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ABSTRACT
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Low, High and Super Congestion of an 
Open-Access Natural Resource: 
The Autarky Case*

Production of commodities based on open-access renewable natural resources (NR) has 

usually been examined under “low” congestion (LC) – where MC > AC and both increase 

with output. I identify two additional congestion categories, “high” (HC) and “super” (SC) 

congestion – where AC is backward-bending and MC < 0. Using a general equilibrium 

model, I derive the open-access impact on steady-state welfare, NR, sectoral employment, 

output and price, relative to optimal regulation. The main findings are: i) Welfare and NR 

losses under SC (HC) are one or more orders-of-magnitude greater (between a multiple 

and one or more orders-of-magnitude greater) than under LC; ii) These results are robust 

to alternative parameter values and functional forms, raising confidence in them and 

thus in regulation’s importance; iii) One such regulation, an optimal tax, raises (reduces) 

the commodity’s output and reduces (raises) its price under SC (LC and HC), generating 

significantly larger gains under SC. A companion piece examines the issue under openness 

to trade, showing that, though an increase in population unambiguously worsens open-

access NR and welfare under autarky, this need not be the case under trade.
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1. Introduction       
Many developing countries obtain an important share of their income from the exploitation of 

open-access renewable natural resources (NR), including fisheries, forests, arable land, grazing 

grounds, and water resources. Imperfect or lack of property rights for the NR results in the partial 

or non-internalization of negative externalities, an excessive use of labor and other variable inputs, 

and NR degradation.1 Open access’ negative impact may take time or can occur very rapidly.2 

 

The problem has affected many developing countries and has led to the decline or disappearance 

of communities due to rapid population growth, access to a wider market, or other. For instance, 

Brander and Taylor (1998) argue that open access to Easter Island’s forests initially led to 

economic growth, followed by population overshooting and the disappearance of the NR, resulting 

in a dramatic decline in population and living standards over time.  

  

The classic case of NR depletion is fisheries. The problem has affected many countries and early 

analyses focused on this issue (Gordon 1954, Scott 1955). Some recent studies have extended the 

analysis, using general equilibrium models to examine the steady state and transition paths of 

economies with open-access NR (e.g., Brander and Taylor 1997, 1998; López and Schiff 2013). 

This study develops a general equilibrium model, focusing on steady-state outcomes.   

 

It identifies, for the first time (as far as I know), three economically-relevant congestion categories, 

namely low (LC), high (HC) and super (SC) congestion. These are explained in Section 2 and are 

described in Figure 1 in Section 3. The study i) derives solutions for welfare, NR, sectoral 

 
1 For instance, López (1997, 1998) finds that the share of negative NR externalities – from use of village-level open 
access lands in Ghana and Côte d’Ivoire – that is internalized is around 30 percent and declines with village size.  
 
2 Appendix 1 provides a brief description of negative externalities from Chile’s and the Philippines’ aquaculture 
industry, where open access has had dramatic output and welfare effects. 
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employment, output and prices, under open access and optimal regulation under both a closed and 

an open economy; ii) sets forth a new graphical analysis to provide a more intuitive presentation 

of the results; and iii) performs simulations to obtain quantitative measures of the impact of open 

access relative to optimal regulation for each of the congestion categories.  

 

The remainder of the paper is organized as follows. Section 2 sets forth a two-sector general 

equilibrium model and preference function, and solves the model under both an open-access and 

an optimally regulated NR. Section 3 examines the impact of open access on steady-state welfare, 

NR, employment, output and price. Section 4 looks at the robustness of the results. Section 5 draws 

policy implications and Section 6 concludes.  

 

2. Model      
Section 2.1 presents the general equilibrium model’s supply side and Section 2.2 does so for the 

demand side. The open-access and optimal solutions are presented in Section 2.3. The model does 

not distinguish between population and labor force.  

 

2.1. Supply 

Assume an economy whose private sector produces two goods under perfect competition, a 

manufacturing good, 𝑀𝑀, and a commodity, 𝑄𝑄. The economy’s labor endowment is denoted by 𝕃𝕃, 

and the amount of labor employed in sector 𝑄𝑄 (𝑀𝑀) is denoted by 𝐿𝐿(𝑙𝑙), with 𝐿𝐿 + 𝑙𝑙 = 𝕃𝕃.  

 

Following Brander and Taylor (1998), I assume 𝑀𝑀 is produced with 𝑙𝑙 under a constant-returns-to-

scale technology, with units chosen such that the marginal product 𝑀𝑀𝑀𝑀𝑙𝑙 = 1. Thus, 𝑀𝑀 = 𝑙𝑙 = 𝕃𝕃 −

𝐿𝐿. Good 𝑀𝑀 is chosen as the numéraire, with its price normalized to one. Thus, labor’s wage rate is 

𝑤𝑤 = 𝑉𝑉𝑀𝑀𝑀𝑀𝑙𝑙 = 1 for 𝑀𝑀 > 0, which holds under a Cobb-Douglas utility function (see Section 2.2).  
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The NR, 𝑁𝑁, declines with employment, 𝐿𝐿. Assume 𝑁𝑁 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿 (𝛼𝛼,𝛽𝛽 > 0), where 𝛼𝛼 is the NR 

when it is unexploited (i.e., 𝐿𝐿 = 0) or NR endowment, and 𝛽𝛽 is the absolute value of labor’s 

negative externality, 𝜕𝜕𝑁𝑁/𝜕𝜕𝐿𝐿 = −𝛽𝛽 < 0, on the NR. Production functions for 𝑄𝑄 and 𝑀𝑀 are:  

 

𝑄𝑄 = 𝐿𝐿𝑁𝑁 = 𝐿𝐿(𝛼𝛼 − 𝛽𝛽𝐿𝐿), 𝑀𝑀 = 𝑙𝑙 = 𝕃𝕃 − 𝐿𝐿;   𝛼𝛼,𝛽𝛽 > 0, 𝐿𝐿 𝜖𝜖 �0, 𝛼𝛼
𝛽𝛽
�,     (1) 

 

where 𝐿𝐿 < 𝛼𝛼/𝛽𝛽 ⇔ 𝑁𝑁 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿 > 0 ensures an interior solution.  

 

    2.1.1. Average and marginal product and cost  

Labor’s average product 𝐴𝐴𝑀𝑀𝐿𝐿 = 𝑄𝑄
𝐿𝐿

= 𝛼𝛼 − 𝛽𝛽𝐿𝐿. As 𝑤𝑤 = 1, average cost 𝐴𝐴𝑀𝑀 = 1
𝛼𝛼−𝛽𝛽𝐿𝐿

.3 Labor’s 

marginal product 𝑀𝑀𝑀𝑀𝐿𝐿 = 𝛼𝛼 − 2𝛽𝛽𝐿𝐿, and marginal cost 𝑀𝑀𝑀𝑀 = 1
𝛼𝛼−2𝛽𝛽𝐿𝐿

, with 𝑀𝑀𝑀𝑀 > (<) 0 on the 

upward-sloping (backward-bending) part of the 𝐴𝐴𝑀𝑀 curve where low (high and super) congestion 

(or LC (HC and SC)) prevails, with 𝑀𝑀𝑀𝑀𝐿𝐿 ≷ 0 ⇔𝑀𝑀𝑀𝑀 ≷ 0 ⇔ 𝐿𝐿 ≶ 𝐿𝐿� = 𝛼𝛼/2𝛽𝛽 (see Figure 1).4  

 

Thus, 𝑀𝑀𝑀𝑀𝐿𝐿 ≷ 0 for 𝐿𝐿 ≶  𝐿𝐿� implies (see Figure 1) that 𝑀𝑀𝑀𝑀 converges to ∞ (−∞) as 𝑄𝑄 approaches 

𝑄𝑄�  (𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀 in Fig. 1) from 𝑄𝑄 < 𝑄𝑄�  (𝑄𝑄 > 𝑄𝑄�). Formally, lim
𝐿𝐿−→𝐿𝐿�

𝑀𝑀𝑀𝑀 = ∞ and lim
𝐿𝐿+→𝐿𝐿�

𝑀𝑀𝑀𝑀 = −∞.  

   

    2.1.2. Inflection point  

The first three results below are derived in Appendix 2 and the fourth is derived in Appendix 3. 

 
3 There may be other variable inputs. Assuming their cost relative to that of labor, 𝛾𝛾, is given, they can easily be 
incorporated in the analysis. For simplicity, and following Brander and Taylor (1998), I abstract from non-labor costs.  
 
4 The backward-bending supply curve in the case of a fishery was examined in some early partial-equilibrium studies, 
though some with questionable analysis. Copes’ (1970) seminal paper, which includes a backward-bending 𝐴𝐴𝑀𝑀 curve, 
focused on the impact of demand shocks on the stability of the equilibrium. His results depend on a demand curve 
that is less elastic than the backward-bending part of the 𝐴𝐴𝑀𝑀 curve, an assumption that need not hold in general. In 
fact, the opposite obtains in this model (proof is in Appendix 2). Clark (1990) refers to a discounted supply curve that 
might be backward bending under an optimally managed fishery. However, that solution cannot be optimal because 
variable inputs’ marginal product must be positive at the optimum (𝑀𝑀𝑀𝑀𝐿𝐿 > 0, and so 𝑀𝑀𝑀𝑀 > 0), i.e., the optimum must 
be on the upward-sloping segment of the supply curve. In the case of road congestion, Else (1981) shows a backward-
bending positive 𝑀𝑀𝑀𝑀 segment, even though 𝑀𝑀𝑀𝑀 is exclusively backward-bending in its negative segment. 
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Denoting the backward-bending (upward-sloping) segment of the 𝐴𝐴𝑀𝑀 curve by 𝐴𝐴𝑀𝑀1 (𝐴𝐴𝑀𝑀2), the 

related 𝑀𝑀𝑀𝑀 curve by 𝑀𝑀𝑀𝑀1 (𝑀𝑀𝑀𝑀2), and the level of 𝑄𝑄 (𝐿𝐿) on 𝐴𝐴𝑀𝑀1 that separates HC and SC by 𝑄𝑄𝐼𝐼 

(𝐿𝐿𝐼𝐼), we have:  

i) 𝐿𝐿𝐼𝐼 = 2𝛼𝛼
3𝛽𝛽

> 𝐿𝐿�, 𝑄𝑄𝐼𝐼 = 2𝛼𝛼
2

9𝛽𝛽
< 𝑄𝑄� ;  

ii) Output 𝑄𝑄𝐼𝐼 is the inflection point on 𝐴𝐴𝑀𝑀1, i.e., the point where 𝐴𝐴𝑀𝑀′′ ≡ 𝜕𝜕2𝑀𝑀𝐴𝐴
𝜕𝜕𝑄𝑄2

= 0;  
 

iii) 𝑄𝑄𝐼𝐼 is also the intersection point of 𝐴𝐴𝑀𝑀1 and 𝑀𝑀𝑀𝑀2 (associated with 𝐴𝐴𝑀𝑀2); and  
 

iv) 𝑀𝑀𝑀𝑀1 < 0 (associated with 𝐴𝐴𝑀𝑀1) is a mirror image of 𝑀𝑀𝑀𝑀2 > 0, as depicted in Figure 1. 5  
 

The distinction between HC and SC is important. Denoting optimal (open-access) output by 𝑄𝑄∗ 

(𝑄𝑄), we have 𝑄𝑄∗ > (<) 𝑄𝑄 under SC (HC),6 which has opposite implications for the impact of 

optimal regulation.  

 

2.2. Demand 

Individual preferences, 𝑈𝑈, are given by 𝑈𝑈 = 𝑚𝑚𝛾𝛾𝑞𝑞1−𝛾𝛾, 0 < 𝛾𝛾 < 1. For simplicity, assume the same 

amount is spent on NR-based goods (𝑄𝑄) and other ones (𝑀𝑀), i.e., 𝛾𝛾 = 1/2. The impact of using 

other values of 𝛾𝛾 is examined in Section 4.1. Thus:   
 

𝑈𝑈 = 𝑚𝑚1/2𝑞𝑞1/2, 𝑚𝑚 = 𝑀𝑀/𝕃𝕃, 𝑞𝑞 = 𝑄𝑄/𝕃𝕃.         (2) 

 
 

3. Solution and Simulation 
Section 3.1 presents a graphical analysis, Section 3.2 provides the model’s solution, and Section 

3.3 presents various simulations. Note that welfare in Section 3.1 is aggregate welfare 𝑊𝑊 = 𝕃𝕃𝑈𝑈, 

while welfare in Sections 3.2 and 3.3 is the representative individual’s utility 𝑈𝑈, as given in (2).  

 
5 Note that, as shown in Appendix 4, the range of 𝐿𝐿-values is smallest under HC, larger under SC, and largest under 
LC. Assuming random drawings of 𝐿𝐿, the likelihood of a SC (HC) (LC) drawing is 1

3
�1
6
� �1

2
�.  

6 The reason is that, though 𝐴𝐴𝑀𝑀 is backward bending under HC, it is located on the right of the 𝑀𝑀𝑀𝑀 curve (see Figure 
1), with optimal output smaller than the equilibrium one. The opposite holds under SC where, by definition, the 𝐴𝐴𝑀𝑀 
segment is to the left of the 𝑀𝑀𝑀𝑀 curve. 
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Figure 1: Low, High and Super Congestion 
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3.1. Graphical analysis 

For clarity of exposition, demand curves are linear in Figure l. Assume first that the demand curve 

is given by 𝐷𝐷, with equilibrium at point 𝐴𝐴 where price 𝑝𝑝 = 𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑀𝑀, and output is 𝑄𝑄 = 𝑄𝑄0. The 

optimum is at point E where 𝑝𝑝 = 𝑀𝑀𝑀𝑀 = distance 𝐸𝐸𝑄𝑄1 and output is 𝑄𝑄 = 𝑄𝑄1. The welfare cost 

under open access is ∆𝑊𝑊𝐿𝐿𝐴𝐴 = 𝑊𝑊𝐿𝐿𝐴𝐴
∗ −𝑊𝑊𝐿𝐿𝐴𝐴 = 𝐴𝐴𝐸𝐸𝐴𝐴.  

 

Assume now a country whose demand is represented by line 𝐷𝐷′ because of, say, a larger population 

(or a greater preference for 𝑄𝑄; see Section 4.1). Open-access equilibrium is at point 𝐴𝐴′ where 𝐴𝐴𝑀𝑀 

and 𝐷𝐷′ intersect and which is located in the SC segment of the 𝐴𝐴𝑀𝑀 curve. For simplicity, assume 

𝐷𝐷′ is such that output is also 𝑄𝑄0 at 𝐴𝐴′. The optimum is at 𝐸𝐸′ where 𝐷𝐷′ and 𝑀𝑀𝑀𝑀 intersect.  

 

There are three ways to obtain the welfare cost, ∆𝑊𝑊𝑆𝑆𝐴𝐴, of open access:  
 

   1. Higher cost (as measured by AC) and lower consumption: The difference in the cost of 

producing 𝑄𝑄0 under demand 𝐷𝐷 and 𝐷𝐷′ is 𝑀𝑀𝑀𝑀′𝐴𝐴′𝐴𝐴𝑀𝑀𝑀𝑀 = 𝐴𝐴𝐴𝐴′ ∗ 𝑄𝑄0. Moreover, the increase in output 

from 𝑄𝑄0 to 𝑄𝑄1′  generates a welfare gain 𝐴𝐴′𝐸𝐸′𝐴𝐴. Hence, the welfare cost of open access is ∆𝑊𝑊𝑆𝑆𝐴𝐴 =       

𝑀𝑀𝑀𝑀′𝐴𝐴′𝐴𝐴𝑀𝑀𝑀𝑀 + 𝐴𝐴′𝐸𝐸′𝐴𝐴.              

 

   2. Zero producer surplus: Under open access, the producer surplus is nil because price equals 

average cost (𝑝𝑝 = 𝐴𝐴𝑀𝑀). Thus, welfare is equal to the consumer surplus. At 𝐴𝐴′, the consumer surplus 

is the area between the demand curve, the y-axis, and the 𝑀𝑀𝑀𝑀′𝐴𝐴′ line. At 𝐸𝐸′, 𝐴𝐴𝑀𝑀 is given by point 𝐼𝐼′, 

and welfare is the area between the demand curve, the y-axis, and 𝑀𝑀𝐼𝐼′𝐼𝐼′, the horizontal line at the 𝐼𝐼′ 

level (𝑀𝑀𝐼𝐼′ is not shown).7 Thus, ∆𝑊𝑊𝑆𝑆𝐴𝐴 is equal to the area between the lines 𝑀𝑀𝑀𝑀′𝐴𝐴′, 𝑀𝑀𝐼𝐼′𝐼𝐼′ and the 

demand curve or 𝑀𝑀𝑀𝑀′𝐴𝐴′𝐸𝐸′𝐼𝐼′𝑀𝑀𝐼𝐼′. 

 
7 At the optimum, welfare consists of the sum of the consumer surplus and the tax revenue 𝛵𝛵 = (𝐸𝐸′𝐼𝐼′) ∗ 𝑄𝑄1′ . 
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   3. Higher cost (as measured by MC) and lower consumption: As derived in footnote 8, the 

welfare cost is also given by ∆𝑊𝑊𝑆𝑆𝐴𝐴 = 𝐴𝐴′𝐴𝐴′𝐾𝐾𝐸𝐸′ + 𝐸𝐸′∞(−∞)𝐾𝐾. 8  

 

3.2. Solution  

This section provides the solution to the model for both an unregulated or open-access NR and an 

optimally regulated one. An interior solution prevails under a Cobb-Douglas utility function.  

 

   3.2.1. Open Access 

Utility maximization implies the commodity’s relative demand price, 𝑝𝑝, equals the ratio of 

marginal utilities: 𝑝𝑝 = 𝑈𝑈𝑞𝑞
𝑈𝑈𝑚𝑚

= 𝑚𝑚
𝑞𝑞

= 𝑀𝑀
𝑄𝑄

 = 𝕃𝕃−𝐿𝐿
𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿). Price 𝑝𝑝 = 𝐴𝐴𝑀𝑀 = 1

𝛼𝛼−𝛽𝛽𝐿𝐿
 under open access. Hence, 

𝕃𝕃−𝐿𝐿
𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿) = 1

𝛼𝛼−𝛽𝛽𝐿𝐿
, or 𝐿𝐿 = 𝕃𝕃

2
, with 𝑝𝑝 = 1

𝛼𝛼 − 𝛽𝛽𝕃𝕃2
. Recalling that 𝑀𝑀 = 𝕃𝕃 − 𝐿𝐿, the solution is:  

 

𝐿𝐿 = 𝕃𝕃
2
, 𝑀𝑀 = 𝕃𝕃

2
, 𝑚𝑚 = 1

2
, 𝑄𝑄 = 𝕃𝕃

2
�𝛼𝛼 − 𝛽𝛽𝕃𝕃

2
�, 𝑞𝑞 = 1

2
�𝛼𝛼 − 𝛽𝛽𝕃𝕃

2
�, 𝑈𝑈 = 1

2
 �𝛼𝛼 − 𝛽𝛽𝕃𝕃

2
�
1/2

= 1
2𝑝𝑝1/2.  (3)  

 

Thus, utility increases with NR endowment 𝛼𝛼 and declines with externality 𝛽𝛽 and population 𝕃𝕃, or 

declines with price 𝑝𝑝.   

 

    3.2.2. Optimum 

Under optimal regulation, 𝑝𝑝 = 𝑀𝑀𝑀𝑀, or 𝕃𝕃−𝐿𝐿

𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿)
= 1

𝛼𝛼−2𝛽𝛽𝐿𝐿
, which is a quadratic equation, namely  

3𝛽𝛽𝐿𝐿2 − 2(𝛼𝛼 + 𝛽𝛽𝕃𝕃)𝐿𝐿 + 𝛼𝛼𝕃𝕃 = 0.  The solution is: 

 

 
8 Consumption is 𝑄𝑄0 rather than 𝑄𝑄1′ , with a loss 𝐴𝐴′𝑄𝑄0𝑄𝑄1′𝐸𝐸′. The decline from 𝑄𝑄1′  to 𝑄𝑄0 implies a higher cost, which 
consists of i) the cost of the output increase from 𝑄𝑄1′  to 𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀, or the area below the 𝑀𝑀𝑀𝑀 curve, 𝐸𝐸′𝑄𝑄1′𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀∞; ii) the 
cost of the decrease in output from 𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀 to 𝑄𝑄1′  (entailing an increase in 𝐿𝐿) on the backward-bending part of the 𝐴𝐴𝑀𝑀 
curve, 𝐾𝐾𝑄𝑄1′𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀(-∞); and iii) the cost of the decrease in output from 𝑄𝑄1′  to 𝑄𝑄0, i.e., 𝐴𝐴′𝑄𝑄0𝑄𝑄1′𝐾𝐾. Thus, the welfare cost 
under open access is 𝐴𝐴′𝐴𝐴′𝐾𝐾𝐸𝐸′ + 𝐸𝐸′∞(−∞)𝐾𝐾. As the negative segment of the 𝑀𝑀𝑀𝑀 curve is the mirror image of its 
positive segment (see Appendix 3), the welfare cost is also ∆𝑊𝑊𝑆𝑆𝐴𝐴 = 𝐴𝐴′𝐴𝐴′𝐾𝐾𝐸𝐸′ + 2(𝐸𝐸′𝑄𝑄1′𝑄𝑄𝑀𝑀𝑀𝑀𝑀𝑀∞). 



 8 

𝐿𝐿∗ = 1
3𝛽𝛽
�𝛼𝛼 + 𝛽𝛽𝕃𝕃 − �(𝛼𝛼 + 𝛽𝛽𝕃𝕃)2 − 3𝛼𝛼𝛽𝛽𝕃𝕃�, 𝑀𝑀∗ = 𝕃𝕃 − 𝐿𝐿∗, 9     (4)    

 

with 𝑞𝑞∗ = 𝑄𝑄∗

𝕃𝕃
= 𝐿𝐿∗(𝛼𝛼−𝛽𝛽𝐿𝐿∗)

𝕃𝕃
, 𝑚𝑚∗ = 𝑀𝑀∗

𝕃𝕃
= 1 − 𝐿𝐿∗

𝕃𝕃
, 𝑝𝑝∗ = 1

𝛼𝛼−2𝛽𝛽𝐿𝐿∗
, and 𝐿𝐿∗ is a function of 𝛼𝛼/𝛽𝛽.10 

 

   The following results are derived in Appendix 5: 
 

i) The equilibrium is stable, i.e., excess-demand (-supply) prevails below (above) the equilibrium, 
a potential issue on the backward-pending part of the 𝐴𝐴𝑀𝑀 curve.  
 
ii) Equations (3) and (4) imply 𝐿𝐿∗ < 𝐿𝐿, i.e., optimal regulation reduces the amount of labor 
employed in the NR-based sector. (The second solution of equation (4) is not an optimum).    
 

iii) The gap between open-access and optimal solutions, as a share of the latter, Δ𝑥𝑥 ≡ 𝑥𝑥−𝑥𝑥∗

𝑥𝑥∗
 (𝑥𝑥 =

𝐿𝐿,𝑁𝑁,𝑄𝑄,𝑈𝑈), depends not on 𝛼𝛼 and 𝛽𝛽 individually but on the ratio 𝛼𝛼/𝛽𝛽, i.e., on the ratio of the NR 
endowment, 𝑁𝑁 = 𝛼𝛼 (where 𝐿𝐿 = 𝑄𝑄 = 0) and the absolute value of the externality 𝜕𝜕𝜕𝜕

𝜕𝜕𝐿𝐿
= −𝛽𝛽.   

 

iv) The solution for optimal welfare, 𝑈𝑈∗ = (𝑞𝑞∗𝑚𝑚∗)1/2, is also presented.  
 
  
3.3. Simulation 

This section examines the relationship between ∆𝑥𝑥 ≡ 𝑥𝑥−𝑥𝑥
∗

𝑥𝑥∗
 (𝑥𝑥 = 𝐿𝐿, 𝑁𝑁, 𝑄𝑄, 𝑈𝑈) and population 

parameter 𝕃𝕃, for different values of the NR endowment 𝛼𝛼 and externality parameter 𝛽𝛽. Robustness 

of results to different parameter values and functional forms is examined in Section 4.  

 

The values for 𝛼𝛼 and 𝛽𝛽 selected in the ‘base case’ are 𝛼𝛼 = 10 and 𝛽𝛽 = 1. Table 1 in Section A 

shows the ∆𝑥𝑥 results for individual values of 𝕃𝕃, and Table 2 in Section B does the same for central 

values of 𝕃𝕃 in each congestion category.  

 

 

 
9 Appendix 5-iii) shows that the second solution for 𝐿𝐿∗, with a positive sign before the square root, is not an optimum.   
10 Note that national income 𝑌𝑌 is the sum of labor income 𝑌𝑌𝐿𝐿 = 𝑤𝑤𝕃𝕃 and income (or rent) 𝑌𝑌𝜕𝜕 = (𝑝𝑝 − 𝐴𝐴𝑀𝑀)𝑄𝑄 from 
exploiting the natural resource, i.e., national income 𝑌𝑌 = 𝑌𝑌𝐿𝐿 +𝑌𝑌𝜕𝜕 = 𝑤𝑤𝕃𝕃 + (𝑝𝑝 − 𝐴𝐴𝑀𝑀)𝑄𝑄. Since 𝑝𝑝 = 𝐴𝐴𝑀𝑀 under open 
access, 𝑌𝑌𝜕𝜕 = 0, and with 𝑤𝑤 = 1, we have 𝑌𝑌 = 𝕃𝕃.  
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A. Individual 𝕃𝕃 values  

     i) Welfare 

Subscripts used for all variables below refer to the level of the labor force, 𝕃𝕃. Table 1 shows (in 

percent) that ∆𝑈𝑈1 = −.065 (LC); ∆𝑈𝑈4 = −.707 (LC), ∆𝑈𝑈9 = −6.34 (LC); ∆𝑈𝑈11 = −13.5 (HC); 

∆𝑈𝑈16 = −33.3 (SC) and ∆𝑈𝑈19 = −64.3 (SC).   

 

Thus, for 𝕃𝕃 = 19 (16), i.e., under SC, we have ∆𝑈𝑈19 (∆𝑈𝑈16) = 989 (513)∆𝑈𝑈1, 90.9 (47.1)∆𝑈𝑈4, 10.1 

(5.3)∆𝑈𝑈9, and 4.8 (2.5)∆𝑈𝑈11. For 𝕃𝕃 =11, ∆𝑈𝑈11 = 148∆𝑈𝑈1, 19.1∆𝑈𝑈4 and 2.1∆𝑈𝑈9. Thus, open-access 

welfare costs under SC and HC are both between two orders of magnitude greater and a multiple 

of that under LC.  

 

     ii) Natural Resource     

For 𝕃𝕃 =19 (SC case), ∆𝑁𝑁19 is −91 percent or 827∆𝑁𝑁1(LC), 38∆𝑁𝑁4 (LC), 4.8∆𝑁𝑁9 (LC), and 

2.9∆𝑁𝑁11 (HC). For 𝕃𝕃 =16 (SC case), ∆𝑁𝑁16 = −67 percent or 608∆𝑁𝑁1, 28∆𝑁𝑁4, 3.5∆𝑁𝑁9 and 

2.2∆𝑁𝑁11. Thus, the NR depletion under SC is between two orders of magnitude greater than and 

a multiple of ∆𝑁𝑁 under LC, and is a multiple of ∆𝑁𝑁 under HC. And the same holds for  𝕃𝕃 =

11 (HC) relative to 𝕃𝕃 = 1 and 𝕃𝕃 = 4 (LC): ∆𝑁𝑁11 = 282∆𝑁𝑁1, 13∆𝑁𝑁4 and 2.1∆𝑁𝑁9.  

 

      iii) Employment  

∆𝐿𝐿19 (∆𝐿𝐿16)(∆𝐿𝐿11) = 127 (100) (58) percent, or 47 (37) (21)∆𝐿𝐿1, 8.5 (6.7) (3.9)∆𝐿𝐿4, and 3.1 (2.4) 

(1.4)∆𝐿𝐿9 (the three LC cases). Thus, employment under SC is between an order of magnitude 

larger and a multiple of that under LC, and similarly under HC for two of the three LC cases.  

 

      iv) Output 

Open-access output is larger (smaller) than optimal output under LC and HC (SC), i.e., ∆𝑄𝑄 >

(<) 0 under LC and HC (SC). Thus, at first, ∆𝑄𝑄 > 0 and increases with 𝕃𝕃 (in percent) from 1.06 

for 𝕃𝕃 = 1, 10.3 for 𝕃𝕃 = 4, to 14.6 for 𝕃𝕃 = 9, then declines to 9.0 for 𝕃𝕃 = 11, −33.0 for 𝕃𝕃 = 16 and 
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−81.0 for 𝕃𝕃 = 19. Thus, in the case of SC, equilibrium output is between one third and four fifths 

smaller than optimal output, in large part due to the NR depletion.  

 
Table 1.  Autarky: Open Access vs. Optimum a 

 

 

𝕃𝕃 

Open Access (𝑥𝑥) 

  𝐿𝐿        𝑁𝑁        𝑄𝑄          𝑈𝑈 

Optimum (𝑥𝑥∗) 

  𝐿𝐿∗      𝑁𝑁∗      𝑄𝑄∗         𝑈𝑈∗      

Difference ∆𝑥𝑥 = 𝑥𝑥−𝑥𝑥∗

𝑥𝑥∗
 (%) 

∆𝐿𝐿      ∆𝑁𝑁      ∆𝑄𝑄       ∆𝑈𝑈 

 1  .50      9.5      4.75     1.541 .49    9.51    4.63     1.542 2.7    -.11     1.06     -.065 

    4  2.0      8.0      16.0     1.414 1.8     8.2     14.5     1.424    15     -2.4     10.3     -.707 

    9  4.5      5.5      24.8     1.173 3.2     6.8     21.6     1.248     41      -19      14.6      -6.34 

 11  5.5      4.5      24.8      1.061 3.5     6.5     22.8     1.226     58      -31      9.0      -13.5   

16  8.0      2.0      16.0      .7071 4.0     6.0     24.0     1.061   100    -67      -33      -33.3 

19  9.5      .50      4.75      .3536 4.2      5.8      24.4      .9910     127    -91      -81      -64.3   

 a: Figures have been rounded up, and in some cases, though ∆x is correct, it may not appear so.  
 
 

 

   B. Central 𝕃𝕃 values 

Table 2 presents the welfare and NR results associated with the central value of 𝕃𝕃 in each one of 

the three congestion categories, namely 𝕃𝕃 = 5.0 (11.67) 16.67) for LC (HC) (SC). The welfare 

cost ∆𝑈𝑈𝑆𝑆𝐴𝐴 = −38.3 percent or 29.7∆𝑈𝑈𝐿𝐿𝐴𝐴, and ∆𝑈𝑈𝐻𝐻𝐴𝐴 = 9.8∆𝑈𝑈𝐿𝐿𝐴𝐴. The NR cost ∆𝑁𝑁𝑆𝑆𝐴𝐴 = −72 percent, 

or 14.7∆𝑁𝑁𝐿𝐿𝐴𝐴, and ∆𝑁𝑁𝐻𝐻𝐴𝐴 = 7.0∆𝑁𝑁𝐿𝐿𝐴𝐴.  

 

Table 2 confirms the main result that the negative impact of open access on both welfare and NR 

under SC (HC) are an order of magnitude greater than (a multiple of) that under LC, with the 

welfare cost under SC (HC) about 30 (10) times that under LC in this case, and a NR loss under 

SC (HC) about 15 (7) times that under LC.  
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                Table 2.  Open Access vs. Optimum: Central 𝕃𝕃 Values a 
 

 

 

𝕃𝕃 

Open Access 

(𝑥𝑥) 
 

 𝑁𝑁          𝑈𝑈 

Optimum  

(𝑥𝑥∗) 

  𝑁𝑁∗       𝑈𝑈∗      

Difference (%) 
 

∆𝑥𝑥 = 𝑥𝑥−𝑥𝑥∗

𝑥𝑥∗
  

  ∆𝑁𝑁 b     ∆𝑈𝑈    

Ratio  

∆𝑥𝑥/∆𝑥𝑥𝐿𝐿𝐴𝐴 

∆𝑁𝑁/∆𝑁𝑁𝐿𝐿𝐴𝐴      ∆𝑈𝑈/∆𝑈𝑈𝐿𝐿𝐴𝐴 

 LC:  5.0   7.5     1.369  7.9     1.387  -4.9     -1.28        1                   1 

HC: 11.67   4.2     1.021  6.4     1.169   -34     -12.7      7.0                9.8     

SC: 16.67   1.7     .6455  5.9     1.046   -72     -38.3      14.7              29.7 

 

a: Results are for the central values of 𝕃𝕃 in each congestion category; b: N and N* figures have been rounded up,  
and ∆N results may not appear correct but are, e.g., N* under LC is 7.87 rather than 7.9, so ∆𝑁𝑁 = − 4.9%.  
 

 
 

3.4. Optimal producer tax 

The optimal tax, 𝑡𝑡∗, increases with 𝕃𝕃, from (in percent), 𝑡𝑡∗ = 5.4 for 𝕃𝕃 = 1 to 𝑡𝑡∗ = 100 for 𝕃𝕃 = 10 

to 𝑡𝑡∗ =  255 for 𝕃𝕃 = 19. The fact that 𝑡𝑡∗ rises with 𝕃𝕃 helps dampen the increased pressure on the 

NR as well as the decline in welfare. This can be seen from Table 1 where the decline in 𝑁𝑁∗ (𝑈𝑈∗) 

as 𝕃𝕃 increases from 1 to 19 is less than half the decline in 𝑁𝑁(𝑈𝑈). The solution for 𝑡𝑡∗ and further 

simulation results are available upon request.    

 

4. Robustness 
I examine the results obtained by using alternative parameter values for production and utility 

functions, and alternative functional forms. All the results are derived in Appendix 6.  
 

   4.1. Alternative parameter values  

First, I compare ∆𝑈𝑈 and ∆𝑁𝑁 under SC and LC for (𝛼𝛼,𝛽𝛽) = (6, 1) and (𝛼𝛼,𝛽𝛽) = (2, 1). Results 

shown in Appendix Table 2A (Section 6.1) are: ∆𝑈𝑈𝑆𝑆𝐴𝐴 is greater than ∆𝑈𝑈𝐿𝐿𝐴𝐴 by one to two orders of 

magnitude, and ∆𝑁𝑁𝑆𝑆𝐴𝐴  is greater than ∆𝑁𝑁𝐿𝐿𝐴𝐴 by a multiple to two orders of magnitude.  

 



 12 

Second, a general form of equation (2) is 𝑈𝑈 = 𝑞𝑞𝛾𝛾𝑚𝑚1−𝛾𝛾, 𝛾𝛾 𝜖𝜖 (0, 1). The USDA reports a share of 

food in 2014 household expenditures in countries like China, India, Mexico, Russia and South 

Africa of 20 to 30 percent. Hence, I select a value 𝛾𝛾 = .25, with (as before) 𝛼𝛼 = 10 and 𝛽𝛽 = 1. I 

obtain similar results to those for 𝛾𝛾 = .5 in Section 3.3. For instance, I find that ∆𝑈𝑈19 = 641∆𝑈𝑈1 

and ∆𝑁𝑁19 = 218∆𝑁𝑁1. Thus, welfare and NR costs of open access for 𝕃𝕃 = 19 are two orders of 

magnitude larger than for 𝕃𝕃 = 1 in this case.11  

 

   4.2. Alternative functional forms 

Two alternative utility functions and production functions are examined below.  

 

       4.2.1 Utility functions  

The first one is the constant-relative-risk-aversion function 𝑈𝑈(𝑥𝑥) = 𝑥𝑥1−𝜇𝜇

1−𝜇𝜇
, 𝜇𝜇 ≠ 1. Under 

separability and 𝜇𝜇 = 1/2, we have 𝑈𝑈(𝑚𝑚, 𝑞𝑞) = 𝑈𝑈(𝑚𝑚) + 𝑈𝑈(𝑞𝑞) = 𝑚𝑚1/2

1/2
+ 𝑞𝑞1/2

1/2
. Section 6.2.1 of 

Appendix 6 presents the solution and simulations.  

 

I find for both (𝛼𝛼,𝛽𝛽) = (6, 1) and (𝛼𝛼,𝛽𝛽) = (4, 1) that ∆𝑈𝑈𝑆𝑆𝐴𝐴 (∆𝑁𝑁𝑆𝑆𝐴𝐴) is greater than ∆𝑈𝑈𝐿𝐿𝐴𝐴 (∆𝑁𝑁𝐿𝐿𝐴𝐴) 

by between a multiple and two (one) order/s of magnitude (see Panels A and B in Appendix Table 

A3). For 𝕃𝕃’s central values (not shown), both ∆𝑈𝑈𝑆𝑆𝐴𝐴 and ∆𝑁𝑁𝑆𝑆𝐴𝐴 are an order of magnitude greater 

than under LC.  
 

The second utility function is 𝑈𝑈 = �𝑚𝑚 − 𝑚𝑚2

2
� + �𝑞𝑞 − 𝑞𝑞2

2
�. The results, which are shown in Section 6.2.2 

in Appendix 6, are similar to those above.  

   
 
11 For 𝛾𝛾 = .25, 𝐿𝐿 = 𝕃𝕃/4, and 𝕃𝕃 = 19 means 𝐿𝐿 = 4.75 < 𝐿𝐿� = 5, which is a LC equilibrium (see point 𝑎𝑎′ on 𝐷𝐷𝐿𝐿′  in Fig. 
1). For 𝛾𝛾 = .5, 𝐿𝐿 = 𝕃𝕃

2
 and 𝕃𝕃 = 19 means 𝐿𝐿 = 9.5 > 𝐿𝐿𝐼𝐼 = 2𝛼𝛼

3𝛽𝛽
= 6.67 (see Table 1), a SC equilibrium (point 𝐴𝐴′ in Fig.1). 

Thus, congestion increases from LC to SC as the income share spent on the NR-based commodity doubles. 
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   4.2.2. Production functions  
 

Assume 𝑄𝑄 = 𝐿𝐿[𝛼𝛼 − 𝛽𝛽(log𝐿𝐿)], 𝐿𝐿 > 1. Section 6.3.1 in Appendix 6, shows that, for each congestion 

category’s central value of 𝕃𝕃, the relative welfare cost ∆𝑈𝑈𝑆𝑆𝐴𝐴 = 11.1∆𝑈𝑈𝐿𝐿𝐴𝐴 and ∆𝑈𝑈𝐻𝐻𝐴𝐴 = 4.1∆𝑈𝑈𝐿𝐿𝐴𝐴. 

Thus, ∆𝑈𝑈𝑆𝑆𝐴𝐴 (∆𝑈𝑈𝐻𝐻𝐴𝐴) is greater by an order of magnitude than (a multiple of) ∆𝑈𝑈𝐿𝐿𝐴𝐴.  

 

The second production function is 𝑄𝑄𝜀𝜀 = 𝜀𝜀𝐿𝐿(𝛼𝛼 − 𝛽𝛽𝐿𝐿) = 𝜀𝜀𝑄𝑄, 𝜀𝜀 > 1, where 𝜀𝜀 is TFP. Section 6.3.1, 

Appendix 6 shows results for ∆𝑥𝑥 (𝑥𝑥 = 𝐿𝐿,𝑁𝑁,𝑄𝑄,𝑈𝑈) are identical to those obtained with equation (1).  

 

Thus, Sections 3 and 4 showed that welfare and NR costs of open access under SC (HC) are greater 

by between an order of magnitude (a multiple of) and two orders of magnitude than under LC and 

are robust under alternative parameter values and alternative production and preference functions.  

 

5. Policy Implications  
Given the significantly greater welfare cost of open access under super congestion (SC), it follows 

that in countries where SC prevails, regulating the use of the NR – e.g., through an optimal 

producer tax – would generate gains that are massively larger than found in analyses that deal with 

low-congestion (LC) cases. A similar, though somewhat weaker, conclusion holds for high 

congestion (HC).   

 

Two issues arise in this context, namely political economy and implementation constraints.  

1. Regarding political economy constraints, producers naturally favor an increase in the price of 

their natural-resource-based products – say due to a rise in population – while the government 

might also favor a higher price due to its positive impact on employment. Thus, it might not be 

inclined to impose an optimal tax or strict regulation on the sector. However, governments should 

be aware that the need for a sound, enforceable regulatory framework increases with price because 

it results in a decline in both the NR stock and welfare under open access, a decline that is 
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particularly large under HC and even more so under SC, compared to that under LC. Moreover, 

the tax-inclusive consumer price declines with the optimal tax under SC, so that the government 

might benefit politically for imposing a tax on basic food products in the case of super congestion.    

 

2. A producer tax may be hard to levy because of administrative, logistical, enforcement and other 

problems, especially in the case of developing countries.12  Other regulations – as found, for 

instance, in developed countries such as Norway and Scotland in the case of farm fishing 13 – 

designed to minimize these externalities are also likely to be needed, including the number and 

geographic distribution of licenses, selection of qualified applications in accordance with 

prioritization criteria, reporting requirements on the impact on the NR, etc.  

 

Thus, an increase in demand associated with an increase in population size raises the importance 

of a sound, enforceable regulatory framework in order to ensure that the natural resource and 

welfare losses are limited.  

 

6. Concluding Comments 
This paper examined the potential impact on output, variable input use, natural resource (NR) and 

welfare in the case of an industry that is based on the exploitation of an open-access renewable 

NR. This issue is of great importance for a number of developing countries, particularly those 

 
12 This may be especially important in remote areas – e.g., in the case of farm fishing in remote villages with small 
fish farms, where it is difficult to ascertain the importance of these externalities and/or collect the tax. 
13 Before giving a license, Norwegian authorities must assess the risk of disease spread in an aquaculture facility and 
surrounding environment (such as distance to watercourses and other aquaculture facilities, type of species to be 
produced, farming system and production volume). And license proposals must be made public by local authorities in 
the municipality where the farm is to be located and must be published in two local papers, so the local population 
can react to the proposal. Moreover, an applicant must obtain a waste discharge permit to obtain a license and provide 
monthly reports on the farm’s operation and on its impact. This is certainly not the case in, say, Chile or the Philippines, 
which suffer from a number of problems (see Appendix 1). 
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characterized by high congestion due to low NR endowment, high demand or both, and where the 

equilibrium is located on the backward-bending segment of the 𝐴𝐴𝑀𝑀 curve where SC and HC prevail.   

 

The analysis compared outcomes in the case of an open-access resource and an optimally regulated 

one, and showed that: 

- The welfare and NR cost of open access under high (HC) and super congestion (SC) is 
between a multiple and orders of magnitude larger than under low congestion (LC), is 
significantly larger under SC than under HC, and results in a massive waste of NR and 
labor.  
 

- The optimal tax increases with the labor force or population size and with the negative 
externality, and decreases with the NR endowment level.   
 

- The optimal tax raises price and reduces output under LC and HC. However, it reduces 
price and raises output under SC, generating much larger benefits. 
 

- The results are robust to alternative parameter values and functional forms for production 
and preferences, raising confidence in the results and policy analysis. 

 

Thus, the fact that countries’ NR congestion might belong to the HC category, and especially to 

the SC one, raises the importance of sound regulation of sectors that are based on the exploitation 

of a renewable natural resource.  
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Appendix 
 

1. Negative Externalities: Aquaculture in Chile and the Philippines  

   Chile: Open access and lack of regulation led to excessively high density of salmon pens, high 

pollution levels and low productivity, and a disease outbreak in 2008 that spread rapidly across the 

industry destroyed two thirds of the sector’s output through 2009 and 2010. This led to regulatory 

changes, though frequent problems have continued (Anderson 2012). Another issue is toxic algae 

bloom.14 Chile’s 2015 algae bloom reduced salmon output by 16 percent and 2016 production 

forecasts by 20 percent (Bajak 2016; Guardian, March 6, 2016), with the problem persisting 

several years later.  

 

 
14 High nutrient levels under high pen and fish stock density lead to high algae growth and exhausts nutrients. Decaying 
algae i) block the sun and deplete water’s oxygen, suffocating the fish; and ii) is toxic and poisons the fish.  
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   Philippines: High cage and stocking density in tilapia farms led to high feeding rates, very high 

ammonia and nitrogen levels and low oxygen level, mass fish mortality and chronic disease of 

surviving fish in Lake Taal (Yambot 2000). The same occurred in Luzon and Mindanao’s coastal 

waters and milkfish in 2002 in Bolinao (Talaue-McManus 2006; San Diego-McGlone et al. 2008). 

Algae bloom badly affected tilapia and milkfish in Laguna de Bay, the Philippines’ largest lake 

(ADB 1989).  

 

2. 𝐿𝐿𝐼𝐼 is the inflection point, where 𝐴𝐴𝑀𝑀1 = 𝑀𝑀𝑀𝑀2 
 

     2.1. 𝐴𝐴𝑀𝑀1 = 𝑀𝑀𝑀𝑀2 
        

Denote the backward-bending segment of the 𝐴𝐴𝑀𝑀 curve by 𝐴𝐴𝑀𝑀1. The region SC (HC) is the upper 

(lower) part of 𝐴𝐴𝑀𝑀1 where optimal output 𝑄𝑄∗ > (<) 𝑄𝑄, the open-access output. The border between 

SC and HC consists of a point where 𝑄𝑄 = 𝑄𝑄∗, i.e., where 𝐴𝐴𝑀𝑀1 intersects 𝑀𝑀𝑀𝑀2, the positive segment 

of the 𝑀𝑀𝑀𝑀 curve, where 𝐿𝐿 = 𝐿𝐿𝐼𝐼. Thus, 𝐿𝐿𝐼𝐼 is the level of 𝐿𝐿 where 𝐴𝐴𝑀𝑀1 = 𝑀𝑀𝑀𝑀2, or 1
𝛼𝛼−𝛽𝛽𝐿𝐿1

= 1
𝛼𝛼−2𝛽𝛽𝐿𝐿2

. 

Thus, 𝐿𝐿1 = 2𝐿𝐿2 at output, 𝑄𝑄𝐼𝐼 , where 𝐴𝐴𝑀𝑀1 = 𝑀𝑀𝑀𝑀2.  

 

Any output can be produced with a high level of labor and a low level of NR, or vice versa, with a 

low level of labor and a high level of NR. Thus, 𝑄𝑄 = 𝐿𝐿1(𝛼𝛼 − 𝛽𝛽𝐿𝐿1) = 𝐿𝐿2(𝛼𝛼 − 𝛽𝛽𝐿𝐿2), which implies 

𝛽𝛽𝐿𝐿12 − 𝛼𝛼𝐿𝐿1 + (𝛼𝛼𝐿𝐿2 − 𝛽𝛽𝐿𝐿22) = 0. The solution is 𝐿𝐿1 = 1
2𝛽𝛽
�𝛼𝛼 ± �𝛼𝛼2 − 4𝛽𝛽(𝛼𝛼𝐿𝐿2 − 𝛽𝛽𝐿𝐿22)� = 1

2𝛽𝛽
[𝛼𝛼 ±

(𝛼𝛼 − 2𝛽𝛽𝐿𝐿2)]. Thus, under the solution 𝐿𝐿1 = 1
2𝛽𝛽

[𝛼𝛼 + (𝛼𝛼 − 2𝛽𝛽𝐿𝐿2)], we have 𝐿𝐿1 = 𝛼𝛼
𝛽𝛽
− 𝐿𝐿2.15 With 

𝐿𝐿1 = 2𝐿𝐿2 at 𝑄𝑄𝐼𝐼, we have 𝐿𝐿2 = 𝛼𝛼
3𝛽𝛽

 and 𝐿𝐿1 = 2𝛼𝛼
3𝛽𝛽

.  As 𝐿𝐿𝐼𝐼 is on 𝐴𝐴𝑀𝑀1, it follows that 𝐿𝐿𝐼𝐼 > 𝐿𝐿� = 𝛼𝛼
2𝛽𝛽

.  Thus, 

𝐿𝐿𝐼𝐼 = 𝐿𝐿1 = 2𝛼𝛼
3𝛽𝛽

, 𝑁𝑁𝐼𝐼 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿𝐼𝐼 = 𝛼𝛼
3
 and 𝑄𝑄𝐼𝐼 =

2𝛼𝛼2

9𝛽𝛽
, where 𝐿𝐿𝐼𝐼 (𝑄𝑄𝐼𝐼) is the value of 𝐿𝐿(𝑄𝑄) that separates 

 
15 The second solution, namely 𝐿𝐿1 = 1

2𝛽𝛽
[𝛼𝛼 − (𝛼𝛼 − 2𝛽𝛽𝐿𝐿2)], implies that 𝐿𝐿1 = 𝐿𝐿2, i.e., 𝐿𝐿1 = 𝐿𝐿2 = 𝛼𝛼

2𝛽𝛽
= 𝐿𝐿�. 
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SC from HC. Note that 𝑄𝑄𝐼𝐼 can also be produced with half the employment and double the NR 

(𝐿𝐿2 = 𝐿𝐿1
2

= 𝛼𝛼
3𝛽𝛽

, 𝑁𝑁2 = 2𝑁𝑁1 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿2 = 2𝛼𝛼
3

).  

   

     2.2. Inflection point 

𝐿𝐿I, which separates HC and SC, is also the inflection point where the change in 𝐴𝐴𝑀𝑀’s slope, 𝐴𝐴𝑀𝑀′ =

𝜕𝜕𝑀𝑀𝐴𝐴
𝜕𝜕𝑄𝑄

, changes sign, i.e., where 𝐴𝐴𝑀𝑀’s second derivative, 𝐴𝐴𝑀𝑀′′ = 𝜕𝜕
2𝑀𝑀𝐴𝐴
𝜕𝜕𝑄𝑄2

, is zero, and switches from 

𝐴𝐴𝑀𝑀′′ > 0 (under SC) to 𝐴𝐴𝑀𝑀′′ < 0 (under HC), with 𝐴𝐴𝑀𝑀′′ = 0 at 𝐿𝐿I. As 𝐴𝐴𝑀𝑀 = 1
𝛼𝛼−𝛽𝛽𝐿𝐿

, 𝐴𝐴𝑀𝑀′ ≡ 𝜕𝜕𝑀𝑀𝐴𝐴
𝜕𝜕𝑄𝑄

=

𝜕𝜕𝑀𝑀𝐴𝐴
𝜕𝜕𝐿𝐿

/ 𝜕𝜕𝑄𝑄
𝜕𝜕𝐿𝐿

= 𝛽𝛽
(𝛼𝛼−𝛽𝛽𝐿𝐿)2(𝛼𝛼−2𝛽𝛽𝐿𝐿)

. Thus, 𝐴𝐴𝑀𝑀′ ≷ 0 ⇔ 𝐿𝐿 ≶ 𝐿𝐿� = 𝛼𝛼
2𝛽𝛽

  (𝐿𝐿 > 𝐿𝐿� implies 𝐿𝐿 must fall for 𝑄𝑄 to rise). 

The change in 𝐴𝐴𝑀𝑀’s slope, 𝐴𝐴𝑀𝑀′′ ≡ 𝜕𝜕2𝑀𝑀𝐴𝐴
𝜕𝜕𝑄𝑄2

= 𝜕𝜕𝑀𝑀𝐴𝐴′

𝜕𝜕𝐿𝐿
/ 𝜕𝜕𝑄𝑄
𝜕𝜕𝐿𝐿

= 2𝛽𝛽2(2𝛼𝛼−3𝛽𝛽𝐿𝐿)
(𝛼𝛼−𝛽𝛽𝐿𝐿)3(𝛼𝛼−2𝛽𝛽𝐿𝐿)2. Thus, 𝐴𝐴𝑀𝑀′′ ⋛ 0 ⇔ 𝐿𝐿 ⋚

 𝐿𝐿I = 2𝛼𝛼
3𝛽𝛽

. QED. 

 

3. At any given output 𝑄𝑄, 𝑀𝑀𝑀𝑀1 = −𝑀𝑀𝑀𝑀2   

Optimal 𝑀𝑀𝑀𝑀 is 𝑀𝑀𝑀𝑀2 = 1
𝛼𝛼−2𝛽𝛽𝐿𝐿2

> 0, 𝐿𝐿2 < 𝐿𝐿�. At 𝐿𝐿1 > 𝐿𝐿�, 𝑀𝑀𝑀𝑀1 = 1
𝛼𝛼−2𝛽𝛽𝐿𝐿1

< 0. As shown in Section 

2.1 of Appendix 2, 𝐿𝐿1 = 𝛼𝛼
𝛽𝛽
− 𝐿𝐿2 for any 𝑄𝑄. Thus, 𝛼𝛼 − 2𝛽𝛽𝐿𝐿1 = 𝛼𝛼 − 2𝛽𝛽 �𝛼𝛼

𝛽𝛽
− 𝐿𝐿2� = −𝛼𝛼 + 2𝛽𝛽𝐿𝐿2 =

 −(𝛼𝛼 − 2𝛽𝛽𝐿𝐿2). Thus, 𝑀𝑀𝑀𝑀1 = − 1
𝛼𝛼−2𝛽𝛽𝐿𝐿2

= −𝑀𝑀𝑀𝑀2, i.e., 𝑀𝑀𝑀𝑀1 is the mirror image of 𝑀𝑀𝑀𝑀2. QED. 

 

4. Range of 𝐿𝐿 values under LC, HC and SC 

𝐿𝐿 under LC ranges from 𝐿𝐿 = 0 to 𝐿𝐿� = 𝛼𝛼
2𝛽𝛽

. Under HC, 𝐿𝐿 ranges from 𝐿𝐿𝐼𝐼 to 𝐿𝐿�, with 𝐿𝐿𝐼𝐼 − 𝐿𝐿� = 2𝛼𝛼
3𝛽𝛽
−

𝛼𝛼
2𝛽𝛽

= 𝛼𝛼
6𝛽𝛽

, i.e., the range of 𝐿𝐿-values under HC is one third that under LC. The range under SC is 

𝛼𝛼
𝛽𝛽
− 2𝛼𝛼

3𝛽𝛽
= 𝛼𝛼

3𝛽𝛽
, or twice that under HC and two thirds that of values under LC. Thus, one half (third) 

(sixth) of the 𝐿𝐿-values are in the LC (SC) (HC) region.  
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5. Proofs and solutions: i) Stability of equilibrium; ii)  𝐿𝐿 > 𝐿𝐿∗; iii) Sign in 𝐿𝐿∗ is negative ; iii) ∆𝑈𝑈 

and ∆𝑁𝑁 depend on 𝛼𝛼/𝛽𝛽; iv) Solution for 𝑈𝑈∗;  𝑣𝑣) Optimal producer tax  
 
 

 

    i) The open-access equilibrium is unique, so stability is both local and global. Stability is not an 

issue for equilibrium on the upward-sloping part of the AC curve. However, it might be an issue 

for equilibria on the backward-bending part of the AC curve, 𝐴𝐴𝑀𝑀1, where both the AC and demand 

curves are negatively sloped. It requires excess-demand to prevail below the equilibrium price and 

excess-supply above it, i.e., that demand be more elastic than supply.  

 

The elasticity of demand, 𝜂𝜂, under a Cobb-Douglas utility function is 𝜂𝜂 = −1. The elasticity of 

supply is 𝜀𝜀𝑄𝑄.𝑀𝑀𝐴𝐴 = 𝜕𝜕𝑄𝑄
𝜕𝜕𝑀𝑀𝐴𝐴

∗ 𝑀𝑀𝐴𝐴
𝑄𝑄

, where 𝜕𝜕𝑄𝑄
𝜕𝜕𝑀𝑀𝐴𝐴

= 𝜕𝜕𝑄𝑄 𝜕𝜕𝐿𝐿⁄
𝜕𝜕𝑀𝑀𝐴𝐴 𝜕𝜕𝐿𝐿⁄ . With 𝜕𝜕𝑄𝑄

𝜕𝜕𝐿𝐿
= 𝛼𝛼 − 2𝛽𝛽𝐿𝐿, and 𝐴𝐴𝑀𝑀 = 1

𝛼𝛼−𝛽𝛽𝐿𝐿
 implying 

𝜕𝜕𝑀𝑀𝐴𝐴
𝜕𝜕𝐿𝐿

= 𝛽𝛽
(𝛼𝛼−𝛽𝛽𝐿𝐿)2, we have 𝜕𝜕𝑄𝑄

𝜕𝜕𝑀𝑀𝐴𝐴
= (𝛼𝛼−2𝛽𝛽𝐿𝐿)(𝛼𝛼−𝛽𝛽𝐿𝐿)2

𝛽𝛽
.  And with 𝑀𝑀𝐴𝐴

𝑄𝑄
= 1

𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿)2, we have 𝜀𝜀𝑄𝑄.𝑀𝑀𝐴𝐴 = 𝛼𝛼−2𝛽𝛽𝐿𝐿
𝛽𝛽𝐿𝐿

, 

with 𝜀𝜀𝑄𝑄.𝑀𝑀𝐴𝐴 < 0 ⇔ 𝐿𝐿 > 𝐿𝐿� = 𝛼𝛼
2𝛽𝛽

. Note that 𝜀𝜀𝑄𝑄.𝑀𝑀𝐴𝐴 = −1 implies 𝐿𝐿 = 𝛼𝛼
𝛽𝛽
, 𝑁𝑁 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿 = 0 and 𝑄𝑄 =

𝐿𝐿𝑁𝑁 = 0, which cannot hold under a Cobb-Douglas utility function. Thus, employment 𝐿𝐿 < 𝛼𝛼
𝛽𝛽

 on 

𝐴𝐴𝑀𝑀1. And with −𝜕𝜕𝜀𝜀𝑄𝑄.𝐴𝐴𝐴𝐴

𝜕𝜕𝐿𝐿
> 0, we have 𝜂𝜂 < 𝜀𝜀𝑄𝑄.𝑀𝑀𝐴𝐴 < 0, i.e., demand is more elastic than supply, and 

the equilibrium is stable. QED.   

 

   ii) Assume instead that 𝐿𝐿 < 𝐿𝐿∗. Thus, 𝐿𝐿 = 𝕃𝕃
2

< 𝐿𝐿∗ = 1
3𝛽𝛽
�𝛼𝛼 + 𝛽𝛽𝕃𝕃 − �𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2 − 𝛼𝛼𝛽𝛽𝕃𝕃 �, or 

3𝛽𝛽𝕃𝕃
2

< 𝛼𝛼 + 𝛽𝛽𝕃𝕃 − �𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2 − 𝛼𝛼𝛽𝛽𝕃𝕃, or �𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2 − 𝛼𝛼𝛽𝛽𝕃𝕃 < 𝛼𝛼 − 𝛽𝛽𝕃𝕃
2

= 𝑁𝑁, i.e., 𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2 

−𝛼𝛼𝛽𝛽𝕃𝕃 < 𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2

4
− 𝛼𝛼𝛽𝛽𝕃𝕃, or  3𝛽𝛽

2𝕃𝕃2

4
< 0, which is false. Thus, 𝐿𝐿 > 𝐿𝐿∗.  QED. 

 

   iii) Equation (4) is 𝐿𝐿∗ = 1
3𝛽𝛽
�𝛼𝛼 + 𝛽𝛽𝕃𝕃 − �(𝛼𝛼 + 𝛽𝛽𝕃𝕃)2 − 3𝛼𝛼𝛽𝛽𝕃𝕃 �, and the sign in front of the square 

root must be negative. Assume the sign is positive. Since �(𝛼𝛼 + 𝛽𝛽𝕃𝕃)2 − 3𝛼𝛼𝛽𝛽𝕃𝕃 =
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�(𝛼𝛼 − 𝛽𝛽𝕃𝕃)2 +  𝛼𝛼𝛽𝛽𝕃𝕃 > 𝛼𝛼 − 𝛽𝛽𝕃𝕃, we have 𝐿𝐿∗ >  1
3𝛽𝛽

[(𝛼𝛼 + 𝛽𝛽𝕃𝕃) + (𝛼𝛼 − 𝛽𝛽𝕃𝕃)]  =  2𝛼𝛼
3𝛽𝛽

= 𝐿𝐿I. However, 

this cannot be a solution as  𝐿𝐿∗, the optimal value of 𝐿𝐿, must be located in the LC segment of the 

𝐴𝐴𝑀𝑀 curve where 𝑀𝑀𝑀𝑀𝐿𝐿 > 0, i.e., 𝐿𝐿∗ < 𝐿𝐿� = 𝛼𝛼
2𝛽𝛽

< 𝐿𝐿I = 2𝛼𝛼
3𝛽𝛽

. Consequently, the sign in front of the 

square root must be negative. QED. 
 

 

    iv) Equation (4) can be rewritten as 𝐿𝐿∗ = 1
3
�1 + 𝛽𝛽

𝛼𝛼
𝕃𝕃 − �(1 + 𝛽𝛽

𝛼𝛼
𝕃𝕃)2 − 3 𝛽𝛽

𝛼𝛼
𝕃𝕃�, i.e., 𝐿𝐿∗ depends on 

𝛼𝛼/𝛽𝛽, and not on 𝛼𝛼 and 𝛽𝛽 individually, and so do ∆𝑁𝑁 and ∆𝑈𝑈 (as well as ∆𝐿𝐿 and ∆𝑄𝑄). Multiplying 

𝛼𝛼 and 𝛽𝛽 by 𝜆𝜆 > 0 does not affect 𝐿𝐿∗ or 𝑀𝑀∗ = 𝕃𝕃 − 𝐿𝐿∗, or 𝑚𝑚∗ = 𝑀𝑀∗/𝕃𝕃. And 𝑄𝑄𝜆𝜆∗ = 𝐿𝐿∗(𝜆𝜆𝛼𝛼 − 𝜆𝜆𝛽𝛽𝐿𝐿∗) =

𝜆𝜆𝐿𝐿∗(𝛼𝛼 −  𝛽𝛽𝐿𝐿∗) = 𝜆𝜆𝑄𝑄∗, with 𝑞𝑞𝜆𝜆∗ = 𝜆𝜆𝑞𝑞∗ and 𝑈𝑈𝜆𝜆∗ = 𝜆𝜆.5𝑈𝑈∗. Also, as 𝐿𝐿 = 𝕃𝕃/2 is independent of 𝛼𝛼 and 

𝛽𝛽, so are 𝑀𝑀 and 𝑚𝑚, with 𝑞𝑞𝜆𝜆 = 𝜆𝜆𝑞𝑞 and 𝑈𝑈𝜆𝜆 = 𝜆𝜆.5𝑈𝑈. Thus, ∆𝑈𝑈𝜆𝜆 = (𝑈𝑈𝜆𝜆 − 𝑈𝑈𝜆𝜆∗)/𝑈𝑈𝜆𝜆∗ = ∆𝑈𝑈,∀ 𝜆𝜆 > 0. 

Since 𝑁𝑁𝜆𝜆∗ = 𝜆𝜆𝑁𝑁∗ and 𝑁𝑁𝜆𝜆 = 𝜆𝜆𝑁𝑁, it follows that ∆𝑁𝑁𝜆𝜆 = ∆𝑁𝑁, ∀ 𝜆𝜆 > 0.  QED. 

 

    v) Substituting the solution for 𝐿𝐿∗ in (4) in production and utility functions (1) and (2), the 

solution for optimal utility, 𝑈𝑈∗, is: 
 

𝑈𝑈∗ = 1
3𝛽𝛽𝕃𝕃

�𝛽𝛽𝕃𝕃(𝛼𝛼2 + 𝛼𝛼𝛽𝛽𝕃𝕃 + 2𝛽𝛽2𝕃𝕃2) + 2
3

(𝛼𝛼2 + 𝛽𝛽2𝕃𝕃2 − 𝛼𝛼𝛽𝛽𝕃𝕃)
3
2 − 2

3
𝛼𝛼3�

1/2
.     (1A)          

 

6. Robustness simulations  

This section provides derivations, simulations and detailed descriptions of the results provided in 

Section 3.4, which examines the robustness of results in Section 3.3 by using different values for 

parameters of the production and utility functions, as well as different functional forms for both.  

 

    6.1. Two sets of values for 𝛼𝛼 and 𝛽𝛽 parameters 

The case of (𝛼𝛼,𝛽𝛽) = (6, 1) is examined in Table 2A, Panel A, where 𝕃𝕃 < 12, and (𝛼𝛼,𝛽𝛽) = (2, 1) 

in Panel B, where 𝕃𝕃 < 4. In Panel A, ∆𝑈𝑈11 (∆𝑁𝑁11) is equal to −55 (−86) percent or 162 (210) 
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times ∆𝑈𝑈1(∆𝑁𝑁1), 107 (45) times ∆𝑈𝑈2 (∆𝑁𝑁2), 53 (18) times ∆𝑈𝑈3 (∆𝑁𝑁3), 8.3 (3.4) times ∆𝑈𝑈6 (∆𝑁𝑁6) 

and 2.0 (1.5) times ∆𝑈𝑈9 (∆𝑁𝑁9).  

 

As 𝕃𝕃 ≤  2 are LC, and 𝕃𝕃 ≥ 5 are SC, the welfare and NR losses are between two orders of 

magnitude and a multiple of t hose under LC.  In Panel B, ∆𝑈𝑈3 (∆𝑁𝑁3) is 21 (12) times ∆𝑈𝑈1 (∆𝑁𝑁1), 

the losses of welfare and NR under SC are an order of magnitude larger than under LC. 

 

Thus, the results are similar to those obtained in the main text: both ∆𝑈𝑈 and ∆𝑁𝑁 under SC and HC 

are between a multiple and two orders of magnitude larger than under LC. 

 

Table 2A.  Open Access vs. Optimum 
 

A: 𝛼𝛼 = 6,𝛽𝛽 = 1 
 

 

𝕃𝕃 

Open Access 

  𝐿𝐿         𝑁𝑁         𝑄𝑄           𝑈𝑈 

Optimum 

  𝐿𝐿∗        𝑁𝑁∗       𝑄𝑄∗       𝑈𝑈∗ 
Difference: 𝑥𝑥−𝑥𝑥

∗

𝑥𝑥∗
 (in %) 

∆𝐿𝐿      ∆𝑁𝑁     ∆𝑄𝑄         ∆𝑈𝑈 

  1  .50      5.5       2.8       1.173 .49       5.5       2.6      1.177  2.7    -.41      2.5       -.339 

  2  1.0      5.0       5.0       1.118 .90      5.1     4.6     1.124 11     -1.9      8.7       -.516 

  3  1.5      4.5       6.8       1.061 1.3       4.7       6.0      1.072 19     -4.9     13.3      -1.04 

  5  2.5      3.5       8.8        .935 1.8      4.2     7.6       .984 39      -16     15.1.     -4.91 

  6  3.0      3.0       9.0        .866 2.0      4.0     8.0       .928 50      -25     12.5      -6.65   

 9  4.5      1.5       6.8        .612 2.4      3.6     8.6       .839 91      -59    -21.4      -27.0 

11  5.5      .50       2.8        .350 2.5      3.5     8.8       .784 112    -86    -69.0      -54.9 
 

 

  B: 𝛼𝛼 = 4,𝛽𝛽 = 1 
 

 

𝕃𝕃 

Open Access 

  𝐿𝐿         𝑁𝑁        𝑄𝑄        𝑈𝑈 

Optimum 

  𝐿𝐿∗        𝑁𝑁∗      𝑄𝑄∗      𝑈𝑈∗ 
Difference: 𝑥𝑥−𝑥𝑥

∗

𝑥𝑥∗
 (in %) 

∆𝐿𝐿      ∆𝑁𝑁     ∆𝑄𝑄      ∆𝑈𝑈 

  1 .50      1.5      .75      .6124 .42      1.6     .67      .6204   18     -4.9     13      -1.3 

  3 1.5      .50      .75      .3536 .78      1.2     .95      .4845  91     -59     -21      -27 
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    6.2. Two alternative utility functions 

      6.2.1. Constant relative-risk-aversion utility function 

The utility function is 𝑈𝑈(𝑥𝑥) = 𝑥𝑥1−𝜇𝜇

1−𝜇𝜇
 (𝜇𝜇 ≠ 1). Assuming separability, 𝑈𝑈(𝑚𝑚, 𝑞𝑞) = 𝑈𝑈(𝑚𝑚) + 𝑈𝑈(𝑞𝑞) =

𝑚𝑚1−𝜇𝜇

1−𝜇𝜇
+ 𝑞𝑞1−𝜇𝜇

1−𝜇𝜇
.  With 𝜇𝜇 = 1/2, we have:  

 

𝑈𝑈 = 𝑚𝑚1/2

1/2
+ 𝑞𝑞1/2

1/2
.           (3A)  

 

Maximizing utility implies that the ratio of marginal utilities equals the relative price, i.e., 𝑝𝑝 =

�𝑚𝑚𝑞𝑞�
1/2

= �𝑀𝑀𝑄𝑄�
1/2

= � 𝕃𝕃−𝐿𝐿
𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿)�

1/2
. Under open access, 𝑝𝑝 = 𝐴𝐴𝑀𝑀 = 1

𝛼𝛼−𝛽𝛽𝐿𝐿. The two equations imply 

𝛽𝛽𝐿𝐿2 − (1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃)𝐿𝐿 +𝛼𝛼𝕃𝕃 = 0. The solution is: 

 

𝐿𝐿 = 1
2𝛽𝛽
�1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃 − �(1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃)2 − 4𝛼𝛼𝛽𝛽𝕃𝕃�.16     (4A)    

 

At the optimum, 𝑝𝑝 = � 𝕃𝕃−𝐿𝐿
𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿)�

1/2
= 𝑀𝑀𝑀𝑀 = 1

𝛼𝛼−2𝛽𝛽𝐿𝐿
, or 𝕃𝕃−𝐿𝐿

𝐿𝐿(𝛼𝛼−𝛽𝛽𝐿𝐿) = 1
(𝛼𝛼−2𝛽𝛽𝐿𝐿)2, which is rewritten as:  

 

4𝛽𝛽2𝐿𝐿3 − 𝛽𝛽(1 + 4𝛼𝛼 + 4𝛽𝛽𝕃𝕃)𝐿𝐿2 + 𝛼𝛼(1 + 𝛼𝛼 + 4𝛽𝛽𝕃𝕃)𝐿𝐿 − 𝛼𝛼2𝕃𝕃 = 0.     (5A)  

 

Simulation results are presented in Table 3A’s Panel A (B) for (𝛼𝛼,𝛽𝛽) = (6, 1) �(4, 1)�. In Panel 

A, 𝛼𝛼 = 6. LC prevails for 𝕃𝕃 = 1 (3) (5), and the welfare impact of open access (in percent) 

is ∆𝑈𝑈𝐿𝐿1 = −.19,∆𝑈𝑈𝐿𝐿2 = −3.4,∆𝑈𝑈𝐿𝐿3 = −9. The NR impact under LC is ∆𝑈𝑈𝜕𝜕1 = −.93,∆𝑈𝑈𝜕𝜕2 =

−14.9, and ∆𝑈𝑈𝜕𝜕3 = −36.4. SC prevails for 𝕃𝕃 = 10 and 𝕃𝕃 = 50. For 𝕃𝕃 = 10, ∆𝑈𝑈𝑆𝑆1 = −21.5 =

 
16 The solution with a positive sign before the square root is 𝐿𝐿 = 1

2𝛽𝛽
�1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃 + �(1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃)2 − 4𝛼𝛼𝛽𝛽𝕃𝕃� =

1
2𝛽𝛽
�1 + 𝛼𝛼 + 𝛽𝛽𝕃𝕃 + �(1 + 𝛼𝛼 − 𝛽𝛽𝕃𝕃)2 + 4𝛽𝛽𝕃𝕃�.  As �(1 + 𝛼𝛼 − 𝛽𝛽𝕃𝕃)2 + 4𝛽𝛽𝕃𝕃 > (1 + 𝛼𝛼 − 𝛽𝛽𝕃𝕃), we have 𝐿𝐿 > 1

𝛽𝛽
(1 + 𝛼𝛼),

i. e., 𝛼𝛼 − 𝛽𝛽𝐿𝐿 < −1, which is not possible as 𝑁𝑁 = 𝛼𝛼 − 𝛽𝛽𝐿𝐿 ≥ 0. Thus, the sign before the square root must be negative. 
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113∆𝑈𝑈𝐿𝐿1 = 12.1∆𝑈𝑈𝐿𝐿2, and ∆𝑁𝑁𝑆𝑆1 = −71.7 = 77∆𝑁𝑁𝐿𝐿1 = 9.1∆𝑁𝑁𝐿𝐿2. For 𝕃𝕃 = 50, ∆𝑈𝑈𝑆𝑆2 = −23.7 =

125∆𝑈𝑈𝐿𝐿1 = 13.3∆𝑈𝑈𝐿𝐿2 and ∆𝑁𝑁𝑆𝑆2 = −95.9 = 103∆𝑁𝑁𝐿𝐿1 = 12.1∆𝑁𝑁𝐿𝐿2.  

 

With 𝕃𝕃 = 5 (10) (50), 𝐿𝐿 is 71 (103) (111) percent greater than the optimum, with an impact on 

output of −5(−43)(−91) percent and an impact on NR of −51(−77)(−96) percent, amounting 

to a massive waste of both human and natural resources. 

 

Table 3A. Autarky: Open Access vs. Optimum 
 
 

Panel A: 𝛼𝛼 = 6,𝛽𝛽 = 1 

 

𝕃𝕃 

Open Access 

  𝐿𝐿        𝑁𝑁         𝑄𝑄        𝑈𝑈 

Optimum 

  𝐿𝐿∗       𝑁𝑁∗       𝑄𝑄∗       𝑈𝑈∗ 
Difference: 𝑥𝑥−𝑥𝑥

∗

𝑥𝑥∗
 (in %) 

∆𝐿𝐿      ∆𝑁𝑁     ∆𝑄𝑄     ∆𝑈𝑈 

 1  .84      5.2      4.3      5.0 .79     5.2       4.1     5.01  6.1     -.93     5.1    -.19 

   3  2.4      3.6      8.6      4.3 1.8     4.2       7.5     4.45 33      -15      15     -3.4 

 5  3.6      2.4      8.6      3.7 2.1     3.9       8.3     4.1 71      -36     -5.1    -9.0   

10  5.0      1.0      5.0      2.8 2.5     3.5       8.7     3.6 103    -71     -43     -21 

50  5.9      .13      .78      2.1 2.8     3.2       9.0     2.8  111    -96     -91     -24   
 

Panel B: 𝛼𝛼 = 4,𝛽𝛽 = 1 
 

 

𝕃𝕃 

Open Access 

  𝐿𝐿         𝑁𝑁        𝑄𝑄         𝑈𝑈 

Optimum 

  𝐿𝐿∗        𝑁𝑁∗       𝑄𝑄∗       𝑈𝑈∗ 
Difference: 𝑥𝑥−𝑥𝑥

∗

𝑥𝑥∗
 (in %) 

∆𝐿𝐿      ∆𝑁𝑁     ∆𝑄𝑄       ∆𝑈𝑈 

   1  .76      3.2      2.5       4.1 .68      3.3      2.3       4.1  13      -2.6     9.8     -.46 

   3  2.0      2.0      4.0       3.5 1.3      2.7      3.5       3.7 55      -26      14      -5.6 

 5  2.8      1.2      3.4       3.0 1.5      2.5      3.7       3.7 86      -51     -8.5     -12   

10  3.5      .53      1.8       2.5 1.7      2.3      3.9       3.1 109    -77     -53      -19 

50  3.9      .08      .33       2.1 1.9      2.1      4.0       2.6 112    -96     -92      -20 
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In panel B, 𝛼𝛼 = 4 and 𝛽𝛽 = 1, LC (HC) (SC) prevail for 𝕃𝕃 < 4 (4 < 𝕃𝕃 < 5.33) (𝕃𝕃 > 5.33). In 

percent, at 𝕃𝕃 = 1, ∆𝑈𝑈𝐿𝐿1 = −.46 and ∆𝑁𝑁𝐿𝐿1 = −2.6. At 𝕃𝕃 = 3, ∆𝑈𝑈𝐿𝐿2 = −5.6 and ∆𝑁𝑁𝐿𝐿2 = −26.2. 

The LC average is ∆𝑈𝑈𝐿𝐿𝐴𝐴 = −3 and ∆𝑁𝑁𝐿𝐿𝐴𝐴 = −14.3.  

 

At 𝕃𝕃 = 5 (HC case), ∆𝑈𝑈𝐻𝐻𝐴𝐴 = −12.3 = 25.5∆𝑈𝑈𝐿𝐿1 = 4.1∆𝑈𝑈𝐿𝐿𝐴𝐴, ∆𝑁𝑁𝐻𝐻𝐴𝐴 = −50.9 = 19.6∆𝑁𝑁𝐿𝐿1 =

3.6∆𝑁𝑁𝐿𝐿𝐴𝐴. And for 𝕃𝕃 = 10 (SC), ∆𝑈𝑈𝑆𝑆𝐴𝐴 = −19.3 = 42∆𝑈𝑈𝐿𝐿1 = 6.4∆𝑈𝑈𝐿𝐿𝐴𝐴, and ∆𝑁𝑁𝑆𝑆𝐴𝐴 = 78.0 =

30∆𝑁𝑁𝐿𝐿1 = 5.4∆𝑁𝑁𝐿𝐿𝐴𝐴. At 𝕃𝕃 = 50, ∆𝑈𝑈𝑆𝑆2 = −20.2 = 44∆𝑈𝑈𝐿𝐿1 = 6.7∆𝑈𝑈𝐿𝐿𝐴𝐴, and ∆𝑁𝑁𝑆𝑆2 = −96.8 =

37∆𝑁𝑁𝐿𝐿1 = 6.7∆𝑁𝑁𝐿𝐿𝐴𝐴.  

 

As with utility function (2), welfare and NR losses under SC are of a greater order of magnitude 

than, or a multiple of, those under LC.   

 

     6.2.2.  Quadratic utility function  
 

𝑈𝑈 = �𝑚𝑚 − 𝑚𝑚2

2
� + �𝑞𝑞 − 𝑞𝑞2

2
�.         (6A)  

 

Utility maximization implies that 𝑝𝑝 = 𝑈𝑈𝑞𝑞
𝑈𝑈𝑚𝑚

= 1−𝑞𝑞
1−𝑚𝑚

;  𝑚𝑚, 𝑞𝑞 𝜖𝜖 (0, 1). With 𝑀𝑀 = 𝑙𝑙 = 𝕃𝕃 − 𝐿𝐿, we have 

𝑚𝑚 = 1 − 𝐿𝐿
𝕃𝕃
, and 1 −𝑚𝑚 = 𝐿𝐿

𝕃𝕃
. Thus, 𝑝𝑝 = 1−𝑞𝑞

𝐿𝐿/𝕃𝕃
= (𝕃𝕃−𝑄𝑄)

𝐿𝐿
= 𝕃𝕃

𝐿𝐿
− (𝛼𝛼 − 𝛽𝛽𝐿𝐿).  

 

Open Access: 

As 𝑝𝑝 = 𝐴𝐴𝑀𝑀 = 1
𝛼𝛼−𝛽𝛽𝐿𝐿

, we have  𝕃𝕃
𝐿𝐿
− (𝛼𝛼 − 𝛽𝛽𝐿𝐿) = 1

𝛼𝛼−𝛽𝛽𝐿𝐿, a cubic equation in 𝐿𝐿, namely:  

 

𝛽𝛽2𝐿𝐿3 − 2𝛼𝛼𝛽𝛽𝐿𝐿2 + (1 + 𝛼𝛼2 + 𝛽𝛽𝕃𝕃)𝐿𝐿 − 𝛼𝛼𝕃𝕃 = 0.      (7A) 

 

Optimum: 

At the optimum, price 𝑝𝑝 = 𝑀𝑀𝑀𝑀, i.e., 𝕃𝕃
𝐿𝐿
− (𝛼𝛼 − 𝛽𝛽𝐿𝐿) = 1

𝛼𝛼−2𝛽𝛽𝐿𝐿
. Thus, we have:  

 

2𝛽𝛽2𝐿𝐿3 − 3𝛼𝛼𝛽𝛽𝐿𝐿2 + (1 + 𝛼𝛼2 + 2𝛽𝛽𝕃𝕃)𝐿𝐿 − 𝛼𝛼𝕃𝕃 = 0.      (8A) 
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Under open access, for 𝛼𝛼 = 2 and 𝛽𝛽 = 1, we have from (6A):  𝐿𝐿3 − 4𝐿𝐿2 + (5 + 𝕃𝕃)𝐿𝐿 − 𝕃𝕃 = 0.  

For 𝕃𝕃 = 1, a LC case, the solution is 𝐿𝐿𝐿𝐿 = .4563, 𝑁𝑁𝐿𝐿 = 1.544, 𝑚𝑚𝐿𝐿 = .544, and 𝑚𝑚𝐿𝐿 −
𝑚𝑚𝐿𝐿

2

2
=

.3961. Also, 𝑞𝑞𝐿𝐿 = .704 and 𝑞𝑞𝐿𝐿 −
𝑞𝑞𝐿𝐿
2

2
= .4561. Thus, 𝑈𝑈𝐿𝐿𝐴𝐴 = .8522.  

 

For the optimum, we have  2𝐿𝐿3 − 6𝐿𝐿2 + 7𝐿𝐿 − 2 = 0, with 𝐿𝐿𝐿𝐿𝐴𝐴∗ = .410, 𝑁𝑁𝐿𝐿𝐴𝐴∗ = 1.590, 𝑞𝑞𝐿𝐿𝐴𝐴∗ = .652, 

𝑞𝑞𝐿𝐿𝐴𝐴∗ − (𝑞𝑞𝐿𝐿
∗)2

2
= .4393; 𝑀𝑀𝐿𝐿𝐴𝐴

∗ = 𝑚𝑚𝐿𝐿𝐴𝐴
∗ = .590, 𝑚𝑚𝐿𝐿𝐴𝐴

∗ − (𝑚𝑚𝐿𝐿
∗ )2

2
= .4158 and 𝑈𝑈𝐿𝐿𝐴𝐴∗ = .8555. Thus, the 

welfare impact of open access (in percent) is ∆𝑈𝑈𝐿𝐿𝐴𝐴 = −.375, and ∆𝑁𝑁𝐿𝐿𝐴𝐴 = −2.90.   

  

For 𝕃𝕃 = 5, a SC case, under open access, 𝐿𝐿𝑆𝑆𝐴𝐴 = 1.629,  𝑁𝑁𝑆𝑆𝐴𝐴 = .371, 𝑄𝑄𝑆𝑆𝐴𝐴 = .604, 𝑞𝑞𝑆𝑆𝐴𝐴 = .121,

𝑀𝑀𝑆𝑆𝐴𝐴 = 3.371, 𝑚𝑚𝑆𝑆𝐴𝐴 = .674, and 𝑈𝑈𝑆𝑆𝐴𝐴 = .560. At the optimum, 𝐿𝐿𝑆𝑆𝐴𝐴∗ = .356,𝑁𝑁𝑆𝑆𝐴𝐴∗ = 1.644,𝑄𝑄𝑆𝑆𝐴𝐴∗ =

.585, 𝑀𝑀𝑆𝑆𝐴𝐴
∗ = 4.644, and 𝑈𝑈𝑆𝑆𝐴𝐴∗ = .608 = 𝑈𝑈𝑆𝑆𝐴𝐴, with (in percent) ∆𝑈𝑈𝑆𝑆𝐴𝐴 = −7.77 percent or 20.7∆𝑈𝑈𝐿𝐿𝐴𝐴, 

and ∆𝑁𝑁𝑆𝑆𝐴𝐴 = −77.5 or 26.7∆𝑁𝑁𝐿𝐿𝐴𝐴. Thus, the welfare (NR) cost under 𝕃𝕃 = 5 is over 20 (26) times 

that under 𝕃𝕃 = 1.  

 

For 𝕃𝕃 = 10, also a SC case, 𝐿𝐿𝑆𝑆2 = 1.8, 𝑁𝑁𝑆𝑆2 = .2, 𝑈𝑈𝑆𝑆2 = .519, 𝐿𝐿𝑆𝑆2∗ = .95, 𝑁𝑁𝑆𝑆2∗ = 1.05, 𝑈𝑈𝑆𝑆2∗ = .590 

and, in percent, ∆𝑈𝑈𝑆𝑆𝐴𝐴2 = −12.1 = 32.1∆𝑈𝑈𝐿𝐿𝐴𝐴, and ∆𝑁𝑁𝑆𝑆𝐴𝐴2 = −81 = 28∆𝑁𝑁𝐿𝐿𝐴𝐴.  
 

Thus, welfare and NR losses under SC are an order of magnitude greater than under LC.  

 

    6.3. Two alternative production functions 

Robustness of results is examined here under two alternative production functions.  
 

         6.3.1. Externality as function of log𝐿𝐿    

Assume now that the production function is 
 

𝑄𝑄 = 𝐿𝐿[𝛼𝛼 − 𝛽𝛽(log𝐿𝐿)], 𝐿𝐿 > 1.         (9A) 
 

Under open access, 𝐿𝐿 = 𝕃𝕃/2, with 𝑈𝑈 = 1
2
 �𝛼𝛼 − 𝛽𝛽 �log 𝕃𝕃

2
��
1/2

. The optimal value of 𝐿𝐿 is  
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𝐿𝐿∗ = 𝕃𝕃
2
�1 − 𝛽𝛽

2𝛼𝛼−𝛽𝛽(1+2log𝐿𝐿∗)�. 
17              (10A) 

 

The welfare cost for the central value of 𝕃𝕃 under LC, HC and SC is (in percent) ∆𝑈𝑈𝐿𝐿𝐴𝐴 = −4.3, 

∆𝑈𝑈𝐻𝐻𝐴𝐴 = −17.7, and ∆𝑈𝑈𝑆𝑆𝐴𝐴 = −47.8, i.e., ∆𝑈𝑈𝑆𝑆𝐴𝐴 = 11.1∆𝑈𝑈𝐿𝐿𝐴𝐴 and ∆𝑈𝑈𝐻𝐻𝐴𝐴 = 4.1∆𝑈𝑈𝐿𝐿𝐴𝐴. Thus, the 

welfare cost for 𝕃𝕃’s central value under SC (HC) is greater by an order of magnitude than (a 

multiple of) that under LC.  

 

      6.3.2. Higher productivity (TFP) level 

The second production function is 𝑄𝑄𝜀𝜀 = 𝜀𝜀𝐿𝐿(𝛼𝛼 − 𝛽𝛽𝐿𝐿) = 𝜀𝜀𝑄𝑄, 𝜀𝜀 > 1 is TFP. Denote 𝑝𝑝
𝜀𝜀
  by 𝑝𝑝𝜀𝜀 and 𝑀𝑀𝐴𝐴

𝜀𝜀
 

by 𝐴𝐴𝑀𝑀𝜀𝜀. It is easy to see that 𝐿𝐿 and 𝑁𝑁 are independent of the value of 𝜀𝜀 as equilibria 𝑝𝑝 = 𝐴𝐴𝑀𝑀 =

𝑈𝑈𝑞𝑞
𝑈𝑈𝑚𝑚

= 𝑀𝑀
𝑄𝑄

 and 𝑝𝑝𝜀𝜀 = 𝐴𝐴𝑀𝑀𝜀𝜀 = 𝑈𝑈𝑞𝑞𝜀𝜀
𝑈𝑈𝑚𝑚

= 𝑀𝑀
𝑄𝑄𝜀𝜀

 obtain for the same value of 𝐿𝐿, and thus the same value of  𝑁𝑁 =

𝛼𝛼 − 𝛽𝛽𝐿𝐿. The same holds for optimal values 𝑝𝑝∗ = 𝑀𝑀𝑀𝑀 = 𝑀𝑀
𝑄𝑄

 and 𝑝𝑝𝜀𝜀∗ = 𝑀𝑀𝑀𝑀𝜀𝜀 = 𝑀𝑀
𝑄𝑄𝜀𝜀

. As 𝑁𝑁 = 𝑁𝑁𝜀𝜀 and 

𝑁𝑁∗ = 𝑁𝑁𝜀𝜀∗, it follows that ∆𝑁𝑁 = ∆𝑁𝑁𝜀𝜀. And as 𝑈𝑈𝜀𝜀 = 𝜀𝜀1/2𝑈𝑈 and 𝑈𝑈𝜀𝜀∗ = 𝜀𝜀1/2𝑈𝑈∗, it follows that ∆𝑈𝑈 =

∆𝑈𝑈𝜀𝜀. In other words, all the results obtained in Section 3.3 also hold in this case.   

 

 

 

 
17 𝐿𝐿∗ has no closed-form solution (as 𝐿𝐿∗ is a function of log𝐿𝐿∗). For each 𝕃𝕃, 𝐿𝐿∗ was obtained by ‘guessing’ a level of 
𝐿𝐿∗ (denoted by x), using it to obtain log𝐿𝐿∗, and using log𝐿𝐿∗ in equation (10A) to obtain a solution for 𝐿𝐿∗ (denoted by 
y), and verifying whether y = x. If not, I used a value for 𝐿𝐿∗ between x and y, and repeated the exercise until 𝑥𝑥 and 𝑦𝑦 
converged.  
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