
DISCUSSION PAPER SERIES

IZA DP No. 13654

Mehmet Ugur
Marco Vivarelli

Innovation, Firm Survival and Productivity: 
The State of the Art

SEPTEMBER 2020



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 13654

Innovation, Firm Survival and Productivity: 
The State of the Art

SEPTEMBER 2020

Mehmet Ugur
University of Greenwich

Marco Vivarelli
Università Cattolica del Sacro Cuore, IZA and UNU-MERIT



ABSTRACT
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Innovation, Firm Survival and Productivity: 
The State of the Art

We review the theoretical underpinnings and the empirical findings of the literature that 

investigates the effects of innovation on firm survival and firm productivity, which constitute 

the two main channels through which innovation drives growth. We aim to contribute to 

the ongoing debate along three paths. First, we discuss the extent to which the theoretical 

perspectives that inform the empirical models allow for heterogeneity in the effects of 

R&D/innovation on firm survival and productivity. Secondly, we draw attention to recent 

modeling and estimation effort that reveals novel sources of heterogeneity, non-linearity 

and volatility in the gains from R&D/innovation, particularly in terms of its effects on firm 

survival and productivity. Our third contribution is to link our findings with those from prior 

reviews to demonstrate how the state of the art is evolving and with what implications for 

future research.

JEL Classification: O30, O33

Keywords: innovation, R&D, survival, productivity

Corresponding author:
Marco Vivarelli
Dipartimento di Politica Economica
Università Cattolica del Sacro Cuore
Largo Gemelli 1
20123 Milano
Italy

E-mail: marco.vivarelli@unicatt.it



2 
 
 

 

1. Introduction 

 

From an endogenous growth perspective, the effect of innovation on economic growth is mediated 

through two channels: firm dynamics (entry and exit) and firm productivity. In the first-generation 

models (Romer, 1990 and 1994; Grossman and Helpman, 1991), the search for new ideas by profit-

maximizing firms and the nonrivalry of knowledge are at the heart of the growth in the productivity of 

the resources allocated for the development of new product varieties.  In the second-generation models 

(Aghion and Howitt, 1992 and 1998; Klette and Kortum, 2004; Aghion et al., 2014 and 2015), 

innovation drives growth through creative destruction (firm entry and exit) and productivity gains 

secured by successful innovators1. Innovation, firm dynamics and productivity are central issues in the 

evolutionary models of industry evolution too, albeit the emphasis here is on heterogenous effects due 

to different technological regimes, sources of innovative knowledge, modes of innovating and patterns 

of innovation diffusion (Nelson and Winter, 1982; Dosi and Nelson, 2013).  

Given this theoretical background, the aim of this study is to summarize the theoretical underpinnings 

of and evaluate the empirical evidence on: (i) how innovation affects firm dynamics; (ii) how 

innovation affects firm productivity; and (iii) why the effects of innovation on firm survival and firm 

productivity are inherently heterogeneous. Addressing these questions will enable us to contribute to 

the economics of innovation literature, particularly to its microeconomic (and mainly empirical) sub-

strand, where innovation is the main driver of firm dynamics and productivity.2  

The attention to heterogeneity in the evidence base enables us to contribute to evidence synthesis along 

three paths. First, we complement the existing reviews by highlighting the extent of heterogeneity in 

the reported effect-size estimates and demonstrating that heterogeneity is even more visible in the 

evidence from recent studies published after 2010.  We concur with the existing reviews that the 

balance of the evidence indicates a positive innovation effect on firm survival and productivity. 

 
1 In this respect, several empirical studies have confirmed that R&D expenditures and innovation foster aggregate economic 

growth (Mansfield, 1988; Mankiw et al., 1992; Nelson, 1993; Daveri, 2002; Ortega-Argilés et al., 2014). 
2 Our work is also consistent with the tradition of studying firm survival and firm productivity as indicators of post-entry 

performance, where the selection process leads productive firms to survive and grow while others to stagnate and ultimately 

exit (Audretsch and Mata, 1995; see also next section). 
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However, we argue that the overall effect conceals a high degree of heterogeneity, which needs to be 

unpacked to arrive at verifiable conclusions about where, why and how innovation may or may not 

deliver the expected gains in terms of survival and productivity.   

Our second contribution is to argue for and suggest future research avenues that can provide ex ante 

theoretical explanations and develop commensurate empirical models for taking account of and 

quantifying the sources of heterogeneity. Particularly, we call for addressing a range of factors that lead 

to heterogeneity in the effects of innovation on firm survival and productivity, including time- and 

industry-specific technological opportunities; innovation types (e.g., product vs process innovation; 

input or output measures of innovation, etc.); innovation intensity and scale; and firm types in terms of 

age, size, market share, etc. Indeed, we demonstrate that the research effort is evolving in that direction, 

as reflected in method and modeling developments that highlight the contingent nature of the effects of 

innovation on firm survival and productivity.  

Our third contribution is to argue that the confounding role of the market power needs to be placed 

under sharper relief in the modeling, estimation and interpretation of the estimates for the effects of 

innovation on firm survival and productivity. True, the role of market power is already recognized in 

the existing reviews, particularly in the reviews of the innovation-productivity literature (Hall et al., 

2010; Hall, 2011). We acknowledge these efforts, but we go further to call for explicit modeling of 

market power and the interaction of the latter with innovation intensity in both firm survival and 

productivity models. This contrasts with the general practice so far, where the issue is usually 

acknowledged only ex post by reviewers, with evidence of slow ‘take up’ in primary studies. 

As mentioned above, this review follows earlier reviews of both research fields published around 2010, 

which include: (i) Manjón-Antolín and Arauzo-Carod (2008) on innovation and firm dynamics; (ii) 

Hall et al. (2010) on productivity effects of R&D capital based on knowledge capital models; and (iii) 

Hall (2011) on the evidence from the Crépon-Duguet-Mairesse (CDM) model of innovation and 

productivity. We first summarize the theoretical underpinnings (Sections 2 and 4) that inform the 

empirical models in both research fields. This is followed by a synthesis of the empirical findings in 

each field (Sections 3 and 5), which consists of combining the conclusions from previous reviews with 

a more detailed evaluation of the post-2010 works. The choice of 2010 as a demarcation year enables 
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us to establish whether post-2010 studies pay more attention to heterogeneity, uncertainty and volatility 

in the aftermath of the global financial crisis.3  On the other hand, combining the existing review 

evidence with a synthesis of the recent findings enables us to reflect the cumulation of knowledge over 

time whilst placing the recent modeling and estimation innovations in sharper relief. The rest of the 

paper is organized as follows. We first review the literature on the relationship between 

R&D/innovation and firm survival, from a theoretical viewpoint in Section 2, and empirically in 

Section 3. Then, we review the literature on the productivity effects of innovation, from a theoretical 

viewpoint in Section 4, and empirically in Section 5. Finally, in Section 6 we discuss the implications 

for future research. 

 

 

2. Innovation and firm survival: theoretical underpinnings 

 

The empirical work on innovation and firm dynamics is informed by three theoretical traditions. The 

first is the insights from evolutionary theory, originally articulated in the seminal contribution by 

Nelson and Winter (1982) and updated through so-called history friendly models (Malerba et al. 2001 

and 2016; Capone et al., 2019). In the evolutionary framework, heterogenous firms operate with 

bounded rationality and satisficing behaviour and the industry is characterized by uncertainty and out-

of-equilibrium dynamics (Dosi et al., 2020). In this setting, a steady-state industry structure may be 

elusive but the level of profitability (hence that of productivity) is a key determinant of firm survival. 

Whilst innovative firms realise higher profits, increase their market shares, and survive longer; non-

innovative firms realise lower profits, shrinks, and eventually exit. The probability of innovation, in 

turn, depends on the technological regime in the industry. The probability is higher in un-routinised 

regimes with higher levels of technological opportunities, but it is lower in routinised regimes where 

innovation is an incremental or unintended consequence of routinised production. Finally, the positive 
 

3 We expect such a shift in focus epistemologically – i.e., irrespective of whether the data period in the post-2010 studies 

cover the post-crisis years. This expectation and the periodisation it informs are based on the observation that there has been 

an increase in the number of studies that incorporate uncertainty and volatility into their models explicitly (Doraszelski and 

Jaumandreu, 2013; Peters et al., 2017a; 2017b; and 2018; Andrew, 2020).  
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effect of innovation on survival is more obvious in good times, rather than in bad times when 

innovative strategies become riskier (Cefis and Marsili, 2019). 

Drawing on Audretsch (1991), we formalise the evolutionary arguments in two equations: a probability 

of innovation equation (1) and a probability of survival equation (2). The probability that a firm j 

innovates in industry i at age t is denoted with (𝐼𝑖𝑡
𝑗

) and depends on a constant that defines the 

asymptotic conditions (A) and on whether the firm is in an industry characterised by a routinised (r) or 

un-routinised (u) innovation regime. Whereas the un-routinised (entrepreneurial) regime is favourable 

to innovative firm entry, innovation in a routinised regime is largely undertaken by incumbents. 

Formally: 

𝐼𝑖𝑡
𝑗

= 𝐴 (1 + 𝑟𝑒−𝑢𝑡⁄ )           (1) 

For a given constant, the probability of innovation by a young firm (a firm with small t) is higher when 

the industry represents an un-routinised regime - i.e., when u is large relative to r. In contrast, the 

probability of innovation declines when age (t) increases or when the industry represents a routinised 

regime – i.e., when r is large relative to u.4 Nevertheless, the firm is faced with a positive exit hazard 

and the probability of its survival depends on the probability of innovation and other factors as stated in 

(2):  

Pr(𝑌𝑖𝑡
𝑗

> 0) = 𝑓{𝐼𝑖𝑡
𝑗

, [𝑃𝑖 − 𝑐(𝑌𝑖
∗)], [𝑐(𝑌𝑖

∗) − 𝑐(𝑌𝑖)]}     (2) 

Here, Pr (Yij > 0) is the probability of firm j at age t surviving in industry i, and it increases if: (a)  the 

probability of firm innovation at age t (𝐼𝑖𝑡
𝑗

) increases; (b) the price-cost margin in the industry (i.e., the 

market power given by 𝑃𝑖 − 𝑐(𝑌𝑖
∗)) increases; and (c) the firm is NOT burdened with a size 

disadvantage due to higher average cost of c(Y) relative to the average cost of c(Y*) at the minimum 

efficient scale  – i.e., if 𝑐(𝑌𝑖) ≤ 𝑐(𝑌𝑖
∗).  If conditions (b) and (c) are determined exogenously in the 

industry, the probability of innovation in condition (a) is the choice variable that determines the firm’s 

 
4 In Audrestch (1991), the source of the innovative advantage also differs between newly established and incumbent firms. 

The newly established firms have innovative advantage if information outside of the industry is more important for 

generating innovative activity. By contrast, the incumbent firms have the innovative advantage if information based on non-

transferable experience in the market is more important for generating innovative activity. The source of innovative 

advantage, however, is not an explicit part of the model.  Its effect on the probability of innovation is captured through the 

relative sizes of the routinised and un-routinised regimes.  
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survival in, or exit from, the industry. This is because innovation enables the firm to grow, attains  the  

minimum efficient scale (MES) of production, and enjoys the benefits of market power in the industry 

if exists. Considered in conjunction with equation (1) and recalling that the exit hazard is higher when 

firm is new and producing below the MES, the firm’s probability of survival is higher if it enters an 

industry with an un-routinised innovation regime and innovates with a higher probability. In contrast, 

when the firm enters a routinised regime, both the probability of innovation and the effect of the latter 

on survival are lower.  

The second strand of the literature models firm dynamics as an endogenous outcome of passive or 

active learning. This line of work also acknowledges firm heterogeneity but assumes maximising firm 

behaviour that allows for identification of an equilibrium (steady-state) industry structure. In the 

passive learning models of Jovanovic (1982) and Hopenhayn (1992), heterogenous firms are subject to 

idiosyncratic productivity shocks and learn about their efficiency as they operate in the industry. Whilst 

the efficient firms survive and grow; the inefficient decline and exit when the cost of exiting are lower 

than the costs of remaining in business. In Jovanovic’s noisy selection model, firms are initially 

endowed with unknown, time-invariant characteristics (i.e. ex-ante efficiency parameters). Ex-post, the 

prior distribution is updated as evidence comes in and some entrepreneurs discover that they are more 

(or less) efficient than others. Efficient firms survive and grow, inefficient firms exit. The effect of 

innovation investment on firm survival, if any, is limited to ex post information it provides about the  

firm’s stochastic efficiency draws.  

In contrast, in the active learning model of Ericson and Pakes (1995), heterogenous firms are engaged 

in investment with uncertain outcomes, including R&D investment. New entrants may either adjust in 

size to the minimum efficiency scale (MES) of the industry “core” or choose/find a niche within which 

the likelihood of survival is relatively high. Therefore, new entrants that begin with relatively low 

levels of investment are likely to exit the market, while some more entrepreneurial entrants experience 

a sequence of initial successes and begin to increase their profits, invest more in strategic assets, and 

increase their probability of survival. The firm’s exit decision is endogenous and depends on whether 

the efficiency gain from investment in research and development is larger than the increase in the 

exogenously determined factor price index. Through simulations, the authors demonstrate that their 

model is successful in predicting several outcomes in industry evolution, including entry and exit rates 
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in the industry, the correlation between entry and exit rates, and the higher growth rates among small 

but surviving firms. These properties notwithstanding, the model predicts that the effect of R&D 

investment on firm survival is indeterminate as it depends on the stochastic outcomes of the 

investment, the success of other firms, and the competitive pressure from outside the industry.  

The third strand builds on Schumpeterian concepts of competition, innovation and creative destruction 

(Schumpeter, 1934). In formal models (Aghion et al. 2005; 2014; 2015), the effect of product-market 

competition on innovation follows an inverted-U pattern. When competition increases from a low 

initial level, it induces firms to escape competition by increasing innovation (the escape competition 

effect). In contrast, competition reduces the incentive to innovate when it increases from a high initial 

level where the profit-diluting effects are stronger (the Schumpeterian effect). Ugur et al. (2016a) 

demonstrate that the Schumpeterian models also imply an inverted-U relationship between innovation 

and firm survival. Innovation increases the probability of survival when it increases from a low initial 

level, but it may reduce the probability of survival when it increases from a high initial level due to 

diminishing scale effects or increased risks.   

In Ugur et al. (2016a), survival time is a positive function of the number of innovative product lines 

that the firm operates (k),  the ratio of the firm’s output to its initial value (Y/V0) which captures the 

firm’s growth opportunities, and  the average value of the innovative product lines (v) – as stated in (3) 

below).  

𝐸[𝑡] ≅ 2 

2𝜇−𝜎2[ln (𝑘) + 𝑙𝑛𝑌𝑡 − 𝑙𝑛𝑉𝑜 + 𝑙𝑛𝑣]       (3)  

The first term in (3) reflects the relationship between the volatility (𝜎) and drift (𝜇) parameters of the 

firm value. Provided that 𝜎 < √2𝜇, equation (3) states that survival time increases with the number of 

innovative product lines (k),  the extent of growth opportunities (Y/V0), and  the average value of the 

innovative product line (v). 5  Replacing the average value of the innovative product line (v) with its 

endogenously determined value in Schumpeterian models of innovation, equation (3) can be re-written 

as:  

 
5 This assumption is in line with existing evidence on various stock markets including the UK, which indicates that the 

volatility parameter is usually around one-tenth of the drift parameter (Casas and Gao, 2008). 
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𝐸[𝑡] ≅ 2 

2𝜇−𝜎2 [ln (𝑘) + 𝑙𝑛𝑌𝑡 − 𝑙𝑛𝑉𝑜 + 𝑙𝑛
𝜋 − Ϛ𝑤𝑧

𝑖
𝜂

𝜌+𝑥−𝑧𝑖
 ]       (4) 

In (4), the numerator of the last term (𝜋 −  Ϛ𝑤𝑧𝑖
𝜂
) is the productivity/profitability of innovation, which 

is equal to difference between average gross profits (𝜋) and average cost of the R&D investment 

(Ϛ𝑤𝑧𝑖
𝜂
) in the innovative product line. Because of its addition to costs, the R&D intensity, zi, in the 

numerator is negatively related to survival time. However, the R&D intensity in the denominator is 

positively related to survival time as it mitigates the adverse effects of creative destruction (x) and the 

discount rate (𝜌). Taking the first- and second-order derivatives of the survival time equation, Ugur et 

al (2016a) demonstrate that this non-monotonic relationship between R&D intensity and survival time 

is concave – i.e., it has an inverted-U shape.  

Despite divergent assumptions about maximising firm behaviour, the three strands of the theoretical 

literature converge on three predictions concerning firm dynamics and industry evolution: (i) the 

growth rate in the industry is positively correlated with innovation or creative destruction, both of 

which imply higher entry and exit rates; (ii) small and new firms exit more frequently (Mata and 

Portugal, 1994; Mata et al., 1995), but those that survive tend to grow faster (Lotti, Santarelli and 

Vivarelli, 2001 and 2003); and (iii) firm age and size are positively correlated and both have positive 

effects on survival time. These predictions enjoy significant support in empirical work, full or partial 

reviews of which include Geroski (1995); Vivarelli and Audretsch (1998); Caves (1998); Santarelli and 

Vivarelli (2007); Manjón-Antolín and Arauzo-Carod (2008); Vivarelli (2013); Quatraro and Vivarelli 

(2015). They are also supported by more recent findings reviewed in Rosenbusch et al. (2011), 

Hyytinen et al. (2015) and Ugur et al. (2016a).  

Nevertheless, the theoretical predictions are less convergent with respect to how innovation affects firm 

survival. In both active and passive learning models, industry evolution is a stochastic process and the 

dynamic equilibrium is industry specific. Even in the active learning model, the firms have ‘truly 

idiosyncratic outcomes to even identical investment decisions’ (Ericson and Pakes, 1995: 67). Hence, 

the relationship between investments (including R&D investment) and firm survival is ambiguous. This 

is because the probability of successful investment is determined endogenously by the industry 

structure that, in turn, is only probabilistically related to its structure in the previous period.  
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This contrasts with predictions from the evolutionary model, where firms in un-routinised 

technological regimes are more likely to innovate and innovation is positively correlated with survival. 

The higher probability of innovation investment in these regimes enables the firms to catch up with 

technology frontier and attain the minimum efficient scale (MES), while also avoiding the adverse of 

the industry-wide creative destruction (Audretsch,1991; Audretsch and Mahmood, 1995). The 

innovation premium may be relevant in routinised technological regimes too, but this premium may not 

be realised because of lower probability of innovation in such regimes.  Overall, more innovative firms 

are more likely to survive in both regimes, but more innovative firms are more likely to be located in 

un-routinised as opposed to the routinised regimes. 

Somewhere in between lies the prediction from the Schumpeterian models of competition, where the  

relationship between investment in innovation and firm survival is inverted-U-shaped. This relationship 

mirrors the hump-shaped relationship between competition and innovation, but it is driven by 

diminishing returns to investment irrespective of whether firms are neck-and-neck or leader-laggard 

innovators. Up to a certain threshold, the marginal returns to investment in innovation are higher than 

marginal costs, the innovative product lines are profitable, and hence the probability of survival is 

increasing with innovation. After that threshold, however, the marginal benefits of investment fall short 

of the marginal costs, the new product lines are loss-making, and the probability of survival declines 

with innovation (Ugur et al., 2016a).  

 

 

3. Innovation and firm survival: evidence and implications for future 

research 

 

The discussion above indicates that, theoretically, the effect of innovation on firm survival depends on 

the industry-specific cost and incentive structures that determine the probability of innovation 

(evolutionary models); the stochastic outcomes of the investment in innovation (active learning 

models); the extent of creative destruction (innovation intensity) in the industry (evolutionary and 
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Schumpeterian models); and the risk-return profile of the R&D investment that depends on the firm’s 

innovation intensity (Schumpeterian model). Given these theoretical antecedents, we expect 

heterogeneity to emerge as a prominent feature of the empirical findings on the relationship between 

innovation and firm survival.  

Indeed, effect-size heterogeneity has been acknowledged in a systematic review by Manjón-Antolín 

and Arauzo-Carod (2008). The authors report a number of contrasting findings on the survival effects 

of innovation, including: (i) positive and stronger effects of process innovation as opposed to product 

innovation; (ii) strong and positive effects of process innovation among large firms, but weak or 

insignificant effect among small firms; (iii) usually positive effects when innovation is measured with 

R&D investment. However, this review covers only a small set of innovation-survival studies because 

its focus is on methodological developments in the wider literature on firm survival. Furthermore, the 

review aims to uncover the range of “firm- and industry-specific covariates that provide largely 

consistent results across samples, countries and periods.” As such, the authors do not engage in a 

systematic discussion of either the sources of observed heterogeneity or its implications for future 

research on innovation and firm survival.6  

We have expanded the set of innovation-survival studies in Manjón-Antolín and Arauzo-Carod (2008) 

with eight additional studies published in or before 2010. Table A1 in the Appendix provides summary 

information on the samples, innovation measures and estimators used as well as findings reported in 

these studies. Examining the evidence from the combined set, we observe that the extent of 

heterogeneity in summarised findings is now higher than what has been reported in Manjón-Antolín 

and Arauzo-Carod (2008). Furthermore, the extent of heterogeneity is also higher than what is reported 

in the literature review sections of most primary studies published until 2010 (e.g. Cefis and Marsili, 

2005 and 2006; Esteve-Pérez et al., 2004; Esteve-Perez and  Manez-Castillejo, 2008).  

One source of heterogeneity is the innovation intensity of the industry within which the firm is located. 

In line with the predictions of the evolutionary models (Audretsch, 1991; Audretsch and Mahmood, 

 
6 As we indicate below, more recent research pays greater attention to heterogeneity in in the effects of innovation on firm 

survival. A pertinent example is Hyytinen et al. (2015), who draw attention to the extent of heterogeneity in the related 

literature before reporting their own findings on the relationship between innovation and start-up survival among Finnish 

firms.  
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1995; Mahmood, 2000; and Segarra and Callejón, 2002), a higher level of intra-industry innovation 

intensity increases exit hazard. This prediction ties in with predictions from Schumpeterian models of 

innovation (Aghion et al., 2014; 2015), where higher levels of creative destruction in innovation-

intensive industries render the firm’s existing technology obsolete at faster rates. Hence, firms in 

innovation-intensive industries face a higher level of exit hazard unless their levels of innovation are 

high enough to counterbalance the adverse effects of both product-market competition and creative 

destruction.  

Given these theoretical predictions, estimates for the effect of innovation on firm survival would be 

heterogenous and potentially biased unless researchers control for industry effects. Some studies 

address the industry-specific effect by including industry dummies in their survival models (e.g., 

Agarwal and Audretsch, 2001; Agarwal et al., 2002; Mahmood, 2000; Cefis and Marsili, 2005). 

Nevertheless, the use of industry dummies may not be sufficient to control for cross-industry variation 

in innovation intensity for two reasons. First, dummy variables are blunt instruments that also control 

for other sources of inter-industry heterogeneity. Secondly, using industry dummies instead of 

controlling for observable innovation intensity within the industry can lead to biased estimates if inter-

industry variation in innovation intensity is theoretically related to the relationship between firm-level 

innovation and firm survival.7  

 In the absence of a unified approach to modelling inter-industry variation in innovation intensity, the 

reported effects of innovation of firm survival tends to be heterogeneous – with the effect depending on 

the industry composition of the sample and whether industry effects are controlled for or not. 

Therefore, we identify the first implication for future research as follows: survival or hazard models 

should control not only for the effect of industry-level innovation intensity but also for the interaction 

of the latter with the firm’s own innovation intensity. Such specification is necessary to minimise the 

risk of model misspecification and to tease out pertinent information on: (i) the magnitude of the 

survival premium due to the firm’s own innovation effort relative to the creative destruction effect of 

the intra-industry innovation intensity; (ii) potential non-linearities in the relationship between firm-

 
7 A similar concern is raised in Hall et al. (2010) when they discuss the case for and against the inclusion of industry and 

time dummies in R&D and productivity models.  
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level innovation and firm survival; and (ii) the optimal level of firm-specific innovation at which exit 

hazard is minimised given the level of intra-industry innovation intensity.  

Another conclusion that can be distilled from the pre-2010 studies in Table A1 is that the effect of the 

firm-level innovation on firm survival varies in sign between and sometimes within studies. The 

reported effects are positive in majority (53%) of the studies (Audretsch, 1991; Audretsch and 

Mahmood, 1995; Cefis and Marsili, 2005; Cefis and Marsili, 2006; Esteve-Perez and  Manez-

Castillejo, 2008; Esteve-Pérez et al., 2004; Fontana and Nesta, 2009; Klepper and Simmons, 2005; and 

Wagner and Cockburn, 2010). However, the effect is insignificant or mixed in the remaining 47% of 

the studies. In the set of studies reporting mixed effects, the heterogeneity reflects sectoral variations in 

Mahmood (2000) and Helmers and Rogers (2011); variation between innovation inputs and outputs in 

Ortega-Argilés and Moreno (2007) and Wilbon (2002); variation between flow and stock measures of 

innovation outputs (Buddelmeyer et al., 2009); and variation between innovation output types (e.g., 

patents versus trademarks in Jensen et al., 2008).   

Effect-size heterogeneity notwithstanding, the evidence from pre-2010 studies indicates a third 

interesting pattern: the effect on survival is more (less) likely to be positive when the explanatory 

variable is an output (input) measure of innovation. Positive survival effects are reported when the 

output measure of innovation is product innovation (Audretsch, 1991; Audretsch and Mahmood, 1995; 

Banburry and Mitchell, 1995; and Fontana and Nesta, 2009) or intellectual property assets (IPAs) such 

as patents or trademarks (Buddelmeyer et al., 2010; Helmers and Rogers, 2010; Jensen et al., 2008; 

Wagner and Cockburn, 2010). This pattern is in line with Rosenbusch et al. (2011), who report that 

output measures of innovation, relative to input measures, are more likely to be associated with higher 

post-entry firm performance of small and medium enterprises (SMEs).  

This pattern can be explained by the argument that product innovation and IPAs reveal innovation 

successes that enhance firm survival whereas the survival premium due to input measures such as R&D 

investment is subject to inherent uncertainties and failure risks. This is a pertinent argument, 

particularly with respect to the effects of innovation on survival among small and medium enterprises 

(SMEs). However, evolutionary and Schumpeterian models of the innovation-survival relationship 

offer an alternative explanation, which relies on the positive correlation between market power and the 
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output measures of innovation. Indeed, output measures of innovation are more likely to indicate firm 

success in converting innovation investments into innovation outcomes. Successful innovations, in 

turn, enables firms to grow in the product space as a result of increased efficiency at the supply side 

and the positive effect of product variety on the demand side. Hence, in the case of output measures of 

innovation, the efficiency-enhancing and demand-shifting effects of innovation are intertwined; and the 

survival premium will reflect both efficiency gains and any increase in market power (See the review 

by Hall, 2011 on the role of market power in the relationship between innovation and productivity). 

Given this dynamic, an added implication for future research is that it is necessary to control for market 

power and the latter’s interaction with the innovation measures to: (i) isolate the effect of innovation 

outputs from market power effects; and  (ii) verify whether innovation and market power are 

complements or substitutes in their effects on firm survival.  

Moving on to post-2010 studies summarised in Table A2 in the Appendix, we observe that the 

relationship between innovation and survival is even more heterogenous than the pre-2010 studies. This 

trend is acknowledged in Hyytinen et al. (2015), who  provide an extensive review of the literature 

before they report their findings on the effects of innovation on start-ups in Finland. The percentage of 

the post-2010 studies that report a positive relationship between innovation and firm survival is 33%, as 

opposed to 53% of the pre-2010 studies in Table A1. Furthermore, the sources of heterogeneity include 

not only innovation types (process versus product innovation) or firm size discussed in the context of 

the pre-2010 studies. In the post-2010 studies, we also observe that the effect of innovation on firm 

survival differs by the level of R&D intensity (Ugur et al., 2016a; Zhang and Mohnen, 2013); by 

appropriability of the investment in innovation (between input and output measures (Hall and Sena, 

2017); between firms that are single-product and diversified innovators (Colombelli et al., 2016); and 

by risk appetite (Hyytinen et al., 2015). It is also pertinent to note that the proportion of estimates 

indicating positive process innovation effects on survival in the post-2010 studies is higher than the 

pre-2010 set. Finally, the innovation’s effect on survival is more likely to be positive when firms 

engage in both process and product innovations, and when innovation is measured with IPAs (Hall and 

Sena, 2017; Ortiz-Villaios and Sotoca, 2018).  

With respect to R&D intensity as a source of effect heterogeneity, Ugur et al. (2016a) and Zhang and 

Mohnen (2013) draw on UK and Chinese firm data respectively and report an inverted-U relationship 



14 
 
 

 

between innovation intensity and firm survival. The inverted-U relationship holds for R&D in both 

samples and for R&D and product innovation in the Chinese data. This finding is in line with the 

prediction from the Schumpeterian model of innovation discussed above.  It indicates that both input 

and output measures of innovation are associated with a survival premium, but the latter is subject to 

diminishing scale effects due to higher investment risks at higher levels of innovation intensity. When 

the level of innovation increases beyond an optimal threshold, survival time declines as the profitability 

of the innovative product lines and the expected value of the firm decline. 

A finding in Ugur et al. (2016a) indicates that R&D intensity and industry concentration are 

complements, with a positive interaction effect on survival. Given the concave relationship between 

R&D intensity and firm survival, this finding indicates that the survival-increasing effects of R&D 

intensity is prolonged (i.e., the turning point is pushed to the right) as the level of concentration 

increases. Stated differently, in more concentrated industries, the positive effect of innovation on 

survival probability is enjoyed over a longer segment of the R&D intensity distribution. This finding is 

also in line with Schumpeterian models of innovation, where the firms’ desired levels of innovation 

investment and the effects of the latter on firm survival is a function of an ‘escape competition’ 

incentive. It allows for reiterating the case for explicit modelling of market power and the interaction of 

the latter with the firm’s own innovation effort with a view to disentangle the efficiency-enhancing and 

mark-up effects of innovation on firm survival. 

Pooling both pre- and post-2010 studies, we identify three method-related issues in the empirical 

research on innovation and firm survival. The first concerns the paucity of the attempts at modelling 

frailty. Although the causes and consequences of frailty have been discussed at length in survival 

analysis (Aalen, 1994; Wienke, 2010; Mills, 2011), two-thirds of the empirical studies reviewed here 

do not control for frailty or unobserved heterogeneity. Furthermore, most of the studies that do control 

for frailty are in the post-2010 set in Table A2. The neglect of frailty is a potential source of bias, which 

is highly likely given the emphasis on firm heterogeneity in the theoretical models that inform the 

empirical models. To the extent that firms are heterogenous in terms of management quality or quality 

of the firm’s R&D personnel, it is necessary to augment the survival (or hazard) models with frailty as 

unobserved random effect (see, Mills, 2011). Statistical theory predicts that the effect of the covariates 

on the population hazard diminish in favor of the frailty effect as time increases (Gutierrez, 2002). 
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Stated differently, models without control for frailty may yield upward-biased estimates for the effects 

of the covariates in the survival model, including the covariate(s) capturing innovation.   

We think the evidence on frailty indicates three implications for future research. First, it is good 

practice to verify if frailty is significant and report the findings explicitly. Secondly, it is necessary to 

report not only whether frailty is significant, but also to comment on whether a significant frailty effect 

is associated with stronger or weaker effects of innovation on survival.8 A third implication is that it is 

necessary to test whether frailty (unobserved heterogeneity) is correlated with the covariates in the 

model and to take account of endogeneity that results from the correlation.9 

The summary information in Tables A1 and A2 allows for two further method-related observations. 

One concerns the choice between proportional hazard (PH) and accelerated failure time (AFT) 

estimators.10 Because there is no clear guidance about which approach is more appropriate, empirical 

studies choose one or the other. This is acceptable, but good practice requires sensitivity checks based 

on alternative specifications. Whilst some studies report such sensitivity checks and justify the 

preferred model on the basis of model fit criteria (e.g., Ortega-Argilés and Moreno, 2007; Cefis and 

Marsili, 2012; Fernandes and Paunov, 2015; Ugur et al., 2016a), this is not the case across the board. 

Therefore, we suggest that future research conduct sensitivity checks and justify their preferred 

estimators based on model-fit diagnostics. Such diagnostics include the Schoenfeld (1982) residuals 

test to decide between the semi-parametric and parametric baseline hazard models; and the Akaike and 

Bayesian information criteria (AIC/BIC) and the Cox-Snell residuals plots to choose between PH and 

AFT specifications of the parametric baseline hazard.  

 
8 It must be noted that the studies that control for frailty tend to pay attention only to whether the sign of the estimated 

coefficients on innovation remain the same between models with and without frailty.   
9 This issue arises irrespective of whether frailty is modelled as a multiplicative or additive term in the baseline hazard. If 

exists, such correlation is a cause of endogeneity. Researchers can address the letter through Mundlak (1978) corrections, 

which involve augmenting the survival model with time averages the covariates correlated with frailty to ensure mean 

independence. 
10 This issue arises because the shape of the hazard function is unknown and economic theory provides information only 

about the relevant covariates and their expected effects on the likelihood of firm exit. Stated differently, survival studies 

tend to estimate a reduced-form hazard model where the logarithm of the hazard is a linear function of two arguments: the 

baseline hazard function and the covariate function that includes innovation and other covariates suggested by the theory. 

The PH estimators assume that the baseline hazard function depends on time only whereas AFT estimators assume that it 

depends on time and the function of the covariates. Hence, the baseline hazard is the same in both estimators only if the 

covariates are assumed to be zero. Furthermore, the interpretation of the coefficient estimates differs. In the PH models, the 

coefficients are semi elasticities of the hazard with respect to the covariates, whereas they measure the effect of the 

covariates on the length of the predicted time until the failure event is likely to occur in the AFT models. 
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The final method-related observation concerns to the choice between continuous and discrete-time 

hazard models. This issue again arises from the absence of theoretical guidance on which conception of 

time is more appropriate for firm survival data (see, Manjón-Antolín and Arauzo-Carod, 2008). On the 

one hand, duration time (i.e., the time to exit) is theoretically continuous. On the other hand, firms are 

observed only at some intervals, usually every year in annual surveys or in accounting data. The data 

constraint makes the discrete-time models more appropriate but discrete-time models estimate the odd 

ratio instead of the hazard rate for exit to occur by time t. A possible extension for future research 

would be to compare the performance of both discrete and continuous time models and choose the best-

performing model on the basis of predictive power indicators such as the area under the receiver 

operating characteristic curve (AUC), as demonstrated by Gupta et al. (2018) in the context of financial 

distress hazard estimations.  

 

 

4. Innovation and firm productivity: theoretical underpinnings  

 

In early endogenous models, innovation drives economic growth through spillover effects that sustain 

investment in physical and human capital by raising the latter’s marginal product above the discount 

rate (Romer, 1986; Lucas, 1988).  In later models (e.g., Romer, 1990; Aghion and Howitt, 1992; 

Aghion et al., 2015), innovation drives productivity growth through technological change that reduces 

production costs11 or increases product quality or both. One line of empirical research that follows from 

the endogenous growth theory investigates what came to be known as the spillover (or standing-on-the-

shoulders) effect of the knowledge stock on the production of new knowledge (i.e., on the production 

of innovation outputs).12 This empirical strand has been reviewed in a recent meta-analysis by Neves 

 
11 The most common case being through labour-saving innovation (Freeman and Soete, 1987; Simonetti, Taylor and 

Vivarelli, 2000; Piva and Vivarelli, 2018). 
12 The metaphor “standing on the shoulders of giants” is attributed to Isaac Newton and used in work on the economics of 

innovation to refer to spillovers from investment in innovation. Innovation spillovers play a central role in endogenous 

growth models, where investors in innovation benefit from ideas embedded in the existing stock of knowledge.  
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and Sequeira (2018), who report that the average spillover (standing-on-shoulders) effect is positive but 

smaller than one.  

The empirical literature on innovation and productivity we review below constitutes the second line of 

empirical research that resonates with but also predates the theoretical endogenous growth models. This 

line of research builds on a Cobb-Douglas production function augmented with knowledge capital, 

which is constructed from investment in innovation. Here knowledge capital is an additional input and 

has separable effects on output by affecting the level of total factor productivity (TFP). Stated 

differently, knowledge capital (i.e., investment in innovation) enables the firm to obtain a higher level 

of output with given levels of physical capital and labour as conventional inputs. This formulation ties 

in with the first-generation endogenous growth models, where innovation is growth enhancing because 

it increases the productivity of the resources used in the production of goods and ideas. It is also 

compatible with second-generation models, where innovation is a source of creative destruction (i.e., 

higher entry and exit rates) and technological change that increase firm productivity.   

Following the seminal contribution by Griliches (1979), empirical work based on knowledge capital 

has flourished and expanded in several directions. One strand, which came to be known as the primal 

approach because of its reliance on a production function, estimates  a Cobb-Douglas production 

function augmented with R&D capital stock. Assuming perfect competition in factor markets and 

separability of the knowledge capital (K) form conventional inputs capital (C) and labour (L), the 

production function can be stated as follows: 

 

𝑄𝑖𝑡 =  𝐴𝑒𝜆𝑡𝐶𝑖𝑡
𝛼𝐿𝑖𝑡

𝛽
𝐾𝑖𝑡

𝛾
𝑒𝑢𝑖𝑡           (5) 

 

Here, 𝑄𝑖𝑡 is real output of firm or industry i at time t. Cit is deflated physical capital stock; Kit is 

deflated R&D capital; Lit is labour (number of employees or hours worked); and 𝐴𝑒𝜆𝑡 is technological 

progress with a rate of disembodied technological change 𝜆. Using lower case letters to denote logged 

values, the model is: 
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𝑞𝑖𝑡 = 𝛼𝑐𝑖𝑡 + 𝛽𝑙𝑖𝑡 + 𝛾𝑘𝑖𝑡 + 𝜂𝑖 + 𝜆𝑡 + 𝑢𝑖𝑡         (6) 

 

The logarithm of technical progress yields a firm- or industry-specific effect (𝜂𝑖) and a time effect (𝜆𝑡). 

Following Mairesse and Griliches (1988), the empirical work adopts various assumptions about the 

intercept ( 𝜂𝑖) and the slope coefficient of interest (𝛾). Some studies assume that both the intercept and 

the slope coefficient are constant across firms/industries and hence use pooled OLS for estimation (e.g., 

Adams and Jaffe, 1994; Mairesse et al., 2005; Ortega-Argiles et al., 2010). Some others assume random 

intercepts drawn from the same distribution and constant slopes. Then the parameters are estimated 

with a between estimator that consists of a cross-sectional (total) OLS with data averaged over time for 

each cross-sectional unit (Griliches, 1980 and 1998c; Schankerman, 1981; Bartelsman et al., 1996; 

Ortega-Argiles et al., 2010) . Elasticity estimates from pooled OLS or between estimators are referred to 

as elasticity estimates in the level dimension.  

Some studies assume that the firm-specific effects are constant over time and utilise a within estimator, 

where all terms in the model are either first-differenced or expressed as deviations from the within-firm 

mean (Griliches and Mairesse, 1991; Mairesse and Hall, 1996). Productivity estimates from time-

differenced or within estimators are referred to as elasticity estimates in the temporal dimension. 

Estimates from the level and temporal dimensions will be consistent if model (6) is specified correctly 

and the covariates are not subject to mismeasurement.  

In elasticity models, the elasticity of output with respect to knowledge capital, 𝛾, is assumed constant 

across firms or industries. If firms operate with different factor shares depending on the competitive 

equilibria they are faced with (Hall et al., 2010), it is more appropriate to assume rate-of-return rather 

than elasticity equalisation. Then, the change in R&D capital stock (∆𝑘𝑖𝑡) is transformed into R&D 

intensity, assuming that the annual depreciation rate is close to zero. This transformation allows for 

rate-of-return estimations, where the coefficient of interests is 𝜌 in the output model (7a) or its total 

factor productivity (TFP) equivalent (7b) below.13 

 
13 Elasticity and rate-of-return estimates based on the knowledge capital model have become known as the primal approach, 

in contrast to the dual approach based on cost or profit functions. This review excludes the dual-approach studies as the 
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∆𝑞𝑖𝑡 =  ∆𝜆𝑡 + 𝛼∆𝑐𝑖𝑡 + 𝛽∆𝑙𝑖𝑡 + 𝜌
𝑅𝑖𝑡

𝑄𝑖𝑡
+ ∆𝑢𝑖𝑡       (7a) 

 

∆𝑇𝐹𝑃𝑖𝑡 =  ∆𝜆𝑡 + 𝜌
𝑅𝑖𝑡

𝑄𝑖𝑡
+ ∆𝑢𝑖𝑡         (7b) 

 

A second variant of the knowledge capital model has been proposed by Crépon, Duguet and Mairesse 

(1998). The model, which came to be known as the CDM model for short, extends the Griliches-type 

knowledge capital model along two dimensions. 14 First, it takes account of potential selection in the 

firm’s decision to innovate and how much to invest in innovation. Secondly, it controls for endogeneity 

that may arise from mismeasurement of the innovation variables and/or from simultaneity in the 

relationship between inputs and outputs in the production function. The model consists of a system of 

four equations: (a) usually two research equations (8a and 8b)  that model the firm’s decision to 

innovate (𝑦0𝑖) and/or its choice of the level of innovation intensity (𝑦1𝑖); (b) an innovation output 

equation (9) that models the effect of innovation investment on innovation outputs (𝑦2𝑖) such as process 

or product innovation, patents, sales revenue from innovative products, etc.; and (c) a labour 

productivity equation (𝑦3𝑖) augmented with predicted innovation outputs (10).  

𝑦0𝑖 =  {
1 𝑖𝑓 𝑦0𝑖

∗ = 𝑋0𝑖𝛽0 + 𝜀0𝑖 > 0

0 𝑖𝑓 𝑦0𝑖
∗ = 𝑋0𝑖𝛽0 + 𝜀0𝑖 ≤ 0

        (8a) 

𝑦1𝑖 = 𝑦1𝑖
∗ = 𝑋1𝑖𝛽1 + 𝜀1𝑖   𝑖𝑓 𝑦0𝑖 =  1        (8b) 

𝑦2𝑖 = 𝛼21𝑦1𝑖 + 𝛼23𝑦3𝑖 + 𝑋2𝑖𝛽2 + 𝜀21𝑖    𝑖𝑓 𝑦0𝑖 =  1      (9) 

𝑦3𝑖 = 𝛼32𝑦2𝑖 + 𝑋3𝑖𝛽3 + 𝜀3𝑖   𝑖𝑓 𝑦0𝑖 =  1       (10) 

 
latter are small in number and their model specifications are more varied than the primal-approach studies. A review of the 

dual-approach studies is provided in Hall et al. (2010).  
14 The CDM model has inspired a large volume or empirical research after its publication in the Economics of Innovation 

and New Technology (EINT) in 1998. A recent special issue of the EINT (vol. 26, no. 1-2, 2017) celebrates the twenty years 

of research informed by the CDM model. The special issue features bibliometric and epistemological reviews that locate the 

CDM model in the wider field of research on innovation and productivity as well as research articles reflecting the state-of-

the-art in the specification and estimation of the CDM model.  
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Vectors 𝑋0𝑖, 𝑋1𝑖, 𝑋2𝑖  and 𝑋3𝑖 are covariates that explain the innovation  decision,  innovation  input,  

innovation  output  and  labour  productivity; and the ε terms are idiosyncratic errors with multi-variate 

normal distributions. The  predicted  inverse  Mills’  ratio  (Heckman, 1979) is usually included in (9) 

and (10) to correct for possible selection bias. Finally, the α’s and β’s are the vectors of unknown 

parameter to estimated. vectors. 15  

In the original study by Crépon, Duguet and Mairesse (1998), the effect of R&D capital intensity on 

labour productivity from the preferred asymptotic least squares (ALS) estimation is 0.119. As indicated 

by Mairesse et al. (2005), this is very close to the OLS estimate from Griliches-type production 

function estimated with the same dataset. Does this mean that the more structured CDM model that is 

supposed to correct for selectivity and endogeneity is promising too much but delivering too little? Not 

necessarily. The CDM delivers more reliable estimates in the presence of selection and when the 

innovation variable is mis-measured. This is more likely to be the case when the innovation measures 

consist of indicator variables that capture the firms’ yes/no responses to innovation surveys; or the 

firm’s self-assessment of what is ‘new’ to the market and what is new to the firm itself. Other examples 

of innovation indicators that may suffer from selection and mismeasurement problems include indicator 

variables for organisational innovation or so-called non-technological innovation. It is in these 

situations that the CDM model delivers on its promises by correcting for downward bias in the 

productivity-effect estimate when the innovation measure is mis-measured. It also corrects for the 

simultaneity bias that may be upward or downward, depending on whether efficient or inefficient firms 

select into becoming innovation-active in any of these innovation types.  

Nevertheless, it must be noted that the quality of the CDM model’s correction for selection or 

mismeasurement depends on whether the innovation decision and input equations (equations 8a and 8b 

above) and the innovation output equation (equation 9) are specified correctly. In Crépon, Duguet and 

 
15 Crépon, Duguet and Mairesse (1998) estimated the model in two steps using asymptotic least squares (ALS) or minimum 

distance estimators. In the first step, the reduced-form (auxiliary) coefficients in each equation are estimated separately, 

taking account of error correlations. In the second step, the information about the auxiliary parameters is used to estimate 

the structural parameters of interest – mainly the effects of innovation outputs on productivity. When the innovation output 

measure is continuous, the coefficient estimate is the elasticity of productivity (usually labour productivity) with respect to 

the innovation output. When the innovation output is measured with an indicator variable, the coefficient estimate indicates 

the productivity difference between innovative and non-innovative firms. 
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Mairesse (1998), model specification has been informed by Schumpeterian perspectives on innovation. 

The authors control for firm size, market share, diversification indicators, demand conditions and 

technological opportunities and a range of industry and time dummies. In later applications, a wider 

range of explanatory variables are controlled for and the theoretical justification for selection is 

theoretically more eclectic. Considering Lööf and Heshmati (2006) as an example, we can see that 

physical capital per employee, R&D personnel, indicators of obstacles to innovation, product life cycle, 

and growth rate in the firm’s main market, etc. are added to covariates measuring firm size or demand 

conditions. The downside of this modeling flexibility is increased risk of model misspecification. 

Given the absence of a commonly agreed theoretical framework that informs model selection, the 

added structure in the CDM model can deliver two outcomes working at cross purposes: correction for 

selection and mismeasurement on the hand and heterogeneity and perhaps bias on the other, depending 

on which covariates are included in or excluded from the innovation equations.   

 

 

5. Innovation and firm productivity: evidence and implications for 

future research 
 

The two variants of the knowledge capital model introduced above - the Griliches-type knowledge 

capital model and the CDM model with a richer structure that controls for selectivity and endogeneity – 

have underpinned a long-lasting research effort for modeling and estimating the effects of innovation 

on firm productivity. In a content and bibliometric review,  Broström and Karlsson (2017) document 

how this academic endeavour developed through methodological and estimation innovations and 

careful attention to the conceptual linkages between theoretical underpinnings and empirical effort 

aided with the emergence of rich datasets. The authors also demonstrate that the interest in this line of 

research has been associated positively with increased interest in the diffusion of innovation as a 

research theme in 2000s. In what follows below, we take stock of the evidence reported in the research 

field, paying particular attention to sources of heterogeneity in the evidence base and to the boundary-
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pushing methodological contributions that have emerged so far and are likely to inform future 

developments. 

 

5.1 The Griliches-type knowledge capital model  

The evidence from the Griliches-type knowledge capital model until 2010 has been evaluated by 

several narrative reviews (Hall et al., 2010; Mairesse and Sassenou, 1991; Mairesse and Mohnen, 1994; 

Hall, 1996). The latest and most comprehensive narrative review (Hall et al., 2010) reported that the 

effect of R&D capital on productivity are positive and economically significant. The median elasticity 

estimate is approximately 0.08 and the median private rate of return on R&D investment is between 

20% and 30%.  These summary measures, however, conceal a high degree of heterogeneity.  

The narrative reviews identify several sources of the heterogeneity in the evidence base, including 

variations in measurement, model specification and estimation methods.  One measurement issue is the 

absence of firm-level prices in the data. This missing data problem implies that the firm-level price 

indices may be different than the industry-level price indices used to deflate the inputs and outputs in 

the model.16 Given that quality improvements are higher in the products of innovation-intensive firms, 

the absence of firm-level prices is conducive to higher (lower) elasticity estimates if innovation-

intensive firms are (are not) represented in the sample. Hence, the estimates will reflect both ‘true’ 

productivity improvements and revenue gains due to market power when innovation-intensive firms are 

included in the sample (see, Hall et al., 2010; Griliches, 1998b; Hanel, 1994).  

A second measurement issue is double counting, which occurs when R&D expenditures on capital and 

R&D personnel are not deducted from the observed measures of physical capital and labour in the 

production function. Hall et al. (2010) report that the elasticity estimates would be biased downward if 

physical capital and labour are not corrected for double counting. Downward bias is also reported in 

some studies that estimate elasticities in the temporal dimension or rates of return using time-

differenced data, albeit the bias is less clear cut (Harhoff, 1994; Hall and Mairesse, 1995).  

 
16 It must be indicated that lack of firm-level price data is an issue in both Griliches-type and CDM-type knowledge capital 

models.  
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The third source of heterogeneity relates to model specification. Some studies report smaller elasticity 

estimates when the labour input in the production function is disaggregated by skill levels (Mairesse 

and Sassenou, 1991; Crépon and Mairesse, 1993). Hall et al. (2010) indicate that this is due to positive 

correlation between skilled labour and R&D, which suggests that skilled labour and R&D capital may 

be complements. The elasticity and rate-of-return estimates also tend to be smaller when the knowledge 

capital model controls for R&D spillovers (Ugur et al., 2016b).17  

The fourth source of heterogeneity relates to the estimators used. On the one hand, elasticity estimates 

in the temporal dimension are usually smaller than the elasticity estimates in the cross-sectional 

dimension.18 On the other hand, Ugur et al. (2016b) report that the elasticity estimates are smaller when 

the generalised method of moments (GMM) or other instrumental variable (IV) methods are used to 

correct for endogeneity, but this is not the case with respect to rates-of-return estimates. A fifth source 

of heterogeneity is the variation in the R&D intensity of the firms/industries in the sample. Hall et al. 

(2010) report that the elasticity estimates are larger when the sample consists of high-R&D-intensity 

firms, but this is more likely to be the case when the estimates are based on the cross-section 

dimension.  

Ugur et al. (2016b) builds on the existing reviews until 2010 and updates the evidence synthesis. 

Drawing on meta-analysis tools, they establish where the balance of the evidence lies and what 

explains the heterogeneity in the reported estimates. The average of the elasticity and rate-of-return 

estimates after controlling for publication selection bias are positive (0.06 and 14%, respectively), but 

heterogenous. The median estimate across primary studies ranges from 0.008 to 0.313 for elasticities at 

the firm or industry level; and from 8% to 68% for rates of return at the firm level or industry level. 

Strongly consistent evidence is reported on additional sources heterogeneity, as summarised below.  

 
17 Stated differently, the elasticity estimates may be upward biased if the knowledge production does not take account of the 

knowledge spillovers from external R&D or cooperative R&D (Cassiman and Veugelers, 2002; Piga and Vivarelli, 2003). 
18 One reason is the mismeasurement of the R&D capital, which is exacerbated when the growth rates of the R&D capital or 

its deviation from the mean are used.  Another explanation is potential multicollinearity between the time effects reflecting 

autonomous technological change and the growth rates of R&D capital. A third explanation relates to missing data on 

cyclical variables such as capacity utilisation or person-hour worked instead of headcount employment (Hall et al., 2010).  

A fourth explanation is that R&D investment is less responsive to business cycle conditions or policy interventions 

compared to physical capital. Finally, Bloom (2007) demonstrates that the persistence of the R&D investment series 

increases as uncertainty increases. Therefore, the within-firm variation in R&D capital is smaller than the between-firm 

variation; and the explanatory power of the R&D stock series is reduced when the elasticity estimates are based on within 

estimators. 
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1. The use of perpetual inventory method (PIM) for constructing the R&D capital is associated 

with relatively larger estimates compared to other methods where the R&D capital 

accumulation is a multiplicative rather than additive process. This is because the PIM accords 

the same weight to additional units of R&D investment in year (t) irrespective of the R&D 

capital stock in year (t-1). This may be a source of upward bias if the contribution of an 

additional unit of R&D investment to R&D  capital is a positive function of the latter in the 

preceding year(s). Hence, there is a case for sensitivity checks involving the use of logarithmic 

methods of R&D capital capital construction, as suggested earlier in Klette (1994). 

2. Small-firm  data  is associated with smaller elasticity estimates of productivity at the firm level. 

This may be due to high failure rates among young and small firms or lower market power or 

both – as predicted Schumpeterian models of innovation and firm performance (Aghion et al., 

2014). However, it may be also due to higher incidence of measurement error or selectivity in 

the data on small firms, which the knowledge capital model, unlike the CDM model,  does not 

address explicitly (Pellegrino and Piva, 2020). 

3. Elasticity estimates for R&D-intensive firms or industries are larger than non-R&D-intensive or 

mixed firms/industries. This finding is in line with Hall et al. (2010) and indicates that that 

R&D-intensive firms/industries are better placed to exploit the benefits of innovation as a result 

of either enhanced efficiency or increased market power or both. 

4. Publicly funded R&D (i.e., an R&D subsidy) is associated with smaller productivity estimates 

at the firm or industry level. One reason is that public support for business R&D may be 

concentrated in firms/industries that generate higher levels of R&D (knowledge) spillovers and 

hence lower levels of appropriability (e.g., health and defence). Secondly, public funds may be 

concentrated in industries with lower returns due to large scales at the capacity building phase 

(e.g., aircraft and communications sectors). Finally, firms may be less efficient in the use of 

public subsidies in general, or subsidies may be misdirected (Hall et al., 2010). The implication 

for future research is that it may be necessary to decompose the R&D capital into public and 

private components to establish whether both types are complements (substitutes) and enter the 

production function separately (or in total). 
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5. Finally, instrumental variable estimators such as generalized method of moments (GMM) two-

stage least squares (2SLS) yield smaller elasticity estimates compared to OLS estimators. This 

finding suggests that R&D investments and productivity may be responding to unobserved 

shocks in the same direction, leading to upward bias in OLS estimates of the innovation 

investment’s productivity effects.  

We follow Ugur et al (2016b) and draw attention to two methodological innovations in the research 

field evaluated above: the adoption of a common factor framework to estimation of  the Griliches-type 

model with spillovers (Eberhardt et al., 2013) and the modelling of productivity as an endogenous 

outcome in Doraszelski and Jaumandreu (2013).19 Eberhardt et al. (2013) argue and demonstrate that 

the conventional knowledge capital model yields upward-biased productivity effects of own R&D 

capital at the industry level – mainly because of its failure to take account of the cross-sectional 

dependence driven by spillovers as an unobserved common factor. On the other hand, Doraszelski and 

Jaumandreu (2013) model productivity as an unobservable endogenous outcome. They are able to 

account for uncertainty, non-linearity, and heterogeneity in the productivity effects of R&D. The 

productivity estimates from their model are smaller than the ‘average’ of 0.08 reported in the reviews 

discussed above. However, their estimates are larger than those derived from a Griliches-type 

knowledge capital model applied to the same dataset. They also report that the productivity effects of 

R&D are non-linear – with the effect increasing in the level of R&D intensity and hence indicating 

increasing returns to scale in R&D investment.  These studies provide added evidence on heterogeneity 

in the productivity effects of innovation; and herald further searches for methodological innovations in 

the studies to follow.  

We provide a summary of the recent studies where the search for methodological innovation is evident 

(Table A3 in the Appendix).  Of these, Belderbos et al. (2015) test for non-linear returns to R&D and 

for complementarity between the firm’s own R&D and the R&D conducted by its foreign subsidiaries. 

They report that returns to own R&D investment reflect diminishing scale effects (and own R&D and 

foreign subsidiary R&D are complements) among firms in low-tech industries.  Among firms in high-

 
19 A judicious review of the methodological developments until the cut-off year of 2010 is not feasible here due to space 

limitations. However, we refer the reader to excellent discussions in Griliches and Mairesse (1995) and Hall et al. (2010) on 

model specification, identification and estimations issues in the research field until 2010.  
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tech industries, there are neither diminishing scale effects nor complementarity between own and 

foreign-subsidiary R&D. Non-linear returns to R&D (with some evidence of diminishing returns to 

scale) are also reported in Kancs and Silerstovs (2016), who utilize the endogenous productivity model 

of Doraszelski and Jaumandreu (2013) and treatment-effect estimators based on propensity score 

balancing. Their findings indicate that the returns to R&D investment are about 15% on average, 

ranging from −2% for low levels of R&D intensity to 33% for high levels of R&D intensity. 

Furthermore, firms in high-tech sectors both invest more in R&D and secure higher returns. 

Nevertheless, the returns to R&D increases at smaller rates as R&D intensity increases, indicating the 

existence of an optimal threshold beyond which the innovation’s effect on firm productivity may 

become smaller than its effect on the firm’s average costs.  

The evidence from this recent work enables us to make two observations about implications for future 

research. The first is about the need to endogenize productivity – in line with the approach in 

Doraszelski and Jaumandreu (2013). This approach utilizes a dynamic model where the firm invests in 

R&D to improve productivity over time. However,  productivity is also a determinant of investment in 

R&D and other types of investment (e.g., investment in physical capital)  as well as subsequent 

decisions on static inputs such as labour and materials. Furthermore, the evolution of productivity is 

subject to random shocks that reflect uncertainties related to investments in both physical capital and 

R&D investments.  

Following this line of modeling, Andrew (2020) offers two methodological contributions: taking 

account of the firm’s life cycle and using age as an argument in the Markov process for productivity; 

and estimate the productivity effects of R&D with a conditional heteroskedasticity estimator, which 

captures the effects of innovation on the mean and variance of total factor productivity (TFP). This 

study reports three novel findings that lend support to our call for identifying and quantifying the 

sources of heterogeneity, non-linearities and uncertainty in the innovation-productivity relationship: (i) 

R&D investment has non-linear effects on both the level and volatility of the TFP in the next period; 

(ii) older firms are more efficient in converting R&D spending into productivity gains and in 

undertaking R&D investment with more uncertain returns / success rates; and  (iii) productivity is 

persistent in that firms with higher productivity are also more efficient in converting R&D inputs into 

future productivity gains.  
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The second implication is about the potentially confounding effect of market power in the innovation-

productivity relationship. This issue is addressed in Máñez et al. (2015), who extend the Olley and 

Pakes (1996) method of estimating production functions with endogenous inputs in two directions. On 

the one hand, and similar to Doraszelski and Jaumandreu (2013), they assume that productivity evolves 

in accordance with an endogenous rather than exogenous Markov process. On the other hand, they 

estimate two production functions jointly – one with labour input and an inverse demand function for 

materials; and one with labour and capital  inputs and inverse demand functions for materials and 

capital. In both models, the demand for materials and capital is assumed to be heterogenous, depending 

on the firm’s R&D and export status. The total factor productivity (TFP) obtained as the residual from 

the joint estimation is then regressed on the firm’s R&D and export status using OLS and system GMM 

estimators. Their findings indicate that R&D-active firms have higher levels of productivity, and R&D 

and exporting status are complements. They also control for market power and report that the positive 

effect of R&D on productivity remains positive but becomes slightly smaller when market power is 

controlled for. This finding ties in with our argument above that the innovation’s effect on firm 

productivity (or survival) is due to improved efficiency and enhanced market power at the same time. 

The finding in Máñez et al. (2015) indicates that this is the case with respect to R&D investment as an 

input measures of innovation. Market power is likely to be a confounding factor even when output 

measures of innovation (e.g., product innovation or IPAs) are used, as long as the firm’s output is not 

deflated with firm-specific deflators.  

 

5.2 CDM model  

The empirical work based on the CDM model has also been reviewed several times. Hall and Mairesse 

(2006) provide an early synthesis in their introduction to a special issue of the Economics of Innovation 

and New Technology (vol. 15, no. 4-5) titled: Empirical Studies of Innovation in the Knowledge Driven 

Economy. This is followed by further reviews, including Hall (2011), Mohnen and Hall (2013), Lööf, 

Mairesse and Mohnen (2017) in a new special issue of the EINT (vol. 26, no. 1-2, 2017), and Mohnen 

(2019). In the paragraphs below, we first identify the range of convergent and divergent findings from 

the reviews and from the empirical studies published until around 2010 (Table A4 in the Appendix). 
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Then we focus on more recent primary studies (Table A5 in the Appendix) to verify the extent and 

sources of heterogeneity in the evidence base identify the range of methodological developments with 

implications for future research.  

The reviews by Hall and Mairesse (2006), Hall (2011), and Mohnen and Hall (2013)  identify several 

convergent patterns in the findings of the studies published until around 2010. First, the elasticity with 

respect to innovative product sales per employee is usually between 0.09 and 0.13. Secondly, the 

typical elasticity estimates from the CDM and Griliches-type models are similar when the estimates are 

based on continuous rather than dichotomous measures of innovation. For example, the average CDM 

estimates based on the intensity of innovative product sales is around 0.10 and this is well within the 

confidence interval for the average estimate of 0.08 from the Griliches-type knowledge capital model 

based on R&D capital. A third convergent pattern is that  the productivity effects are significantly 

larger when the sample consists of high-innovation-intensity firms (0.23 - 0.29) or the innovation 

measure is an indicator variable (with effect-size estimates ranging from 0.17 to 0.45).  Finally, the 

largest effects on productivity seem to be due to organizational innovation, defined as innovation in 

business processes and work practices. This is the case in two out of three studies (Polder et al., 2009; 

Raffo et al., 2008; and Siedschlag et al., 2010) that report estimates for organisational innovation until 

2010.20   

One conclusion we derive from these findings is that the selection and mismeasurement issues that the 

CDM model is designed to address are less severe when the innovation measure is continuous. In 

contrast, they are quite severe when innovation is measured with an indicator variable; and the 

indicator variable refer to newer types of innovation (e.g. organization innovation or non-technological 

innovation) captured in recent innovation surveys. As such, the CDM model appears to be delivering 

on what it is designed to achieve. As indicated above, however, the reliability of the correction for 

selection and mismeasurement error depends on whether the innovation equations in the CDM model 

(equations 8a and 8b and 9) are specified correctly. If not, model misspecification can be a new source 

of heterogeneity and perhaps bias, depending on which covariates are included in or excluded from the 

innovation decision equations. Therefore, the consistently larger productivity gains due to new types of 

 
20 The issue of organizational innovation will be discussed at more length below, where we review the recent contributions.  
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innovation (e.g., organizational innovation, non-technological innovation, etc.) require further scrutiny 

of whether the CDM model’s correction for selection and mismeasurement is sufficiently robust and 

consistent. 

A second conclusion follows from the relatively larger productivity effects associated with output 

measures of innovation. This empirical pattern raises the question of whether market power is a 

confounding factor for the estimates based on product innovation dummies and/or on samples of highly 

innovative firms. The role of market power in the innovation-productivity modeling is discussed at 

some length in Hall (2011), where two channels are identified for the effect of innovation on 

productivity. One is the ‘efficiency of production’ channel whereby the innovating firm’s productivity 

increases directly as a result of producing a higher level of output with the same level of inputs. The 

second is the ‘demand-shift’ channel whereby the increases its revenue (hence its productivity) because 

of increased demand for the firm’s innovative products. If the industry is perfectly competitive, the 

firm does not respond to increased demand by increasing its price-cost margin. However, the firm can 

increase its price-cost margin (and its revenue productivity) if industry-level competition is imperfect. 

Indeed, the demand-shift (i.e., the market-power) effect of innovation on the firm’s measured 

productivity is larger, the less elastic is the demand for the firm’s innovative products (Hall, 2011).  

This confounding effect is more likely when innovation is measured with ‘outcome’ variables such as 

product innovation or IPR assets, which cause an outward shift in the firm’s demand curve. It is also 

more likely when the sample is restricted to high-innovation-intensity industries. In such industries, 

incumbents undertake innovation due to a Schumpeterian ‘escape-competition’ motive, which 

increases entry costs for new firms and enable incumbents to increase their market shares at the same 

time. The richer set of innovation types included in the CDM model and the larger effect-size estimates 

associated with outcome measures of innovation increase the need for disentangling the direct 

productivity effects of innovation from indirect market-power effects. Yet the focus in the research 

filed so far has been on celebrating the discovery of a wider set of innovation types (including 

organizational innovation) with ever larger effects on productivity rather than addressing the question 

of whether the reported productivity-effect estimates are confounded by market power.  
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More recent studies that estimate a CDM model are summarized in Table A5 in the Appendix. We 

observe five directions in which the CDM model has been extended, four of which reflect 

methodological innovations and one reflects an important attempt at investigating the role of 

appropriability (intellectual property rights protection - IPRP) choices made by the firms.   

One methodological development has been the use of Heckman selection models (Heckman, 1976; 

1979) to correct for selectivity in the research and innovation equations (Halpern and Muraközy, 2012; 

Aboal and Garda, 2016; Aboal and Tascir, 2018; and Tello, 2015). We observe that the heterogeneity 

in the reported effect-size estimates is higher after the increase in the use of Heckman selection 

procedure. In some studies, for example in Aboal and Garda (2016) and Aboal and Tascir (2008), the 

elasticity estimates are large (between 1.5 and 5); and the magnitude is larger when firms engage in 

non-technological as opposed to technological innovation. In contrast Tello (2015) reports insignificant 

effects. In between, Halpern and Muraközy (2012) report that the effect is insignificant when the 

productivity model is estimated with one innovation type at a time; but the effect is positive and larger 

than the average reported in Hall’s (2011) review when both technological and non-technological 

innovation are included in the model.  

We are of the view that these variations may reflect the limitations of the Heckman selection routine in 

correcting for selectivity. The model can yield unbiased estimates for the auxiliary coefficients in the 

research and innovation equations if two conditions are satisfied (see Puhani, 2000). First, there must 

be a sufficient number of exclusion restrictions - i.e., a sufficient number of covariates in the 

innovation output equations that are excluded from the research equations.  Secondly, the assumption 

made about the distribution of the error terms in the selection equation must be valid. Given these 

conditions, we suggest that researchers using Heckman-type selection in the context of the CDM model 

should report evidence on whether these conditions are satisfied; and how the productivity estimates 

based on Heckman-type selection differ from those based on ALS or maximum likelihood estimations 

proposed by the proponents of the CDM model.  

The second method-related contribution is due to work by Bettina Peters and her co-authors (Peters et 

al., 2017a; 2017b; and 2018), who build on the stochastic productivity specification proposed by 

Doraszelski and Jaumandreu (2013) and incorporate the market power dimension discussed above. In 
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their models, the firm operates in a monopolistically competitive market and maximizes its short-run 

profit by setting its product price at a mark-up over marginal cost. Given this price-setting behaviour, 

and for a given age and level of capital stock, innovation has heterogenous effects on the firms’ 

revenue productivity. Two sources of heterogeneity are variation in the firms’ innovation intensity and 

financial strength. The authors report that innovation benefits constitute a larger proportion of the 

firm’s market value when the firms are more innovation intensive and have higher financial strength. 

The authors also report that the productivity gains from innovation are larger when the estimation 

depends on marketing innovation. The evidence of larger effects at high levels of innovation intensity 

and when the innovation measure is marketing innovation strengthens the case for disentangling the 

efficiency and market power effects of innovation. The case for disentangling the market power and 

efficiency effects of innovation also finds support in recent findings by Baum et al. (2017). The authors 

adopt a Generalized Structural Equation Model (GSEM) approach to estimating the CDM model, 

which corrects for selectivity, mismeasurement and endogeneity problems and offers the added value 

of allowing for feedback effects from productivity to future R&D investment. The authors report that 

the effect of product innovation (innovative product sales intensity) has a positive effect on 

productivity, and the effect is larger among knowledge-intensive firms.   

Despite the apparent case for taking account of market power and the interaction of the latter with 

innovation intensity,  only Castellaci (2011) address the issue by augmenting the innovation output and 

productivity equations of the CDM model with market concentration and the interaction of the latter 

with product innovation intensity. They report that firms in concentrated industries invest more in 

innovation, but firms in such industries secure smaller productivity gains. This finding is puzzling 

because it implies that firms that benefit less from innovation undertake higher levels of innovation! 

Furthermore, their estimate of the productivity effect becomes negative when the Herfindahl index of 

market concentration is 0.15 or greater. This empirical issue notwithstanding, the findings in Castellaci 

(2011) lend further support to our argument that market power is a likely confounding factor in the 

relationship between innovation and productivity. 

The third methodological innovation is due to Damijan et al. (2011), who compare the evidence from 

the CDM with ‘treatment effect’ evidence based on propensity score matching. The elasticity estimate 

from the CDM model is large (0.98) when the innovation variable is the probability of undertaking a 
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product or process innovation. However, the average treatment effect on the treated (ATT) is 

insignificant when estimated non-parametrically and using propensity score matching of innovative and 

non-innovative firms. The discrepancy between parametric and non-parametric estimation results raises 

the question of whether researchers should use treatment-effect estimations methods for verifying the 

robustness of the parametric estimates from the CDM model or other models of innovation and 

productivity. The advantage of the treatment-effect methods is that they allow for inference of causal 

effects if the matching or balancing quality is good. The disadvantage is that the results remain highly 

sensitive to the selection or matching models used to ensure matching or balancing quality. Overall, we 

are of the view that treatment-effect estimators can be used to address the selection and simultaneity 

issues that the CDM model is designed to address.  

The fourth innovation in the post-2010 research based on the CDM model is that of Hall and Sena 

(2017). This study enhances the specification of the innovation and productivity equations in the CDM 

model  by linking the CDM research agenda with the economics literature on intellectual property 

rights protection (IPRP). It estimates the effects of innovation output on productivity, conditional on 

whether firms protect their innovation through formal or informal IPR methods. It reports that firms 

that innovate and use formal IPRP methods are more productive than other firms. With respect to 

informal IPRP methods, the authors find that only large firms are more productive when they innovate. 

Thirdly, the authors find that both process and product innovations have positive and significant effects 

on productivity only when firms use both formal and informal IPRP methods to protect their 

innovation. These findings are highly informative in that both innovation and IPR protection are 

closely related to market power. As such, it provides further support for taking account of and the 

interaction of the latter with innovation activity in both CDM and Griliches-type models.  

The final observation from Table A5 in the Appendix relates to the wider range of innovation measures 

used in the estimations of the CDM model. In addition to organizational innovation that has been 

investigated in the pre-2010 studies, the recent studies estimate the productivity effects of marketing 

innovation (Aboal and Garda, 2016; Aboal and Tascir, 2018; Peters et al., 2018); firm’s broadband 

connectivity (Bartelsman et al., 2019); and innovations in resource planning, customer resource 

management and supply chain management (Bartelsman et al., 2017). Interestingly, the productivity 

effects of these ‘non-technological’ innovation types are larger compared to the effects of process or 
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even product innovation, which requires sustained investment in research and development. One 

question that arises from these findings is that why firms secure higher levels of productivity gains 

when they engage in narrowly defined innovations instead of more encompassing innovation types? 

The second question is whether these ‘non-technological’ innovation types are introduced as a result of 

investment in R&D (which is a predictor of the innovation output in the CDM model) or they represent 

external consultancy inputs that do not necessarily reflect the innovativeness of the purchasing firm. 

Therefore, we are of the view that future research must pay more attention to how we can reconcile the 

flexibility that the CDM model offers for modelling the innovation-productivity relationship with the 

need for further theorisation about the relevance of the expanding range of ‘non-technological’ 

innovation types.  

 

 

6. Conclusions and implications for future research 

 

The evidence from the extant literature indicates that the effect of innovation on firm survival and 

productivity is positive. It also indicates that the research effort in both fields has made significant 

contributions by pursuing novel research questions and engaging in boundary-pushing methodological 

innovations. As such, our review lends added support to similar findings from prior reviews. 

Nevertheless, we identify three issue areas that have received inadequate attention in prior reviews: (i) 

a high degree of heterogeneity in the evidence base and the exacerbation of the latter by the 

proliferation of innovation variables used in empirical research; (ii) potentially confounding effects of 

market power in the relationship between innovation on the one hand and survival and productivity on 

the other; and (iii) the need for more systematic decision-making with respect to methodological 

choices. In what follows, we take each issue in turn and identify tentative implications for future 

research.  

The first issue area is heterogeneity in the evidence base, which has been acknowledged but not 

problematized in prior reviews. We observe that heterogeneity in the reported effects of innovation on 
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firm survival or productivity has increased as the innovation variables have become more varied in 

both research fields. In addition to input and output measures of innovation, we observe the emergence 

of what we tentatively describe as ‘non-technological’ innovation types such as organisational 

innovation, marketing innovation, human resources management innovation, logistics innovation, etc. 

These ‘non-technological’ innovation types are compatible with the updated innovation definition in 

the third edition of the Oslo Manual (OECD, 2005).  However, there is little or no theoretical 

explanation for the high level of variation in their  estimated effects on productivity or other measures 

of post-entry performance. Heterogeneity in the evidence base is also observed in relation to different 

levels of innovation intensity in the industry. Whilst the innovation-productivity research tends to 

report larger productivity effects among more innovative firms, some innovation-survival studies report 

decreasing survival times at higher levels of innovation intensity.  

Given these empirical patterns, we identify three questions that need to be addressed more 

systematically than what has been acknowledged in the literature. The first is the extent to which the 

‘non-technological’ innovations are funded through the firms’ R&D budgets. This is important because 

the concept of innovation in the theoretical models presupposes a knowledge production function in 

which R&D investment is a major input. This is even more explicit in the CDM model, where the 

predicted levels of innovation output are functions of R&D investment. Given this backdrop, the 

inclusion of ‘non-technological’ innovation types in productivity or survival models would constitute 

model misspecification if ‘investment’ in such innovations is part of the operating expenditures rather 

than R&D expenditures. The second question is about reconciling the ever expanding range of 

innovation measures used in the empirical research with the absence of theoretical explanations as to 

why the ‘newer’ innovation types affect survival or productivity; and why their effects can be expected 

to be larger (or lower) than those of ‘older’ innovation types. The third question is about whether the 

effects of innovation of firm survival or productivity are subject to increasing or decreasing scale 

effects; and how to reconcile the larger productivity effects reported at high levels of innovation 

intensity with relatively shorter survival time (or higher hazard rates) reported by some survival studies 

focusing on firms with higher innovation intensity.  

To address the first two questions, we recommend better engagement with the emerging literature on 

heterogeneous innovations (Akcigit and Kerr, 2018) and on the differential effects of innovation and 
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imitation at different levels of proximity to the technology frontier (Aghion et al., 2014). Such 

engagement helps in addressing the disjuncture between data and theory. It may also inform the 

development of a new innovation typology, where innovations are classified on the basis of funding 

source, the knowledge frontier in the industry, and the relative weights of innovation (discovery) and 

imitation  (standing on the shoulders of innovators) inherent in the innovation measures.  From this 

perspective, coexistence of findings indicating larger productivity effects but shorter survival times at 

higher levels of innovation intensity are consistent and complementary. This is because larger 

productivity effects of innovation among innovation-intensive firms are necessary to compensate for 

higher risks that, in turn, constitute a source of higher exit hazard that reduces the average survival 

time. Given our review findings, we recommend controlling for the initial level of R&D/innovation 

intensity through non-linear specifications of both productivity and survival models.   

The second issue area concerns the potential correlation between innovation and market power, which 

is again indicated but not problematized in prior reviews. We demonstrate that it is necessary to 

disentangle the efficiency-enhancing effects of innovation from the demand-shifting effects on both 

survival and productivity. This is justified by the evidence indicating that innovation types more likely 

to be associated with market power (i.e., innovation types with strong demand-shifting effects such as 

product innovation, marketing innovation of intellectual property assets) tend to have relatively 

stronger positive effects on firm survival and productivity. It is also justified by the evidence of larger 

productivity effects of innovation among innovation-intensive firms, which may also enjoy a higher 

level of market power if their investment in innovation is driven by a Schumpeterian ‘escape-

competition’ motive.  

We are aware of the difficulties involved in disentangling the efficiency-enhancing and demand-

shifting effects of innovation in the absence of firm-specific cost and price data and demand  

conditions. Nevertheless, it is feasible to control for market power in both productivity and survival 

models by utilising Lerner indices when profit data are available or industry-level concentration indices 

when such are unavailable. The existing evidence indicates that the effect of innovation on productivity 

is slightly smaller when market power is controlled for. There is also evidence indicating that 

innovation and market power may have complementary effects. Therefore, correct identification and 

estimation of the market structure and the interaction of the latter with the innovation activity of the 
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firm are important both in terms of academic research and in terms of evidence-based innovation and 

competition policies. 

The third issue area is methodological.  Our review acknowledges the boundary-pushing 

methodological innovations in both research fields. However, it also identifies a need for a systematic 

approach to methodological choices and robustness analysis. Starting with the innovation-survival 

models, we recommend taking account of frailty in a systematic manner and correcting for any 

endogeneity due to correlation between frailty and the regressors. We also recommend model-

performance- and statistical-test-based selection between proportional hazard and accelerated failure 

time models; and between continuous and discrete-time hazard models. With respect to innovation-

productivity analysis, we acknowledge the innovations that endogenize productivity, take account of its 

persistence and capture the effect of innovation on both the level and volatility of productivity. 

Nevertheless, we argue that further work is required for strengthening the economic and statistical 

theoretical framework that underpins the innovation equations in the CDM model.  
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APPENDIX: SYNOPSIS TABLES 

Table A1: Studies on innovation and firm survival published until 2010 

Study Sample Innovation measure Estimator Effect on survival# 
Control for 

frailty 

Audretsch (1991) US firms 
Small firm innovation output rate, industry 

innovation output rate 
Discrete time logit 

Small firm innovation rate positive; 

industry innovation rate negative 
No 

Audretsch and Mahmood 
(1995) 

US firms 
Small firm innovation output rate, industry 
innovation output rate 

Discrete time logit 
Small firm innovation rate positive; 
industry innovation rate negative 

No 

Banburry and Mitchell 

(1995) 

Implantable cardiac pacemaker 

firms (US) 
Product innovation Discrete time logit 

Insignificant after controlling for market 

share 
No 

Buddelmeyer et al. 

(2010) 
Australian firms 

Patent applications and stocks; trade-mark 

applications and stocks 

Piece-wise constant exponential 

hazard model 

Patent applications negative; patent 

stocks and trademarks positive 
Yes 

Cefis and Marsili (2005) 
CIS: Dutch manufacturing 

firms 

Innovator/non-innovator dummy; 

Process/product innovation dummies 

Continuous time, parametric 

duration model  
Positive No 

Cefis and Marsili (2006) CIS: Dutch firms 
Innovator/non-innovator dummy; Innovation 

expenditures; R&D Exp. 
State transition probabilities Positive No 

Esteve-Perez et al. 

(2004) 
Spanish manufacturing firms R&D and export 

Continuous-time Cox 

proportional hazard model 
Positive  No 

Esteve-Perez and  

Manez-Castillejo (2008) 
Spanish manufacturing firms R&D and advertising  

Continuous-time Cox 

proportional hazard model 
Positive Yes 

Fontana and Nesta 
(2009) 

121 local area network (LAN) 
switch equipment producers 

R&D and product innovation 
Discrete time hazard and 
competing risk models 

Both R&D and product innovation 
reduce the risk of exit 

No 

Helmers and Rogers 

(2010) 
UK firms established in 2001 Patents (EPO and UK) and trademarks Discrete-time probit 

Positive, but some sectoral 

heterogeneity  
No 

Jensen et al. (2008) Australian firms 
Patents and trademarks, applications and 
stocks 

Piece-wise constant exponential 
hazard model 

Positive if trademarks, insignificant or 
negative if patents 

No 

Klepper and Simmons 

(2005) 

US manufacturers of autos, 

tyres, televisions, and penicillin  
Counts of product and process innovations 

Parametric ad semi-parametric 

hazard models 

Lower exit hazard among earlier 

entrants is due to innovation 
No 

Mahmood (2000) US firms Industry R&D intensity Log logistic hazard model Mixed findings No 

Ortega-Argilés and 
Moreno (2007) 

Spanish firms 
R&D intensity, process and product 
innovation 

Continuous-time Cox 

proportional hazard, log-logistic 

and log-normal models 

R&D and process innovation positive; 
product innovation mixed 

Yes 

Segarra and Callejón 
(2002) 

Spanish firms Industry R&D intensity  
Continuous-time Cox 
proportional hazard model 

Negative No 

Wagner and Cockburn 

(2010) 

356 Internet-related firms that 

made an IPO in 1990s 
Patents, patent citations 

Continuous-time Cox 

proportional hazard model 
Positive No 

Wilbon (2002) High technology IPOs 
R&D intensity, Intellectual property rights 

instruments 
Survival probability 

R&D intensity negative; IPR 

instruments positive 
No 
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Table A2: Studies on innovation and firm survival published after 2010 

 

Study Sample Innovation measure Estimator Effect on survival# 
Control for 

frailty 

Børing (2015) Norwegian firms Process or product innovation dummies 
Continuous-time competing risk 

model 

Insignificant for exit, positive for 

mergers and acquisitions 
No 

Boyer and Blazy (2014) Micro French firms Innovation dummy 
Continuous-time Cox 
proportional hazard model 

Negative No 

Cefis and Marsili (2012) CIS: Dutch firms 
Innovator/non-innovator dummy; Process or 

product innovation dummies 

Discrete-time multinomial logit; 

complementary log-logistic 
Positive Yes 

Colombelli et al. (2013) French manufacturing firms 
Co-occurrence of technological classes in 
patent applications 

Continuous-time parametric 
duration model 

Positive No 

Colombelli et al. (2016) CIS and INSEE: French firms 
Dummies for process and product 

innovations, separately and jointly 

Continuous-time parametric 

duration model 

Positive when process, insignificant 

when product and positive when both 
No 

Fernandes and Paunov 

(2015) 
Chilean plant level data Single-product and diversified innovators 

Discrete-time probit, logit, 

complementary log-log, 
continuous-time Weibull 

Positive if diversified, negative if single-

product innovation  
Yes 

Giovanetti et al. (2011) Italian firms Innovation and R&D dummies 
Continuous-time Cox 

proportional hazard model 

Positive if R&D, insignificant if 

innovation dummy 
No 

Helmers and Rogers 
(2011) 

High- and medium-tech start-
ups in the UK in 2000 

Patents (EPO and UK) and trademarks Discrete-time probit Positive No 

Hyytinen et al.  (2015) Finnish start-ups 
Single dummy for process and product 

innovation and innovation-active firm 
Discrete-time probit 

Negative. The negative effect is 

exacerbated by higher risk appetite 
No 

Kim and Lee (2016) Korean firms R&D intensity and stock Parametric hazard model Positive Yes 

Ortiz-Villajos and 
Sotoca (2018) 

200 selected UK firms 

Significant innovations (SI), patented (SI-P) 

and unpatented (SI-UP) significant 

innovations 

Continuous-time parametric 
duration models  

Positive and consistently significant 

effect if SI; Positive but partly 

significant effect if SI-UP.  

No 

Tsvetkova et al (2015) 

1803 US start-ups in 1991; 

computer and electronic 

product manufacturing. 

Log of patent applications at the 
metropolitan area level 

Continuous-time parametric 
duration models 

Negative for full sample, insignificant 
for firms established with 4+ employees  

Yes 

Ugur et al. (2016a) UK firms R&D intensity 
Continuous-time parametric 
duration models 

Inverted-U; complementarity with 
industry concentration  

Yes 

Wojan et al (2018) US firms Far-ranging / incremental innovation 
Discrete-time complementary 

log-logistic model 

Both positive, larger for far-ranging 

innovation 
No 

Zhang and Mohnen 

(2013) 
Chinese firms R&D intensity, product innovation Complementary log logistic 

Inverted-U for both R&D intensity and 

product innovation 
Yes 
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Table A3: Innovation and productivity studies based on Griliches-type knowledge capital model (post-2013) 

 

 Sample Innovation measure Estimator Effect on productivity Comments 

Altomonte et al. (2016) 

French, German, Italian 

and Spanish  

manufacturing firms 

R&D dummy 
Simultaneous equations 

without instruments 

Positive without instruments, 

reverse causality between 

productivity and R&D 

TFP regressions. 

Andrew (2019) Compustat firm data R&D expenditures Skedastic regressions 

R&D effects both level and 

volatility of TFP over life cycle. 

Insignificant effect over two 

periods.  

Production function with 

stochastic knowledge 

accumulation. 

Belderbos et al. (2015) Dutch firms 

Domestic (own) R&D 

and foreign 

(outsourced) R&D 

System GMM estimator 

Inverted-U for both; both are 

complementary only among 

firms close to technology 

frontier. 

Production function augmented 

with lagged dependent variable, 

and own and outsourced R&D. 

Bond and Guceri (2017) Large UK firms 
R&D capital 

R&D dummy 
OLS and system GMM Positive effect on productivity 

The effect is larger if the firm is 

affiliated and group members 

are R&D-active in the same 

sector 

Castellani et al. (2019) 
Firms in EU Industrial 

R&D Scoreboard  

R&D capital and 

physical capital per 

employee  

Pooled OLS and fixed effects 

Positive effects of both, but 

effects of R&D capital is higher 

among US firms. 

Labour productivity as 

dependent variable 

Kancs and Siliverstovs 

(2016) 

Firms in EU Industrial 

R&D Scoreboard 

Share of R&D 

investment in total 

capital expenditures 

Generalised propensity score 

estimations of treatment 

effects 

Positive but not monotonic; 

larger effects in high-tech 

sectors; Insignificant or 

negative effects at very low 

levels of R&D intensity 

The effect follows a prolonged 

inverted-U shape; firms in high 

tech sectors invest more in 

R&D and secure higher 

productivity gains. 

Máñez et al. (2015) 
Spanish manufacturing 

firms 

R&D investor and 

exporter dummies 

Simultaneous equation 

modeling for the production 

function; OLS and system 

GMM for productivity 

estimates 

Both R&D and export have 

positive productivity effects; 

R&D investment and exporting 

are complements 

Productivity effects of R&D 

and exporting are slightly 

smaller when market power is 

controlled for. 

Ortega-Argilés et al. (2015) US and European firms  R&D capital stock Pooled OLS, FE 
Positive effect, the effect is 

larger in high-tech industries 

Estimates from pooled OLS are 

systematically larger. 

Consistent with earlier findings 

where within estimators yield 

smaller estimates.  
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Table A4: Innovation and productivity studies based CDM model (2010 or before) 

Study Sample Method Output measure Innov measure Estimated impact of innovation 

Benavente (2006) Manf. firms, Chile CDM model: ALS 

 

Log VA per emp 

Log innovative product  

sales per employee (IPSE) 0.18* 

Crépon, Duguet, & Mairesse 

(1998) Innovative firms, France CDM model: ALS Log VA per emp Log IPSE 0.065*** 

Griffith, Huergo, Harrison, 

& Mairesse (2006) 

CIS3: Manf. firms in France 
(FR), Germany (DE), Spain 

(ES), UK 

CDM model: sequential with 

IV Log sales per emp 
Product and Process innov. 

dummies 

FR: 0.07** process;   0.06*** product 

DE: 0.02  process;  -0.05 product 

ES: -0.04  process;  0.18*** product 

UK: 0.03process;  0.06*** product 

Janz, Loof, & Peters 

(2003) 

CIS3:  R&D-intensive 

manf. firms: Germany 

Sweden 

CDM model: sequential with 

IV Log sales per emp 
Log IPSE, Process innov. 

dummy 

DE: 0.27*** product;  -0.14** process  

SE: 0.29*** product;  -0.03 process 

Jefferson, Bai, et al (2006) R&D-active large firms, 

SMEs, China 

CDM model: sequential with 

IV Log sales per emp Log IPSE  0.035*** 

Loof & Heshmati (2006) 
CIS3:Manf, service, utility 

firms: Sweden 

CDM variation: FIML on 

selection submodel; 3SLS; 

sensitivity analysis 

Log VA per emp 
Log IPSE, Process innov. 

dummy 

Product:  0.12***  manf.; 0.09** service  

Process: -0.07*** manf.; -0.07 service 

Loof, Heshmati, Asplund, & 

Naas (2001) 

CIS2: Manf. Firms in 

Finland, Norway, 

Sweden 

CDM variation: sequential 

with 3SLS Log sales per emp 
Log IPSE, Process innov. 

dummy 

FI: 0.090 product;  -0.029 process 

NO: 0.257*** product; 0.008 process  

SE: 0.148*** product;  -0.148*** proc 

Mairesse & Robin (2010) 

CIS3 and CIS4:  

Manf. and serv. firms in 

France 

CDM model: FIML for 

selection eqs; bivariate 

probit; IV 
Log VA per emp 

Product and process innov. 

dummies 

Manf. 1998-2000:  

0.41*** process;    0.05 product  

Manf. 2002-2004:  

0.45*** process;    -0.08 product 

Service:   0.27 process;            0.27 product 

Mairesse, Mohnen, & 

Kremp (2005) 

 

CIS3: Manf. firms in France 
CDM & variations 

Log VA per emp 

Logit transform of IPSE, 

process dummy, other 

dummies  

High-tech:  0.23* 

0.07*** radical;  0.06*** process  

Low-tech:  0.05 *** 

-0.08* radical;        0.10 *** process 
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Table A4: Innovation and productivity studies based on CDM model (2010 or before) - continued 

Study Sample Method Output measure 
Innov measure Estimated impact of innovation 

Masso & Vahter 

(2008) 
CIS3 and CIS4: Manf. 

firms in Estonia 

CDM variation: 

sequential with 

bivariate probit for 

innov 

Log VA per emp Product and process dummies  

Product: 1998-2000:   0.21*** 

       2002-2004:   0.00  

Process: 1998-2000:  -0.06 

       2002-2004:   0.15*** 

Masso & Vahter 

(2008) 
CIS3 and CIS4: Manf. 

firms in Estonia 

CDM variation: 

sequential with 

bivariate probit for 

innov 

Log sales per emp 
 

Product and process dummies  

Product: 1998-2000:   0.17** 

      2002-2004:   0.03 

Process: 1998-2000:  -0.03 

       2002-2004:   0.18*** 

Polder et al. 

(2009) 

CIS 3.5 – 4.5: Manf. and 

serv. firms in Netherlands 
Augmented CDM Log VA per emp 

3 innovation dummies (process 

product organizational) in 

isolation and combined 

Product and process innovation insignificant - in isolation 

or jointly.  

Organizational innovation on its own has large postive 

effect: 1.65 *** in manufacturing 

Organizational and process innovation combined has the 

largest effect in services: 17.11*** 

Raffo, Lhuillery & 

Miotti (2008) 

CIS3 manf. firms in 

Argentina (AR), Brazil 

(BR, Mexico (MX), France 

(FR), Spain (ES), 

Switzerland (CH) 

CDM model: sequential 

with IV Log sales per emp 
Product and organizational 

innov. dummies 

Product innovation:  
AR: -0.22; BR: 0.22***; MX: 0.31***; FR: 0.08**; ES: 

0.16***; CH: 0.10* 

Organizational innovation:  

Insignificant, except BR:0.054*** 

 

Siedschlag, Zhang, 

and Cahill (2010) 

 

CIS3, CIS4: 

Irish firms 

 

CDM variation: sequential 

with IV 

 

Log sales per emp 

Product, process, and 

organizational dummies, IPSE 

- all separately 

 

IPSE: 0.11*** ; Product: 0.45*** ; Process: 0.33*** 

Organizational: 0.61***  

 

van Leeuwen & 

Klomp (2006) 

 

CIS2: Innovative firm in 

Nether- lands 

 

CDM variation: 3SLS Log sales per emp 
Process dummy; innov sales 

share 

 

Product innovation: 0.13*** 

Process innovation: -1.3*** 

Adapted from Hall (2011: Appendix). Notes: CDM = Crépon, Duguet, Mairesse model described in text. IPSE = innovative product sales per employee. ALS = 

asymptotic least squares on multi-equation model. 3SLS = three stage least squares. GMM = Generalised method of moment; FIML = full information maximum 

likelihood on multivariate normal model. OLS = ordinary least squares. IV = instrumental variable estimation. *, **, *** indicate significance at 10%, 5% and 1%.   
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Table A5: Innovation and productivity studies based on CDM model (post-2010) 

Study Sample/country Method Output measure Innovation  measure 
Productivity effects of innovation 

(elasticity/semi-elasticity) 

Aboal and Garda 

(2016) 

Manf. and services firms in 

Uruguay. Two waves of 
services and manf. surveys 

CDM with Heckman 

selection in stage 1; 

bivariate probit second 

stage; sequential 

Log sales per 

employee 

Product and process 

(technological) innovation 

dummy; Organisational and 

marketing (non-

technological) innovation 

dummy 

Predicted innovation expenditures 

Positive and large effect in full sample (0.489) and 

among small firms (0.756) 
Predicted technological and non-technological innovation 

Productivity differentials larger than 1. 

Productivity differentials are larger with non-
technological innovation  

 

Aboal and Tascir 

(2018) 

Manf. and services firms in 

Uruguay. Two waves of 

services and manf. surveys 

CDM with Heckman 

selection in stage 1; 

bivariate probit second 

stage; sequential 

Log sales per 
employee 

ICT investor dummy; 

Organisational and 

marketing innovator 

dummy 

Predicted ICT probability  

Positive effect in services only (0.159) 

Predicted technological and non-technological innovation 

Productivity differentials large (> 1) with predicted non-
tech innovation in services. 

Productivity differentials are negative (< - 1) with 

predicted non-tech innovation in manufacturing 
 

Aboal et al. (2019) Farm survey data in 

Uruguay, one wave 

CDM variation: 

Sequential estimation 

of two models, OLS  

Log of sales per 

hectare 

Ratio of farm’s innovation 

activities to total number of 
activities in the survey 

Predicted innovation activity ratio 
Positive and larger effect (>  2);  

Effect similarity in Oilseed & grain and beef & cattle 

farms  

Acosta et al. (2015) Food and beverages firms in 

Spain 

CDM variation: 

sequential with 

trivariate probit for 

innovation 

Log sales per emp 
Product, process and org. 

innovation dummies  

Product innovation: positive 

Process innovation: insignificant 

Organizational innovation: positive and larger 

Combined:   positive and larger 

Alvarez et al. (2015) 
Manf. and services firms in 

Chile, two waves of Chilean 

innovation survey 

CDM with Tobit in 

stage 1; IV probit 

second stage; 

sequential 

Log sales per emp 
Product or process innovation 

dummy  

Product innovation: negative effect in manufacturing, positive 

effect in services 

Process innovation: Positive effect in manufacturing, negative 
effect in services 

Bartelsman et al. 

(2017) 
Micro moments database 

(MMD) aggregated data 

CDM variation: 

sequential with 

tivariate probit for 

innovation 

Log VA per emp 

 

Dummies of ICT use for: 

Resource Planning (ERP); 

Customer Resource 

Management (CRM);  and 

Supply Chain Management 

(SCM) 

Positive productivity effects  

The effect is larger as more ICT uses are combined.  
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure 
Productivity effects of innovation 
(elasticity/semi-elasticity) 

Baum et al. (2017) 

CIS Panel of Swedish 

manufacturing firms 2008-
2012 

CDM variation: Generalized 

Structural Equation Model 

(GSEM) estimation of 
tivariate probit for 

innovation with FIML.   

Log VA per emp 

Logit of innovative product 

sales per employee (Log 
IPSE) 

Productivity effects are positive but differ by level of technology 

and knowledge intensity. 

Lager effects 0.10 to 0.13 in high-tech manufacturing and 
knowledge intensive services 

Smaller effects (0.02 to 0.05) in the rest. 

Castellaci (2011) 
CIS3, CIS4, CIS5 panel of 

Norwegian firms 

CDM augmented with 
competition; sequential 

estimation; bivariate probit 

for innov; IV in stage 3  

Log sales per emp Log IPSE 
Positive effect ranging from 0.242 to 0.552 

Smaller effects among firms in more concentrated industries  

Crespi and Zuniga 
(2912) 

Innovation surveys in 6 

Latin American countries, 

four waves 

CDM variation: sequential 

estimation; bivariate Tobit 

for innovation; IV in stage 3 

Log sales per emp 

Process or product innovation 

dummy 

Log IPSE 

Predicted innovation dummy and IPSE  
Positive effect 

Effect is larger when innovation dummy is used 

Effects are larger in Colombia and Panama compared to Argentina, 
Chile and Uruguay 

Damijan et al. (2011) 

CIS and accounting data for 

a panel of Slovenian firms 
from 1996-2002 

CDM variation: ALS 
estimation 

Plus propensity score 

matching 

Log VA per emp. 
Innovation dummy (any of 

process or product innovation) 

Positive and large (0.93) effect on labour productivity in ALS 
estimation 

Insignificant effect on TFP in growth accounting and matching 

estimations. 

Demmel et al. (2017) 

World Bank Enterprise 

survey data for Argentina, 

Mexico, Colombia and 
Peru; two waves 

CDM: sequential 

Multivariate probit;  
Joint estimation of 

innovation and output 

equations  

Log sales per emp 
Process or product innovation 

dummy; or both 

Product innovation  

Positive in Argentina and Mexico; insignificant in Colombia and 
Peru 

Process innovation  

Insignificant in all samples 

Hall & Sena (2017) 

 

ONS and CIS firm-level 

data 1998-2006 

 

CDM augmented with 

intellectual property 
protection measures; 

trivariate probit; 

simultaneous estimation 

Log sales  

Dummies for process and 

product innovation interacted 
with formal and informal IP 

measures 

Process innovation: Full sample 
Process innovation itself: insignificant 

Interaction with formal IP: insignificant 

Interaction with informal IP: insignificant 
Interaction with both: Positive significant 

Product innovation: Full sample 

Product innovation itself: insignificant 

Interaction with formal IP: Positive significant 

Interaction with informal IP: insignificant 

Interaction with both: Positive significant 
All above are either insignificant or negative in manufacturing. 
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure 
Productivity effects of innovation 

(elasticity/semi-elasticity) 

Hall et al. (2013) Unicredit survey of Italian 

firms, waves 7 to 10 

CDM variation: 

sequential estimation 

with quadrivariate 

probit for innovation, 

IV 

Log sales per emp. 

Product, process and org. 

innovation dummies; R&D 

and ICT intensity per 

employee 

Predicted process or product innovation  

Insignificant. 

R&D and ICT intensity 
Positive; but ICT effect < R&D effect. 

R&D and ICT:  

Neither complements nor substitutes. 

Halpern & 

Muraközy (2012) 

CIS of Hungarian firms; 

two waves; matched with 
alance sheet  data 

CDM variation: 

Heckman selection in 

stage 1 and 2; 

predicted innovation 

Log sales per emp. 

 

Innovation (any of process or 
product) dummy;  Innovation 

engagement dummy 

Predicted process or product innovation dummy  

Insignificant effect with one innovation dummy  

Positive effect (0.1 – 0.5) with both dummies  

Effect is smaller in high-tech industries. 

Hashi & Stojčić 

(2013) 

CIS4 data for 16 European 

countries  

CDM variation: Joint 
estimation of Tobit for 

innovation with ML; 3SLS 

estimation of output model 

Log sales per emp. Log IPSE  

Positive effect in both Western European and CEEC 

samples. 

Effect is larger in WE sample. 

Moris (2018) 

Panel of World Bank 

Enterprise Survey data, 

firms from 43 countries 

CDM model: sequential 

with IV Log sales per emp. Innovation dummy 
Positive effect in both cross-section and panel estimations 

The effect in cross-section is larger 

Peters et al. (2017a) 

 

Manheim Innovation Panel 

data high-tech 

manufacturing firms in 

Germany 

 

CDM variation: dynamic 

model with stochastic 

productivity 

Log sales per emp. 

Process and product 

innovation dummies; the 

latter combined 

Process or product innovation:  
Positive (0.039 and 0.037), but smaller than most 

estimates in the field. 

Process*product innovation:  
Insignificant 

Peters et al. (2017b) 

Manheim Innovation Panel 

data high- and low-tech 

manufacturing firms in 

Germany 

CDM variation: dynamic 

model with stochastic 

productivity 
Log sales per emp. 

Process and product 

innovation dummies; the 

latter combined 

High-tech:  

Positive (0.029 for product and 0.036 for process 

innovation). 

Low-tech:  

Process innovation significant (0.035); product 

innovation insignificant. 
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Table A5: Innovation and productivity studies based on CDM model (post-2010) – continued  

Study Sample/country Method Output measure Innovation  measure 
Productivity effects of innovation 

(elasticity/semi-elasticity) 

Peters et al. (2018) 
CIS of services firms in 

Germany, Ireland and UK, 
one wave 

CDM augmented with 

non-technological 

innovation, Probit est. 

of  innovation output, 

stochastic productivity 

Log sales per emp. 

Technological (process and 

product) innovation Non-

technological 

(organizational and 

marketing) innovation 

Technological innovation:  
Product and process innovation: positive and significant 

in Germany and UK, only process is significant in 

Ireland). 
Non-technological innovation:  

Same patterns as above; but effects are larger 

 

Ramírez et al. 

(2019) 
Colombian surveys of 

manufacturing firms 

CDM augmented with 

human capital; 

sequential; OLS 

followed with bivariate 

probit, IV  

Log sales per emp. 

 

Predicted prob. of process or 

product innovation;  Predicted 

R&D investment 

Predicted process or product innov: Positive. 

Predicted R&D investment: Positive but smaller. 

Effect of predicted innov. is larger in large firms. 

Effect of predicted R&D is smaller in large firms 

Raymond et al. 

(2015) 

CIS data for Dutch and 

French firms, three waves  

CDM variation: Joint 

estimation of innovation 
with FIML 

Log sales per emp. 
Product innovation dummy 

Log IPSE  

Predicted innovation measures: positive effect, 

statistically not different in both countries  

Observed innovation measures:  

Product innov effect is larger in Netherlands 

IPSE effect is larger in France 

 

Moris (2018) 

Panel of World Bank 

Enterprise Survey data, 

firms from 43 countries 

CDM model: sequential 

with IV Log sales per emp. Innovation dummy 

Positive effect in both cross-section and panel estimations 

The effect in cross-section is larger 

 

Tello  (2015) 

 

Small sample of 

manufacturing firms in Peru 

 

CDM model: sequential 

Probit or Heckman selection 

for innovation; Predicted 

innovation in productivity 

equation 

Log sales per emp. 

Technological, non-

technological innovation  

dummies; Log IPSE  

Only log IPSE is significant. The effect is positive or 
negative, depending on Heckman selection specification 

Techn. and non-tech. innovation insignificant 

Notes: CDM = Crepon, Duguet, Mairesse model described in text; CIS = Community Innovation Survey; ICT = Information and communication technologies; IPSE = innovative 

product sales per employee; TFP = total factor productivity. Estimators: ALS = asymptotic least squares on multi-equation model; FIML = full information maximum likelihood 

estimation of multivariate normal models; OLS = ordinary least squares; IV = instrumental variable estimation; 2/3SLS = two/three stage least squares. 

 




