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Abstract 

Irrigated agriculture is very important in securing food production for an increasing 
population over the next decades. Given the scarcity of water resources, optimal irrigation 
management is needed to reduce water usage while maintaining maximal crop productivity. 
The irrigation scheduling methods are normally based on soil water content (SWC) 
measurements, e.g. from soil moisture sensors. Meanwhile land surface models such as the 
Community Land Model (CLM) have been commonly used to simulate SWC, crop status and 
hydrological processes. Data assimilation (DA) can combine different measurement data with 
a numerical model to get optimal estimation of model states. The integration of SWC 
measurements and Community Land Model using a sequential data assimilation method is 
promising to improve the real-time prediction of SWC and the calculation of irrigation 
demand. One of the aim of this PhD work is to introduce a new CLM-DA based real-time 
irrigation scheduling method and test it in a real world case, to explore the possibility of 
using other sources of SWC measurements (e.g. Cosmic-ray Neutron Sensing) for irrigation 
scheduling and to conduct the uncertainty analysis of irrigation modelling with CLM. 

In the first study of this PhD thesis, we conducted a real-time irrigation scheduling campaign 
in a drip irrigated citrus field of Picassent, Spain. The SWC observations from soil sensors 
and CLM modelling were combined using a sequential data assimilation method to get real-
time prediction of soil water deficit and irrigation demand. In addition, the weather forecasts 
by the Global Forecast System were used as atmospheric forcing data for CLM to predict soil 
water deficit for the next few days and schedule irrigation accordingly. The performance of 
the CLM-DA irrigation scheduling was investigated and compared with other irrigation 
scheduling approaches including the FAO water balance method and traditional farmers’ 
experience. The comparison of the methods was based on the applied irrigation amounts, 
vegetation water stress measurements and citrus production. Results suggest that the CLM-
DA based irrigation scheduling approach has better water saving potential compared to 
traditional irrigation scheduling methods. With less irrigation water, the citrus fields using 
CLM-DA method showed no significant production loss or water stress. Another finding 
from this study is that the observation of SWC is an important factor for the irrigation 
estimation with CLM-DA method.  

In the second study of this thesis, the Cosmic-ray Neutron Sensing (CRNS) method was used 
to investigate its potential for monitoring SWC and scheduling drip irrigation. The CRNS 
probe can determine root zone SWC based on measured neutron intensity at the scale of tens 
of hectares. For the Picassent site in Spain, the footprint SWC was derived through soil 
sampling in the field and a calibration function. The overall SWC for the CRNS footprint was 
well characterized, but the experimental results also indicated the limitations of CRNS to 
detect drip water input. We found that the CRNS failed to sense the SWC variation caused by 
drip irrigation. In order to better interpret the results of the field experiment, the neutron 
transport model URANOS was used to simulate the neutron response to drip irrigation at the 
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CRNS location. Both the CRNS measurements and the neutron transport simulation results 
suggest that a standard CRNS probe is insufficient to detect the neutron response to drip 
irrigation in our specific case, because of the small area of irrigated patches, short irrigation 
time and weak SWC changes. Although the precise scheduling of drip irrigation is not 
feasible with a traditional CRNS probe, CRNS would perform better in drier case or with 
more intense irrigation events. New CRNS instruments like the cosmic-ray rover could be 
used to increase the sensitivity and to detect small-scale drip irrigation. 

In the third study of this PhD thesis, we investigated the uncertainties of simulating irrigation 
demand by a land surface model. The lack of information on irrigation frequency, irrigation 
factor and the spatiotemporal variation of irrigation intensities affect the irrigation estimation 
by land surface models, especially for large-scale applications. Different model simulation 
scenarios were used to evaluate the impact of these uncertainties on the simulated irrigation 
demand, land surface fluxes and water balance over the Indian domain. This was done with 
the Community Land Model for the year of 2010. The daily-irrigated cases with default 
irrigation factor had the highest irrigation amounts, evapotranspiration and runoff throughout 
the year. The modelled irrigation requirement and surface runoff increased with the irrigation 
frequency and irrigation factor. It indicates that the irrigation factor should be calibrated to 
avoid water loss through runoff and to better model the irrigation for regional scale. The land 
surface fluxes modelled by CLM if a season-specific irrigation map was used as input, 
showed a similar trend as remote sensing based evapotranspiration. Using season-specific 
irrigation maps resulted in a higher transpiration-evapotranspiration ratio in the pre-monsoon 
season compared to other irrigation strategies, which means higher irrigation efficiency. It 
indicates that more accurate spatial and temporal information on irrigation will improve land 
surface modelling results. However, the resolution of irrigation modelling should be 
increased to improve the estimation of soil water deficit and irrigation demand.  

Overall, our results show that the CLM-DA method provides a promising approach for 
irrigation scheduling by combining SWC observations and a land surface model using data 
assimilation, with the ability of real-time on-line control and the possibility to ingest different 
types of measurement data. Data assimilation turns out to be a promising method to integrate 
many kinds of observation data into a dynamic model and to improve the real-time water 
deficit prediction and irrigation allocation. SWC measurements from local (e.g. FDR sensor) 
to medium scale (e.g. CRNS) and large scale (e.g. remote sensing) along with modelling 
scales from local to large, will extend the feasibility of the CLM-DA method to different 
scales of irrigation management. The accurate information of spatiotemporal irrigation 
intensity is necessary for better large-scale irrigation modelling and characterization of land-
atmosphere exchange fluxes and water balance. 
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Zusammenfassung 

Die Bewässerungsfeldwirtschaft spielt eine entscheidende Rolle dabei, den steigenden 
Nahrungsmittelbedarf der wachsenden Weltbevölkerung in den nächsten Jahrzehnten zu 
decken. Angesichts der zunehmenden Wasserknappheit ist ein optimales 
Bewässerungsmanagement erforderlich, um den Wasserverbrauch bei gleichzeitiger 
Beibehaltung maximaler Pflanzenproduktivität zu reduzieren. Die Bewässerungsplanung 
basiert in der Regel auf die Messung von Bodenwassergehalten (Soil Water Content: SWC), 
zum Beispiel mit Hilfe von Bodenfeuchtesensoren. Zur Simulation von SWC, Erntezustand 
und hydrologischen Prozessen kommen derzeit Landoberflächenmodelle wie das Community 
Land Model (CLM) häufig zum Einsatz. Mit Hilfe von Datenassimilation (DA) können 
unterschiedliche Messdaten in ein numerisches Modell integriert werden, um daraus optimale 
Vorhersagen zu erzielen. Die Kombination von SWC-Messungen und CLM mit einer 
sequenziellen Datenassimilationsmethode verspricht eine Verbesserung der Echtzeit-
Vorhersage des Bodenwassergehaltes und somit des Bewässerungsbedarfs. Eines der Ziele 
dieser Doktorarbeit ist es, eine neue CLM-DA-basierte Echtzeit-
Bewässerungsplanungsmethode zu entwickeln und anhand eines realen Fallbeispiels, die 
Nutzungsmöglichkeit von anderen SWC-Produkten (beispielsweise aus Cosmic-ray Neutron 
Sensing) im Hinblick auf die Bewässerungsplanung zu überprüfen und die Unsicherheiten 
der Bewässerungsmodellierung mit CLM zu analysieren. 

Die erste Studie dieser Doktorarbeit umfasst eine Kampagne, in der eine Echtzeit-
Bewässerungsplanung in einem tropfbewässerten Zitrusfeld in Picassent, Spanien, 
durchgeführt wurde. Gemessene SWC mit Bodensensoren und CLM-Modellierung wurden 
mit einer sequenziellen Datenassimilationsmethode kombiniert, um das Bodenwasserdefizit 
und den Bewässerungsbedarf in Echtzeit vorherzusagen. Darüber hinaus wurden die 
Wettervorhersagen des Global Forecast System als atmosphärische Antriebsdaten für das 
CLM verwendet, um daraus Bodenwasserdefizit für die nächsten Tage vorherzusagen und die 
Bewässerung entsprechend zu planen. Die Leistung der Bewässerungsplanung durch CLM-
DA wurde untersucht und mit anderen Ansätzen wie der FAO-Wasserbilanzmethode und den 
Erfahrungen traditioneller Bauern verglichen. Der Vergleich basierte auf der aufgebrachten 
Wassermenge, dem Wasserstress der Pflanzen und der Zitrusproduktion. Die Ergebnisse 
deuten darauf hin, dass die CLM-DA-basierte Bewässerungsplanung im Vergleich zu 
herkömmlichen Planungsansätzen ein besseres Wassereinsparpotenzial aufweist. Trotz 
weniger Bewässerungswasser zeigten die mit CLM-DA geplanten Zitrusfelder keinen 
signifikanten Produktionsverlust sowie keinen Wasserstress. Ein weiteres Ergebnis dieser 
Studie besteht darin, dass die Beobachtung des Bodenwassergehalts ein wichtiger Faktor für 
die Schätzung der Bewässerungsmenge mit der CLM-DA-Methode darstellt. 

In der zweiten Studie dieser Arbeit wurde das Potenzial der Cosmic-ray Neutron Sensing 
(CRNS)-Methode für die Überwachung des Bodenwassergehalts und der Planung der 
Tropfenbewässerung untersucht. Die CRNS-Sonde kann den SWC der Wurzelzone, 
basierend auf der gemessenen Neutronenintensität, für eine Fläche bis zu mehreren Zehnern 
von Hektaren bestimmen. Für den Standort Picassent in Spanien wurde der Footprint des 
SWC durch Bodenprobenahmen im Feld und eine Kalibrierfunktion abgeleitet. Der gesamte 
SWC für den CRNS-Footprint konnte gut charakterisiert werden, jedoch zeigten die 
experimentellen Ergebnisse auch die Grenzen von CRNS bei der Erkennung von 
Tropfwassereintrag. Wir fanden heraus, dass CRNS die SWC-Variation, welche durch die 
Tropfenbewässerung verursacht wurde, nicht wiedergeben konnte. Um die Ergebnisse des 
Feldexperiments besser interpretieren zu können, wurde mit dem Neutronentransportmodell 
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URANOS die Neutronenreaktion auf die Tröpfchenbewässerung am CRNS-Standort 
simuliert. Sowohl die CRNS-Messungen als auch die Ergebnisse der 
Neutronentransportsimulation deuten darauf hin, dass eine Standard-CRNS-Sonde dafür nicht 
ausreicht, die Neutronenreaktion auf die Tröpfchenbewässerung in unserem speziellen 
Fallbeispiel zu erfassen. Gründe dafür sind die geringen bewässerten Flächen, die kurze 
Bewässerungszeit und die niedrigen Änderungen des Bodenwassergehaltes. Obwohl die 
genaue Planung der Tröpfchenbewässerung mit einer herkömmlichen CRNS-Sonde nicht 
möglich ist, würde CRNS im trockeneren Fall oder bei intensiveren Bewässerungsereignissen 
besser funktionieren. Neue CRNS-Geräte wie der Cosmic-ray Rover könnten eingesetzt 
werden, um die Empfindlichkeit zu erhöhen und Tropfenbewässerungen auf kleineren Skalen 
zu erkennen. 

In der dritten Studie wurden die Unsicherheiten der Simulation des Bewässerungsbedarfs 
mittels eines Landoberflächenmodells untersucht. Der Mangel an Informationen über die 
Bewässerungshäufigkeit, den Bewässerungsfaktor und die räumlich-zeitliche Variation der 
Bewässerungsintensitäten beeinflusst die Bewässerungsschätzung durch 
Landoberflächenmodelle, insbesondere für Großanwendungen. Verschiedene 
Modellsimulationsszenarien wurden verwendet um die Auswirkungen dieser Unsicherheiten 
auf den simulierten Bewässerungsbedarf, die Landoberflächenflüsse und den Wasserhaushalt 
in Indien zu bewerten. Dies geschah mit dem Community Land Model für das Jahr 2010. Die 
täglich bewässerten Flächen mit dem Standard-Bewässerungsfaktor hatten das ganze Jahr 
über den höchsten Abfluss, die höchste Bewässerungs- und Evapotranspirationsraten. Der 
modellierte Bewässerungsbedarf und der Oberflächenabfluss nahmen mit der 
Bewässerungshäufigkeit und dem Bewässerungsfaktor zu. Es zeigt sich, dass der 
Bewässerungsfaktor kalibriert werden sollte, um Wasserverlust durch Abfluss zu vermeiden 
und die Bewässerung für den regionalen Maßstab besser zu modellieren. Die 
Landoberflächenflüsse, die durch das CLM-Modell, das als Input die saisonabhängigen 
Bewässerungskarten nahm, modelliert wurden, zeigten einen ähnlichen Trend wie die durch 
Fernerkundung ermittelte Evapotranspiration. Die Verwendung saisonabhängiger 
Bewässerungskarten führte zu einem höheren Transpiration-Evapotranspiration-Verhältnis im 
Vormonsun im Vergleich zu anderen Bewässerungsstrategien, was zu einer höheren 
Bewässerungseffizienz führt. Es zeigt sich, dass genauere räumliche und zeitliche 
Informationen über die Bewässerung die Ergebnisse der Landoberflächenmodellierung 
verbessern können. Allerdings sollte die Auflösung der Bewässerungsmodellierung erhöht 
werden, um die Schätzung des Bodenwasserdefizits und des Bewässerungsbedarfs zu 
verbessern. 

Insgesamt zeigen die Ergebnisse, dass die CLM-DA-Methode einen vielversprechenden 
Ansatz für die Bewässerungsplanung bietet, indem sie SWC-Messungen und 
Landoberflächenmodell mit Datenassimilation kombiniert. Die Datenassimilation erweist 
sich als eine vielversprechende Methode, um unterschiedliche Beobachtungsdaten in ein 
dynamisches Modell zu integrieren und die Echtzeit-Vorhersage des Wasserdefizits zu 
verbessern. SWC-Messungen von lokaler (z. B. FDR-Sensor), mittlerer (z. B. CRNS) bis 
großer (z. B. Fernerkundung) Skala sowie Modellierungsskalen von lokal bis groß werden die 
Anwendung der CLM-DA-Methode auf verschiedene Ebenen des 
Bewässerungsmanagements erweitern. Genaue Informationen über die räumlich-zeitliche 
Bewässerungsintensität sind notwendig, um eine bessere Modellierung und Charakterisierung 
der Austauschflüsse zwischen dem Land und der Atmosphäre und des Wasserhaushalts im 
großen Maßstab zu ermöglichen. 
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Chapter 1 : Introduction 

Irrigated agriculture, which accounts for 40% of the food production, is important in securing 

the food for an increasing world population (Playán and Mateos 2006; McLaughlin and 

Kinzelbach 2015). Meanwhile irrigation is responsible for 70% of the fresh water 

withdrawals (Vereecken et al. 2009). Given the scarcity of water resources especially in arid 

and semi-arid areas, more efficient irrigation scheduling is needed to save water resources 

and to fulfil crop requirements. Depending on the availability of water stress information, the 

irrigation scheduling methods can be based on: soil water content (SWC) measurements, 

evapotranspiration (ET) and/or plant water stress (e.g. stem water potential) (Evans et al. 

1991; Jones 2004; Pardossi and Incrocci 2011). The SWC based irrigation scheduling 

approach is normally applied on the basis of the difference between root-zone SWC and a 

target SWC that is related to the crop type (Evans et al. 1991).  

Many sensors can measure soil water content, such as Time Domain Transmissivity (TDT), 

Frequency Domain Reflectometry (FDR) (Peters et al. 2013), tensiometers (Smajstrla and 

Locascio 1996) and capacitance probes (Fares and Alva 2000). The advantages of SWC 

sensors compared with the traditional gravimetric method are lower costs, less time intensive 

and less invasive. However, SWC sensors are limited by their spatial representativeness. In 

order to obtain SWC information at a larger scale, many TDT or FDR-probes can be 

connected in a wireless sensor network, which can achieve SWC characterization at a larger 

scale and in real-time (Vellidis et al. 2008; Bogena et al. 2010). Cosmic-ray Neutron Sensing 

(CRNS) is a cosmic-ray neutron intensity based device that can monitor SWC at an 

intermediate scale and non-invasively (Zreda et al. 2012). Remote sensing can also provide 

regional SWC information, like the Soil Moisture and Ocean Salinity (SMOS) (Kerr et al. 

2001) and Soil Moisture Active Passive (SMAP) missions (Entekhabi et al. 2010; El Sharif et 

al. 2015).  

The traditional irrigation scheduling method was often based on a simple water production 

function or water balance model, while ignoring the complex interactions between soil and 

vegetation (Barrett and Skogerboe 1980; Sammis et al. 2012). Land surface models such as 

the Community Land Model (CLM) have been widely used in climate and hydrological 

research to describe ecological and hydrological processes (Oleson et al. 2010). The 

Community land model is the land model of the Community Earth System Model, and it can 

simulate the soil water content of the root zone from a single point to the global scale (Oleson 



6 
 

et al. 2010; 2013). There have been several studies on irrigation modelling by a land surface 

model at the regional and global scale (Döll and Siebert 2002; Lawston et al. 2017; Leng et al. 

2013; Lu et al. 2015; Xie et al. 2017; Zeng et al. 2017). The performance of the irrigation 

simulation by CLM4 and CLM4.5 and the interactions between climate and irrigated area 

have been evaluated (Leng et al. 2013; Lu et al. 2015; Xie et al. 2017; Zeng et al. 2017). The 

combination of a land surface model and weather forecast allows the simultaneous simulation 

of ET and crop yield, as well as the irrigation water demand (Linker et al. 2016). Meanwhile 

various new modelling, controlling and decision support methods were introduced into 

irrigation scheduling (Shang and Mao 2006; Geerts et al. 2010); with help of multiple 

mathematical optimization algorithms like simulated annealing (Brown et al. 2010), genetic 

algorithms (Irmak and Kamble 2009; Wardlaw and Bhaktikul 2004) and computational 

neural networks (Pulido-Calvo and Gutiérrez-Estrada 2009). 

Sequential data assimilation (DA) is the optimal merging of model predictions on one hand 

and measurement data on the other hand (Evensen 2003). Data assimilation can improve the 

characterization of initial soil water contents (compared to measurement alone or model 

simulations alone) and therefore also improve the irrigation scheduling (Han et al. 2016a). To 

predict short or medium time scale soil water balance conditions, weather forecast data are 

also important (Lorite et al. 2015). If weather forecast information is used as model forcing, 

the dynamic model can provide a forecast of soil water content and crop states. Previous 

study has shown that DA based combination of SWC information from sensors and 

predictions by CLM allows calculating the future water deficit and the real-time automatic 

control of irrigation (Han et al. 2016a).  

However, the application of the CLM-DA based irrigation scheduling method for a real-

world case was not conducted and verified before, which will be one objective of this PhD 

work. To assist crop monitoring and irrigation management at different spatial scales, the 

CLM-DA based real-time irrigation scheduling scheme should be tested for smaller fields but 

also over a larger domain. Two major components of the CLM-DA irrigation scheduling 

system are real-time SWC observation and land surface modelling, which all can be 

conducted at different spatial and temporal resolutions. 

In order to have SWC observation at different spatial scales, a network of dielectric probes 

(e.g. FDR) covering the field scale or the CRNS probe measuring at the intermediate scale 

are needed. The CRNS technique is promising for irrigation management as the measurement 
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footprint is representative for the root-zone SWC at the intermediate scale of tens of hectares 

(Zreda et al. 2012). If we can estimate soil water deficit at the intermediate scale using a 

single sensor like CRNS, the costs associated with the construction of a large SWC network 

can be avoided. The possibilities of using CRNS to schedule drip irrigation have not been 

studied in a real world case before and need to be further explored.  

Irrigation significantly changes the interaction between land and atmosphere, causing high 

impact on the water and energy budget of the land surface (Ozdogan et al. 2010). The effect 

of irrigation cannot be neglected when conducting land surface modelling over large areas 

like India, which has large proportion of land being irrigated (Kumar 2003). Although there 

has been plenty research on irrigation modelling by CLM and other land surface models, 

most studies ignored the effect of temporal variable irrigation areas and irrigation intensity, as 

well as uncertainty of soil texture (Döll and Siebert 2002; Leng et al. 2013; Lawston et al. 

2017; Zeng et al. 2017). In India, the irrigation demand is strongly decided by the unevenly 

distributed precipitation throughout the year. It is therefore very important to assess the 

impact of the uncertainty of temporal variable irrigation areas (seasonal-variable irrigation 

map) and frequency. 

The objectives of this PhD thesis are to: 

(1) introduce an alternative irrigation scheduling approach based on the CLM-DA method 

with the ability of real-time control and integration of soil water content observations, and 

evaluate the performance of this approach in real-time irrigation scheduling. This is done at a 

drip irrigated field site with citrus trees near Picassent (Spain). The water saving capability of 

the CLM-DA approach is compared with other irrigation scheduling methods like the FAO 

(Food and Agriculture Organization) water balance method and a traditional approach used 

by framers according their experience. 

(2) explore the potential of using the CRNS technique to monitor water deficit and schedule 

irrigation. This is also tested at the drip irrigated Picassent site. Moreover, to better interpret 

the experimental data, neutron transport simulation was used to mimic the Picassent site and 

simulate the effect of drip irrigation on the cosmic-ray neutron counts. 

(3) investigate the uncertainties associated with calculating irrigation by a land surface model, 

which are caused by uncertainty concerning the temporal variability of irrigation intensity, 

irrigation frequency and irrigation factor (related the target soil water content when irrigation 
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stops). The influence of those factors on land surface fluxes and water balance modelling are 

further explored over a large model domain over India. 

Chapter 2 gives an overview of the land surface model and data assimilation method being 

used in our work. Furthermore, this chapter introduces the basic knowledge of CRNS 

observation, calibration, as well as the neutron transport modelling.  

In chapter 3 we apply the method integrating SWC measurements and CLM using sequential 

DA to improve the prediction of soil water status and design the real-time drip irrigation 

scheduling strategies for the citrus fields in Picassent, Spain. SWC measured by FDR was 

assimilated into CLM by the Local Ensemble Transform Kalman Filter (LETKF) to improve 

the characterization of the soil moisture condition. Atmospheric input data from the Global 

Forecast System (GFS) were used to force CLM to predict the short-term evolution of the 

SWC. The irrigation amount was then calculated on the basis of the difference between 

predicted and targeted root zone SWC. During the real-time irrigation campaigns in 2015 and 

2016, there were 6 fields irrigated according the CLM-DA approach, 2 further fields 

according the FAO water balance method and also 2 fields according the farmers experience. 

The corresponding amount of irrigation water for each citrus field was applied by SCADA 

(supervisory control and data acquisition system). After the harvest, the efficiency of the 

different irrigation scheduling methods was compared in terms of the overall applied 

irrigation amount, measured stem water potential, deep root zone SWC and citrus yield. 

Chapter 4 evaluates the measurement precision of the CRNS at the Picassent drip-irrigated 

field and evaluates whether it is sufficient to support drip irrigation management. The work 

relies on both field experimentation and modelling of neutron intensity. A soil sampling was 

carried out to determine the relationship between footprint SWC and neutron intensity 

measured by the CRNS probe. Also multiple FDR-sensors were installed in the CRNS-

footprint to be used as verification. The neutron transfer simulation model URANOS (Ultra 

Rapid Neutron-Only Simulation) was used to model the neutron response for the drip 

irrigated citrus fields and to explore the potential of the CRNS method to detect drip 

irrigation events. 

Chapter 5 investigates how the temporal variation of irrigated areas (as reflected in an 

irrigation map), irrigation frequency and irrigation factor affect calculations with a land 

surface model in terms of irrigation and water flux modelling. By using the CLM model, the 

irrigation demand and land-atmosphere exchange fluxes over the Indian model domain were 
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reconstructed for the year of 2010 at a resolution of 10 km × 10km. The uncertainties with 

respect to time-variable irrigation area, irrigation frequency and irrigation factor were 

explored by different simulation scenarios. The results in terms of irrigation and land surface 

flux modelling for different simulation scenarios were then compared and validated by large-

scale remote sensing data. 

Finally, chapter 6 summarizes the main results and provides an outlook for future research. 
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Chapter 2 : Theory 

2.1 Community Land Model 

The Community Land Model (CLM) is the land surface model of the Community Earth 

System Model (CESM) developed by the American National Center for Atmospheric 

Research. CLM describes the ecological and hydrological processes relevant for irrigation 

optimization and the interaction between the atmospheric boundary layer, soil and vegetation, 

and is widely used in climate, hydrology and other environmental research (Oleson et al. 

2010; 2013). The CLM has been constantly updated with new versions, with version 4.0 and 

4.5 being used in this thesis. The version 4.0 of CLM was released in 2010 to include the 

biogeochemistry components in the model including the coupled carbon and nitrogen cycles 

(Oleson et al. 2010). The update from version 4.0 to version 4.5 in 2013 included 

modifications regarding the representation of canopy process, lakes, snow cover and 

hydraulic properties of frozen soil (Oleson et al. 2013). 

Land surface heterogeneity is represented in CLM by 3 levels of sub-grid hierarchy including 

land units (urban, glacier, lake, wetland and vegetated), columns and 16 plant functional 

types (PFT). The plant functional types are: evergreen needle leaf (boreal or temperate), 

deciduous needle leaf (boreal), evergreen broadleaf (temperate or tropical), deciduous 

broadleaf (boreal, temperate or tropical), deciduous shrub (boreal, temperate), evergreen 

shrub (temperate), grass (C3 Artic, C3 and C4), and crop (C3 rainfed, C3 irrigated) (Oleson 

et al. 2010). The multiple columns within one land unit make it possible to divide one land 

unit into vegetated irrigated column and non-irrigated bare soil column.  

In CLM, soil water storage and vertical water fluxes in the soil are governed by different 

processes, including rainfall infiltration, surface and subsurface runoff, root water uptake 

(canopy transpiration), and interaction with the below-lying aquifer (Oleson et al. 2010). The 

vertical soil profile in CLM is divided into 15 layers, while only for the upper 10 layers soil 

water content is calculated. The thickness of the CLM layers varies between 1.75 cm for the 

first layer and 1.51m for the 10th layer (Oleson et al. 2010).  

The most important hydrology part in CLM for irrigation management is the calculation of 

soil water content. A modified Richards equation was used to simulate the soil water flow: 

∂𝜃𝑖

∂𝑡
=

∂

∂𝑧
[𝑘𝑖 (

∂(𝜓𝑖 − 𝜓e,𝑖)

∂𝑧
)] − 𝑄                                                                                               (2.1) 
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where 𝜃𝑖 is the volumetric soil water content (cm3/cm3) in layer 𝑖, t is time, 𝜓𝑖 (mm) is the 

soil matric potential, 𝑘𝑖  (mm/s) is hydraulic conductivity, 𝑧𝑖  represents the soil depth, ψe,i 

(mm) is the equilibrium soil matric potential of the 𝑖 th soil layer, and 𝑄 is the soil water 

removed by root water uptake (Decker and Zeng 2009; Oleson et al. 2013).  

Soil hydraulic parameters like hydraulic conductivity are calculated from the Clapp-

Hornberger pedotransfer function (Clapp and Hornberger 1978; Cosby et al. 1984) using sand 

and clay content, as well as organic properties of each soil layer as input (Lawrence and 

Slater 2008; Oleson et al. 2010): 

𝑘s,𝑖 = (1 − 𝑓p,𝑖) [
1−𝑓om,𝑖

0.0070556∙10
(−0.884+1.53𝑓sd,𝑖) +

𝑓om,𝑖−𝑓p,𝑖

𝑘s,om
]

−1

+ 𝑓p,𝑖𝑘s,om                                 (2.2) 

where 𝑘s,𝑖 (mm/s) is the saturated hydraulic conductivity; 𝑓sd,𝑖 and 𝑓om,𝑖 are the percentages 

(%) of sand and organic matter; the fraction 𝑓p,𝑖 is zero when 𝑓om,𝑖 is less than 0.5, otherwise 

𝑓p,𝑖  = 1.101 × 𝑓om,𝑖(𝑓om,𝑖 − 0.5)0.139 ; 𝑘s,om  is the saturated hydraulic conductivity of 

organic matter (Oleson et al. 2013). 

Soil water content is also strongly determined by evapotranspiration (Q in Equation 2.1). The 

simulation of land-atmosphere exchange fluxes is based on Monin-Obukhov similarity theory 

(Oleson et al. 2013). The evapotranspiration from the vegetation column was divided into 

three parts: ground evaporation, interception evaporation and vegetation transpiration. For 

each column, the canopy evaporation and transpiration are the sum from all PFTs sharing the 

same soil column. For the vegetated soil column (without canopy interception water), the 

evapotranspiration includes the water vapor flux from vegetation 𝐸v and from ground soil 𝐸s 

(Oleson et al. 2013): 

𝐸v = −
𝜌atm(𝑞𝑠−𝑞sat

𝑇v )

𝑟total
                                                                                                               (2.3) 

𝐸s = −
𝜌atm𝛽soil(𝑞s−𝑞soil)

𝑟aw
′ +𝑟litter

                                                                                                        (2.4) 

where 𝑟total (s/m) is the total aerodynamic resistance to water vapor transfer from the canopy 

to canopy air including contributions from leaf boundary layer and stomata; 𝑟aw
′  (s/m) is the 

aerodynamic resistance to water vapor transfer between the ground and canopy air; 𝑟litter 

(s/m) is the resistance from plant litter layer;  𝑞sat
𝑇v  (kg/kg) is the saturated specific humidity at 

the vegetation temperature 𝑇v; 𝑞s (kg/kg) is the canopy specific humidity; 𝑞soil (kg/kg) is the 
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specific humidity of soil; 𝛽soil is an empirical function of soil water content (Oleson et al. 

2013). 

The difference between the predicted soil water content and the target soil water content is 

the water deficit, and irrigation scheduling is planned on the basis of the calculated water 

deficit. In CLM, the target soil water content can be defined for the irrigation needs of 

different crops (Oleson et al. 2010): 

𝜃target = (1 − 0.7) ∙ 𝜃min + 0.7 ∙ 𝜃max        (2.5) 

where 𝜃min is the minimum needed soil water content to sustain completely open stomata and 

𝜃max  is soil saturation. They are defined separately for each soil layer. The empirical 

parameter 0.7 was set in CLM to match the calculated global irrigation demand for the year 

2000 with the observation data (Oleson et al. 2010). 

The irrigation amount (𝑊deficit) is calculated by the integrated water deficit over the root 

zone (Oleson et al. 2010): 

𝑊deficit = ∑ 𝑅𝑖 ∙ max(𝜃target − 𝜃𝑖 , 0)𝑁
𝑖                                                                                  (2.6) 

where 𝜃𝑖 is the soil water content for layer 𝑖, 𝑅𝑖 is the root fraction for that layer, and N is the 

number of CLM-layers with roots, which are dependent on the plant functional type (PFT) in 

CLM. 

𝑅𝑖  =  {
0.5 [

exp(−𝑟𝑎𝑍ℎ,𝑖−1)+exp (−𝑟𝑏𝑍ℎ,𝑖−1)

−exp(−𝑟𝑎𝑍ℎ,𝑖)+exp (−𝑟𝑏𝑍ℎ,𝑖)
]  1 ≤ 𝑖 < 𝑁levsoi

0.5[exp(−𝑟𝑏𝑍ℎ,𝑖−1) + exp (−𝑟𝑏𝑍ℎ,𝑖−1)]  𝑖 = 𝑁levsoi

}                                            (2.7) 

where 𝑍ℎ,𝑖 (m) is the depth from the surface to the interface between soil layers 𝑖 and 𝑖 + 1; 

𝑟𝑎 and 𝑟𝑏 are root distribution parameters for different plants (Zeng 2001). 

2.2 Data assimilation  

Data assimilation (DA) combines direct and/or indirect measurements and dynamic models to 

get optimal estimates of model state variables (Reichle 2008). In this PhD work, data 

assimilation is applied to use available soil water content data to correct predictions by CLM 

in a probabilistic manner. It updates the current system states and should give better estimates 
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of future system states, together with a characterization of the uncertainty of the estimates 

(Evensen 2003).  

Ensemble Kalman Filter (EnKF) is the Monte Carlo approximation of the Kalman filter that 

estimates state variables through a forecast and analysis process, where the model covariance 

matrix is estimated from a limited number of ensemble members which avoids the very 

expensive explicit computation of the model covariance matrix (Evensen 2003). In the work 

of chapter 3, the Local Ensemble Transform Kalman Filter (LETKF) is used, which is a 

variant of the Ensemble Kalman Filter. It has been widely used by scientists in land surface 

hydrology and meteorology (Hunt et al. 2007; Miyoshi et al. 2007; Han et al. 2014a; Han et 

al. 2015). More details of LETKF can be found in Hunt et al. (2007).  

Compared with traditional ensemble Kalman filters, LETKF is more efficient. In LETKF, the 

global state and observation matrices are only prepared once in a forecast step, then each 

model grid is updated separately along with the local analysis error covariance matrix, 

avoiding the calculation of a large error covariance matrix (Han et al. 2014a). By dividing the 

global model grid into separate local patches, each grid cell of the model is updated 

separately which can be easily exploited in parallel computations (Miyoshi et al. 2007). 

In the global operation step of LETKF, two global matrices 𝐗b and 𝐘b are constructed based 

on soil moisture modeled by CLM for each grid cell.  

 𝐗b =  [𝐱1
b − 𝐱̅b, … ,  𝐱M

b − 𝐱̅b]         (2.8) 

𝐘b =  [𝐲1
b − 𝐲̅b, … ,  𝐲M

b − 𝐲̅b]         (2.9) 

𝐲i
b =  𝐇(𝐱i

b)                    (2.10) 

where 𝐱1
b … 𝐱M

b  contain the modeled states for the M ensemble members, 𝐱̅b is the ensemble 

mean; 𝐲1
b … 𝐲M

b  are vectors containing the model states at the observation locations for each 

of the M ensemble members, 𝐲̅b is the vector of the corresponding ensemble means and H is 

the observation operator that maps between the model space and the observation space, which 

is identity matrix in our case because of the direct observation. The model state vector 𝐱b is 

constructed as: 

 xb = [𝜃1, 𝜃2 … 𝜃10]T                    (2.11) 

where 𝜃1, 𝜃2 … 𝜃10 are modeled soil moisture contents for the ten CLM layers. 
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In the local analysis step, the analysis error covariance matrix P̃a is calculated as: 

𝐏̃𝑎  = [(𝑀 − 1)𝐈 + (𝐘b)
T

𝐑−1𝐘b] −1                 (2.12) 

where R is the observation error matrix, 𝐈 is the identity matrix.  

The perturbations matrix 𝐖𝑎 and analysis mean 𝐰̅𝑎 are calculated as: 

𝐖𝑎 = [(𝑀 − 1)𝐏̃𝑎]1/2                  (2.13) 

𝐰̅a = 𝐏̃a(𝐘b)
T

𝐑−1(𝐲0 − 𝐲̅b)                  (2.14) 

where 𝐲0 is the observation vector containing soil moisture measured by the FDR sensors and 

for the different layers. 

Finally the new analysis matrix 𝐗a that contains the updated ensemble members in model 

space is obtained by: 

𝐗a = 𝐱̅b + 𝐗b(𝐖a + 𝐰̅a)                     (2.15) 

Section 2.1 and 2.2 are adopted from Li et al. (2018). 

2.3 Cosmic-ray Neutron Sensing 

In chapter 4, the measurement precision of Cosmic-ray Neutron Sensing (CRNS) was tested 

in a drip-irrigated field in order to explore whether it is sufficient to support drip irrigation 

management. Cosmic radiation originates in outer space and penetrates the Earth atmosphere. 

This interaction creates high-energy neutrons which further collide with atoms in the air, soil, 

and vegetation to produce medium-energy neutrons (Zreda et al. 2012). Those neutrons can 

be efficiently moderated towards lower energies by nuclear collisions with hydrogen. 

Therefore, the intensity of medium-energy neutrons is an indication for the amount of 

hydrogen atoms at the land surface and its temporal variation. The Cosmic-ray Neutron 

Sensing probe can be used to measure soil water content up to depths of 80 cm and with a 

footprint radius ranging from 130 m to 240 m at sea level (Köhli et al. 2015) 

The CRNS probe needs to be calibrated with soil samples during a field campaign while 

neutron intensity is simultaneously measured by the CRNS probe. The so-called N0 method 

was developed by Desilets et al. (2010) to estimate soil water content 𝜃v  in the CRNS 

footprint as function of the neutron count rate 𝑁pih through a simple calibration function. To 



15 
 

calibrate the N0 parameter, a single field calibration campaign was conducted as described in 

chapter 4. 

𝜃v = (𝑎0 ∙ 𝜌bd) (
𝑁pih

𝑁0
− 𝑎1)

−1

− (𝑎2 ∙ 𝜌bd) − 𝜃lat − 𝜃org              (2.16) 

where N0 stands for the neutron intensity over dry soil at a specific test site and needs to be 

calibrated once; 𝑎0=0.0808, 𝑎1=0.372 and 𝑎2=0.115 are constant fitting parameters. 𝜌bd  is 

soil bulk density (g/cm3) averaged from all the soil samples taken on the calibration day (1.3 

g/cm3), it was calculated with an iterative method along with the weighting of soil water 

content for each layer. 𝜃lat is the volumetric lattice water (cm3/cm3) and 𝜃org is soil organic 

water equivalent (cm3/cm3). 

The neutron transfer model called Ultra Rapid Neutron-Only Simulation (URANOS) was 

used to model the neutron response to the drip irrigated citrus fields in Picassent and to 

explore the potential of the CRNS method to detect drip irrigation events. The URANOS 

model simulates neutron interactions in a Monte Carlo framework, and was originally aimed 

for applications in nuclear physics (Köhli et al. 2018). Recently it has been used to model the 

interaction of cosmic-ray neutrons with air, soil and vegetation in order to understand neutron 

intensity measured by CRNS probe (Köhli et al. 2015). 

Section 2.3 is adopted from “Li et al., 2019. Can drip irrigation be scheduled with Cosmic-

ray Neutron Sensing? Vadose Zone Journal, 18(1). doi: 10.2136/vzj2019.05.0053”. 
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Chapter 3 : Evaluation of an operational real-time irrigation 

scheduling scheme for drip irrigated citrus fields in Picassent, 

Spain 
*adapted from: Li, D., Hendricks Franssen, H.-J., Han, X., Jiménez-Bello, M. A., Alzamora, F. M., 
and Vereecken, H., 2018. Evaluation of an operational real-time irrigation scheduling scheme for drip 
irrigated citrus fields in Picassent, Spain. Agricultural Water Management, 208, 465-477. 
https://doi.org/10.1016/j.agwat.2018.06.022 

3.1 Introduction 

3.1.1 Water scarcity and irrigation scheduling 

The world’s population has exceeded 7 billion and will continue to increase with a high rate 

(https://en.wikipedia.org/wiki/World_population). To feed the increasing population, our 

agriculture must produce more food. Irrigated agriculture accounts for 40% of food 

production, and 70% of fresh water withdrawals are used by irrigation (Vereecken et al. 2009; 

Playán and Mateos 2006). Irrigation is important for the food security of the world 

(McLaughlin and Kinzelbach 2015). Given climate change and increased groundwater 

pollution, we are facing a global water crisis and stronger constraints on water resources 

(Vörösmarty et al. 2000; Iglesias and Garrote 2015). Groundwater recharge in semi-arid areas 

is usually limited, resulting in unsustainable groundwater use for irrigation and groundwater 

depletion (Scanlon et al. 2012). Therefore, efficient water use by irrigation scheduling is 

needed to allocate irrigation water rationally.  

Irrigation scheduling aims to minimize water use while maintaining the agricultural 

production (Evans et al. 1991). Scheduling efforts can have a long-term focus or short-term 

focus, which includes real-time scheduling (Ticlavilca et al. 2013). Real-time scheduling of 

irrigation is usually based on calculated daily water allocation (Pham et al., 2013). With 

irrigation scheduling we decide when and how much to irrigate. When to irrigate is related to 

the sensitivity of crops to water stress, which determines the threshold when yield and quality 

reduction occur under water shortage. How much should be irrigated depends on the water 

deficit between the current and targeted water status (Evans et al. 1991). In order to make 

decisions regarding irrigation scheduling, the water stress condition needs to be known. 

Depending on the type of water stress information available, the irrigation scheduling 

approaches can be divided into: soil moisture measurements based, evapotranspiration (ET) 

https://en.wikipedia.org/wiki/World_population
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based and plant water stress based (Evans et al. 1991; Jones 2004; Pardossi and Incrocci 

2011). 

Many devices can give information on soil moisture status including dielectric sensors using 

Time Domain Transmissivity (TDT) and Frequency Domain Reflectometry (FDR) (Peters et 

al. 2013), tensiometers (Smajstrla and Locascio 1996),  capacitance probes (Fares and Alva 

2000), neutron probes and cosmic-ray probes (Zreda et al. 2012). The combination of soil 

moisture information from sensors and predictions by a given model allows to calculate the 

future water deficit (Blonquist et al. 2006). Evapotranspiration is defined as the sum of 

evaporation from the soil surface and transpiration from the crop (Allen et al. 1998). The ET 

based irrigation scheduling calculates the irrigated water amount by the difference between 

daily actual ET and precipitation (Davis and Dukes 2010). Water stress information from 

crops can be obtained by different indicators like sap flow (Fernández et al. 2001), stem 

water potential (Choné et al. 2001; Fernández and Cuevas 2010), trunk diameter fluctuation 

(Moriana et al. 2010), leaf stomata pressure, canopy temperature (Clawson and Blad 1982) 

and crop water stress index (Moran et al. 1994).  

3.1.2 Drip Irrigation scheduling for citrus 

Compared with all the major types of surface irrigation (furrow, flood, or large scale sprinkler 

irrigation), drip irrigation is seen as the most water-efficient and precise method (Provenzano 

2007). Lots of irrigation scheduling methods were tested on drip irrigated fields on the base 

of measuring soil or plant water status and evapotranspiration (Dabach et al. 2013). For the 

drip irrigation of citrus trees, there are plenty of different indicators of plant water stress like 

stem water potential and soil capacitance, and also several ways to determine 

evapotranspiration like the FAO method, lysimeter and eddy covariance method (Jiménez-

Bello 2015). Stem water potential (Sdoodee and Somjun 2008) and daily trunk shrinkage 

(Velez et al. 2007) were used to schedule irrigation for citrus orchards world widely. Also the 

water balance method for drip irrigation scheduling is popular. For example, Sammis et al. 

(2012) used a two-dimensional soil water balance model for drip irrigation scheduling. 

The traditional way of drip irrigation scheduling was often based on a simple water 

production function or water balance model, while ignoring the complex interaction between 

soil and vegetation (Barrett and Skogerboe 1980). A new development is the use of complex 

models and weather data, combined with mathematical optimization methods (Shang and 

Mao 2006). Advanced modelling and programing technology offers a new possibility to 
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calculate soil water status. Various controlling and decision support methods were introduced 

into irrigation scheduling. Simulated annealing (Brown et al. 2010), genetic algorithms 

(Irmak and Kamble 2009; Wardlaw and Bhaktikul 2004) and computational neural networks 

(Pulido-Calvo and Gutiérrez-Estrada 2009) were used to support decisions concerning the 

irrigated water amount. To predict short or medium scale soil water balance conditions, 

weather forecast data are also important (Lorite et al. 2015; De Jager and Kennedy, 1996).  

In this work, the Community Land Model (CLM) (Oleson et al. 2010) is used to estimate soil 

and crop water states. Data assimilation (DA) combines direct and/or indirect measurements 

and dynamic models to get optimal estimates of model states (Reichle 2008). Han et al. 

(2016a) already illustrated the potential of sequential DA to improve irrigation scheduling 

with CLM model predictions. In the past already hydrological models like HYDRUS 

(Autovino et al. 2018) and simpler water balance models (Rallo et al. 2017) were used for 

irrigation scheduling, but not a land surface model that couples the water and energy cycles. 

The use of data assimilation in this context is also a novel contribution for the irrigation 

scheduling of citrus or other fruit trees.  

The main objective of this paper is to provide a new approach for irrigation scheduling by 

introducing the combination of data assimilation and land surface modelling, with the 

possibility of real-time on-line control and the possibility to ingest different types of 

measurement data. The CLM-DA method combines model predictions by a land surface 

model, weather prediction and soil moisture data measured by capacitance probes. We 

illustrate our approach for the near real-time irrigation scheduling of citrus trees near 

Picassent, Valencia (Spain). During the irrigation campaign for the Picassent site from July to 

October in 2015 and June to October in 2016, three different irrigation scheduling methods 

were tested for 10 citrus fields, including the CLM-DA method proposed in this paper, the 

FAO water balance model and a traditional method based on farmer’s experience. The CLM-

DA method combines model predictions by a land surface model, weather prediction and soil 

moisture data measured by capacitance probes. These information sources are optimally 

combined using sequential data assimilation, to predict drought stress for the next days and 

schedule irrigation accordingly. The applied irrigation amounts were measured by a water 

meter, and then divided by the irrigation area to get the water depth. Stem water potential and 

citrus production indicating the possible water stress were also measured.  
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3.2 Materials and methods 

3.2.1 Research site and experimental set-up 

The research site is located near Picassent in Spain (39.38° N, 0.47° E), in a semi-arid region. 

Precipitation is concentrated in spring, autumn and winter, and the yearly average 

precipitation amount is 453 mm, with an annual average daily maximum temperature of 

22.3 °C and an annual average daily minimum temperature of 13.4 °C 

(https://en.wikipedia.org/wiki/Valencia#Climate). The crop growing at the test site is citrus, 

with major management procedures like fertilization and weeding carried out by the orchard 

owners. Although the citrus varieties differ between the fields, there are no significant 

differences in crop management, fertilization and tree ages. Information on field-specific tree 

ages were lacking, but all the trees were mature (older than 15 years) and in full-production 

stage. As precipitation during the main growing period of citrus in summer is rare, the water 

demand of the citrus trees almost entirely depends on irrigation. Drip irrigation is being used 

in these citrus tree fields, with two pipelines and 8~10 emitters for each tree. Detailed 

information about the types of citrus plant, spacing, and vegetative growth character can be 

found in Table 3.1. 

Within the area of Picassent, the meteorology observatory of IVIA (Instituto Valenciano de 

Investigaciones Agrarias) provides meteorological data (http://riegos.ivia.es/). Twelve FDR 

probes were installed in the context of the EU-project AGADAPT since 2013, spreading over 

the irrigation plots (see Figure 3.1), measuring soil water content at four depths (10 cm, 30 

cm, 50 cm, and 70 cm). During June and July 2015, 12 more FDR probes were installed in 

the field to enhance the observation density. The FDR probes were installed close to drip 

emitter and a representative tree of average size in the orchard. The FDR soil water content 

measurements (10 cm and 30 cm) in the irrigated area were used in the DA system for 

irrigation scheduling, because most roots of citrus trees are located in the top 50 cm. FDR 

measurements at 50 cm and 70 cm depth were later used as independent verification data for 

possible water depletion. During the irrigation period, the stem water potential was also 

measured for each field, covering the different irrigation scheduling methods. 

Three different irrigation scheduling schemes were compared for this site: irrigation 

scheduling according (i) CLM-DA calculation (CLM fields), (ii) the FAO water balance 

model (FAO fields) and (iii) farmers’ experiences (Farmer fields). The irrigation scheduling 
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schemes were assigned to different fields in the following way: (1) CLM-DA method: fields 

CLM-A, CLM-B, CLM-C, CLM-D, CLM-E and CLM-F; (2) FAO water balance: fields 

FAO-A, FAO-B; (3) farmers’ experience: fields Farmer-A, Farmer-B. In June drip irrigation 

was applied on Monday, Tuesday, Wednesday, Friday and Saturday night (five times per 

week). In July and August also on Thursday there was irrigation. From September and 

October onwards, depending on the weather and fruit maturation process, irrigation 

frequency was reduced and finally stopped. All the experimental fields share the same 

irrigation frequency while only CLM-DA and FAO fields got suggested irrigation time from 

the calculations of different methods. The irrigation at the Farmer fields was conducted 

according the farmer's experience. The irrigation time of Farmer fields ranged from 1 to 2 

hours depending on the flow speed and technician’s evaluation of water demand for trees. 

For the CLM-DA method, there are six fields involved in the irrigation scheduling in 2015 

and 2016. Compared with the experiment of 2015, the data assimilation and irrigation 

controlling process of 2016 were slightly modified to avoid problems which occurred in 2015. 

As the applied irrigation water amounts in 2015 were affected by the variable flow velocity 

of the drip line, in 2016 the flow velocity data were retrieved every 3 days, which allowed 

more accurate irrigation duration so that the truly applied irrigation amount was closer to the 

scheduled irrigation amount. The needed irrigation amount (which was converted in an 

irrigation duration) was sent to the technicians in Valencia twice per week to do the real-time 

control of drip irrigation (period July 7 – October 31 2015). In 2016, the irrigation scheduling 

was from June 1 to October 31 and the corresponding irrigation time was applied directly 

through SCADA (Supervisory Control And Data Acquisition system) for each CLM-DA 

field. In 2016 the truly applied irrigation amounts were available shortly after the irrigation 

was done.  
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Table 3.1 The types of citrus tree, spacing, and vegetative growth characters for the different fields 
involved in the study (CLM-DA, FAO and Farmer) 

Fields Area (m2) Citrus variety Ground Cover Row 
distance(m) 

Tree 
distance(m) 

Emitters 
per tree Q(l/h) 

CLM-A 8210 Valencia Late 0.33 3.5 3.5 8 2.5 

CLM-B 12375 Hernandina 0.70 4.5 5 10 3.5 

CLM-C 4502 Clemenules 0.67 4.5 5 10 3.32 

CLM-D 3031 Clemenules 0.48 5 5 12 5.6 

CLM-E 9573 Navelina 0.45 6 5 10 1.9 

CLM-F 8978 Hernanadina 0.46 6 4 10 3.7 

FAO-A 3288 Lane Late 0.49 4.5 3.5 10 3.9 

FAO-B 5340 Orogrande 0.60 5 5 10 4.5 

Farmer-A 10583 Orogrande 0.60 5 5 10 4.4 

Farmer-B 8670 Hernandina 0.60 5 5 10 2.3 

 

 

Figure 3.1 The distribution of the fields (with their numbers listed) and indication of the irrigation 
scheduling method applied (red fields: CLM, green fields: FAO, purple fields: Farmer) for each of the 
fields. The blue dots and red triangles are symbols of FDR probes, which were installed in the 
irrigated and not irrigated area. 
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3.2.2 FAO Soil water balance based irrigation scheduling 

The FAO56 procedure uses the following basic water balance model (Rallo et al. 2011): 

 𝐷𝑖 = 𝐷𝑖−1 + 𝐸𝑇𝐶 − 𝑃𝑖 − 𝐼𝑖 + 𝑅𝑖 + 𝐷𝑃𝑖        (3.1) 

where 𝐷𝑖 is the water depletion at day i, 𝐷𝑖−1 is water depletion at the previous day i-1, 𝐸𝑇𝐶 

is crop evapotranspiration, 𝑃𝑖 is precipitation, 𝐼𝑖 is irrigation, 𝑅𝑖 is net runoff and 𝐷𝑃𝑖 is deep 

percolation. Ideally, runoff can be neglected in flat terrain, and deep percolation is set to zero 

to avoid water losses (Davis and Dukes 2010). 

The actual crop evapotranspiration ( 𝐸𝑇C ) can be calculated from the reference 

evapotranspiration (𝐸𝑇0) and the crop coefficient (𝐾C).  

𝐸𝑇C =  𝐾C ∙ 𝐸𝑇0                      (3.2) 

Reference evapotranspiration is calculated by the FAO Penmann-Monteith method (Allen et 

al. 1998). The crop coefficient may change as function of the vegetation development and the 

evolution of ground cover, the values of which are available from field experiments or remote 

sensing (Bausch 1995). 

For the FAO water balance method applied in our fields, the irrigation amount was set equal 

to the water depletion at previous day (𝐷i), and the 𝐾C was taken to calculate 𝐸𝑇C (Castel 

2000): 

𝐾C = 𝐾cavg ∙  𝑓cmonth          (3.3) 

 𝐾cavg = 0.274 + 𝐺𝐶 ∙  0.005   (20% <  𝐺𝐶 <  70%)      (3.4) 

where 𝐾cavg  depends on ground cover GC and the 𝑓cmonth  is a correction factor which 

depends on the month of year and is used by the Irrigation Advisory System of Valencia for 

fruit trees (http://riegos.ivia.es/).  

3.2.3 Real-time drip irrigation scheduling with CLM and data assimilation 

3.2.3(a) Land surface model 

The Community land model (CLM4.0) is the land surface model of the Community Earth 

System Model (CESM1.1.2), which describes the ecological and hydrological processes 

relevant for irrigation optimization and the interaction between the atmospheric boundary 
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layer, soil and vegetation, and is widely used in climate, hydrology and other environmental 

research (Oleson et al. 2010). A modified Richards equation and Monin-Obukhov similarity 

theory are used to simulate the soil water flow and land-atmosphere exchange fluxes. The 

land surface heterogeneity of CLM is represented by 3 levels of sub-grid hierarchy including 

land units (urban, glacier, lake, wetland and vegetated), columns and 16 plant functional 

types (PFT) (Oleson et al., 2010).  

In this study, in order to use the irrigation model in CLM, each grid cell has two columns: a 

bare soil non-irrigated column (67 %) and a vegetated irrigated column (33 %). The plant 

functional type chosen to represent the citrus tree in our model is evergreen broadleaf tree, 

which has many similarities with citrus trees. The root distribution parameters were modified 

as described by Han et al. (2016a) so that most roots are located within 50 cm soil depth, 

which is in correspondence with the shallow rooting of irrigated citrus trees as detected by 

experimental data.  

The vertical soil profile in CLM is divided into 15 layers, while only for the upper 10 layers 

soil water content is calculated. Only these 10 layers will be considered for state updating by 

data assimilation. The thickness of the CLM layers varies between 1.75 cm for the first layer 

and 1.51 m for the 10th layer (Han et al. 2014a). We took the bottom of the third layer (9.06 

cm depth) and 5th layer (28.91 cm depth) as the counterparts for FDR measurements at 10 

cm and 30 cm depth. 

In CLM, soil hydraulic parameters and soil matric potential are calculated from the sand and 

clay fractions. In-situ measurement data of soil texture were used for the site (silty clay: silt 

33 %, clay 32 % and sand 35 %). The soil hydraulic parameters like saturated hydraulic 

conductivity are calculated from the Clapp-Hornberger pedotransfer function using as input 

sand and clay content, as well as organic properties of each soil layer. 

3.2.3(b) Data assimilation 

Data assimilation is applied in this work to use available soil moisture data to correct 

predictions by the Land Surface Model CLM in a probabilistic manner. It updates the current 

system states and should give better estimates of future system states, together with a 

characterization of the uncertainty of the estimates (Evensen 2003). In this work, the Local 

Ensemble Transform Kalman Filter (LETKF) is used, which is a deterministic variant of the 

Ensemble Kalman Filter. It has been widely used by scientists in land surface hydrology and 
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meteorology (Hunt et al. 2007; Miyoshi et al. 2007; Han et al. 2014a; 2015). More detailed 

description of LETKF can be found in chapter 2.  

In LETKF, localization implementation implies that each model grid cell is only updated by 

the closest FDR sensor observation. Ensemble inflation is also used in LETKF to prevent 

filter divergence (Han et al. 2014a). In this work, only the model grid cells with FDR 

observations were updated by data assimilation while soil and vegetation parameters are pre-

defined and taken from in-situ measurements and LAI data respectively. The LAI values 

were calculated based on the ground coverage and an empirical function derived from field 

measurements. More details of the data assimilation with LETKF and CLM can be found in 

Han et al (2015; 2016a). 

LAI = −1.3 ∙ log(
(1−𝐺𝐶)

1+𝐺𝐶
)            (3.5) 

3.2.3(c) CLM-DA based irrigation scheduling 

After the data assimilation analysis, the updated initial model states in the form of soil water 

content values are used as input for predicting the evolution of soil water content values for 

the next 3 or 4 days. This is done for each of the model ensemble members so that also the 

uncertainty of the predictions can be characterized. These predictions use weather forecasts 

as input. On the other hand, a target soil water status is defined to sustain crop growth and 

yield. The difference between the predicted soil water status and the target soil water status is 

the water deficit, and irrigation scheduling is planned on the basis of the calculated water 

deficit. In CLM, the target soil water content can be defined for the irrigation needs of 

different crops (Oleson et al. 2010): 

𝜃target = (1 − 0.7) ∙ 𝜃min + 0.7 ∙ 𝜃max       (3.6) 

where 𝜃min is the minimum needed soil water content to sustain completely open stomata and 

𝜃max  is soil saturation. They are defined separately for each soil layer. The empirical 

parameter 0.7 was set in CLM to match the calculated global irrigation demand for the year 

2000 with the observation data (Oleson et al. 2010).  

The irrigation amount (𝑊deficit) is calculated by the integrated water deficit over the root 

zone (Oleson et al. 2010): 

𝑊deficit = ∑ 𝑅𝑖 ∙ max(𝜃target − 𝜃𝑖 , 0)𝑁
𝑖                                                                                  (3.7) 
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where 𝜃𝑖 is the soil water content for layer 𝑖, 𝑅𝑖 is the root fraction for that layer, and N is the 

number of CLM-layers with roots, which are dependent on the plant functional type (PFT) in 

CLM. 

𝑅𝑖  =  {
0.5 [

exp(−𝑟𝑎𝑍ℎ,𝑖−1)+exp (−𝑟𝑏𝑍ℎ,𝑖−1)

−exp(−𝑟𝑎𝑍ℎ,𝑖)+exp (−𝑟𝑏𝑍ℎ,𝑖)
]  1 ≤ 𝑖 < 𝑁levsoi

0.5[exp(−𝑟𝑏𝑍ℎ,𝑖−1) + exp (−𝑟𝑏𝑍ℎ,𝑖−1)]  𝑖 = 𝑁levsoi

}                                            (3.8) 

where 𝑍ℎ,𝑖 (m) is the depth from the surface to the interface between soil layers 𝑖 and 𝑖 + 1, 

𝑟𝑎 and 𝑟𝑏 (both are 8.992 for citrus) are root distribution parameters for different plants (Zeng 

2001).  

Forecasted weather data were used as input to the land surface model for soil water status 

predictions. The T1534 Semi-Lagrangian grid weather forecast data (0.25º) were downloaded 

from the Global Forecast System (GFS) product inventory twice per week 

(http://www.nco.ncep.noaa.gov/pmb/products/gfs/). For land surface model predictions and 

irrigation scheduling from Monday to Wednesday the GFS-forecast from Sunday was used, 

whereas for land surface model predictions and irrigation scheduling from Thursday to 

Sunday the forecast from Wednesday was taken. One GFS-pixel covers our complete 

simulation domain and was therefore applied to all CLM grid cells. The original GFS data 

were interpolated from 3-hour intervals to 1-hour intervals. In the irrigation scheduling 

campaign of 2016, irrigation was not applied if the forecasted precipitation amount was larger 

than 5 mm. 

3.2.4 Stem water potential, deep soil water content measurements and production 

data 

We had three independent data sources to evaluate water stress by the trees: (i) stem water 

potential measurements, (ii) deep soil water content measurements, and (iii) production data. 

These sources of information will be discussed in addition. 

During the irrigation campaign, stem water potential (SWP) was measured with pressure 

chamber equipment (Model 600 Pressure Chamber, PMS Instrument Company, Albahy, USA) 

by following the method descried by Turner (1981). Even though the stem water potential has 

no direct quantitative relation with the soil water content, it is a sensitive indicator of crop 

water stress and can be used to evaluate the water deficit condition of the fields. In the 

irrigation periods, stem water potential was measured every 2 weeks at noon with a sample of 
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5 trees per field and 4 leaves per tree. They were chosen from at least three different emitter 

lines and always including the tree where the FDR probe was placed. After 2 hours in the 

plastic bag, leaf water potential will be equal to the stem water potential. Then the leaves 

were sealed into the air chamber with a part of petiole exposed outside. The increased air 

pressure that makes water coming out from the cut surface of petiole is considered as the 

water tension within the leaves. The measured value of water potential is normally negative, 

which symbolizes the level of water stress and water deficit of the plants. Low stem water 

potential may cause the closure of stomata, the commonly used threshold is -1.5 MPa 

(Blonquist et al. 2006).  

Soil water content measured by FDR sensors at 50 cm and 70 cm depth was not used in the 

data assimilation, but was used as a further indicator of possible water stress. The drop of 

deep soil water content in the irrigation season is linked to the possibility that not enough drip 

irrigation is applied.  

The fruit production data for each field were also collected at the end of the season to support 

the evaluation. The production is the commercial yield that farmers sold to cooperatives. 

Unfortunately, not for all fields production data could be obtained as not all farmers collected 

this information. Reduced fruit production can be another indicator of the existence of water 

stress during the past growing season, but there are other possible explanations for a 

relatively small fruit production not related to drought stress. 

3.2.5 Statistical analysis of the performance of the irrigation scheduling methods 

The predictions by the models were evaluated by the Root Mean Square Error (RMSE) 

according to: 

RMSE = √
∑ (𝜃𝑚−𝜃𝑠)2𝑛

𝑡=1

𝑛
          (3.9) 

where 𝜃𝑚 is the CLM modeled soil water content, 𝜃𝑠 soil water content measured by FDR 

probes and 𝑛 is the number of time steps within the modelling period.  

In order to explore the efficiency of the CLM-DA based irrigation, the irrigation amounts for 

the different fields (CLM-DA method, FAO-method and Farmer approach) were compared. 

The applied water volume was divided by the area (𝑚2) of each field, and the water depth 

(mm) for each irrigation day was calculated. Possible drought stress was analysed with help 
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of the data from the stem water potential campaigns, fruit production measured at the end of 

the season and measured soil water content at 50 cm and 70 cm depth, which were not 

assimilated.  

Integrated stem water potential (ISWP) was calculated based on the following function 

(García-Tejero et al. 2010): 

ISWP = ∑ 𝑃𝑖+1(𝑛𝑖+1 − 𝑛𝑖) +
1

2
𝑖=𝑡
𝑖=1 (𝑃𝑖 − 𝑃𝑖+1)(𝑛𝑖+1 − 𝑛𝑖)              (3.10) 

where 𝑃𝑖 and 𝑃𝑖+1 are midday stem water potential measurements at day i and day i+1 day, 

(𝑛𝑖+1 − 𝑛𝑖) is the interval in days between two measurements (14 days for our fields). 

We also calculated the Seasonal Irrigation Performance Indicator (SIPI) for the period July-

September, which is potentially most affected by drought stress, for the years 2015 and 2016. 

SIPI is an indicator for the water saving performance of each irrigation method. It was 

calculated as ratio between actual evapotranspiration (𝐸𝑇C ) and the incoming water flux 

(irrigation water and rainfall) in the same period. Therefore, irrigation amount and 𝐸𝑇0 and 

𝐸𝑇C were determined for these periods, with 𝐾C factor derived by the method in section 3.2.2.  

A statistical analysis was performed on the basis of measured integrated stem water potentials, 

soil water contents, irrigation amount, commercial fruit production and irrigation 

performance index. We calculated Pearson correlation coefficients between variables, and 

analysed (linear) relationships between variables.  

3.3 Results and discussion 

3.3.1 Selection of the fields for evaluation in 2015 and 2016 

Three CLM fields (CLM-D, CLM-E, CLM-F) were excluded from the analysis in 2015, as 

for those fields the scheduled irrigation scheme was not followed. Figure 3.2 illustrates the 

comparison between scheduled and real-applied irrigation amounts, including the three 

inconsistent CLM fields. In two cases the farmers did not follow the recommended irrigation 

amount, and in one case flow velocity in the irrigation system differed significantly from the 

anticipated value. In all cases, more irrigation was applied than planned as shown in Figure 

3.2. 
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3.3.3 Stem water potential and deep layer soil water content data for the 

evaluation of water stress 

Previous research for citrus trees suggested that the minimum water potential value at wilting 

point can be down to -1.7 MPa for young leaves, and -1.9 MPa to -2.6 MPa for mature leaves 

(Syvertsen et al. 1981; Syvertsen 1982). It is also reported that citrus trees under regulated 

deficit irrigation can have a threshold stem water potential of -1.84 MPa (Ballester et al. 

2014). So we got the conclusion that if stem water potential is lower than -1.8 MPa a negative 

impact on citrus trees is expected. As shown in Figure 3.4, in 2015 two of the CLM-DA 

fields (CLM-A, CLM-B) may have experienced water stress at one measurement day in 

August, and this was also the case for one FAO field (FAO-B). This water stress might be 

related to the high water vapor pressure deficit that day, which might have resulted in stomata 

closure irrespective of irrigation amount and soil water status (Ballester et al. 2011). From 

June to October in 2016, Figure 3.4 indicates the possible water stress in July for field CLM-

D, related to irrigation scheduling which did not follow the CLM-DA suggestions and was 

too low. At the end of October, with the harvest season coming for some fields and given 

predicted precipitation events, the irrigation was stopped by the technicians resulting again in 

drought stress. In all other cases there was no drought stress according to these measurements.  

As shown in Figure 3.5, soil water measured at 50 cm and 70 cm depth for the three CLM 

fields did not show a decreasing trend over the irrigation season in 2016, which implies that 

irrigation was not too small, which would cause decrease of soil water contents. Soil water 

contents measured at 50 cm and 70 cm depth for the fields irrigated according the FAO and 

Farmer methods did not show a decreasing trend either. 

3.3.4 Statistical analysis 

3.3.4(a) Validation of the CLM-DA system 

The observed and modelled soil water contents (SWC) at 10 and 30 cm depth for one of the 

CLM fields are shown in Figure 3.6. The assimilation of FDR measurements significantly 

improved the SWC-characterization at 10 and 30 cm depth. Table 3.2 illustrates that the 

RMSE for SWC at 10 and 30 cm depth is smaller than 0.04 cm3/cm3 for all the 6 fields in 

2015. However, some of the fields show a relatively high RMSE compared to others. As only 

states but no parameters were updated, a systematic bias of soil properties can be expected, 

affecting also soil water contents.  
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method (9% less irrigation water for CLM than for FAO and 21% less for CLM than for 

Farmer fields). Table 3.3 shows that in average the accumulated irrigation depths in 2016 are 

slightly larger for the CLM-DA fields (341 mm) than for the fields following the FAO 

method (337mm), but again smaller than for the Farmer fields (424 mm). The averaged 

seasonal irrigation performance index (SIPI) for 3 CLM fields in 2015 was larger than for the 

FAO fields (0.71 for CLM and 0.64 for FAO), suggesting better water saving performance. In 

2016 the averaged SIPI for CLM and FAO fields showed no differences (both are 0.66), and 

were both larger than for the Farmer fields (0.56). 

Taking the average over both years and the three months of July, August and September, the 

CLM fields received 24% less irrigation water than the fields irrigated according the Farmer 

method, while the FAO fields were irrigated with 22% less water than the Farmer method. 

Meanwhile, the fruit production data showed that the CLM fields had a slightly smaller 

production, but given the large variation between the fields this is not significant. In 2016, 

due to heavy precipitation and strong winds in the harvest period (November and December), 

all the fields suffered production loss irrespective of the irrigation method. 

Figure 3.7 shows that the irrigation amounts vary less between the different months for the 

CLM fields than for the FAO fields. Although the differences in irrigation amount between 

the fields are large, all the fields show a similar trend in the monthly irrigation amounts, with 

largest irrigation amounts for the months of June until August.  

The temporal dynamics of irrigation depth, 𝐸𝑇0, 𝐸𝑇C and precipitation for the different fields 

which are irrigated according different methods are displayed in Figure 3.8 (except CLM-

fieds which were excluded from the analysis, see section 3.3.1). The daily maximum 

temperature (Tmax), minimum temperature (Tmin), 𝐸𝑇C and precipitation were also shown in 

Figure 3.8.  The 𝐸𝑇C was calculated by meteorological data assuming a 𝐾C factor of 0.68, a 

typical value for citrus tree. Precipitation amounts were lower in 2015 resulting in a higher 

irrigation demand than in 2016 for all fields, irrespective of the irrigation method. In 

particular the larger amounts of precipitation in September and October 2015 resulted in a 

temporary irrigation stop and the overall smaller applied irrigation amounts than in 2016. 
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Table 3.3 The summary of accumulated water depth (including irrigation and precipitation), 

integrated stem water potential (ISWP), FDR soil water content averaged by 10 cm and 30 cm 

measurements (SWC), seasonal irrigation performance index (SIPI) and commercial fruit production 

(yield) for 3 CLM fields, 2 FAO fields and 2 Farmer fields in both year of 2015, 2016. 

Fields 
SWC15 SWC16 ISWP15 ISWP16 

water 

depth15 

water 

depth16 
SIPI 15 SIPI 16 

yield 

(ton/h)15 

yield 

(ton/h)16 
(cm3/cm3) (cm3/cm3) (MPa) (MPa) (mm) (mm) 

CLM-A 0.29 0.28 -90.78 -83.80 308.96 421.41 0.56 0.42 43.85 35.32 

CLM-B 0.3 0.32 -93.06 -92.01 312.42 311.57 0.79 0.81 38.78 14.54 

CLM-C 0.36 0.37 -78.29 -74.75 312.74 264.8 0.77 0.93 29.32 28.88 

CLM-D 0.21 0.25 -88.94 -104.71 370.35 329.44 0.55 0.64 11.55 N.A. 

CLM-E 0.22 0.23 -90.70 -86.49 354.9 380.86 0.56 0.53 19.54 N.A. 

CLM-F 0.34 0.35 -60.66 -68.98 398.76 419.95 0.5 0.49 27.53 25.85 

FAO-A 0.28 0.31 -83.61 -69.91 318.37 324.87 0.65 0.65 36.5 35.01 

FAO-B 0.2 0.22 -92.54 -83.88 361.15 348.48 0.63 0.67 50.37 N.A. 

Farmer-A 0.36 0.37 -79.21 -80.71 369.03 356.58 0.61 0.65 30.61 30.71 

Farmer-B 0.34 0.36 -76.96 -83.40 509.16 490.77 0.45 0.48 27.68 14.99 

 

3.3.4(c) Validation of the CLM-DA system 

Table 3.4 shows the correlations between different variables determined at the irrigated fields. 

The table shows that only two pairs of variables show larger absolute correlation coefficients: 

(i) SWC and ISWP, and (ii) SIPI and accumulated water depth, simply because SIPI was 

calculated based on incoming water depth and ET.  

We could not find significant correlations between fruit production and other environmental 

variables. This shows that SWC and ISWP were still in a range without or very limited 

drought stress, so that production is not affected by those conditions. In addition, commercial 

fruit production was affected by other conditions like heavy rain and wind late in the season 

in 2016, which might have impacted the different fields to a different degree, and which adds 

additional noise in the relation between fruit production and other variables. Further variables 

of relevance are the citrus variety and the management by the farmers which differed between 
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the fields and also might have affected production. In summary, it can be concluded that 

irrigation according the CLM-DA methodology did not reduce fruit production, and fruit 

production showed larger variations between fields related to other variables than SWC and 

ISWP. 

Table 3.4 Correlation matrix between different variables determined at the irrigated fields: average 

FDR soil water content measured at 10 cm and 30 cm depth (SWC), integrated stem water potential 

(ISWP), accumulated incoming water depth, seasonal irrigation performance index (SIPI) and 

commercial fruit production (yield). 

 
SWC ISWP water depth SIPI yield 

SWC 1.00 0.61 -0.26 0.37 -0.07 

ISWP 0.61 1.00 0.26 -0.12 -0.09 

water depth -0.26 0.26 1.00 -0.87 -0.11 

SIPI 0.37 -0.12 -0.87 1.00 -0.03 

yield -0.07 -0.09 -0.11 -0.03 1.00 

 

3.3.4(d) Soil water content - Stem water potential relation 

As shown in Figure 3.9, the soil water contents at 10 cm and 30 cm depth, show a significant 

linear correlation (r = 0.61) with integrated stem water potential. This implies that plant water 

stress can be monitored with help of soil water content measurements at 10 cm and 30 cm 

depth.  

3.3.4(e) Soil water content - Incoming water depth relation 

The incoming water depth is the applied irrigation plus the precipitation and it is calculated 

for each field. Figure 3.10 shows that for the CLM and FAO-fields there is a relation between 

average SWC and incoming water depth. The incoming water depth is higher for fields with a 

low SWC, which illustrates that irrigation is especially needed for drier fields. It also 

illustrates that the irrigation amount was not too large, as the fields which are most 

intensively irrigated still have an average SWC smaller than other fields. This is not the case 

for the Farmer fields where average SWC is very high and the incoming water depth is also 

very high. It is clear that for those fields the high irrigation amounts resulted in high SWC 

reaching saturation. 



 
 



38 
 

3.4 Conclusions and outlook 

During the irrigation campaign for the Picassent site (near Valencia, Spain) from July to 

October in 2015 and June to October in 2016, three different irrigation scheduling methods 

were tested for 10 citrus fields, including the CLM-DA method proposed in this paper, the 

FAO water balance model and a traditional method based on farmer’s experience. The CLM-

DA method combines model predictions by a land surface model, weather prediction and soil 

moisture data measured by capacitance probes. These information sources are optimally 

combined using sequential data assimilation, to predict drought stress for the next days and 

schedule irrigation accordingly.  

The applied irrigation amounts were measured by a water meter. Stem water potential and 

citrus production indicating the possible water stress were also measured. The results 

illustrate the water saving potential of the CLM-DA method compared to traditional irrigation 

by farmers. The data from the different fields indicate that 24 % less irrigation water was 

needed than the irrigation scheduling according the Farmer method. The stem water potential 

and deep soil water content data showed that during most of the irrigation period, CLM fields 

were not suffering from water stress. Although using less water than the farmer fields, no 

significant production loss was detected. The FAO method is also an efficient irrigation 

scheduling approach but it is highly dependent on site-specific empirical parameters. 

A statistical analysis of all data collected in the field campaign revealed a positive correlation 

between SWC and integrated stem water potential data. This illustrates that SWC-data 

measured at 10 cm and 30 cm depth are useful to detect plant drought stress and can be used 

as basis to schedule irrigation. It was also found that for the CLM and FAO-fields, the 

applied amount of irrigation correlated negatively with SWC, illustrating that drier fields 

needed more irrigation and that it was the low SWC that governed irrigation amounts. On the 

contrary, for the fields that were irrigated according the Farmers method high average SWC 

was associated with very high irrigation amounts, indicating that for those fields the causal 

relation was different from the CLM- and FAO-fields; for the Farmer fields the high 

irrigation resulted in high SWC close to saturation. The statistical analysis also revealed no 

significant relation between SWC and ISWP on one hand and fruit production on the other 

hand, indicating that for the range of SWC and ISWP in this study, SWC and drought stress 

were not limiting factors for fruit production.  
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Comparing the CLM-, and FAO-methods, a similar performance was found in this study. It 

should be taken into account that the FAO-method was an established methodology for these 

fields and parameter settings were already tuned for this approach. Therefore the performance 

of the CLM-DA approach can be considered satisfying. The main differences between the 

two methods are the more complex and biophysically based model used in the CLM-DA 

method, the use of measurements in near real time to actualize the model state (while the 

FAO-method does not include those) and the use of a weather forecast. It is expected that the 

CLM-DA method will outperform the FAO-method if more measurements and better weather 

forecast data are available, if weather conditions are less stable and if the model is well 

calibrated on the basis of locally available data.  

In summary, a rational, automated approach for irrigation scheduling was formulated with 

high potential in terms of integrating on-line data from sensors. The advantage of the CLM-

DA method is automatic remote control, real time response, and the possibility to integrate all 

kinds of soil moisture and other data into a model. For example, this approach would also 

allow the integration of land surface temperature measured at high resolution by drones. 

Nevertheless, the real-world application of this method is challenging. The accurate 

application of the calculated irrigation water to the fields was one of the challenges requiring 

intensive cooperation with farmers and continuous maintenance of the measurement 

infrastructure (e.g. soil moisture sensors). Irrigation scheduling could have been further 

improved with additional data which would have allowed the estimation of parameters 

specific for citrus trees as well as a better definition of the critical soil moisture threshold. 
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Chapter 4 : Can drip irrigation be scheduled with Cosmic-ray 

Neutron Sensing? 
*adapted from: Li, D., Schrön, M., Köhli, M., Bogena, H., Weimar J., Jiménez-Bello, M. A., Han, X., 
Martínez Gimeno, M. A., Zacharias, S., Vereecken, H., and Hendricks Franssen, H.-J., 2019. Can drip 
irrigation be scheduled with Cosmic-ray Neutron Sensing? Vadose Zone Journal, 18(1). doi: 
10.2136/vzj2019.05.0053. 

4.1 Introduction 

Irrigated agriculture plays a vital role in the food production to support the increasing world 

population. Irrigation is responsible for 70 % of the fresh water consumption by mankind 

(Vereecken et al. 2009). In order to save water resources and to fulfil future crop production 

requirements, more efficient irrigation scheduling is needed. The irrigation scheduling 

approach can be applied based on the difference between root-zone soil water content (SWC, 

cm3/cm3) and a target soil water content that is related to the specific plant preferences 

(Evans et al. 1991).  

Many devices can provide information about soil water content, such as Time Domain 

Transmissivity (TDT), Frequency Domain Reflectometry (FDR) (Peters et al. 2013), 

tensiometers (Smajstrla and Locascio 1996), capacitance probes (Fares and Alva 2000) and 

Cosmic-ray Neutron Sensing probe (Zreda et al. 2012). The Cosmic-ray Neutron Sensing 

(CRNS) probe can be used to measure soil water content up to depths of 80 cm and with a 

footprint radius ranging from 130 m to 240 m at sea level (Köhli et al. 2015). Cosmic 

radiation originates from extrasolar sources and penetrates the atmosphere of the Earth. This 

interaction creates high-energy neutrons which further collide with atoms in the air, soil, and 

vegetation to produce medium-energy neutrons (Zreda et al. 2012). Those neutrons can be 

efficiently moderated towards lower energies by collisions with hydrogen. Therefore, the 

intensity of medium-energy neutrons is an indication for the amount of hydrogen atoms at the 

land surface and its temporal variation. The medium-energy neutrons, which can be detected 

by the CRNS probe, travel hundreds of meters in air and tens of decimeters in the soil. Hence, 

the advantage of the CRNS method is its ability to determine soil water states over larger 

areas and deeper soil layers, non-invasively, with low maintenance, and at a smaller cost 

compared to traditional soil moisture sensors. 

To properly understand the neutron signal and its dependence on the integral soil water 

content, many attempts have been made to model the neutron response with Monte Carlo 
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codes (Desilets et al. 2010; Zreda et al. 2012; Franz et al. 2013). In 2015, the neutron 

transport model URANOS (Ultra Rapid Neutron-Only Simulation) ( Köhli et al. 2015; 2018) 

was developed to reduce the number of model assumptions and make easy-to-use neutron 

simulations available for hydrological and soil science communities. Since then, the revised 

model results have been confirmed in many experimental studies (Heidbüchel et al. 2016; 

Schattan et al. 2018; Schrön et al. 2017; 2018a; 2018b; Fersch et al. 2018). The footprint is a 

function of air pressure, soil moisture, and air humidity, and is also slightly affected by the 

vegetation cover (Köhli et al. 2015). For typical wet soils the measurement depth is about 15 

cm, while 86 % of the measured neutrons originate from within a circle with a diameter of 

about 400 m (Köhli et al. 2015). In dry soils, the measurement depth can go down to 80 cm 

and the diameter to more than 500 m at sea level. The above-ground neutron density is 

affected by changes of cosmic-ray intensity and by additional hydrogen sources, such as 

biomass and lattice water (Andreasen et al. 2017; Schreiner-McGraw et al. 2016; Baatz et al. 

2015). Standard procedures are available to correct these effects. 

The accuracy of CRNS retrieved soil water content has been verified in many investigations 

(Zreda et al. 2012; Han et al. 2014b; Zhu et al. 2015; Hawdon et al. 2014; Schrön et al. 

2018b). Earlier work allowed improving the interpretation of measured neutron signals by 

CRNS for wet ecosystems, which showed that soil water content could be estimated with an 

error of 0.03 cm3/cm3 (Bogena et al. 2013; Baatz et al. 2014). Other studies demonstrated, 

that reliable estimates of soil moisture with standard CRNS probes under humid conditions at 

sea level can only be achieved for integration times equal or larger than 6 hours (Schrön et al. 

2018b).  

Drip irrigation is a localized irrigation method that allows water to drip slowly to the plant 

roots to save water and fertilizer input. Drip irrigation is associated with strongly 

heterogeneous soil water content, with relatively small irrigated wet patches and larger non-

irrigated dry area. The research of Li et al. (2018) has demonstrated the possibility of drip 

irrigation scheduling based on FDR soil water content measurements in the irrigated part. The 

limited number of FDR sensors and the FDR sensor’s limited measurement volume (FDR 

footprint) has imposed considerable uncertainties regarding soil water content estimates for 

the small wet patches, so that the estimate of soil water deficit for the whole field is also 

uncertain. This in turn makes it challenging to schedule the amount of drip irrigation water 

needed for the plants located on the wet patches. 
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As CRNS is able to estimate soil water change for a relatively large footprint, some past 

research was dedicated to the use of the CRNS for irrigation scheduling. Barker et al. (2017) 

investigated the optimal number and locations of CRNS probe for irrigation management. 

Han et al. (2016b) tested the assimilation of synthetic neutron intensity data to improve land 

surface modelling with the Community Land Model (CLM) and to do real-time drip 

irrigation scheduling. None of these studies applied CRNS data in a real-world case study for 

drip irrigation scheduling. 

Our research question is to what extent the CRNS can be used for the scheduling of drip 

irrigation amounts by using measured neutron intensity as a proxy for root-zone soil water 

content. This work aims to test the measurement precision of the CRNS in a drip-irrigated 

field and to evaluate whether it is sufficient to support drip irrigation management. The work 

relies on both, field experimentation and modelling of neutron intensity. A field calibration 

campaign was carried out for the drip irrigated Picassent site in Spain. The neutron transfer 

model (URANOS) was used to model the neutron response to the drip irrigated citrus fields 

and to explore the potential of the CRNS method to detect drip irrigation events. 

4.2 Materials and methods 

4.2.1 Research sites and measurements 

The research site is an area with drip irrigated citrus fields located close to Picassent in Spain 

(39.38° N, 0.47° E), which is a semi-arid region. Precipitation is concentrated in the autumn, 

winter and spring, and the yearly average precipitation is 453 mm (Li et al. 2018). Citrus is 

one of the most productive fruit plants in the world. The growing of citrus needs abundant 

sunlight and adequate rainfall or irrigation. Citrus trees flower in spring; fruits develop 

afterwards and ripen in fall or early winter. Precipitation during the main growth period of 

citrus fruit in summer is rare and therefore the water demand of the trees almost entirely 

depends on irrigation. 

Drip irrigation is being used to schedule irrigation for these citrus tree fields, with two 

pipelines (1 m distance) and 10 emitters for each tree. The emitters in the study area are 

mostly integrated pressure compensating type, with a common flow rate of 4 L/h. All the 

emitters are surface placed every meter without mulch cover. The trees are separated by 5 m 

from each other, both along the planted lines and between these lines, see also descriptions in 

Li et al. (2018). The meteorology observatory of IVIA (Instituto Valenciano de 
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Investigaciones Agrarias) provides meteorological data and is located 2868m from the 

CRNS-probe (http://riegos.ivia.es/). During most irrigation periods, drip irrigation was 

applied five or six times per week. From October onwards, depending on the weather and 

fruit maturation process, irrigation frequency was reduced and finally stopped. Due to drip 

irrigation, the soil water status of the land surface is very heterogeneous. The field can be 

divided into wet patches (irrigated parts) and dry patches (the rest of the field). The areal 

contribution of the drip irrigated part to the whole area is small and thus the SWC 

identification poses a challenge to the integral CRNS method. 

As shown in Figure 4.1, we have installed a CRNS probe in the dry patch between two drip 

lines (CRS1000, HydroInnova LLC, 2009) and various FDR probes at the test site. FDR 

probes (factory calibrated ENVIROSCAN Water-Content-Profile Probe, Campbell Scientific, 

Inc.) were installed in six irrigation plots within the footprint of the CRNS probe, measuring 

soil water content at four depths (10 cm, 30 cm, 50 cm, and 70 cm). Within a distance of 200 

m from the CRNS probe, 4 FDR probes were installed to measure soil water content in the 

non-irrigated part of the area and 9 FDR probes were installed in the irrigated part of the area. 

 
Figure 4.1 The distribution of FDR probes (for irrigated and non-irrigated area respectively), 18 soil 
samples for the CRNS-calibration and CRNS probe in the Picassent field, Spain. The radii of the 
circles are 11, 50, 110 and 200 meters. The small photographs show the installation of FDR in non-
irrigated (upper left) and irrigated (upper right) area, as well as the shape of irrigated patch (lower left) 
and the installation position of CRNS (lower right). 
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4.2.2 Field sampling for CRNS calibration in Picassent 

The CRNS probe needs to be calibrated with soil samples during a field campaign while 

neutron intensity is simultaneously measured by the CRNS probe. According to the new 

findings by Köhli et al. (2015) and Schrön et al. (2017), the area within a radius of less than 

50 m from the CRNS probe has about the same contribution to the neutron signal as the 

remaining area beyond 50 m. In accordance with suggestions by Schrön et al. (2017), 

sampling radii for this study were chosen as 11 m, 50 m, and 110 m, where six sampling 

locations were evenly distributed along each circle. At each location, the soil was sampled at 

six layers separated by 5 cm between 0 cm and 30 cm depth.  

Samples were taken using a soil corer of 30 cm length and 5 cm diameter (HUMAX, Martin 

Burch AG, Rothenburg, Switzerland) on June 1st, 2015. Half of the samples were taken in 

the wet and irrigated area (the green dots in Figure 4.1), and the other half in the dry, non-

irrigated area (red dots in Figure 4.1). Each 30 cm long soil core was frozen and cut by 5 cm 

intervals, in order to obtain 6 layers for each sampling location. All the 108 samples were 

dried in the oven for over 36 hours until the sample weight became stable. These samples 

have been averaged to get footprint soil water content taking into account their distance to the 

CRNS probe by using a weighting function that corresponds to the neutron transport theory 

(see section 4.2.3). 

Six soil samples (10 g), containing material from all six layers were also analysed in the lab 

for contents of lattice water and soil organic material. The lab analysis gave the organic and 

the inorganic carbon content (Corg, C), and the hydrogen content (by using a heat conductivity 

detector) and nitrogen content. The analysed hydrogen content was converted to water 

equivalents by multiplying with a ratio value of 9 (H2:H2O=1:9). From the analysed hydrogen 

content, all the weight of lattice and organic water was calculated and converted to 

volumetric content using the average soil bulk density value. The average volumetric lattice 

water and organic water content were found to be 0.04 cm3/cm3 in total. 

4.2.3 Footprint soil water content from soil sampling and FDR sensor network 

In order to obtain soil water content time series from CRNS probe, the FDR soil water 

content measurements need to be vertically and horizontally averaged using the weighting 

function from Schrön et al. (2017). The footprint soil water content from gravimetric 
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sampling was derived to do the calibration. Meanwhile the FDR sensors were also area 

averaged to get footprint SWC, which was used as verification data. 

Our research site is composed of non-irrigated fields, which are typically drier, and areas that 

exhibit a heterogeneous soil moisture pattern due to drip irrigation. In order to account for 

this heterogeneous soil moisture pattern, we introduced the fraction of the irrigated area 

𝐹𝑟wet and calculated the weighted SWC for the wet part 𝜃wet and dry part 𝜃dry separately. 

Assuming the wet part fraction 𝐹𝑟wet is the same across the whole CRNS footprint, the soil 

water content for the footprint 𝜃total can then be obtained as: 

𝜃total = 𝜃wet ∗ 𝐹𝑟wet + 𝜃dry ∗ (1 − 𝐹𝑟wet)       (4.1) 

The measurements to determine the extent of the wet fraction were made before the soil 

sampling campaign. For each tree, there are two drip lines separated by 1 m in space. The 

dripping points along the drip line are separated with 1 m distance. Since the row distance 

and tree distance are 5 m, each tree occupies an area of 5 m × 5 m, among which there are 10 

emitters. The average diameter (D) defines the wetted area for each dripping point. The 

fraction of the total drip-irrigated area (𝐹𝑟wet) is given then by: 

𝐹𝑟𝑔wet = 10 ∙
𝜋∙(0.5∙𝐷)2

5∙5
         (4.2) 

The weighting method proposed by Schrön et al. (2017) was used to obtain a weighted 

average soil moisture value from the point samples and FDR sensors. The vertical weight 𝑊d 

for different soil layers at depth 𝑑 can be calculated with the following empirical function 

(Schrön et al. 2017; Köhli et al. 2015): 

𝑊d(𝑟, 𝜃) ∝ 𝑒−2𝑑/𝐷86(𝑟,𝜃)         (4.3) 

where the effective measurement depth 𝐷86 can be calculated from the distance to CRNS 

probe (𝑟) and soil water content 𝜃. Then the weighted average soil water content < 𝜃k > 

from all the measurements (1~k) can be obtained by the weighting function (Köhli et al. 

2015): 

< 𝜃k >=
∑ 𝑊k∙𝜃k𝑘

∑ 𝑊k𝑘
          (4.4) 

An iterative approach was used to calculate the vertical weight of each layer, which means 

that the initial vertical soil water content was set equal to the average over all the six soil 
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samples taken by the HUMAX soil corer, and in case of FDR, to the average over the first 

two soil layers (10 cm and 30 cm depth). The representative depth of each soil sample was 

considered as the middle of this segment (e.g. 2.5 cm is the representative depth for the first 

segment).  

The horizontal weights for each of the soil sampling points or FDR probes depend on the 

distance between the FDR probes and the CRNS probe, as well as the air humidity and soil 

water status in the footprint (Schrön et al. 2017). The average over all the profile soil 

samplings or FDR measurements using Equation 4.1 was taken as the initial soil water 

content for the footprint, and then the horizontal weights along with Equation 4.4 were used 

to get the new soil water content for the footprint in an iterative fashion.  

4.2.4 Soil water content estimation from CRNS probe 

The data used in the analysis are hourly neutron intensities measured by CRNS probe from 

June 1 2015 to December 31 2016 in Picassent. Besides neutron intensity, CRNS probe also 

records time, temperature, relative humidity and air pressure, which is used for data quality 

control and data pre-processing. Epithermal neutron count data have to be corrected for 

external influencing factors that are not related to soil water content. Neutron intensity data 

are normalized to reference air pressure (Zreda et al. 2012). In our case, it is the air pressure 

at the calibration day (June 1st, 2015). 

The variation in the incoming neutron flux also needs to be corrected using the concurrent 

and reference high-energy neutron count rate during the research period (Zreda et al. 2012), 

which were provided by  the Jungfraujoch neutron monitor station of the University of Bern 

(3-NM64, http://cosray.unibe.ch). The reference high-energy neutron count rate is the 

averaged value during the calibration day. The effect of atmospheric water vapor on 

epithermal neutron intensity was then corrected using the method described in (Rosolem et al. 

2013), the reference absolute humidity value was set equal to the average value on the 

calibration day. 

The so-called N0 method was developed by Desilets et al. (2010) to estimate soil water 

content 𝜃v in the CRNS footprint as function of the neutron count rate 𝑁pih through a simple 

calibration function. To calibrate the N0 parameter, a single field calibration campaign was 

conducted as described in section 4.2.2. 
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𝜃v = (𝑎0 ∙ 𝜌bd) (
𝑁pih

𝑁0
− 𝑎1)

−1

− (𝑎2 ∙ 𝜌bd) − 𝜃lat − 𝜃org     (4.5) 

where N0 stands for the neutron intensity over dry soil at a specific test site and needs to be 

calibrated once; 𝑎0=0.0808, 𝑎1=0.372 and 𝑎2=0.115 are constant fitting parameters. 𝜌bd  is 

soil bulk density (g/cm3) averaged from all the soil samples taken on the calibration day (1.3 

g/cm3), it was calculated with an iterative method along with the weighting of soil water 

content for each layer. 𝜃lat is the volumetric lattice water (cm3/cm3) and 𝜃org is soil organic 

water equivalent (cm3/cm3). 

4.2.5 Modelling of the neutron response to drip irrigation 

The neutron response was simulated with URANOS (version 0.99rho) for the drip-irrigated 

field in Picassent to test the effect of drip irrigation on the neutron intensity at the CRNS 

location. The URANOS model simulates neutron interactions in a Monte Carlo framework, 

and was originally aimed for applications in nuclear physics (Köhli et al. 2018). Recently it 

has been used to model the interaction of cosmic-ray neutrons with air, soil and vegetation in 

order to understand neutron intensity measured by CRNS probe (Köhli et al. 2015). 

URANOS was applied here on the SWC pattern caused by drip irrigation with a model 

resolution of 0.5 m. As shown in Figure 4.2, a typically irrigated domain of size 500 m × 500 

m around the CRNS probe was divided into wet and dry grids as a simplified scenario, with 

wet grids of 1 m width interrupted by every 0.5 m (to mimic the irrigated wet patches) and 

larger dry patches of 4 m width between trees. The CRNS probe is located in the dry grid 

within the wet stripe. 

The domain was further divided into two vertical layers; the bottom layer was 0.5 m thick 

soil and the above layer was vegetation with air in the canopy space. The canopy was 

described as blocks with 4 m diameter and 2 m thickness, while the stem height was 1 m. The 

biomass density in the upper layer was 10 kg/m2, and the air humidity was 1.4 g/m3, which 

were typical values for the study domain and based on measurements.  

The URANOS model used two main scenarios for the non-irrigated area: SWC value of 0.14 

cm3/cm3 and 0.05 cm3/cm3 for the non-irrigated part (with the 0.04 cm3/cm3 lattice water and 

organic carbon taking into consideration). Meanwhile the SWC values range between 0.10 

cm3/cm3 and 0.45 cm3/cm3 for the irrigated part with steps of 0.05 cm3/cm3. Given this model 

set-up, we analysed the spatial distribution of neutron density and observed intensity with 
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regard to changing water content in the irrigated patches. The latter scenario is to test whether 

CRNS results differ under more arid conditions. 

 

Figure 4.2 Neutron transfer model settings for the typical condition in Picassent, the blue grids 

correspond to the irrigated patches and gray grids correspond to the non-irrigated area; the green layer 

on the top is the simplified representation of the citrus vegetation cover including canopy and stem; 

the yellow cube symbolizes the CRNS detector. 

4.2.6 Statistical analysis 

The two time series (from June 1, 2015 to December 31, 2016 for Picassent) of footprint soil 

water content, calculated from neutron intensity data and derived from FDR probes, were 

compared by the Root Mean Square Error (RMSE), Pearson correlation coefficient (𝑟) and 

Kling-Gupta efficiency (KGE) (Gupta et al. 2009):  

𝑅𝑀𝑆𝐸 = √
∑ (𝑋1,t−𝑋2,t)2𝑛

𝑡=1

𝑛
         (4.6) 

𝑟(𝑋1, 𝑋2) =
𝑐𝑜𝑣(𝑋1,𝑋2)

𝜎𝑋1𝜎𝑋1

          (4.7) 

𝐾𝐺𝐸 = 1 − [(𝑟(𝑋1, 𝑋2) − 1)2 + (
𝜎𝑋1

𝜎𝑋1

− 1)
2

+ (
𝜇𝑋1

𝜇𝑋1

− 1)
2

]

0.5

    (4.8) 
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where 𝑋1is the soil water content estimated from neutron intensity measured by the CRNS 

probe, 𝑋2 is the average soil water content in the CRNS footprint calculated from the FDR-

probes, n is the number of time steps with measurements, and t indicates time step, 

𝑐𝑜𝑣(𝑋1, 𝑋2) is the covariance between 𝑋1 and 𝑋2, 𝜇 and 𝜎 represent the means and standard 

deviations of 𝑋1 and 𝑋2. In the ideal case, the best fit between 𝑋1 and 𝑋2 would reach RMSE 

= 0, 𝑟 =1 and KGE = 1 (Gupta et al. 2009). 

The daily maximum variation (DEF) of FDR soil water content was calculated on drip 

irrigation days to demonstrate the effect of irrigation on soil water content measured by FDR 

sensors. 

𝐷𝐸𝐹 = max {max (𝑋d) − min (𝑋d)}                             (4.9) 

where max(𝑋d ) and min(𝑋d ) are the maximum and minimum daily soil water content 

averaged over all FDR sensors in the footprint, the average has been calculated every 10 

minutes. 

In addition, the normalized Standard Deviation ( 𝑁std ) of CRNS neutron intensity was 

calculated to determine the CRNS measurement error. The hourly neutron intensity N and its 

uncertainty 𝜎 have a relation as described in Bogena et al. (2013) and Schrön et al. (2018b). 𝜎 

is the standard deviation of N using Gaussian statistics; and 𝑁std is the hourly normalized 

standard deviation of neutron count rate:  

𝜎(𝑁) = √𝑁                    (4.10) 

𝑁std = 𝜎(𝑁)/𝑁 = 1/√𝑁                  (4.11) 

Also a statistical analysis was performed to analyse the linear correlation between measured 

soil water content and neutron intensity. The Pearson correlation coefficients were calculated 

for each month of 2016 to explore under which conditions the soil water content shows a 

stronger correlation with the CRNS measurements.  
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4.3 Results and discussion 

4.3.1 Soil water content measurements from field sampling and FDR sensors 

4.3.1(a) Area averaged soil water content from soil sampling and FDR  

Table 4.1 illustrates that a typical wet patch created by drip irrigation has an average diameter 

(D) of 0.50 m. Given the measured dimensions of a typical wet patch, the overall percentage 

of wet fraction (𝐹𝑟wet) within the larger field is around 8 %. The wet fraction of 8 % is used 

for CRNS calibration using data from the soil sampling campaign in June 2015. 

The vertical and horizontal weighted SWC for the irrigated and non-irrigated parts are shown 

in Figure 4.3, which demonstrates the effect of drip irrigation and precipitation on soil water 

content as measured by FDR sensors. For averaging soil water content horizontally, the 

relative proportions of the wet and dry fractions within the CRNS footprint are needed. 

Figure 4.3 shows the influence of the relative proportion of the irrigated, wet fraction (𝐹𝑟wet) 

on the spatial average of the FDR soil water content measurements. If the fraction of the wet, 

irrigated part in the CRNS footprint were larger, the apparent average soil water content of 

the CRNS footprint would also increase. The temporal evolution of soil water content for the 

CRNS footprint coincides with the soil water content for the non-irrigated dry part, and is 

strongly related to precipitation events. Due to the failure of FDR data from September to 

December in 2015, there was a data gap for this period. 

Figure 4.4 demonstrates that the measured gravimetric soil water content for the dry, non-

irrigated part is lower than the soil water content measured by FDR probes. It suggests the 

existence of a systematic bias between the gravimetric soil water content measurements and 

the FDR data. This can be related to the sampling volume as the gravimetric soil water 

content for the upper 10 cm has been determined by two sections of sampling profiles. For 

the non-irrigated part, the soil of the upper 5 cm is much drier than the soil at 5~10 cm depth 

based on soil sampling results, so that the FDR-based footprint soil water content (the 

shallowest layer measured at 10 cm depth) is higher than the gravimetric soil water content 

determined over the upper 10 cm. The found biases were constant so that a correction of -

0.05 cm3/cm3 was added to the FDR derived foot print soil water content time series for the 

non-irrigated part and +0.01 cm3/cm3 for the irrigated part. 
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Table 4.1 Measurements of diameters of drip irrigated patches (and their average) in June 2015 in the 

close vicinity of the installed CRNS probe. 

 Patch 1 Patch 1 Patch 3 Patch 4 Average 

Diameter (cm) 50 49 46 54 50 

 

Figure 4.3 Area averaged soil water content of FDR sensors installed in the non-irrigated part (upper) 

and irrigated part (middle) for 2015 and 2016, together with precipitation and irrigation depths (cubic 

water amount divided by field area) of the field where CRNS was installed. The lower graph shows 

the averaged FDR soil water content in the CRNS footprint as function of different values for the wet 

(drip irrigated) fraction (0, 8 %, 20 %) within the footprint. 
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Figure 4.4 The footprint soil water content (black line) at the CRNS-calibration day in Picassent, 

calculated from both the soil sampling campaign and the installed FDR sensors. The averaged SWC 

for the irrigated part (blue) and non-irrigated part (red), from both the soil sampling and 

corresponding FDR data are also shown. The wet fraction on the X-axis is the drip-irrigated 

percentage in CRNS footprint. 

4.3.1(b) FDR response to drip irrigation 

Figure 4.5 shows the hourly soil water content averaged over all FDR sensors measured in 

the irrigated wet part. There is a daily cycle of soil water content on irrigation days for each 

month in 2016. The soil water content increased fast when irrigation started in the late night, 

but dropped to lower values close to pre-irrigation afterwards with a daily maximum 

variation smaller than 0.05 cm3/cm3 as shown in Table 4.2.  

Table 4.2 The daily maximum variation range (DEF) of FDR soil water content (cm3/cm3) measured 

in the drip irrigated area during irrigation days, then averaged for each month, N.A. means no data. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

DEF(SWC) 0.043 0.042 0.048 0.054 0.041 0.052 0.055 0.045 0.034 0.027 0.027 N.A. 
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Figure 4.5 Hourly records of area averaged soil water content measured by FDR sensors installed in 

the irrigated wet part for all irrigation days and for different months (2016). The shadow area 

highlights the irrigation period (starts from 3 am and lasts 1~2 hours). 

4.3.2 Soil water content inversion from CRNS for drip irrigated field 

4.3.2(a) Neutron intensity measured by CRNS 

The measured hourly and 12 hourly averaged neutron intensity data from June 2015 to 

December 2016 in Picassent were corrected for fluctuations in air pressure, variations in 

incoming neutron intensity, and variations in water vapor pressure of the air. Figure 4.6 

shows the temporal evolution of the corrected neutron intensity and also illustrates that 

neutron intensity and precipitation are inversely correlated. Major rainfall events are 

associated with a rapid drop in neutron counting rate. 
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Figure 4.6 The corrected neutron intensity averaged for 1 hour and 12 hour intervals and daily 

precipitation amounts (meteorological data from IVIA) at the Picassent site in Spain from June 2015 

to December 2016. 

4.3.2(b) Relation between CRNS data and footprint soil water content 

Figure 4.7 shows the correlation between the footprint soil water content calculated from 

FDR measurements (assuming a wet (irrigated) fraction of 8 %) and measured neutron 

intensity. Measured neutron intensity was averaged over a 24-hour interval. The results show 

weaker correlation coefficients between SWC and neutron count intensity (larger than -0.5) 

in February, March, June and July, when SWC is generally lower than in other months. The 

possible reason is that the effect of irrigation on neutron intensity is neutralized by strong 

evaporation in summer days resulting in limited SWC-fluctuations over time. The months 

with stronger (more negative) correlation exhibit days with higher SWC and therefore more 

variation in SWC, which is related to higher precipitation amounts in those months (Figure 

4.6). This also indicates that the calibration curve will be better determined if data are 

available from days with more different SWC as suggested in previous research (Iwema et al. 

2015). 

As the duration of the drip irrigation was normally 1~2 hours, we also explored the relation 

between CRNS measurements and drip irrigation in an hourly time interval. However, the 

measured hourly neutron intensity did not show a clear trend related to applied drip irrigation 

(see Figure 4.8). The sampling fluctuations are also large, related to the short time period 

(hourly) for averaging neutron intensities. In order to determine the uncertainty of CRNS 

measurements, the hourly standard deviations (𝑁std) of CRNS measurements on irrigation 

days are shown in Table 4.3. 
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4.3.2(c) Inversion of CRNS soil water content by soil sampling calibration 

The fitted calibration curve based on the N0 method is given in Figure 4.9, and can be used to 

estimate soil water content from the measured neutron intensity. This curve is based on 

neutron intensity measurements averaged over 12-hour intervals. The footprint SWC 

calculated from the gravimetric soil sampling on June 1st 2015, was used to carry out the N0 

calibration, assuming the wet part fraction is 8 %. The FDR derived footprint SWC, over the 

years 2015 and 2016, were used as verification. 

Figure 4.9 illustrates that the calibration curve fits well with FDR derived footprint SWC and 

corresponding neutron intensity. Figure 4.10 shows the estimated soil water content for the 

CRNS footprint for the years 2015 and 2016 with this method. The RMSE between CRNS 

and FDR derived footprint SWC is 0.025 cm3/cm3. The calibrated N0 is close to 876 cph for a 

wet part fraction of 8 %. The Pearson correlation coefficient and KGE value between 

calibrated CRNS SWC and FDR derived footprint SWC during the research period are 0.848 

and 0.842. Those values are all close to 1, suggesting a good fit between the CRNS 

calibration results and FDR observation. 

 

Figure 4.7 Correlation between daily averaged CRNS neutron counts and footprint soil water content 

(SWC) for all months of 2016. The line in the background is the calibration curve. 
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Figure 4.8 Hourly neutron intensity during drip irrigation days at the Picassent site from January to 

December 2016, each line symbolizes the hourly variations for one day. The shadow area highlights 

the irrigation period (starts from 3 am and lasts 1~2 hours). 

Table 4.3 Hourly normalized standard deviation (Nstd) of neutron intensity measured on drip irrigation 

days (averaged for each month). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 

Nstd 0.040 0.039 0.039 0.039 0.040 0.039 0.039 0.040 0.040 0.041 0.041 
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Figure 4.9 N0 calibration curve showing the site-specific relationship between footprint SWC and 

measured neutron intensity. The cross corresponds to the gravimetric sampling campaign on the 

calibration day. The grey dots are the FDR derived footprint SWC and corresponding neutron 

intensity. 

 

Figure 4.10 Soil water content derived by the N0 method (CRNS SWC) after bias correction of the 

FDR sensors. Displayed are also the FDR averaged footprint SWC (FDR SWC avg) and daily 

precipitation. 

4.3.3 Neutron modelling with URANOS model 

In section 4.3.2 we found that SWC can be estimated for the CRNS-footprint with a relatively 

small RMSE. However, drip irrigation does not cause a large increase in the SWC of the 
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footprint as shown in section 4.3.1. In order to further explore this, the detectable neutron 

density was simulated with URANOS for the whole field to test the effect of drip irrigation 

on the neutron intensity.  

The URANOS simulation result (see Figure 4.11) shows the highest neutron density for tree 

canopies, suggesting the canopy locally dominates the whole pattern. The reason is that the 

canopy acts as an additional moderator, slowing neutrons of higher energies down to 

detectable medium-range energies. This effect is stronger than the moderation of medium-

energy neutrons down to thermal energies, to which the sensor is mostly insensitive (Köhli et 

al. 2018).  

As shown in Figure 4.12, it is evident that the neutron intensity decreases when the irrigated 

soil becomes wetter. However, the FDR sensors located in the wet patches show SWC 

(cm3/cm3) increases by a maximum of 0.05 related to irrigation (see Figure 4.5 and Table 4.2). 

And the neutron count limit that can be detected by the CRNS in 1 hour is approximately 4 % 

relative intensity change, as shown in Table 4.3. For a wetter case (0.14 SWC for the non-

irrigated soil), the change of 0.05 SWC by irrigation decreases the neutron intensity by not 

more than 1-3 neutrons per hour, or less than 1 % (see Figure 4.12). The total SWC change 

from 0.14 to 0.45 modelled with URANOS corresponds to a decrease of total neutron 

intensity change by 4.5 %, which can be visible for CRNS. For drier non-irrigated soil, the 

total neutron intensity change is steeper as shown in Figure 4.12. The additional 0.05 SWC 

caused by irrigation corresponds to a 2.1 % neutron intensity change. This change in the 

neutron intensity could be visible for more efficient CRNS detectors or with higher 

integration time. But in both cases a SWC change from 0.30 to 0.35 for irrigated soil cannot 

be resolved.  
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4.4 Conclusions 

The drip-irrigated site near Picassent, Spain was used for investigating how well soil water 

content can be estimated with a CRNS probe and whether this can be used to reliably 

schedule irrigation amounts. Measurements of neutron intensity by the CRNS probe were 

made from June 2015 to December 2016 and soil water content for the CRNS footprint was 

calculated for the same period. A soil sampling campaign was used to calibrate the N0 

parameter, as suggested in the CRNS literature.  

The results indicate that in spite of limited calibration data, still a relatively good estimate of 

the CRNS footprint soil water content could be obtained. Nevertheless, the soil water status 

of the wet, irrigated area could not be estimated precisely. Simulations by the URANOS 

neutron transport model confirmed that a standard CRNS probe does not allow for accurate 

estimation of the soil water content of the irrigated area at our specific site. The modelled 

neutron intensity changes caused by drip irrigation were lower than the statistical fluctuations 

of the CRNS measurement. The performance of CRNS technique is mainly limited by the 

following conditions: 

1. The irrigated area is only 8 % of the total area. Since CRNS has an area-averaging 

footprint, the small patches of irrigation are hardly visible and interpretable in the neutron 

detector signal. We suppose that irrigation of larger areas could have a more significant 

influence on the CRNS signal. For example, this effect was actually observed during rain 

events. 

2. Changes of soil water content due to irrigation are small (+0.05 cm3/cm3) under rather 

wet conditions (about 0.35 cm3/cm3 SWC). The above-ground neutron density is much more 

sensitive to changes of SWC at the lower, dry end of the SWC spectrum. Hence we suppose 

that the sensor would perform better in more arid regions (see also Figure 4.12). 

3. The irrigation period is only active for a few hours. The statistical uncertainty of such 

a short-term neutron measurement is not sufficient to resolve changes below 3 %. The 

employed CRNS detector can resolve small changes of water content only with longer 

integration periods of about 12 hours. We suppose that larger and more sensitive detectors 

could be able to resolve shorter periods. 

We conclude that the precise scheduling of drip irrigation is not feasible with a traditional 

CRNS device in our specific case. But CRNS would perform better in cases where drier soil 
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is irrigated, during a longer time period or with a more intense irrigation method. The 

sensitivity of CRNS should also be improved to get a much higher signal to noise ratio in 

order to detect small-scale drip irrigation. Non-standard CRNS probes, such as the Cosmic-

ray Rover (Desilets et al. 2010; Schrön et al. 2018a) are comprised of larger proportional 

counter tube and hence feature shorter integration times, allowing for higher count rates in 

the same time interval (Köhli et al. 2018). Multiple CRNS probes at the same field would 

also increase the total detected neutron intensity and decrease the statistical noise (Schrön et 

al. 2018b; Jakobi et al. 2018). These new instruments and measurement strategies could be 

further tested to observe the soil water content variation caused by drip irrigation. 
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Chapter 5 : Assessment of the uncertainties related to irrigation 

modelling by a land surface model across India 
*adapted from: Li, D., Han, X., Dhanya, C. T., Siebert, S., Vereecken, H., and Hendricks Franssen, 
H.-J., 2020. Assessment of the uncertainty related to irrigation modelling by a land surface model 
across India, In preparation for submission to Journal of Hydrology. 

5.1 Introduction 

Irrigated agriculture is crucial for feeding the increasing population around the world 

(Carruthers et al., 1997; McLaughlin and Kinzelbach, 2015). Human activities have put extra 

pressure on the water resources through water withdrawals, especially for agricultural 

purpose. In order to assess the water balance situation in the past, present and future, it is 

necessary to model the irrigation requirement (Döll and Siebert, 2002). Irrigation modelling 

is also needed for understanding land-atmosphere interaction over agricultural areas (Lawston 

et al., 2017). Irrigation will affect both the energy and water budgets of the land surface 

(Ozdogan et al., 2010). Several studies illustrated that irrigation increases evapotranspiration 

(ET) and decreases land surface temperature (Leng et al., 2013; Huang et al., 2016; Shah et 

al., 2019). Considering irrigation modelling in land surface models could therefore give an 

improved description of the water and energy balance variations, also in relation to climate 

change and human activities. Some land surface modelling studies analysed the impact of 

irrigation at the regional and global scales (Döll and Siebert, 2002). Both land surface models 

and hydraulic models have been widely used for simulating irrigation and water storage 

variations under conditions of climate change (Sacks et al., 2009; Fowler et al., 2018; Shah et 

al., 2019). 

Leng et al. (2013) evaluated the performance of irrigation simulation by the Community Land 

Model (CLM4) considering the spatial distribution and intensity of applied irrigation. Lu et al. 

(2015) coupled a crop model (CLM4crop) with the Weather Research and Forecasting model 

(WRF) to represent the interactions between climate and irrigated agriculture, showing an 

improved surface flux partitioning at irrigated agricultural sites compared to model 

simulations without dynamic crop growth. Xie et al. (2017) and Zeng et al. (2017) developed 

a system based on CLM 4.5 considering human water withdrawal and lateral groundwater 

flow incorporated. Their simulations over the Heihe River Basin of northwestern China 

showed that irrigation and other anthropogenic exploitation have caused 2 m groundwater 

depletion (Zeng et al., 2016; 2017).  
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According to a UN report (UN: World Population Prospects 2017), the population of India 

has exceeded 1.3 billion and will continue to increase with a high rate of over 1% per year. 

The increased food demand will increase the need for agricultural production. As irrigated 

agriculture accounts for 70% of India’s food production, water resources are critical for 

sustaining the huge population (Kumar, 2003). India has frequently been affected by droughts 

and drought frequency and severity is expected to increase in the context of climate change 

(Prabhakar and Shaw, 2008; Kumar et al., 2013; Mallya et al., 2016). Given the frequently 

dry conditions in India, the irrigation requirement will also further increase, which implies 

increased pressure on groundwater resources (Murray, 2013). GRACE (Gravity Recovery 

and Climate Experiment) satellite data have shown that India is affected by severe 

groundwater depletion (Rodell et al., 2009). Groundwater depletion is likely to increase in the 

future with increasing temperatures and the projected increase of severe droughts (Scanlon et 

al., 2012). 

In parts of India, the impact from human activities on water resources is larger than the 

impact of global warming (Haddeland et al., 2014). Given the sensitivity of the Indian 

subcontinent to water stress, the reconstruction of changes in water storage and the water 

cycle over the subcontinent have gained importance. For India and the Indian subcontinent, 

the research of Shah et al. (2019) shows the influence of irrigation on the water budget and 

the land surface temperature by applying the hydrological model VIC. Fowler et al. (2018) 

have shown the impact of irrigation on precipitation by using the irrigation enabled 

Community Land Model (CLM4). Previous research also suggested that the effect of 

irrigation on the land surface fluxes is larger than the uncertainties of the global land cover 

product over the irrigated area of India (Madhusoodhanan et al., 2017). 

In India, the spatiotemporal pattern of crop and irrigation requirement is strongly decided by 

the unevenly distributed precipitation within the monsoon season. However, most of the 

previous studies (Haddeland et al., 2014; Fowler et al. 2018; Shah et al. 2019) ignored the 

temporal variability of varying irrigation areas and frequency throughout the year. The 

seasonal change of the irrigation area and the effect of irrigation frequency have not been 

considered in the past researches. Therefore, it is important to explore the influence of a time-

variable irrigation map and irrigation frequency on the irrigation modelling with land surface 

models. By using the CLM model, the irrigation requirement and land surface flux of each 

grid cell in the model domain over India have been reconstructed for the year of 2010 at a 

resolution of 10 km × 10 km. The uncertainties of time-variable irrigation area and irrigation 
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frequency were explored by different simulation scenarios. In addition, the role of the 

irrigation factor, which determines the target soil water content and therefore the needed 

amount of irrigation to compensate the water deficit, were tested. The modelled irrigation 

requirement was calculated for each scenario to determine the role of these uncertainties in 

irrigation modelling. The land surface fluxes (total evapotranspiration, transpiration) for 

different modelling scenarios were calculated and compared with large-scale remote sensing 

data. The ratio of transpiration to total evapotranspiration was also calculated to explore the 

effect of irrigation on the partitioning of evapotranspiration. 

5.2 Data and methods 

5.2.1 Study area 

Our research area is the India Subcontinent covering the spatial domain of 8˚N-38˚N and 

68˚E-98˚E. India has a large proportion of farmland and 90% of water use is for agricultural 

purpose (Kumar, 2003). Indian summer monsoon rainfall contributes to around 80% of the 

annual precipitation (Paul et al., 2016). The whole year is divided into three seasons, namely 

Zaid (pre-monsoon: March to May), Kharif (monsoon: June to October), and Rabi (post-

monsoon: November to February), in accordance to the uneven distribution of precipitation in 

time. 

Northern and southern India have different onset and durations of the monsoon season, and 

farmers select crop types and crop schedule according to the agricultural water availability. 

Groundwater from aquifers is extracted extensively for irrigation, especially during the non-

monsoon season, which is reflected in the GRACE gravity data over Northern India (Asoka 

et al., 2017). Such declination in not evident over Southern India, however (Asoka et al., 

2017). In this study, Northern and Southern India will be considered separately. The 

validation of the irrigation modelling result will be focused on Northern India. The division 

line is set at the latitude of 23 degrees, which divides the research domain into two equal 

parts.  

5.2.2 Methods 

5.2.2(a) Community land model 

The Community land model (CLM4.5) is the land model of the Community Earth System 

Model (Oleson et al., 2013). It has been widely used in climate and hydrological research, to 
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model ecological and hydrological processes. In CLM, the soil water flow and land-

atmosphere exchange fluxes are simulated by using a modified Richards equation and Monin-

Obukhov similarity theory (Oleson et al., 2013).  

The soil profile in CLM has 15 vertical layers, while soil hydrological states and fluxes are 

calculated only for the upper 10 layers (Oleson et al., 2010). The soil hydraulic parameters 

are calculated from the sand and clay fractions (Oleson et al., 2013) using the Clapp-

Hornberger pedotransfer function in combination with the Brooks-Corey parameterization. 

Spatial land surface heterogeneity of CLM is represented by 3 levels of sub-grid hierarchy 

including land units, snow/soil columns and plant functional types (PFT) (Oleson et al., 2010). 

Each grid cell may have multiple land units including urban, glacier, lake, wetland and 

vegetated, as well as multiple columns and PFTs (Oleson et al., 2013). 

In this study, the modelling domain for whole India was composed by 360 × 360 grid cells, at 

an average resolution of 10 km × 10 km. In order to avoid heterogeneity within a single 

model grid cell, each grid cell has only one soil column and one plant functional type, 

representing the most dominant plant type. The plant functional types are derived from 

MODIS (Moderate Resolution Imaging Spectroradiometer) land cover data (MCD12Q1) with 

the help of world climate classification data (Ke et al., 2012). The detailed description of the 

method can be found in in Ke et al. (2012).  

The monthly LAI (Leaf Area Index) for each PFT in CLM was obtained from the MODIS 

LAI 8-day composite product (MOD15A2). The original 500 m data was regridded to 10 km 

using Nearest Neighbor sampling method. The monthly SAI (Stem Area Index) for each PFT 

was derived from monthly LAI values by using the method of Lawrence and Chase 

(Lawrence and Chase, 2007). 

5.2.2(b) Irrigation scheme 

In CLM, the irrigation scheduling is planned on the basis of the calculated water deficit, 

which is the difference between the model predicted and target soil water content. The target 

soil water content is defined for each soil layer as described in Equation 5.1 (Oleson et al. 

2010): 

𝜃target = (1 − 𝐹irrig) ∙ 𝜃min + 𝐹irrig ∙ 𝜃max       (5.1) 
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where 𝜃min is the minimum soil water content to keep stomata completely open and 𝜃max is 

soil saturation. The irrigation factor 𝐹irrig (default value is 0.7) was derived empirically to let 

the calculated global irrigation amount match with the gross agricultural water withdrawal 

around the year of 2000 (Oleson et al. 2010). Since the default factor was calibrated without 

specifying the irrigation frequency, the impact of the value for the irrigation factor should be 

assessed along with irrigation frequency.  

The irrigation amount is calculated by the integrated water deficit (𝑊deficit) over the root 

zone (Oleson et al. 2010): 

𝑊deficit = ∑ 𝑅𝑖 ∙ max(𝜃target − 𝜃𝑖 , 0)𝑁
𝑖        (5.2) 

where 𝜃𝑖 is the soil water content for layer 𝑖, 𝑅𝑖 is the root fraction, and N is the number of 

CLM-layers with roots. 

The irrigation amount was calculated with the help of a Python code, coupled with CLM, to 

integrate different irrigation maps, irrigation frequencies and other irrigation parameters. 

Irrigation was only applied to the model pixels with crop cover and non-zero LAI. 

5.2.3 Datasets 

5.2.3(a) Soil texture 

We used the global soil texture data from FAO (Food and Agricultural Organization of 

United Nations), which were transformed from vector maps to raster files (see Figure 5.1). 

The FAO Digital Soil Map of the World (DSMW) is the digital version of the FAO-

UNESCO Soil Map of the World at a scale of 1:5 million, with soil types classified according 

to the FAO-UNESCO legend.  
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Figure 5.1 The sand (left) and clay (right) percentages of the FAO-based soil map. 

5.2.3(b) Atmospheric forcing 

Previous research has shown that global reanalysis products are valuable for drought 

assessment during the Indian monsoon season (Shah and Mishra 2014). In our simulation 

experiments, the meteorological forcings being used by CLM were generated by combining 

reanalysis data from NCEP (National Center for Environmental Prediction), GLDAS (Global 

Land Data Assimilation System) and rain gauge measured precipitation data. The 

GLDAS_NOAH025 forcing data is 3-hourly and with a spatial resolution of 0.25˚ × 0.25˚ 

(Rodell et al. 2004). Meteorological variables like wind speed, relative humidity, air pressure, 

air temperature, incoming long wave and short wave radiation from GLDAS were used as 

input for the CLM model.  

Since precipitation is the major influencing meteorological variable for the water balance 

with the largest uncertainty, the precipitation amounts from GLDAS were not used but 

replaced by daily gridded rain gauge observations from IMD (India Meteorology Department) 

(Pai et al. 2014). The daily rainfall data (IMD4) have a resolution of 0.25˚ × 0.25˚ and are 

available for a long period (1901-2010) (Pai et al. 2014). The daily precipitation amounts 

from IMD4 were divided by 24 and used as hourly input data for CLM. 

5.2.3(c) Irrigation map 

Two irrigation maps were used in the CLM model simulations, which are a time-fixed 

irrigation map and a season-specific irrigation map. The time-fixed irrigation map was a high 

resolution irrigation map (250m, from the year of 2000 to 2015) created by remote sensing 

data was chosen to derive the irrigated area (Ambika et al., 2016). The high-resolution 
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irrigated area data were created based on the differences between normalized difference 

vegetation index (NDVI) for irrigated and non-irrigated crops, making use of the NDVI 

product and land cover data from MODIS (Ambika et al., 2016). In addition, the percentage 

of irrigated area in each model grid cell of 10 km × 10 km was calculated. In order to 

simplify the computation while maintaining the irrigated area equal to the irrigated area from 

the original irrigation map (approximately 850,000 km2), model grids with over 35 % land 

being irrigated were considered as irrigated pixel, as shown in Figure 5.2.  

For creating the second season-specific irrigation map, another irrigation dataset 

(GEOSHARE pilot project- Crop Science Bonn) with a spatial resolution of 0.5˚ × 0.5˚ was 

used, including the spatial distribution of cereal crops (including maize, wheat and rice) 

under irrigation in each of the three seasons (Zaid, Kharif and Rabi). The seasonal maps for 

irrigated cropping areas were created by integrating land cover data, crop calendars and 

census data of the year 2005 (Zhao and Siebert, 2015). In order to create the season-specific 

irrigation map with resolution of 10 km × 10 km, the coarse resolution (0.5˚ × 0.5˚) and the 

previous time-fixed irrigation map with higher resolution (10 km × 10 km) were combined 

together, with irrigation only applied to model grids that are irrigated in both maps as shown 

in Figure 5.3. 

 

Figure 5.2 The time-fixed irrigation map with resolutions of 10 km × 10 km (left) and corresponding 

irrigation percentage (right) in each model grid. 
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Figure 5.3 The distribution of the irrigated areas in the three seasons (Rabi, Zaid and Kharif) 
according to the combination of irrigated maps with two resolutions (0.5˚ × 0.5˚ and 10 km × 10 km). 

 

5.2.3(d) Global ET products as model validation 

Evapotranspiration (ET), which includes soil evaporation, plant transpiration (T) and canopy 

evaporation, represents an important process for the global water and energy cycles (Wei et al. 

2017). The spatiotemporal patterns of ET are the consequence of complex interactions 

between soil, vegetation, and lower atmosphere (Zhang et al. 2009; Wu et al. 2017). Many 

approaches are being used for the observation of ET, such as lysimeters, the eddy covariance 

technique and the LAS (Large Aperture Scintillometer) (Meijninger et al. 2002). Global ET 

estimates have been also been acquired by remote sensing based methods, examples are 

SEBS (Surface Energy Balance System) (Su 2002), GLEAM (Global Land Evaporation: the 

Amsterdam Methodology) (Miralles et al. 2011), and the MODIS ET product (Mu et al. 

2011).  

GLEAM ET data (v3: 0.25˚ × 0.25˚) and MODIS ET (MOD16A2: 500 m) were used to 

compare with CLM modelled ET. The GLEAM ET product is based on the Priestley and 

Taylor equation and microwave remote sensing data, without considering the 

parameterization of stomata conductance and aerodynamic resistance (Miralles et al. 2011). 

The MODIS ET product is derived from a remote sensing based Penman-Monteith method 

and Priestley-Taylor equation with aerodynamic resistance taken into consideration, with 

various input data like land cover (MOD12), albedo (MCD43) and Leaf Area Index/fraction 

of Photosynthetically Active Radiation (LAI/fPAR, MOD15A2) from MODIS (Mu et al. 

2011). Both products were resampled to the CLM resolution (10 km × 10 km) using Nearest 

Neighbour sampling method. 
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5.2.4 Experiment design and analysis 

In this study, six numerical experiments were conducted as shown in Table 5.1. The irrigation 

requirement and hydrological fluxes over India were reconstructed with help of the CLM 

model for the year 2010. Different scenarios were tested to explore the role of time-variable 

irrigation area, irrigation frequency and irrigation factor. The different model scenarios 

included the control case without irrigation and the cases with weekly irrigation and default 

irrigation factor of 0.7. In addition, for the weekly and daily irrigation scenario, a time-

variable seasonal irrigation map was used. Moreover, the irrigation factor (𝐹𝑖𝑟𝑟𝑖𝑔) was set to 

0.7, 0.6 and 0.5 for the daily-irrigated cases, in order to test the influence of irrigation factor 

on the modelled irrigation and surface runoff. The duration of irrigation was set to 4 hours for 

all the simulation scenarios. 

The model validation was conducted separately for Northern and Southern India, for the 

model grids that were irrigated. The averages of irrigation amount and ET for the irrigated 

grid cells in Northern India were calculated. In order to explore the effect of ignoring 

heterogeneity within the 10 km × 10 km model grid cells, the averages ratio of transpiration 

to total evapotranspiration was separately calculated for grid cells with more than 50 % of the 

area being irrigated and grid cells with only 35-50 % being irrigated. Due to the lack of 

verification data, the irrigation modelling for the different scenarios was compared and the 

impact of the different input data was evaluated. The modelled ET over all grids with 

irrigation was compared with the satellite-based GLEAM and MODIS ET products. 

Table 5.1 Summary of simulation experiments with different model setups. 

Experiment Description 

noIR Model run without irrigation 

weekIR_F0.7 Model run with weekly irrigation (irrigation factor=0.7) and time-fixed irrigation map  

weekIR_season_F0.7 Model run with weekly irrigation (irrigation factor=0.7) and seasonal irrigation map 

dayIR_season_F0.7 Model run with daily irrigation (irrigation factor=0.7) and seasonal irrigation map 

dayIR_season_F0.6 Model run with daily irrigation (irrigation factor=0.6) and seasonal irrigation map 

dayIR_season_F0.5 Model run with daily irrigation (irrigation factor=0.5) and seasonal irrigation map 
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5.3 Results and discussion 

5.3.1 Irrigation modelling for different scenarios 

From MODIS LAI time series shown in Figure 5.4, it can be concluded that if model grids 

are less irrigated (35%-50%), the LAI increases in the first crop season (January to March) 

less than for the grid cells which are more irrigated (>50%). The averaged LAI values in less 

irrigated grid cells for the first three months are only 55% of the values for more irrigated 

grid cells. The dual-seasonal change of LAI can be detected in Northern India, which 

coincides with two seasons of crop growth and harvest. If irrigation is not applied in the first 

crop season, the crop may suffer drought stress.  

On the other hand, in Southern India the growing season is mainly in the monsoon period; 

which starts earlier and ends later than in Northern India. Therefore, the crops in Southern 

India rely less on irrigation. As the major crop season is within the monsoon period in 

Southern India, the growing of crops may not need much irrigation to sustain and the effect 

of irrigation on land surface fluxes is much less pronounced compared to precipitation. Since 

the dual-seasonal change of LAI linked with irrigation input is more prominent for the model 

grid cells that are more than 50 % being irrigated in Northern India, we will focus on the 

model validation of land surface fluxes for these model grids in later chapters.  

The modelled irrigation requirement with the different model setups is shown in Figure 5.5 as 

well as in Table. 5.2. According to a report from FAO (FAO. 2015. AQUASTAT Country 

Profile – India), the water resource being used for irrigation purpose in India for the year of 

2010 was estimated to be 688 km3, which is larger than the simulated irrigation for weekly 

irrigation scheduling. However, the irrigation statistics were not precisely validated and vary 

significantly between each year. For example, the irrigation water requirement was estimated 

as 371 km3 in the year of 2006 (http://www.fao.org/nr/water/aquastat/data). Figure 5.5 shows 

the average irrigation for each moth of 2010 and all the irrigated grid cells in Northern India 

where at least 50% of the area was irrigated. The simulation cases using the seasonal 

irrigation map (weekIR_season_F0.7) saved water in the pre-monsoon (March to May) 

season and resulted in the smallest irrigation amounts in one year (255 km3). The irrigation 

frequency also impacts the simulated irrigation needs. If daily irrigation is assumed, 

simulated irrigation is much higher than if weekly irrigation is assumed, especially in the 

month of June, but also during most of the rest of the year. The effect is larger in June which 

is related to the sudden start of the irrigation after a long dry season. Simulations with a daily 

http://www.fao.org/nr/water/aquastat/data
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irrigation for a default irrigation factor of 0.7 (dayIR_season_F0.7) results in the highest 

simulated irrigation requirement, while the irrigation requirement modelled by CLM 

decreases with the value of the irrigation factor (dayIR_season_F0.6 and dayIR_season_F0.5). 

Figure 5.6 shows the accumulated runoff caused by the irrigation and precipitation in each 

month for the simulation scenarios. Weekly irrigation scheduling using a seasonal irrigation 

map as input results in the lowest simulated runoff among the simulation scenarios, except 

the monsoon season. On the other hand, the variation in runoff is strongly linked with 

irrigation frequency. The modelled runoff for daily-irrigated cases is much higher than the 

weekly-irrigated cases. Additionally, with the same daily irrigation frequency, the modelled 

runoff increases with the value of irrigation factor.  

Figure 5.7 shows the modelled averaged daily soil water content (SWC) for the scenarios 

which use a seasonal irrigation map. Results are shown for SWC at 10 cm, 30 cm and 50 cm 

depth for all grid cells in Northern India which are more than 50% being irrigated. The 

averaged SWC corresponding to the wilting point and field capacity is also displayed. The 

results indicate that the SWC modelled by CLM is near the wilting point in the pre-monsoon 

season when there is no irrigation applied, but for all irrigation strategies the overall SWC is 

clearly above the wilting point. The target SWC shown in Figure 5.7 was calculated on the 

basis of field capacity, wilting point and irrigation factor according Equation. 5.1. Even with 

the default irrigation factor and intensive daily irrigation, the modelled SWC was still below 

the target SWC and the soil water deficit was not reduced to zero. Daily irrigation resulted 

also in significant surface runoff. This indicates that the default irrigation factor in CLM is 

too high and should be calibrated as function of the irrigation frequency and reliable water 

consumption data on irrigation. 
Table 5.2 Summary of irrigation modelling results for different simulation scenarios for whole India, 

as well as the FAO statistics of irrigation amount for the year of 2010 

Experiment Irrigation (km3) 

weekIR_F0.7 453.64 

weekIR_season_F0.7 255.4 

dailyIR_season_F0.7 768.57 

dailyIR_season_F0.6 561.41 

dailyIR_season_F0.5 391.1 

FAO Irrigation (2010) 688 
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Figure 5.4 Monthly accumulated precipitation (top), and monthly averaged MODIS leaf area index 

(bottom) for the year of 2010; which were averaged separately for the model grids in Northern India 

with at least 50 % of the area being irrigated (red), 35 %-50 % of the area being irrigated (green) and 

the model grids in Southern India with at least 50 % of the area being irrigated (blue). 

 

Figure 5.5 Monthly accumulated irrigation modelled by CLM with different model setups for the year 

of 2010. All simulation results were averaged for the model grids in Northern India with at least 50 % 

of the area being irrigated. 
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Figure 5.6 Monthly accumulated runoff modelled by CLM for different model setups for the year of 

2010. All simulation results were averaged for the model grids in Northern India with at least 50 % of 

the area being irrigated. 

 

Figure 5.7 Daily modelled average soil water content at 10 cm, 30 cm and 50 cm depth with different 

model setups using the seasonal irrigation map for the year of 2010, along with the wilting point, field 

capacity and calculated target soil water content based on different irrigation factors (0.7, 0.6 and 0.5). 

Simulation results were all averaged for the model grid cells in Northern India with at least 50% of 

the area being irrigated. 
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5.3.2 Land surface flux modelling and validation 

The spatial distributions of evapotranspiration (ET) modelled by CLM in the first three 

months of 2010 are shown in Figure 5.8. Compared with the MODIS and GLEAM ET in the 

same period, the spatial pattern of ET modelled by CLM with irrigation input is closer to the 

MODIS ET, especially in the northern part of India. The ET patterns modelled without 

irrigation input are closer to GLEAM ET. Time series of modelled ET for the 12 months in 

2010 are shown in Figure 5.9 (Northern India, for grid cells which are at least 50% irrigated).  

For the grid cells in Northern India, which were more than 50% being irrigated, the ET 

increase from January to February for the irrigated modelling scenario is possibly linked to 

the applied irrigation in the same period (see Figure 5.9). The temporal trends of modelled 

ET fluxes show the strong influence of the seasonal irrigation map. The method using the 

seasonal irrigation map shows the lowest ET simulation among the simulation cases with 

irrigation. MODIS ET shows a similar trend of increasing ET from January to February. 

GLEAM has low ET values in the first two months without ET increase. In the pre-monsoon 

season (March to May), GLEAM ET is closer to the non-irrigated CLM modelling cases than 

to the other irrigated cases. Except for the first three months, MODIS ET is always lower 

than GLEAM ET with ET-values near zero in the pre-monsoon season, which is much lower 

than GLEAM ET and CLM modelled ET. The reason may be the influence of cloud coverage 

or other uncertainties within the algorithm of the MODIS ET product. Overall, the simulation 

scenario using the seasonal irrigation map shows a temporal ET-pattern more similar to 

MODIS ET than the other simulation scenarios. The different irrigation factors did not impact 

modelled ET very much, indicating that also a lower irrigation factor resulted in high enough 

SWC to sustain crop water demand and therefore ET. 

The effect of irrigation on the partitioning of ET is also plotted in Figure 5.10 (Northern India, 

for grid cells that are more than 50% and 35%-50% irrigated). The irrigation aims to fulfil the 

transpiration need of the crop, and the lower T/ET-ratio implies a lower irrigation efficiency. 

Both the less irrigated grid cells (35%-50%) and more irrigated grid cells (>50%) have higher 

T/ET-ratios for the simulation case with a seasonal irrigation map, compared to the case with 

a fixed irrigation map, especially in the pre-monsoon season (March to May). For the cases 

with daily irrigation, the modelled ET and T/ET ratio are similar for the three different 

irrigation factors. It implies that the irrigation being applied with a low irrigation factor of 0.5 
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is sufficient to sustain plant growth and transpiration, while the rest of the “over-irrigated” 

water is wasted through surface runoff. 

As shown in Figure 5.10, for the model grid cells with lower irrigation percentage (35%-

50%), but which are considered as fully irrigated pixels in the modified irrigation map, the 

irrigation requirement is overestimated, as the T/ET ratio is significantly lower for these grid 

cells than for the model grid cells with at least 50% of the area being irrigated. The T/ET-

ratio for grid cells with 35%-50% irrigated area is lower than 0.4 in the first three months, 

compared with a value of over 0.5 for grid cells that were at least 50% irrigated in the same 

period. This indicates that choosing 35% irrigation as the threshold for assigning a grid cell as 

irrigated grid cell may overestimate the irrigation requirement for the corresponding model 

grid. Neglecting the irrigation requirement of model grids with less than 35% irrigated area 

introduces additional errors in the modelling of the irrigation requirement. In order to 

improve the irrigation modelling, the heterogeneity in each grid should be considered and 

model resolution should be increased.  

 
Figure 5.8 Simulated monthly accumulated evapotranspiration with seasonal irrigation (ET_CLM_IR) 

or without irrigation (ET_CLM_noIR); along with MODIS ET product (MODIS_ET) and GLEAM 

ET product (GLEAM_ET) for the first three months of the year of 2010. 



77 
 

 

Figure 5.9 Simulated monthly accumulated evapotranspiration according different model setups along 
with MODIS ET and GLEAM ET for the year of 2010. Simulation results were all averaged for the 
model grid cells in Northern India with at least 50 % of the area being irrigated. 

 

Figure 5.10 Simulated monthly ratio of transpiration to total evapotranspiration (T/ET) modelled by 

CLM with different model setups for the year of 2010. Simulation results were averaged for the model 

grid cells in Northern India with at least 50 % or 35 %-50 % of the area being irrigated. 

5.4 Conclusions 
Irrigation plays an important role in the water and energy cycles of the terrestrial system, 

especially in semi-arid regions which are susceptible to drought in the crop growing season(s). 

Land surface models have been used to model irrigation requirement. However, irrigation 

modelling is affected by uncertainties regarding the spatiotemporal distribution of irrigation. 

Our main research question was how the uncertainty regarding the spatiotemporal 

distribution of irrigation affects the simulated irrigation requirement and terrestrial hydrology 
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(e.g. evapotranspiration). In order to do so, the irrigation requirement and hydrological fluxes 

have been simulated by the Community Land Model v. 4.5 for the Indian domain for the year 

of 2010 using multiple simulation scenarios. The results for the simulation scenarios suggest 

irrigation significantly changed the land surface fluxes and water balance for the irrigated 

area, which implies that land surface modelling needs to consider the effect of irrigation. 

Moreover, setting the irrigation timing, frequency and irrigation factors are important for the 

large-scale irrigation modelling. 

The results showed that weekly irrigation scheduling using seasonal variable irrigation maps 

shows higher T/ET and therefore higher irrigation efficiency than the simulation scenario 

with a fixed irrigation map, in the pre-monsoon season (March to May). This suggests that 

land surface modelling including irrigation needs to consider that cropland is only irrigated 

during some periods of the year. In the dry pre-monsoon period in India, large areas of 

cropland are not cultivated or irrigated. However, in the other two seasons (monsoon and 

post-monsoon) the seasonable variable irrigation map did not outperform other irrigation 

assigning methods, showing a similar T/ET ratio compared to the other irrigation strategies. 

The reason could be that the irrigation map in the monsoon and post-monsoon periods is not 

better than the time-fixed irrigation map. 

Daily irrigation scheduling using the default irrigation factor of CLM significantly 

overestimates the irrigation requirement and causes substantial surface runoff. A lower 

irrigation factor reduces the runoff associated with intensive irrigation. In order to get a 

reasonable estimate of irrigation amounts, irrigation modelling has to consider the right 

irrigation timing as well as the right irrigation factor. The irrigation factor should be 

calibrated using information on the irrigation frequency and applied irrigation amount, which 

are unfortunately in general not available. Apart from government statistics, remote sensing 

data could be helpful for determining the irrigation timing and quantity to calibrate the 

irrigation factor. 

In general, more accurate information about the timing and intensity of irrigation is expected 

to significantly improve the modelling of land surface fluxes and the water balance. For the 

Northern part of India, the double cropping season and the seasonal variation of the irrigated 

area should be taken into account. Without considering the temporal and spatial distribution 

of irrigated cropland, the land surface fluxes and water balance will not be precisely 

reconstructed. This suggests the need of improved information on the crop-growing pattern, 
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irrigation timetable and crop calendars including sowing and harvesting dates in the future, 

which can be assisted by remote sensing data. 

As the real irrigation and ET validation data for India were not available, the global ET 

products based on remote sensing were used as verification. The results suggest that GLEAM 

ET data does not represent the temporal variation of ET related to the crop growing cycle and 

irrigation input, especially for the first two months of the year. The MODIS product shows an 

increase of ET in the first two dry months in the irrigated area of Northern India, and our 

simulations with CLM suggest that irrigation may be the cause of it. However, the MODIS 

ET product shows data gaps or very low values in the pre-monsoon season. Compared to the 

problematic remote sensing based ET estimation, the land model gives us another way of 

reconstructing land surface fluxes. 

The experiments also indicated that irrigation modelling without considering sub-pixel 

heterogeneity might overestimate the soil water deficit and irrigation requirement especially 

for the partially irrigated model grid cells. A higher resolution land surface model with higher 

resolution irrigation input is therefore expected to provide better results. Land cover 

information, LAI and an irrigation map are available at 250 m-500 m resolution, so that 

model simulation at such a high spatial resolution could be meaningful, but the computation 

time will increase drastically and huge data amounts need to be handled. 
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Chapter 6 : Summary and outlook 

Optimal irrigation management is essential to avoid unnecessary water usage and securing 

the food production in water-scarce regions. Irrigation activity will also affect the energy and 

water budgets of land surface, playing an important role in the global water cycle. The 

accurate determination of the soil water deficit is important for irrigation scheduling. Land 

surface models have been widely used to simulate the soil water content (SWC) and crop 

status. Data assimilation (DA) provides a method to optimally combine observations with a 

dynamic land surface model (CLM). A central goal of this PhD work was to test the CLM-

DA method for near real-time irrigation scheduling in a real world case, and to explore the 

possibility of monitoring and scheduling irrigation by a CRNS probe at medium scale. 

Another objective was to analyse the uncertainties with respect to irrigation modelling at the 

large scale. 

In the first study of this PhD thesis, data assimilation was used to merge real-time SWC 

observations from FDR sensors with the land surface model CLM to provide an improved 

prediction of root zone soil water deficit. The CLM model predictions including the weather 

forecast for the next days, and SWC measured by FDR probes were optimally combined 

using the Local Ensemble Transform Kalman Filter (LETKF), a sequential data assimilation 

method, to predict soil water deficit for the next few days and schedule irrigation accordingly. 

Data assimilation can improve the initial SWC conditions for the CLM model run. In addition, 

weather forecasts by the Global Forecast System were used as atmospheric forcing for CLM 

to predict short-term SWC. The difference between predicted and targeted SWC was defined 

as the water deficit, and the irrigation amount was calculated from the integrated water deficit 

over the root zone. 

During the irrigation campaign for the Picassent site in 2015 and 2016, three different 

irrigation scheduling methods were tested on multiple citrus fields, including the CLM-DA 

method, the FAO water balance method and the traditional method based on farmer’s 

experience. Compared with the traditionally irrigated fields by farmers, 24 % less irrigation 

water on average was needed for the CLM-DA scheduled fields, while the FAO fields were 

irrigated with 22% less water. Although the CLM-DA irrigated fields received less irrigation 

water, no significant production loss or plant water stress was detected in the CLM-DA fields. 

Stem water potential data and SWC recordings of the CLM-DA scheduled fields did not 

indicate significant plant water stress during the irrigation period. The FAO water balance 
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method is also an efficient irrigation scheduling approach but it is highly dependent on site-

specific empirical parameters. The irrigation estimation by the CLM-DA method depends 

strongly on the SWC measurements at different spatial and temporal scales. 

Therefore in the second study, the novel technique of Cosmic-ray Neutron Sensing (CRNS) 

was tested to extend the observation scale of SWC to allow irrigation scheduling at larger 

scales. CRNS is promising for irrigation management as the measurement footprint is 

representative for the root-zone at the spatial scale of tens of hectares. The potential of the 

CRNS technique for drip irrigation scheduling is explored in the second study (chapter 4) for 

the Picassent site, where the citrus fields are drip irrigated. The drip irrigated part covers 8% 

of the area. The overall SWC in the CRNS footprint was characterized with a field calibration 

method and a root mean square error of less than 0.03 cm3/cm3, but the experimental dataset 

indicated methodological limitations to detect drip irrigation. We found that the CRNS 

performance to sense the footprint SWC varies significantly along the study period. 

Meanwhile the neutron transport simulation URANOS was used to mimic the Picassent site 

and to simulate the effect of drip irrigation on the neutron intensity. Both the experimental 

data and the simulation results suggested that the large-area neutron response to drip 

irrigation is insignificant in our case with a single standard CRNS probe.  

The second study showed that neutron transport modelling could be used to assess the 

suitability of the CRNS technique for certain applications. Because of the small area of 

irrigated patches, short irrigation time and weak irrigation intensity, SWC changes due to drip 

irrigation were not detectable from the recorded measured neutron intensity variation. 

Although the standard CRNS probe was not able to detect small-scale drip irrigation, the 

method might be applicable for larger irrigated areas, in drier regions, or for more intense 

irrigation methods. By overcoming the main limitation of statistical noise, the capability of 

CRNS could be improved in the future by larger and more efficient neutron detectors. 

In the third study, the irrigation demand was estimated by a land surface model to reconstruct 

the water storage changes for the Indian subcontinent. The irrigation modelling tends to be 

affected by various uncertainties like irrigation frequency, irrigation factor and the 

spatiotemporal distribution of areas where and when irrigation is potentially applied. The 

analysis of those uncertainties was conducted in the third study of the PhD thesis for the India 

subcontinent. The irrigation requirement and hydrological fluxes over India were 
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reconstructed by six different simulation experiments with the Community Land Model for 

the year 2010. 

The multiple simulation scenarios showed that the modelled irrigation requirement and the 

land surface fluxes differed between the six scenarios, related to the spatiotemporal 

uncertainty of the irrigation map, the irrigation frequency and the irrigation factor. Using a 

season-specific irrigation map resulted in a higher transpiration-total evapotranspiration ratio 

(T/ET) in the pre-monsoon season compared to other irrigation strategies, implying higher 

irrigation efficiency. The remote sensing based evapotranspiration products GLEAM and 

MODIS ET were used to compare with simulated model results, showing a similar increasing 

ET-trend in the pre-monsoon season as the irrigation induced land surface modelling, 

especially for the seasonal irrigation map. We conclude that more accurate temporal 

information of irrigation will result in modelled evapotranspiration closer to the 

spatiotemporal pattern of evapotranspiration observed by remote sensing. Another conclusion 

is that a higher spatial resolution in land surface modelling is needed, or an improved 

consideration of sub-grid heterogeneity to improve the estimation of soil water deficit and 

irrigation requirement. We also found that daily irrigation scheduling results in larger applied 

irrigation amounts, evapotranspiration and also surface runoff than weekly irrigation 

scheduling. If in addition the target soil water content is relatively high, intensive irrigation 

will result in substantial water loss through surface runoff. This indicates that the standard 

target soil water content (and associated irrigation factor) in a land surface model may not 

suit irrigation modelling at the regional scale, and should be calibrated as function of 

irrigation frequency and reliable statistical data on water consumption. 

Overall, our results showed that the CLM-DA method is promising given its water saving 

potential and automated remote control, ease of incorporation of real time on-line 

measurements and ensemble based predictions of SWC. The advantage of CLM-DA method 

is the possibility to integrate many kinds of observation data into the land surface model to 

improve the prediction of SWC status and to efficiently design irrigation strategies. Both the 

observation quality and model quality can be improved further to be more sophisticated and 

cost-efficient, and to be used for precision agriculture.  

The application of the CLM-DA irrigation scheduling approach depends on the availability of 

SWC measurements at different spatial and time scales, which have to provide useful 

information for different irrigation methods. Concerning drip irrigation, the high frequency 
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and short duration irrigation application requires real-time observation and high sensitivity of 

SWC observations. Therefore, FDR sensors are more suitable than CRNS for monitoring and 

scheduling drip irrigation. Possible observations to be assimilated are not only traditional 

SWC data, but also other indirect measurements informative about crop water stress, e.g. land 

surface temperature measured by drones, as well as ET measurements by eddy covariance or 

lysimeter. In this context, the merging of multi-source direct and indirect observations to 

improve the prediction of SWC and ET is of special interest.  

Concerning the simulation model, a crop growth model would be a good supplement for the 

original CLM-DA scheme, which could provide information on the water requirement in the 

different growing stages of the crop, and which could directly predict the crop yield. Better 

estimates of crop model parameters and a better definition of the SWC threshold for irrigation, 

specific for different crop types, growing stages and weather conditions, would further 

improve the performance of the CLM-DA method. In this study, DA was proven to be an 

efficient way to improve root zone SWC prediction. Furthermore, it can be extended to not 

only update SWC but also soil and vegetation model parameters to improve further the 

simulation of SWC and crop status. Another extension of this PhD work in the future is to 

integrate a coupled model of land surface and subsurface e.g. TerrSysMP (Terrestrial System 

Modelling Platform) (Shrestha et al. 2014) into the data assimilation system, so that the 

interaction of irrigation activities and groundwater level variations can be better represented. 

The application of the CLM-DA for larger areas, including more crop types and irrigation 

methods, is also a pending issue. This extension of the CLM-DA based irrigation scheduling 

to larger scales would require the integration of remote sensing based SWC observations into 

land surface models. However, the large scale modelling of irrigation is affected by various 

additional sources of uncertainty like the spatiotemporal distribution of the areas which are 

irrigated. Information on the timing and frequency of irrigation can be obtained for smaller 

studies at the field scale, but the spatiotemporal extent of irrigation is much more uncertain at 

the regional scale. This suggests the need of improved information on crop-growing pattern, 

irrigation timetable and crop calendars including sowing and harvesting dates in the future. 

Remote sensing data can also be helpful in this assessment. Meanwhile, the large-scale 

weather forecasts and in particular the precipitation forecast should also be improved further 

to fulfil this task. 
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