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ABSTRACT
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Industrial Robots, Workers’ Safety, and 
Health*

This study explores the relationship between the adoption of industrial robots and workplace 

injuries using data from the United States (US) and Germany. Our empirical analyses, based 

on establishment-level data for the US, suggest that a one standard deviation in robot 

exposure reduces work-related injuries by approximately 16%. These results are driven by 

manufacturing firms (–28%), while we detect no impact on sectors that were less exposed 

to industrial robots. We also show that the US counties that are more exposed to robot 

penetration experience a significant increase in drug- or alcohol-related deaths and mental 

health problems, consistent with the extant evidence of negative effects on labor market 

outcomes in the US. Employing individual longitudinal data from Germany, we exploit 

within-individual changes in robot exposure and document similar effects on job physical 

intensity (–4%) and disability (–5%), but no evidence of significant effects on mental health 

and work and life satisfaction, consistent with the lack of significant impacts of robot 

penetration on labor market outcomes in Germany.
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1 Introduction

The adoption of industrial robots and artificial intelligence are radically changing the role of

workers in the production process, generating lively discussions on their effects on labor markets

(Brynjolfsson and McAfee, 2014; Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020; Dauth

et al., 2019). However, despite the growing research interest on the effects of robotization, very

little is known on how these structural changes to the production process and the allocation of

tasks may affect workers’ health and workplace safety. The goal of this study is to fill this gap in

the extant literature.

The relationship between robots and workers’ health and safety is complex. On the one

hand, since their introduction, industrial robots have typically been used for physically intensive

tasks that are often associated with detrimental effects on health and increased risk of accidents

at work.1 In this context, automated systems can offer considerable safety benefits to human

workers, as robots can help prevent injuries or adverse health effects resulting from working in

hazardous conditions. Examples include musculoskeletal disorders due to repetitive or awkward

motions (Schneider and Irastorza, 2010), or traumatic injuries (e.g., in poultry processing, where

cuts are common). Robots can also prevent multiple hazards in emergency response situations

such as chemical spills (Ishida et al., 2006). Besides protecting workers, robots can also minimize

risks stemming from human error (Karwowski et al., 1988; Linsenmayer, 1985). If a job is repeti-

tive and monotonous, humans tend to commit a mistake, whereas robots can do these things the

same way repeatedly.

On the other hand, robots can pose a variety of hazards to workers (Kirschgens et al., 2018).

For example, while industrial robots have been designed to operate at a distance from workers,

these machines often lack the sensory capabilities necessary to detect nearby humans. Moreover,

the spread of collaborative robots, which are intended to direct interaction and share workspaces

with humans, can lead to additional safety risks (Matthias et al., 2011). Qualitative studies raise

concerns that the complex relationship between humans and machines may also have detrimental

effects on the mental health of the workers (Robelski and Wischniewski, 2018) and might act as an

additional stressor at the workplace (Körner et al., 2019; Szalma and Taylor, 2011). Furthermore,

1See, for instance, https://www.designnews.com/automation-motion-control/

robots-keep-workers-dangerous-tasks
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the labor market effects of robot adoption and automation may increase stress and anxiety among

workers (Venkataramani et al., 2020). Therefore, the direction and the magnitude of the effects of

robot adoption on workers’ physical and mental health are theoretically ambiguous and represent

an open empirical question.

In this study, we investigate this complex relationship using data from the United States (US)

and Germany. To examine the impact of robots on work-related injuries in the US, we utilize

detailed establishment-level data on work injuries from the Occupational Safety and Health Ad-

ministration (OSHA) Data Initiative (ODI) covering the 2005 to 2011 period, while information

on the distribution of industrial robots across sectors and over time are sourced from the Inter-

national Federation of Robotics (IFR). We find that a one standard deviation in robot exposure

reduces work-related injuries by approximately 16%. This result largely reflects a reduction in in-

juries (–28%) at manufacturing firms. Reassuringly, these results are robust to several sensitivity

checks.

We then turn to investigate whether robots have an impact on workers’ mental health. Us-

ing county-level data on mortality (source: The Centers for Disease Control and Prevention

[CDC] Vital Statistics) and survey data on mental health problems (source: Behavioral Risk Fac-

tor Surveillance System [BRFSS]), we show that robot penetration leads to sizable increases in

drug or alcohol-related deaths and mental health problems. A one standard deviation increase

in robot exposure raises deaths due to drug or alcohol abuse by 7% and the number of days

during the previous month when the respondent felt his or her mental health was not good

by 17%. However, we find no evidence of significant effects on the suicide rate. We interpret

these findings as evidence suggesting that the labor market pressure and fears induced by robot

penetration (Acemoglu and Restrepo, 2020) may have detrimental effects on workers’ mental

health.

Several reasons make Germany an appealing context to explore and complement the analysis

conducted using the US establishment and regional data. First, Germany is among the world

leaders in robotics (see Figure 1). Second, evidence suggests that the effect of robot penetration

on German manufacturing jobs was largely mitigated by the growth of jobs in services, thereby

suggesting that the effects on mental health may be different compared to that observed in the

US. Third, the availability of longitudinal survey data from the German Socio-Economic Panel
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(SOEP) containing information on occupation, sector, and various health and well-being out-

comes allows us to shed further light on the complex effects of robot penetration on workers’

safety using individual-level data and exploiting within-individual changes in exposure to robot

penetration. Finally, using the SOEP data, we adopt an alternative identification strategy rely-

ing on the probability of exposure to robots based on the school track. Thus, we only leverage

variation in robot exposure based on the track choice individuals make early in their life. This

decision is unlikely to reflect correlates of robots’ adoption and labor market outcomes later in

life, and therefore, less likely to be endogenous. We find that a one standard deviation increase

in robot exposure is associated with a 5% reduction in the risk of reporting any disability, a 25%

reduction in the risk of accidents at work, and a 4% reduction in the likelihood of being em-

ployed in a highly physically intensive task. We also show no evidence of significant effects of

robot exposure on workers’ well-being and mental health. Overall, our results for Germany are

consistent with those documented by Dauth et al. (2019), who show that robot exposure leads to

displacement effects in manufacturing, which is offset by new jobs in services.

Our methodological approach is strictly connected to some recent studies analyzing the im-

pact of robots on labor market conditions, life course choices, and demographic behavior. Recent

studies have analyzed the effects of the increase in industrial robot usage on employment and

wages across various countries (Acemoglu and Restrepo, 2020; Dauth et al., 2019; Giuntella and

Wang, 2019; Graetz and Michaels, 2018). While Acemoglu and Restrepo (2020) and Giuntella

and Wang (2019) estimate sizable and negative impacts of the rise in robot exposure on employ-

ment and wages across the US commuting zones and China, respectively, Dauth et al. (2019) and

Graetz and Michaels (2018) find no significant effects on employment in Germany and for a set

of 17 countries, respectively. Recent literature also examines the impact of robotization on family

outcomes (Anelli et al., 2019a). In a concurrent study, using data on self-reported health in the

US, Gunadi and Ryu (2020) find that a 10% increase in robots per 1,000 workers is associated

with approximately a 10% reduction in the fraction of low-skilled individuals reporting poor

health. To the best of our knowledge, this is the only other study analyzing the relationship

between robot penetration and physical health. Unlike Gunadi and Ryu (2020), we focus on

establishment-level data on work-related injuries and use longitudinal data from Germany on

both physical and mental health outcomes of workers. There are two other recent studies ana-
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Figure 1: Trends in Robot Adoption in the US, Germany and Europe - 1993-2016

Notes - Data are drawn from the International Federation of Robotics.

lyzing the relationship between automation and mental health. Venkataramani et al. (2020) find

evidence of a strong association between automotive assembly plant closure and opioid overdose

mortality between 1999 and 2016. Our evidence on robots exposure is consistent with their find-

ings on automotive plant closures. Using data from Germany, Abeliansky and Beulmann (2019)

find evidence of a decline in mental health associated with increased exposure to robots. While

the latter study uses similar data for Germany, we adopt a different identification strategy and

focus on a broader set of outcomes, and find no evidence of a decline in mental well-being.

By contrast, a growing number of studies investigate the effects of other labor market shocks

on injuries and health (Colantone et al., 2019; Hummels et al., 2016; McManus and Schaur, 2016;

Giuntella et al., 2019; Giuntella and Mazzonna, 2015). For instance, McManus and Schaur (2016)

examine the effect of import competition in the US and find that an increase in import competi-

tion significantly increases worker injury and illness rates. Further, Hummels et al. (2016) exploit
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Danish employer-employee data combined with individual health data to demonstrate how ris-

ing exports may lead to increases in injuries, severe depression, and hospitalizations because of

heart attack and strokes, whereas Colantone et al. (2019) explore the effects of exposure to global

trade on mental health.

Our work also appeals to the recent few studies analyzing the effects of immigration on the

health of the native population (Giuntella and Mazzonna, 2015; Giuntella et al., 2019). In partic-

ular, Giuntella and Mazzonna (2015) find that immigration reduces the likelihood that residents

will report negative health outcomes. According to the authors, improvements in natives’ average

working conditions and workloads help explain the positive effects of immigration on the health

of the native population. Similarly, Giuntella et al. (2019) illustrate that immigration significantly

reduces natives’ physical burden and occupational risk. These studies explore the reallocation of

tasks induced by a labor supply shock, that is, the increase in the supply of workers who have

less host-specific human capital and may have a comparative advantage in manually intensive

tasks (see also Peri and Sparber (2009)). Related to this literature, our study explores the effects

of the changes in task allocation induced by robotization, and in particular, its effects on work-

related accidents and mental health. Using Italian administrative data, Leombruni et al. (2013)

examine the effects of job displacement on workplace injury risk and earnings. The authors show

that displaced workers are exposed to moderate earning losses but experience a substantial in-

crease in workplace injuries. Finally, our study contributes to the literature that investigates the

relationship between workers and machines, and their consequences on the health and mental

well-being of workers. Robelski and Wischniewski (2018) provide a comprehensive review of the

literature on human-machine interaction and physical and mental health, underlining the need

for more research on the relationship between health and human-machine interaction.

The remainder of this paper proceeds as follows. Section 2 describes the data. We discuss the

empirical strategy in Section 3. The evidence from the establishment and regional data for the

US is presented in Section 4. In Section 5, we discuss the data and the empirical strategy, and

report the results from the individual-level analysis in Germany. Section 6 concludes.
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2 Data

To study the relationship between robotization and workers’ health and safety in the US, we

employ data from the following sources: ODI, CDC, BRFSS, the American Community Survey

(ACS), and IFR.

2.1 OSHA Data

Our primary data are drawn from the ODI, which was established by OSHA. A unique

feature of the ODI dataset is that it collects data on injuries and illnesses attributable to work-

related activities at the establishment-level. The ODI collects workplace injury and illness data

annually from approximately 80,000 private-sector establishments with over 40-60 employees

in industries with the highest injury/illness rates in the Bureau of Labor Statistics’ Survey of

Occupational Injuries and Illnesses, plus all manufacturing industries. The sample excludes

industries not regulated by OSHA, such as mining and most government workers. The ODI

dataset is an unbalanced panel: different establishments are included every year, with some

overlapping across years.

The establishments’ data collected by OSHA through ODI present some important limitations.

First, for each data collection cycle, OSHA only collects data from 1% of the total establishments

(i.e., approximately 80,000 out of 7.5 million total establishments). Thus, the data are not rep-

resentative of all businesses. OSHA takes multiple steps to ensure the quality of the data but

acknowledges problems and errors may exist for a small percentage of establishments. Finally,

not all states participate in the ODI survey. For instance, the data do not contain information for

Alaska, Oregon, Puerto Rico, South Carolina, Washington, and Wyoming. Despite these limita-

tions, the ODI dataset represents the only publicly available database including information on

national establishment-level occupational injury and illness rates. Furthermore, while the ODI

data are more likely to represent high injury and illness rate industries because of the survey

exclusion criteria mentioned above, Neff et al. (2008) show that the state-level distributions of its

findings do not differ dramatically from those obtained using the Survey of Occupational Injury

and Illnesses. Finally, OSHA determines that the database is adequate for longitudinal analysis
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(Neff et al., 2008).2

The ODI survey provides data from 1996 to 2011, thereby allowing scholars to study trends

and differences in private-sector occupational injury and illness rates.3 In addition to including

data on the establishment name, address, and industry, the ODI survey provides information on

three key safety measurements: the associated total case rate (TCR), the days away, restricted,

or transferred (DART) case rate, and the days away from work injury and illness (DAFWII) case

rate. We use these safety metrics at the establishment-level as our main outcomes of interest.

In particular, while the TCR reflects the number of work-related injuries per 100 full-time

workers during a one-year period, DART includes only those injuries that resulted in days away

from work, restricted work activity, or transfers to another job. Formally, DART is calculated

using the following formula:
N

EH
∗ 200, 000 (1)

where N is the number of cases involving days away and/or restricted work activity, and/or job

transfers; EH is the total number of hours worked by all employees during the calendar year;

and 200,000 is the base number of hours worked for 100 full-time equivalent employees during a

one-year period.

DAFWII includes only days away from work per 100 full-time equivalent employees. Thus,

it represents the most serious injuries, as cases requiring temporary transfers to another job or

restricted work are excluded from this definition. Formally, DAFWII can be written as follows:

T
EH
∗ 200, 000 (2)

where T is the number of cases involving days away from work; EH and the base number of

hours per 100 full-time equivalent employees are defined in the same way as in formula (1).

Figure A.1 illustrates the average number of injuries across sectors over the 2005–2011 period.

The service sector witnessed the highest TCR, with about 10 cases per 100 workers in a year.

Retail trade, transportation, agriculture, and wholesale trade experienced a similar TCR, with

approximately 7.5 cases per 100 workers. Summary statistics for the three safety metrics are

2See also https://clear.dol.gov/study/evaluation-osha%E2%80%99s-impact-workplace-injuries-and-illnesses-
manufacturing-using-establishment.

3For simplicity, we refer to injuries and illnesses as “injuries.”
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reported in Panel A of Table A.8 in the Appendix.

2.2 Data on Mortality, Mental Health, and Occupational Burden

We collect data on the cause of death by county and year from the CDC and the National

Center for Health Statistics using the CDC Wonder Online Database. Data are drawn from the

detailed mortality file for the years 2005–2011. We restrict attention to deaths associated with

drug and alcohol abuse and suicides and compute mortality rates per 100,000 inhabitants.

Information on mentally unhealthy days is drawn from the BRFSS, where individuals are

asked to think about their mental health (including stress, depression, and problems with emo-

tions), and report how many days during the last 30 days their mental health was not good. We

use county averages for the years 2005–2011.

To measure physical and psychological burden, we employ the ISCO classification from the

ACS and the General Index for Job Demands in Occupations constructed by Kroll (2011) and

Giuntella et al. (2019), which associates a measure of the physical and psychological burden to

each occupation on a 1–10 scale. We then aggregate the data at the commuting zone and year

level to obtain the share of workers employed in jobs with a high physical and psychological

burden (defined as a score above eight for both physical and psychological burdens).4 Panel

B of Table A.8 in the Appendix displays summary statistics on mortality, mental health and

occupational burden.

2.3 Robot Data

Data on the stock of robots by industry, country, and year are drawn from IFR, a professional

organization of robot suppliers established in 1987 to promote the robotics industry worldwide.

These data are collected through a survey among IFR members, which gathers information on

the number of robots that have been sold in a given industry and country. The data cover 70

countries over the period 1993 to 2016, accounting for more than 90% of the world market for

robots. The IFR data report information on the operational stock of “industrial robots,” defined as

“automatically controlled, reprogrammable, and multipurpose machines” (IFR, 2016). Industrial

4Commuting zones can be regarded as local labor market areas.
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robots are autonomous machines not operated by humans and can be programmed for several

tasks, such as welding, painting, assembling, carrying materials, or packaging. By contrast,

single-purpose machines, such as coffee machines, elevators, and automated storage systems are

not robots based on this definition, because they cannot be programmed to perform other tasks,

require a human operator, or both.

The IFR robot data are presently the best available data source on industrial robots. Moreover,

this data source has been used by several scholars to analyze the labor market effects of industrial

robots (Acemoglu and Restrepo, 2020; Dauth et al., 2019; Giuntella and Wang, 2019; Anelli et al.,

2019b; Graetz and Michaels, 2018). Nevertheless, the data do present several limitations. First, we

only have information on the number of industrial robots by sectors for a sub-sample of countries

for the period 1990–2003. In particular, for the US, the IFR dataset has information on the sec-

toral distribution of robots only since 2004, although information on the total stock of industrial

robots is available since 1993. Second, the industry classifications are coarse with only 13 indus-

trial sectors for manufacturing: food and beverages, textiles, wood and furniture, paper, plastic

and chemicals, glass and ceramics, basic metals, metal products, metal machinery, electronics,

automotive, other vehicles, and other manufacturing industries. For non-manufacturing sectors,

data on the operational stock of robots are restricted to six broad categories, namely, agriculture,

forestry and fishing, mining, utilities, construction, education, research and development, and

other non-manufacturing industries (e.g., services and entertainment). Approximately, a third of

the robots are not classified. These unclassified robots were allocated in the same proportion as

in the classified data following Acemoglu and Restrepo (2020). An additional limitation of the

IFR data is that the geographical information on the distribution of robots is available only at the

country level.

3 Empirical Strategy

To investigate how robot exposure affects workers’ health and safety, we estimate the follow-

ing linear regression model:

Yect = α + β(Exposure to Robots)US
ct + τt + ηc + εect (3)
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where the subscript ect denotes an establishment e located in a commuting zone c in a given

year t. Yect represents one of our workplace safety outcomes of interest, including, for instance,

TCR, DART, and DAFWII case rates (detailed in the previous section). Our variable of interest

is (Exposure to Robots)US
ct , which represents the exposure to robots of a commuting zone c at

time t. In all our specifications, we standardize our measure of exposure to robots for ease of

interpretation.

The model in Equation (3) contains year fixed effects (τt) to account for possible trends in

our outcomes. We also include a full set of commuting zone fixed effects (ηc) to control for

unobservable time-invariant differences across commuting zones that may affect our outcomes

of interest. Finally, εect represents an idiosyncratic error term. Throughout the analysis, we

cluster standard errors by commuting zone.

We measure robot penetration following Acemoglu and Restrepo (2020) and Anelli et al.

(2019b). Therefore, we exploit the pre-existing distribution of employment across commuting

zones and industries and multiply it by the national level evolution in the number of robots

across industries. As most of the rise in industrial robots in the US occurred after 1990, we choose

1990 as the baseline year. In practice, we compute the ratio of robots to employed workers in

industry s at the national level and multiply it by the commuting zone’s baseline employment

share in sector s, and then sum separately for each commuting zone, over all sectors. Formally,

our measure of exposure to robots is constructed as follows:

Exposure to RobotsUS
c,t = ∑

s∈S
l1990
cs (

RUS
s,t

Ls,1990
) (4)

where l1990
cs denotes the 1990 distribution of employment across industries and commuting

zones; RUS
s,t identifies the stock of robots in the US across industries in year t; and Ls,1990 represents

the total number of individuals (in thousands) employed in sector s in 1990.

Figure 2 documents the geographical variation in the change in robot exposure between 2005

and 2011 across US commuting zones. While the increase in the use of industrial robots was

widespread across the US, Figure 2 illustrates the substantial variation in the penetration of

robots across commuting zones and over time. Our analysis for the US will thus exploit these
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Figure 2: Industrial Robots across US Counties, ∆2005−2011

Notes - Data are drawn from the International Federation of Robotics. While we use county-level boundaries, the variation in our
measure of robot exposure is at the commuting zone level.
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variations in exposure to robots across commuting zones and over time. Figure 3 illustrates the

gradual growth in robot adoptions between 2004 and 2016, comparing manufacturing sectors

with all the other industries. Manufacturing (left-axis) has, by far, the highest number of robots

per thousand workers (approximately 13 robots per thousand workers in 2016) as opposed to

other sectors (approximately 0.2 robots per thousand workers in 2016).

The measure of exposure to robots is based on the initial employment shares in the commut-

ing zone: a Bartik-type instrument. However, to mitigate concerns about the potential correlation

of our measure of robot exposure with other factors that may also affect work-related injuries,

we follow Acemoglu and Restrepo (2020) and use the industry-level robot installations in other

economies, which are meant to proxy improvements in the world technology frontier of robots,

as our instrumental variable (IV) for the adoption of robots in the US. In practice, we use the

average robot exposure at the industry-level in the nine European countries that are available

in the IFR data over the same period.5 The underlying idea is to exploit only the variation in

the increase in robot adoption across industries of other countries. Formally, we estimate the

following equation:

Exposure to RobotsIV
c,t = ∑

s∈S
l1970
cs (

Rp30,Other
s,t

Ls,1990
) (5)

where the sum runs over all industries available in the IFR data, l1970
cs represents the 1970

share of employment in commuting zone c and industry s, as calculated from the 1970 Census,

and
Rp30,Other

s,t
Ls,1990

denotes the 30th percentile of robot exposure among the above-mentioned European

countries in industry s and year t.6

Model (3) is estimated using two stage least squares (2SLS), and the first-stage regression is

given by:

∑
s∈S

l1990
cs (

RUS
s,t

Ls,1990
) = π0 + π1[∑

s∈S
l1970
cs (

Rp30,Other
s,t

Ls,1990
)] + δt + σc + vct (6)

where ∑s∈S l1990
cs (

RUS
s,t

Ls,1990
) is instrumented with [∑s∈S l1970

cs (
Rp30,Other

s,t
Ls,1990

)], the industry-level robot expo-

5France, Denmark, Finland, Italy, Germany, Norway, Spain, Sweden, and the United Kingdom.
6Following Acemoglu and Restrepo (2020), we used the 30th percentile as the US robot adoption closely follow

the 30th percentile of the EU robot adoption distribution.
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sure of other countries (i.e., the above-mentioned European countries). δt, σc, and vct are defined

in the same way as in Model (3).

One may be worried that our measure of robot exposure may be correlated with other eco-

nomic shocks, particularly to the exposure to import competition from China (David and Dorn,

2013). However, Acemoglu and Restrepo (2020) and Anelli et al. (2019a) illustrate that the trade

shock is orthogonal to the adoption of robots for both the US and Europe. These studies docu-

ment how industries that strongly robotized production processes were generally industries that

did not offshore production.

Another concern shared with previous studies on this subject (Acemoglu and Restrepo, 2020;

Dauth et al., 2019) is that our estimates may largely reflect trends in the automotive industry,

which adopted more robots than any other sectors in the period under investigation. This sec-

tor may have been subject to specific economic trends, which may confound our relationship of

interest, and thus, our reduced form estimates may reflect the effect of a contemporaneous eco-

nomic shock to that sector (Goldsmith-Pinkham et al., 2020). To partially address this concern,

we demonstrate that our measure of robot exposure is not correlated with pre-trends in work-

related injuries. Reassuringly, we also find no evidence of significant effects in sectors that are

less exposed to robot penetration (i.e., services).7

We adopt a similar estimation strategy when using individual-level data from Germany.

However, as explained in Section 5, in the case of Germany, we use an individual fixed effect

strategy, exploiting within-individual variation in exposure to robots over time based on the in-

dividual sector as of 1994. Furthermore, we also propose an alternative identification strategy

allocating the inflows of robots based on the occupation associated with an individual school

track and vocational training, and restrict the sample to individuals who were born before 1980

and thus entered the tracking system in the early 90s.

7Similarly, we find no significant effects in the finance and public administration sectors. However, given the
limited data available in the OSHA on these sectors, we excluded them from the analysis (results are available upon
request).
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Figure 3: Evolution of Industrial Robots in the US, Manufacturing vs. Other Sectors

Notes - Data are drawn from the International Federation of Robotics.
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4 Results

4.1 Effects on Work-Related Injuries

In Table 1, we explore the direct effect of robot exposure on our primary three workplace

safety outcomes: TCR, DART, and DAFWII (see Panels A, B, and C, respectively). In these

regressions, we use the ODI data and include year and commuting zone fixed effects. Columns

1 and 2 report the ordinary least squares (OLS) and reduced form coefficients, while the 2SLS

estimates are presented in column 3. The first-stage F statistic reported at the bottom of each

Panel is well above the conventional levels (see also Table A.1 in the Appendix). The magnitude

of 2SLS and OLS estimates is fairly similar. This is not surprising because our measure of robot

exposure is already a Bartik-type instrument, which exploits the geographical distribution of

sectors in the base-year to allocate robots across US commuting zones.

Overall, Table 1 documents a negative and highly significant impact of robot exposure on

TCR. Focusing on the IV estimate in column 3 of Panel A, we find that a one standard devia-

tion increase in our measure of robot exposure decreases the number of workplace injuries by

1.169 per 100 full-time workers during a one-year period, which is equivalent to approximately

16% of the mean in our sample (7.132 cases per 100 workers). Similarly, as shown in Panel B,

establishments based in commuting zones that are more exposed to robot penetration experience

a significant reduction in the number of injuries that result in DART. Specifically, a one stan-

dard deviation increase in robot exposure decreases the DART rate by 20% for the mean of the

dependent variable (4.187).

By contrast, in Panel C, we find no evidence of significant impacts of robot exposure on the

most serious injuries, that is, DAFWII. Reassuringly, when regressing the change in robot expo-

sure between 2005 and 2011 on the change in work-related injuries between 1996 and 2001, we

find that the OLS and reduced form coefficients become much smaller and no longer significant,

yielding further support to the causal interpretation of our estimates (see Table 2).8

As previously mentioned, we hypothesize that the reduction in injuries may be driven by a

reallocation of tasks in production, with robot penetration leading workers toward less physi-

cally intensive tasks and jobs. In Table 3, we explore the potential mechanism underlying the

8ODI data are available since 1996 for two of the safety outcomes, namely, TCR and DART.
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Table 1: Effects of Robot Exposure on Workplace Injuries

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.559*** -1.169***
(0.375) (0.321)

Robot exposure - IV -0.495***
(0.139)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
First stage F statistic 681.1

Panel B: Dep. var.: DART

Robot exposure -1.010*** -0.841***
(0.224) (0.207)

Robot exposure - IV -0.356***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
First stage F statistic 681.1

Panel C: Dep. var.: DAFWII

Robot exposure -0.020 0.132
(0.151) (0.132)

Robot exposure - IV 0.056
(0.057)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
First stage F statistic 681.1

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table 2: Falsification test: Robot Exposure (2005-2011) and Pre-Trends (1996-2001) in Injuries
(Commuting-Zone Level)

(1) (2) (3) (4)
Dep. var.: Change in TCR Change in DART

∆2001−1996 ∆2001−1996
OLS Reduced form OLS Reduced form

Change in robot exposure 0.003 0.006
(∆2011−2005) (0.062) (0.030)
Change in robot exposure - IV 0.062 -0.004
(∆2011−2005) (0.063) (0.030)

Observations 596 596 596 596
Mean of dep. var. -0.062 -0.062 0.015 0.015
Std. dev. of dep. var. 1.540 1.540 0.741 0.741

Notes - Data are drawn from the ODI (OSHA) dataset. The unit of observation is at the commuting zone-year level. Standard errors
are reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

reduction in occupational injury using ACS data at the commuting zone level over the 2005–2011

period. We find a negative effect on total job burden, measuring both physical and psycholog-

ical burden. We define high total burden as a dummy variable equal to one if the continuous

indicator of total burden is larger than eight (the 75th percentile). However, the coefficient is

not precisely estimated. In column 2, the 2SLS estimate suggests that a one standard deviation

increase in robot exposure is associated with a 6.3% reduction in the likelihood of working in

a highly physically intensive occupation (defined as physical burden above 8), whereas we find

no evidence of significant effects on the high occupational psychological burden (defined as psy-

chological burden above 8, see column 3). It is worth noting that this analysis only captures

changes across occupations. Previous studies have shown that the reallocation of risk within an

occupation title can be significant, and it is likely the case that the adoption of robots induced a

reallocation of workers to less physically intensive tasks within a job, and not just a reallocation

of workers to different occupational titles (Giuntella and Mazzonna, 2015).

Table 4 reports the 2SLS estimates of the effects or robot exposure on workplace injuries by

the industrial sector. Specifically, focusing on TCR as our dependent variable (see Panel A),

we find that the overall effects are driven by the manufacturing sector (see column 3). A one

standard deviation increase in robot exposure reduces the number of workplace injuries by 1.75
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Table 3: Robot Exposure, Physical and Psychological Burden - 2SLS Estimates

(1) (2) (3)
Dep. var.: High total burden High physical burden High psychological burden

Robot exposure -0.008 -0.015*** 0.004
(0.005) (0.005) (0.005)

Observations 5,187 5,187 5,187
Mean of dep. var. 0.296 0.236 0.155
Std. dev. of dep. var. 0.043 0.046 0.021
First stage F statistic 577.2 577.2 577.2

Notes - Data are drawn from the American Community Survey (2005-2011). The unit of observation is at the commuting zone-year
level. Standard errors are reported in parentheses and are clustered at the commuting zone level. All models control for commuting
zone and year fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

per 100 workers, which corresponds to approximately 28% relative to the mean outcome (6.349).

We obtain a similar finding when we consider DART as the dependent variable (see column 3

of Panel B), whereas the effect remains negative, although smaller and no longer significant for

DAFWII (see column 3 of Panel C). It is reassuring that we find no evidence of significant effects

in sectors that are less exposed to robot penetration (see column 7).

In what follows, we perform a variety of robustness checks to test how the results change

when we modify the sample or use a different specification compared to our benchmark model

(see Table 1). First, in Table A.2 in the Appendix, we illustrate that the main results are not

affected by the inclusion of state-specific time trends, which are meant to capture unobserved

cross-state differences in work-related injuries over time. Second, as individuals may need ad-

ditional time to adjust their health behavior in response to robot exposure, we re-estimate our

baseline specification using a one-year lagged measure of robot exposure as the main explana-

tory variable (see Table A.3 in the Appendix). Reassuringly, the results substantially confirm

the findings presented in our main analysis. Third, in Table A.4 we show that the inclusion of

time-varying, commuting-zone level socio-demographic controls, such as the share of women,

the average age and the proportion of individuals with a college degree, did not alter the main

results. Moreover, while we only have data on the sectoral distribution of robots in the US since

2004, we follow Acemoglu and Restrepo (2020) and use the sectoral distribution of robots in

Europe (our IV) to explore the reduced form relationship between robot penetration in Europe
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and work-related injuries in the US over a longer period (1996–2011).9 As displayed in Table

A.5, the reduced form point estimates are approximately twice as large as the ones presented in

column 2 of Table 1, suggesting that a one standard deviation in robot exposure reduces TCR

by 0.916 cases per 100 workers (equivalent to 9.4% relative to the mean outcome) and the DART

rate by 0.617 cases per 100 workers (equivalent to 11.5% relative to the mean outcome). Next,

we check the sensitivity of the reduced form estimates to the exclusion of the recession period.

Overall, the estimates reported in Table A.6 confirm that firms in commuting zones with a higher

robot penetration experience decline in work-related injuries. If anything, this decline is larger

compared to the period including the Great Recession.

As a further robustness check, we estimate Model (3) including establishment fixed effects,

which allow us to net out the confounding effects of any time-invariant characteristic across es-

tablishments. Reassuringly, the 2SLS estimates presented in Panel A of Table A.7 in the Appendix

demonstrate that the effects of robot exposure are very similar to the benchmark specification.

Finally, we exploit the sectoral information available in the ODI dataset to construct an alterna-

tive measure of robot exposure that varies by sector and year. The 2SLS coefficients displayed in

Panel B of Table A.7 are overall consistent with those obtained using the geographical measure of

robot exposure at the commuting zone level. Specifically, we find that a one standard deviation

increase in sectoral robot exposure leads to a 1.649 reduction in the number of injury cases per

100 workers, which is equivalent to a 21.6% reduction for the mean outcome.

4.2 Effects on Drug- and Alcohol-Related Deaths and Suicides

On the one hand, robots may have reduced the risk of injuries and the overall physical in-

tensity of job tasks, while on the other hand, they may have increased job precariousness and

workers’ uncertainty. Acemoglu and Restrepo (2020) find significant negative effects of robot

exposure on income and hours worked, and a positive effect on unemployment.10 These results

are consistent with the reasoning that at least in the short-run, robots may have increased un-

certainty on labor market opportunities, and thus, may have contributed to increased pressure

on workers, similar to what is documented when examining the effects of trade and other labor

9ODI data are available since 1996 for two of the safety outcomes, namely, TCR and DART.
10We replicate their analyses on wages and employment and confirm significant negative effects of robot exposure

on labor market outcomes. Results are available upon request.
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Table 5: Effects of Robot Exposure on Deaths due to Drug or Alcohol Abuse, Suicide Rate, and
Mental Health

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: Deaths due to drug or alcohol abuse

Robot exposure 33.280*** 27.788***
(7.857) (8.257)

Robot exposure - IV 11.798***
(3.478)

Observations 18,018 18,018 18,018
Mean of dep. var. 388.6 388.6 388.6
Std. dev. of dep. var. 125 125 125
First stage F statistic 507.6

Panel B: Dep. var.: Deaths due to suicides

Robot exposure 0.078 0.250
(0.773) (0.880)

Robot exposure - IV 0.103
(0.367)

Observations 2,819 2,819 2,819
Mean of dep. var. 13.47 13.47 13.47
Std. dev. of dep. var. 5.196 5.196 5.196
First stage F statistic 486.4

Panel C: Dep. var.: Number of mentally unhealthy days

Robot exposure 0.322* 0.651***
(0.195) (0.227)

Robot exposure - IV 0.271***
(0.097)

Observations 14,945 14,945 14,945
Mean of dep. var. 3.745 3.745 3.745
Std. dev. of dep. var. 1.787 1.787 1.787
First stage F statistic 419.3

Notes - Data on reason of death (Panels A and B) are drawn from Vital Statistics (CDC). Data on the number of mentally unhealthy
days are drawn from the BRFSS (Panel C). The unit of observation is at the county-year level. All models control for commuting
zone and year fixed effects. Standard errors are reported in parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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market shocks on workers’ mental health (Colantone et al., 2019) and found by Venkataramani et

al. (2020) when examining the association between plant closures and opioid overdose mortality.

To analyze the effects of robot exposure on the mental health of workers, we merged the IFR

data with county-level data on the reason of death (CDC), and BRFSS data aggregated at the

county-level on the number of mentally unhealthy days. We focus on deaths due to drug or

alcohol abuse and suicides. The results of this analysis are reported in Table 5.

Panel A of Table 5 documents a positive and significant relationship between the exposure

to industrial robots and the rate of deaths due to drug or alcohol abuse. The OLS estimate in

column 1 suggests that a one standard deviation increase in robot exposure is associated with an

increase of 33.28 cases per 100 workers (equivalent to 8.5% relative to the mean of the dependent

variable). The 2SLS estimate displayed in column 3 is only slightly smaller, suggesting a 7.2% in-

crease with respect to the mean. In Panel B, we examine the relationship between robot exposure

and suicide rates. We find no evidence of significant effects on suicide rate, although the point

estimate indicates that areas that are more exposed to robot penetration experience a slight in-

crease in suicide rate (+1.9%).11 Similarly, we find a positive but non-significant coefficient when

measuring the relationship between robot penetration and psychological burden (see column 3

of Table 3).

Finally, Panel C shows a positive relationship between robot exposure and the number of

mentally unhealthy days. The 2SLS estimate in column 3 indicates that a one standard deviation

increase in robot exposure leads to a 0.651 increase in the number of days in the past 30 days that

individuals reported mental health as not being good, which is equivalent to a 17.4% increase for

the mean outcome.

5 Individual-Level Data from Germany

As mentioned in Section 1, Germany has been a leader in robotics since the early 90s, thereby

providing a very interesting context to study the effects of robots on workers’ health and safety.

Furthermore, the availability of a longitudinal dataset with information on workers’ industrial

sector, health, and well-being allows us to exploit within-individual variation in the exposure to
11It is worth noting that the sample size reduces substantially, as we only have information on suicides on a

restricted sample of counties (542).

23



robots over time and investigate how robots affect workers’ health over more than 20 years.

5.1 Data and Empirical Specification

5.1.1 Data

To analyze the relationship between robot exposure and workers’ health and safety in Ger-

many, we employ data from the SOEP, a longitudinal dataset of the German population contain-

ing information on a rich set of individual socioeconomic characteristics since 1984. The SOEP

consists of several subsamples and is constructed to ensure it is representative of the entire pop-

ulation of Germany. For a detailed description of the survey, see Wagner et al. (2007). The SOEP

provides information on several health metrics (including self-assessed health status, satisfaction

with health, and mental and physical health). In this study, we focus on two main health out-

comes: a dummy variable equal to one for a doctor-assessed disability, and an indicator variable

taking value one if the individual reported a work accident that required treatment by a doctor

or at a hospital. While information about disability status is available from 1984 onward, respon-

dents were asked about their accidents at work only during the years between 1987 and 1999.

Furthermore, the SOEP data contains information on individual labor market histories and the

worker’s industrial sector based on the NACE 2-digit classification, which we use to merge with

the data on robots from the IFR. To estimate our model, we construct an unbalanced panel of

manufacturing and non-manufacturing workers from 1994 through 2016, thereby covering the

period for which we have IFR data on the stocks of industrial robots by sector in Germany.12

5.1.2 Empirical Specification

To dispel the concern that individual sorting across sectors as a response to robots may inval-

idate our instrumental strategy, our measure of individual exposure to robot penetration is based

on the sector in which workers were employed in 1994.13 Thus, our metric of robot penetration in

Germany is based on the sector of employment at the baseline. We then follow individuals over

12While we do have information on robots since 1993, information on disability and work-related injuries is not
available in the 1993 SOEP wave.

13Individuals who were unemployed in 1994 were assigned their first available industrial sector. Results are
substantially identical if we restrict the sample to individuals employed in 1994 and assign robot exposure based on
their occupation in 1994 (available upon request).
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Figure 4: Evolution of Industrial Robots in Germany, Manufacturing vs. Other Sectors (1994–
2016)

time and exploit the within-individual variation over time in robot exposure to identify its effects

on the likelihood of reporting any disability, an accident at the workplace, and our measure of

occupational physical intensity. We restrict attention to workers aged 18–64 during the years in

which outcomes were measured, and exclude self-employed individuals. After these restrictions,

we obtain a final longitudinal sample containing 64,358 person-year observations resulting from

6,228 individuals. Table A.9 in the Appendix reports descriptive statistics on the main variables

used in the analysis. Figure 4 illustrates the trends in robot adoption in Germany, comparing

manufacturing industries vs. all the other sectors. As is evident from the figure, there is a marked

difference in the levels of robot penetration between manufacturing and the other sectors, while

the growth rate is relative similar.

We estimate the following linear regression model:
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Yijrt = α + β(Exposure to Robots)GE
jt + λXit + γi + τt + ηr + εijrt (7)

where the index ijrt denotes an individual i, working in IFR sector j in federal state r at the

year of interview t. The outcome variable Yijrt represents an indicator variable for an individual

who reported either a disability or an accident at the workplace, high physical burden (defined

as a dummy variable if the physical burden is above 8), high psychological burden (defined as

a dummy taking the value one if the psychological burden is above 8), work satisfaction, and

life satisfaction. Our variable of interest is (Exposure to Robots)GE
jt , which represents the robot

adoption in industry j and year t. In the vector Xirt, we include worker-level covariates, such as a

full set of age dummies, gender, and indicators for education and marital status. We account for

the longitudinal nature of the SOEP data by including worker fixed effects (γi), and thus, control

for unobservable, time-constant differences among workers. We then instrument our measure of

robot exposure in Germany using the average robot adoptions across industries in other high-

income countries as an instrument. In particular, we use data from Spain, Finland, France,

Norway, Sweden, and the United Kingdom (Dauth et al., 2019), and employ the mean sectoral

exposure in these countries to construct our instrument.14 Additionally, we control for survey

year fixed effects (τt) to account for possible trends in our outcomes as well as a set of federal state

dummies (ηr), which are meant to capture unobservable, time-invariant differences across states

that may influence individuals’ health outcomes. Finally, εijst represents a disturbance term. In

all our specifications, we use the available sampling weights, and standardize our measure of

exposure to robots for ease of interpretation.

5.2 Exploiting German Tracking System

Tracking decision in Germany occurs at the transition from primary and secondary schooling

(Krause and Schüller, 2014; Zimmermann et al., 2013). Primary schools cover four grades and

pupils are aged ten years when they are tracked into three different school paths: a) lower

secondary school (Hauptschule), preparing students for manual and blue-collar professions; b)

intermediate secondary school (Realschule), preparing students for administrative and lower

14Using the median we obtain similar results.
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white-collar jobs; and c) upper secondary school (Gymnasium), lasting three years longer and

preparing students for higher education, allowing for direct access to universities. This decision

is made jointly by parents and teachers, with teachers recommending a secondary school track to

parents. This recommendation is however not binding in most states, and students are allowed

to move between school tracks at any grade, although only a very small percentage (less than

2%) do so (Dustmann et al., 2017).

This institutional feature of the German school system allows us to propose an alternative

empirical strategy based on the tracking system. We exploit the school track choice to construct

a probabilistic measure of robot exposure, which is a weighted average of the sectoral robot

exposure, where the weight is given by the relative probability of working in a given sector

conditional on a school track. Furthermore, we restrict the sample to individuals born before

1980 to focus on those who entered a track in the early 90s, further mitigating the concern of

endogeneity concerning future robot inflows by sector.15 In this respect, the SOEP includes a

set of variables designed to provide information on the occupation of vocational training. Since

1985, respondents are asked if they have left education since the beginning of the year before

the survey and which degrees they have obtained. This information is used for the generation

of the variable on the occupation of vocational training. Similarly, since 2001 this information is

collected among respondents filling the biography questionnaire The SOEP data combines these

two types of information. Restricting the sample to individuals reporting information on their

school track, we construct a probabilistic measure of exposure to robots based on their school

path. Our measure of exposure to robots is then calculated as follows:

Exposure to RobotsGE
o,t = ∑

j∈j
λoj(

RGE
j,t

Lj,1990
) (8)

where λoj is the probability that an individual works in sector j given his/her initial occupation

associated with vocational training. In practice, we collect information from all individuals in

the SOEP with non-missing information on the occupation of vocational training,

This allows us to only exploit variation in robot exposure based on the track choice individ-

15We obtain similar results restricting the sample to individuals born before 1975, although the sample shrinks
substantially. While the effect on disability remains unchanged, the point estimate on physical burden is similar but
less precisely estimated.
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uals make in school, which is unlikely to be correlated with future trends in robot adoption over

time, and thus, could alleviate the concerns of selection and omitted variable bias. To conduct

this approach, we include all workers reporting information on their school track and do not

restrict the sample to those employed in 1994 to maximize sample size, as information on school

track is only available for a sub-sample of respondents. Notice that information on the occu-

pation of vocational training is asked to a very limited sample of individuals before 2001, since

the retrospective information was not collected before 2001 (SOEP, 2019). This prevents us from

using work-related injuries as an alternative outcome, as this variable is available only until 1999.

5.3 Results

Table 6 reports the OLS (see Panel A) and 2SLS estimates (see Panel B) of the effects of robot

exposure on several outcomes measuring workers’ health and safety: disability, risk of accidents

at work, high physical burden, high psychological burden, work satisfaction, and life satisfaction.

As described in the previous section, we include individual-level covariates, individual fixed

effects, as well as state and year dummies in each regression. Focusing on the OLS results, we find

that a one standard deviation in robot exposure is associated with a 5% reduction in the risk of

reporting any disability (see column 1), a 32% reduction in the risk of work accidents (see column

2), and a 4% reduction in the likelihood of being employed in a highly physically intensive task

(see column 4).16 By contrast, we find no evidence of significant effects of robot exposure on

high total burden (see column 3) and mental health (see columns 5–7). The 2SLS coefficients in

Panel B are overall very similar to the corresponding OLS estimates. Reassuringly, in Table 7

we find no evidence of significant effects when examining the impact of robot exposure between

1994 and 2000 on lagged values of disability, work accidents, and physical burden covering the

1984–1990 period, thereby providing further support to a causal interpretation of our findings.

Using the measure of exposure based on the school track and vocational training and restrict-

ing the sample to individuals born before 1980 (see Table 8), qualitatively we largely confirm

the findings presented in Table 6. Point estimates are larger, suggesting that an increase in one

standard deviation exposure to robots reduces the likelihood of reporting any disability by 1.4

16These effects are similar for men and women and larger among medium and high-skilled workers. Results are
available upon request.
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Table 7: Falsification Test: Robot Exposure (1994-2000) and Pre-Trends (1984-1990) in Health,
Work Accidents, and Physical Burden

(1) (2) (3)
Dep. var.: Disability Work accidents High physical burden

1984-1990 1984-1990 1984-1990

Panel A: OLS Estimates

Robot exposure 0.001 -0.004 0.002
(1994-2000) (0.003) (0.016) (0.008)

Observations 18,625 8,643 18,057
Mean of dep. var. 0.057 0.066 0.288
Std. dev. of dep. var. 0.231 0.249 0.453

Panel B: 2SLS Estimates

Robot exposure 0.004 -0.032 -0.009
(1994-2000) (0.003) (0.025) (0.012)

Observations 18,625 8,643 18,057
Mean of dep. var. 0.057 0.066 0.288
Std. dev. of dep. var. 0.231 0.249 0.453
First stage F-statistic 82.63 30.74 83.92

Notes - Data are drawn from the SOEP (1984-2016). The unit of observation is at the individual-year level. All models control for
age dummies, indicators for education, martial status, state dummies, as well as year and individual fixed effects. Information on
disability is available for the years 1984-1989, while information on work accidents is available for the years 1987-1989. Standard
errors are reported in parentheses and are clustered at IFR sector and year.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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percentage points (see column 1), equivalent to a 26% reduction. Similarly, the likelihood of

working in a highly physically demanding job declines by 3.1 percentage points (see column 2),

equivalent to a 18% reduction. These larger estimates are not particularly surprising as by ex-

ploiting vocational training we focus on low and medium skilled workers who were more likely

to be exposed to robot penetration. Thus the coefficients capture a local average treatment effect

on this particular population. At the same time, we confirm the lack of negative effects on mental

health (see columns 3-5), and if anything, we find evidence of a 5% increase in work satisfaction.

We obtain similar results when including any individual with information on the occupation

associated with vocational training and do not restrict on the year of birth (see Table A.10 in the

Appendix).

Table 8: Effects of Robot Exposure in Germany - Exposure based on Vocational Training

(1) (2) (3) (4) (5) (6)
Dep. var.: Disability High total burden High physical burden High psychological burden Work satisfaction Life satisfaction

Robot exposure -0.014** -0.001 -0.031** -0.010 0.392*** 0.008
(0.007) (0.011) (0.013) (0.012) (0.127) (0.081)

Observations 27,411 27,233 27,233 27,233 26,171 26,640
Mean of dep. var. 0.054 0.203 0.172 0.201 7.175 7.400
Std. dev. of dep. var. 0.225 0.402 0.378 0.400 2.038 1.622

Notes - Data are drawn from the SOEP. Individual-level specification over the period 1994-2016. Standard errors are reported in
parentheses and are clustered at IFR sector and year. All models control for age dummies, indicators for education, martial status,
state dummies, as well as year and individual fixed effects.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

We view our results as being consistent with those documented by Dauth et al. (2019), who

show that robot adoption leads to displacement effects in manufacturing, which is offset by new

jobs in services. It is worth noting that while we focus on drug and alcohol use related deaths in

the US, here, we focus on job psychological burden and self-reported metrics of mental health.

We do not have information on causes of death, and unfortunately, the small sample size of our

panel would not allow us to conduct this analysis using our longitudinal data.

6 Conclusion

In this study, we explore the relationship between the penetration of industrial robots and

work-related injuries using data from the US and Germany. Using the US establishment-level
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data from OSHA, we find that a one standard deviation in robot exposure reduces work-related

injuries by 16%. These results are driven by manufacturing firms (–28%), while we find no

significant effects for sectors that do not adopt industrial robots (i.e., services). At the same time,

areas that are more exposed to robot penetration experience higher rates of drug- or alcohol-

related deaths (–7.2%) and mentally unhealthy days (–17.4%). Overall, these results are consistent

with reduced job physical intensity (–6.3%) and increased economic uncertainty (Acemoglu and

Restrepo, 2020). Employing individual-level data from Germany, we exploit within-individual

variation in the exposure to robots over time and propose an alternative identification strategy

exploiting information on school tracking and vocational training. We find similar results on

job physical intensity and health but no evidence of significant effects on mental health, which

appears consistent with the findings of Dauth et al. (2019), who document how the rise of new

jobs in services offset the displacement effects in the manufacturing sector in Germany.

Overall, our results highlight the complex relationship between the adoption of these new

technologies and the physical and mental health of workers in the sectors that are most exposed

to robot adoption. Previous studies have often emphasized the negative effects robots may have

on labor market outcomes. Our findings suggest that we should pay attention to the signifi-

cant mental health consequences of these labor market shocks. Yet, we should not discount the

potential beneficial effects on workplace safety.

Future research could shed further light on how the adoption of robots affect the reallocation

of tasks within firms and occupations. Understanding the complex interaction between workers

and robots in the workplace goes beyond the scope of this study. The relationship between robot

exposure and workers’ mental health calls for a more in-depth study exploiting granular data

and rich information on firms’ practices and employees’ well-being.
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Appendix A: Supplemental Figures and Tables

Table A.1: First stage: Effects of Robot Exposure IV on Robot Exposure

(1)
Dep. var.: Robot exposure

Robot exposure - IV 0.423***
(0.016)

Observations 445,562
Mean of dep. var. 0
Std. dev. of dep. var. 1

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.2: Effects of Robot Exposure on Workplace Injuries - Adding State-Specific Time Trends

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.575*** -1.185***
(0.377) (0.321)

Robot exposure - IV -0.501***
(0.139)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
First stage F statistic 690.5

Panel B: Dep. var.: DART

Robot exposure -1.013*** -0.847***
(0.226) (0.207)

Robot exposure - IV -0.358***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
First stage F statistic 690.5

Panel C: Dep. var.: DAFWII

Robot exposure -0.016 0.135
(0.151) (0.132)

Robot exposure - IV 0.057
(0.057)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
First stage F statistic 690.5

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects, and state-specific time trends.Standard errors are reported in
parentheses and are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.3: Effects of Robot Exposure (Lagged by One Year) on Workplace Injuries

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure (t− 1) -1.580*** -1.063***
(0.362) (0.330)

Robot exposure - IV (t− 1) -0.438***
(0.136)

Mean of dep. var. 6.886 6.886 6.886
Std. dev. of dep. var. 8.248 8.248 8.248
First stage F statistic 470.9

Panel B: Dep. var.: DART

Robot exposure (t− 1) -0.971*** -0.760***
(0.178) (0.201)

Robot exposure - IV (t− 1) -0.314***
(0.083)

Mean of dep. var. 4.033 4.033 4.033
Std. dev. of dep. var. 5.406 5.406 5.406
First stage F statistic 470.9

Panel C: Dep. var.: DAFWII

Robot exposure (t− 1) 0.012 0.081
(0.113) (0.139)

Robot exposure - IV (t− 1) 0.033
(0.058)

Mean of dep. var. 2.085 2.085 2.085
Std. dev. of dep. var. 3.380 3.380 3.380
First stage F statistic 470.9

Observations 383,291 383,291 383,291

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.4: Effects of Robot Exposure on Workplace Injuries - Adding Controls

(1) (2) (3)
OLS Reduced form 2SLS

Panel A: Dep. var.: TCR

Robot exposure -1.553*** -1.163***
(0.366) (0.312)

Robot exposure - IV -0.491***
(0.135)

Mean of dep. var. 7.132 7.132 7.132
Std. dev. of dep. var. 8.235 8.235 8.235
First stage F statistic 692.7

Panel B: Dep. var.: DART

Robot exposure -1.033*** -0.865***
(0.227) (0.208)

Robot exposure - IV -0.365***
(0.088)

Mean of dep. var. 4.187 4.187 4.187
Std. dev. of dep. var. 5.429 5.429 5.429
First stage F statistic 692.7

Panel C: Dep. var.: DAFWII

Robot exposure -0.060 0.088
(0.162) (0.142)

Robot exposure - IV 0.037
(0.061)

Mean of dep. var. 2.150 2.150 2.150
Std. dev. of dep. var. 3.398 3.398 3.398
2-3 First stage F statistic 692.7

Observations 445,562 445,562 445,562

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects, as well as commuting-zone level controls, such as the share of
women, the average age and the proportion of individuals with a college degree. Standard errors are reported in parentheses and
are clustered at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.5: Effects of Robot Exposure on Workplace Injuries - Reduced Form, 1996-2011

(1) (2)
Dep. var.: TCR DART

Robot exposure - IV -0.916*** -0.617***
(0.092) (0.069)

Observations 771,975 771,975
Mean of dep. var. 9.742 5.345
Std. dev. of dep. var. 16.85 12.80

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 1996-2011). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

Table A.6: Effects of Robot Exposure on Workplace Injuries - Reduced Form, 1996-2007

(1) (2)
Dep. Var.: TCR DART

Robot exposure - IV -0.984*** -0.662***
(0.120) (0.100)

Observations 514,746 514,746
Mean of dep. var. 11.48 6.199
Std. dev. of dep. var. 19.51 15.12

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 1996-2007). The unit of observation is at the establishment-year
level. All models control for commuting zone and year fixed effects. Standard errors are reported in parentheses and are clustered
at the commuting zone level.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Table A.7: Effects of Robot Exposure on Workplace Injuries - 2SLS Estimates

(1) (2) (3)
Dep. var.: TCR DART DAFWII

Panel A: Including establishment FE

Robot exposure -1.078*** -0.768*** 0.113
(0.413) (0.293) (0.216)

Observations 387,829 387,829 387,829
Mean of dep. var. 7.409 4.398 2.231
Std. dev. of dep. var. 7.953 5.490 3.425
First stage F statistic 647.7 647.7 647.7

Panel B: Sector-level robot exposure

Robot exposure (sector-level) -1.649** -0.924** -0.130
(0.713) (0.445) (0.249)

Observations 360,730 360,730 360,730
Mean of dep. var. 7.625 4.554 2.284
Std. dev. of dep. var. 8.449 5.587 3.437
First stage F statistic 15.71 15.71 15.71

Notes - Data are drawn from the ODI (OSHA) dataset (survey years: 2005-2011). The unit of observation is at the establishment-year
level. Panels A and B control for establishment fixed effects and year dummies. Standard errors are reported in parentheses and are
clustered at the commuting zone level in Panel A), and IFR sector and year in Panel B.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.

Table A.8: Descriptive Statistics in the US

Mean Std dev

Panel A: ODI dataset - Observations: 445,562

TCR 7.13 8.23
DART 4.19 5.43
DAFWII 2.15 3.40

Panel B: CDC Data - Observations: 18,018

Deaths due to drug or alcohol abuse 388.56 124.97
Suicide rate 13.47 5.20
Number of mentally unhealthy days 3.75 1.79

Notes - Data are drawn from the ODI (OSHA) dataset in Panel A and from the CDC in Panel B. The sample size of the suicide rate
and number of mentally unhealthy days reduces to 2,819 and 14,945 observations, respectively.

42



Table A.9: Descriptive Statistics - Observations: 64,358 - SOEP Data

Mean Std. dev.

Disability 0.064 0.244
Work accidents 0.057 0.231
High physical intensity 0.210 0.408
High psychological intensity 0.187 0.390
Work satisfaction 6.897 1.936
Life satisfaction 6.931 1.611
Age 43.937 10.134
Female 0.445 0.497
Married 0.718 0.450
Lower secondary education (basic track) 0.333 0.471
Medium secondary education (intermediate track) 0.391 0.488
Higher secondary education (academic track) 0.200 0.400

Notes - Data are drawn from the SOEP for individuals aged 18-64 years (survey years: 1994-2016). All the samples contain individuals
for whom information on all observables and the respective outcome variable are not missing. The sample size of work accidents,
high physical (psychological) burden, work satisfaction and life satisfaction reduces respectively to 26,925, 63,886, 63,231 and 64,228,
respectively.

Table A.10: Effects of Robot Exposure in Germany - Exposure based on Vocational Training

(1) (2) (3) (4) (5) (6)
Dep. var.: Disability Total burden High physical burden High psychological burden Work satisfaction Life satisfaction

Robot exposure -0.016** -0.005 -0.026** -0.013 0.354*** -0.010
(0.006) (0.011) (0.012) (0.012) (0.118) (0.085)

Observations 33,266 33,001 33,001 33,001 31,701 32,316
Mean of dep. var. 0.048 0.204 0.173 0.199 7.212 7.446
Std. dev. of dep. var. 0.213 0.403 0.379 0.400 2.029 1.598

Notes - Data are drawn from the SOEP. The unit of observation is at the individual-year level. All models control for age dummies,
indicators for education, martial status, state dummies, as well as year and individual fixed effects. Standard errors are reported in
parentheses and are clustered at IFR sector and year.
*Significant at 10 per cent; ** Significant at 5 per cent; ***Significant at 1 per cent.
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Figure A.1: Workplace Injuries by Industries in the US, 2005–2011

Notes - Data are drawn from the ODI (OSHA) database (survey years: 2005-2011).
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