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Abstract

Efficient algorithms for the numerical solution of partial differential equations

are required to solve problems on an economically viable timescale. In general,

this is achieved by adapting the resolution of the discretization to the inves-

tigated problem, as well as exploiting hardware specifications. For the latter

category, parallelization plays a major role for modern multi-core and multi-

node architectures, especially in the context of high-performance computing.

Using finite element methods, solutions are approximated by discretizing

the function space of the problem with piecewise polynomials. With hp-

adaptive methods, the polynomial degrees of these basis functions may vary on

locally refined meshes.

We present algorithms and data structures required for generic hp-adaptive

finite element software applicable for both continuous and discontinuous

Galerkin methods on distributed memory systems. Both function space and

mesh may be adapted dynamically during the solution process.

We cover details concerning the unique enumeration of degrees of freedom

with continuous Galerkin methods, the communication of variable size data,

and load balancing. Furthermore, we present strategies to determine the type

of adaptation based on error estimation and prediction as well as smoothness

estimation via the decay rate of coefficients of Fourier and Legendre series

expansions. Both refinement and coarsening are considered.

A reference implementation in the open-source library deal.II1 is provided

and applied to the Laplace problem on a domain with a reentrant corner which

invokes a singularity. With this example, we demonstrate the benefits of the

hp-adaptive methods in terms of error convergence and show that our algorithm

scales up to 49,152 MPI processes.

1https://www.dealii.org
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Zusammenfassung

Für die numerische Lösung partieller Differentialgleichungen sind effiziente Al-

gorithmen erforderlich, um Probleme auf einer wirtschaftlich tragbaren Zeits-

kala zu lösen. Im Allgemeinen ist dies durch die Anpassung der Diskretisie-

rungsauflösung an das untersuchte Problem sowie durch die Ausnutzung der

Hardwarespezifikationen möglich. Für die letztere Kategorie spielt die Paralleli-

sierung eine große Rolle für moderne Mehrkern- und Mehrknotenarchitekturen,

insbesondere im Kontext des Hochleistungsrechnens.

Mit Hilfe von Finite-Elemente-Methoden werden Lösungen durch Diskreti-

sierung des assoziierten Funktionsraums mit stückweisen Polynomen approxi-

miert. Bei hp-adaptiven Verfahren können die Polynomgrade dieser Basisfunk-

tionen auf lokal verfeinerten Gittern variieren.

In dieser Dissertation werden Algorithmen und Datenstrukturen vorgestellt,

die für generische hp-adaptive Finite-Elemente-Software benötigt werden und

sowohl für kontinuierliche als auch diskontinuierliche Galerkin-Verfahren auf

Systemen mit verteiltem Speicher anwendbar sind. Sowohl der Funktionsraum

als auch das Gitter können während des Lösungsprozesses dynamisch angepasst

werden.

Im Besonderen erläutert werden die eindeutige Nummerierung von Frei-

heitsgraden mit kontinuierlichen Galerkin-Verfahren, die Kommunikation von

Daten variabler Größe und die Lastenverteilung. Außerdem werden Strategien

zur Bestimmung des Adaptierungstyps auf der Grundlage von Fehlerschätzun-

gen und -prognosen sowie Glattheitsschätzungen vorgestellt, die über die Zer-

fallsrate von Koeffizienten aus Reihenentwicklungen nach Fourier und Legend-

re bestimmt werden. Dabei werden sowohl Verfeinerung als auch Vergröberung

berücksichtigt.

Eine Referenzimplementierung erfolgt in der Open-Source-Bibliothek

deal.II1 und wird auf das Laplace-Problem auf einem Gebiet mit einer ein-

schneidenden Ecke angewandt, die eine Singularität aufweist. Anhand dieses

Beispiels werden die Vorteile der hp-adaptiven Methoden hinsichtlich der Feh-

lerkonvergenz und die Skalierbarkeit der präsentierten Algorithmen auf bis zu

49.152 MPI-Prozessen demonstriert.

1https://www.dealii.org
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Chapter 1

Introduction

For the analysis of most problems in science and engineering, mathematical

modeling is required to capture underlying correlations and apply findings to

related variations. With rising complexity of the model, an analytical solution

of a problem so described is less likely to exist, and can only be acquired via

approximation with numerical methods. Computers are used today to solve

these kinds of problems numerically, but depending on the complexity of the

problem and the computer hardware used, such analyses can have exceptionally

long execution times.

An intelligent distribution of the computing resources, which due to the

dynamics of a simulation does not have to be done a priori but progressively,

can be used to reduce the computing time (strong scaling), and can be used

to provide more accurate results in the same execution time (weak scaling).

This is possible both physically by workload distribution to several processors

and logically by an adaptive resolution of the simulation, in each case based on

the current state of the simulation. Recent advances in computer technology

allow us to solve problems with billions of unknowns. However, raw computing

power does not mean we can use it without further ado. Only the combination

with algorithms that use all available resources efficiently and scale with the

problem size offers a massive potential to reduce execution times. The goal of

this dissertation is the provision of such new, efficient algorithms.

Applications can be optimized for the hardware structure down to the pro-

cessor level, for example using single instruction, multiple data (SIMD) in-

structions combined with vectorization, and by avoiding bottlenecks caused

by memory and network bandwidth. Furthermore, modern multi-core and

multi-processor systems require parallelization to make hardware threads and

processes cooperate with each other, respectively. Depending on the hardware

architecture, many different application programming interfaces (APIs) have

1



2 Chapter 1. Introduction

been developed over the last decades which allow developers to take opportu-

nity of unified interfaces. For machines with shared memory access like modern

desktop workstations, independent computing tasks can be distributed among

all hardware threads subject to a work stealing policy, for which Open Multi-

Processing (OpenMP)® [1] and Intel® Threading Building Blocks (TBB) [2]

are the most prominent approaches. On large-scale supercomputers, processes

are spread out on multiple computing nodes with independent memory con-

nected via network. To enable them to cooperate, data needs to be exchanged

between all participating nodes. For communication between processes, the

Message Passing Interface (MPI) [3] has become a standard. A hybrid com-

bination of both techniques for shared and distributed memory is possible.

Recently, streaming multiprocessor architectures on graphics processing units

(GPUs) have become of more and more interest for scientific applications, as

they offer lots of theoretical throughput, but are strongly limited in flexibility.

Open Accelerators (OpenACC)® [4] and Nvidia® Compute Unified Device

Architecture (CUDA)® [5] provide interfaces for the scientific use of GPUs.

Most problems from mathematics, nature, and engineering can be classified

to be part of continuum mechanics and can be modeled as boundary value

problems using partial differential equations. These problems are usually for-

mulated on a subset of the three-dimensional continuous space and can often

not be solved analytically, so that we need find a solution with numerical ap-

proximations. Numerical methods require the discretization of the continuous

space which will be divided into smaller entities that couple with neighbor-

ing ones. A large variety of these methods exist, of which we briefly describe

the most commonly used ones. With finite difference methods (FDM), dif-

ferential operators are evaluated as difference quotients on a finite number of

grid points. The idea of finite volume methods (FVM) is the preservation

of conserved quantities on small volumes by applying the Gauss-Ostrogradski

theorem, which results in balancing volumetric averages with fluxes on inter-

faces of neighboring volumes. In finite element methods (FEM), we specify

a function space of piecewise polynomials in which we find the function that

satisfies the partial differential equation of the investigated problem as a best

approximation. The residual is projected orthogonal to the space of piecewise

polynomials, which is equivalent to minimizing the energy for elliptic equations

(Brenner and Scott 2008).

In addition to optimizing numerical methods to the hardware, we can also

adjust the numerical discretization to the local complexity of the investigated

problem by adapting its resolution. This does not only assure the full uti-

lization of all available resources, but also their efficient usage. With adaptive

mesh refinement (AMR), or h-adaptive refinement, the spatial resolution of our



3

discretization will be locally assigned, resulting in entities with different sizes

or distances h. While FDM requires a regular topology for AMR, it is appli-

cable to FVM and FEM without major restrictions. In addition, FEM offers

the unique capability for p-adaptation, in which the polynomial degree of the

basis functions is locally set. The combination of both is possible, resulting in

hp-adaptive methods.

The methods can be applied on various problems involving partial differen-

tial equations from mathematics, nature, and engineering. They have already

been extensively used for, e.g., structural mechanics, heat transfer, wave prop-

agation, electrostatics, and fluid dynamics to name just a few. In engineering

practice, these methods form the basis for simulations on objects, for instance

to investigate their stress and wear behavior and to generate their flow profile.

Corresponding model experiments are complex and expensive, so computer

simulations offer an alternative tool in engineering applications. A concrete

application example describes the simulation of smoke spread in buildings. On

the basis of their results, fire safety engineers are able to optimize smoke ex-

traction systems and evacuation routes to increase the safety of civilians in

the event of a fire outbreak. In general, fires remain spatially localized even

after their ignition phase, so the dynamic allocation of both resolution and

computational resources is highly favorable in this scenario. Their simulation

on large scale buildings or connected facilities like underground tunnel systems

as investigated in the ORPHEUS project (Arnold 2017), yield an incredible

workload.

Thus, the combination of parallelization and adaptive methods is necessary

to perform simulations on an economically acceptable time scale. However,

their implementation is very difficult with many technical finesses to consider.

Many software solutions for parallel h-adaptive methods exist, however their

hp-adaptive equivalents are rarely realized because of their complexity. In this

dissertation, we will focus on hp-adaptive FEM with their exceptional error

convergence properties (Guo and Babuška 1986; Babuška and Guo 1996), and

provide their parallelization for distributed memory systems.

In the past, several algorithms for parallel hp-adaptive FEM have been

developed, but they always stayed in the context of discontinuous Galerkin

(DG) methods which allow solutions to be discontinuous across cell interfaces.

For example for Navier-Stokes problems, Paszyński and Demkowicz (2006) and

Chalmers et al. (2019) presented methods for distributed memory architectures,

while Paszyński and Pardo (2011) and Jomo et al. (2017) demonstrated meth-

ods for shared memory machines. A general approach which also works with

continuous Galerkin (CG) methods poses additional implementation challenges

that are pointed out in the course of this dissertation.
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Due to their complexity, hp-adaptive methods have always stayed in an ex-

perimental stage and have never been prepared to be easily applied by a broader

academic audience, especially in combination with parallelization. Though,

there are several open-source libraries available to the public that provide the

bare functionality for hp-adaptive FEM on distributed memory architectures

using the MPI protocol, such as the libraries PHAML (Mitchell 2002; [6]), PHG

(Zhang 2019; [7]), and MoFEM (Kaczmarczyk et al. 2020a; [8]). However, even

here the application of these features is not immediately accessible to the end

user. We are not aware of any commercial tools capable of this feature.

Furthermore, although applications of parallel hp-adaptive FEM have been

presented thoroughly, there is no systematic description on how to realize them

yet as a software implementation. Algorithms and data structures have already

been presented in detail for parallel h-adaptive FEM by Bangerth, Burstedde,

et al. (2012) and sequential hp-adaptive FEM by Bangerth and Kayser-Herold

(2009). The goal of this dissertation is to provide the combination of both

algorithms highlighting difficulties to combine both parallelization with hp-

adaptive methods. This dissertation is not meant to be an in-depth guide for

the creation of FEM software. We would rather like to emphasize the basic

ideas for parallel hp-adaptive FEM and point out programming challenges.

We will provide an example implementation in the deal.II library (Bangerth,

Hartmann, and Kanschat 2007; [9]), so that the reader is able to either embed

our findings into their own FEM code or use the deal.II implementation right

away.

deal.II is an open-source software library for the creation of general pur-

pose FEM codes. It is part of the extreme-scale scientific software development

kit (xSDK) (Bartlett et al. 2017; [10]), which combines efforts of many research

software engineers to make their expertise in optimized high-performance com-

puting (HPC) available and provides them to the public as a whole. In this

context of sharing knowledge, deal.II profits from parallel linear algebra pro-

vided by the open-source libraries Trilinos (Heroux et al. 2005; [11]) and

PETSc (Balay et al. 2019; [12]), and utilizes their implementation via desig-

nated interfaces.

Furthermore, deal.II does not provide the hierarchic generation of h-

adaptive meshes and their partitioning on multiple processes of distributed

memory architectures itself, but relies on the implementation of the open-

source library p4est (Burstedde, Wilcox, and Ghattas 2011; [13]). In this

regard, p4est is used as an ‘oracle’: Operations that manipulate the mesh and

its partitioning happen on a distributed structure provided by p4est, and will

be recreated only on the locally owned sections of the deal.II mesh on every

process with a set of queries to the master mesh.
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Since the ideas of this dissertation will be realized in deal.II, we capitalize

on their hierarchic quadtree and octree structures with corresponding quadri-

lateral and hexahedral cells in two and three dimensions, which are arranged

by means of a Z-order or Morton space-filling curve. However, the presented

ideas for algorithms and data structures in this dissertation are not restricted

to these specifications.

In this dissertation, we present all enhancements necessary to supply par-

allel hp-adaptive methods for algorithms and data structures that are already

capable of parallel h-adaptive and sequential hp-adaptive FEM. In Ch. 2 we

present the necessary details for static meshes, i.e., meshes with fixed resolution

and fixed assignment of finite elements from beginning to end of a simulation.

Ch. 3 deals with all necessities of dynamic hp-adaptive methods, and presents

algorithms to automatically determine regions to adapt. We apply the pre-

sented methods on a simple numerical example in Ch. 4 to show the benefits of

hp-adaptive methods and scalability on the JURECA supercomputer (Krause

and Thörnig 2018; [14]).

All algorithms presented in this dissertation are available starting with re-

lease 9.2.0 of the deal.II library (Arndt et al. 2020; [9]), with which all nu-

merical examples in this dissertation were performed.





Chapter 2

Static parallel hp-adaptive finite

element methods

Any kind of numerical method requires thorough thought on designing suit-

able algorithms and data structures with respect to correctness, robustness

and performance. In general, the ideas behind implementations of these meth-

ods are similar and can be generalized. This is also the case for additional

enhancements that improve basic realizations. In the case of the finite ele-

ment method (FEM) such features are, for example, parallelization, adaptive

methods, continuous or discontinuous Galerkin methods, and the support for

complex geometries.

In this chapter, we will present algorithms and data structures for parallel,

hp-adaptive finite element methods. For now, we focus on static meshes with

a fixed grid resolution and assignment of finite elements that will not change

during the course of the application. Those can be used for multi-physics

applications, in which different characteristics can be assigned to certain parts

of the domain using dedicated finite elements that couple with each other, for

example, a Stokes fluid interacting with an elastic solid [15].

Generalized thoughts on the following two aspects have already been pre-

sented: Bangerth and Kayser-Herold (2009) developed a general implemen-

tation for hp-adaptive FEM software; and a generalized distributed comput-

ing approach of the finite element method has been introduced by Bangerth,

Burstedde, et al. (2012). However, the consolidation of both features is not

trivial, thus this chapter should be understood as an enhancement of the two

aforementioned contributions and bases in large parts on it. For details, we

recommend a previous reading of both articles, since only relevant key aspects

are revised in the following.

We will elaborate on the nontrivial aspects of parallel, hp-adaptive FEM in

7



8 Chapter 2. Static parallel hp-adaptive finite element methods

the following sections, after providing a brief overview about the basics that

are necessary for their understanding. These nontrivial aspects are the unique

enumeration of degrees of freedom (DoFs) in the context of continuous Galerkin

(CG) methods, as well as load balancing. All features added to the deal.II

library in the context of hp-adaptive FEM can be found in a development log

provided in [16].

2.1 Prerequisites

The basic idea of the finite element method (FEM) consists of the specification

of a finite-dimensional function space and finding a solution to the investigated

boundary value problem in it. To be more precise, we pick a suitable set of

basis functions for which the solution is a linear combination. Its coefficients are

called unknowns or degrees of freedom (DoFs), since their values are determined

after solving the problem.

Differential equations are solved on prescribed domains Ω, which are typ-

ically part of R2 or R3, and form boundary value problems with boundary

conditions posed on ∂Ω. Their numerical solution with FEM requires the sub-

division of the domain into a triangulation of smaller cells K, where Ω =
⋃
iKi

and each cell K has a nonempty interior and a Lipschitz-continuous boundary.

Typical choices for cells are triangles or quadrilaterals in two and tetrahe-

dra or hexahedra in three dimensions. Further, on each cell K, we define

a finite-dimensional function space P , accompanied by a set of functionals

N = Ψ1, . . . , Ψn that are a basis for its dual space P ′ . Ciarlet (1978, Sec. 2.1)

defined such tuples (K,P,N) as finite elements.

With this definition, we are able to find a set of shape functions ϕ1, . . . , ϕn

which forms the basis for the finite element space and characterizes its dimen-

sion. Consequently, a finite element approximation is a linear combination

of these functions uhp(x) =
∑
j Uj ϕj(x), where coefficients Uj are known as

degrees of freedom.

We transform the original boundary value problem into a variation problem

by converting it to a weak formulation. This process belongs to the class of

Galerkin methods, of which we distinguish between continuous Galerkin (CG)

and discontinuous Galerkin (DG) methods. For the former, we require that

our finite element approximation is continuous across cell interfaces resulting

in shared DoFs on all transitions. For discontinuous methods, jumps of the

approximation are possible on cell interfaces, and thus each cell has its own set

of DoFs of which none are shared. Here, relations between cells are quantified

via penalty methods that correlate DoFs on interfaces of neighboring cells.

With the discretized weak formulation of the investigated problem, we are
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(a) Q1 element. (b) Q2 element. (c) Q3 element. (d) Q4 element.

Figure 2.1: First four Lagrange elements Qp on quadrilateral unit cells with
(1 + p)dim support points each. Here, we distinguish between support points on
vertices (•), lines (�) and quadrilaterals (◦).

left to assemble and solve the corresponding system of linear equations for the

unknown coefficients or DoFs. In practice, we calculate the appearing integrals

using quadrature rules and basis functions which have been mapped from a

finite element on a reference cell K̂. It is thus sufficient to define reference

finite elements and assign them to cells.

One way to choose finite elements is to use nodal functionals Ψi which

evaluate the values of a function ϕ at their associated support points xi, i.e.,

Ψi[ϕ] = ϕ(xi). The corresponding shape functions form a basis of P dual to

N fulfilling Ψi[ϕj ] = δij , where δ is the Kronecker delta function. In other

words, shape functions are designed to have the value one on their associated

support point and the value zero on all others. When dealing with this category

of finite elements in practice, it is sufficient to work with support points and

shape functions once the type of element is specified. One of the most common

types of finite elements are Lagrange elements Qp, that are based on Lagrange

interpolation with polynomials of order p and can be extended from one to

higher dimensions via tensor products. The arrangement of support points on

quadrilaterals in Lagrange elements up to fourth order polynomials are depicted

in Fig. 2.1.

This is just a brief introduction to FEM in order to provide the fundamen-

tals for this chapter and to specify the nomenclature used. More details on this

topic can be found in common literature (e.g., Quarteroni and Valli 1994; Ern

and Guermond 2004; Elman, Silvester, and Wathen 2014). Especially Brenner

and Scott (2008) provided a more rigorous and mathematically sound definition

of finite elements, on which this summary was based.

2.1.1 Adaptive methods for FEM

In computational applications, adaptive methods are used to align the resolu-

tion or rather the computational resources to the complexity of the investigated

problem, i.e., to specific parts of the domain. In terms of grid refinement on

quadrilateral and hexahedral meshes, cells will be split once per dimension,
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(a) h-adapted mesh with Q2 elements.
The smaller cells on the right half are the
result of isotropic refinement.

(b) p-adapted mesh with one Q2 element
on the left and one Q4 element on the
right half.

Figure 2.2: Example of differently adapted meshes consisting of initially two
quadrilateral cells, from which the right one has been refined. Differences in
the refinement level of neighboring cells give rise to hanging nodes. Note that
both scenarios yield the same number of support points.

resulting in four or eight children in two or three dimensions, respectively.

Similarly, we join the corresponding amount of cells to their parent cell for

grid coarsening. This process is also known as h-adaptation, referring to ad-

justing the cell’s length or diameter h locally. We require hierarchic relations

between parent cells and their children that motivate the use of tree structures

rooting in each cell of the initial coarse mesh. Combined, this leads to a forest

structure. The entirety of all leaves in this forest corresponds to a full represen-

tation of the domain which is required for assembling and solving the system

of equations. We call cells without children active cells, since they are the only

ones carrying DoFs. For more information, Bangerth and Rannacher (2003)

elaborate more rigorously on grid adaptation, especially for the FEM method.

As an alternative to modifying the grid resolution, we can also adapt the

function space using various finite elements associated with each cell. These

finite elements may differ in the polynomial degree p of their shape functions,

offering the unique possibility for p-adaptation, or hp-adaptation when used

together with grid adaptation. In practice, we specify a collection of reference

finite elements, one of which is assigned to each cell in the domain. We identify

the currently assigned finite element with an active finite element index on

each cell.

Refinement level differences on quadrilateral or hexahedral meshes, as well

as varying finite elements on neighboring active cells lead to hanging nodes

which are nodes with no counterpart on the opposite side of the interface. A

depiction of h- and p-adapted domains along with hanging nodes is presented in

Fig. 2.2. In combination with CG methods, the finite element approximation

needs to be continuous on these hanging nodes, which requires constraining

them to the surrounding ones on the shared interface.

For h-adaptive methods, we need to constrain hanging nodes from cells of a

finer refinement level to the neighboring coarser cell by interpolation. A typical
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situation is depicted in Fig. 2.2a. For convenience, we limit the level difference

of neighboring cells to one level. For quadrilateral or hexahedral meshes, this

2:1 mesh balance ensures to limit the occurrence of hanging nodes.

Whenever different finite elements face each other in case of p-adaptation,

we need to impose continuity on these interfaces as well. This is performed by

restricting the element with the higher polynomial degree to the continuity of

the lower one. Following the example from Fig. 2.2b, we would have to restrict

the additional nodes of the Q4 element to the ones of the Q2 element on their

shared line. To formulate it in a more general way, we need to constrain

continuity of all neighboring finite elements to their smallest common finite

element subspace. We say that this particular element dominates the others.

There may be cases in which neighboring elements do not dominate each

other, since they do not pose compatible continuity requirements. As an exam-

ple, this would be the case for two neighboring vector-valued elements (Q2×Q1)

and (Q1 × Q2). In this case, we designate the first active finite element on a

mesh object to be dominating.

This section summarized data structures and algorithms for hp-adaptive

FEM presented in great detail by Bangerth and Kayser-Herold (2009).

2.1.2 Parallelization of FEM

High-performance computing (HPC) applications require scalable algorithms

and data structures for machines with distributed memory, which we realize

using the Message Passing Interface (MPI) standard [3]. In this context, the

workload on all participating processes will be shared by partitioning the mesh

among them.

This approach poses different challenges on the design of data structures and

information exchange between MPI processes. Especially dynamic changes of

the domain by hp-adaptation are difficult, since they require the redistribution

of the workload by repartitioning the global mesh, as well as the transfer of

data. In addition, the workload is no longer easily predictable by a simple

measure such as the number of cells each process owns. We will discuss this

topic in detail later in Ch. 3. For now, we distinguish between different subsets

of cells and DoFs which will be introduced in the following. An example of a

distributed, adapted mesh is shown in Fig. 2.3 with all presented types of cells.

Each process will only store data of cells that belongs to its owned section

of the domain, which we call subdomain. We call these cells locally owned

cells, and all DoFs on them are referred to as locally active DoFs. Every DoF

will be uniquely enumerated on the global mesh. With CG methods, DoFs on

interfaces between cells of different processes may be owned by either one or
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(a) Process with rank 0. (b) Process with rank 1.

locally owned
ghost
artificial
locally relevant

Figure 2.3: Exemplary partitioning of a parallel distributed h-adapted mesh on
two MPI processes. Every cell is owned by exactly one process. Properties of
cells on their respective process are highlighted.

the other process. Thus, not all active DoFs on locally owned cells have to be

locally owned DoFs.

During the assembly of equation systems, we need to refer to surrounding

cells that do not belong to the local domain. A requirement for the paralleliza-

tion of FEM is the provision of data on them via communication. Typically,

a halo spanning one level of cells around the locally owned domain covers the

necessary cells which we call ghost cells. Data from ghost cells has to be re-

quested from the owning process. The combination of locally owned and ghost

cells and their corresponding DoFs is labeled locally relevant.

Further, we require that every process stores a copy of the common coarse

mesh. This allows a straightforward construction of the whole grid during

repartitioning just with adaptive methods. We establish the 2:1 mesh balance

on all cells of the local mesh, leaving refined cells on regions that are not locally

relevant. These cells that are not locally relevant will be called artificial cells.

Heister (2011) and Bangerth, Burstedde, et al. (2012) described the paral-

lelization of h-adaptive FEM within the deal.II library [9] in great detail.

2.2 Enumeration of degrees of freedom

Formulating and solving the system of linear equations requires an unique

identification of all involved DoFs in the global mesh.

DoFs are associated with mesh objects, i.e., vertices, edges, faces, and cells.

If support points are located on interfaces between neighboring cells in the

context of DG methods, they are assigned separate DoFs on each cell. Thus,

the enumeration of both DoFs and cells can happen analogously. However, CG

methods require that shared DoFs on interfaces between neighboring cells are

unique. Thus, each DoF has to relate to a single cell, or in other words, will be
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owned by a single cell. This assignment is crucial for the efficient preparation

of relevant distributed data structures.

The latter scenario poses challenges in the enumeration of DoFs when con-

sidering either parallelization or hp-adaptive methods, let alone a combination

of both. A first attempt to cope with this problem would involve so called con-

straints: We enumerate all DoFs on each cell independently, but identify two

similar DoFs as identical during the assembly of the equation system. Although

this approach would be easy to implement, we would needlessly add DoF dupli-

cates to the equation system, sacrificing performance by wasting memory and

computing time. We conclude that a unique enumeration of DoFs is mandatory

for a robust FEM implementation for CG methods.

Both Bangerth, Burstedde, et al. (2012) and Bangerth and Kayser-Herold

(2009) have dealt with DoF enumeration with parallelization and hp-adaptive

methods, respectively, and presented algorithms for each case, but the combi-

nation of both is not trivial. In this section, we will briefly summarize each

implementation and present an enhanced algorithm in detail for the unique

identification of DoFs for CG methods with parallel hp-adaptive methods.

In the following, all algorithms will be presented independently of the un-

derlying data structures and should be easily applicable to any kind of existing

FEM code. Results will be presented with our reference implementation in the

deal.II library.

For hp-adaptive FEM, the algorithm proposed by Bangerth and Kayser-

Herold (2009, Sec. 4.2) enumerates all DoFs on each cell consecutively in a

first step, and then unifies these shared DoFs on cell interfaces by favoring the

index of the dominating finite element.

In parallel applications, the enumeration of DoFs on interfaces between

neighboring subdomains pose a problem: They have to be assigned to one of

them, for which Bangerth, Burstedde, et al. (2012, Sec. 3.1) proposed to use a

certain tie-break criterion as a decision aid. Their algorithm starts with enu-

merating DoFs on all locally owned cells. On interfaces between subdomains,

all DoFs will be assigned to the process with the lower rank and thus keep

the index from the subdomain with the lower identifier. Once ownership of all

DoFs is clarified, their index will be increased by the number of DoFs owned by

processes with a lower rank. Now, every locally owned DoF has its final index

assigned. Each process needs to know all locally relevant DoFs for the solution

of the equation system, which requires exchanging DoF indices on ghost cells

via point-to-point communication. This operation has to be performed twice

since there may have been DoFs on ghost cells of which the owning process did

not know the correct indices of after the first exchange.

For parallel hp-adaptive FEM, the mere concatenation of both algorithms
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Figure 2.4: Benchmark scenario to verify our algorithm for DoF enumeration.
The mesh is distributed on two MPI processes, each owning one Q2 and one
Q4 element. All DoFs are uniquely identified on the global mesh as a result of
the enumeration algorithm from Sec. 2.2.

does not suffice. The case in which distinct finite element types from different

subdomains are adjacent has to be given special consideration. We could cope

with this situation by constraining DoFs on these interfaces to each other.

However, this would leave unnecessary DoF duplicates in the equation sys-

tem. Additionally, the global number of DoFs would differ with the number

of subdomains in this approach. We would rather keep it independent from

the number of processes, which would simplify debugging and assures that our

solvers yield the same results on any number of subdomains. The algorithm

developed in this thesis meets this requirement and combines the ideas of both

previous algorithms.

A suitable benchmark that we used to test the enumeration algorithm con-

sists of a two-dimensional mesh of four neighboring cells. We provide two

different Lagrangian elements that share at least one additional DoF per cell

interface than only on vertices. For this purpose, we choose Lagrangian el-

ements Q2 and Q4. Each of these finite elements will be assigned to two

catty-cornered cells. Furthermore, we divide the mesh into two subdomains

containing two neighboring cells with different reference finite elements. The

whole setup is shown in Fig. 2.4 and covers all combinations of adjacent finite

elements that we have encountered so far in the parallel hp-adaptive context.

A step-by-step demonstration of the algorithm on this particular benchmark is

presented in App. A.

The algorithm enumerates all DoFs on locally relevant cells, which includes

ghost cells. Thus, we begin by exchanging active finite element indices on ghost
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cells so that we have information about all locally relevant finite elements and

can prepare all data structures accordingly. We do this with point-to-point

communication.

In short, our algorithm is based on the parallel algorithm by Bangerth,

Burstedde, et al. (2012, Sec. 3.1) for the most part. We will add a DoF uni-

fication step after enumerating all locally owned cells, while subjecting to the

finite element domination hierarchy to decide ownership on all interfaces. Af-

ter exchanging DoFs on all ghost cells, we are left to merge the valid DoFs on

interfaces with the valid counterparts.

In detail, the complete algorithm consists of the following six steps, starting

with an initialization step flagged with ‘0‘. The step-by-step demonstration

presented in App. A should be consulted as an aid to its understanding. To

follow the same nomenclature as Bangerth, Burstedde, et al. (2012), we call

the set of all locally owned cells Tploc, the set of all ghost cells Tpghost, and the

set of all locally relevant cells Tprel = Tploc∪T
p
ghost on processes and subdomains

identified by the integer p.

0. Initialization. On all locally relevant cells K ∈ Tprel, DoF indices are set

to an invalid value, for example i := −1.

1. Local enumeration. Iterate over all locally owned cells K ∈ Tploc and

assign valid DoF indices in ascending order, starting from zero.

2. Tie-break. Go over all locally owned cells K ∈ Tploc. If a mesh object

on K is also part of an adjacent ghost cell which has the same reference

finite element assigned and belongs to a subdomain of lower rank q < p,

then invalidate all DoFs on the mesh object by setting their index to the

invalid value i.

3. Unification. Go over all locally owned cells K ∈ Tploc. For all shared DoFs

on interfaces to neighboring cells, constrain the DoF of the dominated

finite element to the one of the dominating element. On interfaces to

ghost cells, set DoFs indices to the invalid value i if the dominating

element is assigned to the ghost cell. It is possible that none of the

adjacent elements dominates, e.g. if a (Q1 × Q2) element neighbors a

(Q2×Q1) element as described in Sec. 2.1. In this case, designate the first

active finite element on each mesh object as its dominant one. Populate

a list with pairs of identifiers for these constrained DoFs.

At this stage, each process knows which DoFs are owned by them.

4. Global re-enumeration. Iterate over all locally owned cells K ∈ Tploc
and enumerate those DoF indices in ascending order that have a valid
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value assigned, while considering all constraints from the previous step.

Store the number of all valid DoF indices on this subdomain as np. In

a next step, shift all indices by the number of DoFs that are owned by

all processors of lower rank q < p, or in other words, by
∑p−1
q=0 nq. This

corresponds to a prefix sum or exclusive scan, and can be obtained via

MPI Exscan [3]. Note that simply shifting indices as in the algorithm

without p-adaptivity is no longer sufficient.

At this stage, all subdomains and processes have the correct indices assigned

to all locally owned DoFs, which are enumerated consecutively.

5. Ghost exchange. Communicate DoF indices from locally owned cells K ∈
Tploc to other processes using point-to-point communication as follows.

a. Prepare containers with data to be sent from subdomain p to each

adjacent subdomain q.

b. Loop over all locally owned cells that have ghost neighbors. Add the

cell identifier with all associated DoF indices to every data container

that corresponds to an adjacent subdomain of the current cell.

c. Send each data container to its designated destination process with

nonblocking point-to-point communication via MPI Isend [3].

d. Receive data containers from processes of adjacent subdomains with

nonblocking point-to-point communication via MPI Irecv [3]. The

received data corresponds to all ghost cells of this subdomain p. On

each of these cells, set the received DoF indices accordingly.

All communication in this step is symmetric, which means that a process

only receives data from another process when it also sends data to it.

Thus, there is no need to negotiate communication.

After the previous ghost exchange each DoF on interfaces with ghost cells has

exactly one valid index assigned.

6. Merge on interfaces. Go over all locally relevant cells K ∈ Tprel. On

interfaces between locally owned and ghost cells, set all remaining invalid

DoF indices with the corresponding valid one of the dominating finite

element.

At this stage, all locally owned cells K ∈ Tploc have their correct DoF indices

set.

7. Ghost exchange. Some ghost cells may still have invalid DoF indices

assigned since the owning process did not know all correct indices on this
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particular cell when the last communication happened. Another ghost

exchange closes this gap by repeating step 5. However this time, only

data from those cells has to be communicated which had invalid DoF

indices prior to step 5d.

One variant of this algorithm would be to modify steps 2 and 3 inasmuch as we

apply the tie-break criterion on all DoFs on ghost interfaces and exclude them

from DoF unification entirely. However, this would not assign shared DoFs to

the dominating finite element on ghost interfaces, which would be inconsistent

compared to the locally owned parts of the domain.

At the end of this algorithm, all global DoF indices have been set correctly,

and every process knows the indices of all locally relevant DoFs: All DoFs

on interfaces belong to the dominating finite element on the process with the

smallest rank. In particular, while the algorithm is substantially more compli-

cated than the one without p-adaptivity, no additional communication steps

are introduced to the two original ones from the h-adaptive variant.

There may be situations where DoFs are constrained to others, which in

turn are constrained to different third ones. These chains of constraints may

span over DoFs from multiple subdomains. To deal with this case, we might

need more than the current two communication steps in our algorithm. How-

ever, we could not think of any scenario in which this is going to be the case,

and did not encounter any issues in our investigations so far.

In three-dimensional scenarios, Bangerth and Kayser-Herold (2009, Sec. 4.6)

pointed out possible complications with circular constraints during DoF unifi-

cation whenever three or more different finite elements share a common edge.

We still have not figured out a satisfactory solution for this problem and con-

form to their original way to cope with this situation: All DoFs on these edges

will be excluded from the unification step and will be treated separately via

constraints.

2.3 Load balancing

The efficient use of all computational resources requires a uniform distribution

of all workload among them. There are many factors that determine the work-

load in a FEM application, above all the preparation of data structures, the

assembly of both the matrix and right hand side of the linear equation sys-

tem, and the choice of the type of solver. Each of these categories contributes

a different amount to the total workload, with the solver accounting for the

largest share in general. We should thus balance the number of rows or non-

zero entries per process in the solution matrix. However, information about

the matrix is available late in a solution cycle, so we need to look for a different

measure at an earlier stage.
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In most h-adaptive applications, cells are similar and correspond to the same

workload. Thus, we can simply balance the number of cells on all processes.

However with hp-adaptive applications, this is no longer the case due to the

diversity of finite elements. In this case, since the domain is partitioned on

the basis of cells, we need to assign a corresponding weight to every cell that

determines its individual workload and balance the cumulated weights among

all processes.

The workload of each cell depends on its assigned reference finite element

and quadrature formula, and correlates to the number of DoFs and quadrature

points, among other quantifiable values that depend on the individual problem.

For example, Lagrangian elements of different order as depicted in Fig. 2.1 each

have a distinct number of DoFs.

For the purpose of load balancing, Burstedde, Wilcox, and Ghattas (2011,

Sec. 3.3) provided an algorithm for weighted partitioning and enhanced p4est

[13] with a corresponding implementation, of which we take advantage in

deal.II. Omitting details about the communication between processes, we

will briefly outline its basic idea: On a distributed mesh, calculate the prefix

sum of cell weights in the global scope, determine the partition boundaries with

a binary search, and transfer cells to their new owning processes if necessary.

In the context of hp-adaptive FEM applications, we identify the assembly

of the linear equation system and its solution as the most expensive tasks, and

correlate their individual contribution to the workload on each cell with its

number of DoFs provided by the associated finite element. The total workload

of iterative solvers combined with multigrid preconditioning ideally scales with

the global number of DoFs, i.e., O (Ndofs). We therefore expect that the cor-

responding workload of each cell attributed to the solution process also scales

with the number of cell-related DoFs, i.e., O (ndofs). Furthermore, we suppose

that the workload of each cell for the matrix assembly will be of order O
(
n2dofs

)
since all DoFs in a cell couple with each other.

We expect that the actual workload per cell of an hp-adaptive FEM ap-

plication will actually scale with an order somewhere in between the two, i.e.,

O (ncdofs) with a constant exponent c ∈ [1, 2]. We use this strategy for investi-

gations in Ch. 4 in which we also determine a suitable exponent c.

Independent of the approach just described, weighting each cell with a

linear combination (an2dofs + b ndofs) also appears conceivable, for which the

partitioning results depend on the ratio of both constants a and b, rather than

an exponent c.

A reliable measure of weights is tied to the type of problem and the choice

of the solver. With the presented approach, we still have to specify a suit-

able weight manually. We are not aware of any procedure to automatically

determine them.
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Dynamic parallel hp-adaptive

finite element methods

Up to this point, we have only dealt with static hp-adaptive meshes, in which

the grid resolution and the distribution of finite elements is prescribed from the

beginning. However, the key feature of hp-adaptive methods is the dynamic

distribution of these attributes. The goal is to reduce the overall error of

the approximation on the basis of the complexity of the current state of the

solution. With dynamic methods, meshes can be tailored to a specific problem

iteratively with so called SOLVE-ESTIMATE-MARK-REFINE cycles: After

solving the problem on a coarse mesh, it will be adapted based on an error

estimate several times, as we will demonstrate in Ch. 4. Also, time dependent

problems benefit from dynamic adaptation, in which mesh attributes will be

adjusted on the basis of the solution that evolves in time, for example, for heat

transfer [17] and fluid flow problems [18].

In practice, we distinguish between two ways of imposing these hp-adaptive

methods: either manually or automatically. The combination of both h- and

p-adaptation poses new challenges. We will present these issues in this chapter

along with algorithms to automatically determine which regions to adapt and

which type of adaptation to impose.

First, considerations regarding the implementation of hp-adaptivity will be

presented. We then propose methods to automatically decide which cells to

adapt and how by providing corresponding adaptation and decision strategies.

The presented strategies are intended for general purposes and are based on

error estimation, error prediction and smoothness estimation. It is conceivable

to tailor strategies around particular observables of individual problems, which

is not subject of this dissertation. Furthermore, dynamic changes on the mesh

require data exchange between processes, which we describe in the end.

19
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New features for hp-adaptation as well as a generalized interface have been

introduced in the deal.II library [9] during working on this dissertation. A de-

velopment log on all features introduced in the context of dynamic hp-adaptive

finite element methods (FEM) can be found in [19].

3.1 Realization of hp-adaptation

For hp-adaptive methods, we need to find ways to prescribe which cells are

subject to which kind of adaptation. This grants awareness on how the mesh

will change if adaptation is executed.

To indicate that adaptation is about to happen, we introduce general flags

for refinement and coarsening into our implementation, respectively. Further-

more, to indicate that p-adaptation is going to happen, we specify so called

future finite element indices that determine the reference finite element from

the collection that will be associated to that particular cell after adaptation

has been performed. They act as a counterpart to the previously introduced

active finite element indices in Sec. 2.1. In total, we thus have three different

indicators for adaptation: flags for refinement and coarsening, as well as future

finite element indices.

To determine the extent to which cells change during the adaptation pro-

cess, the affected cell properties have to be hierarchically ordered. While for

h-adaptive methods, a grid hierarchy naturally evolves from the underlying tree

or forest data structure, this is not necessarily the case for p-adaptation. Here,

a hierarchy needs to be provided for the collection of reference finite elements,

so that we can assign superior and subordinate elements in case of p-refinement

or p-coarsening, respectively. For example, we arrange Lagrangian finite ele-

ments by their polynomial degree in ascending order with the largest degree

on the highest level.

Executing h-adaptation on a p-adapted mesh reveals another challenge. We

need to find a suitable finite element on cells that will be h-adapted. During

h-refinement, we can easily choose the finite element from the parent cell for

all of its children, but for h-coarsening, the choice is not trivial. From all cells

that are going to be h-coarsened, we pick the one finite element for the parent

cell from those assigned to its children that encapsulates all of them. With

simultaneous h- and p-adaptation, future finite elements will be considered

instead of the active ones. This conforms to the finite element domination

logic that has been introduced by Bangerth and Kayser-Herold (2009) and is

described in Sec. 2.1. An example on how finite elements are distributed during

hp-adaptation is shown in Fig. 3.1.
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Figure 3.1: Inheritance of cell characteristics through h-adaptation in the con-
text of hp-adaptive meshes. With h-refinement, all children will be associ-
ated with the parent finite element, while during h-coarsening, the finite el-
ement space chosen on the parent cell encapsulates all those of its children
(Q1 ⊂ Q2 ⊂ Q3).

In a typical adaptation workflow, we have to distinguish between h- and p-

adaptation. In our implementation approach, we make a complete distinction

between the two at a certain point. First, corresponding cells will be either

marked for refinement or coarsening and will be assigned with a corresponding

general flag. On all flagged cells, we decide whether to impose p-adaptation by

setting a future finite element index or not. Now, meanings of all refinement and

coarsening flags change from the general indication of adaptation to signal h-

adaptation only. If a cell shall be p-adapted only, the corresponding flags need

to be removed and only the future finite element index has to prevail, otherwise

both h- and p-adaptation will happen simultaneously. This approach offers full

flexibility to let either users decide manually how to adapt, but also provides

a sufficient interface for an automatic specification of these mesh attributes,

which will be described in the following section.

3.2 Decision criteria

With the bare functionality of dynamic hp-adaptive methods at hand, we need

to find ways to automatically decide which parts of the domain we want to

adapt and how. For this purpose, we recall the error convergence properties of

FEM in this section.

A common observation is that increasing the grid resolution or the poly-

nomial degree of the basis functions will decrease the difference between the

finite element approximation uhp and the actual solution u.

In fact, the impact of these adaptation techniques on the error is well un-

derstood. Babuška and Suri (1990, Thm. 3.4) determined an upper bound for

the error that depends both on the cell diameter h and the polynomial degree

p:

‖ehp‖H1(Ω) ≤ C hµ p−(m−1) ‖u‖Hm(Ω) , (3.1)
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where ehp = u−uhp denotes the error function, m is a measure for the regularity

of the solution u, C is a constant dependent on m, and µ = min (p,m− 1).

These modifications do not have to happen uniformly on a global scale, but

can be applied locally, since the global error consists of the local contributions

of each cell K:

‖ehp‖2H1(Ω) =
∑
K∈Ω

‖ehp‖2H1(K) . (3.2)

Thus it all comes down to finding those regions that have a significant contri-

bution to the global error, and mitigate their impact by local adaptation.

On suitably chosen hp-adaptive meshes, Guo and Babuška (1986, Thm. 5.1)

and Babuška and Guo (1996, Thm. 2.5.2, Thm. 3.5.1) even predicted exponen-

tial convergence for elliptic problems under the assumption that the solution u

is sufficiently regular:

‖ehp‖H1(Ω) ≤ C exp (−bNα
dofs) , (3.3)

where constants b > 0 and C are both independent of the total number of

degrees of freedom (DoFs) Ndofs, and α = 1/3 for two or α = 1/5 for three

dimensional problems.

With sufficient information about the investigated scenario, an hp-adaptive

grid can be tailored to its specifics manually. However, grid adjustments by

hand may not be optimal. Furthermore, not all peculiarities about the scenario

are generally known in advance, which is especially the case for problems with

complex geometries and time dependent problems.

Hence we need to elaborate on algorithms to automatically decide which

subsets of the domain qualify for adaptation. With this technique, we typically

set up a coarse mesh along with basis functions of a low polynomial degree and

obtain a tailored mesh after several adaptation iterations.

In this section, we present different ways to identify areas whose adaptation

will be most profitable, and to choose the most beneficial type of adaptation.

For hp-adaptation in particular, Mitchell and McClain (2014) reviewed and

compared a selection of strategies in detail. We demonstrate a subset of their

recommendations in terms of performance and applicability, i.e., those strate-

gies that only require the locally relevant part of the current solution.

3.2.1 Adaptation strategies

We will decide on the basis of adaptation criteria on each individual cell whether

it will be considered for adaptation. Typical criteria involve comparing errors

or their estimates to some absolute or relative threshold. Alternatively, also

predicted errors or smoothness indicators are used as adaptation criteria, as



3.2. Decision criteria 23

presented in the following sections. Bangerth and Rannacher (2003, Sec. 5.2)

described nontrivial strategies on how to decide based on these adaptation

criteria, from which we present a commonly used selection.

So called fixed-error-reduction or fixed-fraction strategies select subsets of

cells whose criteria accumulate to a predefined fraction of their global sum. This

strategy is only applicable when the sum of all criteria actually has meaning,

for example local errors which add up to the global one. Furthermore, it may

lead to optimal meshes for several problems, but tends to only adapt very few

cells whenever singularities are encountered.

Furthermore, strategies known as fixed-rate or fixed-number pick predefined

fractions of cells with the lowest or highest criteria for adaptation. This allows

to predict the growth of the number of cells, but may not lead to an optimal

mesh since more cells may be adapted than necessary. We will use this strat-

egy in our investigations presented in Ch. 4 to compare different adaptation

strategies at the same growth rate of the mesh.

For either strategy, when using actual errors or error indicators as adap-

tation criteria, we typically select the subset of cells corresponding to the

higher error for refinement, while the subset with the lower error is considered

for coarsening. Applicable implementations of these strategies involve binary

searches to determine the section of cells relevant for adaptation. For par-

allel computations, according algorithms have been developed by Burstedde,

Ghattas, et al. (2008, Sec. 3.1) and Bangerth, Burstedde, et al. (2012, Sec. 5.1).

With these strategies at hand, we still need quantifiable adaptation criteria.

Typically, we are content with error estimates for this purpose since the actual

error is not at our disposal. Algorithms to estimate the error from the current

finite element approximation will be presented in the following.

3.2.2 Error estimation

The determination of the error for our finite element approximation requires

the actual solution to be at our disposal. However, this is not the case in

general, and we need to find an alternative measure.

Kelly et al. (1983) worked out an a posteriori error estimator for the gener-

alized Poisson equation −∇·(a∇u) = f , where a is a function usually describing

material characteristics. They determined an upper bound ηK for the error on

each cell by balancing the gradient of the finite element approximation uhp on

all faces F of the cell’s boundary:

‖ehp‖2H1(Ω) ≤ C
∑
K∈Ω

η2K with η2K =
∑
F∈∂K

cF

∫
F

[
a
∂uhp
∂n

]2
do , (3.4)
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where C is independent of the solution but depends on a, and[
a
∂uhp
∂n

]
= a

∂uhp
∂nK

∣∣∣∣
K

+ a
∂uhp
∂nJ

∣∣∣∣
J

(3.5)

denotes the jump of the approximation’s gradient on the face between two

adjacent cells K and J . Hence Ainsworth and Oden (1997) attribute this

estimator to the class of gradient recovery estimators.

The constant cF depends on the characteristics of each individual face of

the cell. Kelly et al. (1983) originally used the constant cF = hK

24 amin pK
on each

face, on which we determine the minimum amin of the given function. Here, hK

and pK denote both cell diameter and polynomial degree of the finite element

on cell K, respectively. Davydov et al. (2017) proposed a different constant for

hp-adaptive FEM: They recommended cF = hF

2 amin pF
with hF the face diagonal

and pF = max (pK , pJ) the largest polynomial degree of adjacent elements K

and J on this particular face.

This estimator has been determined for the Poisson equation, but has

proven its applicability on other problems as well, where this is no longer

meant to be an estimator, but rather an error indicator [20].

We will use these error estimates with the modification for hp-adaptive

FEM as adaptation criteria to decide which cells we will adapt. We are still

left to decide which type of adaptation we want to apply, i.e., h-adaptation or

p-adaptation. In the following sections, we present strategies to do so.

3.2.3 Error prediction

Babuška and Suri (1990) determined upper error bounds for numerical solu-

tions based on the arrangement of finite elements. Both mesh resolution and

polynomial degrees of the basis functions have a different, yet quantifiable in-

fluence on the error leading to Eq. (3.1).

Their findings are valid not only for the numerical solution on a global scope,

but on subsets of the domain as well. Local changes by h- and p-adaptation

will thus result in different local error bounds. This motivates a strategy to

locally decide which type of adaptation to impose based on the refinement

history which has been proposed by Melenk and Wohlmuth (2001): We can

predict how the current error will change whenever certain areas of our domain

are considered for adaptation in the following iteration. These predicted error

estimates allow us to decide whether the choice of adaptation in the previous

step was justified, and provide the foundation for it in the next step.

We determine how the error bounds on two different arrangements of finite

elements will change by calculating their ratio. For this, we assume that both

the actual error and its upper bound change with the same rate, which allows
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us to equate both ratios. We further assume that the solution is sufficiently

regular (m� p ⇒ µ = p). The ratio of errors then reads:

‖ehfpf‖H1(Ω)

‖ehapa‖H1(Ω)

=
hpff
hpaa

(
pf
pa

)−(m−1)
, (3.6)

where subscripts ‘a’ and ‘f’ denote the finite element that is currently active or

will be active after adaptation, respectively.

If we only consider h-adaptation and leave the polynomial degree of the

basis functions unchanged (pf = pa ≡ p), we end up with the classical error

bound (Babuška and Suri 1990):

‖ehfp‖H1(Ω)

‖ehap‖H1(Ω)

=

(
hf
ha

)p
. (3.7)

However, if only p-adaptation is considered and we keep the mesh refine-

ment unchanged (hf = ha ≡ h), the ratio of errors still depends on the regu-

larity of the actual solution which is not at our disposal in general. Following

the considerations of Melenk and Wohlmuth (2001), we expect p-adaptation to

change the error exponentially with the increment of the polynomial degree:

‖ehpf‖H1(Ω)

‖ehpa‖H1(Ω)

= hpf−pa
(
pf
pa

)−(m−1)
' cpf−pa , (3.8)

where c is a constant independent of the cell diameter h.

We suggest a similar approach for the hp-adaptation case as well. The

above ratio assumes that the underlying mesh has not been changed. We thus

identify Eq. (3.8) with an unaltered cell diameter (h ≡ ha) in Eq. (3.6) resulting

in:

‖ehfpf‖H1(Ω)

‖ehapa‖H1(Ω)

'
(
hf
ha

)pf
cpf−pa . (3.9)

Now, we will use these findings to develop an algorithm to predict errors of

our finite element approximation. Melenk and Wohlmuth (2001) worked out

such an algorithm for hp-refinement, which we will extend to hp-coarsening as

well. First, we will now only consider individual cells on our domain rather than

the whole domain itself. Further, in practical applications, the actual error on

these may be not at our disposal. Instead, we use suitable error indicators

‖ehp‖H1(K) ' ηK , assuming that they change at the same rate as the actual

error.

We apply our consideration summarized in Eq. (3.9) on any form of adap-

tation. However, h-adaptation poses an additional challenge, since we have to

distribute errors from parent to children cells in case of refinement, or com-

bine them in reverse for coarsening. Here, we will only consider isotropic h-

adaptation of quadrilaterals in two and hexahedrals in three dimensions, so
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that exactly nc = 2dim children are assigned to a cell, and the ratio of cell

diameters hf/ha is fixed to be 0.5 for refinement and 2 for coarsening. With

respect to the H1-norm of Eq. (3.2), the square of the predicted error of a

refined cell is distributed equally on all of its children, while the square sum

of errors of coarsened cells is assigned to their parent. We assign future finite

elements with their corresponding polynomial degrees on parent and children

cells as described in Sec. 3.1. Last, similar to Melenk and Wohlmuth (2001),

we introduce control parameters γn, γh ∈ (0,∞), as well as γp ∈ (0, 1) for all

three forms of adaptation, i.e., no, h-, and p-adaptation. We end up with a set

of equations which covers all possible combinations for hp-adaptation:

no adaptation: ηpredK = ηK γn , (3.10a)

p-adaptation: ηpredK = ηK γ
pf,K−pa,K
p , (3.10b)

hp-refinement:
(
ηpredKc

)2
= n−1c

(
ηKp

γh 0.5pf,Kc γ
pf,Kc−pa,Kp
p

)2
, (3.10c)

hp-coarsening:
(
ηpredKp

)2
=

nc∑
c

(
ηKc

(γh 0.5pf,Kp )
−1

γ
pf,Kp−pa,Kc
p

)2
. (3.10d)

To clarify roles during h-refinement and h-coarsening, we marked parent cells

Kp and their children Kc with corresponding subscripts, respectively.

We now have an algorithm to predict the error ηpredK on each cell K for the

next adaptation step on the basis of its current error indicator ηK . For this, we

need to know how each cell will be adapted in order to choose the appropriate

case from Eq. (3.10) on the basis of the adaptation flags set. We are left to

find a suitable criterion on how to actually decide which type of adaptation

to apply by comparing the current error indicator to its prediction from the

preceding adaptation step.

The original idea of Melenk and Wohlmuth (2001) was to compare the ac-

tual error of a cell ηK in an adaptation cycle to its prediction ηpredK from the

previous cycle. On all cells flagged for refinement, they consider h-refinement

for ηK > ηpredK and p-refinement otherwise. The motivation behind this par-

ticular choice is that we keep the grid resolution fine whenever we suspect a

singularity, which is usually indicated by a local error larger than its prediction.

We will extend this consideration to work for coarsening as well: For this, we

need to pick the according strategy that keeps the cell diameter hK small for

ηK > ηpredK , and the polynomial degree pK large otherwise.

An alternative approach would be to use the fixed-number adaptation strat-

egy from above: As indicators for each cell, we calculate the difference of pre-

dicted and estimated errors (ηpredK − ηK) for each subset of cells flagged for

refinement and coarsening, respectively. On cells to be refined, we consider the

fraction corresponding to the largest values for p-adaptation, while for cells to
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error
indicators

coarsen refine
... ... ... ... ...

decision
indicators

p-coarsen h-coarsen
... ...

h-refine p-refine
... ...

Figure 3.2: Assignment of cells for hp-adaptation with the fixed-number strat-
egy. Each cell’s identifier and its indicator are stored in designated containers,
whose entries are sorted in an ascending order of the indicators from left to
right. Specified fractions of cells will be marked for adaptation. Large error
indicators suggest refinement, while small ones imply coarsening. A large poly-
nomial degree shall be assigned at a large decision indicator, while a fine grid
resolution will be applied at a lower one.

be coarsened, the fraction with the lowest values will be picked. This conforms

to the same argumentation as in the original variant. A graphical illustration

of the assignment of cells for hp-adaptation using this approach is given in

Fig. 3.2, after corresponding indicators for both error and decision have been

provided on each cell. We will use this strategy in our applications presented

in Ch. 4.

In practice, we need all predicted errors already for the initialization of

this method. We provide them with an initial h- or p-adaptation of the mesh,

by setting all predicted errors to ηpredK = 0 or ηpredK = ∞, respectively. We

recommend to begin with an initial h-refinement since its error predictor from

Eq. (3.7) does not require any information about the solution’s regularity and

thus yields more reliable results.

This strategy is useful for scenarios to generate a tailored mesh after a few

refinement iterations, but lacks applicability for time dependent problems since

the refinement history is also connected to the time evolution here. However,

this method is well suited to determine the initial grid for initial values of time

dependent problems iteratively.

3.2.4 Smoothness estimation

According to Eq. (3.1), we notice that p-adaptation has the largest impact on

the error if its corresponding solution is sufficiently regular. Thus as an alterna-

tive strategy, determining the smoothness of the finite element approximation

presents a reasonable indicator to decide between h- and p-adaptation.

The basic idea to quantify smoothness involves the transformation of a

function u into its spectral representation. In one dimension, we expand it into
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a series of L2-orthogonal basis functions (bk)k∈N0
on an interval I = [a, b] with:

∀x ∈ I : u(x) =
∑
k≥0

ck bk(x) , (3.11)

∀k, l ∈ N0 : k 6= l , 〈bk, bl〉 = 0 , (3.12)

and identify the smoothness as the rate of decay of the expansion coefficients

ck. In higher dimensional cases, we formulate the expansion in the multi-index

notation with tuples k = (k1, . . . , kdim) ∈ Ndim
0 :

∀x ∈ Idim : u(x) =
∑
k1≥0

· · ·
∑

kdim≥0

ck1,...,kdimbk1,...,kdim(x) =
∑
k≥0

ckbk(x) ,

(3.13)

where we consider the multi-dimensional expansion as a product of basis func-

tions for every coordinate direction:

bk(x) ≡ bk1,...,kdim(x) := bk1(x1) . . . bkdim(xdim) . (3.14)

In the following, we will present two different ways to estimate the smooth-

ness of the finite element approximation using this method, namely with Leg-

endre and Fourier series expansions.

Mavriplis (1994) was the first to attribute smoothness characteristics to the

decay of coefficients from a Legendre series expansion. Legendre polynomials

Pk are solutions to the one-dimensional Legendre differential equation on the

interval I = [−1, 1]:

d

dx

((
1− x2

) d

dx
Pk(x)

)
+ k (k + 1)Pk(x) = 0 . (3.15)

They can be constructed with Rodrigues’ formula and fulfill the orthogonality

criterion:

Pk(x) =
1

2kk!

dk

dxk

((
x2 − 1

)k)
, (3.16)

〈Pk, Pl〉 =

∫
I

Pk(x)Pl(x) dx =
2

2k + 1
δkl . (3.17)

The first Legendre polynomials are depicted in Fig. 3.3. [21]

In the finite element context, all calculations happen on reference cells

K̂ = [0, 1]dim. Thus we need to construct a L2-orthogonal basis on their

domain. Furthermore, we require the multi-dimensional variant of Legendre

polynomials from Eq. (3.14). The functions are constructed in such a way that

they correspond to the orthogonality requirement from Eq. (3.17) [21]:

P̃k(x) := 2dim/2 Pk1(2x1 − 1) . . . Pkdim(2xdim − 1) , (3.18)〈
P̃k, P̃l

〉
=

∏
j∈k

2

2j + 1

 δkl . (3.19)
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Figure 3.3: The first six Legendre polynomials.

Furthermore, the calculation of expansion coefficients requires a mapping

of the finite element approximation to the reference cell. This is performed via

the transformation x = FK(x̂), which maps a point x̂ from the reference cell

K̂ to the actual cell K. We denote any function ϕ mapped on the reference

cell as ϕ(x) = ϕ(FK(x̂)) ≡ ϕ̂(x̂). [22]

With these considerations, we will finally calculate the Legendre expansion

coefficients of the finite element approximation uhp on each cell K as follows:

ck =

∏
j∈k

2j + 1

2

∫
K

uhp(x) P̃k

(
F−1K (x)

)
dx (3.20)

=

∏
j∈k

2j + 1

2

∫
K̂

ûhp(x̂) P̃k(x̂) |detJ(x̂)|dx̂ , (3.21)

with the determinant of the Jacobian J(x̂) = ∇̂FK(x̂) resulting from the

coordinate transformation. [21]

For one-dimensional scenarios, Mavriplis (1994) expanded the finite element

approximation in a power series of Legendre polynomials up to the order pK

of the assigned finite element on cell K. Houston and Süli (2005) and Eibner

and Melenk (2007) generalized their approach by considering multi-dimensional
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Legendre polynomials:

∀x ∈ K : uhp(x) ' uhp,k(x) =
∑

0≤‖k‖1≤pK

ck P̃k

(
F−1K (x)

)
. (3.22)

Eibner and Melenk (2007, Prop. 2) argued that a function is analytic, i.e.,

representable by a power series, if and only if the absolute values of the expan-

sion coefficients decay exponentially with increasing index k:

∃C, σ > 0 ∀k ∈ Ndim
0 : |ck| ≤ C exp (−σ‖k‖1) . (3.23)

Houston and Süli (2005, Sec. 2.4) and Eibner and Melenk (2007, Ch. 4) inter-

preted the rate of decay σ as a measure for the local smoothness of the finite

element approximation and determined it on each cell K by performing a least

squares fit on:

∀k ∈ Ndim
0 : 0 ≤ ‖k‖1 ≤ pK , ln

 max
l

‖l‖1=‖k‖1

|cl,K |

 ∼ CK − σK‖k‖1 ,

(3.24)

where we take the maximum value over all expansion coefficients ck that cor-

respond to the same sum of indices ‖k‖1 of the multi-index tuple k. Mavriplis

(1994) considered a similar approach in one dimension, but only used the last

four expansion coefficients for the fit.

Mavriplis (1994) and Eibner and Melenk (2007) treated the rate of decay as

a decision criterion for hp-refinement by comparing it to a user-provided abso-

lute threshold δ: A decay rate larger than the threshold indicates a good reso-

lution of the finite element basis functions and would entail p-refinement, while

a smaller rate would express a bad resolution and thus suggests h-refinement.

They considered a threshold of δ = 1 as sufficient.

As an alternative strategy, Bangerth and Kayser-Herold (2009) proposed to

use the coefficients of a Fourier series expansion to determine the rate of decay

(see also [23]). We will use sinusoidal functions that form an orthogonal basis

on the reference cell K̂ = [0, 1]dim as follows:

φk(x) = exp (−i 2πk · x) , (3.25)

〈φk, φl〉 =

∫
K̂

φk(x)φ∗l (x) dx = δkl . (3.26)

We present the real parts of the first few Fourier basis functions in Fig. 3.4.

Suppose a function u on cell K is part of the Hilbert space Hs(K), the

following integral must exist:

‖∇su(x)‖2L2(K) =

∫
K

|∇su(x)|2 dx <∞ . (3.27)
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Figure 3.4: The real parts of the first five basis functions for a one-dimensional
Fourier expansion.

The same condition also applies for its spectral representation uk and can be

written as:

‖∇suk(x)‖2L2(K) =

∫
K

∣∣∣∣∣∑
k

(−i 2πk)s ck φk
(
F−1K (x)

)∣∣∣∣∣
2

dx (3.28)

= (2π)2s
∑
k

|ck|2 ‖k‖2s2 <∞ . (3.29)

The sum is finite only if we require that its summands decay as:

∃ε > 0 : |ck|2 ‖k‖2s2 ‖k‖
dim−1
2 = O

(
‖k‖−1−ε2

)
. (3.30)

The additional factor stems from the fact that, since we sum over all multi-

indices k that are located on a dim-dimensional sphere, we actually have, up

to a constant, ‖k‖dim−12 modes located in each increment ‖k‖2 + d‖k‖2 that

need to be taken into account. [23]

With a comparison of exponents, we see that the Fourier coefficients must

decay as follows so that the above integral exists:

∃ε > 0 : |ck| = O
(
‖k‖−(s+ dim

2 +ε)
2

)
, (3.31)

or in other words, when the coefficients decay as |ck| = O(‖k‖−σ−ε2 ), then the

function u is part of Hσ−dim/2(K). [23]
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We will expand the finite element approximation uhp into a Fourier series

on each cell K and will use the local decay rate σK of the expansion coefficients

as a smoothness indicator. The basis functions of the spectral decomposition

are complex-valued for Fourier expansions. Suppose our finite element approx-

imation is real-valued, the expansion coefficients are symmetric ck = c∗−k and

we thus only have to calculate all nonnegative multi-indices k. The expansion

is performed as follows:

∀x ∈ K : uhp(x) ' uhp,k(x) =
∑

0≤‖k‖2≤pK

ck φk
(
F−1K (x)

)
, (3.32)

ck =

∫
K

uhp(x)φ∗k(F−1K (x)) dx =

∫
K̂

ûhp(x̂)φ∗k(x̂) |detJ(x̂)|dx̂ . (3.33)

We expand our finite element approximation up to a mode that corresponds

to the polynomial degree pK of the currently active finite element. From ex-

perience, we decided that this is a suitable choice as results converge from this

value on. [24]

With the expansion coefficients at hand, we calculate the decay rate with

a least squares fit as follows:

∀k ∈ Ndim
0 : 0 < ‖k‖2 ≤ pK , ln

 max
l

‖l‖2=‖k‖2

cl,K

 ∼ CK − σK ln (‖k‖2) .

(3.34)

We will skip the zeroth mode to avoid the singularity caused by the logarithm.

Bangerth and Kayser-Herold (2009) originally used these smoothness in-

dicators as a decision criterion for hp-refinement. They calculate the mean

value of the smoothness indicator for all cells flagged for refinement. When-

ever the indicator is larger than the average, p-refinement is applied in favor

of h-refinement.

In our investigations, we will use both Legendre and Fourier coefficient

decay methods in separate scenarios to estimate the smoothness of our finite

element approximation as decision criteria for hp-adaptation. Further, we will

expand them to utilize hp-coarsening as well. For this, we will again use a

strategy different from the ones presented by the original authors, namely the

fixed-number adaptation strategy. On cells to be refined, we consider the frac-

tion corresponding to the largest decay rates for p-refinement, while for cells

to be coarsened, the fraction with the lowest decay rates will be picked for

p-coarsening. This corresponds to the same approach of the error prediction

strategy and its graphic illustration from Fig. 3.2, and ensures the comparabil-

ity of all methods.
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In practice, we will calculate transformation matrices as auxiliary tools to

convert a finite element approximation into its spectral representation. Thus

we can perform the transformation by a simple matrix vector product even

for higher order elements. For every reference finite element in our collection,

a separate transformation matrix has to be generated covering the number of

modes corresponding to the polynomial degree p of its basis functions.

For practical reasons, we will only create those matrices on the reference

cell K̂ = [0, 1]dim. This way we have to perform the costly calculation of trans-

formation matrices only once and will use them to determine the expansion

coefficients on every cell K. On the downside, these transformations will only

yield applicable results if the cells K are not degenerate, or in other words,

when the mapping FK from the reference cell K̂ to the actual cell K is linear,

resulting in a constant Jacobi determinant.

For the Legendre expansion, we determine the coefficients ck,K for each cell

K via matrix-vector product with the transformation matrix L̂ij :

∀k ∈ Ndim
0 : 0 ≤ ‖k‖1 ≤ pK , ck,K =

∑
j

L̂i(k)j uj,K , (3.35)

L̂i(k)j =

(∏
l∈k

2l + 1

2

)∫
K̂

ϕ̂j(x̂) P̃k(x̂) dx̂ , (3.36)

where uj,K denote all entries of the solution vector belonging to the current

cell K and ϕ̂j are the basis functions of the reference element. The map i(k)

transforms the multi-index k into an unique integer used as a matrix row

index. When using Lagrange finite elements, we will use standard Gaussian

quadrature to calculate the integrals with a number of quadrature points of

(pK + 1) in each direction.

The rules to calculate the Fourier expansion coefficients ck,K with the cor-

responding transformation matrix F̂ij look slightly different:

∀k ∈ Ndim
0 : 0 ≤ ‖k‖2 ≤ pK , ck,K =

∑
j

F̂i(k)j uj,K , (3.37)

F̂i(k)j =

∫
K̂

ϕ̂j(x̂)φ∗k(x̂) dx̂ . (3.38)

Since the Fourier basis functions do not correspond to polynomials, but to

sinusoids, we calculate the integrals differently. As a quadrature rule, we will

iterate a base quadrature in each direction by a number of times corresponding

to the highest mode, which we chose to be pK . From our experience, a Gaussian

quadrature with four points suffices for the role of the base quadrature rule as

results converge from this value.
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In practice, we noticed that the coefficient decay strategies offer poor results

on linear elements. We suspect that linear polynomials alone do not offer

sufficient information to make a well-founded statement about the smoothness

attribute of the finite element approximation on the cell itself, as we can only

work with constants and linear functions in this case. We thus suggest to refrain

from using them in this context and work with at least quadratic elements

instead.

A variety of different ideas and implementations for smoothness indication

strategies have been elaborated in the past. Davydov et al. (2017) also used

the method of Legendre coefficients, but determined their decay in each co-

ordinate direction separately and took the minimum over all decay rates as

the smoothness indicator. This approach ignores all multi-indices with more

than one nonzero entry, which is why we do not consider this approach in our

investigations despite its lower computing load.

A different approach is to estimate the Sobolev regularity locally and use

it as a means for deciding between h- and p-adaptation. Ainsworth and Senior

(1998) presented a way to determine the regularity by solving the problem

on smaller patches of the domain, which is a rather expensive approach. On

the other hand, Houston, Senior, and Süli (2003) proposed a strategy which

estimates the local Sobolev regularity directly from a Legendre series expansion

(see also Houston and Süli 2005, Sec. 2.4). We will enhance our collection of

decision strategies by this approach in the near future.

3.3 Global data transfer

A major requirement for a general parallel hp-adaptive FEM application is the

ability to transfer data from the entirety of all cells or even the complete finite

element approximation across adapted meshes. This is especially the case for

time dependent or nonlinear problems, in which the solution of a problem on

a recently adapted mesh depends on the finite element approximation of the

preceding iteration from the previous mesh.

In sequential and parallel applications with shared memory, each process has

access to the complete memory set. However in high-performance computing

(HPC) applications with distributed memory, we need to transfer data on cells

from processes that have previously owned them to processes that will own

them after each adaptation or repartitioning.

For communication via Message Passing Interface (MPI), we need to know

the size of the data to be transferred, so each process needs to know how much

it will send and is going to receive. Since we measure and distribute workload

per cell, we know how much data will be sent in case of h-adaptation, since all
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cells share the same attributes. However, for p-adaptation, the amount of data

might vary from cell to cell. A first attempt to make data transfer available

on hp-adaptive meshes would be to make the buffer size as large as the biggest

data chunk among all cells. However, this would be highly inefficient, since

buffers will be way larger than necessary. We need to find a way to send data

efficiently.

One possibility would be to use MPI Probe [3] operations to check for sizes

of incoming messages before actually receiving them, and decide afterwards on

how to receive them. We could make use of this for the transfer of variable size

data.

Regardless of this approach, Burstedde (2018, Sec. 5.2) proposed to divide

the data transfer into two separate ones that are optimized for each kind of

transfer: one for fixed size data transfer, and one for variable size data transfer

in this specific order. Information about sizes of the variable data buffers

on each individual cell will be sent during the fixed size transfer. In either

case, they use nonblocking communication for this purpose, which requires

information about the association of cells to their owning process from both

the old and the updated mesh as source and destination for the data transfer.

Since we exchange data between all cells without exception anyway, we favor

this algorithm variant for our implementation.

Many problems to be solved with FEM require multiple data sets to be

exchanged between meshes. We will avoid performing the costly transfer mul-

tiple times and prepare one consecutive memory buffer with all data to be

communicated for both the fixed size and variable size transfer, respectively.

This leaves enough flexibility for the transfer mechanism to be independent

from the investigated problem.

In the application scope, users will be required to provide functions that

prepare data as a consecutive chunk of bytes on each cell, and another one that

translates them back. The pack function needs to be registered as callbacks

and will be triggered during the adaptation process. Data sizes for each cell

are available after all pack functions have been called. Contiguous memory

buffers so created will look like the one depicted in Fig. 3.5. Corresponding

unpack functions have to be called by the user after adaptation finished and all

data structures have been prepared to receive the transferred data. We ensure

the correct association of pack and unpack function calls by assigning integer

handles.

For the preparation of data buffers, all refinement indicators need to be

terminally set. During both the packing and unpacking process, we determine

whether cells will be or have been either refined, coarsened, or left untouched.

Simple data structures assigned on each cell can be easily packed and un-
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cell 0 cell 1 ...

callback 0 callback 1 ... callback 0 callback 1 ... ...
... ... ... ... ... ...... ...

Figure 3.5: Division of contiguous memory chunks for data transfer. Data
is arranged according to the order of the cells. Registering pack functions as
callbacks allows to add multiple data chunks from different sources to each cell.

packed. However in case of h-adaptation, data has to be transferred between

parent cells and children. Depending on the context, it is upon the user’s de-

cision to provide an appropriate strategy, e.g., divide data of the parent cell

equally on all children for refinement and sum data on all children for the

parent cell for coarsening.

However, the transfer of complete finite element approximations is slightly

more complicated. Here, we need to prepare data on each cell not only depend-

ing on the adaptation context, but also on the currently active finite element.

In fact, we will already prepare data from the old mesh for the adapted grid

in such a way that it just has to be unpacked on the new mesh. Regardless of

whether continuous Galerkin (CG) or discontinuous Galerkin (DG) methods

are employed, we will always store values of all DoFs on every cell to make sure

that all data is available on cells after transfer. Bangerth, Burstedde, et al.

(2012) developed an algorithm for transferring the solution across h-adapted

meshes in parallel, which will be expanded to work with hp-adaptation in the

remaining part of this section.

Once all adaptation indicators have been set, we know how cells will change

during the execution of refinement and coarsening, so a corresponding pack

callback will look as follows: On all active cells which will not be coarsened,

we interpolate or project all DoF values of the currently active finite element

to the future finite element. On nonactive cells which have active children that

will be coarsened, we interpolate or project all DoF values from the currently

active finite elements on children to the future finite element of the parent

cell, which is determined as the encapsulating finite element space among all

children (see Sec. 3.1).

This way, all data has been prepared for the new mesh and has to be

distributed on it with the following unpack callbacks after hp-adaptation hap-

pened and all DoFs have been enumerated on the updated mesh. On every

active cell that has not been changed or that is the result of coarsening, we

simply extract all DoF values. If an active cell is the result of refinement, we

extract all DoF values from its parent cell and interpolate them on the refined

cells. All extracted DoF values are left to be copied to the global data container
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corresponding to the finite element approximation.

In the following, we give a detailed description of the algorithm implemented

in the deal.II library which is tied to the usage of p4est [13] as an oracle

and relies on features provided by it. Here, the deal.II triangulation is stored

independently from the p4est mesh.

In the application scope before adaptation is executed, users attach pack

callback functions to the triangulation and specify whether they qualify for

fixed or variable size data transfer.

As soon as the user requests adaptation to be performed, all adaptation

indicators will be carried over to the p4est master mesh, which will be modified

accordingly while maintaining the 2:1 mesh balance. The deal.II domain is

left untouched.

We store a deep copy of the array of partition markers (Burstedde 2018)

from the local p4est object, which defines the global partition boundary allow-

ing us to relate each cell to its corresponding subdomain. After repartitioning

the p4est master mesh, we know each cell’s association to its subdomain on

both the old and the adapted mesh with the corresponding partition markers,

and thus source and destination processes for all MPI communication.

Comparing the meshes of the updated p4est object with the deal.II tri-

angulation lets us identify how cells have changed. With this information, we

are able to prepare data from the old mesh for the new one. We create the

contiguous memory buffers for fixed size and variable size data transfer, respec-

tively, by triggering all callback functions that return buffers for the particular

data on each cell. In addition, we will store how cells have changed with a

corresponding flag and write it to the fixed size buffer.

We determine the sizes of every cell’s data pack in each buffer. For fixed

size data, we verify the equality of their size on all cells. We store a list

with the data size of every cell from the variable size buffer. After that, the

fixed size data buffer and the list of sizes from the variable size buffer will be

communicated via the optimized fixed size transfer function provided by p4est

(Burstedde 2018). Last, the variable size data buffer will be transferred using

the analogously optimized function after the list of sizes is available.

After adaptation has been performed and all data has been communicated,

the user is left to reinitialize all data structures according to the updated mesh

and unpack the transferred data into them.

With this feature, we are able to send all sorts of cell-related data across

adapted meshes, e.g., particle data, quadrature point data, and finite element

approximations. Further, we use the above algorithm to transfer active finite

element indices internally. To be more precise, future finite element indices will

be sent and unpacked as active finite element indices on the adapted mesh.
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These contiguous memory chunks can also be used for the purpose of serial-

ization. In case the program shall be interrupted and resumed at a later stage,

data will be dumped to the file system. We will create two separate files, each

containing either fixed size or variable size data.

Therefore, we need to determine the offset at which each process is supposed

to write its local memory buffer into a global contiguous file. Thus, each process

needs to know how much memory all preceding processes occupy. For fixed size

data, this offset simply translates to the global index of the first cell on this

process times the data size per cell. The global index can be determined from

the array of partition markers of the p4est object (Burstedde 2018). However,

in case of variable size data, we need to determine the offset with a prefix sum

over the local buffer sizes of all preceding processes using MPI Exscan [3].

To resume the program successfully, we also need to store information about

the data size of every cell, which we will prepend to the actual data in each

file. In case of fixed size data, an integer corresponding to the data size per cell

will be stored. For variable size data, we will collectively write the data size of

every local cell in the global file, where each process’s offset is determined by

the global index of the first cell times the size of an integer.

Finally with this information, we can write all data collectively to the file

system using MPI File write at, which can later be read from via

MPI File read at [3]. For the serialization of the global mesh structure, we

use the provided save and load functions of p4est.

Since all memory is written contiguously and the order of cells on the space-

filling curve is independent of the partitioning, we can resume the program with

a different number of processes than used during serialization.
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Application to the Laplace

problem

With all algorithms and data structures elaborated in Chs. 2 and 3, we now

have all features at our disposal to solve partial differential equations with par-

allel, dynamic hp-adaptive finite element methods (FEM). As a next step, we

would like to apply our implementation in the deal.II library on a certain ex-

emplary problem that showcases its error performance and parallel scalability.

To quantify its capabilities, we want to find a scenario for which an analytic

solution usol is available, allowing us to calculate the actual error of the finite

element approximation. This approach for code verification corresponds to the

method of manufactured solutions (Salari and Knupp 2000). Our choice for a

suitable problem falls on solving the Laplace problem with Dirichlet boundary

conditions:

−∇2u(x) = 0 on Ω , u(x) = usol(x) on ∂Ω . (4.1)

The choice to study the Laplace problem was not made by chance: We

encounter the Laplace equation, or rather the Poisson equation with a non-

vanishing right hand side, in many different modeling processes. In the field of

electrostatics, the electric potential satisfies the Poisson equation. It is also used

to model diffusion processes in time dependent problems. Embedded in time

discretization schemes, the Poisson problem has to be solved in each time step

for, e.g., heat transfer problems. Further for the simulation of incompressible

flows, the coupling of pressure and velocity is governed by the Poisson equation.

Following Eq. (3.1), we expect that p-adaptation is favorable in regions

where the solution is regular, while h-adaptation yields better results in regions

with discontinuities or singularities. For elliptic problems like the Laplace one,

we expect singularities on concave domains (Brenner and Scott 2008, Sec. 5.5).

39
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Mitchell and McClain (2014) presented several benchmarks for hp-

adaptation that make use of this observation. We decide to showcase our

implementation on a two-dimensional domain with a reentrant corner located

at the point of origin:

Ω ∈ {(r, θ) ∈ R≥0 × [0, 2π) : 0 ≤ θ ≤ π/α} , (4.2)

with α ∈ (1/2, 1). With the additional requirement that the solution must be

zero along the legs of the reentrant corner, this particular scenario has a general

solution which can be formulated in polar coordinates r =
√
x2 + y2 > 0 and

θ = arctan2(y, x):

usol(x) = rα sin(α θ) , (4.3)

∇usol(x) = ∂rusol(x)er +
1

r
∂θusol(x)eθ (4.4)

= αrα−1 [sin(α θ)er + cos(α θ)eθ] , (4.5)

with unit vectors er = cos(θ)ex − sin(θ)ey and eθ = sin(θ)ex + cos(θ)ey. We

immediately see that this solution has a singularity near the point of origin for

the permitted values of α ∈ (1/2, 1):

‖∇usol(x)‖2 = αrα−1 , ∀α ∈ (1/2, 1) : lim
r→0
‖∇usol(x)‖2 =∞ . (4.6)

In our testcase, we pick a corner with a right angle with α = 2/3 resulting

in an L-shaped domain, at which all cells share the same topology to exclude

influences from mesh distortion in our benchmark:

ΩL = [−1, 1]
2 \ {(0, 1)× (−1, 0)} . (4.7)

A depiction of the solution on this particular domain is shown in Fig. 4.1. The

three-dimensional variant of this problem is often referred to as the Fichera

corner problem.

In this chapter, we will solve the so designed Laplace problem on the L-

shaped domain on consecutively refined meshes, and evaluate certain aspects

of our implementation, namely the error performance of the decision strategies

and their parallel scalability.

Following the usual approach in FEM, we transfer our problem to its

weak formulation using continuous Galerkin (CG) methods (Brenner and Scott

2008):

(∇u,∇v) = 0 , ∀v ∈ V0 :=
{
v ∈ H1(Ω) : v|∂Ω = 0

}
. (4.8)

The shape functions of Lagrange elements will form the basis for the function

space Vh ⊂ H1(Ω). Dirichlet boundary conditions are imposed via constraints
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Figure 4.1: Solution of Eq. (4.3) for the manufactured Laplace problem on the
L-shaped domain described by Eq. (4.7).

on degrees of freedom (DoFs) located on the boundaries. The problem will

be solved numerically with an iterative solver based on the conjugate gradient

algorithm combined with an algebraic multigrid (AMG) preconditioner.

The deal.II library offers interfaces to parallel linear algebra of the third

party libraries PETSc [12] and Trilinos [11] for distributed memory architec-

tures. In our investigations, we choose the latter using their Epetra module

that handles all data infrastructure, and pick a corresponding solver from their

AztecOO package as well as their ML preconditioner. Compared to an equiva-

lent configuration of PETSc modules, the Trilinos implementation yields more

reproducible results using Message Passing Interface (MPI) ([12], FAQ) and

performs faster with higher order polynomials at more advanced refinement

iterations according to our experience. For all calculations, we set a tolerance

of 10−12 relative to the l2-norm of the right hand side vector of the equation

system.

4.1 Error performance

The main motivation to use hp-adaptive methods are their superior error con-

vergence characteristics compared to the more common h-adaptive methods,

provided that the solution is sufficiently regular. We will demonstrate their

advantages on our presented scenario and use consecutively adapted meshes to

illustrate their error performance in relation to their workload on the numerical

example.
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The consecutively adapted meshes so created are by far not optimal for the

problem, nor is finding such an optimal mesh subject of our investigations. We

are rather interested in comparing the performance and results of the decision

algorithms presented in Sec. 3.2, and whether they are capable of localizing

regions with singularities, i.e., the one at the point of origin for our numerical

example. We will compare all types of adaptation at our disposal, i.e., h-, p-,

and hp-adaptation. For the latter, we examine all three presented strategies in

turn, namely error prediction and smoothness estimation by either Legendre

or Fourier coefficient decay.

After solving the linear equation system in each step and calculating the

error on the basis of the analytic solution according to Kelly et al. (1983) and

Davydov et al. (2017), we use the fixed-number strategy to indicate adapta-

tion: The 30 % fraction of all cells with the highest error will be flagged for

refinement, and 3 % of those with the lowest error will be marked for coarsen-

ing. This allows us to compare the results of each adaptation type under the

same conditions, since always the same amount of cells is going to be changed.

The idea behind additional coarsening is motivated by the fact that we tend

to refine too many cells with error estimators providing an upper bound for

the error, or error indicators based on heuristics. We would like to correct

this mistake from a previous iteration by coarsening a small amount of cells.

The combination of fractions of 30 % for refinement and 3 % for coarsening is a

reasonable choice for two-dimensional applications within the deal.II library.

Further for hp-adaptive strategies, we need to choose a decision strategy

providing corresponding indicators that propose which type of adaptation we

want to impose on each cell. Again, we use the fixed-number algorithm on

all decision indicators as illustrated in Fig. 3.2. This allows us to compare the

choices made by each strategy since always the same number of cells is going to

be changed in terms of both h- and p-adaptation, respectively. As a first naive

approach, we will impose the h-variant on one half of all cells previously marked

for adaptation, and the p-variant on the other half. As a second attempt, since

we know that we have only one single localized and well-defined singularity in

the domain, we are confident to make an educated guess and assign 90 % of

flagged cells for p- and the remaining 10 % for h-adaptation. From here on, we

refer to the first approach if we call a decision strategy naive, and speak of the

second if no such attribute was given.

To set up the numerical example, we start with a mesh consisting of three

cells as the coarsest possible representation of our L-shaped domain, which will

be globally refined five times to form the initial grid for all investigations in this

section. The error prediction strategy forms an exception since it requires a

prepended initialization step. In this case, we will begin with four initial refine-
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ment steps, solve the equation system, and perform another global refinement

so that we have the corresponding predicted errors available. Further for this

strategy, control parameters are set to γn = 1, γh = 2, and γp =
√

0.4, which

corresponds to the values used by Melenk and Wohlmuth (2001) and Mitchell

and McClain (2014).

We use a collection of Lagrangian finite elements Qp with polynomial de-

grees p ∈ [2, 7] and thus skip linear elements due to our observation that the

smoothness estimation algorithms perform poorly with those. All cells will be

initially assigned with the lowest order element. In the case of sole h-adaptation

all elements will be assigned to Q2 elements. For pure p-adaptation, we favor

p-adaptation over h-adaptation as long as the finite element can be p-adapted,

i.e., the current finite element is neither at the top nor the bottom of the hier-

archy. We perform a total of twelve consecutive adaptation iterations, so twice

as many as there are different finite elements in our collection. In case of the

prediction strategy, the total number of iterations including the initialization

step is then 13.

All calculations in this section have been carried out on a desktop machine,

using an Intel® Core™ i7-4790 processor running at 3.6 GHz with 32 GB of

memory. Although this is a quad-core processor offering a total of eight threads

utilizing hyper-threading, we will only use a single thread for our calculations,

which is sufficient to determine both error and workload. We will deal with

parallelization in later sections.

Representatively, we will show the grid and distribution of finite elements

after six adaptation cycles of the Legendre coefficient decay strategy with the

educated guess approach in Fig. 4.2. All other meshes after equally many

adaptation iterations from the other strategies are showcased in App. B. We

see that the Legendre strategy is able to locate the singularity in the center

by preferring h-adaptive refinement in this section, while using p-adaptation

in the other regions. This is also the case for all other strategies, naive or not,

as shown in App. B.

We will plot the H1-error against the workload, which can be measured in

two ways: either with the number of DoFs, or the elapsed real time from start

to end of our application, which we call wall time. We begin with identifying

the workload with the former and show corresponding results in Fig. 4.3.

The double logarithmic representation of our results in Fig. 4.3a reveals

analytic convergence for the h-adaptive case. Eq. (3.3) predicts exponential

decay for hp-adaptive strategies, which we would like to verify in Fig. 4.3b

with a custom scaled plot featuring a logarithmic y-axis and an x-axis scaled

with the cube root, which corresponds to the correct exponent in our numerical

example. Indeed, we see exponential convergence in the p-adaptive and hp-
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Figure 4.2: Arrangement of finite elements after six adaptation iterations with
hp-adaptation and the smoothness estimation strategy by the decay of Legendre
coefficients. The colors represent different polynomial degrees p of the assigned
Lagrange elements Qp.
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Figure 4.3: Error performances of several adaptation strategies compared to
their workload measured by the number of DoFs.
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adaptive strategies to the proclaimed rate, however the naive approaches miss

it. Thus, a high proportion of p-refinement is required to yield exponential

decay in this scenario.

The p-strategy shows a similar decay as the hp-adaptive methods. In this

strategy, p-refinement will be applied up to the point until it is no longer

possible after we reached the highest order element in the hierarchy. With six

distinct finite elements in our collection, we will apply h-refinement for the first

time after the sixth data point, at which point a cohere drop is observable.

To solve the equation system in the last adaptation cycle, the hp-adaptive

methods require a number of DoFs which is lower by a factor of 100 than the h-

adaptive methods to achieve the same accuracy and by a factor of ten compared

to their naive counterparts. This demonstrates that hp-adaptive methods are

the methods of choice for this particular scenario.

In the course of adaptation with the Fourier strategy, some adaptation steps

increase the number of DoFs without decreasing the error. We observed that

this occurs if the finite element with the highest polynomial degree in our mesh

increases from fourth to fifth order. This is perhaps not a causal relation, and

we have not yet found the reason for this behavior.

From a practical point of view, the error performance will now be compared

to the actual wall time to measure whether we have an economic benefit in

using hp-adaptive methods. For each consecutive adaptation cycle, we again

plot the calculated error against the workload, which is this time represented

by the total run time accumulated over the current and all previous iterations.

Each run will be repeated five times and the minimum over the total run time

over all runs will be picked to compensate for temporarily high loads on memory

bandwidth. The results are shown in Fig. 4.4.

Again after the last adaptation cycle, p- and hp-adaptive methods are about

an order of magnitude faster than the h-adaptive variant and thus the most effi-

cient. Interestingly, the wall times of the naive hp-strategies fan out. It appears

that a high diversity of finite elements compared with major grid adaptation

increases the wall time significantly, and we suspect that our choice of an AMG

preconditioner is responsible for this behavior. We will discuss this topic later

in the scalability analysis.

The Fourier strategy takes the longest wall time for initialization, during

which the Fourier transformation matrices are calculated. This is a costly oper-

ation, which requires substantially more quadrature points during calculation

than the Legendre equivalent, and is responsible for the observable offset.

Among all hp-strategies of either naive or educated guess category, we do

not see major differences in their performance, but overall the Legendre co-

efficient decay strategy stands out in both categories with the best error per
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Figure 4.4: Double logarithmic representation of error performances of several
adaptation strategies compared to their workload measured by the wall time.

workload performance in either way workload is defined.

Note that the results presented in this section are specific for our numerical

example, in which the solution is sufficiently smooth over the entire domain ex-

cept for the singularity at the origin. The error performance will most probably

differ if the presented techniques are applied to a different scenario.

4.2 Load balancing

For parallel computations on distributed memory systems, the global domain

is partitioned into several subdomains, each of which is assigned to a single

process. Such a mesh decomposition is showcased in Fig. 4.5.

Proper load balancing is necessary for an efficient use of all computational

resources. Especially on high-performance computing (HPC) systems with

lots of available processors, this is a critical feature. For hp-adaptive FEM,

we presented approaches for load balancing in Sec. 2.3 by assigning weights to

each individual cell and balancing the accumulated weight among all processes.

We relate the weight to the number of DoFs on each cell potentiated by an

exponent that we will determine in the upcoming investigations. In other
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(b) Weighting with an individually potentiated number of DoFs, i.e., ∝ n1.9
dofs.

Figure 4.5: Decomposition of the mesh after six iterations with the Legendre
coefficient decay strategy on twelve MPI processes with various cell weighting.
Each color represents a different subdomain.
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words, cell weights are chosen proportional to ncdofs with the exponent c to be

ascertained.

Although all three hp-adaptive strategies have demonstrated a similar per-

formance as shown in Sec. 4.1, we pick only one adaptation strategy for our

parallel investigations. We choose the smoothness estimation strategy based

on the decay of Legendre coefficients as the most efficient one for this purpose.

Investigations are carried out on the JURECA supercomputer (Krause and

Thörnig 2018; [14]). Each computing node is equipped with two Intel® Xeon®

E5-2680 v3 processors with twelve cores running at 2.5 GHz and either 128 GB,

256 GB or 512 GB of memory. With simultaneous multithreading, a total of

48 threads are available per node. Communication between nodes happens via

a Mellanox® EDR InfiniBand high-speed network. More information on the

configuration of the supercomputer can be found in [14].

In this section, our investigations are performed on two distinct nodes,

which provide a total of 96 threads and involve communication between two

physically independent memory segments. We expect that this setup yields

representative results that can be extrapolated on even larger problem sizes

and different numbers of MPI processes.

Further, we use a ‘flat’ MPI model: Every thread will be assigned to an

individual MPI process and no additional thread parallelization is invoked. Al-

though deal.II provides such a feature via Intel® Threading Building Blocks

(TBB), we refrain from using it to measure the pure MPI performance for all

parallel analyses in this work.

To qualify our problem for parallel computations, we need to increase its size

drastically. The problem is initialized with nine global refinements and gets

adapted in twelve iterations. For the strategy with the Legendre coefficient

decay, this results in a total number of 46,369,440 DoFs, so that each process

will be assigned 483,015 DoFs on average. Each type of finite element from the

provided collection is represented at least once in the mesh.

This advanced scenario will form the basis of our investigations to see how

different weighting exponents affect the wall time, and which one provides a

minimum. With serialization, we ensure that each of these runs conforms to

the same conditions. Again, to mitigate the impact of temporary slowdowns

on the supercomputer due to high loads on memory and network bandwidth,

we repeat each run for a total of five times and take the minimum wall time in

each category over all runs.

For varying weighting exponents, we compare the wall times of the full

adaptation cycle and its relevant sections in Fig. 4.6.

As discussed in Sec. 2.3, the assembly of the equation system and its solution

are identified as the critical sections whose wall time is affected by the number
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Figure 4.6: Wall times of a complete adaptation cycle and those parts relevant
for load balancing. The problem has about 46 million DoFs and is solved on
two nodes or 96 MPI processes. Weights proportional to ncdofs will be assigned
to each cell with varying exponents c.

of DoFs. We see that the solution of the equation system takes about 90 %

of the total wall time and is the crucial factor for proper load balancing. The

minimal wall time for both solver and the full cycle is reached with a weighting

exponent of c = 1.9.

We were dissatisfied to find the minimum wall time of the solver at such

a high exponent, since we expected c = 1 for an efficient solver. On closer

reflection, this is not surprising considering the large number of nonzero entries

in the system matrix caused by high order finite elements, which the current

implementation of the preconditioner does not handle efficiently. Further, we

were expecting a minimum in the assembly at about c = 2, but found it was

decreasing at even higher exponents. We have no explanation for this behavior.

Anyways, we observed that the total run time does not actually depend

particularly strongly on the exponent as it varied by less than 10 % in our

investigations. We therefore do not give much importance to the particular

choice of cell weights as long as the number of degrees of freedom of each cell

is considered.
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4.3 High-performance computing scalability

The final part of our investigations relates to the demonstration of the scala-

bility of our algorithms and data structures on HPC systems, for which we will

again use the JURECA supercomputer (Krause and Thörnig 2018; [14]).

Again working with successively adapted meshes, we will measure the wall

time spent in each particular section of each SOLVE-ESTIMATE-MARK-

REFINE iteration, which is supposed to increase linearly with the workload

determined by the number of DoFs or decrease linearly with an increasing

amount of workers, i.e., number of MPI processes. We distinguish between the

following categories in each adaptation cycle similar to Bangerth, Burstedde,

et al. (2012):

• Setup data structures. Enumerate all DoFs. Determine the sparsity pat-

tern describing locations of nonzero matrix entries. Calculate constraints

for hanging nodes and boundary values. Allocate memory for all dis-

tributed data structures. Communicate between processes which matrix

or vector elements they will write to that they do not own locally.

• Assemble linear system. Calculate the individual contribution of each

locally owned cell to the global equation system. Exchange data if matrix

or vector elements are stored on a different process.

• Linear solver. Set up both the AMG preconditioner and the conjugate

gradient solver and solve the equation system in parallel.

• Estimate error. Calculate the error indicators on locally owned cells on

the basis of the current solution. Mark cells for either refinement or

coarsening by computing global thresholds.

• Estimate smoothness. Calculate the smoothness indicators on the basis

of the current solution on locally owned cells marked for either refinement

or coarsening. Decide whether h- or p-adaptation is going to be applied

by computing global thresholds.

• Coarsen and refine. Perform coarsening and refinement and maintain the

2:1 mesh balance on the p4est master mesh, followed by its repartition-

ing. Transfer data between the outdated and updated mesh. Apply all

changes made to the master mesh on the deal.II grid.

We will pick the parameters and features that have proven to be suitable in

our numerical example. Thus, we again choose smoothness estimation by the

decay of Legendre coefficients as our hp-decision strategy. For load balancing,
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cell weighting is imposed proportional to the number of DoFs on each cell

potentiated by the exponent c = 1.9.

To investigate scaling, we will first consider problems with increasing size

solved on a fixed number of MPI processes, which we will realize using con-

secutive adaptations. We choose two different numbers of computation nodes,

namely 16 and 64 nodes with 768 and 3,072 MPI processes in total each.

We initialize the problem with ten initial global refinements and adapt the

mesh for a total of eleven iterations with the smaller amount of computing

nodes, and twelve iterations for the larger one. In the chosen configuration, all

available memory is used on the assigned nodes, so no more adaptation cycles

are possible without running out of memory. Again to exclude the influence of

the current load on the supercomputer, all runs are performed multiple times

and the minimum wall time of each category is taken. This time we repeat

each run seven times. The results of scaling on consecutively adapted meshes

are shown in Fig. 4.7 up to problem sizes of 2,073,075,769 DoFs.

Bangerth, Burstedde, et al. (2012) proclaimed that linear scaling is ob-

servable in all categories if the number of DoFs per MPI process exceeds 105.

We can confirm this observation in our numerical example with parallel hp-

adaptation as well.

During the first few adaptation cycles in our application, the wall time

attributed to the solution category shows a major increase which is more than

just linear. After six adaptation cycles, i.e., right of the indicated vertical line in

Fig. 4.7, each reference finite element from the collection will be assigned to at

least one cell due to the way we configured the scenario, and the aforementioned

curve flattens and increases only linearly as expected.

We observe a similar behavior in the number of iterations that the lin-

ear solver requires in Fig. 4.8. Here, the number of iterations first increases

exponentially and stagnates after said number of adaptation cycles.

We suspect that the rather heterogeneous association of the finite elements

by the decision algorithms has a similar effect on the distribution of nonzero

entries in the system matrix, for which AMG preconditioners are not designed

for. It appears that we could make use of a more suitable preconditioner.

Although it was the best option at our disposal at the time of this dissertation,

we may think about an alternative to this for future applications.

Mitchell (2010) presented hp-multigrid methods for sequential applications.

They combined multilevel methods on a geometric hierarchy with those on a hi-

erarchy of finite elements with different polynomial degrees p. The hp-adaptive

domain will be first relaxed by successively decreasing the polynomial degree of

all associated finite elements until only linear ones remain. Next, the geometric

multigrid (GMG) method is applied, while results are interpolated back to fi-
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Figure 4.7: Scaling for consecutively refined meshes on different numbers of
MPI processes. Each MPI process has more than 105 DoFs assigned only to
the right side of the indicated vertical line. Each finite element is represented
at least once in the mesh only to the right side of the designated vertical line.



54 Chapter 4. Application to the Laplace problem

0 2 4 6 8 10 12
0

50

100

150

200

250

300

Adaptation cycle

N
u

m
b

er
of

so
lv

er
it

er
a
ti

o
n

s

16 nodes 64 nodes each reference finite element in mesh

Figure 4.8: Number of solver iterations at different cycles of consecutive adap-
tations.

nite elements of the original polynomial degrees as a last step. The embedding

of p-relaxation and p-interpolation in either AMG or GMG preconditioning

is promising. Different combinations of multilevel methods in a polynomial,

geometric, and algebraic sense are possible, as Fehn et al. (2019) demonstrated

on static nonadaptive meshes. Therefore, an even more favorable error to wall

time performance of hp- compared to h-adaptive methods are conceivable than

presented in Fig. 4.4 and described in Sec. 4.1.

Furthermore, we find a similar behavior of the wall time in the assembly

category. The evaluation of finite element shape functions and their derivatives

on all quadrature points is an expensive operation, even if it is performed on

the reference cell to be projected onto an actual cell by mapping. Furthermore

in the context of hp-adaptive methods, this evaluation has to be performed for

every single reference finite element in our collection. Specifically for deal.II,

these values will only be evaluated whenever a cell with the corresponding

reference finite element assigned is visited for the first time. Thus, not all

of these evaluation objects are calculated until all finite elements are actually

represented in the domain. In our application, we unintentionally re-calculated

these values again in each adaptation step. Combined with our choice of a

decision strategy in favor of p-adaptation, we observe a cohere increase of the

wall time until every reference finite element is represented at least once in the
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domain. For future applications we will move the evaluation of all reference

finite element in front of the actual timing investigations.

For strong scaling, problems are set to a fixed size and are solved with an

increasing number of MPI processes. This time, we just solve one individual

adaptation cycle on a tailored mesh, that has been prepared from a previous

run via serialization.

To prepare these meshes, we consider two different scenarios which will be

constructed as follows: A smaller scenario is initialized with ten global refine-

ments, and a larger one with twelve refinements. Both will be adapted succes-

sively in six adaptation cycles, which results in each reference finite element

being represented at least once in the whole domain. This leads to a number

of DoFs of 50,736,415 and 969,257,276 in total for the respective scenarios.

With serialization, both problems will be solved at their advanced stage

with varying numbers of MPI processes, and the wall times of each section

in the program will be recorded. We again repeat each run for a total of

seven times and take the minimum wall time in each category, except for the

largest run in order to solve the bigger problem on 1,024 nodes or 49,152 MPI

processes, which we only repeated five times.

The results of strong scaling are shown in Fig. 4.9. Again, we identify linear

scaling whenever the number of DoFs per MPI process exceeds 105, which again

coincides with the observations of Bangerth, Burstedde, et al. (2012).
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Figure 4.9: Strong scaling for one advanced adaptation cycle at different prob-
lem sizes. Each MPI process has more than 105 DoFs assigned only to the left
side of the indicated vertical line.
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Summary and outlook

The finite element method (FEM) offers the unique capability of hp-adaptive

methods with remarkable properties in error convergence relative to workload.

However for high-performance computing (HPC), their parallel implementation

for large-scale computing architectures with distributed memory via Message

Passing Interface (MPI) is difficult.

We presented generic algorithms and data structures for massively parallel

hp-adaptive FEM, which allow for dynamic changes in both grid resolution and

assignment of finite elements. Our findings are independent of the implemen-

tation and can be used to enhance any kind of FEM software, provided that

their concepts conform to the elementary work of Bangerth and Kayser-Herold

(2009) and Bangerth, Burstedde, et al. (2012), which forms the basis of our

research.

In this dissertation, we elaborated on the nontrivial parts of combining both

parallel h-adaptive and sequential hp-adaptive methods. The unique enumer-

ation of degrees of freedom (DoFs) and their affiliation with the owning MPI

process poses challenges for continuous Galerkin (CG) methods whenever finite

elements of similar or different polynomial degree meet on subdomain bound-

aries. We developed an algorithm for the unique enumeration of DoFs in the

parallel hp-adaptive context which does not require more costly communication

with ghost cells than the h-adaptive pendant.

For automatic adaptation, refinement criteria on the basis of error indicators

are required to decide which parts of the domain should be adapted. In addition

using hp-adaptive methods, we also have to select the type of adaptation we

would like to impose. We presented several state-of-the-art methods for hp-

refinement, prepared them for parallel applications, and enhanced them for

hp-coarsening as well.

Cells are distributed on MPI processes in such a way that the workload

57
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is balanced among them, which we ensure by a weighted repartitioning. On

each cell, we imposed a simple weight proportional to the number of DoFs

potentiated by a factor depending on the investigated problem.

Whenever the mesh itself changes in parallel applications, for example by

adaptation, workload needs to be redistributed by repartitioning. Depending

on the investigated problem, transferring data from the former to the updated

mesh is necessary, for example the finite element approximation itself. Us-

ing hp-adaptive methods in addition, the amount of data to be transferred

might vary by cell. We present a general approach to provide contiguous mem-

ory sections which will be exchanged using optimized algorithms presented by

Burstedde (2018) for data of fixed and variable size, respectively.

We provided a reference implementation in the deal.II library and applied

it to the Laplace problem on a L-shaped domain, a common numerical bench-

mark for hp-adaptive methods. We have demonstrated their superior error

convergence and shown that our implementation scales on up to 49,152 MPI

processes.

Algorithms for parallel hp-adaptive FEM capable of handling both CG and

discontinuous Galerkin (DG) methods have not yet been prepared in a general

framework to this extent before. However, our implementation is still at an

early stage of development, and there is still plenty of room for improvement,

as described throughout this dissertation. Those aspects that leave room for

improvements are outlined in the following.

We observed an unfavorable scaling behavior during the solution of the

equation system in our hp-adaptive FEM application, which we attribute to

our choice of algebraic multigrid (AMG) preconditioning. A preconditioner

that also incorporates multilevel methods on a hierarchy of finite elements

with different polynomial degrees p will be more efficient and solve the linear

equation system in less iterations as investigated by Mitchell (2010). They

embedded p-multigrid methods in geometric multigrid (GMG) precondition-

ing for sequential hp-adpative applications. Furthermore, Fehn et al. (2019)

combined multilevel methods on hierarchies in a polynomial, geometric, and

algebraic sense for parallel FEM on static meshes without adaptation. Future

work involves the combination of multilevel methods to make them available

for parallel hp-adaptive methods as well. This also incorporates parallel h-

adaptive GMG preconditioners that have been presented by Clevenger et al.

(2019) who also provided an implementation in the deal.II library.

We described a handful of decision strategies to choose between types of

adaptation. However, there are more strategies worth trying out. Houston,

Senior, and Süli (2003) and Houston and Süli (2005) directly determined the

regularity of the solution from the coefficients of a Legendre expansion of the
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finite element approximation. We could use those as decision indicators, or

directly set the fitting finite element on the basis of their result.

One could also imagine different decision indicators that are specific to

the investigated problem. Hence for computational fluid dynamics, we could

relate the decision criteria towards a measure for turbulence for example. The

absolute value of the vorticity w = (∇×v) as the rotation of the fluid velocity

v would make up a good measure. We would prefer h-refinement on turbulent

regions indicated by a high vorticity, and p-refinement in laminar regions.

Future work will involve examining the possibility to combine hp-adaptive

methods with so called matrix-free methods. Memory access is the current

bottleneck on HPC machines. Instead of calculating matrix entries and storing

them, it might be faster to calculate them on the fly as they are requested.

Combined with single instruction, multiple data (SIMD) instructions or graph-

ics processing unit (GPU) acceleration, this is a highly favorable strategy on

current HPC machines. Matrix-free methods have been part of the deal.II for

a long time (Kronbichler and Kormann 2012), and have been continuously en-

hanced during the last decade (Kronbichler and Kormann 2019). Furthermore,

Munch, Kormann, and Kronbichler (2020) recently published an open-source

library named hyper.deal using high-order DG methods for high-dimensional

partial differential equations, which is built on top of deal.II and provides an

easy-to-use interface to utilize these methods. The purpose of their framework

is to investigate the dynamics of plasmas in nuclear fusion reactors involv-

ing shocks, which are modeled using the six-dimensional Vlasov equation. An

extension with hp-adaptive methods would be highly promising in any case

and would unleash their full potential. A specialized decision strategy for hp-

adaptation tied to an observable might be more suitable in the context of

plasmas than the general strategies presented in this project.

More generally, this framework can also be used to solve many other prob-

lems in continuum mechanics as well, e.g., in structural mechanics and fluid

dynamics in general. As a concrete application example in geosciences, convec-

tion processes in Earth’s mantle can be simulated with the open-source code

ASPECT (Kronbichler, Heister, and Bangerth 2012; [25]) which builds upon

the deal.II library. Simulation on a domain of planetary scope yields a lot of

workload. Thus ASPECT already benefits tremendously from parallel h-adaptive

methods, and now also has parallel hp-adaptive methods at its disposal with

the results of this dissertation.

We are left to see whether hp-adaptive FEM for distributed memory ar-

chitectures will be well-received by the community. At the very least, it has

been a long requested feature of the deal.II library, which was first mentioned
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in the Google Groups™ deal.II mailing list1 in early 2014 and has been in

progress since late 2016 [16].

In the past, Bangerth and Kayser-Herold (2009) provided algorithms and

data structures for sequential hp-adaptive methods and provided a reference im-

plementation in deal.II. They have been widely used for multi-physics prob-

lems in deal.II, coupling different physical models in different parts of the

domain by assigning corresponding finite elements. However, automatic hp-

adaptation stayed mostly in an experimental state within deal.II because

of its intricate application. The current interface has been redesigned in this

project and simplifies its usage, so that it hopefully becomes a widely used

feature in the community.

A good approach to make these features more accessible to all users of

the library is to write a dedicated tutorial program as part of the deal.II

library that showcases the new functionality presented in this dissertation. Tu-

torial programs are meant to demonstrate certain features of the library and

give newcomers a fundamental insight into the numerical and computational

background, as well as into implementation details due to extensive documen-

tation. For the demonstration of parallel hp-adaptive FEM, we will translate

the numerical example from Ch. 4 into a new stand-alone tutorial as a next

step.

After all, parallel hp-adaptive methods offer promising capabilities, and

with all features left to add they are a very challenging yet exciting topic

worth to continue working on.

1https://groups.google.com/d/msg/dealii/BmEF75lOA_E/PjyF9F5Uo3UJ

https://groups.google.com/d/msg/dealii/BmEF75lOA_E/PjyF9F5Uo3UJ


Appendix A

Enumeration of degrees of

freedom: Demonstration

This section delivers a visual demonstration of the enumeration algorithm for

degrees of freedom (DoFs) on the corresponding benchmark from Sec. 2.2.

The test case is composed out of four adjacent cells, from which two catty-

cornered ones are assigned to the same Lagrangian finite element of either order

two or four. The mesh is divided into two subdomains, each containing two

neighboring cells of different finite elements. In this configuration, cells are

either locally owned or ghost cells. The setup of the benchmark is shown in

Fig. 2.4.

This scenario covers all combinations of adjacent finite elements in the par-

allel hp-adaptive context, which makes it a perfect minimal example. Here,

we encounter neighboring cells with similar and different finite elements on

the same and another subdomain, with dominating finite elements on either a

locally owned or a ghost cell.

For the bulk enumeration of locally owned DoFs, we comply to the scheme

that is used in the deal.II library. We summarize how DoFs on Lagrange

elements are enumerated in two dimensions: We iterate over all cells following

a Z-order or Morton space filling curve, starting from the bottom left corner.

On each cell, we first enumerate all DoFs on vertices in the same Z-order.

Next, all interfaces in the order left, right, bottom, top are enumerated, each

starting from the bottom left corner. Finally, all DoFs inside the quadrilateral

are enumerated row-wise starting from the bottom left, i.e., lexicographically.

[26]

We apply the algorithm step-by-step on this particular example and present

its intermediate states in Fig. A.1.
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(Step 3) Unification.

Figure A.1: Step-by-step demonstration of the enumeration algorithm for DoFs
on the benchmark. Changes made at each step are highlighted. The left domain
corresponds to the full mesh of the Message Passing Interface (MPI) process
with rank 0, the right one belongs to the one with rank 1. The bottom cells are
owned by the process with rank 0, and the top cells by the one with rank 1.
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(Step 4) Global re-enumeration.
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(Step 5) Ghost exchange.
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(Step 6) Merge on interfaces.

Figure A.1: (continued) Step-by-step demonstration of the enumeration algo-
rithm for DoFs on the benchmark. Changes made at each step are highlighted.
The left domain corresponds to the full mesh of the MPI process with rank 0,
the right one belongs to the one with rank 1. The bottom cells are owned by the
process with rank 0, and the top cells by the one with rank 1.





Appendix B

Comparison of decision strategies

for hp-adaptation

In this section, we oppose the adaptation behavior of all utilized strategies ap-

plied on our numerical example from Sec. 4.1, i.e., h-, p-, and hp-adaptation

with corresponding decision strategies of error prediction and smoothness esti-

mation by the decay of Fourier and Legendre coefficients.

We depict the distribution of finite elements after six consecutive adaptation

steps, in which 30 % of cells with the highest error will be refined, and 3 % will

be coarsened. For hp-adaptation, half of all those cells will be flagged for h- and

p-adaptation as a naive approach. In a second attempt, 90 % of cells marked for

adaptation will be flagged for p-adaptation, while the remaining 10 % will be

h-adapted. We call the second approach an educated guess for our numerical

example.

The meshes of pure h- and p-adaptation are shown in Figs. B.1, B.2. For

each hp-adaptation strategy, grids generated with either the naive or educated

guess approach are depicted in Figs. B.3, B.4, B.5.
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Figure B.1: Arrangement of finite elements after six adaptation iterations with
h-adaptation. The colors represent different polynomial degrees p of the as-
signed Lagrange elements Qp.
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Figure B.2: Arrangement of finite elements after six adaptation iterations with
p-adaptation. The colors represent different polynomial degrees p of the as-
signed Lagrange elements Qp.
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(a) Naive approach.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

2

3

4

5

6

7

fi
n

it
e

el
em

en
t

p
ol

y
n

om
ia

l
d

eg
re

e

(b) Educated guess approach.

Figure B.3: Arrangement of finite elements after six adaptation iterations with
hp-adaptation and the smoothness estimation strategy by the decay of Fourier
coefficients. The colors represent different polynomial degrees p of the assigned
Lagrange elements Qp.
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(a) Naive approach.
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(b) Educated guess approach.

Figure B.4: Arrangement of finite elements after six adaptation iterations with
hp-adaptation and the smoothness estimation strategy by the decay of Legendre
coefficients. The colors represent different polynomial degrees p of the assigned
Lagrange elements Qp.
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(a) Naive approach.
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(b) Educated guess approach.

Figure B.5: Arrangement of finite elements after seven adaptation iterations
including the initialization step with hp-adaptation and the error prediction
strategy. The colors represent different polynomial degrees p of the assigned
Lagrange elements Qp.
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