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Abstract

Hydrogenated amorphous silicon (a-Si:H) has applications in photovoltaics as an absorber
material in thin-film solar cells and as a passivation material in silicon-heterojunction cells,
where it forms an interface with the crystalline silicon (c-Si) absorber. The physical processes
occurring at this interface have crucial impact on the characteristics of the entire photovoltaic
device. The key to improving the solar cell performance lies therefore in the optimization
of the interface, in particular with respect to its transport and recombination properties.
This requires a profound understanding of the microscopic structure of a-Si:H and a-Si:H/c-
Si interfaces, and of its effect on the macroscopic properties relevant for photovoltaics, such
as absorption, optical and mobility gap, band offsets, and local density of gap states. In this
thesis we present an ab initio study that seeks to provide insight into the atomic and electronic
structure of bulk a-Si:H and a-Si:H/c-Si interfaces, extract the relevant electronic and optical
properties, and explore the computational limitations that have to be overcome in order to
arrive at a predictive ab initio simulation of the silicon heterojunction.

In the first step bulk a-Si:H is investigated, for which we use atomic configurations of a-Si:H
with 72 and 576 atoms, respectively. These were generated with ab initio molecular dynamics,
where the larger structures are defect free, closely matching the experimental situation and
enabling the comparison of the electronic and optical properties with experimental results.
Density functional theory calculations are applied to both configurations in order to obtain
the electronic wave functions. These are analyzed and characterized with respect to their
localization and their contribution to the density of states, and are used for calculating ab
initio absorption spectra of a-Si:H. The results show that both the size and the defect structure
of the configurations affect the electronic and optical properties and in particular the values
of the optical and mobility gap. These values can be improved by calculating quasiparticle
(QP) corrections to the single-particle spectra using the G0W0 method. Thereby we find
that the QP corrections can be described by a set of scissors shift parameters, which can
also be used in calculations of larger structures. The analysis of individual contributions to
the absorption by evaluating the optical matrix elements indicates that strong localization
enhances the optical coupling, but has little effect on the average transition probability, for
which we find a dependence E2 + const on the photon energy E, irrespective of the nature of
the initial or final state.

In the second step the previously analyzed defect-free a-Si:H structure is combined with c-Si to
form a realistic a-Si:H/c-Si interface structure, which undergoes a high-temperature annealing
in order to obtain a very low defect density. Throughout the annealing, we monitor the
evolution of the structural and electronic properties. The analysis of the bonds by means
of the electron localization function reveals that dangling bonds move toward the free a-Si:H
surface, leaving the interface region itself completely defect free. The hydrogen follows this
movement, which indicates that in the case under consideration, hydrogen passivation does not
play a significant role at the interface. A configuration with a satisfactory low density of defect
states is reached after annealing at 700 K. A detailed characterization of the electronic states
in this configuration in terms of their energy, localization, and location reveals that, despite



the absence of dangling bonds near the interface, localized interface states still exist, lying
mostly below the conduction band edge from where they seem to move deeper into the gap
throughout the annealing. The quantitative description of electronic localization also allows
for the determination of the a-Si:H mobility gap, which, together with the c-Si band gap,
yields band offsets that are in qualitative agreement with experimental observations. We find,
however, that the error in determining the band edges is too large for an accurate calculation
of the band offsets, and can be decreased only by using larger configurations.



Zusammenfassung

Hydrogenisiertes amorphes Silizium (a-Si:H) findet in der Photovoltaik Anwendung als Absor-
bermaterial in Dünnschicht-Solarzellen und als Passivierungsmaterial in Silizium-Heterostruk-
tur-Zellen, wo es eine Grenzfläche mit dem kristallinen Silizium (c-Si) Absorber bildet. Die
physikalischen Prozesse, die an dieser Grenzfläche auftreten, haben entscheidenden Einfluss
auf die Eigenschaften der gesamten Solarzelle. Der Schlüssel zur Verbesserung der Solarzel-
lenleistung liegt daher in der Optimierung der Grenzfläche, insbesondere hinsichtlich ihrer
Transport- und Rekombinationseigenschaften. Dies erfordert ein tiefgreifendes Verständnis der
mikroskopischen Struktur von a-Si:H und a-Si:H/c-Si-Grenzflächen und ihres Einflusses auf die
für die Photovoltaik relevanten makroskopischen Eigenschaften, wie Absorption, optische und
Mobilitäts-Bandlücke, Bandversätze und lokale Dichte von Zuständen in der Bandlücke. In
dieser Arbeit präsentieren wir eine ab-initio-Studie, die anstrebt, Einblick in die atomare und
elektronische Struktur von a-Si:H und a-Si:H/c-Si-Grenzflächen zu geben, die relevanten elek-
tronischen und optischen Eigenschaften zu extrahieren und die numerischen Einschränkungen
zu untersuchen, die überwunden werden müssen, um das Ziel einer prädiktive ab-initio-Simu-
lation der Silizium-Heterostruktur zu erreichen.

Im ersten Schritt wird reines a-Si:H untersucht, wofür wir atomare Konfigurationen von a-Si:H
mit 72 bzw. 576 Atomen verwenden. Diese wurden mittels ab-initio-Molekulardynamik er-
zeugt, wobei die größeren Strukturen defektfrei sind, was gut mit der experimentellen Situation
übereinstimmt und den Vergleich der elektronischen und optischen Eigenschaften mit experi-
mentellen Ergebnissen ermöglicht. Für beide Konfigurationen werden Dichtefunktionaltheorie-
Rechnungen durchgeführt, um die elektronischen Wellenfunktionen zu erhalten. Diese werden
analysiert und hinsichtlich ihrer Lokalisierung und ihres Beitrags zur Zustandsdichte charak-
terisiert, und werden außerdem zur Berechnung von ab-initio-Absorptionsspektren von a-Si:H
verwendet. Die Ergebnisse zeigen, dass sowohl die Größe als auch die Defektstruktur der Konfi-
gurationen die elektronischen und optischen Eigenschaften beeinflussen, insbesondere die Werte
der optischen und der Mobilitäts-Bandlücke. Diese Werte können durch die Berechnung von
Quasiteilchen-Korrekturen der Ein-Teilchen-Spektren mittels der G0W0-Methode verbessert
werden. Dabei stellen wir fest, dass die Quasiteilchen-Korrekturen durch einen Satz von scis-
sors-shift-Parametern beschrieben werden können, der sich auch bei Rechnungen mit größeren
Strukturen verwenden lässt. Die Analyse der einzelnen Beiträge zur Absorption durch Aus-
wertung der optischen Matrixelemente weist darauf hin, dass starke Lokalisierung die optische
Kopplung verstärkt, jedoch wenig Einfluss auf die durchschnittliche Übergangswahrschein-
lichkeit hat, für die wir eine Abhängigkeit E2 + const von der Photonenenergie E ermitteln,
unabhängig von der Art des Ausgangs- oder Endzustandes.

Im zweiten Schritt wird die zuvor analysierte defektfreie a-Si:H-Struktur mit c-Si kombiniert,
um eine realistische a-Si:H/c-Si-Grenzflächenstruktur zu bilden, die einem Hochtemperatur-
Tempern unterzogen wird, um eine sehr geringe Defektdichte zu erlangen. Während des Tem-
perns überwachen wir die Entwicklung der strukturellen und elektronischen Eigenschaften.
Die Analyse der Bindungen mittels der Elektronenlokalisierungsfunktion zeigt, dass sich offene



Bindungen in Richtung der freien a-Si:H-Oberfläche bewegen, wodurch der Grenzflächenbe-
reich selbst vollständig defektfrei wird. Der Wasserstoff folgt dieser Bewegung, was darauf
hindeutet, dass die Wasserstoffpassivierung im betrachteten Fall an der Grenzfläche keine
wesentliche Rolle spielt. Eine Konfiguration mit einer zufriedenstellend geringen Defektzu-
standsdichte wird nach Tempern bei 700 K erreicht. Eine detaillierte Charakterisierung der
elektronischen Zustände in dieser Konfiguration hinsichtlich ihrer Energie, ihrer Lokalisierung
und ihrer räumlichen Position zeigt, dass, trotz der Abwesenheit offener Bindungen nahe der
Grenzfläche, lokalisierte Grenzflächenzustände vorhanden sind, welche überwiegend unterhalb
der Leitungsbandkante liegen, von wo aus sie sich während des Temperns tiefer in die Band-
lücke zu bewegen scheinen. Die quantitative Beschreibung der elektronischen Lokalisierung
ermöglicht auch die Bestimmung der a-Si:H-Mobilitätslücke, welche, zusammen mit der c-Si-
Bandlücke, Bandversätze liefert, die mit experimentellen Beobachtungen qualitativ überein-
stimmen. Wir stellen jedoch fest, dass der Fehler beim Bestimmen der Bandkanten zu groß
für eine genaue Berechnung der Bandversätze ist und nur durch die Verwendung größerer
Konfigurationen verringert werden kann.



Contents

1 Introduction 9

2 Theory and Methods 13
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The many-particle Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 The Hohenberg-Kohn theorem . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 The Kohn-Sham formalism . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 The exchange-correlation functional . . . . . . . . . . . . . . . . . . . . 17

2.1.5 The plane-wave pseudopotential method . . . . . . . . . . . . . . . . . . 18

2.2 Quasiparticle corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 GW approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Practical calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Scissors shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Characterization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Radial pair correlation function . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Bonding and the ELF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4 Electronic localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Mobility gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.6 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Hydrogenated amorphous silicon 46
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 G0W0 calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Absorption spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.3 JDOS and optical matrix elements . . . . . . . . . . . . . . . . . . . . . 63

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 The a-Si:H/c-Si interface 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Computational details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Structural and electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Atomic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Density of states and band offsets . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Localized states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Evolution upon high-temperature annealing . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Structural evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Evolution of electronic properties . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Effect of surface passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7



4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Conclusions 96

Bibliography 98

8



1 Introduction

Silicon, both in its crystalline and amorphous phase, plays an important role in photovoltaics.
Despite the advances of new materials, such as copper indium gallium selenide (CIGS) and
cadmium telluride (CdTe), and technologies, like perovskite or organic photovoltaics, silicon-
based solar cells still account for 93.3% of the global annual production. Thereby, mono- and
multi-crystalline wafer based cells have a combined market share of 93.0%, whereas the market
share of amorphous silicon thin-film solar cells has decreased to 0.3% in 2017 [1]. However,
in addition to its role as an absorber material in thin-film cells, (hydrogenated) amorphous
silicon (a-Si:H) has recently found a new important application as a passivation layer in silicon-
heterojunction (SHJ) cells, which is the main motivation for our interest in the microscopic
modeling of a-Si:H and amorphous-crystalline (a-Si:H/c-Si) interfaces.

Understanding and simulating the SHJ cell demands a multi-scale approach that relates the
local microstructure to the global device characteristics [2]. At the microscopic level, which is
covered within this work, this requires the accurate description of the atomic and electronic
structure at the interface, which is best captured by ab initio methods. Based on this infor-
mation, material properties have to be extracted, which can be used as parameters in meso-
and macroscopic simulations, and to establish the structure-property relations. Along these
lines, the aim of this thesis is to contribute to the understanding of the local microstructure
at the a-Si:H/c-Si interface and its impact on the cell characteristics, and to advance towards
the goal of a fully ab initio based simulation of the SHJ that allows for the prediction of the
relevant macroscopic material properties from the microscopic structure.

In order to understand what the relevant material properties are in the context of photovoltaics
in general and heterojunctions in particular, we briefly recapitulate the working principle of a

pn

Figure 1.1: Working principle of a solar cell. An electron-hole pair is generated by photon absorption
in the absorber. The charge carriers are then separated by a p-n-junction and are collected
at the carrier-selective terminals. [3]
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Figure 1.2: Shockley-Read-Hall recombination in amorphous silicon. Under emission of one or multi-
ple phonons, an electron and a hole close to the mobility edge (Emob

v/c ) fall into a localized

state deep inside the mobility gap (Emob
gap ), where they are trapped and recombine.

solar cell (Fig. 1.1). A basic solar cell consists of a p-n-junction, i.e., an interface between a
p-doped and an n-doped semiconductor, and contacts on the front and the back surface. Upon
absorption of a photon in one of the semiconductor layers – the absorber – an electron-hole
pair is generated, meaning that an electron is excited into the conduction band, leaving a
hole in the valence band. The generated carriers move through the semiconductor and are
separated at the p-n-junction, which serves as a selective barrier, letting electrons only pass
in one direction, and holes only in the other direction. If the carriers reach the surface before
recombining, they are collected at the contacts and contribute to the photo current.

The total number of electrons being collected in relation to the number of incident photons is
called the external quantum efficiency (EQE), which, among other factors, drives the overall
solar cell efficiency. It depends on the rate of photons absorbed and the rate of carriers recom-
bining. Microscopically, the rate of photon absorption depends on the absorption coefficient
of the absorber material, and in particular on its optical gap, i.e., the photon energy that is at
least required to excite an electron from the valence into the conduction band. Bulk recom-
bination is driven by three different mechanisms: radiative, Auger, and Shockley-Read-Hall
(SRH) recombination. As radiative and Auger recombination strongly depend on the doping
density, the dominant recombination mechanism in intrinsic (undoped) amorphous semicon-
ductors is the SRH recombination. The latter, as visualized in Fig. 1.2, occurs via trap states,
which are spatially localized and energetically situated inside the gap. The recombination rate
therefore depends on the (local) density of gap states, as well as their energies and capture
cross sections, i.e., the probabilities of capturing an electron or a hole.

In addition to bulk recombination, the EQE is limited by recombination at the surface contacts,
i.e., by electrons reaching the positive contact or holes reaching the negative contact instead
of being swept over the p-n-junction. The SHJ cell solves this problem by embedding the c-Si
absorber in a-Si:H passivation layers. The larger gap of the a-Si:H induces band offsets at the
interfaces that provide selective barriers for the charge carriers (Fig. 1.3), preventing them from
recombining at the surface. Therefore, these offsets, in combination with the band bending
induced by doped layers (field-effect passivation), determine the surface recombination rate, as
well as the charge transport through the interfaces. Additionally, the larger optical gap of the

10
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a-Si:H

i n

a-Si:Hc-Si (n)

Figure 1.3: Band diagram of a basic silicon-heterojunction cell. The c-Si absorber is embedded in two
a-Si:H passivation layers. The band offsets ∆Ev/c at the interfaces give rise to selective
barriers, preventing electrons from reaching the positive contact (left) and holes from
reaching the negative contact (right), while allowing the respective other type of carrier
to tunnel through. [4]

passivation material acts as a window for incident light, which means that its value controls
the absorption losses in the front passivation layer. Another passivation mechanism attributed
to the intrinsic a-Si:H layers is the passivation of dangling bonds (chemical passivation), which
is supposed to be related to the hydrogen concentration in the intrinsic layer.

The accurate description of the microscopic structure of the a-Si:H/c-Si interface first requires
to find a suitable model structure of a-Si:H, which can then be combined with c-Si to model the
interface. This is why, in the first step, we analyze model structures of bulk a-Si:H with respect
to their ability to describe the actual experimental properties of a-Si:H, before moving on to
the interface structure. This approach also allows us to detect the impact of computational
artifacts that limit the accuracy of the calculations, without the disruptive influence of surfaces,
interfaces, and defects.

Both the modeling of bulk a-Si:H and the a-Si:H/c-Si interface follows the same procedure. In
the first step, atomic configurations are generated using ab initio molecular dynamics. This
step was not performed within this thesis, but the respective structures were provided as part
of a collaboration with the ENEA Casaccia Research Center. In the second step, the electronic
structure is calculated using density functional theory. In the third step, various methods are
applied to obtain the microscopic and macroscopic material properties. The simulation flow
is visualized in Fig. 1.4.

This thesis consists of three main parts. In the first part, all the theory and methods that
came to use within this work are introduced. Following this, the results are presented and
discussed, where the second part deals with bulk a-Si:H, and the third part covers the a-
Si:H/c-Si interface. Parts of this work have been pre-published in the form of conference
proceedings and journal articles [2, 5–7].

11
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2 Theory and Methods

This chapter describes the computational methods employed in the course of this work and
explains the underlying theory. The first section is dedicated to the density functional theory
(DFT), which is used to calculate the electronic structure of all the a-Si:H and a-Si:H/c-Si
configurations, and forms the basis of all further calculations. The second section deals with
the quasiparticle corrections, which serve the purpose of improving the results obtained with
DFT. The third section finally introduces all the methods used for the structural, electronic,
and optical characterization of the previously calculated configurations. In order to keep the
notation as simple as possible, atomic units are used throughout the whole chapter.

2.1 Density functional theory

Density functional theory (DFT) is one of the most widely used electronic-structure methods
in theoretical condensed-matter physics and computational material science. It allows, in
principle, to calculate all ground-state properties of a many-particle system, based only on the
knowledge of the atomic structure. This section is supposed to provide a short overview over
the basic theorems and equations that form the foundation of DFT, and is restricted to the
zero-temperature and spin-independent case, as all calculations within this thesis have been
performed under these conditions. For a more detailed treatment of DFT the reader is referred
to the large amount of literature covering this topic, e.g., the books of Martin [8] or Kohanoff
[9].

2.1.1 The many-particle Hamiltonian

A many-particle system consisting of electrons and nuclei is described by the Hamiltonian

H = T + U + V +W (2.1)

with the kinetic-energy operator

T = −1

2

∑
i

∇2
i , (2.2)

where ∇i is the gradient with respect to the spatial coordinates ri of the ith electron, the
Coulomb energy of the electrons

U =
1

2

∑
i6=j

1

|ri − rj |
, (2.3)

the energy of the electrons in the nuclear potential v(r),

V =
∑
i

v(ri) = −
∑
i,I

ZI
|ri −RI |

, (2.4)

13



where RI and ZI are the position and charge of the Ith nucleus, and the Coulomb energy of
the nuclei

W =
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

. (2.5)

If the electronic and nuclear degrees of freedom are assumed to be decoupled (Born-Oppen-
heimer approximation), then the electronic ground state is obtained by solving the Schrödinger
equation for the many-electron wave function Ψ,

(T + U + V ) Ψ ({ ri }) = EΨ ({ ri }) , (2.6)

in which the nuclear degrees of freedom appear only in the static potential v(r). T and U are
universal operators, i.e., they do not depend on the kind of system under consideration. Hence,
if the nuclear positions {RI } and therefore the potential v(r) are known, (2.6) can, in theory,
be solved, providing all ground-state properties of the system. In practice, however, for any real
material the number of degrees of freedom is of the order of 1023, which makes the calculation
of the many-electron wave function impossible. The key idea behind DFT is therefore to map
the interacting many-electron system onto an effective system of non-interacting electrons
moving in a mean field, such that the many-electron wave function Ψ({ ri }) can be replaced
by a set of single-electron wave functions ψi(r) without losing any information. The theoretical
foundation of this idea is provided by the Hohenberg-Kohn theorem.

2.1.2 The Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem [10] consists of two central statements:

1. The non-degenerate many-electron ground state Ψ0 is a unique functional of the ground-
state electron density n0(r), i.e.,

Ψ0 ({ ri }) = Ψ [n0(r)] (2.7)

2. For any given potential v(r) there exists an energy functional Ev[n], such that

Ev [n0] ≤ Ev [n] ∀n , (2.8)

i.e., n0 minimizes the energy functional and yields the ground-state energy.

The Hohenberg-Kohn theorem thus states that all the information contained in the N -electron
wave function, which is a function of 3N variables, is also contained in the ground-state
density, being a function of only three variables. From this it follows that also the ground-
state expectation value of any operator A can be calculated as an implicit functional of n0:

A0 = 〈Ψ [n0] |A |Ψ [n0]〉 = A [n0] . (2.9)

Moreover, the ground-state density can theoretically be found by minimizing the energy func-
tional

Ev[n] = 〈Ψ[n] |T + U + V |Ψ[n]〉 = T [n] + U [n] + V [n] (2.10)
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with respect to n under the constraint∫
dr n(r) = N (2.11)

(conservation of particle number). In practice, however, only V [n] is known as an explicit
functional of n,

V [n] =

∫
dr v(r)n(r) , (2.12)

whereas the explicit dependence of the universal functionals T [n] and U [n] on the density is
in general unknown and has to be approximated.

2.1.3 The Kohn-Sham formalism

In order to find explicit expressions for the functionals T [n] and U [n], the Kohn-Sham approach
[11] substitutes the interacting many-particle system by a system of non-interacting electrons,
using the fact that, according to the Hohenberg-Kohn theorem, the interacting system can be
substituted by any auxiliary system that has the same ground-state density n0, without losing
any information. The many-particle wave function is then given by a product of single-particle
wave functions ψi, which obey the Schrödinger equation(

−1

2
∇2 + vs[n](r)

)
ψi(r) = εiψi(r) , (2.13)

where vs[n] is a (yet unknown) effective potential. The total kinetic energy of this system is
given by the sum of the kinetic energies of the electrons,

Ts = −1

2

occ∑
i

∫
dr ψ∗i (r)∇2ψi(r) , (2.14)

and the interaction energy is given by the electrostatic Hartree energy,

UH [n] =
1

2

∫ ∫
dr dr′

n(r)n(r′)

|r− r′|
, (2.15)

which is an explicit functional of the density

n(r) =

occ∑
i

|ψi(r)|2 . (2.16)

Since the set {ψi } are themselves functionals of n, as they depend on vs[n], also Ts is an
implicit functional of n: Ts[n] = Ts[{ψi[n] }]. The total energy functional can now be written
as

Ev[n] = Ts[n] + UH [n] + V [n] + Exc[n] , (2.17)

where

Exc[n] = (T [n]− Ts[n]) + (U [n]− UH [n]) (2.18)
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is the exchange-correlation (xc) energy, containing all terms arising from the fact that the
interacting wave function Ψ0 is in fact not just a product of single-particle wave functions.
Even though these terms are not known in practice, (2.17) is formally exact and therefore,
according to the Hohenberg-Kohn theorem, its minimization will yield the exact ground-state
density n0. To account for the fact that Ts is known explicitly only as a functional of {ψi },
the minimization with respect to n is recast into a minimization with respect to {ψi }, using
(2.13), which yields the set of equations

δ

δψ∗i (r)

(
Ts[n] + UH [n] + V [n] + Exc[n]− µi

∫
dr n(r)

)
= 0 (2.19)

⇒
(
−1

2
∇2 + vH [n](r) + v(r) + vxc[n](r)

)
ψi(r) = µiψi(r) , (2.20)

where µi are the Lagrange multipliers,

vH [n](r) =

∫
dr′

n(r′)

|r− r′|
(2.21)

is the Hartree potential, and

vxc[n](r) =
δExc

δn(r)
(2.22)

is the xc-potential. Comparison with (2.13) shows that

vs[n](r) = vH [n](r) + v(r) + vxc[n](r) (2.23)

is the effective potential in which the non-interacting electrons move, and the Lagrange
multipliers µi give the single-particle energies εi. Consequently, solving the non-interacting
Schrödinger equation (2.13) is equivalent to solving the minimization problem (2.19) for the
interacting system and will therefore yield the same ground-state density n0. Equations
(2.13), (2.16), and (2.23) are known as the Kohn-Sham equations and have to be solved
self-consistently. They replace the problem of finding the N -particle wave function Ψ0 with
the much easier problem of finding a set of N one-particle wave functions. However, while the
two problems are formally equivalent, in practice the Kohn-Sham equations can only be for-
mulated approximately due to the unknown form of the xc-functional. The accuracy of DFT
is therefore fundamentally dependent on the choice of this functional, which will be further
discussed in section 2.1.4.

Another common approximation, even though not inherent in DFT, is to interpret the eigen-
values εi of the auxiliary system as the actual electron binding energies. This interpretation
is in principle not correct, because, even though DFT in theory reproduces all ground-state
properties exactly, this does not hold for the band structure, since the single-electron energies
εi are not observables of the original many-body system. Nevertheless, in many cases the
independent-particle picture approximates the actual system well enough to yield very good
agreement between the DFT and the experimental band structure for the occupied states. Ex-
citation energies on the other hand suffer from the fact that they are still calculated from the
ground-state density, i.e., the effects of adding or removing an electron on the effective poten-
tial are not taken into account. These many-body effects lead to a systematic underestimation
of the band gap in DFT and will be discussed in section 2.2.
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2.1.4 The exchange-correlation functional

As explained before, the exchange-correlation (xc) energy takes into account all many-electron
interactions beyond the Hartree energy. It is therefore the difference in energy arising from
replacing the product of one-particle wave functions by a more general Ansatz for the many-
body wave function Ψ0. As the former will, according to the Hohenberg-Kohn theorem, yield
an energy higher than the ground-state energy, it follows that Exc ≤ 0. Descriptively this
means that xc-interactions lead to a repulsion between the electrons, such that Exc can be
formally written as

Exc[n] =
1

2

∫ ∫
dr dr′

n(r)nxc(r, r
′)

|r− r′|
, (2.24)

with the so-called xc-hole nxc(r, r
′), fulfilling∫

dr′ nxc(r, r
′) = −1 , (2.25)

which describes the reduced probability of finding another electron in the vicinity of an electron
at position r. Even though a number of other exact properties of the xc-functional are known
[12], an explicit expression for Exc[n] can only be given approximately. As this, however,
usually constitutes only a small part of the total energy functional, DFT can still yield accurate
results, especially compared to methods that completely neglect either exchange (Thomas-
Fermi approximation [13, 14]) or correlation (Hartree-Fock approximation [15, 16]). In the
case of strongly correlated materials such as transition metal oxides however, i.e., when the
correlation term becomes comparable in magnitude to the other terms of the energy functional,
the approximation breaks down.

A common and intuitive approach to approximating Exc[n] is the local density approximation
(LDA), which takes the xc-energy density ehom

xc (n) of a homogeneous electron gas with density
n, and uses its value at n = n(r) as a local approximation for exc, i.e.,

eLDA
xc (r) = ehom

xc (n)
∣∣∣
n=n(r)

(2.26)

⇒ELDA
xc [n] =

∫
dr ehom

xc (n(r)) . (2.27)

Thereby, the exchange part of ehom
xc is exactly known to be [12]

ehom
x (n) = −3

4

(
3

π

)1/3

n4/3 . (2.28)

The correlation part is not known exactly, but very good parameterizations [17, 18], based on
highly precise Quantum Monte Carlo calculations [19], exist nowadays. The drawback of the
LDA is that it does not account for the non-locality of exc [20], and therefore, in principle,
should only work in the limiting case of a slowly varying density [11]. The reason why LDA
has still proven successful for a wide range of systems, is the systematic cancellation of errors
between the exchange and the correlation term for typical valence electron densities [20].
Nevertheless, improvement can often be reached by taking into account non-locality in the
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form of the local change ∇n(r) to the density, which is known as the generalized gradient
approximation (GGA) [21]. Functionals of this type have the form

EGGA
xc [n] =

∫
dr eGGA

xc (n(r),∇n(r)) . (2.29)

As opposed to the LDA, there is a lot of freedom in the construction of GGA functionals,
which is why there exists a large variety of them, each emphasizing different exact constraints,
and each optimized for different kinds of systems [21–25]. Detailed comparisons of the many
different functionals can be found in literature [26–28].

2.1.5 The plane-wave pseudopotential method

The numerical solution of the Kohn-Sham equations requires the choice of a basis in which
the wave functions and operators are expanded, transforming the problem of solving the
Schrödinger equation into an eigenvalue problem that can be solved with standard linear-
algebra tools. In case of periodic boundary conditions, plane waves are a natural choice, since
the potential vs(r) is invariant under translation by any lattice vector R, and can therefore be
expanded in a Fourier series

vs(r) =
∑
G

VGe
iG·r , (2.30)

where G are the reciprocal lattice vectors. According to the Bloch theorem, the solutions of
the Kohn-Sham equations then have the form

ψnk(r) =
∑
G

CnkG ei(G+k)·r , (2.31)

which are called Bloch waves. They are labeled by the wave vector k, which lies in the first
Brillouin zone, and the band index n, and are orthonormal in both:

〈ψnk |ψn′k′〉 = δnn′δkk′ . (2.32)

Using the plane-wave representation of the kinetic energy operator,

TGG′(k) =
1

2
(k + G)2δGG′ , (2.33)

and of the potential,

vsGG′(k) = VG−G′ , (2.34)

equation (2.13) in the plane-wave basis thus assumes the very simple form∑
G′

(
1

2
(k + G)2δGG′ + VG−G′

)
CnkG′ = εnkC

nk
G . (2.35)

k is a continuous parameter, but is in practice replaced by a discrete mesh of k-points sampling
the first Brillouin zone. Since the accuracy of the ground-state density depends on the number
Nk of k-points taken into account, i.e., the resolution in k-space, this number has to be found
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by a convergence check, for example of the total energy. This leaves us with a discrete number
of eigenvalue equations for the coefficient vectors (CnkG ), which are, however, still infinite-
dimensional in the index G. In order to make these eigenvalue equations finite-dimensional,
the plane-wave basis is truncated at a finite G, using a cut-off energy Ecut, such that

1

2
(k + G)2 < Ecut (2.36)

for all basis states. This is justified since the coefficients CnkG always vanish when 1
2(k + G)2

becomes much larger than the considered energies εnk, as a rearrangement of (2.35) shows:

CnkG =

∑
G′ VG−G′CnkG′

εnk − 1
2(k + G)2

. (2.37)

Ecut is thus a convergence parameter that can be determined for example by converging the
total energy to the desired accuracy. Increasing the basis size leads to a better approximation
to the solutions of the Kohn-Sham equations and thus to the ground-state density n0, which,
recalling the variational nature of the problem of finding n0, always results in a lower total
energy.

How large Ecut has to be chosen depends basically on the shape of the potential vs, as can
be also seen from (2.37). The larger the short-wavelength contributions to the potential are,
i.e., the faster varying it is, the larger are also the short-wavelength components of the wave
functions, and the higher Ecut has to be chosen. This is problematic since the potential near
the nuclei is typically strongly attracting, which means that the wave functions are strongly
oscillating and a huge number of basis states would be needed to capture their relevant features.
A way to avoid this, which is commonly employed in combination with a plane-wave basis, is
the use of pseudopotentials. A pseudopotential vPP consist of the bare nuclear potential v and
an effective potential generated by the core states, and replaces the nuclear potential inside a
cut-off radius rc around the nuclei. Consequently, the core states are not explicitly taken into
account in the DFT calculation any more, which means that the Kohn-Sham equations have
to be solved only for the valence electrons, whereas the core electrons only enter through their
contribution to the pseudopotential, which significantly reduces the computational costs. This
is reasonable since the core states are essentially atomic orbitals, which are hardly effected
by the surrounding atoms. The other advantage is that, due to the screening by the core
electrons, the pseudopotential is much softer, i.e., varying more slowly, than the bare nuclear
potential, thus allowing to use a much smaller basis set.

To be of practical use, the pseudopotential method should approximately reproduce the elec-
tronic properties of the all-electron method. Therefore, in order to construct a pseudopotential,
an all-electron reference calculation is performed first for a given atomic configuration, i.e.,
the radial Schrödinger equation(

−1

2

d2

dr2
+
l(l + 1)

2r2
+ vs[n](r)

)
rRnl(r) = εnlrRnl(r) (2.38)

is solved, yielding the radial part Rnl of the all-electron atomic wave functions and the all-
electron energies εnl. Then, for each angular momentum l, a normalized, nodeless pseudo wave
function RPP

l is constructed, which fulfills

RPP
l (r) ∝ Rl(r) for r ≥ rc , (2.39)
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where Rl denotes the lowest-lying valence state Rvl with angular momentum l, i.e., the state
with the energy εl = minv εvl, where the index v refers to valence states. Finally, the pseu-
dopotential is constructed such that the pseudo wave functions RPP

l are eigenstates of the
pseudo Hamiltonian to the eigenvalues εl, i.e., the energies of the all-electron calculation are
reproduced. This is done by simply inverting the radial Schrödinger equation, giving(

vPP
s

)
l
(r) = εl −

l(l + 1)

2r2
+

1

2rRPP
l (r)

d2

dr2

(
rRPP

l (r)
)

. (2.40)

(
vPP
s

)
l

are the angular components of the screened pseudopotential, from which we still have
to subtract the Hartree and exchange-correlation potentials generated by the valence density
nv:

vPP
l (r) =

(
vPP
s

)
l
(r)− vH [nv](r)− vxc[nv](r) . (2.41)

The total pseudopotential is then obtained by summing over the angular components,

vPP(r) =
∑
l

l∑
m=−l

vPP
l (r) |lm〉 〈lm| , (2.42)

where |lm〉 are spherical harmonics. Unlike the all-electron potential, this operator is non-local,
as it acts differently on the different angular-momentum components of a wave function.

The freedom in the choice of the cut-off radius rc and in the shape of the pseudo wave function
inside rc gives rise to a large variety of pseudopotentials, each focusing on a different property,
such as softness, accuracy, and transferability. Whereas, for example, ultra-soft pseudopo-
tentials [29, 30] allow to use a particularly small plane-wave basis, but do not reproduce the
all-electron valence density outside rc, norm-conserving pseudopotentials [31–35] do so, due to
the condition

rc∫
0

dr r2RPP
l (r)2 =

rc∫
0

dr r2Rl(r)
2 , (2.43)

which turns the proportionality in (2.39) into an equality. Even though this equality is true by
definition only for the eigenvalue εl, the norm-conserving property (2.43) actually implies that
it still holds to first-order in ε− εl [9, 36]. This ensures high transferability between different
systems, such as the crystalline and amorphous phase of a material, because a small distortion
of the eigenvalue spectrum due to the environment does not lead to large errors in the pseudo
wave functions.

More detailed information on the different kinds of pseudopotentials, their properties, and how
they are generated, can be found for example in the book of Kohanoff [9].

2.2 Quasiparticle corrections

DFT is an independent-particle theory, which means that it does not take into account many-
body effects. The most striking result of this shortcoming is the severe under-estimation of the
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band gap in insulators and semiconductors, for example in silicon, where the value obtained
with GGA-DFT is about 0.5 eV too small. A way to overcome this problem and obtain
accurate excitation spectra is to use many-body perturbation theory in the GW approximation,
which eventually provides corrections to the Kohn-Sham energies, the so-called quasiparticle
corrections.

2.2.1 Quasiparticles

In DFT, the Kohn-Sham energies εKS
i are usually interpreted as the binding energies of single

electrons, thus suggesting that the electrons are independent and the injection of an electron
or hole into the system does not affect the remaining particles. As opposed to that, the
concept of quasiparticles takes into account the fact that the electrons are correlated via the
Coulomb interaction. Therefore, electrons repel other electrons in their vicinity and are thus
surrounded by a positively charged region, called Coulomb hole. This entity of an electron
and its surrounding Coulomb hole is called a quasiparticle. The injection or ejection of a
quasiparticle into or from a many-body system changes the state and the energy of the whole
system. Consequently, in many-body perturbation theory the single particle states εKS

i are
replaced by the quasiparticle energies

εN−1
i = EN0 − EN−1

i (2.44)

εN+1
i = EN+1

i − EN0 (2.45)

and the single particle states ψKS
i (r) by the quasiparticle states

ψN−1
i (r) =

〈
ΨN−1
i

∣∣∣ ψ̂(r)
∣∣∣ΨN

0

〉
(2.46)

ψN+1
i (r) =

〈
ΨN

0

∣∣∣ ψ̂(r)
∣∣∣ΨN+1

i

〉
, (2.47)

where ψ̂(r) is the field operator in second-quantization formulation of quantum mechanics
that describes the annihilation of an electron at position r, |ΨN

0 〉 is the N -particle ground
state with energy EN0 , and |ΨN±1

i 〉 are the excited (N ± 1)-particle states with energies EN±1
i ,

where the superscript N + 1 compares to an electron excitation and N − 1 to a hole excitation
in the independent-particle picture. These superscripts will be omitted from now on in order
to improve readability. Analogously to the one-particle Schrödinger equation in DFT, the
quasiparticle states and energies obey a quasiparticle equation

h0(r)ψi(r) +

∫
dr′ Σ(r, r′; εi)ψi(r

′) = εiψi(r) , (2.48)

where h0 is the single-particle Hamiltonian for an electron in a mean-field system defined as

h0(r) = −∇
2

2
+ Vext(r) +

∫
dr′

n(r′)

|r− r′|
(2.49)

n(r) =
∑
i

|ψi(r)|2 Θ(µ− εi) , (2.50)

where Θ is the Heaviside step function and µ is the chemical potential. The eigen functions
ψ0
i (r) and energies ε0

i of h0 are not the Kohn-Sham states obtained from DFT because the
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mean field (2.49) consists only of the external and the Hartree potential, and does not contain
the exchange-correlation term. Instead, all many-body exchange and correlation effects beyond
the Hartree potential are contained in the non-local, energy-dependent self-energy operator Σ.
Once this is known, the quasiparticle energies can be calculated by solving (2.48), (2.49), and
(2.50) self-consistently. However, in general the self-energy is not known exactly and therefore
has to be approximated. This is commonly done by means of the GW approximation, which
is introduced in the next section.

2.2.2 GW approximation

The GW method provides an approximation for the many-body self-energy operator Σ. For-
mally, it is given by the first iteration of Hedin’s equations [37], a set of integro-differential
equations whose self-consistent solution, in principle, solves the many-body problem exactly,
but which, in practice, cannot be solved numerically. In the GW approximation, the self energy
in the time domain has the form

ΣGW (r, r′; τ) = iG0(r, r′; τ)W (r, r′; τ + η) (2.51)

(η > 0 is an infinitesimal constant), which, in the energy domain, transforms to

ΣGW (r, r′;E) =
i

2π

∞∫
−∞

dE′ G0(r, r′;E − E′)W (r, r′;E′)e−iE
′η . (2.52)

Here, G0(E) = (E−h0)−1 is the non-interacting one-particle Green function, which in spatial
domain can be written as

G0(r, r′;E) =
∑
i

ψ0
i (r)ψ0

i
∗
(r′)

E − ε0
i + sgn(ε0

i − µ)iη
. (2.53)

W (r, r′;E) is the dynamically screened interaction, which describes the effective potential at
r generated by a quasiparticle at r′, and is therefore the summed Coulomb potential of the
electron and the Coulomb hole, represented by an induced charge density nind(r′′, r′;E):

W (r, r′;E) = vc(r, r
′) +

∫
dr′′ vc(r, r

′′)nind(r′′, r′;E) , (2.54)

where vc(r, r
′) = 1/|r− r′| is the bare Coulomb potential. In matrix representation this reads

W (E) = vc + vcnind(E) . (2.55)

In linear response theory, the change nind of the charge density n of a system due to the
presence of a perturbative potential V is given by

nind = χV , (2.56)

with the response function

χ =
δn

δV

∣∣∣∣
V=0

. (2.57)
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nind generates a Coulomb potential vcnind, resulting in an effective potential

Veff = V + vcnind = V + vcχV = ε−1V , (2.58)

where

ε−1 =
δVeff

δV

∣∣∣∣
V=0

= 1 + vcχ (2.59)

is the inverse of the microscopic dielectric matrix, relating local changes in V to local changes
in Veff. Defining the polarizability

P =
δn

δVeff
(2.60)

we can rewrite (2.57) as

χ =
δn

δVeff

δVeff

δV

∣∣∣∣
V=0

= Pε−1 , (2.61)

which, combined with (2.59), gives

vcPε
−1 = ε−1 − 1 (2.62)

⇒ ε = 1− vcP . (2.63)

If we identify in (2.54) the Coulomb potential of an electron at r′ as the perturbation V , and
the screened interaction W as the resulting potential Veff, we obtain

W (r, r′;E) =

∫
dr′′ ε−1(r, r′′;E)vc(r

′′, r′) (2.64)

ε(r, r′;E) = δ(r− r′)−
∫

dr′′ vc(r, r
′′)P (r′′, r′;E) . (2.65)

In the first iteration of Hedin’s equations, the polarizability in the time domain is given by

P (r, r′; τ) = −iG0(r, r′; τ)G0(r′, r;−τ) , (2.66)

which is known as the random phase approximation (RPA) [38–40]. Fourier transformation
yields

P (r, r′;E) = − i

2π

∫
dE′ G0(r, r′;E + E′)G0(r′, r;E′) (2.67)

=
∑
vc

ψ0
v(r)ψ0

c
∗
(r)ψ0

v
∗
(r′)ψ0

c (r
′)

(
1

E + ε0
v − ε0

c + iη
− 1

E − ε0
v + ε0

c − iη

)
,

(2.68)

where (2.53) was used. The index v refers to valence band states and the index c to conduction
band states. Equations (2.52), (2.64), (2.65), and (2.66) constitute the GW approximation,
which, together with (2.48), leads to the quasiparticle states and energies. These could be used
to construct a new Green function, from which a new iteration of ΣGW could be calculated.
This process could be repeated until convergence is reached, which is known as self-consistent
GW. However, due to the high computational costs, one normally stops after one iteration.
These so-called G0W0 or one-shot GW calculations give sufficiently accurate results already
for many semiconductors and insulators, and are therefore widely used [41–44]. Any addi-
tional approximations made during the practical calculation of the quasiparticle corrections
are discussed in the next section.

23



2.2.3 Practical calculation

In principle, in order to obtain G0, one first has to calculate the non-interacting single-particle
states, i.e., the eigenstates of h0. However, in practice, GW calculations are often performed
on top of a mean-field calculation, such as DFT. This means that a set of single-particle states
already exists, in case of DFT in the form of the Kohn-Sham states. It is therefore more
efficient to calculate the mean-field Green function GKS

0 from the Kohn-Sham wave functions
ψKS
i and energies εKS

i , and use it instead of the non-interacting Green function G0, which are
connected to each other via

GKS
0 = G0 +G0VxcG

KS
0 =

(
G−1

0 − Vxc

)−1
, (2.69)

where Vxc is the energy-independent local exchange-correlation operator from DFT. This cor-
responds to using Σ0 = Vxc instead of Σ0 = 0 as a starting point for the self-energy in the GW
calculation, which potentially results in a better approximation ΣGW . This is true particularly
if the difference Σ− Vxc is small. In this case, as the comparison of the Kohn-Sham equation
(2.13) and the quasiparticle equation (2.48) shows, the term Σ(εi) − Vxc can be treated as a
perturbation to the Kohn-Sham potential, and the quasiparticle states can be obtained using
perturbation theory. In first order we have

ψi(r) ≈ ψKS
i (r) , (2.70)

which turns out to be true for many systems, including those where the quasiparticle wave
functions are known exactly [41, 45]. The first order energy correction is given by

εi ≈ εKS
i +

〈
ψKS
i

∣∣Σ(εi)− Vxc

∣∣ψKS
i

〉
. (2.71)

This saves us the self-consistent solution of the quasiparticle equation, but the non-linear
equation (2.71) still has to be solved self-consistently due to the term Σ(εi), which requires
the knowledge of the full energy dependence of the self-energy. In order to avoid this, we can
use the linear expansion

Σ(εi) ≈ Σ(εKS
i ) +

dΣ

dE

∣∣∣∣
εKS
i

(εi − εKS
i ) (2.72)

where the derivative can be evaluated numerically by calculating Σ(E) on a grid of energy
points, using the fact that Σ is often an almost linear function of E [42]. This leads to

εi ≈ εKS
i + Zi

〈
ψKS
i

∣∣Σ(εKS
i )− Vxc

∣∣ψKS
i

〉
(2.73)

with the quasiparticle renormalization factor

Zi =

(
1−

〈
ψKS
i

∣∣∣∣∣ dΣ

dE

∣∣∣∣
εKS
i

∣∣∣∣∣ψKS
i

〉)−1

. (2.74)

Thanks to the linear expansion we can restrict the calculation of the self energy to a finite
number of energy points. However, each of the calculations is still computationally very
expensive due to the energy integral in (2.52), which requires the calculation and inversion of
the dielectric matrix at a high number of energies. This can be avoided if ε−1(E) is instead
approximated by an analytic function, a so-called plasmon-pole model, which uses the fact
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that ε−1(E) has a peaked structure. In the generalized plasmon-pole (GPP) approximation
[42], ε−1 in the plane-wave basis is given by

ε−1
GG′(q;E) = δGG′ − 1

2

Ω2
GG′(q)

ω̃GG′(q)

(
1

ω̃GG′(q) + E − iη
+

1

ω̃GG′(q)− E + iη

)
, (2.75)

which results in

=ε−1
GG′(q;E) =

π

2

Ω2
GG′(q)

ω̃GG′(q)
[δ (E − ω̃GG′(q))− δ (E + ω̃GG′(q))] (2.76)

<ε−1
GG′(q;E) = δGG′ +

Ω2
GG′(q)

E2 − ω̃2
GG′(q)

. (2.77)

The poles ω̃GG′(q) are obtained from the requirement that the model reproduces ε−1(E = 0)
exactly:

ω̃2
GG′(q) =

Ω2
GG′(q)

δGG′ − ε−1
GG′(q; 0)

. (2.78)

ΩGG′(q) is called the effective bare plasma frequency and is obtained from the generalized
f -sum rule [42], relating the imaginary part of ε−1 to the charge density n:

Ω2
GG′(q) = ω2

p

(q + G) · (q + G′)

|q + G|2
n(G−G′)

n(0)
, (2.79)

where ωp = 4πn(0) is the plasma frequency. The GPP approximation allows the analytic eval-
uation of the convolution in (2.52), and requires the calculation and inversion of the dielectric
matrix only at E = 0, while still taking into account the effects of dynamical screening. This
yields an accuracy similar to a full-frequency calculation for many semiconductors, including
c-Si [42, 44], while significantly reducing the computational effort.

Both the calculation of the static dielectric matrix and of the self energy require a summation
over unoccupied bands, which in practice has to be truncated. The same holds for the plane-
wave basis, for which, analogously to the procedure in DFT, a cut-off energy Ecut is used.
N ε

bands, N
Σ
bands, and Ecut are convergence parameters that have to be chosen by checking the

convergence of the quasiparticle corrections with respect to all three of them simultaneously.

2.2.4 Scissors shift

In many materials the main effect of the quasiparticle corrections consists in a widening of the
band gap by rigidly shifting the single-particle energies [46, 47]. The quasiparticle energies
can therefore often be obtained from the Kohn-Sham energies approximately by a linear shift
of both the valence and the conduction band,

εv/c = εKS
v/c + av/c

(
εKS
v/c − E

0
v/c

)
+ Es

v/c , (2.80)

which is known as a scissors shift. E0
v/c is a reference energy, which can for example be

the valence and conduction band edge, or the Fermi level. The shifting parameters av/c and
Es
v/c can either be obtained from the experimental band structure, or from a previous GW

calculation.
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2.3 Characterization methods

In order to characterize the generated configurations and compare them to real materials, we
analyze their structural, electronic, and optical properties. The structural characterization
answers the question how the atoms are distributed in relation to each other, measured by the
radial pair correlation function, and how they are bonding. The electronic characterization
aims on the one hand at extracting macroscopic quantities such as the electronic band gap
or mobility gap, respectively, but on the other hand also at analyzing the contribution of
individual states, in particular those of localized nature. The optical characterization answers
the question how different kinds of states couple optically and thus contribute to absorption,
and thereby yields a measure for the optical gap.

2.3.1 Radial pair correlation function

The radial pair correlation function gαβ(r) is a measure for the probability of finding an atom
of species α at a distance r from an atom of species β. It is defined as

gαβ(r) =
V

4πr2NαNβ

Nα∑
I=1

Nβ∑
J=1

δ(r − |RI −RJ |) , (2.81)

where V is the super-cell volume, Nα/β are the numbers of atoms of the respective atomic
species in the super cell, and {RI } are the atomic positions. If α = β, this becomes

gαα(r) =
V

4πr2Nα(Nα − 1)

Nα∑
I,J=1
I 6=J

δ(r − |RI −RJ |) . (2.82)

In a crystalline material, g(r) shows sharp peaks at the equilibrium atomic distances, whereas
with increasing disorder the peaks smear out. The radial pair correlation function gives a
good first impression of how well a model configuration describes a real amorphous material,
because it captures both the average inter-atomic distances and the degree of disorder.

2.3.2 Bonding and the ELF

Apart from the geometrical properties of an atomic structure, i.e., those that can be directly
extracted from the atomic positions, the other important microscopic structural property is
the coordination number, i.e., the number of bonds that each atom forms. In order to calculate
this number, a criterion for the identification of bonds is required. We will introduce such a
criterion here, which is based on the electron localization function (ELF), and compare it to
an often-used geometrical criterion.
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Figure 2.1: Comparison of radial electron density (left) [49] and ELF (right) [48] for the Krypton
atom. As opposed to the electron density, the ELF clearly distinguishes all four shells.

ELF

The electron localization function ELF(r) provides a measure for how strongly electrons are
localized in a point r. It was introduced in 1990 by Becke and Edgecomb as a means of
visualizing atomic shells, bonds, and ion pairs in the form of a spatial function [48], for which
the charge density alone is not sufficient, as the example of Krypton illustrates (Fig. 2.1).
Whereas the ELF clearly brings out all four orbitals as distinct peaks, the maxima of the
radial electron density are much less pronounced, and only three shells can be identified.

The definition of the ELF is based on the Pauli principle, which results in a repulsion of
electrons with identical spin σ. To measure the localization of an electron at point r we can
therefore use the conditional probability of a second electron being located at a point r′ near
r [50]:

P σσcond(r, r′) = nσ(r′)− |ρσσ(r, r′)|2

nσ(r)
, (2.83)

where nσ(r) is the spin-resolved electron density and

ρσσ(r, r′) =
∑
i:σi=σ

ψ∗i (r)ψi(r
′) (2.84)

is the spin-resolved one-particle density matrix for a system of independent particles with one-
particle wave functions ψi. In order to obtain a measure for the localization that only depends
on r, we consider the average conditional probability P σσcond(r, s) on a sphere with radius s
centered about r. For small s this is to second order given by [51]

P σσcond(r, s) =
1

3

( ∑
i:σi=σ

|∇Φi(r)|2 − 1

4

|∇nσ(r)|2

nσ(r)

)
s2 . (2.85)

Localization at r is obviously the stronger, the smaller P σσcond(r, s) is for any s. The quantity
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of interest, which only depends on r, is therefore the term

Dσ(r) =
∑
i:σi=σ

|∇Φi(r)|2 − 1

4

|∇nσ(r)|2

nσ(r)
. (2.86)

In a semiconductor, where every state is occupied by one spin-up and one spin-down electron,
we have

nσ(r) =
1

2
n(r) (2.87)

and

∑
i:σi=σ

|∇Φi(r)|2 =
1

2

N∑
i

|∇Φi(r)|2 ≡ τ(r) , (2.88)

where τ(r) is the kinetic energy density. Using this we can write (2.86) in a spin-independent
form as

D(r) = τ(r)− 1

8

|∇n(r)|2

n(r)
. (2.89)

In order to obtain a normalized quantity, which is the bigger the stronger the localization is,
we finally define the electron localization function

ELF(r) =
1

1 +
(
D(r)
D0(r)

)2 , (2.90)

where

D0(r) =
3

10
(3π2)2/3n5/3(r) (2.91)

is the value of D for the homogeneous electron gas. The ELF assumes the value 1 in points of
maximum localization, and vanishes where no charge is localized.

Bonding

As explained before, the ELF indicates where valence charge is localized within the structure.
It can therefore be used to identify covalent and dangling bonds based on the fact that a
covalent bond is formed by overlapping atomic orbitals, which results in an accumulation of
charge between the bonded atoms. This accumulation shows as a broad maximum in the ELF
along the bonding axis for non-polar covalent semiconductors such as Silicon and Germanium,
for which it reaches a value of 0.95 and 0.9, respectively (Fig. 2.2) [52]. As the bond breaks,
charge is no longer localized between the atoms but in atomic orbitals instead, which shows as
peaks in the ELF near the atomic positions, forming a minimum in the center (Fig. 2.3(a) -
dotted line). The same applies to Si-H bonds despite the different shape of the ELF displayed
there (Fig. 2.3(a) - dash-dotted line), which arises from neglecting core electrons of Si that
causes the ELF to drop to zero near the Si, but not near the H atoms.
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fractional coordinates fractional coordinates

Figure 2.2: ELF along the bonding axis for crystalline Silicon (left) and Germanium (right) [52]. The
bond is visible in form of a broad maximum.

The change in the behavior of the ELF along the axes between neighboring atoms upon bond
breaking can be used to distinguish whether a bond exists or not. As the different shape also
goes along with a distinctly different value of the ELF in the center between the atoms, we
can alternatively use this value as a simple criterion for identifying a dangling bond. Even
though the values of the maxima and minima vary in amorphous semiconductors, a value of
0.8 has been found reasonable to separate the maxima from the minima for all analyzed Si-Si
and Si-H bonds in a-Si:H, and is therefore used as a threshold throughout this work.

Even though the method introduced here still requires the choice of a threshold value to decide
whether a bond exists or not, and some uncertainty in the detection of bonds therefore remains,
it is physically more meaningful than the standard method using cut-off radii, as it accounts
for the actual process of covalent bonding. In particular it respects the fact that atoms can
form only a limited number of bonds irrespective of the number of neighboring atoms, meaning
that even atoms close to each other do not necessarily bond. On the other hand, in the a-Si:H
structures investigated, we found that in rare cases even atoms at a distance of up to 2.95 Å
can form a bond. Consequently, the use of cut-off radii, which are commonly chosen between
2.75 and 2.85 Å for Si-Si bonds, and between 1.70 and 1.78 Å for Si-H bonds [6, 53, 54],
will result in some bonds being erroneously detected and some being erroneously disregarded.
This is illustrated in Fig. 2.3(b), where, based on analyzing all Si-Si pairs (41190) and all Si-H
pairs (1102) in all configurations investigated throughout our work, the statistical probability
of two atoms forming a bond is shown as a function of their distance. The curve described
by the data points is not a step function, which is the assumption behind the use of cut-off
radii, but exhibits a significant broadening. Fitting a Fermi function 1/[1 + exp ((x− x0)/δ)]
to both data sets results in x0 = 2.65 Å and δ = 0.07 Å for Si-Si bonds and x0 = 1.74 Å and
δ = 0.03 Å for Si-H bonds.
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Figure 2.3: (a) Analysis of bonds by means of the Electron localization function (ELF). This example
shows the ELF along the bonding axes for a three-fold bonded Si atom in a-Si:H. A
maximum in the center between two atoms exceeding a threshold value of 0.8 indicates a
bond. A minimum indicates a broken bond. One can distinguish two Si-Si bonds (dashed),
one dangling bond (dotted), and one Si-H bond (dash-dotted). The ELF in c-Si is shown
as a reference (solid). (b) Statistical probability of two atoms being bonded (according
to the ELF criterion) as a function of their distance. The data points result from all
configurations investigated throughout our work. The solid and dotted line, respectively,
are Fermi functions fitted to the data points. The vertical dotted lines mark the distances
where 50% of the Si-Si and Si-H pairs, respectively, form a bond. [7]
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2.3.3 Density of states

In crystalline semiconductors the electronic band structure is the primary tool in electronic
characterization, as it largely determines the macroscopic electronic properties of the material.
In amorphous semiconductors, where the definition of a band structure becomes meaningless
due to the absence of periodicity, this role is taken by the electronic density of states (DOS).
It is defined as

ρ(E) =
∑
i

δ (E − εi) , (2.92)

where εi are the single electron (Kohn-Sham) energies, and yields the number of electrons in the
system with a given energy E. Additional information on the origin of electronic features can
be obtained by spatially resolving the DOS, which defines the local density of states (LDOS)

ρ(E, r) =
∑
i

|ψi(r)|2 δ (E − εi) , (2.93)

with the Kohn-Sham orbitals ψi. If we are interested particularly in the progression of the
DOS along one spatial direction, say z (as it is the case for the a-Si:H/c-Si interface), we use
the layer-resolved DOS instead, which is obtained by simply integrating the LDOS over layers
perpendicular to the direction of interest:

ρz(E, z) =

∫
Lx,Ly

dx dy ρ(E, r) . (2.94)

For the case that we are not interested in the full DOS, but only in the DOS generated by a
subset P of all Kohn-Sham states (e.g., only localized states), we define the partial density of
states (PDOS)

ρP (E) =
∑
i∈P

δ (E − εi) . (2.95)

2.3.4 Electronic localization

Motivation and definition of the spread

In case of a finite system, a natural and intuitive way of measuring the localization of a wave
function ψ is to calculate the variance σ2 of the probability distribution |ψ(r)|2,

σ2 = 〈r2〉 − 〈r〉2 =

∫
V

dr |ψ(r)|2r2 −

∫
V

dr |ψ(r)|2r

2

, (2.96)

where |ψ(r)|2 is normalized in the integration volume V , i.e., ψ(r) goes to zero at the boundaries
of V . If periodic boundary conditions are imposed, the integration volume V has to be replaced
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by the super-cell volume Ω, which is however not uniquely defined, meaning that σ2 depends
in general on the choice of the integration boundaries. We will therefore write σ2[Ω] in the
following to account for that dependence. In the case that the periodic images of the system are
isolated from each other (for example by a vacuum layer), such that ψ(r) vanishes in between,
the only physically meaningful way of choosing the integration volume is such that ψ(r) = 0
at the integration boundaries, which produces the same result for σ2 as if a finite system was
considered. If the system is truly periodic on the other hand, there exists no unique choice for
Ω, and we have to define our measure of localization more precisely.

In order to do this we consider for simplicity a 1D system with periodicity a. Then the
integration volume Ω is the interval [x0, x0 +a], defined by the parameter x0, and the variance
reads

σ2[x0] =

x0+a∫
x0

dx |ψ(x)|2x2 −

 x0+a∫
x0

dx |ψ(x)|2x

2

. (2.97)

If ψ is maximally delocalized, i.e., a plane wave, then |ψ(r)|2 = 1/a and σ2[x0] = a2/12
irrespective of the choice of x0. In order for our definition of localization to be meaningful,
every other ψ that is not a plane wave, and hence is localized to some extent, must result in
a lower value of σ2[x0]. This will be our first assumption. The second assumption is that the
integration volume should be centered about the center of mass 〈r〉 of |ψ(r)|2, i.e., in the 1D
case,

x0 +
a

2
= 〈x〉 , (2.98)

which agrees with the intuitive way of defining the cell boundaries in case of a localized wave
function (see Fig. 2.4). As 〈x〉 depends however itself on x0, this does not define x0 uniquely.
In fact, each value of x0 fulfilling (2.98), corresponds to a minimum or maximum of σ2[x0], as
can be seen by differentiating σ2 with respect to x0:

dσ2

dx0
=

d

dx0

 x0+a∫
x0

dx |ψ(x)|2x2 −

 x0+a∫
x0

dx |ψ(x)|2x

2
 (2.99)

= |ψ(x0)|2
(
(x0 + a)2 − x2

0

)
− 2

 x0+a∫
x0

dx |ψ(x)|2x

 |ψ(x0)|2 a (2.100)

= |ψ(x0)|2
(
a2 + 2x0a

)
− 2 〈x〉 |ψ(x0)|2 a (2.101)

= 2a |ψ(x0)|2
(a

2
+ x0 − 〈x〉

)
. (2.102)

Inserting (2.98) yields dσ2/dx0 = 0. σ2[x0] can have an arbitrary number of local maxima and
minima, but, since it is periodic, must have at least one of each (unless it is constant), i.e., at
least two values of x0 fulfilling (2.98). However, only the absolute minimum is guaranteed to
fulfill the condition that σ2 ≤ a2/12, as the following considerations show. We use (2.98) to
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rewrite the variance as

σ2[x0] =

x0+a∫
x0

dx |ψ(x)|2(x− 〈x〉)2 (2.103)

=

x0+a∫
x0

dx |ψ(x)|2
(
x− x0 −

a

2

)2
(2.104)

=

a/2∫
−a/2

dx
∣∣∣ψ (x+ x0 +

a

2

)∣∣∣2 x2 . (2.105)

By integrating over x0 we obtain the average value σ̄2:

σ̄2 =
1

a

a/2∫
−a/2

dx0 σ
2[x0] =

1

a

a/2∫
−a/2

dx0

a/2∫
−a/2

dx
∣∣∣ψ (x+ x0 +

a

2

)∣∣∣2 x2 (2.106)

=
1

a

a/2∫
−a/2

dx

a/2∫
−a/2

dx0

∣∣∣ψ (x+ x0 +
a

2

)∣∣∣2 x2 (2.107)

=
1

a

a/2∫
−a/2

dx x2 (2.108)

=
a2

12
, (2.109)

where we used the fact that |ψ|2 is normalized. The absolute minimum of σ2 must be smaller
than the average, which however does not hold for the other local minima. From this result
it follows that, in order to fulfill the condition σ2[x0] ≤ a2/12, x0 must be chosen such that
σ2[x0] is minimized.

This result can be directly transferred to the 3D case of a tetragonal super cell with lattice
constants a1, a2, and a3, using the fact that σ2 can be separated into its cartesian components:

σ2 = σ2
x + σ2

y + σ2
z , (2.110)

with

σ2
x[Ω] =

∫
Ω

dr |ψ(r)|2x2 −

∫
Ω

dr |ψ(r)|2x

2

(2.111)

and equivalently for σy and σz. By defining the integrated probability density

|ψ|2x (x) =

a2∫
0

dy

a3∫
0

dz |ψ(r)|2 (2.112)
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Figure 2.4: Definition of super cell in a 1D example. Both x0 (red) and x′
0 (gray) are possible choices

of the super cell boundaries. However, the intuitively reasonable choice is the red area, as
it contains the peak as a whole, whereas in the gray area the peak is split in two parts.
This intuitive definition of the super cell is equivalent to minimizing the variance of |ψ|2
with respect to x0.

we can express this as

σ2
x[x0] =

x0+a1∫
x0

dx |ψ|2x(x)x2 −
⎛
⎝ x0+a1∫

x0

dx |ψ|2x(x)x
⎞
⎠

2

(2.113)

arriving at the same form as (2.97). This means that we can calculate the localization of a
wave function in all three directions individually by minimizing the respective variance. We
therefore define as a quantitive measure for the localization of a wave function in a periodic
system the spread in x-direction

Sx = min
x0

√
12 σ2

x[x0] = min
x0

√√√√√√12

a1/2∫
−a1/2

dx |ψ|2x
(
x+ x0 +

a1
2

)
x2 , (2.114)

where the form (2.105) was used. This definition does not only yield the localization, but also
a value for the mean position 〈x〉 = x0 + a1/2 of an electron. The factor

√
12 restricts Sx to

the interval [0, a1], i.e., Sx = 0 for a maximally localized ψ (a delta function) and Sx = a1 for
a maximally delocalized ψ (a plane wave). Sy and Sz are calculated analogously and the total
spread is given by

S =

√
1

3

(
S2
x + S2

y + S2
z

)
, (2.115)

such that 0 ≤ S ≤ a for a cubic super cell with lattice constant a.
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Calculation in reciprocal space

In plane-wave expansion the lattice periodic part of the Bloch function is given by

ψ(r) =
1√
Ω

∑
G

CGe
iG·r . (2.116)

Integrating over the yz-plane yields

|ψ|2x (x) =
1

Ω

a2∫
0

dy

a3∫
0

dz
∑
G

eiG·r
∑
G′

C∗G′CG+G′ (2.117)

=
1

a1

∑
Gx

eiGxx
∑
G′

C∗G′CGxex+G′ (2.118)

and the variance in x-direction using (2.105) becomes

σ2
x[x0] =

1

a1

∑
Gx

a1/2∫
−a1/2

dx exp
(
iGx

(
x+ x0 +

a1

2

))
x2
∑
G′

C∗G′CGxex+G′ (2.119)

=
1

a1

a3
1

12
+
∑
Gx 6=0

exp
(
iGx

(
x0 +

a1

2

)) 2a1

G2
x

exp
(
iGx

a1

2

)∑
G′

C∗G′CGxex+G′


(2.120)

=
a2

1

12
+ 2

∑
Gx 6=0

exp (iGxx0)

G2
x

∑
G′

C∗G′CGxex+G′ . (2.121)

The spread is therefore given by

Sx = min
x0

√√√√a2
1 + 24

∑
Gx 6=0

exp (iGxx0)

G2
x

∑
G′

C∗G′CGxex+G′ =

√
a2

1 − S0
x

2 . (2.122)

Since we established before that Sx ∈ [0, a1], the second term in the radicand must be negative
and can therefore be written as

S0
x

2
= −24

∑
Gx 6=0

exp (iGxx0)

G2
x

∑
G′

C∗G′CGxex+G′ , (2.123)

with S0
x ∈ [0, a1].

Discussion

Whereas the inverse participation ratio (IPR) [55], which is commonly used as a measure of
localization [56], uses projections onto atomic orbitals and therefore depends on the choice of
these orbitals, the spread is uniquely defined. Also, as opposed to the IPR, the spread has the
advantage that it can be decomposed in its x-, y-, and z-component, thus allowing to measure
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the localization only in the direction of interest. Furthermore, this method allows us not only
to identify localized states, but also to locate them in real space, which is extremely helpful for
the characterization of the states in a composite structure such as the a-Si:H/c-Si interface.
The interpretation of the mean position 〈r〉 as the position where an electron is localized has
to be handled with care however, as it does not make sense for delocalized states, and can be
misleading in the case of very asymmetrically localized wave functions.

2.3.5 Mobility gap

The mobility gap of an amorphous semiconductor is defined as the energy region between the
valence and the conduction band where no band transport occurs due to the absence of band
states. It can therefore theoretically be determined as the energy range where all states are
localized [57]. However, to do this in practice, we need to define a criterion for distinguishing
localized from extended states. For this purpose we use the measure of localization defined
above, the spread S, where, depending on whether our system is isotropic or whether we
are interested in transport only in a select direction, we choose either the total spread or the
respective spatial component. We then have to define a threshold for S that separates localized
and extended states. This is done by using the fact that sufficiently far away from the Fermi
energy almost all states are delocalized, and, ideally, have values of S that lie in a narrow
band, as it is the case in the example in Fig. 2.5. From the figure, the lower edge of this band
is determined to be roughly at 20.7 Å, which can then be used as a threshold value St. In the
next step the energy range around the Fermi level where no states with S > St exist can be
determined. In the present example (Fig. 2.5) this leads to a value of Emob

g = 0.92 eV.

The described procedure provides an easy way to obtain the mobility gap from the localization,
but holds a number of problems:

1. The spread band in which states far away from the Fermi level are found does not have a
sharp edge, which means that there is a certain ambiguity in the choice of the threshold
St.

2. A small variation of St can trigger a large variation of Emob
g .

3. Emob
g is very sensitive to the behavior of single states, i.e., small changes in the energy

or localization of a state can have a large impact on Emob
g .

The first issue can be addressed by studying the distribution of the valence band states in S
(Fig. 2.6), which reveals a kind of Gaussian shape with a low-spread tail. This representation
allows a somewhat more accurate determination of the delocalization edge than Fig. 2.5, but
still leaves an uncertainty of at least 0.1 Å.

The second and third problem occur due to the fact that with the given method the mobility
edges are determined by isolated states with high spread, as Fig. 2.5 shows. If instead the
mobility edges are defined as the energies where a high number of states start exceeding St,
one obtains a significantly higher value for Emob

g , which also will be less sensitive both to St
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Figure 2.5: Determination of mobility gap in an a-Si:H configuration with lattice constant a =
22.035 Å. Each point represents one state. Far away from the Fermi level (0 eV)
most states have a spread that lies in a narrow band close to a. The horizontal line
at St = 20.7 Å marks the approximate edge of this band, which separates localized from
extended states. Defining the mobility gap as the range where no extended states exist at
all (dark grey), gives Emob

g = 0.92 eV. Defining it instead as the range where no significant

density of extended states exists (light grey), gives Emob
g ≈ 1.10 eV.

Figure 2.6: Histogram of spread for valence band states far away (> 2 eV) from the Fermi level. The
histogram has a Gaussian-like part and a low-spread tail, which are roughly separated by
St = 20.7 eV (vertical line). At this value more than 95% of the states have a spread
S > St. This analysis allows a more precise determination of the delocalization edge seen
in Fig. 2.5.
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and to single states. From the light grey area in Fig. 2.5 this value is determined to 1.10 eV,
which appears to be a better approximation of the mobility gap than the dark grey area.

In order to formalize this modified definition of the mobility edges and obtain Emob
g mathe-

matically rather than visually, we first calculate the partial density of states (PDOS) of all
states with S > St, and then determine the mobility edges as the energies where the PDOS
reaches a threshold value Dt. This procedure requires the choice of a broadening parameter Γ
used in the calculation of the PDOS, and of the threshold Dt. The advantage of introducing
a broadening is to reduce the sensitivity to single states, and to smoothen the dependence
of Emob

g on St. On the other hand, it comes with the drawback of having to deal with two
additional parameters.

In order to find the best choice of parameters, we use our example configuration to calculate
Emob

g as a function of St for all pairs of parameters from sets {Γ} and {Dt}. Thereby, Γ is
restricted to values below 0.1 eV, such that the broadening does not exceed the target accuracy,
and Dt is limited to 0.02 eV−1 per electron, as higher values would result in unphysically
high values of Emob

g . The goal is to choose parameters such that Eg becomes a smooth
function of St and Dt, while at the same time the dependence on Dt is minimized, and such
that Emob

g (St = 20.7 Å) . 1.1 eV, in agreement with Fig. 2.5. As the results in Fig. 2.7
show, higher values of both Γ and Dt lead to a smoother dependence on St, whereas smaller
values of Γ decrease the dependence dEmob

g /dDt. The broadening should therefore be chosen
as small as possible while still obtaining a smooth curve. We can measure the smoothness
by fitting Emob

g vs St with an exponential function, which is a good approximation to the
data points for sufficiently high Γ and Dt, as Fig. 2.8(a) shows. The root mean square of
the residuals then indicates how much the data points deviate from a smooth fit. This is
plotted in Fig. 2.8(b). The minimum Γ for which a good fit is obtained is Γ = 0.06 eV
with Dt = 0.02 eV−1. These parameters however result in a value of Emob

g > 1.1 eV and are
therefore discarded. The same holds for Γ = 0.07 eV. The smallest broadening that gives a
satisfactory smooth curve and a physically reasonable value for Emob

g is Γ = 0.08 eV together

with Dt ≥ 0.014 eV−1. The value for Emob
g closest to 1.1 eV is reached at Dt = 0.018 eV−1,

resulting in Emob
g (St = 20.7 Å) = 1.09 eV (Fig. 2.9). We will therefore use a broadening of

Γ = 0.08 eV and a threshold for the PDOS of Dt = 0.018 eV−1 per electron for determining
the mobility gap throughout this work.

2.3.6 Optical characterization

Absorption

The propagation of an electromagnetic wave of energy E in a non-magnetic isotropic material
is described by

E(x, t) = E0 exp
(
iE
(x
c
− t
))

, (2.124)

with the phase velocity

c =
c0√
ε
≡ c0

n
, (2.125)
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which is a solution of the Maxwell equations under the assumptions of no excess charge and no
free charge carriers. ε is here the macroscopic dielectric function, which in general is complex,
such that we can write

n =
√
ε1 + iε2 ≡ n0 + iκ , (2.126)

where n0 is called the refractive index and κ the extinction coefficient. The wave therefore
consists of an oscillating and a decaying part,

E(x, t) = E0 exp

(
iE

(
n0

c0
x− t

))
exp

(
−E κ

c0
x

)
, (2.127)

such that the intensity is given by

I(x) ∝ |E(x, t)|2 = |E0|2 exp

(
−2E

κ

c0
x

)
≡ I0 exp (−αx) , (2.128)

which defines the energy-dependent absorption coefficient

α(E) = 2
Eκ

c0
= 2

E

c0

ε2

<
√
ε1 + iε2

. (2.129)

Macroscopic dielectric function

The absorption spectrum depends on the macroscopic dielectric function, which in this section
we will call εM to distinguish it from the microscopic dielectric function defined in equation
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(2.59). εM is in general a tensor, but becomes a scalar function in isotropic materials, which
amorphous silicon can be treated as in good approximation. Analogously to the microscopic
dielectric function, εM relates the macroscopic average of a perturbative potential V to the
macroscopic average of the effective potential Veff:

V M(q) = εM(q)V M
eff (q) , (2.130)

where

V M(q) = VG=0(q) (2.131)

is the long-wavelength limit of V in plane-wave representation. q is the wave vector in the
first Brillouin zone, which will be omitted in the following for better readability. Assuming
that the perturbation is varying slowly, i.e., has a wavelength much longer than the dimension
of the super cell, which is always the case for light around the visible range, we can make the
approximation

VG = V MδG,0 . (2.132)

Then the macroscopic dielectric function can be related to the microscopic one by

εM =
V M

Veff,G=0
=

V M∑
G ε−1

0GVG
=

1

ε−1
00

, (2.133)

where (2.58) was used. The calculation of the spectrum εM(q;E) thus requires the calcula-
tion and inversion of ε(q;E) at a high number of frequencies, which is computationally very
expensive. This can be avoided by making the additional approximation

Veff,G6=0 ≈ 0 , (2.134)

which is justified if local-field effects, i.e., local responses to the macroscopic potential, are
assumed to be small. In this case

εM =
VG=0

V M
eff

=

∑
G ε0GVeff,G

V M
eff

≈ ε00 , (2.135)

which is significantly easier to calculate. Using (2.63) and the Fourier transform of the Coulomb
interaction

vcG,G′(q) =
4π

|G + q|2
δGG′ , (2.136)

we obtain

εM(q;E) = 1− 4π

|q|2
P00(q;E) , (2.137)

with the polarizability P defined in (2.60). Fourier transformation of P in the random phase
approximation (RPA), equation (2.68), yields

P00(q;E) =
1

V

∑
vc

〈
ψc
∣∣ e−iq·r ∣∣ψv〉 〈ψv ∣∣ eiq·r ∣∣ψc〉( 1

E + εv − εc + iη
− 1

E − εv + εc − iη

)
,
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(2.138)

where the index v refers to valence band states and the index c to conduction band states.
Assuming the wave functions are Bloch waves |vk〉 and |ck〉, respectively, that are normalized
on the volume V = NkΩ, where Ω is the unit cell volume and Nk the number of k-points, we
define the matrix elements Mvc(k,q) as

〈
vk′
∣∣ eiq·r ∣∣ ck〉 =

∑
GG′

〈
vk′
∣∣G′ + k′

〉 〈
G′ + k′

∣∣ eiq·r ∣∣G + k
〉
〈G + k | ck〉 (2.139)

=
∑
GG′

〈
vk′
∣∣G′ + k′

〉
〈G + k | ck〉 δGG′δk′=k+q (2.140)

=
〈
vk + q

∣∣ eiq·r ∣∣ ck〉 δk′=k+q (2.141)

≡Mvc(k,q)δk′=k+q , (2.142)

which implies a k-space selection rule for the coupling of valence and conduction states. We
therefore obtain for the RPA dielectric function

εM(q;E) = 1− 4π

NkΩ

∑
kvc

|Mvc(k,q)|2

|q|2

(
1

E + εvk+q − εck + iη
− 1

E − εvk+q + εck − iη

)
.

(2.143)

For the purpose of calculating the absorption of light we are interested in the long-wavelength
limit q→ 0. Using limq→0 e

iq·r = 1 + iq · r we obtain

lim
q→0

Mvc(k,q)

|q|
= lim

q→0

q

|q|
· 〈vk + q | ir | ck〉 (2.144)

= e · 〈vk | ir | ck〉 (2.145)

= e · 〈vk | iHr | ck〉 − 〈vk | irH | ck〉
εvk − εck

(2.146)

= e · 〈vk |v | ck〉
εvk − εck

, (2.147)

where v = i[H, r] is the velocity operator and e the polarization vector of the incoming light.
The macroscopic dielectric function in the limit q→ 0 is therefore given by

εM(E) = 1− 4π

NkΩ

∑
kvc

|e · 〈vk |v | ck〉|2

(εck − εvk)2

(
1

E + εvk − εck + iη
− 1

E − εvk + εck − iη

)
, (2.148)

which, separated in real part ε1 and imaginary part ε2 and considering only the positive part
of the energy spectrum, gives

ε1(E) = 1− 8π

NkΩ

∑
kvc

|e · 〈vk |v | ck〉|2

εck − εvk
1

E2 − (εck − εvk)2 (2.149)

ε2(E) =
4π2

NkΩ

1

E2

∑
kvc

|e · 〈vk |v | ck〉|2 δ (εck − εvk − E) . (2.150)
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Optical Matrix elements

The elements of the sum in (2.150) correspond to Fermi’s golden rule for the probabilities of
valence band electrons being excited to a conduction state under photon absorption. These
probabilities depend on the optical coupling between the initial and the final states, given by
the optical transition matrix elements vvck = 〈kv|e · v|kc〉. By defining the average coupling
strength

〈v2〉 (E) =

∑
vck |vvck|

2 δ(εck − εvk − E)∑
vck δ(εck − εvk − E)

, (2.151)

which describes the average transition probability for all transitions with a given energy E,
the imaginary part of the dielectric function can be written as

ε2(E) ∝ 〈v
2〉 (E)J(E)

E2
, (2.152)

with the joint density of states (JDOS)

J(E) =
∑
vck

δ(εck − εvk − E) . (2.153)

Equation (2.152) means that the energy dependence of both the DOS/JDOS and the coupling
strength has to be analyzed in order to understand and model absorption in a-Si:H and to
determine the optical band gap. (2.151) can also be generalized to calculate the average
coupling strength as a function of any other property than the transition energy, such as the
localization, or the initial or final energy. This is done by averaging over all transitions or states
with the property of interest, instead of averaging over all transition with a given transition
energy.

The numerical evaluation of the matrix elements is done in terms of finite differences, by
calculating the valence states on a k-point grid that is shifted by a small vector q, and then
using (2.147) to calculate

vvck ≈ (εvk − εck)
Mvc(k,q)

|q|
. (2.154)

This is necessary due the use of non-local pseudopotentials vPP in the DFT calculation, which
results in

v = i[H, r] = −i∇+ i[vPP, r] , (2.155)

meaning that v cannot be replaced by the momentum operator p = −i∇, which would allow
for an analytic evaluation of the matrix elements. In the case that quasiparticle corrections are
applied, also the non-locality of the self-energy operator has to be taken into account, which
modifies the matrix elements even if the quasiparticle wave functions are approximated by
the Kohn-Sham wave functions. As can be seen directly from (2.154), the modification then
consists of the renormalization

vQP
vck =

εQP
vk − ε

QP
ck

εKS
vk − εKS

ck

vKS
vck . (2.156)
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Optical gap

Whereas in crystalline semiconductors the absorption spectrum has a sharp onset at the di-
rect band gap energy, the definition of the optical gap Eg in amorphous semiconductors is
ambiguous due to the existence of localized gap states. The most commonly used definition,
especially in experimental physics, is the so-called Tauc gap [58], where the linear regime of√
αE is extrapolated and Eg is determined as the intersection of the extrapolated line with

the energy axis. This method is based on three assumptions:

1. For band states, i.e., states that are not localized, The DOS increases as
√
E from

the band edges, just as in a crystalline semiconductor, resulting in a quadratic energy
dependence for the JDOS: J(E) ∝ (E − Eg)2

2. The optical coupling strength 〈v2〉 (E) is constant near Eg

3. The refractive index n0(E) is constant near Eg and therefore α(E) ∝ Eε2(E).

From these assumptions it follows that α(E) ∝ (E − Eg)2/E, and therefore
√
αE is linear

near Eg and its onset yields the optical gap. Even though these assumptions do not strictly
hold, the method still gives sensible results, which is due to the fact that the errors in the
approximations for J , 〈v2〉, and n0 can roughly compensate [59]. Another problem with this
method of determining the optical gap is, however, that the linear regime cannot always be
clearly identified, and the result of the extrapolation depends sensitively on the fitting range.
Instead of determining the optical gap from the absorption spectrum, according to the first
assumption we can also directly obtain Eg from the JDOS by linearly fitting

√
J(E), which

has usually a more pronounced linear regime, and therefore yields less ambiguous results.
In addition, this method avoids making any assumptions on the coupling strength and the
refractive index.
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3 Hydrogenated amorphous silicon

This chapter presents an ab initio study of the structural, electronic, and optical properties of
hydrogenated amorphous silicon (a-Si:H). The first section gives an overview over the properties
and applications of a-Si:H, the challenges that are met when trying to model it, the progress in
the field so far, and the goals of the present work. The second section describes the technical
details of the computations. The following sections present the results, divided into structural,
electronic, and optical properties, which are summarized and discussed in the final section.

3.1 Introduction

Hydrogenated amorphous silicon (a-Si:H) has been used as a cheap and efficient absorber ma-
terial in silicon thin-film solar cells for more than 40 years [60], and has lately found another
application in photovoltaics as a passivation layer in silicon-heterojunction cells. Understand-
ing its microscopic structure in order to optimize its macroscopic properties for the application
in photovoltaics has motivated several ab-initio studies of a-Si:H throughout the years [56, 61–
66]. Two basic steps thereby need to be taken. First, a model atomic structure has to be
generated that correctly reproduces certain experimental features of a-Si:H, such as the de-
fect density, the radial pair correlation function, or the vibrational properties. Second, the
electronic structure has to be calculated on a level that allows for the extraction of physically
meaningful macroscopic properties. From the viewpoint of photovoltaics, special interest lies
on the description of the optical properties and on the identification and characterization of
localized defect states, which have a crucial impact on the device performance due to their
role as recombination centers in non-radiative recombination [67].

The fundamental difference between the amorphous and the crystalline phase of silicon is that
amorphous silicon (a-Si), unlike crystalline silicon (c-Si), does not have a well-defined atomic
structure. Even though a tetrahedral short-range order is still maintained, the bond angles and
lengths are distorted irregularly as compared to the diamond structure, leading to a complete
loss of long-range order, and to the formation of defects in the form of dangling or floating
bonds, i.e., atoms being less or more than fourfold coordinated. If seen as a perturbation of
the crystalline structure, the disorder gives rise to a mixing of the crystalline Bloch states,
such that the resulting states are not labeled by the k-vector anymore. This also breaks up
the k-selection rule for optical transitions, which means that a-Si, unlike c-Si, behaves like a
direct semiconductor. Another effect of the mixing is the emergence of weakly localized states
near the band edges, which form a tail in the density of states decaying exponentially into
the gap, and are therefore called tail states. Low-lying valence states and energetically high
nearly-free electron states on the other hand retain their extended, band-like character and
are thus referred to as band states. Since band and tail states cannot be cleanly separated,
the concept of a sharp band gap is replaced by the concept of an optical gap, which, roughly
speaking, refers to the energy range where no absorption occurs, and the mobility gap, where
no transport takes place. The fact that, despite the strong disorder, a gap similar to that in
c-Si exists at all in a-Si, is due to the existence of short-range order [68]. Where that order is
broken, however, states arise in the middle of the gap, which are strongly localized near the
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defect. These so-called mid-gap states are the third type of states found in a-Si. In photovoltaic
applications they are unwanted as they have a negative impact on the device performance by
enhancing recombination. Their number can, however, be largely decreased through hydrogen
passivation, i.e., insertion of hydrogen atoms that bond with under-coordinated atoms and
thus shift localized states out of the gap. This is the reason why a-Si:H instead of pure a-Si
is used in photovoltaics. In addition, the hydrogen content modifies the optical and mobility
gap, and can therefore be used as a means of band gap engineering [68].

The lack of long-range order in a-Si:H makes modeling it very challenging. First, there exists
no rule or pattern for finding the atomic positions. On the other hand though, the atoms
also cannot be placed completely randomly, because in reality the distortions and defects in
the atomic structure, despite being locally random, follow certain statistics, which have to be
reproduced by the model. Second, as opposed to c-Si, where only one unit cell needs to be
considered that is repeated periodically, huge numbers of atoms are, in principle, required in
a model a-Si:H structure. However, conventional ab-initio methods are currently still limited
to maximum numbers of the order of 1000 atoms, which is orders of magnitude smaller than
the number of atoms in a real sample. A structure of this size would suffer greatly from
surface effects and would not be suitable to reproduce the experimental properties of the bulk
material. This problem has to be avoided by constructing a super cell with periodic boundary
conditions that is infinitely repeated, which however introduces an artificial periodicity, and
therefore still needs to be large enough to suppress any interaction with periodic images. The
third major problem is, that there exists not only one kind of a-Si:H with well-defined material
properties, but instead, all macroscopic properties depend on the conditions (temperature,
pressure, hydrogen concentration, ...) under which the material was produced, which makes
the verification of numerical results by comparison with experimental data very difficult. This
is true especially for the optical and mobility gap, where the additional difficulty emerges,
that no sharp definition, neither for their experimental determination, nor their numerical
calculation, exists.

Among the structural properties that have to be reproduced by a-Si:H models, the defect den-
sity is particularly delicate. In fact, structures containing only one defect need to have a size
of at least 106 atoms to yield realistic defect densities [68], which is out of the range of current
studies dealing with structure sizes of the order of 1000 atoms. Hence, while the generation
of defective a-Si:H configurations is instructive for studying the origin and the nature of local-
ized defect states, these configurations are not well suited for obtaining realistic macroscopic
properties. The generation of defect-free configurations is therefore an important step towards
a full ab-initio description of a-Si:H. However, for a long time defect-free configurations of a-Si
and a-Si:H could be generated only with model approaches such as the Wooten-Winer-Weaire
algorithm [69], the Bethe-lattice approach [61] or the Reverse Monte-Carlo approach [70]. Only
recently, large-scale (∼500 atoms) atomistic simulations of a-Si:H using a quench-from-a-melt
approach [66, 71] combining both classical and ab-initio molecular dynamics (MD) have been
reported to yield configurations of low defect density [56]. The same approach was used to
generate low-defect and even defect-free a-Si:H configurations of 72 atoms within ab-initio MD
[65]. This method was also used to generate the configurations analyzed in this work.

The calculation and analysis of the electronic structure and the optical properties of a-Si:H on
the Density-Functional-Theory (DFT) level has been the subject of a number of recent works
[56, 63–66]. The focus of interest in these works has been mainly on the origin of mid-gap
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states and band tails, and on the effect of hydrogen concentration and structural features on
the mobility gap and the optical gap respectively. Very little attention has however been paid
to the effect of computational artifacts on the electronic and optical properties. In particular,
two effects should be taken into account when trying to reproduce the experimental properties
of a-Si:H, and are therefore investigated in this work: the effect of the super-cell size and the
effect of many-body interactions. A recent work stated that finite size effects do not play
any role for structures larger than 72 atoms [65], which will be revised here by comparing
structures of different size. The incomplete description of many-body effects on the other
hand is a well-known problem of standard DFT [72] (see section 2.1.3), and is the reason
why the optical and mobility gaps are severely underestimated in previous studies using the
local density approximation (LDA) or the generalized gradient approximation (GGA). Good
values for the gaps have however been achieved recently with hybrid functionals [56]. In this
work we try to incorporate many-body interactions systematically by explicitly calculating the
quasiparticle corrections to the Kohn-Sham energies. These corrections are often described by
a heuristic approach, termed scissors shift, where the electron energies are simply shifted to fit
the experimental band gap. Since a distinct experimental value of the band gap of a-Si:H does
however not exist, a set of shifting parameters can only be determined from a GW calculation,
which will be demonstrated here.

3.2 Computational details

The a-Si:H configurations analyzed in this work were generated with a simulated annealing
quench-from-a-melt protocol [66, 71, 73] with subsequent thermalization at 300 K, using Born-
Oppenheimer molecular dynamics on the GGA-DFT level. Two types of configuration are
studied, one consisting of 64 Si + 8 H atoms (Fig. 3.1(a)), which we will refer to as the
small system, and one consisting of 512 Si + 64 H atoms (Fig. 3.1(b)), which we will refer
to as the large system. The hydrogen concentration of about 11% is chosen as this is the
nominal concentration used in experimental materials optimized for photovoltaic performance
[53]. Both systems use a cubic super cell with periodic boundary conditions with a size of
a = 11.06 Å and a = 22.12 Å, respectively, resulting in a density of 2.214 g/cm3, which
matches the experimental value at the chosen hydrogen concentration [74]. The generation of
the atomic structures was not part of this work and is therefore not described in detail here.
This information can however be found in a previous publication [6].

The electronic structure is calculated self-consistently within DFT with the plane-wave pseu-
dopotential code PWscf from the Quantum ESPRESSO package [75, 76] using norm-conserving
pseudopotentials and a PBE-GGA functional [24]. k-point summations are carried out on a
4×4×4 grid for the small system, and on a 2×2×2 grid for the large system. The plane-wave
cut-off energy is set to 52 Ry. These parameters were chosen by checking the convergence
of the total energy of the system (Fig. 3.2), and are consistent with the assumptions that
the cut-off energy should be independent of the system size, whereas the number of k-points
needed is inverse proportional to the system size.

Quasiparticle corrections to the Kohn-Sham energies for the small configuration are obtained
by performing single-shot G0W0 calculations with the BerkeleyGW code [77] within the gener-
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(a) (b)

Figure 3.1: Small (a) and large (b) a-Si:H configuration in the simulation box. Si atoms are grey, H
atoms are red. The super cells consist of 64 Si + 8 H atoms (small system), and 512 Si
+ 64 H atoms (large system), respectively. Periodic boundary conditions are used in all
three directions.

Δ Δ

Figure 3.2: Convergence behavior of the total energy per electron w.r.t. the plane-wave cut-off Ecut

(left) and the number of k-points in the first Brillouin zone (right). W.r.t Ecut, the
total energy converges exponentially, as indicated by the dashed lines, which represent
exponential fits of the data points. The extrapolation to Ecut →∞ is used as the reference
energy. At 52 Ry both systems are converged to this energy within 1 meV per electron
(indicated by the horizontal line). For the k-point convergence, the energy for the largest
tested grid is used as reference. Convergence is assumed if the total energy per electron
differs by less than 1 meV from the previous data point. This is the case at 64 (4× 4× 4)
points for the small system, and at 8 (2× 2× 2) points for the large system.
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Figure 3.3: Convergence behavior of the assumed error ΔEg of the LUMO-HOMO quasiparticle gap
w.r.t. the number of bands included in the calculation of ε (N ε

bands) and Σ (NΣ
bands), and

w.r.t. the cut-off energy Ecut. The convergence w.r.t. each parameter is checked while
setting the other two parameters to a high value, at which convergence is assumed, namely
Ecut to 16 Ry, N ε

bands to 10000, and NΣ
bands to 6000. Exponential convergence is observed

in all cases, and the reference values for Eg are obtained from exponential fits to the data
points (dashed lines). A precision of 10 meV (horizontal line) is requested, which leads to
N ε

bands = NΣ
bands = 3000 and Ecut = 10 Ry. Calculating Eg with these parameters on a

2× 2× 2 and a 4× 4× 4 grid yields a difference of less than 2 meV.

alized plasmon-pole (GPP) approximation, using 3000 bands in the calculation of both ε and
Σ, and a kinetic energy cut-off of 10 Ry. These values were chosen by checking the convergence
of the LUMO-HOMO gap with respect to all three parameters simultaneously. In practice this
means that two parameters are kept fixed at a sufficiently high value to assume convergence,
while the third parameter is varied (Fig. 3.3). k-point summations are performed on a 2×2×2
grid. Using a 4 × 4 × 4 grid changes the gap by less than 2 meV. The finite q-shift needed
for the numerical evaluation of limq→0 ε00(q;E) is set to 0.0005 in crystal coordinates. The
effect of this shift is found to be small by checking the convergence of the maximal error in
ε00(q;E) with respect to q (Fig. 3.4). The Kohn-Sham wave functions are retained as they
are assumed to differ very little from the quasi-particle wave functions [42].

The BerkeleyGW code is also used for calculating the optical properties within linear-response
theory using the random phase approximation (RPA) without local-field effects. The absorp-
tion spectra are calculated on a 2 × 2 × 2 k-point grid for both systems, with a gaussian
broadening of 50 meV for the small, and 25 meV for the large configuration. Electron-hole in-
teraction is disregarded as it is generally assumed to have no significant effect on the absorption
spectra of amorphous semiconductors [68].

For the calculation of the density of states (DOS), the electron localization function (ELF),
the spread, and the optical matrix elements, the electronic states are calculated on a 4× 4× 4
grid for the small system, and on a 2× 2× 2 grid for the large system, both with a plane-wave
cut-off of 52 Ry. A gaussian broadening of 25 meV, which roughly corresponds to the thermal
broadening at room temperature, is used for displaying the DOS.

The radial pair correlation functions are calculated with a gaussian broadening of 0.025 Å.
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Δ

Figure 3.4: Maximal error Δε = maxE |ε00(q;E)− ε00(0;E)| for the real part ε1 and the imaginary
part ε2 made by replacing the limit q → 0 by a finite grid shift q (small system). The
reference value is obtained by extrapolation to q = 0, assuming the error to be of second
order in q. The errors are very small, which means that the grid shift has no significant
effect on the accuracy. A value of 0.0005 is chosen for the GW and absorption calculations.

3.3 Structural properties

In order to estimate the quality of the atomic configurations in terms of how closely they
resemble real a-Si:H, we first investigate the radial pair correlation function g(r). Fig. 3.5
shows gSi-Si(r) and gSi-H(r) both for the small and the large configuration. Except for the
different smoothness of the curves, which is due to the different number of atom pairs, both
systems show very similar behavior, indicating a similar structural quality. Both figures reveal
sharp first nearest-neighbor peaks for Si-Si pairs, which are located at 2.32 Å (small system)
and 2.38 Å (large system), respectively, close to the GGA value of 2.37 Å for c-Si [52]. This
indicates a high degree of short-range order, with the small configuration being slightly more
disordered than the large one according to the height of the peak. The second and higher
nearest-neighbor peaks cannot be distinguished anymore, showing the characteristic loss of
long-range order in amorphous silicon. For Si-H pairs there is a sharp peak at 1.51 Å (small
system) and 1.53 Å (large system), respectively, meaning that most Si-H bonds have a bond
length very close to these values.

In order to extract macroscopic properties, a configurational average, i.e. an average over mul-
tiple different configurations, should be taken. This is supposed to eliminate local features, for
example due to defects, and thus allows for a better comparability with experiments. There-
fore, in order to compare the calculated Si-Si radial pair correlation function with experimental
data from neutron scattering [78], we average over 10 large configurations, extracted at dif-
ferent time steps of the molecular dynamics simulation, after thermalization was completed.
The result is shown in Fig. 3.6, together with the curve for the single configuration and with
the experimental data. The effect of the averaging is only a smoothing of the curve, whereas
the overall behavior remains completely unchanged, meaning that the chosen configuration is
representative for the ensemble. Comparison with the experiment shows excellent agreement
at all all distances, indicating that our configurations model the structure of real a-Si:H very
accurately.
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Figure 3.5: Radial pair correlation function g(r) for Si-Si pairs and Si-H pairs in the small structure

(left) and in the large structure (right). A gaussian broadening of 0.025 Å was used.
Except for the difference in smoothness due to the different number of atom pairs, both
systems show similar behavior. For Si-Si pairs, the first nearest-neighbor peak is very pro-
nounced, and is located at 2.32 Å (small system) and 2.38 Å (large system), respectively,

which is close to the value of 2.37 Å for c-Si in GGA-DFT. The second nearest-neighbor
peak cannot be distinguished anymore, showing the loss of long-range order. Si-H pairs
reveal a sharp peak at 1.51 Å (small system) and 1.53 Å (large system), respectively.

Figure 3.6: Comparison of Si-Si radial pair correlation function g(r) in the large structure and in
the configurational average with experimental data from neutron scattering [78]. The
computational data is in excellent agreement with experiment. Taking the configurational
average does not affect the main features but only leads to a smoothing of the curve.
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Table 3.1: Coordination analysis for Si and H atoms in both a-Si:H systems. The coordination numbers
are calculated with the ELF method. The small system is slightly more disordered than
the large system, which is in fact defect-free. The small system has two dangling bonds,
but no floating bonds are found in either system. The H atoms are all bonded to exactly
one atom.

Coordination Number of atoms

number Small system Large system

1 0 0

2 1 0

Si 3 0 0

4 63 512

5 0 0

0 0 0

H 1 8 64

2 0 0

The second measure for the structural quality of our configurations is the defect density,
more precisely, the number of under- or overcoordinated atoms. These are determined by
calculating the coordination number, i.e., the number of bonds formed, for each atom, using
the ELF method described in sec. 2.3.2. The results are listed in Tab. 3.1.

The comparison shows that the small system is slightly more disordered, in agreement with
the interpretation of the radial pair correlation function. As for the structural quality, the
results of the ELF analysis show that the large configuration is completely defect-free, and
should therefore be well suited to reproduce experimental properties of a-Si:H. The small
configuration contains one atom with a coordination number of two, which means that it has
two dangling bonds. This translates to a defect density of 1.5×1021 cm−3, which is about five
orders of magnitude higher than experimentally measured values [79, 80], and therefore makes
this configuration less comparable to real a-Si:H. It can, however, be used to study the effect of
the defects on the electronic and optical properties. No floating bonds, i.e., over-coordinated
atoms, are found in either configuration. The bonding analysis for the hydrogen shows that,
as expected, all H atoms are bonded to exactly one Si atom, meaning that neither H2 dimers,
nor ’hydrogen bridges’, i.e., H atoms bonded to two Si atoms, are found.

Even in the case of a defect-free configuration, which we have here, disorder in the form of
stretched or shortened bonds exists and gives rise to tail or even gap states, as was argued
by Khomyakov et al. [66]. The distribution of the bond lengths and the respective bond
strengths, measured by the value of the ELF at the bond center, is shown in Fig. 3.7 for both
configurations. The figures show that the bond lengths are distributed within roughly 0.4 Å
around a mean value of 2.37 Å in the small system, and 2.38 Å in the large system. The bond
length and strength are weakly anti-correlated, with a correlation coefficient of −0.6 in the
small system and −0.5 in the large system, but no monotonic dependence between the two
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Figure 3.7: Distribution of bond lengths and respective bond strength for Si-Si bonds (purple points)
and Si-H bonds (green points) in the small (top) and large (bottom) configuration. Un-
bonded atom pairs are represented by grey points. The bond strength is measured by the
value of the ELF in the bond center. The threshold value of 0.8 for bonding is indicated
by the horizontal line. The respective mean bond length for Si-Si bonds (2.37 Å in the

small system, 2.38 Å in the large system) is marked by the vertical lines. In both systems,
bonded and unbonded atom pairs can be clearly separated both in terms of the ELF and
the atomic distance.

quantities exists. This explains the result that particularly stretched bonds, which are weaker
on average, give rise to tail and gap states [66], but raises the question if conclusions about
the electronic structure can be drawn from the geometry of the configuration only. In the
case studied here, we can at least see that bonded and unbonded atom pairs can be clearly
separated not only by the value of the ELF, but also by the distance. Consequently, applying
for example a cut-off distance of 2.75 Å for Si-Si pairs and 1.70 Å for Si-H pairs, the bonding
analysis with the geometrical method will here yield the same result as the ELF method. This
is due to the strong short-range order present in these configurations, which makes it relatively
easy to distinguish bonded from unbonded atoms.
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3.4 Electronic properties

The electronic structure of both configurations is analyzed in terms of the density of states
(DOS) and the electron localization, measured by the wave-function spread (Fig. 3.8). The
analysis is restricted to an energy region of ±3 eV around the Fermi level, since this is the
region where transport, recombination, and absorption processes relevant for photovoltaics
take place.

The DOS for the small configuration (Fig. 3.8(a)) reveals two distinct peaks inside the gap,
which originate from localized states, i.e., states with low spread. Far away from the Fermi
level, in the band region, the states become mostly delocalized, i.e., have a spread close to the
dimension of the super cell. In between, a tail region with mostly semi-localized states can be
identified, which is, however, not very pronounced, and is hard to distinguish from the band
region. This is due to the relatively small difference in the spread of localized and extended
wave functions, which makes an accurate definition of the mobility edges very difficult. In
order to calculate the mobility gap with the method introduced in sec. 2.3.5, we chose a
threshold value of St = 10.0 Å for separating localized from extended states, ensuring that
95% of the valence band states (states more than 2 eV below the Fermi energy) exceed St.
This way we obtain a mobility gap of Emob

g = 0.83 eV, which is very small compared to the
experimental value of about 1.9 eV [57, 59]. Looking at the large configuration (Fig. 3.8(b)),
we observe that the difference in the spread between localized and extended states is much
larger, making it possible to clearly distinguish a band region with extended states, a tail region
with semi-localized states, and a gap region with localized states. Representatives of each type
of state are shown in (Fig. 3.8). Also, the relative difference in the spread of the band states
is much smaller, making it easier to separate extended from localized states and thus to define
the mobility edges. With a threshold of St = 20.7 Å we obtain a value of Emob

g = 1.09 eV,
and, averaging over 10 similar, defect-free configurations, a slightly higher value of 1.13 eV.
This is still small compared to the experimental value, but significantly improved as compared
to the small system. Also the density of localized states inside the gap in the large system
is significantly lower than in the small system, supporting our previous statement that it is
better suited to reproduce the properties of real a-Si:H.

The two peaks in the DOS of the small configuration generated by localized states can be clearly
assigned to the two dangling bonds detected through the bonding analysis in the previous
section. This can be seen in Fig. 3.9, where all localized states with a spread S ≤ 9.5 Å
are plotted together with the atomic positions in the super cell. The position of the states
thereby refers to the mean position 〈r〉 of the electron, as defined in section 2.3.4. Almost all
strongly localized states are localized directly at the site of the under-coordinated atom. All
these states lie deep in the gap, i.e., have an energy close to the Fermi level. Occupied and
unoccupied states are located at slightly different positions, and can therefore be related to
the two different dangling bonds.

The existence of localized states in the large configuration can not be due to dangling bonds,
as we established that this configuration is defect-free. Also, these states do not lie deep in
the gap but close to the band edge, indicating that, very much like tail states, they origin
from structural disorder rather than from defects. In order to demonstrate this, in Fig. 3.10,
analogously to Fig. 3.9, localized states with a spread S ≤ 19 Å are plotted, in this case
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Figure 3.8: Density and spread of states in the vicinity of the Fermi energy (0 eV) for the small (a)
and the large (b) configuration. Each dot represents the energy and the spread of one
wave function. The mobility gap and edges (vertical lines) were obtained with a threshold

of St = 10.0 Å in the small, and St = 20.7 Å in the large system, separating localized from
extended states (horizontal lines). The value of Emob

g = 1.09 eV obtained for the large
configuration is much higher than the value of 0.83 eV in the small configuration. Also
the different energy regions, gap, tail, and band, can be distinguished much more clearly
in the large system. The different types of states, localized gap states, semi-localized tail
states, and extended band states, are exemplarily labeled and plotted below in the form
of isosurfaces of |ψ|2.
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Figure 3.9: Distribution of localized states with S ≤ 9.5 Å in the super cell for the small system
(projections onto the xy-, xz-, and yz-plane). Each dot represents one state, where the
position indicates the mean position of the wave function, and the color denotes its spread
(top) and its energy (bottom), respectively. The circles represent the Si atoms, where
different colors stand for different coordination. Gap states both below and above the
Fermi level (0 eV) are strongly localized at the under-coordinated atom, but are spatially
separated and can therefore be assigned to two different dangling bonds. [6]

together with all Si-Si bonds in the super cell. The bonds are colored according to their
strength, as defined in the previous section, and their length, respectively. This representation
shows that strongly localized gap states can be found in the vicinity of particularly weak bonds
(below-average bond strength), whereas strong bonds (above-average bond strength) do not
affect localization. This is not surprising since, according to the LCAO (linear combination
of atomic orbitals) model, a weaker bond will give rise to a smaller energy splitting between
bonding and anti-bonding state, and thus push states towards the Fermi level. The length
of the bonds on the other hand does not seem to have any direct effect on the electronic
localization. In fact, no localized states can be found, both near some of the longest and near
some of the shortest bonds. In conclusion, this means that localized states can exist even
in the absence of dangling bonds, but knowledge of the structure only is not enough to make
predictions about their existence and density. Also, their distinction from tail states is difficult,
due to their position close to the band edge and their similar origin.

Whereas the different gap-state densities can be associated with the different defect structure
of the two configurations, the overall difference in the behavior of the spread and, at least to
some extent, also the different mobility gaps are clearly effects of the different super-cell size.
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Figure 3.10: Distribution of localized states with S ≤ 19 Å in the super cell for the large system
(projections onto the xy-, xz-, and yz-plane). Each dot represents one state, where
the position indicates the mean position of the wave function, and the color denotes its
spread. The lines represent the Si-Si bonds, and their color shows the strength (top)
and their length (bottom), respectively. Localized states can be found in the vicinity of
weak bonds (black lines, top), whereas the length of the bonds does not seem to affect
localization.

This can be understood by considering that even the band states are not perfectly delocalized
plane-waves but have regions of higher and lower probability density, leading to a spread
smaller than the extension of the super cell. On the other hand, an exponentially localized
tail state close to the mobility edge can have a spread that is of the order of the super-cell
size, causing an underestimation of the mobility gap. However, when the size of the super cell
is increased, the spread of an extended state will increase accordingly. This can be easily seen
by considering a wave function ψ in a crystalline unit cell of dimension a, having a spread
S1 =

√
a2 − S2

0 according to equation (2.122), with S0 ∈ [0; a]. Upon constructing a super
cell out of n unit cells per dimension, |ψ|2 and therefore also S2

0 obviously remain invariant,
and the spread becomes Sn =

√
n2a2 − S2

0 = n
√
a2 − S2

0/n
2. This scales linearly with n for

n→∞, while at the same time the relative difference between states with different S0 vanishes.
This is what we observe when increasing the super-cell size. The spread of an exponentially
localized state, on the other hand, depends less on the cell size, as we also see by comparing the
localized states in Fig. 3.8(a) and Fig. 3.8(b), and will converge to a finite value eventually.
This separates tail and band states, and should lead to convergence of the mobility gap if the
cell size is chosen large enough. Another effect of the finite size is a broadening of bands due
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Figure 3.11: Probability density ρ = |ψ|2i (xi) along x, y, and z-direction for a localized (a) and
a delocalized (b) wave function. The localized state shows almost perfect exponential
localization only in y-direction, whereas it has multiple peaks along the other directions,
and does not decay to zero at the z-boundaries. The band state is delocalized and
shows some oscillating behavior inside the super cell, without however reproducing the
crystalline periodicity.

to the interaction of semi-localized states with their periodic images, which could shift states
out of the gap and therefore smear out the transition between band and tail states. Also this
effect should vanish upon increasing the super-cell size. Even though the described finite-size
effects are clearly visible in the calculations, it is very difficult to quantify them a priori. This
is because neither are the band states perfect replications of crystalline Bloch waves, nor do
localized states decay perfectly exponentially, but instead, all wave functions have a rather
complicated shape, as can be seen from the examples in Fig. 3.11.

In addition to the error due to finite-size effects, the mobility gap calculated here suffers from
the bad-gap problem of DFT caused by the incomplete description of many-body effects. In
order to account for these effects, the mobility gaps are recalculated using quasiparticle cor-
rected energy levels. These are obtained from a G0W0 calculation for the small configuration,
and a scissors-shift correction for the large configuration, as described in the next section. The
quasiparticle corrections improve the values of Emob

g to 1.26 eV for the small, and 1.46 eV for
the large system. It must however be stressed that only the energies are corrected whereas the
wave functions and thus the spread remain the same. The values for Emob

g are summarized in
Tab. 3.3.

3.5 Optical properties

We investigate the optical properties of a-Si:H in terms of the absorption spectrum, which is
one of the key quantities determining the solar cell efficiency in photovoltaics and is directly
experimentally accessible, and in terms of its underlying microscopic quantities, the joint
density of states (JDOS) and the optical matrix elements. A parameter that is commonly used
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Figure 3.12: Quasiparticle corrected electron energies εQP vs uncorrected energies Kohn-Sham en-
ergies εKS. ∆ε refers to the energy difference between the lowest unoccupied and the
highest occupied state (LUMO-HOMO gap). The main effect of the corrections is a
linear shift of the Kohn-Sham energies, which spreads the valence and conduction band
by 0.27 eV. [6]

for the characterization of photovoltaic materials, and therefore well suited to compare our
results to experiment, is the optical gap, which can be extracted from the spectral properties.
As it is also subject to many-body effects, we apply quasiparticle corrections to the calculated
DFT spectra in order to reach a better comparability with the experimental values.

3.5.1 G0W0 calculations

The G0W0 calculation for the small a-Si:H structure yields the quasiparticle corrected electron
energies shown in Fig. 3.12. The results indicate that the effect of the quasiparticle corrections
consists mainly in a linear shift of the Kohn-Sham energies, resulting in a spreading of valence
and conduction band by approximately 0.27 eV. This suggests that the costly G0W0 calculation
can be substituted by a simple scissors shift (see sec. 2.2.4). The respective shifting parameters
av/c and Es

v/c are obtained by a linear fit of the G0W0 results. The Fermi level is used as the

reference energy, i.e., E0
v = E0

c = EF . The choice of the right set of parameters depends on
the energy range of interest. By using different energy ranges for fitting we obtain different
parameter sets, which are listed in Tab. 3.2.

3.5.2 Absorption spectrum

The absorption spectrum of the small configuration calculated within the independent-particle
(IP) approximation (i.e., with the uncorrected Kohn-Sham energies), the GW approximation,
and the scissors-shift (SS) approximation is shown in Fig. 3.13(a). The IP spectrum shows two
sub-gap absorption peaks at 0.34 eV and 0.60 eV. By comparison with the DOS the first peak
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Table 3.2: Scissors shift parameters for a-Si:H obtained from a linear fit εQP
v/c = εKS

v/c + av/c(ε
KS
v/c −

EF ) + Es
v/c of the quasiparticle energies obtained from the G0W0 calculation. The fitting

ranges are given with respect to the Fermi level. Different fitting ranges result in different
parameter sets and thus different LUMO-HOMO gaps. The resulting absorption spectra
are plotted in Fig. 3.13(b). The first parameter set is best suited to reproduce the G0W0

absorption spectrum and LUMO-HOMO gap.

Fit. range [eV] av Es
v [eV] ac Es

c [eV] LUMO-HOMO [eV]

[−1 : 1] 0.088 −0.555 0.146 −0.329 0.56

[−2 : 2] 0.044 −0.587 0.064 −0.271 0.63

[−3 : 3] 0.025 −0.608 0.043 −0.244 0.67

can be related to absorption processes between two gap states, whereas the second peak arises
from absorption processes between a gap state and a tail state. In order to estimate the optical
gap we use a Tauc plot [58] (Fig. 3.15), which is the most common method for experimentally
determining the optical gap of amorphous semiconductors. Since the spectrum is not smooth
enough to allow for a reasonable fit, we increase the broadening to 200 meV. The resulting
fit yields a Tauc gap of ET

g ≈ 0.8 eV, which is about 1 eV below the experimental values
of approximately 1.7 to 1.8 eV [57, 59, 81]. The G0W0 correction modifies the absorption
spectrum only in terms of a shift and a slight stretch, which results in a corrected Tauc gap
of ET

g ≈ 1.0 eV. The figure shows that the G0W0 correction can be well approximated by a
scissors shift, where the first parameter set in Tab. 3.2 was used. These parameters were chosen
because they correctly reproduce the LUMO-HOMO gap, and because they best approximate
the G0W0 absorption spectrum. This can be seen in Fig. 3.13(b), where the spectra for all
three parameter sets are compared to the G0W0 spectrum.

After finding a suitable set of scissors shift parameters for a-Si:H, we use these parameters
to calculate a quasi-particle corrected absorption spectrum also for the large configuration,
for which a G0W0 calculation would be too costly. The result is shown in Fig. 3.14(a),
together with the uncorrected spectrum. As compared to the small configuration, the sub-
gap absorption decreased significantly. Moreover the optical gap obtained from the Tauc plot
(Fig. 3.15) increased to 1.0 eV in the IP approximation, and to 1.3 eV with scissors-shift
corrections. The relation between a larger super cell and a decreased sub-gap absorption can
be easily understood in terms of the reduced defect density and the reduced spatial overlap of
localized states. The difference in the Tauc gap can also be explained with the higher DOS
inside the gap of the small configuration, giving rise to a higher JDOS at low energies. The
super-cell size therefore seems to affect the optical gap only indirectly via the DOS inside the
gap.

The spectra shown so far have limited physical significance, as they were obtained from single
configurations, with super-cell sizes much smaller than the wavelength of visible light. In order
to obtain a physically meaningful absorption spectrum of a-Si:H, i.e., a spectrum that can be
compared to experimental data, the configurational average has to be taken. For that purpose
we calculate spectra for 10 different large configurations and average over them. The result
is shown in Fig. 3.14(b). While sub-gap absorption is still present in the averaged spectrum,
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Figure 3.13: Absorption spectrum of the small configuration calculated in independent particle (IP),
GW, and scissors-shift (SS) approximation (a). Qualitatively, all three spectra are simi-
lar, showing pronounced sub-gap absorption peaks. The quasiparticle corrections appear
in the spectrum mainly as a shift of the onset. The SS spectrum was obtained with the
first parameter set in Tab. 3.2, which was chosen because it best reproduces the GW
spectrum, as can be seen by comparing the spectra generated by the three different
parameter sets (b). [6]
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Figure 3.14: (a) Absorption spectrum of the large configuration calculated in IP and SS approxima-
tion, using the SS parameters obtained from the small system. Compared to the small
configuration the Tauc gap is increased by 0.3 eV, whereas sub-gap absorption is reduced.
(b) Absorption spectra averaged over 10 large configurations. The optical gap remains
unaffected but the sub-gap peaks vanish. [6]
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Tauc gap of 0.8 eV and 1.0 eV, respectively. For the small system the broadening was
increased to 200 meV in order to obtain a sufficiently smooth curve. The range for the
fit was chosen from 1.7 to 3.2 eV.

the distinct peaks disappeared. This resembles more the experimental findings [81, 82], even
though the contribution of sub-gap absorption is still overestimated. The value of the optical
gap is not affected by the averaging (Tab. 3.3).

As compared to the experimental values, the optical gaps determined via Tauc plots are
clearly too small, despite the application of quasiparticle corrections. The results are, however,
consistent with the results obtained for the mobility gaps in the sense that the gap in the large
system is about 0.2 to 0.3 eV larger than in the small system. Moreover, the Tauc gap is slightly
smaller than the mobility gap for all cases, which agrees with the experimental findings (Tab.
3.3).

3.5.3 JDOS and optical matrix elements

On the microscopic level the optical properties are determined by the probabilities of valence
band electrons being excited to a conduction state under photon absorption. These proba-
bilities depend on the optical coupling between the initial and the final states, given by the
optical transition matrix element vcv. The probabilities of all transitions at a given energy
E are summarized in the average coupling strength 〈v2〉 as defined in sec. 2.3.6, while their
number is given by the JDOS. Both quantities together define the absorption spectrum and
therefore have to be considered in the microscopic analysis of the absorption. This analysis
is restricted to the large configuration, since the small configuration does not provide enough
data to obtain reliable statistics.

To begin with, we investigate the JDOS, shown in Fig. 3.16. In the energy range up to 5 eV

63



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  1  2  3  4  5

Eg
J = 0.76 eV

JD
O

S 
[1

/e
V]

E [eV]

JDOS
a1/[1+a2/(E-Eg

J)2]
a1/a2(E-Eg

J)2

Figure 3.16: Normalized joint density of states (JDOS) for the large configuration. Fitting a function
of the form a1/[1 + a2/(E − EJg )2] (red dashed line) yields a value of EJg = 0.76 eV for

the optical gap. Close to EJg (in a range of about 1 eV) the JDOS can be approximated
quadratically (purple dotted line), which is the common assumption being made when
determining the optical gap. [6]

displayed here, J can be well described by a function of the form

J(E) ≈ a1

1 + a2/(E − Eg)2
, (3.1)

where the ai are fitting parameters. Fitting this function to the data yields a value of Eg =
0.76 eV for the optical gap, which, in distinction from the Tauc gap, we label EJg . Close to EJg
the function becomes approximately a1/a2(E − EJg )2. This agrees with the commonly made

assumption that the density of band states increases as
√
E from the band edges [58], resulting

in a quadratic energy dependence for the JDOS. The approximation however only holds in a
small energy range of about 1 eV above the gap.

The average optical coupling strength is shown in Fig. 3.17. Above ≈ 0.9 eV, where transitions
between localized states do not play a role, the data can be described by

〈v2〉 (E) ≈ b1
(E − EJg )3 + b2/(E2 + b3)

, (3.2)

where the bi are fitting parameters. In the vicinity of EJg this function becomes b1/b2(E2 +b3),

where b3 is of the order of 3 eV2. This result clearly contradicts the common assumption that
〈v2〉 is constant at low energies [58]. This was disproven experimentally already by Jackson
et al. [59], who however stated that instead 〈v2〉 ∝ E2, which also disagrees with our results.
However, the energy range in which an E2 behavior is displayed in the experiment is rather
small, which, combined with the comparably large error estimates in the fitting range, would
allow also alternative interpretations of the measurement results. It therefore remains unclear
if the disagreement in E dependence is due to an actual discrepancy between measurement
and simulation, or arises rather from a different interpretation of the results. Good agreement
with the experimental findings on the other hand is reached at high energies, where we find
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(red dashed line). This means that close to EJg (in a range of about 1 eV) the average
coupling has the form 〈v2〉 (E) ∝ E2 + b3 (purple dotted line), then assumes a maximum
at E ≈ 2.9 eV, and falls off like 1/E3 at high energies. Below 0.9 eV the coupling is
strongly increased due to transitions between localized states (cf. Fig. 3.20). [6]

that 〈v2〉 falls off like 1/E3. Also the position of the peak near the direct c-Si band gap, which
is ≈ 2.6 eV in GGA-DFT, agrees with the experimental result.

We will now revisit the determination of the optical band gap. The assumptions behind the
Tauc fit are J(E) ∝ (E − Eg)2 and 〈v2〉 constant near the gap, i.e., ε2 ∝ (E − Eg)2/E2 and
therefore E

√
ε2 becomes linear and yields the optical gap. From equations (3.1) and (3.2) we

see however that E
√
ε2 ∝ (E − EJg )

√
E2 + b3 near EJg , which increases super-linearly (unless

b3 � EJg
2
, which is not the case here). As shown in Fig. 3.18, a linear fit to E

√
ε2 will therefore

always yield a gap Eεg that is slightly larger than the value EJg obtained from the JDOS, where
the difference increases with the fitting range. This is supported by the experimental results of
Jackson et al. [59] who obtain 1.82 eV from fitting the DOS, and 1.86 eV from fitting E

√
ε2.

The discrepancy between Eεg and our Tauc gap of 1.0 eV reported above can be explained

with the fact that
√
αE is only approximately proportional to E

√
ε2 because the refractive

index n in the formula for the absorption coefficient (2.129) is also energy dependent. Also,
a larger fitting range of about 3 eV was used in the Tauc fit, which is problematic because
the quadratic approximation for the JDOS holds only up to ≈ EJg + 1 eV as stated before.
The reason why it still gives sensible results is that the errors in the assumptions for J , 〈v2〉,
and n approximately compensate [59]. Nevertheless, the problem of identifying the correct
regime for the Tauc fit remains and imposes a large uncertainty on the determination of the
Tauc gap. This is demonstrated in Fig. 3.19, where the Tauc gap is exemplarily determined
for the IP spectrum in the configurational average, applying different fitting ranges. In each
of the fitting ranges,

√
αE behaves in good approximation linear, but the resulting Tauc gaps

differ by as much as 0.3 eV, where the highest value is only slightly higher than the value of
ET

g reported above, whereas the lowest value is as small as EJg . In addition, as mentioned
before, a large broadening is needed to fit the absorption spectrum for small structures. As

65



 0

 2

 4

 6

 8

 10

 12

 14

 0.5  1  1.5  2  2.5

Eg
J = 0.76 eV

 Eg
ϵ  = 0.83 eV

Eϵ
  21/

2  [e
V]

E [eV]

Eϵ  2
1/2

c(E−Eg
J)(E2+b3)1/2

d(E− Eg
ϵ )

Figure 3.18: Determination of the optical gap from the dielectric function ε2. According to the fits
of J (Fig. 3.16) and 〈v2〉 (Fig. 3.17), E

√
ε2 (blue solid line) assumes a form ∝ (E −

EgJ)
√
E2 + b3 close to EJg (red dashed line). The determination of the optical gap from

a linear fit, which implies E
√
ε2 ∝ E − Eg (purple dotted line), therefore leads to a

slightly larger value Eεg = 0.83 eV. [6]

opposed to the Tauc fit, the proposed fit of the JDOS describes the data in the whole energy
range of interest, making the result for EJg virtually independent of the fitting range, without

increasing the broadening. This suggests that EJg is better suited to compare numerical results

for the optical gap than ET
g .

Another point of interest in the context of understanding and modeling absorption is the
question, whether different types of transitions exhibit a different behavior, and if the transition
probability also depends on the properties of the initial state. To address these issues, states
are separated in localized and extended states, distinguished by a threshold of S = 20.7 Å for
the spread. 〈v2〉 is then calculated separately for each kind of transition: extended to extended,
localized to extended and vice versa, and localized to localized. The result is shown in Fig.
3.20. We see that there is no qualitative difference for extended-extended and extended-
localized transitions, in agreement with the experimental findings [59]. Localized-localized
transitions however show a significantly higher coupling below ≈ 0.9 eV. As these transitions
dominate at low energies, this also leads to a large increase of the total coupling, as can be
seen in Fig. 3.17.

The anomalous energy dependence of the coupling between localized states, which is signifi-
cantly enhanced, but only at low energies, suggests that the transition probability does not
only depend on the energy of the transition, but also on the respective states. In order to inves-
tigate this dependence, we generalize the definition for the average coupling such that instead
of taking the average over all transitions with a given transition energy E, we average over all
transitions with any given property. As an example, 〈v2〉 is calculated as a function of the va-
lence and the conduction state energy (Fig. 3.21). The plot shows that, even though brighter
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Table 3.3: Optical gaps (in eV) according to different definitions, obtained from fitting the JDOS,
the imaginary part of the dielectric function, and the absorption spectrum. Each value is
given without (IP) and with quasiparticle corrections in the GW and the scissors shift (SS)
approximation, respectively. (Values in brackets were obtained with a very high broadening
of 200 meV in order to have sufficiently smooth curves for fitting, and should therefore be
taken with care.) Additionally, the mobility gaps are listed.

Fitted Fit Small system Large system Conf. avg. Exp.

quantity function IP GW IP SS IP SS [59]

JDOS c1/[1 + c2/(E − Eg)2] 0.51 0.88 0.76 1.06 0.76 1.06 1.82

E
√
ε2 c · (E − Eg) (0.56) (0.79) 0.83 1.10 0.83 1.09 1.86

√
αE c · (E − Eg) (0.79) (1.04) 1.02 1.28 1.02 1.29 1.83

Mobility gap 0.83 1.26 1.09 1.46 1.13 1.51 1.93
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Figure 3.20: Average optical coupling strength 〈v2〉 resolved by type of state. A spread of S = 20.7 Å
is used to distinguish localized from extended states. The error bars indicate the standard
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coupling of two extended states, and the coupling between an extended and a localized
state, respectively. The coupling between two localized states is significantly stronger
only at E . 0.9 eV and is the sole reason for the increase of the total coupling seen in
Fig. 3.17. [6]

spots do exist at the highest valence state, there is no general dependence on Ev and Ec, but
only on the energy difference E. On the other hand, a correlation with the localization can be
found when plotting 〈v2〉 as a function of the valence-state spread and the transition energy.
For strongly localized valence states the coupling seems to be much stronger then for weakly
localized and extended states, where 〈v2〉 (Sv) becomes approximately independent of Sv. Due
to the small number of these states, this effect however becomes visible in the average 〈v2〉 (E)
only at very low energies, where transitions involving strongly localized states dominate. The
observation made above, that the probabilities for extended-extended and extended-localized
transitions do not differ on average, therefore remains valid.

3.6 Conclusions

We used model configurations of a-Si:H with 72 and 576 atoms, respectively, generated with
ab initio molecular dynamics, as a starting point for the electronic and optical characterization
of a-Si:H from first principles. The structural, electronic, and optical properties of the present
configurations were calculated on the DFT level and subsequently analyzed.

The structural characterization in terms of the radial pair correlation function and the bonding
analysis, based on the electron localization function, revealed a high degree of short-range
order. Especially the larger configurations, which were found to be defect-free, present a good
approximation of real a-Si:H, qualifying them as a promising starting point for a full ab initio
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description of a-Si:H that allows to reproduce the experimental properties.

The analysis of the density and localization of states confirmed the results of the structural
analysis in the sense that a high number localized mid-gap states were found in the small
configuration that could be clearly attributed to dangling bonds. On the other hand, only few
localized states were present in the large configuration. These states exist even in the absence
of dangling bonds and appear to be related to weakly bonded atoms, whereas the length of
the bonds does not have a direct effect on the localization. This suggests that the geometry of
the configuration alone does not allow conclusions about the existence and density of localized
states.

For the purpose of obtaining macroscopic properties that can be used to compare our numerical
results to experimental data, we calculated absorption spectra, as well as optical and mobility
gaps. Qualitatively good spectra were obtained with taking the computational average over
10 large configurations, even though sub-gap absorption was overestimated due to a yet too
high defect state density. The values for the optical and mobility gap obtained from DFT
were, however, strongly underestimated, which could be partially related to finite-size effects.
We found that the size of the super cell does not only affect the results indirectly, via the
defect state density, but also has a direct effect on the localization and thus on the value and
the uncertainty of the mobility gap. In particular, a larger super cell improved the values we
calculated for the mobility gap and the optical gap by 0.2 to 0.3 eV.
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Figure 3.21: Left: 〈v2〉 as a function of the conduction state energy Ec and the valence state energy
Ev (with respect to the Fermi level). The white diagonal indicates the line of constant
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energy E. Coupling is particularly strong at all energies for strongly localized states,
whereas for weakly localized and extended states it becomes almost independent from
the localization. [6]
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In an attempt to bridge the discrepancy between calculation and experiment we performed
G0W0 calculations for the 72-atom a-Si:H configuration, finding that the quasiparticle cor-
rections can be approximated by a scissors shift. This approximation makes calculations for
larger - and thus physically more representative - configurations possible. The extracted set
of scissors-shift parameters was used for calculating quasiparticle corrected absorption spectra
and gaps for all configurations, which lead to an improvement by roughly 0.3 to 0.4 eV, but
could not completely close the gap to the experimental values.

The discrepancy between the calculated and the experimental gaps is in contradiction to the
good agreement of the structural properties, which suggests that it could be a computational
artifact. One candidate for causing this are the finite size effects, which were demonstrated
and discussed qualitatively, and which might be eliminated by making the super cell large
enough. The other potential source of error is the negligence of quasi-particle effects on the
wave functions in the G0W0 calculations, where only the energies are corrected. Quasiparticle
corrections to the wave functions might change their localization and hence increase the mo-
bility gap. Also the inclusion of higher-order energy corrections within a fully self-consistent
GW calculation could further improve the results.

Finally, we analyzed the absorption in a-Si:H on the microscopic level in terms of the JDOS
and the optical transition matrix elements. Our results agree with experiment in that the
average transition probability decreases with 1/E3 at high energies, and that it does not
differ for transitions between two extended states and transitions between a localized and
an extended state, respectively. Nevertheless, strong localization does seem to increase the
transition probability, but the effect is macroscopically not visible due to the small number
of strongly localized states. Concerning the often discussed energy dependence of the matrix
elements near the gap, we find a dependence E2 + c with some constant c. This disagrees
with the common assumption of constant matrix elements, but also with the E2 dependence
suggested in the literature.
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4 The a-Si:H/c-Si interface

In this chapter the structural and electronic properties of the amorphous/crystalline silicon
(a-Si:H/c-Si) interface under high-temperature annealing are calculated and analyzed with ab
initio methods. The first section provides an overview over the applications and resulting
questions, the problems related to modeling the interface, the proceedings in the field so
far, and the goals of the present work. The second section describes the technical details of
the structures used and of the computations. The subsequent sections present the results,
consisting of a detailed analysis of a single configuration, and an investigation of the effects of
both the high-temperature annealing and the surface passivation on the key properties. The
results are summarized and discussed in the final section.

4.1 Introduction

The silicon heterojunction (SHJ) technology holds the current efficiency record of 26.6% for
silicon-based single junction solar cells [83] and shows great potential to become a future
industrial standard for high-efficiency crystalline silicon cells. At the heart of this technology
is the a-Si:H/c-Si interface, formed by a thin layer of hydrogenated amorphous silicon (a-
Si:H) passivating the crystalline silicon (c-Si) surface. The physical processes occurring at
this interface have crucial impact on the characteristics of the entire photovoltaic device. The
key to improving the solar cell performance lies therefore in the optimization of the interface,
in particular with respect to its transport and recombination properties. This optimization
requires a profound understanding of the underlying physical mechanisms and of the structure-
property relations, in order to accurately predict how changes in the atomic structure affect
the microscopic electronic properties and, ultimately, the macroscopic cell characteristics.

In order to arrive at a predictive ab initio simulation of the a-Si:H/c-Si interface, essentially
three steps have to be taken. First, a model atomic interface structure has to be generated
that exhibits the experimentally observed structural features. Hence, this structure must be
large enough to be physically representative and to eliminate finite-size effects as discussed in
the previous chapter, while still being treatable with ab initio methods; it should be almost
free of defects, since, due to the limited number of atoms in an ab initio calculation, already
few defects lead to a strong overestimation of the gap-state density, possibly even resulting in
metallic behavior; and furthermore, unphysical surface effects resulting from the very small
layer thicknesses should be minimized. Second, the electronic structure has to be calculated
and analyzed with focus on the identification and characterization of localized states at the
interface, which have a crucial impact on the device performance due to their role as recombi-
nation centers [84–86]. For that purpose proper characterization tools need to be chosen and
developed. Third, the relevant band parameters, such as band gaps and offsets, as well as
local material properties associated with the carrier dynamics, such as mobility and lifetime,
are to be extracted based on the microscopic information. The band offset describes the offset
between the valence and conduction band edges, respectively, of the two materials, in this
case c-Si and a-Si:H. It is one of the most important characteristics of a heterojunction for
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application in photovoltaics, as it has a crucial influence on the transport and recombination
properties of the interface.

Some advances have been made towards a full ab initio description of the a-Si:H/c-Si inter-
face in the recent years [54, 71, 87–90]. Most of the structures in these works were however
generated with classical or tight-binding molecular dynamics (MD), and suffered from high
defect densities. Structures generated entirely with ab initio molecular dynamics have been
reported only recently by Jarolimek et al. [54], who achieved low defect densities by applying
a long high-temperature annealing. Using hybrid density functional theory (DFT), they also
obtained reasonable values for the conduction and valence band offsets, however employing
the bulk value for the c-Si band gap. Other studies focused on the analysis of the defect struc-
ture, in particular with respect to the surface orientation of the c-Si layer [71, 90]. Also the
origin of localized states has been discussed [89, 90], although, to the best of our knowledge, a
quantitative description of electron localization exists so far only for bulk a-Si:H [6, 56, 65].

The interface structures used in this work were composed from bulk c-Si and a-Si:H using
ab initio MD. The problem of generating a physically realistic bulk a-Si:H structure has been
discussed in the previous chapter, whereas here we will focus on the description of the interface
as a whole. The interface structure is annealed at different temperatures ranging from 300
to 900 K, resulting in a configuration with almost no defect states inside the gap. Through-
out the annealing process, we monitor the evolution of the relevant structural and electronic
properties, such as the defect distribution, the density of states, and the band gaps. In this
way, insight is gained on how and why these properties change under high-temperature an-
nealing, which apparently plays an important role in reducing defect densities. Also the role
of hydrogen passivation both at the interface and the surface is investigated. Among all the
calculated configurations the one with the lowest density of gap states is identified. On this
configuration, a detailed analysis of the electronic structure is performed, including a classifi-
cation of individual electronic states in terms of their energy, localization, and location. This
classification also gives rise to an alternative method of determining the band gaps and offsets
directly from the interface structure without the need to resort to bulk values.

4.2 Computational details

The a-Si:H/c-Si structures analyzed in this work consist of two parts, one layer of crystalline
silicon (c-Si) and one layer of hydrogenated amorphous silicon (a-Si:H). The crystalline part
was obtained by first generating a c-Si layer with a Si(001) surface and an equilibrium lattice
constant of a0 = 5.47 Å (Fig. 4.1(a)), and then replacing the ideal surface by a reconstructed
symmetric p(2 × 1) surface, which emerges from surface atoms forming pairs, thus reducing
the number of dangling bonds by half (Fig. 4.1(b)). Relaxation of the top four layers resulted
in relative changes of the layer spacings dij between layers i and j by ∆12 = −21.4%, ∆23 =
0.21%, and ∆34 = 0.13% with respect to the bulk spacing d0 = a0/4. The amorphous part was
obtained by cutting the 576-atom a-Si:H structure described in the previous chapter to match
the surface area of the c-Si layer. The two layers were then placed together in the simulation
cell to form an a-Si:H/c-Si interface, where the c-Si side of the interface is constituted of the
reconstructed surface. The distance between the two layers thereby corresponds to the total
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Figure 4.1: (a) The unreconstructed (ideal) Si(001) surface and (b) the reconstructed symmetric p(2×
1) Si(001) surface in the simulation box. The reconstructed surface is obtained by dimer
formation of the surface atoms, and subsequent relaxation of the spacing between the top
four layers. The simulation cell is tetragonal and consists of 256 Si atoms and a 10 Å
vacuum layer. Periodic boundary conditions are used in all three directions. [7]

energy minimum. The crystalline part consists of 192 Si atoms, and the amorphous part of
128 Si and 16 H atoms. A void region of 10 Å in z-direction was inserted to suppress the
interaction between the periodic images. In order to avoid surface effects, the free surface of
the c-Si layer is passivated with 32 H atoms. The total length of the system is Lz = 38.66 Å,
while in the x- and y-direction the system has an extent of Lx = Ly = 15.46 Å. Periodic
boundary conditions are imposed in all directions.

The interface configuration constructed in this way was used as a starting point for Born-
Oppenheimer molecular dynamics simulations on the GGA-DFT level at constant volume and
constant temperature (NVT), where the first four layers of c-Si atoms were kept fixed to impose
a bulk-like behavior to the c-Si part of the system. The system was first thermalized at 300
K for ∼ 37 ps (Fig. 4.2), before being subjected to a high-temperature annealing consisting
of 60 ps at 300 K, and 40 ps each at 500 K, 700 K, and 900 K. At the end of this, the a-Si:H
surface was passivated with an additional 10 H atoms, followed by another annealing at 1100
K.

The generation and annealing of the interface configuration was not part of this work and is
therefore not described in detail here. The respective information can however be found in a
previous publication [7].

The electronic structure is calculated within density functional theory (DFT) using the PWscf
code of the Quantum ESPRESSO package [75, 76] with norm-conserving pseudopotentials and
a PBE-GGA functional [24]. The Brillouin-zone integration for the self-consistent calculation
of the charge density is carried out on a 2×2×1 k-point grid and with a Gaussian smearing of
0.01 Ry. This smearing is necessary to reach convergence due to the existence of defect states
at the Fermi level. The plane wave cut-off energy is set to 30 Ry in all calculations. All the
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Figure 4.2: Snapshots of the c-Si/a-Si:H interface in the simulation box. The structure consists of a
crystalline part with 192 Si atoms, an amorphous part with 128 Si and 16 H atoms, and a
vacuum layer of about 10 Å, in a super cell with periodic boundary conditions. H atoms
and bonds with Si atoms are blue, Si atoms and their bonds are dark yellow in the c-Si
part, and light yellow in the a-Si:H part. Bonds connecting the c-Si and the a-Si:H part
are red. Shown is the initial configuration (a), and the configuration after 25 ps (b) and
35 ps (c) of annealing at 300 K. Throughout the annealing the atoms at the interfaces
move closer together and form bonds between the c-Si and the a-Si:H part. [7]
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Figure 4.3: Convergence behavior of the total energy per electron w.r.t. the plane-wave cut-off Ecut

(left) and the number of k-points in the first Brillouin zone (right). W.r.t Ecut, the
total energy converges exponentially, as indicated by the dashed line, which represents
an exponential fit of the data points. The extrapolation to Ecut → ∞ is used as the
reference energy. At 30 Ry the system is converged to this energy within 1 meV per
electron (indicated by the horizontal line). For the k-point convergence, the energy for
the largest tested grid is used as reference. Convergence is assumed if the total energy
per electron differs by less than 1 meV from the previous data point. This is the case for
four (2× 2× 1) points.

parameters were chosen by checking the convergence of the total energy of the system (Fig.
4.3). The non-self-consistent calculation of the electronic states is performed on a 4 × 4 × 1
k-point grid, which was found to yield a sufficiently accurate representation of the relevant
quantities, such as density of states (DOS), electron localization function, and spread. A
gaussian broadening of 50 meV is used for displaying the layer-resolved DOS.

4.3 Structural and electronic properties

This section describes the characterization of the atomic and electronic structure of the a-
Si:H/c-Si interface and the extraction of the band gaps and offsets from the microscopic struc-
ture. As an example we use the configuration obtained at the end of the 700 K annealing,
which was found to be the configuration with the lowest defect-state density.

4.3.1 Atomic structure

The atomic structure after annealing at 700 K is shown in Fig. 4.4(a). Despite the distortion
of the crystalline structure near the interface, which makes the transition from the crystalline
to the amorphous part less sharp, the two parts can still be easily distinguished. Moreover,
the p(2×1) character of the crystalline side of the interface is still recognizable due to the fact
that each atom on the crystalline side forms only one bond with the amorphous side.
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Figure 4.4: (a) Atomic structure in the simulation cell after 40 ps of annealing at 700 K. Si atoms are
beige, H atoms red. The crystalline side of the interface retained its p(2×1) character but
became increasingly disordered, smearing out the transition between c-Si and a-Si:H. (b)
Projection of the atomic positions onto the yz-plane. The color indicates the coordination
number according to the ELF criterion. All Si atoms (big dots) in the crystalline part
and at the interface (dashed line) are four-fold coordinated. Dangling bonds exist only at
the free a-Si:H surface. All H atoms (small dots) are bonded to exactly one Si atom. [7]

Whereas for the drawing of the bonds in Fig. 4.4(a) a simple cut-off radius was applied, a more
sophisticated analysis of the bonding using the method described in sec. 2.3.2 was performed in
Fig. 4.4(b), where the coordination numbers of all atoms in the configuration are visualized.
The plot shows that the interface is completely defect free, and that under-coordinated Si
atoms can be found only at the free surface of the a-Si:H layer. The analysis of the Si-H bonds
shows that all H atoms are bonded to exactly one Si atom, in agreement with the expectation
on physical grounds.

4.3.2 Density of states and band offsets

In order to calculate the band offsets at the interface we first need to obtain the valence and
conduction band edges for the two layers. This requires the choice of a definition for the gap
both in the a-Si:H layer, where a classical band gap does not exist, and in the c-Si layer, where
the crystalline band structure is distorted due to the symmetry breaking in z-direction.
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Figure 4.5: Partial density of states (PDOS) at the end of the 700 K simulation. Emob
g is determined

from the extended states (Sz > 26.1 Å) only (purple line), as described in sec. 2.3.5,

and Eg is determined from the states localized in the c-Si layer (〈z〉 < 13 Å, green line).
From the intersections of the PDOS with the threshold Dt (horizontal line), we obtain
Emob

g = 1.16 eV and Eg = 0.95 eV. The valence band offset is 0.13 eV and the conduction
band offset 0.08 eV, in qualitative agreement with experimental observations [91] and
hybrid DFT calculations [54].

A method suggested in the literature [54], where the local DOS is integrated over the crystalline
and amorphous layer, respectively, and is then used to extract the c-Si band gap and the Tauc
gap [58], was tested and was found to have two major drawbacks. First, due to the rather
low thickness of the layers, localized states decaying into the neighboring layer can strongly
affect the results for the gaps. Second, a Tauc fit works only if the DOS is sufficiently smooth,
which requires either a very high broadening, distorting the results, or an averaging over a
large number of configurations. Even then, the result was found to be highly sensitive to the
fitting ranges applied, as already discussed for bulk a-Si:H in the previous chapter.

Here we employ an alternative method that determines the offsets from the mobility gap, being
the more relevant quantity in the context of charge transport, and the band gap, both defined
via the partial density of states. This method allows for the determination of the gaps of an
individual configuration without the need for averaging, and it ensures that the value of Eg is
not affected by localized interface or a-Si:H states decaying into the c-Si layer.

The mobility gap Emob
g is determined via the spread according to the procedure described

in sec. 2.3.5, with the only difference that here we are interested in the mobility across the
interface, and therefore only the spread Sz in z-direction is considered. The threshold St for
separating extended and localized states depends on the extent of the structure, which may
vary, and therefore has to be defined individually for each configuration. This is done such
that 95% of the valence band states between 2 and 4 eV below the Fermi level (to exclude tail
and low lying localized states) exceed St, which in this case gives St = 26.1 Å. The resulting
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Figure 4.6: Determination of the c-Si band gap inside the crystalline layer. The points represent
the energy and spread of extended states (Sz > 26.1 Å) and states localized inside the

crystalline layer (〈z〉 < 13 Å). The partial DOS (PDOS) generated by these states is shown
by the green line. The orange line shows the local density of states (LDOS) integrated
over the third and fourth atomic layer. Both densities are normalized. The green and
orange vertical (dashed) lines indicate the band edges obtained from the intersections of
the respective DOS with the threshold Dt (horizontal line). The blue vertical (dashed)
lines indicate the highest occupied and lowest unoccupied state in the c-Si layer.

density of extended states is shown in Fig. 4.5.

The band gap Eg of the crystalline part of the structure is determined the same way, but
including in the partial density of states (PDOS) also states localized inside the c-Si layer,
defined by 〈z〉 < 13 Å, where 〈z〉 is the mean position of the electron. The resulting PDOS
is shown in Fig. 4.5. In order to compare this definition of the band gap with other possible
definitions, Fig. 4.6 shows the PDOS together with the relevant states and with the local DOS
(LDOS) integrated over the third and fourth atomic layer, i.e., far away from the interface.
Both densities are very similar for the valence states, giving the same valence band edge. For
the conduction states, however, the LDOS is slightly higher, resulting in a lower conduction
band edge. This is due to interface states extending far into the crystalline part (cf. Fig. 4.7),
which is a problem of the small thickness of the c-Si layer. The exclusion of interface states
tries to minimize this effect, but depends on the correct classification of states. Using the
PDOS instead of simply taking the energy difference between the lowest unoccupied and the
highest occupied c-Si state reduces the sensitivity of the band gap to wrong classifications and
small changes in the electronic structure, while giving a slightly higher value (∼ 0.1 eV) for
Eg.

From Fig. 4.5 the c-Si band gap is found to be Eg = 0.95 eV, and the a-Si:H mobility gap
to be Emob

g = 1.16 eV. The valence band offset is ∆Ev = 0.13 eV and the conduction band
offset ∆Ec = 0.08 eV. The values for both gaps are higher than the bulk values obtained in
GGA-DFT calculations, which are about 0.6 eV in c-Si [52], and between 0.8 and 1.1 eV in
a-Si:H, as reported in the previous chapter. They however underestimate the experimental
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Figure 4.7: Local DOS integrated over layers parallel to the interface at the end of the 700 K sim-
ulation. The vertical dashed line marks the approximate position of the interface, the
horizontal lines indicate the band edges. Localized states inside the mobility gap can be
seen in the a-Si:H layer and near the interface, partially extending also into the c-Si layer,
in particular close to the conduction band edge. At the left end the gap slightly widens
due to the H-passivation of the back surface.

values, which are 1.1 eV for c-Si [92] and about 1.9 eV for a-Si:H [57, 59]. The discrepancy is
higher for Emob

g , which also results in an underestimation of the band offsets. Nevertheless,
the finding that ∆Ev is larger than ∆Ec is in agreement with experiments, reporting valence
band offsets between 0.27 and 0.40 eV [91, 93, 94] and conduction band offsets between 0.15
and 0.28 eV [91, 95], and with recent hybrid DFT calculations, finding ∆Ev = 0.29 eV and
∆Ec = 0.17 eV [54]. It must however be noted that the band offsets and their difference are
of the same order of magnitude as the uncertainty in determining the band and mobility gap,
which is approximated to ∼ 0.1 eV. This makes the qualitative and quantitative comparison
of the values with the experiment, but also with other calculations having probably similar
error margins, very difficult.

In Fig. 4.7 the band edges and offsets are shown together with the layer-resolved DOS, which
is obtained by integrating the local DOS over layers parallel to the interface. Left from the
interface (represented by a vertical line), for 5 Å 6 z 6 12 Å, the DOS shows an approximately
uniform crystalline behavior with a defined band gap. However, close to the conduction band
edge there are states decaying into the c-Si layer, which explains the difference between the
integrated LDOS and the PDOS that we noted before. As opposed to that, the gap near the
valence band edge is completely free of states. In the vicinity of the interface, states start
emerging also deep inside the gap. These localized states partially fill the mobility gap in
the a-Si:H layer, giving a distinctly different picture of the DOS than in the c-Si layer. Also
below the valence band edge the DOS is significantly increase as compared to the c-Si part,
suggesting that there exists confinement also in the valence band. The widening of the gap at
z < 5 Å is an artifact of the H-passivation of the back surface.
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4.3.3 Localized states

The existence, position, both energetical and spatial, and origin of localized states in the
a-Si:H/c-Si interface is highly relevant in the context of photovoltaics due to their role in
transport and as recombination centers. For a better understanding of their contribution to
the electronic structure we analyze all states with a spread Sz < 26 Å in terms of their energy,
the z-component of their mean position 〈z〉, and their spread Sz, which are plotted in Fig. 4.8.
From this representation we see that localized and semi-localized states exist in all parts of the
structure, but do not necessarily affect transport or recombination as they have energies far
outside the gap. Localized gap states exist mainly inside the a-Si:H layer, but also close to the
interface, where they lie energetically below the conduction band edge, supporting our previous
findings. Also the existence of confined valence states both in the c-Si and the a-Si:H layer
can be seen here. By closer inspection of individual states, different species of localized and
semi-localized states can be distinguished, which are exemplarily labeled A to G and drawn
in Fig. 4.8(b). More precisely, the figure shows for each wave function ψ the distribution of
the probability density |ψ|2 integrated over x and y along the z axis. In the following, these
states shall be discussed one by one.

State A is an H-atom induced surface state. The wave function is strongly localized at the
crystalline surface. The H-passivation of the surface atoms moves the surface states out of the
gap and deep into the valence band, such that they do not affect the electronic structure near
the Fermi level. State B is localized in the crystalline part and lies energetically right below
the c-Si valence band edge. As it however lies inside the a-Si:H mobility gap, it can not extend
into the a-Si:H and is therefore confined to the c-Si. The period length of the maxima and
minima of the probability density ρ is double that of the crystal lattice, meaning that ρ has
alternating maxima and minima at the atomic layers. The same can be seen in C, where the
maxima and minima are however shifted by one atomic layer as compared to B. This leads to a
small shift in energy, pushing the state below the mobility edge, and thus allowing it to extend
into the a-Si:H and significantly increasing the spread. State D lies inside the valence band and
is weakly localized right at the interface (vertical line). The wave function is rather delocalized
over the whole structure but has peaks close to the interface. This could be a resonance effect
due to the shape of the potential: in Fig. 4.9 it can be seen that the Kohn-Sham potential,
averaged over the xy-plane, has a barrier at the interface. This barrier occurs due to the initial
condition of a reconstructed surface, which leads to a reduced atomic density at the interface
(cf. Fig. 4.4(a)). Even though the barrier is not high enough to induce confinement at energies
higher than about −8.2 eV, it nevertheless does affect the electronic structure near the Fermi
level. Another form of interface effects are intrinsic interface states, which, unlike interface
resonances, have energies lying inside the gap, and are therefore, very much like dangling bond
states, exponentially localized. Examples of these are the states E and F, which lie both deep
inside the mobility gap, and have peaks at the interface, decaying roughly exponentially into
both the c-Si and the a-Si:H layer. Since it was shown before that there are no dangling bonds
at the interface (cf. Fig. 4.4(b)), these states are most probably intrinsic interface states.
This means that even in the total absence of defects, localized states that can act as traps for
non-radiative recombination can exist, only due to the symmetry breaking at the interface.
Dangling bond states like G, which can clearly be associated with under-coordinated atoms,
can be found only near the free a-Si:H surface. These states are strongly localized and lie deep
inside the mobility gap. State H represents an extended state, which is delocalized over the
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Figure 4.8: (a) Energy and localization of states with Sz < 26 Å at the end of the 700 K simulation.
Each dot marks the energy and the z-position of the center of one wave function, whereas
the color represents its spread. The vertical dashed line marks the approximate position
of the interface, the horizontal lines indicate the band edges. Different types of states can
be distinguished, which are exemplarily labeled and drawn in Fig. 4.8(b). (b) Probability
density along the z-direction integrated over the xy-plane for selected states indicated in
Fig. 4.8(a). A: Surface state induced by H passivation. B: Confined c-Si state. C: c-Si
state extending into amorphous part. D: Interface resonance. E and F: Intrinsic interface
states. G: Dangling bond state. H: Delocalized state (not indicated in Fig. 4.8(a)). [7]
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Figure 4.9: Kohn-Sham potential w.r.t. the Fermi level averaged over the xy-plane at the end of the
700 K simulation. The periodicity of the crystalline structure is clearly visible and vanishes
only close to the interface (indicated by the vertical dashed line), where a potential barrier
forms 8.2 eV below the Fermi level. The height of the barrier w.r.t. the average potential
in the c-Si layer is 7.8 eV, indicated by the horizontal dashed lines. The barrier does
not only cause confinement at low energies, but can also lead to interface resonances at
energies above the barrier (cf. Fig. 4.8). [7]

whole structure. It does not appear in Fig. 4.8(a) because it cannot be assigned a position.
The wave function consists of a c-Si part, showing the same periodicity as state C, and an
a-Si:H part with almost homogeneous distribution. The minimum at the interface is due to
the potential barrier.

4.4 Evolution upon high-temperature annealing

After introducing the relevant quantities characterizing the a-Si:H/c-Si interface structure on
the example of a single configuration, we will now investigate how these quantities evolve upon
the high-temperature annealing. This analysis will help to understand what happens to the
defects in the annealing process, which role the hydrogen plays for the evolution of the defect
density, and what is the effect on the electronic structure, in particular with respect to the
band gaps and the gap states.

4.4.1 Structural evolution

In order to visualize the changes that the atomic structure undergoes throughout the generation
and annealing process, the atomic positions (projected on the yz-plane) and coordination
numbers are shown at different time steps in Fig. 4.10, namely for the initial configuration,
after thermalization, i.e., before starting the high-temperature annealing, and at the end of
each annealing step, i.e., at 300 K, 500 K, 700 K, and 900 K, respectively. In the initial state,
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Figure 4.10: Atomic structure at different stages of the annealing process (initial configuration, prior
to annealing, and after annealing at 300 K, 500 K, 700 K, and 900 K). The points
represent projections of the atomic positions onto the yz-plane, where the color indicates
the coordination number according to the ELF criterion. The dashed line marks the
approximate position of the interface. During the thermalization prior to annealing the
a-Si:H layer moves closer to the c-Si layer and new bonds form between the two layers,
but the a-Si:H side of the interface remains highly defective. After annealing at 300 K
the number of dangling bonds is already significantly decreased and keeps decreasing
throughout the annealing, while at the same time the c-Si side of the interface becomes
increasingly disordered. At 700 K defects exist only at the a-Si:H surface, and hydrogen
starts accumulating there. Annealing at 900 K yields no further improvement.
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the two layers of the interface are only weakly connected, meaning that not all the atoms at
the c-Si surface are bonded to the a-Si:H layer. In addition, the a-Si:H layer is highly defective.
During the thermalization prior to annealing the a-Si:H layer moves closer to the c-Si layer and
new bonds form between the two layers, but the number of defects does not change notably.
After annealing at 300 K the number of dangling bonds is significantly decreased, particularly
near the interface. At 500 K the interface region is completely defect free and the number
of dangling bonds is further decreasing. At 700 K defects exist only at the a-Si:H surface.
Annealing at 900 K does not further reduce the amount of defects. Whereas the a-Si:H layer
becomes more ordered (in the sense of less defective) throughout the annealing, the c-Si side
actually loses its perfect crystalline order near the interface, blurring the transition between
crystalline and amorphous part. As for the role of the hydrogen, the figure shows that the
initially distributed H atoms in the a-Si:H layer accumulate at the free a-Si:H surface, whereas
only one H atom is found at the interface at the end of the annealing.

The qualitative results from Fig. 4.10 concerning the defect structure are quantified in Fig.
4.11, where the behavior of dangling bonds upon annealing is shown as a function of time. Fig.
4.11(a) shows how the number of dangling bonds per atom, averaged over the whole structure,
evolves. Thereby, the number of dangling bonds for each atom is defined as four minus the
coordination number of that atom. In Fig. 4.11(b) the same is shown for different parts of
the configuration: the interface region, defined as all atoms within a layer zi± 2.8 Å, where zi

is the approximate position of the interface, the a-Si:H surface region, defined as all atoms at
z ≥ Lz − 2.8 Å, where Lz is the length of the configuration, and the bulk a-Si:H, defined as
all atoms between the interface and the surface region. Fig. 4.11(c) shows how the center of
mass 〈z〉 of all dangling bonds moves along the z-direction.

In order to obtain a smooth measure for the length Lz that does not react too sensitively
to the fast movement of the surface atoms, we use a statistical definition. The a-Si:H layer
has a thickness d and is centered at z0, and the Si atoms are approximately homogeneously
distributed, such that the atomic density % is constant over d. With this model assumption,
the standard deviation of the atomic density in z-direction would be σ% = d/

√
12, from which

follows d =
√

12σ%. The length of the structure is equal to the distance between the c-Si
surface, which is held fixed at z = 0, and the a-Si:H surface, which is at z = z0 + d/2. We
therefore obtain

Lz = z0 +
√

3σ% , (4.1)

which means that we can relate the length of the structure to the center of mass and the
standard deviation of the Si atoms in the a-Si:H layer. Calculating these as

z0 =
1

N

∑
I

zI (4.2)

and

σ% =

√
1

N

∑
I

(zI − z0)2 , (4.3)

where the sum runs over all N Si atoms in the a-Si:H layer, and using the values in (4.1),
gives us a measure for the length Lz. The behavior of Lz as a function of time and annealing
temperature is shown in Fig. 4.12.
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Figure 4.11: Evolution of dangling bonds upon annealing at different temperatures (indicated by
vertical lines). (a) Number of dangling bonds per atom averaged over the whole structure.
The filled curve represents the standard deviation of the average. (b) Number of dangling
bonds per atom averaged over the interface region, the free surface region, and the rest
of the a-Si:H layer. (c) Mean position 〈z〉 of dangling bonds in z-direction. The filled

curve represents the standard deviation of 〈z〉. A value of 〈z〉 ≈ 21 Å means that the

center of mass is roughly in the center of the a-Si:H layer, whereas a value of 27 Å means
that the dangling bonds are located near the surface. Most of the defect healing during
the first annealing step occurs in the first few ps. This is accompanied by a migration
of defects towards the free surface, leaving the interface and the bulk region essentially
defect free. The high-temperature annealing reduces the defect density only very slowly.
[7]
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Figure 4.12: Total length of the structure as a function of time, both instantaneous (green) and time
averaged (purple). The vertical lines indicate the times at which the annealing tempera-
ture was changed. Within the first few ps the structure expands rapidly, before reaching
equilibrium length. During the rest of the annealing, the structure slowly expands by
0.2 Å on average, accompanied by thermal fluctuations. [7]

Fig. 4.11 shows that the largest contribution to the defect healing actually occurs within
the first few picoseconds of annealing at 300 K, where a sudden and significant drop of the
dangling bond density is observed. At the end of this, dangling bonds at the interface and in
the bulk region have vanished almost completely, leaving the surface atoms as the main source
of defects. This shows as a sudden shift of 〈z〉 toward the surface region above 25 Å. During the
rest of the high-temperature annealing the number of dangling bonds still decreases, however
only very slowly, by a total of about 25%.

Another important question concerns the role of the hydrogen in the interface configuration.
From what we can see in Fig. 4.10 there is no accumulation of hydrogen at the interface.
Nevertheless, the interface is completely defect free. This means that the healing of defects
is mostly driven by reorganization of the Si atoms, and not by H-passivation. At the a-
Si:H surface on the other hand, where dangling bonds cannot completely be eliminated, H-
passivation does plays an important role. In fact, when looking at the average hydrogen
movement along the z-direction (Fig. 4.13), we see that during the high-temperature annealing
the H atoms are moving towards the surface. The jumps of the center of mass 〈z〉 are thereby
mostly due to hydrogen atoms hopping from one Si atom to another, i.e., one Si-H bond
breaking and a new one forming. The movement happens at a very high average speed of
∼ 0.01 Å/ps, which can not be explained as a hydrogen-gradient driven diffusion, as the
estimated diffusion speed vdiff ∼ D/Lz is only of the order of 10−7 Å/ps at 900 K, assuming
a diffusion coefficient D ∼ 10−14 m2/s [96]. Instead, the hydrogen movement appears to be
following the movement of the dangling bonds displayed in Fig. 4.11(c).
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Figure 4.13: Center of mass 〈z〉 of H atoms in the amorphous layer along the z-direction as a function
of time at different annealing temperatures (indicated by vertical lines). Shown is the
instantaneous (purple line) and the time-averaged position (blue line). The filled curve
represents the standard deviation of the time average. The H atoms move rapidly towards
the surface, where the jumps in 〈z〉 are mostly due to H atoms hopping from one Si atom
to another. The speed of the movement is multiple orders of magnitude higher than the
expected thermal diffusion speed. Instead, the movement can be explained as a reaction
to the movement of the defects (see Fig. 4.11). [7]

4.4.2 Evolution of electronic properties

In order to understand how the changes in the atomic structure upon annealing affect the
electronic structure, we compare the DOS at different stages of the annealing process, both in
the crystalline and in the amorphous part (Fig. 4.14). Additionally, the evolution of localized
states, which are largely responsible for changes in the DOS around the gap, is displayed in
Fig. 4.15. Before the annealing, the gap is completely filled with states, which are, due to
the high density of dangling bonds both in the amorphous part and at the interface, spread
out over the whole a-Si:H layer, and also extend into the c-Si layer, giving rise to a metallic
DOS in both layers. This changes upon annealing at 300 K, when the interface becomes defect
free and the number of gap states decreases significantly. The remaining gap states become
localized inside the a-Si:H, such that in the crystalline layer the band gap is almost free of
states, whereas in the amorphous layer the mobility gap is still filled. Only after increasing
the temperature, the gap states become sparse enough such that a real gap opens. The lowest
defect state density is reached at the end of the 700 K simulation, where only a small number
of mid-gap states remains, which are mostly associated with surface atoms. On the other
hand, with increasing time and temperature, a growing number of localized states forms in the
interface region, which is supposedly due to the increasing disorder of the crystalline structure
near the interface. These states are observed mostly at the top of the gap, and lead to an
increase of the crystalline DOS near the conduction band edge, which gradually narrows the
c-Si band gap and smears out the band edge. As opposed to that, the electronic structure
near the valence band edge remains much more stable throughout the annealing.
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Figure 4.14: DOS integrated over the crystalline (top) and the amorphous layer (bottom), before
annealing and at the end of each temperature step. The gap states in the crystalline
DOS appear due to initial defects at the interface and vanish after annealing. However,
states near the band edges, in particular the conduction band edge, form due to the
increasing disorder of the crystalline structure near the interface. The density of gap
states in the amorphous layer, arising from dangling bonds, is reduced to almost zero by
the high-temperature annealing. [7]
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Figure 4.15: Representation of localized states with Sz < 26 Å at different stages of the annealing
process (initial configuration, prior to annealing, and after annealing at 300 K, 500 K,
700 K, and 900 K). Each dot marks the energy and the z-position of the center of
one wave function, while the color represents its spread Sz. The vertical dashed line
marks the approximate position of the interface, the horizontal lines indicate the band
edges. In the initial configuration the effect of the weak connection between the two
layers is clearly visible from the high amount of confined valence states on both sides,
which decreases after thermalization. Before annealing, the mobility gap is completely
filled with localized states in the a-Si:H layer. Upon annealing, the number of gap states
decreases strongly. The c-Si band gap is slowly narrowing due to an increasing formation
of states at the bottom of the conduction band near the interface. The valence states do
not change much, on the other hand.
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Figure 4.16: Band gap of the c-Si layer and mobility gap (according to the definition in sec. 4.3.2) as
a function of time at different annealing temperatures (indicated by vertical lines). The
c-Si gap decreases in time due to the increasing disorder of the crystalline structure close
to the interface. The mobility gap shows large fluctuations, but decreases only slightly
on average. These trends are visualized through the dashed arrows.

The effect of the changes in the DOS on the band and mobility gap, as defined in sec. 4.3.2, can
be seen in Fig. 4.16. The c-Si band gap decreases significantly on average, by about 0.15 eV,
probably due to the increasing disorder of the crystalline structure near the interface. Even
though the method chosen to determine the band gap disregards states directly localized at the
interface, the c-Si layer is too thin to eliminate interface effects completely. The mobility gap
also decreases on average, but only insignificantly, by about 0.05 eV. This might be related to
the expansion of the a-Si:H (cf. Fig. 4.12), but could also be a statistical artifact. The values
of both gaps fluctuate because of their sensitive dependence on changes in the PDOS. This
sensitivity is the stronger the flatter the PDOS is at the band edges. As the PDOS of extended
states, defining the mobility gap, is in general flatter and also subject to bigger changes than
the PDOS of crystalline states, defining the c-Si band gap, the fluctuations in the mobility
gap are larger. All fluctuations lie however within a range of ±0.1 eV, which is the assumed
approximate error in determining the gaps.

Due to the particular importance of interface states, we shall back up the previously made
qualitative observations about these states with a systematic analysis. For that purpose, we
define interface states as all localized states with a mean position 13 Å ≤ 〈z〉 ≤ 19 Å and an
energy within the mobility gap. Two things should thereby be noted. (a) This is obviously not
a strict definition of an interface state, as the interface does not have sharp boundaries and
the mean position is subject to a large uncertainty. However, despite some inevitably wrongly
classified states, it should be able to show some general trends. (b) We do not distinguish
here between intrinsic and extrinsic, i.e., defect or disorder induced interface states. Interface
resonances on the other hand, i.e., states localized at the interface with energies outside the gap,
are disregarded, as they do not play a role in surface recombination. With the given definition,
we investigate how the number and energy of both occupied and unoccupied interface states
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Figure 4.17: Evolution of interface states upon annealing at different temperatures (indicated by
vertical lines). The points indicate the energies of the highest occupied and the lowest
unoccupied interface state, respectively, while the filled curves show the total number
of occupied and unoccupied interface states, respectively. The grey lines represent the
mobility edges. Despite large fluctuations, the number of interface states below the
conduction band edge is clearly growing, while their energies are descending into the
gap. Near the valence band edge, only few interface states form, and no trend is visible.

changes upon annealing, where the energy is represented by the energy of the highest occupied
and the lowest unoccupied state, respectively. This is shown in Fig. 4.17. Even though there
are large fluctuations, the figure clearly shows that the number of unoccupied interface states
is increasing upon annealing, whereas the number of occupied interface states is small and
remains unaffected by annealing. This confirms our previous observation that interface states
form mostly near the conduction band edge, which is possibly related to the chosen interface
geometry. In fact, it has been shown in previous calculations that the generation conditions,
such as orientation and structure of the c-Si surface, affect the position of extrinsic interface
states [90]. In addition to the increasing number of unoccupied interface states, the figure also
shows that, starting from 500 K, the low-lying states move from the conduction band edge
deeper into the gap. As opposed to that, occupied interface states exist, if at all, only right
above the valence band edge. The deep states appearing at the beginning of the annealing are
induced by dangling bonds, which disappear after annealing at 300 K. As stated before, the
increase in the number of gap states can probably be attributed to the increasing disorder at
the interface, giving rise to tail states, i.e., states with energies close to the mobility edges,
which can also be observed in Fig. 4.15. The reason for the energy shift of deep interface
states, which are presumably of intrinsic nature, remains however unclear. Whereas tail states
do not contribute significantly to recombination, the latter effect could actually lead to an
increase of recombination at the interface upon annealing at temperatures higher than 300
K.
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4.5 Effect of surface passivation

By performing an annealing at 700 K we obtained a defect-free interface and bulk region, and
could reduce the total defect density to 0.04 dangling bonds per atom. From an experimental
point of view, however, this defect density is still multiple orders of magnitude too high.
Besides, even though the defects are located only at the surface, they still affect the electronic
structure at the interface, due to the thin layer thickness. This raises the question if the
quality of our model structure could be further improved by passivating the remaining dangling
bonds at the surface with additional hydrogen atoms, and how this would affect the electronic
properties.

For that purpose we analyzed a configuration where an extra ten H atoms were added at
the free a-Si:H surface, increasing the hydrogen concentration from 11% to 17%, and which
was then annealed at 1100 K. The results of this analysis are summarized in Fig. 4.18. The
representation of the atomic structure (Fig. 4.18(a)) shows that the added H atoms remain at
the surface instead of moving into the bulk, meaning that, together with the already present H
atoms, about 70% of the hydrogen is accumulated in the surface region. Each of these atoms is
bonded to exactly one Si atom, with the result that all but four dangling bonds are passivated,
further reducing the defect density by 71%. Except from that, the only effect on the atomic
structure is a slight expansion by about 0.9%. The effects on the electronic structure can be
seen in Fig. 4.18(b). The passivation of the dangling bonds removed most localized states in
the amorphous part from the mobility gap. The few remaining states near the surface can
be related to the remaining dangling bonds. Apart from these, gap states are only found in
the interface region, below the conduction band edge. As expected, these interface states are
unaffected by the passivation. Besides the reduction of gap states, which was the purpose of
the surface passivation, we also observe a significant widening of the mobility gap. This is
probably a result of the H atoms shifting states away from the Fermi level, and is therefore a
direct effect of the increased hydrogen concentration, which has been observed in a-Si:H both
experimentally and computationally [56, 68]. This is somewhat problematic since the goal is
to obtain macroscopic properties of the a-Si:H/c-Si interface under experimental conditions,
where the hydrogen concentration is lower. A thicker a-Si:H layer, in combination with surface
passivation, would therefore be a better, however computationally more expensive, approach
to eliminate surface effects, since this would reduce the influence of the surface on the interface
region, while at the same time the passivation would have less impact on the overall hydrogen
concentration.

4.6 Conclusions

We used model configurations of an a-Si:H/c-Si interface consisting of a c-Si layer of 192 Si
atoms, and an a-Si:H layer of 128 Si and 16 H atoms, to analyze the structural and electronic
properties of a silicon heterojunction from first principles. For that purpose, multiple different
configurations representing the interface at different stages of a high-temperature annealing
were chosen, for which the electronic structure was calculated on the DFT level and was
subsequently analyzed.
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Figure 4.18: Atomic and electronic structure of the passivated configuration. (a) Projection of the
positions of Si (large dots) and H (small dots) atoms onto the yz-plane. The color
indicates the coordination number according to the ELF criterion. The dashed line
marks the approximate position of the interface. The additional H atoms remain at the
surface, where they form bonds with the under-coordinated surface atoms, resulting in a
configuration that is almost completely defect free. (b) Energy and localization of states

with Sz < 26 Å. Each dot marks the energy and the z-position of the center of one wave
function, whereas the color represents its spread. The horizontal lines indicate the band
edges. The passivation of the dangling bonds at the surface moves almost all states out
of the mobility gap, and additionally widens the gap. Interface states, on the other hand,
remain present.
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We found that, in order to obtain an interface configuration that can potentially yield macro-
scopic properties that are comparable to the experiment, a high-temperature annealing is
indispensable. Even though the defect density is relatively low already with 300 K, a satisfac-
tory low density of gap states is achieved only with 700 K. By increasing the temperature to
900 K, no further improvement in the atomic or electronic structure could be gained. During
the annealing process we observed that there is no concentration of defects at the interface.
In fact both the interface region and the bulk a-Si:H are essentially defect free. Surprisingly,
hydrogen passivation at the interface does not seem play a significant role. On the contrary,
there is actually a fast hydrogen movement towards the surface that seems to follow the defect
concentration.

As a first step toward the ab initio description of transport and recombination in the hetero-
junction solar cell, we characterized the electronic states according to their energy, localization,
and position, and, based on this characterization, extracted the band gap Eg in the c-Si layer
and the mobility gap Emob

g in the a-Si:H layer, as well as the band offsets ∆Ev/c. For the
configuration at the end of the 700 K annealing, which was found to be most promising in
terms of a low concentration of defects and gap states, we obtained values of Eg = 0.95 eV,
Emob

g = 1.16 eV, ∆Ev = 0.13 eV, and ∆Ec = 0.08 eV, which are in qualitative agreement
with experiments and previous calculations. We thereby, however, faced the problem that the
relatively high uncertainty of ∼ 0.1 eV in determining the gaps makes it very difficult to get
reliable offsets.

The characterization of the electronic states also revealed the existence of strongly localized
gap states close to the interface, which cannot be related to dangling bonds and therefore seem
to be of intrinsic nature. Both intrinsic and extrinsic, i.e., disorder induced, interface states
are found almost exclusively in the upper part of the mobility gap. This could be a result of
the generation conditions of the a-Si:H/c-Si structure, in particular of the orientation of the
c-Si surface. Also the use of a reconstructed surface could play a role, giving rise to a potential
barrier at the interface, which could also affect the existence and energy of interface states. It
would therefore be interesting and important to compare these results with other structures,
employing a different c-Si surface.

The effect of the annealing on the interface states was found to be an increase of the number
of unoccupied states with a simultaneous lowering of their energies deeper into the gap. This
seems to be a result of the increasing disorder of the crystalline structure near the interface,
which also causes a narrowing of the band gap, suggesting that a longer annealing at temper-
atures higher than 700 K might actually lower the quality of the structure again, and lead to
a higher density of gap states.

Finally, we analyzed a configuration where the majority of the dangling bonds were passivated
with additional H atoms, leading to a very low number of gap states, comparable to the 576-
atom bulk a-Si:H configuration analyzed in the previous chapter. Additionally, however, the
increased hydrogen concentration also leads to a larger mobility gap, which is an unwanted
side effect that can only be eliminated by using thicker a-Si:H layers.

Larger model structures would be desirable as they would reduce the impact of surface effects
on the interface region, and the impact of the interface region on the crystalline layer, in
particular on the band gap.
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This work is a first step on the way to a full ab-initio description of the silicon heterojunction
solar cell. However, in order to obtain quantitatively accurate results, methods beyond DFT
will have to be applied. Additionally, larger model structures will be needed to reduce the
impact of surface effects on the interface region, and the impact of the interface region on the
crystalline layer, in particular on the band gap. They would furthermore allow for a more
accurate determination of the macroscopic properties by reducing the sensitivity to small
changes in the atomic and electronic structure. Also, the generation parameters must be
tested and chosen to most closely reproduce the experimental situation. For example, the
choice of an unreconstructed or H-passivated crystalline surface as a starting point for the
generation of the interface would change the potential and might give rise to different types of
states at the interface.
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5 Conclusions

The goal of this thesis was to provide a fully ab initio based description of the a-Si:H/c-Si in-
terface, with a focus on the extraction of microscopic information and macroscopic parameters
relevant for the application in photovoltaics, in particular in the silicon-heterojunction (SHJ)
solar cell.

For that purpose we analyzed in a first step model structures of bulk a-Si:H, and in a second
step model structures of a-Si:H/c-Si interfaces, with respect to their ability to reproduce the
real experimental properties of these materials. It was found that only configurations that
are free of (bulk) defects, which is achieved via a high-temperature annealing, are suitable for
material modeling, as already few defects result in an unphysically high gap-state density.

After identifying suitable structures, we used a combination of new and existing methods to
convert the raw electronic structure, obtained from density-functional-theory (DFT) calcu-
lations, into micro- and macroscopic properties characterizing the structural, electronic, and
optical properties of these structures. In particular, in view of the application in photovoltaics,
we calculated the absorption spectrum and the optical gap for a-Si:H, characterized the lo-
calized states in the a-Si:H/c-Si interface with respect to their energy, position, and origin,
and suggested a way of extracting the mobility gap in a-Si:H, which was then applied to the
interface in order to obtain the band offsets.

Even though the calculated densities of states and absorption spectra qualitatively resembled
the experimental situation, the values of band, optical, and mobility gaps were consequently
underestimated by our calculations. This problem could be partially attributed to quasiparticle
effects and solved by G0W0 calculations, but partially also to finite-size effects, caused by the
finite dimensions of the super cells, and, in case of the a-Si:H/c-Si structure, also by the
presence of the interface and the surface. This error can be reduced only by enlarging the
super cells, as we could observe by comparing different structure sizes. An additional error
source arises from the ambiguity in the definition of the optical and the mobility gap, giving
rise to an uncertainty that exceeds the necessary accuracy for determining reliable values for
the band offsets. This uncertainty could, however, also be reduced by increasing the super-cell
size.

Even though the exact quantification of the observed finite-size effects is difficult, we can state
that, in order to obtain accurate gap values and defect densities, larger model structures will
be needed, which could be realized with new electronic structure methods, such as linear-
scaling DFT [97]. Also the effect of quasiparticle corrections could not be studied to its
full extent within this thesis, due to the high computational costs of a fully self-consistent
GW calculation that includes also the corrections to the wave functions. This should be
further investigated, as it could have an additional impact both on the size of the gap and on
localization. Meanwhile, the next step towards a comprehensive multiscale simulation of the
SHJ will be the inclusion of electron-phonon interaction into the microscopic picture, which
will allow for the calculation of the non-radiative capture cross sections for states that were
identified as relevant for Shockley-Read-Hall recombination. The microscopic information on
the states contributing to transport and recombination can then be integrated in a mesoscopic
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model for the charge carrier dynamics, in order to obtain recombination rates and mobilities,
which can finally be used as parameters in macroscopic device simulations.
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