Let {Gn,i} be

the increasing sequence of �-fields generated by (vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n, n � 1.

Let Fn,0 be the �-field generated by (v0,�y0), and define Fn,i = Fn,0⌦Gn,i. Clearly, Fn,i�1 ✓

Fn,i, i.e., {Fn,i}
n

i=1 is an increasing sequence of �-fields, for each n � 1. Using Lemma 3.3 of

Yang (2018a), the typical terms in (4.4) can be written as ⇧0�VN =
P

n

i=1 g1i, �V
0
N
��VN�

E(�V
0
N
��VN ) =

P
n

i=1 g2i, and �V
0
N
 �YN1 � E(�V

0
N
 �YN1) =

P
n

i=1 g3i, so that

{(g01i
, g2i, g3i)0,Fn,i}

n

i=1 form a vector MD sequence, where

g1i =
P

T

t=2⇧
0
it
�vit, (4.5)

g2i =
P

T

t=2(�vit�⇠it +�vit�v⇤
it
� �2

v0dit), (4.6)

g3i = �v2i�⇣i +⇥ii(�v2i�y�1i
+ �2

v0) +
P

T

t=3�vit�y⇤1it
, (4.7)

{�⇠it} = �⇠t =
P

T

s=2(�
u0
st + �l

ts)�Vns, �V ⇤
nt =

P
T

s=2�
d
ts�Vns, {dit} = diagonal elements of

CN�, {�⇣i} = �⇣ = (⇥u +⇥l)�Y �
n1, �Y �

n1 = B3nB1n�Yn1, and diag{⇥ii} = ⇥d.
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Finally, for each ⇧r, r = 1, 2, 3, 4, appearing in (4.4), define g1ri according to (4.5). For each

�r, r = 1, . . . , 5 + k, appearing in (4.4), define g2ri according to (4.6). For each  r, r = 1, 2, 3,

appearing in (4.4), define g3ri according to (4.7). Let

gni = (g011i, g21i, g31i + g12i + g22i, g32i + g13i + g23i, g33i + g14i + g24i, g25i, . . . , g2(5+k)i)0.

Then, S�DSPD(✓0) =
P

n

i=1 gni, and {gni,Fn,i} form a vector MD sequence. It follows that

⌦N = Var[S�DSPD(✓0)] =
P

n

i=1 E(gnig
0
ni

). The ‘average’ of the outer products of the estimated

g
0
ni

s at H0, i.e., 1
N

P
n

i=1 g̃nig̃
0
ni

, gives a consistent estimate of 1
N
⌦N . Partition S�DSPD(✓), gni

and ⌦N according ✓ and ↵, and denote the subvectors and submatrices by adding subscripts

✓ and/or ↵, as in Section 3. Let ⌃N,✓✓ = �E[ @
@✓

S�DSPD,✓(✓0)] and ⌃N,↵✓ = �E[ @
@✓

S�DSPD,↵(✓0)].

For the same reasoning, an asymptotic MD representation is developed for S�DSPD,↵(✓̃M), and

an AQS test statistic robust against nonnormality is obtained:

T r
DSPD =

�P
n

i=1 g̃
0
ni,↵

�⇥P
n

i=1(g̃ni,↵ �
e�N g̃ni,✓

��
g̃ni,↵ � �̃N g̃ni,✓

�0⇤�1�Pn

j=1 g̃ni,↵

�
, (4.8)

where e�N = e⌃N,↵✓
e⌃�1

N,✓✓
, e⌃N,↵✓ = � @

@✓0 S
�
DSPD,↵(✓̃M), e⌃N,✓✓ = � @

@✓0 S
�
DSPD,✓(✓̃M), and ✓̃M is the M -

estimator of Yang (2018a) for the null model, which solves S�DSPD,✓(✓) = 0. These derivatives

can be easily obtained from (4.2) and are given in Appendix D.14

Theorem 4.1. Extending Assumption 2.2 to �XN and assuming
1
N
⌦N is p.d. for large

enough N , under the regularity conditions of Yang (2018a) we have under H0, T r
DSPD

D
�! �2

k
.

4.3. Finite Sample Improved AQS Test

To improve the finite sample performance, the test given above can be further adjusted

by working with the AQS function concentrating � and �2 from (4.2):

S�cDSPD(�) =

8
>>>>>>>>><

>>>>>>>>>:

1
�̃

2
N (�)

�eV0
N

(�)C�1
N

B3N (�3)�YN,�1 + tr(C�1
N

DN,�1),
1

�̃
2
N (�)

�eV0
N

(�)C�1
N

B3N (�3)W1N�YN + tr(C�1
N

DNW1N ),
1

�̃
2
N (�)

�eV0
N

(�)C�1
N

B3N (�3)W2N�YN,�1 + tr(C�1
N

DN,�1W2N ),
1

�̃
2
N (�)

�eV0
N

(�)(C�1
T�1 ⌦G3n(�3))�eVN (�)� (T � 1)tr(G3n(�3)),

1
2�̃2

N (�)
�eV0

N
(�)(C�1

T�1 ⌦ Znj)�eVN (�)� (T�1)
2 Z 0

nj
1n, j = 1, . . . , k,

(4.9)

where � = (⇢,�0)0,�eVN (�) = �VN (�̃N (�), �), �̃N (�) = [�X
0
N

(�3)�XN (�3)]�1�X
0
N

(�3)�YN (�),

�̃2
N

(�) = 1
N
�eV0

N
(�)C�1

N
�eVN (�), �YN (�) = C

�1/2
N

B3N (�3)[B1N (�1)�YN�B2N (⇢,�2)�YN,�1],

�XN (�3) = C
�1/2
N

B3N (�3)�XN , and C
1/2
N

is the symmetric square-root matrix of CN .
14

Note that even when the errors are normal, this test does not have a simplified version as for SLR or

FE-SPD model, as in this case the AQS function is not the true score function and the information matrix

equality (IME) does not hold. The generalized IME cannot be applied as the true score function is unknown.
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It is not di�cult to see that plim 1
N

S�cDSPD(�0) = 0, but E[ 1
N

S�cDSPD(�0)] 6= 0. Therefore, a

direct use of S�DSPD(✓) to construct a test statistic would incur finite sample bias as it does not

take into account the variability from the estimation of � and �2. To have a set of unbiased

AQS functions for � and ↵ (at H0), we work with �̃2
N

(�)S�cDSPD(�).

One can show that C
�1/2
N

�eVN (�0) = MNC
�1/2
N

�VN and �̃2
N

(�0) = 1
N
�V

0
N
M
�
N
�VN ,

where MN = IN � �XN (�X
0
N
�XN )�1�X

0
N

, and M
�
N

= C
�1/2
N

MNC
�1/2
N

. By Lemma 3.1

of Yang (2018a): E(�YN,�1�V
0
N

) = ��2
0DN,�1B

�1
3N

and E(�YN�V
0
N

) = ��2
0DNB

�1
3N

, one

can easily show that E[�̃2
N

(�0)S�cDSPD(�0)] = �2
0(µ⇤N + N�p

N
µN ), where µ⇤

N
has the elements,

µ⇤⇢ = �tr(M�
N
B3NDN,�1B

�1
3N

), µ⇤
�1

= �tr(M�
N
B3NW1NDNB

�1
3N

),

µ⇤
�2

= �tr(M�
N
B3NW2NDN,�1B

�1
3N

), µ⇤
�3

= tr(MN (IT�1 ⌦G3n)),

µ⇤↵j
= 1

2tr(MN (IT�1 ⌦ Znj)), j = 1, . . . , k.

and µN is the vector containing the second (non-stochastic) terms in (4.9).

Re-centering �̃2
N

(�0)S�cDSPD(�0) by subtracting it by N

N�p
�̃2

N
(�0)(µ⇤N + N�p

N
µN ) and simpli-

fying, we obtain the further adjusted AQS functions:

S⇤DSPD(�) =

8
>>>>>>>>><

>>>>>>>>>:

�eV0
N

(�)C�1
N

B3N (�3)�YN,�1 � µ⇤⇢(�)�̃⇤2N
(�),

�eV0
N

(�)C�1
N

B3N (�3)W1N�YN � µ⇤
�1

(�)�̃⇤2
N

(�),

�eV0
N

(�)C�1
N

B3N (�3)W2N�YN,�1 � µ⇤
�2

(�)�̃⇤2
N

(�),

�eV0
N

(�)
⇥
C�1

T�1 ⌦G3n(�3)
⇤
�eVN (�)� µ⇤

�3
(�3)�̃⇤2N

(�),
1
2�eV0

N
(�)

�
C�1

T�1 ⌦ Znj

�
�eVN (�)� µ⇤↵j

(�3)�̃⇤2N
(�), j = 1, . . . , k,

(4.10)

where �̃⇤2
N

(�) = N

N�p
�̃2

N
(�). It is easy to show that E[�̃⇤2

N
(�0)] = �2

0 and E[S⇤DSPD(�0)] = 0.

Solving {S⇤DSPD,�(�) = 0} gives an adjusted AQS or M -estimator �̃⇤M of �, which has better

finite sample properties. At the true �0, using (4.3), S⇤DSPD(�0) can be written as:

S⇤DSPD(�0) =

8
>>>>>>>><

>>>>>>>>:

�V
0
N
 
⇤
1�YN1 +⇧⇤01 �VN +�V

0
N
�
⇤
1�VN ,

�V
0
N
 
⇤
2�YN1 +⇧⇤02 �VN +�V

0
N
�
⇤
2�VN ,

�V
0
N
 
⇤
3�YN1 +⇧⇤03 �VN +�V

0
N
�
⇤
3�VN ,

�V
0
N
�
⇤
4�VN ,

�V
0
N
�
⇤
4+j
�VN , j = 1, . . . , k,

(4.11)

where �⇤4+j
= 1

2M
�
N

(CT�1 ⌦ Znj)M�
N
�

1
N�p

µ⇤↵j
M
�
N

, j = 1, . . . , k,

⇧⇤1 = M
�
N
B3N⌘�1,  

⇤
1 = M

�
N
B3NR�1, �

⇤
1 = M

�
N
B3NS�1 �

1
N�p

µ⇤⇢M
�
N

,

⇧⇤2 = M
�
N
B3NW1N⌘,  

⇤
2 = M

�
N
B3NW1NR, �

⇤
2 = M

�
N
B3NW1NS�

1
N�p

µ⇤
�1

M
�
N

,

⇧⇤3 = M
�
N
B3NW2N⌘�1,  ⇤3 = M

�
N
B3NW2NR�1, �⇤3 = M

�
N
B3NW2NS�1 �

1
N�p

µ⇤
�2

M
�
N

,

�
⇤
4 = M

�
N

(CT�1 ⌦G3n)M�
N
�

1
N�p

µ⇤
�3

M
�
N

.
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The AQS function (4.11) has a similar structure as (4.4), containing the same three

types of terms so that (4.5)-(4.7) can be applied. Using these newly defined quantities,

an MD representation can be developed for S⇤DSPD(�0), i.e., S⇤DSPD(�0) =
P

n

i=1 g
⇤
ni

, which

gives ⌦⇤
N

= Var[S⇤DSPD(�0)] =
P

n

i=1 E(g⇤
ni

g
⇤0
ni

) and hence a consistent OPMD estimate of

⌦
⇤
N

as e⌦⇤
N

=
P

n

i=1 g̃
⇤
ni

g̃
⇤0
ni

. Partition S⇤DSPD(�), g
⇤
ni

and ⌦⇤
N

according to � and ↵. Let

⌃
⇤
N,↵�

= �E[ @
@�0 S

⇤
DSPD,↵(�0)], and ⌃⇤

N,��
= �E[ @

@�0 S
⇤
DSPD,�(�0)]. A potentially improved test

statistic can be constructed on the basis of S⇤DSPD(�0) in an identical manner as for T r
DSPD:

T r⇤
DSPD =

�P
n

i=1 g̃
⇤0
ni,↵

�⇥P
n

i=1(g̃
⇤
ni,↵

� e�⇤
N
g̃
⇤
ni,�

��
g̃
⇤
ni,↵

� �̃
⇤
N
g̃
⇤
ni,�

�0⇤�1�Pn

j=1 g̃
⇤
ni,↵

�
, (4.12)

where g̃
⇤
ni,↵

and g̃
⇤
ni,�

are the estimates of g
⇤
ni,↵

and g
⇤
ni,�

at �̃⇤
N

, e�⇤
N

= e⌃⇤
N,↵�

e⌃⇤�1
N,��

, e⌃⇤
N,↵�

=

�
@

@�0 S
⇤
DSPD,↵(�̃⇤M), and e⌃⇤

N,��
= �

@

@�0 S
⇤
DSPD,�(�̃

⇤
M), where �̃⇤M is the improved M -estimator of �

defined above. These derivatives can be obtained from (4.10), taking use of the expression

�eVN (�) = C
1/2
N

MN (�3)�YN (�). See Appendix D for details.

Theorem 4.2. Under the assumptions of Theorem 4.1, we have under H0, T r⇤
DSPD

D
�! �2

k
.

5. Monte Carlo Study

Extensive Monte Carlo experiments are performed for assessing the finite sample perfor-

mance of the four tests proposed in Section 2 for the SLR model, the six tests introduced in

Section 3 for the FE-SPD model, and the two tests presented in Section 4 for the FE-DSPD

model. An important purpose is to solicit accurate and reliable tests based on the Monte

Carlo results, and to make recommendations for practitioners.

5.1. General Settings

Cross-Sectional Case. We use the SLR model (2.1), where the matrix Xn contains a

constant (◆n) and one regressor (xn). Throughout the experiment the parameters are set at

�0 = 5, �1 = 1, �1, �2 = 0.2, 0.8, and n = 50, 100, 200 and 500. For the spatial weight

matrices, we assume that W1n = W2n = Wn. We have taken the spatial matrix Wn proposed

by Kelejian and Prucha (1999), which is labelled “J ahead and J behind” with the non-zero

elements being 1/2J . Clearly, as J increases, the number of non-zero elements in the spatial

weight matrix increases, which is in turn increases the ‘degree’ of the spatial dependence.

Moreover, following Baltagi and Yang (2013a), we have also considered three other schemes
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for generating the spatial weights matrices: (i) Rook contiguity, (ii) Queen contiguity and

(iii) Group interactions. In the last one, the degree of spatial dependence grows with the

sample size, which is achieved by relating the number of groups k to the sample size n,

e.g., k = n0.5, see Lee (2004). Two Data Generating Processes (DGP) are considered to

generate the elements {xi} of the regressors xn. The first one (DGP1) assumes that {xi}

are iid N(0, 1), whereas the second one (DGP2) considers that there might be systematic

di↵erences in {xi} across the di↵erent ‘sets’ of spatial units, see Baltagi and Yang (2013a) and

Lee (2004). In this case, the ith value in the jth group, {xij} of xn are generated according

to {xij} = (zj + ✏ij)/
p

2 where {zj} ⇠ iid N(0, 1), {✏ij} are iid N(0, 1), and zj and ✏ij are

independent. This second scheme gives non-iid {xi} values in contrast to the first one, or

di↵erent group means in terms of group interaction, see Lee (2004). The heteroskedasticity

is generated according to �2
vni

= �2 exp(↵zni), where zni is taken to be xni, � is set to 1,

and ↵ = 0, 1. If ↵ = 0, the disturbances are homoskedastic. For the DGP of disturbances,

we assume that vni = �2
vni

ei, where {ei} are generated from either N(0, 1), or a chi-square

distribution with 3 degrees of freedom, standardized to have zero mean and unit variance.

Static Panel Case. We use the FE-SPD model (3.1), which includes a single time-

varying regressor Xnt. The fixed e↵ects are generated by setting µn = 1
T

P
T

t=1 Xnt +!n where

!n ⇠ N(0, In). Two DGPs are also considered for generating the regressor’ values. In DGP1,

we have xit = zit + 0.1t, where {zit} are iid N(0, 1). Thus the regressor includes a time trend

0.1t. In DGP2, we first generate Xnt for each t according to the DGP2 for the SLR model

and then add a time trend 0.1t on each Xnt, t = 1, . . . , T . Four individual dimensions are

considered n = 50, 100, 200 and 500 combined with the time dimension T = 5. Throughout the

experiment the parameters are set at � = 1, �1, �2 = 0.2, 0.8. The spatial matrices are those

that have been defined for the SLR model. The heteroskedasticity is generated according to

�2
vni

= �2 exp(↵zni), where zni = 1
T

P
T

t=1 xit, � = 1, and ↵ = 0, 0.5. If ↵ = 0, the disturbances

are homoskedastic. For the DGP of the disturbances, we assume that vn,it = �2
vni

eit, where

{eit} are generated from either N(0, 1) or a chi-square distribution with 3 degrees of freedom,

standardized to have zero mean and unit variance.

Dynamic Panel Case. As discussed in Sections 1 and 4, this is the most important case

(among the three studied in the paper) used to demonstrate the usefulness of the introduced

AQS-OPMD methodology in constructing tests of homoskedasticity in ‘non-standard’ situa-
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tions. We now use the Monte Carlo tool to assess how the introduced tests perform in finite

samples. We use the FE-DSPD model (4.1), which contains a single time-varying regressor

Xnt generated in the same way as for the FE-SPD model, i.e. by DGP1 and DGP2. The

same individual and time dimensions are also retained, with the exception of n = 500 which is

replaced by n = 400. This substitution simply aims to save time in simulations. Throughout

the experiment the parameters are set at � = 1, ⇢ = 0.3, and (�1,�2,�3) = (0.2, 0.2, 0.2) or

(�0.2,�0.2,�0.2). The spatial matrices are those that have been defined for the FE-SPD

model as well as the heteroskedasticity disturbance processes, where the heteroskedasticity

parameter ↵ is set at 0 (homoskedasticity) for size simulation and 0.5 for power simulation.

5.2. Monte Carlo Results

In all the experiments, the regressors are treated as fixed. Each set of results, correspond-

ing to a combination of the value of n, the values of (�1,�2) for SLR and FE-SPD models

and also (⇢,�3) for the FE-DSPD model, a DGP, a set of spatial weight matrices and an error

distribution, is based on 5, 000 Monte Carlo replications. Three nominal sizes are considered:

10%, 5% and 1%. Empirical size and size adjusted power of the tests are recorded. Due to

space constraint, only partial results are reported, corresponding to queen and group inter-

actions spatial layouts. Other results, corresponding to DGP2 and (�1,�2) = (0.8, 0.2) for

SLR and FE-SPD models, and circular world and rook contiguity spatial layouts for all three

models, are available upon request from the authors.

Cross-Sectional Case. Tables 1 and 2 report partial results on, respectively, the empir-

ical sizes and the empirical size adjusted powers of the four tests: TSLR, T r
SLR, T ⇤SLR and T r⇤

SLR,

introduced in Section 2 for the SLR model. From the results (reported and unreported), the

following general observations are in order:

(i) Among the four tests, the AQS test T r⇤
SLR performs the best in the sense that its empirical

sizes are in general quite close to the corresponding nominal levels. The score test TSLR

performs the worst, much worse than the other three in terms of size;

(ii) Non-normality can have a big impact on the finite sample performance of the tests –

size distortion can be much bigger when the errors are non-normal than when they are

normal, except for the AQS test T r⇤
SLR where the size distortions are at an ‘acceptable’

level even when n = 50;

(iii) When the errors are normal, the size converges to its nominal level, for all tests consid-
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ered, as the sample size n increases. When the errors are non-normal, the two robust

tests converge as expected. For the two non-robust tests, the score test TSLR still has

a large size distortion even when the sample size is 500, but the AS test T ⇤SLR has size

quite close to its nominal level when n is large enough, showing that it is fairly robust;

(iv) Neither the values of spatial parameters nor the spatial weight matrices have a signifi-

cant e↵ect on the finite sample performance of the tests. One exception is that under

normality and when n is not large, the last three tests can be slightly under-sized;

(v) As n increases, all four tests have empirical size adjusted powers converging to 100%.

As expected, the two finite sample adjusted tests (AS and AQS) have lower powers than

the other two (score and QS), but as n increases, their powers quickly catch up.

Comparing the quasi score test T r
SLR with the score test TSLR (see Section 2.2), we see that

the simple changes on TSLR not only o↵er robustness against non-normality but also lead to

huge improvements in its finite sample performance. Comparing the adjusted score test T ⇤SLR

with the score test TSLR, we see that some simple adjustments on the concentrated scores can

lead to huge improvements in the finite sample performance of the test. Thus, a combination

of the idea leading to the AS test and the idea leading to the QS test, we obtain an AQS test

that not only is robust against non-normality but also has the best finite sample properties. In

light of the overall performance, the AQS test T r⇤
SLR is recommended for practical applications.

Static Panel Case. Tables 3 and 4 present partial results on, respectively, the empirical

sizes and the empirical size adjusted powers for the six tests introduced in Section 3 pertaining

to the FE-SPD model: TSPD, T r
SPD, T rr

SPD, T ⇤SPD, T r⇤
SPD and T rr⇤

SPD.

The results (reported and unreported) show similar patterns for the FE-SPD model as for

the SLR model. In particular, the score test TSPD can have large size distortions when n is

small and the errors are non-normal, irrespective of the values of the spatial parameters, the

spatial weight matrix structures, and the way the regressor is generated. Similar patterns are

observed for the tests T r
SPD, T ⇤SPD, and T r⇤

SPD, though the size-distortions are on a smaller scale

when compared with the score test. The sizes of these four tests do not seem to converge to

the nominal levels as the large size distortions remain even when n = 500 with T = 5.

In contrast, the two fully robust tests T rr
SPD and T rr⇤

SPD in general o↵er a great reduction in

size distortion and their power converges to 100% as n increases. The empirical sizes of these

two tests converge to their nominal levels as n ! 1 where T can go large with n or stay

fixed. Hence the two fully robust tests are both recommended for practical applications.
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Dynamic Panel Case. Tables 5 and 6 report partial results on the empirical sizes and

the empirical size adjusted powers for the two tests introduced in Section 4 pertaining to the

FE-DSPD model: T r
DSPD and T r⇤

DSPD, under DGP1 and DGP2, respectively.

By construction, both tests are robust against non-normality. Therefore, it is important to

assess and to compare their finite sample performance. The results (reported and unreported)

show that both tests perform well in finite sample in that the empirical sizes are all quite close

to their nominal levels even when n is as small as 50. The (surprisingly) good performance

of T r
DSPD is perhaps due to the fact that the AQS function used to construct T r

DSPD has already

gone through some major adjustments, or the fact that dim(�) is low so that the e↵ect of its

estimation is small in this situation. The results (reported and unreported) further show that

T r⇤
DSPD is slightly less powerful than T r

DSPD when n is not large, but both converge to 100% very

fast. Both tests are very powerful. In fact, for ↵ = 0.5 all the empirical powers are quite close

to 100%, showing that FE-DSPD model is very sensitive to departures from homoskedasticity.

Thus, both tests can be used in practical applications, with T r⇤
DSPD being more preferred when

dim(�) is big.

6. A Guide to Applied Researchers

To facilitate practical applications, we have implemented in Matlab all the tests proposed

in this paper using real data sets. First, download the zip folder, package.zip, from the

author’s website: http://cred.u-paris2.fr/PIROTTE/package.zip. This folder contains

all the matlab files, data files, and an instruction file readme.txt.

The readme.txt file gives clear instructions on (i) which test to follow, (ii) which file

to run, and (iii) how to modify the input part of the code to change the data set, the

spatial weight matrices, and to redefine the variables. Based on our theoretical arguments

and empirical findings, we recommend the following:

• for SLR models, the AQS test T r⇤
SLR, given in (2.19), should be used;

• for SPD models, the two fully robust AQS tests T rr
SPD and T rr⇤

SPD , given respectively in

(3.14) and (3.19), can both be used;

• for DSPD models, the AQS tests T r
DSPD and T r⇤

DSPD, given respectively in (4.8) and (4.12),

can both be used.
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7. Conclusion

We introduce an Adjusted Quasi-Score (AQS) method for constructing diagnostic tests

for homoskedasticity in spatial econometric models, by first adjusting the score-type function

from a given model to give a set of AQS functions that are unbiased and consistent, and

then developing an Outer-Product-of-Martingale-Di↵erence (OPMD) estimate of its variance.

We use a spatial cross-section model to demonstrate that in standard problems where a

genuine (quasi) score vector is available, the AQS method leads to finite sample improved

tests over the usual methods by adjusting the concentrated (quasi) score to remove the e↵ect

of estimating nuisance parameters. We then consider a “not-so-standard problem”, the spatial

panel data model with fixed e↵ects where the transformed errors are not totally independent,

to further demonstrate its ability to yield finite sample improved tests. Finally, we focus on

a “non-standard problem”, the spatial dynamic panel data model, to demonstrate that the

AQS-OPMD method is able to provide a feasible solution to non-standard problems where the

standard methods fail. Asymptotic properties of the tests developed for these three models

are formally studied, and Monte Carlo results show that our testing procedures perform well

in finite samples, especially for the robust versions of the tests.

The method is seen to be quite general. It can be easily applied to many other stan-

dard problems to take into account the time-wise fixed e↵ects and heteroskedasticity, spatial

Durbin e↵ects, higher-order spatial lags and spatial errors. It has potential to provide feasible

solutions to testing problems in many other non-standard problems such as spatial panels

with temporal heterogeneity (time-specific fixed e↵ects, time-varying spatial weights, time-

varying regression and spatial coe�cients, etc.), unbalanced spatial panels, spatial panels

with interactive fixed e↵ects, etc. Moreover, the tests can be repeatedly run with di↵erent

choices of the heteroskedasticity variables, to identify the ‘source’ of heteroskedasticity: the

heteroskedasticity variables with which the test is rejected. In this case, one may proceed

with a heteroskedastic model by ‘specifying’ a form for the unknown function h(·), e.g., the

popular exponential form, or non-parametrically estimating it.

Appendix. Supplementary data

A supplementary material, containing Appendices A, B, C, and D that the paper refers

to, is available from the journal’s website.
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Table 1 – Empirical Size of the Tests for the SLR Model, DGP1 

Queen contiguity Group interaction 

Normal 
disturbances 

Non-normal 
disturbances 

Normal 
disturbances 

Non-normal 
disturbances 

!"#, "%& ' Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2) 50 
50 
50 
50 

()*+ 
()*+,  
()*+∗  
()*+,∗  

22.0 
9.70 

12.24 
9.72 

13.66 
5.42 
5.92 
4.46 

4.86 
1.52 
1.38 
0.86 

40.78 
15.08 
19.44 
13.98 

31.26 
9.22 

10.36 
6.68 

17.00 
3.06 
1.66 
0.82 

22.72 
11.74 
13.38 
11.06 

14.86 
5.90 
7.70 
5.52 

4.62 
1.20 
1.58 
1.00 

42.08 
18.04 
20.44 
14.58 

32.48 
11.22 
11.74 
7.58 

17.94 
3.98 
3.18 
1.44 

100 
100 
100 
100 

()*+ 
()*+,  
()*+∗  
()*+,∗  

17.72 
8.94 

12.00 
10.68 

10.62 
4.20 
5.90 
4.98 

3.20 
0.86 
1.00 
0.66 

37.86 
13.76 
15.86 
12.28 

29.00 
7.62 
7.56 
5.56 

15.42 
2.36 
1.62 
1.16 

17.30 
9.12 

11.64 
9.90 

9.98 
4.54 
5.82 
4.98 

2.88 
0.84 
1.08 
0.76 

38.12 
14.92 
16.38 
12.68 

29.52 
9.28 
9.36 
7.06 

15.84 
3.30 
2.18 
1.20 

200 
200 
200 
200 

()*+ 
()*+,  
()*+∗  
()*+,∗  

13.30 
8.52 

10.26 
9.72 

7.18 
4.36 
5.00 
4.52 

1.82 
0.98 
0.88 
0.74 

33.80 
13.28 
13.54 
11.48 

25.52 
7.62 
7.00 
5.58 

14.20 
2.26 
1.18 
1.02 

13.86 
10.74 
11.00 
10.22 

7.82 
5.46 
5.34 
4.98 

2.26 
1.20 
1.06 
0.90 

33.30 
13.76 
13.02 
10.80 

24.78 
7.42 
6.72 
4.90 

12.60 
2.18 
1.26 
0.74 

500 
500 
500 
500 

()*+ 
()*+,  
()*+∗  
()*+,∗  

11.98 
10.08 
10.42 
10.26 

6.08 
4.82 
4.82 
4.68 

1.62 
1.08 
1.02 
1.00 

29.42 
11.82 
11.24 
10.28 

20.70 
6.18 
5.74 
5.22 

9.34 
1.32 
1.02 
0.88 

12.26 
10.08 
10.78 
10.42 

6.54 
5.12 
5.36 
5.18 

1.40 
0.98 
0.98 
0.98 

30.54 
12.20 
12.06 
11.08 

21.38 
6.66 
6.02 
5.34 

10.12 
1.48 
1.06 
0.80 

(0.2,0.8) 50 
50 
50 
50 

()*+ 
()*+,  
()*+∗  
()*+,∗  

21.80 
12.00 
12.38 
9.32 

13.44 
6.44 
5.74 
4.60 

5.06 
1.70 
1.30 
0.84 

41.80 
21.10 
19.90 
13.68 

32.76 
14.18 
9.84 
6.04 

18.46 
4.86 
1.48 
0.68 

22.82 
14.04 
14.58 
9.32 

15.04 
8.00 
7.32 
4.00 

5.16 
1.68 
1.10 
0.42 

40.92 
21.78 
16.40 
10.38 

32.28 
14.36 
9.40 
4.88 

17.92 
5.08 
2.40 
1.10 

100 
100 
100 
100 

()*+ 
()*+,  
()*+∗  
()*+,∗  

16.44 
11.28 
11.52 
10.34 

10.02 
6.10 
5.98 
4.82 

2.98 
1.42 
0.92 
0.56 

36.58 
16.26 
15.86 
11.82 

28.88 
9.82 
7.84 
5.08 

15.56 
3.10 
1.30 
0.80 

17.26 
16.13 
10.46 
8.84 

10.10 
6.72 
4.90 
3.64 

2.82 
1.54 
0.86 
0.54 

38.02 
18.70 
14.72 
10.74 

28.42 
11.70 
8.02 
4.78 

16.18 
3.92 
1.80 
0.82 

200 
200 
200 
200 

()*+ 
()*+,  
()*+∗  
()*+,∗  

13.72 
10.74 
10.56 
9.76 

7.88 
5.68 
5.28 
5.10 

2.04 
1.04 
0.76 
0.58 

34.10 
15.20 
13.26 
10.98 

25.42 
8.38 
6.72 
5.30 

13.30 
2.36 
1.30 
0.94 

14.04 
11.84 
11.12 
9.88 

7.64 
6.00 
5.44 
4.62 

2.16 
1.38 
0.86 
0.68 

32.72 
14.04 
13.34 
10.24 

23.98 
8.32 
6.92 
4.86 

12.20 
2.40 
1.32 
0.78 

500 
500 
500 
500 

()*+ 
()*+,  
()*+∗  
()*+,∗  

11.72 
10.22 
10.36 
10.00 

6.24 
5.12 
5.16 
5.02 

1.42 
1.12 
1.00 
0.96 

27.84 
11.56 
11.44 
9.92 

19.28 
6.02 
5.62 
4.76 

8.66 
1.18 
0.88 
0.64 

11.32 
10.38 
10.14 
9.38 

6.18 
5.44 
4.96 
4.28 

1.24 
1.04 
0.78 
0.64 

28.54 
11.68 
11.48 
9.76 

20.00 
6.20 
5.72 
4.50 

9.22 
1.24 
0.82 
0.48 

(0.8,0.2) 50 
50 
50 
50 

()*+ 
()*+,  
()*+∗  
()*+,∗  

21.84 
10.68 
12.28 
9.52 

13.56 
5.84 
6.02 
3.98 

4.86 
1.66 
1.20 
0.76 

42.32 
19.58 
18.40 
13.66 

32.20 
12.28 
10.60 
7.22 

18.32 
4.00 
2.54 
1.22 

21.94 
10.24 
11.24 
8.18 

13.72 
5.30 
5.36 
3.46 

4.42 
1.08 
1.14 
0.50 

40.72 
18.38 
17.80 
12.02 

31.36 
11.58 
9.32 
4.94 

17.12 
3.92 
1.74 
0.62 

100 
100 
100 
100 

()*+ 
()*+,  
()*+∗  
()*+,∗  

16.82 
8.52 

11.24 
10.00 

10.02 
4.18 
5.26 
4.44 

2.72 
0.58 
0.82 
0.50 

38.00 
15.38 
15.56 
12.10 

29.46 
9.08 
7.66 
5.56 

16.32 
2.94 
1.46 
0.96 

16.62 
9.62 

11.46 
9.80 

9.62 
4.46 
4.88 
4.08 

2.74 
1.18 
0.80 
0.60 

38.30 
15.80 
15.90 
12.26 

29.32 
9.36 
8.32 
5.76 

15.92 
3.02 
1.50 
0.70 

200 
200 
200 
200 

()*+ 
()*+,  
()*+∗  
()*+,∗  

14.48 
9.76 

11.44 
10.82 

8.16 
5.24 
5.54 
5.10 

2.06 
0.98 
0.92 
0.76 

32.72 
12.08 
12.48 
10.64 

24.00 
6.74 
6.20 
5.38 

12.36 
1.72 
1.22 
0.88 

13.44 
10.14 
10.58 
9.76 

7.30 
4.86 
4.78 
4.08 

1.54 
1.04 
0.72 
0.62 

35.80 
15.02 
14.06 
11.00 

26.58 
8.08 
6.82 
5.46 

13.78 
2.28 
1.18 
0.88 

500 
500 
500 
500 

()*+ 
()*+,  
()*+∗  
()*+,∗  

11.44 
9.32 

10.16 
9.86 

5.82 
4.62 
5.02 
4.90 

1.48 
1.20 
1.00 
0.96 

29.08 
11.74 
11.92 
10.84 

21.00 
6.24 
5.86 
5.04 

10.50 
1.34 
1.00 
0.86 

11.34 
9.74 
9.90 
9.76 

5.80 
4.76 
4.72 
4.54 

1.48 
1.18 
1.10 
0.96 

29.86 
11.48 
11.54 
10.26 

20.72 
6.16 
5.56 
4.96 

9.62 
1.82 
1.32 
1.06 

(0.8,0.8) 50 
50 
50 
50 

()*+ 
()*+,  
()*+∗  
()*+,∗  

20.66 
12.76 
12.14 
9.18 

13.02 
7.42 
5.48 
3.98 

4.60 
1.62 
0.98 
0.50 

41.90 
21.76 
18.12 
11.66 

32.54 
14.08 
9.06 
4.98 

18.24 
4.80 
1.86 
0.92 

22.58 
13.98 
14.06 
9.26 

14.58 
7.76 
7.60 
4.32 

4.74 
1.84 
1.28 
0.50 

43.44 
23.44 
19.56 
9.98 

34.60 
15.26 
10.94 
4.66 

19.48 
6.02 
3.44 
0.78 

100 
100 
100 
100 

()*+ 
()*+,  
()*+∗  
()*+,∗  

16.60 
11.86 
11.48 
10.00 

9.64 
6.24 
5.06 
4.12 

2.44 
0.96 
0.68 
0.36 

37.02 
17.36 
15.74 
11.74 

28.30 
10.52 
8.20 
5.66 

15.46 
3.24 
1.32 
0.62 

16.86 
12.80 
10.32 
7.64 

9.74 
6.78 
4.92 
3.28 

3.18 
1.78 
0.86 
0.54 

40.16 
19.16 
15.54 
10.62 

31.40 
11.74 
8.54 
5.20 

17.14 
3.88 
2.40 
1.40 

200 
200 
200 
200 

()*+ 
()*+,  
()*+∗  
()*+,∗  

14.18 
11.50 
10.80 
9.96 

7.58 
5.82 
4.96 
4.52 

1.58 
1.04 
0.64 
0.54 

34.66 
14.82 
13.38 
10.86 

25.46 
8.80 
6.40 
5.06 

13.00 
2.62 
1.40 
0.90 

14.14 
11.62 
11.38 
10.38 

8.28 
6.48 
5.70 
4.74 

2.02 
1.32 
0.78 
0.64 

34.94 
15.62 
15.12 
11.68 

25.48 
8.98 
7.86 
5.58 

13.28 
2.54 
1.64 
0.78 

500 
500 
500 
500 

()*+ 
()*+,  
()*+∗  
()*+,∗  

11.96 
10.56 
10.38 
10.10 

6.40 
5.80 
5.50 
5.34 

1.60 
1.34 
1.16 
1.10 

28.22 
11.84 
11.48 
10.02 

19.72 
6.14 
5.60 
4.40 

9.28 
1.36 
0.84 
0.70 

16.70 
12.64 
11.92 
8.72 

10.32 
6.86 
5.80 
3.84 

3.10 
1.84 
1.18 
0.52 

38.60 
18.40 
16.60 
11.18 

29.80 
11.00 
8.36 
4.70 

16.08 
3.32 
1.40 
0.50 
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Table 2 – Empirical Size Adjusted Powers of the Tests for the SLR Model, DGP1 - Disturbances Heteroskedastic ! " #. %

Queen contiguity Group interaction 

Normal 
disturbances 

Non-normal 
disturbances 

Normal 
disturbances 

Non-normal 
disturbances 

&'(, '*+ , Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2) 50 
50 
50 
50 

-./0 
-./01  
-./0∗  
-./01∗  

99.34 
91.58 
97.28 
94.36 

98.74 
89.00 
91.30 
86.34 

94.32 
81.28 
71.28 
63.20 

86.86 
81.06 
85.48 
80.26 

75.72 
70.98 
70.74 
64.88 

44.78 
46.20 
34.94 
28.98 

95.02 
86.84 
91.82 
81.08 

91.54 
81.04 
80.98 
66.96 

79.56 
63.64 
48.06 
36.78 

73.14 
65.54 
71.12 
61.32 

59.86 
52.06 
53.58 
44.54 

32.40 
27.28 
19.58 
16.94 

100 
100 
100 
100 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
97.60 
99.34 
98.38 

99.98 
97.08 
96.76 
95.14 

99.98 
95.56 
85.28 
81.50 

99.30 
96.14 
93.34 
89.32 

97.66 
94.50 
85.22 
80.36 

88.90 
85.62 
61.02 
55.42 

100.0 
98.08 
99.52 
98.28 

100.0 
97.78 
97.00 
94.26 

99.96 
96.42 
84.20 
77.56 

96.96 
96.90 
96.02 
90.92 

92.62 
93.40 
87.58 
80.70 

73.16 
72.38 
53.88 
52.68 

200 
200 
200 
200 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
99.36 
100.0 
99.98 

100.0 
99.20 
100.0 
99.90 

100.0 
99.06 
99.14 
97.56 

100.0 
99.56 
98.40 
96.38 

99.96 
99.42 
94.78 
91.40 

99.50 
98.24 
79.06 
72.80 

100.0 
99.32 
100.0 
97.94 

100.0 
99.20 
99.94 
96.86 

100.0 
98.76 
98.46 
91.94 

99.98 
99.50 
99.02 
89.88 

99.94 
99.24 
96.66 
84.94 

99.28 
97.64 
85.70 
70.42 

500 
500 
500 
500 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
100.0 
100.0 
99.96 

100.0 
100.0 
99.94 
99.92 

100.0 
100.0 
99.54 
99.12 

100.0 
100.0 
99.48 
98.92 

100.0 
100.0 
98.40 
97.08 

100.0 
99.98 
93.18 
89.78 

100.0 
100.0 
100.0 
95.70 

100.0 
100.0 
100.0 
95.40 

100.0 
100.0 
100.0 
94.58 

100.0 
100.0 
99.96 
92.32 

100.0 
100.0 
99.48 
90.94 

100.0 
100.0 
97.34 
86.00 

(0.2,0.8) 50 
50 
50 
50 

-./0 
-./01  
-./0∗  
-./01∗  

97.72 
91.44 
88.54 
61.28 

95.04 
87.76 
73.06 
64.02 

83.52 
72.90 
36.08 
30.18 

76.86 
73.54 
70.52 
64.12 

64.76 
62.68 
53.08 
46.64 

39.46 
38.42 
20.94 
18.14 

95.80 
92.14 
88.38 
79.28 

92.04 
87.20 
74.84 
62.72 

77.54 
65.50 
37.92 
28.74 

71.14 
67.24 
69.96 
59.22 

59.34 
54.78 
51.82 
43.14 

34.02 
31.14 
21.50 
16.18 

100 
100 
100 
100 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
97.52 
99.18 
96.80 

100.0 
96.98 
95.82 
91.62 

99.98 
95.28 
76.38 
70.22 

98.18 
95.98 
93.30 
87.66 

95.66 
93.24 
85.50 
78.94 

80.88 
79.96 
57.40 
51.28 

100.0 
99.66 
99.48 
97.90 

100.0 
99.62 
97.54 
93.48 

99.96 
98.90 
84.72 
75.42 

97.16 
97.62 
97.54 
90.96 

92.80 
94.88 
91.06 
81.26 

73.06 
74.60 
58.36 
49.68 

200 
200 
200 
200 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
99.60 
100.0 
99.80 

100.0 
99.42 
99.96 
99.56 

100.0 
99.22 
98.86 
97.42 

99.92 
99.30 
99.38 
97.30 

99.80 
99.08 
97.46 
94.06 

98.72 
97.40 
89.18 
82.44 

100.0 
99.96 
99.92 
98.54 

100.0 
99.96 
99.32 
95.54 

100.0 
99.88 
95.28 
82.10 

99.94 
99.84 
98.80 
93.46 

99.92 
99.68 
96.10 
85.92 

98.86 
98.24 
85.66 
65.04 

500 
500 
500 
500 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
99.98 
99.80 
99.60 

100.0 
99.98 
98.84 
98.58 

100.0 
99.98 
94.82 
94.42 

100.0 
99.98 
98.58 
98.34 

100.0 
99.98 
96.48 
95.88 

100.0 
99.84 
91.68 
89.42 

100.0 
100.0 
100.0 
99.76 

100.0 
100.0 
99.98 
99.50 

100.0 
100.0 
99.46 
97.04 

100.0 
100.0 
99.64 
97.14 

100.0 
100.0 
98.64 
94.16 

100.0 
99.98 
94.08 
83.08 

(0.8,0.2) 50 
50 
50 
50 

-./0 
-./01  
-./0∗  
-./01∗  

99.60 
93.20 
97.66 
93.30 

98.76 
91.00 
93.06 
86.58 

93.20 
83.00 
70.54 
59.92 

87.20 
82.70 
88.18 
81.98 

76.98 
72.50 
74.92 
67.90 

37.72 
45.54 
35.94 
32.76 

99.38 
93.16 
98.12 
93.12 

98.46 
90.70 
93.92 
85.72 

94.76 
83.50 
74.30 
62.10 

88.06 
82.26 
89.30 
81.34 

79.18 
73.14 
79..70 
69.02 

51.46 
51.10 
44.84 
33.76 

100 
100 
100 
100 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
97.60 
93.42 
87.70 

100.0 
96.76 
84.12 
77.90 

99.98 
94.96 
60.08 
52.92 

98.32 
95.72 
84.74 
79.06 

95 .90 
92.30 
67.74 
62.60 

84.50 
81.12 
21.04 
22.60 

100.0 
99.28 
89.56 
79.54 

100.0 
98.92 
77.68 
67.28 

99.86 
97.24 
54.28 
46.40 

95.04 
90.84 
90.48 
80.00 

89.78 
84.04 
77.76 
65.36 

66.20 
62.80 
37.94 
29.00 

200 
200 
200 
200 

-./0 
-./01  
-./0∗  
-./01∗  

98.30 
98.30 
97.90 
97.50 

100.0 
98.00 
93.54 
93.04 

100.0 
97.12 
81.76 
80.76 

99.96 
98.16 
94.04 
93.00 

99.92 
97.82 
88.78 
86.60 

99.30 
96.08 
73.74 
69.24 

100.0 
98.60 
98.86 
94.00 

100.0 
98.14 
95.28 
85.88 

100.0 
96.64 
77.50 
66.00 

99.92 
98.46 
97.46 
89.40 

99.56 
97.42 
92.86 
81.06 

95.40 
90.70 
63.28 
53.38 

500 
500 
500 
500 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
99.02 
99.96 
99.92 

100.0 
98.84 
99.74 
99.54 

100.0 
98.52 
98.04 
97.44 

100.0 
99.06 
98.94 
98.50 

100.0 
98.94 
97.58 
96.94 

100.0 
98.48 
93.22 
91.48 

100.0 
99.86 
100.0 
99.94 

100.0 
99.84 
100.0 
99.94 

100.0 
99.80 
100.0 
99.72 

100.0 
99.86 
99.96 
99.38 

100.0 
99.84 
99.86 
98.96 

100.0 
99.74 
98.40 
96.08 

(0.8,0.8) 50 
50 
50 
50 

-./0 
-./01  
-./0∗  
-./01∗  

98.94 
96.92 
86.38 
77.48 

97.54 
94.74 
70.96 
61.74 

89.54 
84.38 
33.28 
27.54 

87.72 
87.98 
86.30 
78.06 

76.18 
78.70 
72.96 
63.72 

41.20 
51.44 
36.32 
30.24 

98.76 
96.38 
91.56 
81.16 

97.20 
93.30 
78.70 
64.66 

88.66 
81.24 
46.46 
34.98 

77.34 
78.86 
85.60 
66.90 

63.30 
67.02 
71.28 
53.42 

36.32 
42.06 
33.58 
25.22 

100 
100 
100 
100 

-./0 
-./01  
-./0∗  
-./01∗  

99.96 
99.48 
96.36 
88.42 

99.94 
99.28 
87.74 
76.24 

99.76 
98.20 
63.10 
51.46 

96.84 
96.52 
91.90 
83.56 

93.78 
92.64 
81.22 
72.94 

75.74 
75.38 
52.52 
44.16 

100.0 
99.98 
98.96 
86.02 

100.0 
99.98 
98.96 
86.02 

99.96 
99.76 
67.06 
46.10 

98.44 
98.28 
93.88 
82.60 

96.16 
96.30 
85.92 
71.66 

84.38 
86.98 
58.42 
44.24 

200 
200 
200 
200 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
99.74 
99.26 
96.90 

100.0 
99.70 
96.86 
93.34 

100.0 
99.54 
85.40 
80.44 

99.96 
99.86 
96.78 
92.54 

98.78 
99.78 
91.64 
86.54 

98.00 
96.94 
75.08 
68.26 

100.0 
99.76 
98.04 
92.80 

100.0 
99.76 
93.66 
86.34 

100.0 
99.62 
81.24 
70.02 

100.0 
99.46 
97.38 
90.02 

99.92 
99.32 
93.02 
80.34 

98.84 
96.90 
77.48 
55.70 

500 
500 
500 
500 

-./0 
-./01  
-./0∗  
-./01∗  

100.0 
100.0 
99.92 
99.74 

100.0 
100.0 
99.22 
98.56 

100.0 
100.0 
95.32 
94.36 

100.0 
100.0 
98.46 
97.48 

100.0 
100.0 
96.46 
95.44 

100.0 
99.84 
91.78 
89.94 

100.0 
100.0 
100.0 
99.52 

100.0 
100.0 
100.0 
99.02 

100.0 
100.0 
99.48 
93.72 

100.0 
100.0 
99.54 
96.34 

100.0 
100.0 
98.72 
92.20 

100.0 
99.96 
94.54 
77.92 
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Table 3 – Empirical Size of the Tests for the FE-SPD Model, DGP1

Queen contiguity Group interaction 

Normal Disturbances Non-normal Disturbances Normal Disturbances Non-normal Disturbances 

!"#, "%& ' Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2) 50 
50 
50 
50 
50 
50 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

13.08 
7.48 
7.20 

10.68 
10.12 
9.82 

7.02 
3.84 
3.54 
5.18 
4.76 
4.64 

1.74 
0.76 
0.60 
0.88 
0.74 
0.52 

24.56 
15.58 
9.94 

18.72 
17.10 
9.48 

16.82 
9.38 
4.94 

10.52 
9.40 
4.08 

7.20 
3.30 
0.94 
2.44 
2.14 
0.54 

13.58 
10.24 
9.80 

11.14 
10.56 
10.50 

7.68 
5.16 
4.60 
5.50 
5.06 
4.80 

2.02 
1.08 
0.64 
1.04 
0.80 
0.66 

24.22 
18.28 
11.02 
18.20 
16.94 
9.32 

15.80 
10.48 
5.32 
9.92 
8.86 
3.56 

6.50 
3.00 
0.82 
1.66 
1.28 
0.38 

100 
100 
100 
100 
100 
100 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

11.12 
8.92 
9.24 
9.50 
9.32 
9.64 

5.90 
4.70 
4.50 
4.76 
4.64 
4.54 

1.22 
0.70 
0.80 
0.80 
0.80 
0.84 

21.62 
17.20 
10.74 
17.30 
16.56 
9.42 

14.06 
10.68 
5.32 

10.34 
9.74 
4.22 

5.40 
3.70 
1.00 
2.82 
2.60 
0.60 

11.46 
9.76 
9.98 

10.06 
9.84 

10.08 

6.28 
5.20 
5.10 
5.18 
4.82 
4.82 

1.32 
0.94 
0.84 
0.84 
0.78 
0.78 

22.38 
19.12 
11.54 
18.78 
18.02 
9.70 

14.60 
11.10 
5.76 

10.30 
9.60 
4.28 

5.36 
3.56 
1.28 
2.64 
2.44 
0.68 

200 
200 
200 
200 
200 
200 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

10.68 
10.04 
10.08 
10.00 
9.88 
9.98 

5.66 
5.04 
5.06 
4.88 
4.80 
4.94 

1.02 
0.80 
0.78 
0.82 
0.80 
0.70 

21.22 
19.42 
11.40 
18.78 
18.34 
10.24 

13.42 
11.48 
6.16 

10.28 
10.28 
5.38 

4.98 
3.98 
1.04 
3.32 
3.14 
0.72 

10.04 
9.46 
9.38 
9.36 
9.12 
9.06 

5.00 
4.48 
4.32 
4.38 
4.34 
4.16 

1.10 
0.92 
0.86 
0.74 
0.74 
0.64 

20.52 
18.66 
11.68 
17.94 
17.66 
10.36 

13.44 
11.78 
6.44 

11.06 
10.74 
5.34 

5.26 
4.16 
1.18 
3.22 
3.12 
0.74 

500 
500 
500 
500 
500 
500 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

10.38 
9.96 
9.90 
9.94 
9.84 
9.86 

5.18 
4.90 
5.12 
4.82 
4.74 
5.00 

1.16 
1.08 
1.02 
1.08 
1.08 
1.00 

19.00 
18.04 
10.54 
17.78 
17.54 
9.64 

11.82 
11.08 
5.44 

10.44 
10.22 
4.90 

3.94 
3.28 
0.94 
2.84 
2.78 
0.74 

11.12 
10.42 
10.28 
10.80 
10.76 
10.68 

5.62 
5.00 
5.00 
5.34 
5.30 
5.24 

1.16 
1.06 
1.00 
1.10 
1.06 
0.88 

19.10 
17.82 
10.74 
17.94 
17.86 
10.54 

12.26 
10.94 
4.98 

11.14 
11.04 
4.80 

4.10 
3.38 
1.10 
3.22 
3.12 
0.88 

(0.2,0.8) 50 
50 
50 
50 
50 
50 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

13.80 
10.88 
10.70 
11.22 
10.52 
10.74 

7.42 
5.36 
5.26 
5.12 
4.60 
5.00 

1.92 
1.24 
0.94 
0.98 
0.76 
0.70 

24.30 
19.20 
12.40 
18.00 
16.92 
9.76 

16.52 
12.32 
6.12 

10.84 
9.58 
3.70 

7.22 
4.18 
1.04 
2.42 
1.98 
0.54 

13.00 
11.08 
11.28 
9.78 
8.84 
8.36 

7.44 
5.96 
5.82 
5.08 
4.50 
3.84 

2.00 
1.40 
1.22 
1.22 
0.90 
0.50 

25.36 
20.40 
13.56 
18.40 
16.12 
9.20 

17.00 
12.90 
7.10 

10.52 
8.68 
4.46 

7.14 
4.82 
1.60 
3.42 
2.44 
0.64 

100 
100 
100 
100 
100 
100 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

12.02 
10.68 
10.90 
10.84 
10.60 
10.92 

6.94 
5.82 
5.54 
5.66 
5.54 
5.28 

1.82 
1.44 
1.16 
1.34 
1.28 
1.04 

22.28 
19.24 
11.58 
18.84 
17.98 
9.82 

14.44 
11.76 
5.46 

10.78 
9.84 
4.20 

5.12 
3.36 
1.14 
2.54 
2.28 
0.64 

11.76 
10.38 
10.32 
10.28 
9.44 
9.20 

5.84 
5.16 
4.78 
4.76 
4.26 
3.98 

1.08 
0.82 
0.90 
0.64 
0.42 
0.52 

22.34 
19.64 
11.94 
19.06 
17.44 
9.48 

14.92 
12.06 
5.94 

10.92 
9.24 
4.02 

5.78 
3.88 
1.14 
2.84 
2.28 
0.68 

200 
200 
200 
200 
200 
200 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

10.24 
9.56 
9.54 
9.62 
9.32 
9.46 

5.04 
4.60 
4.62 
4.48 
4.36 
4.50 

1.00 
0.88 
0.80 
0.80 
0.80 
0.74 

20.46 
18.38 
10.68 
18.28 
17.68 
9.54 

12.56 
10.96 
5.76 

10.16 
9.92 
4.80 

4.46 
3.56 
1.12 
2.92 
2.74 
0.56 

11.10 
10.68 
10.56 
10.10 
9.58 
9.40 

5.82 
5.36 
5.16 
5.22 
4.72 
4.30 

1.18 
1.08 
1.04 
0.92 
0.80 
0.74 

20.42 
18.68 
11.12 
17.78 
16.74 
9.41 

12.60 
11.00 
5.28 

10.12 
9.10 
4.50 

4.36 
3.28 
1.02 
2.72 
2.12 
0.64 

500 
500 
500 
500 
500 
500 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

10.86 
10.56 
10.22 
10.40 
10.36 
10.06 

5.98 
5.80 
5.66 
5.68 
5.66 
5.50 

1.06 
0.98 
1.04 
0.90 
0.90 
0.96 

18.64 
17.82 
10.40 
17.38 
17.14 
9.90 

11.58 
10.88 
5.48 

10.44 
10.30 
4.78 

3.92 
3.58 
1.00 
3.28 
3.02 
0.86 

10.42 
10.18 
10.12 
10.20 
10.00 
9.96 

5.42 
5.26 
5.36 
5.14 
5.04 
5.04 

1.22 
1.16 
1.18 
1.16 
1.10 
0.98 

19.14 
18.30 
10.56 
18.06 
17.66 
9.92 

12.00 
11.00 
5.62 

10.58 
10.28 
4.94 

4.44 
3.80 
1.32 
3.42 
3.16 
0.98 

(0.8,0.8) 50 
50 
50 
50 
50 
50 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

12.68 
10.80 
10.64 
1.00 
9.32 
9.88 

6.70 
5.48 
5.32 
4.96 
4.54 
4.52 

1.80 
1.28 
0.72 
0.84 
0.64 
0.46 

25.32 
20.98 
12.68 
18.48 
17.22 
9.28 

16.98 
12.80 
6.04 
9.84 
8.86 
3.56 

6.52 
3.48 
0.82 
2.00 
1.60 
0.51 

14.44 
12.64 
12.62 
11.92 
10.76 
10.70 

7.70 
6.14 
5.76 
5.62 
5.00 
4.64 

2.00 
1.48 
0.96 
1.00 
0.86 
0.62 

23.38 
19.74 
12.64 
17.86 
16.10 
8.88 

16.06 
12.22 
5.96 

10.12 
8.44 
3.18 

6.22 
3.86 
1.12 
2.24 
1.62 
0.40 

100 
100 
100 
100 
100 
100 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

11.24 
10.24 
10.60 
10.02 
9.80 

10.04 

5.96 
5.16 
5.16 
4.82 
4.58 
4.64 

1.16 
0.90 
0.84 
0.74 
0.68 
0.70 

22.42 
19.70 
12.50 
18.74 
17.88 
10.44 

14.90 
12.32 
6.70 

10.94 
10.44 
4.52 

6.02 
4.18 
1.32 
2.90 
2.54 
0.58 

11.94 
11.10 
11.00 
10.54 
9.68 
9.80 

6.56 
5.84 
5.72 
5.26 
4.60 
4.44 

1.62 
1.38 
1.14 
1.04 
0.86 
0.68 

23.36 
20.52 
12.56 
19.40 
17.20 
9.70 

15.60 
13.08 
6.68 

11.54 
9.86 
3.98 

6.24 
4.12 
1.50 
2.86 
2.22 
0.46 

200 
200 
200 
200 
200 
200 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

10.34 
9.62 
9.92 
9.28 
9.08 
9.64 

5.18 
4.74 
4.82 
4.54 
4.32 
4.48 

0.92 
0.74 
0.76 
0.66 
0.60 
0.66 

19.52 
17.88 
10.50 
17.12 
16.64 
9.18 

12.54 
10.62 
5.54 
9.62 
9.16 
4.52 

4.54 
3.36 
1.14 
2.70 
2.54 
0.50 

10.72 
10.16 
9.96 

10.00 
9.54 
9.32 

5.70 
5.24 
5.44 
4.98 
4.70 
4.50 

1.36 
1.24 
1.24 
0.98 
0.90 
0.86 

20.58 
18.92 
11.92 
18.30 
17.04 
9.60 

13.68 
12.40 
6.36 

11.46 
10.24 
4.50 

5.06 
3.94 
1.48 
3.26 
2.80 
0.80 

500 
500 
500 
500 
500 
500 

()*+ 
()*+,  
()*+,,  
()*+∗  
()*+,∗  
()*+,,∗  

11.30 
11.02 
11.30 
11.00 
10.90 
11.12 

5.88 
5.68 
5.76 
5.58 
5.56 
5.68 

1.20 
1.12 
1.08 
1.06 
1.06 
1.04 

18.64 
17.76 
10.32 
17.54 
17.32 
9.82 

11.72 
10.96 
4.92 

10.60 
10.42 
4.30 

3.60 
3.22 
0.86 
2.82 
2.80 
0.70 

10.92 
10.70 
10.80 
10.58 
10.30 
10.32 

5.66 
5.54 
5.38 
5.32 
5.14 
5.14 

1.22 
1.10 
1.22 
1.10 
1.06 
1.06 

18.90 
17.94 
10.54 
17.74 
17.30 
9.80 

11.86 
11.20 
5.08 

10.86 
10.28 
4.38 

4.00 
3.44 
1.00 
2.98 
2.70 
0.72 
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Table 4 – Empirical Size Adjusted Powers of the Tests for the FE-SPD Model, DGP1 – Disturbances Heteroskedastic ! = #. % 

Queen contiguity Group interaction 

Normal Disturbances Non-normal Disturbances Normal Disturbances Non-normal Disturbances 

&'(, '*+ , Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2) 50 
50 
50 
50 
50 
50 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

90.14 
79.34 
77.70 
88.20 
87.80 
84.56 

82.42 
70.60 
66.62 
78.90 
78.86 
71.00 

60.04 
48.00 
40.88 
51.36 
49.68 
41.70 

50.74 
46.34 
44.42 
55.78 
55.82 
52.70 

38.14 
33.92 
32.38 
43.40 
42.66 
39.78 

16.42 
15.38 
14.48 
20.74 
19.88 
18.14 

74.10 
72.70 
71.40 
64.96 
63.92 
62.30 

62.60 
60.66 
59.30 
48.04 
47.06 
43.26 

37.60 
35.58 
31.74 
15.46 
14.18 
12.78 

52.70 
52.28 
52.18 
50.28 
48.96 
47.84 

38.68 
38.94 
37.60 
34.86 
33.50 
31.92 

16.94 
16.66 
15.88 
13.42 
12.58 
11.18 

100 
100 
100 
100 
100 
100 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

95.66 
95.18 
94.46 
95.14 
95.06 
93.98 

91.56 
90.66 
89.50 
89.64 
89.34 
86.82 

76.46 
74.02 
69.34 
68.20 
68.00 
60.28 

71.34 
71.32 
70.44 
69.46 
69.12 
67.98 

58.78 
58.76 
56.40 
54.82 
54.62 
51.52 

30.42 
31.10 
28.84 
24.36 
24.54 
23.36 

96.48 
95.94 
95.20 
95.36 
95.30 
93.84 

92.82 
91.96 
90.74 
89.10 
88.86 
86.24 

79.56 
76.26 
70.18 
67.76 
67.26 
58.72 

69.06 
68.90 
68.80 
67.02 
67.00 
66.22 

55.76 
57.10 
55.78 
52.96 
51.90 
50.00 

31.14 
29.38 
37.64 
22.82 
22.70 
21.62 

200 
200 
200 
200 
200 
200 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

99.94 
99.68 
99.70 
99.92 
99.92 
99.92 

99.92 
99.56 
99.52 
99.84 
99.84 
99.76 

99.24 
98.68 
98.18 
98.80 
98.82 
97.80 

95.16 
94.82 
94.54 
95.76 
95.62 
95.26 

91.36 
90.74 
89.98 
91.54 
91.42 
90.08 

75.60 
75.02 
72.84 
75.06 
74.86 
72.18 

100.0 
99.90 
99.90 
100.0 
100.0 
100.0 

99.96 
99.86 
99.86 
99.96 
99.96 
99.94 

99.50 
99.30 
99.12 
99.14 
99.12 
98.44 

93.56 
93.54 
93.02 
93.82 
93.70 
93.06 

87.72 
87.66 
86.46 
87.88 
87.62 
86.54 

68.46 
68.94 
65.82 
68.08 
67.70 
63.30 

500 
500 
500 
500 
500 
500 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.96 
99.96 
99.96 
99.96 
99.96 
99.96 

99.90 
99.90 
99.80 
99.90 
99.90 
99.76 

98.98 
99.02 
98.68 
98.70 
98.68 
98.08 

100.0 
99.98 
99.98 
100.0 
100.0 
100.0 

100.0 
99.98 
99.98 
100.0 
100.0 
100.0 

100.0 
99.98 
99.98 
100.0 
100.0 
100.0 

100.0 
99.96 
99.96 
99.98 
99.98 
100.0 

99.88 
99.84 
99.84 
99.90 
99.90 
99.84 

99.38 
99.30 
99.16 
99.32 
99.22 
99.04 

(0.2,0.8) 50 
50 
50 
50 
50 
50 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

63.68 
61.56 
60.40 
61.06 
60.40 
57.08 

49.44 
45.64 
46.00 
43.00 
42.36 
40.08 

23.04 
19.28 
19.20 
15.14 
14.02 
12.56 

39.16 
38.48 
38.24 
44.16 
43.76 
42.22 

27.30 
26.20 
26.48 
32.82 
31.60 
31.18 

11.00 
10.51 
10.43 
13.60 
12.80 
12.76 

60.98 
59.06 
57.52 
55.12 
54.28 
49.90 

48.10 
45.30 
43.36 
38.68 
37.58 
33.36 

24.06 
22.32 
20.16 
14.28 
12.32 
12.02 

37.56 
37.66 
35.60 
37.24 
36.92 
34.90 

26.62 
27.44 
24.58 
25.96 
24.58 
22.36 

17.94 
16.66 
14.16 
12.40 
11.36 
10.44 

100 
100 
100 
100 
100 
100 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

96.74 
95.74 
95.50 
96.18 
95.98 
95.42 

93.44 
92.52 
91.72 
91.36 
91.46 
89.78 

79.78 
78.14 
74.46 
70.16 
69.86 
61.66 

71.54 
71.36 
71.62 
72.62 
72.06 
71.50 

59.14 
58.48 
57.46 
59.32 
58.74 
58.02 

30.80 
30.68 
30.56 
30.70 
30.50 
30.76 

97.08 
97.06 
96.44 
96.80 
96.76 
95.90 

93.62 
93.48 
91.74 
93.48 
92.74 
90.00 

80.66 
79.62 
76.58 
77.72 
75.88 
70.70 

73.66 
73.88 
72.54 
75.88 
74.52 
72.58 

61.72 
61.78 
59.04 
64.62 
62.48 
59.86 

36.08 
35.64 
33.88 
38.72 
34.00 
29.86 

200 
200 
200 
200 
200 
200 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

99.92 
99.88 
99.84 
99.92 
99.90 
99.84 

99.80 
99.74 
99.74 
99.76 
99.76 
99.68 

99.00 
98.88 
97.98 
98.18 
98.16 
96.80 

93.58 
94.08 
93.54 
94.04 
94.06 
93.46 

87.94 
88.40 
88.00 
88.06 
87.96 
87.68 

72.46 
73.26 
70.84 
70.86 
70.90 
68.58 

99.90 
99.90 
99.88 
99.90 
99.44 
98.46 

99.66 
99.64 
99.48 
99.40 
98.10 
95.82 

97.88 
97.58 
96.36 
95.48 
90.16 
80.80 

90.28 
90.72 
90.06 
89.86 
86.52 
84.28 

83.10 
82.70 
80.52 
79.68 
73.90 
70.46 

60.60 
58.96 
55.48 
48.16 
39.26 
36.48 

500 
500 
500 
500 
500 
500 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.94 
99.94 
99.92 
99.94 
99.94 
99.92 

99.78 
99.80 
99.74 
99.80 
99.78 
99.72 

98.62 
98.64 
98.24 
98.48 
98.50 
98.10 

100.0 
100.0 
100.0 
100.0 
99.90 
99.88 

100.0 
100.0 
100.0 
100.0 
99.88 
99.86 

100.0 
100.0 
100.0 
100.0 
99.80 
99.64 

99.98 
99.98 
99.98 
99.98 
99.48 
99.36 

99.88 
99.88 
99.80 
99.88 
99.04 
98.88 

98.62 
98.84 
98.54 
98.86 
96.88 
96.12 

(0.8,0.8) 50 
50 
50 
50 
50 
50 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

71.90 
70.22 
69.06 
61.54 
61.14 
58.04 

59.24 
57.22 
55.50 
44.24 
42.88 
37.78 

32.62 
29.84 
25.84 
22.22 
21.30 
19.40 

53.20 
53.94 
53.20 
52.06 
52.10 
49.56 

40.70 
40.70 
40.46 
36.32 
35.06 
35.30 

18.80 
18.16 
18.74 
14.38 
13.48 
13.08 

72.66 
72.42 
70.50 
69.76 
69.54 
66.38 

61.54 
60.96 
57.70 
55.72 
55.04 
51.94 

37.10 
35.30 
30.94 
28.26 
29.88 
23.40 

51.62 
53.42 
51.58 
50.16 
48.94 
47.24 

39.50 
41.64 
38.30 
36.68 
35.62 
33.42 

17.58 
19.06 
16.88 
15.26 
14.20 
12.48 

100 
100 
100 
100 
100 
100 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

98.84 
98.76 
98.28 
98.40 
98.28 
97.28 

97.60 
97.24 
95.46 
95.50 
95.40 
91.50 

88.12 
85.92 
77.84 
73.46 
72.40 
58.54 

82.00 
82.30 
80.72 
80.16 
79.66 
77.64 

71.14 
70.88 
69.18 
66.50 
65.06 
62.42 

45.58 
45.38 
42.68 
34.52 
33.16 
29.76 

98.10 
98.00 
97.84 
97.44 
97.16 
96.36 

95.98 
95.92 
94.92 
94.48 
93.76 
90.90 

86.44 
85.52 
80.56 
78.06 
76.12 
64.90 

72.80 
73.16 
72.26 
74.08 
72.22 
69.86 

60.66 
60.58 
59.38 
61.54 
58.28 
57.02 

34.32 
34.62 
30.20 
36.04 
31.44 
27.30 

200 
200 
200 
200 
200 
200 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

99.88 
99.92 
99.88 
99.90 
99.90 
99.82 

99.76 
99.74 
99.74 
99.70 
99.68 
99.67 

98.64 
98.58 
98.10 
97.62 
97.58 
96.62 

92.00 
92.20 
91.84 
92.02 
91.94 
91.64 

86.22 
86.38 
85.54 
85.04 
84.68 
84.18 

66.32 
65.28 
64.28 
61.70 
61.62 
60.08 

99.88 
99.86 
99.86 
99.76 
99.28 
99.14 

99.64 
99.62 
99.56 
99.46 
98.70 
98.20 

98.32 
98.24 
97.84 
97.34 
95.52 
92.86 

93.62 
93.62 
93.26 
93.48 
92.16 
91.10 

88.48 
88.40 
87.28 
86.66 
83.80 
82.10 

68.98 
68.56 
66.38 
62.10 
56.44 
52.02 

500 
500 
500 
500 
500 
500 

-./0 
-./01  
-./011  
-./0∗  
-./01∗  
-./011∗  

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.90 
99.88 
99.82 
99.88 
99.88 
99.84 

99.64 
99.60 
99.58 
99.62 
99.62 
99.64 

98.22 
98.34 
98.02 
97.94 
97.94 
97.56 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

99.82 
99.82 
99.78 
99.86 
98.32 
98.22 

99.52 
99.52 
99.32 
99.56 
97.64 
97.44 

97.96 
97.96 
97.38 
98.12 
94.76 
93.72 
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Table 5 – Empirical Size and Size adjusted Powers of the Tests for the FE-DSPD Model, ! = 0.3, DGP1 
Empirical Size 

Queen contiguity Group interaction 

Normal Disturbances Non-normal Disturbances Normal Disturbances Non-normal Disturbances 

&'(, '*, '+, - Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2,0.2) 50 
50 

./01/2  

./01/2∗  
10.48 
9.40 

4.78 
3.90 

0.76 
0.50 

10.68 
9.58 

5.36 
4.54 

0.54 
0.48 

11.68 
10.50 

5.68 
5.06 

0.86 
0.42 

12.14 
8.72 

6.04 
3.40 

1.20 
0.28 

100 
100 

./01/2  

./01/2∗  
10.56 
9.86 

5.42 
4.78 

0.92 
0.74 

11.26 
10.74 

5.92 
5.40 

1.12 
0.90 

11.04 
10.36 

5.38 
4.72 

0.92 
0.76 

12.18 
10.04 

6.22 
4.52 

1.12 
0.44 

200 
200 

./01/2  

./01/2∗  
10.24 
10.00 

5.20 
5.02 

1.02 
0.90 

10.22 
9.96 

4.62 
4.34 

0.68 
0.58 

11.02 
10.64 

5.72 
5.38 

1.08 
0.88 

12.04 
10.92 

6.50 
5.24 

1.06 
0.72 

400 
400 

./01/2  

./01/2∗  
10.32 
10.08 

5.16 
5.02 

0.84 
0.80 

11.00 
10.86 

5.04 
4.86 

1.12 
0.96 

10.88 
10.64 

5.30 
5.18 

1.10 
1.04 

11.02 
10.26 

5.58 
4.88 

1.02 
0.80 

(-0.2,-0.2,-0.2) 50 
50 

./01/2  

./01/2∗  
11.52 
10.30 

5.66 
4.80 

0.98 
0.68 

13.94 
10.50 

7.42 
4.62 

1.46 
0.54 

12.30 
10.96 

6.00 
4.94 

1.10 
0.76 

13.64 
10.24 

6.98 
4.28 

1.16 
0.32 

100 
100 

./01/2  

./01/2∗  
11.70 
10.94 

5.78 
5.34 

1.02 
0.72 

12.66 
10.36 

6.24 
4.36 

1.36 
0.56 

11.30 
10.66 

5.64 
4.86 

0.94 
0.64 

12.24 
10.22 

6.18 
4.46 

1.16 
0.42 

200 
200 

./01/2  

./01/2∗  
10.76 
10.36 

5.32 
4.04 

1.10 
0.98 

11.48 
10.22 

5.74 
4.64 

1.12 
0.58 

9.76 
9.56 

5.26 
4.96 

1.00 
0.92 

11.52 
10.30 

5.36 
4.42 

1.20 
0.72 

400 
400 

./01/2  

./01/2∗  
9.84 
9.62 

5.02 
4.92 

1.02 
0.94 

10.92 
10.36 

5.22 
4.64 

0.74 
0.64 

10.30 
10.12 

5.02 
4.92 

0.94 
0.84 

10.74 
10.00 

5.36 
4.70 

1.10 
0.66 

Size adjusted Powers - Disturbances Heteroskedastic 4 = 5. 6  
(0.2,0.2,0.2) 50 

50 
./01/2  
./01/2∗  

99.56 
99.38 

99.10 
97.54 

93.28 
81.24 

92.08 
89.68 

84.48 
77.96 

59.66 
45.92 

94.34 
97.42 

93.82 
96.90 

91.68 
91.60 

89.52 
92.58 

86.08 
86.18 

71.18 
66.90 

100 
100 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
99.96 

99.92 
99.78 

99.46 
98.64 

96.16 
89.62 

99.82 
99.88 

99.82 
99.86 

99.82 
99.36 

99.42 
99.60 

99.04 
98.04 

95.88 
89.10 

200 
200 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
99.92 

100.0 
99.84 

99.98 
99.38 

99.12 
96.82 

99.64 
99.92 

99.64 
99.92 

99.62 
99.90 

99.26 
99.92 

99.24 
99.70 

98.72 
98.14 

400 
400 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.98 

100.0 
99.90 

99.92 
99.06 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.96 

99.98 
99.78 

(-0.2,-0.2,-0.2) 50 
50 

./01/2  

./01/2∗  
99.76 
99.54 

99.46 
97.76 

95.52 
86.66 

93.96 
91.48 

88.26 
81.42 

63.28 
49.40 

99.46 
99.92 

99.38 
99.60 

97.82 
94.96 

95.28 
94.80 

91.74 
88.70 

76.42 
70.40 

100 
100 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
99.96 

99.70 
99.62 

99.38 
98.68 

96.74 
91.92 

100.0 
100.0 

100.0 
100.0 

99.98 
99.66 

99.78 
99.44 

99.26 
97.68 

95.48 
89.12 

200 
200 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
99.84 

100.0 
99.88 

100.0 
99.48 

99.34 
97.58 

99.98 
100.0 

99.98 
100.0 

99.98 
100.0 

99.98 
99.92 

99.96 
99.80 

99.50 
98.38 

400 
400 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.98 

99.96 
99.62 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.98 

99.98 
99.90 

 Table 6 – Empirical Size and Size adjusted Powers of the Tests for the FE-DSPD Model, ! = 0.3, DGP2 
Empirical Size 

Queen contiguity Group interaction 

Normal Disturbances Non-normal Disturbances Normal Disturbances Non-normal Disturbances 

&'(, '*, '+, - Tests 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1% 

(0.2,0.2,0.2) 50 
50 

./01/2  

./01/2∗  
13.74 
10.12 

6.94 
4.44 

1.34 
0.20 

13.56 
10.26 

7.12 
4.34 

1.18 
0.36 

11.92 
8.78 

6.36 
3.62 

1.14 
0.38 

11.92 
8.78 

6.36 
3.62 

1.14 
0.38 

100 
100 

./01/2  

./01/2∗  
12.70 
10.48 

6.62 
4.54 

1.08 
0.56 

12.34 
10.12 

6.20 
4.60 

1.38 
0.48 

11.72 
9.60 

6.02 
4.36 

1.26 
0.50 

11.72 
9.60 

6.02 
4.36 

1.26 
0.50 

200 
200 

./01/2  

./01/2∗  
12.00 
10.72 

6.38 
5.06 

1.06 
0.60 

12.24 
10.68 

6.12 
5.18 

1.14 
0.72 

11.54 
10.12 

5.56 
4.54 

1.12 
0.60 

11.54 
10.12 

5.56 
4.54 

1.12 
0.60 

400 
400 

./01/2  

./01/2∗  
11.18 
10.64 

5.34 
4.98 

1.02 
0.76 

10.74 
10.02 

5.42 
4.86 

1.12 
0.76 

11.00 
10.36 

5.80 
4.88 

1.20 
0.82 

11.00 
10.36 

5.80 
4.88 

1.20 
0.82 

(-0.2,-0.2,-0.2) 50 
50 

./01/2  

./01/2∗  
10.94 
9.76 

5.42 
4.44 

0.92 
0.68 

14.52 
10.56 

7.94 
4.50 

1.74 
0.58 

11.56 
10.14 

5.40 
4.30 

1.10 
0.52 

14.74 
10.24 

7.32 
4.08 

1.54 
0.46 

100 
100 

./01/2  

./01/2∗  
11.00 
10.40 

5.68 
5.04 

1.10 
0.72 

12.86 
10.64 

6.86 
4.70 

1.22 
0.64 

10.98 
10.46 

5.04 
4.56 

1.06 
0.74 

11.92 
9.72 

6.40 
4.36 

1.08 
0.44 

200 
200 

./01/2  

./01/2∗  
10.68 
10.18 

5.44 
5.28 

0.94 
0.86 

11.64 
10.60 

5.96 
4.72 

1.18 
0.64 

10.12 
9.88 

4.86 
4.54 

0.98 
0.76 

11.30 
10.18 

5.40 
4.38 

1.10 
0.70 

400 
400 

./01/2  

./01/2∗  
10.86 
10.76 

5.30 
5.18 

1.10 
1.02 

10.62 
10.02 

5.44 
4.98 

1.14 
0.76 

9.86 
9.72 

5.06 
4.84 

1.16 
1.06 

10.74 
9.84 

5.02 
4.64 

1.04 
0.82 

Size adjusted Powers - Disturbances Heteroskedastic 4 = 5. 6  
(0.2,0.2,0.2) 50 

50 
./01/2  
./01/2∗  

99.10 
99.12 

98.66 
97.14 

93.52 
85.68 

91.80 
89.72 

84.00 
80.58 

58.00 
53.54 

86.20 
95.28 

85.08 
90.26 

80.10 
70.56 

82.40 
89.44 

77.30 
80.02 

56.72 
46.94 

100 
100 

./01/2  

./01/2∗  
99.44 
99.78 

99.44 
99.78 

99.36 
99.10 

98.84 
98.68 

98.44 
96.88 

92.56 
86.92 

94.42 
97.22 

94.38 
96.98 

94.24 
95.98 

93.06 
96.42 

92.84 
95.46 

91.66 
90.42 

200 
200 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
99.92 

99.98 
99.96 

99.96 
99.82 

99.88 
98.86 

99.64 
100.0 

99.60 
100.0 

99.56 
99.94 

99.44 
99.92 

99.34 
99.42 

98.62 
97.38 

400 
400 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.96 

99.98 
99.78 

99.96 
100.0 

99.96 
100.0 

99.96 
100.0 

99.92 
100.0 

99.88 
99.88 

99.88 
99.92 

(-0.2,-0.2,-0.2) 50 
50 

./01/2  

./01/2∗  
99.64 
99.38 

99.00 
97.24 

90.98 
80.92 

92.64 
90.34 

84.72 
80.90 

60.96 
56.38 

93.56 
97.92 

92.22 
92.96 

87.32 
74.80 

89.52 
91.92 

83.82 
83.08 

62.54 
49.08 

100 
100 

./01/2  

./01/2∗  
99.74 
99.94 

99.74 
99.92 

99.62 
99.02 

99.50 
99.14 

98.88 
97.50 

92.40 
85.46 

99.90 
99.90 

99.90 
99.90 

99.90 
99.64 

99.84 
99.76 

99.80 
99.22 

98.68 
94.02 

200 
200 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

99.98 
99.94 

99.98 
99.56 

99.68 
98.22 

100.0 
100.0 

100.0 
100.0 

100.0 
99.90 

100.0 
99.90 

100.0 
99.30 

99.22 
96.46 

400 
400 

./01/2  

./01/2∗  
100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

100.0 
99.82 

100.0 
100.0 

100.0 
100.0 

100.0 
100.0 

99.98 
100.0 

99.98 
100.0 

99.96 
99.96 
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