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ABSTRACT

IZA DP No. 13695 SEPTEMBER 2020

Is the Cure Worse than the Disease? 
County-Level Evidence from the 
COVID-19 Pandemic in the United States

Using county-level data on COVID-19 mortality and infections, along with county-level 

information on the adoption of non-pharmaceutical interventions (NPIs) in the United 

States, we examine how the speed of NPI adoption affected COVID-19 mortality. Our 

estimates suggest that advancing the date of NPI adoption by one day lowers the COVID-

19 death rate by 2.4 percent. This finding proves robust to alternative measures of NPI 

adoption speed, model specifications that control for testing and mobility, and across 

various samples: national, restricted to the Northeast region, excluding New York, and 

excluding the Northeast region. We also find that the adoption speed of NPIs is associated 

with lower infections, as well as lower non-COVID mortality, suggesting that these 

measures slowed contagion and the pace at which the healthcare system might have been 

overburdened by the pandemic. Finally, NPI adoption speed appears to have been less 

relevant in Republican counties, suggesting that political ideology might have compromised 

their efficiency.
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1. Introduction 

 The COVID-19 pandemic and the non-pharmaceutical interventions (NPIs) implemented 

in many countries to suppress the contagion have unsettled lives fundamentally and cratered the 

global economy.  Epidemiologists contend that NPIs—such as safer-at-home orders, closures of 

non-essential businesses and schools, or bans on large gatherings—combined with testing, tracing, 

and isolating, are the only options to fight the pandemic until a vaccine is identified and made 

widely available or societies achieve herd immunity (Ferguson et al., 2006; Pichler et al., 2017; 

Tian et al., 2020).  Yet, the intensity and vigor of NPI implementation have varied across countries, 

reflecting skepticism regarding their efficacy and concerns about their social and economic 

impacts. 

In the United States, where COVID-19 has taken a high toll in terms of infections and 

mortality, skepticism toward NPIs reigns high among the public and legislators (Funk and Tyson, 

2020).  Early in the pandemic, President Trump famously criticized NPIs by remarking that “the 

cure cannot be worse than the problem itself.”  The nation remained divided on the effectiveness 

of NPIs, even as the pandemic raged from March to early May 2020 in the northeast, spreading to 

the rest of the country thereafter.  Surveys show that conservative Republicans expressed more 

skepticism about NPIs than liberal Democrats (Funk and Tyson, 2020).  State and local 

implementation and lifting of NPIs were often driven by political ideology.  Republican-governed 

cities were slower in adopting NPIs, whereas cities led by Democrats were more aggressive 

(Willetts, 2020). 

Amidst the highly partisan response to the pandemic, the question remains: has the 

timeliness of NPIs been effective in saving lives in the United States?  Have these interventions 

helped reduce the spread of the virus?  Has political ambivalence on NPIs influenced their 
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effectiveness?  The aim of this paper is to address these questions using county-level data on 

mortality, infections, and NPIs.  

If NPIs have not been successful in the United States, that would mean the government has 

needlessly cratered the economy, compromised children’s education, disrupted lives and 

livelihoods, and reduced the pace at which herd immunity can be achieved—ultimately validating 

public skepticism about these policies.  Arguably, NPIs reduce the pace at which a population can 

acquire widespread immunity. For this reason, a number of countries, including the United 

Kingdom in the initial stages of the pandemic, and Sweden, opted against implementing NPIs. 

Additionally, the implementation of NPIs inevitably brings economies to a halt, resulting in tidal 

unemployment claims.  Many countries and localities delayed their adoption and effective 

implementation to lessen their economic and social effects.  These delays could have adversely 

affected the spread of the pandemic.  Indeed, if NPIs are effective at reducing contagion, the 

politicization of NPIs can be blamed for the ambivalence and hesitation toward their 

implementation.  This ambivalence and hesitation could explain the United States’ failure to 

contain the virus, even as other developed countries have successfully reduced infections and 

mortality.      

A couple of studies in the United States have investigated the effect of stay-at-home orders 

on infections and mortality from COVID-19 (Dave et. al. 2020; Fowler et al. 2020).1  Both studies 

find that NPIs are associated with lower infection and mortality rates.  We build on this research 

by assessing the relevance of the adoption timing of two NPIs—safer-at-home orders and non-

essential business closures—on mortality.  Our research differs in that we specifically study the 

 
1 There is growing international research on the effects of NPIs including Yun, Chen and Shi (2020) using Chinese 
data, Amuedo-Dorantes et al. (2020) using data from Spain, and Hsiang et al. (2020) and Imai et al. (2020) using 
cross-national data. 
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effect of NPI timeliness.  To that end, we construct a measure that captures the relative speed of 

NPI adoption based on a county’s rate of contagion when the NPI was adopted.2   

Further, we investigate whether NPI efficacy differed across counties with different 

political ideologies and different degrees of demographic, economic, and health-related 

vulnerabilities.  To do the former, we construct a dummy to identify Republican counties, defined 

as counties where most residents voted for President Trump in the 2016 election, and estimate if 

NPI efficacy differed in those areas compared to other counties.  For the latter, we use several pre-

COVID county demographic, economic, and health characteristics to explore the differential 

efficacy of NPIs across counties with distinct degrees of vulnerability.  Ideally, we would use data 

on COVID-19 mortality according to these traits, but such data are not available.  Instead, we use 

pre-COVID county-level characteristics to explore differences in the relevance of NPI adoption 

timing across counties with different characteristics associated with poor COVID-19 health 

outcomes.  Finally, we explore mechanisms through which NPI adoption speed might be critical, 

focusing on the spread of the infection and the ability to avert an overwhelmed health care system.   

A challenge in estimating the causal effect of NPIs on mortality is that these interventions 

are adopted in response to the spread and severity of the virus.  Because of the likely presence of 

reverse causality (i.e., COVID-linked deaths could be the cause behind the adoption of NPIs), a 

simple correlation between NPIs and COVID-linked mortality or infection will likely result in 

biased estimates, although they would likely be biased downwards. We address this by 

supplementing our primary analysis with an event study examining how COVID-19 death rates 

respond to NPI adoption. 

 
2 We follow Amuedo-Dorantes et al. (2020) who used a similar measure to study the effectiveness of NPIs in Spain 
and Correia et al. (2020) who studied the effect of NPIs during the 1918 Influenza. 
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Because of the ongoing nature of the pandemic, an additional challenge is the chosen 

temporal frame for our analysis.  We focus on the early months of the pandemic, capturing when 

states and counties first adopted NPIs, through the first re-opening.  This means we are comparing 

counties at various initial stages of the pandemic.  To address this limitation, we estimate models 

that separate specific outliers during that period.  Specifically, we experiment with: (i) restricting 

samples to Northeastern states that were the epicenter of the pandemic during our study period, 

(ii) excluding Northeastern states, and (iii) excluding New York.  These sample modifications 

allow us to compare NPI speed between counties that experienced roughly similar stages of the 

pandemic during our study period. 

Any research on the efficacy of NPIs in the United States is affected by the fact that data 

on reported infections and COVID-linked mortality are highly correlated with COVID-19 testing, 

which has varied across the country and over time.  In counties with inadequate testing, reported 

infections likely underestimate actual infections and deaths attributable to COVID are likely to be 

reported as non-COVID mortalities.  Further, if testing is correlated with NPIs, it will confound 

the estimates of the efficacy of NPIs.  We address this by explicitly controlling for testing.  

Similarly, to address concerns regarding the possibility that the NPI estimates might be capturing 

any endogenous self-distancing potentially taking place prior to the adoption of an NPI, we include 

controls for the daily median maximum distance traveled by county residents as an estimate of 

mobility at the county level.   

To explore the mechanisms at play, we examine how NPI adoption speed affects infections, 

and conduct state-level analyses of the association between NPIs and non-COVID deaths.  Studies 

document that non-COVID deaths increased during the period of our study (Woolf et al. 2020).  

This could have occurred for various reasons, including the voluntary postponement of procedures 
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or, in some instances, through an overwhelmed healthcare system.  If timely adoption of the NPIs 

helped reduce the burden on the healthcare system, they should also lower non-COVID deaths.     

We find that advancing the implementation date of NPIs by one day would have lowered 

the COVID-19 death rate by 2.4 percent.  The finding proves robust to the use of alternative 

measures of NPI adoption speed, to controlling for testing and mobility, and to the removal of 

outliers—such as New York and the Northeast region, from the analysis.  We also find that the 

NPI adoption speed is associated with lower infections and lower non-COVID fatality, suggesting 

these measures operated both via slowing down the contagion and the burden of the pandemic on 

the healthcare system.  We also find that the adoption speed of NPIs proves less critical in 

Republican counties, suggesting that the attitudes of the Republican leadership towards NPIs (e.g. 

social distancing, wearing masks, business closures) may have compromised their efficacy. 

2. Data 

2.1  Mortality and Infections 

To determine how NPIs affected COVID-19 mortality in the United States, we use county-

level data on COVID-19 deaths and infections collected by the Johns Hopkins University.  This 

data includes information on the accumulated number of daily COVID-19 cases and deaths 

reported by state and local health departments (Dong, Du, and Gardner, 2020).3  We use 2018 

population figures from the American Community Survey to derive daily COVID-19 mortality 

rates by county.  

 
3 Retrieved on July 20, 2020 from https://github.com/CSSEGISandData/COVID-19. Using documentation provided 
by Johns Hopkins, we identified 34 counties that required consolidation to align with the level at which COVID-19 
deaths were reported. This affected five counties in New York (New York City’s five boroughs were originally 
grouped under New York county), two counties in Massachusetts (Dukes and Nantucket), Rhode Island’s five 
counties, and 22 counties in Utah.  In each of these instances, we aggregate population counts and apply population 
weights to estimate aggregated county characteristics for these consolidated areas, which in most cases, we collapse 
onto the most populous county.  Cases and deaths that were not assigned to a particular geographic area are excluded 
from our analysis. These consolidations bring our county total to 3,117, down from 3,142. 
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We focus our analysis on the period from February 15, 2020 to April 23, 2020.  While the 

first confirmed case of COVID-19 occurred in late January, country-wide contagion was reported 

starting in late February and early March.  We lack information on the timing of re-openings by 

county.  To avoid confounding the effects of NPI adoption speed with the continuation of NPI 

policies, we cap our study period at April 23, 2020, the day before the first NPI was lifted.4   

 We also collect information on state-level testing and overall mortality from the COVID 

Tracking Project and the Centers for Disease Control, respectively.  Given that the identification 

of COVID-19 infections and attribution of causes of deaths are contingent upon detection, we use 

the most detailed information available from the COVID Tracking Project—daily test results by 

state—to account for variation in testing. 5  We also collect information on mortality by cause of 

death from the Centers for Disease Control to estimate non-COVID deaths.6  We use the most 

detailed information available—weekly deaths by state—to explore some of the mechanisms 

responsible for our estimated impact of NPIs on COVID-19 mortality.  

2.2  Non-Pharmaceutical Interventions 

We use data from the National Association of Counties (NACo) and Boston University’s 

School of Public Health to identify counties with NPIs in place during our study period.  NACo 

compiles information on the type and timing of NPIs for every county in the United States.7  We 

complement this information with a comprehensive database assembled by Boston University 

researchers that records similar measures taken by states.8  We focus on two types of NPIs: non-

essential business closures and safer-at-home policies. 

 
4 The state of Alaska lifted its safer-at-home and non-essential business closure orders on April 24, 2020. 
5 Retrieved on July 20, 2020 from https://covidtracking.com/data/download. 
6 Retrieved on July 20, 2020 from https://data.cdc.gov/NCHS/Weekly-counts-of-death-by-jurisdiction-and-cause-
o/u6jv-9ijr. 
7 Retrieved on July 20, 2020 from https://ce.naco.org/. 
8 Retrieved on July 20, 2020 from https://tinyurl.com/statepolicies. 
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While there is overlap between non-essential business closures and safer-at-home orders, 

business closure policies only restrict the activities of certain businesses, whereas safer-at-home 

orders include provisions that close non-essential businesses in addition to restricting individual 

movement.  Safer-at-home policies—also referred to as “stay-at-home” and “shelter-in-place”—

explicitly restrict the movement and activities of individual residents unless they are engaged in 

“essential” activities.9  These policies prohibit residents from gathering or travelling outside of 

their homes unless for an essential activity and, as such, often consist of the closure of non-essential 

businesses (i.e., restaurants, bars, gyms).  Though policies and enforcement vary, residents who 

ignore safer-at-home orders may face a misdemeanor punishable by fine, imprisonment or both 

(Harris, 2020).   

2.3  Mobility 

We make use of daily mobility data for each county obtained from Descartes Labs to carry 

out identification checks and account for variation in compliance with the social distancing 

imposed by the NPIs.10  Commercially available location data from smartphones and other mobile 

devices are used to sample the movement of individuals (Warren and Skillman, 2020).  We use 

estimates of the median maximum distance traveled by residents to estimate daily mobility at the 

county level.  These statistics are available for March 1, 2020 and beyond.  

2.4  County Characteristics 

 To investigate whether NPI efficacy differed across counties with different political 

ideologies and different degrees of demographic, economic, and health-related vulnerabilities, we 

collect information on a series of county-level characteristics.  We use information from the MIT 

 
9 Activities and businesses deemed “essential” vary by county and state. 
10 Retrieved on July 20, 2020 from https://github.com/descarteslabs/DL-COVID-19. 
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Election Lab to capture county political affiliation, measured as the Republican vote share in the 

2016 presidential election, which we use to identify Republican counties as those with a 

Republican vote share exceeding 50 percent.11  We collect information on a series of demographic 

and socioeconomic characteristics sourced from 2018 5-year American Community Survey 

estimates.  Specifically, we compile estimates on the percent of county residents that are: (i) over 

the age of 65, (ii) without health insurance, (iii) unemployed, and (iv) living below the federal 

poverty line.  Lastly, we use data from the Center for Medicaid and Medicare Service to measure 

county-level chronic disease prevalence.  We use information from 2017, the latest year available, 

to create a comorbidity index that aggregates the percent of Medicare beneficiaries with chronic 

diseases associated with severe COVID-19 outcomes, including chronic lung disease (chronic 

obstructive pulmonary disease, asthma), heart conditions (atrial fibrillation, heart failure, Ischemic 

heart disease), cancer, hypertension, HIV/AIDS, diabetes, chronic kidney disease, and liver disease 

(hepatitis).12  We standardize the index to have a mean of 0 and a standard deviation of 1, with 

larger values indicating higher comorbidities. 

3. Methodology  

Our primary objective is to explore the effectiveness of NPIs on COVID-19 mortality.  To 

that end, we start by estimating the following difference-in-differences model specification: 

(1) 𝑌𝑌𝑐𝑐𝑐𝑐 = 𝛼𝛼 + 𝛽𝛽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 )  + 𝜌𝜌𝑐𝑐 + 𝜗𝜗𝑐𝑐  + 𝜀𝜀𝑐𝑐𝑐𝑐 

where the vector 𝑌𝑌𝑐𝑐𝑐𝑐 represents the number of COVID deaths per 100,000 in county c and date t.  

 
11 Retrieved on July 20, 2020 from https://dataverse.harvard.edu/dataverse/medsl_president; 28 counties were missing 
vote share information. 
12 Retrieved from https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/Chronic-Conditions/CC_Main.  List of high-risk conditions made available by the CDC: 
https://www.cdc.gov/coronavirus/2019-ncov/hcp/underlying-conditions.html.  
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We consider two different types of NPIs: safer-at-home policies and non-essential business 

closures.  Our main regressor is an interaction term made up of two variables: (1) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 , a dummy 

variable indicative of the period in county c when the NPI was in effect; and (2) 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 , the 

relative speed of NPI adoption based on county c’s rate of contagion when the NPI was adopted.  

The post-NPI dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 ) includes a two-week delay to account for the average amount of 

time between infection and possible death (Lauer et al., 2020).  The vector 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  measures 

the number of days between the adoption of the NPI and the first day-to-day doubling of county-

level infections per capita.13  We multiply this count by minus one, so that higher values indicate 

a faster response.14  This operationalization allows us to gauge the impact of both the adoption of 

a particular NPI, as well as the effect of a faster response.   

Equation (1) also includes daily fixed-effects to capture temporal shifts in the incidence 

and treatment of the disease across the country, and county fixed-effects to account for time-

invariant differences potentially related to COVID mortality, such as population density, health 

infrastructure, and population comorbidities.  Standard errors are clustered at the county level.   

4. Descriptive Evidence 

Our methodological approach is inspired in the daily variation in COVID-19 deaths and 

deaths per capita displayed in Figures 1 and 2, respectively.  As shown therein, early- versus late-

adopters of NPIs were seemingly impacted differently.  We distinguish among three groups of 

counties: (1) early adopters, which include those with safer-at-home or business closure in place 

prior to the first day-to-day doubling of infections per capita; (2) late adopters, which include 

counties that adopted after the first day-to-day doubling; and (3) counties that never adopted a 

 
13 We experiment with different contagion thresholds in robustness checks outlined later in the paper. Results prove 
consistent throughout. 
14 This approach aligns with that used in Correia et al. (2020).   
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safer-at-home or business closure policy during our study period.  COVID-19 deaths began to 

accelerate in mid-March for early and late adopters, but at notably different rates.  Peak COVID-

19 death rates in counties classified as late adopters were over 2.5 times as large as the peaks in 

early adopting counties.  Also noteworthy is the relative dearth of COVID-19 mortality in the 311 

counties that were not subject to an NPI during our study period.  Most of these counties are located 

in sparsely populated states (i.e., North and South Dakota, Nebraska, and Wyoming).   

Figure 3 illustrates the staggered adoption of safer-at-home and business closure policies, 

which provides the temporal and geographic variation needed for identification.  The first NPI was 

adopted by the state of California on March 16, 2020.  By March 20, a total of 134 counties, 

including California’s 58, had an NPI in place.  As illustrated in the subsequent maps, most NPI 

adoptions occurred in late-March and early-April.  By March 30, a total of 1,979 counties were 

subject to a safer-at-home, business closure order, or both.  This number grew to 2,806 by April 

6—after which, no additional NPIs were implemented during the period covered in this study.   

Table 1 displays basic descriptive statistics for the full sample, and by NPI adoption timing 

for the 3,117 counties included in our sample.  Counties were observed daily from February 15 

April 23, 2020 (69 days).  The descriptive statistics confirm the trends illustrated in the figures.  

COVID-19 infections and mortality were lower in early-adopting counties when compared to 

counties adopting NPI measures late, despite the larger number of tests performed in the latter 

group.  Counties that never adopted the measures were the smallest in size and had COVID-19 

infections and mortality figures that were well below those of late and early NPI adopters.  There 

are other differences worth noting across counties.  For instance, counties that were early NPI 

adopters were somewhat between non-adopters and late adopters in terms of size.  In terms of pre-

COVID characteristics, the early adopters had higher mobility indexes, a larger share of elderly 
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and people living in poverty, and were more likely to be classified as Republican.  In contrast, late 

NPI adopting counties were, by far, the largest in size and had higher comorbidity indexes.  

However, differences in unemployment rates and health insurance were not large across counties 

that adopted NPIs early, late, or never.  

5. Main Findings and Robustness Checks 

 Our main objective is to learn about the importance of timing when adopting NPIs in 

fighting COVID-19 mortality.  If timing proves critical, a secondary objective is to gain a better 

understanding of the channels enabling the effectiveness of the NPI in curtailing deaths—an 

investigation that involves uncovering heterogenous impacts of the adopted NPIs.   

To achieve our main aim, we start by estimating several model specifications of equation 

(1).  Initially, we simply consider the adoption timing of either business closures or stay-at-home 

orders—the most common NPIs during the COVID-19 pandemic.  The results from this exercise 

are displayed in Table 2.  The baseline specification only includes date and county fixed effects. 

Subsequently, we control for the level of testing in the state, as well as mobility measured as the 

median maximum distance traveled by county residents. COVID testing was inadequate in the 

initial months after the outbreak and began to improve over our study period. Controlling for 

testing allows us to account for any mechanical association between testing, infections, NPIs, and 

COVID mortality.15  Accounting for mobility allows us to capture the role played by any 

endogenous self-distancing irrespective of whether the NPIs were in place.  Regardless of the 

model specification used, the speed of adoption of NPIs significantly curtails COVID-19 deaths.  

Based on the estimates from the most complete model specification, we find that moving up the 

 
15 We would have preferred to control for county-level testing but those data are not available to us. 
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implementation date of any of the NPIs (if both were adopted, whichever came first) by one day 

lowers the COVID-19 death rate by 2.4 percent.16 

o gain a better understanding of which of the two most common NPIs matters the most, we 

re-estimate the models including separate measures of adoption speed for each NPI.  As can be 

seen in Table 3, both measures seem to help curtail deaths.  Adopting business closures one-day 

earlier lowers COVID-19 deaths by 1.5 percent and, similarly, moving up the adoption of a stay-

at-home order by one day would curtail the COVID-19 mortality rate by 1.2 percent.17     

Finally, in Table 4, we conduct several robustness checks to assess the sensitivity of our 

findings to: (1) alternative measures of the NPI adoption speed; (2) the application of population 

weights to derive nationally representative estimates; and (3) using different samples that exclude 

New York and the Northeast region (Connecticut, Maine, Massachusetts, New Hampshire, Rhode 

Island, Vermont, New Jersey, New York, and Pennsylvania) as potential outliers during the period 

under analysis, or look at the Northeast region separately.  In what follows, we briefly refer to each 

robustness check.     

As noted earlier, the estimates in Table 2 use a contagion threshold equal to the first day-

to-day doubling of infections per capita in each county.  In columns (1) and (2) of Table 4, we 

experiment with different contagion thresholds: the first day infections per capita exceeded the 

national average from January 21, 2020 to March 7, 2020 (column 1), and the first day infections 

per capita exceeded the county average prior to any NPI adoption (column 2).18  Our results prove 

robust to the use of these alternative contagion thresholds.  Accelerating the adoption speed of the 

 
16 Computed as: (𝛽𝛽 ∗ 𝛥𝛥𝛥𝛥) ∗ 100/𝜇𝜇𝐷𝐷𝐷𝐷, where: ΔX=1 and 𝜇𝜇𝐷𝐷𝐷𝐷=0.101. 
17 The effects of these two NPIs are not statistically different from one another: F(1, 2619) = 1.02, p=0.313. 
18 National infection rates between January 1 and March 7, 2020 averaged 7.30 infections per 100,000. The pre-NPI 
county average infection rate was 1.83 infections per 100,000. 
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NPIs by one day lowers the COVID-19 mortality rate by 2 percent in column (1), and by 4.4 

percent in column (2).    

Next, we experiment with using population weights to derive nationally representative 

estimates.  As can be seen in column (3) of Table 4, we continue to find that speeding up the 

adoption of the NPIs by one day would have significantly lowered mortality from COVID-19.  In 

this case by 4.6 percent, as opposed to 2.4 percent using the unweighted estimates of Table 2.   

Finally, we test the sensitivity of our findings across different geographic samples.   First, 

we exclude New York, which was the epicenter of the pandemic during the period under 

consideration, to check if our results were driven by its presence in the sample.   As can be seen in 

column (4) of Table 4, the results are somewhat lower, but remain robust to this exclusion.  

Speeding up NPI adoption by one day would have lowered the COVID-19 mortality rate by 2.2 

percent.  We next experiment with excluding the entire Northeast region of the country (column 

5), as well as with focusing entirely on that region (column 6).  As shown therein, the results 

confirm our prior findings, underscoring the significance of NPIs in lowering mortality in the 

Northeast.  Specifically, speeding up the implementation of the NPIs by one day would have 

lowered COVID-19 deaths by approximately 2 percent if we exclude the entire Northeast region.  

However, in that region alone, deaths from COVID-19 would have dropped by 7.6 percent.   

In sum, the analyses in Table 4 confirm the robustness of our estimates presented Table 2 

to alternative definitions of a contagion outbreak, to the use of population weights, and to changes 

to the geographic scope of our sample.19      

 

 
19 This is also true if we distinguish between business closures and stay-at-home orders, as shown in Table A in the 
appendix. 
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6. Identification  

An important caveat of the difference-in-difference approach adopted above refers to the 

non-random adoption of NPIs.  Given their implicit economic cost, counties are likely reticent to 

impose social distancing, unless it is suspected that the health care system will be overwhelmed as 

the death toll climbs.  Luckily, from an inferential standpoint, if NPIs are implemented once 

contagion has surpassed a threshold, the estimated impact of NPIs in curtailing COVID-related 

deaths would likely represent a lower bound estimate of the true effectiveness of the adopted 

measures if they were adopted in a timely manner.  A related concern refers to endogeneity biases 

stemming from unobserved heterogeneity.  For instance, if the adoption of an NPI is related to 

unobserved or unaccounted for factors, such as the county’s political ideology, which may affect 

timely adoption of NPIs as well as cause laxity in the adoption of other measures, including use of 

face masks or social distancing (Dave et al., 2020), the estimated impact of NPIs might confound 

the impact of other unobserved factors.    

To address these endogeneity concerns, we conduct an event study.  The latter allows us to 

gauge if COVID-19 mortality trends already systematically differed across counties that adopted 

NPIs earlier versus later, prior to the adoption of any NPI.  In this manner, we address concerns 

regarding pre-existing differential pre-trends across early- versus late-adopting counties.  

Secondly, we are able to gauge if there is a clear break in the trend of COVID-19 mortality 

following the adoption of the NPIs.  This enables us to dissipate concerns regarding the 

confounding impact of unobserved and unaccounted for factors.  Finally, we can examine the 

dynamic impact of NPIs and assess if it makes sense based on how these policies reduce infections 

and deaths.  Specifically, we estimate the following model:      

(2) 𝑌𝑌𝑐𝑐𝑐𝑐 = 𝛼𝛼 + ∑ 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃
 35

−35 + 𝜌𝜌𝑐𝑐 + 𝜗𝜗𝑐𝑐  + 𝜀𝜀𝑐𝑐𝑐𝑐 



15 
 

Equation (2) differs from equation (1) in that it includes leads and lags to the NPI adoption 

timing, allowing us to examine the existence of pre-trends up to 35 days prior, as well as dummies 

for up to 35 days after NPI adoption to learn about the impact of the implemented policies.  Figure 

4 displays the coefficients from the event study corresponding to the most complete model 

specification used in Table 2, along with 95 percent confidence intervals.  All estimates for the 

days preceding the adoption of the first NPI in the county are close to zero, strongly supporting 

the assumption of no pre-trends.  In addition, there is a clear break in the trend in COVID-19 deaths 

approximately 4 weeks later—a common turn around period from infection to recovery of most 

mild cases (Britt, 2020), staying down thereafter.  

Another concern regarding identification refers to the start of social distancing, as well as 

the observance of business closures and stay-at-home orders.  If residents in early-adopting 

counties were already practicing self-distancing prior to the adoption of an NPI, its estimated 

effectiveness in curtailing deaths would be biased upwards.  (The opposite would be the case if, 

instead, that was predominantly the case among residents in counties that were late adopters of 

NPIs—namely, the estimated impact of the NPI would be biased downwards).  In addition, it is 

important for the orders to have been observed by the public similarly across counties.  If orders 

were observed differentially in counties that were early- versus late-adopters, the estimated impact 

of the NPI could also be biased.  Fortunately, both concerns have been addressed by recent research 

(e.g., Alexander and Karger, 2020) showing that county-level measures of mobility declined 

sharply the day after stay-at-home orders went into effect, but not prior to their implementation.  

Furthermore, the authors find that responses to stay-at-home orders were uniform across the 

country, and did not vary by income, political leanings, or urban/rural status.  Those findings 
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reinforce the notion of no obvious self-distancing taking place prior to the adoption of NPIs, as 

well as the obedient response to the mandated orders.   

7. Mechanisms 

According to the Centers for Disease Control and Prevention, the COVID-19 virus is 

primarily transmitted between people through respiratory droplets emitted during coughing or 

sneezing and through fomites in the environment around the infected person.20  By reducing close 

contact between individuals, the adoption of NPIs, such as business closures and stay-at-home 

orders, may slow down the COVID-19 virus transmission and, therefore, deaths.  In the absence 

of vaccines and reliable tracking systems, NPIs have also been invoked to flatten the pandemic 

curve by lowering the demands on public healthcare services, allowing for COVID-19 patients to 

be properly treated (Ferguson et al., 2020).  As such, NPIs could have helped lower COVID-19 

mortality directly by reducing contagion, as well as indirectly by preventing bottlenecks in the 

healthcare system.  

As an attempt to sort out these two channels, we look first at COVID-19 infections.  If the 

effectiveness of the NPIs did not stem from reducing contagion but, rather, from avoiding an 

overwhelmed healthcare system, we should not necessarily observe a reduction in the infection 

rate.  Yet, as displayed in columns (1) through (3) of Table 5, adopting one of the two types of 

NPIs under examination one day earlier would have lowered infections by roughly 2 percent, 

regardless of whether we use all counties, exclude New York or the entire Northeast region.   

We then look at how the early versus late adoption of NPIs might have affected non-

COVID mortality.  If NPIs primarily helped curtail pandemic deaths by preventing the healthcare 

system from becoming overwhelmed, non-COVID mortality rates should also be lower in those 

 
20 See: https://www.cdc.gov/coronavirus/2019-ncov/faq.html#Spread. 
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regions where the NPIs were adopted earlier, as non-COVID patients could still be treated.  Based 

on the results in columns (3) through (6) in Table 5, while negative, the estimated coefficients are 

either marginally significant at the 10 percent level or not statistically different from zero.  In other 

words, the response speed does not significantly alter non-COVID deaths, as one would expect if 

preventing congestion of the healthcare system was a primary channel for the reduction in COVID-

19 mortality following NPI adoption.  Thus, our estimates suggest that excess deaths from non-

COVID causes observed in other studies (e.g. Woolf et al. 2020) during the period of our study 

were not the by-product of the adoption speed of NPIs.   

In sum, the results in Table 5 point to NPIs effectively reducing COVID-19 mortality by 

curtailing contagion and the spread of the virus.  These findings prove robust when we further 

distinguish between business closures and stay-at-home orders, as displayed in Table B of the 

appendix.   

8. Heterogeneous Impacts 

 To conclude, we examine if the relative adoption speed of NPIs impacted counties 

differently based on other traits associated with either their adoption, or with the uneven impact of 

the disease.  Studies show that attitudes towards the efficacy of NPIs have been partisan, with 

Republican governors and mayors being more reluctant to implement NPIs.  It is also possible that 

residents in majority-Republican counties with NPIs in place may be less compliant with health 

care guidelines and recommendations.  In Table 6, we first examine the differential impact that the 

speed of NPI adoption had in Republican counties—measured as those with a Republican vote 

share above 50 percent in the 2016 presidential election—given the role of political partisan 

ideology in NPI adoption (Dave et al., 2020; Gupta et al., 2020).  As can be seen in column (1), 

adopting an NPI one day earlier lowers COVID-19 mortality in majority-Republican counties by 
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approximately 2.4 percent, whereas the reduction in other counties reaches 5.4 percent.  In other 

words, speeding up the implementation of NPIs in primarily Republican counties would lower 

COVID-19 mortality by half the amount it would in non-Republican counties.  Why?  Perhaps, 

NPIs are less strictly observed in Republican counties, in which case, speeding up their 

implementation does not have the same bite as in other counties.  Note that descriptive statistics in 

Table 1 show that, according to our NPI speed measure, Republican counties were more likely to 

be early adopters, largely on account of the late outbreak of the pandemic in these counties.  Thus, 

our findings suggest that, despite the advantage of learning from the experience of counties where 

the virus spread earlier, the NPIs were less effective in these counties.   

 Finally, we consider how the NPI effectiveness might have varied according to various 

county-level traits known to be correlated to COVID-19 mortality due to the high-incidence of the 

disease among the elderly and individuals with poor health.  To that end, we first explore if the 

adoption speed of NPIs particularly benefits localities with a higher share of individuals age 65 

and older.  As shown in column (2) of Table 6, we do not find that to be the case, although the 

differential impact is only marginally statistically different from zero.  This could possibly be 

because most COVID-related elderly fatalities were in nursing homes, where the two NPIs we are 

investigating might not have been as effective in reducing contagion.  Residents of nursing homes 

would require other measures limiting their potential exposure to the virus, such as restrictions of 

visitors or the safe distancing of residents from each other.  

We then repeat the same exercise using other county-level traits reflective of the share of 

the population that lack health insurance, are unemployed, or live below the federal poverty line.  

We also look at the differential impact that speeding up the implementation of NPIs might have in 

counties with higher comorbidity indexes.  As shown in columns (3) through (6) in Table 6, 
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speeding up the implementation of NPIs does not appear to affect the death rate for COVID-19 

any differently in counties with higher versus lower values of the abovementioned traits.  To some 

degree, this is not surprising given the aggregated nature of those traits.  As such, the non-

significance of those demographic traits should be interpreted with caution.       

9. Summary and Conclusions 

 The rapid spread of the COVID-19 pandemic took the world by surprise.  In the absence 

of a vaccine, and to halt the devastating impact of the pandemic on lives, several countries opted 

for the adoption of non-pharmaceutical interventions (NPIs).  The United States was no different 

in that regard, even though the response has been more fragmented and piecemeal.  Prior research 

has shown the effectiveness of NPIs in curtailing deaths in the United States, Europe and Asia.  

Our focus is on the importance of their timeliness, the mechanisms behind it, and the heterogeneity 

of any effectiveness depending on the political ideology and degree of vulnerability of counties.     

 Using county-level data on COVID-19 mortality and infections, along with county-level 

information on the adoption of stay-at-home orders and business closures, we examine how the 

adoption speed of NPIs has affected COVID-19 mortality.  We find that moving up the 

implementation date of NPIs by one day lowers the COVID-19 death rate by 2.4 percent.  The 

effectiveness of acting early is similar for both stay-at-home orders and business closures.  An 

event study addresses concerns regarding the endogeneity of NPI adoption, and robustness checks 

show the results persist when introducing controls for testing and mobility, altering the definition 

of adoption speed, weighting counties by population size, and considering different geographic 

scopes.  Finally, we confirm how the relevance of responding early stems from the ability to slow 

contagion, which likely prevented the overburdening of the healthcare system.  We also find that 

NPI adoption speed has less relevance in Republican counties—a possible byproduct of skepticism 
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and reluctance to apply or fully comply with NPIs.  In contrast, NPIs appear similarly effective, 

and their speed of implementation equally as relevant, in counties with distinct degrees of 

vulnerability to the disease, as captured by an index of comorbidity and the share of residents 

without health insurance, unemployed, or living in poverty. 

 While we await anxiously a vaccine or cure, NPIs remain the main mechanism to curtail 

COVID-19 deaths.  Gaining a better understanding of their timeliness and the importance of 

responding early is essential, especially in the foreseeable occurrence of additional waves.   

  



21 
 

Compliance with Ethical Standards 
 
The authors declare that they have no conflict of interest. 
  



22 
 

References 
 
Alexander, Diane and Ezra Karger.  2020.  “Do Stay-at-Home Orders Cause People to Stay at 
Home? Effects of Stay-at-Home Orders on Consumer Behavior.  Federal Reserve Bank of Chicago 
Working Paper, No. 2020-12.  At: https://www.chicagofed.org/publications/working-
papers/2020/2020-12 

Amuedo-Dorantes, Catalina, Cristina Borra, Noelia Rivera Garrido, Almudena Sevilla. 2020. 
“Timing is Everything when Fighting a Pandemic: COVID-19 Mortality in Spain”, IZA DP No. 
13316. 
 
Bootsma, Martin C. J., and Neil M. Ferguson.  2007. “The Effect of Public Health Measures on 
the 1918 Influenza Pandemic in U.S. Cities”, PNAS, 104(18): 7588–7593.   

Britt, Robert Roy.  2020.  “From Infection to Recovery: How Long it Lasts”.  Available at: 
https://elemental.medium.com/from-infection-to-recovery-how-long-it-lasts-199e266fd018 

Bullard, Robert. 2005. “All Transit is not Created Equal.” Moving the Movement for 
Transportation Justice, Vol. 12 No. 1, Winter.  

Correia, Sergio, Stephan Luck, and Emil Verner.  2020. “Pandemics Depress the Economy, Public 
Health Interventions Do Not: Evidence from the 1918 Flu”, March 30.  Federal Reserve Bank of 
New York.  Mimeo. 

Dave, Dhaval, Andrew I. Friedson, Kyutaro Matsuzawa, and Joseph J. Sabia.  2020. “When Do 
Shelter-In-Place Orders Fight COVID-19 Best? Policy Heterogeneity across States and Adoption 
Time”. IZA DP No. 13190.   

Dong, E., Du, H., & Gardner, L.  2020. “An interactive web-based dashboard to track COVID-19 
in real time.” The Lancet Infectious Diseases, 20(5), 533–534. 

Ferguson, N., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., … Dighe, A. 
(2020). “Report 9 - Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 
mortality and healthcare demand”, Faculty of Medicine,  Imperial College London. 

Flaxman, Seth, Swapnil Mishra, Axel Gandy et al. 2020.  “Estimating the number of infections 
and the impact of nonpharmaceutical interventions on COVID-19 in 11 European countries”. 
Imperial College London.   

Fowler, James H., Seth J. Hill, Remy Levin, and Nick Obradovich.  2020. “The Effect of Stay-at-
Home Orders on COVID-19 Infections in the United States”.  Mimeo.  

Funk, Carry and Alec Tyson, 2020. “Partisan Differences Over the Pandemic Response Are 
Growing,” Scientific American, Opinion. 

Gelatt, Julia.  2020 Revised. Immigrant Workers: Vital to the U.S. COVID-19 Response, 
Disproportionally Vulnerable.  Washington, DC: Migration Policy Institute.   

https://www.chicagofed.org/publications/working-papers/2020/2020-12
https://www.chicagofed.org/publications/working-papers/2020/2020-12
https://www.iza.org/person/1295
http://www.us.es/acerca/directorio/ppdi/personal_6211
https://www.iza.org/person/2834
https://elemental.medium.com/from-infection-to-recovery-how-long-it-lasts-199e266fd018


23 
 

Guimbeau, Amanda, Nidhiya Menon, and Aldo Musacchio.  2020. “The Brazilian Bombshell? 
The Long-Term Impact of the 1918 Influenza Pandemic the South American Way”.  NBER 
Working Paper No. 26929.   

Gupta, S., Nguyen, T., Rojas, F. L., Raman, S., Lee, B., Bento, A., … Wing, C. (2020). “Tracking 
Public and Private Responses to the COVID-19 Epidemic: Evidence from State and Local 
Government Actions.” Cambridge, MA. https://doi.org/10.3386/w27027 

Harris, Jonathan. 2020. What is a “Safer at Home” Policy? Washington, DC: National Association 
of Counties.  

Hsiang, S., Allen, D., Annan-Phan, S. et al.  2020. “The effect of large-scale anti-contagion 
policies on the COVID-19 pandemic.”  Nature, https://doi.org/10.1038/s41586-020-2404-8 
 
Hutchins, Sonja S., Kevin Fiscella, Robert S. Levine, Danielle C. Ompad, and Marian McDonald. 
2009.  “Protection of Racial/Ethnic Minority Populations During an Influenza Pandemic.” 
American Journal of Public Health 99, S261_S270. 

N. Imai, I. Dorigatti, A. Cori, S. Riley, N.M. Ferguson.  2020.  “Estimating the potential total 
number of novel Coronavirus (2019-nCoV) cases in Wuhan City.” 
 
Kermack, William O., and Anderson G. McKendrick.  1927.  “A Contribution to the Mathematical 
Theory of Epidemics.” Proceedings of the Royal Society of London A, 115, 700–721. 
 
Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., … Lessler, J.  2020. 
“The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported 
confirmed cases: estimation and application.” Annals of Internal Medicine, 172(9), 577–582. 

Markel, Howard, Harvey B. Lipman, J. Alexander Navarro, Alexandra Sloan, Joseph R. 
Michalsen, Alexandra Minna Stern, and Martin S. Cetron.  2007. “Nonpharmaceutical 
Interventions Implemented by US Cities During the 1918-1919 Influenza Pandemic”. JAMA, 298 
(19).   

Økland, H.; Mamelund, S.-E. 2019.  “Race and 1918 Influenza Pandemic in the United States: A 
Review of the Literature.” Int. J. Environ. Res. Public Health, 16, 2487. 

Qiu, Yun, Xi Chen and Wei Shi.  2020. “Impacts of Social and Economic Factors on the 
Transmission of Coronavirus Disease 2019 (COVID-19) in China.” Forthcoming in the Journal of 
Population Economics.   

Semega, J., M. Kollar, J, Creamer and A, Mohanty. 2019. Income and Poverty in the United States: 
2018.  US census Bureau.    

Warren, M. S., & Skillman, S. W.  2020. “Mobility changes in response to COVID-19.” ArXiv 
Preprint ArXiv:2003.14228. 



24 
 

Willetts, M.  2020.  “In Some GOP-led States, ‘Blue’ Cities Lead the Charge for Coronavirus 
Restrictions.” The State, March 31.  At: 
www.thestate.com/news/coronavirus/article241662566.html 

Woolf, Steven ; Derek A. Chapman, Roy T. Sabo, Daniel M. Weinberger; Latoya Hill.   2020.  
“Excess Deaths From COVID-19 and Other Causes, March-April 2020.” Research Letter, 
JAMA, 324(5):510-513.  

Yancy, Clyde W.  2020. “COVID-19 and African Americans”.  JAMA.   

Yun Qiu, Xi Chen, Wei Shi.  2020. “Impacts of social and economic factors on the transmission 
of coronavirus disease (COVID-19) in China.”  Mimeo. 

 

 



25 
 

Table 1: Descriptive Statistics 

Sample Overall By NPI Adoption Timing 
Early Adopters Late Adopters Never Adopters 

Variable Mean S.D.  Mean S.D. Mean S.D. Mean S.D. 

COVID deaths per 100,000 0.071 0.775  0.058 0.740 0.208* 1.148 0.015* 0.412 
COVID infections per 100,000 1.651 11.789  1.369 10.536 4.085* 12.567 1.109* 18.177 
Population 105,092 359,144  62,388 240,979 472,103* 760,835 25,342* 63,760 
NPI speed 30.809 39.917  36.120 39.951 -6.096* 4.081 NA NA 
Safer-at-home speed 25.901 38.000  31.590 38.303 -7.236* 4.765 NA NA 
Non-essential business closure speed 31.409 40.460  36.049 40.477 -6.446* 4.164 NA NA 
State test results per 100,000 285.929 459.723  277.767 446.872 326.315* 543.979 304.474* 452.274 
Mobility index 6.121 15.269  6.475 16.881 4.239* 3.972 5.788* 6.542 
Majority Republican (2016)  0.806 0.396  0.835 0.371 0.494* 0.500 0.932* 0.251 
Percent over age 65 (2018) 18.380 4.586  18.626 4.343 15.626* 4.856 19.569* 4.976 
Percent without health insurance (2018) 8.208 3.993  8.268 4.053 8.573 3.494 7.320* 3.926 
Percent unemployed (2018) 1.218 0.587  1.259 0.583 1.326* 0.447 0.768* 0.560 
Percent living below FPL (2018) 10.741 4.173  10.983 4.134 9.923* 3.854 9.762* 4.550 
Comorbidity index (2017) 0.000 1.000  0.055 1.014 0.123 0.858 -0.573* 0.842 

Observations 215,073  169,257 24,357 21,459 

Notes: Statistics are reported at the county-level unless otherwise specified.  These estimates are not weighted by population.  Counties that never adopted an 
NPI during our study period were assigned an uninformative NPI speed value to ensure these cases were preserved when estimating the model outlined in Eq. 1. 
Our specification interacts NPI speed with a dummy indicative of the day a county adopted an NPI—effectively rendering this value zero for never adopters. 
*p<.05 in t-test comparing value with Early Adopters. 
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Table 2: Impact of NPI Speed on COVID-19 Deaths per 100,000 Residents 

Model Specification (1) (2) (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0019*** -0.0021*** -0.0024*** 
  (0.0002) (0.0002) (0.0002) 

State test results per 100,000  0.0003*** 0.0003*** 
  (0.0000) (0.0000) 

Mobility   -0.000001 
   (0.0001) 

Date Fixed-Effects Y Y Y 
County Fixed-Effects Y Y Y 
    
Observations 215,073 215,073 141,480 
R-squared 0.087 0.092 0.132 
Dependent Variable Mean  0.071 0.071 0.101 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses 
and clustered at the county level. This table reports the estimates from Equation (1) using daily COVID-19 deaths 
occurring between February 15, 2020 to April 23, 2020. The specification in column (1) only includes date and 
county fixed effects. Column (2) controls for state-level testing and Column (3) further controls for residential 
mobility. Mobility data was not available for the period before March 1; the estimates reported in Column (3) use 
daily COVID-19 deaths for 2,260 counties with mobility data for the period spanning from March 1, 2020 to April 
23, 2020. We re-estimated the models presented in columns (1) and (2) using this restricted sample. While our 
estimates attenuate slightly, substantively, they do not change (see Panel A of Table C in the appendix).  
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Table 3: Impact of Disaggregated NPI Speeds on COVID-19 Deaths per 100,000 Residents 

Model Specification (1) (2) (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝐵𝐵𝐵𝐵 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0016*** -0.0012*** -0.0015*** 
  (0.0002) (0.0002) (0.0002) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0008*** -0.0011*** -0.0012*** 
 (0.0002) (0.0002) (0.0002) 

State test results per 100,000  0.0003*** 0.0003*** 
  (0.0000) (0.0000) 

Mobility   -0.000002 
   (0.0001) 
    
Date Fixed-Effects Y Y Y 
County Fixed-Effects Y Y Y 
    
Observations 215,073 215,073 141,480 
R-squared 0.087 0.092 0.132 
Dependent Variable Mean  0.071 0.071 0.101 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses 
and clustered at the county level. This table reports the estimates from Equation (1) using daily COVID-19 deaths 
occurring between February 15, 2020 to April 23, 2020. The specification in column (1) only includes date and county 
fixed effects. Column (2) controls for state-level testing and Column (3) further controls for residential mobility. 
Mobility data was not available for the period before March 1; the estimates reported in Column (3) use daily COVID-
19 deaths for 2,260 counties with mobility data for the period spanning from March 1, 2020 to April 23, 2020. We re-
estimated the models presented in columns (1) and (2) using this restricted sample. While our estimates attenuate 
slightly, substantively, they do not change (see Panel B of Table C in the appendix). 
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Table 4: Robustness Checks – Impact of NPI Speed on COVID-19 Deaths per 100,000 Residents 

Robustness Check Alternative Contagion Threshold Alternative Weighting  Alternative Samples 
Column (1) (2) (3) (4) 5) (6) 

Model Specification Pre-NPI National 
Average 

Pre-NPI County 
Average Population weighted Excluding NY Excluding                      

NE Region 
Only the                    

NE Region 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0014*** -0.0038*** -0.0161** -0.0017*** -0.0013*** -0.0166*** 
  (0.0002) (0.0003) (0.0078) (0.0002) (0.0002) (0.0034) 

Date Fixed-Effects Y Y Y Y Y Y 
County Fixed-Effects Y Y Y Y Y Y 
       
Observations 215,073 215,073 215,073 211,071 200,721 14,352 
R-squared 0.086 0.087 0.349 0.079 0.069 0.268 
Dependent Variable Mean  0.071 0.071 0.222 0.068 0.060 0.219 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses and clustered at the county level. This table reports 
the estimates from Equation (1) using daily COVID-19 deaths occurring between February 15, 2020 and April 23, 2020. In columns (1) and (2), we alter the definition 
of contagion we used to measure the speed of adoption of a safer-at-home order and/or non-essential business closure (𝑁𝑁𝑃𝑃𝑁𝑁𝑐𝑐 ).  Specifically, we replace our original 
contagion threshold, which reflected the first day-to-day doubling of infections per capita in a given county to (1) the first day infections per capita exceeded the national 
average from January 21, 2020 to March 7, 2020 and (2) the county average infections per capita prior to NPI adoption, the results of which are found in columns (1) 
and (2), respectively. In column (3), we apply population weights to derive nationally representative estimates. In columns (4), (5), and (6), we experiment with using 
alternative samples to estimate Eq. (1). In column (4), we exclude New York from the analysis. In column (5), we exclude the entire Northeast region, which consists of 
Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York, and Pennsylvania. In column (6), we focus exclusively on the 
Northeast region. 
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Table 5: Exploring Main Mechanism -- Stemming Contagion and/or an Overwhelmed Healthcare System 

Outcome COVID-19 Infections per 100,000 Non-COVID-19 Deaths per 100,000 
Column (1) (2) (3) (4) (5) (6) 
Sample  All Counties Excluding NY Excluding NE region All Counties Excluding NY Excluding NE region 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0329*** -0.0310*** -0.0276*** -0.0415* -0.0333 -0.0208 
  (0.0024) (0.0023) (0.0022) (0.0229) (0.0202) (0.0168) 
       
State-level tests per 100,000 0.0028*** 0.0026*** 0.0011** -0.0000 -0.0000 -0.0000* 
 (0.0005) (0.0005) (0.0005) (0.0000) (0.0000) (0.0000) 
       
Date Fixed-Effects Y Y Y Y Y Y 
County Fixed-Effects Y Y Y Y Y Y 
       
Observations 215,073 211,071 200,721 561 550 462 
R-squared 0.124 0.110 0.093 0.801 0.855 0.920 
Dependent Variable Mean  1.651 1.578 1.444 12.082 12.342 12.439 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses and clustered at the county level.  
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Table 6: Heterogenous Effects of NPI Speed on COVID-19 Deaths per 100,000 Residents 

Column (1) (2) (3) (4) (5) (6) 
County Characteristic (𝑪𝑪𝑪𝑪𝒄𝒄) Majority Republican % over 65 % Uninsured % Unemployed % below FPL Comorbidity Index 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0037*** -0.0031*** -0.0022*** -0.0023*** -0.0026*** -0.0019*** 
  (0.0007) (0.0006) (0.0003) (0.0003) (0.0004) (0.0002) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 × 𝐵𝐵𝐵𝐵𝑐𝑐 0.0020*** 0.0001** 0.0000 0.0002 0.0001 0.0001 
  (0.0006) (0.0000) (0.0000) (0.0002) (0.0000) (0.0001) 
       
Date Fixed-Effects Y Y Y Y Y Y 
County Fixed-Effects Y Y Y Y Y Y 
       
Observations 213,141 215,073 215,004 215,004 215,004 215,073 
R-squared 0.087 0.087 0.087 0.087 0.087 0.087 
Dependent Variable Mean  0.072 0.071 0.071 0.071 0.071 0.071 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses and clustered at the county level. Observations 
vary across specifications due to missing data. Column (1) uses information from 3,089 because 28 were missing information on election returns. Columns (3), 
(4), and (5) use information from 3,116 counties because one county was missing information on the number of residents without health insurance, unemployed, 
or living below the federal poverty line.  
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Figure 1: Daily COVID-19 Mortality by Non-Pharmaceutical Intervention Timing 

 

Figure 2: Daily COVID-19 Mortality Rates by Non-Pharmaceutical Intervention Timing 

 
Notes: Early adopters include counties with safer at home and/or business closure policies in 
place prior to the first day-to-day doubling of infections per capita. Late adopters include counties 
that adopted an NPI after the first day-to-day infection doubling.  Never adopters include counties 
that did not have a safer at home or business closure policy in place anytime between February 
15, 2020 and April 23, 2020.   
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Figure 3: Geographic Variation in Adoption of Non-Pharmaceutical Interventions 

As of March 20, 2020 

 
As of March 30, 2020 

 
As of April 10, 2020 
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Figure 4: Event Study                                                                                                                                                             
Non-Pharmaceutical Invention Effects on COVID-19 Deaths per Capita 

 
Notes: Figure plots the 𝛽𝛽𝑐𝑐 coefficients from Eq. 2, including controls for state-level testing and 
residential mobility. Bands represent 95% confidence intervals for each estimate.  
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Appendix 

Table A: Robustness Checks – Impact of NPI Speed on COVID-19 Deaths per 100,000 Residents 

Robustness Check Alternative Contagion Threshold Alternative Weighting  Alternative Samples 
Column (1) (2) (3) (4) (5) (6) 

Model Specification Pre-NPI National 
Average 

Pre-NPI County 
Average Population weighted Excluding                 

NY 
Excluding                     
NE Region 

Only the                          
NE Region 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝐵𝐵𝐵𝐵 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0014*** -0.0017*** -0.0068** -0.0015*** -0.0013*** -0.0094*** 
  (0.0002) (0.0004) (0.0032) (0.0002) (0.0002) (0.0020) 
       
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0005** -0.0029*** -0.0095** -0.0007*** -0.0004** -0.0102*** 
 (0.0002) (0.0006) (0.0043) (0.0002) (0.0002) (0.0023) 
       
Date Fixed-Effects Y Y Y Y Y Y 
County Fixed-Effects Y Y Y Y Y Y 
       
Observations 215,073 215,073 215,073 211,071 200,721 14,352 
R-squared 0.087 0.087 0.351 0.080 0.070 0.275 
Dependent Variable Mean  0.071 0.071 0.222 0.068 0.060 0.219 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses and clustered at the county level. This table 
reports the estimates from Equation (1) using daily COVID-19 deaths occurring between February 15, 2020 and April 23, 2020. In columns (1) and (2), we alter the 
definition of contagion we used to measure the speed of adoption of safer-at-home orders (𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐 ) and non-essential business closures (𝐵𝐵𝐵𝐵𝑐𝑐 ).  Specifically, we replace 
our original contagion threshold, which reflected the first day-to-day doubling of infections per capita in a given county to (1) the first day infections per capita 
exceeded the national average from January 21, 2020 to March 7, 2020 and (2) the county average infections per capita prior to NPI adoption, the results of which 
are found in columns (1) and (2), respectively. In column (3), we apply population weights to derive nationally representative estimates. In columns (4), (5), and (6), 
we experiment with using alternative samples to estimate Eq. (1). In column (4), we exclude New York from the analysis. In column (5), we exclude the entire 
Northeast region, which consists of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont, New Jersey, New York, and Pennsylvania. In 
column (6), we focus exclusively on the Northeast region. 
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Table B: Exploring Main Mechanism: Stemming Contagion 

Outcome COVID-19 Infections per 100,000 Non-COVID-19 Deaths per 100,000 
Column (1) (2) (3) (4) (5) (6) 
Sample  All Counties Excluding NY Excluding NE Region  All Counties Excluding NY Excluding NE Region  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝐵𝐵𝐵𝐵 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0237*** -0.0224*** -0.0214*** 0.0056 -0.0006 -0.0070 
  (0.0019) (0.0018) (0.0019) (0.0306) (0.0170) (0.0167) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0164*** -0.0149*** -0.0102*** -0.0127 -0.0237 0.0052 
 (0.0020) (0.0018) (0.0017) (0.0342) (0.0232) (0.0152) 

State-level tests per 100,000 0.0030*** 0.0029*** 0.0013*** -0.0000 -0.0000 -0.0000* 
 (0.0005) (0.0005) (0.0005) (0.0000) (0.0000) (0.0000) 

       
Date Fixed-Effects Y Y Y Y Y Y 
County Fixed-Effects Y Y Y Y Y Y 
       
Observations 215,073 211,071 200,721 561 550 462 
R-squared 0.124 0.110 0.093 0.800 0.854 0.919 
Dependent Variable Mean  1.651 1.578 1.444 12.082 12.342 12.439 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses and clustered at the county level.  
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Table C: Impact of NPI Speed on COVID-19 Deaths per 100,000 Residents Using Restricted Sample 

Model Specification (1) (2) 
Panel A: Consolidated NPI speed 
   
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑁𝑁𝑃𝑃𝑁𝑁 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0022*** -0.0024*** 
  (0.0002) (0.0002) 

State test results per 100,000  0.0003*** 
  (0.0000) 

Observations 141,480 141,480 
R-squared 0.125 0.132 
Dependent Variable Mean  0.101 0.101 

Panel B: Disaggregated NPI speeds 
   
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝐵𝐵𝐵𝐵 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0020*** -0.0015*** 
  (0.0002) (0.0002) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐 × 𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐  -0.0010*** -0.0012*** 
 (0.0002) (0.0002) 

State test results per 100,000  0.0003*** 
  (0.0000) 
   
Observations 141,480 141,480 
R-squared 0.126 0.132 
Dependent Variable Mean  0.101 0.101 
   
For all specifications above:   
Date Fixed-Effects Y Y 
County Fixed-Effects Y Y 

Notes: *** p<0.01, ** p<0.05, * p<0.1.  All regressions include a constant term.  Standard errors are in parentheses 
and clustered at the county level. This table reports the estimates from Equation (1) using daily COVID-19 deaths 
occurring between March 1, 2020 to April 23, 2020 for the 2,260 counties with mobility data. The specification in 
column (1) only includes date and county fixed effects, while column (2) controls for state-level testing. 
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