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a ‘placebo zone’ of the running variable, where the true effects are known to be zero. 

The approach yields an optimal combination of bandwidth, polynomial, and any other 

choice parameters. It can also inform choices between classes of models (e.g. RDD versus 

cohort-IV) and any other choices, such as covariates, kernel, or other weights. We use 

the approach to evaluate changes in Minimum Supervised Driving Hours in the Australian 
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1 Introduction

Policy rules frequently create discontinuous ‘jumps’ in exposure to policies and programs.

The regression discontinuity design (RDD) has become a key tool for empirical researchers in

these settings (see e.g. Imbens & Lemieux, 2008; Lee & Lemieux, 2010; Cattaneo et al., 2020,

for overviews). In the canonical sharp RDD case, the treatment T changes discontinuously

from T = 0 to T = 1 at some threshold along the running variable X. Setting x = 0 as that

threshold, the goal is to estimate the change in the outcome Y at x = 0:

τ(x) = lim
x→0+

E[Y |X = x]− lim
x→0−

E[Y |X = x] (1)

τ(x) is commonly estimated by local polynomial regression. Researchers select some

neighbourhood of observations around x = 0 (the bandwidth) where E[YT=0|X = x] and

E[YT=1|X = x] are expected to meet the continuity assumption (Hahn et al., 2001) and

estimate the jump in Y while flexibly controlling for X above and below x = 0.

RDD is appealing because it facilitates estimation of causal effects under relatively weak

assumptions. Moreover, the assumptions for RDD have simple, testable implications (see

e.g. McCrary, 2008; Cattaneo et al., 2019). The ability to visualize RDDs in simple plots

of the running variable and outcome (Calonico et al., 2015) also gives an appealing air of

transparency to this approach. A number of related estimators extend the basic RDD. The

regression kink design (RKD) identifies causal effects by exploiting discontinuous changes

in the slope of the running variable under similar assumptions to RDD (Card et al., 2015).

Fuzzy RDD and RKD deal with situations where only the probability of treatment changes

at the threshold, or treatment is a continuous variable. Dong (2018) suggests a regression

probability jump and kink design (RPJKD) for settings where there is both a discontinuous

‘jump’ and/or ‘kink’. In many related settings it is also possible to fit a global polynomial

through the running variable and instrument the treatment using binned means (cohort-IV),
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as in Angrist and Lavy (1999).1

While theoretically appealing, when using discontinuity designs researchers face a daunt-

ing challenge in selecting a preferred estimator. The choice of bandwidth involves a difficult

trade-off between bias and variance. Researchers must also choose what order of polynomial

to use, what kernel to use, whether to include covariates, and in some applications what

discontinuity model to estimate (e.g. in situations where there is a ‘jump’ and a ‘kink’).

Sometimes it is also useful to adopt different polynomial orders on the left and the right of

the threshold, or different bandwidths. Consequently, researchers will typically have thou-

sands of potential estimators to select from, and there is no widely accepted standard for

making this choice. In a given application, estimates may vary widely depending on the

choices the researcher makes.

Various solutions to model selection have been suggested, but these typically focus on

one decision and fix other important decisions. Optimal bandwidth selection has received

a lot of attention. In economics, least squares cross validation and plug-in approaches have

dominated (Imbens & Lemieux, 2008). Cross validation methods typically select a band-

width to minimizes the mean squared error of the local polynomial fit. Ludwig and Miller

(2005, 2007) discuss an alternative approach that minimizes error at the boundary, although

ultimately reject this method for their application. Early plug-in approaches also focused

on the polynomial function’s fit, for example the rule-of-thumb approach discussed in Fan

and Gijbels (1996) (see also Lee & Lemieux, 2010). In an influential paper, Imbens and

Kalyanaraman (2012) (IK) argue that instead of focusing on the global fit of the polynomial

function, the bandwidth should minimize the asymptotic mean squared error of the treat-

ment effect (boundary) estimator (see also Ludwig & Miller, 2005). They derive a plug-in

algorithm that selects the optimal bandwidth to achieve this. Calonico et al. (2014) (CCT)

derive a bias correction to IK’s method to improve confidence interval estimation. The

1The cohort-IV approach can also be used in related situations where there is no clear discontinuity, and
yet treatment is a non-smooth function of the running variable. See for example Imbens and van der Klaauw
(1995), Bound and Turner (2002) and Cousley et al. (2017).
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IK/CCT approach is now popular in applied work.

Card et al. (2017), however, caution against using the IK/CCT approach as a default

and demonstrate through simulations that it may not perform best for a given application.2

Further, none of these approaches deals with the simultaneous modelling choices researchers

need to make. For example, the optimal bandwidth will almost always depend on the poly-

nomial order.3 There has been less theoretical development on the question of polynomial

choice. Gelman and Imbens (2019) argue that researchers should generally use local linear or

quadratic regressions because higher order terms can induce undesirable effects on the esti-

mates.4 Pei et al. (2020) are less critical of higher order terms and suggest that, conditional

on a given bandwidth and other modelling choices, researchers should calculate the implied

asymptotic mean squared error for the boundary estimator (similar in spirit to IK/CCT

for bandwidth selection). They also show, through a review of recent literature, that most

researchers simply default to using local linear estimation.

To understand how researchers are dealing with the challenges of model selection in

discontinuity designs, we conducted a review of papers published in leading journals for

applied economics research in 2019 (See Table 1 and Appendix Table D1).5 Of the 26 papers

we identified, 12 gave no formal rationale for their preferred bandwidth. Of those that did

motivate their choice, 13 used IK/CCT; however, many of these merely used the method to

‘guide’ their choice (e.g. by noting that the IK/CCT bandwidth was similar to whatever

bandwidth they ultimately used). Almost all studies conducted some kind of sensitivity

2Card et al. (2017) suggest that the regularization term used in the IK/CCT plug-in approach may be
overly punitive to large bandwidths in practice. The regularization term is used to account for the fact that
the curvature parameters for the polynomial fits – which are parameters themselves in the plug-in formula
– are unknown and must be estimated from the data.

3Hall and Racine (2015) propose a leave-one-out cross validation approach that jointly selects the band-
width and polynomial order. Their cross validation approach is subject to the issues discussed in IK.

4Gelman and Imbens (2019) point out that higher order terms can have the practical effect of giving
disproportional weighting to certain observations, are generally not selected on the basis of optimizing the
objective of boundary estimation, and can lead to misleading inference.

5We searched Econlit on 30 April 2020 using the terms “discontinuit*”, “fuzzy RD” and “regression
kink” (contained anywhere) and restricted results to the following journals: AEJ: Applied Economics; AEJ:
Economic Policy ; American Economic Review ; Journal of Health Economics; Journal of Human Resources;
Journal of Labour Economics; Journal of Political Economy ; Journal of Public Economics; Quarterly Journal
of Economics; Review of Economic Studies; and Review of Economics and Statistics.
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Table 1: Discontinuity studies published in leading journals in 2019

Sharp RDD Fuzzy RDD Cohort-IV

Papers using this model 15 10 2
Method for bandwidth choice

No stated method 6 4 2
IK/CCT 8 6 0

Method for polynomial choice
No stated method 10 9 2
Local linear polynomial as baseline 11 8 -

Robustness tests
Varied bandwidth 15 9 1
Varied polynomial 13 5 1

Notes: One paper used both sharp and fuzzy RDD as main specifications, so columns add to more than the
sample size (n = 26). Papers that use spatial or multivariate RDD are included in Sharp RDD or Fuzzy RDD
(depending on whether the treatment had complete or partial take-up). No papers used RKD; however, one
cohort-IV study did use kink variation as an instrument. See Appendix Table D1 for a more detailed overview.

testing by varying the bandwidth. Only five studies provided any justification for their

chosen order of polynomial. Most studies (18) used local linear regression and typically

added higher order terms as a robustness check.6

Overall, we surmise that there is no consensus among applied researchers about how to

select a preferred model in discontinuity settings. In many cases, researchers seem to be

selecting a baseline model either arbitrarily or based on possible defaults like local linear

regression. The focus away from emphasizing a preferred model and towards sensitivity

analysis may be problematic in certain applications. For example, if the true data generating

process (DGP) for the running variable is quadratic, then estimates may be sensitive to local

linear estimation. But the reverse will not be true (higher order terms will simply decrease

precision but not bias estimates if the DGP is linear). This could lead to discounting of

evidence from studies with non-linear DGPs. Further, if there is no clear preferred model,

there is also no clarity around the confidence interval for the treatment effect. More generally,

the emphasis on robustness tests means that we may be ‘setting the bar too high’ for what

constitutes credible evidence in RDD and related contexts.

6Other common robustness checks included adding covariates, different kernels, ‘donuts’ around the
threshold and falsification tests using placebo cut-off points.
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In this paper we propose a new method for model selection with broad application. Our

method allows researchers to select an optimal combination of bandwidth, polynomial, and

any other choice parameters he/she wants to consider. It can also be used to choose between

competing models (e.g. RDD versus cohort-IV) in certain settings and can accommodate

non-linear dependent variables. It relies on using observations of the running variable away

from the discontinuity (the placebo zone) as a training ground to assess the performance of

candidate models where a ‘pseudo-treatment’ effect is known to be zero. The estimator that

minimizes the preferred performance criterion (e.g. lowest root mean squared error) across

all pseudo-treatments is then selected as the ‘best’ specification for estimating the actual

treatment effect. Our approach is applicable in settings where the point of discontinuity can

be reasonably thought of as being randomly chosen from the domain of the running variable..

We are not the first to recognize the value in placebo zone data. Imbens and Lemieux

(2008) suggest testing for jumps at specific psuedo-thresholds as a general test for specifica-

tion error, a common practice in applied work. Wing and Cook (2013) use the placebo zone

to create a kind of differences-in-differences structure, which they argue can improve preci-

sion and allow one to learn something about the treatment effect away from the threshold.

Gelman and Imbens (2019) use results from the distributions of placebo estimates to inform

general advice about higher order terms in RDD studies. Closest to our work is Ganong and

Jäger (2018), who suggest a randomization inference approach to hypothesis testing based

on the distribution of pseudo-treatment effect estimates (we propose extensions to this pro-

cedure). We extend all of this work by using the placebo zone for ex ante model selection,

which to the best of our knowledge is a new idea.

Our approach also has parallels with studies that use estimates from randomized con-

trolled trials (RCTs) to assess RDD estimators. A prominent example is Hyytinen et al.

(2018) who use one such RCT-RDD pair, and conclude that CCT bias-corrected estimators

perform well in that application.7 In this literature, as in our approach, the assessment

7See Chaplin et al. (2018) for a review and meta-analysis of similar studies.
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rests on knowing the true parameter that the RDD estimator targets. In that literature,

the target is the estimate generated by an RCT. In our case, the target estimate is zero,

since there is no actual treatment. Our approach builds on the RCT-RDD approach in three

important ways. First, rather than making a single comparison of RDD to RCT estimates,

our approach assesses each candidate estimator’s performance repeatedly – at hundreds or

thousands of placebo thresholds throughout the placebo zone. Second, these comparisons

serve to inform the choice of estimator to apply within the same context, to estimate the

effect of a real treatment using the same data, in a range of the running variable that borders

the placebo zone. There is no reason to believe that the best-performing estimator will per-

form best in other unrelated contexts where the DGP may be completely different, or with

other sources of data. Thirdly, the target parameter in the RCT-RDD literature is subject

to sampling bias, whereas the placebo-zone target of zero is known with certainty.

We demonstrate our approach with a novel evaluation of a policy designed to reduce

motor vehicle accidents (MVAs) for young drivers. The policy requires that learner drivers

meet a minimum supervised driving hours (MSDH) mandate before being able to drive inde-

pendently; a common requirement in jurisdictions using graduated driver licencing systems.8

We are among the first to causally evaluate the effect of MSDH on MVAs.

In New South Wales, Australia, policy rules created two discontinuities whereby young

drivers needed to complete either 0, 50 or 120 MSDH depending on their birth cohort and

date of obtaining license. This setting is particularly interesting for demonstrating our

method because we can use it to not only select model parameters, but also model type. There

are apparent first-stage discontinuities in both the level and slope of treatment. We could

estimate a global polynomial model like Angrist and Lavy (1999) (cohort-IV), RKD, RDD,

or RPJKD, and it is a priori unclear which approach we should adopt. Further, within each

of these models we need to make important functional form and bandwidth choices. In this

setting, there are also good reasons to consider models with both asymmetric bandwidths

8Countries implementing strict graduated driver licensing systems include Australia, Canada, New
Zealand and the U.S. See L. J. Bates et al. (2014) for a broad overview of these systems.
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and asymmetric polynomial orders. Institutional details prevent long bandwidths on the

left (but not on the right) of the threshold. Institutional details also result in complete

compliance on the right, but strong non-linearity on the left, of the threshold. In total

we consider almost 10,000 different estimators considering model type, functional form and

bandwidth.

Somewhat surprisingly, our ‘best’ estimator is a month-of-birth cohort-IV with linear

trend. A mixed order RPJKD also performs well, and indeed performs best when asymmetric

bandwidths are allowed. Strikingly, the root mean squared error is about five times greater

across the placebo zone if we use the bandwidths suggested by CCT rather than our preferred

bandwidths. In a different application, Card et al. (2017) come to a similar conclusion,

drawing on Monte Carlo simulations.

We find that going from 0 to 50 MSDH lowers the probability of an MVA in the first

year of independent driving by 1.4 percentage points (21%). This estimate is robust to a

randomization inference procedure similar to Ganong and Jäger (2018), even after adjusting

for serial correlation in the distribution of the placebo estimates. In further analysis we

find that the reduction in MVAs is not driven by people delaying their licensing, is similar

magnitude if we restrict attention of more serious MVAs, is experienced by both males and

females, and disappears in the second year of independent driving. We also find that going

from 50 to 120 MSDH does not lower MVAs, which is consistent with strongly diminishing

returns at this level.

To further demonstrate our approach, we re-evaluate evidence on the effect of Head Start

on child mortality (Ludwig & Miller, 2007) and the minimum legal drinking age on drinking

behavior (Lindo et al., 2016). For both applications, the best performing model is linear

RDD with a relatively long bandwidth (much longer than in the original papers) and CCT

estimators perform considerably worse than our best models in the placebo zone.

We recommend that researchers consider using our approach whenever feasible. This

means settings where the researcher has access to a sufficiently wide placebo zone and where
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the threshold is plausibly random with respect to the underlying DGP (we provide guidance

on how this assumption could be assessed in practice). We think these conditions would be

met in a great number of discontinuity settings; in fact, settings where there are insufficient

placebo observations can be thought of as the subset of discontinuity studies where data

constraints rule out consideration of large bandwidths.

The remainder of the paper is structured as follows. Section 2 describes the details of

our main application and Section 3 describes the data. In Section 4 we illustrate in detail

how the placebo-zone approach is applied in our context. Section 5 presents results which

adopt the chosen estimators. Section 6 presents a re-evaluation of Head Start and minimum

legal drinking age studies. Section 7 concludes and discusses practical considerations and

recommendations for using the placebo zone approach.

2 An application: Minimum supervised driving hours

and motor vehicle accidents

2.1 Overview

Globally, MVAs are the leading cause of death for children and young adults, with more than

1.3 million people aged 5-29 years dying from MVAs each year (WHO, 2018). To reduce

the fatality rate for young drivers, governments around the world have introduced graduated

driver licensing (GDL). GDL limits the exposure of young drivers to risky situations with

the goal of better preparing them for unsupervised driving. It typically operates in three

stages: a learner stage in which driving is supervised; a provisional stage in which driving is

unsupervised but subject to restrictions; and an unrestricted stage. To progress, drivers are

required to demonstrate competence by passing written exams and practical driving tests.

During the learner stage drivers usually need to complete a mandatory number of su-

pervised driving hours – the MSDH requirement. Most U.S. states mandate between 40-60
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hours (IIFHS, 2020). In Australia, the three most populous states (New South Wales (NSW),

Victoria and Queensland) require 100-120 hours.

It is generally believed that GDL as a system has reduced MVAs for young drivers

(McKnight & Peck, 2002; Foss, 2007; Shope, 2007); however, there is little evidence on

the independent effects of different components of GDL. Typically researchers rank GDL

systems by some measure of ‘strictness’ and use state variation in regulatory settings to

identify policy effects (e.g. Dee et al., 2005; Chen et al., 2006; Traynor, 2009; Trempel, 2009;

Karaca-Mandic & Ridgeway, 2010; Masten et al., 2011; Lyon et al., 2012; Steadman et al.,

2014).9 Results consistently show that states with stricter GDL systems experience lower

rates of fatalities and MVAs involving injury among teenage drivers.

We are aware of only one study (Gilpin, 2019) that attempts to estimate the independent

causal effect of MSDH on MVAs.10 Gilpin (2019) uses a difference-in-differences design with

variation between and within U.S. states and finds going from no MSDH requirement to

having some MSDH requirement counter-intuitively increased fatalities overall, but had no

effect per licensee.

2.2 Policy environment and causal variation

NSW adopted GDL on 1 July 2000. Prior to this, a licensing system with GDL features

operated. Under the pre-July 2000 system, the minimum age for obtaining a learner license

was 16 years, there was a minimum six-month learner period and one year provisional license

period, and the minimum age for obtaining a provisional license was 17 years. There was

no MSDH requirement. The introduction of GDL resulted in two restricted provisional

license periods – provisional 1 (P1) and provisional 2 (P2), which remain in place today.

It also resulted in a large increase in MSDH – from 0 to 50 hours. Importantly, the six-

9Moore and Morris (2020) identify the causal effect of one common component of GDL – night-time
passenger restriction – on MVAs in NSW, Australia. Using variation in MVAs by time-of-day and a difference-
in-differences design, they find large reduction effects.

10Trempel (2009) and McCartt et al. (2010) estimate models that control for MSDH in U.S. state-level
studies but do not control for state fixed-effects or time trends. O’Brien et al. (2013) study an increase from
0 to 30 MSDH in Minnesota using a before-after design.
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month minimum learner period and 17 years minimum age for obtaining a provisional license

remained in place.

Although the 1 July 2000 MSDH increase was not implemented in isolation, it was

implemented in such a way that people born up to one year before 1 July 1984 experienced

the same provisional licensing conditions as those born after this date. This is because

people born within one year prior to 1 July 1984 turned 16 before the introduction of GDL

(meaning they could obtain their learner license before 1 July 2000 and avoid the increase

to MSDH) but turned 17 after 1 July 2000, meaning they could not avoid the new GDL

provisional regulations. Consequently, the GDL experience of people born within one year

of 1 July 1984 only differs with regards to the 50 MSDH requirement.

The GDL system was expanded on 1 July 2007. The most significant changes were pas-

senger restrictions for night-time driving for P1 drivers, a zero-tolerance policy for speeding

(immediate three-month suspension of license) and an increase in MSDH from 50 to 120

hours (minimum 20 hours night-time driving). There was also an increase to the minimum

learner period from six to 12 months. In Table 2 we highlight the main difference between

the pre- and post-July 2007 regimes (see L. Bates, 2012, for a detailed comparison). As with

the 1 July 2000 policy changes, the 17 years minimum age for obtaining a provisional license

meant that people born up to one year prior to 1 July 1991 (meaning they would turn 17

after 1 July 2007) could obtain their learner license before 1 July 2007 and avoid the MSDH

increase but would be subject to the same provisional regulations as those born after 1 July

1991.11

Our empirical analysis exploits the fact that people born just before 1 July 1984 (1991)

are likely to be statistically similar to those born just after 1 July 1984 (1991) but differ

in their MSDH experience. Since people often delay getting their license until sometime

after their 16th birthday, there is a positive slope in the probability of treatment on the

11Because the minimum learner period also increased at the same time as MSDH in 2007, these policy
effects may be confounded in our analysis. To separate these effects and isolate the impact of increased
driving practice, we consider the impact of the policy change on time spent on the learner license and how
our results change when we control for this.
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Table 2: NSW GDL characteristics

1 July 2000—30 June 2007 From 1 July 2007

MSDH 50 120a

Min. learner age 16 years 16 years
Min. learner period 6 months 1 year
Min. P1 age 17 years 17 years
Min. P1 period 1 year 1 year
P1 restrictions Max speed (90km/h); 4

demerit pointsb; engine
restrictionsc

Max speed (90km/h); 4
demerit points; engine
restrictionsc; night-time
passenger restrictions; imme-
diate license suspension for
speeding

Blood alcohol limit 0.02 (0.00)d 0.00

Notes: aIn NSW drivers receive financial penalties and demerit points for driving offences. Drivers who ac-
crue a critical number of demerit points have their license suspended (4 for P1 drivers, 12 for unrestricted
license drivers). bMinimum 20 hours at night. In December 2009 new rules were introduced that allowed
learners to convert hours with a qualified driving instruction at a ratio 3:1 with regular supervised driving
(limited to 10 hours). cSince 11 July 2005 P1 drivers have been prohibited from driving certain high-powered
vehicles. dLowered to this on 3 May 2004.

left-hand-side of the threshold, while everyone is treated on the right-hand-side.

2.3 Compliance

We do not observe learner driving hours so cannot assess compliance directly. However,

the limited Australian evidence supports high compliance with MSDH regulations. For

example, surveys of newly licensed drivers found 98.2% complied with NSW’s 50 MDSH

requirement (L. Bates et al., 2010), while only 12.8% admitted to rounding up hours and 4%

to including additional hours not undertaken in Queensland (Scott-Parker et al., 2011). A

survey by L. Bates et al. (2014) also found strong agreement from parent supervisors about

the accuracy of recorded hours.

One reason to expect high compliance in our setting is because learner drivers are required

to record all journeys in a log book, with each entry signed off by the supervising driver (not

a P1 or P2 driver). If there is evidence of falsification the learner may be barred from

taking the practical driving test for up to six weeks and fined (fines also apply to supervising
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drivers).

A related question is whether the policy is binding at all. L. Bates et al. (2010) compared

new drivers in NSW to Queensland when NSW had a 50 MSDH requirement and Queensland

had none. The average self-reported hours was only slightly higher in NSW (73 compared to

64). However, while 98.8% of drivers reported completing at least 50 hours in NSW, more

than half in Queensland reported doing less than this. A 50 MSDH requirement would have

therefore been binding for a significant portion of learners in Queensland. It is important

to note that any effects of increased MSDH we estimate will be driven by the subsample of

learners who would have completed less than the minimum requirement in the absence of

the policy.

3 Data

Our data are individual level administrative records supplied by the NSW Centre for Road

Safety (CRS). Driver licencing data come from the universe of licensing history for NSW

drivers born from 1 January 1980. For these individuals, we know their age in (completed)

weeks at the time they obtain their license. The MVA data are from a separate dataset

containing the universe of police reported MVAs from 1 January 1996 to 26 October 2017.

MVAs are accidents occurring on NSW roads in which at least one vehicle was towed away

or one of the occupants was injured or killed, which by law must be reported to NSW Police

(we exclude motorcycle crashes from the analysis). We link the license and MVA datasets

using a unique identifier provided by CRS. Our study received ethics approval from the UTS

Human Research Ethics Committee (Application number ETH17-1547).

3.1 Main variables

Our outcome variables are indicators for whether an MVA occurred within certain periods.

We focus primarily on the probability a person was the driver in an MVA within one year
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of obtaining his/her P1 license (during which drivers are typically aged 17-20 years). The

one year criterion matches the mandatory time period before a P1 driver can take the test

to become a P2 driver, and therefore reflects an expected period of progression in driver

safety. We also find little evidence that the MSDH reforms improve driver safety beyond

this period. In further analysis we limit attention to MVAs that resulted in injury to a driver

or passenger or resulted in fatality.

Our running variable, date of birth (DOB), is constructed as follows. For each entry a

person has in the license dataset (for example, when they renew their license or move to

a different license class), we observe that person’s age in weeks on that day. That means

that for people with one entry, we know their precise DOB within 6 days. For people with

multiple entries we can narrow that window down; for more than 50% of people we can

narrow it down to within three days. We use the midpoint of the minimum and maximum

possible DOB as our variable, considering all licensing history data available to us.

See Appendix Figure A1 for density plots for DOB. Further details on how the data are

constructed are provided in Appendix B.

3.2 Descriptive Statistics

Sample means for the main variables in our study are in Table 3. We focus on two birth

cohorts, centred ±365 days from the key dates for our two policy reforms. In Appendix

Figure A2 we plot the variables by DOB for all years.

MVA incidences are generally lower for younger birth cohorts, although this is weaker

for more serious MVAs that involve injury. For the circa 1 July 1984 cohort, the probability

of any MVA within 12 months of obtaining P1 is 5.7%. This falls to 3.8% for the next 12

months, consistent with young drivers becoming safer with age and experience. The average

age at which people obtain their learner license is 17 years, a full 12 months later than

they become eligible. However, the mass of observations are just after the 16th birthday

(Appendix Figure A3). Most people obtain their license shortly after they become eligible.
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Table 3: Sample means by birth cohort

1 July 1983–30 June 1985 1 July 1990–30 June 1992

MVA 1-year 0.057 0.044
MVA 1-2 years 0.038 0.028
Injury 1-year 0.022 0.020
Fatality 1-year <0.000 <0.000
Age got L’s 16.970 16.700
Age got P1 18.451 18.538

n 154,524 160,301

Notes: this table shows sample means of the key variables for observations within each of the two ‘treatment
zones’ –. i.e. people born within one year of 1 July 1984, and 1 July 1991, respectively

Similarly, there is a large mass who obtain their P1 license shortly after their 17th birthday,

while the average is 18.5 years for both birth cohorts.

4 Model selection using a ‘placebo zone’

The main aim of this paper is to demonstrate a new approach for model selection. In this

section, we describe this approach in detail. We do this in the context of our application

– estimating the effectiveness of learners’ permit policy changes in NSW. We begin by de-

scribing the many credible candidate models which could be applied to estimate the effect of

the policy changes. We then describe the ‘placebo zone’. This is a set of 2,556 consecutive

DOBs (from 1 July 1984 to 30 June 1991). Within this zone, there is no reason to suspect

any systematic relationship between DOB and the outcome variables (MVAs). It therefore

provides an opportunity for testing the performance of candidate models in estimating the

true treatment effect within this zone (which is zero). Next, we summarize the performance

of the candidate models within this zone. We then describe how the placebo zone estimates

can also be used for an alternate inference procedure. Finally, we also consider the impli-

cations of various types of treatment effect heterogeneity which we impose into the placebo

zone data.
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4.1 Candidate models

The first-stage relationship between DOB and holding a ‘new’ learner’s permit following the

2000 reform (0 to 50 MSDH) is shown in Figure 1 (see Appendix Figure A4 for the 2007

reform, and Figure A5 for scatter plots showing the reduced form for both reforms). Both

panels draw on the same underlying data, differing only in the bin-size used in the plots.

Panel A uses a ‘small’ bin-size of 2 days, while Panel B uses a ‘large’ bin size of 30 days.

Figure 1: First-stage relationship between DOB and 50 MSDH treatment
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Notes: Both panels shows the mean value of the ‘treatment’ variable, by DOB. Treatment is
defined as obtaining a first learner’s permit on or after 1 July 2000, thereby subject to dif-
ferent MSDH requirements. The only difference between panels is the size of the DOB ‘bins’.

Figure 1 shows complete compliance to the right of 1 July 1984.12 It was not possible for

anyone born on this date or after to hold an ‘old’ learner’s permit due to administrative rules.

The pattern on the left side is more complicated. Both panels show a monotonic upward,

non-linear pattern. Panel B suggests the presence of a discontinuity at the threshold. In

contrast, Panel A suggests no discontinuity, but a kink, caused by a very steep rise on the

left side of the threshold.

This figure illustrates that many different estimators could potentially be used to esti-

mate the effect of the reform. Candidate estimators could exploit the apparent kink, or

12While there appears to be very minor non-compliance, this is due to imprecision around DOB, as
described in Section 3. We drop observations where we are uncertain about treatment status in our regression
analysis.
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the approximate discontinuity, or both. Or, they could instead employ a between-cohort-

IV strategy. Each approach could be implemented using various alternate functional form

assumptions (i.e. orders of polynomial, which need not be the same on each side of the

threshold). Finally, one can choose between many bandwidths.

We first consider a total of 4,634 alternate candidate specifications, each with symmetrical

bandwidth around the threshold. This consists of 14 different models, estimated using each

possible bandwidth in the range of 35 to 365 days. In principle, we could consider larger

bandwidths as well. This is prevented by practical considerations in our application. People

born before 1 July 1983 were eligible for driver’s licenses which differed in other important

ways. Therefore we need an estimator which does not use data on people born before that

date, hence making 365 days the largest feasible bandwidth.

Denoting outcome (i.e. MVA 1-year indicator) for person i by Yi, DOB by Xi (centred

at zero around 1 July 1984), treatment (obtained learner’s permit after policy change) by

Ti and an indicator for DOB ≥ 1 July 1984 (1991) by Di, the first 11 candidate models are

fuzzy RDD, RPJKD and RKD estimators. Each of these can be treated as instrumental

variable models, with the structural equation given by Eq. 2 and first-stage given by Eq. 3.

Full details on the estimation equations are in Table 4.13

Yi = α + βTi + f(Xi, Di) + ei (2)

Ti = π0 + f(Xi, Di) + g(Xi, Di) + εi (3)

1. Model 1 is a conventional (fully-interacted) linear RDD.

2. Model 2 is an RDD model with a linear fit on the right side of the threshold, and a

quadratic on the left. This is motivated by the first-stage relationship in Figure 1,

13We only consider a uniform kernel in our application, although it would be straightforward to vary the
kernel along with other modelling dimensions. In practice, the choice of kernel typically has little influence
on the estimates (Lee & Lemieux, 2010).
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characterized by a clearly nonlinear relationship on the left, and perfect linearity on

the right. We refer to this as a ‘mixed polynomial’ specification.

3. Model 3 is a conventional (fully-interacted) quadratic RDD.

The next four candidate models exploit both the discontinuity and the kink for identifi-

cation. These are RPJKD estimators of the following form:

4. Model 4 is a conventional (fully-interacted) linear RPJKD.

5. Model 5 is a quadratic RPJKD, in which the quadratic term is not interacted with the

threshold indicator.

6. Model 6 is an RPJKD model with a linear fit on the right side of the threshold, and a

quadratic on the left.

7. Model 7 is a fully-interacted quadratic RPJKD.

Four more candidate models adopt conventional Regression Kink Designs:

8. Model 8 is a conventional (fully-interacted) linear RKD.

9. Model 9 is a quadratic RKD, in which the quadratic term is not interacted with the

threshold indicator.

10. Model 10 is an RKD model with a linear fit on the right side of the threshold, and a

quadratic on the left.

11. Model 11 is a fully-interacted quadratic RKD.

The remaining three candidate models are month-of-birth cohort-IV models, which ex-

ploit between-cohort variation in the probability of ‘treatment’. Denoting month-of-birth

fixed effects by θm, for these models, the first-stage becomes:

Ti = π0 + f(Xi) + g(Xi, θm) + εi (4)
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12. Model 12 assumes a linear secular relationship between DOB and the outcome variable.

13. Model 13 assumes a quadratic secular relationship between DOB and the outcome

variable.

14. Model 14 assumes a cubic secular relationship between DOB and the outcome variable.

4.2 The placebo zone

The ‘placebo zone’ is the set of DOBs between 1 July 1984 and 30 June 1991, inclusive.

There were no apparent major licencing policy changes which were likely to have affected

MVAs in a way that depends on DOB within this zone.14 Figure 2 shows the MVA rate by

month of birth within this zone (in 30 day bins), with a lowess fit. Generally, the pattern is

relatively smooth, with a slight downward trend, apart from perhaps the first 5 months.

Within this zone, we create placebo treatments in a way that mimics the true treatment

selection process. For example, in the first placebo, persons are deemed treated if they

obtained their license on or after 1 July 2001. The first-stage relationship between DOB and

this placebo treatment is shown (in 2-day bins) in Figure 3, with a 365 day bandwidth around

the DOB threshold of 1 July 1985. This relationship closely resembles the true treatment

profile around the 1 July 1984 DOB, which we show in Figure 1. Similar patterns are found

for the other placebo DOB thresholds in this zone.

After collapsing to DOB-level (and weighting by cell-size), we estimate the placebo treat-

ment effect (which we know to be zero and constant across entities) using each of the 4,634

candidate models.15 We repeat this for all 1,826 placebo treatment thresholds, and summa-

rize the performance of each candidate model.

14Policy changes that may have affected MVAs in our window are lowering the Blood Alcohol Limit from
0.02 to 0 (3 May 2004), engine restrictions (11 July 2005) and changes to the GDL system that occurred
on 1 July 2007 for P1 drivers (see Table 2), in particular night-time passenger restrictions. However, days
exposed to these policies is a smooth function of DOB (see Appendix Figure A6).

15The results are almost identical when uncollapsed microdata are used instead, but estimation is much
faster with collapsed data.
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Table 4: Candidate model equations

Model Description f(.) g(.)

RDD models
1 RDD - linear f(.) = γ1Xi + γ2XiDi g(.) = π1Di

2 RDD - mixed polynomial f(.) = γ1Xi + γ2XiDi + γ3X
2
i (1−Di) g(.) = π1Di

3 RDD - quadratic f(.) = γ1Xi + γ2XiDi + γ3X
2
i (1−Di) + γ4X

2
iDi g(.) = π1Di

RPJKD models
4 RPJKD - linear f(.) = γ1Xi g(.) = π1Di + π2XiDi

5 RPJKD - quadratic f(.) = γ1Xi + γ2X
2
i g(.) = π1Di + π2XiDi

6 RPJKD - mixed polynomial f(.) = γ1Xi + γ2X
2
i (1−Di) g(.) = π1Di + π2XiDi

7 RPJKD - interacted quadratic f(.) = γ1Xi + γ2X
2
i (1−Di) + γ3X

2
i g(.) = π1Di + π2XiDi

RKD models
8 RKD - linear f(.) = γ1Xi g(.) = π1XiDi

9 RKD - quadratic f(.) = γ1Xi + γ2X
2
i g(.) = π1XiDi

10 RKD - mixed polynomial f(.) = γ1Xi + γ2X
2
i (1−Di) g(.) = π1XiDi

11 RKD - interacted quadratic f(.) = γ1Xi + γ2X
2
i + γ3X

2
i (1−Di) g(.) = π1XiDi

Birth cohort-IV models
12 Birth cohort-IV - linear f(.) = γ1Xi g(.) = θm
13 Birth cohort-IV - quadratic f(.) = γ1Xi + γ2X

2
i g(.) = θm

14 Birth cohort-IV - cubic f(.) = γ1Xi + γ2X
2
i + γ3X

3
i g(.) = θm

Notes: This table summarizes the functional forms of the models included in the placebo zone trials in our main application. The functions f(.) and
g(.) are components of the full specifications shown in equations 2, 3, and for models 12-14, equation 4.
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Figure 2: Trend in MVAs by DOB in the placebo zone
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Notes: The plot shows the proportion of people who crashed within one year of receiving a provisional
drivers license (the main outcome variable in the analysis) by DOB within the placebo zone. The plot
uses 30-day bins of DOB.

4.3 Model performance in the placebo zone

Table 5 summarizes the performance of each candidate model. It would not be practical to

report on the performance of all 4,634 candidates. Instead we show only the results for the

bandwidth which yields the lowest root mean squared error (RMSE) for each model type.

The first clear feature of this table is that for every model considered, large bandwidths (365

days in all but one case) yield the smallest RMSEs, compared with smaller bandwidths.

Secondly, most models have appropriate coverage rates.

In our application, four models stand out with the lowest RMSE. The best performing

model (RMSE = 0.0051) is ‘Model 12’ – the month-of-birth cohort-IV model with a linear

20



Figure 3: Placebo first-stage between DOB and obtained learner permit after 1 July 2001
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Notes: This scatter plot is based on Figure 1 Panel A. Here, however, the range of DOB is shifted by
one year, and so is the definition of ‘treatment’, which is a function of date received first Ls.

trend. This is closely followed by ‘Model 6’ (RMSE = 0.0052) – the RPJKD with mixed

polynomial fit (quadratic on the left and linear on the right). Next are the RKD with

mixed-polynomials (RMSE = 0.0057) and the linear RPJKD (RMSE = 0.0060). All four

have similarly good coverage (at least 93.6%), and small average bias (0.001 at most).

We also consider a model-averaging approach. It is defined as the weighted average of the

estimates from the 14 candidate models (each with full 365 day bandwidth). The weights

are set to the inverse of the MSE of each candidate model. The performance of this weighted

average estimator is also shown in Table 5. Whilst its performance is good, its RMSE is

higher than Models 12 and 6. The coverage of this estimator is not shown as its variance

has not been derived.
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Table 5: Candidate model performance in the placebo zone

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0083 365 0.962 -0.0004
2 RDD - mixed polynomial 0.0199 365 0.921 0.0014
3 RDD - quadratic 0.0230 365 0.927 0.0015
4 RPJKD - linear 0.0060 365 0.936 0.0010
5 RPJKD - quadratic 0.0073 365 0.980 -0.0005
6 RPJKD - mixed polynomial 0.0052 365 0.992 0.0000
7 RPJKD - interacted quadratic 0.0132 365 0.938 0.0005
8 RKD - linear 0.0096 355 0.910 0.0028
9 RKD – quadratic 0.0179 365 0.953 0.0019
10 RKD - mixed polynomial 0.0057 365 0.984 0.0002
11 RKD - interacted quadratic 0.0177 365 0.950 0.0019
12 birth cohort-IV - linear 0.0051 365 0.946 0.0006
13 birth cohort-IV - quadratic 0.0070 365 0.987 -0.0007
14 birth cohort-IV - cubic 0.0124 365 0.937 0.0001
WA Inv-MSE weighted average 0.0055 365 n.d. 0.0003
C1 RDD conventional 0.0340 117 0.966 0.0012
C2 RDD bias corrected 0.0443 117/184 0.939 0.0015
C3 RKD conventional 0.0346 136 0.997 0.0014
C4 RKD bias corrected 0.0415 136/202 0.999 0.0019

Notes: This table summarizes the performance of each candidate model within the placebo zone. The key
statistic is the RMSE of estimated treatment effects. There are 1,826 treatment effect estimates for ev-
ery model, one for each placebo-zone threshold. The true treatment effect is known to be zero throughout
the placebo zone, so zero is the target parameter for every estimator. With the exception of WA and C1-
C4, every candidate model is trialled repeatedly with symmetric bandwidths ranging from 30 to 365 days.
For each model, results from the bandwidth which yields the lowest RMSE are shown. In addition to the
14 main models, the model labelled WA is an estimator which (for each placebo-zone repetition) uses the
inverse-MSE-weighted average of the estimates from the 14 main models, using each of those model’s re-
spective optimal bandwidth. Unlike the other models, those labelled C1-C4 use a CCT bandwidth selection
procedure and default settings in Stata’s -rdrobust- command.

The final four rows of Table 5 summarize the performance of four estimators proposed

by CCT, and implemented using Stata’s -rdrobust- command. These are conventional, and

bias-corrected estimates using RDD and RKD, respectively.16 The ‘optimal’ bandwidths for

these estimators are determined within rdrobust, rather than the placebo zone procedure

that we adopt for the other estimators.17 As seen in the table, these bandwidths are much

16The results shown are for models estimated on collapsed microdata. As with the other estimators
considered, the results with collapsed (DOB) data are very similar.

17More precisely, the CCT bandwidths shown in Table 5 are the average of bandwidths selected by rdrobust
through the placebo zone.
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smaller than the others. The key result, however, is that the performance of these estimators,

as measured by RMSE, is worse than any of the other candidate models, and an order of

magnitude worse than the best performing candidate models. This is consistent with the

findings of Card et al. (2017)’s RKD Monte Carlo simulations.

4.4 Incorporating asymmetrical bandwidths

In every model tested on the placebo zone thus far, we have followed conventional practice

and imposed the same bandwidth on the left and right sides of the threshold. Here we explore

whether model performance can be improved by allowing for asymmetric bandwidths.

In particular, we have so far capped the bandwidth at 365 days on each of the thresholds.

This is motivated by practical constraints in our application. Any more than 365 days to the

left of the 1 July 1984 threshold would take us into territory where other important policy

changes were implemented in a way that relates systematically with DOB. But we do not

have the same issue on the right side of the threshold. Similarly, for the 1991 threshold,

we have no constraints in the left side, though data constraints prevent us from considering

bandwidths greater than 365 days on the right.18

We now repeat the placebo-zone model selection procedure for all 14 candidate models

using two similar procedures.

1. We fix the bandwidth to 365 days on the left, whilst allowing the bandwidth to vary

between 365 days and 730 days on the right. This will be informative for model

selection in our analysis of the 2000 reform. The number of placebo thresholds in this

exercise is 1,461, due to the need to include a larger maximum bandwidth.

2. We fix the bandwidth to 365 days on the right, whilst allowing the bandwidth to vary

between 365 days and 730 days on the left. This will be informative for model selection

18The constraint is due to the fact that drivers who obtain their P1 license after age 25 are dropped from
the sample because they are not required to meet the MSDH requirement (see Appendix B). We cannot
impose this constraint consistently on the RHS of the 2007 reform because the end-date for our license data
mean we do not always observe whether people got their P1 license by age 25.
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in our analysis of the 2007 reform. The number of placebo thresholds is 1,461.

The results for Version 1 of this exercise are summarized in Table 6. It shows that

performance is improved considerably for every model by allowing larger bandwidths on the

right. In some cases, RMSE is reduced by more than 50%. The optimal right-side bandwidth

varies considerably, from 550 up to the 730 day limit. Model 6 is the best performing model,

with an optimal RHS bandwidth of 550 days. This is the best performing estimator amongst

all candidates for estimating the effect of the 2000 reform. The weighted-average estimator,

shown in the lowest row, does just as well as Model 6. Models 12, 4 and 10 continue to

perform well.

Table 6: Candidate model performance in the placebo zone V1: Asymmetric bandwidths

Model Description RMSE Optimal RHS BW Coverage Bias

1 RDD - linear 0.0069 550 0.958 -0.0005
2 RDD - mixed polynomial 0.0186 660 0.942 0.0016
3 RDD - quadratic 0.0203 710 0.930 0.0013
4 RPJKD - linear 0.0046 670 0.910 0.0022
5 RPJKD - quadratic 0.0059 710 0.985 0.0001
6 RPJKD - mixed polynomial 0.0039 550 0.996 0.0005
7 RPJKD - interacted quadratic 0.0056 720 0.993 0.0005
8 RKD - linear 0.0059 730 0.879 0.0031
9 RKD - quadratic 0.0166 730 0.910 0.0070
10 RKD - mixed polynomial 0.0043 730 1.000 0.0006
11 RKD - interacted quadratic 0.0067 730 0.997 0.0008
12 birth cohort-IV - linear 0.0042 670 0.912 0.0020
13 birth cohort-IV - quadratic 0.0056 720 0.998 -0.0003
14 birth cohort-IV - cubic 0.0060 700 0.990 -0.0004
WA Inv-MSE weighted average 0.0039 As above n.d 0.0010

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. The
only difference is the set of bandwidths considered. The left side bandwidth is fixed at 365 days, the right
side bandwidths considered range from 365 days to 730 days. As in Table 5, results are shown for the band-
widths which yield the lowest RMSE for each model. There are 1,461 treatment effect estimates for every
model, one for each placebo-zone threshold. The smaller number of repetitions is a result of the larger max-
imum bandwidth considered.

The results for Version 2 of this exercise are summarized in Table 7. They are similar

to those of the previous exercise – models 12, 10 and 6 continue to perform well. Optimal

bandwidths vary, but are generally considerably larger than the baseline exercise. Model 12
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has the lowest RMSE, with an optimal LHS bandwidth of 560 days. This is the single best

performing specification amongst all candidates for estimating the effect of the 2007 reform.

Table 7: Candidate model performance in the placebo zone V2: Asymmetric bandwidths

Model Description RMSE Optimal LHS BW Coverage Bias

1 RDD - linear 0.0049 660 0.986 -0.0009
2 RDD - mixed polynomial 0.0095 730 0.979 0.0020
3 RDD - quadratic 0.0122 730 0.977 0.0019
4 RPJKD - linear 0.0047 690 0.987 -0.0005
5 RPJKD - quadratic 0.0041 610 0.999 -0.0009
6 RPJKD - mixed polynomial 0.0040 560 0.999 -0.0004
7 RPJKD - interacted quadratic 0.0122 730 0.969 -0.0001
8 RKD - linear 0.0051 370 1.000 -0.0002
9 RKD - quadratic 0.0054 600 0.990 -0.0012
10 RKD - mixed polynomial 0.0037 550 0.997 -0.0005
11 RKD - interacted quadratic 0.0186 370 0.942 0.0024
12 birth cohort-IV - linear 0.0036 560 1.000 -0.0004
13 birth cohort-IV - quadratic 0.0037 610 1.000 -0.0009
14 birth cohort-IV - cubic 0.0061 730 0.997 0.0007
WA Inv-MSE weighted average 0.0038 As above n.d -0.0005

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. The
only difference is the set of bandwidths considered. The right side bandwidth is fixed at 365 days, the left
side bandwidths considered range from 365 days to 730 days. As in Table 5, results are shown for the band-
widths which yield the lowest RMSE for each model. There are 1,461 treatment effect estimates for every
model, one for each placebo-zone threshold. The smaller number of repetitions is a result of the larger max-
imum bandwidth considered.

4.5 Using placebo zone estimates for inference

The placebo zone consists of 1,826 overlapping data windows, corresponding to 1,826 separate

placebo estimates for each (symmetric) estimator. Consider the distribution of these placebo

estimates for Model 12 – shown in Figure 4. One can use this distribution for alternative

approaches to inference – randomization inference, in the spirit of Ganong and Jäger (2018).

We discuss two alternative inference approaches. These alternatives may be useful if there

is reason to believe that a given estimator or its estimated variance, are biased.
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Figure 4: Distribution of placebo estimates from Model 12 (symmetric bandwidth)
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Notes: This figure shows the distribution of treatment effect estimates generated within the placebo
zone by ‘Model 12’, with a symmetric 365 day bandwidth. This is the model which performed best in
the placebo zone trials reported in Table 5. Bars represent estimates grouped into 64 evenly sized bins.
Kernel density fit is overlaid.

4.5.1 Approach 1: Fully non-parametric

Consider an estimate which lies outside of the range of the placebo estimates. If these

1,826 placebo estimates were independent, one would conclude that the two-sided p-value

< 2/1826 = 0.0011. For an estimate lying inside the range of placebo estimates, p =

2 ∗ min(i/1826, (1826 − i)/1826), where i is the rank of the estimate alongside the 1,826

placebo estimates.

However, the 1,826 placebo estimates are not independent. Indeed they are strongly

serially correlated in our application. This is almost certainly the case in other applications

as well, given the rolling data window. In our model 12, the serial correlation of placebo
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estimates = 0.9895. This equates to an effective sample size (ESS) of just 10 independent

observations.19 A more appropriate two-sided p-value for estimates lying outside the placebo

zone is p < 2/ESS. In our case, for model 12, p < 2/10 = 0.2.

4.5.2 Approach 2: Semi-parametric

A more powerful approach to inference is to calculate t-statistics, based on the distribution

of placebo estimates, taking into account the effective sample size of those placebo estimates.

This approach respects the fact that these placebo estimates are not independent, but invokes

an assumption that they are drawn from a normal distribution. The mean of that normal

distribution is not set to zero, but to the mean placebo estimate, thereby accounting for

potential systematic bias. For example, for Model 12, the mean placebo estimate is 0.0002,

with a standard deviation 0.0047. For a given estimate of the actual treatment effect β̂,

the t-stat = (β̂ – (0.0002))/ 0.0047, distributed with ESS-1 degrees of freedom. The use

of the t-statistic with ESS degrees of freedom takes into account the sampling error in the

estimated variance of the population distribution of placebo estimates. For example, if β̂ =

0.132 using model 12, t = -2.86, which corresponds to a p-value = 0.0187 assuming 9 degrees

of freedom.

4.6 Treatment effect heterogeneity

The exercise above has allowed us to evaluate the performance of candidate models un-

der a data generating process in which the treatment effect is precisely zero for all people.

However, the results of this exercise might not be informative if treatment effects are het-

erogeneous. We now extend this exercise to more general data generating processes which

incorporate treatment effect heterogeneity. We still use the placebo zone. This time we make

modifications to the raw data to mimic key types of treatment effect heterogeneity.

To preview the results of this exercise, imposing purely random stochastic treatment

19This calculation draws on Eq. 5 in Zwiers and Storch (1995).
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effects (Cases 1 and 2 below) does not change the conclusions of the exercise at all, it simply

introduces noise. But imposing a non-constant marginal treatment effect (MTE) (Case 3)

raises some interesting issues.

4.6.1 Case 1: Large stochastic treatment effects

In Case 1, we retain a zero mean treatment effect in the population. Noting the binary

outcome variable (Y ), and denoting treatment as T , we modify the raw data as follows:

• We stochastically impose a treatment effect of -1 for ‘treated’ people, whose Y = 1 in

the original data. Their probability of being assigned this treatment effect is set to

0.02 divided by E(Y |T = 1) in the original data. This would yield an expected ATE

of -0.02 if this was the only change made. We chose -0.02 as this is close to (but larger

than) our actual treatment effect estimates.

• We then assign an offsetting treatment effect of 1 for some ‘treated’ people whose

Y = 0 in the original data. Again, this is done stochastically. The probability of being

assigned this treatment effect is set so as to retain an expected treatment effect of zero

within each date of birth.

Table 8 summarizes the performance of each model under imposing Case 1 treatment

effect heterogeneity. Overall, the results are very similar to those in Table 5. Indeed the

rank of each model (in terms of RMSE) is almost completely unchanged. The only notable

difference is the larger RMSE for each model, which is an expected consequence of the

additional stochastic variance that was imposed.

4.6.2 Case 2: Extreme non-monotonic stochastic treatment effects

Case 2 is similar to Case 1, but more extreme. Here, we impose a treatment effect of -1

for every treated observation whose Y = 1 in the original data. We then offset this with a

stochastic treatment effect of 1 for some treated people for whom Y = 0. Similarly to Case
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Table 8: Candidate model performance in the placebo zone: Heterogeneous treatment effects
Case 1

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0103 365 0.950 -0.0010
2 RDD - mixed polynomial 0.0228 365 0.929 0.0007
3 RDD - quadratic 0.0270 365 0.925 0.0011
4 RPJKD - linear 0.0072 365 0.942 0.0002
5 RPJKD - quadratic 0.0089 365 0.955 -0.0011
6 RPJKD - mixed polynomial 0.0067 365 0.972 -0.0007
7 RPJKD - interacted quadratic 0.0156 365 0.931 -0.0001
8 RKD - linear 0.0107 363 0.910 0.0019
9 RKD - quadratic 0.0203 365 0.939 0.0013
10 RKD - mixed polynomial 0.0071 365 0.972 -0.0006
11 RKD - interacted quadratic 0.0201 365 0.936 0.0013
12 birth cohort-IV - linear 0.0065 365 0.970 -0.0002
13 birth cohort-IV - quadratic 0.0085 365 0.957 -0.0013
14 birth cohort-IV - cubic 0.0143 365 0.926 -0.0005
WA Weighted average - inv MSE 0.0069 365 n.d. -0.0003

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. Here,
however, random treatment effect heterogeneity has been imposed into the placebo zone, as detailed in the
text.

1, the probability of being assigned this treatment effect is set so as to retain an expected

average treatment effect of zero within each date of birth.

Table 9 summarizes the performance of each model under imposing Case 2 treatment

effect heterogeneity. Again, the results are very similar to those in Table 5. The rank of

each model (in terms of RMSE) is indeed unchanged. The RMSE for each model is slightly

larger than in Case 1, as expected.

4.6.3 Case 3: Non-constant marginal treatment effect (MTE)

Case 3 is the most interesting and complicated of these three scenarios. Here, we impose

an MTE which varies linearly with ‘resistance’ (see the discussion in Cornelissen et al.,

2016, for a non-technical introduction to such models). The imposed MTE is -0.05 for those

with lowest ‘resistance’ (resistance = 0). The imposed MTE is zero for those with highest

resistance (resistance = 1). The MTE is set to be linear in resistance between these two
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Table 9: Candidate model performance in the placebo zone: Heterogeneous treatment effects
Case 2

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0114 365 0.953 -0.0006
2 RDD - mixed polynomial 0.0249 365 0.926 0.0011
3 RDD - quadratic 0.0287 365 0.934 0.0015
4 RPJKD - linear 0.0082 365 0.943 0.0009
5 RPJKD - quadratic 0.0099 365 0.952 -0.0005
6 RPJKD - mixed polynomial 0.0077 365 0.961 -0.0001
7 RPJKD - interacted quadratic 0.0174 365 0.937 0.0006
8 RKD - linear 0.0117 360 0.923 0.0029
9 RKD - quadratic 0.0230 365 0.939 0.0024
10 RKD - mixed polynomial 0.0081 365 0.963 0.0002
11 RKD - interacted quadratic 0.0228 365 0.935 0.0024
12 birth cohort-IV - linear 0.0074 365 0.957 0.0005
13 birth cohort-IV - quadratic 0.0094 365 0.955 -0.0008
14 birth cohort-IV - cubic 0.0156 365 0.930 0.0003
WA Weighted average - inv MSE 0.0079 365 n.d. 0.0004

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. Here,
however, an extreme form of random treatment effect heterogeneity has been imposed into the placebo zone,
as detailed in the text.

extremes. The intuition for such an MTE profile is in the spirit of a Roy Model. People

with low resistance are those who may have the most to benefit from treatment. They select

into treatment even if few otherwise similar people do. In other words, they are treated even

when E(T |Z) is low, where T denotes treatment and Z is an instrumental variable. Those

with high resistance select into treatment only when E(T |Z) is high.

Consider a relatively low-resistor, whose resistance is equal to say, 0.3. This person is

induced into treatment by a marginal change in Z when E(T |Z) = 0.3. In our setting,

these are people who are relatively slow to obtain a learners permit. It is their MTE that is

identified by a marginal change in Z when E(T |Z) = 0.3. Similarly, consider a high-resistor,

whose resistance is equal to say, 0.9. This person is induced into treatment by a marginal

change in Z when E(T ) = 0.9. In our setting, these are people who obtain a learners permit

very soon after they are old enough to do so. It is their MTE that is identified by a marginal

change in Z when E(T |Z) = 0.9.
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In reality, the relationship between the MTE and ‘resistance’ may be completely different,

and perhaps may have the opposite direction. People who obtain a learners permit as soon

as they are old enough might actually have the most to gain from the treatment. This does

not matter for our exercise, since our intention is simply to test the implications of an MTE

which varies strongly.

Imposing a non-constant MTE highlights for the first time that the estimators are esti-

mating different target parameters and hence need to be evaluated more subtly:

• RKD estimates MTEs at a specific threshold – which in our application is the extreme

threshold with full resistance, where E(T ) = 1, where we have imposed a MTE = 0.

• RDD estimates LATEs in a particular range of the MTE distribution. For example,

for an RDD with an estimated first-stage discontinuity of 0.2, from E(T ) = 0.8 to

E(T ) = 1, the LATE is the average of MTEs over this range. Given the linearity

assumption, this equals the MTE at E(T ) = 0.9, which is -0.005.

• The RPJKD estimates are identified by both the kink and the discontinuity. In the

presence of treatment effect heterogeneity, the target parameter can be interpreted as

a weighted average of the MTE (as estimated by the RKD estimator) and the LATE

(as estimated by the RDD estimator).

• The month-of-birth cohort-IV strategy employs a vector of mutually exclusive instru-

mental variables. As discussed by Angrist and Pischke (2009, p. 174), it therefore

identifies a weighted average of the LATEs identified by each individual month in-

dicator variable. The weights are proportional to the inverse variance of each indi-

vidual LATE estimate. Whilst easy to implement such a regression, and to estimate

instrument-specific LATEs, it is not easy to pre-specify this weighted-average LATE,

particularly given that the DOB-polynomial control variable is likely to have a large

influence on each instrument’s strength in the first-stage regression. However, in any

month-of-birth IV regression without further controls, the first-stage predicted values
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will always be exactly equal to the E(T ) within each month. The effect of each month-

of-birth IV is therefore to induce treatment for people whose resistance is somewhere

between E(T |m1) and E(T |m2), where m1 is the month with the lowest E(T ) and

m2 is the month with highest E(T ). In light of this, we set the target parameter

to equal the MTE where resistance equals the unconditional E(T ) – i.e. the mean

treatment probability across the sample. For example, in the main estimation sam-

ple E(T ) = 0.79. At this level of resistance, the imposed MTE = -0.0105. This is

therefore an approximation of the target parameter for the month-of-birth cohort-IV

models. However, E(T ) varies between placebo samples, and the target parameter is

also allowed to vary in the placebo zone estimations.

Table 10 summarizes the performance of each model under imposing Case 3 treatment

effect heterogeneity. This table has an additional Column “Target” – the target parameter,

which as discussed above, differs between models. The target parameter for the RKD models

is zero – the MTE at the threshold. The target parameter for the RDD models is the LATE

that corresponds with the imposed MTEs through the estimated discontinuity. For RPJKD,

we set the target to be the unweighted average of the MTE at the threshold, and the LATE

associated with each discontinuity. For the cohort-IV, the target parameter is the MTE at

the mean treatment probability through the sample, as discussed above.

The results in this table have some similarities and some differences to those in earlier

tables. For most (but not all) estimators, a full 365 day bandwidth is preferred. Model 8 is

the main exception. The coverage of the models is much more varied. In particular, coverage

is poor for all of the RKD and the RPJKD models. These are also the models for which bias

is relatively high.

Consistent with each other version, Model 12 (cohort-IV, controlling for a linear secular

trend) has the lowest RMSE. Indeed, in this version, its RMSE is much lower than any other

models. Model 13 (quadratic trend) now has the second lowest RMSE. The coverage rate

for both of these models is also good. Amongst the other models, model 1 (RDD with linear
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Table 10: Candidate model performance in the placebo zone: Heterogeneous treatment
effects Case 3 – Incorporating non-constant MTE

Model Description RMSE Optimal BW Coverage Target Bias

1 RDD - linear 0.0087 365 0.961 -0.0068 0.0013
2 RDD - mixed polynomial 0.0209 365 0.915 -0.0047 0.0036
3 RDD - quadratic 0.0236 365 0.921 -0.0047 0.0037
4 RPJKD - linear 0.0121 363 0.447 -0.0034 -0.0106
5 RPJKD - quadratic 0.0091 365 0.836 -0.0034 -0.0049
6 RPJKD - mixed polynomial 0.0105 365 0.634 -0.0023 -0.0090
7 RPJKD - interacted quadratic 0.0160 365 0.809 -0.0023 -0.0083
8 RKD - linear 0.0216 260 0.558 0.0000 -0.0189
9 RKD - quadratic 0.0236 365 0.726 0.0000 -0.0152
10 RKD - mixed polynomial 0.0140 365 0.511 0.0000 -0.0126
11 RKD - interacted quadratic 0.0234 365 0.725 0.0000 -0.0152
12 birth cohort-IV - linear 0.0051 365 0.948 -0.0129 -0.0012
13 birth cohort-IV - quadratic 0.0084 365 0.931 -0.0129 0.0042
14 birth cohort-IV - cubic 0.0131 365 0.898 -0.0129 0.0033

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. Here,
however, treatment effect heterogeneity has been imposed into the placebo zone. As detailed in the text,
this heterogeneity incorporates a non-constant marginal treatment effect that is proportional to ‘resistance’.

interacted trend) has the lowest RMSE and good coverage at 96%. Model 5 (RPJKD with

a quadratic trend), has the next lowest RMSE, though its coverage rate is not as good.

The results in this section highlight that care must be taken to carefully consider the

implications of heterogeneous MTEs in any given application. In our case, the placebo

zone exercises overwhelmingly point to model 12 (with a full 365 day bandwidth) as the

best estimator amongst all available options. This is perhaps a surprising result, given the

apparent theoretical superiority of the RDD and RKD estimators. However, whilst violations

of identifying assumptions leads to bias, the magnitude of such bias is usually difficult to

ascertain a priori. As with all comparisons between alternate options, there is a trade-

off between bias and variance. In our application at least, it seems that this trade-off is

optimized by the between-cohort-IV estimator.
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5 Results

The main estimation results are presented in Table 11. Panel A shows the estimated effects

of the 2000 reform and Panel B shows the estimated effects of the 2007 reform. Each panel

shows results from five separate estimators – one in each column.

Table 11: Main results

Best estima-
tor

Best symmet-
ric estimator
(cohort-IV)

Best symmet-
ric RPJKD
estimator

Best symmet-
ric RKD esti-
mator

Best symmet-
ric RDD esti-
mator

(1) (2) (3) (4) (5)

A: 2000 Reform (0 → 50 hours)

MVA 1-year -0.0144*** -0.0132*** -0.0147*** -0.0144** -0.0168***
SE 0.0041 0.0049 0.0050 0.0058 0.0058
p-value 0.0005 0.0073 0.0032 0.0129 0.0038
alt. p-value 0.0101 0.0187 0.0161 0.0374 0.0578
Model 6 12 6 10 1
BW 365 / 550 365 365 365 365

B: 2007 Reform (50 → 120 hours)

MVA 1-year 0.0021 0.0003 0.0006 -0.0024 -0.0007
SE 0.0030 0.0033 0.0033 0.0046 0.0035
p-value 0.4790 0.9259 0.8477 0.6069 0.8422
alt. p-value 0.5532 0.9886 0.8882 0.6681 0.9524
Model 12 12 6 10 1
BW 560 / 365 365 365 365 365

Notes: This table shows the main estimated effects of the actual policy changes in our main application.
Asymptotic standard errors are clustered at the DOB level. Alternate p-values use the randomization
inference procedure described in Section 4.5. * p < 0.1, ** p < 0.05, *** p < 0.01.

Column (1) shows results from the ‘best’ estimator. This is the estimator with the lowest

RMSE of all candidate models evaluated on the placebo zone. For the 2000 reform, this is

‘Model 6’, with a bandwidth of 365 days on the left and 550 on the right. For the 2007

reform, this is ‘Model 12’ with a bandwidth of 560 days on the left and 365 days on the

right.20

20Recall that we are constrained to a maximum bandwidth of 365 days on the left of the threshold for
the 2000 reform, and a maximum bandwidth of 365 days on the right of the threshold for the 2007 reform.
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These ‘best’ estimates suggest that the first reform had a strong impact on reducing

MVAs, while the second reform did not. The first reform is estimated to have reduced the

crash rate by -0.014, a reduction of 21% relative to the predicted value at the threshold

for the untreated. The conventional p-value associated with this estimate is 0.0005. We

have no reason to be sceptical about the validity of this p-value, since this estimator was

found to have good coverage in the placebo zone trial, as well as an estimated bias that

is close to zero. Nevertheless, we also show alternate p-values, based on the distribution

of placebo estimates, as discussed in the previous section. This p-value is larger (0.010),

though still strongly significant. The alternate p-value is larger, primarily due to the small

number of degrees of freedom used in the translation of the t-statistic into a p-value, which

makes it inherently conservative.21 For the 2007 reform, the alternate p-value is also slightly

higher than the conventional p-value, but remains very far from any conventional threshold

of statistical significance.

Column (2) shows results from the best symmetric estimator – which is Model 12 with a

bandwidth of 365 days on each side. For the 2000 reform, all of the key parameters from this

model are similar to those in Column 1. The standard error and both p-values are all slightly

larger, but qualitatively the same as in Column (1). The estimate for the 2007 reform is

close to zero.

Columns (3), (4) and (5) show the results from the best symmetric RPJKD, RKD and

RDD estimators, respectively. In each case, the maximum feasible bandwidth (365 days)

is used, consistent with the outcomes of the placebo zone trials. Again, the qualitative

conclusions are the same, with strongly significant negative effects of the 2000 reform, and

approximately zero for the second reform.

Table 12 delves deeper into the effects of the 2000 reform. Corresponding results for the

Model 6 is a RPJKD model with quadratic polynomials to the left and linear polynomial to the right of
the threshold in each stage. Model 12 is a month-of-birth cohort-IV model, controlling for a linear secular
relationship between DOB and the outcome variable.

21Just 6 degrees of freedom are used for this estimate. This is equal to the ‘effective sample size’ of placebo
estimates calculated in the placebo zone minus 1, taking into account the very strong serial correlation of
those estimates (0.9915).
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2007 reform are generally precise zeros and are available on request. The structure of this

table is the same as the previous table, and the same five estimators are used throughout.22

On possible explanation for the 2000 reform reducing MVA is delayed timing of obtaining

a provisional license, which would support the idea that maturity rather than improved

driving skill lowered MVAs. Appendix Figure A7 suggests a possible small delay effect.

Panel A considers the extent to which this explains the main treatment effect. The first rows

show the original estimates, while the next rows show estimates from the same models, but

controlling for a quadratic of age (in days) of obtaining a provisional license. The estimated

effects are generally slightly smaller when these controls are included. In the ‘best’ estimator,

the treatment effect estimate is actually unchanged, while in the other models, this reduction

is no more than 11%. Thus we conclude that delaying of obtaining a license is at most only

a small factor in the treatment effects that we have estimated.23

Panel B shows results which consider the timing of the treatment effects. As may be

expected, the majority (65% in the ‘best’ model) of the treatment effect is confined to the

first 6 months after obtaining a provisional license. The effect in the 6-12 month period is

also at least marginally significant across the estimators, and its magnitude is not small.

The effect in the following year (12-24 months after obtaining a license) is not statistically

significant in any column.

Panel C show results for serious MVAs. It shows strongly significant negative effects

for the subset of MVAs in which one or more people were injured. The effect size (-0.0084

in the preferred model) is large (-30% relative to the predicted value at the threshold for

the untreated). The estimate is larger when the other estimators are used. The effects for

fatalities are not statistically significant, which reflects a lack of statistical power stemming

from a relatively small number of fatalities.

22We use the same set of estimators across each of the outcome variables (and sub-populations) here. This
approach has the advantage of transparency and internal consistency, which helps to interpret the drivers of
the main estimates. An alternative approach is to choose a different set of preferred estimators (using the
placebo zone approach) for each outcome variable and sub-population.

23Moreover, for the 2007 reform we observe a much stronger delay effect, yet our treatment effect estimates
indicate no effect on MVAs.
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Table 12: Further results for the 2000 reform

Best estima-
tor

Best sym-
metric
estimator
(cohort-IV)

Best sym-
metric
RPJKD
estimator

Best sym-
metric RKD
estimator

Best sym-
metric RDD
estimator

(1) (2) (3) (4) (5)

A: Age of Obtaining Provisional License (Mechanism)

MVA 1-year -0.0144*** -0.0132*** -0.0147*** -0.0144** -0.0168***
SE 0.0041 0.0049 0.0050 0.0058 0.0058
controlling for age
got P1s

-0.0144*** -0.0118** -0.0133** -0.0131** -0.0155**

SE 0.0042 0.0052 0.0052 0.0061 0.0060

B: Timing of Treatment Effect

MVA 6 months -0.0094*** -0.0074** -0.0078** -0.0072 -0.0093**
SE 0.0031 0.0035 0.0036 0.0044 0.0044
MVA 6-12 months -0.0048* -0.0059* -0.0070** -0.0069* -0.0077*
SE 0.0028 0.0034 0.0034 0.0040 0.0040
MVA 1-2 years 0.0035 0.0026 0.0027 0.0019 0.0033
SE 0.0036 0.0045 0.0046 0.0053 0.0053

C: Serious MVAs

Injury -0.0084*** -0.0093*** -0.0100*** -0.0102*** -0.0110***
SE 0.0026 0.0032 0.0032 0.0038 0.0036
Fatality -0.0002 -0.0001 -0.0002 -0.0002 -0.0002
SE 0.0003 0.0004 0.0004 0.0005 0.0005

D: Heterogeneity by Sex

MVA 1-year males -0.0132** -0.0146** -0.0139* -0.0114 -0.0163*
SE 0.0059 0.0072 0.0073 0.0086 0.0085
MVA 1-year fe-
males

-0.0164*** -0.0111* -0.0159** -0.0181** -0.0177**

SE 0.0056 0.0066 0.0068 0.0080 0.0083

Notes: This table shows further estimated effects of the first policy change in our main application.
Asymptotic standard errors are clustered at the DOB level. * p < 0.1, ** p < 0.05, *** p < 0.01.

Panel D shows results by sex. The preferred estimator suggests that the effects are similar

by sex, as do the results of the other estimators.
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5.1 Cost-benefit analysis

To better contextualize our results, we undertake a back-of-the envelope cost-benefit analysis.

Expected social costs for non-injury MVAs are average property damage costs for motor

vehicle accidents taken from BITRE (2009) ($4,004). For injury crashes, we take values

from NRMA (2017) that are obtained using the willingness to pay method in respect of

avoiding crashes with unknown injury ($144,172). Since our point estimates for fatalities are

so imprecise as to be uninformative, we assume fatality risk decreased by the same percentage

as injury risk in our baseline calculations. There are important caveats to this analysis, in

particular i) our estimates are local average treatment effects and may lack external validity

and ii) there are numerous ways of quantifying social costs, each with its own limitations.

Further details and sensitivity analysis are in Appendix C.

Our estimates imply an average social gain of $2,300 per person due to the 50 MSDH

reform. If we take the conservative view that on average people would complete 20 hours

supervised in the absence of the reform, then this would constitute a net social improvement

provided that supervisors’ and learners’ combined cost of obtaining hours is less than $46

per hour. Since we find no evidence the 120 MSDH reform improved safety, we cannot rule

out nil social benefits for that reform.

6 Selected applications of the placebo zone approach

6.1 Head Start

To further demonstrate our approach, we now apply the placebo zone model selection al-

gorithm to Ludwig and Miller (2007)’s RD analysis of the Head Start program. The data

from this study have been used widely for illustrative purposes in the RD methodological

literature, including papers by Calonico et al. (2014), Cattaneo et al. (2017), Ganong and

Jäger (2018) and Calonico et al. (2019).
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The unit of analysis is the county. Treatment is eligibility for technical assistance to de-

velop Head Start funding applications. Eligibility is tied to a sharp, arbitrary cut-off in the

county-level poverty rate at 59.198 percentage points. The outcome variable is child mor-

tality from Head Start-relevant causes. Earlier papers have used a range of methodological

approaches to estimate the same discontinuity. Ludwig and Miller (2007) prefer local-linear

regressions with a triangular kernel. Citing a lack of consensus on bandwidth selection, they

show results using bandwidths of 9, 18 and 36 percentage points, as well as from regular

linear and quadratic specifications. Calonico et al. (2019) use the CCT bandwidth-selection

algorithm, which yields bandwidths of 6.81 and 6.98, varying by the use of covariates.

We use the data from Calonico et al. (2019)’s replication files. We consider 10 sepa-

rate estimators, each with a range of alternate bandwidths. These were chosen to examine

questions of functional form (linear versus quadratic) kernel (uniform versus triangular),

weights (unweighted or population-weighted), and covariates (include or exclude). A priori,

weighted estimates are likely to be more precise, since residual variance is likely inversely

proportional to population size, and population varies greatly (Mean = 38,964; Standard

Deviation = 117,460), ranging from 224 to 2,664,438. We also show four estimates using

CCT models. Models 11 and 12 are unweighted conventional and bias-corrected estimates

with CCT bandwidths. Models 13 and 14 are corresponding weighted estimates.

We face two challenges for adopting our approach in this context. The first is a relatively

small range of the forcing variable within the placebo zone. The placebo zone has a range

of 47 percentage points (spanning 15.2 to 59.198 percentage points). When models with

relatively large bandwidths are trialled, the effective sample size of the resulting placebo

estimates is small. The second challenge is a considerably larger density (about 2.1 times

larger) in the placebo zone than in the treatment zone (see Cattaneo et al., 2017, Figure

A1). The results of trials within such a high density zone may not be relevant for choosing

models to adopt in a low density zone. We address both of these challenges by splitting the
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placebo zone sample into two independent groups.24 We randomly allocated each county

into one of these groups.25 This solves the second challenge, since the resulting density is

very similar to that of the treatment zone. It also helps with the first challenge, since the

effective sample size of placebo estimates is approximately doubled.

The results of these placebo zone trials are shown in Table 13. For every model considered,

the optimal bandwidths are either the maximum (15 percentage points), or close to it. This

is considerably larger than the bandwidths in Calonico et al. (2019).26 Since we are unable

to test larger bandwidths, these should be seen as lower bounds for each optimal bandwidth.

The results suggest that for this application, the population weights are very helpful –

reducing the RMSE by around 28% in the linear model. The table also shows that covariates

do not help, in fact they increase RMSE slightly. This is perhaps unsurprising, since the

set of covariates is not rich and does not account for much residual variation.27 The results

suggest that models with a triangular kernel do worse than a regular rectangular kernel,

and that a linear polynomial is preferred to higher orders. The CCT estimators (which are

characterized by small bandwidths) perform poorly, but not to the same extent as they do

in our main application.

The best performing estimator is the weighted linear RD, with no controls, and with full

bandwidth. The estimated discontinuity using this estimator in the treatment zone is shown

in Column (1) of Table 14. The estimate is statistically significant, consistent with Ludwig

and Miller (2007) and with Calonico et al. (2019). But the estimate is also considerably

24We split the placebo zone observations into two groups because the placebo zone density is 2.1 times
greater than the treatment zone density. This approach can be generalized for other contexts where the
density is uneven. Practitioners may split the placebo zone into g groups, where g = round(placebo zone
density / treatment zone density). It is not clear however if our approach is useful for situations where the
treatment zone density is markedly greater than the placebo zone density.

25When these random allocations are repeated, the results are generally very similar. The RMSEs for the
unweighted specifications are most sensitive to these repetitions, but they seem to always exceed the RMSEs
for corresponding weighted specifications, usually by a large factor.

26The bandwidths in Calonico et al. (2019) are in turn similar to the average CCT-selected bandwidth
within the placebo zone, which are shown in the last four rows of Table 13.

27The covariates are: percentage of black and urban population, levels and percentages of population in
three age groups (children aged 3 to 5, children aged 14 to 17, and adults older than 25) as well as total
population. We do not include ‘total population’ as a covariate whenever we use it as a weight instead.
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Table 13: Head Start candidate model performance in the placebo zone

Model Description RMSE Optimal
LHS
BW

Optimal
RHS
BW

Coverage Bias

1 RD - linear 0.7763 15.0 15.0 0.972 -0.020
2 RD - linear, weighted 0.5616 15.0 15.0 0.844 -0.054
3 RD - linear, with covariates 0.7838 15.0 15.0 0.972 -0.019
4 RD - linear, weighted, with co-

variates
0.5622 15.0 15.0 0.876 -0.055

5 RD - linear, triangular kernel 1.0072 15.0 15.0 1.000 0.043
6 RD - linear, weighted, triangu-

lar kernel
0.6198 15.0 15.0 1.000 -0.036

7 RD - quadratic 1.4649 15.0 15.0 0.890 0.147
8 RD - quadratic, weighted 0.7751 14.6 14.6 0.918 0.017
9 RD - cubic 1.7051 14.6 15.0 0.968 0.254
10 RD - cubic, weighted 0.7842 15.0 15.0 0.982 0.057
C1 RD conventional 1.9513 4.3 4.3 0.954 0.078
C2 RD bias corrected 2.3386 4.3/6.9 4.3/6.9 0.961 0.052
C3 RD conventional - weighted 1.0278 5.1 5.1 0.972 0.089
C4 RD bias corrected - weighted 1.2098 5.1/8.0 5.1/8.0 0.968 0.084

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes.
However, these are for the Head Start application. The set of models considered is different, for reasons
discussed in the text. The bandwidths considered ranged from 3 to 15 percentage points (in 0.2 percent-
age point increments) and was allowed to be asymmetric. There are 282 treatment effect estimates for
every model, one for each placebo-zone threshold.

smaller than that of Calonico et al. (2019). The alternate p-value should be interpreted

with some caution. It is relatively large primarily because the effective sample size from the

placebo trial is small.

6.2 Minimum legal drinking age and drinking behavior

We now illustrate our approach with another application – discontinuities in drinking be-

haviour at the Minimum legal drinking age (MLDA). The MLDA context is one of the best

known applications of RDD, beginning with Carpenter and Dobkin (2009). It is featured in

econometric textbook treatments of RDD, such as Angrist and Pischke (2015).

Carpenter and Dobkin (2009) used restricted variables from the NHIS, which are not

easily available. Instead, we draw on data from Lindo et al. (2016)’s corresponding analysis
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Table 14: Head Start and MLDA RDD estimates

Head Start MLDA

Mortality Ever Drinks Drinks Regu-
larly

Proportion of
Days Drinks

(1) (2) (3) (4)

Estimated Effect -1.323** 0.1816*** 0.2344*** 0.0712***
SE 0.5372 0.0236 0.0207 0.0065
p-value 0.0140 0.0000 0.0000 0.0000
alternate p-value 0.0756 0.0000 0.0000 0.0009
Model 2 3 3 3
BW 15.00 11.40 8.04 8.04

Notes: This table shows the main estimated effects for the Head Start and MLDA applicaitons, using
the best-performing model (lowest RMSE) from the respective placebo-zone trials reported in Tables 13
and 15. Asymptotic standard errors are clustered at unique values of the running variable. Alternate
p-values use the randomization inference procedure described in Section 4.5. * p < 0.1, ** p < 0.05, ***
p < 0.01.

for the Australian state of New South Wales. We use the same three self-reported drinking

outcomes as Lindo et al.: ‘Ever drinks’, ‘Drinks regularly’ and ‘Proportion of Days Drinks’.

And we use the same data: waves 1-11 of the HILDA survey.

Following Carpenter and Dobkin (2009), Lindo et al. show estimates from linear specifi-

cations with bandwidths up to two years of age. These are centred around the 18th birthday

MLDA threshold. Here, we consider the performance of a range of specifications – linear

and quadratic, with and without weights, as well as CCT estimators. We consider a much

wider bandwidth range, from three months to 12 years on the right side, with the left side

capped at three years. The 3-year cap on the left reflects the limit of data availability in the

treatment zone, since all respondents were aged 15 years and over.

Table 15 shows results from the placebo zone trials, for which the placebo zone consists

of 18-50 year old respondents.28 In many respects, the results are consistent across outcome

variables used, and indeed consistent with the earlier applications we have shown: (i) long

bandwidths are optimal for each estimator – much larger than those selected by CCT’s

28The results are qualitatively similar when the placebo zone is changed (eg. 18-40 years, or 18-60 years)
or if the maximum bandwidth is changed (e.g. 10 years, or 15 years). These are available on request.
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procedure; (ii) linear RD yields the lowest RMSEs; (iii) weighting by cell-size reduces the

RMSE; (iv) the CCT estimator does poorly, with or without bias adjustment.

Table 15: MLDA candidate model performance in the placebo zone

Model Description RMSE Optimal RHS BW Coverage Bias

A: Ever Drinks
1 RD - linear 0.0196 5.41 0.961 -0.0007
2 RD - quadratic 0.0301 11.98 0.960 -0.0008
3 RD - weighted linear 0.0165 11.40 0.963 -0.0008
4 RD - weighted quadratic 0.0285 11.98 0.937 0.0002
C1 RD conventional 0.0572 1.02 0.908 -0.0003
C2 RD bias corrected 0.0659 1.02/1.60 0.908 -0.0009

B: Drinks Regularly
1 RD - linear 0.0272 8.12 0.977 0.0030
2 RD - quadratic 0.0406 9.92 0.981 0.0004
3 RD - weighted linear 0.0233 8.04 0.989 0.0012
4 RD - weighted quadratic 0.0357 10.42 0.979 -0.0002
C1 RD conventional 0.0632 1.07 0.976 0.0010
C2 RD bias corrected 0.0748 1.07/1.67 0.973 0.0010

C: Proportion of Days Drinks
1 RD - linear 0.0148 8.04 0.990 0.0003
2 RD - quadratic 0.0214 9.76 0.973 -0.0005
3 RD - weighted linear 0.0135 8.04 0.994 -0.0002
4 RD - weighted quadratic 0.0195 9.92 0.982 -0.0007
C1 RD conventional 0.0348 1.07 0.945 -0.0001
C2 RD bias corrected 0.0411 1.07/1.68 0.947 0.0000

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes.
However, these are for the MLDA application. The set of models considered is different, for reasons
discussed in the text. For each of the three outcome variables, the bandwidth is allowed to vary from
three months to 12 years on the right side, with the left side capped at three years. There are 622
treatment effect estimates for every model, one for each placebo-zone threshold.

Table 14 shows the estimated discontinuities at the MLDA, using the placebo-zone-

optimal models we have identified. These are each weighted linear RD models, with a

bandwidth of three years on the left, and between 8.04 and 11.40 years on the right, as per

Table 15. These results are directly comparable to those in Lindo et al.’s Figure 3. Each of

the point estimates is similar to Lindo et al.’s 2-year bandwidth estimates. But the standard

errors are considerably smaller, suggesting a much narrower confidence interval for the effects

of interest.
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7 Conclusion and practical considerations

Regression Discontinuity Design and related estimators are amongst the most important

tools of empirical economics. When using such estimators, however, applied researchers are

typically faced with choosing between hundreds or thousands of candidate specifications. The

large number of candidates is due to the numerous dimensions by which these estimators can

vary – bandwidth, functional form, kernel, covariates are some of these dimensions, and these

need not be the same on either side of the threshold. Various guidelines have been developed

for model selection, but these generally only address one of these dimensions, whilst keeping

others constant. In practice, contemporary applied work in leading economics journals still

relies more on robustness testing than on model selection algorithms. Many such papers

provide no explicit justification for model specification.

We have outlined a new approach for model selection which allows the performance of

all candidate models to be assessed. The approach is conceptually straightforward. Each

candidate model is assessed on its performance in estimating treatment effects in a placebo

zone of the running variable – where the true effect is known to be zero. The RMSE of the

resulting placebo estimates is the summary statistic by which each estimator is judged.

Our approach has potential to be useful for model-selection in a wide range of applica-

tions. We have demonstrated its use with three such applications within the paper. Re-

searchers can implement the approach using our Stata command -pzms-.29 However the

approach should not be seen as a completely automated procedure for unproblematically

choosing an objectively best specification. In this section we discuss some complications and

suggestions for using the approach judiciously.

29We will release this program after the peer review process. In the meantime, if you would like to use
our methods and need assistance, please contact us directly.
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7.1 Estimators which rely on a ‘first-stage’

Our method is relatively straightforward to apply for testing a set of candidate sharp-RD

models. Other estimators (including RKD, fuzzy-RD, RPJKD, and cohort-IV) are defined

with respect to a first-stage relationship between the running variable and the treatment vari-

able. By definition, such a relationship does not exist in the placebo zone. With such models,

we suggest the researcher imposes the actual first-stage relationship from the treatment zone

into each iteration of the placebo-zone. This ensures that the source of identification is iden-

tical in the placebo zone estimates as it is in the treatment zone. Since there is no actual

treatment, the assignment of a placebo treatment (in any way) has no implication for the

integrity of the data generation process in the placebo zone.

In a practical sense, this means replacing the first-stage data around each placebo thresh-

old with the first-stage data from the ‘treatment zone’, and then estimating the desired IV

models. In many applications, this may require first collapsing the data to the level of the

running variable. For example, in our application this means collapsing the data to the

date-of-birth-level, relative to the threshold.

Our own application is unusual since the placebo treatments have a natural definition

– as a function of date obtained learners license. This is the definition we have followed

for the placebo zone testing throughout the paper. In Table 16 we show the results of the

placebo zone testing when we instead impose the treatment-zone first-stage relationship as

discussed above. As can be seen, the results of this exercise are quite similar to those from

the original process. The same set of estimators performs best – although Model 6 now

narrowly outperforms Model 12.
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Table 16: Candidate model performance in the placebo zone: ‘shifted’ first-stage

Model Description RMSE Optimal BW Coverage Bias

1 RDD - linear 0.0060 365 0.962 -0.0006
2 RDD - mixed polynomial 0.0114 365 0.922 -0.0001
3 RDD - quadratic 0.0129 270 0.971 0.0006
4 RPJKD - linear 0.0053 365 0.932 0.0006
5 RPJKD - quadratic 0.0057 365 0.978 -0.0004
6 RPJKD - mixed polynomial 0.0046 365 0.985 0.0000
7 RPJKD - interacted quadratic 0.0111 365 0.939 0.0007
8 RKD - linear 0.0113 350 0.921 0.0033
9 RKD - quadratic 0.0209 365 0.964 0.0012
10 RKD - mixed polynomial 0.0052 365 0.984 0.0001
11 RKD - interacted quadratic 0.0205 365 0.955 0.0013
12 birth cohort-IV - linear 0.0048 365 0.953 0.0004
13 birth cohort-IV - quadratic 0.0054 365 0.981 -0.0005
14 birth cohort-IV - cubic 0.0102 365 0.932 0.0004
WA Inv-MSE weighted average 0.0050 365 n.d. 0.0001

Notes: The results in this table are from a similar procedure to what is detailed in the Table 5 notes. In this
case, the first-stage relationship from the treatment zone is imposed into (each repetition of) the placebo
zone, after collapsing the data to DOB level. This procedure is explained in the text.

7.2 How to set the maximum bandwidth for the placebo zone

tests?

In any given application of our proposed method, the analyst must choose a maximum

bandwidth for the set of candidate models. This choice will depend on the specific constraints

of the application. In principle, one would like to consider all possible bandwidths, but this

is not practical. If the chosen maximum bandwidth is too large, the number of thresholds

within the placebo zone will be too small for the procedure to be informative about model

performance.30 We suggest that the effective sample size of placebo estimates should be taken

into account when making this decision.31 Given the large variation in model performance

that we have observed in our applications, even relatively small effective sample sizes may

be informative for model selection.

30Larger bandwidths are also likely to yield higher serial correlation in placebo estimates.
31We discuss the effective sample size of placebo estimates in Section 4.5.
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7.3 Allowing for heterogeneous treatment effects

Our approach is perhaps most useful for model selection within (rather than between) a class

of estimators. For example, consider the large set of candidate RDD estimators for a given

application. Our approach assesses performance of such models with different bandwidths

and different polynomial orders. Each of those candidate estimators has the same target

parameter, and so comparing performance is relatively unproblematic.

Comparing performance between classes of models is more problematic, because they

often estimate different parameters. Fuzzy-RDD models estimate LATEs, while RKDs esti-

mate MTEs, RPJKDs estimate a weighted average of a LATE and a MTE (under additional

assumptions of local MTE stability), while cohort-IV estimates a weighted average of a differ-

ent set of LATEs. Our approach can be used to compare performance between such models.

But this can only be done unproblematically if one is willing to assume that selection into

treatment is unrelated to potential gains from that treatment. In our own application, this

may be a reasonable assumption. It is less reasonable in many other applications.

More generally, researchers adopting our approach should carefully consider the impli-

cations of potential treatment effect heterogeneity. To be clear, placebo treatment effects

in the raw data are precisely zero. This implies that model performance is assessed in a

constant-treatment-effect context. This may be informative for model selection in more

general contexts. But a more nuanced approach is to explore the implications for model per-

formance if treatment effect heterogeneity is imposed into the placebo zone. The implications

of a non-constant MTE may be particularly important to consider. In our application, im-

posing a non-constant MTE did not change the choice of ‘best’ overall model, nor within

most classes of estimators. It did, however, raise doubts over the validity of the RKD and

RPJKD estimators.
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7.4 A partial test for plausibly-random treatment threshold

Our approach is informative for model selection only if the data generating process is similar

in the treatment zone to that of the placebo zone. This is equivalent to assuming that the

treatment threshold was effectively chosen at a random point of the combined support of

the running variable.

This is difficult to test comprehensively. However, one particularly important facet of

model selection is the extent of curvature in the conditional expectation function of the

outcome variable (Y ), with respect to the running variable (X). With more curvature,

models with higher order polynomials and/or smaller bandwidths are likely to perform better.

In some cases, the treatment effect itself may confound the apparent extent of curvature

in the raw data within the treatment zone. However, this is not the case if there is perfect

compliance on one or both sides of the threshold. This includes the important case of Sharp

RDD. For such cases, we propose the following test of curvature.

This simple test involves estimating a quadratic function on each side of the treatment

zone (or just on one side if perfect-compliance is one-sided), and again separately, for every

placebo zone section with a given bandwidth:

Y = β0 + β1X + β2X
2 + u (5)

The key parameter is β̂2. The proposed test is to consider whether β̂2 estimated in the

treatment zone is atypical, as compared to those estimated in the placebo zone. This test

uses the same randomization-inference approaches that we have discussed in Section 4.5.

Perhaps more important, however, is to consider whether |β̂2| is atypical, since the extent of

curvature (as opposed to the direction of concavity) is more important for model selection.

The results of this exercise for our own application are conveyed succinctly in Figure 5.

In our application, we have complete compliance on the RHS of the threshold, and so there

is only one treatment-zone estimate for β̂2, denoted with the vertical line. Panel A shows
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that β̂2 estimated in the treatment zone is near the middle of the distribution of placebo

zone estimates. This supports the hypothesis that the treatment threshold was plausibly

random chosen. Despite this, however, the extent of curvature in the treatment zone is very

small, as compared to that of the placebo zone. This is shown in Panel B, which shows the

|β̂2| distribution.

Figure 5: Distribution of β̂2 estimates
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Notes: This figure is a visual depiction of the proposed test of randomly chosen treatment threshold. The
test seeks to determine whether the extent of curvature in the treatment zone is unusual. Panel A shows
the distribution of β̂2, estimated through placebo zone, as per Eq. 5. Panel B shows the distribution of
|β̂2|, which represents the extent of apparent curvature in the conditional expectation function within
segments of the placebo zone. The corresponding estimates from the right side of the treatment zone
are shown with vertical lines. Bars represent estimates grouped into 64 evenly sized bins corresponding
to β̂2 values from estimating Eq. 5 throughout the placebo zone on 730-day segments. The vertical line
corresponds to β̂2 (|β̂2|) estimated on the RHS of the ‘treatment zone’.

What does this imply? As noted above, DGPs with relatively low curvature should have

relatively low order polynomials and/or larger bandwidths. In our case, however, all of the

best performing models already have a linear fit on the RHS and they already have the

largest feasible bandwidth. We therefore conclude that our partial test of random threshold

assignment provides no reason to depart from previous conclusions regarding model choice.
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7.5 Randomization inference when the placebo zone is not con-

tiguous

The placebo-zone approach facilitates an alternative approach to inference. We discuss this

in Section 4.5, where we also emphasise the importance of taking account of serial correlation

of the placebo estimates. In our own application, the placebo zone is contiguous. But in

other applications it may not be, particularly if placebo data are available on ‘both sides’ of

the real threshold. In such cases, it is not obvious how to determine the ‘effective sample size’,

since the estimates on either side of the ‘gap’ may be correlated, but less so than estimates

from immediately adjacent thresholds. One approach is to bound the effective sample size.

The lower bound essentially ignores this discontinuity in serial correlation, and derives the

ESS using a weighted average of the autocorrelations within each contiguous segment. The

upper bound treats estimates between each segment as distinct and so the total ESS is the

sum of the ESS in each segment.

In our application, this approach would produce tight bounds. To illustrate, if our placebo

zone was not contiguous but instead consisted of two equally sized zones on either side of

the treatment threshold, the lower bound for the ESS for our best symmetric bandwidth

estimator would be 10 and the upper bound would be 11.
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*Online Appendices*

A Additional tables and figures

Figure A1: DOB distribution plots
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n = 154,524 in Panel A. n = 160,301 in Panel B. 7-day bins.
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Figure A2: Scatter and fit plots: Main variables by DOB
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Figure A3: Distributions for age obtaining license
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Figure A4: First-stage relationship between DOB and 120 MSDH treatment
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Figure A5: Reduced-Form Relationships between DOB and MVA 1-year
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Figure A6: Exposure to BAC, engine and passenger restrictions by DOB
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Figure A7: Relationship between DOB and age obtained P1 license
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B Further details on the MVA and license datasets

B.1 Matching MVAs to driver license records

From October 2002 onwards, we can match 99.6% of MVAs involving drivers who, according
to the MVA data are between 17-20 years old and licensed in NSW, to the license data.32

Prior to this date the match rate is discontinuously lower by around 20 percentage points
between July 2002 and October 2002 and 15 percentage points pre-July 2002 (see Appendix
Figure B1). CRS cited an improvement in record keeping practices as a reason for the
discontinuity but were unable to provide further details. Our analysis in Appendix Figure B1
indicates that the discontinuities are not limited to any subset of MVAs by characteristics,
which would have allowed us to exclude inconsistently recorded MVAs. To address the
missing MVAs we therefore inflate the MVA indicators we use as dependent variables for
people who are not matched to an MVA (i.e. are recorded as having not had an MVA in our
raw data) by a factor equal to the probability they actually did have an MVA given what
we know about the rate of non-matched MVAs.

Focusing on our main dependent variable (any MVA within 12 months of obtaining P1
license), our preferred approach adjusts the crash probability for a person obtaining their
P1 license on day t by:

1−

(
1−

[
t+365∑

t

MVAt

nt

]
× 0.15

)min{t∗−t,365}

×

(
1−

[
t+365∑

t

MVAt

nt

]
× 0.20

)1.[t>t∗]×min{t−t∗,130}

(B1)
where MVAt is total number of matched MVAs involving drivers aged 17-20 years, nt is

the total number of licensed drivers aged 17-20 years (so that
∑t+365

t
MV At

nt
is the unadjusted

probability of being involved in an MVA within one year of obtaining a P1 license on day
t), t∗ indicates 1 July 2002 and 1.[t > t∗] is an indicator for t > t∗. We also use Eq. B1
to adjust indicators for MVAs involving injury since the match rates for these crashes is
almost identical to the rate for MVAs overall. For MVA indicators over six-month windows
we replace 365 with 183.

A more sophisticated approach of obtaining the adjustment factor is to replace 0.15 and
0.20, which are approximate rates at which MVAs can be matched to license data in the
pre-July 2002 and July-October 2002 periods, with daily estimates for this rate and calculate

1−
t+365∑

t

(
1−

[
t+365∑

t

MVAt

nt

]
×Match ratet

)
. (B2)

This approach allows for more variation in the match rate; however, it may suffer from
rare events bias since there are often few MVAs on a given day (expanding the time unit
can solve this but setting a new time unit is arbitrary). In practice, the two approaches
give very similar adjustment factors (Appendix Figure B2) and after confirming the choice

32The match rate is almost identical (99.5%) if we instead look at all people who, based on their age
recorded in the MVA data, we can be certain were born after 1980.
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Figure B1: Match rates: License and MVA data
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Notes: Each scatter point corresponds to the average percentage of MVAs for 17-20 year old drivers
that can be matched to license records for NSW licensed drivers (15 day groupings). Baseline: The full
sample of 17-20 year old drivers; Male: Males only; Seatbelt: driver wearing seatbelt; 4-6pm: MVA
between 4-6pm; 6-8pm: MVA between 6-8pm; 8-10pm: MVA between 8-10pm; Rear end: MVA reason,
rear-ender; MVA reason, right through; Cross traffic: MVA reason, cross traffic; Country non-urban:
MVA in country non-urban region; Country urban: MVA in country urban region; Newcastle: MVA in
Newcastle region; Sydney: MVA in Sydney region; Wollongong: MVA in Wollongong region; Speeding:
speeding involved in MVA; Speed 0-10kph: main vehicle travelling between 0-10kph; Speed 50-60kph:
main vehicle travelling between 50-60kph; Speed 60-70kph: main vehicle travelling between 60-70kph;
Speed unknown: main vehicle speed unknown; Proceeding in lane: manoeuvre before crash, proceeding
in lane; Stationary: manoeuvre before crash, stationary; Turning right: manoeuvre before crash, turning
right; Key traffic unit: vehicle was key traffic unit in MVA; Other traffic unit: vehicle was not key traffic
unit in MVA.

had no effect on our main results, we committed to using the simpler and more transparent
approximation approach.

B.2 Sample restrictions

Throughout our analysis we always maintain the following sample restrictions:

• Exclusion of people whose license history violates the GDL rules – some people in our
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Figure B2: Adjustment factors
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Notes: The y-axis shows by how much the MVA within first year of P1 license probability is adjusted
for a person obtaining their P1 license on day t (the x-axis) in order to account for missing MVA data.
Formulaic details are in Eq. B1 (Approx. adjustment factor) and Eq. B2 (Precise adjustment factor).

dataset appear to have licencing histories that violate rules of the GDL system. For
example, some people obtain their P1 license before turning 17 years; others are on
their learner license for less than the mandatory period. These violations may have a
variety of unobserved causes, such as people moving from interstate or data error. Only
around 0.3% of people in our analysis sample violate the GDL rules and we exclude
them throughout the analysis.

• Exclusion of people whose eligibility to avoid treatment status is uncertain – in our
models, people cannot avoid ‘treatment’ if they are born after a certain date. People
whose minimum and maximum possible DOB straddles the threshold date are dropped
in the models we estimate (see discussion in Section 3). Recall that for people with
multiple license records we can narrow this range. However, since the reforms may
have affected licensing behavior (and consequently the accuracy of DOB), we only use
the first license record when imposing this restriction.

• Exclusion of people who obtained their P1 license after age 25 – these people are not
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subject to the MSDH requirements. Only 8.7% of people in our dataset obtained their
P1 license after age 25.

B.3 Additional details on the data

• Change in MVA record keeping 2014 – in 2014, a policy change meant that NSW Police
reported fewer MVAs from this year onwards. This was due to NSW Police no longer
being refquired to attend a crash scene and investigate for tow away MVAs where
nobody was injured or killed. This policy change is largely inconsequential for us as
we only consider the periods July 2000-June 2008 in our analysis, and most people we
observe obtain their P1 license more than 12 months before 2014. Moreover, exposure
to this period (in terms of days on P1 after 2014) is a smooth function of DOB. We
therefore ignore this change.

• License suspensions and demotions – in our analysis we focus on the first date a
person obtained their P1 license and ignore any suspensions (e.g. for speeding or
drunk driving), demotions (i.e. being made to redo the learner class due to a serious
driving offence) or moves out of NSW after this date. If these events are unrelated to
MSDH, which seems reasonable, then our MVA rates will be equally affected by them
in the treatment and untreated groups. While we do not observe suspensions or moves
in our data, we note that in 99.1% of cases the expiry date for learner license matches
the date of effect for the first time obtaining a P1 license, which indicates demotions
are rare.
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C Cost-benefit analysis

Our cost-benefit analysis estimates the social benefits from reducing the probability of an
MVA in the first 12 months of unsupervised driving. Since we find no evidence of reduced
risk beyond this period, we assume those benefits are zero.

We proceed by first estimating the reduction in the rate of MVAs at the policy threshold
for each MVA type (non-injury, injury and fatality) using our ‘best’ model for each reform
(see Table 11). Since our point estimates for fatalities are imprecise owing to low frequencies,
we assume fatality risk decreased by the same percentage as injury risk in our baseline
calculations. We also show how the estimates change if instead we assume no change in the
fatality risk.

We multiply the MVA rates by the total social costs associated with each type of MVA
under the assumption that no one is treated (T = 0) and under the assumption that everyone
is treated (T = 1). The difference between these estimates is the total social benefit per
person. Social benefits for non-injury MVAs are taken from BITRE (2009). Specifically, we
use the average repair cost for MVAs. We therefore ignore other costs associated with these
MVAs such as towing costs, time lost and administrative fees associated with, for example,
insurance claims. On the other hand, the BITRE value includes all MVAs, even severe MVAs
resulting in injury or fatality, and as such the repair costs may be overstated. Moreover,
non-injury crashes comprise a negligible proportion of total social benefits so doubling or
tripling this value has little material effect on the estimates.

Social benefit estimates for crashes involving injury and fatality are taken from NRMA
(2017). They are estimated using the willingness-to-pay method, which uses hypothetical
scenario analysis to infer preferences. A strength of this approach is that it should capture
all the information that goes into people’s individual preferences. A drawback is that people
may be unsure of their preferences, particularly if they have never experienced an MVA.
This approach also ignores externalities, and may be subject to hypothetical bias.

Table C1 steps through our calculations for the 2000 (0 to 50 MSDH) reform. We have set
out this table in such a way that it is easy to substitute our chosen social benefits parameters
other parameters, if desired.

Our preferred estimate for the average social benefit is the sum of the average social
benefit due to reduced risk of non-injury MVAs ($23), injury MVAs ($1,212) and fatalities,
assuming that this risk falls by the same percentage as injury MVAs ($751). This implies
an average social benefit of $2,300. If we ignore the reduction in fatalities, we estimate an
average social benefit of $1,235.

Under the assumption that on average learners complete 20 hours before the reform and
50 hours after the reform, our estimates imply a social benefit of between $25-$46 per hour.
By way of comparison, the national minimum wage in 2019-2020 is $19.49. Given that some
supervised driving hours will be for trips that would have been taken anyway, and that there
may be positive externalities to supervision (e.g. bonding), it seems likely, based on our
estimates, that the 2000 reform was welfare improving.
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Table C1: CBA – 2000 reform (0 to 50 MSDH)

Non-injury Injury Fatality Alt. fatality

Policy effect -0.0058238 -0.008405 -0.0002131 -0.000101968
Prediction T = 0 0.039571 0.0279324 0.000480 0.000480
Prediction T = 1 0.0337472 0.0195274 0.0002669 0.000378
% reduction -15% -30% -44% -21%

Average social cost $4,004 $144,172 $7,369,845 $7,369,845

Expected cost of driving T = 0 $158.44 $4,027.06 $3,537.53 $3,537.53
Expected cost of driving T = 1 $135.12 $2,815.30 $1,967.01 $2,786.04

Social saving per person $23.32 $1,211.76 $1,570.51 $751.49

Notes: Policy effect estimates correspond to the ‘best’ estimator in Table 11. T means ‘treated’ (i.e. sub-
ject to the 50 MSDH policy). Expected cost of driving equals the predicted MVA probability × the average
social cost. All values are expressed in 2019 $AUD (for references, in 2019 the $AUD:$USD exchange rate
averaged around 0.7:1).
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D Summary of discontinuity studies

D.1 Literature search

We searched Econlit on 30 April 2020 using the terms “discontinuit*”, “fuzzy RD” and “re-
gression kink” (contained anywhere) and restricted results to papers published in 2019 in the
following journals: AEJ: Applied Economics ; AEJ: Economic Policy ; American Economic
Review ; Journal of Health Economics ; Journal of Human Resources ; Journal of Labour Eco-
nomics ; Journal of Political Economy ; Journal of Public Economics ; Quarterly Journal of
Economics ; Review of Economic Studies ; and Review of Economics and Statistics.

We identified 34 papers. Four papers were omitted because they did not use a disconti-
nuity design, three were omitted because they were econometric theory focused rather than
applied, and one paper was omitted because it was a reprint from 2018. This left us with 26
papers.

D.2 Explanation for columns in Table D1

We summarize the 26 papers in Table D1. Naturally, it was challenging to categorize these
papers because they often used a variety of dependent variables and considered many different
specifications, and it was often difficult to determine what the preferred model was. The
Table reflects our own best judgement. Here we provide additional details to interpret
columns that are particularly subject to our own judgements.

• RD main specification? – If the discontinuity design was a robustness check or used
only as supporting evidence we categorized the paper as ‘No’. For papers that used
multiple estimation strategies, we coded them as ‘Yes’ provided the discontinuity es-
timates received (in our view) at least equal weight in the paper’s conclusions to the
other estimates.

• Main model – These categories are generally uncontroversial. For less-standard designs,
we have adopted the descriptions used by the authors.

• Main function – In many cases, authors estimate the model using e.g. local linear
regression, and then alter this specification in a sensitivity analysis section. In those
cases, we would classify the main model as ‘local linear’. In other cases, authors present
a suite of models in a single table. Here we tried to classify the main model as the one
that received the most emphasis when discussing results, unless a particular model was
explicitly identified as being the main model or baseline specification.

• How bandwidth? – The categories are as follows. ‘ROT’ means a rule-of-thumb formu-
laic approach, such as Fan and Gijbels (1996). ‘IK’ refers to the approach in Imbens
and Kalyanaraman (2012). ‘CCT’ refers to the approach in Calonico et al. (2014). ‘Not
discussed’ means that the authors did not discuss bandwidth choice a priori to estimat-
ing their baseline results. This does not mean the authors did not consider bandwidth
choice at all. In fact, in almost every paper the authors varied the bandwidth as a
robustness exercise. Often, IK and CCT were used as robustness checks.
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• How polynomial? – The categories are as follows. ‘GI argument’ means they chose
a low-order polynomial based on the advice in Gelman and Imbens (2019). ‘Cross-
validation’ means they used a cross validation procedure (i.e. curve fitting). ‘Visual’
means they motivated the choice based on visual evidence for the DGP. ‘Significance
tests’ means they added higher order terms and tested whether they were statistically
significant. ‘AIC’ means they chose the polynomial order with the lowest Akaike in-
formation criterion. Again, ‘Not discussed’ means that the authors did not discuss
polynomial choice a priori to estimating their baseline results. This does not mean the
authors did not consider polynomial choice at all. In fact, in most papers the authors
varied the polynomial order as a robustness exercise.

• Varied BW? – ‘Yes’ if the authors varied the bandwidth (to any degree) as part of
sensitivity analysis.

• Varied polynomial? – ‘Yes’ if the authors varied the polynomial order (to an degree)
as part of sensitivity analysis.

• Notes – Additional observations specific to each study.
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Table D1: Summaries of applied discontinuity studies published in 2019

Topic Main out-
come(s)

Treatment Running
variable

RD main
specifica-
tion?

Main model Main func-
tion

How band-
width?

How polyno-
mial?

Varied BW? Varied poly-
nomial

Notes

[1] Marx, B., Stoker, T. M. & Suri, T. (2019). There Is No Free House: Ethnic Patronage in a Kenyan Slum. American Economic Journal: Applied Economics, 11:36–70.

Ethnic pa-
tronage and
the rental
market in
Nairobi

Rent or lu-
minosity of
housing

Ethnicity of
chief matches
own

Distance
to admin-
istrative
boundary

No Sharp RD Local linear CCT Not dis-
cussed

Yes Yes RD is used as
a robustness
check to sup-
port claims
of exogeneity
of treatment
variable.

[2] Denning, J. T., Marx, B. M. & Turner, L. J. (2019). ProPelled: The Effects of Grants on Graduation, Earnings, and Welfare. American Economic Journal: Applied Economics, 11:193–224.

College stu-
dent grants
on later
economic
outcomes

Graduation,
earnings,
employment

Grant aid Family in-
come

Yes Fuzzy RD Local linear IK Not dis-
cussed

Yes Yes BW not
precisely
IK – ap-
proximately
median
IK across
different
years they
consider.

[3] Tuttle, C. (2019). Snapping Back: Food Stamp Bans and Criminal Recidivism. American Economic Journal: Economic Policy, 11:301–327.

Ban on
SNAP for
drug traf-
fickers and
recidivism

Recidivism Drug traf-
ficking
offence after
cut-off date

Date of of-
fence

Yes Sharp RD Local linear IK GI argument Yes Yes Bandwidths
considered
included half
IK, CCT
and Ludwig-
Miller (CV).

[4] Knight, B. & Schiff, N. (2019). The Out-of-State Tuition Distortion. American Economic Journal: Economic Policy, 11:317–350.

Enrollment
in state Uni

Enrollment Being in
state

Distance to
state border
(in bins)

Yes Sharp spatial
RD

Global linear Not dis-
cussed

Not dis-
cussed

Yes No Theoretical
paper with
small empiri-
cal section.

[5] Dube, A., Giuliano, L. & Leonard, J. (2019). Fairness and Frictions: The Impact of Unequal Raises on Quit Behavior. American Economic Review, 109:3620–663.

Job separa-
tion after
wage changes

Leave job Wage step
(for Fuzzy
RD, aver-
age wage of
peers)

Distance to
wage step

Yes Cohort-IV
and Fuzzy
Cohort-IV

Global linear Not dis-
cussed

Not dis-
cussed

Yes Yes Also do
more tradi-
tional RD
as ’stacked’
regressions
for each
threshold.

[6] Finkelstein, A., Hendren, N. & Shepard, M. (2019). Subsidizing Health Insurance for Low-Income Adults: Evidence from Massachusetts. American Economic Review, 109:1530–1567.

Subsidies
and demand
for health
insurance

Insurance
purchase

Poverty
thresholds

Income as %
of poverty
line

Yes Sharp RD Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes Run separate
regressions
for differ-
ent income
thresholds
where sub-
sidy change.,
Generally
use whole
range for
BW.
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[7] Zimmerman, S. D. (2019). Elite Colleges and Upward Mobility to Top Jobs and Top Incomes. American Economic Review, 109:1–47.

Elite busi-
ness schools
and labour
market out-
comes in
Chile

Various
labour mar-
ket success
measures

Admission
to elite
business-
focussed
program

Admission
score

Yes Sharp RD Mean com-
parison

CCT Cross valida-
tion

Yes Yes

[8] Giuntella, O. & Mazzonna, F. (2019). Sunset Time and the Economic Effects of Social Jetlag: Evidence from US Time Zone Borders. Journal of Health Economics, 65:210–226.

Time zones
on sleep,
and sleep
patterns on
health and
wellbeing

Sleep,
health,
income

Living across
time zone
(one hour ex-
tra daylight)

Distance to
time zone
border

Yes Sharp spatial
RD

Local linear CCT Not dis-
cussed

Yes Yes

[9] Nielsen, N. F. (2019). Sick of Retirement?. Journal of Health Economics, 65:133–152.

Retirement
on health
and health
care use

Various
health and
utilisation

Early age
pension age
and old age
pension age

Age Yes Fuzzy RD Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes

[10] Daysal, N. M., Trandafir, M., & van Ewijk, R. (2019). Low-Risk Isn’t No-Risk: Perinatal Treatments and the Health of Low-Income Newborns. Journal of Health Economics, 64:55–67.

Birth setting
and carer on
child mortal-
ity

7 and 28 day
mortality

OB/GYN
attendant
and hospital
setting (ges-
tational age
¡37 weeks)

Gestational
age

Yes Sharp RD Local linear ROT Visual Yes Yes Guided by
ROT BW
selection but
actually used
smaller BW.

[11] Kim, H. B., Lee, S. A. & Lim, W. (2019). Knowing Is Not Half the Battle: Impacts of Information from the National Health Screening Program in Korea. Journal of Health Economics,
65:1–14.

Screening
threshold for
health risks
and health
behaviours

Healthy
behaviours

Cut-offs for
risk level
categories

Fasting
blood sugar,
BMI, and
LDL choles-
terol

Yes Sharp RD Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes The CCT
BW is often
larger than
feasible in
their ap-
plication
because it
crosses other
threshold

[12] Hong, K. Dragan, K. & Glied, S. (2019). Seeing and Hearing: The Impacts of New York City’s Universal Pre-kindergarten Program on the Health of Low-Income Children. Journal of Health
Economics, 64:93–107.

Screening
in pre-K
for health
problems

Health diag-
nosis various

Eligible
for univer-
sal pre-K
program

Birthdate Yes Diff-in-diff
sharp RD

Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes Model is the
difference
between
different
RDs. Used
IK/CCT in
robustness.

[13] David, G., Smith-McLallen, A. & Ukert, B. (2019). The Effect of Predictive Analytics-Driven Interventions on Healthcare Utilization. Journal of Health Economics, 64:68–79.

Health risk
threshold
intervention
and health
care use

Health care
use (ED,
hospital,
cardiologist,
PCP)

Health risk
(proprietary
algorithm)
above cut-off

Given health
advice

Yes Sharp RD Local
quadratic

CCT & IK Not dis-
cussed

Yes Yes
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[14] Page, L. C., Kehoe, S. S., Castleman, B. L. & Sahadewo, G. A. (2019). More Than Dollars for Scholars: The Impact of the Dell Scholars Program on College Access, Persistence, and Degree
Attainment. Journal of Human Resources, 54:683–725.

Dell scholars
program and
success

College en-
rollment,
persistence
and gradua-
tion

Dell scholars
program

Weighted
score of
achievement,
disadvantage
and respon-
sibility

Yes Sharp RD Local linear CCT Visual, sig-
nificance
tests

Yes No Paper also
uses a DD
strategy,
which gets
equal weight.

[15] Goodman, J., Melkers, J. & Pallais, A. (2019). Can Online Delivery Increase Access to Education?. Journal of Labor Economics, 37:1–34.

Enrollment
into com-
puter science
degree

Course en-
rollment

GPA above
cut-off

GPA Yes Fuzzy RD Local linear CCT & IK Not dis-
cussed

Yes No Uses range of
IK and CCT
BW to mo-
tivate main
specification.

[16] Raphael, S. & Rozo, S. V. (2019). Racial Disparities in the Acquisition of Juvenile Arrest Records. Journal of Labor Economics, 37:S123–S159.

Police book-
ing on subse-
quent arrests

Arrests Age 18 Date arrest
relative to
18th birth-
day

Yes Fuzzy RD Local
quadratic

Not dis-
cussed

Not dis-
cussed

Yes No RD de-
scribed is
the causal
analysis of
bookings on
subsequent
arrest, but
sharp RD
also used
elsewhere for
descriptive
analysis.

[17] Kreisman, D. & Steinberg, M. P. (2019). The Effect of Increased Funding on Student Achievement: Evidence from Texas’s Small District Adjustment. Journal of Public Economics, 176:118–141.

School fund-
ing and
student
outcomes

Student
achievement
(test scores,
graduation)

School
funding
thresholds

District size
and sparsity

Yes Cohort-IV Global
quadratic

Not dis-
cussed

Not dis-
cussed

No No

[18] Frey, A. (2019). Cash Transfers, Clientelism, and Political Enfranchisement: Evidence from Brazil. Journal of Public Economics, 176:1–17.

Conditional
cash transfer
program
and political
behaviours

Incumbency
re-election,
various
political
behaviours

Conditional
cash transfer
participation

Human de-
velopment
index and
municipal
population
size

Yes Multivariate
fuzzy RD

Local linear IK for multi-
variate

Not dis-
cussed

Yes No

[19] Gallagher, E. A., Gopalan, R. & Grinstein-Weiss, M. (2019). The Effect of Health Insurance on Home Payment Delinquency: Evidence from ACA Marketplace Subsidies. Journal of Public
Economics, 172:67–83.

Health in-
surance
subsidies
and rent and
mortgage
delinquency

Rent and
mortgage
delinquency

Subsidy
for health
insurance

Income as
% federal
poverty line

Yes Sharp RD
and Fuzzy
RD

Local lin-
ear and
quadratic

CCT AIC Yes Yes Sharp RD on
effect on in-
surance take-
up, and fuzzy
on effect of
insurance on
delinquency.

[20] Farre, L. & Gonzalez, L. (2019). Does Paternity Leave Reduce Fertility?. Journal of Public Economics, 172:52–66.

69



Paid pater-
nity leave
and birth
spacing

Time be-
tween chil-
dren

Eligibility for
PPL

Child’s date
of birth

Yes Sharp RD Local
quadratic

Not dis-
cussed

Not dis-
cussed

Yes Yes

[21] Le Barbanchon, T., Rathelot, R. & Roulet, A. (2019). Unemployment Insurance and Reservation Wages: Evidence from Administrative Data. Journal of Public Economics, 171:1–17.

Potential
UI benefit
duration and
reservation
wages

Reservation
wage

Longer
potential
benefit du-
ration if age
50

Age No Fuzzy RD Not clear CCT Not dis-
cussed

No No

[22] Remmerswaal, M., Boone, J., Bijlsma, M. & Douven, R. (2019). Cost-Sharing Design Matters: A Comparison of the Rebate and Deductible in Healthcare. Journal of Public Economics,
170:83–97.

Effect of
cost sharing
scheme on
health care
use

Healthcare
expenditure

Whether
have cost
sharing (age
18)

Age Yes Diff-in-diff
sharp RD

Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes Estimator is
essentially
the differ-
ence between
two RDs.

[23] Scott-Clayton, J. & Zafar, B. (2019). Financial Aid, Debt Management, and Socioeconomic Outcomes: Post-college Effects of Merit-Based Aid. Journal of Public Economics, 170:68–82.

Financial aid
and later life
outcomes

Various
socio-
economic
outcomes:
gradua-
tion, home
ownership,
delinquency,
neighbour-
hood, finan-
cial security

Received
financial aid
scholarship

ACT score Yes Fuzzy RD Local linear Not dis-
cussed

Not dis-
cussed

Yes Yes

[24] Baltrunaite, A., Casarico, A., Profeta, P. & Savio, G. (2019). Let the Voters Choose Women. Journal of Public Economics, 180.

Preference
voting rules
and election
outcomes

Female
candidate
elected

Preference
voting and
gender quota
(municipal
pop size >
5000)

Population
size

Yes Sharp RD Local linear CCT Not dis-
cussed

Yes Yes
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ernment
funding
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Funding to
revitalize
public hous-
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prices

House prices Eligibility for
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funding for
housing re-
development

Deprivation
score

Yes Fuzzy RD Local linear IK Not dis-
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Yes No
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