
Discussion Papers of the
Max Planck Institute for

Research on Collective Goods
2020/20

Incomplete-Information 
Games in Large Populations 
with Anonymity

Martin F. Hellwig

MAX PLANCK
SOCIETY



Discussion Papers of the 
Max Planck Institute 
for Research on Collective Goods  2020/20

Incomplete-Information Games in Large
Populations with Anonymity

 

Martin F. Hellwig 

 

August 2020

Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10, D-53113 Bonn 
https://www.coll.mpg.de



Incomplete-Information Games in Large
Populations with Anonymity ∗

Martin F. Hellwig
Max Planck Institute for Research on Collective Goods
Kurt-Schumacher-Str. 10, D - 53113 Bonn, Germany

hellwig@coll.mpg.de

August 17, 2020

Abstract

The paper provides theoretical foundations for models of strategic
interdependence under uncertainty that have a continuum of agents
and a decomposition of uncertainty into an macro component and an
agent-specific micro component, with a law of large numbers for the
latter. The decomposition of uncertainty is implied by a condition of
exchangeability of agents’types, which is imposed equivalently imposed
at the level of the prior or at the level of beliefs, i.e., posteriors. Under
an additional condition of anonymity in payoffs, agents’behaviours are
fully determined by their macro beliefs about the cross-section distri-
bution of types and by the cross-section distribution of other agents’
strategies. Any probability distribution over cross-section distributions
of types is admissible, but not every macro belief function is compatible
with a common prior.
Key Words: Incomplete-information games, large populations, be-

lief functions, common priors, exchangeability, conditional indepen-
dence, conditional exact law of large numbers.
JEL: C70, D82, D83.
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1 Introduction

This paper develops theoretical foundations for the study of incomplete-
information games with the following properties:

• The payoff for any one agent depends only on the agent’s own char-
acteristics and actions and on the cross-section distribution of actions
in the population.

• There are many agents, and each agent considers the effect of his own
actions on the cross-section distribution of actions to be negligible.

• Uncertainty can be decomposed into an aggregate component and an
agent-specific component, and the latter satisfies an exact law of large
numbers.

Such games are not covered by the standard approach to studying strate-
gic interdependence with incomplete information, which considers games
with finitely many participants where each participants forms beliefs about
every other participant’s characteristics and actions. This approach fore-
goes the simplifications that are available if agents care only about the
cross-section distribution of the other agents’ actions and any one agent
is too insignificant to affect the cross-section distribution of actions in the
population.

Examples. A few examples illustrate the importance of such games.
Currency attacks and bank runs: In models of currency attacks and

bank runs, the payoff to an agent’s choice to attack or to run depends on
how many agents are also choosing to attack or to run. Any one agent is
therefore concerned about the fraction of people in the population that have
received bad signals and are likely to speculate against the currency or run
on the bank.1

Insider trading and market microstructure: Strategic behavior in mar-
kets with asymmetric information depends on agents’ expectations about

1Since Morris and Shin (1998), the literature on currency attacks and bank runs has
assumed that each agent privately observes a noisy signal of the fundamental. Given the
observation of this signal, the agent forms expectations about the value of the fundamental
and about the population share of the set of people who will choose to participate in a
currency attack or a bank run. If the chances are good that this population share is high
enough for the attack to be successful, the agent will also choose to participate. In addition
to Morris and Shin (1998) see C. Hellwig (2002), Rochet and Vives (2004), Goldstein and
Pauzner (2005), and Angeletos and Werning (2006).
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the relative importance of information trading and liquidity trading. In or-
ganized markets in which the identities of traders are not revealed, these
expectations concern the distribution of characteristics among the potential
traders.2

Electoral competition and voting: In voting, the identities of individ-
uals are irrelevant. Only the fractions of the population that vote for or
against the given alternatives matter. In models of strategic voting, people
form expectations about the distribution of other people’s votes. This dis-
tribution depends on the distribution of other people’s characteristics, i.e.,
preference parameters or realizations of information variables, and on how
these characteristics affect their votes.3

Public-good provision and taxation: Models of income taxation usually
assume a continuum of agents, with private information about individual
productivity and with a law of large numbers for the cross-section produc-
tivity distribution.4 Models of public-good provision usually assume a finite
number of agents, with private information about preference parameters;
public-good provision levels depend on aggregates of the preference parame-
ters, e.g. the aggregate marginal benefit of an additional unit of the public
good. The analysis of public-good provision and income taxation can be
integrated in a model with a large population in which aggregate outcomes
depend only on cross-section distributions of individual productivity levels
and of preference parameters. In a large economy, these distributions are
independent of any one agent’s characteristics, and in mechanism design
approach the distribution of reported characteristics are independent of any
one agent’s report.5

Issues. The notion that any one agent is too insignificant to affect aggre-
gate outcomes is usually formalized by assuming that there is a continuum
of agents. Uncertainty is decomposed into an aggregate component and an
agent-specific component, and a law of large numbers is assumed for the
latter.

This procedure raises several questions. First, what is the relation be-
tween these models and the standard Harsanyi/Mertens-Zamir model of
strategic interdependence under incomplete information? Second, should we
think of the decomposition of uncertainty into aggregate and agent-specific

2See, for example Kyle (1985, 1989).
3See, e.g. Lindbeck and Weibull (1987), Alesina and Tabellini (1990).
4Mirrlees (1971).
5See Bierbrauer (2009, 2014), Bierbrauer and Hellwig (2015).
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components as being introduced ad hoc or can this decomposition itself be
derived from some deeper properties of the models? Third, how should we
deal with the mathematical diffi culties inherent in the notion of a continuum
of agents with agent-specific uncertainty?

The standard model of incomplete information relies on the notion of
types that was introduced by Harsanyi (1967/68) and formalized by Mertens
and Zamir (1985). If A is the set of agents, then, for each a ∈ A, there is a
set Ta of possible types of agent a and, for each type ta ∈ Ta, a belief ba(ta)
of agent a with the type ta. The belief ba(ta) is a probability distribution
over vectors (ta′)a′ 6=a of types of the other agents. Heuristically, we may
think of agents using the information provided by the observation of their
own types to form probabilistic beliefs about the other agents’types.

In one version of this approach, which was promoted by Harsanyi himself,
agents’beliefs are treated as conditional probabilities under a common prior.
Agents’s types are determined by a move of nature, whose "strategy" is
embodied in some commonly known prior probability distribution over type
constellations. The game of incomplete information is thus treated as a
game of imperfect information in which agents know the "strategy" but not
the actual choices of nature.

The common-prior approach to modelling incomplete information has
the advantage that it provides a unified framework for modelling uncertainty,
information and beliefs. In most of this paper, I will therefore assume that
there is a common prior. In the concluding section, however, I will argue
that the condition of anonymity in beliefs can be applied to the belief ba(ta)
even if this belief is not derived from a common prior.6

Anonymity. The main contribution of the analysis will be to show that,
in models with a continuum of agents, the properties listed above are implied
by conditions of anonymity, which ensure that agents’names play no role.
Most importantly, a condition of anonymity in beliefs ensures that each
agent a with type ta and probabilistic belief ba(ta) thinks about the types
ta′ of agents a′ 6= a as the realizations of essentially pairwise exchangeable
random variables so that their joint distribution under the belief ba(ta) is
unchanged if the names of any two of them are interchanged.

A second condition, anonymity in payoffs, postulates that an agent’s
payoff from any action depends on the other agents’actions only through
the cross-section distribution of these actions. Which of the other agents is

6For a controversy about the common-prior approach, see Gul (1998), Aumann (1998).
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taking which action makes no difference as long as the cross-section distri-
bution of actions is the same.

If both anonymity conditions hold, in payoffs and in beliefs, the agent’s
expected payoff from any action depends on his or her expectations about
other agents only through the agent’s probabilistic expectations about the
cross-section distribution of the other agents’types that are induced by the
belief ba(ta) and through the cross-section distribution of the other agents’
strategies.

Anonymity in beliefs has the important implication that, from the per-
spective of agent a with belief ba(ta), the other agents’types are essentially
conditionally independent and identically distributed random variables. The
conditioning variable, relative to which the other agents’ types are condi-
tionally independent, can be identified with the cross-section distribution of
types. Moreover, with a continuum of agents, an exact law of large numbers
implies that the cross-section distribution of types and the conditional prob-
ability distribution of any one agent’s type coincide.7 The decomposition
of uncertainty into an aggregate component and an agent-specific compo-
nent is thus an automatic by-product of exchangeability: The cross-section
distribution of types represents the macro component, the different agents’
individual types the micro-components.

The Mathematical Conundrum. With a continuum of agents, the for-
malization of the space of agents, of the underlying probability space, and
of the random variables that determine agents’ types requires some care.
With finitely many agents, the vectors (ta′)a′∈A of types of all agents and
(ta′)a′∈A\{a} of types of agents other than a (about which agent a forms
beliefs) can simply be treated as elements of the finite-dimensional product
spaces

∏
a′∈A

Ta′ and
∏

a′∈A\{a}
Ta′ . With a continuum of agents, the product

spaces
∏
a′∈A

Ta′ and
∏

a′∈A\{a}
Ta′ are unsuitable because, for any given ele-

ment {ta′} of such a space, the mapping a′ → ta′ may be non-measurable so
that the cross-section distributions of types is not well-defined. In particu-
lar, if A is the Lebesgue unit interval and the types ta′ of different agents
are assumed to be the realizations of (conditionally) independent random

7The insight that exchangeability is equivalent to conditional independence relative
to some underlying σ-algebra is known as de Finetti’s theorem, see de Finetti (1931,
1970/1974).
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variables with nontrivial individual uncertainty, the functions a′ → ta′ are
non-measurable with probability one.8

To address this conundrum, Sun (2006) proposed to make the families
of measurable sets so large that cross-section distributions are always well
defined. If we think of the type ta′ of agent a′ as the realization of a random
variable t̃a′(·) that is defined on some probability space, the idea is to assume
that the family of measurable sets on A × Ω, the product of the space of
agents and the underlying probability space, is large enough so that, for any
bounded measurable function f on A× Ω, integration of the function

(a′, ω)→ f(a′, t̃a′(ω))

with respect to agents’names and with respect to states of the world is well
defined and, moreover, the integrals have the Fubini property that the order
of integration does not make a difference to the result.9

Given this formalism, Sun showed that a continuum of essentially pair-
wise independent and identically distributed random variables satisfies an
exact law of large numbers; moreover, if the specified family of measurable
sets is suffi ciently rich, there is no restriction on the probability distribution
of the random variables in question. Qiao et al. (2016) proved analogous
results for families of conditionally independent random variables; they also
established the equivalence between essential pairwise exchangeability and
essential pairwise conditional independence with identical conditional prob-
ability distributions equal to the sample cross-section distributions.

In this paper, the result of Qiao et al. (2016) cannot be directly applied
because it refers to a single underlying probability space. It can be applied to
the common prior, but then the question is what that implies for the different
agents’ beliefs at different types. With beliefs as conditional probability
distributions, what is the relation between the property of essential pairwise
exchangeability of types at the level of the prior and the property of essential
pairwise exchangeability of other agents’types at the level of the conditional
distributions?

The paper shows that the two properties are actually equivalent in the
sense that essential pairwise exchangeability of different agents’types at the
level of the prior holds if and only if, under almost every agent’s beliefs,

8This problem was first identified by Doob (1937, 1953). For early accounts in eco-
nomics, see Judd (1985) and Feldman and Gilles (1985).

9Subsequent work has refined this approach. See in particular Sun and Zhang (2009),
Podczeck (2010), and Qiao et al. (2016). Hammond and Sun (2003, 2008) develop a
related approach that involves the limits of arbitrarily large finite samples from the given
measure space of agents.
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the other agents’ types are essentially pairwise exchangeable, i.e. satisfy
anonymity in beliefs, with probability one. This equivalence property pro-
vides a link between the macro-micro decomposition of uncertainty at the
level of the prior, which is at the centre of most applied work, and the
macro-micro decomposition at the level of beliefs, which are crucial for the
analysis of strategic behaviour. In the absence of a common prior, one can
still show that anonymity in beliefs induces a decomposition of uncertainty
into a macro and a micro component - at the level of beliefs.

Macro Uncertainty and Macro Beliefs Quite generally, anonymity in
beliefs implies that the probabilistic belief ba(ta) of agent a with type ta
about the other agents’types is fully determined by what I call the agent’s
macro belief b∗a(ta) about the cross-section distribution of the other agents’
types. Given the macro belief b∗a(ta), the underlying belief ba(ta) about the
overall constellation of other agents’ types can be recovered by observing
that the agent considers the other agents’ types to be conditionally inde-
pendent and identically distributed with a common conditional probability
distribution that coincides with the cross-section distribution.

Similarly, at the level of the prior, with a decomposition of uncertainty
in a macro component and a micro component, the macro component is
summarized in the probability distribution over cross-section distributions
of types that is induced by the common prior. From this probability dis-
tribution, the common prior itself can be recovered by using the fact that,
conditional on the cross-section distribution of types, the types of differ-
ent agents are essentially pairwise independent with a common conditional
probability distribution equal to the cross-section distribution.

Given that this exercise can always be carried out, the requirement that
a probability distribution on cross-section distributions of types can generate
a common-prior model of incomplete information imposes no restriction on
the scope of admissible macro uncertainty. Any probability distribution on
cross-section distributions of types can be used as a basis for such a model.

Not every macro belief function, however, is compatible with a common
prior. Whereas every probability distribution over cross-section distribu-
tions of types can be used to specify a common prior with associated belief
and macro belief functions, not every macro belief function, and therefore
not every belief function that satisfies anonymity in beliefs, is compatible
with the existence of a common prior. If the values of the macro belief func-
tion, i.e., the probability distributions over cross-section type distributions
that are induced by different observations of one’s own type are mutually
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absolutely continuous, I will show that the macro belief function admits the
existence of a common prior if and only if it satisfies a version of Harsanyi’s
(1967/68) consistency condition for the existence of a common prior in a
certain two-player game of incomplete information.

Plan of the Paper. In the following, Section 2 develops the game theo-
retic formalism; Section 3 studies the scope for macro uncertainty and macro
belief functions. Section 2.1 begins with a general formulation of a strategic
game with an atomless continuum of players whose types are the realiza-
tions of random variables on a complete probability space. An assumption
of anonymity in payoffs specializes the analysis to games in which agents
care only about the distribution of other agents’ actions, not about who
does what. The formalism of a Fubini extension (of the product of the space
of agents and the probability space) ensures that such distributions are well
defined.

Section 2.2 introduces the properties of anonymity in beliefs and ex-
changeability of types and proves the equivalence result mentioned above.
Section 2.3 shows that both properties are also equivalent to properties of
conditional independence with identical conditional distributions and give
rise to a macro-micro decomposition of uncertainty. Given this decomposi-
tion, Section 2.3 shows that all strategically relevant aspects of agents’beliefs
are contained in their macro beliefs. The distribution of agents’strategies
is then shown to be the key variable for studying strategic interdependence
and equilibrium.

Section 3.1 shows that, if the Fubini extension is suffi ciently rich, then,
from an ex ante perspective, the formalism imposes no restriction on the
scope of macro uncertainty, i.e., for any probability distribution over cross-
section distributions of types, there exists a specification of exchangeable
type random variables for different agents that generates the specified prob-
ability distribution over cross-section type distributions. Section 3.2 gives
necessary and suffi cient conditions under which a given macro belief func-
tion, i.e. a given function from an agent’s own type to the agent’s prob-
abilistic beliefs about the cross-section distribution of types, is compatible
with a common prior.

The concluding section discusses some open issues.
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2 Incomplete-Information Games with a Contin-
uum of Agents

2.1 Agents, Types, Anonymity in Payoffs

Let (A,A, α) be a complete atomless measure space of agents with α(A) = 1.
Given this space of agents, I will consider imperfect-information games with
the following structure. First, nature chooses a type ta from a set Ta for
each agent a. Then each agent a observes his or her own type and chooses
an action sa from a set Sa. Given the type ta, the action sa, and the actions
sa′ of the other agents, a′ ∈ A−a := A\{a}, agent a receives the payoff
ua(ta, sa, {sa′}a′∈A−a). The properties of the function ua will be discussed
later.

Because the agent observes ta before choosing an action, the action is
likely to depend on ta. A strategy for the agent is a function σ(·, a) from Ta
to Sa that indicates how the chosen action depends on ta.

To model the move of nature, I assume that there is a complete probabil-
ity space (Ω,F , P ) and, for each a′ ∈ A, a random variable τ(·, a′) such that
the type of agent a′ is the realization of the random variable τ(·, a′). Given
this stochastic specification, a strategy σ(·, a) of agent a is a best response
to the strategies σ(·, a′) of agents a′ ∈ A−a if∫

Ω
ua(τ(ω, a), σ(τ(ω, a), a), {σ(τ(ω, a′), a′)}a′∈A−a)dP (ω)

≥
∫

Ω
ua(τ(ω, a), σ̂(τ(ω, a)), {σ(τ(ω, a′), a′)}a′∈A−a)dP (ω) (2.1)

for all strategies σ̂(·, a) that agent a might choose. A non-cooperative equi-
librium is a strategy constellation {σ·, a′}a′∈A such that, for (almost) all
a ∈ A, σ(·, a) is a best response to {σ(·, a′)}a′∈A\{a}.

Without loss of generality, I assume that the type space Ta and the
action space Sa are the same for all agents, i.e., for some T and S, Ta = T
and Sa = S for all a ∈ A.10 The type space T and the action space S
are complete separable metric spaces; they are endowed with the Boral σ-
algebras B(T ) and B(S), and the spaces M(T ) and M(S) of probability
measures on T and S are endowed with the topology of weak convergence
and the associated Borel σ-algebras B(M(T )) and B(M(S)).

10 If different agents had different type spaces or action spaces, one could always replace
them by the union of type spaces and the union of action spaces, with suitable assumptions
about τ and ua, a ∈ A, ensuring that the "added" types and actions are irrelevant.
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The best-response condition (2.1) depends on the other agents’names.
In the dependence of the payoff ua on {sa′}a′∈A−a , it can make a difference
whether action s′ ∈ S is taken by agent a′ and action s′′ by agent a′′ or the
other way around. The following assumption eliminates this possibility.

Anonymity in Payoffs: There exists a continuous function u∗a : T × S ×
M(S) such that

ua(ta, sa, {sa′}a′∈A−a) = u∗a(ta, sa, D({sa′}a′∈A−a)) (2.2)

for all a ∈ A, for all ta ∈ Ta, sa ∈ Sa, and all constellations {sa′}a′∈A−a
of actions of agents a′ ∈ A−a for which the cross-section distribution
D({sa′}a′∈A−a) is well defined.

Anonymity in payoffs implies that agent a’s payoff depends on the other
agents’actions only through the cross-section distribution D({sa′}a′∈A−a).
This property implies, in particular, that the agent’s payoff is unchanged
under any permutation of the other agents’names.11

The cross-section distribution D({sa′}a′∈A−a) is a measure on S such
that, for any set B ∈ B(S),

D(B|{sa′}a′∈A−a) = α−a({a′ ∈ A−a|sa′ ∈ B}).

For this measure to be well defined, the map a′ → sa′ must be measurable.
For

{sa′}a′∈A−a = {σ(τ(ω, a′), a′)}a′∈A−a ,
this requirement is satisfied if the mappings a′ → τ(ω, a′) and (t, a′) →
σ(t, a′) are measurable.

Since τ is part of the exogenous data, measurability of τ will be imposed
by assumption. Following Sun (2006) and Qiao et al. (2016), I will assume
that τ is measurable with respect to a Fubini extension of the product σ-
algebra F ⊗A. To make this assumption precise, I first define the concept
of a Fubini extension.
11 If the measure space (A,A, α) is homogeneous, for example, if (A,A, α) is a hyperfinite

Loeb space, invariance to measurable permutations of agents’names is in fact equivalent to
the requirement that the other agents’actions affect the agent’s payoff only through their
cross-section distribution; see Khan and Sun (1999, Section 4). Notice that the Lebesgue
unit interval is not homogeneous, so the requirement that the other agents’actions affect
the agent’s payoff only through their cross-section distribution is actually stronger than
the requirement of invariance to measurable permutations of agents’names. The reason
is that the Lebesgue σ-algebra is based on neighbourhood structures, and therefore the
set of measurable permutations of names is smaller than required for equivalence.
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Fubini Extension: Given two complete probability spaces (Ω,F , P ), and
(I, I, λ), the probability space (Ω× I,W, Q) is a Fubini extension of
the product space (Ω×I,F ⊗ I, P⊗λ) if F ⊗ I ⊂ W, Q|F ⊗ I =P⊗λ,
and, for any real-valued Q-integrable function f on (Ω× I,W ), (i) the
sections f(·, i) and f(ω, ·) are integrable, respectively, on (Ω,F , P ) for
λ-almost all i ∈ I , and on (I, I, λ) for P -almost all ω ∈ Ω, and (ii)
the functions

i→
∫

Ω
f(ω, i)dP (ω) and ω →

∫
I
f(ω, i)dλ(i) (2.3)

are integrable, respectively, on (I, I, λ) and (Ω,F , P ) with∫
Ω×I

f(ω, i)dQ =

∫
Ω

[∫
I
f(ω, i)dλ(i)

]
dP (ω) =

∫
I

[∫
Ω
f(ω, i)dP (ω)

]
dλ(i)

(2.4)

Remark 2.1 Given two complete probability spaces (Ω,F , P ), and (I, I, λ)
and a Fubini extension (Ω×I,W, Q) of the product space (Ω×I,F ⊗ I, P ⊗
λ), let f be a W-measurable function from Ω × I to a complete separable
metric space X, with Borel σ-algebra B(X). Then, for P -almost all ω ∈ Ω,
the cross-section distribution D({f(ω, i)}i∈I) = λ ◦ f(ω, ·)−1 is well defined
and the mapping

ω → D({f(ω, i)}i∈I)

from (Ω,F) into the space M(X) of probability measures on X is measur-
able, where M(X) is endowed with the Borel σ-algebra B(M(X)) that is
induced by the topology of weak convergence onM(X).

To reflect the fact that the probability space (Ω×I,W,Q) has (Ω,F , P ),
and (I, I, λ) as its marginal spaces, as required by the Fubini property, I
write W = F � I and Q = P � λ, so the notation (Ω × I,F � I, P � λ)
indicates that I refer to a Fubini extension of the product (Ω × I,F ⊗ I,
P ⊗ λ).

In the following, I will sometimes identify the space (I, I, λ) in the de-
finition of a Fubini extension with the space (A,A, α) of all agents and
sometimes with the space (A−a,A−a, α−a) of all agents other than a, where
A−a is the σ-algebra of sets in A that do not contain a and α−a := α|A−a
is the restriction of the measure α to A−a. One easily checks that, if (Ω ×
A,F �A, P �α) is a Fubini extension of the product (Ω×A,F ⊗A, P ⊗α),
then, for any a ∈ A, (Ω× A−a,F �A−a, P � α−a) is a Fubini extension of
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the product (Ω×A−a,F ⊗A−a, P ⊗ α−a), where F �A−a is the family of
sets X ⊂ Ω × A−a such that X = Y \(Ω × {a}) for some Y ∈ F � A for
some X = Y \(Ω× {a}) for some Y ∈ F �A and P � α−a is the restriction
of P � α to F �A−a.

Measurability of τ : The function τ is a measurable mapping from a Fu-
bini extension (Ω×A,F �A, P � α) of the product probability space
(Ω×A,F ⊗A, P ⊗ α) to the type space T.

From Remark 2.1, one immediately obtains:12

Remark 2.2 For P -almost all ω ∈ Ω and any a ∈ A, the cross-section
distribution of types of agents other than a, D({τ(ω, a′)}a′∈A−a) = α−a ◦
τ(ω, ·)−1, is well defined and the function

ω → D({τ(ω, a′)}a′∈A)

is a measurable mapping from (Ω,F) intoM(T ).

Remark 2.3 Assume that the mapping (t, a′)→ σ(t, a′) from T ×A−a into
S is measurable. Then for P -almost all ω ∈ Ω and any a ∈ A, the cross-
section distribution of actions of agents other than a,

D({σ(τ(ω, a′), a′}a′∈A−a) = α−a ◦ σ(τ(ω, ·), ·)−1,

is well defined and the function

ω → D({σ(τ(ω, a′), a′)}a′∈A−a)

is a measurable mapping from (Ω,F) intoM(S).

Given the assumption of anonymity in payoffs, Remark 2.3 implies that,
if the mapping (t, a′) → σ(t, a′) is measurable, the best-response condition
(2.1) can be rewritten in the form∫

Ω
u∗a(τ(ω, a), σ(τ(ω, a), a), D({σ(τ(ω, a′), a′)}a′∈A−a))dP (ω)

≥
∫

Ω
u∗a(τ(ω, a), σ̂(τ(ω, a), a), D({σ(τ(ω, a′), a′)}a′∈A−a))dP (ω). (2.5)

12Here and elsewhere in the paper, it is useful to recall that, if Q is a measure on a
space X and f is a measurable function from X to some other space Y , then Q ◦ f−1, a
measure on Y , indicates the distribution of f(x) that is induced when x is distributed as
Q.
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In this formulation, agents’names still matter. To be sure, agent a only
cares about the distribution D({σ(τ(ω, a′), a′)}a′∈A−a) of the other agents’
actions, but this distribution depends on the interplay between the type
constellation {ta′}a′∈A−a and the strategy constellations {σ(·, a′)}a′∈A−a of
the other agents.

If the other agents all use the same (measurable) strategy σ∗ : T → S,
this interplay takes a very simple form and one has

D({σ(τ(ω, a′), a′)}a′∈A−a) = D({τ(ω, a′)}a′∈A−a) ◦ (σ∗)−1, (2.6)

so that the agent is only concerned about the cross-section distribution
D({τ(ω, a′)}a′∈A−a) of the other agents’types and does not care about which
agent has which type. However, the assumption that all other agents to use
the same strategy is special. After all, strategy choices are endogenous.
With enough symmetry in the exogenous data, equilibrium strategy choices
may in fact be symmetric, but that would be a very special case. Even if
the payoff function u∗a was the same for all a, the assumptions that I have
imposed so far are not suffi cient for this conclusion.

2.2 Anonymity in Beliefs and Exchangeability of Types

If the other agents choose different strategies, asymmetries in the beliefs
that agent a has about the types ta′ , ta′′ of agents a′ and a′′ may affect
the agent’s behaviour. To see the role of beliefs, note, that, if a regular
conditional distribution ba(τ(·, a)) for {τ(·, a′)}a′∈A−a given τ(·, a) exists,
one can rewrite (2.5) in the form∫

Ω
u∗a(τ(ω, a), σ(τ(ω, a), a), D({σ(ta′ , a

′)}a′∈A−a))dba({ta′}a′∈A−a |τ(ω, a))dP (ω)

≥
∫

Ω
u∗a(τ(ω, a), σ̂(τ(ω, a), a), D({σ(ta′ , a

′)}a′∈A−a))dba({ta′}a′∈A−a |τ(ω, a))dP (ω).

(2.7)

Trivially, the strategy σ(·, a) satisfies the best-response condition (2.7) if
and only if, for P -almost all ω ∈ Ω, the action σ(τ(ω, a), a) maximizes the
conditional expectation∫

Ω
u∗a(τ(ω, a), sa, D({σ(ta′ , a

′)}a′∈A−a))dba({ta′}a′∈A−a |τ(ω, a)) (2.8)

over the set S.Maximization of (2.8) however, depends on the belief ba(·|τ(ω, a)).
If this belief treats the types ta′ , ta′′ of agents a′ and a′′ asymmetrically, the
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agent’s best response to the other agents’strategies will reflect this asym-
metry.

To eliminate the impact of the other agents’names on agent a’s beliefs, I
use a version of de Finetti’s notion of exchangeability. The basic idea is that
agent a regards the random variables τ(·, a′), a′ ∈ A, as being symmetric
in the sense that their joint distribution is unchanged by a permutation of
the agents’ names. Whereas de Finetti assumed mutual exchangeability,
Hammond and Sun (2006, 2008) and Qiao et al. (2016) showed that, with
a large family of random variables, mutual exchangeability is essentially
equivalent to pairwise exchangeability. The word "essential" refers to the
fact that the properties hold for all but a negligible set of random variables
in the family.

Exchangeability Given two complete probability spaces (Ω,F , P ), and
(I, I, λ) and a family f(·, i), i ∈ I, of F-measurable functions from Ω
to a complete separable metric spaceX with Borel σ-algebra B(X), the
random variables f(·, i), i ∈ I, are essentially pairwise exchangeable if
there exists a Borel probability measure π on (X ×X,B(X)× B(X))
such that, λ-almost all i1 ∈ I,

P (f(·, i1)−1(B1) ∩ f(·, i2)−1(B2)) = π(B1 ×B2)

for λ-almost all i2 ∈ I and for all B1, B2 ∈ B(X).

In the present context, there are two ways to think about exchangeability.
First, given the role of beliefs in the objective function (2.8), one can think
about exchangeability as a property of beliefs. Second, in a common-prior
model, one can also think about exchangeability as a property of the initial
move of nature.

In the following, I will consider both notions and study the relation
between them, as well as their strategic implications. To avoid confusion, I
will use the term exchangeability of types for the property at the level of the
mapping τ and the term anonymity in beliefs for the property at the level
of the belief ba(ta) of agent a with type ta.

Technically, the belief ba(ta) is a measure on the range Ra of the mapping
ω → τ a(ω) := {τ(ω, a′)}a′∈A−a where Ra is endowed with the σ-algebra Ra,
the coarsest σ-algebra under which the mapping ω → τ a(ω) from (Ω,F) to
Ra is measurable.

Anonymity in Beliefs For any a ∈ A and ta ∈ T, the measure ba(ta) on
(Ra,Ra) satisfies anonymity in beliefs if, under this measure, the types
ta′ of agents a′ 6= a are essentially pairwise exchangeable.
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Exchangeability of Types Given the measurable mapping τ from the Fu-
bini extension (Ω×A,F �A) of the product space (Ω×A,F ⊗A) to
the type space T, the random variables τ(·, a), a ∈ A, are essentially
pairwise exchangeable.

If we think about beliefs as conditional distributions and about anonymity
in beliefs as a property that holds almost surely, rather than just for some
type ta, then, from an ex ante perspective, anonymity in beliefs can be in-
terpreted as a form of conditional exchangeability of the random variables
τ(·, a′), a′ ∈ A−a. The following result shows that this conditional exchange-
ability is in fact equivalent to exchangeability.

Proposition 2.4 Given a measurable mapping τ from the Fubini extension
(Ω×A,F �A, P �α) of the product probability space (Ω×A,F ⊗A, P ⊗α)
to the type space T and a function b from T × A to the space of probability
measures on (Ra,Ra) such that, for α-almost all a ∈ A, b(τ(·, a), a) is a reg-
ular conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a), the following
statements are equivalent:

(a) For α-almost every a ∈ A, for P -almost all ω ∈ Ω, the probability
measure ba(τ(ω, a)) satisfies anonymity in beliefs.

(b) The random variables τ(·, a), a ∈ A, are essentially pairwise ex-
changeable.

2.3 The Macro-Micro Decomposition of Uncertainty

Anonymity in beliefs and exchangeability of types have two important im-
plications: First, they ensure that agents’best responses to the other agents’
strategies do not depend on the other agents’names in the sense of who is
doing what. Second, they provide for a decomposition of uncertainty into a
macro and a micro component, with a law of large numbers holding for the
latter.

For models with a continuum of random variables, Hammond and Sun
(2003, 2008) have shown that the property of essential pairwise exchange-
ability is equivalent to the property of essential pairwise conditional inde-
pendence relative to some countably generated σ-algebra, with identical con-
ditional distributions. Moreover, Qiao et al. (2016) have shown that, with
measurability relative to a Fubini extension, the conditioning σ-algebra can
be identified with the algebra generated by the cross-section distributions of
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the random variables in question, and by a conditional law of large numbers,
the conditional probability distribution of any one of the random variables
and the cross-section sample distribution coincide. The following definition
and propositions adapt their analysis to the present setting.

Essential Conditional Pairwise Independence Given two complete prob-
ability spaces (Ω,F , P ), and (I, I, λ), a countably generated sub-σ-
algebra C of F , and a family f(·, i), i ∈ I, of F-measurable functions
from Ω to a complete separable metric space X with Borel σ-algebra
B(X), the random variables f(·, i), i ∈ I, are essentially pairwise con-
ditionally independent given C if, for λ-almost all i1 ∈ I, the random
variables f(·, i1) and f(·, i2) are conditionally independent given C, for
λ-almost all i2 ∈ I.

Proposition 2.5 Given a measurable mapping τ from the Fubini extension
(Ω×A,F �A, P �α) of the product probability space (Ω×A,F ⊗A, P ⊗α)
to the type space T, the following statements are equivalent:

(a) The random variables τ(·, a), a ∈ A, are essentially pairwise ex-
changeable.

(b) The random variables τ(·, a), a ∈ A, are essentially pairwise condi-
tionally independent given the sub-σ-algebra D of F that is generated by the
mapping

ω → D({τ(ω, a)}a∈A), (2.9)

and, moreover, for α-almost every a ∈ A, the mapping (2.9) is a regular
conditional distribution for τ(·, a) given D.

Proposition 2.6 Given a measurable mapping τ from the Fubini extension
(Ω×A,F �A, P �α) of the product probability space (Ω×A,F ⊗A, P ⊗α)
to the type space T and a function b from T × A to the space of probability
measures on (Ra,Ra) such that, for a-almost all a ∈ A, b(τ(·, a), a) is a reg-
ular conditional distribution for {τ(·, a′)}a′∈A−a given τ(·, a), the following
statements are equivalent:

(a) For α-almost every a ∈ A, for P -almost all ω ∈ Ω, the probability
measure ba(τ(ω, a)) satisfies anonymity in beliefs.

(b) For α-almost every a ∈ A, for P -almost all ω ∈ Ω, under the prob-
ability measure ba(τ(ω, a)), the types ta′ of agents a′ 6= a are essentially
pairwise conditionally independent given the sub-σ-algebra D̂ of Ra that is
generated by the mapping

{ta′}a′∈A−a → D({ta′}a′∈A−a), (2.10)
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and, moreover, for α−a-almost every a′ ∈ A−a, the mapping (2.10) is a
regular conditional distribution for ta′ given D̂.

Propositions 2.5 and 2.6 have two components. One component asserts
the equivalence of exchangeability of types or anonymity in beliefs with
essential pairwise conditional independence (with identical conditional dis-
tributions). The other component asserts a conditional law of large numbers
whereby the cross-section distribution of types is almost surely equal to the
common conditional distribution of types given the σ-algebra that is gener-
ated by the cross-section distributions.

Conditional independence and the validity of the exact law of large num-
bers over the continuum of agents provide for a decomposition of uncer-
tainty into macro and micro components. The macro component concerns
the cross-section distribution of types, the micro component the type of
each individual agent. Conditional independence and the law of large num-
bers ensure that, conditonal on the cross-section distribution of types, each
agent’s individual type has a probability distribution that is equal to the
cross-section distribution.

The formulation of Proposition 2.6 relies on the specification of beliefs
in terms of regular conditional distributions under a common prior. This
formulation may create an impression that anonymity in beliefs and the
macro-micro decomposition should really be treated as properties of the
common prior. Such an impression would however be mistaken. The follow-
ing result provides an analogue to Proposition 2.6 that does not refer to a
common prior.

Proposition 2.7 For any a ∈ A and ta ∈ T, the measure ba(ta) satisfies
anonymity in beliefs if and only if there exists a countably generated sub-σ-
algebra Ca ⊂ Ra and a Ca-measurable mapping µ from Ra to the space of
measures on (Ra,Ra) such that, under the measure ba(ta), the types ta′ of
agents a′ 6= a are essentially pairwise conditionally independent and identi-
cally distributed with the common regular conditional distribution µ(·). If the
measure ba(ta) ◦ τ a(·) on (Ω,F) is absolutely continuous with respect to P,
the sub-σ-algebra Ca coincides with the σ-algebra D̂ of Ra that is generated
by the mapping

{ta′}a′∈A−a → D({ta′}a′∈A−a), (2.11)

and the regular conditional distribution µ(·) coincides with the mapping
(2.11).
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The first half of Proposition 2.7 relies on Hammond and Sun (2008), the
second half on Qiao et al. (2016). The assumption that ba(ta) ◦ τ a(·) on
(Ω,F) be absolutely continuous with respect to P ensures that the projec-
tion mapping ({ta′}a′∈A−a , â) → tâ is measurable with respect to a Fubini
extension of the product σ-algebra Ra ⊗A−a, as required for the exact law
of large numbers inherent in the second half of the proposition.

2.4 Macro Beliefs and Strategic Behaviour

The fact that the macro-micro decomposition of uncertainty is obtained at
the level of beliefs as well as the common prior is important because strategic
behaviour depends on beliefs. From (2.7) and (2.8) above, we know that,
with anonymity in payoffs, an agent’s strategic behaviour depends on the
agent’s probabilistic beliefs about the cross-section distribution of the other
agents’actions. The following result, which encompasses both Propositions
2.6 and 2.7, shows that this cross-section distribution of the other agents’
actions can be expressed in terms of the cross-section distribution of the
other agents’ types and the cross-section distribution of the other agents’
strategies.

Proposition 2.8 Given a ∈ A and ta ∈ T, assume that, under the measure
ba(ta) on (Ra,Ra), the types ta′ of agents a′ 6= a are essentially pairwise
conditionally independent given the sub-σ-algebra D̂ of Ra that is generated
by the mapping

{ta′}a′∈A−a → D({ta′}a′∈A−a); (2.12)

assume also that, for α−a-almost every a′ ∈ A−a, the mapping (2.10) is a
regular conditional distribution for ta′ given D̂. If the mapping (t, a′) →
σ(t, a′) from T ×A−a into S is measurable, then

D({σ(ta′ , a
′)}a′∈A−a) =

∫
â∈A−a

D({ta′}a′∈A−a) ◦ σ(·, â)−1dα(â) (2.13)

for ba(ta)-almost all {ta′}a′∈A−a ∈ Ra.

Thus, with anonymity in beliefs, the cross-section distribution of actions
of agents other than a depends only on the cross-section distribution of types
and the constellation {σ(·, â)}â∈A−a of the other agents’strategies. In fact,

18



equation (2.13) shows that the strategies σ(·, â), â ∈ A−a, affect the dis-
tribution D({σ(ta′ , a

′)}a′∈A−a) only through their cross-section distribution
Σa := α−a ◦ (σa)−1. so one can write

D({σ(ta′ , a
′)}a′∈A−a) =

∫
ST
D({ta′}a′∈A−a) ◦ (σ∗)−1dΣa(σ∗), (2.14)

which is unchanged under any permutation of the other agents’names. In
(2.14), Σa is a measure on the space of measurable functions from T to
S, and σ∗, the variable of integration, is a generic element of this function
space.

With anonymity in beliefs as well as payoffs, expression (2.8) for agent
a’s conditionally expected payoff from action sa with type τ(ω, a) and belief
ba(τ(ω, a)) can then be written as

∫
Ra

u∗a(τ(ω, a), sa,

∫
ST
D({ta′}a′∈A−a)◦(σ∗)−1dΣa(σ∗)) dba({ta′}a′∈A−a |τ(ω, a)).

(2.15)
In this expression, the agent’s belief ba(τ(ω, a)) concerns only the cross-
section type distribution D({ta′}a′∈A−a). One can therefore rewrite (2.15) in
the form∫

M(T )
u∗a(τ(ω, a), sa,

∫
ST
δ ◦ (σ∗)−1dΣ(σ∗)) db∗a(δ|τ(ω, a)), (2.16)

where, for any ta ∈ T,

b∗a(ta) := ba(ta) ◦D(·)−1. (2.17)

is the probability distribution for D({ta′}a′∈A−a) that is induced by ba(ta).
I will refer to b∗a(ta) as the macro belief of agent a with type ta. Because

the measure α assigns zero weight to the individual agent a, we also have

D({ta′}a′∈A−a) = D({ta′}a′∈A)

for all {ta′}a′∈A and all a. Under exchangeability of types, therefore, for
α-almost all a ∈ A and P -almost all ω ∈ Ω, the macro belief b∗a(τ(ω, a)) is
independent of a. The fact that the measure α assigns zero weight to the
individual agent a also implies that the distribution Σa := α−a ◦ (σa)−1 of
strategies pursued by agents other than a is the same for all a.

Thus, for a ∈ A and P -almost all ω ∈ Ω, one can therefore rewrite (2.16)
in the form ∫

M(T )
u∗a(τ(ω, a), sa,∆(δ,Σ)) db∗(δ|τ(ω, a)), (2.18)
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where

∆(δ,Σ) :=

∫
ST
δ ◦ (σ∗)−1dΣ(σ∗)) (2.19)

is the cross-section distribution of actions that is induced by the cross-section
distribution of types δ and the cross-section distribution of actions Σ.

Anonymity in payoffs and anonymity in beliefs have thus been used to
transform the objective function in (2.1), where agents rely on beliefs and
expectations about the types and actions of every single other agent, into a
form were agents rely only on beliefs and expectations about cross-section
distributions of types and cross-section distributions of strategies of the other
agents. Whereas the other agents’names play a substantive role in (2.8),
and even more so in (2.1), they do not even appear in (2.16) or (2.18).

Expression (2.18) also indicates that, with exchangeability of types, the
cross-section distribution of strategies is the key endogenous variable in any
analysis of strategic behaviour and strategic interdependence. In this for-
mulation, it is natural to think about (Bayes-Nash) equilibrium in terms of
distributions.

Equilibrium Strategy Distribution A measure Σ on the space of mea-
surable functions σ∗ : T → S is an equilibrium strategy distribution if
there exist strategies σa : T → S, a ∈ A, such that, (i) for α-almost
every a ∈ A and P -almost every ω ∈ Ω, the action σa(τ(ω, a)) maxi-
mizes the objective (2.18) over S, and (ii) Σ := α ◦ (σa)−1.

I will not discuss under what conditions an equilibrium strategy distri-
bution exists. Some of the issues that arise are routine, e.g., in addition to
continuity of u∗a, one needs a compactness condition on S or a boundary
condition in u∗a to ensure that, for any τ(ω, a) ∈ T and ∆ ∈ M(S), there
exists sa ∈ S that maximizes (2.18). One also needs an additional measura-
bility condition on u∗a to ensure that the action σ

a(τ(ω, a)) that maximizes
(2.18) over S can be taken to be measurable in τ(ω, a) and a.

An important issue is nonroutine, however: Because an equilibrium strat-
egy distribution is a measure on a space of functions, the topology on this
space and the structural properties of utility functions and of the macro
belief function must be specified in such a way that the continuity and com-
pactness conditions for a fixed-point argument are satisfied. Milgrom and
Weber (1985) have provided such conditions for models with finitely many
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agents (without anonymity). I conjecture that their arguments can be ap-
plied in the present as well.13

3 The Scope of Macro Uncertainty

3.1 Cross-Section Type Distributions

I now turn to the question whether anonymity in beliefs and exchangeability
of types impose any additional implicit restrictions on the mapping τ . The
answer to this question depends on the specification of the Fubini extension
F � A of the product σ-algebra F ⊗ A. For example, if F � A is equal to
the product σ-algebra F ⊗ A itself, then, as was shown by Sun (2006) and
Hammond and Sun (2008), exchangeability and (conditional) independence
are incompatible with the measurability assumption on τ except for the
case where τ(ω, a) is the same for α-almost all a, for P -almost all ω. In
this case, the type distribution D({τ(ω, a)}a∈A) would almost surely be
degenerate, macro uncertainty would only concern the value of the type,
which is common to (almost) all agents, and, conditional on the common
value of the type, there would be no further individual uncertainty.14

As discussed by Sun (2006) and Qiao et al. (2016), this degeneracy is
avoided if the Fubini extension F � A of the product σ-algebra F ⊗ A is
rich. This requirement excludes the product σ-algebra F ⊗ I.

Richness of the Fubini Extension A Fubini extension (Ω×I,F�I, P�
λ) of a product probability space (Ω × I,F ⊗ I, P ⊗ λ) is said to be
rich if there exists a measurable function h from (Ω× I,F � I, P �λ)
to the unit interval such that (i) the random variables h(·, i), i ∈ I,
are essentially pairwise independent, i.e., for λ-almost all i1 ∈ I, the
random variables h(·, i1) and h(·, i2) are independent for λ-almost all
i2 ∈ I, and, moreover, (ii) for λ-almost every i ∈ I, the random
variable h(·, i) has a uniform distribution.

13 I also conjecture that, with an atomless measure space of agents, there is no need to
allow for (mixed) behaviour strategies rather than pure strategies.
14Proposition 2.1 of Sun (2006) shows that, if h is a measurable function from the

product space (Ω × I,F ⊗ I, P ⊗ λ) to the unit interval and if the random variables
h(·, i), i ∈ I, are essentially pairwise independent, the random variables h(·, i), i ∈ I, must
be essentially trivial, i.e., for λ-almost all i ∈ I, h(·, i) must be constant. Proposition
4 in Hammond and Sun (2008) provides a version of this result with essential pairwise
conditional independence.
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Conditions for the existence of a rich Fubini extension are given in Sun
(2006), Sun and Zhang (2009), and Podczeck (2010). In particular, Sun
(2006) shows that a rich Fubini extension exists if (I, I, λ) is a hyperfinite
Loeb space. Sun and Zhang (2009) show that, whereas a rich Fubini exten-
sion fails to exist if I is the unit interval with the Lebesgue σ-algebra, an
extended Lebesgue unit interval, with a larger σ-algebra, does permit the
construction of a rich Fubini extension of the product (Ω× I,F ⊗I, P ⊗λ).

The following proposition shows that, if the Fubini extension F � A is
rich, there is no restriction on macro uncertainty, i.e. uncertainty about
cross-section type distributions, and the only restriction on micro uncer-
tainty comes from the principle that, for a given cross-section distribution
of types, the conditional probability distribution of the random variable
τ(·, a) is equal to the cross-section distribution of types.

Proposition 3.1 Let δ̃ be any M(T )-valued random variable on (Ω,F , P )
and let D be the sub-σ-algebra of F that is generated by δ̃. If the Fubini
extension (Ω × A,F �A, P � α) is rich, there exists an F �A-measurable
mapping τ from Ω×A to T such that the following statements hold:

(a) Exchangeability of types holds, i.e., the random variables τ(·, a′), a′ ∈
A, are essentially pairwise exchangeable.

(b) Conditionally on D, the random variables τ(·, a′), a′ ∈ A, are essen-
tially pairwise independent and, for α-almost every a′ ∈ A, the mapping
ω → δ̃(ω) is a regular conditional distribution for τ(·, a′) given D.

(c) For P -almost all ω ∈ Ω,

δ̃(ω) = D({τ(ω, a′)}a′∈A), (3.1)

i.e., conditionally on D, an exact law of large numbers holds.
(d) For α-almost every a ∈ A, there exists a function ba from T to the

space of measures on (Ra,Ra) such that ba(τ(·, a)) is a regular conditional
distribution for {τ(·, a′)}a′∈A−a given τ(·, a) and, moreover, for P -almost
every ω ∈ Ω, ba(τ(·, a)) satisfies anonymity in beliefs.

(e) The belief functions ba in Statement (d) take the form

ba(ta) =

∫
M(T )

b̂a(δ) dβ
∗(δ|ta), (3.2)

where b̂a(δ̃(·)) is a regular conditional distribution for {τ(·, a′)}a′∈A−a given
δ̃ and β∗(τ(·, a)) is a regular conditional distribution for δ̃ given τ(·, a).

In addition to pulling together the findings of Propositions 2.4 - 2.6,
Proposition 3.1 shows that the objects of those propositions, namely the
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families τ(·, a), ba(τ(·, a)), a ∈ A, of random types and of belief functions
can always be well defined. Moreover, for any specification of the macro
random variable δ̃, they can be chosen so that δ̃ almost surely coincides
with the cross-section distribution of τ(·, a), a ∈ A, as well as the conditional
probability distribution given δ̃ of τ(·, a′), for α-almost all a′ ∈ A. Given
that, for any Φ ∈ M(M(T )), there is a random variable δ̃ on (Ω,F , P )
whose probability distribution is Φ, it follows that, if the Fubini extension
(Ω× I,F � I, P � λ) is rich, any probability distribution over cross-section
distributions is admissible.

The existence result in Statement (d) is nontrivial because the σ-algebra
Ra is not, in general, countably generated. The result follows from the
law of iterated expectations as spelled out in (3.2). Existence of a regular
conditional distribution b̂a(δ̃(·)) for {τ(·, a′)}a′∈A−a given δ̃ is obtained from
the very construction of the random variables τ(·, a′), a′ ∈ A−a. Existence of
a regular conditional distribution β(τ(·, a)) for δ̃ given τ(·, a) is obtained by
standard arguments from the fact that T andM(T ) are complete separable
metric spaces and that the σ-algebras B(T ) and B(M(T )) are countably
generated.

3.2 Macro Belief Functions

Whereas Proposition 3.1 implies that every probability distribution over
cross-section distributions is admissible, the same cannot be said for macro
belief functions. Not every measurable function β from T to M(M(T )) is
compatible with a common prior.

As is well known, in models with finitely many agents, with arbitrary be-
lief functions, the existence of a common prior cannot be taken for granted.15

In such models, the conditions under which a given set of belief functions
is compatible with a common prior are very restrictive, the more so, the
more agents there are. In the present setting, with a continuum of agents
and belief functions required to satisfy anonymity in beliefs, conditions for
compatibility with a common prior are less restrictive than the size of the
population might suggest, but even so, there is a problem.

Compatibility with a Common Prior A macro belief function β : T →
M(M(T )) admits a common prior if there exists a mapping τ : Ω ×
A → T that is measurable with respect to a rich Fubini extension

15Harsanyi (1967/68), Samet (1998 a, b), Feinberg (2000), Rodrigues-Neto (2009), Hell-
man and Samet (2012), Hellwig (2013).
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F �A of the product σ-algebra F ⊗A, and, for α-almost every a ∈ A,
there exists a regular conditional distribution ba(·|τ(·, a)) for {τ(·, a′}a′∈A−a
given τ(·, a) such that for P -almost every ω ∈ Ω, ba(·|τ(ω, a)) satis-
fies anonymity in beliefs and the associated macro belief b∗a(τ(ω, a))
coincides with β(τ(ω, a)).

Proposition 3.2 A measurable function β : T →M(M(T )) admits a com-
mon prior if and only if there exist measures Ψ ∈ M(T )), Φ ∈ M(M(T )),
Π ∈M(T ×M(T )) such that

Π(B1 ×B2) =

∫
B1

β(B2|t) dΨ(t) (3.3)

and

Π(B1 ×B2) =

∫
B2

δ(B1) dΦ(δ) (3.4)

for all B1 ∈ B(T ) and B2 ∈ B(M(T )).

To understand this proposition, let τ(·, a′), a′ ∈ A, be the family of
random types for which β is supposed to be the macro belief function. Let
δ̃ = D({τ(·, a′)}a′∈A) be the random variable indicating the cross-section
distribution of types, and let a ∈ A be such that, conditionally on δ̃(·), τ(·, a)
is distributed as δ̃(·). Let Π be the joint distribution of the pair (τ(·, a), δ̃(·)),
and let Ψ and Φ be the marginal distributions of τ(·, a) and δ̃(·).

There are two ways to think about Π. First, using the fact that β(τ(·, a))
is a regular conditional distribution for δ̃(·) given τ(·, a), one can think about
Π as being derived from the marginal distribution Ψ of the type τ(·, a) of
agent a and the macro belief function β. Second, one can think about Π as
being derived from the marginal distribution Φ of δ̃(·) in combination with
the fact that marginal distributions of τ(·, a) and δ̃(·). The first approach
yields (3.3), the second (3.4).

Consistency of (3.3) and (3.4) requires that∫
B2

δ(B1) dΦ(δ) =

∫
B1

β(B2|t) dΨ(t) (3.5)

for all B1 ∈ B(T ) and B2 ∈ B(M(T )). In order to understand what this
means, it is useful to note that this condition is formally equivalent to the
condition for the existence of a common prior in a two-player model in which
the type space of player 1 is T , the type space of player 2 isM(T ), the belief
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function of player 1 is β, and the belief function of player 2 is the identity
mapping δ → δ. In this two-player model, a common prior Π exists if and
only if there exist agent-specific priors Ψ for the type of player 1 and Φ for
the type of player 2 such that equation (3.5) holds for all B1 ∈ B(T ) and
B2 ∈ B(M(T )), in which case Π is given by (3.3) and (3.4).

In the following, I use arguments from the analysis of two-player games
to spell out the meaning of the consistency condition (3.5). The aim is to
obtain conditions that only refer to the macro belief function β and not
also to the measures Ψ and Φ, which are endogenous. I begin with a result
showing that Proposition 3.2 can be restated in terms of density functions.16

Proposition 3.3 A measurable function β : T →M(M(T )) admits a com-
mon prior if and only if there exist measures Ψ ∈ M(T )), Φ ∈ M(M(T )),
Π ∈M(T ×M(T )) such that the following statements are true.

(a) Φ-almost every measure δ ∈ M(T ) is absolutely continuous with
respect to Ψ and has a density function gΨ such that

δ(B1) =

∫
B1

gΨ(t|δ) dΨ(t) (3.6)

for all B1 ∈ B(T ).
(b) For Ψ-almost every t ∈ T, the measure β(t) is absolutely continuous

with respect to Φ and has a density function fΦ such that

β(B2|t) =

∫
B2

fΦ(δ|t) dΦ(δ) (3.7)

for all B2 ∈ B(M(T )).
(c) The measure Π is absolutely continuous with respect to the product

measure Ψ× Φ and has a density function π such that

Π(B1 ×B2) =

∫
B1

∫
B2

π(t, δ) dΦ(δ)dΨ(t); (3.8)

moreover,
π(t, δ) = fΦ(δ|t) = gΨ(t|δ) (3.9)

for Ψ× Φ-almost all (t, δ) ∈ T ×M(T ).

16This restatement reflects the insight of Samet (1998a) insight that, if a common prior
exists, then the marginal distributions of the types of the different participants can be
represented as the invariant distributions of Markov processes, with kernels given by com-
positions of the belief functions. As discussed, e.g., in Doob (1953), Markov kernels are
absolutely continuous with respect to the invariant distributions.
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The consistency condition (3.9) provides the basis for the following result.

Proposition 3.4 Let β be a measurable function from T toM(M(T )) and
assume that the measures β(t), t ∈ T, are mutually absolutely continuous. If
β admits a common prior, then the following statements hold:

(i) there exists a set D ∈ M(T ) such that β(D|t) = 1 for all t and,
moreover, the measures δ ∈ D are mutually absolutely continuous;

(ii) For any t0 ∈ T, for β(t0)-almost all δ1 ∈ D and δ1-almost all t1 ∈ T,
there exist density functions f1(·|t) of the measures β(t), t ∈ T, with respect
to β(t1), and g1(·|δ) of the measures δ ∈ D with respect to δ1 so that the
condition

f1(δ2|t2)

f1(δ1|t2)
=
g1(t2|δ2)

g1(t1|δ2)
> 0 (3.10)

holds for β(t1)-almost all δ2 ∈M(T ) and δ1-almost all t2 ∈ T .
Conversely, if β satisfies (i) and (ii), then β admits a common prior.

The common prior is unique. The measures Π,Ψ,Ψ take the form

Π(B1 ×B2) = λ(t1, δ1)

∫
B1

∫
B2

f1(δ|t)
f1(δ1|t)

dβ(δ|t0)dδ0(t)

= λ(t1, δ1)

∫
B2

∫
B1

g1(t|δ)
g1(t1|δ)

dδ0(t)dβ(δ|t0), (3.11)

Ψ(B1) = λ(t1, δ1)

∫
B1

1

f1(δ0|t)
dδ0(t) (3.12)

Φ(B2) = λ(t1, δ1)

∫
B2

1

g1(t0|δ)
dβ(δ|t0), (3.13)

for B1 ∈ B(T ) and B2 ∈ M(T ), where λ(t1, δ1) > 0 is a scaling factor
ensuring that Π(T ×M(T )) = 1.

In this proposition, condition (3.10) takes the place of the consistency
condition (3.9) in Proposition 3.3. Both conditions are variants of Harsanyi’s
(1967/68) well known necessary condition for the existence of a common
prior for a given belief system.

Indeed the underlying argument is the same: If β admits a common prior,
there are two ways to evaluate the ratio π(t2,δ2)

π(t1,δ1) of the joint distribution Π
of an agent’s type and the cross-section distribution of types. One can write

π(t2, δ2)

π(t1, δ1)
=
π(t2, δ1)

π(t1, δ1)
· π(t2, δ2)

π(t2, δ1)
=
gΨ(t2|δ1)

gΨ(t1|δ1)
· fΦ(δ2|t2)

fΦ(δ1|t2)
(3.14)
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or, alternatively,

π(t2, δ2)

π(t1, δ1)
=
π(t1, δ2)

π(t1, δ1)
· π(t2, δ2)

π(t1, δ2)
=
fΦ(δ2|t1)

fΦ(δ1|t1)
· gΨ(t2|δ2)

gΨ(t1|δ2)
, (3.15)

where in each case the second equation is based on (3.9). For these evalua-
tions of the ratio π(t2,δ2)

π(t1,δ1) to be compatible with each other, one must have

gΨ(t2|δ1)

gΨ(t1|δ1)
· fΦ(δ2|t2)

fΦ(δ1|t2)
=
fΦ(δ2|t1)

fΦ(δ1|t1)
· gΨ(t2|δ2)

gΨ(t1|δ2)
. (3.16)

Whereas equation (3.16) involves densities with respect to Ψ and Φ, the
mutual absolute continuity of Ψ and the measures δ ∈ D and the mutual
absolute continuity Φ and the measures β(t), t ∈ T, imply that (3.16) can
be rewritten as

g0(t2|δ1)

g0(t1|δ1)
· f0(δ2|t2)

f0(δ1|t2)
=
f0(δ2|t1)

f0(δ1|t1)
· g0(t2|δ2)

g0(t1|δ2)
, (3.17)

where g0(t2|δ1), f0(δ2|t2), etc. are the corresponding densities with respect
to some δ0 ∈ D and β(t0) ∈ M(T ). Equation (3.17) is exactly Harsanyi’s
(1967/68) condition, albeit applied to densities in a model with (possibly)
a continuum of states, rather than probabilities in a model with a finite
number of states. To get from this equation to (3.10), it suffi ces to set
δ0 = δ1 and t0 = t1 and to note that g1(t2|δ1) = g1(t1|δ1) = 1 and f1(δ2|t1) =
f1(δ2|t1) = 1 because the density of a measure with respect to itself is
identically equal to one.

Whereas Harsanyi’s condition is usually discussed as a necessary condi-
tion for the existence of a common prior, Proposition 3.4 shows that, under
the given conditions, it is also suffi cient. This finding hinges on the strict
positivity of the densities f0(δ|t) and g0(t|δ) on the relevant parts of their
domains, which in turn is derived from the assumption that the macro beliefs
β(t), t ∈ T, are mutually absolutely continuous.

The suffi ciency part of Proposition 3.4 parallels the finding of Hellwig
(2013) that, in an n-player game in which any element of any player’s in-
formation partition intersects any element of any other player’s information
partition, for a strictly positive belief system, a common prior exists if (and
only if) the Harsanyi condition holds for all quadruples that can be obtained
from pairs of types for pairs of players (keeping the other players’ types
fixed). I conjecture that, without the mutual-absolute-continuity assump-
tion, necessary and suffi cient conditions along the lines of Rodrigues-Neto
(2009) or Hellman and Samet (2012) could still be obtained.
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4 Further Considerations

Anonymity in Beliefs in the Absence of a Common Prior. To con-
clude the paper, I briefly discuss some further issues. First, as mentioned in
the introduction, the interpretation of belief functions as regular conditional
distributions is controversial. One may therefore ask what becomes of the
results of this paper when there is no common prior.

In the absence of a common prior, the belief ba(ta) of agent a with type
ta must be taken as a given, without any relation to a prior, common or not.
One can still impose the property of anonymity in beliefs, and, by the result
of Hammond and Sun (2008), one still finds that, if ba(ta) has this prop-
erty, then, under this belief, relative to some countably generated σ-algebra,
the types ta′ , a′ ∈ A−a, are conditionally independent and identically dis-
tributed. To go further and assert a conditional law of large numbers, one
needs the formalism of the Fubini extension.

In Hellwig (2019), a previous version of this paper, I actually started
from the beliefs ba(ta), ta ∈ T, a ∈ A, with an assumption that, for some
complete probability space (Ωa(ta),Fa(ta), Pa(ta)), the belief ba(ta) is given
as

ba(ta) = Pa(ta) ◦ τ a(·|ta)−1,

where
τ a(·|ta) = {τa(·, a′|ta)}a′∈A−a

and τa(·, ·|ta) is a mapping from Ωa(ta) × A−a to T that is measurable
with respect to a rich Fubini extension of the product space (Ωa(ta) ×
A−a,Fa(ta)⊗A−a, Pa(ta)⊗α−a).With this formalism, a version of Proposi-
tion 2.7 is immediately available to provide for a macro-micro decomposition
of uncertainty, with an exact conditional law of large numbers, from the per-
spective of the belief ba(ta).

In this approach, however, where each belief is treated in isolation, with
a distinct probability space (Ωa(ta),Fa(ta), Pa(ta)) supporting the Fubini
formalism, it is diffi cult to think about a belief function, at least if the func-
tions τ a(·|ta), ta ∈ T, have different ranges. The Fubini formalism requires
that the probability spaces (Ωa(ta),Fa(ta), Pa(ta)) be complete, so even if
Ωa(ta) was taken to be the same for all ta, the completions Fa(ta), Pa(ta)
of the σ-algebras ba(ta) ◦ τ a(·|ta) need not be. As shown in Hellwig (2019),
the diffi culty is resolved if one assumes that the measures ba(ta), ta ∈ T,
are mutually absolutely continuous; in this case, one can replace any one
of the spaces Ωa(ta) with the union of the ranges of the functions τ a(·|ta).
Proposition 2.7 then applies to all the beliefs ba(ta), ta ∈ T.
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What about Payoff-relevant Aspects of Names? Second, a referee
has asked how the formalism would accommodate labels that may be strate-
gically relevant even though they are parts of agents’names. The example
given by the referee is location, but one can also think of profession, gender,
ethnicity, age. Indeed, as shown by Bertrand and Mullainathan (2004), even
proper names can be payoff relevant if they are treated as signals of gender,
ethnicity, or race.

In addressing the referee’s question, one must be careful about the se-
mantics of the word "name". If we think about "names" as abstract identi-
fiers like IP numbers, which in and of themselves are strategically unimpor-
tant, then, by definition, labels must be treated as parts of agents’types,
rather than their names. Paradoxical though it may seem, in this interpre-
tation of the word "name", whether a person is called Marianne or Sendhil,
would be an aspect of the person’s type.

Does it make a difference? If we think of labels as being parts of agents’
names, the space of agents take the form A = Â × L, where Â is a space
of strategically irrelevant identifiers and L is the space of labels. For any
agent a ∈ A, the value of the label for this agent is given by the projection
from A to L, `(a) = projLa. If instead we treat the label ` as a part of the
agent’s type, we must replace the type τ(ω, a) of this paper by an extended
type (τ(ω, a), `(ω, a)). The latter formulation has certain advantages.

If labels are treated as parts of agents’names, it may be appropriate to
replace the assumption of anonymity in beliefs or exchangeability of types
by conditioning on labels, e.g., assuming that for α ◦ `−1-almost all ` ∈ L,
the types τ(·, â, `), â ∈ Â, are essentially pairwise exchangeable.

If labels are treated as parts of agents’ types, it suffi ces to apply the
exchangeability assumptions of this paper to the extended types τ∗(·, a) =
(τ(·, a), `(·, a)), rather than just τ(·, a), a ∈ A. This assumption would actu-
ally encompass the conditional-exchangeability assumption that, for α◦`−1-
almost all ` ∈ L, the types τ(·, â, `), â ∈ Â, are essentially pairwise exchange-
able.

To see this, notice that, with exchangeability of extended types, the pairs
(τ(·, a), `(·, a)) are essentially pairwise conditionally independent and iden-
tically distributed, with conditioninig on the σ-algebra generated by the
sample cross-section distributions D({(τ(·, a′), `(·, a′))}a′∈A). I claim that,
moreover, conditionally on the σ-algebra generated by the cross-section
distributions D({(τ(·, a′), `(·, a′))}a′∈A) and the labels `(·, a′), a′ ∈ A∗, the
(narrow) types τ(·, a), a ∈ A, must be essentially conditionally indepen-
dent and identically distributed, where A∗, with α(A∗) = 1, is the set of
agents, such that, conditionally on D({(τ(·, a′′), `(·, a′′))}a′′∈A), the pairs
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(τ(·, a′), `(·, a′)) are conditionally independent and identically distributed.
Because, conditionally on D({(τ(·, a′′), `(·, a′′))}a′′∈A), the σ-algebras gener-
ated by (τ(·, a), `(·, a)) and by (τ(·, a′), `(·, a′)), a′ ∈ A∗\{a}, are indepen-
dent, the conditional distribution for τ(·, a) givenD({(τ(·, a′′), `(·, a′′))}a′′∈A)
and `(·, a′), a′ ∈ A∗, is the same as the conditional distribution for τ(·, a)
given D({(τ(·, a′′), `(·, a′′))}a′′∈A) and `(·, a). Thus, if

D({(τ(·, a′′), `(·, a′′))}a′′∈A) = δ and `(·, a) = `,

the conditional distribution of τ(·, a) is θ(`, δ), where θ(·, δ) is a regular
conditional distribution for t given ` when the pair (t, `) has the joint distri-
bution δ. For the relation between labels and types in the narrow sense, one
thus gets the same structure as in the case where labels are treated as parts
of names and exchangeability is conditioned on labels, but, in addition, one
can accommodate macro uncertainty about labels.

Turning to strategic behaviour, I first note that any effects of agents’
labels on their own behaviours are accommodated by a simple reinterpreta-
tion of the notation. In the formalism of this paper, the behaviour of agent
a depends on payoff function ua, the type ta, and the belief ba(ta), as well
as the agent’s expectations about the strategies chosen by the other agents.
To accommodate the effects of a label `(a) or `(ω, a) it suffi ces to reinterpret
the triple ua, ta, and ba(ta) in terms of an extended name a = (â(a), `(a))
and/or an extended type τ∗(ω, a) = (τ(ω, a), `(ω, a)).

Effects of agents’labels on other agents’behaviours presume that labels
are observable and that they enter the other agents’payoff functions. For
example, the payoff function of agent a in (B.1) might be replaced by

ua(ta, sa, {(sa′ , `a′)}a′∈A−a), (4.18)

so that the label `a′ of agent a′ 6= a affects the payoff of agent a directly
as well as indirectly, through its effect on the action sa′ = σ(τ∗(ω, a′), a′) of
agent a′. In this formulation, the condition of anonymity in payoffs might
be reformulated so that (4.18) is replaced by

u∗a(ta, sa, D({(sa′ , `a′)}a′∈A−a)), (4.19)

where D({(sa′ , `a′)}a′∈A−a) is now the cross-section distribution of the pairs
(sa′ , `a′) of actions and labels of the other agents.

If we think about labels as parts of agents’extended types, the specifi-
cations (4.18) and (4.19) beg the question why the payoff of agent shouldn’t
also depend on ta′ , the part of the extended type of agent a′ that is not
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part of the label `a′ . A straightforward answer would be that agent a cannot
observe ta′ . From this perspective, the important distinction attached to the
notion of a label is not so much between payoff-irrelevant and payoff-relevant
aspects of names, as between observable and unobservable aspects of types.

A Appendix: Proofs

Before turning to the proofs as such, I recall a few basic facts. For a reference,
see, e.g., Billingsley (1995), in particular, pp. 41 f.

• Since T is a complete separable metric space, there exists a countable
family P = {Bk}∞k=1 of sets in B(T ) that generates B(T ).

• Without loss of generality, the family P ={Bk}∞k=1 may be taken to be
a π-system, i.e. a family of sets that is closed under finite intersections.

• A family Q of subsets of T is said to be a λ-system if it satisfies (i)
T ∈ Q, (ii) if B ∈ Q, then T\B ∈ Q, (iii) if B1, B2, ... are pairwise
disjoint sets in Q, then, ∪∞n=1Bn ∈ Q.

• Dynkin’s π−λ Theorem: If P is a π-system and Q is a λ-system, then
P ⊂ Q implies σ(P) ⊂ Q.

Proof of Remark 2.1. For any B ∈ B(T ), let χB : T → [0, 1] be the
indicator function of the set B, i.e., let χB(t) = 1 for t ∈ B and χB(t) = 0
for t /∈ B. Since f : Ω × I → T is measurable with respect to the Fubini
extension F � I of the product σ-algebra F ⊗ I, the composition χB ◦ f is
also measurable with respect to F � I.

Let P ={Bk}∞k=1 be a countable family of subsets of T that is closed
under finite intersections and suppose that {Bk}∞k=1 generates B(T ). For any
k, let Ωk be the set of ω ∈ Ω for which the section χB ◦f(ω, ·) of the function
is χB ◦f integrable on (I, I, λ). By the Fubini property, P (Ωk) = 1. Because
the family {Bk}∞k=1 is countable, P (∩∞k=1Ωk) = 1. Thus, for P -almost every
ω ∈ Ω, for all k, the section χBk ◦f(ω, ·) of the function χBk ◦f is integrable
on (I, I, λ).

Let Q be the family of subsets of T such that, for any B ∈ Q and any
ω ∈ ∩∞k=1Ωk, the section χB ◦ f(ω, ·) of the function is χB ◦ f integrable
on (I, I, λ). One easily verifies that Q is a λ-system. By the argument
just given, every set in the π-system P ={Bk}∞k=1 is also contained in Q.
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Because P generates B(T ), Dynkin’s π−λ Theorem implies that every set in
P is also contained in Q. Thus, for P -almost every ω ∈ Ω, for all B ∈ B(T ),
the section χB ◦ f(ω, ·) of the function χBk ◦ f is integrable on (I, I, λ).
Moreover, the Fubini property implies that the functions

ω →
∫
I
χB ◦ f(ω, i) dλ(i) (A.1)

from (Ω,F , P ) into [0, 1] are measurable.
For any ω ∈ ∩∞k=1Ωk and any B ∈ B(T ), we have∫

I
χB ◦ f(ω, i) dλ(i) = λ ◦ f(ω, ·)−1(B) (A.2)

By Lemma 1 in Hammond and Sun (2003), it follows that the measurability
of the function (A.1) for any B ∈ B(T ) implies the measurability of the
function

ω → λ ◦ f(ω, ·)−1

from (Ω,F) into (M(T ),B(M(T )). The remark follows immediately.

Remark 2.2 is a special case of Remark 2.1, with (Ω× I,W, Q) = (Ω×
A,F � A, P � α) and f = τ . Remark 2.3 is also a special case of Remark
2.1, with (Ω× I,W, Q) = (Ω×A−a,F �A−a, P � α−a) and f equal to the
function (ω, a′)→ σ(τ(ω, a′), a′).

Proof of Proposition 2.4. By Proposition B.3 in Appendix B, it suffi ces
to prove that statement (a) is equivalent to the following statement:

(a*) For α-almost all a ∈ A, the random variables τ(·, a′), a′ ∈ A−a, are
essentially conditionally pairwise exchangeable given C(a), where C(a) is the
sub-σ-algebra of F that is generated by τ(·, a).

For this purpose recall that, for any a ∈ A and any ta ∈ T, b(ta, a)
is a probability measure on (Ra,Ra), where Ra is the range of the func-
tion ω → τ a(ω) := {τ(ω, a′)}a′∈A−a and Ra is the coarsest σ-algebra under
which the mapping ω → τ a(ω) from (Ω,F) to Ra is measurable. For any
a′ ∈ A−a, trivially, the mapping t→ϕa′(t) = ta′ = proja′(t), from (Ra,Ra)
to (T,B(T )), is measurable, and so is the mapping t→ (ϕa′(t), ϕa′′(t)) =
(ta′ , ta′′), for any a′, a′′ ∈ A−a, from (Ra,Ra) to (T,B(T )) × (T,B(T )).
By the definition of the mapping ω → b(τ(ω, a), a) as a regular condi-
tional distribution for τ a(·) given the sub-σ-algebra C(a) ⊂ F that is gen-
erated by τ(·, a), it follows that, for any a′ and a′′ ∈ A−a, the mapping
ω → ba(τ(ω, a)) ◦ (ϕa′(·), ϕa′′(·))−1 is a regular conditional distribution for
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(τ(·, a′), τ(·, a′′)) given a′, a′′ ∈ A−a. The equivalence of statement (a) in the
proposition and statement (a*) above follows immediately.

Proposition 2.5 follows directly from Proposition 3 in Qiao et al. (2016).
Proposition 2.6 follows from the argument in the proof of Proposition B.3
in Appendix B in combination with Proposition 3 in Qiao et al. (2016).
Alternatively, Proposition 2.6 follows from Proposition 2.7 and Remark ??.

Proof of Proposition 2.7. Given the definition of ba(ta), the first state-
ment follows from Proposition 7 of Hammond and Sun (2008).

To prove the second statement, define a measure Q on (Ω,F) by setting
Q = ba(ta)◦(τ a)−1. If ba(ta)◦(τ a)−1 is absolutely continuous with respect to
P, then, by the Radon-Nikodym theorem, there exists a density function q on
(Ω,F) such that, for any F ∈ F , Q(F ) =

∫
F q(ω) dP (ω). Consider the ran-

dom variables τ(·, a′), a′ ∈ A−a, on the probability space (Ω,F , Q). Because
the density q of Q with respect to P is measurable and the random variables
τ(·, a′), a′ ∈ A−a, have the Fubini property on (Ω×A,F �A, P�α), one eas-
ily verifies that they also have the Fubini property on (Ω×A,F �A, Q�α).

If ba(ta) satisfies anonymity in beliefs, i.e., if, under this measure, the
types ta′ of agents a′ ∈ A−a are essentially pairwise exchangeable, one also
verifies easily that the random variables τ(·, a′), a′ ∈ A−a, on the probability
space (Ω,F , Q) are essentially pairwise exchangeable. By Proposition 3 of
Qiao et al. (2016), it follows that these are essentially pairwise condition-
ally independent given the sub-σ-algebra D of F that is generated by the
mapping

ω → D({τ(ω, a′)}a′∈A−a), (A.3)

and, moreover, for α-almost every a′ ∈ A−a, the mapping (A.3) is a reg-
ular conditional distribution for τ(·, a) given D. The second statement of
Proposition 2.7 follows upon translating this statement back into a state-
ment about the random variables ta′ , a′ ∈ A−a, on the probability space
(Ra,Ra, ba(ta)).

Proof of Proposition 3.1. By the definition of a regular conditional
distribution, one obtains that, for α-almost all â ∈ A−a, D({ta′}a′∈A−a) ◦
σ(·, â)−1 is a regular conditional distribution of σ(·, â) given D. By Theorem
1 of Qiao et al. (2016), it follows that

D({σ(ta′ , a
′)}a′∈A−a) =

∫
â∈A−a

D({ta′}a′∈A−a) ◦ σ(·, â)−1dα(â)
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for ba(ta)-almost all {ta′}a′∈A−a ∈ Rτa .17

Proof of Proposition 3.1, Statements (a) - (c). The proof proceeds
along similar lines as the proof of Proposition 5.3 of Sun (2006). By Lemma
A.5 in Sun (2006), there exists a measurable function f fromM(T )× [0, 1]
into T such that for any δ ∈M(T ),

` ◦ f(δ, ·)−1 = δ (A.4)

where ` is the uniform distribution on [0, 1]. Given this function f and the
random variable δ̃, define the mapping τ : Ω × A → T such that, for any
ω ∈ Ω and a′ ∈ A,

τ(ω, a′) = f(δ̃(ω), h(ω, a′)), (A.5)

where h is the function given by the richness of the Fubini extension (Ω ×
A,F �A, P � α).

I claim that τ is measurable with respect to F � A. In fact, τ is the
composition of the measurable function f : M(T ) × [0, 1] → T with the
function H : Ω×A→M(T )× [0, 1] that is given by setting

H(ω, a′) = (δ̃(ω), h(ω, a′))

for any ω ∈ Ω and a′ ∈ A. Because the map ω → δ̃(ω) is measurable with
respect to F and the map (ω, a′) → h(ω, a′) is measurable with respect to
F � A, the map (ω, a′) → H(ω, a′) is measurable with respect to F � A,
and so is the map (ω, a′)→ τ(ω, a′) = f(H(ω, a′)).

Because T is a complete separable metric space, M(T ) is also a com-
plete separable metric space, and the σ-algebra D is countably generated.
Because the random variables h(·, a′), a′ ∈ A, are essentially pairwise inde-
pendent, Proposition 3 in Hammond and Sun (2006) implies that they are
also essentially pairwise conditionally independent given D. As in Remark 1
of Hammond and Sun (2008), it follows that the random pairs (δ̃(·), h(·, a′)),
a′ ∈ A, are also essentially pairwise conditionally independent given D, and
so are the random variables τ(·, a′) = f(δ̃(·), h(·, a′)), a′ ∈ A.

Moreover, because, for α-almost every a′ ∈ A, the random variable
h(·, a′) has the uniform distribution `, (A.4) and (A.5) imply that, for α-
almost every a′ ∈ A, conditional on the event δ̃(·) = δ, the probability
distribution of τ(·, a′) is almost surely equal to δ. For α-almost every a′ ∈ A,
therefore the function δ̃(·) is a regular conditional distribution for τ(·, a′)
17 I thank a referee for suggesting this very elegant proof, which is much simpler than

what I had before.
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given the σ-algebra D that is generated by δ̃. Statement (b) has thus been
proved.

Statement (c) follows by Corollary 2 of Qiao et al. (2016) and the fact
that, conditionally on D, the random variables τ(·, a′), a′ ∈ A, are essentially
pairwise independent. Statement (a) follows by Proposition 2.5.

Proof of Proposition 3.1, Statements (d) and (e).
For any δ ∈M(T ), define a mapping τ δ : Ω×A→ T such that, for any

ω ∈ Ω and a′ ∈ A,
τ δ(ω, a

′) = f(δ, h(ω, a′)), (A.6)

where, as before, f :M(T )× [0, 1]→ T is the function given by Lemma A.5
in Sun (2006), satisfying

` ◦ f(δ, ·)−1 = δ, (A.7)

with ` equal to Lebesgue measure on [0, 1], and h is the function given by
the richness of the Fubini extension (Ω×A,F �A, P � α). For any a ∈ A,
set

τ aδ := {τ δ(ω, a′)}a′∈A−a (A.8)

and
b̂a(δ) := P ◦ (τ aδ)

−1. (A.9)

Then, given the random variable δ̃, for α-almost every a ∈ A, b̂a(δ́(·)) is a reg-
ular conditional distribution for {τ(·, a′)}a′∈A−a = {f(δ̃(·), h(·, a′))}a′∈A−a
given δ̃.

Because T and M(T ) are complete separable metric spaces, there also
exist functions βa : T →M(T ), a ∈ A, such that βa(τ(·, a)) is a regular con-
ditional distribution for δ̃ given τ(·, a). By Statement (a) of the proposition,
the functions βa, a ∈ A, are essentially identical, i.e., there exists a function
β∗ : T → M(T ) such that βa = β∗ for α-almost all a ∈ A. Equation (3.2)
follows by the law of iterated expectations. Statement (e) has thus been
proved.

Statement (d) follows from Statements (e) and (a) and Proposition 2.4.

Proof of Proposition 3.2. The "only if" part of the proposition follows
from the argument sketched in the text. To prove the "if" part of the
proposition, let Ψ,Φ,Π be such that, for the given β(·), equations (3.3) and
(3.4) hold for all B1 ∈ B(T ) and all B2 ∈ B(M(T )).

Let (Ω,F , P ) be a complete probability space, and let (Ω×A,F�A, P�
α) be a rich Fubini extension of the product space (Ω × A,F ⊗ A, P ⊗ α).
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δ̃ : Ω→M(T ) be such that Φ = P ◦ δ̃−1
, so that the distribution of δ̃ is Φ.

Let τ : Ω×A→ T be the mapping that is given by Proposition 3.1. Let β∗

be the associated macro belief function and let Ψ∗,Φ∗,Π∗ be the associated
measures that are given by the "if" part of the proposition (for the macro
belief function β∗).

By construction, Φ∗ = Φ. By the "if" part of the proposition (for the
macro belief function β∗)), it follows that

Π∗(B1 × T ) = Ψ∗(B1) (A.10)

and

Π∗(B1 ×B2) =

∫
B2

δ(B1) dΦ(δ) (A.11)

for all B1 ∈ B(T ) and all B2 ∈ B(M(T )). From (A.11) and the fact that
Φ and Π satisfy (3.4), one infers that Π∗ = Π. With Π∗ = Π, (A.10) and
the fact that Ψ and Π satisfy (3.4) for β, imply Ψ∗ = Ψ. Thus, Ψ and Π
satisfy (3.4) for both β and β∗. It follows that β∗(τ(·, a)) = β(τ(·, a)), P -
almost surely and therefore, that β is a macro belief function for the family
τ(·, a), a ∈ A, of random types.

Proof of Proposition 3.3. I will show that the condition of Proposition
3.2 is equivalent to Π,Ψ,Φ satisfying Statements (a), (b), and (c).

(a) Statement (a) asserts that, Φ-almost every measure δ ∈ M(T ) is
absolutely continuous with respect to Ψ, i.e. that, for any B1 ∈ B(T ),
Ψ(B1) = 0 implies δ(B1) = 0. Because (3.3), with B2 = M(T ), yields
Π(B1 ×M(T )) = Ψ(B1), (3.4) implies

Ψ(B1) = Π(B1 ×M(T )) =

∫
M(T )

δ(B1) dΦ(δ) (A.12)

for all B1 ∈ B(T ). For any B1 ∈ B(T ), therefore, the assertion that Ψ(B1) =
0 implies δ(B1) = 0 is true for Φ-almost all δ. It remains to be shown that
the null set of distributions δ for which the implication is not true can be
chosen independently of B1.

For this purpose, I use Dynkin’s π−λ Theorem, as in the proof of Remark
2.1. Let P ={Bk}∞k=1 be a countable family of subsets of T that is closed
under finite intersections and suppose that {Bk}∞k=1 generates B(T ). For any
k, let ∆k be the set of δ ∈M(T ) for which Ψ(Bk) = 0 implies δ(Bk) = 0. By
(A.12), Φ(∆k) = 1. Because the family P ={Bk}∞k=1 is countble, it follows
that Φ(∩∞k=1∆k) = 1.

36



Let Q be the family of subsets of T such that, for any B ∈ Q and any
δ ∈ ∩∞k=1∆k, Ψ(B) = 0 implies δ(B) = 0. One easily verifies that Q is a λ-
system. By the argument just given, every set in the π-system P ={Bk}∞k=1

is also contained in Q. Because P generates B(T ), Dynkin’s π−λ Theorem
implies that every set in P is also contained in Q. Thus, for Φ-almost every
δ ∈ M(T ), Ψ(B) = 0 implies δ(B1) = 0, for all B1 ∈ B(T ). For such δ, the
existence of the density function gΨ satisfying follows by the Radon-Nikodym
theorem.

(b) The proof of Statement (b) is similar. The statement asserts that, for
Ψ-almost every t ∈ T, the measure β(t) is absolutely continuous with respect
to Φ, i.e. that, for every B2 ∈ B(M(T )), Φ(B2) = 0 implies β(B2|t) = 0.
Because (3.4), with B1 = T, yields Π(T ×B2) = Φ, (3.3) implies

Φ(B2) = Π(T ×B2) =

∫
T
β(B2|t) dΨ(t) (A.13)

for all B2 ∈ B(M(T )). For any B2 ∈ B(M(T )), therefore, the assertion that
Φ(B2) = 0 implies β(B2|t) = 0 is true for Ψ-almost all t.

Moreover, by the same argument as in the proof of Statement (a), using
Dynkin’s π − λ Theorem, the null set of t for which the implication is not
true can be chosen independently of B2. For Ψ-almost all t ∈ T, therefore,
Φ(B2) = 0 implies β(B2|t) = 0. For any such t, the existence of the density
function fΦ follows by the Radon-Nikodym theorem.

(c) By Statements (a) and (b), (3.3) and (3.4) can be written as

Π(B1 ×B2) =

∫
B2

∫
B1

gΨ(t|δ) dΨ(t)dΦ(δ) (A.14)

and

Π(B1 ×B2) =

∫
B1

∫
B2

fΦ(δ|t) dΦ(δ)dΨ(t). (A.15)

Statement (c) follows by Fubini’s theorem and the Radon-Nikodym theorem.

Proof of Proposition 3.4. To prove the first claim of the proposition,
let β be as stated and suppose that β admits a common prior. Let Ψ,Φ,Π
be the measures given by Proposition 3.3 and let fΦ, gΨ, π be the associated
density functions, as specified in Proposition 3.3. I first claim that, for any
t0 ∈ T, Φ is absolutely continuous with respect to β(t0). To prove this claim, I
note that, because the measures β(t), t ∈ T, are absolutely continuous with
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respect to β(t0), there exist density functions f0(·|t), t ∈ T, for β(t) with
respect to β(t0), such that, for any t ∈ T and any B2 ∈ B(M(T )),

β(B2|t) =

∫
B2

f0(δ|t) dβ(δ|t0).

By (A.13), it follows that

Φ(B2) =

∫
T

∫
B2

f0(δ|t) dβ(δ|t0) dΨ(t)

=

∫
B2

∫
T
f0(δ|t) dΨ(t) dβ(δ|t0)

for any B2 ∈ B(M(T )). Absolute continuity of Φ with respect to β(t0)
follows immediately. A density function ϕ0 for Φ with respect to β(t0) is
given by setting

ϕ0(δ) =

∫
T
f0(δ|t) dΨ(t), (A.16)

for Φ-almost any δ. Since β(t0) is also absolutely continuous with respect to
Φ, the density ϕ0(δ) is strictly positive for Φ-almost all δ and is in fact the
inverse of the density fΦ(δ|t0) of β(t0) with respect to Ψ.

I next show that, for Ψ⊗Φ-almost every pair (t, δ), the value fΦ(δ|t) of
the density function fΦ(·|t) is strictly positive. For all t ∈ T, the density
functions fΦ(·|t) and fΦ(·|t0) are related by the equations

f0(δ|t) = fΦ(δ|t) · ϕ0(δ) and 1 = fΦ(δ|t0) · ϕ0(δ) (A.17)

holding for Φ-almost all δ. By the mutual absolute continuity of β(t) and
β(t0), the value f0(δ|t) of the density f0(·|t) is strictly positive, for Φ-almost
all δ. Hence fΦ(δ|t) > 0 for all t, for Φ-almost all δ in the set

D0 := {δ ∈M(T )|fΦ(δ|t0) > 0}.

The definition of D0 implies that
∫
M(T )\D0 fΦ(δ|t0)dΦ(δ) = 0 and therefore

β(M(T )\D0|t0) = 0. By the absolute continuity of Φ with respect to β(t0), it
follows that Φ(M(T )\D0) = 0 and therefore Φ(D0) = 1. Thus, fΦ(δ|t0) > 0
for Φ-almost all δ and therefore fΦ(δ|t) > 0 for Ψ⊗ Φ-almost all (t, δ).

Given this result, Statement (c) in Proposition 3.3 implies that gΨ(t|δ) >
0 for Ψ ⊗ Φ-almost all (t, δ). By elementary set theory, it follows that, for
Φ-almost all δ, gΨ(t|δ) > 0 for Ψ-almost all t. For

D := {δ ∈ D0|Ψ({t ∈ T |gΨ(t|δ) > 0}) = 1},

38



one thus has Φ(D) = Φ(D0) = 1. For any δ ∈ D, Statement (a) in Propo-
sition 3.3 implies that, for any B1 ∈ B(T ), δ(B1) = 0 implies Ψ(B1) = 0,
so Ψ is absolutely continuous with respect to δ. Thus Ψ and any one of the
measures in D are mutually absolutely continuous. Hence the measures in
D are also mutually absolutely continuous. This completes the proof that
β satisfies Statement (i) in the proposition.

Turning to Statement (ii), I note that Statement (c) in Proposition 3.3
implies

fΦ(δ1|t2) · gΨ(t2|δ2) · fΦ(δ2|t1) · gΨ(t1|δ1)

= gΨ(t2|δ1) · fΦ(δ2|t2) · gΨ(t1|δ2) · fΦ(δ1|t1) > 0, (A.18)

for Ψ-almost all t1, t2 in T and Φ-almost all δ1, δ2 in M(T ). Using (A.17)
with t0 replaced by t1, I find that, for any t ∈ T, the formula

f1(δ|t) = fΦ(δ|t) · ϕ1(δ) (A.19)

defines a density function for β(t) with respect to β(t1). By the same ar-
gument, based on the mutual absolute continuity of the measures Ψ and
δ ∈ D, for any δ ∈ D, the formula

g1(t|δ) = gΨ(t|δ) · ψ1(t) (A.20)

defines a density function for δ with respect to δ1, where ψ1 is the density of
Ψ with respect to δ1. Upon using (A.18) and (A.19) to substitute for the den-
sities fΦ and gΨ in (A.18), one finds that the terms ϕ1(δ1), ϕ1(δ2), ψ1(t1), ψ1(t2)
cancel out, and one is left with the equation

f1(δ1|t2)·g1(t2|δ2)·f1(δ2|t1)·g1(t1|δ1) = g1(t2|δ1)·f1(δ2|t2)·g1(t1|δ2)·f1(δ1|t1).

Equation (3.10) follows because the density functions f1(·|t1) and g1(·|δ1)
for β(t1) and δ1 with respect to themselves have the constant value one,
leaving the equation

f1(δ1|t2) · g1(t2|δ2) = f1(δ2|t2) · g1(t1|δ2),

which must hold for Ψ-almost all t1, t2 and Φ-almost all δ1, δ2, or, equiva-
lently, in view of the mutual-absolute-continuity properties of the different
families of measures, for β(t0)-almost all δ1, δ2 in M(T ) and δ1-almost all
t1, t2 in T. This completes the proof that β satisfies Statement (ii) in the
proposition.

To prove the second claim in the proposition, let β be as stated in the
proposition and suppose that Statements (i) and (ii) hold. By Statement
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(ii), there exist t1 ∈ T and δ1 ∈ D such that (3.10) holds for β(t1)-almost
all δ2 ∈M(T ) and δ1-almost all t2 ∈ T. Thus, one can define

π1(t, δ) : = λ1 ·
f1(δ|t)
f1(δ1|t)

if f1(δ1|t) > 0, (A.21)

π1(t, δ) : = 0 if f1(δ1|t) = 0,

with

λ1 :=

[∫
T

∫
M(T )

f1(δ|t)
f1(δ1|t)

dβ(δ|t1)dδ1(t)

]−1

,

and

Π(B1 ×B2) =

∫
B1

∫
B2

π1(t, δ) dβ(δ|t1)dδ1(t) (A.22)

for any B1 ∈ B(T ) and B2 ∈ B(M(T )). From (A.21) and (A.22), one
computes

Ψ(B1) = Π(B1 ×M(T )) =

∫
B1

∫
M(T )

λ1 ·
f1(δ|t)
f1(δ1|t)

dβ(δ|t1)dδ1(t)

=

∫
B1

∫
M(T )

λ1 ·
1

f1(δ1|t)
dβ(δ|t)dδ1(t) =

∫
B1

λ1 ·
1

f1(δ1|t)
dδ1(t)

(A.23)

for any B1 ∈ B(T ). By (3.10), we also have

π1(t, δ) = λ1 ·
g1(t|δ)
g1(t1|δ)

if g1(t1|δ) > 0,

π1(t, δ) = 0 if g1(t1|δ) = 0,

so (A.22) also yields

Φ(B2) = Π(T ×B2) =

∫
T

∫
B2

λ1 ·
g1(t|δ)
g1(t1|δ)

dβ(δ|t1)dδ1(t)

=

∫
B2

∫
T
λ1 ·

1

g1(t1|δ)
dδ(t)dβ(δ|t1) =

∫
B2

λ1 ·
1

g1(t1|δ)
dβ(δ|t1)

(A.24)

From (A.23) and (A.24), one sees that Ψ and δ1, as well as Φ and β(t1)
are mutually absolutely continuous. Because δ1 and any other δ ∈ D are
mutually absolutely continuous, it follows that Ψ satisfies Statement (a)
in Proposition 3.3. Because β(t1) and any other measure β(t), t ∈ T, are
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mutually absolutely continuous, it follows that Φ satisfies Statement (b) in
Proposition 3.3. By inspection of (A.23) and (A.24), the densities of Ψ with
respect to δ1 and of Φ with respect to β(t1) are given as

ψ(t) = λ1 ·
1

f1(δ1|t)
and ϕ(δ) = λ1 ·

1

g1(t1|δ)
. (A.25)

For any t and δ the densities of β(t) with respect to Φ and of δ with respect
to Ψ can be computed from (A.25) and the densities of β(t) with respect to
β(t1) and of δ with respect to δ1. This yields

fΦ(δ|t) =
f1(δ|t)
ϕ(δ)

=
1

λ1
· g1(t1|δ) · f1(δ|t)

and

gΨ(t|δ) =
g1(t|δ)
ψ(t)

=
1

λ1
· f1(δ1|t) · g1(t|δ),

so (3.10) implies the validity of (3.9). By Proposition 3.3, it follows that β
admits a common prior, with Π,Ψ,Φ as specified in the proposition.

To see that the common prior is unique, let Π∗,Ψ∗,Φ∗ be any triple of
distributions associated with a common prior for β. Using Proposition 3.3,
let π∗ be the density of Π∗ with respect to Ψ∗ ⊗Φ∗. By the argument given
above, Ψ∗ and the measures δ ∈ D are mutually absolutely continuous, and
so are Φ∗ and the measures β(t), t ∈ T. Given a pair (t0, δ0), let ψ0, ϕ0 be
the density functions for Ψ∗ with respect to δ0 and for Φ∗ with respect to
β(t0). Then Π∗ has a density π0 = π∗ · ψ0 · ϕ0 with respect to δ0 ⊗ β(t0).
Using equation (3.14) in the text, one finds that

π∗0(t2, δ2)

π∗0(t1, δ1)
=

π∗(t2, δ2) · ψ0(t2) · ϕ0(δ2)

π∗(t1, δ1) · ψ0(t1) · ϕ0(δ1)

=
π∗(t2, δ1) · ψ0(t2)

π∗(t1, δ1) · ψ0(t1)
· π
∗(t2, δ2) · ϕ0(δ2)

π∗(t2, δ1) · ϕ0(δ1)

=
gΨ(t2|δ1) · ψ0(t2)

gΨ(t1|δ1) · ψ0(t1)
· fΦ(δ2|t2) · ϕ0(δ2)

fΦ(δ1|t2) · ϕ0(δ1)

=
g0(t2|δ1)

g0(t1|δ1)
· f0(δ2|t2)

f0(δ1|t2)

for Ψ∗-almost all t1, t2 and Φ∗-almost all δ1, δ2. Up to modifications on sets of
δ0⊗β(t0)-measure zero, the ratio π∗0(t2,δ2)

π∗0(t1,δ1) is thus uniquely determined by the

density functions f0(·|t), g0(·|δ), t ∈ T, δ ∈ D. Because Π∗(T ×M(T )) = 1,
it follows that, up to modifications on sets of δ0 ⊗ β(t0)-measure zero, the
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density π∗ itself is uniquely determined by these density functions. Therefore
Π∗ is uniquely determined by these density functions.

B Appendix: Conditional Exchangeability

Let (Ω,F , P ) and (I, I, λ) be complete atomless probability spaces. Let (Ω×
I,F � I,P � λ) be a Fubini extension of the product (Ω× I,F ⊗ I,P ⊗ λ)
and let f : Ω× I → T be a process that is measurable with respect to F � I
and that takes values in a complete separable metric space T . The random
variables f(·, i), i ∈ I, are essentially pairwise exchangeable if there exists a
probability measure π on T 2 such that, for λ-almost all i1 ∈ I, one has

P ({ω ∈ Ω|f(ω, i1) ∈ B1}∩{ω ∈ Ω|f(ω, i2) ∈ B2}) = π(B1×B2) = π(B2×B1)

for λ-almost all i2 ∈ I and all B1, B2 in B(T ).
I now define a concept of essential conditional pairwise exchangeability.

Whereas essential pairwise exchangeability is defined in terms of the prior
P, essential conditional pairwise exchangeability will refer to posteriors, i.e.
conditional distributions, that are induced by some countably generated
sub-σ-algebra C of F .

For this purpose I define a new function ϕ : Ω×I×I → T ×T by setting

ϕ(ω, i1, i2) = (f(ω, i1), f(ω, i2)).

The measurability of f with respect to the Fubini extension F � I implies
that ϕ is measurable with respect to the Fubini extension F � I � I of the
product (F � I)⊗ I.

For any countably generated sub-σ-algebra C of F , let µC be a regular
conditional distribution for ϕ given C � (I1 × I2) and, for any (ω, i1, i2) ∈
Ω×I×I, let µC,i1,i2(·, ω) be the measure on T ×T that is given by the value
of µC at (ω, i1, i2). I say that the function f exhibits conditional essentially
pairwise exchangeability given C if, for P -almost all ω ∈ Ω, for λ-almost all
i1 ∈ I, under the measure µC,i1,i2(·, ω), the random variables f(·, i1) and
f(·, i2) are exchangeable, for λ-almost all i2 ∈ I.

In the following, I discuss the relation between essential pairwise ex-
changeability and essential conditional pairwise exchangeability. I first note
that, if the random variables f(·, i), i ∈ I, are essentially pairwise exchange-
able, then, by Proposition 3 of Qiao et al. (2016), they are essentially condi-
tionally pairwise independent and identically distributed, and a conditional
exact law of large numbers holds.
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By the Fubini property, for P -almost every ω ∈ Ω, the cross-section
distribution of f(ω, .) is well defined. Denote this cross-section distribution
as δ(ω), and let D ⊂ F be the σ-algebra that is generated by the mapping

ω → δ(ω),

from Ω toM(T ). Essential conditional pairwise independence and the con-
ditional exact law of large numbers implies that, for P -almost all ω ∈ Ω, for
λ-almost all i1 ∈ I,

µD,i1,i2(·, ω) = (δ(ω)× δ(ω)) (B.1)

for λ-almost all i2 ∈ I.

Proposition B.1 Assume that the random variables f(·, i), i ∈ I, are es-
sentially pairwise exchangeable. Let C be any countably generated sub-σ-
algebra of F and let A(D,C) ⊂ F be the smallest σ-algebra that contains C
as well as D. If

µA(D,C) = µD, (B.2)

then the random variables f(·, i), i ∈ I, are essentially conditionally pairwise
exchangeable given C.

Proof. The argument involves two steps. First, by combining (B.1) and
(B.2), one obtains

µC(ω, i1, i2) =

∫
M(T )

δ × δ dbC(δ|ω) (B.3)

for P �λ2-almost all (ω, i1, i2), where bC(·|·) is a regular conditional distrib-
ution for δ(·) given C and the integration is to be interpreted in such a way
that

µC(B1 ×B2|ω, i1, i2) =

∫
M(T )

δ(B1) · δ(B2)dbC(δ|ω)

for P � λ2-almost all (ω, i1, i2) and and all B1, B2 in B(T ).
Second, by Lemma 1 in Qiao et al. (2016), with I replaced by I × I,

equation (B.3) implies that, for λ2-almost all (i1, i2) ∈ I2, the mapping ω →
µC,i1,i2(·|ω) = µC(ω, i1, i2) is a regular conditional distribution for ϕ(·, i1, i2)
given C.18 By (B.3), it follows that

µC,i1,i2(B1 ×B2, ω) =

∫
M(T )

δ(B1) · δ(B2) dbC(δ|ω) (B.4)

18 In applying the lemma of Qiao et al. (2016), one must adapt the notation so that the
product I × I, with typical element (i1, i2), takes the place of their space I, with typical
element i.
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for P �λ2-almost all ω, i1, i2 and all B1, B2 in B(T ). The proposition follows
immediately.

Proposition B.1 includes the case where the sub-σ-algebra C is actually
generated by one of the random variables f(·, i), i ∈ I.

Proposition B.2 Assume that the random variables f(·, i), i ∈ I, are es-
sentially pairwise exchangeable. For any a ∈ I, let C(a) be the sub-σ-algebra
of F that is generated by f(·, a). Then, for λ-almost every a ∈ I, the random
variables f(·, i), i ∈ I, are essentially conditionally pairwise exchangeable
given C(a).

Proof. By Proposition B.1, it suffi ces to show that equation (B.2),

µA(D,C(a)) = µD, (B.5)

holds for λ-almost all a ∈ I. As mentioned above, by Proposition 3 of Qiao et
al. (2016), conditionally on the σ-algebra D that is generated by the cross-
section distribution mapping ω → δ(ω), the random variables f(·, i), i ∈ I,
are essentially pairwise independent and identically distributed with the
common conditional probability distribution δ(ω). By Proposition 3 of Ham-
mond and Sun (2006), it follows that, for λ-almost all a ∈ I, conditionally on
A(D, C(a)), the random variables f(·, i), i ∈ I, are also essentially pairwise
independent and essentially conditionally identically distributed. Moreover,
for λ-almost all a ∈ I, conditionally on D, the random variables f(·, a) and
f(·, i), i ∈ I, are independent, for λ-almost all i ∈ I. Therefore, equation
(B.5) follows from Corollary 4 of Hammond and Sun (2006).

A converse of Proposition B.2 is also true.

Proposition B.3 The random variables f(·, i), i ∈ I, are essentially pair-
wise exchangeable if and only if, for λ-almost every a ∈ I, the random vari-
ables f(·, i), i ∈ I, are essentially conditionally pairwise exchangeable given
C(a), where C(a) is the sub-σ-algebra of F that is generated by f(·, a).

Proof. Given Proposition B.2, it suffi ces to prove the "if" part of the propo-
sition. Let a ∈ I be such that the random variables f(·, i), i ∈ I, are essen-
tially conditionally pairwise exchangeable given C(a). Thus, for P -almost all
ω ∈ Ω, for λ-almost all i1 ∈ I, under the measure µC(a),i1,i2(·|ω), the random
variables f(·, i1) and f(·, i2) are exchangeable, for λ-almost all i2 ∈ I. By
Proposition 3 of Qiao et al. (2016), it follows that, for P -almost all ω ∈ Ω,
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for λ-almost all i1 ∈ I, under the measure µC(a),i1,i2(·, ω), conditionally on
the σ-algebra D that is generated by the cross-section distribution mapping
δ(·), the random variables f(·, i1) and f(·, i2) are independent and identi-
cally distributed, for λ-almost all i2 ∈ I, and that the common conditional
distribution given D is equal to the cross-section distribution δ. Thus, for
any B1, B2 in B(T ), we have

P ({ω ∈ Ω|f(ω, i1) ∈ B1} ∩ {ω ∈ Ω|f(ω, i2) ∈ B2})

=

∫
Ω
χB1(f(ω, i1))χB2(f(ω, i2))dP (ω)

=

∫
Ω

∫
χB1(f(·, i1))χB2(f(·, i2))dµC(a),i1,i2(·, ω)dP (ω)

=

∫
Ω

∫
T×T

χB1(t1)χB2(t2)dδ(t1)dδ(t2) dbC(a)(δ|ω),

where χB1 , χB2 are the characteristic functions of the sets B1 and B2 and,
as before, bC(a)(·|·) is a regular conditional distribution for δ(·) given C(a).
Upon setting

π(B1 ×B2) =

∫
Ω

∫
T×T

χB1(t1)χB2(t2)dδ(t1)dδ(t2) dbC(a)(δ|ω),

one easily verifies that π(B1 × B2) = π(B2 × B1), so the condition for
exchangeability of f(·, i1) and f(·, i2) under the prior P is satisfied.
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