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argue that testing influences the confirmed number of infections. 

Objectives/Methods: Do time series on reported infections and the number 

of tests allow one to draw conclusions about actual infection numbers? A SIR 

model is presented where the true numbers of susceptible, infectious 
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Results: Official confirmed infection numbers are likely to be biased and cannot 

be compared over time. The bias occurs because of different reasons for testing 

(e.g. by symptoms, representative or testing travellers). The paper illustrates the bias 

and works out the effect of the number of tests on the number of reported cases. 

The paper also shows that the positive rate (the ratio of positive tests to the total 
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Test for CoV-2, count Covid-19

1 Introduction

Background. Statistics have gained a lot in reputation during the Covid-19 pandemic.
Almost everybody on this globe follows numbers and studies “the curve”on recorded cases, on
daily increases or on incidences of CoV-2 infections.
The open question. What do these numbers mean? What does it mean that we talk

about “a second wave”? Intuitive interpretations of “the curve” suggest that the higher the
number of new infections, say in a country, the more severe the epidemic is in this country. Is
this interpretation correct? When the number of infections increases, decision makers start to
discuss additional or tougher public health measures. Is this policy approach appropriate?
Our message. Reported numbers of CoV-2 infections are probably not comparable over

time. When public health authorities report x new cases on some day in October 2020, these
x new cases do not have the same meaning as x new cases in April, May or June 2020. The
bias results from different testing rules that are applied simultaneously. Private and public
decision making should not be based on time series of CoV-2-infections as the latter do not
provide information about the true epidemic dynamics in a country. If the reason for testing
was known, a unbiased measure of the severity of an epidemic could be computed easily.
Our framework. We present a theoretical framework that allows one to understand the

link between testing and the number of reported infections. We extend the classic SIR model
(Kermack and McKendrick, 1927, Hethcote, 2000) to allow for asymptomatic cases and for
testing.2 Our fundamental assumption states that the true numbers of susceptible, infectious
and removed individuals are not observed.
Results. The reason for the intertemporal bias consists in relative changes of test regimes.

If a society always employed only one rule when tests are taken, e.g. “test for SARS-CoV-2 in
the presence of a certain set of symptoms”, then infection numbers would be comparable over
time. If tests are undertaken simultaneously, e.g. “test in the presence of symptoms”but also
“test travellers without symptoms”, and the relative frequency of tests changes, a comparison
of the number of reported infections over time bears no meaning. The paper illustrates the
bias by a “second wave”in reported cases which —by true epidemiological dynamics —is not a
second wave.
Understanding this bias also provides an answer to one of the most frequently asked question

when it comes to understanding reported infection numbers: What is the role of testing? Do
we observe a lot of reported infections only because we test a lot? Should we believe claims
such as “if we test half as much, we have half as many cases”. This paper will provide a precise
answer to what extent the reported number of infections is determined by the number of tests
in a causal sense. The answer in a nutshell: If tests are undertaken because of symptoms, there
is no causal effect from the number of tests on the number of reported infections. If tests
are undertaken for other reasons (travellers, representative testing), the number of reported
infections go up simply because there is more testing.3

2Asymptomatic cases have also been taken into account e.g. by Davies et al. (2020), Ferguson et al.
(2020) and Donsimoni et al. (2020). They do not analyse the biasing effect of various reasons for testing.
Contributions from mathematical modelling, helping to find appropriate policy responses to pandemics, are
discussed by Metcalf et al. (2020). The effect of testing strategies are not treated explicitly. We strongly share
their and Robert May’s view that “mathematical models ... force clarity and precision upon conjecture”(May,
2004). Testing is considered e.g. by Perkins et al. (2020). They estimate the effect of a lack of testing capacity
on reported infections. They do not discuss the conceptional issue that different testing strategies bias reported
infection numbers.

3There are other sources of intertemporal biases. The speeds with which different risk groups become infected
might differ, multiple testing of one person matters and general risk perceptions of medical personnel. We focus
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We show that time series on the number of tests and time series on reported infections do
not allow one to obtain information about the true state of an epidemic. We also study the
positive rate as the ratio of the number of positive tests to the total number of tests. The
positive rate is informative if we undertook representative testing only. The positive rate is not
informative about true epidemiological dynamics when there are several reasons for testing.
Understanding the biases also allows us to understand how to correct for it. The paper

presents a severity index for an epidemic that is unbiased. One can obtain this index in two
ways: Record the reason why a test was undertaken or count only the Covid-19 cases. Such
an index should be used when thinking about relaxing or reimposing public health measures.
Testing is important for detecting infectious individuals, counting Covid-19 cases is important
for private and public decision making.
Structure of paper. The next section presents the model. Section 3 shows biased and

unbiased measures of the true but unobserved dynamics of an epidemic. It also studies the
(lack of) informational content of time series on reported infections and time series on the
number of tests, and the properties of the positive rate. It finally presents an unbiased severity
index. The conclusion summarizes.

2 The model

The basic assumption of our extension of the susceptible-infectious-removed (SIR) model con-
sists of the belief that true infections dynamics are not observable. Simultaneous testing of
an entire population or weekly representative testing is not feasible —at least given current
technological, administrative and political constraints. This section therefore first describes the
true but unobserved infection dynamics, then introduces tests into this framework and finally
computes the number of reported infections within this framework.

2.1 True but unobserved infection dynamics

• The classic SIR model

We study a population of fixed size P. Individuals can be in three states as in a standard SIR
model. The number of individuals that are susceptible to infection is denoted by S̃ (t) . This
number is unobservable to the public and to health authorities. The numbers of infectious and
removed (i.e. recovered or deceased) individuals are denoted by Ĩ (t) and R̃ (t) , respectively.
We assume that individuals are immune and non-infectious after being removed.
Let the (expected) number of individuals in the state of being susceptible at a point in time

t be denoted by S̃ (t) .4 The number of susceptible individuals falls according to

d

dt
S̃ (t) = −rĨ (t) S̃ (t) = −λc (t) S̃ (t) , (1)

where r is a constant and λc (t) ≡ rĨ (t) can be called the individual infection rate. It captures
the idea that the risk of becoming infected is the greater, the higher the number of infectious
individuals.5 Merging individual recovery rate and death into one constant ρ, the number of

on the bias due to tests but discuss perceptions briefly below.
4We write expected number as ordinary differential equations in SIR models could or should be understood

as Kolmogorov backward equations describing means of continuous time Markov chains. See Karlin and Talyer
(1998) or Ross (1996) for an introduction.

5In the tradition of Diamand-Mortensen-Pissarides search and matching models in economics (Diamond,
1982, Mortensen, 1982, and Pissarides, 1985), this individual infection rate can be expressed capturing similar
ideas as in a matching function: it should not only increase in the number of infectious individuals but also fall
in the number of susceptible individuals. The latter reduces the probability that a random contact is infectious.
See Donsimoni et al. (2020a) for an implementation.
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infectious individuals changes according to

d

dt
Ĩ (t) = λc (t) S̃ (t)− ρĨ (t) . (2)

Finally, as a residual, the number of removed individuals rises over time according to dR̃ (t) /dt =
ρĨ (t). We illustrate the dynamics in the following figure, employed also later on.

Figure 1 The true infection dynamics (a simple SIR model)

• Modelling symptomatic and asymptomatic cases

We can easily integrate asymptomatic cases into this framework. We split the true number
of infectious individuals described in (2) into symptomatic and asymptomatic cases,

Ĩ (t) = Ĩsymp (t) + Ĩasymp (t) . (3)

This allows us to capture the infection process in (2) by two distinct differential equations.
When

d

dt
Ĩsymp (t) = λsympc (t) S̃ (t)− ρĨsymp (t) , (4)

d

dt
Ĩasymp (t) = λasympc (t) S̃ (t)− ρĨasymp (t) , (5)

hold, (2) holds as well. Individual infection rates are now defined as

λsympc (t) = srĨ (t) , (6a)

λasympc (t) = (1− s) rĨ (t) . (6b)

The epidemiological idea behind these equations is simple. The rate with which one individual
becomes infected is the same for everybody and given by rĨ (t) . The higher the number of infec-
tious individuals in society, Ĩ (t) , the higher the rate with which one individual gets infected.
It then depends on various, at this point partially unknown, physiological conditions of the
infected individual whether they develop symptoms or not. We denote the share of individuals
that develop symptoms by s. We assume this share is constant.6

• Epidemiological dynamics

This completes the description of the model. Let us now describe how we can understand
(unobserved) epidemiological dynamics. We start with some initial condition for S̃ (t). A good
candidate would by S̃ (0) = P, i.e. the entire population of size P is susceptible to being
infected and become infectious. Initially, there are very few infectious individuals, say, there
are two, Ĩsymp (t) = Ĩasymp (t) = 1. Given infection rates (6a) and (6b) and parameters, the
number of infectious symptomatic and asymptomatic cases evolves according to (4) and (5).

6The model neglects the effect of quarantine. If infectious individuals know about their status and therefore
stay in quarantine, they should be removed from Ĩ (t) or at least get a lower weight in (6).
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Infectious individuals are removed from being infectious at a rate ρ.7 The number of susceptible
individuals follows (1).
The epidemic is over with herd immunity, i.e. S̃ = 0 at some point (far in the future) or when

recovery is suffi ciently fast relative to inflows such that Ĩ = 0.8 The epidemic is heading towards
an end when d

dt
Ĩsymp (t) < 0 and d

dt
Ĩasymp (t) < 0, i.e. the number of infectious individuals falls.9

We abstract from public health measures and their effects (as studied e.g. by Dehning et al.,
2020 or Donsimoni et al., 2020a, b,). If we wanted to include them, we could allow public
health measures to affect r in the individual infection rate in (2).10

2.2 Modelling tests for SARS-CoV-2

To understand the effects of tests, we now introduce testing into our SIR model. The following
figure displays all unobserved quantities in the model by dashed lines. The red circles represent
the standard SIR model illustrated in figure 1.
Testing can take place for a variety of reasons described in test strategies adopted by various

countries. The reasons for tests we take into account at this point is testing due to the presence
of typical symptoms, representative testing and testing travellers. While testing by symptoms
and representative testing is well-defined, testing travellers is really only an example for a
larger type of test. This example covers all tests that are applied to a group defined by
certain characteristics which, however, are not representative of the population as a whole.
Other examples of this non-representative testing include testing of soccer players, testing in
retirement homes or their visitors, testing in hot spots or testing contact persons of infected
individuals.

Figure 2 The SIR model with testing

7It would be straightforward to assume, e.g. ρasymp > ρsymp . This would capture the idea that asymptomatic
cases recover faster than symptomatic cases. We ignore this extension as this distinction would not affect our
main argument.

8For analytical solutions of the classic SIR model, showing this aspect most clearly, see Harko et al. (2014)
or Toda (2020).

9This condition is related to the widely discussed reproduction number.
10Current applications of the SIR model also badly neglect the non-exponential distribution in various states.

It is well-known (e.g. Linton et al., 2020 or Lauer et al., 2020) that incubation time is (approximately) log-
normally distributed. It is now also understood that the reporting delay per se and added to incubation time
is also non-exponentially distributed (Mitze et al., 2020, app. A.3). The “chain trick”(Hurtado and Kirosingh,
2019) would allow to implement this numerically. Meyer-Herrmann (2018) employed a related struture but did
not focus on densities of duration explicitly.
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• Testing by symptoms

Individuals can catch many diseases (or maybe better sets of symptoms) indexed by i = 1...n.
For simplicity, the above figure displays only two diseases (1 and 2) and Covid-19. The number
of individuals that have a disease i and go to a doctor on day t is Di (t) . An individuals becomes
sick with an arrival rate λi and recovers from this specific sickness i with a rate of ρi. For clarity,
we add a symptomatic SARS-CoV-2 infection to this list of diseases. The individual is infected
and develops symptoms with rate λsympc (t) , which we know from (6a), and is removed with
rate ρc. The number of symptomatic SARS-COV-2 individuals is Ĩsymp (t) from (4).
There is a certain probability pi that a doctor performs a test, given a set of symptoms

i. This probability reflects the subjective evaluation of the general practitioner (GP) whether
certain symptoms are likely to be related to SARS-CoV-2. The probability to get tested with
symptomatic SARS-CoV-2 infection (which the GP of course does cannot diagnose without a
test) is denoted by pc. Hence, the (average or expected) number of tests that are performed at
time t due to consulting a doctor is given by

TD (t) = Σn
i=1T

D
i (t) + TDc (t) = Σn

i=1piDi (t) + pcĨsymp (t) . (7)

The second equality replaces the number of tests by the number of sick individuals per disease
times the probability that this individuals is tested.11

Note that, apart from population size P, the number of tests taken because of the presence
of symptoms, TD (t) , is the first variable that is observed. If health authorities collected
information why a test was performed (set of symptoms that can be observed by a GP), we
would observe TDi (t) and TDc . If not, we observe T

D (t) only.

• Testing travellers or for scientific reasons

Tests can be performed for a variety of reasons. One consists in testing travellers, another
consists in tests for scientific reasons and so on. Theses tests are not related to symptoms.
Taking the example of representative tests, the tests are applied to the population as a whole.
The number of tests is chosen by public authorities, scientists, available funds, capacity consid-
erations and other. In any case, it is independent of infection-characteristics of the population.
Concerning representative testing, we denote the number of tests of this type undertaken at t
by TR (t) . When it comes to travelers, we denote the number of tests by T T (t) .
Summarizing, the total number of tests being undertaken in our model is given by the sum

of tests due to symptoms, TD (t), representative tests TR (t) and testing travellers, T T (t) ,

T (t) = TD (t) + TR (t) + T T (t) = Σn
i=1piDi (t) + pcĨsymp (t) + TR (t) + T T (t) . (8)

The second equality employs the number of tests by symptoms from (7). The equation thereby
reemphasizes the endogeneity of the number of tests by symptoms, TD (t) is determined by the
number of symptoms occurring in a country or region, and the exogeneity of other reasons for
testing, TR (t) and T T (t) . The latter are not determined by symptoms.

2.3 The number of reported infections

The number of reported infections at time t is given by the sum of reported infections split by
the reasons for testing introduced above,

I (t) = Σn
i=1Ii (t) + Ic (t) + IR (t) + IT (t) . (9)

11In a broader interpretation, one could understand pi and pc as the probabilities that an individual gets
tested and that they go to the doctor. No test is ever performed if individuals with symptoms stay at home.
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• Testing by symptoms

As we are perfectly informed in our theoretical world about the (expected) number of CoV-2
infections and other diseases, we know that the number of positive CoV-2 tests is zero for all
diseases,12

Ii = 0. (10)

Individuals have Covid-19 related symptoms because they caught a cold, they have the flu or
other. The probability that a CoV-2 infected individual has a positive test is set equal to one
(ignoring false negative tests). The number of positive tests for individuals that are infected
with CoV-2 is therefore identical to the number of tests,

Ic (t) = TDc (t) . (11)

• Testing for other reasons

The probability that a representative test is positive is denoted by pR (t) . This probability
is a function of the true underlying and unobserved infection dynamics. If the sample chosen
is truly representative, then the probability for a positive test is given by

pR (t) =
Ĩ (t)

P
. (12)

Hence, representative tests make the true number Ĩ (t) of infectious individuals visible for
the moment at which the tests are undertaken. This true number includes symptomatic and
asymptomatic cases as in (3).
The probability that a test of travellers is positive depends on a multitude of determinants

among which region traveled to and behaviour of the traveller. We denote the probability that
such a test is positive by pT (t). We consider this probability to be exogenous to our analysis.

• Total reported infections

A first step towards the total number of reported infections starts from (9) and takes (10)
and (11) into account,

I (t) = TDc + pR (t)TR (t) + pT (t)T T (t) .

This is also the expression displayed in figure 2 between ’CoV-2 tests’and ’confirmed infections’.
Reported infections come from testing CoV-2 individuals with symptoms, from representative
testing and from other sources such as travellers. Employing TDc (t) = pcĨsymp (t) from (7) and
pR (t) from (12), the number of reported infections can be written as

I (t) = pcĨsymp (t) +
Ĩ (t)

P
TR (t) + pT (t)T T (t) . (13)

3 Unbiased and biased reporting

Before we compute the bias in the number of infections, let us define what we understand by
an unbiased time series of numbers of infections. A time series is unbiased if it is proportional
to the true (but unobserved) number of infections. An example of a biased time series is then
simple: If the number of tests increases the number of reported infections, then the number of
reported infections is not informative about the true number of infections.

12Test procedures and techniques might imply some false positive but we abstract from this at this point.
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3.1 Unbiased reporting

Our central equation is (13). The reported number of infections would be unbiased if only tests
by symptoms were undertaken. Reported infections (with TR (t) = T T (t) = 0) would by (13)
amount to

I (t) = ID (t) = pcĨsymp (t) . (14)

When the reported number of infections I (t) goes up, one would be certain that the unobserved
number of symptomatic CoV-2 infections Ĩsymp (t) would go up as well. The more infections
are reported, the more severe the epidemic is.
This equation also shows under which circumstances the number of tests does not have a

causal effect on the number of reported infections. If tests are undertaken according to a rule
that makes testing dependent on something else (e.g. the presence of symptoms), the number
of tests itself is determined by the number of symptoms. Hence, while the number of tests
and reported infections are correlated, the causal underlying factor is the number of patients
visiting a physician with CoV-2 related symptoms.
A second example of unbiased testing is (exclusive) representative testing. When only

representative testing is undertaken, the number of reported infections (with TDc = T T (t) = 0)
from (13) amounts to

I (t) =
Ĩ (t)

P
TR (t) .

Here, the number of reported infections, I (t) , does rise in the number of tests, TR (t). The
more we test, the higher the number of cases. Yet, representative testing is (of course) the
gold standard of testing. The ratio of positive cases to the number of tests yields the share of
infections in the population,13

I (t)

TR (t)
=
Ĩ (t)

P
. (15)

This share is driven by Ĩ (t) which shows that (i) representative testing provides a snapshot
at this point in time t of the current epidemic dynamics and that (ii) representative testing
provides a measure of overall infections, i.e. symptomatic and asymptomatic ones.
We have seen two examples of unbiased reporting, one for symptomatic infections, one for

all infections. They show that the question whether the number of reported cases rises in the
number of tests is not as important as the question whether the type of testing provides useful
information. In the first example, the claim that more tests increase the number of reported
infections is meaningless as the number of tests is not chosen. In the second example, the
number of positive cases rises in the number of tests but the ratio of these two quantities is
highly informative.

3.2 Biased reporting

• Illustrating a bias

Now imagine several types of testing are undertaken simultaneously. The number of reported
infections at t is then given by the full expression in (13). Consider first the case of symptomatic
and representative testing. The number of reported cases (with T T (t) = 0) is then

I (t) = pcĨsymp (t) +
Ĩ (t)

P
TR (t) . (16)

13This ratio is an example of the ’positive rate’. We will study it in more detail below.
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Imagine someone (the government, researchers, other) decide to undertake more representative
testing, i.e. TR (t) goes up. This means that I (t) increases even though there is no change in
the true number Ĩsymp (t) of symptomatic cases. There is also no change in the true number
Ĩ (t) of symptomatic and asymptomatic cases. Whoever perceives the reported number I (t) is
led to believe that something fundamental has changed within the epidemiological dynamics.
But this is of course not true. The reported number goes up simply because more tests were
undertaken.14

Can we gain some information out of this expression if we divide it by the number of tests
TR (t) as it had turned out to be very useful in the case of exclusive representative testing in
(15)? We would obtain

I (t)

TR (t)
=
pcĨsymp (t)

TR (t)
+
Ĩ (t)

P

which does contain the informative infection share Ĩ (t) /P as the second term on the right
hand side. But the first term does not have a meaningful interpretation and neither does the
entire term.

• A numerical example of a bias

Let us illustrate the potential bias by looking at the third type of testing considered here —
testing travellers. The number of reported infections according to (14) in the case of testing by
symptoms and testing travellers reads

I (t) = pcĨsymp (t) + pT (t)T T (t) . (17)

We assume that no testing of travellers took place at the beginning of the pandemic. At some
later point (as of t = 60 in our figure below), the number of tests per day, T (t) , increases
linearly in time.
To make this example as close to public and common displays of infection dynamics, let us

look at “the curve”represented in figure 3 by numbers of infected individuals taking recovery
into account.15

0 20 40 60 80 100 120 140 160 180 200
0
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104

true infectious  with symptoms
reported infec tions  (testing by symptoms)
reported infec tions  (testing travellers )

Figure 3 True epidemiological dynamics (blue), correct reporting (green) and an example of a
bias (red) of the reported number of infections

14Looking at (16) shows that a further source of bias, briefly mentioned earlier, can easily be identified.
Imagine the general perception of GPs changes over time concerning Covid-19. Then a GP might be initially
sceptical, i.e. pc is low, then become more aware of health risks implied by CoV-2, pc goes up, to then maybe
during some other period become more reluctand again. If these changes in individual perceptions are not
entirely idiosyncratic but driven by the overall attention in society to an epidemic, the number of reported
infections would change independently of the true number of infections, Ĩsymp (t) or Ĩ (t) .
15One could draw similar figures with new infections per day or the number of individuals ever infected. The

basic argument would remain the same.
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Looking at figure 3 we first focus on the blue dashed curve for Ĩsymp (t) , the true number of
symptomatic SARS-CoV-2 infections. We chose parameters such that the epidemic is coming
to a halt after around 120 units of time (plotted on the horizontal axis). The green curve
plots the number of reported infections ID (t) from (14) where testing takes place only in the
presence of symptoms. Finally, the red curve is an example of a bias in the reported number
of infections. It occurs as positive tests from testing travellers are added to tests by symptoms
as in (17).
We see that this example displays what looks like a “second wave”: reported numbers of

infections go up again as of t = 100. By construction, however, this second wave is caused
by misinterpretation of the reported number of infections. Let us stress that we do not claim
that the second wave is a statistical artefact due to testing strategies. It could be a statistical
artefact, however. The conclusion shows how to obtain a severity index for an epidemic that is
not prone to causing artificial results and which data is needed to compute such an index.

3.3 Two non-applications

• A non-application to Germany

Consider the case of Germany. Figure 4 shows the number of tests per week and the number
of reported infections. When we look at the time series for all tests in this figure, it corresponds
to T (t) from (8). When we consider the reported number of infections per week in Germany,
it looks as displayed in the right panel of the above figure. This time series corresponds to I (t)
from (13). Can we conclude anything from these two time series about the true dynamics of
the epidemic, i.e. can we draw conclusions about Ĩsymp (t) or Ĩ (t)?16

Figure 4 The number of weekly tests and infections in Germany

Technically speaking, we have two equations, (8) and (13), reproduced here for convenience,

T (t) = Σn
i=1piDi (t) + pcĨsymp (t) + TR (t) + T T (t) , (18a)

I (t) = pcĨsymp (t) +
Ĩ (t)

P
TR (t) + pT (t)T T (t) . (18b)

about which the public has access to two variables, I (t) and T (t) . It seems obvious that —
unless we want to make a lot of untested assumptions —offi cial statistics do not allow to draw

16One might be tempted to argue that data on the positive rate in (19) should also be useful. As the positive
rate is simply I (t) divided by T (t) , it does not provide additional information.
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any conclusion about the severity of the epidemic. The right-hand side contains at least three
unknowns (e.g. tests classified by reason of testing, TD (t) , TR (t), T T (t)) and two equations
with three unknowns usually do not have a solution. Hence, from currently available data, true
epidemic dynamics, Ĩsymp (t) or Ĩ (t) , cannot be understood.17

• The positive rate

The positive rate is the ratio of confirmed infections to number of tests, spos (t) ≡ I (t) /T (t) .
This statistic is often discussed in the media and elsewhere (see e.g. Our World in Data, 2020).
In our model, (13) and (8) imply

spos (t) =
I (t)

T (t)
=

pcĨsymp (t) + Ĩ(t)
P
TR (t) + pT (t)T T (t)

Σn
i=1piDi (t) + pcĨsymp (t) + TR (t) + T T (t)

. (19)

What does this positive rate tell us? Some argue that a rising positive rate is a sign of the
epidemic ’getting worse’. If we understand the latter by a rise in the number of unobserved
infections, Ĩ (t) , or the number of infections with symptoms, Ĩsymp (t) , this statement is true if
we undertake representative testing only, TDc = T T (t) = 0 as in (15). In this case,

spos (t) =
I (t)

TR (t)
=
Ĩ (t)

P
. (20)

When the observed positive rate spos (t) rises, this clearly indicates that the number of unob-
served infections Ĩ (t) is higher. And so would be Ĩsymp (t) , whether individuals with symptoms
go to a doctor or not, given the constant share s of symptomatic cases in (6a).18

Does this conclusion hold more generally, i.e. for the full expression (19) when tests are
undertaken for many reasons? Let us assume we only undertake tests due to symptoms and
due to travelling, TR (t) = 0.19 Then the positive rate (19) reads

spos (t) =
pcĨsymp (t) + pT (t)T T (t)

Σn
i=1piDi (t) + pcĨsymp (t) + T T (t)

.

When we increase the number of tests for travellers, we find (see appendix)

dspos (t)

dT T (t)
> 0⇔ Σn

i=1piDi (t) >
1− pT (t)

pT (t)
pcĨsymp (t) . (21)

This result is easy to understand technically and has the usual structure: When we increase
a summand (T T (t) here) that appears in a fraction in numerator and denominator, the sign of
the derivative depends on the other summands (Σn

i=1piDi (t) and pcĨsymp (t) in this case). As
the summand is multiplied by pT (t) in the numerator, this probability appears in the condition
as well.
In terms of epidemiological content, the derivative says that the positive ratio can rise or

fall when we increase the number of tests for travellers (or related reasons mentioned below
figure 2). Testing increases the positive rate if the number of tests undertaken due to symptoms

17This paper is about conceptional issues related to the finding an unbiased estimator for an unobserved time
series. We ignore practical data problems. The latter include the fact that the number of tests displayed in fig.
4 is not coming from the same sample of tests that yields the number of infections in this figure. This would
have to be taken into account in any application.
18The appendix shows that the positive rate is also informative and identical to Ĩ (t) /P if travellers (or

visitors of retirement homes, or contact persons of a positively tested individual or visitors of public events etc)
are representative. This assumption is questionable, however.
19Quantitatively speaking, representative testing is probably very small relative to other reasons for testing.
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that are not CoV-2 related, Σn
i=1piDi (t) , exceeds the number of tests undertaken because of

symptoms related to CoV-2, pcĨsymp (t) , corrected for the probability that a traveller test is
positive.
While an intuitive interpretation of this condition seems to be a challenge, the condition

nevertheless conveys a clear message: It contradicts that a rising positive rate implies a ’worse’
epidemic state. We see that when T T (t) goes up and the positive rate goes up, this does not
mean anything regarding the dynamics of Ĩsymp (t) or Ĩ (t) . The same is true, of course, when
T T (t) goes up and the positive rate goes down. The positive rate is not informative.
This finding also applies to a somewhat more precise statement of the above conjecture.

Some claim that a rising positive rate in the presence of more tests does show that infections
must go up. When we increase T T (t) , the number of tests goes up. When (21) holds, the
positive rate goes up. However, we do not learn anything about infections with or without
symptoms. Tests go up and the positive rate goes up simply because we test more.

3.4 An unbiased severity index for an epidemic

• A very simple index

We now propose an index for the severity of an epidemic which is comparable over time.
The model illustrated in figure 2 tells us what is needed: The index should be closely related
to the number of symptoms in society. As tests that capture these symptoms are those that
are undertaken because of symptoms, the index is simply ID (t) as in (14).
An alternative would consist in representative testing. While the number of reported cases

depends causally on the number of tests, the ratio of reported cases to number of tests is an
unbiased estimator of the true epidemic dynamics as shown in (15). As regular representative
testing, say with a weekly frequency, is not feasible, the only realistic severity index is ID (t)
from (14).
Very simply speaking: If a severity index for an epidemic is desired that is comparable over

time, we should test for CoV-2 but count Covid-19 cases. This should be done at all levels
starting from the GP, through hospital admissions and patients in intensive care and, finally,
counting deaths associated with Covid-19.

• Policy lessons

What do these findings mean in practice? Data which is currently available for the public
(see e.g. RKI, 2020 for Germany or Our World in Data, 2020, for many other countries in
the world) does break down the total numbers of tests by origin (GP, hospital and other) and
region. Unfortunately, this classification does not relate to the reason for testing and the latter
is required to infer the true infection dynamics.
What should be done to quantify the relevance of the bias? Local health authorities in

Germany collect the names of individuals with confirmed CoV-2 infections. If additional infor-
mation on symptoms, that is already being collected (the reporting form20 allows for ticks on
fever, coughing and the like), was made available to the public or scientists, the bias could be
computed easily.21 We currently know Covid-19 cases for intensive care in hospitals, but this
data is not yet easily accessible (see https://www.intensivregister.de). While only a fraction of
Covid-19 cases ends up in intensive care, this number might be more informative than CoV-2
infections. The number of deaths associated with Covid-19 is a further measure as would be
20See e.g. https://www.kv-rlp.de/fileadmin/user_upload/Downloads/Mitglieder/Coronavirus/

Meldepflichtige_Krankheit_Meldeformular.pdf
21I am very grateful to Bodo Plachter for discussions of these issues and for his support.
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excess mortality. While these are only partial measures of Covid-19 dynamics, Covid-19 mea-
sures (positive CoV-2 tests with symptoms, number of all Covid-19 patients in hospitals, not
just intensive care) would provide a better basis for regional and local decision makers than
CoV-2 infection measures.
If one day we know how strong the quantitative bias is, we could now hope that the bias is

small. Then the guidance given to society by the focus on CoV-2 infections would have been
correct. But even with a small bias, the focus on CoV-2 infections should stop. We know that
it is not the perfect measure. It rather biases expectation building (and emotional reactions)
of individuals. Hence, as soon as better Covid-19 measures are available, the CoV-2 measure
should be replaced. The candidates are estimates of informative positive rates and (regional)
time series on Covid-19 cases (and not CoV-2 infections). This would allow local politicians to
base their decisions on intertemporally informative data, i.e. on local Covid-19 cases.

4 Conclusion

True epidemic dynamics are unobserved. No country, no health authority and no scientist knows
the true number of CoV-2 infections with or without symptoms for a given country. This is why
testing is undertaken. Testing is a means to measure true but unobserved epidemic dynamics.
The counted number of CoV-2 infections are not relevant for decision making, what matters is
the true number of CoV-2 infections. Infections and the corresponding disease spreads when
the true number of infections is high, not when the counted number of infections is high.
We extend the classic SIR model to take symptomatic and asymptomatic cases into account.

More importantly, we treat CoV-2 infections as unobserved in the SIR model and model testing.
We allow for various reasons for testing and focus on testing due to symptoms, representative
testing and testing travellers. Testing travellers is an example of non-representative and non-
symptom related testing and includes the testing of sports professionals, in retirement homes
or their visitors, in hot spots or contact persons of infected individuals.
We show that the presence of various reasons for testing biases the number of confirmed CoV-

2 infections over time. The number of CoV-2 infections cannot be compared intertemporally.
We might observe more CoV-2 infections today simply because we test more. However, the
true number of infections might stay constant or even fall.
We do not claim, in any sense, that our findings have empirical relevance. We simply do

not know, at least given the data that are easily accessible to the public and given the data
everybody observes (number of tests and number of reported infections) and on which all public
health decisions are based, what the true epidemic dynamic is. We all look at a watch and we
know that it is wrong. But we do not know how much it is wrong. It may be seconds, but it
can also be hours.
What are the positive lessons from this analysis? We propose an index which is unbiased

over time. It is deceptively simple. Count the number of Covid-19 cases, not the number
of CoV-2 infections. If we knew the number of Covid-19 cases, i.e. CoV-2 infections with
severe acute respiratory symptoms (SARS), then we would know at least one part of epidemic
dynamics (Ĩsymp (t) in our model).
Let us stress that our findings are not an argument against testing. Testing is important

for identifying infectious individuals. They need to stay in quarantine in order to prevent the
further spread of CoV-2 infections. This helps to reduce Covid-19 cases. Testing is important
— but adding up confirmed infections from all sorts of tests is misleading. As long as the
public focuses on all sources of positive cases, decisions by private individuals, firms, journalists,
scientists and politicians are badly informed. Emotions, decisions and behaviour are misguided.
This cannot be good for public health. Decisions must be based on the number of Covid-19
cases.
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5 Supplementary material

This sections contains derivations for the main text.

5.1 The positive rate for representative testing and testing travellers

When we ignore testing by symptoms, the positive rate (19) reads

spos (t) =
Ĩ(t)
P
TR (t) + pT (t)T T (t)

TR (t) + T T (t)
.

Imagine travellers were representative, then pT (t) = Ĩ(t)
P
and the positive rate would read

spos (t) =
Ĩ (t)

P

as in (20) for representative testing. Under the assumption that travellers (or visitors of retire-
ment homes, or contact persons of a positively tested individual or visitors of public events)
are representative, the positive rate would reflect the true epidemic dynamics as measured by
Ĩ (t) /P.

5.2 The derivative of the positive rate in (21)

We only take tests due to symptoms and due to travelling into account, TR (t) = 0. Then the
positive rate (19) reads

spos (t) =
pcĨsymp (t) + pT (t)T T (t)

Σn
i=1piDi (t) + pcĨsymp (t) + T T (t)

≡ A+ pTT T

B + T T
,

where the second equality defines A and B (for this appendix only) and suppresses time argu-
ments to simplify notation. We compute

dspos

dT T
=
pT
[
B + T T

]
−
[
A+ pTT T

]
(B + T T )2

> 0⇔ pT
[
B + T T

]
> A+ pTT T ⇔ pTB > A.

When we employ the definition of A and B, we obtain

dspos

dT T
> 0⇔ pTΣn

i=1piDi + pTpcĨsymp > pcĨsymp

⇔ pTΣn
i=1piDi >

(
1− pT

)
pcĨsymp ⇔ Σn

i=1piDi >
1− pT
pT

pcĨsymp.

Adding time arguments gives the condition in the main text.
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