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We propose the use of Bayesian estimation of risk preferences of individuals for applications 

of behavioral welfare economics to evaluate observed choices that involve risk. Bayesian 

estimation provides more systematic control of the use of informative priors over inferences 

about risk preferences for each individual in a sample. We demonstrate that these methods 

make a difference to the rigorous normative evaluation of decisions in a case study of 

insurance purchases. We also show that hierarchical Bayesian methods can be used to infer 

welfare reliably and efficiently even with significantly reduced demands on the number of 

choices that each subject has to make. Finally, we illustrate the natural use of Bayesian 

methods in the adaptive evaluation of welfare.
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Welfare evaluations of observed choices over risky lotteries depend on the assumed risk

preferences that are used to make the evaluation. As a consequence, there are several burdens placed

on the estimation of those risk preferences before one can reliably undertake normative evaluations

of those choices. We propose a Bayesian approach to ease those burdens, and provide a rich case

study of the evaluation of insurance purchase decisions.

The first burden arises from the recognition that risk preferences differ from individual to

individual, so we ideally need to make inferences that entail collecting data at the individual level. In

turn, that level of information on an individual can be time-consuming and expensive to collect, so

we would like to have rigorous ways of pooling what individual responses we can collect in a

cost-effective manner to generate informed priors about individual risk preferences. The second

burden arises from the empirical observation that some, perhaps even many, individuals, are not well

characterized statistically by available models of risk preferences using classical statistical methods.

This can mean that we have estimates of their risk preferences but they are imprecise, that are a priori

unlikely, or that estimation routines fail to produce estimates under the assumed model. This means

we would like to have some disciplined way of “borrowing” information from other data points to

better reflect the model when applied to each individual.

These considerations motivate a derived demand for conditioning inferences about

individual risk preferences with priors from other sources, which is what Bayesian analysis allows

one to do systematically and rigorously. We propose, and constructively illustrate, how to undertake

a Bayesian analysis in this way for applications in behavioral welfare economics.1 We focus initially

1 In various forms Bayesian analysis has long been applied to condition inferences from experimental
data. For example, see Harrison [1990] and the effect of priors over risk preferences on inferences about
bidding behavior in first-price sealed bid auctions. Closer to our own implementation, Nilsson, Rieskamp and
Wagenmakers [2011] and Murphy and ten Brincke [2018] employ hierarchical Bayesian methods to make
inferences about risk preferences under Cumulative Prospect Theory, which is a structurally rich model and
relatively hard to reliably estimate at the individual level.
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on the canonical case in economics, evaluating the welfare consequences for an individual of some

observed choices.2 To illustrate the relevance for normative applications in a concrete manner, we

re-examine the evaluations of decisions to purchase insurance from Harrison and Ng [2016].

A natural source of priors comes from estimates of models of risk preferences that pool 

data from a sample of subjects, using uninformative, diffuse priors over parameter values.3 One can

then estimate posterior distributions of these parameters, and use these predictions as informative,

non-diffuse priors for Bayesian inferences for each individual. The posterior distributions that result

for each individual are then a reflection of the overall prior and the sample generated by the

individual subject. Bayesians call this “overall prior,” that spans uninformative priors over the

parameters characterizing the “representative agent” with informative priors over the parameters

characterizing each individual agent, a hierarchical prior. A hierarchical prior describes a distribution

for each individual, as well as the distribution of individuals in the population. When the data are

relatively uninformative for a given individual, for one reason or another, the hierarchical prior will

play a greater role in conditioning the posterior for that individual. The advantage of this approach is

2 One might also be interested in measures of social welfare, derived from these individual welfare
evaluations. Kitagawa and Tetenov [2018] consider a related issue, using a social welfare function defined
directly over observable outcomes of individuals. They examine the determination of the sample of a
population that should be treated by some intervention, when it is impossible to treat the full population with
the available budget, and when one has baseline data with which to condition who to treat with what
intervention. They explicitly recognize (p. 592) that when “multiple outcome variables enter into the
individual utility (e.g., consumption and leisure), [the individual outcome measure] can be set to a known
function of these outcomes.” For us the challenge is to estimate this “known function” and account for the
statistical properties of those estimates. The experimental task we use to estimate risk preferences is our
counterpart of their baseline survey, albeit fully incentivized of course.

3 An extension of this approach conditions inferences about each parameter on a list of observable
demographic characteristics of the pooled sample. One can then generate predictions about the distributions
of these parameters that condition on the specific value of the characteristics of each individual being
normatively evaluated, and use these predictions as priors for Bayesian inferences that pool the sample data
for that individual. We carefully evaluate this extension in Gao, Harrison and Tchernis [2020] and find that it
adds no substantive insight for the sample from our population, although it does add considerable
computational burden. This conclusion may be specific to our, relatively homogenous, population; we
encourage examination of this extension for applications to field populations that are likely more
heterogeneous. 
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that it will “always” generate informative priors for each individual. We focus on the role of this

class of priors, since they are generally available.4

In Section 1 we review the data underlying these calculations, and the Bayesian framework

for evaluating it. In Section 2 we discuss the normative evaluations of individual welfare based on

that Bayesian framework, and contrast it with the Maximum Likelihood (ML) approach. Section 3

provides some extensions, showing how the Bayesian hierarchical approach allows dramatic savings

in the experimental demands of subjects that is likely to be particularly attractive for field

applications. We also show that a Bayesian approach lends itself naturally to “adaptive welfare

evaluations” for individuals. Section 4 offers general conclusions.

1. Bayesian Estimation of Individual Risk Preferences

A. Data

We consider the data from Harrison and Ng [2016], where 111 subjects made 80 binary

choices over risky lotteries with objective probabilities. For each individual we replicate the ML

approach that they used, by estimating Rank Dependent Utility (RDU) models of risk preferences

from the 80 choices that each individual made.5

4 The use of Bayesian hierarchical models to infer individual preferences has a long tradition in
marketing: see Rossi and Allenby [1993], McCulloch, Rossi and Allenby [1995], Allenby and Gintner [1995],
Allenby and Rossi [1999] and Rossi, Allenby and McCulloch [2005]. Random coefficient (or mixed logit)
models have been developed for similar applications: see Huber and Train [2001], Train [2009; chapter 11]
and Reiger, Ryan, Phimister and Marra [2009] for expositions and comparisons with Bayesian hierarchical
methods.

5 However, we do not follow their approach of classifying certain individuals as having risk
preferences consistent with Expected Utility Theory (EUT). The statistical reason, stressed by Monroe [2021],
is that those subjects that are characterized as EUT by the test for “no probability weighting” still have
standard errors around the probability weighting parameters, and potentially large ones.  And, perhaps
surprisingly, these standard errors can make a substantive difference in precisely the normative evaluations
undertaken here. Hence there is no formal need to differentiate EUT and RDU decision makers for these
calculations, because EUT is nested within RDU, even if there is an important normative insight in knowing
that there are these different types of risk preferences in the sample.
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In addition, and central to our normative application, Harrison and Ng [2016] also asked

each individual to make 24 binary choices over an insurance product. The background risk that this

product was defined over is, formally, a simple lottery. In the absence of having purchased

insurance, the individual faced some known probability of a loss from some known endowment. 

The insurance product was a full indemnity, zero-deductible product with no co-pay and no

coinsurance. Across the 24 choices there were two loss amounts, and various premia, presented in

random order; the endowment and loss probability were held constant. Of course, to economists

this is just a choice between the “safe lottery” of buying insurance and the “risky lottery” of not

buying insurance. Hence the domain of the task is identical to the prior choices over 80 risky

lotteries, apart from the framing of the task as the purchase of insurance. We return to this point in

the conclusions: Bayesian analysis lends itself naturally to considering the use of risk preferences

elicited in one domain to evaluating “target choices” from another domain, which will be needed for

broader applications of this normative approach to welfare evaluation.

Harrison and Ng [2016] take the estimates from the risk preferences of each individual

subject from the initial 80 choices, and use them to infer the Certainty Equivalent (CE) of each of

the 24 binary choice options. The difference in the CE of buying or not buying insurance defines the

expected Consumer Surplus (CS) of purchasing insurance, and hence provides a rigorous measure of

individual welfare of the observed choice. From a policy perspective, the insight from behavioral

welfare economics is that an individual may be observed to make an insurance choice that involves a

negative CS.6 In addition, this approach provides a quantification of the CS, whether gained or lost,

from the observed choices.

6 The methodological basis of this insight is discussed by Harrison and Ng [2016; p.111-116],
Harrison and Ross [2018; p. 59-63] and Harrison [2019].
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B. Models of Risk Preferences

In the evaluation of lottery prizes, assume individuals perfectly integrate the prizes with their

endowments and behave as if they evaluate Constant Relative Risk Aversion (CRRA) utility

functionals u(e, xk) = (e + xk)
(1-r)/(1-r) for any k = 1, ... , K, and where xk refers to prize k, e is some

endowment, and r is the utility curvature parameter. To ease notation, and unless the context needs

it, we dispense with subscripts for core risk preference parameters. 

Under Expected Utility Theory (EUT) a lottery is evaluated by the weighted sum of

utilities of prizes, with the weights being the objective probabilities associated with the prizes. Then,

we have 

EU = 3k=1,K [ pk × (e + xk)
(1-r)/(1-r) ]. (1)

In our battery K=4. Define the latent index for choice t by subject i as the difference between the

EU of the left and right lottery subject to a Fechner noise parameter μi and a random noise term git: 

yit
*  =  LEUit(ri, μi) + git = { [ ( EUit

L(ri) ! EUit
R(ri)  ) / νit ] / μi } + git , (2)

where νit is the “contextual utility” term specific to choice t to normalize utilities of prizes between 0

and 1, and ri and μi are the parameters for subject i we want to estimate. Assume that subject i selects

the left lottery in lottery pair t whenever the latent index yit
* is greater or equal to 0: 

Prob (yit = 1) = Λ(yit
*) , (3)

where Λ(.) is the logistic function.

Under Rank-Dependent Utility (RDU) theory, due to Quiggin [1982], a lottery is evaluated

by the weighted sum of utilities of prizes, where the weights are the associated decision weights. RDU

departs from EUT in the manner in which decision weights depend on objective probabilities; under

EUT the decision weight for each prize is the corresponding objective probability, as in (1). Under

RDU we first rank the prizes from best to worst, such that x1 $ x2 ÿ $ xK.  The decision weight

associated with each prize is calculated as follows:
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π(x1) = ω(p1) (4a)
π(x2) = ω(p1 + p2) - ω(p1) (4b)

þ
π(xK) = ω(1) -  ω(p1 + ÿ + pK-1) (4c)

where ω(.) is the probability weighting function (PWF): a strictly increasing and continuous function

with ω(0) = 0 and ω(1) = 1. The flexible PWF that we use is due to Prelec [1998]:

ω(p) = exp ( -η ( -ln p)φ ) (5)

with η > 0 and φ > 0. EUT is nested within RDU when η = φ = 1. The RDU of a lottery is then

calculated as 

RDU = 3k=1,K [ πk × (e + xk)
(1-r)/(1-r) ], (6)

which is the same as the definition of the EU of a lottery in (1) apart from pk being replaced by πk.

Define the latent index as the difference between the RDU of the left and right lottery subject to a

Fechner noise parameter μi and a random noise term git. We therefore have

yit
*  =  LRDUit(r, η, φ) + git = { [ ( RDUit

L(ri, ηi, φi) ! RDUit
R(ri, ηi, φi) ) / νit ] / μi } + git , (7)

where νit is again the term to normalize utilities of prizes between 0 and 1 in choice t by subject i,

and ri, ηi, φi and μi are the parameters we want to estimate. The subject is again assumed to select the

left lottery in a pair whenever the latent index yit
* is greater or equal to 0, as specified in (3).

C. Bayesian Analysis

We specify a Hierarchical Bayesian model in formal terms, and then explain how it is

interpreted in terms of historically popular terminology about “shrinkage priors.”7

The data-generating process revolves around core parameters ri, ηi, φi and μi. We posit two

hyper-parameters that describe the distribution that characterizes each of

7 Gao, Harrison and Tchernis [2020] provide full details of implementation for simpler and more
complex models, extensive simulation evidence of the reliability of estimators to reliably recover risk
preferences, and software in Stata.
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• ri, the curvature of the utility function of individual i;
• ηi, one of the parameters of the probability weighting function of individual i;
• φi, the other parameter of the probability weighting function of individual i; and
• μi, the Fechner noise parameter of individual i.

Hence we estimate 8 hyper-parameters in all, based on the pooled data across all N subjects. In

addition, we estimate ri, ηi, φi and μi for each individual i = 1, ..., N. In all, therefore, we jointly

estimate 8 + (4 × N) parameters for the full hierarchical model. Since N = 111 in our data, we

jointly estimate 452 parameters. 

Although we specify the prior distribution separately for each parameter, the posterior

distribution of each parameter is correlated with other parameters, both within a subject and across

subjects. In essence, the RDU model decomposes the risk premium presumed to drive the observed

choices by subject i into two components: utility curvature governed by parameter ri, and probability

weighting governed by parameters ηi and φi.
8 There is a well-understood tradeoff between the two

components explaining the risk premium, which introduces the correlation between the three

parameters in the sampling of their joint posterior distribution. 

Turning to the specific prior distributions assumed, it is important with hierarchical Bayesian

models to be explicit and verbose so that the full specification is clear. Specifically, we assume that ri

is characterized by a Normal prior:

ri - Ν(mr, σ
2
r), (8)

where there is a diffuse Normal hyper-prior for mr given by 

mr - Ν(0, 100), (9)

and there is a diffuse Inverse Gamma hyper-prior for σ2
r given by

σ2
r - IG(σr, 0.001, 0.001). (10)

8 In the extreme case of EUT the risk premium is solely determined by utility curvature. In the
extreme case of “dual theory” the risk premium is solely determined by the probability weighting function
(Yaari [1987]).
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The essential idea is that there is an informative, non-diffuse prior specified in (8), where the values

for mr and σ2
r come from the posterior distributions generated by the data for all subjects and the

diffuse priors in (9) and (10). We can restate (8) in conditional form as

ri | mr, σ
2
r - Ν(mr, σ

2
r), (8N)

to remind us that if we knew the mean and the variance of the prior we would have much more

information about the individual ri values. 

Although it is important that these estimations are undertaken jointly, (8N) reminds us that it

is as if one Bayesian model was estimated for the pooled data just assuming the diffuse priors (9) and

(10), and then the “point estimates” (averages) from the resulting posterior distributions for mr and

σ2
r were used as the informative priors for each ri, which are then estimated one individual at a time.

The joint distribution is the product of conditional distributions and marginal distributions. In this

manner a hierarchical prior achieves two goals. First it restricts parameters of individual distributions

to a specific family. Second, it communicates that a priori those distributions are diffuse. As we will

see, the resulting posterior distributions will be combining information from the prior and the

likelihood. Thus, we will be informing the posterior for a specific individual using information from

other individuals. 

The remaining prior distributions are similar, and can be interpreted similarly. The only

difference is that we want to ensure that the core parameters ηi, φi and μi are each non-negative, for

obvious theoretical reasons. Therefore we use log-normal priors for each, and conventional hyper-

priors. Assume that ηi is characterized by a log-normal prior

ln(ηi) - Ν(mlnη, σ
2
lnη) (11)

where there is a diffuse Normal hyper-prior for mlnη given by 

mlnη - Ν(0, 100), (12)

and there is a diffuse Inverse Gamma hyper-prior for σ2
lnη given by
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σ2
lnη - IG(σlnη, 0.001, 0.001). (13)

Assume that φi is characterized by a log-normal prior

ln(φi) - Ν(mlnφ, σ
2
lnφ) (14)

where there is a diffuse Normal hyper-prior for mlnφ given by 

mlnφ - Ν(0, 100), (15)

and there is a diffuse Inverse Gamma hyper-prior for σ2
lnφ given by

σ2
lnφμ - IG(σlnφ, 0.001, 0.001). (16)

Finally, assume that μi is characterized by a log-normal prior

ln(μi) - Ν(mlnμ, σ
2
lnμ) (17)

where there is a diffuse Normal hyper-prior for mlnμ given by 

mlnμ - Ν(0, 100), (18)

and there is a diffuse Inverse Gamma hyper-prior for σ2
lnμ given by

σ2
lnμ - IG(σlnμ, 0.001, 0.001). (19)

In effect, all that these priors are saying is that we let the pooled sample data determine the

posterior distribution for the representative agent,9 and then use that distribution as the prior for the

sample data for each and every individual subject. The key implication of these priors being

presented jointly, and then the joint estimation of the posterior over the risk preferences of the

representative agent and N individual agents, is that the estimation of the posterior for the

representative agent respects the fact that each individual agent can have different risk preferences.

9 The “representative agent” just refers to a model of the complete sample of individuals that
assumes that each individual has the same risk preferences. A variant allows for conditioning on observable
demographics of the sample, such as gender. Our model of the representative agent has no such conditioning.
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D. Historical Connections

The prior we employ to infer individual risk preferences is known historically as a

“shrinkage” prior, since it uses pooled data for the sample of N individuals that includes the

individual to generate a prior for the individual. The term “shrinkage” refers to the idea that the

posterior distribution for each individual is pulled towards the posterior distribution for the pooled

sample of N, hence the effect is to reduce (i.e., shrink) the cross-individual variability in posterior

distributions. This is also sometimes referred to as an “empirical Bayes” approach, to reflect the fact

that the data for a sample of N individuals is being used to form a prior for the individual in

question.10 

Modern Bayesians refer to these instead as hierarchical Bayesian models, where the

information provided by the rest of the sample is used to condition the prior for the individual in

question. Detailed reviews can be found in Gelman et al. [2013; ch. 5], Kruschke [2013; ch. 9], 

Kruschke and Liddell [2018; p. 197ff.], Kruschke and Vanpaemel [2015], Leamer [1978; ch. 5],

Rossi, Allenby and McCulloch [2005] and Train [2009; chapter 12].

2. Normative Application

A. Estimates of Risk Preferences

We replicate the ML estimates obtained by Harrison and Ng [2016]. The first observation is

that of the 111 subjects we want to make welfare evaluations for, 9 simply drop out because it was

not possible to generate ML estimates for their risk preferences. This is true for all of the models

they considered, and not just the most demanding in terms of numbers of free parameters to be

estimated. As happens when estimating risk preferences at the individual level, even with 80 binary

10 There are “jacknife” variants that use the N-1 individuals in the sample other than the individual in
question, but for large enough samples this is not likely to make an appreciable difference quantitatively.

-10-



choices chosen carefully to allow estimates of models of risk preferences such as these, standard

numerical methods can simply fail to converge.11 An immediate corollary is that one is left without

any normative judgement for these 9 individuals. Our Bayesian approach generates posterior

estimates for those 9 individuals.

For simplicity we focus attention solely on the most general model of risk preferences

considered by Harrison and Ng [2016], the RDU model with Prelec probability weighting. The

second observation to make is that there are no ML estimates for this model for 22 of the 102

individuals for whom one of the models of risk preferences did converge. Given the generality of the

RDU model with Prelec probability weighting, this is a caution that one or more of the parametric

restrictions for less general RDU models12 was needed to even obtain ML estimations. Relying on

parametric restrictions that have no a priori support to even obtain estimates is problematic, from a

Bayesian and classical perspective. Again, for all of these 22 subjects we were also able to obtain

Bayesian posterior estimates using the most general RDU model.

For those less familiar with Bayesian methods, it is useful to explain how we do this, as if by

magic, for the 31 = 9 + 22 subjects abandoned by ML. The reason is simple: the ML approach rests

on numerical methods finding a set of estimates that characterizes a maximum log-likelihood for the

observed binary choices. If the likelihood function has some “flatness” around the maxima, standard

methods, particularly derivative-based methods, can fail to converge. Critically, there is no difficulty

evaluating the log-likelihood for a wide range of possible estimates, just a difficulty finding the one

best set of estimates. A Bayesian is not bothered by this latter difficulty at all, and just needs the

11 In comparable calculations Harrison and Ross [2018; p. 54] report having to drop 19 of 193
subjects for effectively the same reason.

12 Specifically, using Power or Inverse-S probability weighting functions. Each is effectively nested in
the Prelec probability weighting function. When φ = 1 the Prelec function collapses to the Power function,
and when η = φ = 0 or η = 1 it collapses to the Inverse-S function.
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likelihood function evaluations in order to derive the posterior distribution. Of course, if the

likelihood function is globally flat, the posterior will just be a replica of the prior, and the data from

the subject non-informative, but that is a separate matter: there will still be a posterior, albeit derived

solely from the prior. In general we “never” observe such globally uninformative data, but we do

observe data that are locally uninformative, as evidenced by the 9 individuals callously tossed

overboard by Harrison and Ng [2016] for the purposes of welfare evaluation. Moreover, the

posterior estimates for these 9 subjects are not just replicas of the posterior distribution of the

representative agent: their likelihoods can be evaluated and averaged, even if they are hard to

numerically optimize with derivative-based algorithms. 

The Bayesian hierarchical model generates estimates of the pooled behavior over all 111

subjects, which we might think of as the risk preferences of a representative agent. Of course this is

just a stepping stone to the estimates from the same model for each of the 111 individuals, but it is a

valuable one to help understand where the informative prior comes from for the individual posterior

distributions.

Figure 1 compares “point estimates” for the risk preference estimates of the representative

agent using ML methods (the top two panels) and then using Bayesian methods (the bottom two

panels). For the Bayesian model these point estimates refer to means of the posterior distributions

for the representative agent, since “point estimate” makes no formal sense to a Bayesian. Consistent

with the use of a diffuse prior for the representative agent, we observe virtually no difference

between the ML estimates and the Bayesian posterior estimates in Figure 1.

But the modest step summarized in Figure 1 is just the beginning for the Bayesian

hierarchical model, whose primary inferential objective is to estimate individual risk preferences in

the form of posterior distributions that are reduced to “point estimates” in Figure 1. These

distributions across individuals are illustrated in Figure 2. Here we again reduce a posterior
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distribution to a “point estimate,” but in this instance it is a full posterior distribution for each and

every individual. This posterior distribution for each individual is estimated by the informative prior

obtained from the posterior distribution for the sample as a whole as well as the observed data for

each individual. The posterior distribution for each individual combines the information from that

individual and the information from other individuals, which is communicated through the prior.

This prior is referred to by Gelman et al. [2013; p.559] as “a common backbone from which a

hierarchical model for borrowing information can be built” (our emphasis). 

The dashed lines in Figure 2 are the average Bayes estimates displayed in Figure 1. Now, in

Figure 2, we start to see the distribution of individual risk preferences that we need for behavioral

welfare evaluation.

We can directly compare the ML estimates for the remaining 80 subjects with our Bayesian

estimates for all 111 subjects. For the moment just focus on the estimate of the CRRA parameter for

the utility function, since that is the critical parameter for the evaluation of CE and CS for the

insurance choice options. We find 6 subjects for whom the ML estimate implies convex utility, but

the Bayesian estimate implies concave utility. And we find 3 subjects for whom the ML estimate

implies concave utility, but the Bayesian estimate implies convex utility. Set aside whether these are

statistically significant or credible differences, to use the classical or Bayesian counterparts for such

inferences. This qualitative difference in the point estimates has dramatic implications for the

individual welfare evaluation for these subjects. As a sample, it may end up being a wash, but that is

not generally, or reliably, the point.

Three examples demonstrate the contrasts between ML and Bayesian estimates. Figure 3

illustrates an individual whose ML estimates show sharply convex utility with extreme probability

pessimism, and whose Bayesian estimates show mildly concave utility with modest probability

pessimism. For given RDU evaluations of the safe “buy insurance” lottery and the risky “do not buy
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insurance” lottery these utility functions generate very different CE. These estimates also show the

difference between selecting the single maximum LL estimates and averaging a weighted array of LL

estimates. In the ML case the utility function, ceteris paribus, generates risk loving behavior; and the

probability weighting function, ceteris paribus, generates risk averse behavior. These two, strong,

opposing gross effects lead to a modest risk premium. In the Bayesian case, the estimates exhibit

virtually minimal concavity in the utility function, and modest probability pessimism, jointly resulting

in the same, modest risk premium. Figure 3 is an example of a wider class of subjects, where the

Bayesian estimates lead to less extreme specifications of utility curvature and probability weighting.

Figure 4 shows a case in which the ML and Bayesian estimates more or less agree on the

concavity of the utility function, but show different degrees of probability weighting patterns. The

qualitative nature of probability weighting is the same with ML and Bayesian estimates, but clearly

the ML estimates are more extreme. In both cases there is local pessimism for low (decumulative)

probabilities and local optimism for high (decumulative) probabilities. Since the insurance contract is

full indemnity there is no risk if the contract is purchased: the individual received the endowment

less the premium no matter what the state of nature. And if the insurance contract is not purchased,

the endowment outcome receives the higher decumulative weight (hence optimism) and the

outcome in which the endowment is reduced by the loss amount receives the lower decumulative

weight (hence pessimism). Thus the probability weighting alone means that the no-insurance RDU

being evaluated in the ML case is not perceived as risky at all, compared to when it is evaluated in

the Bayesian case (and is then only modestly risky). And since the utility functions are virtually the

same, we would see a lower CE to purchasing insurance with the Bayesian estimates, and hence a

lower CS.

Finally, Figure 5 displays a case that is modal and typical. The ML point estimates change

slightly in quantitative terms, and do not change in qualitative terms. Modestly concave utility with
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the ML estimates become more concave with the Bayesian estimations. And the roughly “power”

probability weighting with ML, that indicates significant probability pessimism, become modestly

pessimistic with Bayesian estimation methods. Although specific to this instance, Figure 5 also

illustrates the nature of the RDU trade-off between utility curvature and probability weighting nicely.

With the ML estimates much more of the risk premium is due to probability weighting than we find

with the Bayesian estimates, but both types of estimates end up at the same risk premium due to

offsetting adjustments to utility curvature.

 As a general matter, we find that most of the Bayesian posterior estimates for individuals are

close to their ML counterpart. Figure 6 displays this, by showing scatter plots of the ML and

Bayesian estimates, along with 45° lines. A large number of observations are clustered around

modest deviations of the 45° line. The serious deviations are all from the perspective of extreme ML

estimates: very low estimates of r, and very high estimates of η or φ. 

B. Welfare Effects

The top panel of Figure 7 displays the implied calculations of CS gains or losses from each

of the 24 decisions that each individual subject make, evaluated with the ML or Bayesian estimates

for that subject.13 As explained above, we have 80 subjects with ML estimates, and 111 subjects with

Bayesian estimates.14 The distribution indicates a difference between the two sets of estimates: less

extremes with the Bayesian estimates, a clear tendency for more CS gains up to +$4, and a clear

13 Harrison and Ng [2016; p. 110/111] show how one can bootstrap the CS calculations to reflect the
covariance matrix of ML estimates for each individual. And similar exercises can, and should, be undertaken
with the Bayesian posterior distributions for each individual. In the interests of exposition we focus here
solely on the effects of using different point estimates. We consider the calculation of posterior predictive
distributions of welfare in §3.B.

14 Virtually identical distributions are generated if we restrict to the 80 individuals with both ML and
Bayesian estimates, but one point of the exercise is not to do that.
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tendency for more small CS losses up to -$1.

Because the some of the 24 product offering are better than others, we often consider the

percentage of the total CS that the individual realizes over all observed decisions compared to the

total CS that the same individual would have realized over all decisions if all decisions were correct.

This is called Efficiency by experimental economists, and effectively normalizes across subjects for

the different product offerings, since each individual faces the same set of 24 product offerings by

design.

The bottom panel of Figure 7 displays the implied calculations of Efficiency for each

individual, across all 24 decisions, evaluated with the ML or Bayesian estimates for that subject. The

distribution of Efficiency with the Bayesian estimates of risk preferences is clearly higher than with

the ML estimates of risk preferences. The Efficiency results complement the CS results, by

informing us of the agent-specific welfare effects. Thus the clear tendency for more small CS losses

up to -$1, with Bayesian estimates, is swamped by the virtual elimination of extreme losses greater

than -$5. Similarly, the fortunate tail of extreme CS gains greater than +$5 with ML estimates does

not offset their absence with Bayesian estimates.

Figure 8 shows a scatter plot of Efficiency outcomes to allow a literal “head to head”

comparison of the effects of using Bayesian estimates rather than ML estimates.15  Many are indeed

virtually identical, as shown on the 45° line. But we see a large number of individuals for whom the

estimates are strikingly different. And the majority of deviations below the 45° line correspond to the

improvements in Efficiency that flow from using the Bayesian estimates (per the bottom panel of

Figure 7).

We make no formal inferences about the effects of using Bayesian estimates instead of ML

15 In this case it is appropriate to limit the sample to those that have both ML and Bayesian estimates.

-16-



estimates on average CS or average Efficiency. We could, from inspection of Figures 7 and 8, but we

stress that welfare evaluation in the context of preference heterogeneity must not be about central

tendencies. It should always be about distributions of welfare effects.

3. Extensions

The Bayesian approach illustrated here was designed to solve a specific problem that arises

in behavioral welfare economics: ascertaining reliable and a priori sensible estimates of risk

preferences for individuals, which are in turn used to condition normative inferences about some

other choices. The approach is quite general. There are some exciting extensions that can be

considered.

A. Reducing the Number of Choices Each Subject Has to Make

One extension is to evaluate settings in which each individual was only presented with a

random sub-set of the full range of risky lottery choices. In our experiment every subject was asked

the same 80 questions, albeit in random order that varied from subject to subject. What if we had

selected 60 for each subject, at random and without repetition? Or 50, or 40? Would we have

obtained comparable estimates? By selecting a smaller set of choices at random for each subject, we

ensure “coverage” over the full range of questions for the pooled sample of individuals, which can

be important for addressing different aspects of the structure of risk preferences relevent to the

target choice for normative evaluation.16 Having full coverage of the complete battery allows the

hierarchical model to generate good estimates of the posterior for the pooled sample that is used as

16 For example, Harrison and Ng [2016; p. 99][2018; p. 49-51] discuss in detail why different types of
lottery questions are included in their full battery for different type of normative inferences. In the latter case,
focused on compound risks from non-performance of insurance contracts (e.g., due to fraud or bankruptcy),
it was critical to estimate risk preferences that included compound lotteries. 

-17-



an informative prior for the inferences about individual subjects. 

This is not just an idle technical question. Reducing the number of questions any one

individual has to make can be particularly valuable in field settings. Invariably in those settings one is

under time pressure in terms of how long the subject can be expected to focus on artefactual tasks

of this kind, even with compensation. This is particularly true when estimating risk preferences is

not the primary focus of the field experiment: in some cases it is just a “nuisance parameter” that

would be valuable to have, but not something that can take up the entire session. Even in the field

settings of policy interest to us, evaluating various insurance options where knowing risk preferences

is foundational to the behavioral welfare evaluation, we must have multiple tasks as well as the risk

preference elicitation.17 Hence time is a crtical factor in experimental design, and it would be

valuable to know the trade-off with accuracy that comes with reducing the number of choices each

subject has to make.

We can explore this trade-off with our data, to illustrate. Consider the restriction to ask

subjects only 20 questions, rather than 80. As suggested, allow those 20 questions to be drawn at

random for each subject, without replacement, from the full battery. Then re-estimate the Bayesian

hierarchical model with just these 20 questions over the 111 subjects, and compare results with the

estimates using the full battery. 

Figure 9 displays the results of this exercise in restricting the number of questions asked of

each subject to 25% of the total. In each panel we display a scattergram of the estimate for an

individual of some risk preference parameter (r, η or φ) or welfare measure (Efficiency). These are,

again, based on the posterior average “point estimate” for each individual. Remarkably, the

17 Apart from the obvious need to ask questions about insurance purchases, in field settings we are
also interested in eliciting preferences about time preferences, subjective beliefs, intetemporal risk aversion,
and possibly even social preferences.
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correlation for Efficiency, the target or normative evaluation, is 0.79 in this instance. For the utility

curvature parameter r the correlation is slightly higher, and for the probability weighting parameters

η or φ it is considerably lower. Given the dramatic reduction in the number of questions required of

each subject, we view this as likely to be an acceptable trade-off for many field researchers.

If we consider, instead, a reduction of the number of questions for each subject to 50% of

the full battery, which is 40 questions for each subject, the results are dramatic. Figure 10 provides a

comparable display. Now we achieve a correlation of 0.90 for Efficiency when we use the reduced

task for each subject. Again, the probability weighting parameters have the lowest correlations,

particularly η at 0.68, but if the focus of analysis is Efficiency, and r, η or φ are “nuisance

parameters,” then this relatively low correlation is of no concern. Just to round out the evaluation, if

we reduce the number of questions to 75% of the full battery, which is 60 questions for each

subject, we achieve a correlation with Efficiency of 0.97, and 0.97, 0.90 and 0.94 for the r, η or φ risk

preference parameters, respectively.

Obviously these are valuable trade-offs when it comes to field, or even lab, experiments. Our

methodological point is to stress how they flow naturally from thinking about pooled data being

used to inform priors for inference about individuals. The reason we get such high correlations for

Efficiency with just 20 or 40 questions per subject, rather than all 80, is that the pooled data spans all

80 questions.

In a similar vein, another type of extension would be to evaluate the use of disjoint samples

from the same population. One might imagine one sub-sample being asked all 80 questions, to help

condition the posterior distribution of the representative agent, and then the other sub-sample being

asked far fewer questions.18 Again, field settings are natural here: one might have a large-scale survey

18 In principle one could also identify which of the full battery of questions are most informative to
ask, which is just a “pre-posterior” analysis to a Bayesian. Lindley [1972; p, 20ff.] provided the first general,

-19-



of tens of thousands, and can afford the time and money to ask only a few risky lottery choices. One

could then then have a much smaller sample, drawn appropriately from the same population, that is

recruited for a longer, more demanding series of risky lottery choices.

B. Inferring the Distribution of Welfare

For comparability to the traditional ML analysis employed by Harrison and Ng [2016] and

others, we focused on inferences about welfare that used a “point estimate” from the posterior

distribution of risk preference parameters r, η or φ. The correct inferences should take into account

the fact that these are full posterior distributions.19 Due to the significant non-linearity of the

prediction measure, the mean of the distribution of CS evaluated over the distribution of r, η and φ can

be quite different from the CS evaluated at the mean of r, η and φ. In Bayesian jargon, we should

calculate the posterior predictive distribution of welfare for each insurance choice of an individual. The

predictive distribution is just a distribution of unobserved data (the expected insurance choice given

the actuarial parameters offered) conditional on observed data (the actual choices in the risk lottery

task).20 All that is involved is marginalizing the likelihood function for the insurance choices with

respect to the posterior distribution of model parameters from the risk lottery choices. The upshot is

that we predict a distribution of welfare for a given choice by a given individual, rather than a scalar.

formal statement of Bayesian experimental design, and Chaloner and Verdinelli [1995] a valuable literature
review. Gelman et al. [2013; ch. 8] review complementary literature on how various experimental designs
impact Bayesian analyses.

19 As noted earlier, Harrison and Ng [2016; p. 110/111] show how one can bootstrap the welfare
calculations to reflect the covariance matrix of ML estimates for each individual. So the ML approach also
allows one to calculate distributions of welfare, although with a very different interpretation. 

20 Perhaps a simpler and more familiar way to think of a posterior predictive distribution is to imagine
that the subject was faced with a new battery of risk lotteries and we use the observed behavior from the old
battery of risk lotteries to infer what choices would be made for the new battery. The posterior estimates of r,
η or φ from the old choices are used to characterize the data-generating process, and then infer the
distribution of expected choices for the new battery. In our case we substitute insurance choices for a new
risk lottery battery, but the statistical principles are the same.
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We can then report that distribution as a kernel density, or select some measure of central tendency

such as the mean or median. 

We consider the mean of the posterior predictive distribution of Efficiency for each

individual. Figure 11 displays a scattergram of these means for the smaller sample sizes assumed for

each subject (20, 40 or 60) against the means for the full sample size (80). Again, there is a quantified

tradeoff in reliability that is apparent as the sample size is reduced, and these appear again to be

relatively small tradeoffs for the savings in the number of tasks required of each subject. Of course

these judgments must be made by the researcher, or those funding the research, but it is critical that

they be quantified to inform that judgment. 

C. Adaptive Welfare Evaluation

Some of our subjects gain from virtually every opportunity to purchase insurance, and sadly

some lose with equal persistence over the 24 sequential choices. Armed with posterior predictive

estimates of the welfare gain or loss distribution for each subject and each choice, can we adaptively

identify when to withdraw the insurance product from these persistent losers, and thereby avoid them

incurring such large welfare losses? Important recent research by Caria et al. [2020], Hadad et al.

[2020] and Kasy and Sautmann [2019] considers this general issue. The challenges are significant,

from the effects on inference about confidence intervals, to the implications for optimal sampling

intensity, to the weight to be given to multiple treatment arms, and so on.

We consider a simple application of our Bayesian approach to behavioral welfare economics

to illustrate some important issues. Assume that the experimenter could have decided to stop

offering the insurance product to an individual at the mid-point of their series of 24 choices, so the
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sole treatment arm was to discontinue the product offering or continue to offer it.21 Recall that the

order of insurance products, differentiated by their actuarial parameters, was randomly assigned to

each subject.22 Figure 12 displays the sequence of welfare evaluations possible for subject #1. The

two solid lines show measures of the CS: in one case the average gain or loss from the observed

decision in that period, and in the other case the cumulative gain or loss over time. Here the average

refers to the posterior predictive distribution for this subject and each decision. Since this is a

distribution, we can evaluate the Bayesian probability that each decision resulted in a gain or no loss,

reflecting a qualitative Do No Harm (DNH) metric enshrined in the Belmont Report as applied to

behavioral research.23 This probability is presented in Figure 1, in cumulative form, by the dashed

line and references the right-hand vertical axis.

Although there are some gains and losses in average CS along the way, and the posterior

predictive probability declines more or less steadily towards 0.5 over time, the probability of DNH is

always greater than 50:50 for this subject. And there is a steady, cumulative gain in expected CS over

time. These outcomes reflect a common pattern in our data, with small CS losses often being more

than offset by larger CS gains. Hence one can, and should, view these as a temporal series of  “policy

lotteries” which are being offered to the subject, if the policy of offering the insurance contract is in

place (Harrison [2011]). In this spirit, we can think of the probabilities underlying the posterior

predictive probability of DNH as the probabilities of positive or negative CS outcomes, given the

21 Evaluation of multiple treatment arms for a comparable insurance product, and using similar
evaluations of individual welfare, are provided by Harrison, Morsink and Schneider [2020].

22 A more sophisticated “targeting” policy might use the information from the first 12 insurance
choices to adaptively determine the actuarial parameters that might lead each subject to make better decisions
in the remaining 12 decisions.

23 See Teele [2014] and Glennerster [2017] for discussion of the Belmont Report and the ethics of
conducting randomized behavioral interventions in economics. Even when randomized clinical trials were not
adaptive, or even sequential in terms of stopping rules, it has long been common to employ termination rules
based on extreme, cumulative results (e.g., the “3 standard deviations” rule noted by Peto [1985; p. 33]).
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risk preferences of the subject. So the fact that the EV of this series of lotteries is positive, even as

the probability approaches 0.5, reflects the asymmetry of CS gains and losses in quantitative terms

and the policy importance of such quantification. For now, we can think of the policy maker as

exhibiting risk neutral preferences over policy lotteries, but recognizing that the evaluation of the

purchase lottery by the subject should properly reflect her risk preferences.

Consider comparable evaluations for four individuals from our sample in Figure 13. Subject

#5 is a “clear loser,” despite the occasional choice that generates an average welfare gain. It is exactly

this type of subject one would expect to be better off if not offered the insurance product after

period 12 (or, for that matter and with hindsight, at all). Subject #111 is a much more challenging

case. By period 12 the qualitative DNH metric is around 0.5, and barely gets far above it for the

remaining periods. And yet the EV of the policy lottery is positive, as shown by the steadily

increasing cumulative CS. This example sharply demonstrates the “policy lottery” point referred to

for subject #1 in Figure 12.

The remaining subjects in Figure 13 illustrate different points: that we should also consider

the preferences of the agent when evaluating the policy lottery of not offering the insurance product

after period 12. Assume that these periods reflect non-trivial time periods, such as a month, a

harvesting season, or even a year. In that case the temporal pattern for subject #67 encourages us to

worry about how patient subject #67 is: the cumulative CS is positive by the end of period 24, but if

later periods are discounted sufficiently, the subjective present value of being offered the insurance

product could be negative due to the early CS losses.24 Similarly, consider the volatility over time of the

CS gains and losses faced by subject #14, even if the cumulative CS is positive throughout. In this

24 This point has nothing to do with whether the subject exhibits “present bias” in any form. All that
is needed is simple impatience, even with Exponential discounting. Andersen, Harrison, Lau and Rutström
[2008] consider the joint estimation of risk and time preferences. Berry and Fristedt [1985; chapter 3] stress
the importance of time discounting in sequential “bandit” problems in medical settings.
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case a complete evaluation of the policy lottery for this subject should take into account the

intertemporal risk aversion of the subject, which arises if the subject behaves consistently with a non-

additive intertemporal utility function over the 24 periods.25

Applying the policy of withdrawing the insurance product after period 12 for those

individuals with a cumulative CS that is negative results in an aggregate welfare gain of 108%,

implicitly assuming a classical utilitarian social welfare function over all 111 subjects.

4. Conclusions

There are immediate reasons why one would want to use Bayesian estimates of risk

preferences for the type of normative exercise illustrated here: more systematic control of the use of

priors over plausible risk preferences, and the ability to make inferences for every individual in a

sample.

There are also more general reasons for wanting to adopt a Bayesian approach, to make

explicit the role for priors when making normative evaluations.

One general reason for a Bayesian approach derives from the ethical need to pool data from

randomized evaluations and non-randomized evaluations. The ethical need first arises when defining

the prior beliefs that justify a randomized trial with equal probabilities of control and treatment in

the first place.26 In general we need to be able to pool disparate sources of data, even observational

25 The intertemporal risk aversion of a subject, also referred to as “correlation aversion,” bears no
necessary relationship to atemporal risk aversion. Andersen, Harrison, Lau and Rutström [2018] consider the
joint estimation of atemporal risk preferences, time preferences, and intertemporal risk preferences.

26 Commenting on the famous Extracorporeal Membrane Oxygenation (ECMO) adaptive
randomization study for babies documented by Ware [1989], Royall [1989] and Berry [1989; p. 306] reject the
claim that prior, well-known evidence from a randomized evaluation documented by Bartlett et al. [1985]
supported such a perfectly diffuse prior. Kass and Greenhouse [1989; p. 313] raise similar concerns, but in the
end explicitly, and reluctantly, assume that the study was “appropriately designed” to start with a diffuse prior.
Royall [1989; p. 318] calculates the posterior probability that the ECMO treatment was inferior to be either
0.01 or 0.00003 based on previous data. Berry [1989; p.310] sharply concludes that “clinical equipoise is an
invention used to avoid difficult ethical questions.” In the context of economics experiments, that equipoise
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studies, to form priors for ethical grounds prior to randomization, and that type of pooling is exactly

what Bayesian analysis facilitates. The ethical need also arises during and after the trial, when

determining what to make of the results in the context of many other sources of information that

are not directly comparable (i.e., exchangeable). This issue arises so often that it cannot be set aside

from the instant trial.27

Another general reason for a Bayesian approach derives from the methodological need for

normative analysis to have estimates of risk preferences from choice tasks other than the choice task one

is making welfare evaluations about. In settings of this kind, it is natural to want to debate and discuss the

appropriateness of the risk preferences being used. In fact, the need for debate and conversation

becomes more urgent when, as here, we infer significant losses in expected CS, and significant

foregone Efficiency. How do we know that the task we used to infer risk preferences, or even the

models of risk preference we used, are the right ones? The obvious answer: we don’t. We can only

hold prior beliefs about those, and related questions. And when it comes to systematically examining

the role of alternative priors on posterior-based inference, one wants to be using Bayesian

formalisms.

An example to illustrate this general point. Imagine one was designing a field experiment, say

in rural Ethiopia, in which various interventions for a health insurance product were to be used to

improve welfare. Assume a health insurance product focused on acute conditions, with significant

mortality risk. The only priors on risk preferences you have come from university students in the

United States. Should you go ahead and design interventions that, conditional on those risk

preferences, lead to welfare losses for the same students, of the kind we have demonstrated? We

corresponds to claims that “anything could happen,” as distinct from “here is what I believe would happen.”
Freedman [1987] first proposed the notion of clinical equipoise, controversially defining it in terms of priors
that are presumed to be held in the broader research field, not the priors of the immediate investigators. 

27 See Yusuf et al. [1985], Peto [1985; p. 33] and Armitage [1985; p.19/20] for discussion.
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suggest that, ethically speaking, you should not. 

Now imagine you have been able to conduct comparable artefactual field experiments over

money in Ethiopia that allow you to infer risk preferences, and assume that these experiments match

the standard criteria we have for taking any experimental data seriously (e.g., financial incentives and

incentive compatibility). These are obviously better priors for the eventual inference, and should be

used. You completely discard the priors from students in the United States, or give them relatively

lower weight in your hierarchical priors. 

Then imagine that you have been able to conduct artefactual field experiments over certain

health outcomes in Ethiopia that allow you to infer risk preferences. Assume that these health

outcomes refer to morbidity risks, not mortality risks, but to real outcomes nonetheless. As any

experimental economist knows, it is not easy to come up with morbidity outcomes that can be

credibly and ethically delivered within the budgets we normally find ourselves in. Clearly the domain

of risk preferences here is closer than the risk preferences defined over money, but would you now

attach zero or negligible weight to the risk preferences over money by similar Ethiopians? Probably

not. So how do you pool these priors to arrive at inferences? The answer is to be Bayesian.
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