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Foreword

Game theory is now recognized as an indispensable tool to describe and analyse real-world
problems of interdependent decision making in many �elds, not limited to social sciences but
also biology, engineering, computer sciences, and so on. One of the most important �elds is
that of inspection games. Game theory has been greatly successful in modelling problems and
�nding practical solutions related to this �eld. This monograph is written by two experts on
the subject, including Rudolf Avenhaus, who has been an active leading researcher in this �eld
for decades. It explains the basic concepts and analytical methodologies of inspection games,
and extends them to more advanced problems.

Speci�cally, this monograph presents an overview of the fundamental models and approaches
related to inspection games over time. It also provides useful guidance for practitioners to decide
on the models that they could apply to their inspection problems. To accomplish these two
purposes, the authors develop a hierarchy of assumptions regarding inspection philosophy, time,
planning, and sampling, for all game theoretic models in review, and ascertain equivalences,
relationships, and di�erences between these models and their equilibria. More importantly,
beyond the review of existing models, the monograph presents new inspection models that �ll
the gaps in the existing ones.

The basic structure of an inspection game is as follows. There are two players called an In-
spectorate and an Operator. The purpose of the Inspectorate is to prevent the Operator from
violating certain rules such as those related to law, treaty, agreement, contract, or promise.
On the other hand, the Operator has an economic, political, and/or military incentive to vio-
late these rules. The Inspectorate cannot observe and has only imperfect information on the
Operator's behaviour while the Operator strategically tries to conceal his violation. Given the
Inspectorate's limited resources, only partial veri�cation is possible.

There are many real-world problems that can be described as inspection games. A serious
case is the Nuclear Non-Proliferation Treaty. The International Atomic Energy Agency (IAEA)
performs inspections to prevent member countries from diverting nuclear material for military
use. Arms control and disarmament, accounting and auditing, and environmental control are
major applications of inspection games. In everyday life, inspection games arise in tra�c control
on roads, ticket inspection on public trains and buses, custom control in airports, and so on.
Among many applied �elds of game theory, the uniqueness of inspection games is that its
theory has developed in response to problems raised by practitioners. Indeed, theorists and
practitioners have interacted fruitfully to describe and solve real inspection problems.

In general, an Inspectorate has to decide whether or not an Operator has behaved legally based
on imperfect information that is obtained by random sampling procedures. In the terminology
of a classical testing hypothesis problem, the Inspectorate has to decide between the null
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hypothesis (H0: legal behaviour) and alternative hypothesis (H1: illegal behaviour) about the
distribution of a random variable Z, based on the observation z of Z. The Inspectorate may
sound an alarm (rejecting H0) or no alarm (accepting H0). In such an uncertain situation,
an Inspectorate may make two kinds of errors. An error of the �rst kind is a false alarm, i.e.
rejecting H0 when the Operator has behaved legally. An error of the second kind is one of
no-detection, i.e. accepting H0 when the Operator has behaved illegally.

This monograph consists of three parts: discrete, continuous, and critical time inspection games.
Each part begins by clarifying general model assumptions and proceeds to analyse the four
classes of the models, depending on whether an Inspectorate and an Operator behave either
sequentially or non-sequentially. In the case of zero-sum games and under the presumption
that the Operator behaves illegally, the Inspectorate and the Operator want to minimize and
maximize the detection time, i.e. the time between start and detection of the illegal activity,
respectively. The optimal strategies for an Inspectorate and an Operator are characterized in
the most complete way for each class of zero-sum inspection games through knowledge updates.
Readers would �nd it mathematically challenging to derive an explicit formula of the optimal
strategies in many inspection games over time. The optimal strategies depend only on technical
parameters such as detection probabilities. This is very important for practical applications. If
the question of illegal behaviour deterrence is raised, political parameters, in the form of utility
functions, should be introduced, and inspection problems should be formulated as non-zero-sum
games. After all, it is often the case that a false alarm in�icts costs on both the Inspectorate
and the Operator.

Providing well-organized materials from the fundamentals to the state of the art, this monograph
serves as an invaluable resource for experts, practitioners, and theoreticians who are working
on real-world inspection problems for inspection authorities. The collected materials bene�t
'modellers' who wish to learn the art of modelling for application to their own problems. Game
theorists who are keen to apply the theory to determine convincing solutions to real-world
problems would also greatly bene�t and be inspired by the authors' work. Moreover, the
monograph can form a basis for academic lectures geared towards advanced students who are
interested in inspection problems and/or in successful applications of game theory to a special
but important class of real-world problems. Indeed, the authors are to be warmly congratulated
for this excellent monograph.

I �rst met Rudolf Avenhaus in 1988 at the Center for Interdisciplinary Research (Zentrum für
interdisziplinäre Forschung, ZiF) at the University of Bielefeld, Germany. Both of us were invited
to participate in the one-year research project titled, 'Game Theory in the Behavioral Sciences'
organized by Reinhard Selten, a 1994 Nobel laureate in economics who passed away two years
ago. Lively interactions took place among interdisciplinary participants comprising economists,
biologists, mathematicians, political scientists, psychologists, and even a philosopher. Given
Selten's profound in�uence on the thinking of many participants, the research project was
highly productive. Speci�cally, he taught us many invaluable things related to and beyond game
theory, and encouraged us to collaborate on inspection games; see Avenhaus et al. (1991). Our
research bene�ted considerably from his continued advice and personal thoughtfulness. It is my
great pleasure and honour to pen a foreword to this monograph, which Avenhaus also considers
an homage to Reinhard Selten.

Akira Okada
Tokyo, April 2018



Preface

Having worked for so many years in the �eld of modelling inspections, in particular in inspections
over time, we felt a need for writing a monograph on this subject for basically two reasons.

In the last thirty years a large number of game theoretical models have been developed and
analysed, which describe similar or related inspection problems. As a consequence it has become
increasingly di�cult to maintain an overview on what exists already, how these models are
related to each other and where possible gaps might exist.

More than that are in many cases the assumptions for these models not documented very well,
to say the least, which means that in particular for practitioners, who wants to use the results
of the analyses of these models, it is very di�cult to decide whether or not they describe their
inspection problems and procedures properly.

This monograph tries to solve these two kinds of problems. Most of the inspection models
presented here, but not all of them, have been published already elsewhere, sometimes in con-
ference proceedings, sometimes as PhD dissertations or just as technical reports which means,
not easily accessible. Also, as indicated above, underlying assumptions were not complete or
lacking at all, and references to related work was missing. But of course there are also publica-
tions in which assumptions, analyses and results are so carefully described that we simply, with
due reference, used their wording.

Beyond the collection of published inspection models over time we present nine new inspection
models which close obvious gaps and � this we consider most important � we structure the
material: We develop a hierarchy of assumptions for all models, and we describe equivalences,
relations and di�erences between game theoretical models and their solutions.

When talking about mathematical models, the question of their applicability will be raised
immediately. Without discussing this issue here in detail � this will be done in the main text �
it should be answered already here that indeed most of the inspection models have their origin
in a practical problem, but that they range from those which lend themselves to immediate
application to those which have been developed primarily for theoretical purposes. In the
introductory �rst chapter we will say more about this central issue. Here we just express our
hope that both practitioners and theoreticians will become interested into our work which we
performed with so much enthusiasm for the subject.

Rudolf Avenhaus and Thomas Krieger
München and Jülich 2020

III



IV



Contents

Foreword I

Preface III

1 Introduction 1

1.1 Classi�cation of assumptions for inspection models over time . . . . . . . . . . 2

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The art of modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Structure of the monograph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Who is the client? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Playing for Time: Discrete Time 13

2 General assumptions 15

3 No-No inspection game 21

3.1 Any number of inspection opportunities and one interim inspection . . . . . . . 21

3.2 Special numbers of inspection opportunities and two interim inspections . . . . 41

4 No-Se and Se-No inspection games 49

4.1 No-Se for special numbers of inspection opportunities and interim inspections . 50

4.2 Se-No for any number of inspection opportunities and interim inspections:
Krieger-Avenhaus model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Se-Se inspection game 75

5.1 Any number of inspection opportunities and interim inspections . . . . . . . . . 75

5.2 Any number of inspection opportunities and interim inspections:
a recursive approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

V



VI CONTENTS

5.3 Any number of inspection opportunities and interim inspections:
step by step inspection game . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Models with errors of the second kind 99

6.1 No-No: Any number of inspection opportunities and one interim inspection;
three inspection opportunities and two interim inspections . . . . . . . . . . . . 100

6.2 No-Se: Three inspection opportunities and two interim inspections . . . . . . . 113

6.3 Se-No: Any number of inspection opportunities and one interim inspection;
three inspection opportunities and two interim inspections . . . . . . . . . . . . 117

6.4 Se-Se: Three inspection opportunities and two interim inspections . . . . . . . 124

6.5 Comparison of variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Applications to Nuclear Safeguards . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Legal behaviour, e�ectiveness and e�ciency, extensions 133

7.1 Historical development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Utilities for attribute sampling inspection schemes . . . . . . . . . . . . . . . . 135

7.3 E�ectiveness and e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Utilities for variable sampling inspection schemes and further extensions . . . . 145

II Playing for Time: Continuous Time 149

8 General assumptions 151

9 No-No inspection game: Diamond model and extensions 155

9.1 One interim inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.2 Any number of interim inspections . . . . . . . . . . . . . . . . . . . . . . . . 161

9.3 Any number of interim inspections; errors of the second kind . . . . . . . . . . 169

9.4 One interim inspection; errors of the �rst and second kind . . . . . . . . . . . . 172

9.5 Choice of the false alarm probability . . . . . . . . . . . . . . . . . . . . . . . 178

10 Se-No inspection game for one facility: Avenhaus-Krieger model 185

10.1 Any number of interim inspections; errors of the second kind . . . . . . . . . . 186

10.2 Applications to Nuclear Safeguards . . . . . . . . . . . . . . . . . . . . . . . . 198

10.3 Two interim inspections; errors of the �rst and second kind . . . . . . . . . . . 200

11 Se-No inspection game for more facilities: Krieger-Avenhaus model 207

11.1 One interim inspection; facility-dependent errors of the second kind . . . . . . . 208



CONTENTS VII

11.2 Two interim inspections; facility-independent errors of the second kind . . . . . 214

11.3 Any number of interim inspections; facility-independent errors of the
second kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

12 Se-Se inspection game: Avenhaus-Canty model 233

12.1 One interim inspection; errors of the �rst and second kind . . . . . . . . . . . . 235

12.2 Two interim inspections; errors of the �rst and second kind . . . . . . . . . . . 240

12.3 Any number of interim inspections; errors of the �rst and second kind . . . . . 252

12.4 Choice of the false alarm probability . . . . . . . . . . . . . . . . . . . . . . . 261

13 Comparison of models in Part II and between models in Parts I and II 265

III Critical Time 273

14 General assumptions 275

15 No-No inspection game: Canty-Rothenstein-Avenhaus model 281

15.1 Two periods and one inspection; errors of the �rst and second kind . . . . . . . 282

15.2 Three periods and two inspections; errors of the �rst and second kind . . . . . 286

15.3 Any number of periods and inspections; errors of the �rst and second kind . . . 293

15.4 Sensitivity considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

15.5 Choice of the false alarm probability . . . . . . . . . . . . . . . . . . . . . . . 311

16 Se-Se inspection game: Dresher-Höp�nger model and extensions 315

16.1 Any number of steps and controls . . . . . . . . . . . . . . . . . . . . . . . . . 316

16.2 Any number of steps and controls; errors of the second kind . . . . . . . . . . . 327

16.3 Any number of steps and one control; errors of the �rst and second kind . . . . 337

16.4 Choice of the false alarm probability . . . . . . . . . . . . . . . . . . . . . . . 351

17 Strait control and models with multiple illegal activities 353

17.1 Any number of nights and controls; errors of the second kind: Generalized
Thomas-Nisgav model, Models by Baston and Bostock and by Garnaev . . . . . 354

17.2 Multiple illegal activities: Models by von Stengel, by Sakaguchi, by Ferguson
and Melolidakis, and by Hohzaki . . . . . . . . . . . . . . . . . . . . . . . . . 376

18 Classi�cation of models in Part III 389



VIII CONTENTS

IV Appendices 393

19 Non-cooperative two-person games 395

19.1 Normal form games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

19.2 Extensive form games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

20 Receiver Operating Characteristic of a binary classi�er system 403

21 Proof of Lemma 10.3 407

22 Recurrence relations used in Chapters 10, 11 and 12 411

23 Supplementary considerations to Sections 11.2 and 11.3 415

23.1 Proof of (11.41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

23.2 Lemmata for the proof of Theorem 11.2 . . . . . . . . . . . . . . . . . . . . . 417

24 A Se-No inspection game with an expected number of inspections:

Krieger-Avenhaus model 425

24.1 Three steps; errors of the second kind . . . . . . . . . . . . . . . . . . . . . . 427

24.2 Any number of steps; errors of the second kind . . . . . . . . . . . . . . . . . . 433

List of Figures 439

List of Tables 445

References 449



Chapter 1

Introduction

An inspection game is a mathematical model of a situation where a person or an organisation, in
the following called Inspectorate, veri�es that another party, maybe a person, an organisation or
even a State, and in the following called Operator, adheres to certain agreed or legal rules. This
agreed or legal behaviour may be de�ned, for example by some code of conduct, by some formal
agreement or even by an international treaty. The Operator may, however, have an interest
in violating these agreed or legal rules. Typically, the Inspectorate's resources are limited so
that veri�cation can only be partial. A mathematical analysis helps in designing an optimal
inspection scheme, where it must be assumed that an illegal activity is executed strategically.
This de�nes a game theoretical problem, usually with two players, Inspectorate and Operator.
In some cases, several Operators are considered as individual players.

The principal objective of the Inspectorate is, let us use a wording di�erent from that given
above and which has been taken from an international treaty, to deter the Operator from
behaving illegally "by the risk of early detection"; see IAEA (1972). This means that an illegal
activity, once started, shall be detected with as high a probability and as early as possible. But
what does the latter postulate mean? There are various ways to model the timeliness capability
of routine inspection regimes. For instance one can choose objective functions which depend on
the time between the start of the illegal activity and its detection, or objective functions which
are simple dichotomies that are based on some imposed critical detection goal. In addition, one
can assume unobservable inspections such as might be associated with instrumental or remote
surveillance, or alternatively, that the inspections are observable (in the sense of inspections on
site) so that the Operator can make his decisions conditional on the inspection time points of
the Inspectorate. Furthermore, statistical errors may or may not be taken into account.

Before elaborating on this in Section 1.1, two remarks, the �rst one on related subjects: In-
spection games should be distinguished from inspections for quality control, or for prevention
of other kinds of random accidents, for which there is no adversary who acts strategically; and
inspections that are search problems, where an adversary attempts to escape a searcher with
well-de�ned and legitimate strategies, like a submarine escaping a destroyer in war. Neither
situation is described by an inspection game in the sense of this monograph; here, let us repeat
this, the salient feature is that the Inspectorate tries to prevent the Operator from behaving
illegally in terms of the rules of conduct, or agreement, or treaty. Nevertheless, it will be shown
that in some cases, e.g., in quality control, models are used which are related to inspection
games considered in this monograph; see Diamond's inspection game in Chapter 9.
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2 Chapter 1: Introduction

The second remark deals with this monograph's specialization to inspection games over time:
There are books, e.g., Avenhaus and Canty (1996), and review articles, e.g., Avenhaus et al.
(1996) and Avenhaus et al. (2002), on inspection games in general. During the last 15 years,
however, so many inspection games over time have been published, all of them based on similar,
partly similar or di�erent assumptions such that it became increasingly di�cult to maintain an
overview. Therefore we felt the need to organize this wealth of models and to present it in a
way as coherent as possible.

1.1 Classi�cation of assumptions for inspection models over
time

Since there exist so many game theoretical models for inspections over time, it is one of the
objectives of this monograph to classify these inspection models, in other words, to list all
assumptions which de�ne these models. Figure 1.1 represents the classi�cation of assumptions
for the inspection games over time treated in this monograph.

Quite generally a reference time interval, e.g., a calendar year, is considered within which the
Inspectorate performs k interim inspections. Let us mention that at �rst sight this description of
an interim inspection over time may look very special, but that in fact it covers, with appropriate
interpretations, all inspection problems over time considered in this monograph.

The four dimensions in Figure 1.1 have the following meaning:

• Inspection philosophy: The objective of the Inspectorate is to detect any illegal activity
of the Operator, if he intends to do so, as early as possible � playing for time, or to detect
it within a given time interval � critical time. In Chapter 17 inspection problems are
considered which are formally equivalent to critical time games even though their context
is totally di�erent.

• Time: The Inspectorate can perform its interim inspections at any point of time during
the (open) reference time interval, and the Operator can start the illegal activity at any
point of time during the (open) reference time interval � continuous time, or the interim
inspections are performed only at discrete and equidistant points of time during the
reference time interval, and the illegal activity can start only at discrete and equidistant
points of time during the reference time interval � discrete time.

• Planning: The Operator may plan the illegal activity, if he intends to do so, non-
sequentially (No) at the beginning of the reference time interval, or sequentially (Se)
during the reference time interval. The same possibilities exist for the Inspectorate.
Thus, four variants are distinguished (in the order: Operator-Inspectorate): No-No, No-
Se, Se-No and Se-Se.

• Sampling: Interim inspections may be performed without committing any statistical error
(α = β = 0), or with committing only errors of the second kind (no detection of illegal
behaviour, α = 0, β > 0), or with committing both errors of the �rst (false alarms) and
second kind (α > 0, β > 0).

Four remarks on this classi�cation of assumptions, see also Krieger and Avenhaus (2018a) and
Krieger and Avenhaus (2018b):
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Figure 1.1 Classi�cation of assumptions for inspection models over time.
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4 Chapter 1: Introduction

First, the inspection philosophies are derived from the International Atomic Energy Agency's
objective of safeguards: "The Agreement should provide that the objective of safeguards is the
timely detection of diversion of signi�cant quantities of nuclear material from peaceful nuclear
activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for
purposes unknown, and deterrence of such diversion by the risk of early detection"; see IAEA
(1972) and p. 1. While the playing for time concept is related to the "early detection" objective,
the critical time concept is related to the "timely detection" objective and has its origin in the
so-called conversion time introduced by the IAEA; see IAEA (2002). The conversion time is
the time required to convert di�erent forms of nuclear material to the metallic components
of a nuclear explosive device. Using this de�nition it appears to be natural to assume that
the Inspectorate has "won" the game if any illegal activity is detected within some "critical"
time, otherwise it has "lost" it. In practical applications, which are quite di�erent from IAEA
safeguards and which of course are considered in this monograph as well, the critical time may
have quite di�erent meanings: Whereas for example in the context of the Non-Proliferation
Treaty it means the conversion time for nuclear material, in the case of the control of waterways
by Customs it may mean a night during which Smugglers have a chance to cross the water
without being detected; see Chapter 17. Note that inspection games based on other objective
functions, such as the overall non-detection probability as payo� to the Operator if nuclear
material can be diverted from several strata, have been analysed, e.g., in Avenhaus (1986),
Avenhaus and Canty (1996) or Avenhaus and Krieger (2011a), but do not �t in this monograph
because of its di�erent objective function.

Second, the advantage of discrete time inspection games is that any kind of time resolution
can be modelled, e.g., years, month, weeks, days, hours, and seconds. Thus, these games
seem to be appropriate for applications as boundary conditions and organizational aspects such
as working days could be taken into account. Because in continuous time inspection games
the interim inspections can be performed at any time point during the reference time interval,
the disadvantage of these games is that the implementation of the game theoretical results in
practice becomes di�cult because access might not be granted or even impossible at any time
point, e.g., Sunday at 2:17 a.m. The advantage of continuous time inspection games is that
they are easier to be analysed even in case �rst and second kind errors are taken into account.

Third, the sequential inspection planning requires quite a �exibility on the Inspectorate's part.

Fourth, considering the sampling dimension, the second case is relevant, if items are counted
on a random sampling basis, i.e., if Attribute Sampling Procedures are used. The third case is
given when quantitative measurements are performed, i.e., when Variable Sampling Procedures
are used, where correct data or behaviour may be declared as wrong ones. We do not consider
the �rst and second case as specializations of the third one since inspections games with errors
of the �rst kind and their Nash equilibria are much more complicated than those without �rst
kind errors, in other words, one would never start with the complicated form and then specialize
to the simpler one. A �ner argument shows that one cannot simply change the error �rst kind
probability α without changing that of the error second kind β: In general β tends towards one
if α tends towards zero; see Chapter 20.

According to Figure 1.1 there exist 3 × 4 × 3 = 36 inspection models over time. Not all of
them have been, or will be analysed, but on the other hand, even more assumptions will have
to be made in some cases; see, e.g., the "General Assumptions" Chapters 2, 8 and 14 or the
assumption if the Operator decides to behave legally or illegally during the course of the game
or at the beginning of the game. The structure of Parts I � III will be deduced from Figure 1.1.
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1.2 Applications

Since, according to Heraklit (520 - 460 bC), war is the father of all things, it is not surprising that
the �rst game theoretical models of inspections after the path breaking work by von Neumann
and Morgenstern (1947) were developed during the time of the Cold War and in the context of
arms control and disarmament studies. Probably the �rst genuine inspection game published in
the open literature was the recursive game developed by Dresher (1962) which will be discussed
in detail in the Chapter 16. Dresher himself suggested several possible arms control problems
as applications for his model, in particular veri�cation of a test ban treaty.

In a survey on inspection games in Arms Control by Avenhaus et al. (1996), it was pointed out
that three phases of development in the application of inspection models to arms control and
disarmament may be identi�ed: In the �rst of these, roughly from 1961 to 1968, studies that
focused on inspecting a nuclear test ban treaty emphasized game theory, with less considera-
tion given to statistical aspects associated with data acquisition and measurement uncertainty.
The second phase, from 1968 to about 1985, involves work stimulated by the Treaty on the
Non-Proliferation of Nuclear Weapons (NPT). Here, the veri�cation principle of material ac-
countancy came to the fore, along with the need to include the formalism of statistical decision
theory within the inspection models. The third phase, 1985 to the present, has been dominated
by challenges posed by such far-reaching veri�cation agreements as the Intermediate Range
Nuclear Forces Agreement (INF), the Treaty on Conventional Forces in Europe (CFE) and the
Chemical Weapons Convention (CWC), as well as perceived failures of the NPT system in Iraq
and North Korea. The Comprehensive Test Ban Treaty (CTBT) has been agreed upon by a
UN resolution in 1996, but it is not yet in force because not enough States have rati�ed it.

In particular in the context of the NPT and the veri�cation system of the International Atomic
Energy Agency (IAEA) a wealth of inspection games has been developed and studied. Since
the mid-nineteens, when the Additional Protocol, see IAEA (1997), has been agreed upon, the
importance of interim inspections in nuclear facilities has been emphasized and consequently,
game theoretical models have been developed with the aim to determine the optimal timing
and intensity of these inspections. These models represent best the idea of inspection games
over time therefore, the concept of interim inspections will be used as a general metaphor, with
appropriate interpretations whenever necessary.

Because of the importance of this application, let us add two remarks. First, both inspection
philosophies are relevant here: On one hand, the playing for time concept meets, as mentioned
on p. 1, one of the IAEA safeguards criteria "...by the risk of early detection"; see IAEA (1972).
On the other, and since the puri�cation of nuclear material and subsequent manufacture of
a nuclear weapon takes time, the IAEA has explicitly de�ned critical times for all forms of
�ssionable material that can arise in commercial nuclear activities. These range from seven
days for metallic plutonium to one year for low enriched uranium; see IAEA (2002).

Second, in order to avoid the wrong impression that interim inspections cover the whole area of
nuclear safeguards, two other areas are mentioned here. The one is the veri�cation of the mea-
surement of data reported by the Operator/States with the help of independent measurements
performed by an Inspectorate. In Statistics this wide area is known under the technical term
strati�ed variable sampling. The other area is nuclear material accountancy which represents
the core of nuclear material safeguards: With the help of the Operator's declared data, book
and physical inventories are compared at the end of some material balance period for a so-called
material balance area in order to decide whether the di�erence between these two inventories
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can be justi�ed by the statistical measurement errors or else, can only be explained by loss or
hidden inventories or diversion of nuclear material.

Until today the veri�cation system for the NPT is the most elaborate international one, in fact,
it has served as a model for the veri�cation of the CWC and others; see Avenhaus et al. (2006).
In particular the concepts of on-site and interim inspections have been adapted and elaborated
for other Arms Control and Disarmament Treaties; see Melamud et al. (2014). It is, however,
just fair to mention that for the description and analysis of veri�cation systems other than that
for the NPT, inspection games over time have not yet been used to that degree they would
deserve.

The control of straits or waterways is another widely studied area of application: It is assumed
that Smugglers will try to cross a strait with boats, and that customs o�cers try to catch them.
Most of the analyses are based on, or are variations of Dresher's model, and we will describe
them in detail in Part III. It has to be admitted, however, that to our best knowledge so far we
have found no real applications in the open literature even though we assume that there are
some which may not have been published for reasons of con�dentiality.

Quite a di�erent application is given by reliability and production control problems: Even
though, as mentioned on p. 1, there is no adversary who may behave illegally, one assumes
in the sense of a pessimistic approach that the technical equipment will produce failures which
are most disastrous, and that one has to optimize inspection procedures under this assumption.
We will discuss the seminal paper by Diamond (1982) in major detail in Chapter 9.

There are other applications, e.g., in the environmental control area, but a word of caution is
just fair: What is an application? Theorists claim that an application is the next lower level
of a theory. In that sense, e.g., in Probability Theory the De Moivre-Laplace Theorem is just
an application of the Central Limit Theorem. An engineer, on the other hand, may consider
an application of a theory something which helps him to construct a better device or to reduce
production costs. Inspection games over time are somewhere between these two extremes: In
some cases they give concrete advice, as we shall see, but in other cases problems are analysed
in an idealized way, and real applications are not known to us.

In fact the same may be said about the application of game theory in general: Even though there
is a continuing enthusiasm that this theory is uniquely suited for the description and analysis
of rational behaviour in human interaction, especially in con�ict situations, serious applications
like those of inspection games are still rare, probably more time and patience is needed. Even
Leibniz's and Newton's calculus needed more than a century for becoming an indispensable tool
of natural sciences, technology and economy.

1.3 The art of modelling

When analysts who have a reasonable background in Statistics, Game Theory and Operations
Research in general, and who have some experience with applied work, are asked for answers
by practitioners who know their problems but not the di�culties of quantitative modelling,
the following frequently happens: Either analysts arrive at formal models and their solutions
which are satisfying from a mathematical, not to say aesthetic point of view, but not so much
from a practical one, or the problem and its so solutions is so special, that it is interesting
only for that single case, or the analysts have to work with approximations and present second
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best solutions which may answer the practitioners' questions but are not satisfying analysts'
standards of rigorousness and non-triviality.

Only at rare occasions � lucky moments in their lives � analysts come across problems and their
solutions which are satisfying both from the practical and theoretical points of view and beyond,
they are of more general interest, in other words, these analysts have found some interesting
general structure.

In this monograph, in some sense we have come across all these situations: As an example,
let us take the continuous time inspection game by Diamond (1982) which is presented in
Chapter 9. There, in Theorem 9.1 optimal strategies for any number of interim inspections
during the reference time interval are derived, and its proof is by no means trivial. More than
that, the optimal strategies of the Inspectorate can be used as approximations for the discrete
time inspection game discussed in Chapter 3, where for large numbers of possible time points
and for more than one interim inspections during the reference time optimal strategies have
not yet been found. But there are also other cases where optimal strategies so far have only be
found for limited parameter values, for example in Chapter 6, even though optimal strategies
for more general cases would be interesting from a practical point of view.

If the practitioner, or more generally the person or organization which proposes to analysts a
study of a problem, formulates the problem in form of very precise assumptions, then it is just
good luck or bad luck whether or not the analysis will become interesting from the analysts'
point of view. The real situation, however, is di�erent in general. The practitioner may not
know so precisely which assumptions are required for the quantitative analysis, or he may not
be so certain about all assumptions required, or he may change his opinions in the course of
the analysts' work. This, in turn gives room to the latter one to formulate assumptions himself
and ask for their con�rmation. This way both the practitioner and the analyst can guide the
work in directions which renders the analysis feasible and convincing for both sides: Sometimes
the model itself may be justi�ed by an interesting solution which, by the way, requires that the
analyst is able to explain this solution in a way which convinces the practitioner.

All this shows that modelling is a kind of art which cannot be taught and learned with the
help of textbooks and courses alone. It has to be practised for long times under favourable
circumstances; a key word for those who have or want to encourage studies of the kind an
example for which is presented here, is capacity building for both sides, the practitioner and the
analyst.

In this sense, and also having in mind that the application of game theoretical methods is one of
the main objectives of this monograph, let us conclude these considerations with a statement by
the eminent game theorist and �rst Director of the International Institute for Applied Systems
Analysis (IIASA) in Laxenburg near Vienna, Howard Rai�a, which he made in the context of
a justi�cation of and an advertisement for formal analyses of international negotiations, see
Rai�a (2002):

... Not enough research on the processes of international negotiations is being
done. What is being done is not adequately coordinated and disseminated. Present
research e�orts are not cross-fertilized: across disciplines, between practitioners
and researchers, and across national boundaries. Regrettably, a lot of profound
theorizing by economists, mathematicians, philosophers, and game theorists on
topics related to negotiation analysis has had little or no impact on practice.

... An important reason is clearly the lack of e�ective communication and dissem-
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ination of theoretical research results. Such communication could be improved if
there were more intermediaries who are comfortable in both worlds and who could
act as inventive go-betweens to facilitate the transfer of information that shows how
theory can in�uence practice and how practice can in�uence the research agendas
of theorists. The information must �ow in both directions: many practitioners have
developed valid, extremely useful, and often profound insights and analyses, which
should help to guide the agenda of researchers in this �eld.

It goes without saying that these memorable thoughts of someone who lived indeed in both
worlds hold in the area of inspection games as well.

1.4 Structure of the monograph

Looking again at the classi�cation in Figure 1.1 one realizes that there is no royal way for
structuring the inspection models over time. Using the inspection philosophy and the time
aspect in the classi�cation, we arrive at three main classes of inspection games which are the
subjects of the three parts: First, discrete time playing for time games. Second, continuous
time playing for time games. And third, discrete time critical time games. Within these three
classes, four variants are considered which describe the planning both of the Operator and the
Inspectorate: Both plan their activities at the beginning of the reference time interval (No-No),
or both proceeds sequentially (Se-Se), or only the Inspectorate proceeds sequentially (No-Se),
or only the Operator proceed sequentially (Se-No). It should be mentioned already here, that
only in a few cases and under rather limiting assumptions in regards to the possible interim
inspection time points and the number of interim inspections all four variants have been studied.
The same holds for the consideration of statistical errors of the �rst and second kind: Since in
the most general case the analyses get very complicated, only in a few cases satisfying solutions
have been obtained.

There is an issue the analysis of which represents another important objective of this monograph:
In Parts I and II, where the payo� to the Operator is the detection time, i.e., the time between
start and detection of the illegal activity � the payo� to the Inspectorate being its negative value
� it is assumed that the Operator behaves illegally. This means that only technical parameters
like detection probabilities, inspection costs and others enter the models, and that optimal
inspection strategies can be determined which depend only on these parameters. Obviously
this is very important for practical applications. If, however, the question of deterring the
Operator from illegal behaviour is raised which is, as stated on p. 1, so important for the whole
area of inspections, then this procedure is no longer su�cient: In addition, so-called political
parameters in form of utility functions have to be introduced which describe the gains and
losses of the Operator in case of undetected and detected illegal behaviour; the analysis will
lead to conditions, e.g., concerning inspection costs, for legal behaviour of the Operator.

There is another aspect of this issue. In case of variable sampling procedures false alarms may
happen, and they cause problems, at least costs, to both the Operator and the Inspectorate.
Thus, the zero-sum assumption does not hold any more. This means that also in these cases,
independently of the question of legal or illegal behaviour of the Operator, payo� parameters
have to be introduced.

In Part III idealized payo�s, in technical terms utilities, � in contrast to the detection time in
Parts I and II which has a physical meaning � have to be taken into account from the very
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beginning of the analysis. They describe the gains or losses of both players in case of detected
or undetected illegal behaviour, or legal behaviour, of the Operator. There is another di�erence
between Part III and Parts I and II: So far, we used the concept of interim inspections within
some reference time interval as metaphor for all kinds of inspections over time. If we consider,
however, for example the control of waterways by customs o�cers, then the terms critical time
and interim inspections do not make any sense even though the mathematical models are the
same. Therefore, Chapter 17 in Part III is devoted to these and related inspection problems.

There are a number of additional structural aspects which deserve attention at this place:
First, in contrast to abstract game theoretical analyses the pure strategies of the Operator and
Inspectorate in Parts I and II are the time points for the start of the illegal activity and for
the interim inspections, respectively. Thus, they have a physical meaning. Therefore, beside of
the game theoretical results it is also interesting to determine and to analyse system quantities
because they are intuitively appealing and therefore used by practitioners; see Table 1.1.

Table 1.1 Overview of system parameters, results of the game theoretical analysis and system
quantities used in Parts I and II.

system parameters
results of the game
theoretical analysis

system quantities

time points, number of
interim inspections,
number of facilities,

non-detection
probabilities, false alarm

probabilities

optimal strategies and
optimal expected
detection time,

equilibrium strategies
and respective payo�s

cut-o� value/time, optimal
expected detection time,

optimal expected start of the
illegal activity, optimal

expected interim inspection
time point(s)

Second, in Parts I and II frequently inspection problems are considered which are modelled as
zero-sum games which means in general that we are looking only for one optimal strategy of each
player. In those games in which we are able to present more than one optimal strategy, selection
procedures are discussed which take into account practical needs and di�er fundamentally from
those proposed, e.g., by van Damme (1987) or Harsanyi and Selten (1988). Also, it is admitted
that in case of non-zero-sum games we did not always pay attention to the uniqueness of
equilibria: Even though we have reasons to assume that the equilibria presented are indeed
unique, e.g., on the basis of special cases, there is room for further work.

Third, the contents of this monograph described so far looks like a compilation of existing
inspection games over time. There is, however, more and this should be stressed already here:
Nine new inspection models are developed which are published in this monograph for the �rst
time:

• discrete time playing for time No-Se inspection game; see Lemma 4.1,

• discrete time playing for time Se-No inspection game; see Theorem 4.1 and Lemma 4.4,

• discrete time playing for time Se-Se inspection game; see all Lemmata and Theorems of
Chapter 5,
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• discrete time playing for time No-No inspection game with errors of the second kind; see
Theorem 6.1,

• continuous time playing for time Se-No inspection game with any number of interim
inspections and with facility-independent errors of the second kind; see Theorem 11.2
and Lemma 11.3,

• critical time No-No inspection game with errors of the �rst and second kind; see Theorem
15.2,

• critical time Se-Se inspection game with errors of the second kind; see Theorem 16.2,

• generalized Thomas-Nisgav inspection game; see Theorem 17.1 with Lemmata 17.1 and
17.2,

• critical time Se-No inspection game with an expected number of inspections; see Lemma
24.1.

Furthermore, the Conjectures 5.1, 9.1, 17.1 and 24.1 are novel. Also surprising relations be-
tween di�erent game theoretical models and their Nash equilibria are discussed extensively, and
considerations on the choice of the optimal false alarm probability in Sections 9.5, 12.4, 15.5
and 16.4 are presented.

Fourth, there are inspection problems and issues which have to be described by models which
do not �t into the classi�cation in Figure 1.1. Let us only mention the inspector leadership
idea, according to which the Inspectorate announces its inspection strategy to the Operator in
a credible way and thus, may induce him to legal behaviour. This kind of model is discussed in
Sections 9.5, 12.4, 15.5 and 16.4.

Fifth, a word on notation: Throughout this monograph we have spent an e�ort to develop a
consistent and convincing set of symbols for the more important quantities and concepts which
are used. This was necessary since in contrast to areas as Probability Theory, Mathematical
Statistics and others this consistency of notation has not yet been achieved properly in Game
Theory; see Myerson (1991), Fudenberg and Tirole (1991), Peters and Vrieze (1992), Aumann
and Hart (1992) or Osborne and Rubinstein (1994).

Finally, a remark on the references collected at the end of this monograph: Game theoretical
inspection problems are widely distributed in the published literature, and there are approaches
which di�er considerably from the ones presented in this monograph, let us mention as examples
Pradiptyo (2007), Friehe (2008), Rauhut (2009), Andreozzi (2010), Deutsch et al. (2011),
Jiang et al. (2013), Kolokoltsov et al. (2013), Delle Fave et al. (2014), Zhang and Luo (2014),
Katsikas et al. (2016), Rossiter and Hester (2017) and Kolokoltsov and Malafeyev (2019).
Thus, even though we have spent a major e�ort to collect most of the important publications,
we do not guarantee their completeness.

1.5 Who is the client?

We think that there may be at least four categories of clients to this monograph.

First, there are experts dealing with problems where inspections serve the purpose to deter
people, organisations or States from illegal behaviour in the sense of some agreement or treaty,
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or to say it positively, to induce them to legal behaviour. These experts may be practitioners who
are looking for applications of the solutions of the inspection models, e.g., optimal distribution
of given inspection resources on di�erent locations, or optimal amount of resources for the
indicated objectives. In other words these practitioners want help for their problem to organize
inspections e�ectively and e�ciently. But these experts may also be theoreticians, who are
working for inspection authorities and who have to study these inspection models in order to
adapt them to the authorities' needs, or to develop new models.

In this context the subtitle of this monograph may be explained: If one tries to describe a
real inspection problem with the help of a game theoretical model, then one detects always
special features which have to be taken into account and which require new assumptions.
Also the mathematical models may get too complicated for a rigorous analysis. Therefore, we
present in this monograph only what we deemed to be fundamental models and approaches,
and considered only in a few cases extensions which go beyond analytical feasibility, see, e.g.,
Sections 9.4 and 16.3, in order to demonstrate their complexity.

Second, there are "modellers" who work in related or di�erent areas, and who might want to
learn what has been achieved in the admittedly special �eld dealt within this monograph in
order to �nd out if they can use the models for their somewhat di�erent inspection problems �
see, e.g., Chapter 17 � or even for other problems where adversaries are involved as well which,
however, act also legally, e.g., battleships searching for submarines.

Third, there might be theoreticians, e.g., game theorists, who are primarily interested in genuine
mathematical problems and their solutions, but who might also be interested in applications in
the sense explained in Section 1.2. Indeed, let us repeat this, game theory is until now not so
rich in convincing applications.

And last but not least, we address the younger generation. In order that students are not
frightened by the longer and more demanding proofs of some Theorems and Lemmata they �
as well as other clients � may skip them at �rst reading and instead, try to familiarize with the
inspection models and their game theoretical solutions. More importantly, we hope that this
monograph may serve as a basis for academic lectures for those students who are interested
in this special but important �eld, and also for those students who simply want to learn what
abstract concepts like non-cooperative extensive form games and Nash equilibria mean when
they are confronted with real world problems.
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Part I

Playing for Time: Discrete Time

The three main parts of this monograph di�er essentially by their inspection philosophy and by
their treatment of time. In Part I the objective of the Inspectorate is to detect with the help
of interim inspections the illegal activity as early as possible whereas that of the Operator is
to start the illegal activity at a time point in such a way that it is detected as late as possible.
Furthermore, it is assumed that the interim inspections and the start of the illegal activity can
take place only at discrete points of time during the reference time interval.

Since one important goal of this monograph is to formulate the assumptions for the inspection
games as complete and as clear as possible, in Chapter 2 a qualitative description and a list of
assumptions is given. Even though these assumptions hold for all inspection games described
and analysed in Part I, later on more assumptions are given which hold only for those games
considered then.

The inspection games treated in Chapters 3 � 5 di�er by the planning of the interim inspec-
tions and by the planning of the start of the illegal activity. Some models are treated in full
generality and some are only solved for special cases. Throughout Part I, various relations be-
tween the inspection games analysed in Part I and relations to the continuous time inspection
games treated in Part II, such as optimal/equilibrium strategies, optimal/equilibrium payo�s
and system quantities given in Table 1.1, are discussed.

In Chapter 6 errors of the second kind are taken into account and all four variants of the
inspection game (No-No, No-Se, Se-No and Se-Se) are analysed for the case of three possible
time points for two interim inspections. Also the cases of �ve possible time points for one or
two interim inspections are treated for illustration for the No-No and Se-No inspection game.
The case of any number of possible time points for one interim inspection is solved completely
for the No-No and the Se-No inspection game.

Chapter 7 �nally deals with legal behaviour, the concepts of e�ectiveness and e�ciency, utilities
for variable sampling inspection schemes, i.e., when false alarms are taking into account, and
extensions such as leadership considerations.

13
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Chapter 2

General assumptions

We consider a simple inspected object, for example a production line, or a nuclear or chemical
facility (for short: facility) which is subject to inspections in the framework of agreed rules,
formal agreements or an international treaty, and a reference time interval of one time unit,
e.g., a week, a month, or a calender year. As announced on p. 1, we call the person, or
organisation or even the State which is responsible for the object or facility, the Operator1, and
the person or organisation which is responsible for the inspections, the Inspectorate.

In order to separate the timeliness aspect of routine inspections from the overall goal of detecting
failures or an illegal activity, it is assumed that a thorough and unambiguous inspection takes
place at the beginning and end of the reference time interval with the help of which failures or
an illegal activity will be detected with certainty once they have occurred. Such an inspection
is called, according to some agreed wording, Physical Inventory Veri�cation (PIV); see IAEA
(2002) and Figure 2.1.

Figure 2.1 Time line for the discrete time inspection models.

0 1 2 N − 1 N N + 1

PIV PIV

In addition, it is assumed that by agreement k less intrusive interim inspections are strategically
placed during the reference time interval to reduce the time between start and detection of
failures or the illegal activity below the length of the reference time interval. We assume that
for natural or technical reasons interim inspections can only take place at N equally distant
time points 1, 2, . . . , N . Thus, we have k ≤ N . Thereafter, at the end of the reference time
interval, i.e., at time point N + 1, the above mentioned PIV takes place; see Figure 2.1. At an
interim inspection a preceding failure or illegal activity will eventually be detected with some
probability lower or equal than one.

For reasons to be discussed subsequently, see below, it is assumed that the Operator will start
the illegal activity at one of the N+1 time points 0, 1, . . . , N with certainty; see Figure 2.1. Of

1Frequently, the Operator is called inspectee, but this will not be done in this monograph in order to avoid
confusion between the similar words inspectee and inspector.
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course, the highest priority of the Inspectorate is to deter the Operator from illegal behaviour,
or to say it positively, to induce the Operator to legal behaviour. These two aspects, that
seem to contradict each other at �rst sight, cannot be addressed in purely technical terms like
number of interim inspections, detection probabilities etc. Instead, so-called utilities have to
be introduced which describe the gains and losses of both players in case of legal and illegal
behaviour of the Operator. We discuss this important issue in Section 7.2.

Since the Operator is assumed to behave illegally during the reference time interval, and even
may plan this strategically, and since the Inspectorate is assumed to place the interim inspec-
tions strategically, this inspection problem is described by a non-cooperative two-person game
between an Operator and the Inspectorate. In this Part I, the objective of the Operator is to
place the start of the illegal activity such that the detection time � the time between the start
of the illegal activity and its detection � is as long as possible. This is the reason, see above,
why we assume that an illegal activity is started immediately after an interim inspection. The
objective of the Inspectorate is to place its interim inspections such that the detection time
is as short as possible. This means that we consider a two-person zero-sum game with the
detection time as payo� to the Operator. Note that the zero-sum assumption simpli�es the
analysis considerably since we need not care for the uniqueness of game theoretical solutions to
be developed subsequently; see the interchangeability property on p. 399.

It should be mentioned already here that in cases, where, e.g., failures in production lines
have to be detected, the term illegal activity is misleading, and that those failures cannot be
assumed to be planned strategically by somebody. Nevertheless we will see that these cases
will be covered by the following analyses as well.

At �rst sight, having read the description of the inspection game so far, one might assume that
it speci�es the problem completely and one may start immediately the formal analysis. It turns
out, however, that more assumptions have to be made. Since it is a general major objective of
this monograph to classify the many inspection games which have been developed so far and
since in the literature necessary assumptions are frequently not explicitly mentioned, we will
now list and number all assumptions which are necessary for the analysis of the formal models
in this part. We will not repeat them for any speci�c model. More than that, in subsequent
chapters we will refer to this list of assumptions and eventually add more or change some of
the ones presented here. Thus, we consider this list of assumptions to be central for this whole
part.

(i) There are two players: the Operator of the facility under consideration and the Inspec-
torate.

(ii) The Inspectorate performs k interim inspections at N possible time points 1, 2, . . . , N .

(iii) The Inspectorate performs at the beginning and at the end of the reference time interval a
regular inspection (Physical Inventory Veri�cation, PIV) at which the illegal activity of the
Operator is detected with certainty if it is not detected at a previous interim inspection.

(iv) The Operator starts once at one of the N + 1 time points 0, 1, . . . , N an illegal activity.
In Chapter 7 legal behaviour of the Operator will also be considered.

(v) During an interim inspection the Inspectorate may commit an error of the second kind
with probability β, i.e., the illegal activity, see assumption (iv), is not detected during the
next interim inspection with probability β. Note that if there is no interim inspection left,
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then it is detected with certainty at the �nal PIV; see assumption (iii). This non-detection
probability is the same for all k interim inspections. Errors of the second kind are only
considered in Chapter 6. Note that game theoretical models taking errors of the �rst kind
into account are only considered in Parts II and III.

(vi) The number k of interim inspections is known to the Operator.

(vii) The Operator decides at the beginning of the reference time interval, i.e., at time point
0, when to start the illegal activity, or he only decides whether to start the illegal activity
immediately at time point 0 or to postpone the start; in the latter case he decides again
after the �rst interim inspection; and so on.

The Inspectorate decides at the beginning of the reference time interval when to perform
its interim inspections, or it decides only when to perform the �rst interim inspection,
and after the �rst one when to perform the second interim inspection; and so on.

(viii) Both players decide independently of each other, i.e., no binding agreements are made.

(ix) The payo� to the Operator is the detection time, i.e., the time between start and detection
of the illegal activity. The payo� to the Inspectorate is the negative one (zero-sum game).
In Chapter 7 this assumption is generalized such that the payo�s to both players are linear
functions of the detection time.

(x) An (interim) inspection does not consume time. In case of the coincidence of the start of
the illegal activity and the interim inspection, the illegal activity may be detected at the
occasion of the next interim inspection or, with certainty, at the �nal PIV. In this sense
the wording "... right after an interim inspection ..." is equivalent to "... at an interim
inspection ...".

(xi) The game ends either at the interim inspection at which the illegal activity is detected or
at the �nal PIV; see (iii).

Let us comment some of these assumptions. First, assumption (iii) represents an idealization:
In practice even at the occasion of a PIV the illegal activity may not be detected with certainty.
The idea here is that the PIV is much more accurate than any interim inspection, i.e., the
detection probability at the PIV is usually higher than 1− β.

Second, assumption (iv) sounds strange at �rst sight, since an inspected party in general, and
in particular in international treaties, voluntarily submits to inspections. However, the raison
d'être (reason for existence) of any inspection authority must be the assumption that the
inspected party has a real incentive to violate its commitments. Let us quote Grümm (1983):
"This diversion hypothesis should not been understood � and in general is not understood �
as an expression of distrust directed against States in general or any State in particular. Any
misunderstanding might be dispelled by comparing diversion hypothesis with the philosophy of
airport control. In order to be e�ective, airport control has to assume a priori and without any
suspicion against a particular passenger that each handbag might contain prohibited goods". A
di�erent view of this problem is given by the famous saying Trust but verify which is attributed
to V. I. Lenin. Finally, the less emotional view of the scienti�c modeller will be discussed in
detail at the end of Section 7.3.

Third, assumption (v) typically describes Attribute Sampling schemes; see Thyregod (1988).
They usually occur when random sampling schemes are used, where items are counted, and
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where errors arise only when falsi�ed or wrong items are not contained in the sample. As
indicated, inspection models which take into account errors of the �rst kind, i.e., false alarms,
are not considered here since so far practitioners did not ask for them. They will, however, be
taken into account in Parts II and III.

Fourth, assumption (vi) deserves some justi�cation: Is it appropriate to assume that the Op-
erator knows the number k of interim inspections? We distinguish two cases. First, if the
"agreed rules" or "formal agreements", see p. 15, directly refer to a single inspected object,
and if they specify the number k of interim inspections, then k is known to the Operator of
the inspected object. Second, if the "agreed rules", "formal agreements" or the "international
treaty" refer to a State, then the State knows k. In contrast, the Operator of a single inspected
object can �nd out the number k, e.g., via observations or asking colleagues about the number
of interim inspections in the remaining facilities of the State. Although, even if he knows k, he
does not know how k is distributed to the single facilities, i.e., he knows only that not more
than k interim inspections are performed in his facility. That means in this second case, that
the Operator is faced with a random number of interim inspections for his facility; see p. 146
and Chapter 11. In this case one has to consider a larger game where the choice of the single
facility and the number of interim inspections in that facility represent just a part of a pure
strategy of the Inspectorate. As a result, the latter number may be randomized.

Note that in the inspection games between Customs and Smuggler in Chapter 17 it is also
assumed that the number of controls is known to the Smuggler. In these con�ict situations,
however, there exists no agreed rules, formal agreements or international treaties the Smuggler
has to adhere. Nevertheless, since Customs has to obey rules given by its State, one may justify
this assumption by the Smugglers' long term observation of Customs' activities.

Also, in assumption (vi) the number k is implicitly assumed to be a deterministically �xed
integer 1, 2, . . .. The possibility that an expected, eventually non-integer number of inspections
for one facility is �xed and known to the Operator is addressed only in Chapter 24, where a
Se-No critical time inspection game with an expected number of inspections in one facility is
analysed.

There are two reasons why in this monograph � except of Chapter 24 � only inspection games
with a �xed number of interim inspections resp. controls are considered. First, these inspection
games were in the focus of research interests from the very beginning, when models with only a
few parameters and assumptions and unique solutions � fundamental models � were asked for
and analysed. Second, practitioners, not familiar with game theory, got only interested, if at
all, in this type of inspection games. Only recently expected numbers of inspections for single
facilities gained the attention of representatives of responsible organizations. For this reason,
Chapter 24 has been added to this monograph, last but not least in order to give an example
for further research directions.

Finally, calling the behaviour of a player non-sequential if the player only decides at the beginning
of the reference time interval, and sequential if the player also decides during the reference time
interval, assumption (vii) implies four variants: No-No, No-Se, Se-No and Se-Se as indicated
in Table 2.1.

It should be mentioned that for k = 1 interim inspection and any number N of possible time
points, the No-No and No-Se inspection games on one hand and the Se-No and Se-Se inspection
games on the other lead to the same game theoretical results due to the fact that for k = 1
there is no di�erence between sequential and non-sequential behaviour of the Inspectorate.
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Table 2.1 Four variants of the general inspection game and their abbreviations.

Operator

Inspectorate
Non-sequential Sequential

Non-sequential No-No No-Se

Sequential Se-No Se-Se

Of course, it can not be decided without more information about the real situation to be
described which of the four variants is the appropriate one. Nevertheless, it will turn out, that
for those cases which have been analysed in the literature for a given behaviour of the Operator,
No or Se, the behaviour of the Inspectorate does not in�uence the optimal expected detection
time.

Let us repeat: Assumptions (i) to (xi) will be used in all chapters of this part. Only those
assumptions which for some reason or other deserve special attention will be mentioned again,
but of course all assumptions together represent the basis of the game theoretical models to
be developed and analysed subsequently.
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Chapter 3

No-No inspection game

We analyse in this chapter the �rst of the four variants presented in Table 2.1, where assumptions
(v) and (vii) of Chapter 2 are speci�ed as follows:

(v') During an interim inspection the Inspectorate does not commit an error of the second
kind, i.e., the illegal activity, see assumption (iv), is detected with certainty during the
next interim inspection or with certainty during the �nal PIV; see assumption (iii).

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point
0, at which of the possible time points 0, 1, . . . , N he will start the illegal activity.

The Inspectorate decides at the beginning of the reference time interval at which of the
possible time points 1, . . . , N it will perform its k interim inspection(s).

The remaining assumptions of Chapter 2 hold throughout this chapter. Note that in Section
6.1, the No-No inspection game with uncertain detection of an illegal activity at an interim
inspection, i.e., β ≥ 0, is considered.

In Section 3.1 we analyse the case of any number N of possible time points for k = 1 interim
inspection for which a game theoretical solution exists; see Krieger (2007) and Krieger (2008).
Also in Section 3.1 properties of the optimal payo� and its relations to system quantities, see
Table 1.1, as well as the asymptotic behaviour of the optimal strategies and the optimal payo�
are examined. Section 3.2 presents game theoretical solutions for the case of k = 2 interim
inspections and those number N of possible time points which have been treated analytically
or numerically. Again, the relation between the optimal payo� and system quantities as well as
the asymptotic behaviour of the optimal payo� are investigated.

3.1 Any number of inspection opportunities and one interim
inspection

Since this is a �rst place in this monograph where game theoretical models for inspection
problems are developed and analysed, we present some general concepts and solution techniques
which will be used in subsequent chapters. To those readers who are not familiar with normal
form games we recommend to study Section 19.1 �rst.
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Let for the purpose of illustration N be equal to 3, i.e., we consider 3 possible time points and
of course, according to assumption (iii) of Chapter 2, the two inspection time points 0 and 4
for the initial and �nal PIV. This means that there remain the three time points 1, 2 and 3 for
scheduling the interim inspection. Therefore, the set J3,1 of pure strategies of the Inspectorate
is given by1

J3,1 := {1, 2, 3} , (3.1)

i.e., the set of time points at which it can perform its interim inspection. Note that in order to
be consistent with subsequent sections and chapters in which inspection games with more than
one interim inspection are considered, we subscript the Inspectorate's set of pure strategies
J3,1, where the �rst index indicates the number of possible time points and the second one the
number of interim inspection(s).

The Operator can start the illegal activity potentially at any time point of the reference time
interval. However, he will start the illegal activity only at the time points 0, 1, 2 and 3, since
otherwise the time elapsed between the start of the illegal activity and its detection would
become shorter. Therefore, the set I3 of pure strategies of the Operator is given by

I3 := {0, 1, 2, 3} , (3.2)

i.e., the set of time points at which he can start the illegal activity. Note that this notation � in
contrast to the Inspectorate's one in (3.1) � does only depend on the number of possible time
points and not on the number of interim inspections, because the Operator's pure strategies in
the No-No inspection game (and also in the No-Se inspection game; see Section 4.1) are not
in�uenced by the number of interim inspections.

What do the players gain in case the Operator starts the illegal activity at time point i and the
Inspectorate inspects at time point j?2 According to assumption (ix) of Chapter 2, the payo�
Op3,1(i, j) to the Operator is the time elapsed between the start and the detection of the illegal
activity: It is j−i for j > i and 4−i for j ≤ i, where it should be kept in mind that for instance
in case i = j the illegal activity is only detected at the next occasion; see assumption (x) of
Chapter 2. If this assumption is violated, i.e., if the illegal activity is detected immediately, then
Op3,1(i, i) = 0 for all i = 1, 2, 3, and a di�erent No-No inspection game is considered; see p.
25. Furthermore, a second illegal activity is not allowed to be started (for instance in case of
i = 0 and j = 1 another one could be started at, say, i = 2) according to assumption (iv).
Because of assumption (ix) the payo� to the Inspectorate is In3,1(i, j) := −Op3,1(i, j), i.e.,
we are dealing with a zero-sum game.

This con�ict situation is depicted in Table 3.1. In the �rst column the pure strategies of the
Operator are given, namely starting the illegal activity at time point 0, 1, 2 or 3. In the �rst
row the pure strategies of the Inspectorate are shown, i.e., the time at which it will perform its
interim inspection. An entry in this payo� matrix means that if the Operator starts the illegal
activity at time point i and the Inspectorate performs its interim inspection at time point j,
then the entry in the matrix indicates the detection time. Note that the pure strategy "starting
the illegal activity at time point 3" is a strictly dominated strategy, and can thus be eliminated;
see the comment on p. 24.

1In order to discern de�nitions from equations, we use throughout this monograph de�ning double points,
i.e., A := B means that A is de�ned by B.

2Although in this part the interim inspection time points are denoted by jk, . . . , j1, we write in this section
j instead of j1 because only the case of k = 1 interim inspection is treated.
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Table 3.1 Payo� matrix of the No-No inspection game with N = 3 possible time points for
k = 1 interim inspection.

1 2 3

0 1 2 3

1 3 1 2

2 2 2 1

3 1 1 1

We �rst want to answer the question, if there is a pure strategy combination which leads to
a stable situation of this game, i.e., a pair of pure strategies from which no player has an
incentive to deviate. The answer is no. Formally, we are looking for a pair (i∗, j∗) of optimal
pure strategies, i.e., a pair of pure strategies which ful�ls the so-called saddle point property
for pure strategies, see (19.10),

Op3,1(i, j
∗) ≤ Op3,1(i∗, j∗) ≤ Op3,1(i∗, j) (3.3)

for any i ∈ I3 and any j ∈ J3,1. The left hand inequality speci�es the Operator's goal of
maximizing his payo�, i.e., the time elapsed between the start and the detection of the illegal
activity, while the right hand inequality speci�es the Inspectorate's goal of minimizing that time.
Suppose there exists a pair (i∗, j∗) of optimal pure strategies. Then we would obtain, using
Table 3.1,

Op3,1(i
∗, j∗) = max

i=0,1,2,3
Op3,1(i, j

∗) = max{j∗, 4− j∗} ≥ 2

and

Op3,1(i
∗, j∗) = min

j=1,2,3
Op3,1(i

∗, j) = 1 ,

i.e., (3.3) cannot be ful�lled. This argumentation shows, that in this game no stable situation,
i.e., optimal pure strategies, exists. Therefore, we have to introduce the concept of mixed
strategies. Let pi, i = 0, . . . , 3, denote the probability that the illegal activity is started at time
point i and qj , j = 1, 2, 3, denote the probability to perform the interim inspection at time
point j. A mixed strategy of a player is a probability distribution over his set of pure strategies.
Thus, the Operator's set of mixed strategies is given by

P3 :=

{
p := (p0, p1, p2, p3)

T ∈ [0, 1]4 :

3∑
i=0

pi = 1

}
(3.4)

and that for the Inspectorate by

Q3,1 :=

q := (q1, q2, q3)
T ∈ [0, 1]3 :

3∑
j=1

qj = 1

 . (3.5)
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If the players decide to play the mixed strategy combination (p,q), then the Operator's (ex-
pected) payo�, i.e., the expected detection time, is, using Table 3.1, given by

Op3,1(p,q) := p0 (q1 + 2 q2 + 3 q3) + p1 (3 q1 + q2 + 2 q3)

+ p2 (2 q1 + 2 q2 + q3) + p3 ,
(3.6)

see (19.3) in the Annex. According to assumption (ix) of Chapter 2, the Inspectorate's payo�
is In3,1(p,q) = −Op3,1(p,q).

In analogy to the saddle point criterion (3.3) for pure strategies, the mixed strategy combination
(p∗,q∗) is a pair of optimal strategies, if and only if (p∗,q∗) ful�ls the a saddle point criterion

Op3,1(p,q
∗) ≤ Op3,1(p∗,q∗) ≤ Op3,1(p∗,q) (3.7)

for any p ∈ P3 and any q ∈ Q3,1; see also (19.10). It is well-known, that any matrix game
possesses a saddle point in mixed strategies, i.e., the existence of an optimal mixed strategy
for each player can be ensured. A pair of optimal strategies together with the optimal payo�
constitutes the game theoretical solution of the game.

There may, however, exist di�erent optimal strategies in a matrix game. Fortunately, these
optimal strategies are interchangeable; see p. 399. This property is used for arguing that
presenting one pair of optimal strategies is su�cient, i.e., a selection of optimal strategies is
not necessary. Therefore, we are in general only interested in �nding one instead of all optimal
strategies for each player. We will show in Section 4.2, however, that a selection of optimal
strategies based on practical considerations may be useful.

It has been mentioned on p. 22 that the pure strategy "starting the illegal activity at time
point 3", i.e., p1 := (0, 0, 0, 1)T , is a strictly dominated strategy. Indeed, using (3.6) and the
mixed strategy p2 := (0, 1/2, 1/2, 0)T , we get for any q ∈ Q3,1

Op3,1(p2,q) =
1

2

(
5 q1 + 3 (q2 + q3)

)
=

1

2

(
5 q1 + 3 (1− q1)

)
=

1

2

(
2 q1 + 3

)
≥ 3

2
> 1 = Op3,1(p1,q) ,

i.e., p1 is a strictly dominated strategy. Note that strictly dominated pure strategies are never
used in an optimal strategy, i.e., p∗3 = 0 for any optimal strategy p∗; see Myerson (1991) or
Morris (1994).

The game theoretical solution of this inspection game, see Krieger (2007) and Krieger (2008),
is presented in

Lemma 3.1. Given the No-No inspection game with N = 3 possible time points for k = 1
interim inspection. The sets of mixed strategies are given by (3.4) and (3.5), and the payo� to
the Operator by (3.6).

Then an optimal strategy of the Operator is given by

p∗ =

(
1

3
,
1

6
,
1

2
, 0

)T
,

and an optimal strategy of the Inspectorate by

q∗ =

(
1

3
,
1

2
,
1

6

)T
. (3.8)
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The optimal payo� to the Operator is

Op∗3,1 := Op3,1(p
∗,q∗) =

11

6
.

Proof. In order to prove that (p∗,q∗) constitutes a saddle point of the game, we have to show
that the inequalities

Op3,1(i,q
∗) ≤ Op3,1(p∗,q∗) ≤ Op3,1(p∗, j) (3.9)

are ful�lled for any i ∈ I3 and any j ∈ J3,1; see (19.11). Indeed, using (3.6), we get
Op3,1(i,q

∗) = 11/6 for all i = 0, 1, 2 and Op3,1(3,q
∗) = 1 < 11/6, and Op3,1(p

∗, j) = 11/6
for all j = 1, 2, 3, i.e., (3.9) is ful�lled as equality.

In general, and there will be found many examples in this monograph, it is much easier to prove
that proposed strategies indeed ful�l the saddle point criterion, than to �nd them. A useful
techniques for the constructive determination of optimal strategies is provided by the best-
response criterion or indi�erence principle, see Theorem 19.1: Roughly speaking the saddle
point criterion is satis�ed if the optimal strategy of one player is determined in such a way
that the adversary is rendered indi�erent as regards to his pure strategies which he plays with
positive probability.

Note that in the case of N = 3 possible time points for k = 1 interim inspection common sense
would propose to place the interim inspection into the middle of the reference time interval
which would lead to the payo� 2. Lemma 3.1 and in particular (3.8), however, indicates
that the Inspectorate can slightly do better. Also, the appealing Inspectorate's strategy q =
(1/3, 1/3, 1/3)T is � because Op3,1(0,q) = 2 > Op∗3,1 contradicts (3.9) � not an optimal
strategy although Op3,1(p

∗,q) = 11/6 = Op∗3,1.

We mentioned on p. 22 that a violation of assumption (x) leads to a di�erent No-No inspection
game. The game theoretical solution of that game � the proof of which goes along the same
lines as that of Lemma 3.1 � is given by

p∗ =

(
2

3
, 0,

1

3
, 0

)T
, q∗ =

(
2

3
,
1

3
, 0

)T
and Op∗3,1 =

4

3
,

i.e., the optimal strategies and the optimal payo� are sensitive regarding the modelling assump-
tion. This is the reason why we put so much emphasize on modelling aspects. The fact that a
slight change of a modelling assumption leads to a considerable change in the game theoretical
solutions is also demonstrated in Section 15.4 and Sections 16.1 and 17.1; see p. 327.

Let us now turn to the general case of N possible time points. Let in line with the case N = 3

IN := {0, 1, . . . , N} and JN,1 := {1, . . . , N} (3.10)

be the sets of pure strategies of the Operator and the Inspectorate, i.e., the sets of time points
where they either start the illegal activity or perform the interim inspection. If i is the time
point for the start of the illegal activity, and j the time point of the interim inspection, then
we obtain � according to the model assumptions of Chapter 2 as well as assumptions (v') and
(vii') on p. 21 � for the detection time

OpN,1(i, j) :=

{
j − i for 0 ≤ i < j < N + 1

N + 1− i for 1 ≤ j ≤ i < N + 1
. (3.11)
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Explicitly, the payo� matrix A := (OpN,1(i, j))i=0,...,N,j=1,...,N of this inspection game is shown
in Table 3.2. As already pointed out, the pure strategies of the Operator resp. the Inspectorate
are depicted the �rst column resp. the �rst row of the payo� matrix and the entries are the
payo�s to the Operator as given by (3.11).

Table 3.2 Payo� matrix A of the No-No inspection game with N possible time points for
k = 1 interim inspection.

1 2 3 · · · n n+ 1 · · · N − 1 N

0 1 2 3 · · · n n+ 1 · · · N − 1 N

1 N 1 2 · · · n− 1 n · · · N − 2 N − 1

2 N − 1 N − 1 1 · · · n− 2 n− 1 · · · N − 3 N − 2
...

. . .
...

n N − n+ 1 N − n+ 1 N − n+ 1 · · · N − n+ 1 1 · · · N − n− 1 N − n
n+ 1 N − n N − n N − n · · · N − n N − n · · · N − n− 2 N − n− 1
...

...
. . .

N − 1 2 2 2 · · · 2 2 · · · 2 1

N 1 1 1 · · · 1 1 · · · 1 1

Proceeding as on p. 23, we �rst investigate if there exists a pair of pure strategies from which
no player has an incentive to deviate, i.e., a pure strategy combination (i∗, j∗) that ful�ls the
saddle point condition, see (19.10),

OpN,1(i, j
∗) ≤ OpN,1(i∗, j∗) ≤ OpN,1(i∗, j) (3.12)

for any i ∈ IN and any j ∈ JN,1. With such a strategy combination we would obtain, using
Table 3.2,

OpN,1(i
∗, j∗) = max

i=0,...,N
OpN,1(i, j

∗) = max{j∗, N + 1− j∗} ≥ N + 1

2

and

OpN,1(i
∗, j∗) = min

j=1,...,N
OpN,1(i

∗, j) = 1 ,

i.e., (3.12) cannot be ful�lled for N ≥ 2, i.e., it exists no pair (i∗, j∗) of optimal pure strategies.
Again, let pi, i = 0, . . . , N , denote the probability that the illegal activity is started at time
point i and qj , j = 1, . . . , N , denote the probability to perform the interim inspection at time
point j. Then the set of mixed strategies of the Operator is given by

PN :=

{
p := (p0, p1, . . . , pN )T ∈ [0, 1]N+1 :

N∑
i=0

pi = 1

}
(3.13)

and for the Inspectorate by

QN,1 :=

q := (q1, . . . , qN )T ∈ [0, 1]N :

N∑
j=1

qj = 1

 . (3.14)
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The i-th resp. the j-th pure strategy of the Operator resp. the Inspectorate corresponds to the
(i+ 1)-th resp. the j-th unit vector. In order to avoid problems with the enumeration we will
write � although mathematical slightly incorrect � i instead of ei+1 and j instead of ej . If the
players decide to play the mixed strategy combination (p,q), the Operator's (expected) payo�,
i.e., the expected detection time, de�ned on the set PN ×QN,1 is, using (19.3), given by

OpN,1(p,q) := pT Aq =

N∑
i=0

N∑
j=1

pi qj OpN,1(i, j) . (3.15)

According to assumption (ix) of Chapter 2, the Inspectorate's payo� is given by InN,1(p,q) =
−OpN,1(p,q). Because the existence of optimal strategies in matrix games can be guaranteed,
we are looking in analogy to (3.7) for a pair (p∗,q∗) ∈ PN ×QN,1 with

OpN,1(p,q
∗) ≤ OpN,1(p∗,q∗) ≤ OpN,1(p∗,q)

for any p ∈ PN and any q ∈ QN,1, see (19.10), where OpN,1(p,q) is given by (3.15).

The game theoretical solution of this inspection game, see Krieger (2007) and Krieger (2008),
is presented in

Theorem 3.1. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection. The sets of mixed strategies are given by (3.13) and (3.14), and the payo�
to the Operator by (3.15) using (3.11). De�ne the cut-o� value n∗ by3

n∗ := min

n : n ∈ {1, . . . , N} with
n∑
j=1

1

N + 1− j
≥ 1

 . (3.16)

Then an optimal strategy of the Operator is given by

p∗i =



1

N
(N + 1− n∗) for i = 0

(N + 1− n∗)
(N + 1− i) (N − i)

for i = 1, . . . , n∗ − 1

0 for i = n∗, . . . , N

, (3.17)

and an optimal strategy of the Inspectorate by

q∗j =



1

N + 1− j
for j = 1, . . . , n∗ − 1

1−
n∗−1∑
j=1

1

N + 1− j
for j = n∗

0 for j = n∗ + 1, . . . , N

. (3.18)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(p
∗,q∗) =

n∗∑
j=1

N + 1− n∗

N + 1− j
. (3.19)

3Nagell (1923) has proven � in the notation used here � that
∑n

j=1 (N − j + 1)−1 6∈ N for any N > 1 and
all n = 1, . . . , N , i.e., the ≥ sign in (3.16) can be replaced by the > sign.
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Proof. The proof is presented in several steps. For the sake of brevity we write Op(p,q)
instead of OpN,1(p,q).

1. We �rst show that for any p = (p0, p1 . . . , pN )T ∈ PN and any q = (q1, . . . , qN )T ∈ QN,1
the following recursive relations hold: For any j ∈ {1, . . . , N − 1} we have

Op(p, j + 1) = Op(p, j)− (N + 1− j) pj +

j∑
i=0

pi , (3.20)

and for any i ∈ {0, . . . , N − 1} we get

Op(i+ 1,q) = Op(i,q) + (N − i) qi+1 − 1 . (3.21)

This can be seen as follows: Using (3.11), we get for any p = (p0, p1 . . . , pN )T ∈ PN and any
j ∈ {1, . . . , N}

Op(p, j) =

j−1∑
i=0

(j − i) pi +

N∑
i=j

(N + 1− i) pi . (3.22)

Let us �x an index j ∈ {1, . . . , N − 1} and a p ∈ PN . Then we obtain from (3.22)

Op(p, j + 1) =

j∑
i=0

(j + 1− i) pi +

N∑
i=j+1

(N + 1− i) pi

=

j∑
i=0

(j − i) pi +

j∑
i=0

pi +

N∑
i=j

(N + 1− i) pi − (N + 1− j) pj

= Op(p, j)− (N + 1− j) pj +

j∑
i=0

pi ,

i.e., recursive relation (3.20). For the proof of (3.21) we �rst get from (3.11) for any q =
(q1, . . . , qN )T ∈ QN,1

Op(i,q) =



N∑
j=1

j qj for i = 0

(N + 1− i)
i∑

j=1

qj +

N∑
j=i+1

(j − i) qj for i = 1, . . . , N − 1

1 for i = N

. (3.23)

Using (3.23), we obtain

Op(1,q) = N q1 +

N∑
j=2

(j − 1) qj = Op(0,q) +N p1 − 1 ,

and

Op(N,q) =

N∑
j=1

qj = 2

N−1∑
j=1

qj + 2 qN − 1 = Op(N − 1,q) + qN − 1 ,
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i.e., (3.21) for i = 0 and i = N − 1. For a �xed index i ∈ {1, . . . , N − 2} we get again from
(3.23)

Op(i+ 1,q) = (N − i)
i+1∑
j=1

qj +

N∑
j=i+2

(j − (i+ 1)) qj

= (N + 1− i)
i∑

j=1

qj + (N − i) qi+1 −
i∑

j=1

qj +

N∑
j=i+1

(j − i) qj −
N∑

j=i+1

qj

= Op(i,q) + (N − i) qi+1 − 1 ,

i.e., (3.21) for i ∈ {1, . . . , N − 2}.

2. From (3.17) and (3.18) it can be directly seen that the components of p∗ and q∗ are greater
or equal to 0 and that both vectors are correctly normalized, i.e., p∗ and q∗ are probability
distributions over IN resp. JN,1.

3. Saddle point inequalities: Using (3.17), we have for a �xed index j ∈ {1, . . . , n∗ − 1}

j∑
i=0

p∗i = (N + 1− n∗)

(
1

N
+

j∑
i=1

(
1

N − i
− 1

N + 1− i

))
= (N + 1− n∗) 1

N − j

and hence

j∑
i=0

p∗i =


(N + 1− n∗) 1

N − j
= (N + 1− j) p∗j for j = 1, . . . , n∗ − 1

1 for j = n∗, . . . , N
. (3.24)

This leads together with recursive relation (3.20) to

Op(p∗, 1) = Op(p∗, 2) = . . . = Op(p∗, n∗) (3.25)

and

Op(p∗, N) > Op(p∗, N − 1) > . . . > Op(p∗, n∗ + 1) > Op(p∗, n∗) .

On the other hand we obtain, using (3.18) and (3.21),

Op(0,q∗) = Op(1,q∗) = . . . = Op(n∗ − 1,q∗) (3.26)

and

Op(N,q∗) < Op(N − 1,q∗) < . . . < Op(n∗ − 1,q∗) . (3.27)

Combining (3.25) and (3.26) gives us

Op(p∗,q∗) = (p∗)T Aq∗

= Op(p∗, 1) = Op(p∗, 2) = . . . = Op(p∗, n∗)

= Op(0,q∗) = Op(1,q∗) = . . . = Op(n∗ − 1,q∗) . (3.28)
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Now, (3.25) � (3.27) together with (3.28) imply

Op(i,q∗) ≤ Op(p∗,q∗) ≤ Op(p∗, j)

for any i ∈ IN and any j ∈ JN,1. Making use of (19.11) we see that (p∗,q∗) is a saddle point
of the game.

4. The optimal payo� to the Operator: (3.11) and (3.28) imply

Op(p∗,q∗) = Op(n∗ − 1,q∗) = (N + 2− n∗)
n∗−1∑
j=1

q∗j + q∗n∗

= (N + 1− n∗)
n∗−1∑
j=1

q∗j + 1 ,

i.e., (3.19), which completes the proof.

Before discussing the results of Theorem 3.1 � see p. 34 � we derive in Lemma 3.2, see Krieger
(2007) and Krieger (2008), lower and upper bounds of n∗(N) and Op∗N,1, and discuss in Lemma
3.3 the behaviour of the normalized cut-o� value n∗(N)/(N + 1) and the normalized optimal
payo� Op∗N,1/(N + 1). Note that in order to indicate the dependence on N , we write now
n∗(N).

Lemma 3.2. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection analysed in Theorem 3.1.

Then the following bounds hold for the cut-o� value n∗(N) and for the optimal expected
detection time Op∗N,1:(

1− 1

e

)
N < n∗(N) <

(
1− 1

e

)
(N + 1) + 1 (3.29)

and

N + 1− n∗ < Op∗N,1 < N + 2− n∗ . (3.30)

Proof. For any n ∈ {1, . . . , N − 1} we have∫ n+1

1

1

N + 2− x
dx ≤

n∑
j=1

1

N + 1− j
≤
∫ n+1

1

1

N + 1− x
dx

which is equivalent to

ln

[
N + 1

N + 1− n

]
≤

n∑
j=1

1

N + 1− j
≤ ln

[
N

N − n

]
. (3.31)

From (3.16) we obtain, using the footnote on p. 27, the inequalities

n∗∑
j=1

1

N + 1− j
> 1 and

n∗−1∑
j=1

1

N + 1− j
< 1 . (3.32)
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Thus, (3.31) yields

1 < ln

[
N

N − n∗

]
and ln

[
N + 1

N + 2− n∗

]
< 1 .

Combining both inequalities we get (3.29). To prove (3.30), note that (3.32) is equivalent to

1 <

n∗∑
j=1

1

N + 1− j
< 1 +

1

N + 1− n∗
.

Multiplying these two inequalities by N + 1− n∗ and making use of (3.19) leads immediately
to (3.30).

In order to get an idea of the behaviour of the cut-o� value n∗(N) and the optimal payo�
Op∗N,1 to the Operator, we present in Table 3.3 these quantities together with the corresponding
normalized quantities n∗(N)/(N + 1) and Op∗N,1/(N + 1).

Table 3.3 Behaviour of the cut-o� value n∗(N), the optimal payo� Op∗N,1 to the Operator,
and its normalized values relative to N + 1 (rounded).

N n∗(N) n∗(N)/(N + 1) Op∗N,1 Op∗N,1/(N + 1)

2 2 0.666667 1.5 0.5

3 3 0.75 1.83333 0.458333

4 3 0.6 2.16667 0.433333

5 4 0.666667 2.56667 0.427778

6 5 0.714286 2.9 0.414286

7 5 0.625 3.27857 0.409821

8 6 0.666667 3.65357 0.405952

10 7 0.636364 4.38254 0.398413

12 8 0.615385 5.09939 0.392261

13 9 0.642857 5.484 0.391714

14 10 0.666667 5.84114 0.38941

20 13 0.619048 8.03906 0.382812

30 20 0.645161 11.7262 0.378265

40 26 0.634146 15.4047 0.375725

100 64 0.633663 37.4743 0.371032

It can be seen in Table 3.3, that the normalized cut-o� value n∗(N)/(N + 1) is neither an
increasing nor a decreasing function of N . In the Lemma 3.3, see Krieger (2007) and Krieger
(2008), we show, that n∗(N) and Op∗N,1 are increasing functions of N , while Op∗N,1/(N + 1)
is a decreasing function of N .
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Lemma 3.3. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection analysed in Theorem 3.1.

Then we obtain for n∗(N), Op∗N,1 and Op∗N,1/(N + 1):

n∗(N) ≤ n∗(N + 1) ≤ n∗(N) + 1 (3.33)

as well as

Op∗N,1 < Op∗N+1,1 and
1

N + 1
Op∗N,1 >

1

N + 2
Op∗N+1,1 . (3.34)

Proof. According to the four asserted inequalities we proceed in four steps.

1. The inequality n∗(N) ≤ n∗(N+1) follows immediately from the de�nition (3.16) of n∗(N).

2. Next we consider the inequality n∗(N + 1) ≤ n∗(N) + 1. We obtain from (3.16)

n∗(N)∑
j=1

1

N + 1− j
≥ 1

and therewith

n∗(N)∑
j=1

1

(N + 1) + 1− j
≥ 1 +

1

N + 1
− 1

N + 1− n∗(N)
. (3.35)

Let us suppose that there exists a natural number N with n∗(N + 1) > n∗(N) + 1. This leads,
using (3.16) applied to n∗(N + 1) and (3.35), to

1 >

n∗(N+1)−1∑
j=1

1

(N + 1) + 1− j
=

n∗(N)∑
j=1

1

(N + 1) + 1− j
+

n∗(N+1)−1∑
j=n∗(N)+1

1

(N + 1) + 1− j

≥ 1 +
1

N + 1
− 1

N + 1− n∗(N)
+

n∗(N+1)−1∑
j=n∗(N)+1

1

(N + 1) + 1− j
,

which implies

1

N + 1− n∗(N)
− 1

N + 1
>

n∗(N+1)−1∑
j=n∗(N)+1

1

(N + 1) + 1− j
.

In case of n∗(N) + 1 = n∗(N + 1) − 1 resp. n∗(N) + 1 < n∗(N + 1) − 1 we obtain the
inequalities

− 1

N + 1
> 0 resp. − 1

N + 1
>

n∗(N+1)−1∑
j=n∗(N)+2

1

(N + 1) + 1− j
,

which both cannot be ful�lled. So we conclude that n∗(N + 1) ≤ n∗(N) + 1 for all N ≥ 2.
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3. In order to prove Op∗N+1,1 − Op∗N,1 > 0 we consider � because of (3.33) � the two cases
n∗(N + 1) = n∗(N) =: n∗ and n∗(N + 1) = n∗(N) + 1 = n∗ + 1 separately. In the �rst case
we have from (3.19)

Op∗N+1,1 −Op∗N,1 =

n∗∑
j=1

(
N + 2− n∗

N + 2− j
− N + 1− n∗

N + 1− j

)
.

Now it can be seen with the help of simple manipulations that the terms in the sum are greater
than zero for j = 1, . . . , n∗ − 1 and zero for j = n∗, thus we have Op∗N+1,1 −Op∗N,1 > 0.

In the second case, (3.19) implies

Op∗N+1,1 −Op∗N,1 = (N + 1 + 1− (n∗ + 1))

n∗+1∑
j=1

1

N + 1− (j − 1)
−Op∗N,1

= (N + 1− n∗)
n∗∑
j=0

1

N + 1− j
−Op∗N,1

= (N + 1− n∗)

 n∗∑
j=1

1

N + 1− j
+

1

N + 1

−Op∗N,1
=
N + 1− n∗

N + 1
> 0 .

4. We consider the di�erence (N + 2)Op∗N,1 − (N + 1)Op∗N+1,1 but only present the results
which are obtained after some lengthy calculations. Again we distinguish the two mentioned
cases and apply (3.19) and (3.30). For the �rst case we obtain

(N + 2)Op∗N,1 − (N + 1)Op∗N+1,1

= (N + 2)Op∗N,1 − (N + 1) (N + 1 + 1− n∗)
n∗∑
j=1

1

N + 1− (j − 1)

=
n∗

N + 1− n∗
(
−Op∗N,1 +N + 2− n∗

)
> 0 ,

and for the second case

(N + 2)Op∗N,1 − (N + 1)Op∗N+1,1

= (N + 2)Op∗N,1 − (N + 1) (N + 1− n∗)
n∗+1∑
j=1

1

N + 1− (j − 1)

= Op∗N,1 − (N + 1− n∗) > 0 ,

which completes the proof.

Let us comment the results of Lemma 3.3: Whereas the left hand inequality for n∗ in (3.33) is
intuitive, the right hand one is not; it is, however, illustrated very well by Table 3.3. Also, the
left hand inequality for Op∗N,1 in (3.34) was to be expected, but not the right hand one, and
again, it is illustrated convincingly by Table 3.3. More than that, this inequality will be used
subsequently.
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Let us now discuss the results of Theorem 3.1 and Lemma 3.2: First, the optimal strategies
p∗ and q∗ have an interesting property: We see that the pure strategies n∗, . . . , N for the
Operator, and n∗+ 1, . . . , N for the Inspectorate are cut-o� and are never played. That means
that the Operator will never perform an illegal activity after time point n∗ and the Inspectorate
will never inspect after time point n∗ + 1. This makes sense since detection is guaranteed to
occur at the end of the reference time interval and the Operator will not wish to wait too long
before starting the illegal activity. This property is unique to discrete time and continuous time
No-No inspection games; see also Section 3.2 and Chapter 9, and Tables 13.1 and 13.2. (3.29)
shows another interesting property of n∗: Because of 1 − 1/e ≈ 0.63, for large N only about
63% of the N possible time points are eventually used for the interim inspection. Note that
the results in Theorem 3.1 can be extended to the situation in which the illegal activity is only
detected with probability 1− β at the interim inspection; see Theorem 6.1.

Second, in Figure 3.1 the optimal strategies of both players are depicted for the case of N = 20
possible time points. Note that n∗(20) = 13; see also Table 3.3.

Figure 3.1 Optimal strategies p∗ and q∗ for N = 20 possible time points.

5 10 15 20
i

0.1

0.2

0.3

0.4

pi
*

5 10 15 20
j

0.1

0.2

0.3

0.4

qj
*

For any N ≥ 3 we obtain from (3.17)

p∗0 > p∗1 and p∗1 < p∗2 < . . . < p∗n∗−1 .

The relation between p∗0 and p∗n∗−1, however, is not so obvious. A lengthy calculation, using
(3.29), shows that p∗0 > p∗n∗−1 for N ≥ 10. An examination of the cases N = 6, . . . , 9,
however, shows that we get for N = 6 the equality p∗0 = p∗n∗−1 = 1/3, and for N ≥ 7 the
result p∗0 > p∗n∗−1.

Furthermore, we get, using (3.18),

q∗1 < q∗2 < . . . < q∗n∗−1 .

In general nothing can be said about the ratio between q∗n∗ and q
∗
j , j = 1, . . . , n∗ − 1: In case

of N = 4 possible time points we have n∗(4) = 3 and

q∗ = (q∗1, q
∗
2, q
∗
3, q
∗
4)T =

(
1

4
,
1

3
,

5

12
, 0

)T
, i.e., q∗1 < q∗2 < q∗3 ,

while in case of N = 5 possible time points we have n∗(5) = 4 and

q∗ = (q∗1, q
∗
2, q
∗
3, q
∗
4, q
∗
5)T =

(
1

5
,
1

4
,
1

3
,
13

60
, 0

)T
, i.e., q∗1 < q∗4 < q∗2 < q∗3 .
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For large N , see (3.30), the optimal expected detection time is the time between N + 1 and
n∗, in other words, the time remaining after the Inspectorate does not inspect any more, except
the �nal PIV. We will come back to this point on p. 41 and also in Chapter 9.

Third, it has been mentioned after Lemma 3.1 that for the case N = 3 possible time points the
equal distribution is not an optimal strategy of the Inspectorate. This holds here even more:
Were q = (1/N, . . . , 1/N)T an optimal strategy, then according to (19.11) the inequality
(N + 1)/2 = OpN,1(0,q) ≤ Op∗N,1 needed to hold. With the right inequality of (3.34) we get

1

N + 1
Op∗N,1 <

1

N
Op∗N−1,1 <

1

N − 1
Op∗N−2,1 < . . . <

1

3
Op∗2,1 =

1

2
,

see also Table 3.3, which is a contradiction to (N + 1)/2 = OpN,1(0,q) ≤ Op∗N,1.

Finally, as mentioned in Section 1.4, the interpretation of the pure strategies makes it possible
to determine the optimal expected time point for the start of the illegal activity Ep∗(S) and
the optimal expected interim inspection time point Eq∗(T1). Using (3.17) we get

Ep∗(S) :=

N∑
i=0

i p∗i =

n∗−1∑
i=1

i p∗i = (N + 1− n∗)
n∗−1∑
i=1

i

(N + 1− i) (N − i)

= (N + 1− n∗)

(
−1 +

n∗

N + 1− n∗
−
n∗−1∑
i=1

1

N + 1− i

)
, (3.36)

or, using (3.19),

Ep∗(S) = n∗ −Op∗N,1 . (3.37)

Figure 3.2 illustrates the relation between (3.30) and (3.37).

Figure 3.2 Illustration of (3.30) and (3.37).

0 1 Ep∗(S) n∗ N N + 1

= Op∗N,1 ≈ Op∗N,1PIV PIV

Note that a similar relation like (3.37) will be shown for the continuous time No-No inspection
game; see (9.15). For k ≥ 2 interim inspections an expression similar to (3.37) does not exist
for the discrete time No-No inspection game, see the discussion in Section 3.2, and can only
be conjectured for the continuous time No-No inspection game; see (9.37). Let us note that
all discrete and continuous time Se-No inspection games discussed in Sections 4.2 and Chapter
10 lead to simple expressions for the expected value of S; see also Table 13.2.

Also, using (3.11) (only the �rst line applies for i = 0) and (3.26), we get

Eq∗(T1) :=

N∑
j=1

j q∗j = OpN,1(0,q
∗) = Op∗N,1 (3.38)
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and, using (3.37),

Ep∗(S) + Eq∗(T1) = n∗ . (3.39)

Relation (3.38) establishes a close relation between the optimal expected interim inspection
time point and the optimal payo�. This relation holds for all No-No inspection games in Parts
I and II. Note that if more than one interim inspection is performed, then the �rst interim
inspection time point Tk seems � in analogy to (3.38) � to ful�l the relation Eq∗(Tk) = Op∗N,k
in the No-No inspection game; see p. 47. Surely this relation is true in the context of the
discrete and continuous time Se-No inspection games; see Table 13.2.

Finally, let us mention that the optimal expected time point for the start of the illegal activity is
smaller than the optimal expected interim inspection time point. This can be seen with (3.37)
and (3.38): Ep∗(S) < Eq∗(T1) is equivalent to n∗ < 2Op∗N,1, which is � according to Table
3.3 and the results in Lemma 3.2 � ful�lled for all N = 2, 3, . . ..

Up to now the zero-sum game with payo� matrix A = (OpN,1(i, j))i=0,...,N,j=1,...,N , see p. 26,
is analysed. If N increases, the reference time interval is getting longer and longer. However,
from a practical point of view the reference time interval has a �xed length, e.g., one year.
For that reason we consider the zero-sum game with the same pure strategy sets IN and
JN,1, see (3.10), but now with the payo� matrix A/(N + 1). The start of the illegal activity
resp. the interim inspection take place at the time points 0, 1/(N + 1), . . . , N/(N + 1) resp.
1/(N+1), . . . , N/(N+1). Because we have only multiplied the payo�s with a positive constant,
this game has the same saddle point(s) like the original game; see Karlin (1959a). Let ñ∗(N)

resp. Õp
∗
N,1 be the cut-o� value resp. the optimal payo� to the Operator for the zero-sum

game with the payo� matrix A/(N + 1). Then

ñ∗(N) :=
1

N + 1
n∗(N) and Õp

∗
N,1 :=

1

N + 1
Op∗N,1 . (3.40)

Note that in order to indicate the dependence on N , we write in the remainder of this section
p∗i (N) instead of p∗i , and q

∗
j (N) instead of q∗j .

We now investigate the asymptotic behaviour of ñ(N), Õp
∗
N,1 and the saddle point strategies

for the zero-sum game with payo� matrix A/(N+1). Let s ∈ [0, 1] be given. Then there exists
a number `(s,N) ∈ {0, . . . , N + 1} and δ(s,N) ∈ [0, 1/(N + 1)) with s = `(s,N)/(N + 1) +
δ(s,N). We de�ne

P ∗N (s) :=

`(s,N)∑
i=0

p∗i (N) . (3.41)

The cumulative distribution function P ∗N (s) of p∗ is the probability that in the game with
payo� matrix A/(N + 1) the start of the illegal activity is performed at time point s or earlier.
The cumulative distribution function Q∗N (t) of q∗ can be de�ned in a similar way: For a given
t ∈ [0, 1] there exists a number `(t,N) ∈ {0, . . . , N + 1} and δ(t,N) ∈ [0, 1/(N + 1)) with
t = `(t,N)/(N + 1) + δ(t,N). We de�ne

Q∗N (t) :=


0 for 0 ≤ t < 1

N + 1
`(t,N)∑
j=1

q∗j (N) for
1

N + 1
≤ t ≤ 1

. (3.42)
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Q∗N (t) is the probability that in the game with payo� matrix A/(N + 1) the interim inspection
is performed at time point t or earlier.

The next Theorem, see Krieger (2007) and Krieger (2008), deals with the behaviour of the

functions ñ∗(N), Õp
∗
N,1, P

∗
N (s) and Q∗N (t) as given by (3.40) � (3.42).

Theorem 3.2. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection, and with the payo� matrix A/(N +1), where the matrix A is given in Table
3.2.

Then we obtain for the cut-o� value ñ∗(N) and the optimal payo� Õp
∗
N,1 to the Operator the

following asymptotic behaviour

lim
N→∞

ñ∗(N) = lim
N→∞

1

N + 1
n∗(N) = 1− 1

e
≈ 0.632121 (3.43)

and

lim
N→∞

Õp
∗
N,1 = lim

N→∞

1

N + 1
Op∗N,1 =

1

e
≈ 0.367879 .

Furthermore, P ∗N (s) and Q∗N (t) are for any s, t ∈ [0, 1] pointwise convergence with the limits

P ∗(s) := lim
N→∞

P ∗N (s) =


1

e

1

1− s
s ∈

[
0, 1− 1

e

)
1 s ∈

[
1− 1

e
, 1

] (3.44)

and

Q∗(t) := lim
N→∞

Q∗N (t) =


(−1) ln[1− t] t ∈

[
0, 1− 1

e

)
1 t ∈

[
1− 1

e
, 1

] . (3.45)

Proof. From (3.29) we get(
1− 1

e

)
N

N + 1
<

1

N + 1
n∗(N) <

(
1− 1

e

)
+

1

N + 1
,

and with the Sandwich Theorem4

lim
N→∞

1

N + 1
n∗(N) = 1− 1

e
,

as required. Because (3.43) implies

lim
N→∞

N + 1− n∗(N)

N + 1
= lim

N→∞

N + 2− n∗(N)

N + 1
=

1

e
,

we obtain, using (3.30),

N + 1− n∗(N)

N + 1
<

1

N + 1
Op∗N,1 <

N + 2− n∗(N)

N + 1
,

4Let (ak)k∈N, (bk)k∈N and (ck)k∈N be sequences of real numbers such that ak ≤ bk ≤ ck at least for all
k ≥ k0. If limk→∞ ak = limk→∞ ck =: α, then limk→∞ bk = α.
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which leads � applying the Sandwich Theorem again � to

lim
N→∞

1

N + 1
Op∗N,1 =

1

e
.

We �rst show the asymptotic behaviour PN (s). De�ne for any s ∈ [0, 1− 1/e)

N1(s) :=
s(

1− 1

e

)
− s

. (3.46)

Then we have `(s,N) ≤ n∗(N)− 1 for all N ≥ N1(s). This can be seen as follows: Because
N1(s) > 0, we obtain for all N ≥ N1(s)((

1− 1

e

)
− s
)
N ≥ s

and therewith, using (3.29) and δ(s,N) ≥ 0,

n∗(N) >

(
1− 1

e

)
N ≥ s (N + 1) ≥ (s− δ(s,N)) (N + 1) = `(s,N) ,

i.e., `(s,N) ≤ n∗(N)− 1 for all N ≥ N1(s), as required. Therefore, we get, using (3.24) and
(3.41), for all N ≥ N1(s)

P ∗N (s) =

`(s,N)∑
i=0

p∗i (N) =
N + 1− n∗(N)

N − `(s,N)
. (3.47)

(3.47) illustrates the necessity of the requirement N ≥ N1(s): In case of N = 12 and any
s ∈ (8/13, 1 − 1/e) we have, using Table 3.3, `(s, 12) = n∗ = 8. Thus, (3.47) would yield a
number larger than one. Indeed, N1(s) ≥ 37 for any s ∈ (8/13, 1− 1/e).

Because of (3.43) and limN→∞ `(s,N)/N = s, (3.47) leads to

lim
N→∞

P ∗N (s) = lim
N→∞

N + 1− n∗(N)

N

1

1− `(s,N)

N

=
1

e

1

1− s

for any s ∈ [0, 1− 1/e). In case of s ∈ (1− 1/e, 1] we de�ne

N2(s) :=
1

s−
(

1− 1

e

) − 1 , (3.48)

which implies `(s,N) ≥ n∗(N) for all N ≥ N2(s): Because N2(s) > 0 we get for all N ≥
N2(s) (

s−
(

1− 1

e

))
(N + 1) ≥ 1 ,

which is equivalent to (
s− 1

N + 1

)
(N + 1) ≥

(
1− 1

e

)
(N + 1) .
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Thus, (3.29) and δ(s,N) < 1/(N + 1) leads to

`(s,N) = (s− δ(s,N)) (N + 1) >

(
s− 1

N + 1

)
(N + 1) ≥

(
1− 1

e

)
(N + 1)

> n∗(N)− 1 ,

i.e., `(s,N) ≥ n∗(N) for all N ≥ N2(s), as required. Thus, (3.41) yields for all N ≥ N2(s)

P ∗N (s) =

`(s,N)∑
i=0

p∗i (N) = 1 .

Thus, we have shown that limN→∞ P ∗N (s) = P ∗(s) holds for any s ∈ [0, 1−1/e)∪(1−1/e, 1].
Furthermore, we have

1 = lim
ε→0

P ∗
(

1− 1

e
− ε
)
≤ P ∗

(
1− 1

e

)
≤ lim

ε→0
P ∗
(

1− 1

e
+ ε

)
= 1 ,

i.e., (3.44) is proven.

To show (3.45) let us assume t ∈ (0, 1− 1/e). If N ≥ 1/t− 1 then the second line in (3.42)
implies

`(t,N)∑
j=1

q∗j (N) = Q∗N (t) ≤
`(t,N)+1∑
j=1

q∗j (N) . (3.49)

The right hand sum in (3.49) is less than one if and only if `(t,N)+ 1 ≤ n∗(N)−1; see (3.18)
and footnote 3 on p. 27. Modifying (3.46), we de�ne

N3(t) :=
t+ 1(

1− 1

e

)
− t

,

and obtain `(t,N) + 1 ≤ n∗(N)− 1 for all N ≥ N3(t); the proof goes along the same lines as
that below (3.46). Then (3.49) implies for all N ≥ max(1/t− 1, N3(t))

`(t,N)∑
j=1

1

N + 1− j
= Q∗N (t) ≤

`(t,N)+1∑
j=1

1

N + 1− j

and, using (3.31),

ln

[
N + 1

N − `(t,N) + 1

]
≤ Q∗N (t) ≤ ln

[
N

N − `(t,N)− 1

]
,

which is equivalent to

ln

[
1 + 1/N

1− `(t,N)/N + 1/N

]
≤ Q∗N (t) ≤ ln

[
1

1− `(t,N)/N − 1/N

]
.

Because limN→∞ `(t,N)/N = t we get

lim
N→∞

1 + 1/N

1− `(t,N)/N + 1/N
= lim

N→∞

1

1− `(t,N)/N − 1/N
=

1

1− t
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and therefore � using the Sandwich Theorem � limN→∞ Q∗N (t) = Q∗(t) = (−1) ln[1− t] for
any t ∈ (0, 1− 1/e). Because Q∗N (0) = 0 for any N , (3.45) holds also for t = 0.

Finally, let us consider the cases t ∈ (1− 1/e, 1]. De�ne, in analogy to (3.48),

N4(t) :=
2

t−
(

1− 1

e

)
− 1

.

Then we obtain � like in the derivations after (3.48) � that `(t,N) ≥ n∗(N) + 1 for all
N ≥ N4(t), which implies, using (3.18),

Q∗N (t) =

`(t,N)∑
j=1

q∗j (N) = 1 .

Thus, the relation limN→∞ Q∗N (t) = Q∗(t) for any t ∈ [0, 1 − 1/e) ∪ (1 − 1/e, 1] is shown.
For the limiting case we get

1 = lim
ε→0

Q∗
(

1− 1

e
− ε
)
≤ Q∗

(
1− 1

e

)
≤ lim

ε→0
Q∗
(

1− 1

e
+ ε

)
= 1 ,

which proves (3.45).

In Figure 3.3 the dependence of Op∗N,1/(N + 1) on N is represented using the data from Table
3.3. We see that it is indeed monotone decreasing in N , see also the right hand side of (3.34),
and that it rapidly reaches the asymptotic value 1/e ≈ 0.367879.

Figure 3.3 The normalized optimal payo� Op∗N,1/(N + 1) to the Operator as a function of N .
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Result (3.43) underpins of what has already been said on p. 34: Only 63% of the possible
inspections time points are eventually used for the interim inspection. Also, we observe again
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the property that

lim
N→∞

Õp
∗
N,1 = 1− lim

N→∞
ñ∗(N) ,

i.e., the optimal expected detection time is the time remaining after the Inspectorate does not
inspect any more, except the �nal PIV.

Considering a large number N of possible time points for the interim inspection in a �nite
reference time interval means to approach continuous time. Models with continuous time are
considered in Part II and it is no surprise that we will �nd corresponding results; see Lemma
9.1.

According to assumption (iv) of Chapter 2 we have considered here only the illegal game, i.e.,
the game, where legal behaviour of the Operator is a priori excluded. Including legal behaviour
and introducing losses and gains for legal behaviour and for performing an illegal activity will
lead to a formal condition for legal behaviour of the Operator. This condition then allows to
determine that ratio of sanctions in case of detected and gains in case of undetected illegal
behaviour of the Operator that induces the Operator to legal behaviour. We will demonstrate
this in Section 7.2 for the case of N = 3 possible time points for k = 1 interim inspection.

3.2 Special numbers of inspection opportunities and two in-
terim inspections

Looking at Theorem 3.1 it is obvious that a game theoretical solution of the No-No inspection
game for any number N of possible time points for any number k of interim inspections will
neither be obtained easily nor will it look simple. In fact so far it has not been possible even to
�nd a game theoretical solution for any number N and k = 2 interim inspections. Therefore,
in the following special cases of N will be considered. They show why the general case, even
for k = 2 interim inspections, poses so many technical di�culties, but they also show how the
structure for cases k > 1 evolve and more so � important for practical applications � how the
asymptotic case N →∞ looks like.

In the following we omit the case of N = 3 possible time points for k = 2 interim inspections,
because it will be considered in Chapter 6, where in addition errors of the second kind are taken
into account. We formulate Lemmata for the cases N = 4, 5, 6 and N = 11, the latter one
being selected for historical reasons, as will be explained then. At the end of this section we
present some observations for N > 11 and we consider the asymptotic case N →∞.

Therefore, for any number N of possible time points the set of pure strategies IN of the
Operator is given by (3.10) and the set of pure strategies JN,2 of the Inspectorate by

JN,2 :=
{

(j2, j1) ∈ N2 : 0 < j2 < j1 < N + 1
}
. (3.50)

Note that here the interim inspection time points are numbered backwards: The �rst interim
inspection takes place at time point j2 and the second one at time point j1. Even though this
could have been avoided in this section, it will turn out in Section 4.2 and Chapter 5, i.e., for
the Se-No and the Se-Se inspection games, that backward numbering is mandatory. Thus, we
apply the backward numbering for consistency reasons already here.
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The payo� to the Operator, i.e., the detection time, is given by

OpN,2(i, (j2, j1)) :=


j2 − i for 0 ≤ i < j2 < j1 < N + 1

j1 − i for 1 ≤ j2 ≤ i < j1 < N + 1

N + 1− i for 1 ≤ j2 < j1 ≤ i < N + 1

. (3.51)

A few comments on (3.51): The Operator can choose his time point i for the start of the
illegal activity between zero and N , and the detection time depends on the position of i, i.e.,
before the �rst, between the �rst and the second, or after the second interim inspection. Also
remember that according to assumption (x) of Chapter 2, in case that the start of the illegal
activity coincides with an interim inspection it is detected only at the occasion of the next
interim inspection or the PIV.

The payo� matrix of the No-No inspection game with N = 4 possible time points for k = 2
interim inspections is represented in Table 3.4.

Table 3.4 Payo� matrix of the No-No inspection game with N = 4 possible time points for
k = 2 interim inspections.

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

0 1 1 1 2 2 3

1 1 2 3 1 1 2

2 3 1 2 1 2 1

3 2 2 1 2 1 1

4 1 1 1 1 1 1

Because of the results in the last section, it is not surprising that there exist again no optimal
pure strategies. Consequently we have to consider mixed strategies again: The set of mixed
strategies of the Operator PN is given by (3.13) and that for the Inspectorate, using (3.50), by

QN,2 :=

q := (q(1,2), . . . , q(N−1,N))
T ∈ [0, 1](

N
2 ) :

N−1∑
j2=1

N∑
j1=j2+1

q(j2,j1) = 1

 . (3.52)

The (expected) payo� to the Operator, i.e., the expected detection time, is de�ned in analogy
to (3.15), where p ∈ PN , q ∈ QN,2 and the matrix A is de�ned by (3.51).

The game theoretical solution of this inspection game for N = 4, 5 and 6, see Tschoche (2010),
is presented in

Lemma 3.4. Given the No-No inspection game with N = 4, 5, 6 possible time points for k = 2
interim inspections. The sets of mixed strategies are given by (3.13) and (3.52), and the payo�
to the Operator by (3.15) using (3.51) for N = 4, 5, 6, respectively.

Then an optimal strategy of the Operator and an optimal strategy of the Inspectorate together
with the optimal payo� to the Operator is given in Table 3.5.
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Table 3.5 Optimal strategies of the Operator (left column) and optimal strategies of the
Inspectorate (middle column; the rows represent the �rst inspection time point j2 and the
columns the second one j1), system quantities Ep∗(S), Eq∗(T2), Eq∗(T1) and the optimal
payo� Op∗N,2 (right column) of the No-No inspection game with N = 4, 5, 6 possible time
points (from top to bottom) for k = 2 interim inspections.

0 1 2 3 4

2
5

1
5

1
10

3
10 0

- 2 3 4

1 0 1
2 0

2 - 0 1
2

3 - - 0

Ep∗(S) = 13/10

Eq∗(T2) = 3/2

Eq∗(T1) = 7/2

Op∗4,2 = 3/2

0 1 2 3 4 5

4
17

2
17

3
17

5
34

11
34 0

- 2 3 4 5

1 0 4
17

3
17 0

2 - 0 11
34

2
17

3 - - 0 5
34

4 - - - 0

Ep∗(S) = 75/34

Eq∗(T2) = 59/34

Eq∗(T1) = 137/34

Op∗5,2 = 59/34

0 1 2 3 4 5 6

4
17

2
17

3
17

5
51

7
51

4
17 0

- 2 3 4 5 6

1 0 3
34

14
51 0 0

2 - 0 1
17

5
17 0

3 - - 0 7
34

4
51

4 - - - 0 0

5 - - - - 0

Ep∗(S) = 127/51

Eq∗(T2) = 98/51

Eq∗(T1) = 233/51

Op∗6,2 = 98/51

Proof. Using the results in Table 3.5, it can be shown that Op4,2(p
∗, (j2, j1)) = Op∗4,2 for

any (j2, j1) with q∗(j2,j1) > 0 and Op4,2(i,q
∗) = Op∗4,2 for all i = 0, . . . , 3, and furthermore

Op4,2(p
∗, (j2, j1)) > Op∗4,2 for any (j2, j1) with q∗(j2,j1) = 0 and Op4,2(4,q

∗) = 1 < Op∗4,2.

Therefore, the saddle point criterion (19.11) is ful�lled and thus, p∗ and q∗ are optimal strate-
gies with the optimal payo� Op∗4,2.

The proof for the cases N = 5 and N = 6 goes along the same lines.

Let us comment the results of Lemma 3.4 and Table 3.5: First, a kind of step structure can be
observed in the Inspectorate's optimal strategies. Because the pairs (2, 4), (3, 5) and (3, 6) for
N = 4, 5, 6, respectively, are played with positive probability, the existence of a cut-o� value n∗

like for the case of one interim inspection can not (yet) be observed. Therefore, an equation
similar to (3.37) can also not be seen; see p. 46.

Second, as in (3.38), the relation Eq∗(T2) = Op∗N,2 holds for N = 4, 5, 6 (and also for N = 11;
see Table 3.6), and it seems to be true for any number N of possible time points for any
number k ≥ 2 of interim inspections; see p. 47. Note that the optimal expected time point for
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the two interim inspections are not given by Eq∗(Tn) = (3 − n) (N + 1)/3, n = 1, 2, as one
might have expected according to the results for the Se-No and Se-Se inspection games; see
Lemma 4.4 and Chapter 5.

Before continuing, we include, strangely enough, a fable published by Canty and Avenhaus
(1991c), and which was designed to help to explain to a larger audience of practitioners the
advantage of randomized interim inspection schemes.

A Fable: The Inspector who got Something for Nothing
Once upon a time there was a safeguards inspector who wanted to spend more

time with his family. The inspector was responsible for a power reactor in a far
away land, and had to journey there once every year when the reactor was refuelled
as well as three times in between because of his timeliness goal.5

One day, during a refuelling inspection, the inspector went to the reactor boss
and said that he would like, in future, to be allowed to perform his interim inspec-
tions on the last day of every month, instead of once every three months as had
been the case up until then. The reactor boss frowned and asked the inspector if
this was absolutely necessary. The inspector replied that it was, in the interest of
increased safeguards e�ectiveness and e�ciency. Upon hearing these words, the re-
actor boss sighed wearily and agreed to the inspector's request. The inspector then
asked the reactor boss if he would be o�ended if he, the inspector, didn't show up
for some of the eleven interim inspections. The reactor boss was puzzled, but said
he would most certainly not be o�ended. The inspector then left the power reactor,
rejoicing inwardly, saying �Now I shall only have to make two interim inspections
per year, rather than three. I will still attain my timeliness goal and will be able to
spend more time with my family!�.

Upon arriving back at headquarters, the inspector went to his safeguards bosses
and told them of the deal he made at the reactor, and how he intended to save one
interim inspection per year. At �rst the safeguards bosses were very angry, saying
that the inspector was mad to think that he could get something for nothing and
that his calculations must be incorrect. But then they consulted the literature and
found a paper by two obscure but reputable safeguards experts Canty and Avenhaus
(1991a) which con�rmed exactly the calculations of the inspector. The safeguards
bosses laughed and said that the inspector was very wise, and if he got much wiser
he wouldn't have to work at all. They rewarded him by making him responsible for
a second power reactor.

Thus end the sad tale of the inspector who got something for nothing, but was
not able to spend more time with his family.

What did the inspector in the fable do? He considered, in the language of this monograph, the
No-No inspection game with N = 11 possible time points for k = 2 interim inspections. Thus,
the Inspectorate's set of pure strategy consists now of 55 pairs (j2, j1).

The game theoretical solution of this inspection game, see Canty and Avenhaus (1991a) and
Tschoche (2010), is presented in

5The IAEA timeliness detection goal is de�ned as "the target detection times applicable to speci�c nuclear
material categories. These goals are used for establishing the frequency of inspections and safeguards activities
at a facility or a location outside facilities during a calendar year, in order to verify that no abrupt diversion has
occurred"; see IAEA (2002).
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Lemma 3.5. Given the No-No inspection game with N = 11 possible time points for k = 2
interim inspections. The sets of mixed strategies are given by (3.13) and (3.52), and the payo�
to the Operator by (3.15) using (3.51) for N = 11.

Then an optimal strategy of the Operator and an optimal strategy of the Inspectorate is given
in Table 3.6.

The optimal payo� to the Operator is

Op∗11,2 =
15143

5100
≈ 2.969 .

Table 3.6 Optimal strategies of the Operator (top) and of the Inspectorate (bottom) of the
No-No inspection game with N = 11 possible time points for k = 2 interim inspections.

- 0 1 2 3 4 5 6 7 8 9 10 11

4
17

4
85

24
425

36
425

9
85

5
102

7
102

31
340

107
1020

8
51 0 0

- 2 3 4 5 6 7 8 9 10 11

1 0 0 0 353
10200

1
6

2
425 0 0 0 0

2 - 0 0 0 0 83
425

1
255 0 0 0

3 - - 0 0 0 0 1
5 0 0 0

4 - - - 0 0 0 47
1020

208
1275 0 0

5 - - - - 0 0 0 217
1275

157
10200 0

6 - - - - - 0 0 0 0 0

7 - - - - - - 0 0 0 0

8 - - - - - - - 0 0 0

9 - - - - - - - - 0 0

10 - - - - - - - - - 0

Proof. The results in Table 3.6 imply that Op11,2(p
∗, (j2, j1)) = Op∗11,2 for any (j2, j1)

with q∗(j2,j1) > 0 and Op11,2(i,q
∗) = Op∗11,2 for all i = 0, . . . , 9. Furthermore, we have

Op11,2(p
∗, (j2, j1)) > Op∗11,2 for any (j2, j1) with q∗(j2,j1) = 0 and Op11,2(i,q

∗) < Op∗11,2 for

i = 10, 11. Therefore, using the saddle point criterion (19.11), p∗ and q∗ are optimal strategies
with the optimal payo� Op∗11,2.

Returning once more to the fable we see that the timeliness goal of three months is met �
at least in expectation � by the optimal strategy of the Inspectorate thus, it saves indeed one
interim inspection. If the Inspectorate implements the new strategy with only two interim
inspections or if it stays with the three �xed interim inspections every three month, depends
for instance on the risk aversion of the Inspectorate. Why? Because the probability that the
detection time is larger than 3 month � in this case the timeliness goal is not met � is, using
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the optimal strategies in Table 3.6, given by

P(detection time is larger than 3 month) =
589631

1734000
≈ 0.34 ,

i.e., although one interim inspection is saved (cost aspect), the probability of not meeting the
timeliness goal is about 34% (risk aspect).

In Figure 3.4 the ratio Op∗N,2/(N+1) is presented as a function of N . We see that it approaches
rather rapidly an asymptotic value which is given by

lim
N→∞

Op∗N,2
N + 1

=
1

e (e− 1)
≈ 0.2141 ,

as will be shown in Chapter 9.

Figure 3.4 The normalized optimal payo� Op∗N,2/(N + 1) to the Operator as a function of N .
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Table 3.6 shows that the step structure of the optimal strategy of the Inspectorate is even more
pronounced than in the previous cases, but now a step may comprise three possibilities for the
�rst interim inspection. Also, it is interesting that pure strategies (j2, j2 + 1), (j2, j2 + 2) and
(j2, j2 + 3) for j2 = 0, . . . , 8 are not played. Beyond that it is interesting that the �rst possible
time point for the second interim inspection (j1 = 5 in Table 3.6) is the last possible time
point for the �rst interim inspection (j2 = 5). The same holds for N = 5 and 6; see Table 3.5.
Finally, the last possibility for the second interim inspection is time point 10; this indicates that
there exists a cut-o� value n∗, here n∗(11) = 10, like for the case of one interim inspection.
However, (3.37) does not hold: Ep∗(S) = 22357/5100 6= 10−Op∗11,2 = 35857/5100.

Numerically, the following No-No inspection games have been considered additionally to the
ones already discussed in this section: N = 8, 10, 12, . . . , 24, 30 and 41. At least two ob-
servations are worth being reported: First, for all these N the Inspectorate plays at least a
combination (j2, j1) with positive probability which places the �rst interim inspection at time
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point 1, i.e., j2 = 1. Second, the optimal strategies of the Inspectorate have a step structure
which makes the �rst step downward at time point (1, b(N − 1)/2c+ 2), where the �oor func-
tion b c maps x to the greatest integer less than or equal to x. It remains an open problem if
these observations are true for any number N of possible time points.

For practical applications these results are very helpful: For moderate N , optimal strate-
gies and the optimal expected detection times can be obtained with the help of M. Canty's
Mathematica R© programs; see Canty (2003). For larger N the continuous time version of this
No-No inspection game, which will be discussed in Chapter 9, can be used. This holds, as one
may expect, even for k > 2 interim inspections.

Let us conclude this section with a remark on more general cases than treated here. The
complexity of the optimal strategies and optimal payo�s for k = 2 interim inspections and
N > 10 possible time points indicates that it will be very di�cult to get analytical solutions
for these and even more general cases, i.e., any k with 2 ≤ k < N . Nevertheless, properties of
their solutions can still be obtained as demonstrated by the following example.

According to (3.38) and also to the cases considered in this section let us answer the question,
if in the No-No inspection game with N possible time points for 2 ≤ k < N interim inspections
the relation Eq∗(Tk) = Op∗N,k holds, i.e., if the optimal expected interim inspection time
point Tk of the �rst interim inspection is equal to the optimal expected detection time. The
answer is yes, which can be seen as follows: Let q∗(jk,...,j1) denote the Inspectorate's optimal

probability to choose the time points jk < . . . < j1 for its k interim inspections. Under the
assumption6 that p∗0 > 0, the indi�erence principle, see Theorem 19.1, implies, making use of
OpN,k(0, (jk, . . . , j1)) = jk, that

Eq∗(Tk) :=
∑

(jk,...,j1):
0<jk<...<j1<N+1

jk q
∗
(jk,...,j1)

=
∑

(jk,...,j1):
0<jk<...<j1<N+1

OpN,k(0, (jk, . . . , j1)) q
∗
(jk,...,j1)

= OpN,k(0,q
∗) = Op∗N,k . (3.53)

Note that for the derivation of (3.53) the optimal strategies needed not be known.

6p∗0 > 0 is ful�lled for k = 1 and any N ≥ 2, see Theorem 3.1, and for k = 2 and at least all cases of N
considered in this section.
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Chapter 4

No-Se and Se-No inspection

games

In this chapter the No-Se and Se-No inspection games with discrete time and the playing
for time inspection philosophy are considered. Recall that in the No-Se inspection game the
Inspectorate behaves sequentially and the Operator does not, whereas in the Se-No inspection
game the Operator behaves sequentially and the Inspectorate does not.

In this chapter, assumption (v) of Chapter 2 is speci�ed as follows:

(v') During an interim inspection the Inspectorate does not commit an error of the second
kind, i.e., the illegal activity, see assumption (iv), is detected with certainty during the
next interim inspection or with certainty during the �nal PIV; see assumption (iii).

Assumptions (vii) will be speci�ed in the following sections, while the remaining assumptions
of Chapter 2 hold throughout this chapter. Note that the No-Se and Se-No inspection games
with uncertain detection of an illegal activity at an interim inspection, i.e., β ≥ 0, are treated
in Sections 6.2 and 6.3.

The reason why the No-Se and Se-No inspection games are treated in this chapter together is
that so far the No-Se inspection game has not been analysed for any number N of possible time
points and for k interim inspection(s). From the application point of view, there was obviously
no interest so far, and theoreticians were much more interested in the No-No, the Se-No and
the Se-Se inspection games. Nevertheless, in Section 4.1 some special cases will be considered
which lead to the same optimal expected detection times and the same optimal strategies of
the Operator as the corresponding cases of the No-No inspection game.

In Section 4.2 the Se-No inspection game will be analysed comprehensively, where the cases of
k = 1 and k = 2 interim inspection(s) are based on Krieger and Avenhaus (2014). Furthermore,
important properties of the optimal strategies, the optimal expected detection time, and system
quantities as well as the relations between them will be investigated. On p. 74 system quantities
of the No-No and Se-No inspection games of Sections 3.1, 4.2 and 6.3 are compared.

49
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4.1 No-Se for special numbers of inspection opportunities and
interim inspections

The inspection game analysed in this section is based on the following speci�cation:

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point
0, when to start the illegal activity.

The Inspectorate decides at the beginning of the reference time interval when to perform
its �rst interim inspection. At the time point of its �rst interim inspection, it decides
when to perform the second interim inspection.

Let us start with the fact that for any number N of possible time points for k = 1 interim
inspection there is no di�erence between the No-No and the No-Se inspection game thus,
Theorems 3.1 and 3.2 hold as well in that case. Therefore, the No-Se inspection game with
N = 3 possible time points for k = 2 interim inspections should be studied next. Because this
game is a special case of the No-Se inspection game analysed in Section 6.2, we consider now
the case with N = 4 possible time points for k = 2 interim inspections. Before doing that
let us just mention that in Sections 6.1 and 6.2 we will show that in case of N = 3 possible
time points for k = 2 interim inspections and even for non-vanishing errors of the second kind,
i.e., β ≥ 0, the game theoretical solutions of the No-No and the No-Se inspection games are
the same in the sense that the optimal strategies of the Operator and the optimal expected
detection times coincide, and that the optimal strategies of the Inspectorate can be transformed
uniquely into each other.

As announced we consider now the case with N = 4 possible time points for k = 2 interim
inspections. The extensive form of this inspection game is represented in Figure 4.1.

The extensive form games in this monograph are represented according to the following rule:
The extensive form games of the No-Se and Se-No inspection games always start with that
player that behaves non-sequentially, because this player decides only once. In extensive form
games for the No-No (only considered in Section 6.1) and the Se-Se inspection games always
the Operator starts. Note that in all extensive form games treated in this monograph chance
moves are not explicitly named, but can be identi�ed via the probabilities 1 − β and β, and
1− α and α, respectively.

The Operator decides at time point 0 at which of the time points 0, 1, 2 or 3 he will start the
illegal activity. The possibility that he starts it at 4 is excluded here for the sake of transparency
and due to the fact that it leads to the minimum possible detection time 1; see also the comment
on p. 114. Formally, we deal here with a strictly dominated strategy, see the comment on p.
52, which is not played in any optimal strategy; see Myerson (1991) or Morris (1994).

Also at time point 0, the Inspectorate decides to perform its �rst interim inspection at time
point 1, 2 or 3, not knowing the Operator's decision at time point 0. This is indicated by the
�rst information set. In case the illegal activity is not started prior to the �rst interim inspection,
the Inspectorate decides after the �rst interim inspection when to perform the second interim
inspection. In case the �rst interim inspection takes place at 1, the Inspectorate has to choose
the time point 2, 3 or 4 for its second interim inspection, and in case the �rst interim inspection
takes place at 2, it has to choose the time point 3 or 4, in both cases not knowing what the
Operator does. This leads to the second and third information set of the Inspectorate.
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Figure 4.1 Extensive form of the No-Se inspection game with N = 4 possible time points for
k = 2 interim inspections.
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Note that here the �rst time in this monograph information � or the lack of information � is
modelled using information sets. In subsequent sections and chapters we will use this important
game theoretical concept many more times.

Like in the previous chapter, the set of pure strategies of the Operator is I4 as given by (3.10)
for N = 4 and thus, his set of mixed strategies is P4 as given by (3.13) for N = 4. For the
Inspectorate, the set of pure strategies is more complicated than that given by (3.10). Since
we do not make use of it here, we consider immediately the Inspectorate's set of behavioural
strategies; see van Damme (1987) and Section 19.2. Formally, we have to identify for any
information set a probability distribution over the branches leaving this information set: Let
h3(j2) be the probability that the Inspectorate decides at the beginning of the reference time
interval to perform the �rst interim inspection at time point j2 with j2 = 1, 2, 3. Furthermore,
let h2(j1|j2) for j2 = 1, 2 and j1 = j2 + 1, . . . , 4, be the probability that the Inspectorate
decides at time point j2 to perform the second interim inspection at time point j1. Note that
in case the time point j2 = 3 is chosen for the �rst interim inspection, necessarily j1 has to be 4,
i.e., h2(4|3) = 1. Thus, h2(4|3) is not a strategic variable and is omitted in the Inspectorate's
set of behavioural strategies, which is given by
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H4,2 :=
{
h := (h3, h2) ∈ [0, 1]2 :

3∑
j2=1

h3(j2) = 1 and

4∑
j1=j2+1

h2(j1|j2) = 1 for j2 = 1, 2
}
. (4.1)

Note that the comment made after (3.50) on backward numbering holds here as well. Also note,
that we use here and in Chapter 5 the notation (j1|j2) indicating a kind of conditional event:
the choice of time point j1 under the condition that the �rst interim inspection is performed at
time point j2. This notation is due to the sequential nature of the Inspectorate's behaviour. In
(4.3) and also in Section 4.2, however, we will apply the notation (j2, j1) which indicates the
Inspectorate's non-sequential behaviour.

The (expected) payo� to the Operator, i.e., the expected detection time, is, for any p ∈ P4

and any h ∈ H4,2, using Figure 4.1, given by

Op4,2(p,h) := p0 [h3(1) + 2h3(2) + 3h3(3)] (4.2)

+ p1 [h3(1) (h2(2|1) + 2h2(3|1) + 3h2(4|1)) + h3(2) + 2h3(3)]

+ p2 [h3(1) (3h2(2|1) + h2(3|1) + 2h2(4|1)) + h3(2) (h2(3|2) + 2h2(4|2)) + h3(3)]

+ p3 [h3(1) (2h2(2|1) + 2h2(3|1) + h2(4|1)) + h3(2) (2h2(3|2) + h2(4|2)) + h3(3)]

+ p4 .

It was mentioned on p. 50 that "starting the illegal activity at time point 4" is a strictly
dominated strategy. To con�rm this, we consider the Operator's strategies p1 := (0, 0, 0, 0, 1)T

and p2 := (0, 1/3, 1/3, 1/3, 0)T . Using (4.2), we get

Op4,2(p2,h) =
1

3

(
h3(1) [6h2(2|1) + 5h2(3|1) + 6h2(4|1)] + 4h3(2) + 4h3(3)

)
≥ 1

3

(
5h3(1) + 4h3(2) + 4h3(3)

)
≥ 4

3
> 1 = Op4,2(p1,h)

for any h = (h3, h2) ∈ H4,2, i.e., p1 is a strictly dominated strategy.

Now let us consider the corresponding No-No inspection game the normal form of which, i.e., the
payo� matrix A, has already been given in Table 3.4. This time, however, we present the formula
of the expected detection time explicitly and call it OpNo−No(p,q), because the notation
Op4,2(·, ·) is reserved for the payo� to the Operator in the No-Se inspection game of this
section. We get for any p := (p0, p1, p2, p3, p4)

T ∈ P4 and any q := (q(1,2), . . . , q(3,4))
T ∈ Q4,2

OpNo−No(p,q) := pT Aq

= p0 (q(1,2) + q(1,3) + q(1,4) + 2 q(2,3) + 2 q(2,4) + 3 q(3,4))

+ p1 (q(1,2) + 2 q(1,3) + 3 q(1,4) + q(2,3) + q(2,4) + 2 q(3,4))

+ p2 (3 q(1,2) + q(1,3) + 2 q(1,4) + q(2,3) + 2 q(2,4) + q(3,4))

+ p3 (2 q(1,2) + 2 q(1,3) + q(1,4) + 2 q(2,3) + q(2,4) + q(3,4)) + p4 .

(4.3)
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Again, the last pure strategy of the Operator is dropped as it is a strictly dominated strat-
egy: Using the strategies p1 and p2 de�ned above, we get OpNo−No(p2,q) ≥ 4/3 > 1 =
OpNo−No(p1,q) for any q ∈ Q4,2.

Let us look again at the extensive form of the No-Se inspection game given in Figure 4.1. The
probabilities q(j2,j1) that the Inspectorate chooses time points j2 for the �rst, and j1 for the
second interim inspection are given as follows:

q(1,2) = h3(1)h2(2|1) , q(1,3) = h3(1)h2(3|1) , q(1,4) = h3(1)h2(4|1) ,

q(2,3) = h3(2)h2(3|2) , q(2,4) = h3(2)h2(4|2) , (4.4)

q(3,4) = h3(3) .

Due to the normalization of the h = (h3, h2), see (4.1), we see that q is a mixed strategy of
the Inspectorate. Therefore, if we replace in (4.3) the probabilities q(j2,j1) by (4.4), then we
obtain the expected detection time Op4,2(p,h) as given by (4.2).

If one de�nes on the other hand, provided the appropriate ratios exist,

h3(1) = q(1,2) + q(1,3) + q(1,4) , h3(2) = q(2,3) + q(2,4) , h3(3) = q(3,4)

h2(2|1) =
q(1,2)

h3(1)
, h2(3|1) =

q(1,3)

h3(1)
, h2(4|1) =

q(1,4)

h3(1)
(4.5)

h2(3|2) =
q(2,3)

h3(2)
, h2(4|2) =

q(2,4)

h3(2)
,

then one easily sees that h = (h3, h2) is a behavioural strategy of the Inspectorate. If we
replace in (4.2) the probabilities (h3, h2) by (4.5), we arrive at (4.3), i.e., we get the expected
detection time OpNo−No(p,q).

Since we have the same number of �ve free variables in the strategy sets of the Inspectorate,
see H4,2 and Q4,2, we can determine the behavioural strategies of the Inspectorate of the No-Se
inspection game with the help of those of the No-No inspection game. Thus, and following
from the result we just have obtained, we have shown that any optimal strategy of the No-Se
inspection game is also an optimal strategy of the No-No inspection game and vice versa.

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Lemma 4.1. Given the No-Se inspection game with N = 4 possible time points for k = 2
interim inspections. The sets of mixed resp. behavioural strategies are given by (3.13) for
N = 4 and (4.1), and the payo� to the Operator by (4.2).

Then an optimal strategy of the Operator is given by

p∗ =

(
2

5
,
1

5
,

1

10
,

3

10
, 0

)T
,

and an optimal strategy of the Inspectorate by

h∗3(1) = h∗3(2) =
1

2
, h∗3(3) = 0 and h∗2(j1|j2) =

{
1 for (j2, j1) ∈ {(1, 3), (2, 4)}

0 otherwise
.
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The optimal payo� to the Operator is

Op∗4,2 := Op4,2(p
∗,h∗) =

3

2
.

Proof. We apply the results of Lemma 3.4: According to what has been said before, the
optimal strategy of the Operator and the optimal payo� are taken from Table 3.5. The optimal
strategy of the Inspectorate is determined with the help of Table 3.5 and (4.5).

It may not be too di�cult to extend this consideration to the case of any number N of possible
time points for k = 2 interim inspections, because there seem to exist a payo� equivalent
transformation in analogy to (4.4) and (4.5) between the elements of both Inspectorate's
strategy sets, i.e., between QN,2 de�ned by (3.52) and the Inspectorate's set of behavioural
strategies, as generalization of (4.1),

HN,2 :=
{
h := (h3, h2) ∈ [0, 1]2 :

N−1∑
j2=1

h3(j2) = 1 and

N∑
j1=j2+1

h2(j1|j2) = 1 for all j2 = 1, . . . , N − 2
}
, (4.6)

where the case (j2, j1) = (N − 1, N) leading to h2(N |N − 1) = 1 is � in analogy to the
explanations on p. 51 � excluded from the Inspectorate's strategy set. Also note that the
Inspectorate's strategy sets have the same number of free variables in both inspection games:
QN,2 has

(
N
2

)
− 1 free variables, and HN,2 has

(N − 2) +

N−2∑
j2=1

[(N − (j2 + 1) + 1)− 1] = (N − 2)
N + 1

2
=

(
N

2

)
− 1

free variables. Thus, and in sum, the optimal strategies obtained in Section 3.2 for N =
4, 5, 6, 11 for the No-No inspection game can be used here to obtain optimal strategies for No-
Se inspection game, provided that the payo� transformation between Inspectorate's strategies
can be proven to be valid; see also p. 81.

At present it looks infeasible to prove � or to disprove � that these results hold also for any
number N of possible time points and k < N interim inspections, and eventually also for
β ≥ 0. Since, however, there exist at present no game theoretical solutions for these general
cases either for the No-No nor for the No-Se inspection game, this does not mean very much.
We discuss the question of the equivalence of the Se-No and the Se-Se inspection games in
Chapter 5 and of all four variants of the inspection game in the Chapter 6.

4.2 Se-No for any number of inspection opportunities and
interim inspections: Krieger-Avenhaus model

We saw in Section 4.1 that there are good reasons to suppose that the No-Se inspection game is
equivalent to the No-No inspection game in the sense that the optimal strategy of the Operator
and the optimal payo� coincide between both variants, whereas the optimal strategies of the
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Inspectorate can be transformed into each other. The Se-No inspection game, however, which
will be considered now turns out to be di�erent in many respects but � and this can be said
already now � it is strongly related to the Se-Se inspection game as will be shown in Chapter
5.

The inspection game analysed in this section is based on the following speci�cation:

(vii') The Inspectorate decides at the beginning of the reference time interval, i.e., at time point
0, at which of the possible time points 1, . . . , N it will perform its k interim inspection(s).

The Operator decides at the beginning of the reference time interval whether to start the
illegal activity immediately at time point 0 or to postpone the start; in the latter case
he decides again after the �rst interim inspection, whether to start the illegal activity
immediately at that time point or to postpone the start again; and so on. Because of
assumption (iv), the Operator starts the illegal activity latest immediately at the time
point of the last interim inspection.

For the purpose of illustration we start with the cases of k = 1 and k = 2 interim inspection(s).
The extensive form of the Se-No inspection game with k = 1 interim inspection is represented
in Figure 4.2. Because the Inspectorate plays non-sequentially in this section, the extensive
form games in Figures 4.2 and 4.4 start with the Inspectorate's decision at time point 0 due to
the comment on p. 50.

Figure 4.2 Extensive form of the Se-No inspection game with N > 1 possible time points for
k = 1 interim inspection.
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In Figure 4.2 the Inspectorate chooses at time point 0 the time point j1, j1 = 1, . . . , N , for
its only interim inspection with probabilities qj1 , i.e., its set of pure strategies is given, using
(3.10), by JN,1, and its set of mixed strategies, using (3.14), by QN,1. Also at time point 0,
the Operator decides with probability 1− g2 to start the illegal activity immediately (¯̀2) or to
postpone it (`2) with probability g2 which means that in this latter case he starts the illegal
activity immediately after the interim inspection at time point j1 with certainty, i.e., g1(j1) = 0;
see Figure 4.3. Because this probability is �xed it is excluded from the Operator's strategy set.
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Figure 4.3 Time line of the interim inspections and probabilities for starting or postponing the
illegal activity for the Se-No inspection game with N > k possible time points for k = 1 (top)
resp. k = 2 (below) interim inspections. For reasons of clarity we write g2 instead of g2(j2).
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Formally, the set of behavioural strategies of the Operator is given by

G1 := {g2 : g2 ∈ [0, 1]} . (4.7)

The detection times, i.e., the times between the start of the illegal activity and its detection
are given at the end nodes. Note that the oval represents the information set of the Operator
at time point 0 which models the information he has at the beginning of the game: Since he
does not know when the interim inspection is taken place all nodes following a decision of the
Inspectorate at 0 have to be in the information set.

A word on the notation: In Chapter 3 where the Operator is playing non-sequentially, he chooses
a time point i, i = 0, 1, . . . , N , for starting the illegal activity. Thus, his set of pure and mixed
strategies is indexed by N ; see IN and PN as given by (3.10) and (3.13), respectively. If he
plays sequentially, like in this section, he only decides at the beginning PIV and at the interim
inspection(s) whether to start the illegal activity. Thus, his behavioural strategy set is related
to the number of interim inspections k, and is therefore indexed by k.

Using Figure 4.2, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any N ≥ 2, any g2 ∈ G1 and any q ∈ QN,1, given by

OpN,1(g2,q) :=

N∑
j1=1

qj1

(
(1− g2) j1 + g2 (N + 1− j1)

)
. (4.8)

The game theoretical solution of this inspection game, see Krieger and Avenhaus (2014), is
presented in

Lemma 4.2. Given the Se-No inspection game with N > 1 possible time points for k = 1
interim inspection. The sets of behavioural resp. mixed strategies are given by (4.7) and (3.14),
and the payo� to the Operator by (4.8).
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Then an optimal strategy of the Operator is given by

g∗2 =
1

2
, (4.9)

and an optimal strategy q∗ := (q∗1, . . . , q
∗
N )T of the Inspectorate ful�ls the conditions

N∑
j1=1

j1 q
∗
j1 =

N + 1

2
with

N∑
j1=1

q∗j1 = 1 . (4.10)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(g
∗
2,q
∗) =

N + 1

2
. (4.11)

Proof. Inserting (4.9) and (4.10) into (4.8) yields

OpN,1(g
∗
2,q) =

1

2

N∑
j1=1

qj1

(
j1 +N + 1− j1

)
=
N + 1

2
= Op∗N,1

for any q ∈ QN,1, and

OpN,1(g2,q
∗) = (1− 2 g2)

N∑
j1=1

j1 q
∗
j1 + g2 (N + 1)

N∑
j1=1

q∗j1 =
N + 1

2
= Op∗N,1

for any g2 ∈ G1, i.e., the saddle point criterion

OpN,1(g2,q
∗) ≤ Op∗N,1 ≤ OpN,1(g∗2,q) ,

see (19.10), is ful�lled as equality for any g2 ∈ G1 and any q ∈ QN,1.

Let us comment the results of Lemma 4.2: First, we see that the optimal strategies of the
Inspectorate are only unique for N = 2 resulting in q∗1 = q∗2 = 1/2. For N > 2 only the
optimal expected interim inspection time point is �xed, namely in the middle of the reference
time interval. We can, however, provide three special cases: For any N

q∗j1 =
1

N
for 1 ≤ j1 ≤ N , (4.12)

for N + 1 being an even number

q∗j1 =

{
1 for j1 = (N + 1)/2

0 otherwise
, (4.13)

and, for N + 1 being an odd number

q∗j1 =

{
1/2 for j1 ∈ {N/2, N/2 + 1}

0 otherwise
(4.14)

are optimal strategies of the Inspectorate. In (4.12) the equal distribution over the Inspec-
torate's set of pure strategies is an optimal strategy, in (4.13) the one point distribution, i.e.,
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a deterministic strategy is optimal, and in (4.14) an equal distribution over two pure strategies
is optimal. At �rst sight these special optimal strategies may be guessed with the help of com-
mon sense arguments. On the other hand the lack of uniqueness of the Inspectorate's optimal
strategy can hardly be guessed, and it may be used, e.g., for taking organisational or economic
aspects into account.

This last statement leads to a general question which is elaborated here in more detail: Why do
we discuss di�erent inspection strategies knowing that they all lead to the same optimal expected
detection time; see Chapter 19? The answers to this question comes from an application point
of view: the Inspectorate might want to know which optimal strategy should be recommended
for implementation. (4.12) on one hand and (4.13) and (4.14) on the other represent two
extreme case: While in the former one each of the pure strategies is mixed, in the latter ones
only one or two are mixed. The authors have gained di�erent experiences with this problem,
since mixing of only two pure strategies is often seen to be "not enough random" and mixing
all of them is "too random". However, the set of optimal strategies allows the Inspectorate
to a certain extend to take organisational or economic as well as randomization aspects into
account.

Second, on p. 142 conditions for the legal behaviour of the Operator and corresponding optimal
inspection strategies are discussed.

Finally, note that further properties of the optimal strategies and the optimal payo� of the
Se-No inspection game are given in Lemma 4.4, in the comments after its proof, and in Table
4.2. Also note that in Lemma 6.4 the Se-No inspection game with N ≥ 2 possible time points
for k = 1 interim inspection and with errors of the second kind is analysed.

Consider now the Se-No inspection game with N ≥ 3 possible time points for k = 2 interim
inspections, the extensive form of which is represented in Figure 4.4. Again, the detection times
are given at the end nodes.

The Inspectorate chooses at time point 0 a pair of time points (j2, j1) with 0 < j2 < j1 < N+1
for its two interim inspections, which means that its set of pure strategies is given by JN,2;
see (3.50). A pair (j2, j1) is hereby chosen with probabilities q(j2,j1), i.e., the Inspectorate's
set of mixed strategies is QN,2 as given by (3.52). Note that we write here (j2, j1) to indicate
that both j2 and j1 are chosen at the beginning of the game, i.e., non-sequential behaviour of
the Inspectorate, in contrast to the notation (j1|j2) in (4.1) which indicates that j1 is chosen
under the condition that j2 is chosen before, i.e., sequential behaviour of the Inspectorate; see
also the comment on p. 52. Also note, that the comment after (3.50) made on backward
numbering applies here as well.

Also at the beginning of the reference time interval, i.e., at time point 0, the Operator decides
with probability 1− g3 to start the illegal activity immediately (¯̀3) or to postpone its start (`3)
with probability g3. In this latter case he decides after the �rst interim inspection at time point
j2 with probability 1 − g2(j2) to start the illegal activity at j2 (¯̀2) or to postpone its start
again (`2) with probability g2(j2). In this latter case he starts the illegal activity immediately
after the second interim inspection at time point j1 with certainty, i.e., g1(j1) = 0. For the
same reason as in the game with k = 1 interim inspection, this probability is excluded from
the Operator's strategy set. Note that if j2 = N − 1 then j1 = N , and it does not make any
di�erence for the Operator to start the illegal activity right at time point j2 or at j1, because
the detection time is 1 in both cases. Therefore, the value of g2(N − 1) does not play any
role in any optimal strategy and is also excluded from the Operator's strategy set. Thus, the



Chapter 4: No-Se and Se-No inspection games 59

Figure 4.4 Extensive form of the Se-No inspection game with N > 2 possible time points for
k = 2 interim inspections.

Inspectorate at 0

1

¯̀
3

1

¯̀
2

N − 1

`2

`3

(1, 2)

1

¯̀
3

N − 1

¯̀
2

1

`2

`3

(1, N)

j2

¯̀
3

j1 − j2

¯̀
2

N + 1− j1

`2

`3

(j2, j1)

j2

¯̀
3

N − j2

¯̀
2

1

`2

`3

(j2, N)

Operator at 0

N − 1

¯̀
3

Operator at N − 1

1

¯̀
2

1

`2

`3

(N − 1, N)

Operator at 1 Operator at j2

· · · · · ·

· · · · · ·

· · · · · ·

0 1 2 N − 1 N N + 1

PIV PIV

Operator's set of behavioural strategies is given by

G2 := {g := (g3, g2) : g3 ∈ [0, 1] , g2 : {1, . . . , N − 2} → [0, 1]} . (4.15)

The information sets in Figure 4.4 can be explained as follows: The information set "Operator
at 0" results from the fact that the players decide independently of each other at the beginning
of the reference time interval; see assumption (viii) of Chapter 2. In case he does not start
the illegal activity at time point 0, there exist N − 1 additional information sets because the
Operator does not know at time point j2, j2 = 1, . . . , N−1, when the second interim inspection
will be performed.

Using Figure 4.4, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any N ≥ 3, any g ∈ G2 and any q ∈ QN,2, given by

OpN,2(g,q) :=

N−2∑
j2=1

N∑
j1=j2+1

q(j2,j1)

[
(1− g3) j2 + g3

(
(1− g2(j2)) (j1 − j2) + g2(j2) (N + 1− j1)

)]
+ q(N−1,N)

[
(1− g3) (N − 1) + g3 1

]
. (4.16)

De�ne the marginal probabilities of q(j2,j1) by

qj2· :=

N∑
j1=j2+1

q(j2,j1) and q·j1 :=

j1−1∑
j2=1

q(j2,j1) (4.17)
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for j2 = 1, . . . , N − 1 and j1 = 2, . . . , N , respectively.

The game theoretical solution of this inspection game, see Krieger and Avenhaus (2014), is
presented in

Lemma 4.3. Given the Se-No inspection game with N > 2 possible time points for k = 2
interim inspections. The sets of behavioural resp. mixed strategies are given by (4.15) and
(3.52), and the payo� to the Operator by (4.16).

Then an optimal strategy of the Operator is given by

g∗3 =
2

3
, g∗2(j2) =

1

2
for j2 = 1, . . . , N − 2 , (4.18)

and an optimal strategy q∗ := (q∗(1,2), . . . , q
∗
(N−1,N))

T of the Inspectorate ful�ls the conditions

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=
N + 1 + j2

2
q∗j2· for j2 = 1, . . . , N − 2 , (4.19)

N−1∑
j2=1

j2 q
∗
j2· =

N + 1

3
with

N−1∑
j2=1

N∑
j1=j2+1

q∗(j2,j1) = 1 . (4.20)

The optimal payo� to the Operator is

Op∗N,2 := OpN,2(g
∗,q∗) =

N + 1

3
. (4.21)

Proof. We show that the saddle point criterion

OpN,2(g,q
∗) ≤ Op∗N,2 ≤ OpN,2(g∗,q) (4.22)

see (19.10), is ful�lled as equalities for any g ∈ G2 and any q ∈ QN,2. From (4.16) and (4.18)
we get

OpN,2(g
∗,q) =

1

3

N−1∑
j2=1

N∑
j1=j2+1

q(j2,j1)

[
j2 +

(
j1 − j2 + (N + 1− j1)

)]
=
N + 1

3

= Op∗N,2 (4.23)

for any q ∈ QN,2. For the proof of the left hand inequality of (4.22) we show that the coe�cient
of g2(j2) is zero for all j2 = 1, . . . , N − 2. By (4.19) we obtain for all j2 = 1, . . . , N − 2

N∑
j1=j2+1

q∗(j2,j1) [N + 1 + j2 − 2 j1] = (N + 1 + j2) q
∗
j2· − 2

N + 1 + j2
2

q∗j2· = 0 ,

which leads, using (4.16), to

OpN,2(g,q
∗) =

N−2∑
j2=1

N∑
j1=j2+1

q∗(j2,j1)

[
(1− g3) j2 + g3 (j1 − j2)

]
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+

N−2∑
j2=1

g3 g2(j2)

N∑
j1=j2+1

q∗(j2,j1) [N + 1 + j2 − 2 j1]

+ q∗(N−1,N)

[
(1− g3) (N − 1) + g3 1

]

=

N−1∑
j2=1

N∑
j1=j2+1

q∗(j2,j1)

[
(1− g3) j2 + g3 (j1 − j2)

]
. (4.24)

Now the coe�cient of g3 turns out to be zero: Making use of (4.19) and (4.20) we get

N−1∑
j2=1

N∑
j1=j2+1

q∗(j2,j1) [j1 − 2 j2] =

N−1∑
j2=1

[
N + 1 + j2

2
q∗j2· − 2 j2 q

∗
j2·

]

=
N + 1

2
− 3

2

N−1∑
j2=1

j2 q
∗
j2· = 0 .

(4.25)

Therefore, (4.24) and (4.25) �nally yield

OpN,2(g,q
∗) =

N−1∑
j2=1

N∑
j1=j2+1

j2 q
∗
(j2,j1)

+

N−1∑
j2=1

N∑
j1=j2+1

q∗(j2,j1) [j1 − 2 j2]

=

N−1∑
j2=1

N∑
j1=j2+1

j2 q
∗
(j2,j1)

= Op∗N,2

for any g ∈ G2, i.e., (4.22) is together with (4.23) ful�lled as equality.

Let us comment the results of Lemma 4.3: First, similar to the case of k = 1 interim inspection,
the optimal strategies of the Inspectorate are only unique for N = 3 resulting in q∗(1,2) = q∗(1,3) =

q∗(2,3) = 1/3. However, it can be seen that for any N > 3

q∗(j2,j1) =

(
N

2

)−1
for all (j2, j1) with 0 < j2 < j1 < N + 1 , (4.26)

and for N + 1 being a multiple of 3

q∗(j2,j1) =

{
1 for (j2, j1) = ((N + 1)/3, 2 (N + 1)/3))

0 otherwise

are optimal strategies for the Inspectorate, i.e., they ful�l (4.19) and (4.20). Again, in the �rst
case the equal distribution over the set of pure strategies is an optimal strategy, while in the
second case a one point distribution is optimal. Using (4.17), (4.19) and (4.20), we see that

N∑
j1=2

j1 q
∗
·j1 =

N∑
j1=2

j1

j1−1∑
j2=1

q∗(j2,j1) =

N−1∑
j2=1

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=

N−1∑
j2=1

N + 1 + j2
2

q∗j2·

= 2
N + 1

3
= 2

N−1∑
j2=1

j2 q
∗
j2· (4.27)



62 Chapter 4: No-Se and Se-No inspection games

holds for each of the Inspectorate's optimal strategies q∗, which means that the optimal ex-
pected interim inspection time points are �xed; they are at 1/3 and 2/3 of the length of the
reference time interval.

Second, having found the equal distribution over all feasible pairs (j2, j1) to be an optimal strat-
egy, see (4.26), one might ask what the optimal strategy is which mixes least pure strategies.
For the case of k = 1 interim inspection and in case that N +1 is an odd number we have seen
in (4.14) that one gets an optimal strategy if one chooses the two time points N/2 and N/2+1
with equal probabilities. Following this idea in case of k = 2 interim inspections one would
have to choose two integer time points adjacent to (N + 1)/3 and adjacent to 2 (N + 1)/3
with probabilities each such that the optimal expected interim inspection time points are just
(N + 1)/3 and 2 (N + 1)/3. Does this procedure lead to an optimal strategy? For the sake
of demonstration we choose N = 4. Since the �rst resp. the second optimal expected interim
inspection time point is 5/3 resp. 10/3, we place the �rst inspection at time point 1 or 2
and the second one at time points 3 or 4. The joint distribution of (j2, j1) is de�ned to be
q(j2,j1) = qj2· q·j1 (independent compound):

(j2, j1) 2 3 4 qj2·

1 0 2
9

1
9

1
3

2 0 4
9

2
9

2
3

3 0 0 0 0

q·j1 0 2
3

1
3

Due to the construction it is clear that (4.20) and (4.27) are ful�lled. However, (4.19) is
violated. This example shows that it is not su�cient to specify the marginal distributions such
that the optimal expected interim inspection time points are (N + 1)/3 and 2 (N + 1)/3. If
(N − 1)/3 or N/3 is an integer, then an optimal strategy exists which mixes only three pure
strategies of the Inspectorate:

• If (N − 1)/3 is an integer, then q∗(j2,j1) given by

(j2, j1) 2 N−1
3 + 1 2 N−1

3 + 2

N−1
3

1
3 0

N−1
3 + 1 1

3
1
3

is an optimal strategy of the Inspectorate: We get for j2 = (N − 1)/3

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=
1

3

(
2
N − 1

3
+ 1

)
=
N + 1 + (N − 1)/3

2

1

3
,

for j2 = (N − 1)/3 + 1

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=
1

3

(
4
N − 1

3
+ 3

)
=
N + 1 + (N − 1)/3 + 1

2

2

3
,
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and for any j2 ∈ {1, . . . , N − 1} \ {(N − 1)/3, (N − 1)/3 + 1}

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=

N∑
j1=j2+1

j1 0 = 0 =
N + 1 + j2

2
0 .

Thus, (4.19) is ful�lled. Furthermore, we have

N−1∑
j2=1

j2 q
∗
j2· =

1

3

N − 1

3
+

2

3

(
N − 1

3
+ 1

)
=
N + 1

3
,

i.e., (4.20) is valid.

• If N/3 is an integer, then q∗(j2,j1) given by

(j2, j1) 2 N
3 2 N

3 + 1

N
3

1
3

1
3

N
3 + 1 0 1

3

is an optimal strategy of the Inspectorate: We obtain for j2 = N/3

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=
1

3

(
4
N

3
+ 1

)
=
N + 1 +N/3

2

2

3
,

for j2 = N/3 + 1

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=
1

3

(
2
N

3
+ 1

)
=
N + 1 +N/3 + 1

2

1

3
,

and for any j2 ∈ {1, . . . , N − 1} \ {N/3, N/3 + 1}

N∑
j1=j2+1

j1 q
∗
(j2,j1)

=

N∑
j1=j2+1

j1 0 = 0 =
N + 1 + j2

2
0 ,

i.e., (4.19) is ful�lled. (4.20) holds as well:

N−1∑
j2=1

j2 q
∗
j2· =

2

3

N

3
+

1

3

(
N

3
+ 1

)
=
N + 1

3
.

A general conjecture about the minimal number of pure strategies to be mixed is given in the
remarks after Lemma 4.4.

Third, as mentioned on p. 25, in general it is easier to prove that optimal strategies satisfy the
saddle point criteria than to �nd them. In the case of k = 1 interim inspection it is not di�cult
to �nd the solution since the game in Figure 4.2 can be transformed into a 2×N matrix game
for which simple solution recipes exist. For the case of k = 2 interim inspections, for which
the extensive form is the appropriate representation � of course it also can be transformed into
a normal form, i.e., a matrix game � a combination of backward induction and indi�erence
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principle, see Theorem 19.1, is helpful for �nding optimal strategies: If we put g∗2(j2) = 1/2
for all j2 = 1, . . . , N − 1, then we get in case of legal behaviour at time point 0 (`3) for
all j2, j2 = 1, . . . , N − 1, the detection time (N + 1 − j2)/2; see Figure 4.4. If we then put
1−g∗3 = 1/3, then we get the payo� (N+1)/3 for all choices (j2, j1) with 0 < j2 < j1 < N+1
of the Inspectorate.

Finally, again note that further properties of the optimal strategies and the optimal payo� of
the Se-No inspection game are given in Lemma 4.4, in the comments after its proof, and in
Table 4.2.

We now turn to the general case of k interim inspections. According to assumption (vii'), the
Inspectorate chooses k interim inspection time points (jk, . . . , j1) with jk+1 := 0 < jk < . . . <
j1 < j0 := N + 1 at the beginning of the reference time interval [0, N + 1]; see Figure 4.5.
Again we apply the backward numbering, see the comment after (3.50): The (k − n + 1)-th
interim inspection is performed at time point jn, n = 2, . . . , k.

Figure 4.5 Time line of the interim inspections and probabilities for starting or postponing the
illegal activity for the Se-No inspection game with N > k possible time points for k interim
inspections. For reasons of clarity we write gn instead of gn(jn), n = 2, . . . , k.

0 1 N N + 1

PIV jk jk−1 j2 j1

1− gk+1

gk+1

1− gk

gk

1− gk−1

gk−1

1− g2

g2

1

0

PIV

If we de�ne for all n = 1, . . . , k

Sn :=
{

(jk, . . . , jn) ∈ Nk−n+1 : 0 < jk < . . . < jn < N − n+ 2
}
, (4.28)

then JN,k := S1 is the set of pure strategies of the Inspectorate and � as a generalization of
(3.14) and (3.52) �

QN,k :=

q := (q(1,...,k), . . . , q(N−k+1,...,N))
T ∈ [0, 1](

N
k ) :

∑
(jk,...,j1)∈S1

q(jk,...,j1) = 1


(4.29)

its set of mixed strategies.

According to assumption (vii'), the Operator starts the illegal activity at time point 0 with
probability 1 − gk+1 or he postpones its start with probability gk+1, in the latter case he
starts it at jk with probability 1− gk(jk) which depends on jk or he postpones its start again
with probability gk(jk). The (k − n + 1)-th interim inspection is performed at time point jn,
n = 2, . . . , k; see Figure 4.5. Then the Operator starts the illegal activity at time point jn
with probability 1 − gn(jn) and postpones its start again with probability gn(jn). If he does
not start the illegal activity before time point j1, he has to do it at j1, i.e., g1(j1) = 0. Again,
we exclude g1(j1) from the Operator's strategy set and de�ne � as a generalization of (4.15) �
the set of behavioural strategies Gk of the Operator by
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Gk :=
{
g := (gk+1, . . . , g2) : gk+1 ∈ [0, 1] ,

gn : {k − n+ 1, . . . , N − n} → [0, 1] , n = 2, . . . , k
}
. (4.30)

The time line of the interim inspections and probabilities for starting or postponing the illegal
activity is represented in Figure 4.5. Note that like in the case of k = 2 interim inspections on
p. 58 the probabilities gn(N −n+ 1), n = 2, . . . , k, are excluded from the Operator's strategy
set, because if jn = N −n+ 1 for some n, then jn−1 = N −n+ 2, . . . , j1 = N and the payo�
to the Operator is 1 no matter at which of the time points N − n + 1, . . . , N he starts the
illegal activity.

A word on modelling: If the Operator behaves legally until time point jn, then the probability
1 − gn to start the illegal activity at jn is modelled as a function of jn only, because the
Operator's payo� in the remaining game, i.e., the game starting at time point jn, depends only
on the time points jn−1, . . . , j1 and not on jk, . . . , jn+1. Thus, we model gn = gn(jn) for
all n = 2, . . . , k and for all jn = k − n + 1, . . . , N − n + 1. Furthermore, it can be seen in
the proof of Theorem 4.1 that a dependence of gn also on the time points jk, . . . , jn+1, i.e.,
gn = gn(jn|jk, . . . , jn+1), leads to the same optimal strategies.

Like in Lemmata 4.2 and 4.3, we assume in the following that k < N , because if k = N then
the �xed detection time 1 is achieved independently of the Operator's behaviour. In Sections
6.1 and 6.3, however, also the case k = N for special values of N is considered, because the
introduction of an error of the second kind implies that the detection time in case of k = N
depends on the Operator's behaviour.

For 2 ≤ k < N the (expected) payo� to the Operator, i.e., the expected detection time, is
given as follows: For any �xed vector of interim inspection time points (jk, . . . , j1) ∈ S1, three
types of detection times, i.e., di�erences between interim inspection time points, occur, namely

• jk in case the illegal activity is started at the beginning of the reference time interval
(with probability 1− gk+1);

• (jn−1−jn), n = 2, . . . , k, in case the illegal activity is only started at time point jn (with
probability gk+1

∏k
`=n+1 g`(j`) (1− gn));

• (N + 1− j1) in case the start of the illegal activity is postponed until time point j1 (with
probability gk+1

∏k
`=2 g`(j`)). According to assumption (iv) of Chapter 2, the Operator

must start the illegal activity then at time point j1.

Thus, the (expected) payo� to the Operator, i.e., the expected detection time, is, for any
N > k, any g ∈ Gk and any q ∈ QN,k, given by

OpN,k(g,q) :=
∑

(jk,...,j1)∈S1

q(jk,...,j1)

[
(1− gk+1) jk (4.31)

+ gk+1

k∑
n=2

(1− gn(jn)) (jn−1 − jn)

k∏
`=n+1

g`(j`)

+ gk+1

k∏
`=2

g`(j`) (N + 1− j1)
]
,
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with
∏k
`=k+1 g`(j`) := 1. Let the random variable Tn, n = 1, . . . , k, be the (k − n + 1)-

th interim inspection time point. Then the realization of Tn is jn, and the expected interim
inspection time point Eq(Tn) is, for a mixed strategy q ∈ QN,k, given by

Eq(Tn) :=
∑

(jk,...,j1)∈S1

q(jk,...,j1) jn , n = 1, . . . , k . (4.32)

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Theorem 4.1. Given the Se-No inspection game with N > k possible time points for k interim
inspections. The sets of behavioural resp. mixed strategies are given by (4.30) and (4.29), and
the payo� to the Operator by (4.31).

Then an optimal strategy of the Operator is given by

g∗k+1 =
k

k + 1
and (4.33)

g∗n(jn) =
n− 1

n
for all jn = k − n+ 1, . . . , N − n and all n = 2, . . . , k , (4.34)

and any mixed strategy from the set

Q∗N,k =
{
q∗ ∈ QN,k :

N∑
j1=j2+1

q∗(jk,...,j1) (N + 1− 2 j1 + j2) = 0 for any (jk, . . . , j2) ∈ S2 ,

for all n = 2, . . . , k − 1 and any (jk, . . . , jn+1) ∈ Sn+1 :

N−n+1∑
jn=jn+1+1

. . .

N∑
j1=j2+1

q∗(jk,...,j1) (jn−1 − 2 jn + jn+1) = 0 ,

N−k+1∑
jk=1

. . .

N∑
j1=j2+1

q∗(jk,...,j1) (jk−1 − 2 jk) = 0
}
6= ∅ (4.35)

is an optimal strategy of the Inspectorate.

The optimal payo� to the Operator is

Op∗N,k := OpN,k(g
∗,q∗) =

N + 1

k + 1
. (4.36)

Proof. We have to show that the saddle point criterion

OpN,k(g,q
∗) ≤ Op∗N,k ≤ OpN,k(g∗,q) , (4.37)

see (19.10), is ful�lled for any g ∈ Gk and any q ∈ QN,k. Using (4.33) and (4.34), we get for
all n = 1, . . . , k − 1

g∗k+1

k∏
`=n+1

g∗` (j`) =
k

k + 1

k − 1

k
. . .

n

n+ 1
=

n

k + 1
, (4.38)
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and therefore, using (4.29) and (4.31),

OpN,k(g
∗,q) =

1

k + 1

∑
(jk,...,j1)∈S1

q(jk,...,j1)

[
jk +

k∑
n=2

(jn−1 − jn) + (N + 1− i1)
]

=
N + 1

k + 1
,

i.e., (4.36) for any q ∈ QN,k. That is, the right hand inequality of (4.37) is ful�lled as equality.

For the proof of the left hand inequality of (4.37) we �rst note that Q∗N,k 6= ∅, which is proven in
Lemma 4.4. Let q∗ ∈ Q∗N,k be arbitrary. We show by induction that the terms of OpN,k(g,q

∗)
containing gk+1 and gn(jn) are all equal to zero. Thus, gk+1 and gn(jn) in OpN,k(g,q

∗) can
be put to zero.

We start the induction with g2(j2), i.e., n = 2: For the terms of OpN,k(g,q
∗) containing

g2(j2) we obtain by (4.31)

∑
(jk,...,j1)∈S1

q∗(jk,...,j1)

[
gk+1

k∏
`=2

g`(j`)
(
− (j1 − j2) + (N + 1− j1)

)]

=

N−k+1∑
jk=1

. . .

N−1∑
j2=j3+1

[
gk+1

k∏
`=2

g`(j`)

N∑
j1=j2+1

q∗(jk,...,j1) (N + 1− 2 j1 + j2)
]

= 0 ,

(4.39)

because of (4.35). Because g2(j2) appears in the equations above only in multiplicative form
and because all the terms containing g2(j2) are zero, see (4.39), we can simply put g2(j2) = 0
for any (jk, . . . , j2) ∈ S2.

Suppose that for an index n ≤ k − 1 we have g2(j2) = g3(j3) = . . . = gn(jn) = 0. For the
terms of OpN,k(g;q∗) containing gn+1(jn+1) we obtain again with (4.31)

∑
(jk,...,j1)∈S1

q∗(jk,...,j1)

[
gk+1

k∏
`=n+1

g`(j`)
(

(jn − jn+1) + (jn−1 − jn)
)]

=

N−k+1∑
jk=1

. . .

N−(n+1)+1∑
jn+1=jn+2+1

[
gk+1

k∏
`=n+1

g`(j`)

N−n+1∑
jn=jn+1+1

. . .

N∑
j1=j2+1

q∗(jk,...,j1) (jn−1 − 2 jn + jn+1)
]

= 0 ,

again due to (4.35). Therefore, we have g2(j2) = g3(j3) = . . . = gk(jk) = 0, and (4.31) and
(4.35) yields for n = k

OpN,k(g,q
∗) =

∑
(jk,...,j1)∈S1

q∗(jk,...,j1)

[
(1− gk+1) jk + gk+1 (jk−1 − jk)

]

=
∑

(jk,...,j1)∈S1

q∗(jk,...,j1) jk (4.40)
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for any g ∈ Gk. Since the linear equations in (4.35) are ful�lled for all n = 1, . . . , k, we obtain,
using (4.32),

Eq∗(Tn−1)− 2Eq∗(Tn) + Eq∗(Tn+1) = 0 (4.41)

for all n = 1, . . . , k with Eq∗(T0) := N + 1 and Eq∗(Tk+1) := 0. It can now be seen that

Eq∗(Tn) = (k − n+ 1)
N + 1

k + 1
, n = 1, . . . , k (4.42)

is the only solution of (4.41). Relation (4.42) holds self-evidently for any q∗ ∈ Q∗N,k. Thus
(4.40) and (4.42) �nally imply

OpN,k(g,q
∗) =

∑
(jk,...,j1)∈S1

jk q
∗
(jk,...,j1)

= Eq∗(Tk) =
N + 1

k + 1
(4.43)

for any g ∈ Gk, i.e., the left hand inequality of (4.37) is also ful�lled as equality.

Using (4.41), the rather abstract set (4.35) of optimal strategies of the Inspectorate becomes
meaningful: The set of optimal strategies of the Inspectorate can be fully characterized by the
uniquely determined expected interim inspection time points (4.42): Any q∗ ∈ Q∗N,k ful�ls
(4.42), and for any q∗ ∈ QN,k which ful�ls (4.42), we get q∗ ∈ Q∗N,k. We will return to this
important result in Chapters 10 to 12; see pp. 189 and 240.

Important properties of the optimal strategies and the optimal expected detection time are
given in the Lemma 4.4, which is published in this monograph for the �rst time. As mentioned
in Table 1.1 we are able � in contrast to abstract matrix games � to consider system quantities
like expected interim inspections time points and the expected time point for the start of the
illegal activity, which are both interesting from a practitioner's point of view.

Lemma 4.4. Given the Se-No inspection game with N > k possible time points for k interim
inspections analysed in Theorem 4.1.

Then the following assertions hold:

1. The mixed strategy

q∗(jk,...,j1) =

(
N

k

)−1
for any (jk, . . . , j1) ∈ S1 (4.44)

is an optimal strategy of the Inspectorate, i.e., an element of Q∗N,k.

2. If (N + 1)/(k + 1) is an integer, then the mixed strategy

q∗(jk,...,j1) =

 1 for (jk, . . . , j1) =

(
N + 1

k + 1
, 2
N + 1

k + 1
, . . . , k

N + 1

k + 1

)
0 otherwise

(4.45)

is an optimal strategy of the Inspectorate, i.e., an element of Q∗N,k.

3. The optimal expected interim inspection time points E∗q∗(Tn) ful�l the relation

Eq∗(Tn) = (k − n+ 1)
N + 1

k + 1
= (k − n+ 1)Op∗N,k (4.46)
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for all n = 1, . . . , k and any optimal strategy q∗ ∈ Q∗N,k, and the relation

Eq∗(Tn)− Eq∗(Tn+1) =
N + 1

k + 1
, (4.47)

for all n = 0, . . . , k, where with Eq∗(T0) := N + 1 and Eq∗(Tk+1) := 0.

4. The optimal payo� to the Operator Op∗N,k and the optimal expected time point of the
last interim inspection Eq∗(T1) ful�l the relation

Op∗N,k + Eq∗(T1) = N + 1 (4.48)

for any optimal strategy q∗ ∈ Q∗N,k.

5. The optimal expected time point for the start of the illegal activity E(g∗,q∗)(S) is given
by

E(g∗,q∗)(S) =
k

k + 1

N + 1

2
=
k

2
Op∗N,k (4.49)

for g∗ given by (4.33) and (4.34), and any optimal strategy q∗ ∈ Q∗N,k.

Proof. 1. We use the following binomial formula

b∑
i=a

(
i

a

)
=

(
b+ 1

a+ 1

)
for all a, b ∈ N0 with a < b , (4.50)

to prove ∑
(jk,...,j1)∈S1

jn = (k − n+ 1)

(
N + 1

k + 1

)
for all n = 1, . . . , k . (4.51)

The proof of (4.50) can be found in van Lint and Wilson (1992), or directly shown by induction.

In fact, the left hand side of (4.51) is for n = 1, . . . , k−1, using (4.50) and S1 given by (4.28),
equivalent to

∑
(jk,...,j1)∈S1

jn =

N∑
j1=k

. . .

jn−1−1∑
jn=k−n+1

jn

jn−1∑
jn+1=k−n

. . .

jk−3−1∑
jk−2=3

jk−2−1∑
jk−1=2

jk−1−1∑
jk=1

1

=

N∑
j1=k

. . .

jn−1−1∑
jn=k−n+1

jn

jn−1∑
jn+1=k−n

. . .

jk−3−1∑
jk−2=3

jk−2−1∑
jk−1=2

(jk−1 − 1)

=

N∑
j1=k

. . .

jn−1−1∑
jn=k−n+1

jn

jn−1∑
jn+1=k−n

. . .

jk−3−1∑
jk−2=3

(
jk−2 − 1

2

)

= . . . =

N∑
j1=k

. . .

jn−1−1∑
jn=k−n+1

jn

(
jn − 1

k − n

)
. (4.52)
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Note that (4.52) is also valid for n = k due to the de�nition of S1 and without utilizing (4.50).
Since we have for all n = 1, . . . , k

jn

(
jn − 1

k − n

)
= (k − n+ 1)

(
jn

k − n+ 1

)
,

we get, using (4.50) and (4.52), for all n = 1, . . . , k

∑
(jk,...,j1)∈S1

jn = (k − n+ 1)

N∑
j1=k

. . .

jn−1−1∑
jn=k−n+1

(
jn

k − n+ 1

)

= (k − n+ 1)

N∑
j1=k

. . .

jn−2−1∑
jn−1=k−n+2

(
jn−1

k − n+ 2

)

= . . . = (k − n+ 1)

N∑
j1=k

(
j1
k

)
= (k − n+ 1)

(
N + 1

k + 1

)
,

i.e., (4.51) for all n = 1, . . . , k.

Now, the system of linear equations given by (4.35) is, using (4.44), equivalent to the equations∑
(jk,...,j1)∈S1

(N + 1− 2 j1 + j2) = 0 ,

∑
(jk,...,j1)∈S1

(jn−1 − 2 jn + jn+1) = 0 ,

∑
(jk,...,j1)∈S1

(jk−1 − 2 jk) = 0 ,

the validity of which can be seen immediately, if we use (4.51) with appropriately chosen n:
For n = 1 we get ∑

(jk,...,j1)∈S1

(N + 1− 2 j1 + j2)

=

(
N + 1

k + 1

)
((k − 2 + j)− 2 (k − 1 + 1)) +

(
N

k

)
(N + 1)

= −
(
N + 1

k + 1

)
(k + 1) +

(
N

k

)
(N + 1) = 0 .

For n = 2, . . . , k − 1 we obtain∑
(jk,...,j1)∈S1

(jn−1 − 2 jn + jn+1)

=

(
N + 1

k + 1

)
((k − (n+ 1) + 1)− 2 (k − n+ 1) + k − (n− 1) + 1) = 0 ,
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and �nally for n = k∑
(jk,...,j1)∈S1

(jk−1 − 2 jk)

=

(
N + 1

k + 1

)
(−2 (k − k + 1)− 2 (k − n+ 1) + k − (k − 1) + 1) = 0 ,

which completes the proof of the �rst assertion.

2. The vector (jk, . . . , j1) given by (4.45) ful�lls

N + 1− 2 j1 + j2 = 0 and jk−1 − 2 jk = 0

and for all n = 2, . . . , k − 1

jn−1 − 2 jn + jn+1 = 0 .

Therefore, the linear equations in (4.35) are ful�lled and q∗(jk,...,j1) given by (4.45) is an element

of Q∗N,k.

3. Relation (4.46) has already been shown in the proof of Theorem 4.1; see the derivations of
(4.41) and (4.42). (4.47) follows directly from (4.46).

4. (4.48) follows directly from (4.43) and (4.46).

5. The expected time point for the start of the illegal activity E(g,q)(S) is, using Figure 4.5,

for any g ∈ Gk and any q ∈ QN,k given by (recall
∏k
`=k+1 g`(j`) := 1)

E(g,q)(S) = (1− gk+1) 0

+ gk+1

∑
(jk,...,j1)∈S1

(
k∑

n=2

jn (1− gn(jn))

k∏
`=n+1

g`(j`) + j1

k∏
`=2

g`(j`)

)
.

Because of (4.34), g∗n(jn), n = 2, . . . , k, is independent of jn, and we get, using (4.32) and
(4.38), with g∗n := g∗n(jn) for any q ∈ QN,k

E(g∗,q)(S) =
1

k + 1

∑
(jk,...,j1)∈S1

k∑
n=1

jn =
1

k + 1

k∑
n=1

Eq∗(Tn) ,

which in itself is an interesting result. By (4.46) we get

E(g∗,q∗)(S) =
1

k + 1

N + 1

k + 1

k∑
n=1

(k − n+ 1) =
k

k + 1

N + 1

2
,

which completes the proof.

Let us conclude this chapter with a few remarks on Theorem 4.1 and Lemma 4.4, and with
some general observations. The reader is also referred to Table 13.2 on p. 271 for a comparison
of the discrete time and continuous time Se-No inspection game.

First, there is no cut-o� value for optimal strategies like in the No-No inspection game. We
will observe the same feature when we analyse the continuous time Se-No inspection game in
Chapter 10.
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Second, looking at the optimal strategy of the Operator, see (4.33) and (4.34), we see that
1− g∗2(j2), . . . , 1− g∗k(jk), 1− g∗k+1 form a harmonic progression

1

2
,
1

3
, . . . ,

1

k − 1
,

1

k
,

1

k + 1
, (4.53)

since their reciprocals form an arithmetic progression. Because property (4.53) is a characteristic
of many Se-No and Se-Se inspection games treated in this monograph, we present in Table
4.1 an overview for easier reference. Also note that the optimal probabilities (4.33) and (4.34)
depend only on the number of remaining interim inspections.

Table 4.1 Overview of Se-No and Se-Se inspection games treated in this monograph in which
the components of the Operator's optimal/equilibrium strategy form a harmonic progression.

Discrete time

Se-No inspection game Theorem 4.1, p. 66

Se-Se inspection game
Theorems 5.2 and 5.3

pp. 82 and 88

Continuous time

Se-No inspection game, β ≥ 0
one facility

Theorem 10.1, p. 194

Se-Se inspection game, α ≥ 0, β ≥ 0
Theorem 12.1, p. 253

only for α = 0

Critical time

Se-Se inspection game, β ≥ 0 Theorem 16.2, p. 332

Generalized Thomas-Nisgav inspection game,
β ≥ 0

Theorem 17.1, p. 366

Baston-Bostock inspection game,
w1, w2, w ∈ (0, 1]

Theorem 17.2, p. 372

Se-No inspection game with an
expected number of inspections, β ≥ 0

Lemma 24.2, p. 434

Third, the equal distribution is according to (4.44) an optimal strategy of the Inspectorate,
other than in the No-No inspection game; see the remarks on pp. 25 and 35. Also, extending
the results on p. 62, we dare to formulate the conjecture that in case of k interim inspections
there exists an optimal strategy which mixes exactly k + 1 pure strategies. Let us add that we
do not emphasize these results per se, however, we think it is important to know that there
are more optimal strategies which might be interesting from a practitioner's point of view: On
p. 62, e.g., we argued that it might be the better, the fewer pure strategies are mixed. Quite
generally we think that optimal strategies should be selected this way and not with the methods
of Nash equilibrium selection theory; see van Damme (1987) or Harsanyi and Selten (1988).

Fourth, the pure strategy (4.45) can be an optimal strategy of the Inspectorate, other than in
the No-No inspection game. This is not so surprising since for the continuous time Se-No and



Chapter 4: No-Se and Se-No inspection games 73

Se-Se inspection games in Part II there always exist an optimal pure strategy resp. a pure Nash
equilibrium strategy of the Inspectorate; see Chapters 10 and 12 and Table 13.2.

Fifth, the optimal expected detection time (N + 1)/(k + 1) for the Se-No inspection game is
surprisingly simple, other than that for the No-No inspection games in Chapters 3 and 9; see
Tables 4.2 and 13.1: The length of the reference time interval is just related to the number
of interim inspections. Also, we will obtain similar results for the continuous time Se-No and
Se-Se inspection games in Part II, at least for β = 0.

Sixth, it is interesting to see that the optimal expected interim inspection time points and the
optimal expected time point for the start of the illegal activity are closely related to the optimal
expected detection time, thus being the central �gure in the game; see (4.46) and (4.49). The
optimal expected time point for the start of the illegal (4.49) increases with increasing k and
tends towards (N + 1)/2, i.e., the middle of the reference time interval.

Seventh, Table 4.2 represents an overview of the system quantities of discrete time No-No and
Se-No inspection games; see Sections 3.1, 4.2, 6.1 and 6.3.

A �nal remark: We found a solution for the No-No inspection game for any number N of
possible time points only for k = 1 interim inspection, whereas for the Se-No inspection game
we were able to present a solution for any number N > k of possible time points for k interim
inspections. This is surprising since at �rst sight the di�erences between these inspection
games do not appear so essential. The only consolidation is that this happens frequently in
Mathematics. Why, e.g., is the formula for the area within an ellipse so close to that within a
circle, but that for its circumference so di�erent?
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Table 4.2 System quantities of the No-No and Se-No inspection games of Sections 3.1, 4.2
and 6.3.
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Chapter 5

Se-Se inspection game

In this chapter the last of the four variants of the playing for time inspection game with discrete
time, which have been introduced in Table 2.1, is considered. Let us repeat that in the Se-Se
inspection game both the Operator and the Inspectorate behave sequentially.

In this chapter, assumption (v) of Chapter 2 is speci�ed as follows:

(v') During an interim inspection the Inspectorate does not commit an error of the second
kind, i.e., the illegal activity, see assumption (iv), is detected with certainty during the
next interim inspection or with certainty during the �nal PIV; see assumption (iii).

Assumptions (vii) will be speci�ed in the following sections, while the remaining assumptions
of Chapter 2 hold throughout this chapter. Note that the Se-Se inspection game with N = 3
possible time points for k = 2 interim inspections and uncertain detection of an illegal activity
at an interim inspection, i.e., β ≥ 0, is treated in Section 6.4.

In Section 5.1 we �rst present the case of N > 2 possible time points for k = 2 interim
inspections, since the case of k = 1 interim inspection is identical to that of the Se-No inspection
game which is solved in Lemma 4.2 of Section 4.2. Thereafter, the case of any number N > k
of possible time points for k interim inspections is analysed and it is shown that it leads to the
same optimal payo� as that of the Se-No inspection game treated in Section 4.2. In Section
5.2 the same Se-Se inspection game as that of Section 5.1 is solved using a recursive approach.
Section 5.3 focuses on a step by step Se-Se inspection game. The game theoretical solution of
this game is compared to that of the Se-Se inspection game treated in Section 5.1.

5.1 Any number of inspection opportunities and interim in-
spections

The inspection game analysed in this section is based on the following speci�cation:

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point 0,
whether to start the illegal activity immediately at time point 0 or to postpone the start;
in the latter case he decides again after the �rst interim inspection, whether to start the
illegal activity immediately at that time point or to postpone the start again; and so on.

75
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Because of assumption (iv), the Operator starts the illegal activity latest immediately at
the time point of the last interim inspection.

The Inspectorate decides at the beginning of the reference time interval when to perform
its �rst interim inspection. At the time point of its �rst interim inspection, it decides
when to perform the second interim inspection, and so on.

Let us start with the Se-Se inspection game with N possible time points for k = 2 interim
inspections, the extensive form of which is given in Figure 5.1. Because both players decide
sequentially in this chapter, all extensive form games start with the Operator's decision at 0;
see the comment on p. 50.

Figure 5.1 Extensive form of the Se-Se inspection game with N > 2 possible time points for
k = 2 interim inspections.

Operator at 0

1

1

j2

j2

N − 1

N − 1

¯̀
3

1

2

j1 − 1

j1
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N
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N − j2

N

¯̀
2

N − j2

j2 + 1

N + 1− j1
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1
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`2

j2

1

N

¯̀
2

1

N

`2

N − 1

`3

Inspectorate at 0

Inspectorate at 1 Inspectorate at j2 Inspectorate at N − 1

Operator at j2 Operator at j2

0 1 2 N − 1 N N + 1

PIV PIV

Let us explain Figure 5.1 in detail. The Operator behaves in the same way as in the Se-No
inspection game discussed in Section 4.2; see also Figure 4.3: At the beginning of the reference
time interval he decides with probability 1 − g3 to start the illegal activity immediately (¯̀3)
or to postpone its start (`3) with probability g3. In this latter case he decides after the �rst
interim inspection at time point j2 with probability 1 − g2(j2) to start the illegal activity now
(¯̀2) or to postpone its start again (`2) with probability g2(j2). Because of assumption (iv) of
Chapter 2 he starts the illegal activity in the latter case after the second interim inspection at
time point j1 with certainty, i.e., g1(j2, j1) = 0. Because this probability is �xed it is excluded
from the Operator's strategy set. Thus, the set G2 of behavioural strategies of the Operator is
again given by (4.15).

The Inspectorate, not knowing the Operator's decision at j3(= 0), chooses at the beginning of
the reference time interval the time point j2 ∈ {1, . . . , N − 1} for its �rst interim inspection
with probability h3(j2); see Figure 5.2. At time point j2 and in case the illegal activity is not
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started at 0 (`3), the time point j1, j1 ∈ {j2 + 1, . . . , N}, for the second interim inspection is
chosen with probability h2(j1|j2). Thus, the Inspectorate's set HN,2 of behavioural strategies
is given by (4.6). As mentioned on p. 52, we use the notation (j1|j2) to indicate the sequential
nature of the Inspectorate's behaviour.

Figure 5.2 Time line of the interim inspections and the Inspectorate's probabilities for the
Se-Se inspection game with N > k possible time points for k = 2 interim inspections.

0

h3(j2)

1 2 N − 1 N N + 1

PIV j2 j1

h2(j1|j2)

PIV

According to Figure 5.1, the (expected) payo� to the Operator, i.e., the expected detection
time, is, for any N ≥ 3, any g ∈ G2 and any h ∈ HN,2, given by

OpN,2(g,h) :=

N−2∑
j2=1

h3(j2)
[
(1− g3) j2+

g3

N∑
j1=j2+1

h2(j1|j2)
(

(1− g2(j2)) (j1 − j2) + g2(j2) (N + 1− j1)
)]

+ h3(N − 1) [(1− g3) (N − 1) + g3] . (5.1)

The game theoretical solution of this inspection game, see Krieger and Avenhaus (2014), is
presented in

Lemma 5.1. Given the Se-Se inspection game with N > 2 possible time points for k = 2
interim inspections. The sets of behavioural strategies are given by (4.15) and (4.6), and the
payo� to the Operator by (5.1).

Then an optimal strategy of the Operator is given by

g∗3 =
2

3
and g∗2(j2) =

1

2
for j2 = 1, . . . , N − 2 , (5.2)

and an optimal strategy of the Inspectorate by

N−1∑
j2=1

j2 h
∗
3(j2) =

N + 1

3
and (5.3)

N∑
j1=j2+1

j1 h
∗
2(j1|j2) =

N + j2 + 1

2
for j2 = 1, . . . , N − 2 . (5.4)

The optimal payo� to the Operator is

Op∗N,2 := OpN,2(g
∗,h∗) =

N + 1

3
.
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Proof. (5.1) together with (5.2) � (5.4) imply

OpN,2(g
∗,h) = OpN,2(g

∗,h∗) = OpN,2(g,h
∗)

for any g ∈ G2 and any h ∈ HN,2, i.e., the saddle point inequality OpN,2(g,h
∗) ≤ Op∗N,2 ≤

OpN,2(g
∗,h) is ful�lled as equality.

Let us comment the results of Lemma 5.1: First, we see that the optimal strategies of the
Operator and the optimal payo� to the Operator are the same as that of the Se-No inspection
game as given by Lemma 4.3. At �rst sight this is very surprising, since the extensive forms
of the two inspection games are so di�erent; compare Figures 4.4 and 5.1. However, a closer
look at the two payo� functions (4.16) and (5.1) shows that they can be transformed into each
other: De�ne for any (h3, h2) ∈ HN,2

q(j2,j1) := h3(j2)h2(j1|j2) for all 0 < j2 < j1 < N + 1 . (5.5)

Then we have q ∈ QN,2; see (3.52). If we replace in (4.16) the q(j2,j1) by (5.5) then we
get (5.1). Conversely, de�ning for any q ∈ QN,2 the marginal probability of the �rst interim
inspection time point by

qj2· :=

N∑
j1=j2+1

q(j2,j1) for all j2 = 1, . . . , N − 1 ,

and setting

h3(j2) := qj2· and h2(j1|j2) :=


q(j2,j1)

qj2·
for qj2· > 0

[0, 1] for qj2· = 0
, (5.6)

we have (h3, h2) ∈ HN,2. Replacing (h3, h2) in (5.1) by (5.6) leads to (4.16). Because the
q(j2,j1)'s, h3(j2)'s and h2(j1|j2)'s sum up to one, we get � as on p. 54 � that there are

(
N
2

)
−1

independent q(j2,j1)'s, and

(N − 1)− 1︸ ︷︷ ︸
h′3s

+

N−2∑
j2=1

[
(N − j2)− 1

]
︸ ︷︷ ︸

h′2s

=

(
N

2

)
− 1

independent h3(j2)'s and h2(j1|j2)'s. Probabilistically speaking, the h's are conditional, and
the q's joint probabilities.

Second, also we see that here not only the optimal expected interim inspection time point of
the �rst, but also that of the second, depending on the �rst one, is �xed; see (5.3) and (5.4).
Furthermore, it is interesting that contrary to the situation in the Se-No inspection game, see
(4.26), the equal distribution h∗3(j2) = 1/(N − 1) on the set {1, . . . , N − 1}, is not part of
an optimal strategy, because it does not ful�l (5.3). On the other hand the equal distribution
h∗2(j1|j2) = 1/(N − j2) on the set {j2 + 1, . . . , N} ful�ls (5.4), i.e., it can be chosen as a
component of an optimal strategy.

Let us now turn to the general case of any number k < N of interim inspections. Again,
the Operator behaves in the same way as in the Se-No inspection game thus, his set Gk of
behavioural strategies is given by (4.30). Note that we model again gn as a function of jn only,
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i.e., gn = gn(jn) for all n = 2, . . . , k and for all jn = k − n+ 1, . . . , N − n+ 1; see p. 65 for
the justi�cation.

The Inspectorate, not knowing the Operator's decision at 0, chooses at the beginning of the
reference time interval the time point jk ∈ {1, . . . , N − k + 1} for its �rst interim inspection
with probability hk+1(jk). The (k−n+ 1)-th interim inspection is performed at time point jn,
n = 2, . . . , k, and the Inspectorate chooses at jn the time point jn−1 ∈ {jn+1, . . . , N−n+1}
for its next interim inspection with probability hn(jn−1|jk, . . . , jn); see Figure 5.3. Why do we
assume that hn depends on the whole history jk, . . . , jn−1? Intuitively one would assume that
hn depends only on jn and jn−1 for the following reason: Suppose the start of the illegal activity
is postponed until time point jn. Then the payo� to the Inspectorate for the remaining game de-
pends only on jn and the remaining time points jn−1, . . . , j1. Because the Inspectorate chooses
at time point jn only jn−1 � due to the sequential decision making �, the choice hn(jn−1|jn)
would be appropriate. The reason for the assumption hn = hn(jn−1|jk, . . . , jn) is that we want
to use the results of Theorem 4.1 from the Se-No inspection game. To apply this Theorem we
need to transform the probabilities q(jk,...,j1) into hk+1(jk), hk(jk−1|jk), . . . , h2(j1|jk, . . . , j2),
and for that purpose hn needs to be conditioned on the whole history jk, . . . , jn; see (5.9).

Figure 5.3 Time line of the interim inspections and the Inspectorate's probabilities for the
Se-Se inspection game with N > k possible time points for k interim inspections.

0

hk+1(jk)

1 N N + 1

PIV jk

hk(jk−1|jk)

jk−1

hk−1(jk−2|jk, jk−1)

j2

h2(j1|jk, . . . , j2)

j1 PIV

As a generalization of (4.6), the set of the Inspectorate's behavioural strategies is given by

HN,k :=
{
h := (hk+1, hk, . . . , h2) ∈ [0, 1]k :

N−k+1∑
jk=1

hk+1(jk) = 1 ,

N−n+2∑
jn−1=jn+1

hn(jn−1|jk, . . . , jn) = 1 for all n = 2, . . . , k (5.7)

and all (jk, . . . , jn) ∈ Nk−n+1 : 0 < jk < . . . < jn < N − n+ 1
}
.

Similar to the derivations of the expected detection time for the Se-No inspection game on p.
65, we derive that of the Se-Se inspection game. Again, three types of detection times, i.e.,
di�erences between interim inspection time points, are distinguished, namely

• jk in case the illegal activity is started at the beginning of the reference time interval
(with probability 1 − gk+1), and the �rst interim inspection is performed at time point
jk (with probability hk+1(jk)). Thus, we get for the jk component of the payo� to the
Operator, using (4.28),

N−k+1∑
jk=1

hk+1(jk) (1− gk+1) jk
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=
∑

(jk,...,j1)∈S1

hk+1(jk)

k∏
m=2

hm(jm−1|jk, . . . , jm) (1− gk+1) jk ,

because

N−k+2∑
jk−1=jk+1

. . .

N−1∑
j2=j3+1

N∑
j1=j2+1

k∏
m=2

hm(jm−1|jk, . . . , jm) = 1

holds for all jk = 1, . . . , N − k + 1.

• (jn−1−jn), n = 2, . . . , k, in case the illegal activity is only started at time point jn (with
probability gk+1

∏k
`=n+1 g`(j`) (1 − gn(jn))). Similar to the derivations above, we get

for the jn−1 − jn component of the payo� to the Operator

N−k+1∑
jk=1

N−k+2∑
jk−1=jk+1

. . .

N−n+1∑
jn=jn+1+1

hk+1(jk)

k∏
m=n

hm(jm−1|jk, . . . , jm)

· gk+1 (1− gn(jn)) (jn−1 − jn)

k∏
`=n+1

g`(j`) ,

which can be written as

∑
(jk,...,j1)∈S1

hk+1(jk)

k∏
m=2

hm(jm−1|jk, . . . , jm)

· gk+1 (1− gn(jn)) (jn−1 − jn)

k∏
`=n+1

g`(j`) ,

because of the convention
∏1
m=2 . . . =: 1, and

N−n+2∑
jn−1=jn+1

. . .

N−1∑
j2=j3+1

N∑
j1=j2+1

n−1∏
m=2

hm(jm−1|jk, . . . , jm) = 1

holds for all jn = k − n+ 1, . . . , N − n+ 1.

• (N + 1− j1) in case the start of the illegal activity is postponed until time point j1 (with
probability gk+1

∏k
`=2 g`(j`)). According to assumption (iv) of Chapter 2, the Operator

must start the illegal activity then at time point j1. Thus, we get for the N + 1 − j1
component of the payo� to the Operator

N−k+1∑
jk=1

. . .

N−1∑
j2=j3+1

N∑
j1=j2+1

hk+1(jk)

k∏
m=2

hm(jm−1|jk, . . . , jm)

· gk+1

k∏
`=2

g`(j`) (N + 1− j1)

=
∑

(jk,...,j1)∈S1

hk+1(jk)

k∏
m=2

hm(jm−1|jk, . . . , jm) gk+1

k∏
`=2

g`(j`) (N + 1− j1) .
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Thus, the (expected) payo� to the Operator, i.e., the expected detection time, is, for any
2 ≤ k < N , any g ∈ Gk and any h ∈ HN,k, given by

OpN,k(g,h) :=
∑

(jk,...,j1)∈S1

hk+1(jk)

k∏
m=2

hm(jm−1|jk, . . . , jm)
[
(1− gk+1) jk (5.8)

+ gk+1

k∑
n=2

(1− gn(jn)) (jn−1 − jn)

k∏
`=n+1

g`(j`)

+ gk+1

k∏
`=2

g`(j`) (N + 1− j1)
]
,

which corresponds to the expected detection time for the Se-No inspection game as given by
(4.31).

Before we turn to the solution of the Se-Se inspection game we show that the Inspectorate's
strategies in the Se-No and the Se-Se inspection game are payo� equivalent, and that these
strategies can be transformed into each other. Let us note that Kuhn's Theorem, see Kuhn
(1953), cannot be applied here, because it deals with the transformation of behavioural into
mixed strategies and vice versa within a single game. Here, however, we consider two inspection
games which are di�erent from the modelling point of view, namely the Se-No and the Se-Se
inspection game, the payo�s (4.31) and (5.8) of which have to be shown to be equivalent after
appropriate transformation of the Inspectorate's strategies. This is done in

Theorem 5.1. Given the Se-No and the Se-Se inspection games with N > k possible time
points for k interim inspections. The Operator's set of behavioural strategies is given by (4.30)
and the Inspectorate's strategy sets by (4.29) and (5.7) for the Se-No and the Se-Se inspection
game, respectively. The payo�s to the Operator are given by (4.31) and (5.8).

(i) De�ne for a strategy q = (q(1,...,k), . . . , q(N−k+1,...,N))
T ∈ QN,k

hk+1(jk) := q(jk,··· ) , hk(jk−1|jk) :=
q(jk,jk−1,··· )

q(jk,··· )
, . . .

hn(jn−1|jk, . . . , jn) :=
q(jk,...,jn,jn−1,··· )

q(jk,...,jn,··· )
, . . . , h2(j1|jk, . . . , j2) :=

q(jk,...,j2,j1)

q(jk,...,j2,·)
,

(5.9)

where we assume that the appropriate ratios exist and that the points replacing the indices
indicate their summation.

Then h := (hk+1(jk), hk(jk−1|jk), . . . , h2(j1|jk, . . . , j2)) ∈ HN,k and h is payo� equiv-
alent to q, i.e., we have with (4.31) and (5.8): OpN,k(g,h) = OpN,k(g,q) for any
g ∈ Gk.

(ii) De�ne for a strategy h = (hk+1(jk), hk(jk−1|jk), . . . , h2(j1|jk, . . . , j2)) ∈ HN,k

q(jk,...,j1) := hk+1(jk)

k∏
m=2

hm(jm−1|jm) for any (jk, . . . , j1) ∈ S1 . (5.10)

Then q := (q(1,...,k), . . . , q(N−k+1,...,N))
T ∈ QN,k and q is payo� equivalent to h, i.e.,

we have with (4.31) and (5.8): OpN,k(g,q) = OpN,k(g,h) for any g ∈ Gk.



82 Chapter 5: Se-Se inspection game

Proof. The assertion follows immediately from the payo�s (4.31) and (5.8) and from the
normalization of the q's on one hand and the h's on the other.

Note that with the same methods as those used at the end of Section 4.1 it can be shown that
there is the same number

(
N
k

)
− 1 of independent q's and h's.

Now with the help of Theorems 5.1 and 4.1, the game theoretical solution of this inspection
game, which is published in this monograph for the �rst time, is presented in

Theorem 5.2. Given the Se-Se inspection game with N > k possible time points for k interim
inspections. The sets of behavioural strategies are given by (4.30) and (5.7), and the payo� to
the Operator by (5.8).

Then an optimal strategy of the Operator is given by (4.33) and (4.34). The set H∗N,k of the
optimal strategies of the Inspectorate is obtained from (4.35) by taking any element q∗ ∈ Q∗N,k
and derive h∗ according to (5.9).

The optimal payo� to the Operator is

Op∗N,k := OpN,k(g
∗,h∗) =

N + 1

k + 1
. (5.11)

Proof. The statement follows directly from the Theorems 4.1 and 5.1.

To illustrate the transformations (5.9) and (5.10) we consider the case of N = 7 possible time
points for k = 3 interim inspections. Then (4.44) implies that

q∗(j3,j2,j1) =

(
7

3

)−1
=

1

35
for all 0 < j3 < j2 < j1 < 8 , (5.12)

and furthermore, (4.45) implies that

q∗(j3,j2,j1) =

{
1 for (j3, j2, j1) = (2, 4, 6)

0 otherwise
(5.13)

are optimal strategies of the Inspectorate. Let us consider (5.12) �rst. Because

q∗(j3,j2,·) =
7− j2

35
and q∗(j3,··) =

1

35

(
7− j3

2

)
we get, using (5.9),

h∗4(j3) = q∗(j3,··) =
1

35

(
7− j3

2

)
, 0 < j3 < 6

h∗3(j2|j3) =
q∗(j3,j2,·)

q∗(j3,··· )
=

7− j2(
7− j3

2

) , 0 < j3 < j2 < 6

h∗2(j1|j3, j2) =
q∗(j3,j2,j1)

q∗(j3,j2,·)
=

1

7− j2
, 0 < j3 < j2 < j1 < 8 ,

(5.14)

which means that indeed h∗2(j1|j3, j2) is independent of j3. We will come back to this result
in the next section on p. 90.
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From (5.13) on the other hand, we get

q∗(j3,j2,·) =

{
1 for (j3, j2) = (2, 4)

0 otherwise
and q∗(j3,··) =

{
1 for j3 = 2

0 otherwise
,

and therefore,

h∗4(j3) = q∗(j3,··) =

{
1 for j3 = 2

0 otherwise

h∗3(j2|j3) =
q∗(j3,j2,·)

q∗(j3,··· )
=

{
1 for (j3, j2) = (2, 4)

0 otherwise

h∗2(j1|j3, j2) =
q∗(j3,j2,j1)

q∗(j3,j2,·)
=

{
1 for (j3, j2, j1) = (2, 4, 6)

0 otherwise
,

which means, e.g., that

h∗2(6|2, 4) = 1 and h∗2(6|1, 4) = 0 .

Thus, the optimal probability for choosing j1 = 6 depends not only on the choice of j2 but also
on the choice of j3, which is an unexpected and counter-intuitive result; see the comment on
p. 79.

Note that all what has been said following Theorem 4.1, in particular the results of Lemma 4.4,
hold here as well with the appropriate change of q's and h's and therefore, they are not repeated
here. Also note that because the Operator's optimal strategy are given by (4.33) and (4.34),
i.e., it coincides with the one of the Se-No inspection game, 1−g∗2(j2), . . . , 1−g∗k(jk), 1−g∗k+1

form a harmonic progression; see also Table 4.1 on p. 72 for an overview of inspection games
with this property.

5.2 Any number of inspection opportunities and interim in-
spections: a recursive approach

Having determined in Section 5.1 the game theoretical solution of the Se-Se inspection game
based on the solution of the Se-No inspection game, we will now present a di�erent approach
to the solution of this game which is based on its representation in recursive form. In this
monograph, quite a few inspections games are described as recursive games; see Chapters 16
and 17. Thus, we will introduce them here in some detail including the backward induction
procedure as a solution technique for �nding optimal strategies and optimal payo�s.

The inspection game analysed in this section is based on the speci�cation (vii') on p. 75.

Let us denote the extensive form of the Se-Se inspection game with N possible time points
for k < N interim inspections by Γ(N, k).1 The recursive form of the �rst stage of this game

1We did not give names to the games considered so far. Here, and in the recursive games analysed in
Chapters 16 and 17 it turns out that it is useful to do this.
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is represented in Figure 5.4. Note that we intentionally use the term stage in this section in
contrast to the term step which is used in Section 5.3 and Chapters 16 and 17. The term step
refers to the situation in which a decision is made at any inspection opportunity, e.g., at time
points 1, 2, . . . , N in the game discussed in Section 5.3. The term stage, on contrary, refers to
the situation in which only at some inspection opportunities a decision is made. In this section,
for instance, the �rst stage includes the Operator's decision at jk+1(= 0) and the time point
jk of the �rst interim inspection. Thus, if jk > 1 then no decision is made at the intermediate
time point(s) 1, . . . , jk − 1, and therefore the term step would not be appropriate in this case.

Figure 5.4 Recursive extensive form of the �rst stage of the Se-Se inspection game Γ(N, k)
with N > k possible time points for k interim inspections.

Operator at jk+1(= 0)

1

1

jk

jk

N − k + 1

N − k + 1

¯̀
k+1

Γ(N − 1, k − 1)

1

Γ(N − jk, k − 1)

jk

Γ(k − 1, k − 1)

N − k + 1

`k+1

Inspectorate at jk+1

0 1 2 N − 1 N N + 1

PIV PIV

At the beginning of the reference time interval jk+1(= 0) the Operator decides to start the
illegal activity immediately (¯̀k+1) or to postpone its start (`k+1), whereas the Inspectorate
decides to place its �rst interim inspection at time point jk with jk = 1, . . . , N − k+ 1. If the
Operator starts the illegal activity at jk+1, then the payo� to the Operator is jk. If the Operator
postpones the start of the illegal activity, then the Se-Se inspection game with N − jk possible
time points for k−1 interim inspections starts. According to the terminology introduced above,
this game is called Γ(N − jk, k − 1).

The exciting point is that the N − k + 1 new games Γ(N − 1, k − 1), . . . ,Γ(N − jk, k −
1), . . . ,Γ(k − 1, k − 1) are proper subgames of the game Γ(N, k), i.e., their nodes do not
share information sets of other subgames. This fact allows us to use a backward induction
procedure which means that we can replace in Figure 5.4 the subgames by their optimal payo�s
Op∗N−1,k−1, . . . , Op

∗
N−jk,k−1, . . . , 1 to the Operator, i.e., the optimal expected detection times;

see Owen (1988). The payo� matrix of the normal form game which is obtained this way, and
which corresponds to the extensive form game given in Figure 5.4, is represented in Table 5.1.

We determine the solution of this game by rendering the Inspectorate indi�erent between the
choices jk and jk + 1; see Theorem 19.1. Suppose there exist an optimal strategy of the
Inspectorate with h∗k+1(jk) > 0 and h∗k+1(jk + 1) > 0 for an jk with jk = 1, . . . , N − k. Then
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Table 5.1 Payo� matrix of extensive form game in Figure 5.4.

1 . . . jk jk + 1 . . . N − k + 1

¯̀
k+1 1 . . . jk jk + 1 . . . N − k + 1

`k+1 Op∗N−1,k−1 . . . Op∗N−jk,k−1 Op∗N−jk−1,k−1 . . . Op∗k−1,k−1(= 1)

we obtain, using Table 5.1,

Op∗N,k = (1− g∗k+1) jk + g∗k+1Op
∗
N−jk,k−1

= (1− g∗k+1) (jk + 1) + g∗k+1Op
∗
N−jk−1,k−1 ,

(5.15)

which implies

g∗k+1 =
1

1 +Op∗N−jk,k−1 −Op
∗
N−jk−1,k−1

(5.16)

and

Op∗N,k =
(Op∗N−jk,k−1 −Op

∗
N−jk−1,k−1) jk +Op∗N−jk,k−1

1 +Op∗N−jk,k−1 −Op
∗
N−jk−1,k−1

. (5.17)

This is a recursive relation for the Operator's optimal payo� Op∗N,k. In order to be able to
give a unique solution, boundary conditions have to be �xed. For the inspection game in this
section they are for all n = 1, . . . , N given by

Op∗n,0 = n+ 1 and Op∗n,n = 1 , (5.18)

and can be explained as follows: If n possible time points but no interim inspection are left,
then the Operator will start the illegal activity immediately and it is detected only at the �nal
PIV resulting in the payo� n + 1. If the number of interim inspections coincides with the
number of possible time points, then the Inspectorate has to inspect at any time point and it
does not matter at which of these the Operator starts it illegal activity because it will always
be detected one time unit later and therefore, the payo� is 1.

Now, even though (5.17) together with (5.18) looks complicated, it can be easily seen that

Op∗N,k =
N + 1

k + 1
(5.19)

ful�ls (5.17) and (5.18). Because Op∗N,k given by (5.19) does not depend on jk, (5.15) holds
for all jk with jk = 1, . . . , N − k, which implies that the right hand side of the saddle point
inequality (19.11) is ful�lled as equality. Inserting (5.19) into (5.16) leads to

g∗k+1 =
k

k + 1
. (5.20)

To determine the optimal probabilities h∗k+1(jk), jk = 1, . . . , N−k+1, we apply the indi�erence
principle again: Because the Operator plays both pure strategies with positive probability in his
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optimal strategy, the Inspectorate chooses its probabilities h∗k+1(jk) as to make the Operator
indi�erent between the choices ¯̀

k+1 and `k+1: Using Table 5.1 and (5.19) with N → N − jk
and k → k − 1, Theorem 19.1 yields

N + 1

k + 1
=

N−k+1∑
jk=1

jk h
∗
k+1(jk) and

N + 1

k + 1
=

N−k+1∑
jk=1

N − jk + 1

k
h∗k+1(jk) ,

which is equivalent to

N−k+1∑
jk=1

jk h
∗
k+1(jk) =

N + 1

k + 1
. (5.21)

Note that the Inspectorate's �rst stage optimal strategies as given by (5.21) coincide for k = 2
interim inspections with (5.3) in Lemma 5.1. The relation between h∗k+1(jk) = q∗(jk,··· ) as given

by Theorem 5.2 and the one given by (5.21), however, remains an open question for k > 2
interim inspections. All we can say is that the optimal expected interim inspection time point
of the �rst interim inspection coincide: In fact, according to (4.43) and (5.9), we have

N−k+1∑
jk=1

jk h
∗
k+1(jk) =

N−k+1∑
jk=1

jk q
∗
(jk,··· )

=
∑

(jk,...,j1)∈S1

jk q
∗
(jk,...,j1)

= Eq∗(Tk) =
N + 1

k + 1
,

(5.22)

i.e., (5.21). Summing up, the optimal payo� to the Operator Op∗N,k and the optimal �rst stage
probabilities of the Operator g∗k+1 are the same as that given by Theorem 5.2.

In order to determine the Inspectorate's second stage optimal strategies, we extend Figure 5.4
such that we consider explicitly the Inspectorate's possibilities for choosing the time point jk−1
of the second interim inspection; see Figure 5.5. We see that there are N − k + 1 di�erent
subgames of the original game Γ(N, k). For k = 2 interim inspections we obtain Figure 5.1, if
we replace Γ(N − jk−1, k − 2) by N + 1− j1 for j1 = j2 + 1, . . . , N .

We see immediately that these subgames are structurally the same as the one given by Table
5.1. Thus, we obtain for all jk with jk = 1, . . . , N − k + 1 the payo� matrix in Table 5.2.

Table 5.2 Payo� matrix of the subgame Γ(N − jk, k − 1) starting at time point jk of the
recursive extensive form game in Figure 5.5.

jk + 1 . . . jk−1 . . . N − k + 2

¯̀
k jk + 1− jk . . . jk−1 − jk . . . N − k + 2− jk

`k Op∗N−jk−1,k−2 . . . Op∗N−jk−1,k−2 . . . Op∗k−2,k−2(= 1)

It will be shown in Theorem 5.3, that the Inspectorate's optimal strategy at the second stage
is given by

N−k+2∑
jk−1=jk+1

jk−1 h
∗
k(jk−1|jk) =

N + (k − 1) jk + 1

k
(5.23)
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Figure 5.5 Recursive extensive form of the �rst and second stage of the Se-Se inspection game
Γ(N, k) with N > k possible time points for k interim inspections.
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for all jk = 1, . . . , N − k + 1 which simpli�es for k = 2 interim inspections to (5.4) keeping in
mind that the case jk = N − k + 1 can be excluded from (5.23) because it implies h∗k(N −
k + 2|N − k + 1) = 1; see also the comment after (5.24).

Furthermore, the optimal expected interim inspection time point of the second interim inspec-
tion is, using (5.22) and (5.23), given by

N + (k − 1)Eq∗(Tk) + 1

k
=
N + (k − 1)

N + 1

k + 1
+ 1

k
= 2

N + 1

k + 1
,

which is the same as that of the Se-No inspection game; see (4.46) for n = k − 1.

Of course, the optimal probability for the Operator to postpone the illegal activity at time point
jk again, is, using (5.20), given by

g∗k(jk) =
k − 1

k
for all 1 ≤ jk ≤ N − k ,
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since only k − 1 interim inspections are left. Again, this result coincides for k = 2 interim
inspections with (5.2).

In contrast to the procedure in Section 5.1, see the remark on p. 79, we now assume that the
probabilities hn are only conditioned on jn, i.e., hn(jn−1|jn), which re�ects � as mentioned
there � the fact that the payo� to the Inspectorate for the remaining game depends only on jn
and the remaining time points jn−1, . . . , j1, and that the Inspectorate chooses at time point
jn only jn−1. We will return to this issue on p. 90. In sum, the set of the Inspectorate's
behavioural strategies is given by

H̃N,k :=
{
h := (hk+1, hk, . . . , h2) ∈ [0, 1]k :

N−k+1∑
jk=1

hk+1(jk) = 1 ,

N−n+2∑
jn−1=jn+1

hn(jn−1|jn) = 1 for all n = 2, . . . , k (5.24)

and all jn ∈ {k − n+ 1, . . . , N − n}
}
.

Note that as in the de�nition of HN,k in (5.7) the case jn = N −n+ 1 is excluded, because it
implies that jn−1 = N − n+ 2 and because 1 ≤ jn−1 ≤ N − n+ 2 the conditional probability
hn(jn−1|jn) has to be one.

Because the payo� to the Operator is de�ned recursively in this game, we present in Table 5.3
its recursive normal form, where OpN−jn−1,n−2 denotes the payo� (not necessarily the optimal
payo�) to the Operator in the subgame with N − jn−1 possible time points for n− 2 interim
inspections.

Table 5.3 Recursive normal form of the subgame Γ(N − jn, n− 1) starting at time point jn,
and in case the Operator behaves legally at jk+1(= 0), . . . , jn+1, 2 ≤ n ≤ k + 1.

jn + 1 . . . jn−1 . . . N − n+ 2

¯̀
n jn + 1− jn . . . jn−1 − jn . . . N − n+ 2− jn

`n OpN−(jn+1),n−2 . . . OpN−jn−1,n−2 . . . OpN−(N−n+2),n−2(= 1)

We now apply the recursive approach to the entire game Γ(N, k). The game theoretical solution
of this inspection game, which is published in this monograph for the �rst time, is presented in

Theorem 5.3. Given the recursive form of the Se-Se inspection game with N > k possible time
points for k interim inspections, i.e., Γ(N, k). The sets of behavioural strategies are given by
(4.30) and (5.24). The payo� to the Operator is de�ned recursively using the recursive normal
form representation in Table 5.3, and the optimal payo� to the Operator ful�ls the boundary
conditions (5.18).

Then an optimal strategy of the Operator is given by

g∗k+1 =
k

k + 1
and

g∗n(jn) =
n− 1

n
for all n = 2, . . . , k and jn = k − n+ 1, . . . , N − n ,

(5.25)
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and an optimal strategy of the Inspectorate by

N−k+1∑
jk=1

jk h
∗
k+1(jk) =

N + 1

k + 1
(5.26)

and, for all n = 2, . . . , k and all jn = k − n+ 1, . . . , N − n, by
N−n+2∑

jn−1=jn+1

jn−1 h
∗
n(jn−1|jn) =

N + (n− 1) jn + 1

n
. (5.27)

The optimal payo� to the Operator is

Op∗N,k := OpN,k(g
∗,h∗) =

N + 1

k + 1
. (5.28)

Proof. We prove the result with the help of the induction principle. At time point j2 with
1 ≤ j2 ≤ N−1, i.e., the time point of the (k−1)th interim inspection, the Inspectorate decides
about the time point j1 of the last interim inspection. That means the game has reached the
subgame Γ(N − j2, 1) in which the payo� to the Operator is denoted by OpN−j2,1(g2, h2). For
brevity reasons we write h2 instead of h2(j1|j2). Note that because the case j2 = N−1 implies
j1 = N , and therefore the Inspectorate has no strategic alternative, we con�ne ourselves to
j2 = k − 1, . . . , N − 2. The payo� matrix of the game Γ(N − j2, 1) is given in Table 5.4.

Table 5.4 Payo� matrix of the subgame Γ(N − j2, 1) starting at time point j2.

j2 + 1 . . . j1 . . . N

¯̀
2 j2 + 1− j2 . . . j1 − j2 . . . N − j2

`2 N − (j2 + 1) + 1 . . . N − j1 + 1 . . . 1

Using (5.25) and Table 5.4, we get for all j1 = j2 + 1, . . . , N

OpN−j2,1(g
∗
2, j1) =

1

2
(j1 − j2 +N − j1 + 1) =

N − j2 + 1

2
, (5.29)

i.e., OpN−j2,1(g
∗
2, h
∗
2) = OpN−j2,1(g

∗
2, h2) for all h2 and therefore, the right hand saddle point

inequality (19.11) is ful�lled as equality. Because g∗2 > 0, the indi�erence principle of Theorem
19.1 yields by Table 5.4 and (5.29)

N − j2 + 1

2
=

N∑
j1=j2+1

(j1 − j2)h∗2(j1|j2) and

N − j2 + 1

2
=

N∑
j1=j2+1

(N − j1 + 1)h∗2(j1|j2)

which is equivalent to

N∑
j1=j2+1

j1 h
∗
2(j1|j2) =

N + j2 + 1

2
,
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i.e., (5.27) for n = 2.

We now distinguish the two cases 1) n = 3, . . . , k and 2) n = k + 1.

Ad 1) If n = 3, . . . , k, then already (k + 1 − n) interim inspections have been performed,
i.e., the inspection game has reached time point jn with k − n + 1 ≤ jn ≤ N − n. Again
we exclude jn = N − n + 1. Then the Inspectorate decides about the time point jn−1 with
jn+1 ≤ jn−1 ≤ N−n+2 of the next interim inspection, i.e., the game has reached the subgame
Γ(N − jn, n− 1) in which the optimal payo� to the Operator is denoted by Op∗N−jn,n−1. The
induction hypothesis is

Op∗N−jn−1,n−2 =
(N − jn−1) + 1

(n− 2) + 1
. (5.30)

The payo� matrix of the subgame Γ(N − jn, n− 1) is given in Table 5.5.

Table 5.5 Payo� matrix of the subgame Γ(N − jn, n− 1) starting at time point jn.

jn + 1 . . . jn−1 . . . N − n+ 2

¯̀
n jn + 1− jn . . . jn−1 − jn . . . N − n+ 2− jn

`n Op∗N−(jn+1),n−2 . . . Op∗N−jn−1,n−2 . . . Op∗N−(N−n+2),n−2(= 1)

Then using (5.25), (5.30) and Table 5.5, we get for all jn−1 = jn + 1, . . . , N − n+ 2

OpN−jn,n−1(g
∗
n(jn), jn−1) =

1

n
(jn−1 − jn) +

n− 1

n
Op∗N−jn−1,n−2

=
1

n
(jn−1 − jn) +

n− 1

n

N − jn−1 + 1

n− 1

=
N − jn + 1

n
,

i.e., (5.30) for N − jn−1 → N − jn and n− 2→ n− 1. Again the indi�erence principle yields
by Table 5.5 and (5.30)

N−n+2∑
jn−1=jn+1

jn−1 h
∗
n(jn−1|jn) =

N + (n− 1) jn + 1

n
,

i.e., (5.27).

Ad 2) If n = k + 1 we consider the entire game Γ(N, k), the payo� matrix of which is given
in Table 5.1. The optimal strategies (5.20) and (5.21), and the optimal payo� to the Operator
(5.19) coincide with (5.25), (5.26) and (5.28).

Let us now return to the example of N = 7 possible time points for k = 3 interim inspections
which we considered at the end of the Section 5.1. By de�nition, the strategy (5.13) cannot be
optimal in the recursive game because h∗2(j1|j2) depends on j3. The strategy (5.12), however,



Chapter 5: Se-Se inspection game 91

is optimal: In addition to the normalization of the h's, and according to (5.26) and (5.27) the
following equations need to be ful�lled:

5∑
j3=1

j3 h
∗
4(j3) = 2 and

6∑
j2=j3+1

j2 h
∗
3(j2|j3) =

8 + 2 j3
3

and
7∑

j1=j2+1

j1 h
∗
2(j1|j2) =

8 + j2
2

.

The proof that the h's given by (5.14) ful�l this system of equations can be carried out using
elementary summation formulae and eventually some patience.

Summing up, the Operator's optimal strategies and the optimal payo�s to the Operator coincide
in the original Se-Se inspection game in Section 5.1 and the recursive Se-Se inspection game of
this section. The above examples leads to the conjecture that if we consider only those optimal
strategies h∗n of the Inspectorate from Theorem 5.2 which only depend on the current interim
inspection time point jn and not on jk, . . . , jn+1, then they are also optimal strategies of the
recursive Se-Se inspection game treated in this section.

Like in Section 5.1 we see that 1 − g∗2(j2), . . . , 1 − g∗k(jk), 1 − g∗k+1 as given by (5.25) form
a harmonic progression; see also Table 4.1 on p. 72 for an overview of inspection games with
this property.

5.3 Any number of inspection opportunities and interim in-
spections: step by step inspection game

Consider the following modi�ed version of the Se-Se inspection game which has been proposed
and analysed in a preliminary way by Canty and Avenhaus (1991b), and which is based on the
following speci�cation:

(vii') The Operator decides at any step, i.e., at any of the time points 0, 1, . . . , N , whether he
will start the illegal activity immediately in case he did not do so before, or not. Because
of assumption (iv), the Operator starts the illegal activity latest immediately at the time
point of the last interim inspection.

The Inspectorate decides at any step, i.e., at any of the time points 1, . . . , N , if it will
perform an interim inspection as long as it has interim inspections left.

Note that assumption (vii') in Sections 5.1 and 5.2 means for example that the Inspectorate
decides at the beginning of the reference time interval at which time point it performs its �rst
interim inspection, while here it decides only whether to perform its �rst interim inspection at
time point 1 or not.

Before dealing with the general step by step version of the Se-Se inspection game � in the
following called step by step inspection game � with N possible time points for k interim
inspections we consider several special cases. Figure 5.6 represents the extensive form of the
step by step inspection game with N = 3 possible time points for k = 2 interim inspections.

In Figure 5.6, the Operator decides at time point 0 to start the illegal activity immediately (¯̀3)
with probability 1 − g3 or to postpone its start (`3) with probability g3. In the latter case he
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Figure 5.6 Extensive form of the step by step inspection game with N = 3 possible time points
for k = 2 interim inspections.
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decides at time point 1 to start the illegal activity at this time point (¯̀2) with probability 1−g2
or to postpone its start again (`2) with probability g2. In the latter case he starts it at time
point 2 because then the expected detection time is from the interval [1, 2], while in case of
postponing the start of the illegal activity to time point 3 the detection time is 1, the shortest
possible one. Formally speaking, waiting until time point 3 for starting the illegal activity is
a weakly dominated strategy, which is excluded from the model. Thus, the Operator's set of
behavioural strategies is given by

G2 := {g := (g3, g2) : g3, g2 ∈ [0, 1]} . (5.31)

The time line of the interim inspections together with the Operator's probabilities in the step
by step inspection game with N = 3 possible time points for k = 2 interim inspections are
represented in Figure 5.7.

The Inspectorate decides at time point 1, not knowing the Operator's decision at time point
0, to perform the �rst interim inspection at time point 1 (c3) with probability 1 − h3 or to
postpone it (c̄3) with probability h3.

2 In the �rst case it decides at time point 2, not knowing
the Operator's decision at time point 1, to perform the second interim inspection at time point
2 (c2) with probability 1 − h2 or to postpone it with probability h2. In the latter case the
Inspectorate has to perform it at time point 3 (c1). If the Inspectorate does not perform the
�rst interim inspection at time point 1 (c̄3), it must perform the interim inspections at time

2Even though in this section interim inspections are considered, we use here the symbol c indicating a
control which corresponds to the notation used in Chapters 16 and 17.
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Figure 5.7 Time line of the interim inspections and probabilities of the Operator and Inspec-
torate in the step by step inspection game with N = 3 possible time points for k = 2 interim
inspections. cn and c̄n, n = 1, 2, 3, indicate the actions of the Inspectorate at time point 4−n.
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points 2 and 3. Therefore, the Inspectorate's set of behavioural strategies is given by

H3 :=
{
h := (h3, h2) : h3, h2 ∈ [0, 1]

}
, (5.32)

see also Figure 5.7. Note that the index in G2 refers to the number k of interim inspections
while the index in H3 refers to the number N of possible time points.

Also note that there are more informations sets of the Inspectorate than presented in Figure 5.6
which, however, have no alternatives at their nodes and therefore, can be omitted if optimal
strategies are sought.3 We will come back to this subtle issue on p. 317.

Using Figure 5.6, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any g ∈ G2 and any h ∈ H3, given by

Op3,2(g,h) := (1− g3)
[
(1− h3) 1 + h3 2

]
+ g3

[
(1− h3) [(1− g2) ((1− h2) 1 + h2 2) + g2 ((1− h2) 2 + h2 1)] + h3 1

]
. (5.33)

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Lemma 5.2. Given the step by step version of the Se-Se inspection game with N = 3 possible
time points for k = 2 interim inspections, the extensive form of which is represented in Figure
5.6. The sets of behavioural strategies are given by (5.31) and (5.32), and the payo� to the
Operator by (5.33).

Then an optimal strategy of the Operator is given by

g∗3 =
2

3
and g∗2 =

1

2
, (5.34)

3For instance: After the moves `3c̄3 the Inspectorate does not know at time point 2 whether the Operator
has started the illegal activity at time point 1 (¯̀2) or postponed its start again (`2), i.e., the two nodes after
the moves `3c̄3 ¯̀

2 and `3c̄3`2 belong to an information set which is not presented in Figure 5.6, because the
Inspectorate must inspect (c2) and has no other strategic alternatives in this situation.
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and an optimal strategy of the Inspectorate by

h∗3 =
1

3
and h∗2 =

1

2
. (5.35)

The optimal payo� to the Operator is

Op∗3,2 := Op3,2(g
∗,h∗) =

4

3
. (5.36)

Proof. Using (5.33), (5.34) � (5.36) imply Op3,2(g
∗,h) = Op∗3,2 = Op3,2(g,h

∗) for any
g ∈ G2 and any h ∈ H3, i.e., the saddle point criterion is ful�lled as equality.

For later purposes, see p. 98, we determine the optimal expected interim inspection time points
Eh∗(T2) and Eh∗(T1) of the two interim inspections at time points T2 and T1. Using (5.35)
and Figure 5.7 we get

Eh∗(T2) = (1− h∗3) 1 + h∗3 2 =
4

3
= Op∗3,2 and

Eh∗(T1) = (1− h∗3) (1− h∗2) 2 + (h∗3 + (1− h∗3)h∗2) 3 =
8

3
= 2Op∗3,2 ,

this means that the optimal expected interim inspection time points divide the reference time
interval into three sections of equal lengths.

Looking once more at Figure 5.6 we see that after the moves `3c3 a proper subgame with
N = 2 possible time points for k = 1 interim inspection is reached. This permits a recursive
method for solving this game: If we replace this subgame by its optimal payo� Op∗2,1 = 3/2,
then we have a reduced game in form of a 2× 2 matrix game which can be solved easily and,
of course, leads to the same solution as the standard method. In fact, the existence of a proper
subgame in the step by step inspection game with N = 3 possible time points for k = 2 interim
inspections was the reason for starting the analysis with this game.

Let us consider next the step by step inspection game with N = 3 possible time points for
k = 1 interim inspection, the extensive form of which is represented in Figure 5.8. We see
that the Operator's and the Inspectorate's decisions at 0 and 1 are the same as in the game of
Figure 5.6. At 2, however, the Inspectorate has a choice between c2 and c̄2 if it chose c̄3 at 1.
This, in turn, creates a larger information set for the Inspectorate at 1 than that given in the
game of Figure 5.6.

Let g3, g2 and h3, h2 be the Operator's and the Inspectorate's probabilities as introduced for
the step by step inspection game with N = 3 possible time points for k = 2 interim inspections.
It will be shown in Theorem 5.4 that this inspection game has the game theoretical solution

g∗3 =
1

2
, g∗2 = 1 , h∗3 =

2

3
, h∗2 =

1

2
and Op∗3,1 = 2 . (5.37)

Contrary to the step by step inspection game with N = 3 possible time points for k = 2
interim inspections, see Figure 5.6, the step by step inspection game with N = 3 possible time
points for k = 1 interim inspection does not contain any proper subgame. The fact, however,
that the game appears already to be �nished after the Operator acts illegally at time point 0
(¯̀3), motivates the attempt to cut the information set of the Inspectorate at time point 2, as
indicated in the Figure 5.8. This way, we obtain on the right hand side a subgame starting
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Figure 5.8 Extensive form of the step by step inspection game with N = 3 possible time points
for k = 1 interim inspection.
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after the moves `3c̄3 with N = 2 possible time points for k = 1 interim inspection, and we
proceed in a similar way as before: We replace the subgame by its optimal expected detection
time Op∗2,1 = 3/2, and use at the left hand branch in Figure 5.8 the same h∗2 = 1/2 as that
obtained from the subgame. Thus, we obtain a reduced extensive form game which can be
solved easily. The game theoretical solution of this auxiliary step by step inspection game with
N = 3 possible time points for k = 1 interim inspection, i.e., the game of Figure 5.8 with the
cutted information set, is given by

g̃∗3 =
1

2
, g̃∗2 =

1

2
and h̃∗3 =

2

3
, h̃∗2 =

1

2
and Õp

∗
3,1 = 2. (5.38)

Thus, comparing the game theoretical solution of the step by step inspection game with N = 3
possible time points for k = 1 interim inspection with those of the corresponding auxiliary step
by step inspection game, i.e., comparing (5.37) with (5.38), the surprising result is that the
optimal strategy of the Inspectorate and the optimal payo� to the Operator coincide, while the
optimal strategies of the Operator are di�erent.

Since it has not been successful to solve the step by step inspection game with any number
N of possible time points for any number k of interim inspections, it is tempting to solve the
corresponding auxiliary step by step inspection game as illustrated above. In fact, this has been

done in Canty and Avenhaus (1991b) leading to Õp
∗
N,k = (N+1)/(k+1) as the optimal payo�

to the Operator, i.e., the same as that for the Se-Se inspection game; see (5.11). We do not
present the derivations for the auxiliary step by step inspection game here because we cannot
compare its game theoretical solution with that of the step by step inspection game.

Instead let us turn to the step by step inspection game with N possible time points for k = 1
interim inspection. Let 1 − gN resp. gN denote the probability that the Operator starts the
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illegal activity at time point 0 resp. to postpone its start. In the latter case he will start it
immediately at the time point of the interim inspection because only then he maximizes the
time between start and detection at the �nal PIV; see assumption (vii'). Thus, the Operator's
set of behavioural strategies is given by

G1 := {gN : gN ∈ [0, 1]} . (5.39)

Note that a formal description of the Operator's behaviour in the step by step game would
require the introduction of the probabilities gN−1, . . . , g1 of postponing the start of the illegal
activity at any step; see also Figure 5.9. However, any strategy (gN , gN−1, . . . , g1), gn ∈ [0, 1],
n = 1, . . . , N , is weakly dominated by the strategy (gN , g

∗
N−1, . . . , g

∗
1) with

g∗n(c) =

{
0 if c = cn+1

1 if c = c̄n+1

, n = 1, . . . , N − 1 , (5.40)

and thus, only gN needs to be considered as strategic variable. The meaning of (5.40) is that
in case the Operator postpones the start of the illegal activity at time point 0, he will wait until
the only interim inspection is performed, and starts then the illegal activity immediately.

Figure 5.9 Time line of the interim inspections and probabilities of the Operator and Inspec-
torate in the step by step inspection game with N > k possible time points for k = 1 interim
inspection. cn and c̄n, n = 1, . . . , N , indicate the actions of the Inspectorate at time point
(N + 1)− n.
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At any step n, n = 1, . . . , N , and in case the Inspectorate has not performed the interim
inspections yet, it performs the interim inspections (cn) with probability 1− hn and postpones
it again (c̄n) with probability hn; see Figure 5.9. In case the Inspectorate postpones its interim
inspection until time point N , i.e., hN = hN−1 = . . . = h2 = 1, it has to inspect at time
point N which means h1 = 0, and therefore, h1 is not a strategic variable. Thus, the sets of
behavioural strategies of the Inspectorate is given by

HN :=
{
h := (hN , hN−1, . . . , h2) : hn ∈ [0, 1] , n = 2, . . . , N

}
. (5.41)

The (expected) payo� to the Operator, i.e., the expected detection time, is, for any gN ∈ G1

and any h ∈ HN , given by

OpN,1(gN ,h) := (1− gN )
[
1 (1− hN ) + 2hN (1− hN−1) + . . .

+ (N − 1)hN . . . h3 (1− h2) +N hN . . . h2

]
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+ gN

[
N (1− hN ) + (N − 1)hN (1− hN−1) + . . .

+ 2hN . . . h3 (1− h2) + 1hN . . . h2

]
. (5.42)

Payo� (5.42) can be explained, using Figure 5.9, as follows: If the Operator starts the illegal
activity at time point 0 (with probability 1− gN ), then the detection time is 1, 2, . . . , N with
the probabilities 1− hN , hN (1− hN−1), . . . , hN . . . h2, respectively. In case he postpones the
start of the illegal activity (with probability gN ), the detection time is N,N − 1, . . . , 1 again
with the probabilities 1− hN , hN (1− hN−1), . . . , hN . . . h2, respectively.

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Theorem 5.4. Given the step by step version of the Se-Se inspection game with N > 1 possible
time points for k = 1 interim inspection. The sets of behavioural strategies are given by (5.39)
and (5.41), and the payo� to the Operator by (5.42).

Then an optimal strategy of the Operator is given by

g∗N =
1

2
, g∗n(c) =

{
0 if c = cn+1

1 if c = c̄n+1

, n = 1, . . . , N − 1 , (5.43)

and an optimal strategy of the Inspectorate by

h∗n =
n− 1

n
, n = 2, . . . , N . (5.44)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(g
∗
N ,h

∗) =
N + 1

2
. (5.45)

Proof. Using (5.42) we obtain with (5.43)

2OpN,1(g
∗
N ,h)

N + 1
= (1− hN ) + hN (1− hN−1) + . . .+ hN . . . h3 (1− h2) + hN . . . h2 = 1

for any h ∈ HN . (5.44) implies for all n = 2, . . . , N − 1

h∗N h
∗
N−1 . . . h

∗
n+1 (1− h∗n) =

N − 1

N

N − 2

N − 1
. . .

n

n+ 1

1

n
=

1

N
(5.46)

and

h∗N h
∗
N−1 . . . h

∗
3 h
∗
2 =

N − 1

N

N − 2

N − 1
. . .

2

3

1

2
=

1

N
. (5.47)

Thus, (5.42) gives

N OpN,1(gN ,h
∗) = (1− gN )

N (N + 1)

2
+ gN

N (N + 1)

2
=
N (N + 1)

2

for any gN ∈ G1. Therefore, we have OpN,1(gN ,h
∗) = OpN,1(g

∗
N ,h

∗) = OpN,1(g
∗
N ,h) for

any gN ∈ G1 and any h ∈ HN , i.e., the saddle point inequality is ful�lled as equality.
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Using Figure 5.9, (5.44), (5.46) and (5.47), the optimal expected interim inspection time point
is given by

Eh∗(T1) = 1 (1− h∗N ) + 2h∗N (1− h∗N−1) + 3h∗N h
∗
N−1 (1− h∗N−2) + . . .

+ N h∗N h
∗
N−1 . . . h

∗
2

=
1

N

N∑
i=1

i =
N + 1

2
= Op∗N,1 ,

which corresponds to (4.46) for k = 1 interim inspection.

Furthermore, the optimal strategy of the Operator is to decide at the beginning of the reference
time interval with probabilities 1/2 to start the illegal activity immediately or to postpone its
start, and in the latter case to wait for the interim inspection.

Together with the result of Lemma 5.2, this encourages us to formulate a conjecture for the
general game which only makes a structural statement on optimal strategies but does not give
any advice on how to calculate them.

Conjecture 5.1. Given the step by step version of the Se-Se inspection game with N > k
possible time points for k interim inspections.

Then an optimal strategy of the Operator is to postpone the start of the illegal activity at time
point 0 with probability g∗N = k/(k+ 1). In case the Operator postpones the illegal activity he
waits for the next interim inspection.

An optimal strategy of the Inspectorate is to choose the time points for the interim inspections
such that the optimal expected interim inspection time points are

Eh∗(Tk) =
N + 1

k + 1
, Eh∗(Tk−1) = 2

N + 1

k + 1
, . . . , Eh∗(T1) = k

N + 1

k + 1
.

The optimal payo� to the Operator is given by (5.45).

Suppose Conjecture 5.1 were true, then the step by step version of the Se-Se inspection game
and the original Se-Se inspection game treated in Sections 5.1 and 5.2 share common features:
They lead to the same optimal expected detection time and corresponding optimal strategies
of both players. In our view the Se-Se inspection game describes the inspection problem in a
more natural way since both players make their decisions at the beginning of the reference time
interval and after an interim inspection: In between the players do not gain any information
which might be useful for them.

Finally, let us note that von Stengel (1991) has considered a model which is very similar to the
step by step model considered here. However, he assumes inter alia that an illegal activity is
discovered instantly if it coincides with an interim inspection and that in this case the payo�
to the Operator is zero, i.e., the same as in case of legal behaviour. Even though v. Stengel
was able to determine the game theoretical solution for the general case of any number N of
steps for any number k of interim inspections, we do not describe it here in detail since we
cannot imagine a real situation which is met by the above mentioned assumption. Nevertheless,
any researcher who attempts to prove or disprove Conjecture 5.1 is encouraged to study von
Stengel (1991) �rst, because his solution method could provide a path for the solution of the
step by step version of the Se-Se inspection game with N possible time points for k interim
inspections.



Chapter 6

Models with errors of the second

kind

In Chapters 3 to 5 we have assumed that an illegal activity of the Operator will be detected
by the Inspectorate during the next interim inspection or at the ending Physical Inventory
Veri�cation (PIV) with certainty. In this chapter we assume that a detection will happen during
an interim inspection only with a detection probability 1− β, i.e., assumption (v) of Chapter 2
is speci�ed as follows:

(v') During an interim inspection the Inspectorate may commit an error of the second kind
with probability β ≥ 0, i.e., the illegal activity, see assumption (iv), is not detected
during the next interim inspection with probability β. Note that if there is no interim
inspection left, then it is detected with certainty at the �nal PIV; see assumption (iii).
This non-detection probability is the same for all interim inspections.

The remaining assumptions of Chapter 2 hold throughout this chapter. Note that there are
practical cases where di�erent interim inspections may lead to di�erent detection probabilities;
an example is given in Section 6.6. As in Chapters 3 to 5, assumption (vii) of Chapter 2 needs
to be appropriately modi�ed. We do not do this in Sections 6.1 to 6.4 explicitly, but refer the
reader to (vii') on pp. 21, 50, 55 and 75 in the respective chapters.

Let us comment assumption (v'): Statistical problems where only errors of the second kind are
possible, also called attribute sampling problems usually occur when random sampling schemes
are used, where items are counted, and where errors arise only when falsi�ed or wrong items are
not contained in the sample; see Thyregod (1988). If quantitative measurements are performed
by the Inspectorate, then errors of the �rst kind � false alarm � may occur; see p. 4 and Section
7.4. The possibility that the Inspectorate may commit an error of the �rst kind is not considered
in this chapter. The reason simply is that game theoretical solutions of discrete time inspection
games with errors of the �rst and second kind do not exist, contrary to the continuous time
case which will be analysed in Part II.

This chapter is based on Avenhaus et al. (2010) and Avenhaus and Krieger (2013a). In Sections
6.1 to 6.4 we analyse all four variants given in Table 2.1 for the cases of N = 3 possible time
points for k = 1 resp. k = 2 interim inspection(s) and, for β ≥ 0. Also, in Sections 6.1 and
6.3 the case of any number N of possible time points for k = 1 interim inspection is treated.
In Section 6.5 we compare the optimal expected detection times derived in the former sections.
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At �rst sight the inspection games with N = 3 possible time points for k = 1 resp. k = 2
interim inspection(s) appear simple, but they are not trivial; also they are based on concrete
applications. For this reason we will shortly present these applications in Section 6.6.

Since the sets of strategies of both the Operator and the Inspectorate are the same as those for
the games analysed in Chapters 3 to 5, we will refer to them. For this reason, we recommend
to study these chapters with some care before entering into this one.

Note that only for the No-No and Se-No inspection games with N ≥ 2 possible time points for
k = 1 interim inspection in Sections 6.1 and 6.3 the optimal expected time point for the start
of the illegal activity resp. the optimal expected interim inspection time point is considered.

6.1 No-No: Any number of inspection opportunities and one
interim inspection; three inspection opportunities and two
interim inspections

Let us begin with the case of N = 3 possible time points for k = 1 interim inspection, which
may be performed at three possible time points 1, 2 or 3. Thus, as explained in Section 3.1,
the set of pure strategies of the Inspectorate is given by J3,1 and that of the Operator by I3;
see (3.1) and (3.2). The matrix of the detection times, i.e., the payo� matrix of this inspection
game, is given by Table 6.1.

Table 6.1 Payo� matrix of the No-No inspection game with N = 3 possible time points for
k = 1 interim inspection and with errors of the second kind.

1 2 3

0 1 + 3β 2 + 2β 3 + β

1 3 1 + 2β 2 + β

2 2 2 1 + β

3 1 1 1

For two cases we explain the payo� and its computation. Let i = 0 and j = 1, i.e., the
Operator starts the illegal activity at time point 0 while the Inspectorate performs its interim
inspection at time point 1. Then the illegal activity is detected at 1 with probability 1− β and
not detected at 1 with β. If it is not detected at time point 1 then it will be detected at the
�nal PIV with certainty; see the assumption (iii) of Chapter 2. Therefore, the detection time,
i.e., the payo� to the Operator, is (1− β) 1 + β 4 = 1 + 3β. If i = j = 1, then, according to
assumption (x), the illegal activity will be detected only at the �nal PIV and is therefore 3.

In analogy to the case of N = 3 possible time points for k = 1 interim inspection on p. 23,
let pi, i = 0, . . . , 3, be the probability that the illegal activity is started at time point i and qj ,
j = 1, 2, 3, be the probability to perform the interim inspection at time point j. Thus, the sets
of mixed strategies of both players are given by (3.4) and (3.5).

Using Table 6.1, the Operator's (expected) payo�, i.e., the expected detection time, is, for any



Chapter 6: Models with errors of the second kind 101

p ∈ P3 and any q ∈ Q3,1, in analogy to (3.6) given by

Op3,1(p,q) := p0 [(1 + 3β) q1 + (2 + 2β) q2 + (3 + β) q3]

+ p1 [3 q1 + (1 + 2β) q2 + (2 + β) q3]

+ p2 [2 q1 + 2 q2 + (1 + β) q3] + p3 . (6.1)

Like on p. 24 it can be shown that the pure strategy "starting the illegal activity at time point
3" is a strictly dominated strategy: Using the Operator's strategies p1 := (0, 0, 0, 1)T and
p2 := (0, 1/2, 1/2, 0)T , we get by (6.1)

Op3,1(p2,q) =
1

2

(
5 q1 + (3 + 2β) (q2 + q3)

)
=

1

2

(
2 (1− β) q1 + 3 + 2β

)
≥ 3 + 2β

2
≥ 3

2
> 1 = Op3,1(p1,q)

for any q ∈ Q3,1, i.e., p1 is strictly dominated and thus not used in any optimal strategy.

The game theoretical solution of this inspection game, see Avenhaus et al. (2010), is presented
in

Lemma 6.1. Given the No-No inspection game with N = 3 possible time points for k = 1
interim inspection, and with errors of the second kind. The sets of mixed strategies are given
by (3.4) and (3.5), and the payo� to the Operator by (6.1).

Then optimal strategies and the optimal payo� Op∗3,1 := Op3,1(p
∗,q∗) to the Operator are

given by:

(i) For 0 ≤ β < 1/6 an optimal strategy of the Operator is given by

p∗ =

(
1

3
,
1

6
,
1

2
, 0

)T
,

and an optimal strategy of the Inspectorate by

q∗ =
1

1− β

(
1

3
,
1

2
,
1

6
− β

)T
.

The optimal payo� to the Operator is

Op∗3,1 =
11

6
+ β .

(ii) For 1/6 < β < 2/3 an optimal strategy of the Operator is given by

p∗ =

(
2

3
,
1

3
, 0, 0

)T
,

and an optimal strategy of the Inspectorate by

q∗ =
1

1− β

(
1

3
,
2− 3β

3
, 0

)T
.

The optimal payo� to the Operator is

Op∗3,1 =
10

6
+ 2β .
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(iii) For 2/3 < β ≤ 1 an optimal strategy of the Operator and an optimal strategy of the
Inspectorate are given by

p∗ = (1, 0, 0, 0)T and q∗ = (1, 0, 0)T .

The optimal payo� to the Operator is

Op∗3,1 =
6

6
+ 3β .

Proof. We have to show, see (19.11), that

Op3,1(i,q
∗) ≤ Op∗3,1 ≤ Op3,1(p∗, j) (6.2)

for all i = 0, 1, 2, 3 and for all j = 1, 2, 3.

Ad (i): We have

Op3,1(i,q
∗) =

{
Op∗3,1 : i = 0, 1, 2

1 : i = 3
and Op3,1(p

∗, j) = Op∗3,1 for all j = 1, 2, 3 ,

i.e., the inequalities in (6.2) are ful�lled.

Ad (ii): We obtain

Op3,1(i,q
∗) =

{
Op∗3,1 : i = 0, 1

3− i+ 1 : i = 2, 3
and Op3,1(p

∗, j) =


Op∗3,1 : j = 1, 2

8

3
+ β : j = 3

.

Again, the inequalities in (6.2) are ful�lled.

Ad (iii): We get

Op3,1(i,q
∗) =

{
1 + 3β : i = 0

3− i+ 1 : i = 1, 2, 3
and

Op3,1(p
∗, j) = j + (3− j + 1)β

for all j = 1, 2, 3 ,

i.e., the inequalities in (6.2) are ful�lled again.

Let us comment the results of Lemma 6.1: First, in contrast to Lemma 3.1 in which the cut-o�
value n∗ can not be recognized yet (starting the illegal activity at time point 3 is a dominated
strategy and is therefore not chosen), the existence of cutting-value n∗ is strongly pronounced
here for the cases (ii) and (iii). Looking at this inspection problem for β = 0 from the common
sense point of view, the Inspectorate should perform its interim inspection in the middle of the
reference time interval with the resulting detection time of 2. The game theoretical solution,
however, leads to slightly shorter detection times in case (i); see also p. 25.

Second, solutions of most games are seldom intuitive. So it is also in this game. It is not trivial
nor explainable that the Inspectorate performs, e.g., its interim inspection at time point 1 with
the probability q∗1 given in Lemma 6.1. It is rather a result. But what can be done is to explain
the structure of the optimal strategies. From the common sense of view it is clear that when
the non-detection probability β is high, e.g., β > 2/3 in case (iii), the Operator will start the
illegal activity as early as possible, i.e., p∗0 = 1, and so the Inspectorate will also perform its
interim inspection as early as possible, i.e., q∗1 = 1.
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Third, it is interesting and surprising, that the Operator's optimal strategies are constant in the
β-intervals [0, 1/6), (1/6, 2/3) and (2/3, 1], contrary to the Inspectorate's optimal strategies.
This is no longer true in the No-No inspection game with N = 3 possible time points for k = 2
interim inspections; see Lemma 6.2.

Fourth, the case β = 1 deserves special attention. In that case, the illegal activity will be
detected only at the end of the reference time interval. Thus, the Operator will start it right at
the beginning and the detection time will be 4, independently of what the Inspectorate does.
Formally, Table 6.1 shows that the �rst strategy of the Operator dominates all other ones, and
that the Inspectorate is indi�erent with respect to its pure strategies. Since we do not want to
put too much emphasis on this unrealistic case, we have given in Lemma 6.1 for β = 1 just
one optimal strategy of the Inspectorate instead of in�nitely many ones. We will proceed in the
same way in all subsequent Lemmata of this chapter.

Fifth, using the optimal strategies of Lemma 6.1, we obtain, using the de�nition on the left
hand side of (3.36) and (3.38),

Ep∗(S) =



7

6
: 0 ≤ β < 1

6
1

3
:

1

6
< β <

2

3

0 :
2

3
< β ≤ 1

and Eq∗(T1) =


3− 7

6 (1− β)
: 0 ≤ β < 1

6

2− 1

3 (1− β)
:

1

6
< β <

2

3

1 :
2

3
< β ≤ 1

.

The relation of Ep∗(S) and Eq∗(T1) to n
∗ and Op∗3,1 is illustrated in (6.13) and (6.14).

Finally, the optimal strategies and the optimal payo� to the Operator are not given for the
limiting cases β = 1/6 and β = 2/3 because in reality exact values of β will rarely occur.
Nevertheless we will consider them here in some detail; in the remainder of the monograph,
however, we will exclude the limiting cases from our discussion. Note that the optimal strategies
of the Inspectorate and the optimal payo� to the Operator as a function of β are continuous
at β = 1/6 and β = 2/3, but not the optimal strategies of the Operator. It can be seen with
the help of (6.2), that for β = 1/6 the mixed strategies p∗(λ) and q∗ given by

p∗(λ) := λ


1/3
1/6
1/2
0

+ (1− λ)


2/3
1/3
0
0

 , λ ∈ [0, 1] , and q∗ =

2/5
3/5
0


are optimal strategies with the optimal payo� Op∗3,1 = 2 to the Operator. Note that p∗(λ) is
a convex combination of two mixed strategies and thus, a mixed strategy itself. For β = 2/3
the mixed strategies

p∗(λ) := λ


2/3
1/3
0
0

+ (1− λ)


1
0
0
0

 , λ ∈ [0, 1] , and q∗ =

1
0
0


are optimal strategies for both players leading to the optimal payo� Op∗3,1(2/3) = 3 to the
Operator, which can again be seen with the help of (6.2).

We now generalize Lemma 6.1 to any number N of possible time points for k = 1 interim
inspection. Because the detection time is for i < j given by (1− β)(j − i) + β (N + 1− i) =
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j − i+ β (N + 1− j), we get in analogy to (3.11)

OpN,1(i, j) :=

{
j − i+ β (N + 1− j) for 0 ≤ i < j < N + 1

N + 1− i for 1 ≤ j ≤ i < N + 1
. (6.3)

The game theoretical solution of this inspection game, which is a generalization of Theorem
3.1 and which is published in this monograph for the �rst time, is presented in

Theorem 6.1. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection, and with errors of the second kind. The sets of mixed strategies are given
by (3.13) and (3.14), and the payo� to the Operator by (3.15) using (6.3). De�ne the cut-o�
value n∗ by

n∗ := min

n : n ∈ {1, . . . , N} with
n∑
j=1

1

N + 1− j
≥ 1− β

 . (6.4)

Then an optimal strategy for the Operator is given by

p∗i =



1

N
(N + 1− n∗) for i = 0

(N + 1− n∗)
(N + 1− i) (N − i)

for i = 1, . . . , n∗ − 1

0 for i = n∗, . . . , N

, (6.5)

and an optimal strategy of the Inspectorate by

q∗j =



1

1− β
1

N + 1− j
for j = 1, . . . , n∗ − 1

1− 1

1− β

n∗−1∑
j=1

1

N + 1− j
for j = n∗

0 for j = n∗ + 1, . . . , N

. (6.6)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(p
∗,q∗) =

n∗∑
j=1

N + 1− n∗

N + 1− j
+ β (N + 1− n∗) . (6.7)

Proof. The proof goes along the same lines as that of Theorem 3.1. According to (6.5), we
have p∗n∗−1 > 0, thus, the indi�erence principle in Theorem 19.1 implies, using (6.3) and (6.6),
that

OpN,1(p
∗,q∗) = OpN,1(n

∗ − 1,q∗) = (N + 2− n∗)
n∗−1∑
j=1

q∗j + (1 + β (N + 1− n∗)) q∗n∗

= (1− β) (N + 1− n∗)
n∗−1∑
j=1

q∗j + 1 + β (N + 1− n∗)
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=

n∗−1∑
j=1

N + 1− n∗

N + 1− j
+ 1 + β (N + 1− n∗) , (6.8)

i.e., (6.7).

Note that the �rst comment made on p. 34 on interesting properties of the optimal strategies
p∗ and q∗ holds here as well. In Lemma 6.1 we have seen that 3 regions of β-values need to
be distinguished. For arbitrary N the regions of β-values are, using (6.4), given by0, 1−

n∗−1∑
j=1

1

N − j + 1

 , . . . ,

(
1− 1

N
− 1

N − 1
, 1− 1

N

)
,

(
1− 1

N
, 1

]
,

which for N = 5 possible time points gives[
0,

13

60

)
,

(
13

60
,
11

20

)
,

(
11

20
,
4

5

)
,

(
4

5
, 1

]
, (6.9)

see also p. 111. Note that in Lemma 9.2 the continuous time version of this inspection game
is treated.

Interesting enough, there is a close analogy to Lemma 3.2:

Corollary 6.1. Given the No-No inspection game with N > 1 possible time points for k = 1
interim inspection, and with errors of the second kind analysed in Theorem 6.1.

Then the following bounds hold for the cut-o� value n∗(N) and for the optimal expected
detection time Op∗N,1:(

1− 1

e1−β

)
N < n∗(N) <

(
1− 1

e1−β

)
(N + 1) + 1 (6.10)

and

N + 1− n∗ < Op∗N,1 < N + 2− n∗ . (6.11)

Proof. According to the proof of Lemma 3.2 we get from (3.31)

1

1− β
ln

[
N + 1

N + 1− n

]
≤ 1

1− β

n∑
j=1

1

N + 1− j
≤ 1

1− β
ln

[
N

N − n

]
(6.12)

for any n ∈ {1, . . . , N − 1}. Thus, by (6.4) we get1

n∗∑
j=1

1

N + 1− j
≥ 1− β and

n∗−1∑
j=1

1

N + 1− j
< 1− β .

Making use of (6.12), this leads to

1− β ≤ ln

[
N

N − n∗

]
and ln

[
N + 1

N + 2− n∗

]
< 1− β .

1Note that contrary to the case of β = 0, the ≥ sign in (6.4) cannot be replaced by the > sign; see the
footnote on p. 27.
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Combining both inequalities leads to (6.10). Because (6.4) yields

1− β ≤
n∗∑
j=1

1

N + 1− j
< 1− β +

1

N + 1− n∗
,

multiplying these two inequalities with N + 1− n∗ and using (6.7) we get

(1− β) (N + 1− n∗) ≤ Op∗N,1 − β (N + 1− n∗) < (1− β) (N + 1− n∗) + 1 ,

which is equivalent to (6.11).

In analogy to the derivations in (3.36), we obtain for the optimal expected time point for the
start of the illegal activity Ep∗(S), using (6.5),

Ep∗(S) =

N∑
i=0

i p∗i = n∗ −
n∗∑
i=1

N + 1− n∗

N + 1− i
= n∗ −Op∗N,1 + β (N + 1− n∗) , (6.13)

which can be explicitly con�rmed for the case of N = 3 possible time points on p. 103. In
case of β = 0, (6.13) reduces to (3.37). Using (6.6) and (6.8), we get

(1− β)

N∑
j=1

(N + 1− j) q∗j = n∗ − 1 + (1− β) (N + 1− n∗)−
n∗−1∑
j=1

N + 1− n∗

N + 1− j

= n∗ − 1 + (1− β) (N + 1− n∗)− (Op∗N,1 − 1− β (N + 1− n∗))

= N + 1−Op∗N,1 ,

which leads, using (6.3) and p∗0 > 0, to

Op∗N,1 = Eq∗(T1) + β

N∑
j=1

(N + 1− j) q∗j = Eq∗(T1) +
β

1− β
(N + 1−Op∗N,1) .

Thus, the optimal expected interim inspection time point Eq∗(T1) is given by

Op∗N,1 = (1− β)Eq∗(T1) + β (N + 1) , (6.14)

which leads, using (6.13), to

Ep∗(S) + (1− β)Eq∗(T1) = (1− β)n∗ , (6.15)

which for β = 0 coincides with (3.38) and (3.39). The case of N = 3 possible time points on
p. 103 con�rms the relations (6.14) and (6.15). Note also, that in the continuous time version
of this inspection game which is analysed in Section 9.3 we �nd corresponding results.

Let us now consider the inspection game with N = 3 possible time points for k = 2 interim
inspections. Because the Operator's time point for starting the illegal activity does not depend
on the number of interim inspections, his set of pure strategies is again given by I3 with the set
of mixed strategies P3; see (3.2) and (3.4). In this game the Inspectorate's set of pure strategy
is {(1, 2), (1, 3), (2, 3)}, i.e., J3,2 as given by (3.50) and therefore its set of mixed strategies is
Q3,2; see (3.52). The payo� matrix of this inspection game is given in Table 6.2.
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Table 6.2 Payo� matrix of the No-No inspection game with N = 3 possible time points for
k = 2 interim inspections and with errors of the second kind.

(1, 2) (1, 3) (2, 3)

0 1 + β + 2β2 1 + 2β + β2 2 + β + β2

1 1 + 2β 2 + β 1 + β + β2

2 2 1 + β 1 + β

3 1 1 1

Let us explain the entry i = 0 and (j2, j1) = (1, 2) of the payo� matrix. If the pure strategy
combination (0, (1, 2)) is played, then the Operator starts the illegal activity at time point 0
and the Inspectorate performs its interim inspection at time points 1 and 2. Then the illegal
activity is detected at 1 with probability 1 − β and not detected with probability β. In the
latter case the illegal activity is detected at time point 2 again with probability 1− β and not
detected with probability β. In the latter case the Inspectorate detects the illegal activity at
the �nal PIV with certainty. The decision tree in Figure 6.1 illustrates this situation.

Figure 6.1 Illustration of the computation of entry (0, (1, 2)) of the payo� matrix in Table 6.2.

chance

1

1− β

chance

2

1− β

4

β

β

Therefore, the Operator's payo� in case the pure strategy combination (0, (1, 2)) is played is
(1−β) 1+β ((1−β) 2+β 4) = 1+β+2β2. The remaining entries can be derived in a similar
way.

With p := (p0, p1, p2, p3)
T ∈ P3 and q := (q(1,2), q(1,3), q(2,3))

T ∈ Q3,2, where pi is again the
probability to start the illegal activity at time point i and q(j2,j1) the probability to perform the
�rst interim inspection at time point j2 and the second interim inspection at time point j1, the
(expected) payo� to the Operator, i.e., the expected detection time, is, using the payo� matrix
in Table 6.2 and (19.3), given by

Op3,2(p,q) := p0 [(1 + β + 2β2) q(1,2) + (1 + 2β + β2) q(1,3) + (2 + β + β2) q(2,3)]

+ p1 [(1 + 2β) q(1,2) + (2 + β) q(1,3) + (1 + β + β2) q(2,3)]

+ p2 [2 q(1,2) + (1 + β) q(1,3) + (1 + β) q(2,3)] + p3 . (6.16)

Starting the illegal activity at time point 3 is again a strictly dominated strategy, which can be
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seen as follows: Using p1 := (0, 0, 0, 1)T and p2 := (1/3, 1/3, 1/3, 0)T , (6.16) implies

Op3,2(p2,q) =
1

3

(
(4 + 3β + 2β2) q(1,2) + (4 + 4β + β2) q(1,3) + (4 + 3β + 2β2) q(2,3)

)
≥ 1

3

(
4 + 3β + 2β2

)
≥ 4

3
> 1 = Op3,2(p1,q)

for any q ∈ Q3,2, i.e., p1 is a strictly dominated strategy.

The game theoretical solution of this inspection game, see Avenhaus et al. (2010) and Avenhaus
and Krieger (2013a), is presented in

Lemma 6.2. Given the No-No inspection game with N = 3 possible time points for k = 2
interim inspections, and with errors of the second kind. The sets of mixed strategies are given
by (3.4) and (3.52) with N = 3, and the payo� to the Operator by (6.16).

Then optimal strategies and the optimal payo� Op∗3,2 := Op3,2(p
∗,q∗) to the Operator are

given by:

(i) For 0 ≤ β < 1/2 an optimal strategy of the Operator is given by

p∗ =
1

3 + 2β + β2
(
1 + β, 1, 1 + β + β2, 0

)T
, (6.17)

and an optimal strategy of the Inspectorate by

q∗ =
1

1− β
1− 2β

3 + 2β + β2

(
1 + β + 2β2 + β3

1− 2β
, 1 + β + β2, 1 + β

)T
.

The optimal payo� to the Operator is

Op∗3,2 =
4 + 6β + 5β2 + 2β3

3 + 2β + β2
.

(ii) For 1/2 < β ≤ 1 an optimal strategy of the Operator and an optimal strategy of the
Inspectorate is given by

p∗ = (1, 0, 0, 0)T and q∗ = (1, 0, 0)T . (6.18)

The optimal payo� to the Operator is

Op∗3,2 = 1 + β + 2β2 .

Proof. We have to show, see (19.11), that

Op3,2(i,q
∗) ≤ Op∗3,2 ≤ Op3,2(p∗, (j2, j1)) (6.19)

for all i = 0, 1, 2, 3 and for all (j2, j1) ∈ {(1, 2), (1, 3), (2, 3)} = J3,2; see (3.50).

Ad (i): We get

Op3,2(i,q
∗) =

{
Op∗3,2 : i = 0, 1, 2

1 : i = 3
and

Op3,2(p
∗, (j2, j1)) = Op∗3,2

for all (j2, j1) ∈ J3,2
,
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i.e., the inequalities in (6.19) are ful�lled.

Ad (ii): We obtain

Op3,2(i,q
∗) =



Op∗3,2 : i = 0

1 + 2β : i = 1

2 : i = 2

1 : i = 3

and

Op3,2(p
∗, (j2, j1)) =


Op∗3,2 : (j2, j1) = (1, 2)

1 + 2β + β2 : (j2, j1) = (1, 3)

2 + β + β2 : (j2, j1) = (2, 3)

Again, the inequalities in (6.19) are ful�lled.

Let us comment the results of Lemma 6.2: Like for the results in Lemma 6.1, it can be seen
that the cut-o� value n∗ is strongly pronounced here for the case (ii). Interesting enough, and
contrary to the case k = 1 interim inspection, the Operator's optimal strategy is a function of
β and not constant in the respective β-regions, and that there are only two regions of β-values
with di�erent solutions. We will come back to the last point on p. 113.

Before proceeding let us present the No-No inspection game with N = 3 possible time points
for k = 2 interim inspections as an extensive form game, even though the presentation in
normal form in Table 6.2 is the natural way to describe this No-No inspection game. In Figure
6.2 the game is represented in extensive form which is the appropriate way to describe games
over time, if decision are taken sequentially. Due to the comment on p. 50, the game starts
with the Operator and the chance moves can be identi�ed via the probabilities 1− β and β.

At the beginning of the reference time interval, the Operator decides at which time point he will
start the illegal activity. The Inspectorate, not knowing the Operator's decision, decides also at
the beginning when to perform its two interim inspections. Its lack of knowledge is described
by its information set, the encircled area, in Figure 6.2. After both players' decisions, chance
moves decide whether the illegal activity will be detected during the next interim inspection.

Let us repeat that we do not need to describe the No-No inspection game in extensive form.
In all of the following No-Se, Se-No and Se-Se inspection games, however, the extensive form
is the appropriate form to describe these games. Therefore, it is helpful to see in which way
the graphical representations of these variants di�er.

Finally, we consider the case of k = 3 interim inspections. The treatment of this case is simple,
since the Inspectorate has no real choice because it has only the pure strategy (1, 2, 3), i.e.,
it has to perform its interim inspections at any possible time point. The game is depicted in
Table 6.3. The entries in the payo� matrix can again be determined with help of a kind of
decision tree like in Figure 6.1. If β > 0, then the Operator will always choose time point i = 0
for the start of the illegal activity, since the detection time is then as large as possible. In case
of β = 0 the Operator is, of course, indi�erent between all of his pure strategies 0, 1, 2 and 3,
because the detection time is always 1.
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Figure 6.2 Extensive form of the No-No inspection game with N = 3 possible time points for
k = 2 interim inspections and with errors of the second kind.
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Instead of formulating a Lemma, we just mention that the optimal strategies of both players
for β > 0 are given by p∗ = (1, 0, 0, 0)T and q∗ = q∗(1,2,3) = 1, and the optimal payo� to the

Operator by Op∗3,3 = 1 + β + β2 + β3.

Table 6.3 Payo� matrix of the No-No inspection game with N = 3 possible time points for
k = 3 interim inspections and with errors of the second kind.

(1, 2, 3)

0 1 + β + β2 + β3

1 1 + β + β2

2 1 + β

3 1

Let us conclude this section with the No-No inspection game with N = 5 possible time points
for k = 1 and k = 2 interim inspection(s), because it has been of practical interest; see
Avenhaus et al. (2010) and the comments on p. 123. For β > 0 and k = 1 interim inspection,
the 6 × 5 payo� matrix of this inspection game, see Avenhaus et al. (2010), is presented in
Table 6.4. The entries are of �rst order in β.

Table 6.4 Payo� matrix of the No-No inspection game with N = 5 possible time points for
k = 1 interim inspection and with errors of the second kind.

1 2 3 4 5

0 1 + 5β 2 + 4β 3 + 3β 4 + 2β 5 + β

1 5 1 + 4β 2 + 3β 3 + 2β 4 + β

2 4 4 1 + 3β 2 + 2β 3 + β

3 3 3 3 1 + 2β 2 + β

4 2 2 2 2 1 + β

5 1 1 1 1 1

Because a manual solution would already be somewhat cumbersome, Canty's Mathematica R©

programs, see Canty (2003), have been used for the determination of the optimal strategies
and the optimal expected detection time. Just to illustrate the results, the optimal expected
detection time Op∗5,1 is given by

Op∗5,1 =



77

30
+ 2β for 0 ≤ β < 13

60
47

20
+ 3β for

13

60
< β <

11

20
9

5
+ 4β for

11

20
< β <

4

5

1 + 5β for
4

5
< β ≤ 1

, (6.20)
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where the four regions of β-values are given by (6.9). We see that with increasing β the optimal
expected detection time increases continuously from 2.57 to 6, which is intuitive.

For β > 0 and k = 2 interim inspections, the 6× 10 payo� matrix of this inspection game, see
Avenhaus et al. (2010), is given in Table 6.5. This time the entries are of second order in β.

Table 6.5 Payo� matrix of the No-No inspection game with N = 5 possible time points for
k = 2 interim inspections and with errors of the second kind.

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3)

0 1 + β + 4β2 1 + 2β + 3β2 1 + 3β + 2β2 1 + 4β + β2 2 + β + 3β2

1 1 + 4β 2 + 3β 3 + 2β 4 + β 1 + β + 3β2

2 4 1 + 3β 2 + 2β 3 + β 1 + 3β

3 3 3 1 + 2β 2 + β 3

4 2 2 2 1 + β 2

5 1 1 1 1 1

(2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

0 2 + 2β + 2β2 2 + 3β + β2 3 + β + 2β2 3 + 2β + β2 4 + β + β2

1 1 + 2β + 2β2 1 + 3β + β2 2 + β + 2β2 2 + 2β + β2 3 + β + β2

2 2 + 2β 3 + β 1 + β + β2 1 + 2β + β2 2 + β + β2

3 1 + 2β 2 + β 1 + 2β 2 + β 1 + β + β2

4 2 1 + β 2 1 + β 1 + β

5 1 1 1 1 1

Consequently, the solution is complicated; the optimal expected detection time Op∗5,2 is a ratio
of polynomials in β up to the �fth order:

Op∗5,2 =



59 + 133β + 128β2 + 62β3 + 12β4

34 + 48β + 30β2 + 8β3
for 0 ≤ β ≤ 0.15

34 + 76β + 53β2 − 2β3 − 26β4 − 12β5

20 + 24β + 10β2 − 6β3 − 8β4
for 0.16 ≤ β ≤ 0.17

26 + 48β + 23β2 + 2β3 − 14β4 − 12β5

16 + 10β − 5β2 − 4β3 − 2β4
for 0.18 ≤ β ≤ 0.23

19 + 44β + 50β2 + 24β3

6 (2 + 2β + β2)
for 0.24 ≤ β ≤ 0.29

23 + 77β + 102β2 + 72β3

15 + 27β + 18β2
for 0.30 ≤ β ≤ 0.52

10 + 28β + 33β2 + 36β3

7 + 10β + 3β2
for 0.53 ≤ β ≤ 0.74

1 + β + 4β2 for 0.75 ≤ β ≤ 1

. (6.21)
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Table 6.6 illustrates the pure strategies which are mixed in the Inspectorate's optimal strategy
in case of N = 5 possible time points for k = 2 interim inspections. Again, like in case of
β = 0 in Tables 3.5 and 3.6, a kind of step structure can be conjectured.

Table 6.6 Pure strategies which are mixed in the Inspectorate's optimal strategy.

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

0 ≤ β ≤ 0.15 = 0 > 0 > 0 = 0 = 0 > 0 > 0 = 0 > 0 = 0

0.16 ≤ β ≤ 0.17 = 0 > 0 > 0 = 0 = 0 > 0 = 0 > 0 > 0 = 0

0.18 ≤ β ≤ 0.23 = 0 > 0 > 0 = 0 = 0 > 0 = 0 > 0 = 0 = 0

0.24 ≤ β ≤ 0.29 > 0 > 0 > 0 = 0 = 0 > 0 = 0 = 0 = 0 = 0

0.30 ≤ β ≤ 0.52 > 0 > 0 = 0 = 0 > 0 > 0 = 0 = 0 = 0 = 0

0.53 ≤ β ≤ 0.74 > 0 > 0 = 0 = 0 > 0 = 0 = 0 = 0 = 0 = 0

0.75 ≤ β ≤ 1 = 1 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0

Looking at all cases of N and k we have considered in this section together with the case
N = k = 5 and counting the number of regions of β-values we get

• (N, k) = (3, 1): 3 regions; Lemma 6.1;

• (N, k) = (3, 2): 2 regions; Lemma 6.2;

• (N, k) = (3, 3): 1 region;

• (N, k) = (5, 1): 4 regions; see (6.9);

• (N, k) = (5, 2): 7 regions; see (6.21);

• (N, k) = (5, 5): 1 region.

Except for the cases k = N , it is di�cult to imagine a kind of rule for the number of regions
of β-values; see also p. 123.

6.2 No-Se: Three inspection opportunities and two interim
inspections

In this variant of the inspection game, the Operator decides at the beginning of the reference
time interval when to start the illegal activity, whereas the Inspectorate decides at the beginning
of the reference time interval only when the �rst interim inspection is performed. This means
that in case there is only k = 1 interim inspection, the No-Se inspection game is identical to
the No-No inspection game. Thus, in case of any number N of possible time points for k = 1
interim inspection and for β ≥ 0, Theorem 6.1 and Corollary 6.1 hold here as well.

As mentioned on p. 49, the No-Se inspection game with any number N of possible time points
for k > 1 interim inspection have not been analysed so far. However, for β > 0, and as already
announced at the beginning of Section 4.1, the special case of N = 3 possible time points for
k = 2 interim inspections has been analysed in Avenhaus and Krieger (2013a) and the results
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will be presented now. The extensive form of this No-Se inspection game is represented in
Figure 6.3. Due to the sequential behaviour of the Inspectorate this extensive form has a more
complicated structure than that of the No-No inspection game in Figure 6.2. According to the
comment on p. 50, the game starts as in Figure 6.2 with the Operator and the chance moves
can be identi�ed via the probabilities 1− β and β.

Figure 6.3 Extensive form of the No-Se inspection game with N = 3 possible time points for
k = 2 interim inspections and with errors of the second kind.
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In this game the Operator decides at time point 0 when to start the illegal activity, namely at
0, 1, 2 or at 3; see also the next paragraph. The Inspectorate, however, decides at time point
0 only if to perform the �rst interim inspection at time point 1 or 2. In case that the �rst
interim inspection is carried through at time point 1, it decides if to perform the second interim
inspection at time point 2 or 3. In case the �rst interim inspection takes place at time point 2,
the second one has to be performed at time point 3.

Before explaining the information structure in this game, let us shortly discuss time point 3 as
start of the illegal activity. We have seen for the No-No inspection game in Lemma 6.2 that
time point 3 is never chosen in an optimal strategy, see (6.17) and (6.18), which is also intuitive
because starting at time point 3 is a strictly dominated strategy; see p. 107. Does this mean
that we can a priori exclude this time point in the No-Se inspection game? We think that two
stages have to be distinguished: First, building the model which re�ects the reality as close as
possible and � only thereafter � �nding solutions of the game, e.g., by identifying dominated
strategies. Thus, we need to model time point 3 as a potential starting point for the illegal
activity. But even modellers have to make compromises: In the extensive form of the game
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described in Figure 6.3 we have excluded time point 3 for the sake of transparency and only for
this reason! In the subsequent description of the strategy sets and (expected) payo�s, however,
this strategy and its corresponding probability is included again; see P3 and (6.24).

Let us look in more detail at the case, that the Inspectorate decides at time point 0 to perform
the �rst interim inspection at time point 1 and the Operator starts the illegal activity at time
point 0, since here it can be observed the �rst time in this monograph in which way second
kind errors a�ect the information structure of the game. The illegal activity will be detected
at time point 1 with probability 1− β and the detection time is 1. With probability β (1− β)
it will be detected at the second interim inspection and the detection time is 2 or 3 if it takes
place at time points 2 or 3. With probability β2 it will be detected only at the �nal PIV and
the detection time is 4.

Also, it is important to realize that the Inspectorate, having performed the �rst interim inspec-
tion at time point 1, and having not detected the illegal activity which started at time point 0,
i.e., the left node in the information set "Inspectorate at 1", does not know at time point 1 if
the Operator acted this way, or else will start the illegal activity only at time point 1 or 2.

As in Section 6.1, let pi be the Operator's probabilities to choose the time points 0, 1, 2 and 3
for the start of the illegal activity, i.e., his set of mixed strategies is given by P3; see (3.4) and
the comment on p. 114. As introduced in Section 5.7, let h3(j2), j2 = 1, 2, be the probability
that the �rst interim inspection is performed at time point j2, and let h2(j1|1), j1 = 2, 3, be
the probability that the second interim inspection is performed at time point j1 when the �rst
one has been performed at time point 1. For the sake of simplicity we de�ne here

h3 := h3(1) , 1− h3 = h3(2) and h2 := h2(2|1) , 1− h2 = h2(3|1) . (6.22)

Because we have h2(3|2) = 1 by de�nition and thus, it does not need to be considered here.
Thus, the Inspectorate's set of behavioural strategies is instead of H3,2, see (5.7), given by

H̃3,2 := {h := (h3, h2) ∈ [0, 1]2 : h3, h2 ∈ [0, 1]} . (6.23)

The (expected) payo� to the Operator, i.e., the expected detection time, is, for any p ∈ P3

and any h ∈ H̃3,2, given by

Op3,2(p,h)

:= p0 [h3 (1− β + β (h2 (2 + 2β) + (1− h2) (3 + β))) + (1− h3) (2 + β + β2)]

+ p1 [h3 (h2 (1 + 2β) + (1− h2) (2 + β)) + (1− h3) (1 + β + β2)]

+ p2 [h3 (h2 2 + (1− h2) (1 + β)) + (1− h3) (1 + β)] + p3 . (6.24)

The fact that starting the illegal activity at time point 3 is indeed a strictly dominated strategy
can be seen as follows: Using the strategies p1 := (0, 0, 0, 1)T and p2 := (1/3, 1/3, 1/3, 0)T ,
(6.24) implies

Op3,2(p2,h) =
1

3

(
4 + 3β + 2β2 + β (1− β)h3 (1− h2)

)
≥ 1

3

(
4 + 3β + 2β2

)
≥ 4

3
> 1 = Op4,2(p1,h)
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for any h ∈ H̃3,2, i.e., p1 is a strictly dominated strategy.

The game theoretical solution of this inspection game, see Avenhaus and Krieger (2013a), is
presented in

Lemma 6.3. Given the No-Se inspection game with N = 3 possible time points for k = 2
interim inspections, and with errors of the second kind. The sets of mixed resp. behavioural
strategies are given by (3.4) and (6.23), and the payo� to the Operator by (6.24).

Then optimal strategies and the optimal payo� Op∗3,2 := Op3,2(p
∗,h∗) to the Operator are

given by:

(i) For 0 ≤ β < 1/2 an optimal strategy of the Operator is given by

p∗ =
1

3 + 2β + β2
(
1 + β, 1, 1 + β + β2, 0

)T
,

and an optimal strategy of the Inspectorate by

h∗3 = 1− 1

1− β
(1− 2β) (1 + β)

3 + 2β + β2
and h∗2 = 1− (1− 2β) (1 + β + β2)

2 + β2 − β3
.

The optimal payo� to the Operator is

Op∗3,2 =
4 + 6β + 5β2 + 2β3

3 + 2β + β2
.

(ii) For 1/2 < β ≤ 1 an optimal strategy of the Operator and an optimal strategy of the
Inspectorate is given by

p∗ = (1, 0, 0, 0)T and h∗3 = h∗2 = 1 .

The optimal payo� to the Operator is

Op∗3,2 = 1 + β + 2β2 .

Proof. Using (19.10), we have to show that

Op3,2(p,h
∗) ≤ Op∗3,2 ≤ Op3,2(p∗,h) (6.25)

for any p ∈ P3 and any h ∈ H̃3,2.

Ad (i): We have Op3,2(p,h
∗) = Op∗3,2 = Op3,2(p

∗,h) for any p ∈ P3 and any h ∈ H̃3,2, i.e.,
the inequalities in (6.25) are ful�lled as equalities.

Ad (ii): (6.24) yields for any p ∈ P3

Op3,2(p, (1, 1)) = p0 (1 + β + 2β2) + p1 (1 + 2β) + p2 2 + p3 ,

which is, because of 1 + β + 2β2 > 1 + 2β > 2, maximized for p∗0 = 1, i.e., the left hand
inequality in (6.25) is ful�lled. For any h ∈ H̃3,2, (6.24) implies

Op3,2(p
∗,h) = 2 + β + β2 − h3 (1− β) (1 + h2 β) ,
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which is minimized in case of β ∈ [0, 1) for

h∗2(h3) =

{
1 for h3 ∈ (0, 1]

[0, 1] for h3 = 0
,

which leads to

Op3,2(p
∗, (h3, h

∗
2(h3))) =

{
2 + β + β2 − h3 (1− β) (1 + β) for h3 ∈ (0, 1]

2 + β + β2 for h3 = 0
,

and which is minimized for h∗3 = 1. If β = 1, then Op3,2(p
∗,h) = 4 = Op∗3,2 for any h ∈ H̃3,2,

i.e., especially for h∗3 = h∗2 = 1.

Comparing the results of Lemmata 6.2 and 6.3, we see that the Operator's optimal strategies
and the optimal payo� to the Operator coincide, even though the structure of the extensive
form of both inspection games is so di�erent; see Figures 6.2 and 6.3. That the Operator's
optimal strategies and the optimal payo� are the same is actually not so surprising, because
the payo�s (6.16) and (6.24) can be transformed into each other: If one replaces in (6.16) the
probabilities q(1,2), q(1,3) and q(2,3) by (recall the de�nitions in (6.22))

q(1,2) = h3 h2 , q(1,3) = h3 (1− h2) and q(2,3) = 1− h3 , (6.26)

one obtains (6.24), and if one replaces in (6.24) the probabilities h3 and h2 by

h3 = 1− q(2,3) and h2 = q(1,2)/(1− q(2,3)) , (6.27)

provided the appropriate ratio exists, one obtains (6.16). Thus, it is no longer surprising that
the two inspection games lead to the same optimal payo�s. Note that the equivalence of the
payo�s (6.16) and (6.24) could have also been used to proof Lemma 6.3.

6.3 Se-No: Any number of inspection opportunities and one
interim inspection; three inspection opportunities and two
interim inspections

Since the case of any number N of possible time points for k = 1 interim inspection can be
analysed as easily as that of any special number N , we do this here. Only thereafter we turn
to the case of N = 3 possible time points for k = 2 interim inspections.

In Figure 6.4 the extensive form of the Se-No inspection game is represented. In line with the
comment on p. 50, the games in Figures 6.4 and 6.5 start with the Inspectorate's decision at
time point 0. Again, the chance moves can be identi�ed via the probabilities 1− β and β.

As described in Section 4.2, the Inspectorate decides at time point 0 at which time point j1,
j1 = 1, . . . , N , of the reference time interval the interim inspection is performed. The Operator
also decides at time point 0 � not knowing the Inspectorate's interim inspection time point �
whether to start the illegal activity immediately (¯̀2) or to postpone its start (`2). If he starts
it at time point 0 (¯̀2), then it is detected with probability 1 − β at time point j1 and with
probability β at time point N + 1, the �nal PIV. If the Operator postpones the start to time
point j1 (`2), then the detection time is N + 1− j1. The lack of information on the Operator's
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Figure 6.4 Extensive form of the Se-No inspection game with N > k possible time points for
k = 1 interim inspection and with errors of the second kind.
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side is indicated by the information set in Figure 6.4: He does not know when the Inspectorate
will perform its interim inspection. The detection times are given at the end nodes again. For
β = 0, Figure 6.4 reduces to Figure 4.2. The normal form of this extensive form game is given
in Table 6.7.

Table 6.7 Payo� matrix for the Se-No inspection game represented in Figure 6.4.

1 · · · j1 · · · N

¯̀
2 (1− β) 1 + β (N + 1) · · · (1−β) j1 +β (N + 1) · · · (1−β)N +β (N +1)

`2 N · · · N + 1− j1 · · · 1

Because the Inspectorate chooses at time point 0 one of the time points 1, . . . , N for its only
interim inspection, its set of pure strategies is JN,1 as given by (3.10). If qj1 denotes the
probability to choose time point j1 for the interim inspection, then q := (q1, . . . , qN )T with
qj1 ≥ 0 for all j1 = 1, . . . , N and

∑N
j1=1 qj1 = 1 is a mixed strategy of the Inspectorate,

and its set of mixed strategy is given by QN,1; see (3.14). Like in Section 4.2, let 1 − g2 be
the Operator's probability to start the illegal activity at time point 0 and g2 the probability to
postpone it. In the latter case he starts the illegal activity after the interim inspection at time
point j1. Formally, the set of behavioural strategies G1 of the Operator is given by (4.7).

Using Table 6.7, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any g2 ∈ G1 and any q ∈ QN,1, given by

OpN,1(g2,q) :=

N∑
j1=1

qj1

(
(1− g2) ((1− β) j1 + β (N + 1)) + g2 (N + 1− j1)

)
. (6.28)
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The game theoretical solution of this inspection game, see Avenhaus et al. (2010), is presented
in

Lemma 6.4. Given the Se-No inspection game with N > 1 possible time points for k = 1
interim inspection, and with errors of the second kind. The sets of behavioural resp. mixed
strategies are given by (4.7) and (3.14), and the payo� to the Operator by (6.28).

Then an optimal strategy of the Operator is given by

g∗2 =
1− β
2− β

, (6.29)

and an optimal strategy q∗ := (q∗1, . . . , q
∗
N )T of the Inspectorate ful�ls the conditions

N∑
j1=1

j1 q
∗
j1 =

1− β
2− β

(N + 1) with
N∑
j1=1

q∗j1 = 1 . (6.30)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(g
∗
2,q
∗) =

N + 1

2− β
. (6.31)

Proof. We have to show that

OpN,1(i,q
∗) ≤ Op∗N,1 ≤ OpN,1(g∗2, j1) (6.32)

for all i = ¯̀
2, `2 and for all j1 = 1, . . . , N ; see (19.11). The left hand inequality of (6.32) is

equivalent to

N∑
j1=1

q∗j1 ((1− β) j1 + β (N + 1)) ≤ N + 1

2− β
and

N∑
j1=1

q∗j1 (N + 1− j1) ≤
N + 1

2− β
,

which holds as equalities because of (6.30). The right hand side of (6.32) is by (6.29) equivalent
to

N + 1

2− β
≤ 1

2− β
((1− β) j1 + β (N + 1)) +

1− β
2− β

(N + 1− j1)

for all j1 = 1, . . . , N , which is also ful�lled as equality for all j1. This completes the proof.

Let us comment the results of Lemma 6.4: First, they are � as expected � generalizations of
the results of Lemma 4.2.

Second, from a theoretical point of view it is interesting to note that in case the pure strategy
(0, . . . , 0, 1, 0, . . . , 0), with the 1 at position j∗1 , of the Inspectorate ful�ls the condition, see
Table 6.7,

(1− β) j∗1 + β (N + 1) = N + 1− j∗1 ,

which means that

j∗1 =
1− β
2− β

(N + 1) (6.33)
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is an integer, then according to (6.30) the Inspectorate can use this pure strategy, i.e., it can
announce the time point j∗1 in advance. The larger the error of the second kind probability β
is, the smaller is this time point j∗1 , which is intuitive. For the sake of illustration, consider the
case of N = 3 possible time points. Then (6.33) yields j∗1 = 1 for β = 2/3 and j∗1 = 2 for
β = 0. In case of N = 5 possible time points, (6.33) gives j∗1 = 1 for β = 5/6, j∗1 = 2 for
β = 3/5 and j∗1 = 3 for β = 1/4. Let us mention, however, that for practical applications
these results are not so interesting, since these special β-values will be hardly realized.

Third, using (6.30) and (6.31), we obtain for the optimal expected interim inspection time
point

Eq∗(T1) :=

N∑
j1=1

j1 q
∗
j1 =

1− β
2− β

(N + 1) = (1− β)Op∗N,1 , (6.34)

and for all optimal strategies q∗ of the Inspectorate and all β ≥ 0

Eq∗(T1) +Op∗N,1 = N + 1 .

The optimal expected time point for the start of the illegal activity is, using (6.34), given by

E(g∗2 ,q∗)(S) = (1− g∗2) 0 + g∗2 Eq∗(T1) =
(1− β)2

2− β
Op∗N,1 .

A comparison of the system quantities of the discrete time No-No and Se-No inspection games
is presented in Table 4.2 on p. 74.

We now turn to the case of N = 3 possible time points for k = 2 interim inspections and errors
of the second kind. The extensive form of this inspection game is represented in Figure 6.5.

The Inspectorate decides at the beginning of the reference time interval, i.e., at time point 0,
where to place its two interim inspections: It has the three possibilities (1, 2), (1, 3) and (2, 3).
The Operator also decides at time point 0 whether to start the illegal activity immediately (¯̀3)
or not (`3). In latter case, he decides after the �rst interim inspection whether to start his
illegal activity now (¯̀2) or postpone its start again (`2). In the latter he must start it after the
second interim inspection with certainty due to assumption (iv) of Chapter 2.

We see that the information structure of that inspection game is more complicated than in the
case of k = 1 interim inspection, see Figure 6.4: The Operator has three information sets:
The information set named "Operator at 0" illustrates the fact that both player choose their
strategies at time point 0 independently of each other; see assumption (viii) of Chapter 2. The
information set named "Operator at 1" is due to the fact that after the �rst interim inspection
at time point 1 he does not know when the second interim inspection will be performed. The
information set named "Operator at 2" consists of only one node because after the �rst interim
inspection at time point 2 he knows that the second one will be performed at time point 3.

Let q(j2,j1) be the Inspectorate's probabilities to choose the pair (j2, j1) of time points for the
two interim inspections. Because J3,2 as given by (3.50) is the Inspectorate's pure strategy
set, its set of mixed strategies is Q3,2 and given by (3.52) for N = 3. Let 1 − g3 and g3 be
the Operator's probabilities to start the illegal activity at time point 0 (¯̀3) or to postpone its
start (`3). In the latter case let 1 − g2 and g2 be the probabilities to start the illegal activity
right after the �rst interim inspection at time point 1 (¯̀2) or to postpone its start again (`2).
Thus, the set of behavioural strategies of the Operator is G2 as given by (4.15), where here �
in contrast to (4.15) � we write g2 instead of g2(1), and thus, g2(2) = 1− g2.
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Figure 6.5 Extensive form of the Se-No inspection game with N = 3 possible time points for
k = 2 interim inspections and with errors of the second kind.
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Suppose the Inspectorate plays the pure strategy (2, 3) and the Operator decides for `3. Then
at time point 2, the Operator will start the illegal activity immediately at 2 (¯̀2) because then
he assures himself the detection time 1 + β which is, if β > 0, larger than the detection time
1 in case of postponing the start until time point 3. Thus, in case (2, 3) and `3 is played, the
detection time is 1 + β.

Using Figure 6.5, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any g ∈ G2 and any q ∈ Q3,2, given by

Op3,2(g,q) := q(1,2) [(1− g3) (1 + β + 2β2) + g3 ((1− g2) (1 + 2β) + g2 2)]

+ q(1,3) [(1− g3) (1 + 2β + β2) + g3 ((1− g2) (2 + β) + g2)]

+ q(2,3) [(1− g3) (2 + β + β2) + g3 (1 + β)] . (6.35)

The game theoretical solution of this inspection game, see Avenhaus et al. (2010), however,
with an incorrect probability q∗(2,3), and Avenhaus and Krieger (2013a), is presented in

Lemma 6.5. Given the Se-No inspection game with N = 3 possible time points for k = 2
interim inspections, and with errors of the second kind. The sets of behavioural resp. mixed
strategies are given by (4.15) and (3.52) for N = 3, and the payo� to the Operator by (6.35).
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Then optimal strategies and the optimal payo� Op∗3,2 := Op3,2(g
∗,q∗) to the Operator are

given by:

(i) For 0 ≤ β < 1/2 an optimal strategy of the Operator is given by

g∗3 =
2− 2β + β2 − β3

3− 3β + 2β2 − β3
and g∗2 =

1

2 + β2
,

and an optimal strategy of the Inspectorate by

q∗ =
1

3− 3β + 2β2 − β3
(
1 + β + β2 + β3, 1− 2β + β2 − 2β3, 1− 2β

)T
.

The optimal payo� to the Operator is

Op∗3,2 =
4− β + β2

3− 3β + 2β2 − β3
.

(ii) For 1/2 < β ≤ 1 an optimal strategy of the Operator and an optimal strategy of the
Inspectorate is given by

g∗3 = 0 , g∗2 ∈ [0, 1] and q∗ = (1, 0, 0)T .

The optimal payo� to the Operator is

Op∗3,2 = 1 + β + 2β2 .

Proof. We have to show that, see (19.10), the saddle point criterion

Op3,2(g,q
∗) ≤ Op∗3,2 ≤ Op3,2(g∗,q) (6.36)

is ful�lled for any g ∈ G2 and any q ∈ Q3,2.

Ad (i): We have Op3,2(g,q
∗) = Op∗3,2 = Op3,2(g

∗,q) for any g ∈ G2 and any q ∈ Q3,2, i.e.,
the inequalities in (6.36) are ful�lled as equalities.

Ad (ii): (6.35) implies for any g ∈ G2

Op3,2(g,q
∗) = (1− g3) (1 + β + 2β2) + g3 ((1− g2) (1 + 2β) + g2 2) ,

which is maximized for

g∗2(g3) =

{
0 for g3 ∈ (0, 1]

[0, 1] for g3 = 0
,

i.e., we get

Op3,2((g3, g
∗
2(g3)),q

∗) =

{
1 + β + 2β2 + g3 β (1− 2β) for g3 ∈ (0, 1]

1 + β + 2β2 for g3 = 0
,

which is maximized for g∗3 = 0, i.e., the left hand inequality of (6.36) is ful�lled. For any
q ∈ Q3,2 we further get, using (6.35) and the normalization of q,

Op3,2(g
∗,q) = q(1,2) (1 + β + 2β2) + q(1,3) (1 + 2β + β2) + q(2,3) (2 + β + β2)
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= 2 + β + β2 − (1− β) ((1 + β) q(1,2) + q(1,3)) ,

which is in case of β ∈ [0, 1) minimized for q∗(1,2) = 1, i.e., the right hand inequality of (6.36)

is also ful�lled. If β = 1, then Op3,2(g
∗,q) = 4 = Op∗3,2 for any q ∈ Q3,2, i.e., especially for

q∗ = (1, 0, 0)T .

Comparing the optimal strategies and payo�s of the No-No and No-Se inspection games in
Lemmata 6.2 and 6.3, we see that they are as complicated as those of the Se-No inspection
game for case (i). All these results show that explicit optimal strategies and payo�s may be
feasible for some larger numbers N of possible time points and k interim inspections, but cannot
be expected for the general case of any N and k < N .

The results of Lemma 6.5 (i) simplify for β = 0 as expected to (4.18), (4.26) and (4.21).

Like in Section 6.1, let us conclude this section with the case of N = 5 possible time points
since it has been of practical interest; see Avenhaus et al. (2010). For k = 1 interim inspection
we have according to (6.31) that Op∗5,1 = 6/(2− β) for all β ≥ 0, contrary to the situation in
the corresponding No-No inspection game; see (6.20). In case of k = 2 interim inspections the
Operator's set of pure strategies is explicitly given by

{¯̀3, `3} × {¯̀2(1), `2(1)} × {¯̀2(2), `2(2)} × {¯̀2(3), `2(3)} , (6.37)

i.e., there are 24 = 16 pure strategies: Again, ¯̀
3 and `3 are the Operator's decisions at time

point 0. If he behaves legally at time point 0 (`3), he decides at the �rst interim inspection time
point at j2, j2 = 1, . . . , 3, to start the illegal activity immediately (¯̀2(j2)) or not (`2(j2)). If
the Operator postpones the start again, i.e., in case of `2(j2), he must start the illegal activity
at the time point j1 of the second interim inspection.

Because `2(4) is, in case of β > 0, strictly dominated by ¯̀
2(4), in the former case the Operator's

payo� is 1 while in the latter one it is 1 (1−β) + 2β = 1 +β, the decisions ¯̀
2(4) and `2(4) are

excluded from (6.37). The 9× 10 payo� matrix of this inspection game is represented in Table
6.8; see Avenhaus et al. (2010) with a correction in column (2, 5), where the payo�s 3 + β
instead of 3 + 2β have to be utilized. Because the 8 pure strategies ¯̀

3 ∗ ∗∗ lead for any pure
strategy of the Inspectorate to the same payo� to the Operator, they are abbreviated by ¯̀

3.

For β = 0 we get, using (4.36), Op∗5,2 = 2. For β > 0 optimal strategies and the optimal
payo� have been obtained again with the help of M. Canty's Mathematica R© programs; see
Canty (2003). We present only the optimal expected detection time which is much simpler
than that of the corresponding No-No inspection game; see (6.21):

Op∗5,2 =



6

3− 2β
for 0 ≤ β < 2/3

8− 5β + 3β2

5− 9β + 8β2 − 3β3
for 2/3 < β < 3/4

1 + β + 4β2 for 3/4 < β ≤ 1

. (6.38)

We see that like in the corresponding case of the No-No inspection game, the optimal expected
detection time increases continuously from 2 to 6, which again is intuitive.

Looking at all cases of N and k we have considered in this section together with the case
N = k = 5 and counting the number of regions of β-values we get
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Table 6.8 Payo� matrix of the Se-No inspection game with N = 5 possible time points for
k = 2 interim inspections and with errors of the second kind.

(1, 2) (1, 3) (1, 4) (1, 5) (2, 3)

¯̀
3 1 + β + 4β2 1 + 2β + 3β2 1 + 3β + 2β2 1 + 4β + β2 2 + β + 3β2

`3 ¯̀
2(1) ¯̀

2(2) ¯̀
2(3) 1 + 4β 2 + 3β 3 + 2β 4 + β 1 + 3β

`3 ¯̀
2(1) ¯̀

2(2) `2(3) 1 + 4β 2 + 3β 3 + 2β 4 + β 1 + 3β

`3 ¯̀
2(1) `2(2) ¯̀

2(3) 1 + 4β 2 + 3β 3 + 2β 4 + β 3

`3 ¯̀
2(1) `2(2) `2(3) 1 + 4β 2 + 3β 3 + 2β 4 + β 3

`3 `2(1) ¯̀
2(2) ¯̀

2(3) 4 3 2 1 1 + 3β

`3 `2(1) ¯̀
2(2) `2(3) 4 3 2 1 1 + 3β

`3 `2(1) `2(2) ¯̀
2(3) 4 3 2 1 3

`3 `2(1) `2(2) `2(3) 4 3 2 1 3

(2, 4) (2, 5) (3, 4) (3, 5) (4, 5)

¯̀
3 2 + 2β + 2β2 2 + 3β + β2 3 + β + 2β2 3 + 2β + β2 4 + β + β2

`3 ¯̀
2(1) ¯̀

2(2) ¯̀
2(3) 2 + 2β 3 + β 1 + 2β 2 + β 1 + β

`3 ¯̀
2(1) ¯̀

2(2) `2(3) 2 + 2β 3 + β 2 1 1 + β

`3 ¯̀
2(1) `2(2) ¯̀

2(3) 2 1 1 + 2β 2 + β 1 + β

`3 ¯̀
2(1) `2(2) `2(3) 2 1 2 1 1 + β

`3 `2(1) ¯̀
2(2) ¯̀

2(3) 2 + 2β 3 + β 1 + 2β 2 + β 1 + β

`3 `2(1) ¯̀
2(2) `2(3) 2 + 2β 3 + β 2 1 1 + β

`3 `2(1) `2(2) ¯̀
2(3) 2 1 1 + 2β 2 + β 1 + β

`3 `2(1) `2(2) `2(3) 2 1 2 1 1 + β

• Any N and k = 1: 1 region; Lemma 6.4;

• (N, k) = (3, 2): 2 regions; Lemma 6.5;

• (N, k) = (5, 2): 3 regions; see (6.38);

• (N, k) = (5, 5): 1 region.

Again, except for the cases k = N and like in the No-No inspection game, see p. 113, it seems
to be di�cult to imagine a kind of rule for the number of regions of β-values.

6.4 Se-Se: Three inspection opportunities and two interim
inspections

The extensive form of the Se-Se inspection game is represented in Figure 6.6, where in line
with the comment on p. 50 the game starts with the Operator's decision at time point 0, and
again, the chance moves can be identi�ed via the probabilities 1− β and β.

The Operator behaves like in the Se-No inspection game in Section 6.3: He decides at time
point 0 to start the illegal activity immediately or to postpone it. In the latter case he decides
after the �rst interim inspection which is performed either at time point 1 or 2 to start the
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Figure 6.6 Extensive form of the Se-Se inspection game with N = 3 possible time points for
k = 2 interim inspections and with errors of the second kind.
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illegal activity immediately or to postpone its start again. In the latter case he has to start the
illegal activity after the second interim inspection at time point 2 or 3.

The Inspectorate behaves like in the No-Se inspection game in Section 6.2: It decides at time
point 0 only if to perform the �rst interim inspection at time point 1 or 2. In case the �rst
interim inspection is carried through at time point 1 it decides to perform the second interim
inspection at time point 2 or 3. In case the �rst interim inspection takes place at time point 2,
the second one has to be performed at time point 3.

Again, as already explained in case of the No-Se inspection game, errors of the second kind a�ect
the information structure of the game decisively: Here, the information set of the Inspectorate
at time point 1 is created by β > 0; it would degenerate to a one point set if β were zero.

A similar argumentation as on p. 121 shows that, if the Operator decides at time point 0 for
postponing the illegal activity (`3) and the Inspectorate decides for the time point 2 as the �rst
interim inspection time point, then the Operator will behave illegally immediately at time point
2 (¯̀2) leading to the detection time 1 + β.

In line with Section 6.2, let 1 − g3 resp. g3 be the probabilities that the Operator decides at
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time point 0 to start the illegal activity immediately (¯̀3) resp. to postpone its start (`3), and
let 1 − g2 resp. g2 be the probabilities to start the illegal activity right after the �rst interim
inspection at time point 1 (¯̀2) or to postpone its start again (`2). Thus, the set of behavioural
strategies of the Operator is again given by G2, see (4.15), where here, and as in Section 6.2,
we have abbreviated g2(1) with g2. Thus, g2(2) = 1− g2.

Like on p. 115, let h3 resp. 1 − h3 be the probability that the Inspectorate performs the
�rst interim inspection at time points 1 resp. at time point 2, and let h2 resp. 1 − h2 be
the probability to perform its second interim inspection at time point 2 resp. 3. We use here
the same abbreviations as the one introduced before (6.23). Thus, the Inspectorate's set of
behavioural strategies is again given by H̃3,2; see (6.23).

According to Figure 6.6, the (expected) payo� to the Operator, i.e., the expected detection
time, is, for any g ∈ G2 and any h ∈ H̃3,2, given by

Op3,2(g,h) := (1− g3)
[
h3

(
1− β + β [h2 (2 + 2β) + (1− h2) (3 + β)]

)
+ (1− h3) (2 + β + β2)

]
+ g3

[
h3

(
h2 [(1− g2) (1 + 2β) + g2 2]

+ (1− h2) [(1− g2) (2 + β) + g2]
)

+ (1− h3) (1 + β)
]
. (6.39)

The game theoretical solution of this inspection game, see Avenhaus and Krieger (2013a), is
presented in

Lemma 6.6. Given the Se-Se inspection game with N = 3 possible time points for k = 2
interim inspections, and with errors of the second kind. The sets of behavioural strategies are
given by (4.15) and (6.23), and the payo� to the Operator by (6.39).

Then optimal strategies and the optimal payo� Op∗3,2 := Op3,2(g
∗,h∗) to the Operator are

given by:

(i) For 0 ≤ β < 1/2 an optimal strategy of the Operator is given by

g∗3 =
2− 2β + β2 − β3

3− 3β + 2β2 − β3
and g∗2 =

1

2 + β2
,

and an optimal strategy of the Inspectorate by

h∗3 = 1− 1− 2β

3− 3β + 2β2 − β3
and h∗2 = 1− 1− 2β

2− β
.

The optimal payo� to the Operator is

Op∗3,2 =
4− β + β2

3− 3β + 2β2 − β3
.

(ii) For 1/2 < β ≤ 1 an optimal strategy of the Operator and an optimal strategy of the
Inspectorate is given by

g∗3 = 0 , g∗2 ∈ [0, 1] and h∗3 = h∗2 = 1 .
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The optimal payo� to the Operator is

Op∗3,2 = 1 + β + 2β2 .

Proof. According to (19.10), we prove that

Op3,2(g,h
∗) ≤ Op∗3,2 ≤ Op3,2(g∗,h) (6.40)

for any g ∈ G2 and any h ∈ H̃3,2.

Ad (i): Using (6.39) we have Op3,2(g,h
∗) = Op∗3,2 = Op3,2(g

∗,h) for any g ∈ G2 and any

h ∈ H̃3,2, i.e., the inequalities in (6.40) are ful�lled as equalities.

Ad (ii): (6.39) implies

Op3,2(g,h
∗) = 1 + β + 2β2 − g3 (g2 + β) (2β − 1) ,

which, because of 2β − 1 ≥ 0, is maximized for g∗3 = g∗2 = 0, i.e., the left hand inequality in
(6.40) is ful�lled. Furthermore, (6.39) leads to

Op3,2(g
∗,h)

= h3

(
1− β + β [h2 (2 + 2β) + (1− h2) (3 + β)]

)
+ (1− h3) (2 + β + β2) , (6.41)

which is minimized in case of β ∈ (0, 1) for

h∗2(h3) =

{
[0, 1] for h3 = 0

1 for h3 ∈ (0, 1]
,

i.e., we get

Op3,2(g
∗, (h3, h

∗
2(h3))) =

{
2 + β + β2 for h3 = 0

2 + β + β2 − h3 (1− β) (1 + β) for h3 ∈ (0, 1]
,

which is minimized for h∗3 = 1, i.e., the right hand inequality of (6.40) is ful�lled. If β = 1 then
(6.41) simpli�es to Op3,2(g

∗,h) = 4 for any h ∈ H̃3,2, i.e., especially for h∗3 = h∗2 = 1.

We see that the optimal strategy g∗ of the Operator as well as the optimal expected detection
time are the same as in the Se-No inspection game; see Lemma 6.5.

Again, as in the case of Lemmata 6.2 and 6.3, we can identify the payo�s (6.35) and (6.39)
of the Se-No and Se-Se inspection game: If we replace in (6.35) the probabilities q(1,2), q(1,3)
and q(2,3) like in (6.26), we obtain (6.39), and if one replaces in (6.39) the probabilities h3 and
h2 by (6.27) we get (6.35). And of course again, the optimal strategies q∗ and h∗ as given in
Lemmata 6.5 and 6.6 re�ect these relations.

Let us look again at Figure 6.6. If the Operator has started the illegal activity at time point
0, then from his point of view the game is �nished. Only if he decides at this time point
to postpone the start of the illegal activity he enters into a new game, knowing his and the
Inspectorate's prior decisions. This motivates the attempt to cut the information set of the
Inspectorate at time point 1, which leads to a subgame starting at time point 1 when the
Inspectorate decides to perform an interim inspection at time points 2 or 3 and the Operator
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decides to behave illegally or to postpone the illegal activity. If we then proceed like in the
recursive approach to the step by step game presented in Section 5.3, i.e., if we replace the
subgame by its optimal payo� to the Operator and furthermore, use on the left hand side of
the tree the same strategy of the Inspectorate as that obtained in the subgame, we arrive again
at a game which can be represented as a 2× 2 matrix game. Solving this game we obtain the
same optimal payo� to the Operator as that of the original game and also the same optimal
strategy of the Operator. The optimal strategy of the Inspectorate, however, is di�erent. Thus,
the situation is similar to that in case of the step by step game: To cut the relevant information
set is intuitive, and the recursive treatment leads to the same optimal payo� to the Operator,
but not to the same optimal strategies of both players as in the original game. We do not really
understand why this is so.

6.5 Comparison of variants

Having analysed in major detail the four variants in Table 2.1 with N = 3 possible time points
for k = 1, 2 interim inspection(s), it seems now more than appropriate to compare the solutions
of these variants.

Let us summarize the most interesting �ndings in the form of three statements. First, for β = 0
all four variants lead in case of N = 3 possible time points for k = 2 interim inspections to
the same optimal expected detection time 4/3, i.e., one third of the length of the reference
time interval. The same is true for all 1/2 < β ≤ 1 with the optimal expected detection time
1 + β + 2β2.

Second, the No-No and No-Se inspection game on one hand, and the Se-No and Se-Se inspec-
tion game on the other, lead for 0 ≤ β < 1/2 to the same optimal expected detection times.
The same holds for the optimal strategies of the Operator, but not for that of the Inspectorate
because he uses di�erent strategy sets.

Third, the optimal expected detection times of the No-No and No-Se inspection game are
smaller than those of the Se-No and Se-Se inspection game for 0 < β < 1/2. Thus, if we
change for the moment the notation, we have for all 0 < β < 1/2:

Op∗No−No = Op∗No−Se < Op∗Se−No = Op∗Se−Se . (6.42)

At the end of Sections 6.1 an 6.3 we have shown for N = 5 possible time points and k = 2
interim inspections that for the No-No and for the Se-No inspection game even the regions of
β-values of the optimal expected detection times are di�erent. Thus, the properties which have
been observed for N = 3 possible time points and k = 2 interim inspections do not hold any
more for larger numbers N of possible time points and k interim inspections.

In Figure 6.7 the optimal expected detection times Op∗·−· are represented as functions of β.

In order to �nd a plausible interpretation of these results one observation is important: There
is a distinct di�erence in information between the two players: The Operator knows when an
interim inspection has taken place whereas the Inspectorate, after an interim inspection which
did not prove illegal behaviour of the Operator, for β > 0 does not know if there was no illegal
behaviour or else, if the Inspectorate did not detect it. This more comfortable role of the
Operator may explain the results of the analysis for 0 < β < 1/2; it does not explain, however,
why for 1/2 < β < 1 all variants lead to the same optimal expected detection times.
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Figure 6.7 The optimal expected detection times as functions of β for all four variants with
N = 3 possible time points for k = 2 interim inspections.
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For β = 0, and in case the Inspectorate does not detect the illegal activity during an interim
inspection, it knows that the illegal activity has not yet been started. Thus, the Inspectorate's
information state corresponds in some way to that of the Operator. One may doubt, however,
if this is a reasonable explanation for the fact that in case of β = 0 all four variants lead to the
same optimal expected detection times.

Of course the results of the analysis of the special case of N = 3 possible time points for k = 2
interim inspections cannot simply be extrapolated to more complicated situations, i.e., more
possible time points and more interim inspections, even though the information argument given
before holds here as well. On the contrary: Optimal strategies of two person zero-sum games
exhibit frequently unexpected and surprising properties. But anyhow, if interim inspections have
to be planned for more complicated cases than analysed here, and if analytical results for more
complicated cases are not available, then one may � with reference to the cases discussed in
this chapter � assume that the Operator will behave sequentially, and the Inspectorate may do
what is easier from an organisational and �nancial point of view.

6.6 Applications to Nuclear Safeguards

We mentioned in the beginning of this chapter that the game theoretical models with N = 3
possible time points for k = 1, 2 and 3 interim inspection(s) describe a real case therefore, we
will shortly present it here. In the following we consider only the No-No inspection game which
is � as we saw in Section 6.2 � equivalent to the No-Se inspection game in the sense that the
Operator's optimal strategies coincide as well as the optimal expected detection times, and that
the Inspectorate's (optimal) strategies can be transformed into each other. The description
which follows together with the subsequent discussion has been taken from Avenhaus et al.
(2010). Without going into too many technical details, this inspection problem looks as follows.
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In Europe, adjacent to nuclear power reactors there are spent fuel storages which are safeguarded
both by the European Atomic Energy Community (EURATOM), and by the International Atomic
Energy Agency (IAEA). In these storages, there are spent fuel elements of the reactors which
are contained in sealed casks. Every three months interim inspections may be performed, i.e.,
N = 3 in the terminology of this monograph, and at the end of a calendar year a Physical
Inventory Veri�cation (PIV) is performed which is assumed to provide exact knowledge about
the amount of spent fuel in the storage.

The basis of these inspections is the so-called signi�cant quantity, i.e., the approximate amount
of nuclear material for which the possibility of manufacturing a nuclear device cannot be ex-
cluded, and the so-called conversion time, i.e., the time required to convert di�erent forms of
nuclear material to the metallic components of a nuclear explosive device; see IAEA (2002).

For the subsequent quantitative analysis we consider a representative situation where there are
M casks (80 to 190) with light water reactor spent fuel elements in the storage facility, and
where each cask contains 19 spent fuel elements. Without going into the details of the usability
of the plutonium for weapons in the spent fuel elements we assume that the average amount of
plutonium in each spent fuel element is about 8 kg, i.e., each spent fuel element contains about
the signi�cant quantity of plutonium; see IAEA (2002). Thus, in order to illegally acquire one
signi�cant quantity, the seal of one cask need to be broken. In other words, during an interim
inspection one broken seal has to be detected with su�cient probability 1− β.

Let us assume that the Inspectorate needs about �ve minutes net time in the storage to check
one seal. There is, however, overhead work to be done by the Inspectorate, primarily the
evaluation of the �ndings outside the storage, and administrative work before and after the
whole seal checking procedure. Therefore, during a one day visit only two to three hours may
be available for checking seals in the storage.

Quite generally, let the total number of casks/seals be M , the number of seals to be checked
� the sample size � be n, and the number of broken seals be r. Then according to the
hypergeometric distribution law, the probability to detect at least one broken seal in case of
drawing without replacement is, see Avenhaus and Canty (1996), given by

P({at least one broken seal in the sample}) = 1− P({no broken seal in the sample})

= 1−

(
r

0

)(
M − r
n− 0

)
(
M

n

) = 1−
r−1∏
j=0

(
1− n

M − j

)
. (6.43)

Then the sample size is de�ned as the smallest number n ful�lling the inequality

P({at least one broken seal in the sample}) ≥ 1− β .

Because the seal of one cask need to be broken, we have r = 1 and obtain, using (6.43), for
the sample size n

n = dM (1− β)e , (6.44)

where the ceiling function d e maps x to the least integer greater than or equal to x.

Note that there are situations, where inspectors tend to seal casks together. In those cases they
can be treated as a "static" part reducing the number of casks to be checked. Therefore, the
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detection probability for the next interim inspection may be di�erent from that for the former
one. Note that in Section 11.1 inspections games with di�erent non-detection probabilities are
considered. However, they refer to di�erent facilities.

Now let us come back to the game theoretical results and link them to the practice of interim
inspections in spent fuel storages. In Figure 6.8 we have drawn the optimal expected detection
times for the cases of k = 1, 2 and 3 interim inspection(s) from top to bottom; see Lemma 6.1
and 6.2 as well as Table 6.3.

Figure 6.8 Optimal expected detection times as functions of β for the No-No inspection game
with N = 3 possible time points for k = 1, 2 and 3 interim inspection(s).
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Let us comment on Figure 6.8: First, it can be seen that Op∗3,3 < Op∗3,2 < Op∗3,1 for β ∈ [0, 1)
and Op∗3,3 = Op∗3,2 = Op∗3,1 for β = 1. This result is clear due to the fact, that more possible
interim inspection(s) lead(s) to the a shorter optimal expected detection time. In case of β = 1,
i.e., the detection probability 1 − β is zero, any illegal activity is detected only at the end of
the reference time interval and therefore the detection time is 4 quarters of a year.

Second, if the required optimal expected detection time is about 1.5 quarters of a year then we
see that this expected detection time cannot be achieved with k = 1 interim inspection since
Op∗3,1 = 11/6 ≈ 1.833 for β = 0.

Finally, an important question from the practical point of view is whether the number of interim
inspections can be reduced assuring a required optimal expected detection time. This question
can be answered with the help of Figure 6.8. Suppose the required optimal expected detection
time is 2 quarters of a year, i.e., 6 month. Then Figure 6.8 resp. the results of Lemmata 6.1
and 6.2, and Table 6.3 lead to the resulting non-detection probabilities β which are given in
the second column of Table 6.9. Note that in IAEA practice the non-detection probabilities do
not vary with the number of interim inspections but are �xed to some value. Using (6.44) with
M = 100, the sample sizes n that achieve these detection probabilities are given in the third
column, the total sample size in the fourth column, and the net time per interim inspection in
the �fth column; recall that checking one seal takes �ve minutes net time.
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Table 6.9 The non-detection probabilities (rounded to four digits), the sample size and the
total sample size for k = 1, 2 and 3 interim inspection(s), and for a required optimal expected
detection time of 2 quarters of a year.

non-detection
probability β

sample size n per
interim inspection

total sample size
net time per

interim inspection

k = 1 1/6 84 84 7h

k = 2 1/2 50 100 4h 10 min

k = 3 0.5437 46 138 3h 50 min

If the Inspectorate wants to take a decision between these three possibilities, it has to take
into account additional aspects. If, for example, economic aspects are considered, the decision
procedure can be formalized with the help of a cost model as follows: Let a be the overhead cost
per inspection (travel and accommodation), and b the cost for checking one seal (Inspectorate
manhour cost). Then, for a postulated optimal expected detection time of 2, the total cost of
inspections are

a+ b · 84 for k = 1

2 · a+ b · 2 · 50 for k = 2

3 · a+ b · 3 · 46 for k = 3 .

We see immediately, that from this cost model point of view k = 1 interim inspection is the
best choice. Of course, more complicated cost models could lead to di�erent results; see p.
199. If, for example, the checking of 84 seals can not be achieved in one day, see the comment
on p. 130, contrary to the checking of 46 seals, overhead costs, e.g., staying overnight, may
favour more than k = 1 interim inspection. Thus, a decision based on a cost model can only
be made with the help of truly realistic cost data.

Note that a similar analysis can be performed for the case of N = 5 possible time points for
k = 1, 2 and 5 interim inspection(s) at least for the No-No and the Se-No inspection games,
the optimal expected detection times of which are presented at the end of Sections 6.1 and 6.3.

It should be mentioned, however, that considerations of this kind do not meet current IAEA
practice: frequencies of interim inspections and inspection procedures are agreed upon by the
international community, and the budget needed is provided accordingly. In Section 7.2 this
idea is formalized.



Chapter 7

Legal behaviour, e�ectiveness and

e�ciency, extensions

So far and in line with the assumptions in Chapter 2 all inspection models of Part I were
framed as follows: There is an Operator who plans an illegal activity, see assumption (iv), in
such a way that an Inspectorate detects it as late as possible whereas the Inspectorate plans
its interim inspections such that this illegal activity is detected as early as possible. This way,
the inspection models were built out of purely technical quantities such as time points for the
start of the illegal activity and interim inspections, detection probability and detection time,
and number of interim inspections during the reference time interval.

But there is also the argument that inspections should be designed in such a way that the
Operator is deterred from illegal behaviour or, to say it positively, is induced to legal behaviour;
see p. 1. It turns out that in order to be able to analyse this issue, utilities have to be introduced
which describe the gains and losses of both the Operator and the Inspectorate for all outcomes
of the inspections. More than that, there are other problems which require the use of these
utilities; examples will be given in the paragraph on "serious problems" in Section 7.1 and in
Section 7.4. It should be mentioned already here that in many applications these utilities can
be estimated only very roughly or not at all, which was another reason for assumption (iv):
Because this way utilities do not have to be introduced and we were able to limit the analyses
to the above mentioned technical parameters.

In order to understand the relations between these issues and problems, we �rst present in
Section 7.1 a little the historical development of inspection games as understood by safeguards
pioneers and the authors of this monograph; see Avenhaus and Shmelev (2011).

Since the concept of deterring the Operator from illegal behaviour will be considered also in
Parts II and III, we will develop in Section 7.2 the analysis, which is taken from Avenhaus et al.
(2010), in some detail and refer to it in the following chapters. Let us mention already now that
it will turn out that for the inspection problems treated so far only the ratio of the Operator's
gain in case of successful illegal behaviour to his loss in case of detected illegal behaviour has
to be known. In Section 7.3 our understanding of the concepts of e�ectiveness and e�ciency
is introduced and illustrated with the help of the example considered in Section 7.2. Section
7.4 deals with variable sampling problems the use of which may lead to false alarms. It has
already been mentioned on p. 8 that this possibility requires also, independently of the aspect
of legal or illegal behaviour of the Operator, the use of payo� parameters. Also for this reason
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we consider in Section 7.4 utilities for false alarms, even though they will be used only in some
chapters of Parts II and III.

7.1 Historical development

Two roots of present days' inspection games may be identi�ed: The one is the scienti�c-
technical area of Statistics, and of quality and process control in science and technology; as an
example and highlight we take the work of Diamond (1982) which will be discussed in detail in
Chapter 9. The other lies in the arms control and disarmament e�orts in the beginning of the
second half of the last century; here we just mention as prominent example the work of Dresher
(1962) which will be discussed in Chapter 16. In the �rst area methods were developed for
practical needs, whereas in the second one intended to design concepts for dealing with the new
and frightening challenge posed by the invention of nuclear weapons. In both cases, utilities
played no or no major role: In the �rst case because of the applied nature of the problems
and their solutions, and in the second one because of their conceptual character. With the
development of the IAEA safeguards system, which was sketched already in Section 1.2, this
changed for several reasons. Initially, statisticians developed the system based on the concepts
of material balance and data veri�cation which were used already in the chemical and nuclear
industry. Later, as already mentioned, the issue of legal behaviour became important, and we
will deal with it Section 7.2.

Furthermore, and this is quite a di�erent strand, it turned out that false alarms which cannot
be avoided if variable sampling methods are used, see Sections 1.1 and 7.4, could no longer
be handled as, e.g., in medical or biological research. There, the false alarm probability is
just �xed conventionally when statistical tests are performed. Here, in international safeguards
false alarms may have serious consequences � not zero-sum! � to both the Operator and the
Inspectorate therefore, these consequences have to be taken into account explicitly.

In order to clarify these two aspects, Table 7.1 shows under which assumptions utilities in the
form of payo� parameters have to be introduced. Let us mention in passing that variable
sampling models will be considered in detail only in Parts II and III. Of course there are further
reasons for the use of utilities which will be sketched in the �nal Chapter 17. Note that in case
the Operator behaves illegally, e.g., by falsifying some data/items, false alarms can occur when
the non-falsi�ed data/items are veri�ed.

Table 7.1 Overview on inspections and methods requiring the use of utility functions.

Operator behaves
illegally

Operator behaves
illegally or legally

Inspections based on
Attribute Sampling

Utilities are not
explicitly used

Utilities d, b and a for
illegal and legal behaviour

have to be used

Inspections based on
Variable Sampling

Utilities d, b and a for illegal and legal
behaviour and utilities f and g for false alarms

have to be used
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In order to indicate how serious problems may become, not for the use in this monograph,
we mention another important problem which was controversially discussed in the IAEA, see
also Avenhaus et al. (2009b): If one �xes the inspection e�ort in one State, e.g., in terms
of manpower and money, which shall induce this State to legal behaviour in the sense of the
Non-Proliferation Treaty, then the use of utilities for the gains and losses of the State in case of
legal and illegal behaviour is equivalent to using some value of the overall detection probability,
i.e., of a technical quantity. If, however, several States with di�erent incentives are considered,
this is no longer possible. The attempts of IAEA administrators to do this anyhow, and they
claimed to have good reasons, were commented by the American Statistician Carl A. Bennett
(1922�2014) with the words: They are looking for a technical solution of a political problem.
There are situations where even peaceful theoreticians have to �ght, if necessary passionately,
for their better cause.

7.2 Utilities for attribute sampling inspection schemes

In all inspection games of this Part I and according to assumption (iii) of Chapter 2 any illegal
activity will be detected with certainty at the end of the reference time interval, the PIV.
Therefore, if we normalize the gain (or loss) of the Operator in case of legal behaviour to zero,
any illegal activity causes the loss b > 0 (gain −b < 0). In addition, according to the playing for
time criterion, the Operator, starting an illegal activity, has a gain proportional to the detection
time 4t, i.e., d4t for d > 0. If we denote the length of the reference time interval by T 1, the
maximum gain of the Operator in case of illegal behaviour is d T − b thus, we assume

d T − b > 0 ; (7.1)

otherwise the Operator would never start an illegal activity. In sum, the payo� to the Operator
is {

d4t− b for illegal behaviour and detection time 4t
0 for legal behaviour

. (7.2)

Let us assume now that the Operator decides before the beginning of the game whether to
behave illegally or not at all. We will return to this point later on. With the terminology used
before we get for the Operator's the optimal payo�{

dOp∗ − b for illegal behaviour and detection time Op∗

0 for legal behaviour
,

where Op∗ stands for any of the optimal expected detection times determined in the previous
chapters and also in Sections 9.1 � 9.3, 10.1 and 10.2, and in Chapter 11. Therefore, the
Operator will behave legally if and only if

dOp∗ − b < 0

or equivalently

Op∗ <
b

d
. (7.3)

1In this Part I we have T = N + 1 and in Part II we consider T = t0. Part III does not �t into this scheme.
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For the No-No inspection game with N = 3 possible time points for k = 1 interim inspection,
we get according to Lemma 6.1 with (7.3)

b

d
>



11

6
+ β for 0 ≤ β < 1

6
10

6
+ 2β for

1

6
< β <

2

3
6

6
+ 3β for

2

3
< β ≤ 1

. (7.4)

We see that the Operator is induced to legal behaviour either if the non-detection probability
β is small, or if the ratio b/d is large.

The question, however, remains what are the Inspectorate's equilibrium strategies in case of
legal behaviour of the Operator. In order to answer this question we have to get back to the
inspection game and we have to introduce the utilities of the Inspectorate which means, by the
way, that we describe the inspection problems no longer as zero-sum games. We de�ne these
utilities as follows:{

− a4t for illegal behaviour and detection time 4t
0 for legal behaviour

. (7.5)

Here we assume a > 0 since detected illegal behaviour of the Operator is worse for the Inspec-
torate than legal behaviour. Note that in (7.5) there is no equivalent to the Operator's sanctions
b in (7.2). Also note that if no illegal behaviour occurs, both players receive by de�nition payo�
nil; this is also the best result for the Inspectorate and implies the idea that inspection costs
are not part of the Inspectorate's payo�, but rather imposed by the external parameter k; see
the end of Sections 6.6 and 10.2. In other words, the number of interim inspections k is not a
strategic variable. This assumption describes the situation of an inspection organization, e.g.,
the IAEA, which works by international agreement with a �xed inspection budget for speci�c
facilities and/or States.

For purpose of illustration let us consider again the No-No inspection game with N = 3 possible
time points for k = 1 interim inspection. The bimatrix with the players' payo�s is given in
Table 7.2. It is structural equivalent to the payo� matrix in Table 3.1, except for the two entries
instead of one for each matrix element, for the payo� parameters, and for the legal strategy
"le" of the Operator. Therefore, the Operator's set of pure strategies is here, in contrast to
(3.2), given by

I := {0, 1, 2, 3, le} (7.6)

and his set of mixed strategies by

P :=

{
p := (p0, p1, p2, p3, ple)

T ∈ [0, 1]5 :

3∑
i=0

pi + ple = 1

}
. (7.7)

Note that for the strategy sets (7.6) and (7.7) as well as for the below de�ned payo�s to both
players the indices are omitted, because in this chapter we consider only this game.

Because the Inspectorate's behaviour is not in�uenced by the introduction of the legal behaviour
strategy, its sets of pure and mixed strategies remain the same, i.e., they are given by (3.1)
resp. (3.5).
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Table 7.2 Normal form of the No-No inspection game with N = 3 possible time points for
k = 1 interim inspection including legal behaviour of the Operator.

1 2 3

0
−a −2 a −3 a

d− b 2 d− b 3 d− b

1
−3 a −a −2 a

3 d− b d− b 2 d− b

2
−2 a −2 a −a

2 d− b 2 d− b d− b

3
−a −a −a

d− b d− b d− b

le
0 0 0

0 0 0

Because we deal here the �rst time with a non-zero-sum game, we present its analysis in
some detail. Note that for this purpose we have to use the Nash equilibrium concept, which
generalizes the saddle point concept and which is explained in Chapter 19.

With p := (p0, p1, p2, p3, ple)
T ∈ P and q := (q1, q2, q3)

T ∈ Q3,1, the (expected) payo�s �
which can no longer be interpreted as detection times � to both players denoted by Op(p,q)
and In(p,q) are, using (19.3) and (19.4), given by

Op(p,q) = pT


d− b 2 d− b 3 d− b

3 d− b d− b 2 d− b
2 d− b 2 d− b d− b
d− b d− b d− b

0 0 0

 q (7.8)

and

In(p,q) = −pT


a 2 a 3 a

3 a a 2 a
2 a 2 a a
a a a
0 0 0

 q . (7.9)

Using (19.7), we see that the game (P,Q3,1, Op, In) is strategically equivalent to the game

(P,Q3,1, Õp, Ĩn) with

Õp(p,q) := pT


1 2 3
3 1 2
2 2 1
1 1 1
b/d b/d b/d

 q and Ĩn(p,q) := −pT


1 2 3
3 1 2
2 2 1
1 1 1
b/d b/d b/d

 q ,

(7.10)
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i.e., strategically equivalent to the zero-sum game (P,Q3,1, Õp,−Õp).

Using the results of Lemma 3.1, the game theoretical solution of this inspection game is pre-
sented in

Lemma 7.1. Given the No-No inspection game with N = 3 possible time points for k = 1
interim inspection. The sets of mixed strategies are given by (7.7) and (3.5), and the payo�s
to both players by (7.8) and (7.9).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗ :=
Op(p∗,q∗) and In∗ := In(p∗,q∗):

(i) For

b

d
<

11

6
(7.11)

an equilibrium strategy of the Operator is given by

p∗ =

(
1

3
,
1

6
,
1

2
, 0, 0

)T
, (7.12)

and an equilibrium strategy of the Inspectorate by

q∗ =

(
1

3
,
1

2
,
1

6

)T
. (7.13)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗ =
11

6
d− b and In∗ = − 11

6
a . (7.14)

(ii) For

b

d
>

11

6
(7.15)

the Operator behaves legally, i.e., p∗ = (0, 0, 0, 0, 1)T , and the Inspectorate's set of
equilibrium strategies is given by

b

d
≥ −2 q∗1 − q∗2 + 3 ,

b

d
≥ q∗1 − q∗2 + 2 ,

b

d
≥ q∗1 + q∗2 + 1 . (7.16)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗ = In∗ = 0 . (7.17)

Proof. The Nash conditions for the equilibria of this inspection game, are given by the two
inequalities, see (19.5),

Op∗ ≥ Op(p,q∗) and In∗ ≥ In(p∗,q) (7.18)

for any p ∈ P and any q ∈ Q3,1.
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Ad (i): Inserting (7.12) and (7.13) into (7.8) and (7.9) respectively, we see immediately that
both inequalities in (7.18) are ful�lled as equalities.

Ad (ii): The Nash condition (7.18) for the Inspectorate is ful�lled as equality. That of the
Operator is equivalent to the following inequalities, see also (19.6),

0 ≥ Op(0,q∗) , 0 ≥ Op(1,q∗) , 0 ≥ Op(2,q∗) , 0 ≥ Op(3,q∗) , 0 ≥ Op(le,q∗) .

The �rst three inequalities are explicitly given by

0 ≥ (d− b) q∗1 + (2 d− b) q∗2 + (3 d− b) q∗3
0 ≥ (3 d− b) q∗1 + (d− b) q∗2 + (2 d− b) q∗3
0 ≥ (2 d− b) q∗1 + (2 d− b) q∗2 + (d− b) q∗3 .

With q∗3 = 1− q∗1 − q∗2 these inequalities are seen immediately to be equivalent to (7.16). The
inequality 0 ≥ Op(3,q∗) = d − b is ful�lled because (7.15) implies b > d, and the inequality
0 ≥ Op(le,q∗) is ful�lled as equality because Op(le,q∗) = 0.

Before commenting the results of this Lemma, let us turn to the case 11/6 d − b = 0. We
justify the exclusion of this limiting case with the fact that in practice payo� parameters will
be estimated, and are therefore always subject to uncertainty. Thus, the case 11/6 d − b = 0
is only of theoretically interest. For this reason we will not consider these limiting cases in
following chapters. But let us discuss this case here: One can see immediately that the pair
(p∗(λ),q∗) with

p∗(λ) := λ


1/3
1/6
1/2
0
0

+ (1− λ)


0
0
0
0
1


and q∗ as given by (7.12) constitutes for any λ ∈ [0, 1] a Nash equilibrium and that the
equilibrium payo�s to both players are zero. Thus, in this limiting case in equilibrium the
Operator can randomize over illegal and legal behaviour, i.e., λ ∈ (0, 1), but his payo� is
always the same as in case of legal behaviour. Note that except for limiting cases of this kind,
randomizing over illegal and legal behaviour of the Operator has not been found in attribute
sampling inspection games considered in this monograph. An intuitive explanation for this fact
remains to be found; see also Avenhaus and Canty (1995). There are other inspection models
where this is most certainly not the case; see Section 9.3.3 in Avenhaus and Canty (1996).

Returning to Lemma 7.1, we �rst observe that the equilibrium strategies of both players in case
of illegal behaviour of the Operator, i.e., case (i), are the same as in the corresponding No-No
inspection game; see Lemma 3.1. This is not surprising because in case of p∗le = 0 the payo�

Õp to the Operator according to (7.10) coincides with the payo� Op3,1 to the Operator as
given by (3.6), and it explains, in particular, why the equilibrium strategies (7.12) and (7.13)
of both players do not depend on the payo� parameters a, b and d.

Second, for the purpose of illustration we assume b/d = 2 which ful�ls with T = N + 1 = 4
and (7.1) the condition for legal behaviour of the Operator,

11

6
<
b

d
< 4 .
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Then we receive by (7.16) the inequalities

2 q∗1 + q∗2 ≥ 1 , q∗1 − q∗2 ≤ 0 and q∗1 + q∗2 ≤ 1 ,

which are illustrated in Figure 7.1. Here we see why Kilgour (1992) several years ago coined
the term cone of deterrence.

Figure 7.1 Components q∗1 and q∗2 of an Inspectorate's equilibrium strategy (q∗1, q
∗
2, q
∗
3) in case

of legal behaviour of the Operator.

1/3 1/2 1
q1
*

1/3

1/2

1
q2
*

Third, because the Inspectorate's equilibrium strategy q∗ given by (7.12) is an element of the
cone of deterrence (7.16), the Inspectorate's equilibrium strategy in case of the Operator's illegal
behaviour is also equilibrium strategy in case of the Operator's legal behaviour. Thus, q∗ can
be understood as a robust equilibrium strategy in the sense that given the payo� parameters d
and b, the Inspectorate can just play q∗ according to (7.12) and does not need to check whether
(7.11) or (7.15) is ful�lled. In other words, q∗ according to (7.12) is an equilibrium strategy �
which as mentioned does not depend on payo� parameters � no matter whether the illegal or
the legal game is played. This is very helpful for practical applications since, as mentioned, in
many cases the payo� parameters can be estimated only roughly.

Since in this monograph many inspection games with a robust Inspectorate's equilibrium strat-
egy are treated, we explain the logic behind the general procedure with the help of Lemma 7.1,
however, using the following notation: The equilibrium strategy (7.13) is abbreviated by q∗illegal,
and the optimal payo�s to the Operator (7.14) and (7.17) by Op∗illegal and Op

∗
legal, respectively.

Then Lemma 7.1 � and other Lemmata and Theorems in which legal behaviour is an equilibrium
strategy of the Operator � has the following structure:2

(i) For

Op∗illegal > Op∗legal , (7.19)

2The equilibrium strategy of the Operator in case (i) as well as the equilibrium payo�s to the Inspectorate
in cases (i) and (ii) are omitted, because they are not important for the subsequent explanations. Note that in
Lemma 15.2 and Theorem 15.1 even three cases have to be distinguished.
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the Operator behaves illegally and an equilibrium strategy of the Inspectorate is given by
q∗illegal with the equilibrium payo� Op∗illegal to the Operator.

(ii) For

Op∗illegal < Op∗legal , (7.20)

the Operator behaves legally, and the Inspectorate's set of equilibrium strategies is, using
(7.8), given by

Q∗3,1 :=
{
q∗ ∈ Q3,1 : Op(0,q∗) ≤ Op∗legal , Op(1,q∗) ≤ Op∗legal

Op(2,q∗) ≤ Op∗legal , Op(3,q∗) ≤ Op∗legal
}
.

(7.21)

The equilibrium payo� to the Operator is Op∗legal.

Now we come to the crucial point: It can be shown for many inspection games, that q∗illegal ∈
Q∗3,1, i.e., q

∗
illegal constitutes a robust equilibrium strategy: the Inspectorate can just play q∗illegal

and does not need to check whether (7.19) or (7.20) is ful�lled. At �rst sight this statement
seems obvious, because the Operator's Nash condition yields in case (i)

Op(p,q∗illegal) ≤ Op∗illegal

for any p ∈ P , and thus, by (7.20),

Op(p,q∗illegal) ≤ Op∗illegal < Op∗legal ,

i.e., the inequalities in (7.21) are ful�lled. Therefore, the only thing that needs to be checked on
a case by case basis is whether q∗illegal remains a meaningful expression under condition (7.20).
While this is obvious for q∗illegal according to (7.13), we will also treat inspection games where
this is not true: If the Inspectorate's equilibrium strategy in case of illegal behaviour of the
Operator depends on payo� parameters, then it might happen that, e.g.,

• a time point for an interim inspection that is well de�ned under condition (7.19) becomes
smaller than the time point for the beginning of the game under condition (7.20); see
Lemmata 10.3 and 12.2 and Theorem 12.1.

• a well-de�ned probability under condition (7.19) becomes larger than one under condition
(7.20); see Lemma 15.2 and Theorem 15.1.

Note that the use of > and < in (7.19) and (7.20) re�ects the fact that in many cases the
payo� parameters can be estimated only roughly.

For easier reference we present in Table 7.3 the inspection games treated in this monograph in
which an equilibrium strategy of the Operator is legal behaviour, and in which the Inspectorate
possesses a robust equilibrium strategy.

Fourth, let us repeat that the analyses presented so far � introduction of payo� parameters,
condition for legal behaviour and inspection strategies � can not only be applied to all cases
considered in this Part I, but also grosso modo to the inspection problems in Part II.
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Table 7.3 Overview of inspection games treated in this monograph in which an equilibrium
strategy of the Operator is legal behaviour, and in which the Inspectorate possesses a robust
equilibrium strategy.

Discrete time

No-No inspection game
k = 1 interim inspection

Lemma 7.1, p. 138

Continuous time

No-No inspection game
k = 1 interim inspection, α ≥ 0, β ≥ 0

Lemma 9.3, p. 174

Se-No inspection game, one facility
k = 2 interim inspections, α ≥ 0, β ≥ 0

Lemma 10.3, p. 202
only for α = 0

Se-Se inspection game
k = 1 interim inspection, α ≥ 0, β ≥ 0

Lemma 12.1, p. 237

Se-Se inspection game
k ≥ 2 interim inspections, α ≥ 0, β ≥ 0

Lemma 12.2, p. 243
Theorem 12.1, p. 253

only for α = 0

Critical time

No-No inspection game
with assumption (iv') on p. 282,
k = 1 inspection, α ≥ 0, β ≥ 0

Lemma 15.1, p. 284

No-No inspection game
with assumption (iv') on p. 282,
k ≥ 2 inspections, α ≥ 0, β ≥ 0

Lemma 15.2, p. 289
Theorem 15.1, p. 296

only for α = 0
Corollary 15.1, p. 300

No-No inspection game
with assumption (iv�) on p. 307,
k ≥ 1 inspection(s), α ≥ 0, β ≥ 0

Theorem 15.2, p. 310

Generalized Thomas-Nisgav inspection game
k ≥ 1 control, β ≥ 0

Lemma 17.1, p. 358
Lemma 17.2, p. 363
Theorem 17.1, p. 366

Finally, let us mention that the set of equilibrium strategies of the Inspectorate in case of legal
behaviour of the Operator is for the No-Se inspection game with N = 3 possible time points for
k = 1 interim inspection the same as for the corresponding No-No inspection game, i.e., is given
by (7.16), since � because of k = 1 � both inspection game are identical. For the Se-No and
the Se-Se inspection game, however, the set of equilibrium strategies of the Inspectorate in case
of legal behaviour of the Operator is di�erent from the one given by (7.16). To demonstrate
this statement we consider the Se-No inspection game with N > 1 possible time points for
k = 1 interim inspection which is treated in Lemma 4.2. Using (7.3) and (4.11), we see that
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the Operator will behave legally if and only if

b

d
>
N + 1

2
. (7.22)

If we take legal behaviour of the Operator into account, the payo� (4.8) to the Operator has
to be modi�ed, and is, for any (g2, g1) ∈ [0, 1]2 and any q ∈ QN,1, given by

OpN,1((g2, g1),q) :=

N∑
j1=1

qj1

(
(1− g2) (d j1 − b)

+ g2

[
(1− g1(j1)) (d (N + 1− j1)− b) + g1(j1) 0

])
, (7.23)

where g1(j1) is the probability that the illegal activity is not started at time point j1. The Nash
condition for the Operator is given by

Op∗N,1 := OpN,1((g
∗
2, g
∗
1),q∗) ≥ OpN,1((g2, g1),q∗)

for any (g2, g1) ∈ [0, 1]2, which can be seen to be equivalent to the inequalities

Op∗N,1 ≥ OpN,1((0, g1),q∗) and Op∗N,1 ≥ OpN,1((1, 0),q∗) . (7.24)

Because in case of legal behaviour of the Operator we have Op∗N,1 = 0, (7.24) is by (7.23)
equivalent to

b

d
≥

N∑
j1=1

q∗j1 j1 ≥ N + 1− b

d
. (7.25)

Condition (7.22) assures that the interval (7.25) is not empty. For N = 3 possible time points,
(7.25) simpli�es to

b

d
≥ −2 q∗1 − q∗2 + 3 ≥ 4− b

d
.

Even though the left hand inequality coincides with the �rst inequality of (7.16), as a whole this
set of equilibrium strategies is di�erent from that given by (7.16). Thus, we have shown that
the set of equilibrium strategies of the Inspectorate in case of legal behaviour of the Operator
is di�erent for the No-No and the Se-No inspection game with N = 3 possible time points for
k = 1 interim inspection. We will come back to this observation in Part II, where, however, we
show in Section 13 that the Nash conditions for the Inspectorate's equilibrium strategy in case
of the No-No inspection game coincide with those for the Se-Se inspection game at least for a
wide range of parameter combinations.

7.3 E�ectiveness and e�ciency

Let us consider again the important application which we have presented already several times:
For good reasons, as already pointed out in the Introduction, we consider the nuclear material
safeguards system of the IAEA in Vienna the most elaborate international veri�cation system
which served as a model for other ones, e.g., that of the Chemical Weapons Convention. Not
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only for these reason IAEA o�cials do not cease to claim that their system is e�ective and
e�cient, but what does this mean in quantitative terms?

According to online dictionaries and related Wikipedia entries, e�ectiveness cannot be under-
stood as a unique construct. In the framework of inspections we formulate

De�nition 7.1. An inspection system is e�ective if it is able to bring about the results intended
or doing the right thing. Furthermore, it is e�cient if it is doing the right thing well, e.g., in
the least expensive way.

According to this De�nition e�ectiveness has a dichotomic meaning: A single inspection or
an inspection system is e�ective or not, but it may become more e�cient if, e.g., a new cost
reducing technique is used. Note that e�ectiveness can � due to other sources � also be
understood as "The degree to which something is successful in producing a desired result".
This de�nition is used in Canty and Listner (2020) and repeals the dichotomic meaning of
De�nition 7.1. In this monograph we use De�nition 7.1.

As mentioned on p. 1, the objective of IAEA safeguards is essentially the "... timely detection
of the diversion of nuclear material and the deterrence of such diversion by the risk of early
detection"; IAEA (1972). In that sense we de�ne

De�nition 7.2. IAEA safeguards is e�ective in the State under consideration, if this State, or
any Operator acting on behalf of that State, is deterred from diverting nuclear material. Also,
IAEA safeguards is e�cient, if it deters the State or the Operator in the least expensive way.

The key question is: When is a State or Operator deterred from such illegal behaviour? For the
purpose of illustration let us return to the example considered in Section 7.2. For the No-No
inspection game with N = 3 possible time points and k = 1 interim inspection the condition
for legal behaviour is given by (7.4). Thus, if the parameters b, d and β of this inspection
system ful�l this set of inequalities, then it is e�ective according to De�nition 7.2.

Furthermore, let us assume that the non-detection probability β is a monotone decreasing
function of the inspection e�ort; see for an example (6.43). Then, this inspection system is
e�cient, if for any given value of b/d the right hand sides of (7.4) are maximized, for the
existence of a maximum replace the > sign in (7.4) by ≥, i.e., if β is maximized such that the
inequalities with ≥ instead of > are still ful�lled.

A representation of these results is given in Figure 7.2; see also Avenhaus and Krieger (2020).
The shaded area characterizes e�ective inspections, and the solid line e�cient ones. Extending
what we said after (7.4) we see that the inspection system is e�ective either if the probability β
of not detecting the illegal activity is small or the ratio b/d of sanctions to gains of the Operator
in case of such behaviour is large enough.

Let us generalize these considerations to any inspection problem � not restricted to IAEA
safeguards � analysed in this monograph and in the related literature. We formulate3

De�nition 7.3. An inspection system is e�ective if the equilibrium strategy of the inspected
party (Operator) is legal behaviour in the sense of the purpose of the inspections. An equilibrium
strategy of the inspecting party (Inspectorate) is e�cient if the legal behaviour equilibrium is
achieved at minimum cost.

3Because the following statement is derived from De�nitions 7.1 and 7.2 one might argue that it should
be considered a Theorem. Since, however, the game theoretical context is new, we prefer the format of a
De�nition.
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Figure 7.2 E�ective and e�cient inspections for the No-No inspection game with N = 3
possible time points for k = 1 interim inspection and with errors of the second kind.
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These considerations shed new light on the diversion hypothesis which we discussed in connec-
tion with assumption (iv) on p. 17: If one wants to design an e�ective and e�cient inspection
system, then one has to determine the legal behaviour equilibrium of the inspection game that
describes that system. This, however, requires the analysis of deviations from this equilibrium,
namely illegal behaviour of the inspected party. In other words, the diversion hypothesis is
needed for the determination of e�ective and e�cient inspections.

7.4 Utilities for variable sampling inspection schemes and fur-
ther extensions

Even though we have discussed already a large number of inspection models, many more
possibilities exist as shown already in Figure 1.1. In the following we will present some extensions
and future work and discuss why they have not yet been tackled and whether their analyses
look promising. We will, however, not repeat in detail extensions which we mentioned already
in the framework of the models of this Part I, e.g., the questions whether the No No and the
No-Se inspection games on one hand, and the Se-No and the Se-Se inspection games on the
other lead in general to the same optimal expected detection times.

First, let us consider variable sampling problems which arise when inspections are based on
quantitative measurements and errors of the second kind, i.e., non-detection of illegal activities,
as well as errors of the �rst kind, i.e., false alarms, cannot be avoided. Since the latter ones
have negative consequences both to the Operator and to the Inspectorate, we can no longer
describe problems of this kind with the help of zero-sum games. Instead and like in the case of
the deterrence considerations in the previous section, we have to use non-zero-sum games.
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For the sake of completeness, and for use in later chapters we present here the payo�s to both
players in case false alarms cannot be avoided in playing for time inspection games: The payo�s
to the two players (Operator, Inspectorate) are given by

(d4t− b,− a4t) for illegal behaviour and detection time4t
(−f,−g) for legal behaviour and a false alarm

(0, 0) for legal behaviour and no false alarm ,

(7.26)

where with T being the length of the reference time interval, 0 < f < b < dT , 0 < g < aT .
Note that if b ≥ d T were true, the Operator would not have any incentive to behave illegally
at all. The payo�s are normalized to zero for legal behaviour without false alarms, this is also
the best result for the Inspectorate and implies the idea that inspection costs are not part
of the Inspectorate's payo�, but rather imposed by the external parameter k, the number of
interim inspections. The pro�t (loss) to the Operator (Inspectorate) grows proportionally with
the time elapsed to detection of the illegal activity. A false alarm is resolved unambiguously
with time independent costs −f to the Operator and −g to the Inspectorate, whereupon the
game continuous. Note that because − a4t < 0 and −g < 0, the most desirable outcome for
the Inspectorate is legal behaviour of the Operator and no false alarm, i.e., its primary aim is
to deter the Operator from behaving illegally; see Section 7.3.

Note that for the inspection games in Part III, the payo�s (7.26) are amended accordingly; see
(14.1) and (14.2) in Chapter 14.

We note in passing that those inspection games, which do not take into account legal behaviour
as well as false alarms, are still strategically equivalent to zero-sum games; see, e.g., the
discussion before and after Lemma 7.1 and p. 398. In the example given in Section 7.2 we have
shown this explicitly. For models which do take into account false alarms, this is no longer the
case since false alarms cause, as mentioned, costs (negative gains) to both players.

In fact, practitioners have not yet raised false alarm problems neither in the context of discrete
nor continuous time playing for time inspection games. Whereas theoreticians have already
developed and analysed continuous time models with errors �rst and second kind, see Sections
9.4 and 10.3 and Chapter 12, discrete time models with errors �rst and second kind have not
yet been considered. There is no doubt that interesting and useful models for discrete time
could be developed once they would be asked for by practitioners.

Second, one can imagine situations where, e.g., in a State, there are several facilities of the
same type, and that interim inspections have to be carried through such that the total number
of interim inspections per reference time interval is �xed. This would mean, by the way, that
then in general only the expected number of interim inspections per reference time interval and
per facility would be �xed. The question then would be whether the Operator of the single
facilities would act independently or if they would plan, if at all, only one illegal activity to be
performed in one of the facilities. Contrary to the variable sampling case, this problem has
already been raised by practitioners; see Avenhaus et al. (2010). Due to its complexity only a
very special case has been studied so far: Two facilities, three possible time points for interim
inspections, two interim inspections in total, no errors of the �rst and second kind and non-
sequential planning of both players, State and Inspectorate. Any extension would be di�cult,
but not impossible, if demanded for. Let us mention already here, that this kind of problems
will be considered for continuous time playing for time inspection games in Chapter 11. The
case that for one facility the expected number of inspections is �xed, is analysed in Chapter 24.
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Third, let us mention the so-called Inspectorate leadership principle. In general and according to
Avenhaus et al. (2002), the leadership principle says that it can be advantageous in a competitive
situation to be the �rst player to select and stay with a strategy. It was suggested �rst by
von Stackelberg (1934) for pricing policies. Maschler (1966) applied this idea to sequential
inspections. The notion of leadership consists of two elements: The ability of the player �rst to
announce his strategy and make it known to the other player, and second to commit himself to
playing it. This concept is particularly suitable for inspection games since an Inspectorate can
credibly announce its strategy and stick to it, whereas the Operator cannot do so if he intends
to act illegally. Therefore, it is reasonable to assume that the Inspectorate will take advantage
of its leadership role.

Let us note �rst that each zero-sum game with a game theoretical solution, i.e., with optimal
strategies and optimal payo�s, leadership has no e�ect. This is the essence of the minimax
theorem: Each player can guarantee his optimal payo� even if he announces his (mixed) strategy
to his opponent and commits himself to playing it.

Furthermore, it turns out that in inspection games where only errors of the second kind have
to be taken into account, the resulting equilibria are up to special cases the same as those of
the non-leadership version; see Avenhaus and von Stengel (1991).

In those cases in which false alarms cannot be avoided, however, the leadership version may
result in equilibria which induce the Operator to legal behaviour whereas this is not so for the
non-leadership version. In this context let us mention the work by Avenhaus and Okada (1992)
in which sequential inspector-leadership games are considered, and which stands a bit out of the
classi�cation given in Chapter 2: The main objective of that investigation is to derive simple
criteria for the determination of optimal inspection procedures from the equilibrium conditions
for non-cooperative non-zero-sum two-person games. It is shown that, given the appropriate
assumptions, one can arrive at "statistical" optimization criteria. In the simplest case one gets
the global probabilities of the �rst and second kind errors, and in more complex cases the
average run lengths for legal and illegal Operator behaviour.

Finally, because in this Part I false alarms are not considered, we will not explain the idea of
inducing the Operator to legal behaviour here in more detail. Instead we will do this in Part II,
where in Sections 9.4 and 10.3 and in Chapter 12 playing for time inspection games with errors
of the �rst and second kind are considered.
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Part II

Playing for Time: Continuous Time

The essential di�erence of the classes of inspection problems to be considered in Part II to
those of Part I is the fact that the Inspectorate can perform its interim inspections at any point
of time during the reference time interval, and that the Operator can start the illegal activity
at any point of time during the reference time interval as well; in other words, time is now
considered to be continuous.

Despite the fact that the di�erence between the assumptions of Parts II and I consists only
in the nature of time, it will turn out that its consequences are considerable. Obviously, the
analytical techniques are di�erent: Now distributions of continuous random variables, such as
the start of the illegal activity and the interim inspection time points, will have to be used, and
in some cases methods of calculus will have to be applied.

There are, however, also di�erences in substance: Surprisingly enough in Chapters 10 � 12 the
optimal interim inspection time points turn out to be pure strategies in the Se-No and the Se-Se
inspection games which happens in the discrete time Se-No and the Se-Se inspection games
only in rare cases; see p. 68. But also, some of the game theoretical solutions which will be
presented in Part II, will turn out to be limiting cases of game theoretical solutions obtained in
Part I.

In order that the three main parts of this monograph can be read independently in nearly
arbitrary order, we repeat in Chapter 8 more or less verbally the general description of the
inspection problems as well as the list of assumptions which has been presented in Chapter 2,
and we will emphasize the di�erences between these lists.

Part II is structured in analogy to Part I: The inspection games in Chapters 9 � 12 di�er by the
planning of interim inspections and illegal activities and � which is new � several facilities are
considered in Chapter 11. As in Part I, various relations to the discrete time inspection games
treated in Part I and relations within the inspection games of Part II, such as optimal/equilibrium
strategies, optimal/equilibrium payo�s and system quantities given in Table 1.1, are discussed
throughout Part II, and especially in its �nal Chapter 13.
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Chapter 8

General assumptions

Even though the inspection problems considered in this Part II are very similar to those of Part
I, and even though therefore many of the assumptions listed in Chapter 2 are the same as
the ones needed here, we will formulate again a complete set of assumptions. For the sake of
clarity we will mention explicitly which of the following assumptions are di�erent from those of
Chapter 2.

Again, we consider in this Part except for Chapter 11 one single inspected object, for example
a production line, or a nuclear or chemical facility (for short: facility) which is subject to
inspections in the framework of agreed rules, formal agreements or an international treaty, and
a reference time interval of one time unit, e.g., a week, a month, or a calender year.

In order to separate the timeliness aspect of routine inspections from the overall goal of detecting
failures or an illegal activity, it is assumed that a thorough and unambiguous inspection takes
place at the beginning and end of the reference time interval with the help of which failures or
an illegal activity will be detected with certainty once they have occurred. Such an inspection
is called, according to some agreed wording, Physical Inventory Veri�cation (PIV); see IAEA
(2002) and Figure 8.1.

Figure 8.1 Time line for the continuous time inspection models including the time points
tk, . . . , t1 of the k interim inspections.

tk+1

PIV

tk tk−1 t2 t1

PIV

t0

In addition, it is assumed that by agreement k less intrusive interim inspections are strategically
placed during the reference time interval to reduce the time between start and detection of
failures or the illegal activity below the length of the reference time interval. We assume, and
this is the central di�erence to Part I, that the Inspectorate can perform its interim inspections
at any points of time within the open reference time interval. Let tk, . . . , t1 with (0 =)tk+1 <
tk < . . . < t1 < t0 denote the time points of the interim inspection(s); see Figure 8.1. Note
that t0 is determined by the absolute length and scaling, e.g., days, weeks or quarters of a
year, of the reference time interval. Thereafter, at the end of the reference time interval, i.e.,
at time point t0, the above mentioned PIV takes place. For technical reasons we label again
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the k interim inspections in backward order. At an interim inspection a preceding failure or
illegal activity will eventually be detected with some probability lower or equal than one. Also,
associated with each interim inspection which is not preceded by a failure or illegal activity may
be a false alarm which is assumed to be clari�ed with certainty.

Also, as a central di�erence to Part I, the Operator can start the illegal activity at any point of
time within the reference time interval [tk+1, t0).

Also, contrary to Chapters 3 to 6 of Part I, we will not assume in the corresponding chapters
in this Part II that the Operator will start an illegal activity with certainty during the reference
time interval. Instead, legal behaviour will also be a strategy of the Operator, and it will depend
on the details of the problem and its model whether or not legal behaviour will be an equilibrium
strategy. For this purpose, so-called utilities are introduced which describe the gains and losses
of the Operator and of the Inspectorate in case of legal and illegal behaviour of the Operator;
see (8.1) and (8.2).

Again, in Chapters 9 � 12 we assume, according to what has been said before, that the objective
of the Operator is to place the start of the illegal activity such that the detection time, i.e., the
time between the start of the illegal activity and its detection, is as long as possible, whereas
the objective of the Inspectorate is to place its interim inspections such that the expected
detection time is as short as possible. This means that we model this inspection game as a
two person game where the payo�s to the Operator and to the Inspectorate are proportional
to the expected detection time. Note that only in those cases where it is assumed that the
Operator will behave illegally with certainty and where no false alarms are possible, the payo�
to the Operator is the expected detection time itself.

Let us summarize the assumptions made so far:

(i) There are two players: the Operator of the facility or facilities under consideration and
the Inspectorate.

(ii) The Inspectorate performs k interim inspections at the time points (0 =)tk+1 < tk <
. . . < t1 < t0 in any facility if there are several ones.

(iii) The Inspectorate performs at the beginning and at the end of the reference time interval
a regular inspection (Physical Inventory Veri�cation, PIV) at which the illegal activity of
the Operator � if he behaves illegally at all � is detected with certainty if it is not detected
at a previous interim inspection.

(iv) The Operator may start at most once an illegal activity during the reference time interval
[tk+1, t0] in any facility if there are several ones.

(v) During an interim inspection the Inspectorate may commit an error of the �rst and second
kind with probabilities α and β. These error probabilities are the same for all k interim
inspections and all facilities if there are several ones. Only in Section 11.1 an exception
is made. The "game" continues after an error of the �rst kind.

(vi) The number k of interim inspections is known to the Operator.1

1The possibility that the expected number of inspections is �xed and known to the Operator is addressed
in Chapter 24; see also the comment on p. 18.
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(vii) The Operator decides � if he behaves illegally at all � at the beginning of the reference
time interval, i.e., at time point tk+1, when to start the illegal activity, or he only decides
whether to start the illegal activity immediately at time point tk+1 or to postpone its
start; in the latter case he decides again after the �rst interim inspection; and so on.

The Inspectorate decides at the beginning of the reference time interval when to perform
its interim inspections, or it decides only when to perform the �rst interim inspection,
and after the �rst one when to perform the second interim inspection, and so on.

(viii) Both players decide independently of each other, i.e., no bindings agreements are made.

(ix) The payo�s to the two players (Operator, Inspectorate) are linear functions of the detec-
tion time 4t, i.e., the time between start and detection of the illegal activity, and are
given as follows

(d4t− b,− a4t) for illegal behaviour and detection time4t
(−f,−g) for legal behaviour and a false alarm

(0, 0) for legal behaviour and no false alarm ,

(8.1)

where

0 < f < b < d (t0 − tk+1) and 0 < g < a (t0 − tk+1) . (8.2)

(x) An (interim) inspection does not consume time. In case of the coincidence of the start of
the illegal activity and the interim inspection, the illegal activity may be detected at the
occasion of the next interim inspection or, with certainty, at the �nal PIV. In this sense
the wording "... right after an interim inspection ..." is equivalent to "... at an interim
inspection ...".

(xi) The game ends either at the interim inspection at which the illegal activity is detected or
at the �nal PIV; see (iii).

We comment only on assumptions (v) and (ix) since the other comments given in Chapter 2
hold here as well. Regarding assumption (v), we mentioned in Chapter 2 that models, in which
only errors of the second kind are taken into account, typically describe Attribute Sampling
schemes. Models with errors of the �rst and second kind are typical for Variable Sampling
problems; see Thyregod (1988) and Section 7.4. They describe, e.g., inspections which are
based on quantitative measurements. Further assumptions on the relation between α and β
will be made in the respective sections and chapters.

The payo�s (8.1) with (8.2) in assumption (ix) are the payo�s introduced in (7.26), and which
are explained on p. 146. Let us note that if d ≥ (t0 − tk+1) were true, then the Operator
would not have any incentive to behave illegally at all, and that d as a proportionality factor
changes appropriately if the time is measured di�erently: If we measure, for example, t0− tk+1

in months resp. days instead of years, then d has to be divided by 12 resp. 365. Thus, it would
be always better to write, e.g., d (t0−tk+1), but this would lead to more cumbersome equations.
Also note that if false alarms can be excluded and the Operator behaves illegally with certainty,
then (8.1) implies that the game under consideration is strategically equivalent to a zero-sum
game with the detection time as payo� to the Operator; see p. 398. Because − a4t < 0 and
−g < 0, the preferred Inspectorate's outcome is legal behaviour of the Operator and no false
alarms, i.e., its primary aim is to deter the Operator from behaving illegally; see Section 7.3.
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Chapter 9

No-No inspection game: Diamond

model and extensions

Like in the Part I, we start Part II with that inspection game where both players, Operator
and Inspectorate, plan the start of the illegal activity respectively the timing of the k interim
inspections at the beginning of the reference time interval, i.e., we consider the No-No inspection
game; see Table 2.1. Again, the payo� to the Operator is the detection time, i.e., the time
elapsed from the start of the illegal activity until its detection, latest at the �nal PIV, which
he wants to maximize. In contrast to Chapter 3, however, we are able to present a model and
optimal strategies for any number k of interim inspections, and not just one. This model has
been described and analysed by Diamond (1982); it is an ingenious piece of scienti�c work, and
this chapter may be considered an homage to the author and his achievement.

Applications of this inspection model have been analysed in the framework of reliability studies
by Derman (1961) and Diamond (1982): An operating unit may fail which creates cost which
increase with the time until the failure is detected. The overall time interval is the time
between normal replacements of the unit. A minimax analysis leads to a zero-sum game with
the operating unit as Operator which cannot observe any inspection. A more common approach
in reliability theory, which is not our topic, is to assume some knowledge about the distribution
of the failure time. Another application is the planning of interim inspections in the framework
of nuclear material safeguards which has been described already in Section 6.6 and will be
addressed again in Section 10.2.

Following the same lines as in Part I, we start in Section 9.1 with the most simple, though
by no means trivial case of just k = 1 interim inspection and no statistical errors following
Avenhaus et al. (2002). Thereafter, in the central Section 9.2, the work of Diamond for any
number k of interim inspections and no statistical errors is presented in a slightly modi�ed way.
Diamond's model is extended in Section 9.3 taking errors of the second kind into account, and
a conjecture about optimal strategies and the optimal payo� is formulated for any number k
of interim inspections. In Section 9.4 errors of the �rst and second kind are considered for
the case of just k = 1 interim inspection; the results presented here are due to Sohrweide
(2002), Avenhaus et al. (2003) and Krieger (2011). The chapter ends with Section 9.5 on the
appropriate choice of the error �rst kind probability α.

Note that only in Sections 9.4 and 9.5 payo� parameters are used. This has been done for
two reasons: First, Diamond's work should be presented in its original form and second, his
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model contains only technical parameters. Therefore, remembering what has been said in
Section 1.4, it meets practitioners' requirements much better than a model containing also
payo� parameters, satisfying for theoreticians as it may be.

9.1 One interim inspection

The inspection game analysed in this section is based on the following speci�cations:

(iv') The Operator starts once an illegal activity during the reference time interval [0, t0] in
the only facility under consideration.

(v') During an interim inspection the Inspectorate does not commit an error of the �rst and
of the second kind, i.e., the illegal activity, see assumption (iv'), is detected with certainty
during the next interim inspection or with certainty during the �nal PIV; see assumption
(iii).

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point
0, when to start the illegal activity.

The Inspectorate decides at the beginning of the reference time interval when to perform
its interim inspection.

(ix') The payo�s to the two players (Operator, Inspectorate) are linear functions of the detec-
tion time 4t, i.e., the time between start and detection of the illegal activity, and are
given as follows

(4t,−4t) for illegal behaviour and detection time4t .

The remaining assumptions of Chapter 8 hold throughout this section.

The Operator starts the illegal activity at some time point s from the reference time interval
[0, t0) and the Inspectorate performs its interim inspection at time point t1 ∈ (0, t0). Thus,
the sets of pure strategies of both players are given by

S := {s ∈ R : 0 ≤ s < t0} and T1 := {t1 ∈ R : 0 < t1 < t0} . (9.1)

Because the letters S resp. T1 are � as in Part I � reserved for the start of the illegal activity
resp. the time point of the interim inspection, see below, the strategy sets (9.1) are denoted
using calligraphic letters.

Again, the illegal activity is detected at the earliest inspection following the start of the illegal
activity at time point s, i.e., at time point t1 or at the �nal PIV. Then, the payo� to the
Operator, i.e., the detection time, is given by

Op∗1(s, t1) :=

{
t1 − s for 0 ≤ s < t1 < t0
t0 − s for 0 < t1 ≤ s < t0

, (9.2)

which can be seen as a generalization of the payo� matrix in Table 3.2. Op1(s, t1) is also called
the payo� kernel of the game. The use of s < t1 and t1 ≤ s in (9.2) is due to assumption
(x) of Chapter 8 which says here that in case the start of the illegal activity coincides with
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the interim inspection, i.e., s = t1, the illegal activity is detected at the �nal PIV. Again, the
Inspectorate's payo� is the negative of the payo� to the Operator; see assumption (ix').

The payo� kernel given by (9.2) describes a kind of duel with reversed time where both players
have an incentive to act early but after the other. By (9.2), the Operator's payo� is too small
if he starts the illegal activity too late, so that he will select the time point s with a certain
probability distribution from an interval [0, b] where b < t0. Consequently, the Inspectorate will
not inspect later than time point b.

In analogy to Section 3.1 we �rst want to answer the question, if there exists a saddle point in
pure strategies, i.e., a pair (s∗, t∗1) ∈ S × T1 from which no player has an incentive to deviate:

Op1(s, t
∗
1) ≤ Op1(s∗, t∗1) ≤ Op1(s∗, t1) (9.3)

for any s ∈ S and any t1 × T1. The answer to this question is no, since t∗1 � according to
(9.3) � would have to be a minimum of the function Op1(s

∗, t1). Because only the in�mum
of Op1(s

∗, t1) for t1 ∈ T1 exists, and is equal to zero, but not the minimum, a saddle point in
pure strategies does not exist.

Therefore we must look for mixed strategies, which raises the question: What are mixed strate-
gies for players with in�nitely many pure strategies? The answer is that they can be represented,
just as in matrix games, as probability distributions over the set of pure strategies. It is, how-
ever, more convenient to work with probability distribution functions on R; see Karlin (1959a).
Let the random variables S resp. T1 represent the start of the illegal activity resp. the time
point of the interim inspection. Their distribution functions are denoted by

P (s) := P(S ≤ s) and Q(t1) := P(T1 ≤ t1) .

The intuitive meaning is straightforward: P (s) is the probability that the illegal activity is
started at time point s or earlier, and Q(t1) denotes the probability of the interim inspection is
taking place at time point t1 or earlier.

Using Lebesque-Stieltjes integrals, see Hewitt and Stromberg (1965) or Carter and Brunt
(2000), the Operator's (expected) payo�, i.e., the expected detection time, is, for any P
and any Q, given by

Op1(P,Q) :=

∫
[0,t0)

∫
(0,t0)

Op1(s, t1) dQ(t1) dP (s) (9.4)

and to the Inspectorate by In1(P,Q) := −Op1(P,Q). It can be shown, see Carter and Brunt
(2000), that the double integral exist and that the order of integration can be changed.

Let us repeat, see also Chapter 19 for the case of matrix games, that a pair of distribution
functions (P ∗, Q∗) constitutes a saddle point of the game if and only if

Op1(P,Q
∗) ≤ Op1(P ∗, Q∗) ≤ Op1(P ∗, Q) (9.5)

for any P and any Q. Also, it can be shown, like in Chapter 19 for matrix games, that a pair
of distribution functions (P ∗, Q∗) constitutes a saddle point if and only if

Op1(s,Q
∗) ≤ Op1(P ∗, Q∗) ≤ Op1(P ∗, t1) (9.6)

for any s ∈ S and any t1 × T1, i.e., both inequalities have only to be proven for the players'
pure strategies. Again, P ∗ and Q∗ are called optimal strategies, and Op1(P

∗, Q∗) is called
optimal payo� to the Operator.
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So we have to look for distribution functions P ∗ and Q∗ ful�lling (9.5). Success, however, is
by no means guaranteed, since the payo� kernel Op1(s, t1) is discontinuous on the diagonal
s = t1, and the existence of optimal strategies for those kind of games cannot be guaranteed
without further assumptions; see Owen (1988). Fortunately, the games discussed in this section
possesses optimal mixed strategies. Finding these optimal strategies is in general a di�cult task.

The game theoretical solution of this inspection game, see Avenhaus et al. (2002), is presented
in

Lemma 9.1. Given the No-No inspection game on the reference time interval [0, t0] with k = 1
interim inspection. The sets of mixed strategies are given by the set of distribution functions
on R, and the payo� to the Operator by (9.4) using (9.2). De�ne the cut-o� time point t∗ by

t∗ := t0

(
1− 1

e

)
.

Then an optimal strategy of the Operator is given by the distribution function

P ∗(s) =


0 for s < 0

t0 − t∗

t0 − s
for s ∈ [0, t∗)

1 for s ≥ t∗

, (9.7)

and an optimal strategy for the Inspectorate by the distribution function

Q∗(t1) =


0 for t1 < 0

ln

[
t0

t0 − t1

]
for t1 ∈ [0, t∗)

1 for t1 ≥ t∗

. (9.8)

The optimal payo� to the Operator is

Op∗1 := Op1(P
∗, Q∗) = t0 − t∗ =

t0
e
. (9.9)

Proof. It can be easily seen that P ∗(s) given by (9.7) and Q∗(t1) given by (9.8) are distribution
functions on R.

Because the interim inspection may take place before or after the start of the illegal activity,
the payo� Op1(s,Q

∗) to the Operator is for any s ∈ [0, t∗], using (9.2), given by

Op1(s,Q
∗) =

∫ s

0
(t0 − s) q∗(t1) dt1 +

∫ t∗

s
(t1 − s) q∗(t1) dt1

= t0

∫ s

0
q∗(t1) dt1 +

∫ t∗

s
t1 q
∗(t1) dt1 − s . (9.10)

1It's derivative with respect to s ∈ (0, t∗) simpli�es, using (9.8), to2

d

ds
Op1(s,Q

∗) = t0 q
∗(s)− s q∗(s)− 1 = q∗(s) (t0 − s)− 1 = 0 , (9.11)

1If P ∗ and Q∗ are optimal strategies, and s is in the support of P ∗, then Op1(s,Q∗) is constant for any
s ∈ [0, t∗]; see Karlin (1959a), Lemma 2.2.1.

2In Part I we mentioned that it is sometimes easier to verify a solution which has been guessed with some
strange means than to �nd it. Here, the right hand equation q∗(s) (t0 − s) − 1 = 0 of (9.11) could have also
be used to �nd the solution.
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which means, that Op1(s,Q
∗) is constant for any s ∈ (0, t∗). Moreover, because Op1(s,Q

∗)
is a continuous function in s, see (9.10), Op1(s,Q

∗) is constant for any s ∈ [0, t∗], and we get,
using (9.10), Op1(t

∗, Q∗) = t0 − t∗ = t0/e, i.e., (9.9). Using (9.4) and (9.7), we obtain3

Op1(P
∗, Q∗) =

∫
[0,t0)

Op1(s,Q
∗) dP ∗(s) = (t0 − t∗) (P ∗(t0)− P ∗(0−)) = t0 − t∗ =

t0
e
,

because P ∗(s) is a right-continuous function. For s > t∗, the Operator's payo� is

Op1(s,Q
∗) =

∫ t∗

0
(t0 − s) q∗(t1) dt1 = t0 − s <

t0
e

= Op∗1 .

Therefore, we obtain, using (9.9), the inequality Op1(s,Q
∗) ≤ Op∗1 for any s ∈ [0, t0), i.e., the

left hand inequality of (9.6) is ful�lled.

We now prove the right hand inequality of (9.6). Because P ∗(s) according to (9.7) is a
right-continuous function with an atom at s = 0, and because of the properties of Lebesgue-
Stieltjes-integrals4,5, we get, using (9.2),

Op1(P
∗, t1) =

∫
[0,t0)

Op1(s, t1) dP
∗(s)

=

∫
[0,0]

Op1(s, t1) dP
∗(s) +

∫
(0,t1)

Op1(s, t1) dP
∗(s) +

∫
[t1,t0)

Op1(s, t1) dP
∗(s)

= t1 P
∗(0) + t1 (P ∗(t1)− P ∗(0)) + t0 (P ∗(t0)− P ∗(t1))−

∫
(0,t0)

s dP ∗(s)

= −P ∗(t1) (t0 − t1) + t0 P
∗(t0)−

∫
(0,t0)

s dP ∗(s)

=


t∗ −

∫
(0,t0)

s dP ∗(s) for t1 ∈ (0, t∗)

t1 −
∫
(0,t0)

s dP ∗(s) for t1 ≥ t∗
. (9.12)

Using partial integration6 and (9.7), we obtain∫
(0,t0)

s dP ∗(s) = t0 P
∗(t−0 )− 0P ∗(0+)−

∫
(0,t0)

P ∗(s) ds

= t0 − (t0 − t∗)
∫ t∗

0

1

t0 − s
ds− (t0 − t∗) = t∗ − t0

e
= t∗ −Op∗1 .

(9.13)

3For the interval [0, t0), we have
∫
[0,t0)

1 dP (t) = P (t−0 ) − P (0−); see Theorem 6.1.4 and Section 4.1 in

Carter and Brunt (2000).
4If the interval I is a union of a �nite number of pairwise disjoint intervals I = I1 ∪ I2 ∪ . . . ∪ In, then∫

I
f(s) dP (s) =

∑n
j=1

∫
Ij
f(s) dP (s); see Theorem 6.1.1 in Carter and Brunt (2000).

5For any interval I, and any function f de�ned at a ∈ I, we have
∫
[a,a]

f(s) dP (s) = f(a) (P (a+)−P (a−));

see Theorem 6.1.6 in Carter and Brunt (2000).
6Let f, g : I → R be functions of bounded variation, and let the set of points at which f and g are both

discontinuous be empty. Then,
∫
I
f(s) dg(s) +

∫
I
g(s) df(s) = µfg(I), where µfg(I) is in case of the open

interval I = (a, b), a < b, given by µfg((a, b)) = f(b−) g(b−) − f(a+) g(a+). This result is a special case of
Theorem 6.2.2 in Carter and Brunt (2000).
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Therefore, we get, using (9.4), that Op1(P
∗, t1) = Op1(P

∗, Q∗) = Op∗1 for any t1 ∈ (0, t∗).
Finally, (9.12) and (9.13) imply for any t1 ≥ t∗

Op1(P
∗, t1) = Op∗1 + t1 − t∗ ≥ Op∗1 ,

which implies Op∗1 ≤ Op1(P ∗, t1) for any t1 ∈ (0, t0), i.e., the right hand inequality of (9.6) is
ful�lled.

Before we turn to the general case of any number k of interim inspections, we make some
comments on the results of Lemma 9.1. A comprehensive discussion can be found after the
proof of Theorem 9.1.

First, the surprising result � which can also be observed in the discrete time No-No inspections
games, see Theorem 3.1 � is, that after time point t∗ neither an illegal activity is started nor an
interim inspection is performed. This result makes sense since detection is guaranteed to occur
at the end of the reference time interval and the Operator will not wish to wait too long before
starting the illegal activity. Furthermore, it is interesting to notice that the Operator will start
the illegal activity with positive probability P ∗(0) = 1/e > 0 at time point 0; see (9.7).

Second, it has been mentioned after (9.2) that this game can also be seen as a generalization
of the discrete time inspection game with the payo� matrix given in Table 3.2. Comparing
the results from Lemma 9.1 for t0 = 1 with that from Theorem 3.2 we see that they coincide.
This means that not only the payo� matrix A/(N + 1) merges for N → ∞ with the payo�
kernel (9.2), but also � and this is by no means obvious � the optimal distribution functions
for N → ∞ are the same. As a side remark note also that due to Lemma 3.3 the normalized
optimal expected detection time OpN,1/(N + 1), N = 1, 2, . . ., in the discrete time No-No
inspection game is a monotone decreasing function of N and therefore, always larger than that
in the continuous time game; see also Figure 3.3.

Third, the optimal strategies of both players can also be formulated in another way � due to a
brilliant idea of Diamond (1982). It can be directly seen that, using h1(x) = ex, the distribution
function

P̃ ∗(s) =



0 for s < 0

1

h1(1)
h1

(
1− h−11

(
h1(1)

t0
(t0 − s)

))
for 0 ≤ s < t0

(
1− 1

h1(1)

)
1 for s ≥ t0

(
1− 1

h1(1)

)
almost magically coincide with (9.7). The Inspectorate's optimal interim inspection time point
can also be formulated with the help of the function h1(x): It is given by

t∗1(U) = t0

(
1− h1(1− U)

h1(1)

)
, (9.14)

where U is a uniformly distributed random variable on [0, 1]. To prove this statement we
determine the distribution function of T1 for any t1 ∈ (0, t∗), and get

Q̃∗(t1) = P(T1 ≤ t1) = P(t∗1(U) ≤ t1) = P

(
U ≤ 1− h−11

(
h1(1)

t0
(t0 − t1)

))

= 1− h−11

(
h1(1)

t0
(t0 − t1)

)
= ln

[
t0

t0 − t1

]
,
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i.e., Q∗(t1) from (9.8). This representation of the Inspectorate's optimal strategy renders its
application very easy: The Inspectorate uses a random number generator, realizes U = u and
inspects at time point t∗1(u). The optimal expected detection time can also be written as a
function of h1(x): Op∗1 = t0/h1(1). It is this representation of the optimal strategies with the
help of the function h1(x) which allowed Diamond to �nd a game theoretical solution of his
inspection model for any number k of interim inspections.

Fourth, like in the discrete time No-No inspection game we determine the optimal expected time
point for the start of the illegal activity EP ∗(S), and the optimal expected interim inspection
time point EQ∗(T1). Using the rules of integration in footnotes 3 � 6, and making use of (9.9),
we get

EP ∗(S) :=

∫
[0,t0)

s dP ∗(s) = 0 (P ∗(0+)− P ∗(0−)) +

∫
(0,t∗)

s dP ∗(s)

= t∗ P ∗(t∗−)− 0P ∗(0+)−
∫
(0,t∗)

P ∗(s) ds = t∗ − (t0 − t∗)
∫ t∗

0

1

t0 − s
ds

= t∗ +Op∗1 ln

[
1− t∗

t0

]
= t∗ −Op∗1 = 2 t∗ − t0 , (9.15)

which is the same relation as given by (3.37) for the discrete time No-No inspection game. The
optimal expected interim inspection time point is, using (9.14) with h1(x) = ex, given by

EQ∗(T1) :=

∫ 1

0
t0

(
1− h1(1− u)

h1(1)

)
du = t0

∫ 1

0

(
1− e−u

)
du = Op∗1 , (9.16)

which leads, using (9.15), to

EP ∗(S) + EQ∗(T1) = t∗ , (9.17)

and which is the same relation as given by (3.39) for the discrete time No-No inspection game.

9.2 Any number of interim inspections

Because the case of k = 2 interim inspections does not give any additional insights into the
problem, we directly turn to the general case of k interim inspections.

The inspection game analysed in this section is based on the speci�cations made at the beginning
of Section 9.1, where assumption (vii') holds for any number k of interim inspections, and on
the remaining assumptions of Chapter 8.

Again, the Operator starts the illegal activity at some time point [0, t0), thus his set S of pure
strategies is again given by (9.1). The Inspectorate has k interim inspections which it performs
at time points tk, . . . , t1, freely chosen from the reference time interval (0, t0), i.e., its set of
pure strategies is

Tk := {(tk, . . . , t1) ∈ Rk : 0 < tk < . . . < t1 < t0} . (9.18)

Since, according to assumption (v') made at the beginning of Section 9.1 and assumption (x)
of Chapter 8, the illegal activity is detected at the earliest inspection following the start of the
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illegal activity at time point s with certainty, the payo� to the Operator, i.e., the detection
time, is given by

Opk(s, (tk, . . . , t1)) := tn − s for tn+1 ≤ s < tn , n = 0, . . . , k , (9.19)

where tk+1 := 0. Again, the Inspectorate's payo� is the negative of the Operator's one.

A fundamental role in solving Diamond's inspection game play the functions hn(x), n = 1, 2, . . .,
ful�lling the system

h′n(x) = hn(x)− hn−1(x) for n = 1, 2, . . . and h0(x) := 0 , (9.20)

of di�erential equations with the boundary conditions

h1(0) := 1 and hn(0) := hn−1(1) for n = 2, 3, . . . . (9.21)

This system has a unique solution, see Braun (1975), which, however, cannot be given explicitly
for any number k of interim inspections. In Figure 9.1 the functions h1(x), . . . , h5(x) (from
bottom to top) are illustrated for the range [0, 1] (left) and [0, 4] (right). It should be noted
that the functions hn(x) are de�ned independently of k.

Figure 9.1 Graphical representation of the functions h1(x), . . . , h5(x).
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The functions hn(x) are monotone increasing for any x ∈ [0, 1] and all n = 1, 2, . . ., which
can be shown by induction: The function h1(x) = ex is monotone increasing on [0, 1]. even
on R. Let hn(x) be increasing on [0, 1] for a �xed n ∈ N. Because hn(0) < hn(1) = hn+1(0),
we get h′n+1(0) > 0. Suppose there exist a x0 ∈ (0, 1) with h′n+1(x0) = 0. Then (9.20)
implies hn+1(x0) = hn(x0). Let x0 be the smallest number in (0, 1) with h′n+1(x0) = 0, i.e.,
h′n+1(x) > 0 for any x0 ∈ [0, x0). Because of the continuity of hn+1(x) we would get:

hn+1(x0) > hn+1(0) = hn(1) > hn(x0) ,

which is a contradiction to hn+1(x0) = hn(x0). Therefore, the functions hn(x) are monotone
increasing for any x ∈ [0, 1] and all n = 1, 2, . . ..

The game theoretical solution of this inspection game is presented in Theorem 9.1, where we
use a slightly di�erent formulation of the optimal strategies and the optimal payo� compared
to the original work of Diamond (1982).
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Theorem 9.1. Given the No-No inspection game on the reference time interval [0, t0] with k
interim inspections. The sets of mixed strategies are given by the set of distribution functions
on R resp. Rk, and the payo� to the Operator by (9.4) using (9.19). De�ne the cut-o� time
point t∗ by7

t∗ := t0

(
1− h1(0)

hk(1)

)
, (9.22)

and the half-closed intervals In, n = 1, . . . , k, by

In :=

[
t0

(
1− hn(1)

hk(1)

)
, t0

(
1− hn(0)

hk(1)

))
, (9.23)

where the functions hn(x), n = 1, 2, . . . ful�l the system of di�erential equations (9.20) with
the boundary conditions (9.21).

Then an optimal strategy of the Operator is given by the distribution function

P ∗(s) =


0 for s < 0

1

hk(1)
hk−n+1

(
1− h−1n

(
hk(1)

t0
(t0 − s)

))
for s ∈ In, n = 1, . . . , k

1 for s ≥ t∗

(9.24)

and an optimal strategy for the Inspectorate by the interim inspection time points

t∗n(U) = t0

(
1− hn(1− U)

hk(1)

)
, n = 1, . . . , k , (9.25)

where U is a random variable which is uniformly distributed on [0, 1]. Formally, the distribution
function of the random vector (Tk, . . . , T1) is, for any (tk, . . . , t1) ∈ Tk, given by

Q∗(tk, . . . , t1) = min

{
1− h−1k

(
hk(1)

(
1− tk

t0

))
, . . . , 1− h−11

(
hk(1)

(
1− t1

t0

))}
.

The optimal payo� to the Operator is

Op∗k := Opk(P
∗, Q∗) = t0 − t∗ =

t0
hk(1)

. (9.26)

Proof. The proof is organized in three parts.

1. Because the functions hn(x), n = 1, 2, . . ., are monotonely increasing, h−1n (x) is monotonely
increasing, and thus, P ∗(s) is easily seen to be monotonely increasing. To prove that P ∗(s) is a
distribution function, the right-continuity of P ∗(s) has to be shown. De�ne for all n = 1, . . . , k
� in contrast to the half-closed intervals In � the open intervals

I̊n :=

(
t0

(
1− hn(1)

hk(1)

)
, t0

(
1− hn(0)

hk(1)

))
.

7Of course t∗ depends on k. In order to avoid confusion with the interim inspection time points tk, . . . , t1
which later on even occur with a star, we suppress the index k at t∗ with the understanding that t∗ is always
used for a �xed k.
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Because hn(x), n = 1, 2, . . ., are di�erentiable function on (0, 1), it is clear that P ∗(s) is a
di�erentiable function for all s from the set

A :=

k⋃
m=1

I̊m ∪
(
t0

(
1− 1

hk(1)

)
, t0

)
,

and hence a continuous functions for any s ∈ A. Furthermore, P ∗(s) is also continuous at all
points of [0, t0) which are excluded from the set A. This can be seen as follows: Let s∗ be
given by

s∗ = t0

(
1− hn(1)

hk(1)

)
for an n with n = 1, . . . , k − 1, i.e., s∗ ∈ In. Then (9.24) implies

P ∗(s∗) =
1

hk(1)
hk−n+1(0) .

We determine for a s ∈ In+1 the limit of s→ s∗. Because s ∈ In+1, it can be expressed as

s = t0

(
1− hn+1(1− u)

hk(1)

)
,

for u ∈ [0, 1). Then, limu→1 s = s∗, because of (9.21). Using (9.24), we get

P ∗(s) =
1

hk(1)
hk−n(u)→ 1

hk(1)
hk−n(1) =

1

hk(1)
hk−n+1(0) = P ∗(s∗) .

Thus, P ∗(s) is a continuous function on (0, t0), see also Figure 9.2, and with the monotonicity
property shown above, a distribution function in R.

2. Using the abbreviation t := (tk, . . . , t1), we need to show that

Opk(s,Q
∗) ≤ Opk(P ∗, Q∗) ≤ Opk(P ∗, t) (9.27)

for any s ∈ S and any t ∈ Tk. To show the left hand inequality of (9.27), let s ∈ I̊n for an
index n = 1, . . . , k. Thus, s can be written as, see Figure 9.1,

s(y) = t0

(
1− hn(1− y)

hk(1)

)
for an y ∈ (0, 1) .

The only optimal interim inspection time point lying in the interval I̊n is t∗n(u). Therefore,
the Operator's payo� is, using (9.19), t∗n(u) − s(y) if and only if y < u < 1 and it is � with
t∗0(u) = 0 � t∗n−1(u)− s(y) if and only if 0 < u ≤ y, i.e., using t∗(u) = (t∗k(u), . . . , t∗1(u)),

Opk(s(y), t∗(u))

=


t0

(
1− hn−1(1− u)

hk(1)

)
− t0

(
1− hn(1− y)

hk(1)

)
for 0 < u ≤ y

t0

(
1− hn(1− u)

hk(1)

)
− t0

(
1− hn(1− y)

hk(1)

)
for y < u < 1

. (9.28)
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Therefore, we get for the payo� to the Operator

hk(1)

t0
Opk(s(y), t∗(u))

=

∫ y

0
(hn(1− y)− hn−1(1− u)) du+

∫ 1

y
(hn(1− y)− hn(1− u)) du

= hn(1− y)−
∫ y

0
hn−1(1− u) du−

∫ 1

y
hn(1− u) du . (9.29)

Taking the �rst derivative with respect to y leads to

d

dy

(
hk(1)

t0
Opk(s(y), t∗(u))

)
= −h′n(1− y)− hn−1(1− y) + hn(1− y) . (9.30)

Since the functions hn(x) ful�l the system of di�erential equations (9.20) for any x ∈ (0, 1),
we obtain from (9.30)

d

dy

(
hk(1)

t0
Opk(s(y), t∗(u))

)
= 0 for any y ∈ (0, 1) ,

which implies that Opk(s(y), t∗(u)) is a constant function on the interval I̊n. Using (9.29) one
sees, that Opk(s(y), t∗(u)) is even a continuous function in y on the interval In, and thus, a
constant function for any s ∈ [0, t∗]. The constant is for n = 1 and y = 1, using (9.28),

Opk (t∗, t∗(u)) =
t0

hk(1)
,

which leads �nally, using (9.24), to

Opk(P
∗, Q∗) =

∫
[0,t0)

Opk(s,Q
∗) dP ∗(s) =

t0
hk(1)

= Op∗k .

In case of s ≥ t∗ the payo� to the Operator is

t0 − s ≤
t0

hk(1)
= Op∗k .

Therefore we have shown that Opk(s,Q
∗) ≤ Op∗k for any s ∈ [0, t0), which is the left hand

inequality of (9.27).

3. We now prove the right hand inequality of (9.27). Let P (s) be any distribution function
on R with an atom in s = 0 and P (0−) = 0. Then we obtain with tk+1 = 0, (9.19) and the
properties of the Lebesgue-Stieltjes-integrals, see the footnote 4 on p. 159,

Opk(P, (tk, . . . , t1)) =

∫
[0,t0)

Opk(s, (tk, . . . , t1)) d(s)

=

k∑
n=1

∫
[tn+1,tn)

(tn − s) dP (s) +

∫
[t1,t0)

(t0 − s) dP (s) .
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Because P (s) is a distribution function, it is right-continuous in any point of [0, t0), we further
obtain, using the result of footnote 5 on p. 159 and P (0−) = 0,

Opk(P, (tk, . . . , t1)) = tk P (0+) +

∫
(0,tk)

(tk − s) dP (s) +

k−1∑
n=0

∫
[tn+1,tn)

(tn − s) dP (s)

= tk P (0) +

k∑
n=0

tn (P (tn)− P (tn+1))−
∫
(0,t0)

s dP (s) .

Then di�erentiation with respect to tn leads for any (tk, . . . , t1) ∈ Tk with tk, . . . , t1 ∈ A to

∂

∂tn
Opk(P

∗, (tk, . . . , t1))

=


P ∗(tk)−

d

dtk
P ∗(tk) (tk−1 − tk) for n = k

P ∗(tn)− P ∗(tn+1)−
d

dtn
P ∗(tn) (tn−1 − tn) for n = 1, . . . , k − 1

. (9.31)

The candidates (tk, . . . , t1) ∈ Tk with tk, . . . , t1 ∈ A for being a minimum of the function
Opk(P

∗, (tk, . . . , t1)) have to ful�l the condition

∂

∂tn
Opk(P

∗, (tk, . . . , t1)) = 0 for all n = 1, . . . , k . (9.32)

We now show that the vector (t∗k(u), . . . , t∗1(u)), where t∗n(u) is de�ned by (9.25), is for any
u ∈ (0, 1) a solution of (9.32), i.e., a candidate for a minimum. Let n = 1, . . . , k be an arbitrary
but �xed number. Because tn ∈ I̊n we get, using (9.24),

d

dtn
P ∗(tn) =

1

t0

h′k−n+1

(
1− h−1n

(
hk(1)

t0
(t0 − tn)

))
h′n

(
h−1n

(
hk(1)

t0
(t0 − tn)

)) .

Therefore, (9.31) simpli�es for n = k and for any u ∈ (0, 1), using (9.20) and (9.25), to

P ∗(t∗k(u))− d

dtk
P ∗(tk)

∣∣∣
tk=t

∗
k(u)

(t∗k−1(u)− t∗k(u))

=
h1(u)

hk(1)
− 1

t0

h′1(u)

h′k(1− u)

t0
hk(1)

(hk(1− u)− hk−1(1− u))

= 0 , (9.33)

and the second equation of (9.31) to

P ∗(t∗n(u))− P ∗(t∗n+1(u))− d

dtn
P ∗(tn)

∣∣∣
tn=t∗n(u)

(t∗n−1(u)− t∗n(u))

=
hk−n+1(u)

hk(1)
−
hk−(n+1)+1(u)

hk(1)
− 1

t0

h′k−n+1(u)

h′n(1− u)

t0
hk(1)

(hn(1− u)− hn−1(1− u))

= 0 . (9.34)
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Thus, (9.33) and (9.34) prove that all vectors (t∗k(u), . . . , t∗1(u))|u∈(0,1) are candidates for the
minimum.

Now the proof proceeds in two steps. First, because for any u ∈ (0, 1) the time points
t∗n(u) lie in the disjoint intervals I̊n,n = 1, . . . , k, it needs to be proven that any other vector
(tk, . . . , t1) ∈ Tk with tk, . . . , t1 ∈ A, does not ful�l (9.32). Thus, cases such as no interim
inspection is performed in some of the intervals I̊n, e.g., tk, tk−1 ∈ I̊k−1, i.e., no interim
inspection is performed in I̊k), or at least two interim inspections are placed in the same
interval, e.g., tk, tk−1 ∈ I̊k, have to be considered. Second, it is proven that even in case that
at least one of the tn is equal to a point at which P ∗(s) is not di�erentiable, (9.32) cannot be
ful�lled. The proofs of these two steps are by no means trivial. Since, however, their technical
details are far from the subject of this monograph, we refer the reader to the original work of
Diamond (1982).

Let us discuss the results of Theorem 9.1. First, the solution of Diamond's inspection game
is for k ≥ 2 considerably more complex compared to the one with k = 1 interim inspection,
see Lemma 9.1, and has the following features; As before, the Operator will not start the
illegal activity after time point t∗ as given by (9.22), again due to the fact that detection is
guaranteed to occur at the end of the interval and the Operator will not wish to wait too
long before starting the illegal activity. The interim inspections take place in disjoint intervals.
The interim inspection times are random, but it is a randomization over a one-parameter
family of pure strategies where the interim inspection time points are fully correlated. One
may understand this important property if one looks again at the No-No inspection game with
k = 2 interim inspections analysed in Section 3.2: There also just one random experiment is
performed because the time points (j2, j1) are realized according to q = (q(1,2), . . . , q(N−1,N)).
The Operator's optimal distribution function is piecewise de�ned on the k time intervals In,
n = 1, . . . , k, and has the atom P ∗(0) = 1/hk(1) at the beginning of the reference time
interval. For the optimal expected detection time we get from (9.26)

t0 −Op∗k = t∗ ,

which means that, like in Lemma 9.1, it is the time between the last possible interim inspection
time point and the end of the reference time interval.

Second, in case of k = 2 or k = 3 interim inspections, the system of di�erential equations
(9.20) and (9.21) has the solution

h1(x) = ex , h2(x) = ex(e− x) and h3(x) =
1

2
ex(−2 e+ 2 e2 − 2 e x+ x2) .

Therefore, we get for the atoms P ∗(0)

P ∗(0) =


1

e (e− 1)
≈ 0.214 for k = 2

2

e (2 e2 − 4 e+ 1)
≈ 0.150 for k = 3

as well as the optimal expected detection times

t0
h2(1)

=
t0

e (e− 1)
≈ 0.214 t0 for k = 2

t0
h3(1)

=
2 t0

e (−4 e+ 2 e2 + 1)
≈ 0.150 t0 for k = 3

.
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The Operator's optimal distribution function is depicted in Figure 9.2 for t0 = 4 and k = 2, 3
interim inspections. It can be seen that it is a piecewise di�erentiable function with an atom
at s = 0.

Figure 9.2 Optimal strategy of the Operator for t0 = 4 and k = 2 (left) and k = 3 (right)
interim inspections.
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Third, Diamond (1982) has shown that for large k the optimal interim inspection time points
are uniformly distributed in their intervals and that the optimal expected detection time Op∗k
approaches t0/(2 k + 2/3) rapidly with exponentially small error. It should be noted that
Diamond also demonstrates computational solution methods for non-linear loss functions.

Fourth, the optimal expected interim inspection time points Eq∗(Tn), n = 1, . . . , k, can be
determined as follows: Using (9.20), (9.25), and (9.26), we get for all n = 1, . . . , k

EQ∗(Tn) =

∫ 1

0
t0

(
1− hn(1− u)

hk(1)

)
du = t0 −Op∗k

∫ 1

0
hn(1− u) du

= EQ∗(Tn−1)−Op∗k
∫ 1

0
h′n(1− u) du

= EQ∗(Tn−1)−Op∗k (hn(1)− hn(0)) , (9.35)

where T0 := t0. Therefore, we obtain, using h1(0) = 1 from (9.21), and (9.35),

EQ∗(Tn) = t0 −Op∗k (hn(1)− 1) , (9.36)

which reduces for k = 1 interim inspection again to (9.16) and for n = k to

EQ∗(Tk) = Op∗k .

Note that due to the complicated structure of P ∗(s), EP ∗(S) cannot be given explicitly for
k ≥ 2 interim inspections. Thus, as a generalization of (9.15) we formulate, using (9.22) and
(9.26), the conjecture:

EP ∗(S) = t∗ −Op∗k = t0

(
1− h1(0)

hk(1)

)
− t0
hk(1)

= t0

(
1− 2

hk(1)

)
. (9.37)

Fifth, it should be mentioned that in practice it may be di�cult to plan and perform interim
inspections within the continuous time model, since this may create too many problems both
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for the Operator and the Inspectorate. A practical solution could be to take the nearest possible
time point to the optimal interim inspection time point(s).

Finally, if the Inspectorate deterministically inspects at time points

tn =
k − n+ 1

k + 1
t0 , n = 1, . . . , k ,

the illegal activity is detected at most after time t0/(k + 1) has elapsed. This is indeed an
optimal inspection strategy if the Operator can observe the interim inspections, i.e., in the
Se-No and the Se-Se inspection game; see (10.26) for β = 0 and (12.50) for α = β = 0 and
using Lemma 22.1. In that case, the start of the illegal activity s is uniformly chosen from the
set {0, tk, . . . , t1}, conditional upon the Inspectorate's action. Then we get by (9.19)

1

k + 1
(tk − 0) +

1

k + 1
(tk−1 − tk) + . . .+

1

k + 1
(t0 − t1) =

t0
k + 1

for the expected detection time.

9.3 Any number of interim inspections; errors of the second
kind

Let us now assume that we deal with an inspection problem where an illegal activity preceding
an interim inspection is detected with probability 1−β as it is the case if this interim inspection
uses an Attribute Sampling procedure; see Thyregod (1988).

The inspection game analysed in this section is based on the assumptions (iv'), (vii') for any
number k of interim inspections, and (ix') made at the beginning of Section 9.1, and on the
speci�cation:

(v') During an interim inspection the Inspectorate may commit an error of the second kind
with probability β ≥ 0, i.e., the illegal activity, see assumption (iv'), is not detected
during the next interim inspection with probability β. Note that if there is no interim
inspection left, then it is detected with certainty at the �nal PIV; see assumption (iii).
This non-detection probability is the same for all k interim inspections.

The remaining assumptions of Chapter 8 hold throughout this section. Note that the discrete
time variant of this inspection game is treated in Section 6.1.

Let us start with k = 1 interim inspection. Again, the Operator starts the illegal activity at
some time point s from the reference time interval [0, t0) and the Inspectorate performs its
interim inspection at time point t1 ∈ (0, t0). Thus, the sets of pure strategies of both players
are again given by (9.1).

The payo� to the Operator, i.e., the detection time, is given by the payo� kernel

Op1(s, t1) =

{
(1− β) (t1 − s) + β (t0 − s) for 0 ≤ s < t1 < t0
t0 − s for 0 < t1 ≤ s < t0

, (9.38)

because in case the illegal activity is started before the interim inspection takes place, i.e.,
0 ≤ s < t1, the illegal activity is detected at time point t1 with probability 1 − β or, if it is
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not detected at t1 with probability β, it is detected at t0, the �nal PIV, with certainty; see
assumption (x) of Chapter 8. If the illegal activity is started after the interim inspection takes
place, i.e., t1 ≤ s < t0, then it is detected at time point t0, again with certainty. Note that
the payo� kernel (9.38) can be seen as a generalization of the payo� (6.3).

The game with payo� kernel (9.38) does not possess a saddle point in pure strategies; see the
case β = 0 on p. 157. Therefore, mixed strategies and the Operator's payo� according to (9.4)
have to be considered again.

The game theoretical solution of this inspection game, see Sohrweide (2002) and Avenhaus
et al. (2003), is presented in Lemma 9.2, which is the continuous time version of the discrete
time No-No inspection game treated in Theorem 6.1.

Lemma 9.2. Given the No-No inspection game on the reference time interval [0, t0] with k = 1
interim inspection, and with errors of the second kind. The sets of mixed strategies are given
by the set of distribution functions on R, and the payo� to the Operator by (9.4) using (9.38).
De�ne the cut-o� time point t∗ by

t∗ := t0

(
1− 1

e1−β

)
. (9.39)

Then an optimal strategy of the Operator is given by the distribution function

P ∗(s) =


0 for s < 0

t0 − t∗

t0 − s
for s ∈ [0, t∗)

1 for s ≥ t∗

, (9.40)

and an optimal strategy for the Inspectorate by the distribution function

Q∗(t1) =


0 for t1 < 0

1

1− β
ln

[
t0

t0 − t1

]
for t1 ∈ [0, t∗)

1 for t1 ≥ t∗

. (9.41)

The optimal payo� to the Operator is

Op∗1 := Op1(P
∗, Q∗) = t0 − t∗ =

t0
e1−β

. (9.42)

Proof. The proof is a straightforward generalization of the proof of Lemma 9.1 resp. a special
case of the proof of Lemma 9.3, therefore, it is omitted here.

Let us comment the results of Lemma 9.2: First, the �rst and the third comment � with
h1(x) = e(1−β)x � given after Lemma 9.1 hold here as well. The fourth comment has to be
modi�ed: From (9.15) we obtain for the optimal expected time point for the start of the illegal
activity EP ∗(S), using (9.40) and (9.42),

EP ∗(S) =

∫
[0,t0)

s dP ∗(s) = t∗ +Op∗1 ln

[
1− t∗

t0

]
= t∗ − (1− β)Op∗1 = t∗ (2− β)− t0 (1− β) , (9.43)
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which for β = 0 coincides with (9.15). For the optimal expected interim inspection time point
EQ∗(T1) we get, using (9.39), (9.41) and (9.42),

EQ∗(T1) =

∫
(0,t0)

t1 dQ
∗(t1) =

1

1− β

∫ t∗

0

t1
t0 − t1

dt1

= t0 −
t∗

1− β
=

1

1− β
(Op∗1 − t0 β) , (9.44)

which coincides for β = 0 with (9.16). Note that (9.44) can also be obtained in analogy to
(9.16) using h1(x) = e(1−β)x. The optimal expected time point for the start of the illegal
activity is, using (9.43) and (9.44), given by

EP ∗(S) + (1− β)EQ∗(T1) = t∗ − t0 β ,

which simpli�es for β = 0 to (9.17). Also note that EQ∗(T1) as given by (9.44) and (6.14)
coincide if we identify N + 1 with t0.

Second, note that in this game the structure of the optimal strategies and the optimal payo�
to the Operator, is not changed compared to the game with β = 0 in Lemma 9.1. If in
addition errors of the �rst kind are considered, the equilibrium payo� to the Inspectorate will
be structurally di�erent from that of the Operator; see Lemma 9.3 (i).

Let us now turn to the case of k > 1 interim inspections. The Operator's set of pure strategies is
again given by S in (9.1), and the Inspectorate's one by (9.18). The payo� to the Operator, i.e.,
the detection time, however, has to be amended accordingly. For tn+1 ≤ s < tn, n = 0, . . . , k,
it is given by (

∑0
m=1 . . . := 0)

Opk(s, (tk, . . . , t1)) := (1− β) (tn − s) + β (1− β) (tn−1 − s) + . . .+ βn (t0 − s)

= (1− β)

n∑
m=1

βn−m (tm − s) + βn (t0 − s) , (9.45)

where tk+1 = 0. Again, the system of di�erential equations (9.20) has to be modi�ed: Now,
the functions hn(x), n = 1, 2, . . ., have to satisfy the system

h′n(x) = (1− β)hn(x)− (1− β)2
n−1∑
m=1

βn−(m+1) hn(x) (9.46)

of di�erential equations with
∑0

m=1 . . . := 0, and with the boundary conditions

h1(0) := 1 and hn(0) := hn−1(1) for n = 2, 3, . . . . (9.47)

This system has also a unique solution; see Braun (1975). It can be shown � analogously to
the proof on p. 162 � that the functions hn(x) are monotone increasing for any x ∈ [0, 1] and
all n = 1, 2, . . ..

Because we do not give a proof of the solution of this inspection game for any number k of
interim inspections, the result is formulated as a conjecture for which we have a well-considered
and strong evidence:
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Conjecture 9.1. Given the No-No inspection game on the reference time interval [0, t0] with k
interim inspections, and with errors of the second kind. The sets of mixed strategies are given
by the set of distribution functions on R resp. Rk, and the payo� to the Operator by (9.4)
using (9.45).

De�ning the cut-o� time point t∗ and the half-closed intervals In, n = 1, . . . , k, by (9.22) resp.
(9.23), where the functions hn(x), n = 1, 2, . . . ful�l the system (9.46) of di�erential equations
with the boundary conditions (9.47).

Then an optimal strategy of the Operator is given by the distribution function (9.24), an optimal
strategy for the Inspectorate by the interim inspection time points (9.25) with a uniformly
distributed random variable U on [0, 1], and the optimal payo� to the Operator is given by
(9.26).

As we see the only di�erence to the case β = 0 treated in Theorem 9.1 is given by the modi�ed
di�erential equations (9.46) for the functions hn(x), n = 1, 2, . . .. Whereas the necessary
conditions for an optimum given by (9.32) can be shown to be ful�lled, the remaining part
of the proof, especially the one for which we referred to Diamond's original work, has to be
reproduced carefully.

Let us comment the conjecture: First, the �rst comment to Theorem 9.1 holds here as well.

Second, the �rst two di�erential equations of (9.46) are given by

h′1(x) = (1− β)h1(x) and h′2(x) = (1− β)h2(x)− (1− β)2 h1(x) (9.48)

and thus we get, using (9.47) for n = 2,

h1(x) = e(1−β)x and h2(x) = e(1−β)x
(
e1−β − x (1− β)2

)
.

Therefore, we obtain for the optimal expected detection time in case of k = 2 interim inspections

Op∗2 =
t0

h2(1)
=

t0
e1−β

1

e1−β − (1− β)2
.

Note that limβ→1 Op
∗
1 = limβ→1 Op

∗
2 = t0, but Op

∗
2 < Op∗1 for β < 1, as one would have

expected.

It can be conjectured, that (9.43) and (9.44) can be generalized accordingly to the case of
k > 1 interim inspections, i.e., that

EQ∗(Tn) = t0 −Op∗k (hn(1)− 1) and EP ∗(S) = t∗ −Op∗k = t0

(
1− 2

hk(1)

)
holds; see (9.36) and (9.37).

9.4 One interim inspection; errors of the �rst and second kind

Sampling procedures with errors of the �rst and second kind have already been mentioned in
Section 7.4. Since, however, we deal here the �rst time explicitly with these problems, we
discuss them now and in Section 9.5 in more detail. The content of this section is based on
the work by Sohrweide (2002), Avenhaus et al. (2003) and Krieger (2011).
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Let us assume that in performing the only interim inspection a Variable Sampling procedure
is used, see Thyregod (1988), this means that an error of the second kind may happen, i.e.,
that an illegal activity preceding the interim inspection is detected with probability 1 − β and
furthermore, that an error of the �rst kind, i.e., a false accusation, may happen with probability
α. According to standard statistical practice we assume that the value of the false alarm
probability α is �xed a priori but we will come back to this point in Section 9.5. Also, we
assume that the test procedure used for the interim inspection is unbiased, see Rohatgi (1976),
which means that we assume

α+ β < 1 . (9.49)

In words: The false alarm probability α has to be smaller then the detection probability 1−β(α),
i.e., the probability of rejecting H0, when false, has to be not less than the probability of
rejecting H0, when true. In Section 9.5 additional assumptions, such as that the non-detection
probability β is a monotone decreasing function of the false alarm probability α, will be made.

The inspection game analysed in this section is based on the following speci�cations:

(iv') The Operator may start at most once an illegal activity during the reference time interval
[0, t0] in the only facility under consideration.

(v') During an interim inspection the Inspectorate may commit an error of the �rst and second
kind with probabilities α and β. If the interim inspection is performed before the start
of the illegal activity, then only an error of the �rst kind (false alarm) may occur. If the
interim inspection is performed after the start of the illegal activity, the only an error of
the second kind (non-detection) may occur. The "game" continues after an error of the
�rst kind.

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point
0, whether to behave legally, see assumption (iv'), or when to start the illegal activity.

The Inspectorate decides at the beginning of the reference time interval when to perform
its interim inspection.

The remaining assumptions of Chapter 8 hold throughout this section.

Note that, as mentioned in Section 7.4, false alarms have negative consequences both for the
Operator and the Inspectorate, we can no longer model the inspection problem as a zero-sum
game, and payo� parameters have to be introduced. Thus, the payo�s to the two players
(Operator, Inspectorate) are given by (8.1) and (8.2) for k = 1 interim inspection.

Again, the Operator starts the illegal activity at some time point s from the reference time
interval [0, t0) and the Inspectorate performs its interim inspection at time point t1 ∈ (0, t0).
Thus, the sets of pure strategies of both players are again given by (9.1).

The Operator's payo� is, using (8.1), given by the payo� kernel

Op1(s, t1) :=


d [(1− β) (t1 − s) + β (t0 − s)]− b : 0 ≤ s < t1 < t0
d (t0 − s)− f α− b : 0 < t1 ≤ s < t0
−f α : legal behaviour

, (9.50)

because in case the illegal activity is started before the interim inspection takes place, i.e.,
0 ≤ s < t1, the illegal activity is detected at time point t1 with probability 1− β or, if it is not
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detected at t1 with probability β, it is detected at t0 with certainty. In case the illegal activity
is started after the interim inspection takes place, i.e., t1 ≤ s < t0, it is detected at time point
t0. In this case, the interim inspection may cause a false alarm with probability α. Of course,
this may also happen if the Operator behaves legally. Note that Op1(s, t1) can no longer be
interpreted as detection time.

The Inspectorate's payo� is accordingly given by

In1(s, t1) :=


−a [(1− β) (t1 − s) + β (t0 − s)] : 0 ≤ s < t1 < t0
−a (t0 − s)− g α : 0 < t1 ≤ s < t0
−g α : legal behaviour

. (9.51)

Because the generalized Diamond inspection game with α = 0 and β > 0 discussed in the
last section does not possess an optimal strategy in pure strategies, it is not surprising that
the game with payo� kernels (9.50) and (9.51) does not possess a Nash equilibrium in pure
strategies. Therefore, mixed strategies and (expected) payo�s according to (9.4) have to be
introduced again:

Op1(P,Q) :=

∫
[0,t0)

∫
(0,t0)

Op1(s, t1) dQ(t1) dP (s)

In1(P,Q) :=

∫
[0,t0)

∫
(0,t0)

In1(s, t1) dQ(t1) dP (s) .

(9.52)

The game theoretical solution of this inspection game, see Sohrweide (2002) and Avenhaus
et al. (2003), is presented in

Lemma 9.3. Given the No-No inspection game on the reference time interval [0, t0] with k = 1
interim inspection, errors of the �rst and second kind, and an unbiased test procedure. The
sets of mixed strategies are given by the set of distribution functions on R, and the payo�s to
both players by (9.52) using (9.50) and (9.51). De�ne the cut-o� time point t∗ by

t∗ :=

(
t0 −

f

d

α

1− β

) (
1− 1

e1−β

)
. (9.53)

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗1 :=
Op1(P

∗, Q∗) and In∗1 := In1(P
∗, Q∗):

(i) For

t0 − t∗ >
b

d
(9.54)

an equilibrium strategy of the Operator is given by the distribution function

P ∗(s) =



0 for s < 0

t0 − t∗ +
g

a

α

1− β
t0 − s +

g

a

α

1− β
for s ∈ [0, t∗)

1 for s ≥ t∗

, (9.55)
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and an equilibrium strategy for the Inspectorate by the distribution function

Q∗(t1) =



0 for t1 < 0

1

1− β
ln

 t0 −
f

d

α

1− β

t0 − t1 −
f

d

α

1− β

 for t1 ∈ [0, t∗)

1 for t1 ≥ t∗

. (9.56)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗1 = d (t0 − t∗)− f α− b and

In∗1 = −a

[
β (t0 − t∗)−

(
t0 − t∗ +

g

a

α

1− β

)
ln

1− t∗

t0 +
g

a

α

1− β


 . (9.57)

(ii) For

t0 − t∗ <
b

d
(9.58)

the Operator behaves legally. The distribution function Q∗(t1) given by (9.56) is an
equilibrium strategy of the Inspectorate.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗1 = −f α and In∗1 = −g α . (9.59)

Proof. Ad (i): It can be seen that P ∗(s) given by (9.55) and Q∗(t1) given by (9.57) are
distribution functions on R.

Since, as mentioned, we deal here with a non-zero-sum game, we have to show, generalizing
(9.5) and (9.6), that the Nash conditions

Op1(s,Q
∗) ≤ Op1(P ∗, Q∗) and In1(P

∗, t1) ≤ In1(P ∗, Q∗) (9.60)

are ful�lled for any s ∈ S and any t1 ∈ T1.

Explicitly, Op1(s,Q
∗) is given by

Op1(s,Q
∗) =

∫ s

0
(d (t0 − s)− f α− b) q∗(t1) dt1

+

∫ t∗

s
(d [(t1 − s) (1− β) + (t0 − s)β]− b) q∗(t1) dt1 ,

whereas In1(P
∗, t1) is given by

In1(P
∗, t1) =

∫
[0,t0)

In1(s, t1) dP
∗(s)

= (−a)

{[
−(t0 − t1) (1− β)− g

a
α
]
P ∗(t1) +

(
t0 +

g

a
α
)
P ∗(t0)−

∫
(0,t0)

s dP ∗(s)

}
.
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With these two expressions for Op1(s,Q
∗) and In1(P

∗, t1) the proof can be carried through
analogously to that of Lemma 9.1. Especially we get for any s ∈ [0, t∗]

Op1(s,Q
∗) = d (t0 − t∗)− f α− b . (9.61)

Inequality (9.54) assures that

Op∗1 > −f α = Op1(legal behaviour, t1)

for any t1 ∈ (0, t0).

Ad (ii): (9.58) implies for all s > t∗

d (t0 − s)− f α− b < d (t0 − t∗)− f α− b < −f α .

Thus, we get, using (9.58), (9.59) and (9.61),

Op1(s,Q
∗) =

{
d (t0 − t∗)− f α− b : 0 ≤ s ≤ t∗

d (t0 − s)− f α− b : t∗ < s < t0
< −f α = Op∗1 ,

i.e., the left hand inequality of (9.60) is ful�lled for any s ∈ S. The right hand inequality of
(9.60) is ful�lled as equality.

Let us comment the results of Lemma 9.3: First, the �rst and the third comment � with an
appropriately de�ned function h1(x), see (9.68) � given after Lemma 9.1 hold here as well.

Second, in analogy to the derivations in (9.15), we get, using (9.55) and (9.57), for the expected
time point for the start of the illegal activity in the equilibrium

EP ∗(S) = t∗ −
(
t0 − t∗ +

g

a

α

1− β

) ∫ t∗

0

1

t0 − s +
g

a

α

1− β
ds

= t∗ +

(
t0 − t∗ +

g

a

α

1− β

)
ln

1− t∗

t0 +
g

a

α

1− β


= t∗ +

In∗1
a

+ β (t0 − t∗) ,

which coincides for α = 0 with (9.43). The expected interim inspection time point in the
equilibrium is, using (9.53), (9.56) and (9.57), given by

EQ∗(T1) =

∫
(0,t0)

t1 dQ
∗(t1) =

1

1− β

∫ t∗

0

t1

t0 − t1 −
f

d

α

1− β

dt1

= t0 −
t∗

1− β
− f

d

α

1− β
=

1

1− β

(
Op∗1 + b

d
− t0 β

)
, (9.62)

which for d = 1, b = 0 and α = 0 coincides with (9.44). Because t∗ according to (9.53)
depends on f but not on g, EQ∗(T1) by (9.62) is a much simpler generalization of that for
α = 0, see (9.44), than EP ∗(S) by (9.62) compared to (9.43).
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Third, taking into account errors of the �rst kind changes the structure of the solution funda-
mentally: The Operator's equilibrium strategy depends on the Operator's own payo� parame-
ters. Also, the Inspectorate's equilibrium payo� is totally di�erent from that of the Operator
which is not the case if only errors of the second kind are taken into account: Using the payo�
structure (8.1) we get for an Attribute Sampling procedures, i.e., α = 0, according to Lemma
9.2

Op∗1 = d t0 e
−(1−β) − b and In∗1 = − e−(1−β) a t0 .

Fourth, because Q∗(t1) is also an equilibrium strategy of the Inspectorate under condition
(9.58), it is a robust equilibrium strategy in the sense that the Inspectorate can just play
Q∗(t1) and does not need to check whether (9.54) or (9.58) is ful�lled; see also Table 7.3 on
p. 142 for an overview of inspection games with a robust Inspectorate's equilibrium strategy.

In the following Lemma it is shown under which conditions even a pure equilibrium strategy of
the Inspectorate, in case of legal behaviour of the Operator, exists.

Corollary 9.1. Given the No-No inspection game on the reference time interval [0, t0] with
k = 1 interim inspection, errors of the �rst and second kind, and an unbiased test procedure
analysed in Lemma 9.3.

If

1

2− β

(
t0 +

f

d
α

)
<
b

d
(9.63)

then the Operator behaves legally and the Inspectorate has a pure equilibrium strategy t∗1 with

t0 −
b

d
≤ t∗1 ≤

1

1− β

(
b

d
− t0 β −

f

d
α

)
. (9.64)

The equilibrium payo�s to the Operator and to the Inspectorate are given by (9.59).

Proof. We �rst prove that (9.63) yields

t0 − t∗ <
b

d
, (9.65)

where t∗ is given by (9.53), i.e., the Operator behaves legally because of (9.58). Suppose (9.65)
does not hold. Then we get from (9.53) and (9.63)

1

2− β

(
t0 +

f

d
α

)
< t0 − t∗ = t0 −

(
t0 −

f

d

α

1− β

) (
1− 1

e1−β

)
,

which is equivalent to

t0

(
1

2− β
− 1

e1−β

)
<
f

d
α

(
1− e−(1−β)

1− β
− 1

2− β

)
. (9.66)

Because the expression in brackets on the right hand side of (9.66) is larger than zero for
0 ≤ β < 1, and because of f < d t0, see (8.2) for k = 1, and α+ β < 1, we get from (9.66)

d t0

(
1

2− β
− 1

e1−β

)
< f

(
1− 1

e1−β
− 1− β

2− β

)
< d t0

(
1

2− β
− 1

e1−β

)
,
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which is a contradiction. Thus, (9.65) is ful�lled.

Because of (9.65) and case (ii) of Lemma 9.3, the Operator behaves legally. Thus, using (9.50),
the time point t∗1 ∈ (0, t0) is a pure Nash equilibrium strategy if and only if

−f α ≥

{
d [(1− β) (t∗1 − s) + β (t0 − s)]− b : 0 ≤ s < t∗1

d (t0 − s)− f α− b : t∗1 ≤ s < t0
. (9.67)

Maximizing the right hand side of (9.67) with respect to s yields

−f α ≥

{
d [(1− β) t∗1 + β t0]− b

d (t0 − t∗1)− f α− b
,

which is equivalent to (9.64). Inequality (9.63) assures the existence of t∗1 ful�lling (9.64).

Note that even in case of α = β = 0 it may happen that (9.65) is ful�lled but (9.63) is violated:
For t0 = 6 and b/d = 2.5 we have d t0 = 12/5 b > b, i.e., the left hand inequality in (8.2) is
ful�lled for k = 1. Thus, we get by (9.53) and (9.63)

t0 − t∗ =
t0
e
≈ 2.21 < 2.5 =

b

d
and

t0
2

= 3 > 2.5 =
b

d
,

i.e., (9.58) is ful�lled and the Operator behaves legally, but (9.63) is violated. Thus, Q∗(t1) as
given by (9.56) is an equilibrium strategy of the Inspectorate and no pure equilibrium strategy
t∗1 exists, because the set (9.64) is empty.

Corollary 9.1 is really surprising: First, the fact that the equilibrium strategy of the Inspectorate
is deterministic � although not unique � is surprising in view of the sophistically randomized
equilibrium strategy (9.56) in case of illegal behaviour of the Operator. Second, if (9.63) is
ful�lled, then the interval given by (9.64) is the same as that of the Se-Se inspection game, to
be considered in Section 12.1, given by (12.11) for t2 = 0.

Let us conclude this section with a remark on the inspection game with α > 0 and β > 0 and
more than one interim inspection, see Krieger (2011): The system of di�erential equations to
be solved in case of two interim inspections is similar to (9.48), and given by:

h′1(x) = (1− β)h1(x)− α f/d

h′2(x) = (1− β)h2(x)− (1− β)2 h1(x)− α f/d ,
(9.68)

with h1(0) = A2 and h2(0) = h1(1), where A2 > 0 is determined by the condition h2(1) = t0.
Recall that the construction of the optimal strategies in Theorem 9.1 is essentially based on the
monotonicity property of the functions hn(x), n = 1, 2, . . .. Finding conditions on α, β, f, d and
t0 leading to monotone increasing functions h1(x) and h2(x) ful�lling (9.68) for any x ∈ [0, 1],
however, has neither achieved for the case of k = 2 interim inspections nor does it seem feasible
for any number k > 2 of interim inspections.

9.5 Choice of the false alarm probability

In Section 9.4 we have assumed that the false alarm probability α is a parameter of the model,
and that the test procedure used for the interim inspection is unbiased; see (9.49). We now
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assume in addition that the non-detection probability β(α) is given as a function of α. Note
that in signal detection theory the plot (α, 1−β(α)) for α ∈ [0, 1] is called Receiver Operating
Characteristic (ROC) and illustrates the performance of a binary classi�er system as its dis-
crimination threshold is varied; see Pepe (2004) or Krzanowski and Hand (2009). In Chapter
20 this concept together with some of its properties is explained in more detail with the help of
some numerical examples. For a wide class of statistical tests it can be shown that β(0) = 1
and β(1) = 0 and that β(α) is a monotone decreasing function of α. Summing up, we assume
in this section

β(0) = 1 , β(1) = 0 , α+ β(α) < 1 and β(α) is monotone decreasing in α . (9.69)

Since the choice of the value of α is up to the Inspectorate, one may ask what its appropriate
value should be.

In practice, some conventional value is taken, e.g., α = 0.01 or α = 0.05. In the context
of inspections, however, it is natural to use that value which is optimal in the sense of the
Inspectorate's intentions. In the following we will present a procedure, keeping in mind that
it has not yet applied in practice, since it depends crucially on the knowledge of the payo�
parameters of both players. Also for these reasons we will limit the analysis to the case of just
one interim inspection, i.e., we consider it primarily to be of theoretical interest. It should be
mentioned here that we will come back to this issue in Sections 12.4, 15.5 and 16.4, therefore,
we will go here into some major detail to which we will refer later on.

Using (9.57) and (9.59), the equilibrium payo� to the Operator is given by

Op∗1(α) :=

{
Op∗1 for Operator's illegal behaviour

−f α for Operator's legal behaviour

=

 d t0 e
−(1−β(α)) − f α

(
1− 1− e−(1−β(α))

1− β(α)

)
− b for t0 − t∗ > b/d

−f α for t0 − t∗ < b/d

, (9.70)

where t∗ = t∗(α, β(α)) is given by (9.53). De�ne for any α ∈ [0, 1]

F (α) := d t0 e
−(1−β(α)) − f α

(
1− 1− e−(1−β(α))

1− β(α)

)
− b . (9.71)

Note that F (α) is equal to Op∗1, see (9.70), if and only if t0 − t∗ > b/d, i.e., only for those
α ∈ [0, 1] for which we have t0 − t∗(α, β(α)) > b/d.

Using (8.2) for k = 1 interim inspection, (9.69), and (9.71) we get

F (0) = d t0 − b > 0 and F (1) =
d t0
e
− f

e
− b < F (0) .

Furthermore, F (α) is a monotone decreasing function on [0, 1]. To prove this statement, we
de�ne

F̃ (α, β) := d t0 e
−(1−β) − f α

(
1− 1− e−(1−β)

1− β

)
− b , (9.72)
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which implies F (α) = F̃ (α, β(α)). Let us assume � for an ease proof � that β(α) is a
di�erentiable function on (0, 1). Thus, because of (9.69), we have β′(α) < 0. Applying the
chain rule from calculus, we get for any α ∈ (0, 1)

d

dα
F (α) =

(
∂

∂α
F̃ (α, β),

∂

∂β
F̃ (α, β)

) ∣∣∣
α=α,β=β(α)

(
1

β′(α)

)
. (9.73)

Because β − e−(1−β) is a monotone increasing function in [0, 1] with value 0 for β = 1, we
obtain, using (9.72), for any α ∈ (0, 1), and thus, for any β ∈ (0, 1), see (9.69),

∂

∂α
F̃ (α, β) = f

(
1− e−(1−β)

1− β
− 1

)
< 0 .

Again, using (9.72), leads for any (α, β) ∈ (0, 1)× (0, 1), using (9.53), to

∂

∂β
F̃ (α, β) = d e−(1−β) t∗ + f α

1− e−(1−β)

(1− β)2
> 0 .

Thus, (9.73) yields F ′(α) < 0 for any α ∈ (0, 1).

For the purpose of illustration, we assume that the non-detection probability β(α) is, using
(20.7), given by

β(α) = Φ

(
Φ−1(1− α)− µ1 − µ0

σ

)
, (9.74)

which describes a statistical test problem where it has to be decided if the random variable X
is Gaussian distributed with expectation µ0 and variance σ2, or else if X is Gaussian distributed
with expectation µ1 > µ0, and the same variance σ2. For the graphs we have chosen (µ1 −
µ0)/σ = 1.5. Note that β(α) as given by (9.74) ful�ls (9.69); see Chapter 20.

Figure 9.3 represents F (α) and −f α as well as the resulting Op∗1(α). Depending on the
regions of de�nition, see (9.70), F (α) and −f α are solid or dashed, and Op∗1(α) is solid for
any α ∈ [0, 1]. We have chosen t0 = 1, b = 6, f = 1.5; the three graphs correspond to d = 9
(left top), d = 12 (right top) and d = 14 (bottom). Note that these parameters ful�l (8.2) for
k = 1 interim inspection.

Because F (α) is a monotone decreasing function on [0, 1], we need to distinguish the cases:

(i): F (1) < −f and one intersection point

(ii): F (1) > −f and

{
two intersection points

no intersection point
.

(9.75)

In case (i) the Operator will

behave illegally <

be indi�erent for α = α∗

behave legally >

(9.76)
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Figure 9.3 The equilibrium payo� (9.70) to the Operator for t0 = 1, b = 6, f = 1.5 and d = 9
(top left), d = 12 (top right) and d = 14 (bottom).
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where α∗ is given by F (α∗) = −f α∗, and in case (ii) with two intersections the Operator will

behave illegally α < α∗1 or α∗2 < α

be indi�erent for α = α∗1 or α = α∗2

behave legally α∗1 < α < α∗2

(9.77)

where α∗1 and α∗2 with α∗1 < α∗2 are given by F (α∗1) = −f α∗1 and F (α∗2) = −f α∗2. Because
F (α) > −f α for any α ∈ [0, 1] in case (ii) and no intersection point, the Operator will behave
illegally for all values of α.

Now let us come back to the determination of the optimal value of α. One way would be to
include α into the set of pure strategies of the Inspectorate and to solve this extended game.
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This has been done for related problems, see Avenhaus and Canty (1996), Theorem 9.3, and
leads to an equilibrium strategy of the Operator according to which he behaves legally or illegally
with positive probabilities, i.e., the Operator can not be deterred from behaving illegally.

Another way is to apply the so-called Inspectorate Leadership Principle8: The Inspectorate
chooses a value of α and announces it to the Operator in a credible way. Of course, the value
of α is chosen in such a way that the Inspectorate's payo� is maximized.

Using (9.57) and (9.59), the equilibrium payo� to the Inspectorate is given by

In∗1(α) :=

{
In∗1 for Operator's illegal behaviour

−g α for Operator's legal behaviour
,

=

{
G(α) for t0 − t∗ > b/d

−g α for t0 − t∗ < b/d
, (9.78)

where G(α) is, using (9.53) with t∗ = t∗(α, β(α)) and (9.57), for any α ∈ [0, 1] de�ned by

G(α) : = −a

[
β(α) (t0 − t∗(α, β(α)))

−
(
t0 − t∗(α, β(α)) +

g

a

α

1− β(α)

)
ln

1− t∗(α, β(α))

t0 +
g

a

α

1− β(α)


 .

(9.79)

(9.78) implies that G(α) is equal to In∗1 if and only if t0 − t∗ > b/d. Because t∗(0, 1) = 0,
(9.69) together with (9.79) imply

G(0) = − a t0 < 0 and G(1) = a
(
t0 − t∗(1, 0) +

g

a

)
ln

1− t∗(1, 0)

t0 +
g

a

 .
In Figure 9.4, the solid curve represents In∗1(α) for the sets of parameters used in Figure 9.3
and a = 10 and g = 3, which ful�l (8.2) for k = 1 interim inspection.

Figure 9.4 indicates that 1) −g > G(1) > G(0), and 2) G(α) is a monotone increasing
function of α ∈ [0, 1], which, however, could not be proven yet for any di�erentiable function
β(α) ful�lling (9.69) in contrast to the corresponding monotonicity property for F (α). Note
that the di�erence in the plots of G(α) between the cases d = 9, 12 and d = 14 can only be
recognized for values of α close to one.

In case of d = 9 and d = 12 (top row), we see that for α = α∗ resp. α = α∗1 and legal
behaviour of the Operator the Inspectorate's payo� is maximized. Indeed one can show that
these strategies constitute an equilibrium, in other words, the Operator is deterred from behaving
illegall, or induced to legal behaviour, to say it in a positive way.

In case (ii) and no intersection point in (9.75), i.e., the bottom graph in Figure 9.4, the appli-
cation of the Inspector Leadership Principle does not result in the deterrence of the Operator

8This principle has been introduced into Economic Theory by von Stackelberg (1934) and applied �rst to
inspection games by Maschler (1966). For further details see Section 7.4 and Avenhaus et al. (2002).
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for the chosen set of parameters and the speci�c function β(α) given by (9.74): Because the
maximum of In∗1(α) in [0, 1] is attained at α = 1, the optimal value of α is one. The Operator,
however, is not deterred from behaving illegally, because F (1) > −f ; see Figure 9.3. Note that
at α = 1 the Operator's payo� is even minimized.

Figure 9.4 The equilibrium payo� (9.78) to the Inspectorate for the sets of parameters used
in Figure 9.3 and a = 10 and g = 3.
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Chapter 10

Se-No inspection game for one

facility: Avenhaus-Krieger model

Because there is no di�erence between the No-Se and the No-No inspection game with k = 1
interim inspection, the game theoretical solution presented in Lemma 9.2 also applies to the
No-Se inspection game with k = 1 interim inspection and is not repeated here. What can be
said in case of k = 2 interim inspections? Whereas in Section 4.1 the discrete time No-Se
inspection game with N = 4 possible time point for k = 2 interim inspections is treated, there
exist no game theoretical solution for this variant and continuous time.

Thus, we directly start with the analysis of the Se-No inspection game for any number k
of interim inspections and non-vanishing errors of the second kind in Section 10.1, which is
based on Avenhaus et al. (2009a), Avenhaus et al. (2010) and Avenhaus and Krieger (2013b).
In Section 10.2 the practical application which has already been presented in Section 6.6 is
discussed once more. The special case of k = 2 interim inspections and non-vanishing errors of
the �rst and second kind, analysed in Avenhaus and Krieger (2010) and Avenhaus and Krieger
(2011b), is presented in Section 10.3.

In this chapter, assumption (vii) of Chapter 8 is speci�ed as follows:

(vii') The Inspectorate decides at the beginning of the reference time interval, i.e., at time
point tk+1, at which time point(s) it will perform its k interim inspection(s).

The Operator decides at the beginning of the reference time interval whether to start
the illegal activity immediately at time point tk+1 or to postpone its start; in the latter
case he decides again after the �rst interim inspection, whether to start the illegal activity
immediately at that time point or to postpone its start again; and so on. While in Section
10.1 the Operator starts the illegal activity latest immediately at the time point of the
last interim inspection, in Section 10.3 he can behave legally throughout the game.

Further assumptions will be speci�ed in Sections 10.1 and 10.3, while the remaining assumptions
of Chapter 8 hold throughout this chapter.

185
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10.1 Any number of interim inspections; errors of the second
kind

The inspection game analysed in this section is based on the following speci�cations:

(iv') The Operator starts once an illegal activity during the reference time interval [tk+1, t0]
in the only facility under consideration.

(v') During an interim inspection the Inspectorate may commit an error of the second kind
with probability β, i.e., the illegal activity, see assumption (iv'), is not detected during the
next interim inspection with probability β. Note that if there is no interim inspection left,
then it is detected with certainty at the �nal PIV; see assumption (iii). This non-detection
probability is the same for all k interim inspections.

(ix') The payo�s to the two players (Operator, Inspectorate) are linear functions of the detec-
tion time 4t, i.e., the time between start and detection of the illegal activity, and are
given as follows

(4t,−4t) for illegal behaviour and detection time4t .

Let us start with the case of k = 1 interim inspection in one facility. Figure 10.1 represents
the extensive form of this inspection game. Due to the comment on p. 50, the extensive form
games in this chapter start with the Inspectorate's decision at the beginning of the reference
time interval. Note that the chance moves are not explicitly named, but can be identi�ed via
the probabilities 1− β and β.

Figure 10.1 Extensive form of the Se-No inspection game with k = 1 interim inspection and
with errors of the second kind.

Inspectorate at t2

t1 − t2

1− β

t0 − t2

β

¯̀(t2)

t0 − t1

`(t2)

t1

Operator at t2 · · · · · · Operator at t2

In Figure 10.1 the Inspectorate chooses at the beginning of the reference time interval, i.e., at
t2, a time point t1 for its interim inspection. The Operator decides at time point t2 to start the
illegal activity immediately (`(t2)), or to postpone its start (`(t2)). According to assumption
(viii) of Chapter 8, both players decide independently of each other which implies that the
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Operator does not know the time point of the interim inspection. This lack of knowledge is
indicated by his information set. At the interim inspection a chance move takes place: In case
the Operator starts the illegal activity at t2, it will be detected at t1 with probability 1− β and
it will not be detected at t1 with probability β. In the �rst case the payo� to the Operator is
t1 − t2 and in the second case t0 − t2, because the Inspectorate will detect the illegal activity
with certainty at the end of the reference time interval during the PIV; see assumption (iii) of
Chapter 8. Also, if the Operator postpones the start of the illegal activity to the �rst interim
inspection, his payo� will be t0− t1, again because it will be detected with certainty during the
PIV.

In accordance with (9.1), the Inspectorate's set of pure strategies is given by

T1 := {t1 ∈ R : t2 < t1 < t0} , (10.1)

see Figure 8.1 for k = 1 interim inspection. Let g2 be the Operator's probability to postpone
the start of the illegal activity at time point t2. Thus, his behavioural strategy set is given by
(4.7), which is introduced here again for easy reference

G1 := {g2 : g2 ∈ [0, 1]} . (10.2)

Note that due to assumption (iv'), the Operator must behave illegally. Thus, like in the discrete
time Se-No inspection game in Section 4.2 but in contrast to the Se-Se inspection game analysed
in Section 12.1, here the probability g1 of postponing the illegal activity at time point t1, is
zero and thus, not included in the Operator's strategy set. Using Figure 10.1, the (expected)
payo� to the Operator, i.e., the expected detection time, is, for any g2 ∈ G1 and any t1 ∈ T1,
given by

Op1(g2, t1) := (1− g2) [(1− β) (t1 − t2) + β (t0 − t2)] + g2 (t0 − t1) . (10.3)

If we de�ne the conditional detection times H2(t2, t1) and H1(t1), i.e., the detection times
when the illegal activity is started at time point t2 resp. t1 by

H2(t2, t1) := (1− β) (t1 − t2) + β (t0 − t2) and H1(t1) := t0 − t1 , (10.4)

then the payo� (10.3) to the Operator can be expressed as

Op1(g2, t1) = (1− g2)H2(t2, t1) + g2H1(t1) . (10.5)

The game theoretical solution of this inspection game, see Avenhaus et al. (2009a), Avenhaus
et al. (2010) and Avenhaus and Krieger (2013b), is presented in

Lemma 10.1. Given the Se-No inspection game on the reference time interval [t2, t0] with
k = 1 interim inspection, and with errors of the second kind. The sets of behavioural resp.
pure strategies are given by (10.2) and (10.1), and the payo� to the Operator by (10.3).

Then an optimal strategy of the Operator is given by

g∗2 =
1− β
2− β

, (10.6)

and an optimal strategy of the Inspectorate by

t∗1 − t2 =
1− β
2− β

(t0 − t2) . (10.7)

The optimal payo� to the Operator is

Op∗1 := Op1(g
∗
2, t
∗
1) = t0 − t∗1 =

t0 − t2
2− β

. (10.8)
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Proof. We need to show that, in analogy to (19.10), the saddle point criterion

Op1(g2, t
∗
1) ≤ Op∗1 ≤ Op1(g∗2, t1) (10.9)

is ful�lled for any g2 ∈ G1 and any t1 ∈ T1. Using (10.4), (10.7) and (22.7) for k = 1, we get

H2(t2, t
∗
1) = (t0 − t2)

(
(1− β)

1− β
2− β

+ β

)
=
t0 − t2
2− β

= t0 − t∗1 = H1(t
∗
1) . (10.10)

Thus, we have by (10.5)

Op1(g2, t
∗
1) =

t0 − t2
2− β

(10.11)

for any g2 ∈ G1, i.e., the left hand inequality of (10.9) is ful�lled as equality. On the other
hand, (10.3) and (10.6) imply

(2− β)Op1(g
∗
2, t1) = [(1− β) (t1 − t2) + β (t0 − t2)] + (1− β) (t0 − t1) = t0 − t2 ,

for any t1 ∈ T1, i.e., the right hand inequality of (10.9) is also ful�lled as equality.

Let us comment the results of Lemma 10.1: First, it should be emphasized that our analysis
leads to an explicit dependence of the optimal interim inspection time point t∗1 on β. Whereas
for β = 0 the common sense point of view would lead to the results (10.6) � (10.8), for
β > 0 one would hardly arrive at these results without a quantitative analysis. According to
(10.10), the optimal strategy t∗1 of the Inspectorate is determined such that the Operator is
made indi�erent between behaving illegally at time points t2 or t∗1, because the conditional
detection times (10.4) are the same: H2(t2, t

∗
1) = H1(t

∗
1) = t0 − t∗1. Also it is interesting to

note that the optimal interim inspection time point t∗1 depends on the length t0 − t2 of the
reference time interval and β, while the optimal strategy of the Operator g∗2 is only a function
of β. Further interesting properties of the optimal strategies are discussed after the proof of
Theorem 10.1.

Second, due to (10.8) the optimal expected detection time is the time between the optimal
interim inspection time point and the �nal PIV. This is a remarkable property which holds for
quite a lot of the inspections games in this monograph; see also the comment on p. 232. The
Operator would have also obtained the payo� t0− t∗1 if he would have started the illegal activity
with certainty right after the interim inspection, i.e., g∗2 = 1. In that case, however, g∗2 and t∗1
given by (10.7) do not constitute a pair of optimal strategies: We have by (10.5) and (10.11)

Op1(g2, t
∗
1) = t0 − t∗1 , Op1(1, t

∗
1) = t0 − t∗1 and Op1(1, t1) = t0 − t1 ,

i.e., the right hand inequality in (10.9) is not ful�lled for any t1 ∈ T1 but only for t1 ≤ t∗1.
Thus, (g∗2, t1) does not constitute a saddle point.

Third, there exist interesting relations between the solution of Lemma 10.1 and the solution of
the corresponding Se-Se inspection game; see the comments after Lemma 12.1.

Finally and most importantly, the optimal strategy of the Inspectorate is a pure strategy, i.e.,
t∗1 is deterministic. In other words, the Inspectorate can announce the time point of its interim
inspection if it wishes so and which the Operator knows anyhow because in case he also performs
a game theoretical analysis, it is based on the same strategy sets, the same payo� and also
the saddle point criterion (common knowledge). Remember that in the discrete time Se-No
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inspection game with k = 1 interim inspection the existence of an optimal pure strategy of
the Inspectorate can only be assured for special values of β; see Section 6.3. Nevertheless,
an optimal pure strategy may pose a problem to practitioners since they argue sometimes that
a randomization might have some advantage, somehow in the sense of letting the adversary
unclear about the own intention. Let us expand this a bit. Due to the linearity of the expected
detection time in t1, the Inspectorate can also choose the time point t1 for its interim inspection
using an arbitrary density function f(t1) concentrated on [t2, t0] such that

t∗1 =

∫ t0

t2

t1 f(t1) dt1 ,

where t∗1 is the deterministic interim inspection time point given by (10.7). However, this way
the Inspectorate does not improve its optimal payo�, i.e., does not shorten the optimal payo�
to the Operator, thus, in the framework of this model the Inspectorate does not gain anything
indeed. Remember also, that in case of the discrete time Se-No and Se-Se inspection games,
Theorem 4.1 and Lemma 4.4 as well as Theorems 5.2 and 5.3 show that the set of optimal
strategies of the Inspectorate is fully characterized by the uniquely determined expected interim
inspection time points; see the comment on p. 68.

Before turning to the general case of any number k of interim inspections we consider the case
k = 2 interim inspections in one facility, since thereafter it is easier to understand the somewhat
more advanced formalism and the results for the general case. The extensive form of the Se-No
inspection game with k = 2 interim inspections is represented in Figure 10.2.

At the beginning of the reference time interval, i.e., at time point t3, the Inspectorate chooses
the time points (t2, t1) for the �rst and the second interim inspection. Note knowing the
Inspectorate's decision at t3, indicated by the information set, the Operator decides to start
the illegal activity immediately at t3 (¯̀(t3)) or to postpone its start (`3). In case the Operator
starts the illegal activity at t3 (¯̀(t3)), it will be detected at the �rst interim inspection at t2 with
probability 1− β, or it will be detected at the second interim inspection at t1 with probability
β (1− β), or it will be detected at the PIV at t0 with probability β2, leading to the detection
time t2 − t3, t1 − t3 and t0 − t3, respectively. In case the Operator does not start the illegal
activity at t3 (`3) he decides at t2 whether to start an illegal activity now (¯̀(t2)) or to postpone
its start again (`(t2)). In the latter case he has to start at t1. The information set (there is
one for any t3 < t2 < t0) indicates that at time point t2 the Operator knows t2, of course, but
not the time point t1 of the second interim inspection. If he starts the illegal activity at t2, it
is detected at t1 with probability 1− β or at the �nal PIV at t0 with probability β, leading to
the detection times t1− t2 and t0− t2, respectively. If the Operator postpones the start of the
illegal activity until time point t1 (`(t2)), the detection time is t0 − t1.

As mentioned, the Inspectorate chooses at time point t3 the two time points for the interim
inspections, i.e., its set of pure strategies is, see also (9.18) for k = 2 interim inspections and
t3 = 0, given by

T2 := {t := (t2, t1) ∈ R2 : t3 < t2 < t1 < t0} , (10.12)

see Figure 8.1 for k = 2 interim inspections. Let 1 − g3 be the Operator's probability to
start the illegal activity immediately at time point t3. In case he postpones the start (with
probability g3), he decides at the �rst inspection at t2 to start the illegal activity immediately
(with probability 1 − g2(t2)) or to postpone its start again (with probability g2(t2)). In the
latter case he has to start it at t1. Thus, his set of behavioural strategies is given by

G2 := {g := (g3, g2) : g3 ∈ [0, 1] , g2 : (t3, t0)→ [0, 1]} . (10.13)
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Figure 10.2 Extensive form of the Se-No inspection game with k = 2 interim inspections and
with errors of the second kind.
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Note that while the strategy set G1 coincide in the discrete and continuous Se-No inspection
game with k = 1 interim inspection, see (4.7) and (10.2), Gk for k ≥ 2 di�ers; see (4.15) and
(10.13).

Using Figure 10.2, the (expected) payo� to the Operator, i.e., the expected detection time, is,
for any g ∈ G2 and any t ∈ T2, given by

Op2(g, t) := (1− g3) [(1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3)]

+ g3 [(1− g2(t2)) ((1− β) (t1 − t2) + β (t0 − t2)) + g2(t2) (t0 − t1)] .
(10.14)

Introducing the conditional detection timeH3(t3, t2, t1), i.e., the detection time when the illegal
activity is started at time point t3,

H3(t3, t2, t1) := (1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3) , (10.15)

then (10.14) can be written as, using (10.4),

Op2(g, t) = (1− g3)H3(t3, t2, t1) + g3 [(1− g2(t2))H2(t2, t1) + g2(t2)H1(t1)] . (10.16)

The game theoretical solution of this inspection game, see Avenhaus et al. (2009a) and Aven-
haus et al. (2010), is presented in
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Lemma 10.2. Given the Se-No inspection game on the reference time interval [t3, t0] with
k = 2 interim inspections, and with errors of the second kind. The sets of behavioural resp.
pure strategies are given by (10.13) and (10.12), and the payo� to the Operator by (10.14).

Then an optimal strategy of the Operator is given by

g∗3 =
2 (1− β)

3− 2β
and g∗2(t2) =

1

2
for all t3 < t2 < t0 , (10.17)

and an optimal strategy of the Inspectorate by

t∗2 − t3 =
1− β

3− 2β
(t0 − t3) and t∗1 − t∗2 =

1− β
2− β

(t0 − t∗2) . (10.18)

The optimal payo� to the Operator is

Op∗2 := Op2(g
∗, t∗) = t0 − t∗1 =

t0 − t3
3− 2β

. (10.19)

Proof. We show that Op2(g, t
∗) = Op∗2 = Op2(g

∗, t) for any g ∈ G2 and any t ∈ T2, i.e.,
the saddle point condition is ful�lled as equality.

Because (10.18) ful�ls the recursive relations (22.2) for k = 2, we get by (22.1) and (10.15)

H3(t3, t
∗
2, t
∗
1) = (t0 − t3)

(
(1− β)2

1

1 + 2 (1− β)
+ β (1− β)2

2

1 + 2 (1− β)
+ β2

)

=
t0 − t3
3− 2β

(
(1− β)2 + β (1− β)2 2 + β2 (3− 2β)

)
=
t0 − t3
3− 2β

.

For H2 and H1 given by (10.4) we obtain analogously to (10.10), using (10.18) and (22.7) for
k = 2,

H2(t
∗
2, t
∗
1) = (1− β) (t∗1 − t∗2) + β (t0 − t∗2)

=
t0 − t∗2
2− β

=
t0 − t3 − (t∗2 − t3)

2− β
=

(t0 − t3)
2− β

(
1− 1− β

3− 2β

)

=
t0 − t3
3− 2β

= H1(t
∗
1) .

Thus, we have H3(t3, t
∗
2, t
∗
1) = H2(t

∗
2, t
∗
1) = H1(t

∗
1) and get by (10.16) for any g ∈ G2

Op2(g, t
∗) =

t0 − t3
3− 2β

= Op∗2 .

Rearranging (10.14), we get for any g ∈ G2 and any t = (t2, t1) ∈ T2

Op2(g, t) = (1− g3) [(−t3) + β2 t0] + g3 [(1− g2(t2))β t0 + g2(t2) t0]

+ t2

[
(1− g3) (1− β)− g3 (1− g2(t2))

]
+ t1

[
(1− g3)β (1− β) + g3 [(1− g2(t2)) (1− β)− g2(t2)]

]
.
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Using (10.17), we see that the coe�cient of t2 and t1 are zero and thus, we obtain for any
t = (t2, t1) ∈ T2

Op2(g
∗, t) =

1

3− 2β

[
(−t3) + β2 t0 + t0 (1− β2)

]
=
t0 − t3
3− 2β

= Op∗2 ,

which completes the proof.

Let us comment the results of Lemma 10.2: First, technically speaking, these solutions are more
simple then the corresponding ones for the discrete time Se-No inspection game, see Lemma
6.5, in the sense that no distinction of cases with respect to β are necessary.

Second, since according to the right hand equation of (10.18) and (22.1) we get t∗1 − t3 =
2 (t∗2− t3), we obtain that for β < 1 the second interim inspection takes place after double the
time than the �rst one. For β = 0 we get

t∗2 − t3 =
1

3
(t0 − t3) and t∗1 − t3 =

2

3
(t0 − t3) .

As in the case of k = 1 interim inspection, for β = 0 the common sense point of view would
lead to this result, for β > 0 one would hardly arrive at this result without quantitative analysis.
The same holds for the Operator's optimal strategy (g∗3, g

∗
2): Since the Operator is confronted

at t3 with three inspection intervals of equal length he chooses g∗3 = 2/3. After the �rst
inspection however, only two intervals of equal length are left. Thus, he chooses g∗2 = 1/2.

Third, like in the case of k = 1 interim inspection, and as shown in the proof of Lemma
10.2, the optimal strategy of the Inspectorate t∗ = (t∗2, t

∗
1) is chosen such that the Operator is

indi�erent as regards to the start of the illegal activity at t3, t
∗
2 or t∗1, because the conditional

detection times are the same: H3(t3, t
∗
2, t
∗
1) = H2(t

∗
2, t
∗
1) = H1(t

∗
1) = t0 − t∗1.

Finally, and again like in the case of k = 1 interim inspection, see p. 189, the Inspectorate
may announce the optimal interim inspection time points, if it wishes so. It might � instead
of using the deterministic pure strategies (10.18) � also randomize as follows: Let f2(t2) and
f1(t1) be two density functions concentrated on [t3, t0] such that

sup
t3<t2<t0

{t2 : f2(t2) > 0} < inf
t3<t1<t0

{t1 : f1(t1) > 0} ,

i.e., we always have t2 < t1 for any realization, and, using (10.18),

t∗2 =

∫ t0

t3

t2 f2(t2) dt2 and t∗1 =

∫ t0

t3

t1 f1(t1) dt1 .

Then the linearity of the expected detection time (10.14) in t2 and t1 shows, that (f2, f1) are
also optimal strategies. The Inspectorate, however, does not gain anything.

Let us consider now the general case of k of interim inspections in one facility. According to
assumption (ii) of Chapter 8 the Inspectorate chooses k interim inspection time points tk, . . . , t1
with tk+1 < tk < . . . < t1 < t0 in the reference time interval [tk+1, t0], see Figure 10.3, i.e.,
its set of pure strategies is given by

Tk := {t := (tk, . . . , t1) ∈ Rk : tk+1 < tk < . . . < t1 < t0} . (10.20)

Assumption (vii') means here that the Operator starts the illegal activity at tk+1 with probability
1 − gk+1 or he postpones its start with probability gk+1; in the latter case he starts it at tk
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with probability 1− gk(tk) which depends on tk or he postpones its start again with probability
gk(tk). If the Operator postpones the start of the illegal activity until time point tn, he starts
it there with probability 1− gn(tn) and postpones its start again with probability gn(tn). If he
does not start the illegal activity before he has to do it at t1, i.e., g1(t1) = 0.

Note that we assume � like in the corresponding discrete time Se-No and Se-Se inspection
games treated in Part I � that gn depends only on tn and not on the whole history tk, . . . , tn,
i.e., gn = gn(tn) for all n = 2, . . . , k. This is a plausible assumption because the Operator's
payo� in the remaining game, i.e., the game starting at time point tn, is not in�uenced by
the time points tk, . . . , tn+1. Furthermore, it turns out in the proof of Theorem 10.1 that a
dependence of gn also on tk, . . . , tn+1, i.e., gn = gn(tk, . . . , tn+1, tn) leads to the same optimal
strategies; see also p. 65 for the discrete time Se-No inspection game.

Figure 10.3 presents the time line of the interim inspections and probabilities for starting or
postponing the illegal activity.

Figure 10.3 Time line of the interim inspections and probabilities for starting or postponing
the illegal activity for the Se-No inspection game with k interim inspections. For reasons of
clarity we write gn instead of gn(tn), n = 2, . . . , k.
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In analogy to (10.13) we de�ne the Operator's set of behavioural strategies to be

Gk := {g := (gk+1, gk, . . . , g2) : gk+1 ∈ [0, 1] ,

gn : (tk+1, t0)→ [0, 1] , n = 2, . . . , k} . (10.21)

Expanding the de�nitions in (10.4) and (10.15), we de�ne for all n = 1, . . . , k + 1 and any
(tn, . . . , t1) ∈ Rn with tn < . . . < t1 < t0 the conditional detection time Hn(tn, . . . , t1) by

Hn(tn, . . . , t1) := (1− β)

n−1∑
m=1

βn−1−m (tm − tn) + βn−1 (t0 − tn) , (10.22)

where
∑0

m=1 . . . = 0. Thus, the (expected) payo� to the Operator, i.e., the expected detection
time, is, for any g ∈ Gk and any t ∈ Tk, with Hn = Hn(tn, . . . , t1) and gn = gn(tn), given by

Opk(g, t) := (1− gk+1)Hk+1

+ gk+1 [(1− gk)Hk

+ gk [(1− gk−1)Hk−1 . . .

+ (1− g3)H3 + g3 [(1− g2)H2 + g2H1] . . .]] ,



194 Chapter 10: Se-No inspection game for one facility

or, in closed form, by

Opk(g, t) = (1− gk+1)Hk+1 +

k∑
n=2

(1− gn(tn))Hn gk+1

k∏
`=n+1

g`(t`)

+ (t0 − t1) gk+1

k∏
`=2

g`(t`) , (10.23)

with
∏k
`=k+1 g`(j`) := 1. A comparison between (4.31) and (10.23) shows how similar the

payo�s to the Operator in both Se-No inspection games are.

The game theoretical solution of this inspection game, see Avenhaus and Krieger (2013b), is
presented in

Theorem 10.1. Given the Se-No inspection game on the reference time interval [tk+1, t0] with
k interim inspections, and with errors of the second kind. The sets of behavioural resp. pure
strategies are given by (10.21) and (10.20), and the payo� to the Operator by (10.23).

Then an optimal strategy of the Operator is given by

g∗k+1 =
k (1− β)

1 + k (1− β)
and (10.24)

g∗n(tn) =
n− 1

n
for all tk+1 < tn < t0 and all n = 2, . . . , k , (10.25)

and an optimal strategy of the Inspectorate, with t∗k+1 := tk+1, by

t∗n − t∗n+1 =
1− β

1 + n (1− β)
(t0 − t∗n+1) for n = 1, . . . , k . (10.26)

The optimal payo� to the Operator is

Op∗k := Opk(g
∗, t∗) = t0 − t∗1 =

t0 − tk+1

1 + k (1− β)
. (10.27)

Proof. As in the proofs of Lemmata 10.1 and 10.2 we show that the saddle point condition
Opk(g, t

∗) ≤ Op∗k ≤ Opk(g∗, t) for any g ∈ Gk and any t ∈ Tk is ful�lled as equality:

Opk(g, t
∗) = Op∗k = Opk(g

∗, t) . (10.28)

Using (10.24) and (10.25), we get for all n = 1, . . . , k − 1

g∗k+1

k∏
`=n+1

g∗` (t`) =
k (1− β)

1 + k (1− β)

k − 1

k
. . .

n

n+ 1
=

n

1 + k (1− β)
.

Thus, we get, using (10.23) and if we omit the arguments (tn, . . . , t1) in Hn,

Opk(g
∗, t) =

1

1 + k (1− β)
Hk+1 +

k∑
n=1

1

n
Hn

k (1− β)

1 + k (1− β)

k − 1

k
. . .

n+ 1

n+ 2

n

n+ 1
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=
1

1 + k (1− β)

(
Hk+1 + (1− β)

k∑
n=1

Hn

)
. (10.29)

We show by induction that for any k ∈ N and any t0, . . . , tk+1 ∈ R

Hk+1 + (1− β)

k∑
n=1

Hn = t0 − tk+1 (10.30)

holds. For k = 1 we get by (10.4)

H2 + (1− β)H1 = (1− β) (t1 − t2) + β (t0 − t2) + (1− β) (t0 − t1) = t0 − t2 ,

i.e., (10.30) is ful�lled. Let (10.30) be true for an arbitrary k. Then (10.30) implies

Hk+2 + (1− β)

k+1∑
n=1

Hn = Hk+2 + (1− β)Hk+1 + t0 − tk+1 −Hk+1

= Hk+2 − β Hk+1 + t0 − tk+1

= (1− β)

k+1∑
m=1

βk+1−m (tm − tk+2) + βk+1 (t0 − tk+2)

− β

(
(1− β)

k∑
m=1

βk−m (tm − tk+1) + βk (t0 − tk+1)

)
+ t0 − tk+1

= (1− β) tk+1 − tk+2 (1− β)

k+1∑
m=1

βk+1−m + βk+1 (tk+1 − tk+2)

+ tk+1 β (1− β)

k∑
m=1

βk−m + t0 − tk+1

= (1− β) tk+1 − tk+2 (1− βk+1) + βk+1 (tk+1 − tk+2) + tk+1 β (1− βk) + t0 − tk+1

= t0 − tk+2 ,

which was to be shown. Thus, (10.29) yields

Opk(g
∗, t) =

t0 − tk+1

1 + k (1− β)

for any t ∈ Tk, i.e., the right hand side of (10.28). In order to prove the left hand side of
(10.28) note that (10.26) ful�ls the recursive relations (22.2). Thus, (22.1) yields

t∗m − t∗n = (n−m)
1− β

1 + k (1− β)
(t0 − tk+1) (10.31)

for all 1 ≤ m < n ≤ k, and for all n = 1, . . . , k,

t0 − t∗n = t0 − tk+1 − (t∗n − tk+1)
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=

(
1− (k + 1− n)

1− β
1 + k (1− β)

)
(t0 − tk+1) . (10.32)

Using (10.22), (10.31) and (10.32), we get for n = 2, . . . , k + 1 with t∗k+1 := tk+1

Hn(t∗n, . . . , t
∗
1)

= (1− β)

n−1∑
m=1

βn−1−m (t∗m − t∗n) + βn−1 (t0 − t∗n)

= (t0 − tk+1)

(
(1− β)

n−1∑
m=1

βn−1−m (n−m)
1− β

1 + k (1− β)
+ βn−1

1 + (1− β) (n− 1)

1 + k (1− β)

)

=
t0 − tk+1

1 + k (1− β)

(
(1− β)2

n−1∑
m=1

βn−1−m (n−m) + βn−1 (1 + (1− β) (n− 1))

)

=
t0 − tk+1

1 + k (1− β)

(
−(1− β)2

n−1∑
m=1

βn−1−mm+ βn + n (1− β)

)
. (10.33)

Because we have for n = 2, . . . , k + 1

n−1∑
m=1

β−1−mm = (−1)

n−1∑
m=1

d

dβ

(
β−m

)
= (−1)

d

dβ

(
n−1∑
m=1

β−m

)

=
d

dβ

(
1− β−n+1

1− β

)
=
β−n (1− β) (n− 1) + 1− β−n+1

(1− β)2
,

we obtain by (10.33)

Hn(t∗n, . . . , t
∗
1) =

t0 − tk+1

1 + k (1− β)

(
− (1− β) (n− 1)− βn + β + βn + n (1− β)

)
=

t0 − tk+1

1 + k (1− β)
.

Thus, we get together with (22.7)

Hk+1(tk+1, t
∗
k, . . . , t

∗
1) = Hk(t

∗
k, . . . , t

∗
1) = . . . = H2(t

∗
2, t
∗
1) = H1(t

∗
1) , (10.34)

which �nally leads, using (10.23), for any g ∈ Gk to

Opk(g, t
∗) =

t0 − tk+1

1 + k (1− β)
,

i.e., the left hand side of (10.28).

Let us comment the results of Theorem 10.1: First, of course, Lemmata 10.1 and 10.2 are
special cases of this Theorem if one only considers (10.24) for k = 1 interim inspection. Like
in the comments to these Lemmata we mention that the optimal strategy of the Inspectorate,
i.e., t∗ = (t∗k, . . . , t

∗
1), is determined such that the Operator is indi�erent as regards to the start
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of the illegal activity at tk+1, t
∗
k, . . . , t

∗
1: (10.34) indicates that the conditional detection times

are the same again.

Second, the optimal interim inspection time points t∗n depend on the length t0 − tk+1 of
the reference time interval and β. It is interesting to note that according to (10.31) the
time di�erences t∗n − t∗n+1, n = 1, . . . , k with t∗k+1 := tk+1, between two subsequent interim
inspection time points are the same. For β = 0 we have t∗n − t∗n+1 = (t0 − tk+1)/(k + 1) for
n = 1, . . . , k which, as mentioned after Lemma 10.1, could have been guessed with common
sense arguments. Also, for β = 0 and t0 − tk+1 = N + 1 we get by (10.26) and (22.3)

t∗n − t∗n+1 =
t0 − t∗n+1

n+ 1
=
t0 − tk+1

k + 1
=
N + 1

k + 1
, (10.35)

i.e., the di�erences between the optimal interim inspection time points are the same as the
di�erences between the optimal expected interim inspection time points as given in (4.47).

Third, while the component g∗k+1 of the Operator's optimal strategy is a function of β, the
components g∗n(tn), n = 2, . . . , k, given by (10.25) only depend on the number of interim in-
spections left. Again, 1−g∗2(t2), . . . , 1−g∗k(tk) as given by (10.25) form a harmonic progression;
see also Table 4.1 on p. 72 for an overview of inspection games with this property.

Fourth, it is intuitive that t∗n → tk+1, n = 1, . . . , k, and g∗k+1 → 0 with increasing β, see
(10.32) and (10.24): For β close to 1 the Operator starts the illegal activity with probability
close to 1 at time point tk+1. Consequently, the Inspectorate will perform its interim inspections
also very early.

Finally, like in the case of one and two interim inspections, the Inspectorate can also choose
the interim inspection time points according to some density function such that the expected
time points coincides with the one given by (10.26); see p. 192.

Using (10.24) and (10.25), we obtain for the optimal expected time point S for the start of the
illegal activity (recall

∏k
`=k+1 g`(t`) := 1)

E(g∗,t∗)(S) := (1− g∗k+1) tk+1 + g∗k+1

(
k∑

n=2

(1− g∗n(t∗n)) t∗n

k∏
`=n+1

g∗` (t
∗
` ) + t∗1

k∏
`=2

g∗` (t
∗
` )

)

=
1

1 + k (1− β)
tk+1 +

k∑
n=1

1

n
t∗n

k (1− β)

1 + k (1− β)

k − 1

k
. . .

n+ 1

n+ 2

n

n+ 1

=
1

1 + k (1− β)

(
tk+1 + (1− β)

k∑
n=1

t∗n

)

=
1

1 + k (1− β)

(
tk+1 + (1− β)

k∑
n=1

(t∗n − tk+1) + k (1− β) tk+1

)
.

This expression simpli�es, using (22.1), to

E(g∗,t∗)(S) =
1

1 + k (1− β)

(
tk+1 + (1− β)2

k∑
n=1

k + 1− n
1 + k (1− β)

(t0 − tk+1)
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+ k (1− β) tk+1

)

=
1

1 + k (1− β)

(
tk+1 (1 + k (1− β)) +

(1− β)2

1 + k (1− β)
(t0 − tk+1)

k (k + 1)

2

)

= tk+1 +
(1− β)2

(1 + k (1− β))2
k (k + 1)

2
(t0 − tk+1) .

For β = 0, tk+1 = 0 and t0 = N + 1 this is the same form as (4.49) in Lemma 4.4.

Note that Derman (1961) considers the following inspection model in the context of reliability
studies, see p. 155: Each interim inspection permits the detection of a preceding illegal activity
only with a certain �xed probability, and in addition to the time until detection, there is a cost
to be paid for each inspection. Derman describes a deterministic minimax schedule for the
inspection time points.

10.2 Applications to Nuclear Safeguards

Let us come back to the practical application which has already been discussed in Section 6.6.
However, here we assume that interim inspections can be performed at any point of time within
the reference time interval.

Using (10.27), Figure 10.4 illustrates the optimal expected detection times Op∗k as a function
of the non-detection probability β for k = 1, . . . , 7 interim inspection(s) from top to bottom.
In contrast to Section 6.6, however, we choose t0 = 12, i.e., the reference time interval is
measured here in month.

Figure 10.4 implies that if the required optimal expected detection time is set, e.g., to 2.9
month, then it cannot be achieved with k = 1, 2, 3 interim inspection(s). However, it can be
achieved with k ≥ 4 interim inspections. The resulting non-detection probabilities β are given
in the second column of Table 10.1. The optimal interim inspections time points are given by
(10.26).

Table 10.1 The non-detection probabilities (rounded to four digits), the sample size and the
total sample size for k = 4, 5, 6, 7 interim inspections, and for a required optimal expected
detection time of 2.9 month.

non-detection
probability β

sample size n per
interim inspection

total sample size

k = 4 0.2155 40 160

k = 5 0.3724 28 140

k = 6 0.4770 22 132

k = 7 0.5517 18 126

In order to arrive at a more complex example compared to the one in Section 6.6, we assume
now that r = 3 (instead of r = 1) out of M = 100 items have to be falsi�ed to illegally
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Figure 10.4 The optimal expected detection times Op∗k in month as a function of the non-
detection probability β for k = 1, . . . , 7 interim inspection(s). The horizontal line is at 2.9.
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acquire one signi�cant quantity. Then, using (6.43), the sample size is the smallest n ful�lling
the inequality

1−
(

1− n

M

) (
1− n

M − 1

) (
1− n

M − 2

)
≥ 1− β ,

which leads to the third and fourth column in Table 10.1. Which number of interim inspections
should be recommended to the Inspectorate? Using the cost model from p. 132, we get

4 · a+ 160 · b for k = 4

5 · a+ 140 · b for k = 5

6 · a+ 132 · b for k = 6

7 · a+ 126 · b for k = 7 .

It can be seen that, e.g., k = 5 interim inspections is the cost-optimal solution if and only if
8 b < a < 20 b; see Figure 10.5.

Figure 10.5 Cost-optimal number of interim inspections.

a

0 k = 7

6 b

k = 6

8 b

k = 5

20 b

k = 4

Figure 10.5 illustrates that the optimal number of interim inspections depends on the ratio of
the overhead cost a per interim inspection and the cost b for checking one seal/item.
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10.3 Two interim inspections; errors of the �rst and second
kind

In this section we consider the Se-No inspection game with non-vanishing errors of the �rst
and second kind. Because there is no di�erence between the Se-No and the Se-Se inspection
game in case of k = 1 interim inspection, we refer the reader for its analysis to Section 12.1
and immediately consider the case of k = 2 interim inspections.

The inspection game analysed in this section is based on the following speci�cations:

(iv') The Operator may start at most once an illegal activity during the reference time interval
[t3, t0] in the only facility under consideration.

(v') During an interim inspection the Inspectorate may commit an error of the �rst and second
kind with probabilities α and β. While during an interim inspection which is performed
before the start of the illegal activity only an error of the �rst kind (false alarm) may occur,
during an interim inspection which is performed after the start of the illegal activity only
an error of the second kind (non-detection) may occur. The "game" continues after
an error of the �rst kind. The error probabilities α and β are the same for all interim
inspections.

Let us comment assumption (v'): It is assumed that � like in Section 9.4 � the value α of the
false alarm probability is �xed a priori, and that the test procedure used for either of the two
interim inspections is unbiased, i.e., α + β < 1. The additional assumption that a false alarm
is not possible during an interim inspection if prior to that interim inspection an illegal activity
was started, is not a trivial assumption. Depending on the details of the inspection scheme
alternative assumptions would have to be formulated; see p. 282. Note that inspections with
errors of the �rst and second kind have already been considered in Section 7.4 and in more
detail in Section 9.4.

Note that because a false alarm causes costs to both players, the zero-sum assumption has
to be given up, and more than that, payo� parameters have to be introduced which evaluate
the di�erent outcomes of the game; see (8.1) and (8.2) with k = 2 interim inspections. In
case the Operator behaves legally throughout the game, two false alarms may occur with the
corresponding costs of (−2 f,−2 g).

In the following we present the Se-No inspection game and its game theoretical solution along
the lines of the papers Avenhaus and Krieger (2010) and Avenhaus and Krieger (2011b).

While the Inspectorate has the same strategy set T2 like in the Se-No inspection game in Section
10.1, see (10.12), the Operator's strategy set needs to be amended: Because he does not need
to behave illegally at all throughout the game, he starts the illegal activity at time point t1 with
probability 1 − g1(t1) and behaves legally at time point t1 with probability g1(t1). Thus, we
have instead of (10.13) the new set of behavioural strategies

G2 := {g := (g3, g2, g1) : g3 ∈ [0, 1], g2, g1 : (t3, t0)→ [0, 1]} . (10.36)

With the same arguments as on p. 193, we assume that g1 only depends on t1 and not on the
whole history (t2, t1).

Instead of presenting the extensive form of this inspection game, see Avenhaus and Krieger
(2010) and Avenhaus and Krieger (2011b), we derive the payo�s to both players explicitly:
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Because the Inspectorate decides at the beginning of the reference time interval t3 when to
perform its two interim inspections, let (t2, t1) ∈ T2 be �xed. If the Operator starts the illegal
activity at t3 (i.e., ¯̀(t3) with probability 1− g3) then it is detected with probability 1− β at t2
or with probability β (1− β) at t1 or with probability β2 at the �nal PIV at t0. Because in this
case � as mentioned above � a false alarm is excluded at time points t2 and t1, the Operator's
payo� is, using (8.1), given by

d ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))− b .

If the Operator does not start the illegal activity at t3 (i.e., `(t3) with probability g3), then two
cases may occur:

Case 1: Suppose a false alarm is risen at t2. Then, by assumption (v'), this false alarm is
clari�ed and at t2 a new proper (sub)game starts with the reference time interval [t2, t0] and
one interim inspection. If the Operator starts the illegal activity then at t2 (i.e., ¯̀(t2) with
probability (1− g2(t2))), it is detected with probability 1− β at t1 or with probability β at the
�nal PIV at t0, then with certainty. Thus, his payo� is in this case, using (8.1),

d ((1− β) (t1 − t2) + β (t0 − t2))− b− f α . (10.37)

If he does not start the illegal activity at t2 (i.e., `(t2) with probability g2(t2)), he starts it
at time point t1 (i.e., ¯̀(t1) with probability 1− g1(t1)) or does behave legally throughout the
game with probability g1(t1), i.e., `(t1). In either case two false alarms can occur which result
in the costs −2 f . Thus, his payo� is{

d (t0 − t1)− b− 2 f α for ¯̀(t1)

−2 f α for `(t1)
. (10.38)

Case 2: Suppose no alarm is risen at t2. Then the same holds as derived in case 1 with the
exception that � from a modelling point of view � di�erent probabilities g′2(t2) and g

′
1(t1) at t2

and t1 for the Operator have to be assumed, because he might behave di�erently after the event
"no false alarm" (case 2) compared to the event "false alarm" (case 1). Since, however, the
decision between ¯̀(t2) and `(t2) resp. ¯̀(t1) and `(t1) is based on the same payo� alternatives
(10.37) resp. (10.38), it is su�cient to introduce the same behavioural strategy g2(t2) and
g1(t1). This statement does not hold for the corresponding Se-Se inspection game treated in
Section 12.2.

In sum, the (expected) payo� to the Operator is, for any g ∈ G2 and any t ∈ T2, given by

Op2(t3;g, t) := (1− g3)
[
d ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))− b

]
+ g3

[
(1− g2(t2))

[
d ((1− β) (t1 − t2) + β (t0 − t2))− b− f α

]
(10.39)

+ g2(t2)
[
(1− g1(t1)) (d (t0 − t1)− b− 2 f α) + g1(t1) (−2 f α)

]]
.

Using (8.1), the (expected) payo� to the Inspectorate is obtained from that to the Operator
by replacing d by −a and f by g and setting b = 0, i.e., it is, for any g ∈ G2 and any t ∈ T2,
given by

In2(t3;g, t) := (1− g3)
[
(−a) ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))

]
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+ g3

[
(1− g2(t2))

[
(−a) ((1− β) (t1 − t2) + β (t0 − t2))− g α

]
(10.40)

+ g2(t2)
[
(1− g1(t1)) ((−a) (t0 − t1)− 2 g α) + g1(t1) (−2 g α)

]]
.

Note that we use the time point t3 of the beginning PIV in the notation of Op2 and In2,
because the Inspectorate's equilibrium strategies can be formulated more symmetrically using
t3 instead of 0, and the usage of t3 is more appropriate for a generalization to any number k
of interim inspections; see Chapter 12.

For d = 1, b = 0, α = 0 and g1(t1) = 0, the payo� (10.39) reduces to the expected detection
time (10.14), as expected. Note that the Inspectorate's payo� parameter g should not be
confused with the Operator's strategies g3, g2(t1) and g1(t1).

The game theoretical solution of this inspection game, see Avenhaus and Krieger (2010) and
Avenhaus and Krieger (2011b), is presented in

Lemma 10.3. Given the Se-No inspection game on the reference time interval [t3, t0] with
k = 2 interim inspections, errors of the �rst and second kind, and an unbiased test procedure.
The sets of behavioural resp. pure strategies are given by (10.36) and (10.12), and the payo�s
to both players by (10.39) and (10.40).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2(t3) :=
Op2(t3;g

∗, t∗) and In∗2(t3) := In2(t3;g
∗, t∗):

(i) For

1

3− 2β

(
t0 − t3 +

f

d
α (3− β)

)
>
b

d
and

f α

d (t0 − t3)
<

1− β
3− 3β + β2

(10.41)

the Operator behaves illegally and an equilibrium strategy of the Operator is given by

g∗3 = 1− 1

3− 2β
, g∗2(t2) =

1

2
and g∗1(t1) = 0 (10.42)

for all t3 < tn < t0, n = 1, 2. An equilibrium strategy of the Inspectorate is given by

t∗2 − t3 =
1− β

3− 2β
(t0 − t3)−

f

d
α

3− 3β + β2

3− 2β

t∗1 − t∗2 =
1− β
2− β

(t0 − t∗2)−
f

d
α

1

2− β
.

(10.43)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(t3) = d
1

3− 2β
(t0 − t3)− f α

3 (1− β)

3− 2β
− b and

In∗2(t3) = − a 1

3− 2β
(t0 − t3)− g α

3 (1− β)

3− 2β
.

(10.44)

(ii) For

1

3− 2β

(
t0 − t3 +

f

d
α (3− β)

)
<
b

d
(10.45)
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the Operator behaves legally, i.e., g∗3 = g∗2(t2) = g∗1(t1) = 1 for all t3 < tn < t0, n = 1, 2,
and the Inspectorate's set of equilibrium strategies is given by

b

d
− 2 f

d
α ≥ (1− β) (t∗2 − t3) + β (1− β) (t∗1 − t3) + β2 (t0 − t3)

b

d
− f

d
α ≥ (1− β) (t∗1 − t∗2) + β (t0 − t∗2)

b

d
≥ t0 − t∗1 .

(10.46)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(t3) = −2 f α and In∗2(t3) = −2 g α . (10.47)

Proof. The proof is presented in Chapter 21.

Let us comment the results of Lemma 10.3: First, setting α = 0, d = a = 1 and b = f = g = 0
we arrive at the Se-No inspection game for k = 2 interim inspections in Section 10.1, and
thus � not surprisingly at all � the optimal strategies and payo�s of Lemma 10.2 correspond
with the Nash equilibrium strategies in (i) of Lemma 10.3. Furthermore, it will turn out in
Lemma 12.2 that the Inspectorate's equilibrium strategies (10.43) and (10.46) coincide with the
corresponding ones (12.25) and (12.27) of the Se-Se inspection game, and that the equilibrium
payo�s to both players are the same. The Operator's equilibrium strategies, however, are
di�erent in case of illegal behaviour, because (10.42) and (12.24) imply for any t3 < t2 < t0

g∗2(t2) =


1

2
for the Se-No inspection game

1− 2 (1− α)− β
2 (1− α)

1

2− β
for the Se-Se inspection game

.

This result is discussed on p. 248.

Second, the equilibrium time points (t∗2, t
∗
1) given by (10.43) do not necessarily ful�l (10.46).

Why? As remarked on p. 141 we need to assure that (t∗2, t
∗
1) is a meaningful expression under

condition (10.45), i.e., if (t∗2, t
∗
1) ∈ T2. In Chapter 21 it is shown that (t∗2, t

∗
1) ∈ T2 if and

only if the right hand inequality of (10.41) is ful�lled. Thus, (t∗2, t
∗
1) is not a robust equilibrium

strategy, because the Inspectorate cannot just play (t∗2, t
∗
1) but has to check whether the right

hand inequality of (10.41) is ful�lled; see also the example below. For α = 0, however, the right
hand inequality of (10.41) vanishes, and (t∗2, t

∗
1) is a robust equilibrium strategy; see also Table

7.3 on p. 142 for an overview of inspection games with a robust Inspectorate's equilibrium
strategy.

For illustration, consider two numerical examples with t3 = 0 and t1 = 1 each, and

b

d
= 0.75 , β = 0.5 ,

f

d
α = 0.1 , α > 2/15 , and

b

d
= 0.8 , β = 0.3 ,

f

d
α = 0.32 , α > 4/10 .

Both examples ful�l the left hand side of (8.2) with k = 2, and because

1

3− 2β

(
t0 − t3 +

f

d
α (3− β)

)
=


1

2
(1 + 0.1 · 2.5) = 0.625 �rst example

1

2.4
(1 + 0.32 · 2.7) =

233

300
second example

<
b

d
,
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(10.45) is also ful�lled. The right hand inequality of (10.41), however, is only ful�lled for the
�rst example (0.1 < 0.286) whereas for the second one it is not (0.32 > 0.319). According to
(10.43) the illegal strategy (t∗2, t

∗
1) of the Inspectorate is given by

(t∗2, t
∗
1) ≈ (0.16, 0.37) and (t∗2, t

∗
1) = (−0.0003, 0.223) . (10.48)

The negative value of t∗2 in the second example is not surprising as the proof in Chapter 21
shows that a violation of the right hand inequality of (10.41) is equivalent to t∗2 < 0 = t3.

According to (10.46) the equilibrium strategies (t∗2, t
∗
1) of the Inspectorate in case of legal

behaviour of the Operator, i.e., case (ii), are given by the inequalities

0.6 ≥ t∗2 + 0.5 t∗1 , 0.15 ≥ 0.5 t∗1 − t∗2 , t∗1 ≥ 0.25 , and

0.07 ≥ 0.7 t∗2 + 0.21 t∗1 , 0.18 ≥ 0.7 t∗1 − t∗2 , t∗1 ≥ 0.2 .
(10.49)

Figure 10.6 illustrates both examples. We see the rather complicated regions for the legal
equilibria (shaded area). In a similar case Kilgour (1992) called this area cone of deterrence.

Figure 10.6 Illustration of the cone of deterrence (shaded area) according to (10.49). The
dot indicates (t∗2, t

∗
1) according to (10.48), which constitutes only in the upper example an

equilibrium strategy.
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Third, we did not consider the case

1

3− 2β

(
t0 − t3 +

f

d
α (3− β)

)
>
b

d
and

f α

d (t0 − t3)
>

1− β
3− 3β + β2

,

which, for the Se-Se inspection game, was considered in Avenhaus and Canty (2005) and will be
treated in Lemma 12.3 of Section 12.2, where we will anyhow come back to the results of this
section. There, it led to the equilibrium strategy t∗2 = 0 of the Inspectorate which is practically
not feasible. Let us mention that the case t2 = 0 is excluded in the inspection model, since we
assumed a priori t3 < t2 < t1 < t0. However, without this assumption we think that the same
would happen here.

Fourth, whereas the equilibrium strategies of the Operator in Lemma 10.3 do not depend on
α, that of the Inspectorate does. It enters the equilibrium inspection time points (t∗2, t

∗
1) in the

order α f/d, which is supposed to be very small compared to the other terms. Therefore, we may
conclude that even though errors of the �rst kind may occur, and the subsequent clari�cation
of false alarms may cause technical and organizational problems, for planning purposes they
may be ignored.

Fifth, like in the Se-No inspection game for α = 0, the Inspectorate may announce the equilib-
rium interim inspection time points, if it wishes so; see the comment on p. 192.

Finally, the question of the appropriate choice of the false alarm probability α may be raised
again. Starting with the Operator's payo� (10.44) and that for legal behaviour, −2 f α, we
can proceed in the same way as in Section 9.5 and get a determinate for the optimal value α∗

of the false alarm probability. Since, however, we will not make use of it, we do not discuss it
here in more detail.
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Chapter 11

Se-No inspection game for more

facilities: Krieger-Avenhaus model

The inspection models which are presented in this chapter and which are stimulated by demands
from the practitioners' side, see the comment on p. 146, di�er from all other ones in this
monograph insofar as several facilities are considered.

In this chapter, assumptions (iv), (vii) and (ix) of Chapter 8 are speci�ed as follows:

(iv') The Operator starts once an illegal activity during the reference time interval [tk+1, t0]
in any of the N facilities.

(vii') The Inspectorate decides at the beginning of the reference time interval, i.e., at time point
tk+1, in which facilities and at which time points it performs its interim inspections.

The Operator decides at the beginning of the reference time interval whether and in which
facility to start the illegal activity immediately at time point tk+1 or to postpone its start;
in the latter case he decides again after the �rst interim inspection, whether and in which
facility to start the illegal activity immediately at that time point or to postpone its start
again; and so on. Because of assumption (iv'), the Operator starts the illegal activity
latest immediately at the time point of the last interim inspection in either facility.

(ix') The payo�s to the two players (Operator, Inspectorate) are linear functions of the detec-
tion time 4t, i.e., the time between start and detection of the illegal activity, and are
given as follows

(4t,−4t) for illegal behaviour and detection time4t .

Assumptions (v) will be speci�ed in the following sections, while the remaining assumptions of
Chapter 8 hold throughout this chapter. The reason why in assumption (iv') the Operator is
assumed to behave illegally once in one of the N facilities is that this is the worst case from
the detection view point of the Inspectorate. The symbol N used in this chapter should not be
confused with the meaning of N in Part I.

Compared to the inspection games treated in Sections 11.2 and 11.3, the inspection game
analysed in Section 11.1 is more general on the one hand, because the detection probabilities,
i.e., the probability of detecting the illegal activity, are assumed to be facility-dependent, and
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more special on the other, because only k = 1 interim inspection in N facilities is considered.
Section 11.1 is based on Avenhaus and Krieger (2012).

In Section 11.2 the inspection game with k = 2 interim inspections is discussed for the sake of
illustrating the general case which is then treated in Section 11.3. This general case deals with
k interim inspections in N facilities, and facility-independent detection probabilities, and has
been treated by Avenhaus and Krieger (2013b), where, however, optimal strategies and payo�s
have been formulated only as a conjecture since its proof appeared infeasible at that time. In
between, however, the proof has been achieved and is published in this monograph for the �rst
time.

11.1 One interim inspection; facility-dependent errors of the
second kind

Let us assume that there are N facilities � not necessarily of the same type � in a State. There
is a reference time interval [t2, t0], e.g., one calendar year, at the beginning and end of which
Physical Inventory Veri�cations (PIVs) take place in all facilities which permit to detect with
certainty any illegal activity which has been started during the reference time interval in one of
these facilities. Note that it is assumed that the PIVs in the single facilities are carried through
at the same time points t2 respectively t0. Inspection games with shifted PIVs are only analysed
so far for special cases in Avenhaus and Krieger (2012).

The inspection game analysed in this section is based on the following speci�cation:

(v') During the interim inspection the Inspectorate may commit a facility-dependent error of
the second kind with probability βi, i = 1, . . . , N , i.e., the illegal activity, see assumption
(iv'), started in facility i is not detected during the next interim inspection in that facility
with probability βi. Note that if there is no interim inspection left, then it is detected
with certainty at the �nal PIV; see assumption (iii).

According to assumption (vii'), the Inspectorate chooses at the beginning of the reference time
interval, i.e., at t2, the facility i, i = 1, . . . , N , for the interim inspection. In order to assure
the existence of optimal strategies we have to assign a probability for choosing facility i at t2:
Let qi, i = 1, . . . , N , be the probability that facility i is inspected and de�ne

QN,1 :=
{
q := (q1, . . . , qN ) ∈ [0, 1]N :

N∑
i=1

qi = 1
}
. (11.1)

The meaning of qi should not be confused with the meaning of qj in Part I, see p. 26, because
there it denotes the Inspectorate's probability to perform the only interim inspection at time
point j, where here it means the probability to select facility i for inspection.

Depending on the choice i of the facility to be inspected, the Inspectorate chooses the time
point t1(i) for the interim inspection. Because at time points t2 and t0 regular inspections
(PIVs) are performed, the interim inspection can only be scheduled in the open interval (t2, t0),
i.e., the set TN,1 of interim inspection time points for a selected facility is given by

TN,1 :=
{
t = t1 : {1, . . . , N} → R : t2 < t1(i) < t0 for all i = 1, . . . , N

}
. (11.2)
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In case of N = 1 facility, (11.2) simpli�es to T1 as given by (9.1). Although in this section
only the case of k = 1 interim inspection is considered, we could have avoided the use of
the backward numbering of the interim inspection time points. However, to be consistent
with Sections 11.2 and 11.3, we also apply it here. (11.1) and (11.2) together de�ne the
Inspectorate's strategy set

QN,1 × TN,1 . (11.3)

Let us now formalize the Operator's behaviour: Because of assumption (vii'), the Operator
chooses the facility i in which he starts the illegal activity at t2 with probability g2,i, i =
1, . . . , N , or he postpones the start with probability g2. In the latter case he starts it in either
facility at time point t1(i). De�ne for all n = 2, 3, . . . the set

G
(n)
N :=

{
gn := (gn,1, . . . , gn,N , gn) ∈ [0, 1]N+1 :

N∑
i=1

gn,i + gn = 1

}
, (11.4)

then the Operator's strategy set GN,1 is given by

GN,1 := G
(2)
N . (11.5)

In case of only N = 1 facility, g2,1 is the probability to start the illegal activity immediately at
t2, and g2 the probability to postpone its start to time point t1, where g2,1 + g2 = 1. Thus,
GN,1 can be identi�ed with G1 as given by (10.2).

The payo� to the Operator can be derived as follows: If the Inspectorate performs its interim
inspection in facility i, i = 1, . . . , N , (with probability qi and at time point t1(i)) and if the
Operator starts the illegal activity at t2 (with probability g2,i) in the same facility, then the
illegal activity will be detected with probability 1 − βi at time point t1(i) with the resulting
detection time t1(i)− t2; see assumption (v'). It will not be detected at time point t1(i) with
probability βi but at the �nal PIV with certainty, and the detection time is t0 − t2. Thus, the
conditional detection time Hi(t), i.e., the detection time when the illegal activity is started at
time point t2 in facility i and the interim inspection is performed in the same facility, is, in
analogy to p. 187, de�ned by

Hi(t) := (1− βi) (t1(i)− t2) + βi (t0 − t2) , i = 1, . . . , N . (11.6)

If the Operator starts the illegal activity at t2 in facility j, j 6= i (with probability g2,j), the
detection time is t0 − t2. If he postpones the start to time point t1(i) (with probability g2),
the detection time is t0 − t1(i).

Therefore, the (expected) payo� to the Operator, i.e., the expected detection time, is, using
(11.6), for any g ∈ GN,1 and any (q, t) ∈ QN,1 × TN,1, given by

OpN,1(g, (q, t)) :=

N∑
i=1

qi

g2,iHi(t) +

N∑
j=1
j 6=i

g2,j (t0 − t2) + g2 (t0 − t1(i))

 . (11.7)

Note that in case only N = 1 facility is considered, (11.7) simpli�es to Op1(g2, t1) given
by (10.3). Also note that the meaning of the index N in OpN,1(g, (q, t)) given by (11.7)
and OpN,1(g2,q) given by (4.8) di�er: While in the former case it refers to the the number of
facilities, in the latter one it refers to the possible number of time points for interim inspection(s).
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This inspection game was developed to determine optimal inspection strategies, i.e., the optimal
interim inspection time point and optimal facility selection probabilities, in European spent fuel
storages where there was the additional constraint that a storage is inspected with at least 20%
probability per year; see Avenhaus and Krieger (2012). In case of N facilities there is at least
one facility i with qi ≤ 1/N which implies that for N ≥ 6 the 20% postulate can never be
ful�lled no matter which value βi can take. We will come back to this point in the comments
on Theorem 11.1.

The game theoretical solution of this inspection game, see Avenhaus and Krieger (2012), is
presented in

Theorem 11.1. Given the Se-No inspection game on the reference time interval [t2, t0] with
k = 1 interim inspection in N ≥ 2 facilities, and with an facility-dependent error of the second
kind, i.e., βi ≥ 0 for i = 1, . . . , N . The Operator's set of behavioural strategies is given by
(11.5), the Inspectorate's strategy set by (11.3), and the payo� to the Operator by (11.7).

Then an optimal strategy of the Operator is, for i = 1, . . . , N , given by

g∗2,i =
1

1− βi

(
1 +

N∑
`=1

1

1− β`

)−1
and g∗2 =

(
1 +

N∑
`=1

1

1− β`

)−1
, (11.8)

and an optimal strategy of the Inspectorate by the facility selection probabilities

q∗i =
1

1− βi

(
N∑
`=1

1

1− β`

)−1
for i = 1, . . . , N , (11.9)

and by the interim inspection time point

t0 − t2
t0 − t∗1(i)

= 1 +

(
N∑
`=1

1

1− β`

)−1
for i = 1, . . . , N . (11.10)

The optimal payo� to the Operator is

Op∗N,1 := OpN,1(g
∗, (q∗, t∗)) = t0 − t∗1(i) =

t0 − t2

1 +

(
N∑
`=1

1

1− β`

)−1 . (11.11)

Proof. It is clear from (11.8) � (11.10) that g∗ ∈ GN,1 and (q∗, t∗) ∈ QN,1 × TN,1.

Again, we have to show that, in analogy to (19.10), the saddle point criterion

OpN,1(g, (q
∗, t∗)) ≤ Op∗N,1 ≤ OpN,1(g∗, (q, t)) (11.12)

for any g ∈ GN,1 and any (q, t) ∈ QN,1 × TN,1 is ful�lled. We �rst prove the right hand
inequality of (11.12). Let

C :=

(
N∑
`=1

1

1− β`

)−1
.
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Then we have for all i = 1, . . . , N , using (11.6), (11.8) and (11.11),

g∗2,iHi(t) +
∑
j 6=i

g∗2,j (t0 − t2) + g∗2 (t0 − t1(i))

=

(
1 +

1

C

)−1 [
t1(i)− t2 +

βi
1− βi

(t0 − t2) +

(
1

C
− 1

1− βi

)
(t0 − t2) + (t0 − t1(i))

]

=

(
1 +

1

C

)−1 [
t1(i)− t2 +

(
1

C
− 1

)
(t0 − t2) + (t0 − t1(i))

]

=

(
1 +

1

C

)−1 1

C
(t0 − t2)

=
t0 − t2
C + 1

= Op∗N,1 ,

i.e., by (11.7) the right hand inequality of (11.12) is ful�lled as equality. In order to prove the
left hand inequality of (11.12) we �rst rearrange (11.7) by using (11.5) and get

OpN,1(g, (q, t)) (11.13)

=

N∑
i=1

g2,i

qiHi(t) + (t0 − t2)
N∑
j=1
j 6=i

qj −
N∑
j=1

qj (t0 − t1(i))

+

N∑
i=1

qi (t0 − t1(i)) .

By (11.10) we obtain for all i = 1, . . . , N

t∗1(i)− t2 = −(t0 − t∗1) + (t0 − t2) =
C

1 + C
(t0 − t2)

and, using (11.6),

Hi(t
∗) = (1− βi) (t∗1(i)− t2) + βi (t0 − t2) =

C + βi
1 + C

(t0 − t2) . (11.14)

Thus, (11.9), (11.10) and (11.14) imply for all i = 1, . . . , N

q∗i Hi(t
∗) + (t0 − t2)

∑
j 6=i

q∗j −
N∑
j=1

q∗j (t0 − t∗1(i))

=
C

1− βi
C + βi
1 + C

(t0 − t2) + (t0 − t2)
(

1− C

1− βi

)
− (t0 − t2)

1

1 + C
= 0 ,

which yields, using (11.13),

OpN,1(g, (q
∗, t∗)) =

N∑
i=1

q∗i (t0 − t∗1(i)) =
t0 − t2
C + 1

= Op∗N,1 ,

i.e., the left hand inequality of (11.12) is also ful�lled as equality.
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Let us comment the results of Theorem 11.1: First, the 20% requirement mentioned on p. 210
leads for N ≤ 5, using (11.9), to conditions on βi, which may look complicated . For N = 2
facilities we obtain by (11.9) for the Inspectorate's optimal facility selection probabilities

q∗1 =
1− β2

2− β1 − β2
and q∗2 =

1− β1
2− β1 − β2

.

The requirement q∗1 ≥ 0.2 and q∗2 ≥ 0.2 is equivalent to

4β1 − 3 ≤ β2 ≤
1

4
(3 + β1) . (11.15)

All pairs (β1, β2) ful�lling (11.15) are depicted in the grey area of Figure 11.1. One can see,
that for instance in case of β1 = 0 and β2 = 0.8, the 20% requirement cannot be ful�lled.
Consequently, the non-detection probability in facility 2 has to be decreased in order to ful�l it.
Strangely enough, one can also increase the non-detection probability in facility 1, which seems
to be counter-intuitive. The reason for this strange property is that we consider one interim
inspection; however, we do not �x the inspection e�ort which in�uences β1 and β2. Of course,
the optimal expected detection time grows with growing β's.

Figure 11.1 Pairs (β1, β2) ful�lling the 20% requirement in case of N = 2 facilities.
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Second, in case only N = 1 facility is considered, we have β1 = β and q∗1 = 1, and the results
for Theorem 11.1 simplify to that of Lemma 10.1. Like in Lemma 10.1, our analysis leads to an
explicit dependence of the optimal interim inspection time point t∗1(i) and the optimal facility
selection probability q∗i on βi, i = 1, . . . , N . Because of (11.10), the optimal interim inspection
time point t∗1(i) does not depend on i, which is surprising, since the non-detection probabilities
are facility-dependent. Note that like in Lemma 10.1 the optimal expected detection time is
the time between the interim inspection and the �nal PIV. To start the illegal activity after the
interim inspection at time point t∗1(i), however, would not be an optimal strategy; see p. 188
and the comment on p. 232.
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Third, note that both the optimal facility selection probabilities q∗i and the probabilities g∗2,i of
the Operator for starting the illegal activity immediately at t2 are inversely proportional to the
detection probabilities 1−βi, i = 1, . . . , N , in these facilities. In other words, both players put
their emphases on facilities with small detection probabilities. This feature is well known from
other inspection games; see Avenhaus and Canty (1996), Chapter 6.

Fourth, again the optimal strategy of the Inspectorate is a pure strategy, i.e., t∗1(i) is determin-
istic, and the Inspectorate can announce this time point if it wishes so. In analogy to what has
been said on p. 189, the Inspectorate can also randomize the interim inspection time point.

Fifth, the more facilities are considered the earlier the interim inspection will be performed,
because (11.10) yields for all i = 1, . . . , N and any βi ∈ [0, 1)

t0 − t2 = (t0 − t∗1(i))

1 +

(
N∑
`=1

1

1− β`

)−1 ≤ (t0 − t∗1(i))
(

1 +
1

N

)
,

i.e., the optimal interim inspection time point t∗1(i) tends to t2 for all i = 1, . . . , N and N →∞.
This is plausible, since the Operator will start his illegal activity with probability one right at
the beginning of the reference time interval: (11.8) leads for any βi ∈ [0, 1) to

g∗2 =

(
1 +

N∑
`=1

1

1− β`

)−1
≤ 1

N + 1
,

i.e., the optimal probability g∗2 tend to zero for N →∞. The inspector reacts on his part with
an early interim inspection time point t∗1(i).

Sixth, if the non-detection probabilities are facility-independent, i.e., βi = β for all i = 1, . . . , N ,
then we have

N∑
`=1

1

1− β`
=

N

1− β
,

and (11.8) � (11.10) imply for the Operator's and the Inspectorate's optimal strategies:

g∗2,i =
1

N + 1− β
for i = 1, . . . , N and g∗2 =

1− β
N + 1− β

(11.16)

and

t0 − t∗1(i) =
N

N + 1− β
(t0 − t2) and q∗i =

1

N
for i = 1, . . . , N . (11.17)

Both results coincide as expected with the results of Theorem 11.2 for k = 1 interim inspection,
with the results in Avenhaus and Krieger (2013b), and for β = 0 with the results in Krieger
(2010).

Finally, and just in order to demonstrate the variety of models which have already been analysed,
let us mention another variant in which the Inspectorate's set of strategies is given by (11.2),
whereas the Operator selects �rst the facility for the illegal activity and only thereafter decides
to start the latter one immediately or not. A justi�cation for this assumption could be the
following: While in the game discussed in this chapter the Operator is assumed to be able to
start the illegal activity immediately, in this variant the Operator needs time to prepare the
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illegal activity in the facility chosen at �rst. This variant has been analysed for two facilities
with di�erent detection probabilities; see Avenhaus and Krieger (2012). Although both models
are di�erent from a strategic point of view, it turned out that the optimal interim inspection
time points are the same for both variants.

11.2 Two interim inspections; facility-independent errors of
the second kind

Because the case of one interim inspection in N facilities with facility-independent detection
probabilities 1− β is a special case of Theorem 11.1 leading to the optimal strategies (11.16)
and (11.17), we consider now the inspection game with k = 2 interim inspections in N facilities,
which is based on the following speci�cation:

(v') During an interim inspection the Inspectorate may commit an facility-independent error of
the second kind with probability β, i.e., the illegal activity, see assumption (iv'), started in
facility i is not detected during the next interim inspection in that facility with probability
β. Note that if there is no interim inspection left, then it is detected with certainty at
the �nal PIV; see assumption (iii).

The model analysed in this section has its origin in the work of Krieger (2010) who considered
the case of one and two interim inspections in N facilities with no errors of the second kind,
i.e., β1 = . . . = βN = 0. In contrast to his work, we will include here errors of the second kind
that are assumed to be facility-independent, i.e., β1 = . . . = βN =: β ≥ 0. The results of this
section have been published by Avenhaus and Krieger (2013b).

Note that the comment made after (11.1) on the di�erent meaning of qj in Part I and this
chapter, the comment after (11.2) regarding the relation between TN,1 and T1, and the comment
after (11.7) on the di�erent meaning of OpN,1 in Part I and this chapter, apply � accordingly
modi�ed � also here, and are not repeated.

According to assumption (vii'), the Inspectorate chooses at the beginning of the reference
time interval, i.e., at t3, the facilities (i2, i1) ∈ {1, . . . , N}2 with probability q(i2,i1), where i2
indicates the facility for the �rst and i1 the for the second interim inspection. De�ne

QN,2 :=
{
q := (q(1,1), . . . , q(N,N)) ∈ [0, 1]N

2
:

∑
(i2,i1)∈{1,...,N}2

q(i2,i1) = 1
}
. (11.18)

Depending on the choice (i2, i1) of the two facilities to be inspected, the Inspectorate chooses
the time point t2(i2, i1) for the �rst and t1(i2, i1) for the second interim inspection. From
the modelling point of view it is important that the time points are supposed to be dependent
on (i2, i1), since it cannot be excluded a priori that, e.g., t2(1, 1) is di�erent from t2(1, 2).
Keeping in mind that due to assumption (ii) of Chapter 8 the Inspectorate cannot perform the
two interim inspections at the same time � yet, we will come back to this point on p. 230 �,
the strategy set concerning the time points of the interim inspections is given by

TN,2 :=
{
t = (t2, t1) : {1, . . . , N}2 → R2 : t3 < t2(i2, i1) < t1(i2, i1) < t0

for any (i2, i1) ∈ {1, . . . , N}2
}
.

(11.19)
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(11.18) and (11.19) together de�ne the Inspectorate's strategy set

QN,2 × TN,2 . (11.20)

According to assumption (vii'), the Operator's behaviour is formalized as follows: Let g3,i and
g3 be the probabilities that the Operator starts at t3 the illegal activity in facility i, i = 1, . . . , N ,

or postpones its start. Using (11.4) we have g3 := (g3,1, . . . , g3,N , g3) ∈ G
(3)
N . In case the

illegal activity is postponed, the Operator observes the time point t2 = t2(i2, i1) of the �rst
interim inspection and the respective facility i2 in which it takes place; of course he does not
know the time point i1 of the second interim inspection. Depending on i2 and t2 he chooses
the probabilities g2,i(i2, t2), i = 1, . . . , N , for starting the illegal activity in facility i at t2 and
g2(i2, t2) to postpone its start again. The Operator starts the illegal activity with certainty at
t1(i2, i1) in either facility if he does not do so before. The time lines of the interim inspection
time points and the facility selection probabilities as well as the probabilities for starting or
postponing the illegal activity in di�erent facilities are presented in Figure 11.2, where for
brevity g2,i(i2, t2) and g2(i2, t2) are abbreviated by g2,i(i2) and g2(i2), respectively.

Figure 11.2 Time lines of the interim inspection time points and the facility selection probabil-
ities (left) as well as the probabilities for starting or postponing the illegal activity in di�erent
facilities (right).
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Note that while in Section 10.13 the probability g2(t2) is only a function of t2 (because only one
facility is considered), here is becomes a function of the facility of the �rst interim inspection
i2 and the time point t2: g2(i2, t2).

Using (11.4), de�ne for any t ∈ R with t < t0 and all n = 2, 3, . . . the set Gn(t) of all functions

mapping a pair {1, . . . , N} × (t, t0), i.e., a facility and a time point, onto G
(n)
N :

Gn(t) :=
{
gn : {1, . . . , N} × (t, t0)→ G

(n)
N

}
. (11.21)

Then the Operator's strategy set is given by

GN,2 := G
(3)
N ×G2(t3) . (11.22)

An element of GN,2 is denoted as g := (g3,g2). De�ning the indicator function by

1i(j) :=

{
0 : i 6= j
1 : i = j

, (11.23)
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then the payo� to the Operator can be derived, using Figure 11.2 and (11.23), as follows: Let
(i2, i1) ∈ {1, . . . , N}2 be a pair of facilities to be inspected. The following types of detection
times, i.e., di�erences between interim inspection time points, can occur:

• In order to get the detection time t0 − t1(i2, i1), the illegal activity has to be started at
time point t1(i2, i1). The probability of this event is given by

g3 g2(i2, t2) .

• In order to get the detection time t0 − t2(i2, i1), the illegal activity has to be started at
time point t2(i2, i1) in one of the N facilities, say the r-th one, and is not detected at
the next interim inspection at time points t1 in case it is performed in the r-th facility.
Thus, the probability that the illegal activity is only detected at the �nal PIV is given by

g3

N∑
r=1

g2,r(i2, t2)β
1i1

(r) .

• In order to get the detection time t0 − t3, the illegal activity has to be started at time
point t3 in one of the N facilities, say the r-th one, and is not detected at any of the
two interim inspections at time points t2 and t1. Because

∑2
j=1 1ij (r) is the number of

interim inspections taking place in facility r and because of the stochastic independence
of the non-detection events, the probability that the illegal activity is only detected at
the �nal PIV is given by

N∑
r=1

g3,r β
∑2

j=1 1ij
(r) .

• In order to get the detection time t1(i2, i1)−t2(i2, i1), the illegal activity has to be started
at time point t2 in facility i1 and has to be detected at time point t1 (with probability
1− β). The probability of this event is given by

g3 g2,i1(i2, t2) (1− β) .

• In order to get the detection time t1(i2, i1) − t3, the illegal activity has to be started
at time point t3 in facility i1 and has to be detected at time point t1 (with probability
1−β). Because 1i2(i1) indicates if the �rst interim inspection is performed in facility i1,
the probability of this event is given by

g3,i1 β
1i2

(i1) (1− β) .

• In order to get the detection time t2(i2, i1) − t3, the illegal activity has to be started
at time point t3 in facility i2 and has to be detected at time point t2 (with probability
1− β). The probability of this event is given by

g3,i2 (1− β) .

If we write for the sake of clarity in the following equation only t2 and t1 instead of t2(i2, i1) and
t1(i2, i1) and only g2,i(i2) and g2(i2) instead of g2,i(i2, t2) and g2(i2, t2), then the (expected)
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payo� to the Operator, i.e., the expected detection time, is, for any g ∈ GN,2 and any (q, t) ∈
QN,2 × TN,2, given by

OpN,2(g, (q, t)) :=
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
(t0 − t1) g3 g2(i2)

+ (t0 − t2) g3
N∑
r=1

g2,r(i2)β
1i1

(r) + (t0 − t3)
N∑
r=1

g3,r β
∑2

j=1 1ij
(r)

+ (t1 − t2) g3 g2,i1(i2) (1− β) + (t1 − t3) g3,i1 β1i2 (i1) (1− β)

+ (t2 − t3) g3,i2 (1− β)
]
. (11.24)

The game theoretical solution of this inspection game, see Krieger (2010) for the case β = 0
and Avenhaus and Krieger (2013b) for the case β ≥ 0, is presented in Lemma 11.1. Even
though this Lemma is a special case of Theorem 11.2, we present its proof in detail as it is
helpful for understanding the proof of Theorem 11.2.

Lemma 11.1. Given the Se-No inspection game on the reference time interval [t3, t0] with
k = 2 interim inspections in N ≥ 2 facilities, and with facility-independent errors of the second
kind, i.e., β1 = β2 = . . . = βN =: β ≥ 0. The Operator's set of behavioural strategies is
given by (11.22), the Inspectorate's strategy set by (11.20), and the payo� to the Operator by
(11.24).

Then an optimal strategy of the Operator is given by

g∗3,i =
1

N + 2 (1− β)
for i = 1, . . . , N , g∗3 =

2 (1− β)

N + 2 (1− β)
, (11.25)

and, for all i = 1, . . . , N , for all i2 = 1, . . . , N , and for all t3 < t2 < t0, by

g∗2,i(i2, t2) =
1

2
1i2(i) and g∗2(i2, t2) =

1

2
. (11.26)

An optimal strategy of the Inspectorate is for any (i2, i1) ∈ {1, . . . , N}2 given by the facility
selection probabilities

q∗(i2,i1) = N−2 (11.27)

and by the interim inspection time points

t∗2(i2, i1)− t3 =
1− β

N + 2 (1− β)
(t0 − t3) and

t∗1(i2, i1)− t∗2(i2, i1) =
1− β

N + 1− β
(t0 − t∗2(i2, i1)) .

(11.28)

The optimal payo� to the Operator is

Op∗N,2 := OpN,2(g
∗, (q∗, t∗)) = t0 − t∗1(i2, i1) =

N

N + 2 (1− β)
(t0 − t3) . (11.29)
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Proof. We have to show that, in analogy to (19.10), the saddle point criterion

OpN,2(g, (q
∗, t∗)) ≤ Op∗N,2 ≤ OpN,2(g∗, (q, t)) (11.30)

is ful�lled for any g ∈ GN,2 and any (q, t) ∈ QN,2 × TN,2. Because
∑N

r=1 1i2(r)β1i1 (r) =
β1i1 (i2), (11.24) implies, using (11.25) and (11.26),

(N + 2 (1− β))OpN,2(g
∗, (q, t))

=
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
(t0 − t1) (1− β)

+ (t0 − t2) (1− β)

N∑
r=1

1i2(r)β1i1 (r) + (t0 − t3)
N∑
r=1

β
∑2

j=1 1ij
(r)

+ (t1 − t2) 1i2(i1) (1− β)2 + (t1 − t3)β1i2 (i1) (1− β) + (t2 − t3) (1− β)
]
. (11.31)

Let (i2, i1) ∈ {1, . . . , N}2 be �xed. Then (11.31) yields for the coe�cient A1 of t1

A1 = − (1− β) + 1i2(i1) (1− β)2 + β1i2 (i1) (1− β) (11.32)

=

{
−(1− β) + (1− β) = 0 for i1 6= i2

−(1− β) + (1− β)2 + β (1− β) = 0 for i1 = i2
. (11.33)

For the coe�cient A2 of t2 we obtain by making use of (11.31) and (11.32)

A2 = −(1− β)

N∑
r=1

1i2(r)β1i1 (r) − 1i2(i1) (1− β)2 + (1− β)

= −(1− β)β1i1 (i2) − 1i2(i1) (1− β)2 + (1− β) = −A1 .

The coe�cient A0 of t0 is, using (11.33), given by

A0 = (1− β) + (1− β)β1i1 (i2) +

N∑
r=1

β
∑2

j=1 1ij
(r) , (11.34)

which evaluates to

A0 =

{
(1− β) + (1− β) + (N − 2) + 2β = N for i1 6= i2

(1− β) + (1− β)β + (N − 1) + β2 = N for i1 = i2
.

Finally, (11.31) and (11.34) yield for the coe�cient A3 of t3

A3 = −
N∑
r=1

β
∑2

j=1 1ij
(r) − β1i2 (i1) (1− β)− (1− β) = −A0 .

Therefore, we have A3 = −A0 = −N , and (11.31) implies

(N + 2 (1− β))OpN,2(g
∗, (q, t)) =

∑
(i2,i1)∈{1,...,N}2

q(i2,i1)

[
A0 t0 −A3 t3

]
= N (t0 − t3)
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for any (q, t) ∈ QN,2 × TN,2, i.e., the right hand side of (11.30) is ful�lled as equality.

To prove the left hand inequality of (11.30), we �rst note that (11.28) � again suppressing
(i2, i1) in t

∗
n, n = 1, 2 � implies

t∗2 − t3 = t∗1 − t∗2 =
1− β

N + 2 (1− β)
(t0 − t3) .

Thus, we get

t∗1 − t3 = t∗1 − t∗2 + t∗2 − t3 = 2 (t∗1 − t∗2) = 2 (t0 − t3)
1− β

N + 2 (1− β)
, (11.35)

t0 − t∗2 = t0 − t3 − (t∗2 − t3) = (t0 − t3)
N + 1− β

N + 2 (1− β)
,

and furthermore, by (11.35),

t0 − t∗1 = t0 − t3 − (t∗1 − t3) = (t0 − t3)
(

1− 2 (1− β)

N + 2 (1− β)

)
= (t0 − t3)

N

N + 2 (1− β)
.

Using these relations and (11.27), (11.24) leads to

N2 (N + 2 (1− β))

(t0 − t3)
OpN,2(g, (q

∗, t∗)) =
∑

(i2,i1)∈{1,...,N}2

[
N g3 g2(i2)

+ (N + 1− β) g3

N∑
r=1

g2,r(i2)β
1i1

(r) + (N + 2 (1− β))

N∑
r=1

g3,r β
∑2

j=1 1ij
(r)

+ g3 g2,i1(i2) (1− β)2 + 2 g3,i1 β
1i2

(i1) (1− β)2 + g3,i2 (1− β)2
]
, (11.36)

where instead of g2,i(i2, t2) and g2(i2, t2) only write g2,i(i2) and g2(i2). We �rst consider the
sum over all terms containing g2,·(i2) and g2(i2) and get because they only depend on i2 and

because
∑N

i1=1 β
1i1

(r) = N − 1 + β

g3
∑

(i2,i1)∈{1,...,N}2

[
N g2(i2) + (N + 1− β)

N∑
r=1

g2,r(i2)β
1i1

(r) + g2,i1(i2) (1− β)2
]

= g3

N∑
i2=1

[
N2 g2(i2) + (N + 1− β)

N∑
r=1

g2,r(i2)

N∑
i1=1

β1i1 (r) + (1− g2(i2)) (1− β)2
]

= g3

N∑
i2=1

[
N2 g2(i2) + (N + 1− β) (N − 1 + β) (1− g2(i2)) + (1− g2(i2)) (1− β)2

]
= g3N

3 . (11.37)

Thus, the right hand side of (11.36) simpli�es by (11.37) to
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g3N
3 +

∑
(i2,i1)∈{1,...,N}2

[
(N + 2 (1− β))

N∑
r=1

g3,r β
∑2

j=1 1ij
(r)

+ 2 g3,i1 β
1i2

(i1) (1− β)2 + g3,i2 (1− β)2
]
. (11.38)

Because we have for �xed r ∈ {1, . . . , N}

2∑
j=1

1ij (r) =


0 for i2 6= r and i1 6= r

1 for i2 = r 6= i1 or i1 = r 6= i2

2 for i2 = i1 = r

, (11.39)

there are (N −1)2 pairs (i2, i1) leading to β0, 2 (N −1) pairs leading to β1, and only one pair,
namely (r, r), leading to β2. Thus, we get

∑
(i2,i1)∈{1,...,N}2

N∑
r=1

g3,r β
∑2

j=1 1ij
(r) =

N∑
r=1

g3,r
[
(N − 1)2 + 2 (N − 1)β + β2

]
= (1− g3) (N − 1 + β)2 .

The two remaining terms in (11.38) simplify to

∑
(i2,i1)∈{1,...,N}2

g3,i1 β
1i2

(i1) =

N∑
i2=1

g3,i2 β +

N∑
i2=1

N∑
i1=1
i1 6=i2

g3,i1

= (1− g3)β +

N∑
i2=1

(1− g3 − g3,i2) = (1− g3)β +N (1− g3)− (1− g3)

= (1− g3) (N − 1 + β)

and

∑
(i2,i1)∈{1,...,N}2

g3,i2 =

N∑
i1=1

(1− g3) = N (1− g3) .

Thus, we �nally get by (11.36) and (11.38)

N2 (N + 2 (1− β))

(t0 − t3)
OpN,2(g, (q

∗, t∗)) = N3

for any g ∈ GN,2, i.e., the left hand side of (11.30) is also ful�lled as equality.

Note that interesting properties of the optimal strategies, such as the Operator starts the illegal
activity at time point t2 only in the facility inspected at that time point, see (11.26), and of
the optimal payo� are discussed after the proof of Theorem 11.2.

Let us comment the results of Lemma 11.1: First, the optimal expected detection time (11.29)
is for N = 2 facilities the same as that for the case of one facility and k = 1 interim inspection,
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i.e., N = k = 1; see (10.8). This property suggests that the Inspectorate may consider in case
N = k = 2 the two facilities independently and place the two interim inspections in the two
facilities at the same time point t∗ given by (10.7), of course with reference to [t3, t0]. This
result is intuitive, but it represents a modelling problem: If the two interim inspections take
place at the same time, then it makes no sense that they are performed in the same facility. This
possibility, however, is not yet excluded from the strategy set of the Inspectorate. In Lemma
11.3 it will be shown that this time point t∗ given by (10.7) is also an optimal strategy, if we do
not maintain assumption (ii) of Chapter 8 that the two interim inspections cannot take place
at the same time.

Second, there is another reason for mentioning this additional optimal strategy in the appro-
priately modi�ed game: Since we consider the N facilities to be of the same type, one might
guess that the optimal facility selection probability given by (11.27) is obvious, in other words,
that this equal distribution strategy might be taken a priori, thus reducing the Inspectorate's
strategy set, which, however, would not really reduce the complexity of the problem. We have
demonstrated in this monograph that one is well advised to consider a rather general set of
strategies of the Inspectorate, since one might miss other optimal strategies which may be
interesting from a practitioners' point of view; see the discrete time Se-No inspection game in

Section 4.2, where, using (4.35) and Lemma 4.4, the equal distribution
(
N
k

)−1
on the set JN,k,

see (4.28), is only one element of the uncountable set of optimal strategies of the Inspectorate.

Third, let us consider an analyst who wants to generalize the result obtained for the case of
k = 2 interim inspections in N = 1 facility as given in Lemma 10.2 to any number N of
facilities.1 How could he proceed? He could argue that because all facilities are of the same
type, the probability to perform inspections in the facilities (i2, i1) should be N−2 as in this
case none of the facilities is preferred. This argument yields (11.27). He could also assume
that the time di�erences between interim inspections t∗k − tk+1, t

∗
k−1 − t∗k, . . . , t∗1 − t∗2 are all

equal. However, he would have to take into account that the detection probability at the next
interim inspection is now (1 − β)/N , because the events "detection of the illegal activity"
and "selection of the facility in which the illegal activity has been started at t3 resp. t2" are
independent. Thus, instead of (10.18), he would consider the time points � replace 1 − β in
(10.18) by (1− β)/N �

t∗2 − t3 =
(1− β)/N

1 + 2 (1− β)/N
(t0 − t3) and t∗1 − t∗2 =

(1− β)/N

1 + (1− β)/N
(t0 − t∗2)

as optimal interim inspection time points, that coincides with (11.28). The same argument
leads, using the left hand equation of (10.17), to g∗3 in (11.25). Furthermore, he distributes
the probability 1− g∗3 of starting the illegal activity at time point t3 equally to all N facilities,
i.e., the practitioner assumes, using again the left hand equation of (10.17), that

g∗3,i =
1

N
(1− g∗3) =

1

N

1

1 + 2 (1− β)/N
=

1

N + 2 (1− β)
,

i.e., the left hand equation of (11.25). Furthermore, it is easy to see that (10.19) with (1−β)/N
instead of 1 − β yields (11.29). Finally, the practitioner needs to de�ne the probabilities
g∗2,i(i2, t2) and g∗2(i2, t2). If he proceeds in the same way as before, then the right hand
equality of (10.17) yields, we use g̃∗2,i and g̃

∗
2 to avoid confusion, for all i = 1, . . . , N , for all

1The following heuristic considerations have been provided by an unknown Referee to whom we thank here.
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i2 = 1, . . . , N , and for all t3 < t2 < t0,

g̃∗2,i(i2, t2) =
1

2

1

N
and g̃∗2(i2, t2) =

1

2
, (11.40)

which is obviously di�erent from (11.26). In sum, the practitioner considers (11.25), (11.40),
(11.27) and (11.28) as his heuristically derived optimal strategies.

Does his somehow convincing heuristic derivation lead to a saddle point of the game? As
in proof the of Lemma 11.1, the left hand inequality in (11.30) is ful�lled as equality, i.e.,
OpN,2(g, (q

∗, t∗)) = Op∗N,2 for any g ∈ GN,2, because the heuristically derived q∗ and t∗

coincide with (11.27) and (11.28). With g̃∗ := (g∗3, g̃
∗
2), where g∗3 resp. g̃∗2 are given by

(11.25) resp. (11.40), we obtain

(N + 2 (1− β))OpN,2(g̃
∗, (q, t)) =

N (t0 − t3)− (1− β)2 (t0 − t1)

(
1

N
−

N∑
i2=1

q(i2,i2)

)
, (11.41)

the derivation of which is provided in Section 23.1. Now, using (11.41), the right hand inequality
of (11.30) is, because of t1 < t0 for any t = (t2, t1) ∈ TN,2, equivalent to

1

N
≤

N∑
i2=1

q(i2,i2) ,

which is obviously not ful�lled for any q ∈ QN,2. Thus, (q∗, t∗) is not a best reply against g̃∗,
and therefore, the heuristic construction given above does not lead to a saddle point.

Wrapping up, caution has to be given when generalizing results from special cases to gen-
eral ones or from simpler games to more complex ones even if the heuristic arguments seem
convincing.

11.3 Any number of interim inspections; facility-independent
errors of the second kind

Because the inspection game treated in this section is a generalization of that analysed in
Section 11.2, it is also based on speci�cation (v') on p. 214.

Looking once more at the payo� (11.24), one realizes that it would become very cumbersome
to try to formulate it for the general case of k interim inspections in N facilities. Therefore, the
proof of the conjecture formulated in Avenhaus and Krieger (2013b), see Table 11.1, seemed
at that time out of reach. We will show now that with the help of a new formulation of the
payo� indeed the conjecture can be proven.

Again, the comments made after (11.1), (11.2) and (11.7) apply � accordingly modi�ed � also
here; see p. 214.

According to assumption (vii'), the Inspectorate chooses at the beginning tk+1 of the reference
time interval [tk+1, t0] �rst the facilities (ik, . . . , i1) ∈ {1, . . . , N}k to be inspected during the
k interim inspections, where in denotes the facility inspected at the (k − n + 1)-th interim
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Table 11.1 Normalized optimal expected detection times Op∗N,k/(t0− tk+1) as function of N ,
k and β; see Avenhaus and Krieger (2013b). Entries in the shaded area were conjectured.

k

N
1 2 3 4 5 · · ·

1
1

2− β
2

3− β
3

4− β
4

5− β
5

6− β
· · ·

2
1

3− 2β

2

4− 2β

3

5− 2β

4

6− 2β

5

7− 2β
· · ·

3
1

4− 3β

2

5− 3β

3

6− 3β

4

7− 3β

5

8− 3β
· · ·

4
1

5− 4β

2

6− 4β

3

7− 4β

4

8− 4β

5

9− 4β
· · ·

5
1

6− 5β

2

7− 5β

3

8− 5β

4

9− 5β

5

10− 5β
· · ·

...
...

...
...

...
...

. . .

inspection, n = 1, . . . , k. Obviously, there are Nk possibilities to place the interim inspections
in the facilities, i.e., in the space.

Let q(ik,...,i1), (ik, . . . , i1) ∈ {1, . . . , N}k, be the Inspectorate's probabilities of choosing the
facilities (ik, . . . , i1) for the interim inspections. These probabilities are collected in the set
QN,k as follows

QN,k :=
{
q := (q(1,...,1), . . . , q(N,...,N)) ∈ [0, 1]N

k
:

∑
(ik,...,i1)∈{1,...,N}k

q(ik,...,i1) = 1
}
.

(11.42)

Depending on the choice (ik, . . . , i1) of the facilities to be inspected, the Inspectorate chooses
now � still at the beginning of the reference time interval � the facility-dependent time points
tn(ik, . . . , i1), n = 1, . . . , k, for the interim inspections. Because of assumption (ii) of Chap-
ter 8, the Inspectorate performs only one interim inspection at some time point, i.e., the
tn(ik, . . . , i1) are subject to the condition tk+1 < tk(ik, . . . , i1) < . . . < t1(ik, . . . , i1) < t0
for any (ik, . . . , i1) ∈ {1, . . . , N}k. These time points are combined in t = (tk, . . . , t1) :
{1, . . . , N}k → Rk which assigns to each outcome (ik, . . . , i1) of the random experiment the
interim inspection time points tk, . . . , t1 ful�lling the above condition. Let the set of all func-
tions mapping {1, . . . , N}k onto Rk ful�lling the above condition be de�ned by

TN,k :=
{
t = (tk, . . . , t1) : {1, . . . , N}k → Rk with

tk+1 < tk(ik, . . . , i1) < . . . < t1(ik, . . . , i1) < t0

for any (ik, . . . , i1) ∈ {1, . . . , N}k
}
. (11.43)
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Therefore, using (11.42) and (11.43), the Inspectorate's strategy set is given by

QN,k × TN,k . (11.44)

The Operator's behaviour is, using assumption (vii'), formalized as follows: Let gk+1,i resp.
gk+1 be the probabilities that the Operator starts at tk+1 the illegal activity in facility i,

i = 1, . . . , N , resp. postpones its start. These probabilities are collected in the set G
(k+1)
N ; see

(11.4). Suppose the start of the illegal activity is postponed until time point tn, n = 2, . . . , k,
i.e., the (k− n+ 1)-th interim inspection. At that time point the Operator has full knowledge
of the facilities (ik, . . . , in) which has been inspected so far and the respective time points
(tk, . . . , tn). Based on this information he starts the illegal activity in facility i with probability
gn,i(in, tn), i = 1, . . . , N , and postpones its start again with probability gn(in, tn). Note that
we assume that the probabilities gn,i and gn only depend on in and tn and not on the whole
history (ik, . . . , in) and (tk, . . . , tn); see the discussion on p. 193 for the case of N = 1
facility. Again, in case the Operator does not start the illegal activity before, he will do so
with certainty at t1(ik, . . . , i1) in either facility. In sum, using (11.21), the Operator's set of
behavioural strategies is given by

GN,k := G
(k+1)
N ×kn=2 Gn(tk+1) , (11.45)

which is a generalization of (11.22). An element of GN,k is denoted as g := (gk+1,gk, . . . ,g2).

After having introduced the strategy set for both players we now determine the payo� to the
Operator, i.e., according to (ix) the expected detection time OpN,k(g, (q, t)) in the following
Lemma. For that purpose we de�ne the indeterminate form 00 to be 1; see Knuth (1992).

Lemma 11.2. Given the Se-No inspection game on the reference time interval [tk+1, t0] with k
interim inspections in N ≥ 2 facilities, and with facility-independent errors of the second kind,
i.e., β1 = β2 = . . . = βN =: β ≥ 0. The Operator's set of behavioural strategies is given by
(11.45) and the Inspectorate's strategy set by (11.44).

Then the (expected) payo� to the Operator, i.e., the expected detection time, is, for any
g ∈ GN,k and any (q, t) ∈ QN,k × TN,k, using (11.23), given by

OpN,k(g, (q, t)) :=
∑

(ik,...,i1)∈{1,...,N}k
q(ik,...,i1)

[
(t0 − t1)w2+

+

k∑
`=1

(t` − t`+1)w`+2 g`+1,i` (1− β)

+

k+1∑
m=2

(t0 − tm)wm+1

N∑
r=1

gm,r β
∑m−1

j=1 1ij
(r)

+

k−1∑
`=1

k+1∑
m=`+2

(t` − tm)wm+1 gm,i` β
∑m−1

j=`+1 1ij
(i`) (1− β)

]
,

(11.46)

where tn = tn(ik, . . . , i1), n = 1, . . . , k, and where w` = w`(ik, . . . , i`, tk, . . . , t`), ` =
2, . . . , k + 1, is the probability that the start of the illegal activity is postponed at time points
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tk+1, . . . , t`:

w` :=


gk+1

∏k
n=` gn(in, tn) for ` = 2, . . . , k

gk+1 for ` = k + 1

1 for ` = k + 2

. (11.47)

Proof. We choose a �xed combination of facilities (ik, . . . , i1) ∈ {1, . . . , N}k to be inspected
and determine for all possible di�erences of detection times t` − tm, 0 ≤ ` < m ≤ k + 1
the corresponding probabilities, i.e., we determine the distribution of the random variables time
between start and detection of the illegal activity. Indeed, this new approach turned out to be
the path to proving the conjecture formulated in Avenhaus and Krieger (2013b).

Four types of di�erences t`−tm of interim inspection time points t` and tm have to be considered
which correspond to the four lines in (11.46) and which are represented in Table 11.2. Because
(ik, . . . , i1) is �xed throughout the proof, we omit these arguments in the tns and in the w`s.

Table 11.2 The four types of di�erences t` − tm of interim inspection time points t` and tm
in case of k interim inspections.

`

m
1 2 3 4 · · · k − 2 k − 1 k k + 1

0 〈1〉 〈3〉 〈3〉 〈3〉 · · · 〈3〉 〈3〉 〈3〉 〈3〉

1 〈2〉 〈4〉 〈4〉 · · · 〈4〉 〈4〉 〈4〉 〈4〉

2 〈2〉 〈4〉 · · · 〈4〉 〈4〉 〈4〉 〈4〉

3 〈2〉 · · · 〈4〉 〈4〉 〈4〉 〈4〉
...

. . .
...

...
...

...

k − 3 〈2〉 〈4〉 〈4〉 〈4〉

k − 2 〈2〉 〈4〉 〈4〉

k − 1 〈2〉 〈4〉

k 〈2〉

First line in (11.46): In order to get the detection time t0 − t1, i.e., entry 〈1〉 in Table 11.2,
the illegal activity has to be started at time point t1. The probability of this event is, using
(11.47), given by

gk+1 gk(ik, tk) . . . g2(i2, t2) = w2 .

Second line in (11.46): In order to get the detection time t` − t`+1, ` = 1, . . . , k − 1, i.e.,
entries 〈2〉 in Table 11.2, the illegal activity has to be started at time point t`+1 in facility i`
and has to be detected at time point t` (with probability 1− β). The probability of this event
is, using (11.47), given by

gk+1 gk(ik, tk) . . . g`+2(i`+2, t`+2) g`+1,i`(i`+1, t`+1) (1− β)
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= w`+2 g`+1,i`(i`+1, t`+1) (1− β) .

In case of ` = k, the illegal activity has to be started at time point tk+1 in facility ik and has
to be detected at time point tk (with probability 1 − β). Using (11.47) again, the probability
of this event is given by

gk+1,ik (1− β) = wk+2 gk+1,ik (1− β) .

Third line in (11.46): In order to get the detection time t0− tm, m = 2, . . . , k, i.e., entries 〈3〉
in Table 11.2, the illegal activity has to be started at time point tm in one of the N facilities,
say the r-th one, and is not detected at any of the remaining interim inspections at time points
tm−1, . . . , t1. Because

∑m−1
j=1 1ij (r) is the number of interim inspections after time point

tm taking place in facility r and because of the stochastic independence of the non-detection
events, the probability, that the illegal activity is only detected at the �nal PIV, is given by

gm,r(im, tm)β
∑m−1

j=1 1ij
(r) .

Thus, we �nally get by (11.47)

wm+1

N∑
r=1

gm,r(im, tm)β
∑m−1

j=1 1ij
(r) . (11.48)

For m = k + 1 the probability wm+1 vanishes and we also get (11.48), because wk+2 = 1 by
de�nition.

Fourth line in (11.46): In order to get the detection time t` − tm, ` = 1, . . . , k − 1,m =
` + 2, . . . , k, i.e., entries 〈4〉 in Table 11.2, the illegal activity has to be started at time point
tm in facility i` and has to be detected at time point t` (with probability 1 − β). Because

β
∑m−1

j=`+1 1ij
(i`) gives the probability of not detecting the illegal activity during the interim

inspections at time points t`+1, . . . , tm−1 which are carried out in facility i`, the probability to
start the illegal activity at time point tm in facility i` and to detect is at time point t` is, using
(11.47), given by

wm+1 gm,i`(im, tm)β
∑m−1

j=`+1 1ij
(i`) (1− β) . (11.49)

Because wk+2 = 1, the case m = k + 1 leads also to (11.49), which completes the proof.

The game theoretical solution of this inspection game, which was conjectured in Avenhaus and
Krieger (2013b), is presented in Theorem 11.2. It includes two Lemmata which are the subject
of Section 23.2 and it is, admittedly, not easily to be understood. In view of the simple structure
of the solution we do not exclude that one day a simpler and perhaps more intuitive proof can
be found.

Theorem 11.2. Given the Se-No inspection game on the reference time interval [tk+1, t0] with
k interim inspections in N ≥ 2 facilities, and with facility-independent errors of the second
kind, i.e., β1 = β2 = . . . = βN =: β ≥ 0. The Operator's set of behavioural strategies is
given by (11.45), the Inspectorate's strategy set by (11.44), and the payo� to the Operator by
(11.46).

Then an optimal strategy of the Operator is given by

g∗k+1,i =
1

N + k (1− β)
for i = 1, . . . , N and g∗k+1 =

k (1− β)

N + k (1− β)
, (11.50)
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and, for all n = 2, . . . , k, for all i = 1, . . . , N , for all in = 1, . . . , N , and for all tk+1 < tn < t0,
by

g∗n,i(in, tn) =
1

n
1in(i) and g∗n(in, tn) = 1− 1

n
. (11.51)

An optimal strategy of the Inspectorate is for any (ik, . . . , i1) ∈ {1, . . . , N}k given by the
facility selection probabilities

q∗(ik,...,i1) = N−k (11.52)

and, for all n = 1, . . . , k, by the interim inspection time points

t∗n(ik, . . . , i1)− t∗n+1(ik, . . . , i1) =
1− β

N + n (1− β)
(t0 − t∗n+1(ik, . . . , i1)) , (11.53)

where t∗k+1(ik, . . . , i1) := tk+1.

The optimal payo� to the Operator is

Op∗N,k := OpN,k(g
∗, (q∗, t∗)) = t0 − t∗1(ik, . . . , i1) =

N

N + k (1− β)
(t0 − tk+1) . (11.54)

Proof. In order to show that g∗ and (q∗, t∗) are optimal strategies we have to verify, in analogy
to (19.10), that the saddle point criterion

OpN,k(g, (q
∗, t∗)) ≤ Op∗N,k ≤ OpN,k(g∗, (q, t)) (11.55)

is ful�lled for any g ∈ GN,k and any (q, t) ∈ QN,k × TN,k.

We �rst show that OpN,k(g
∗, (q, t)) = Op∗N,k for any (q, t) ∈ QN,k × TN,k. For the sake of

brevity we suppress the arguments in the following equations. Let (ik, . . . , i1) ∈ {1, . . . , N}k
be a �xed but arbitrary combination of facilities to be inspected. By (11.50) and (11.51) we
obtain for all ` = 2, . . . , k

w∗` = g∗k+1

k∏
j=`

g∗j =
k (1− β)

N + k (1− β)

k − 1

k
. . .

`− 1

`
=

(1− β) (`− 1)

N + k (1− β)
. (11.56)

Note that (11.56) is also valid in case of ` = k + 1, where
∏k
j=k+1 g

∗
j =: 1. Furthermore,

(11.56), (11.50) and (11.51) lead to

w∗`+2 g
∗
`+1,i`

=


1− β

N + k (1− β)
1i`+1

(i`) : ` = 1, . . . , k − 1

1

N + k (1− β)
: ` = k

and

w∗m+1

N∑
r=1

g∗m,r β
∑m−1

j=1 1ij
(r) =


1− β

N + k (1− β)
β
∑m−1

j=1 1ij
(im) : m = 2, . . . , k

1

N + k (1− β)

∑N
r=1 β

∑k
j=1 1ij

(r) : m = k + 1
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as well as

w∗m+1 g
∗
m,i`

β
∑m−1

j=`+1 1ij
(i`) =


1− β

N + k (1− β)
1im(i`)β

∑m−1
j=`+1 1ij

(i`) : m = 3, . . . , k

1

N + k (1− β)
β
∑k

j=`+1 1ij
(i`) : m = k + 1

.

De�ne for any k ∈ N with k ≥ 2, any N ∈ N, any (ik, . . . , i1) ∈ {1, . . . , N}k and arbitrary
tk+1, . . . , t0 ∈ R the function

R(ik, . . . , i1) := (t0 − t1) +

k−1∑
`=1

(t` − t`+1)1i`+1
(i`) (1− β) + (tk − tk+1)

+

k∑
m=2

(t0 − tm)β
∑m−1

j=1 1ij
(im) + (t0 − tk+1)

1

1− β

N∑
r=1

β
∑k

j=1 1ij
(r)

+

k−2∑
`=1

k∑
m=`+2

(t` − tm)1im(i`)β
∑m−1

j=`+1 1ij
(i`) (1− β)

+

k−1∑
`=1

(t` − tk+1)β
∑k

j=`+1 1ij
(i`) ,

(11.57)

where for k = 2 the sum in the third row is put to zero. Using (11.46) and (11.57) as well as
the result (23.2) of Lemma 23.1, we get for any (q, t) ∈ QN,k × TN,k

N + k (1− β)

1− β
OpN,k(g

∗, (q, t)) =
∑

(ik,...,i1)∈{1,...,N}k
q(ik,...,i1)R(ik, . . . , i1) (11.58)

=
N

1− β
(t0 − tk+1) ,

which implies OpN,k(g
∗, (q, t)) = Op∗N,k, i.e., the right hand inequality of (11.55) is ful�lled

as equality.

We now prove that OpN,k(g, (q
∗, t∗)) = Op∗N,k for any g ∈ GN,k. For a �xed but arbitrary

combination of facilities (ik, . . . , i1) ∈ {1, . . . , N}k to be inspected we write for the sake of
brevity only t∗n instead of t∗n(ik, . . . , i1). We �rst prove that (11.53) implies

t∗n = (k − n+ 1)
1− β

N + k (1− β)
(t0 − tk+1) + tk+1 for n = 1, . . . , k , (11.59)

which is shown by induction with respect to n. Because t∗k+1(ik, . . . , i1) := tk+1, (11.53) leads
for n = k directly to (11.59) for n = k. Suppose (11.59) is true for an n = 1, . . . , k − 1, i.e.,
n+ 1 = 2, . . . , k. Then (11.53) and (11.59) for n→ n+ 1 implies

t∗n =
1− β

N + n (1− β)
(t0 − t∗n+1) + t∗n+1

=
(1− β) (t0 − tk+1)

N + n (1− β)

(
1− (1− β) (k − n)

N + k (1− β)

)
+

(1− β) (k − n)

N + k (1− β)
(t0 − tk+1) + tk+1 ,
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which simpli�es to (11.59). Also (11.59) yields

t∗` − t∗m =
(m− `) (1− β)

N + k (1− β)
(t0 − tk+1) for 1 ≤ ` < m ≤ k + 1 (11.60)

and

t0 − t∗m =
N + (m− 1) (1− β)

N + k (1− β)
(t0 − tk+1) for m = 1, . . . , k . (11.61)

De�ne for any k ∈ N with k ≥ 2, any N ∈ N and any g ∈ GN,k the function

L(g) :=
∑

(ik,...,i1)∈{1,...,N}k

[
N w2 +

k∑
`=1

w`+2 g`+1,i` (1− β)2 (11.62)

+

k+1∑
m=2

(N + (m− 1) (1− β))wm+1

N∑
r=1

gm,r β
∑m−1

j=1 1ij
(r)

+

k−1∑
`=1

k+1∑
m=`+2

(m− `)wm+1 gm,i` β
∑m−1

j=`+1 1ij
(i`) (1− β)2

]
.

Then (11.46), (11.52), (11.60), (11.61) and (11.62) lead to

Nk (N + k (1− β))

t0 − tk+1
OpN,k(g, (q

∗, t∗)) = L(g) . (11.63)

Making use of (23.18) in Lemma 23.2 we �nally obtain OpN,k(g, (q
∗, t∗)) = Op∗N,k for any

g ∈ GN,k, i.e., the left hand inequality of (11.55) is also ful�lled as equality.

Using (11.54) and (11.61) for m = 1 leads to Op∗N,k = t0− t∗1, which completes the proof.

Let us discuss the results of the Theorem 11.2, which also hold for Lemma 11.1: First, we think
that the striking contrast between the complexity of the general inspection problem as expressed
by the payo� (11.46) and the simplicity of its solution is particularly worth mentioning. Note
that the case of k = 1 interim inspection in N facilities and βi = β, i = 1, . . . , N , that is
treated in Theorem 11.1 leads to the same optimal strategies and optimal expected detection
time as in Theorem 11.2, whereas (11.51) is omitted.

Second, the game theoretical analysis leads to an explicit dependence of the optimal interim
inspection time points and the optimal facility selection probability on β, which could � at least
in the case β > 0 and N ≥ 1 � only be determined with the help of a quantitative analysis.
The same holds for the Operator's optimal strategy: Who would have ever thought that the
Operator starts the illegal activity at a time point t∗n only in the facility inspected at that time
point; see (11.51)? As in Theorem 11.1, the optimal interim inspection time points (11.53)
do not depend on (ik, . . . , i1) which is less surprising here because of the facility-independent
non-detection probability.

Third, it is interesting that the optimal interim inspection time point t∗n depends on the length
t0 − tk+1 of the reference time interval and β, while the optimal strategy of the Operator is
only a function of β. It is intuitive, however, that g∗k+1 → 0 and t∗n → tk+1 with increasing β,
see (11.50) and (11.59): For β close to 1 the Operator starts the illegal activity with probability
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close to 1 at time point tk+1 in one of the facilities. Consequently, the Inspectorate will perform
its interim inspections also very early. Note that (11.59) implies

t∗n − t∗n+1 =
1− β

N + k (1− β)
(t0 − tk+1) for n = 1, . . . , k , (11.64)

i.e., the time di�erences t∗n − t∗n+1, n = 1, . . . , k, between two subsequent interim inspections
are all equal. Note that the relation between (11.53) and (11.64) generalizes the results (22.2)
and (22.3) of Lemma 22.1 to N ≥ 2 facilities. From an application point of view it is interesting
that the optimal interim inspection time points given by (11.53) are deterministic. In other
words, the Inspectorate may announce the time points of its interim inspections � however, not
the facilities to be inspected � if it wishes so; see the discussions on pp. 189 and 192.

Fourth, (11.54) implies again that the optimal expected detection time is the time between the
last interim inspection and the end of the reference time interval; see also p. 232. The Operator
could have started the illegal activity with certainty right after the last interim inspection at
time point t1, which, again, would not be an optimal strategy; see the discussion on p. 188.

Fifth, the expected number of interim inspections in one facility is by (11.52) given by

k∑
i=1

i

(
k

i

)(
1

N

)i (
1− 1

N

)k−i
=

k

N

as it was expected; see pp. 18 and 146.

Sixth, with (11.54) one sees that Op∗N,k only depends on the ratio k/N ; for k/N � 1 it tends
towards t0 − tk+1 whereas for k/N � 1 it tends towards zero, which is intuitive. Especially
for k = N one always get the same optimal expected detection time Op∗N,k as for the case
N = k = 1. The latter property suggests that the Inspectorate may consider the N facilities
independently and place the k = N interim inspections in the facilities at the same time point.
Indeed, we show that this strategy is also an optimal strategy. There is, however, a modelling
problem which we mentioned already after Lemma 11.1. So far, two or more interim inspections
cannot be performed at the same time point; see assumption (ii) of Chapter 8. If we admit it
now, then we postulate also that they cannot be performed in the same facility. In the following
we consider only the case that either all N interim inspections take place at di�erent times, or
else, all at the same time.

While the strategy set of the Operator remains the same, i.e., GN,N , as given by (11.45),
the Inspectorate's strategy set has to be modi�ed: Let q be the probability that all interim
inspections are performed at the same time point. Then we have

Q̃N,N :=
{

(q, q(1,...,1), . . . , q(N,...,N)) ∈ [0, 1]N
N+1 : q +

∑
(iN ,...,i1)∈{1,...,N}N

q(iN ,...,i1) = 1
}
.

For any (q,q) ∈ Q̃N,N , any t ∈ (tk+1, t0) and any t ∈ TN,N , we get by (11.46) for the
(expected) payo� to the Operator

ÕpN,N (g, (q,q, t, t)) = OpN,N (g, (q, t))

+ q

(
N∑
i=1

[
gN+1,i ((1− β) (t− tN+1) + β (t0 − tN+1))

]
+ gN+1 (t0 − t)

)
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= OpN,N (g, (q, t))

+ q
[
((1− β) (t− tN+1) + β (t0 − tN+1)) (1− gN+1) + gN+1 (t0 − t)

]
. (11.65)

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Lemma 11.3. Given the Se-No inspection game on the reference time interval [tN+1, t0] with
k = N interim inspections in N ≥ 2 facilities, and with facility-independent errors of the second
kind, i.e., β1 = β2 = . . . = βN =: β ≥ 0. The Operator's set of behavioural strategies is given
by (11.45) for k = N , the Inspectorate's strategy set by Q̃N,N × (tN+1, t0) × TN,N , and the
payo� to the Operator by (11.65).

Then optimal strategies of the Operator and of the Inspectorate are given by:

(i) g∗, q∗ and t∗ as given by (11.50)�(11.53) together with q∗ = 0 and arbitrary t∗ ∈
(tN+1, t0),

(ii) g∗ as given by (11.50) and (11.51) and (q∗,q∗) = (1, 0, . . . , 0) together with t∗ given by

t∗ − tN+1 =
1− β
2− β

(t0 − tN+1)

and arbitrary t∗ ∈ TN,N .

The optimal payo� to the Operator is Õp
∗
N,N = (t0 − tN+1)/(2− β).

Proof. We get by (11.58) and (23.2) for any (q, t) ∈ QN,N × TN,N

OpN,N (g∗, (q, t)) =
t0 − tN+1

2− β
∑

(ik,...,i1)∈{1,...,N}N
q(ik,...,i1) =

t0 − tN+1

2− β
(1− q) (11.66)

and by (11.50)

q
[
((1− β) (t− tN+1) + β (t0 − tN+1)) (1− g∗N+1) + g∗N+1 (t0 − t)

]
= q

t0 − tN+1

2− β
.

(11.67)

Thus, (11.65), (11.66) and (11.67) imply for any (q,q, t, t) ∈ Q̃N,N × (tN+1, t0) × TN,N to

ÕpN,N (g∗, (q,q, t, t)) = ÕpN,N (g∗, (q∗,q∗, t∗, t∗)), i.e., the right hand saddle point inequality
is ful�lled as equality for cases (i) and (ii). The left hand saddle point inequality is shown
separately:

Ad (i): Using (11.63) we obtain for any g ∈ GN,N that OpN,N (g, (q∗, t∗)) = (t0− tN+1)/(2−
β) and by (11.65) that ÕpN,N (g, (q∗,q∗, t∗, t∗)) = OpN,N (g, (q∗, t∗)) = (t0− tN+1)/(2−β)
for any g ∈ GN,N .

Ad (ii): Using (11.46) we get for any g ∈ GN,N that OpN,N (g, (q∗, t∗)) = 0 and consequently

ÕpN,N (g, (q∗,q∗, t∗, t∗)) = (t0 − tN+1)/(2− β) for any g ∈ GN,N .

Thus, in both cases the left hand saddle point inequality is ful�lled as equality, which completes
the proof.
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Let us conclude our analysis with two remarks concerning the optimal expected interim inspec-
tion time points; see also Tables 13.1 and 13.2:

First, in the No-No inspection games in Sections 9.1 � 9.3 and the Se-No inspection game in
Section 10.1 and Chapter 11, the optimal expected detection time is always the time remaining
after the optimal time point of the last interim inspection and the end of the reference time
interval. This property also holds for the discrete time Se-No and Se-Se inspection games in
Sections 4.2, see (4.48), and 5.1, however, with regard to the optimal expected time point of
the last interim inspection. For the discrete time No-No inspection game this property only
holds approximately; see Table 13.1.

Second, the optimal expected detection time is for β = 0 in all No-No, Se-No and Se-Se
inspection games considered in Parts I and II the time between the beginning of the reference
time interval and the optimal (expected) time point of the �rst interim inspection, in the
discrete time No-No inspection game in Section 3.1 the only one. Thus, as di�erent as all these
inspection models are, they share these remarkable properties.



Chapter 12

Se-Se inspection game:

Avenhaus-Canty model

In this chapter the last of the four variants of the playing for time inspection game with
continuous time, which have been introduced in Table 2.1, is considered. Let us repeat that in
Se-Se inspection games both the Operator and the Inspectorate behave sequentially.

In this chapter, assumptions (iv), (v) and (vii) of Chapter 8 are speci�ed as follows:

(iv') The Operator may start at most once an illegal activity during the reference time interval
[tk+1, t0] in the only facility under consideration.

(v') During an interim inspection the Inspectorate may commit an error of the �rst and second
kind with probabilities α and β. While during an interim inspection which is performed
before the start of the illegal activity only an error of the �rst kind (false alarm) may occur,
during an interim inspection which is performed after the start of the illegal activity only
an error of the second kind (non-detection) may occur. The "game" continues after
an error of the �rst kind. The error probabilities α and β are the same for all interim
inspections.

(vii') The Operator decides at the beginning of the reference time interval, i.e., at time point
tk+1, whether to start the illegal activity immediately at time point tk+1 or to postpone
its start; in the latter case he decides again after the �rst interim inspection, whether to
start the illegal activity immediately at that time point or to postpone its start again; and
so on. Because of assumption (iv'), the Operator does not need to behave illegally.

The Inspectorate decides at the beginning of the reference time interval when to perform
its �rst interim inspection. At the time point of its �rst interim inspection, it decides
when to perform the second interim inspection, and so on.

The remaining assumptions of Chapter 8 hold throughout this chapter.

Two comments on the assumptions (v') and (vii'): First, it is assumed that � like in Sections
9.4 and 10.3 � the value α of the false alarm probability is �xed a priori, and that the test
procedure used for interim inspections is unbiased, i.e., α + β < 1. As mentioned in Section
10.3, the additional assumption that a false alarm is not possible during an interim inspection
if prior to that interim inspection an illegal activity was started, is not a trivial assumption.

233
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Depending on the details of the inspection scheme alternative assumptions would have to be
formulated; see p. 282. Because errors of both kinds are taken into account, we describe the
inspection problem as a non-zero-sum game; see Section 7.4. Like in Sections 7.4, 9.4 and
10.3, the payo�s to the two players (Operator, Inspectorate) are given by (8.1) and (8.2). In
case of ` false alarms, 1 ≤ ` ≤ k, their costs are (−` f,−` g).

Second, in the Se-Se inspection game described in this section and again in Chapter 16 in the
context of critical time inspection games, the Operator decides to behave legally or illegally
during the course of the game. In the generalized Thomas-Nisgav inspection game analysed in
Section 17.1, which is also a Se-Se inspection game, however, the Operator/Smuggler makes
the decision to behave legally or illegally at the beginning of the game.

The chapter is based on Avenhaus and Canty (2005) who �rst published the Se-Se inspection
game and its game theoretical solution. Special cases, however, have been analysed before
by Rothenstein (1997) and by Rothenstein and Zamir (2002): They treated the two versions
α > 0, β > 0 and one interim inspection, and furthermore α = β = 0 and any number of
interim inspections, however, as zero-sum games: According to our modelling ideas, this is not
realistic since false alarms cause costs � eventually di�erent ones � to both players.

Avenhaus and Canty (2005) also consider degenerated game theoretical solutions for the case
of k = 2 interim inspections, such as the �rst resp. both interim inspection(s) coincide(s) with
the initial PIV at t3. Even though these solutions are of no practical value and even though
they contradict the idea of an interim inspection, they are presented in Section 12.2 in order to
demonstrate the intricacies of such models.

In the following we consider in Sections 12.1 and 12.2 �rst the special cases of k = 1 and
k = 2 interim inspection(s), thereafter in Section 12.3 the general case of any number k of
interim inspections. In all cases closed expressions for the equilibrium strategies and payo�s
are given and, with them, the conditions which must be met in order to induce legal behaviour
on the part of the Operator. In addition "saturated" equilibria are examined which arise when
false alarm costs become excessive. A discussion of the choice of the false alarm probability in
Section 12.4 concludes the chapter.

We mentioned on p. 139, that in practice payo� parameters are estimated and thus, they are
always subject to uncertainty. Therefore, the cases in which a function of these parameters
including α and β are exactly equal to a speci�ed value are excluded from the following con-
siderations. In particular, in the Lemmata and in the Theorem conditions to the parameters in
form of equations are not taken into account.

In case of k = 1 interim inspection, the Se-No inspection game treated in Section 10.1 coincides
with the Se-Se inspection game considered in this chapter for α = 0 and (d, b, a) = (1, 0, 1).
Under these conditions it will turn out that for any number k of interim inspections the equilibria
of the Se-Se inspection game, see Theorem 12.1, coincide with the optimal strategies of the
Se-No inspection game; see Theorem 10.1. Therefore, we recommend to study the Se-No
inspection game in Section 10.1 in some detail before turning to the Se-Se inspection game
considered in this chapter.



Chapter 12: Se-Se inspection game 235

12.1 One interim inspection; errors of the �rst and second
kind

Let us consider the inspection game with k = 1 interim inspection the extensive form of which
is represented in Figure 12.1. According to the comment on p. 50, all extensive form games in
this chapter start with the Operator's decision at the beginning of the reference time interval.
The chance moves are not explicitly named, but can be identi�ed via the probabilities 1 − β
and β as well as 1− α and α.

Figure 12.1 Extensive form of the Se-Se inspection game with k = 1 interim inspection and
with errors of the �rst and second kind.

Operator at t2

(
d (t1 − t2)− b
(−a) (t1 − t2)

)
1− β

(
d (t0 − t2)− b
(−a) (t0 − t2)

)
β

t1

¯̀(t2)

(
d (t0 − t1)− b
(−a) (t0 − t1)

)
¯̀(t1)

(
0

0

)
`(t1)

1− α

(
d (t0 − t1)− b− f
(−a) (t0 − t1)− g

)
¯̀(t1)

(
−f
−g

)
`(t1)

α

t1

`(t2)

Inspectorate at t2

Operator at t1

At the beginning of the reference time interval, i.e., at time point t2, the Operator decides to
start the illegal activity immediately (¯̀(t2)) or to postpone its start (`(t2)). The Inspectorate
chooses also at the beginning of the reference time interval t2, not knowing the Operator's
decision at t2, the time point t1 for its interim inspection. This is indicated by its information
set "Inspectorate at t2". At the interim inspection a chance move takes place: In case the
Operator starts the illegal activity at t2, it will be detected with probability 1−β at time point
t1, and detected only at the PIV with probability β. Thereafter the game ends with the payo�s
given in the Figure. In case the Operator does not start the illegal activity at t2, also a chance
move takes place at t1: With probability 1−α the Inspectorate will con�rm the legal behaviour
of the Operator, and with probability α it will raise a false alarm which will be clari�ed, but
causes costs −g and −f to both players. In both cases the Operator will decide to start the
illegal activity now (¯̀(t1)) or to behave legally throughout the game (`(t1)). The illegal activity
will be detected by the Inspectorate with certainty at the end of the reference time interval
during the �nal PIV. The payo�s are, using (8.1), given at the end nodes.
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The subgames beginning at the chance nodes can be simpli�ed by replacing the payo�s by
their expected values, with respect to 1− β and β, respectively with respect to 1− α and α.
In particular the Operator's situations after his legal behaviour at t1 are equivalent since all
payo�s following a false alarm are reduced by the same amounts g respectively f . Figure 12.2
represents the reduced extensive form of the inspection game shown in Figure 12.1.

Figure 12.2 Reduced extensive form of the inspection game of Figure 12.1.

Operator at t2

(
d ((1− β) (t1 − t2) + β (t0 − t2))− b
(−a) ((1− β) (t1 − t2) + β (t0 − t2)

)t1

¯̀(t2)

Operator at t1

(
d (t0 − t1)− b− fα
(−a) (t0 − t1)− g α

)
¯̀(t1)

(
−f α
−g α

)
`(t1)

t1

`(t2)

Inspectorate at t2

Let g2 be the Operator's probability to postpone the start of the illegal activity at time point
t2. Because the Operator may behave legally throughout the game, see assumption (iv') for
k = 1 interim inspection, the probability g1(t1) of postponing the illegal activity at time point
t1 needs to be taken into account. Thus, the Operator's set of behavioural strategies is an
extension of (10.2), and given by

G1 := {g := (g2, g1) : g2 ∈ [0, 1], g1 : (t2, t0)→ [0, 1]} . (12.1)

Note that in the Se-No inspection game discussed in Section 10.1 we have g1(t1) = 0, because
the Operator is assumed to behave illegally and he has to do it at t1, if he does not start the
illegal activity at t2.

Note that according to Figure 12.1, the equilibrium probability g∗1(t1) after a false alarm occurred
is the same as in the case that not false alarm occurred, because of the constant shifts, −f
respectively −g, of the payo�s. The Inspectorate's strategy set is the same as that for the
Se-No inspection game; see (10.1).

Using Figure 12.2, the (expected) payo� to the Operator is, for any g ∈ G1 and any t1 ∈ T1,
given by

Op1(t2;g, t1) := (1− g2)
[
d ((1− β) (t1 − t2) + β (t0 − t2))− b

]
+ g2

[
(1− g1(t1)) (d (t0 − t1)− b− f α) + g1(t1) (−f α)

]
,

(12.2)
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and that of the Inspectorate by

In1(t2;g, t1) := (1− g2)
[
(−a) ((1− β) (t1 − t2) + β (t0 − t2))

]
+ g2

[
(1− g1(t1)) ((−a) (t0 − t1)− g α) + g1(t1) (−g α)

]
.

(12.3)

The reason why we include t2 in the notation of the payo�s will become clear in Sections 12.2
and 12.3. Note that for d = 1, b = f = 0, g(t1) = 0 for any t1 ∈ T1, and α = 0, (12.2)
simpli�es to (10.3) which was to be expected as the Se-No inspection game and the Se-Se
inspection game in case of k = 1 interim inspection do not di�er from a modelling point of
view. Also note that the Inspectorate's payo� parameter g should not be confused with the
Operator's probabilities g2 and g1(t1).

The game theoretical solution of this inspection game, see Avenhaus and Canty (2005), is
presented in

Lemma 12.1. Given the Se-Se inspection game on the reference time interval [t2, t0] with
k = 1 interim inspection, errors of the �rst and second kind, and an unbiased test procedure.
The sets of behavioural resp. pure strategies are given by (12.1) and (10.1), and the payo�s to
both players by (12.2) and (12.3).

De�ne A2 and B2 by

A2 =
1

2− β
and B2 =

1− β
2− β

, (12.4)

and furthermore,

L2(t2) := A2 (t0 − t2)−
f

d
α (B2 − 1) = A2

(
t0 − t2 +

f

d
α

)
. (12.5)

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗1(t2) :=
Op1(t2;g

∗, t∗1) and In∗1(t2) := In1(t2;g
∗, t∗1):

(i) For

L2(t2) >
b

d
(12.6)

the Operator behaves illegally and an equilibrium strategy of the Operator is given by

g∗2 = 1−A2 = B2 and g∗1(t1) = 0 for all t2 < t1 < t0 . (12.7)

An equilibrium strategy of the Inspectorate is given by

t∗1 − t2 = (1− β)A2 (t0 − t2)−
f

d
α ((1− β)B2 + β) . (12.8)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗1(t2) = dA2 (t0 − t2)− f αB2 − b and

In∗1(t2) = (−a)A2 (t0 − t2)− g αB2 .
(12.9)
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(ii) For

L2(t2) <
b

d
(12.10)

the Operator behaves legally, i.e., g∗2 = g∗1(t1) = 1 for all t2 < t1 < t0. The Inspectorate's
set of equilibrium strategies is given by

b

d
− f

d
α ≥ (1− β) (t∗1 − t2) + β (t0 − t2)

b

d
≥ t0 − t∗1 ,

(12.11)

where t∗1 given by (12.8) ful�ls (12.11).

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗1(t2) = −f α and In∗1(t2) = −g α . (12.12)

Proof. In analogy to (19.5), the Nash equilibrium conditions

Op∗1(t2) ≥ Op1(t2;g, t∗1) and In∗1(t2) ≥ In1(t2;g∗, t1) (12.13)

have to be proven for any g = (g2, g1) ∈ G1 and any t1 ∈ T1.

The three strategies of the Operator, namely to start the illegal activity immediately at t2, to
start it at t1, or to behave legally throughout the game, are equivalent to {g2 = 0, g1(t1) ∈
[0, 1]}, {g2 = 1, g1(t1) = 0} and {g2 = 1, g1(t1) = 1}.1 Using (12.2) and a similar argu-
mentation as on p. 409, the Operator's Nash equilibrium condition (12.13) is equivalent to

Op∗1(t2) ≥ Op1(t2; (0, g1), t1) = d ((1− β) (t∗1 − t2) + β (t0 − t2))− b

Op∗1(t2) ≥ Op1(t2; (1, 0), t1) = d (t0 − t∗1)− b− f α

Op∗1(t2) ≥ Op1(t2; (1, 0), t1) = −f α .

(12.14)

Because α+ β < 1, the right hand expression in (8.2) implies

f
α

1− β
< f < d (t0 − t2) ,

which is, using (12.8) and the identity (1 − β)B2 + β = A2, equivalent to t
∗
1 − t2 > 0. The

requirement t0− t∗1 > 0 is ful�lled because (1−β)A2 < 1. Thus, t∗1 ∈ T1 independent whether
(12.6) or (12.10) is ful�lled.

Ad (i): Obviously we have (g∗2, g
∗
1) ∈ G1. Using (12.8) and Op∗1(t2) from (12.9), a lengthy

calculation shows that

Op∗1(t2) = d ((1− β) (t∗1 − t2) + β (t0 − t2))− b

Op∗1(t2) = d (t0 − t∗1)− b− f α ,
1The Operator has four pure strategies: ¯̀(t2)¯̀(t1), ¯̀(t2)`(t1), `(t2)¯̀(t1) and `(t2)`(t1), where the �rst two

are combined in ¯̀(t2).
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i.e., the �rst two inequalities in (12.14) are ful�lled as equalities. Furthermore, because (12.6)
is equivalent to

b < dA2 (t0 − t2) + f αA2 = dA2 (t0 − t2) + f α (1−B2)

= dA2 (t0 − t2)− f αB2 + f α ,

we get by (12.9)

Op∗1(t2) = dA2 (t0 − t2)− f αB2 − b > −fα ,

i.e., the third inequality in (12.14) is also ful�lled but not as equality.

Using (12.3), (12.4), (12.7) and (12.9), we get for any t1 ∈ T1

In1(t2;g
∗, t1) = A2

[
(−a) ((1− β) (t1 − t2) + β (t0 − t2))

]
+B2

[
(−a) (t0 − t1)− g α

]
= In∗1(t2) , (12.15)

i.e., the right hand inequality of (12.13) is ful�lled as equality.

Ad (ii): Using Figure 12.2, the Operator behaves legally at t1 if

d (t0 − t∗1)− b− f α ≤ −f α

which is equivalent to the second inequality in (12.11), and he will thus behave legally at t2 if

d ((1− β) (t∗1 − t2) + β (t0 − t2))− b ≤ −f α ,

which is equivalent to the �rst inequality in (12.11). The third inequality in (12.14) is ful�lled
as equality. For the Inspectorate we get by (12.3) and (12.12) that In1(t2;g

∗, t1) = −g α =
In∗1(t2) for any t1 ∈ T1, i.e., the right hand inequality of (12.13) is ful�lled as equality. Because
(12.11) is equivalent to

t0 −
b

d
< t∗1 <

1

1− β

(
b

d
− f

d
α− t0 β + t2

)
,

subtracting its right hand side from its left hand side, we get, using (12.5),

1

1− β

(
b

d
− f α

d
− t0 β + t2 − (1− β) t0 + (1− β)

b

d

)

=
1

1− β

(
b

d
(2− β)− f α

d
− (t0 − t2)

)

=
2− β
1− β

(
b

d
− 1

2− β

[
f α

d
+ (t0 − t2)

])
=

2− β
1− β

(
b

d
− L2(t2)

)
.

Thus, condition (12.10) guarantees the existence of t∗1.

Substituting t∗1 as given by (12.8) in (12.11), and using (12.4), it is seen that both inequalities
are ful�lled because of (12.10), which completes the proof.

Let us comment the results of Lemma 12.1: First, because t∗1 given by (12.8) ful�ls � under
condition (12.10) � also the inequalities in (12.11), it is a robust equilibrium strategy because the
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Inspectorate can just play t∗1 and does not need to check whether (12.6) or (12.10) is ful�lled.
Note that for the Se-Se inspection game with k ≥ 2 interim inspections a corresponding
statement is only true in case of α = 0; see also Table 7.3 on p. 142 for an overview of
inspection games with a robust Inspectorate's equilibrium strategy.

Second, for α = 0 and (d, b, a) = (1, 0, 1) the equilibrium strategies (12.7) and (12.8) coincide
with the optimal strategies (10.6) and (10.7) of Lemma 10.1, and the equilibrium payo� (12.9)
simpli�es to (10.8). This is not surprising, because, as mentioned on p. 234, in this case both
models are identical.

Third, the Inspectorate's equilibrium strategy in Lemma 12.1 is like that in Lemma 10.1 deter-
ministic. Since the payo�s are linear this pure strategy could be replaced by any mixed strategy
with expected value t∗1, but there would be no advantage in doing so; see Rothenstein (1997) or
the comment on p. 188. Also, like in the discrete time and continuous time Se-No inspection
game, the set of optimal strategies of the Inspectorate is fully characterized by the uniquely
determined (expected) interim inspection time point t∗1; see the comments on pp. 68 and 189.

Fourth, the inequalities (12.11) are with t2 = 0 exactly the same as that given by (9.64) for the
No-No inspection game. This is, let us mention it again, so surprising since there the equilibrium
strategies in case of illegal behaviour of the Operator are randomized ones; see (9.56). Note
that here condition (12.6) guarantees the existence of t∗1, while in the No-No inspection game
condition (9.63) is required.

Finally and surprisingly, the Operator's equilibrium strategy depends on the error second kind
probability β but neither on the error �rst kind probability α nor on the Inspectorate's utilities
a and g.

12.2 Two interim inspections; errors of the �rst and second
kind

Let us now consider the inspection game with k = 2 interim inspections the extensive form of
which is represented in Figure 12.3.

As compared to Figure 12.1 some new features, similar to those given in Figure 6.6, can be
observed. After the initial decisions of both players at the beginning of the reference time
interval, i.e., at time point t3, and after the �rst interim inspection at t2, a chance move,
error �rst or second kind, takes place, depending on the Operator's initial decision. In case the
Operator does not start the illegal activity at t3 (`(t3)), he decides at t2 to start it immediately
(¯̀(t2)) or to postpone its start again (`(t2)). The Inspectorate decides at t2 at which time
point t1 the second interim inspection will be performed, but now its state of knowledge is
complicated: If the illegal activity is not detected at t2, and if no false alarm is raised, then
the Inspectorate does not know if it was started already at t3 (¯̀(t3)) or if it is started at t2
(¯̀(t2)), or if the Operator will behave legally again (`(t2)). If at t2 a false alarm occurs, which
is clari�ed by assumption, then the Inspectorate knows that so far no illegal activity was started,
and a new proper (sub)game starts with the reference time interval [t2, t0] and k = 1 interim
inspection. At the second interim inspection at time point t1, again a chance move occurs,
and the Operator decides again to start the illegal activity now (¯̀(t1)) or to behave legally
throughout the game (`(t1)). Again, the payo�s are, using (8.1), given at the end nodes. Note
that the decisions ¯̀(t1) and `(t1) also occur in the proper subgame, see Figure 12.1, but this
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Figure 12.3 Extensive form of the Se-Se inspection game with k = 2 interim inspections and
with errors of the �rst and second kind. The proper subgame in the dashed box is identical to
the game of Figure 12.2, except that all payo�s to the Operator and to the Inspectorate are
reduced by amounts f and g, respectively.
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is not illustrated in Figure 12.3. We need to include this possibility, however, in the following
analysis.

Let g3 be the Operator's probability to postpone the illegal activity at time point t3 (node
u3), let g2(t2) and g21 be the probabilities to postpone it at time point t2 at nodes u2 and u′2
respectively, and let g1(t1) and g11(t11) be the probabilities to postpone the illegal activity at
time point t1 at nodes2 u1 and u′1, and in the proper subgame where the interim inspection
is performed at time point t11 (see below), respectively. Note that the probabilities g1(t1)
and g22(t11) need to be taken into account again, because the Operator may behave legally
throughout the game; see assumption (iv'). If we de�ne

G2 := {g := (g3, g2, g1) : g3 ∈ [0, 1], g2, g1 : (t3, t0)→ [0, 1]} , (12.16)

then the Operator's set of behavioural strategies is, using (12.1), given by

G2 ×G1 , (12.17)

and an element of this set is denoted by g := (g3, g2, g1, g21, g11). As argued on p. 193,
we assume that g1 and g11 only depend on t1 resp. t11 and not on the whole history (t2, t1)
resp. (t2, t11), because the players payo�s if the game starts at time point t1 resp. t11 is
not in�uenced by t2, i.e., g1 = g1(t1) and g11 = g11(t11). Even in case one assumes that
they depend on the whole history, i.e., g1 = g1(t2, t1) and g11 = g11(t2, t11), the same Nash
equilibrium strategy of the Operator are obtained; see the proof of Lemma 12.2.

The Inspectorate chooses the time point t2 for the �rst interim inspection, time point t1 for
the second interim inspection and in case no false alarm is raised at t2, and time point t11 in
the proper subgame. Thus, its set of pure strategies is, using (10.1) and (10.12), given by

T2 × T1 , (12.18)

and an element of this set is denoted by t := (t2, t1, t11).

In Figure 12.4, the reduced extensive form of the inspection game in Figure 12.3 is presented:
All chance moves after the second interim inspection at t1 are eliminated and the payo�s are
replaced by their (expected) payo�s. Furthermore, the proper subgame after the clari�ed false
alarm at t2 is replaced by the payo�s Op1(t2; (g21, g11), t11)− f and In1(t2; (g21, g11), t11)− g
as given by (12.2) and (12.3).

Using Figure 12.4, the (expected) payo� to the Operator is, for any g ∈ G2 × G1 and any
t ∈ T2 × T1, given by

Op2(t3;g, t) := (1− g3)
[
d ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))− b

]
+ g3

[
(1− α)

(
(1− g2(t2))

[
d ((1− β) (t1 − t2) + β (t0 − t2))− b

]
+ g2(t2)

[
(1− g1(t1)) (d (t0 − t1)− b− f α) + g1(t1) (−f α)

])
+ α

(
Op1(t2; (g21, g11), t11)− f

)]
, (12.19)

2Note that because of the constant shifts of the payo�s, see Figure 12.3, the equilibrium probability at node
u1 coincides with the one at node u′1. Therefore, we only introduce a single probability g1(t1).
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Figure 12.4 Reduced extensive form of the inspection game of Figure 12.3.
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)
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)
α
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`(t3)

Inspectorate at t2I1

Inspectorate at t3

Operator at t2

where Op1(t2; (g21, g11), t11) is de�ned by (12.2), and that of the Inspectorate by

In2(t3;g, t) := (1− g3) (−a) ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))

+ g3

[
(1− α)

(
(1− g2(t2)) (−a) ((1− β) (t1 − t2) + β (t0 − t2))

+ g2(t2)
[
(1− g1(t1)) ((−a) (t0 − t1)− g α) + g1(t1) (−g α)

])
+ α

(
In1(t2; (g21, g11), t11)− g

)]
, (12.20)

where In1(t2; (g21, g11), t11) is given by (12.3). Again, the Inspectorate's payo� parameter g
should not be confused with the Operator's probabilities g3, g2, g1, g21 and g11.

Note that in contrast to the Se-No inspection game treated in Section 10.3 in which the
Inspectorate chooses both time points (t2, t1) at t3, here � and due to the sequential nature of
its behaviour � only t2 is chosen at t3, and at time point t2 � depending whether a false alarm
is raised or not � it chooses t1 or t11. This is re�ected in (12.19) and (12.20).

Figure 12.5 gives an overview of the di�erent cases to be treated in the game theoretical
analysis.

The game theoretical solution of this inspection game, see Avenhaus and Canty (2005), is
presented in

Lemma 12.2. Given the Se-Se inspection game on the reference time interval [t3, t0] with
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Figure 12.5 Distinction of cases of the game theoretical solution of the Se-Se inspection game
on the reference time interval [0, t0] with k = 2 interim inspections. L2(t2) and L3(t3) are
de�ned in (12.5) and (12.21), respectively.

Se-Se inspection game on the reference time interval [0, t0]
with k = 2 interim inspections
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b

d

(ii) of Lemma 12.2

k = 2 interim inspections, errors of the �rst and second kind, and an unbiased test procedure.
The sets of behavioural resp. pure strategies are given by (12.17) and (12.18), and the payo�s
to both players by (12.19) and (12.20).

De�ne, using (12.4), A3 and B3 by

A3 =
A2

1 + (1− β)A2
=

1

3− 2β
and B3 =

B2 + (1− β)A2

1 + (1− β)A2
=

3 (1− β)

3− 2β
,

and furthermore,

L3(t3) := A3 (t0 − t3)−
f

d
α (B3 − 2) . (12.21)

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2(t3) :=
Op2(t3;g

∗, t∗) and In∗2(t3) := In2(t3;g
∗, t∗):

(i) For

L3(t3) >
b

d
(12.22)

the Operator behaves illegally. For3

f α

d (t0 − t3)
<

1− β
3− 3β + β2

(12.23)

an equilibrium strategy of the Operator is given by

g∗3 = 1−A3 , g
∗
2(t2) = 1− 2 (1− α)− β

2 (1− α)
A2 , g

∗
1(t1) = 0 , t3 < t2, t1 < t0 ,

g∗21 = 1−A2 , g
∗
11(t11) = 0 , t∗2 < t11 < t0 ,

(12.24)

3Note that in Lemma 12.1 there is no equivalent to (12.23).
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where t∗2 is given by (12.25).

An equilibrium strategy of the Inspectorate is given by

t∗2 − t3 = (1− β)A3 (t0 − t3)−
f

d
α ((1− β)B3 + β) ,

t∗1 − t∗2 = (1− β)A2 (t0 − t∗2)−
f

d
α ((1− β)B2 + β) and

t∗11 = t∗1 .

(12.25)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(t3) = dA3 (t0 − t3)− f αB3 − b and

In∗2(t3) = −aA3 (t0 − t3)− g αB3 .
(12.26)

(ii) For

L3(t3) <
b

d

the Operator behaves legally, i.e., g∗3 = g∗2(t2) = g∗1(t1) = 1 for all t3 < t2, t1 < t0 and
g∗21 = g∗11(t11) = 1 for all t∗2 < t11 < t0, where t

∗
2 ful�ls (12.27). The Inspectorate's set

of equilibrium strategies is given by

b

d
− 2 f

d
α ≥ (1− β) (t∗2 − t3) + β (1− β) (t∗1 − t3) + β2 (t0 − t3)

b

d
− f

d
α ≥ (1− β) (t∗1 − t∗2) + β (t0 − t∗2)

b

d
≥ t0 − t∗1

b

d
− f

d
α ≥ (1− β) (t∗11 − t∗2) + β (t0 − t∗2)

b

d
≥ t0 − t∗11 .

(12.27)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(t3) = −2 f α and In∗2(t3) = −2 g α .

Proof. We have to prove that, in analogy to (19.5), the Nash equilibrium conditions

Op∗2(t3) ≥ Op2(t3;g, t∗) and In∗2(t3) ≥ In2(t3;g∗, t) (12.28)

are ful�lled for any g = (g3, g2, g1, g21, g11) ∈ G2 ×G1 and any t = (t2, t1, t11) ∈ T2 × T1.

Ad (i): We �rst see that g∗ ∈ G2×G1. Because A3 (3− 3β + β2) = (1− β)B3 + β, (12.23)
is, using (12.25), equivalent to t∗2 − t3 > 0. With the same argument as on p. 238 we have
t∗1 − t∗2 > 0 resp. t∗11 − t∗2 > 0. Thus, t∗ ∈ T2 × T1.
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Now we show that in case of legal behaviour at t3 (`(t3)) and a false alarm, the Operator will
behave illegally in the subsequent proper subgame: Using (12.5), (12.21) and (12.25), we get

L2(t
∗
2) =

1

2− β

(
t0 − t∗2 +

f

d
α

)
=

1

2− β

(
t0 − t3 − (t∗2 − t3) +

f

d
α

)

=
1

2− β

(
t0 − t3 −

1− β
3− 2β

(t0 − t3) +
f

d
α

3− 3β + β2

3− 2β
+
f

d
α

)

=
1

3− 2β

(
t0 − t3 +

f

d
α (3− β)

)
= L3(t3) .

Thus, (12.22) implies L2(t
∗
2) > b/d, i.e., case (i) of Lemma 12.1 is satis�ed.

Like on p. 238, we consider the Operator's strategies to start the illegal activity immediately
at t3, to start it at t2, to start it at t1 or to behave legally throughout the game, are equivalent
to {g3 = 0, g2(t

∗
2) ∈ [0, 1], g1(t

∗
1) ∈ [0, 1]}, {g3 = 1, g2(t

∗
2) = 0, g1(t

∗
1) ∈ [0, 1]}, {g3 =

1, g2(t
∗
2) = 1, g1(t

∗
1) = 0} and {g3 = 1, g2(t

∗
2) = 1, g1(t

∗
1) = 1}. Using (12.19) and the same

argument as on p. 409, the Operator's Nash equilibrium condition (12.28) is equivalent to the
four inequalities

Op∗2(t3) ≥ Op2(t3; (0, g2, g1), t
∗) , Op∗2(t3) ≥ Op2(t3; (1, 0, g1), t

∗) ,

Op∗2(t3) ≥ Op2(t3; (1, 1, 0), t∗) , Op∗2(t3) ≥ Op2(t3; (1, 1, 1), t∗) ,

i.e., equivalent to

Op∗2(t3) ≥ d (1− β) (t∗2 − t3) + d β ((1− β) (t∗1 − t3) + β (t0 − t3))− b

Op∗2(t3) ≥ (1− α) (d (1− β) (t∗1 − t∗2) + d β (t0 − t∗2)− b) + α
(
Op∗1(t

∗
2)− f

)
Op∗2(t3) ≥ (1− α) (−f α+ d (t0 − t∗1)− b) + α

(
Op∗1(t

∗
2)− f

)
Op∗2(t3) ≥ (1− α) (−f α) + α

(
Op∗1(t

∗
2)− f

)
,

(12.29)

keeping in mind that the Operator will behave illegally in the proper subgame starting at u′2.
Now, using Op∗1(t2) from (12.9), (12.25) and Op∗2(t3) from (12.26), a cumbersome calculation
shows that

Op∗2(t3) = d (1− β) (t∗2 − t3) + d β ((1− β) (t∗1 − t3) + β (t0 − t3))− b

Op∗2(t3) = (1− α) (d (1− β) (t∗1 − t∗2) + d β (t0 − t∗2)− b) + α (Op∗1(t
∗
2)− f) (12.30)

Op∗2(t3) = (1− α) (−f α+ d (t0 − t∗1)− b) + α (Op∗1(t
∗
2)− f) ,

i.e., the �rst three inequalities in (12.29) are ful�lled as equality. The last inequality of (12.29)
follows from (12.22). In sum, the Operator's Nash equilibrium condition (12.28) is ful�lled.

To prove the Inspectorate's Nash equilibrium condition we consider the coe�cients of t2
and t1 in In2(t3;g

∗, t). Because, as mentioned above, case (i) of Lemma 12.1 is satis�ed,
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In1(t2; (g∗21, g
∗
11), t11) evaluates, using (12.15), to In∗1(t2) for all t2 < t11 < t0. Thus, (12.9)

and (12.20) yield for the coe�cients of t2 and t1

for t2 : a
(
− (1− g∗3) (1− β) + g∗3 (1− α) (1− g∗2(t2)) + g∗3 αA2

)
for t1 : a

(
− (1− g∗3)β (1− β)− g∗3 (1− α) (1− g∗2(t2)) (1− β) + g∗3 (1− α) g∗2(t2)

)
which both evaluate to zero because of (12.24). Therefore, we get after some lengthy calcu-
lation, using (12.24) and (12.26), that In2(t3;g

∗, t) = In∗2(t3) for any (t2, t1, t11) ∈ T2 × T1,
i.e., the Inspectorate's Nash equilibrium condition (12.28) is ful�lled as equality.

Ad (ii): Let (t∗2, t
∗
1, t
∗
11) ∈ T2 × T1 be any equilibrium strategy of the Inspectorate in case

of legal behaviour of the Operator. Note that the components t∗2 and t∗1 are di�erent from
(12.25); see the comment on p. 248. We apply the backward induction principle directly to the
reduced extensive form of the game in Figure 12.4. At node u1 the Operator will have legally
if d (t0 − t∗1)− b− f α ≤ −f α which is equivalent to the third inequality in (12.27). At node
u2 he behaves legally if

d ((1− β) (t∗1 − t∗2) + d β (t0 − t∗2))− b ≤ −f α ,

which is equivalent to the second inequality in (12.27). What happens at node u′2, i.e., a false
alarm is raised? The second and third inequality in (12.27) imply

b

d
− f

d
α ≥ (1− β) (t∗1 − t0 + t0 − t∗2) + β (t0 − t∗2) = −(1− β) (t0 − t∗1) + t0 − t∗2

≥ −(1− β)
b

d
+ t0 − t∗2 ,

which yield, using (12.4) and (12.5),

L2(t
∗
2) = A2 (t0 − t∗2)−

f

d
α (B2 − 1) ≤ A2

(
b

d
− f

d
α+ (1− β)

b

d

)
− f

d
α (B2 − 1) =

b

d
.

Thus, the Operator will � because of (12.10) � behave legally in the proper subgame with the
equilibrium strategy t∗11 given by the fourth and �fth inequality in (12.27) (use (12.11) and
write t∗11 instead of t∗1). Thus, if the Operator behaves legally at t3 (`(t3)) then his payo� is
(1− α) (−f α) + α (−f α− f) = −2 f α. Thus, he will behave legally in the entire game if

d ((1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3))− b ≤ −2 f α ,

which is equivalent to the �rst inequality of (12.27).

For the Inspectorate we get In2(t3;g
∗, t) = −2 f α for any (t2, t1, t11) ∈ T2×T1, i.e., its Nash

equilibrium condition is ful�lled as equality, which completes the proof.

Let us comment the results of Lemma 12.2: First, we compare the regions of b/d-values in the
Se-Se inspection game with k = 1 and k = 2 interim inspection(s) each played over the full
reference time interval [0, t0], which lead to legal and illegal behaviour. Given (12.23), condition
(12.22) for t3 = 0 gives a smaller bound for b/d than (12.6) for t2 = 0, so that we have the
situation shown in Figure 12.6. In other words, for a smaller inspection e�ort (k = 1) the ratio
of sanctions to gains b/d for the Operator has to be larger to induce him to legal behaviour
than for a larger inspection e�ort (k = 2).
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Figure 12.6 Representation of (12.6) and (12.22) for t3 = t2 = 0 provided that (12.23) holds.

1
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(
t0 +

f α

d

)
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3− 2β

(
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legal, k = 2

legal, k = 1

Second, according to (12.25) the Inspectorate's equilibrium strategy at its information set I1 is
the same as its equilibrium strategy in the Se-Se inspection game with k = 1 interim inspection,
see (12.8), pointing to a straightforward generalization to any number of interim inspections.
On the other hand we see from (12.24) that this is not the case for the Operator at his decision
node u2. This phenomenon is a consequence of the game's information structure.

Third, the equilibrium of the inspection game considered here is very close to that of the Se-No
inspection game considered in Section 10.3 and given by Lemma 10.3. The equilibrium strategy
of the Inspectorate as well as the equilibrium payo�s to both players are the same, whereas
the component g∗2(t2) of the Operator's equilibrium strategy in case of illegal behaviour are
di�erent; see (10.42) and (12.24). One may explain this result as follows: For the Inspectorate
there is only one advantage in the Se-Se inspection game as compared to the Se-No inspection
game which exists only if both types of errors are possible: Whereas in both variants without
�rst kind errors, but eventually second kind errors, the Inspectorate does not know after the
�rst interim inspection without detection of the illegal activity whether or not it took place,
after a false alarm and its clari�cation it does know that there was no illegal activity. In the
Se-Se inspection game therefore the Inspectorate can use this information for the planning of
the second interim inspection, whereas this is not possible in the Se-No inspection game. The
Operator, on his side, reacts to this di�erence by an appropriately modi�ed equilibrium strategy
such that the advantage of the Inspectorate is neutralized. A weak point of this argument is
that without both error types we also have the situation that after an interim inspection the
Inspectorate knows whether or not an illegal activity took place, but in both variants, as well as
in the variant without errors of the �rst kind, the equilibrium strategies of both players are the
same. Maybe these games are too simple to contain as subtle di�erences as described above.

Fourth, again the Inspectorate's equilibrium strategy in Lemma 12.2 is deterministic and the
Inspectorate may announce the equilibrium interim inspection time points, if it wishes so. Or
it might randomize as described on p. 192 without having any advantage in doing so.

Finally, as illustrated for the Se-No inspection game on p. 203, the Inspectorate's equilibrium
inspection time points (t∗2, t

∗
1, t
∗
11) given by (12.25) is not a robust equilibrium strategy, because

the Inspectorate has to check whether (12.23) is ful�lled in order to assure that t∗2 − t3 > 0;
see the proof of Lemma 12.2. For α = 0, however, (12.23) vanishes, and (t∗2, t

∗
1, t
∗
11) given

by (12.25) is a robust equilibrium strategy; see also Table 7.3 on p. 142 for an overview of
inspection games with a robust Inspectorate's equilibrium strategy.

After these comments we consider now some special solutions which arise when condition
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(12.23) in Lemma 12.2 is not ful�lled. Since these solutions will not be required for the
generalization to any number k of interim inspections in Section 12.3, we will set t3 = 0 for
convenience. Also, let us repeat our introductory remark: Even though these solutions cover an
unrealistic area of large values of α, and even though these solutions are of no practical value,
they are presented here in order to demonstrate the intricacies of such models.

While the Operator's strategy set is same as the one given in (12.17), the Inspectorate's strategy
set needs to be modi�ed: We allow not only that the two interim inspections are performed at
the same time point, but also at time point t3 = 0, i.e., at the initial PIV. Thus, we have in
contrast to T1 and T2:

T̃1 = {t11 ∈ R : 0 ≤ t11 < t0} and T̃2 = {(t2, t1) ∈ R2 : 0 ≤ t2 ≤ t1 < t0} ,

and the Inspectorate's set of pure strategies is given by

T̃2 × T̃1 , (12.31)

and an element of this set is denoted by t := (t2, t1, t11).

The game theoretical solution of this inspection game, see Avenhaus and Canty (2005), is
presented in

Lemma 12.3. Given the Se-Se inspection game on the reference time interval [0, t0] with k = 2
interim inspections, errors of the �rst and second kind, and an unbiased test procedure. The
sets of behavioural resp. pure strategies are given by (12.17) and (12.31), and the payo�s to
both players by (12.19) and (12.20) for t3 = 0.

If, using (12.5) and (12.22),

L3(0) >
b

d
and L2(0) >

b

d
(12.32)

then the Operator behaves illegally and a Nash equilibrium is given by the following equilibrium
strategies and payo�s Op∗2(0) := Op2(0;g∗, t∗) and In∗2(0) := In2(0;g∗, t∗):

(i) For

1− β
3− 3β + β2

<
f α

d t0
<

(1− β) (2− α+ β − β2)
4− α− 2β

(12.33)

an equilibrium strategy of the Operator is given by

g∗3 = 1− 1− α
1− α+ β − β2

, g∗2(t2) = 1 , g∗1(t1) = 0 , t3 < t2, t1 < t0 ,

g∗21 = 1−A2 , g∗11(t11) = 0 , 0 < t11 < t0 .

(12.34)

An equilibrium strategy of the Inspectorate is given by

t∗2 = 0 , t∗1 =
Op∗2(0) + b− d β2 t0

d β (1− β)
and

t∗11 = (1− β)A2 t0 −
f

d
α ((1− β)B2 + β) .

(12.35)
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The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(0) = β A2

(
d t0 (2− α− β)− f α (1− β) (4− α− 2β)

1− α+ β − β2

)
− b and

In∗2(0) = −β A2

(
a t0 (2− α− β) + g α (1− β) (4− α− 2β)

1− α+ β − β2

)
.

(12.36)

(ii) For

(1− β) (2− α+ β − β2)
4− α− 2β

<
f α

d t0
(12.37)

an equilibrium strategy of the Operator is given by

g∗3 = 0 , g∗2(t2) = 1 , g∗1(t1) = 0 , t3 < t2, t1 < t0 ,

g∗21 = 1−A2 , g∗11(t11) = 0 , 0 < t11 < t0 .

An equilibrium strategy of the Inspectorate is given by

t∗2 = t∗1 = 0 and t∗11 = (1− β)A2 t0 −
f

d
α ((1− β)B2 + β) . (12.38)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2(0) = β2 d t0 − b and In∗2(0) = −β2 a t0 . (12.39)

Proof. Because t∗2 = 0, see (12.35) and (12.38), we get by (12.29) for the Operator's Nash
equilibrium condition

Op∗2(0) ≥ d β ((1− β) t∗1 + β t0)− b (12.40)

Op∗2(0) ≥ (1− α) (d (1− β) t∗1 + d β t0 − b) + α
(
Op∗1(0)− f

)
(12.41)

Op∗2(0) ≥ (1− α) (−f α+ d (t0 − t∗1)− b) + α
(
Op∗1(0)− f

)
(12.42)

Op∗2(0) ≥ (1− α) (−f α) + α
(
Op∗1(0)− f

)
, (12.43)

where, because of (12.32), we have Op∗1(0) = dA2 t0 − f αB2 − b; see (12.9).

Ad (i): Using (12.35) and (12.36), it can be see that (12.40) and (12.42) are ful�lled as equality,
whereas (12.41) follows from the left-hand inequality of (12.33). Again, the left-hand inequality
of (12.33) is equivalent to

f α

d t0
(4− α− 2β) > (1− α+ β − β2) (2− β)L2(0)

1

t0
+ α− 2β + β2 ,

which implies, because of (12.32), that

f α

d t0
(4− α− 2β) > (1− α+ β − β2) (2− β)

b

d t0
+ α− 2β + β2 ,
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and, which implies that � after some algebra � (12.43) is ful�lled. Thus, the Operator's Nash
equilibrium condition is ful�lled.

Because of the right hand side of (12.32), the Inspectorate's payo� (12.20) can be, using (12.9)
and (12.34), written as

In2(0;g∗, (t2, t1, t11)) = (1− g∗3) (−a) ((1− β) t2 + β (1− β) t1 + β2 t0)

+ g∗3

[
(1− α)

(
((−a) (t0 − t1)− g α)

)
+ α

(
(−a)A2 (t0 − t2)− g αB2 − g

)]
.

(12.44)

The coe�cient of t1 in (12.44) is given by

(−a)
(

(1− g∗3)β (1− β)− g∗3 (1− α)
)
,

which evaluates to zero due to (12.34). Also, the Inspectorate's payo� (12.44) is maximized for
t∗2 = 0. Thus, using (12.36), we have In2(0;g∗, (0, t1, t11)) = In∗2(0) and the Inspectorate's
Nash equilibrium condition (12.28) is ful�lled. Finally, t∗1 > 0 can be seen to be equivalent to
the right-hand inequality of (12.33).

Ad (ii): Inequality (12.40) is by (12.39) ful�lled as equality, while (12.42) follows from (12.37).
Because

(1− β) (2− α+ β − β2)
4− α− 2β

− (1− β) (α (1− β) + β (2− β))

2− β + α (1− β)

=
(1− α) (2− 3β + β2)2

(2− β + α (1− β)) (4− α− 2β)
> 0 ,

we obtain from (12.37) that

(1− β) (α (1− β) + β (2− β))

2− β + α (1− β)
<
f α

d t0
,

which implies that (12.41) is valid. Because

(1− β) (2− α+ β − β2)
4− α− 2β

− 1− β2 (2− β)

3− 2β
=

(1− α) (2− β) (1− β)2

(3− 2β) (4− α− 2β)
> 0 ,

(12.37) implies

1− β2 (2− β)

3− 2β
<
f α

d t0
,

and we get

f α

d t0
(4− α− 2β) > (2− β)

(
(1− α)L2(0)

1

t0
− β2

)
+ α .

Due to the right inequality of (12.32) this inequality simpli�es to

f α

d t0
(4− α− 2β) > (2− β)

(
(1− α)

b

d t0
− β2

)
+ α ,
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which implies that (12.43) is valid.

Finally, because −a < 0, t∗2 = t∗1 = 0 are best replies to the Operator's equilibrium strategy
g∗3 = 0.

We �nalize this section with two comments on the results of Lemma 12.3: First, the equilibrium
payo�s (12.36) are quite complicated and were obtained by brute force using vertex enumeration
of the convex polyhedra associated with an equivalent bimatrix game programmed by M. Canty
on the computer-algebra system Mathematica R©; see Canty (2003).

Second, in Figure 12.5 the case L2(0) < b/d is mentioned. In this case the Operator behaves
legally in the proper subgame which arises after a false alarm, but not necessarily in the rest
of the game tree. The game theoretical solutions are not presented here, because they are of
less interest from application view point; see the argumentation at the beginning of the next
section.

12.3 Any number of interim inspections; errors of the �rst
and second kind

The special Nash equilibria of Lemma 12.3 are of questionable practical value, since placing
interim inspections at the beginning of the reference time interval is a contradiction in terms.
In solution (ii) for example, the comparatively large false alarm costs to the Operator, see
condition (12.37), compel him to violate immediately in order to avoid false alarms altogether,
and the Inspectorate must react by also inspecting immediately. Although justi�able from
the theoretical point of view, this is not likely to be an acceptable inspection strategy in real
situations. By reducing the number of inspections by one the chance of a false alarm is reduced,
leading to solution (12.8) with an "unsaturated" interim inspection. In the sequel, we take the
point of view that the number of interim inspections should always be chosen such that, given
the Operator's utilities d, f and error probabilities α, β, the equilibrium interim inspection time
points are positive. For unbiased test procedures the number of interim inspections satisfying
this requirement will never be less than one; see Lemma 12.1. We shall therefore generalize
only the unsaturated equilibria, i.e., the Nash equilibria with t∗k − tk+1 > 0, see Lemmata 12.1
and 12.2, to an arbitrary number of interim inspections. Condition (12.47) in Theorem 12.1
below guarantees that t∗k − tk+1 > 0.

The time line of the interim inspections and probabilities for starting or postponing the illegal
activity is represented in Figure 12.7. It is a generalization of that in Figure 10.3 because here
the Operator does not necessarily have to behave illegally.

As on p. 193, the Operator starts the illegal activity at tk+1 with probability 1 − gk+1 or he
postpones its start with probability gk+1, in the latter case he starts it at tk with probability
1 − gk(tk) which depends on tk or he postpones its start again with probability gk(tk). If
the Operator postpones the start of the illegal activity until time point tn, n = 1, . . . , k, he
starts it there with probability 1− gn(tn) and postpones its start again with probability gn(tn).
It is important to note that the probability gn(tn) refers only to the case that at all time
points tk, . . . , tn no false alarm is raised. If during some interim inspection a false alarm is
raised, then the Se-Se inspection game starts again as a proper subgame with the appropriate
smaller number of interim inspections. Again, and as justi�ed on p. 193, we assume that gn
depends only on tn and not on the whole history tk, . . . , tn, i.e., gn = gn(tn). Also the proof
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Figure 12.7 Time line of the interim inspections and probabilities for starting or postponing
the illegal activity for the Se-Se inspection game with k interim inspections. For reasons of
clarity we write gn instead of gn(tn), n = 2, . . . , k.
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1− g1

g1

PIV

t0

of Theorem 12.1 shows that even a dependence of gn on the whole history tk, . . . , tn, i.e.,
gn = gn(tk, . . . , tn) would not change the Operator's Nash equilibrium strategy.

Again, as an extension of (10.21), we de�ne the Operator's behavioural strategy set to be

Gk := {g := (gk+1, gk, . . . , g2, g1) : gk+1 ∈ [0, 1] ,

gn : (tk+1, t0)→ [0, 1] , n = 1, 2, . . . , k} .
(12.45)

The Inspectorate's strategy set is given by (10.20).

The payo�s to the two players are generalizations of those for the case of k = 2 interim
inspections and can be deduced from Figure 12.4.

The game theoretical solution of this inspection game, see Avenhaus and Canty (2005), is
presented in

Theorem 12.1. Given the Se-Se inspection game on the reference time interval [tk+1, t0] with
k interim inspections, errors of the �rst and second kind, and an unbiased test procedure. The
sets of behavioural resp. pure strategies are given by (12.45) and (10.20), and the payo�s to
the two players can be deduced from Figure 12.4.

De�ne for all n = 1, 2, . . . the constants An and Bn by

An =
1

1 + (n− 1) (1− β)
and Bn =

n

2
(1−An) , (12.46)

and furthermore,

Lk+1(tk+1) := Ak+1 (t0 − tk+1)−
f

d
α (Bk+1 − k) .

Assume that for k > 14

f α

d (t0 − tk+1)
<

Ak+1

Bk+1 +
β

1− β

. (12.47)

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗k(tk+1)
and In∗k(tk+1):

4Note that for k = 1 condition (12.47) is satis�ed due to assumptions (8.2) and α+ β < 1, and therefore,
it does not occur in Lemma 12.1.
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(i) For

Lk+1(tk+1) >
b

d
(12.48)

the Operator behaves illegally and an equilibrium strategy is given by

g∗k+1 = 1−Ak+1 and g∗n(tn) = 1− n (1− α)− (n− 1)β

n (1− α)
An (12.49)

for all tk+1 < tn < t0, n = 1, . . . , k, which implies g∗1(t1) = 0.

An equilibrium strategy of the Inspectorate is given by

t∗n − t∗n+1 = (1− β)An+1 (t0 − t∗n+1)−
f α

d

(
(1− β)Bn+1 + β

)
(12.50)

for n = 1, . . . , k and t∗k+1 = 0, which ful�ls t∗k − tk+1 > 0.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗k(tk+1) = dAk+1 (t0 − tk+1)− f αBk+1 − b

In∗k(tk+1) = −aAk+1 (t0 − tk+1)− g αBk+1 .
(12.51)

(ii) For

Lk+1(tk+1) <
b

d
(12.52)

the Operator behaves legally, i.e., g∗k+1 = g∗k(tk) = . . . = g∗1(t1) = 1 for all tk+1 < tn <
t0, n = 1, . . . , k, and the Inspectorate's set of equilibrium strategies is given by

b

d
− n f

d
α ≥ (1− β)

n∑
m=1

βn−m (t∗m − t∗n+1) + βn (t0 − t∗n+1) , (12.53)

with
∑0

m=1 := 0 and t∗k+1 := tk+1 for n = 0, . . . , k.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗k+1(tk+1) = −k f α and In∗k+1(tk+1) = −k g α . (12.54)

Proof. In analogy to the proof of Lemma 12.2, the Operator's Nash equilibrium condition is
equivalent to the following k + 2 inequalities:

Op∗k(tk+1) ≥ d
[
(1− β) (t∗k − tk+1) + β

[
(1− β) (t∗k−1 − tk+1)

+ β [(1− β) (t∗k−2 − tk+1) + . . .+ β (t0 − tk+1)] . . .
]]
− b

Op∗k(tk+1) ≥ −f α+ d

[
(1− β) (t∗k−1 − t∗k) + β

[
(1− β) (t∗k−2 − t∗k)

+ β [(1− β) (t∗k−3 − t∗k) + . . .+ β (t0 − t∗k)] . . .
]]
− b

...

Op∗k(tk+1) ≥ −k f α+ d (t0 − t∗1)− b

Op∗k(tk+1) ≥ −k f α .

(12.55)



Chapter 12: Se-Se inspection game 255

Ad (i): Under condition (12.48) it can be shown that the Operator will behave illegally in any
proper subgame. We show by induction that all other inequalities in (12.55) are ful�lled as
equalities. For k = 2 we have proved this in Lemma 12.2; see (12.30). Now assume that for
k − 1 interim inspections the �rst k inequalities corresponding to (12.55) hold as equalities.
Then (12.55) can be written as follows:

Op∗k(tk+1) ≥ β Op∗k−1(t∗k) + d (t∗k − tk+1)− (1− β) b

Op∗k(tk+1) ≥ −f α+Op∗k−1(t
∗
k)

Op∗k(tk+1) ≥ −2 f α+Op∗k−2(t
∗
k−1)

...

Op∗k(tk+1) ≥ −(k − 1) f α+ d (t0 − t∗1)− b ,

(12.56)

where by (12.51) Op∗n−1(t
∗
n) is given by

Op∗n−1(t
∗
n) = dAn (t0 − t∗n)− f αBn − b (12.57)

for n = 2, . . . , k+ 1 and t∗n+1 is implicitly given by (12.50) for n = 2, . . . , k with t∗k+1 := tk+1.
Using (12.57) we get by (12.50) for all n = 2, . . . , k + 1

− f α+Op∗n−2(t
∗
n−1)

= −f α+ dAn−1 (t0 − t∗n−1)− f αBn−1 − b

= dAn−1 (t0 − t∗n)− dAn−1 (t∗n−1 − t∗n)− f α (Bn−1 + 1)− b

= An−1 (t0 − t∗n)− dAn−1
(

(1− β)An (t0 − t∗n)− f α

d

(
(1− β)Bn + β

))
− f α (Bn−1 + 1)− b

= dAn−1 (1− (1− β)An) (t0 − t∗n)

− f α
(

(−An−1) ((1− β)Bn + β) +Bn−1 + 1
)
− b . (12.58)

Because An and Bn as given by (12.46) satisfy for all n = 2, 3, . . . the recursive relations

An = An−1 (1− (1− β)An−1) and Bn =
Bn−1 + 1− β An−1
1 + (1− β)An−1

,

the coe�cient of d (t0− t∗n) reduces to An and that of −f α to Bn. Thus, we have by (12.58),
using (12.57) for n = 2, . . . , k + 1,

−f α+Op∗n−2(t
∗
n−1) = dAn (t0 − t∗n)− f αBn − b = Op∗n−1(t

∗
n) ,

which implies

Op∗k(t
∗
k+1) = −(k + 1− n) f α+Opn−1(t

∗
n) , n = 3, . . . , k . (12.59)
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Therefore, the second to the last inequality in (12.56) is ful�lled as equality. It remains to show
that the �rst inequality in (12.56) also holds as equality. This claim is, using (12.59) for n = k,
equivalent to

Op∗k−1(t
∗
k) =

1

1− β
(d (t∗k − tk+1) + f α)− b ,

the right hand side of which simpli�es with (12.50) to Op∗k−1(t
∗
k) given by (12.51). The last

inequality of (12.55) is ful�lled because of (12.48) and (12.51). Finally, condition (12.47) is
equivalent to t∗k − tk+1 > 0, where t∗k − tk+1 is given by (12.50) with t∗k+1 := tk+1.

To show the Nash condition is satis�ed for the Inspectorate, consider the Inspectorate's infor-
mation set In and the edges leading to and from it as shown in Figure 12.8.

Figure 12.8 The Inspectorate's information set In and its payo�s involving tn.
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In Figure 12.8, the terminal nodes are labelled with the Inspectorate's payo�. The symbol (∗)
denotes the continuation in which the Inspectorate's payo� is a function of tn. It corresponds
to the payo�

−a [(1− β) (tn−1 − tn) + β [(1− β) (tn−2 − tn) + β [. . .+ β (t0 − tn)] . . .]] ,

where the number of square bracket pairs is equal to n and where the combined coe�cient of
tn is simply +a, because

(1− β) + β (1− β) + β2 (1− β) + . . .+ βn−1 (1− β) + βn

= (1− β)
1− βn

1− β
+ βn = 1 .

(12.60)

For k = 2 interim inspections it was proven in Lemma 12.2 that the equilibrium strategy of the
Operator makes the Inspectorate indi�erent to its choice of t2 and t1 and that its equilibrium
payo� is In∗1(t2) = −aA2 (t0 − t2) − g αB2. We shall therefore assume inductively that
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for k − 1 interim inspections the Inspectorate is indi�erent with respect to its choice of tn,
n = 1, . . . , k− 1, and that its equilibrium payo� in any proper subgame beginning at time tn is

In∗n−1(tn) = −aAn (t0 − tn)− g αBn , n = 2, . . . , k − 1 . (12.61)

Now we determine the probabilities ρk+1(vm) that the decision point vm, m = 1, . . . , k−n+2,
in In is reached during the course of the game. The point vk−n+2 is reached if and only if the
Operator behaves illegally at time point tk+1 and is not detected at the (k − n) time points
tk, . . . , tn+1. Thus, we have

ρk+1(vk−n+2) = (1− g∗k+1)β
k−n = Ak+1 β

k−n . (12.62)

The point vm, m = 2, . . . , k − n+ 1 is reached if and only if the Operator

• behaves legally at the time points tk+1, . . . , tn+m, and (k−(n+m)+2) non-false alarms
occur at the time points tk, . . . , tn+m, tn+m−1;

• starts the illegal activity at the time point tn+m−1;

• is not detected at the (m− 2) time points tn+m−2, . . . , tn+1.

Therefore, we obtain for all m = 2, . . . , k − n+ 1

ρk+1(vm)

= g∗k+1 g
∗
k(tk) . . . g

∗
m+n(tm+n) (1− g∗m+n−1(tm+n−1)) (1− α)k−m−n+2 βm−2 .

(12.63)

The point v1 is reached if and only if the Operator behaves legally at the time points tk+1, . . . ,
tn+1, and k − (n+ 1) + 1 non-false alarms occur at the time points tk, . . . , tn+1, which leads
to

ρk+1(v1) = g∗k+1 g
∗
k(tk) . . . g

∗
n+1(tn+1) (1− α)k−n . (12.64)

Thus, the coe�cient of tn in the Inspectorate's payo� is, using Figure 12.8, (12.60) and (12.61),
given by

−a (1− β)

k−n+2∑
m=2

ρk+1(vm) + a [(1− α) (1− g∗n(tn)) + αAn] ρk+1(v1) .

If this coe�cient vanishes, then the Inspectorate is indi�erent as to its choice of tn. We
therefore wish to demonstrate that

[(1− α) (1− g∗n(tn)) + αAn] ρk+1(v1) = (1− β)

k−n+2∑
m=2

ρk+1(vm) . (12.65)

According to the induction assumption, we have

[(1− α) (1− g∗n(tn)) + αAn] ρk(v1) = (1− β)

k−n+1∑
m=2

ρk(vm) . (12.66)



258 Chapter 12: Se-Se inspection game

Rewriting (12.62) � (12.64), we obtain, using (12.49),

ρk+1(vk−n+2) = Ak+1 β
k−n

ρk+1(vk−n+1) = (1−Ak+1) (1− g∗k(tk)) (1− α)βk−n−1

ρk+1(vm) =
1−Ak+1

1−Ak
g∗k(tk) (1− α) ρk(vm) , m = 1, . . . , k − n .

(12.67)

Thus, (12.65) is equivalent to

[(1− α) (1− g∗n(tn)) + αAn]
1−Ak+1

1−Ak
g∗k(tk) (1− α) ρk(v1) = (1− β)

k−n+2∑
m=2

ρk+1(vm) ,

or to

[(1− α) (1− g∗n(tn)) + αAn]
1−Ak+1

1−Ak
g∗k(tk) (1− α) ρk(v1)

= (1− β)

[
Ak+1 β

k−n + (1−Ak+1) (1− g∗k(tk)) (1− α)βk−n−1

+
1−Ak+1

1−Ak
g∗k(tk) (1− α)

(
k−n+1∑
m=2

ρk(vm)− ρk(vk−n+1)

)]
.

With the induction assumption (12.66) this becomes, using (12.67),

0 = Ak+1 β + (1−Ak+1) (1− g∗k(tk)) (1− α)

− 1−Ak+1

1−Ak
g∗k(tk) (1− α) ρk(vk−n+1)β

−(k−n−1) ,

which is ful�lled by (12.46) and (12.49). Thus the Inspectorate is indi�erent to its choice of
tn, n = 1, . . . , k.

Finally we determine the Inspectorate's equilibrium payo�. Since the Inspectorate is indi�erent
as to the choice of tn, n = 1, . . . , k, we choose the time points t0 − ε < tk < tk−1 < . . . <
t1 < t0 for arbitrarily small ε. Then, apart from terms involving ε, the Inspectorate's payo�
In∗k(tk+1) is given by

Ink+1 = −aAk+1 + (1−Ak+1)
[
α (−g + In∗k(tk))+

+ (1− α) g∗k(tk) [α (−g + In∗k−1(tk−1)) + . . .+ (1− α) g∗2(t2) (−g α)] · · ·
]
.

(12.68)

It follows from Lemma 12.2 that In3 = In∗3(0). Therefore, we assume inductively that

Ink = In∗k(0) ,

or, equivalently, that

In∗k(0) + aAk
1−Ak

= α (−g + In∗k−1(tk−1))+
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+ (1− α) g∗k−2(tk−2)
[
α (−g + In∗k−1(tk−1)) + . . .+ (1− α) g∗2(t2) (−g α) · · ·

]
.

Substituting this into (12.68), we have

Ink+1 = −aAk+1 + (1−Ak+1)

[
α (−g + In∗k(tk)) +

(1− α) g∗k(tk)

1−Ak
(In∗k(0) + aAk )

]
,

which, with (12.44) and tk → t0, is equivalent to

Ink+1 = −aAk+1 − g α (1−Ak+1)

[
(1− αBk) +

(1− α) g∗k(tk)

1−Ak
Bk

]
= In∗k+1(0) ,

where the last equality follows from (12.46) and (12.49).

Ad (ii): Turning to the legal equilibrium, we see immediately that (12.53) and (12.54) satisfy
the Nash equilibrium conditions (12.55).

Let us comment the results of Theorem 12.1: First, although the general form (12.50) of the
Inspectorate's equilibrium strategy could be guessed from Lemmata 12.1 and 12.2, this was
not so for the Operator's equilibrium strategy (12.49). Also, there exists no simple form for
the equilibrium expected time point S of the start of the illegal activity of the Operator which
would correspond to those given in Chapters 4 and 10. As mentioned on p. 248, the equilibrium
inspection time points given by (12.50) constitute a robust equilibrium strategy only in the case
of α = 0; see also Table 7.3 on p. 142 for an overview of inspection games with a robust
Inspectorate's equilibrium strategy.

Second, assume α = 0. From (12.49) we get

g∗k+1 =
k (1− β)

1 + k (1− β)
and g∗n(tn) =

n− 1

n
, tk+1 < tn < t0 , n = 2, . . . , k .

This is the same result as that for the continuous time Se-No inspection game in Theorem 10.1
and, if in addition β = 0, as that for the discrete time Se-No inspection game in Theorem 4.1.
Like in the Se-No inspection game treated in Section 10.1, 1− g∗2(t2), . . . , 1− g∗k(tk) as given
by (12.49) form only in case of α = 0 a harmonic progression; see also Table 4.1 on p. 72 for
an overview of inspection games with this property. As mentioned on p. 153, for α = 0 and
illegal behaviour of the Operator the game is strategically equivalent to a zero-sum game with
the expected detection time as payo� to the Operator; see p. 398. In fact, from (8.1) and
(12.51) we get for α = 0 the optimal expected detection time

t0 − tk+1

1 + k (1− β)
,

which is the same as that for the Se-No inspection game given by (10.27). We will come back
to this point in Chapter 13. Also, due to this equivalence the equilibrium strategies of both
players do not depend on the payo� parameters a, b and d. Also, (12.50) and (22.3) yield

t∗n − t∗n+1 =
1− β

1 + n (1− β)
(t0 − t∗n+1) for n = 1, . . . , k ,

which is the same as in the Se-No inspection game; see (10.26). From (22.3) we get

t∗n − t∗n+1 =
1− β

1 + n (1− β)
(t0 − t∗n+1) =

1− β
1 + k (1− β)

(t0 − t∗k+1) , (12.69)
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i.e., the di�erences between the optimal interim inspection time points are the same; see also
(10.35). This does no longer hold for α > 0.

Finally, we discuss whether the Operator can be induced to legal behaviour. We �rst show that
this is not always possible even if the number k of interim inspections is increased. Consider
for example t0 = 10, tk+1 = 0, d = 11, b = 20, f = 10, α = 0.05 and β = 0.8. Then the left
hand inequality in (8.2), and (9.49) are ful�lled. Figure 12.9 plots the equilibrium payo�s to the
Operator (12.51) and −k f α according to (12.54). We see that the equilibrium payo� (12.51)
is always larger than −k f α. Thus, the Operator cannot be induced to legal behaviour, and
the Inspectorate should choose the value of k which maximises its equilibrium payo� In∗k(0) in
(12.51). This is possible because In∗k(0) is increasing for all k ≤ kmax, and decreasing for all
k ≥ kmax, where kmax is the positive solution of the equation 2 a = g α (1 + 2 k+ k2 (1− β)).

Figure 12.9 Equilibrium payo�s to the Operator for the parameters t0 = 10, tk+1 = 0, d =
11, b = 20, f = 10, α = 0.05 and β = 0.8. Solid curve: (12.51), dashed curve: −k f α.
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As mentioned on p. 252, we are only interested in the unsaturated Nash equilibria, i.e., we
require t∗k − tk+1 > 0, which is, using (12.47) with tk+1 = 0, equivalent to

H(k + 1) := Ak+1 t0 −
f α

d

(
Bk+1 +

β

1− β

)
> 0 .

Because Ak resp. Bk is a monotone decreasing resp. increasing sequence in k, we have
H(k) > H(k + 1). Furthermore, we have limk→∞ H(k + 1) → −∞. Therefore, there exists
an upper limit k0 given by H(k0) = 0 such that (12.47) is valid for all k ≤ k0.

On the other hand, the Operator will behave legally for all k with −k f α > Op∗k(0), where
Op∗k(0) is given by (12.51). Because of associated inspection costs, the practitioner will never-
theless be interested in the smallest number k1 ful�lling −k1 f α > Op∗k1(0). If k1 > k0 then
the Operator cannot be induced to legal behaviour and the Inspectorate should choose the value
of k which maximises its equilibrium payo�; see above. If k1 < k0 then he can be induced to
legal behaviour and k1 interim inspections should be performed. Numerical calculations indicate
k1 < k0 for reasonable values of the parameters α, β, d, b and f .
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12.4 Choice of the false alarm probability

Like in Sections 9.4 and 10.3 we have considered in this chapter so far the value of the false
alarm probability α a parameter of the model, but � like in Section 9.5 � we ask now which
value should be chosen by the Inspectorate. It will become clear that the structure of �nding
the optimal value of α is the same as in Section 9.5, the only di�erence is the analytical form
of the equilibrium payo�s to both players in case of illegal behaviour of the Operator. For the
same reasons as those given in Section 9.5 we limit our consideration to just k = 1 interim
inspection and assume that (9.69) is again ful�lled.

Using (12.6) and (12.9) as well as (12.10) and (12.12), the equilibrium payo� to the Operator
is given by

Op∗1(α) :=

{
Op∗1(t2) for Operator's illegal behaviour

−f α for Operator's legal behaviour

=

 d (t0 − t2)
1

2− β(α)
− f α 1− β(α)

2− β(α)
− b for L2(t2) > b/d

−f α for L2(t2) < b/d

. (12.70)

De�ne for any α ∈ [0, 1]

F (α) := d (t0 − t2)
1

2− β(α)
− f α 1− β(α)

2− β(α)
− b . (12.71)

Then F (α) is equal to Op∗1(t2), see (12.70), if and only if L2(t2) > b/d, i.e., only for those
α ∈ [0, 1] for which, using (12.6), we have

1

2− β(α)

(
t0 − t2 +

f α

d

)
>
b

d
.

Using (9.69), (8.2) and (12.71) we obtain

F (0) = d (t0 − t2)− b > 0 and F (1) =
1

2
(d (t0 − t2)− f)− b .

To prove that F (α) is a monotone decreasing function on [0, 1], we proceed as in Section 9.5
and de�ne

F̃ (α, β) := d (t0 − t2)
1

2− β
− f α 1− β

2− β
− b ,

which implies F (α) = F̃ (α, β(α)). Assuming that β(α) is a di�erentiable function on (0, 1)
and applying the chain rule from calculus, yields for any α ∈ (0, 1)

d

dα
F (α) =

(
∂

∂α
F̃ (α, β),

∂

∂β
F̃ (α, β)

) ∣∣∣
α=α,β=β(α)

(
1

β′(α)

)

=

(
−f 1− β

2− β
,

1

(2− β)2
(d (t0 − t2) + f α)

) ∣∣∣
α=α,β=β(α)

(
1

β′(α)

)
,
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which is less than zero, because of β′(α) < 0.

Figure 12.10 represents F (α) and −f α as well as the resulting Op∗1(α) using (9.74) with
(µ1 − µ0)/σ = 1.5. Depending on the regions of de�nition, see (12.70), F (α) and −f α are
solid or dashed, and Op∗1(α) is solid for any α ∈ [0, 1]. To see the same e�ects as in Figure
9.3, we choose here t0 = 1, t2 = 0, b = 8, f = 4.5; the three graphs correspond again to d = 9
(left top), d = 12 (right top) and d = 14 (bottom). Note that these parameters ful�l (8.2).

Figure 12.10 The equilibrium payo� (12.70) to the Operator for t0 = 1, t2 = 0, b = 8, f = 4.5
and d = 9 (top left), d = 12 (top right) and d = 14 (bottom).
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Because F (α) is a monotone decreasing function on [0, 1], we distinguish as in Section 9.5
the cases (i) and (ii) from (9.75) with the special cases (9.76) and (9.77). Again, because
F (α) > −f α for any α ∈ [0, 1], in case (ii) and no intersection point, the Operator will behave
illegally for all values of α (bottom graph).

In order to determine the optimal value of α, we apply again the Inspectorate Leadership Prin-
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ciple, see Sections 7.4 and 9.5: According to (12.9) and (12.12), the Inspectorate's equilibrium
payo� is given by

In∗1(α) :=

{
In∗1(t2) for Operator's illegal behaviour

−g α for Operator's legal behaviour
,

=

{
G(α) for L2(t2) > b/d

−g α for L2(t2) < b/d
, (12.72)

where G(α) is, using (12.4), for any α ∈ [0, 1] de�ned by

G(α) := −a (t0 − t2)
1

2− β(α)
− g α 1− β(α)

2− β(α)
. (12.73)

G(α) coincides with In∗1(t2), see (12.72), if and only if L2(t2) > b/d. Using (9.69), (8.2) and
(12.73) we get

G(0) = −a (t0 − t2) < 0 and G(1) = −1

2
(a (t0 − t2) + g) < −g .

In Figure 12.11, the solid curve represents In∗1(α) for the sets of parameters used in Figure
12.10 and a = 10 and g = 3, which ful�l (8.2). Note that for plotting reasons, α∗ in the top
left graph is slightly shifted to the right.

We see that in case of d = 9 and d = 12 (top row), for α = α∗ resp. α = α∗1 and legal
behaviour of the Operator the Inspectorate's payo� is maximized which, as outlined in Section
9.4, is the optimal choice of both players in which the Operator is deterred from behaving
illegally.

For the sake of completeness let us mention that � as in Section 9.4 � in case (ii) and no
intersection point in (9.75), i.e., the bottom graph in Figure 12.11, the application of the
Inspector Leadership Principle does not result in the deterrence of the Operator.
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Figure 12.11 The equilibrium payo� (12.72) to the Inspectorate for the sets of parameters
used in Figure 12.10 and a = 10 and g = 3.
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Chapter 13

Comparison of models in Part II

and between models in Parts I and

II

Di�erent as the inspection models presented in Part I are, their treatment as well as their game
theoretical solutions showed considerable similarities. This is expressed best in Chapter 6 where
for admittedly special cases surprising relations between optimal strategies of di�erent models
and a convincing order of the optimal payo�s was found; see (6.42) and Figure 6.7.

To some degree this holds also for the models of this Part II and also, if we compare the models
and their game theoretical solutions of Parts I and II. The latter comparison, however, is not
so easy for several reasons, even though Part II di�ers from Part I only by the fact that time
is considered continuous. First, most of the inspection models in Part II take errors of the
second and some of them even errors of the �rst kind into account which means in the latter
case that payo� parameters for both players have to be introduced leading to non-zero-sum
games. Second, not all variants listed in Table 2.1 have been taken into account: There is
no published literature for the time continuous No-Se inspection game. Instead and due to
requirements from the side of practitioners, inspection models are presented which deal with
several facilities; see Chapter 11. Just recall that in Part I the No-Se inspection game was only
solved in case of N = 4 possible time points for k = 2 interim inspections; see Lemma 4.1.
Third, the analytical techniques for �nding optimal resp. equilibrium strategies are di�erent for
the No-No inspection game and the Se-No resp. Se-Se inspection games of Part II.

First, let us start by comparing the No-No inspection game of Chapter 9 with the Se-No and
Se-Se inspection games of Chapters 10 to 12. It turned out that there is a remarkable di�erence
between these two types of inspection games. In the �rst one, the optimal interim inspection
time points are characterized by a probability distribution. In the second one the optimal resp.
equilibrium interim inspection time points are pure strategies, i.e., they may be announced, but
they may also be randomized which, however, does not change the equilibrium payo�s to both
players; see, e.g., p. 189 and the explanations at the end of the next paragraph.

What does this mean for practitioners? The unpredictability of interim inspections is appealing,
as they would seem to place the potential violator in a permanent state of uncertainty and
thus serve to deter illegal activity. In the context of routine veri�cation under the Nuclear
Weapons Non-Proliferation Treaty, Sanborn (2001) contrasts the intuitive attractiveness of
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(unannounced) random inspections with the substantial practical di�culties of implementing
them and with the burden to the Operator in trying to accommodate them. Signi�cantly, as
mentioned above, in the models presented in Chapters 10 to 12 the Inspectorate has an optimal
resp. equilibrium strategy which is a pure strategy, although it can play any mixed strategy
which leads to expected optimal resp. equilibrium interim inspection time points being the same
as the deterministic optimal resp. equilibrium inspection time points given by its pure strategy.
Thus there is no need to randomize and the inspection schedule can be common knowledge.

Second, let us compare the game theoretical solutions of the Se-No and the Se-Se inspection
games. In Part I we saw that � under conditions given there � the No-No and the No-Se
inspection games on the one hand, and the Se-No and the Se-Se inspection games on the other
led � after an appropriate transformation of Inspectorate's strategies � to the same optimal
strategies of both players and the same optimal payo�s to the Operator. Since in Part II
the No-Se inspection game is not considered, we can only compare the Se-No and the Se-Se
inspection games. Taking into account the fact that in the Se-No inspection game payo�
parameters are not considered whereas in the Se-Se inspection game they are, Theorems 10.1
and 12.1 and (12.69) show that for one facility and for β > 0 and α = 0 optimal strategies of
both players and the optimal payo�s to the Operator are the same.

But also for several facilities it can be shown � at least for the special case of k = 2 interim
inspections in N = 2 facilities and no error of the �rst kind � that the optimal strategies of
the Operator and the optimal expected detection times are the same for both inspection games
and furthermore, that the optimal strategies of the Inspectorate are equivalent in the sense
that they can uniquely be transformed into each other. Let us sketch this here: In the Se-Se
inspection game the Inspectorate chooses at the beginning of the reference time interval in
which facility the �rst interim inspection will take place. Let h3(1) resp. h3(2) = 1 − h3(1)
denote the probabilities that it chooses facility 1 resp. 2 for the �rst interim inspection and let
t2(1) resp. t2(2) denote the resp. time points. If i, i = 1, 2, denotes the facility at which the
�rst interim inspection is performed, then the Inspectorate chooses at time point t2(i) facility
1 with probability h2(1; i) resp. facility 2 with probability h2(2; i) = 1−h2(1; i) for the second
interim inspection at the time points t1(1; 1), t1(1; 2), t1(2; 1) and t1(2; 2), depending in which
facility the �rst inspection took place. The Operator decides like described in Section 11.2 for
N = 2 facilities.

As in Section 11.2, let q(i2,i1) denotes the probabilities that the �rst interim inspection is
performed in facility i2, and the second one in facility i1. Putting

h3(1)h2(1; 1) =: q(1,1) , h3(1)h2(2; 1) =: q(1,2) ,

h3(2)h2(1; 2) =: q(2,1) , h3(2)h2(2; 2) =: q(2,2) ,
(13.1)

then it can be shown that the expected detection time for the Se-Se inspection game, which
is not derived here, is the same as that for the Se-No inspection game as given by (11.24) for
N = 2 facilities. Consequently, (11.25) and (11.26) constitutes for N = 2 facilities an optimal
strategy of the Operator in both games. Using the inverse transformation of (13.1), i.e.,

h3(1) = q(1,1) + q(1,2) , h3(2) = q(2,1) + q(2,2) ,

h2(1; 1) =
q(1,1)

h3(1)
=

q(1,1)

q(1,1) + q(1,2)
, h2(1; 2) =

q(1,2)

h3(1)
=

q(1,2)

q(1,1) + q(1,2)
,
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h2(2; 1) =
q(2,1)

h3(2)
=

q(2,1)

q(2,1) + q(2,2)
, h2(2; 2) =

q(2,2)

h3(2)
=

q(2,2)

q(2,1) + q(2,2)
,

given the appropriate ratios exist, the Inspectorate's optimal strategy (11.27) and (11.28) for
N = 2 facilities in the Se-No inspection game can be used to obtain an optimal strategy of the
Inspectorate in the Se-Se inspection game. Obviously, the optimal expected detection times
coincide. We dare to suppose that for any number of facilities and interim inspections such a
transformation can be shown.

Third, let us compare the Operator's equilibrium payo�s of the No-No and the Se-Se inspection
game. In Chapter 6 we saw for the special cases of N = 3 possible time points for k = 2
interim inspections and β > 0 that the Se-No and Se-Se inspection game led to larger or equal
optimal expected detection times than the No-No and No-Se inspection game; see (6.42) and
Figure 6.7. In Part II we can only compare the No-No and the Se-Se inspection game for k = 1
interim inspection and α > 0 and β > 0. For the No-No inspection game we get for the
Operator's equilibrium payo�, using (9.57) and (9.59), that

d t0
1

e1−β
+ f

α

1− β

(
β − 1

e1−β

)
− b ≷ −f α

if and only if

b

d
≶ t0 −

(
t0 −

α

1− β
f

d

) (
1− 1

e1−β

)
,

whereas for the Se-Se inspection game we obtain by (12.9) and (12.12) for t2 = 0 (in order to
make both games comparable)

d t0
1

2− β
− f α 1− β

2− β
− b ≷ −f α

if and only if

b

d
≶

1

2− β

(
t0 +

f

d
α

)
.

As shown in the proof of Corollary 9.1, we know that

if t0 − t∗ >
b

d
then

1

2− β

(
t0 +

f

d
α

)
>
b

d
.

Thus, in case of illegal behaviour the di�erence between these two equilibrium payo�s is, using
(9.57) and (12.9), given by

d t0

(
1

e1−β
− 1

2− β

) (
1− α

1− β
f

d t0

)
< 0 ,

because of α + β < 1 and f < d t0; see (9.49), and (8.2) for k = 1 interim inspection. This
means, not surprisingly, that it is a disadvantage for the Operator to play non-sequentially.
Consistently with this, the limit for b/d to induce the Operator to legal behaviour is lower in
the No-No inspection game.
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This brings us to the equilibrium inspection strategy of the Inspectorate in case of the Operator's
legal behaviour. For the No-No inspection game with k = 1 interim inspection, the pure
equilibrium inspection time point t∗1 is according to (9.64) given by

t0 −
b

d
≤ t∗1 ≤

1

1− β

(
b

d
− t0 β −

f

d
α

)
which is the same as that for the Se-Se inspection game given by (12.11) for t2 = 0. Note that
the condition for the existence of t∗1 coincide in both game; see (9.63) and (12.10).

The fact that the Inspectorate's set of equilibrium strategies in case of legal behaviour of the
Operator coincide in the No-No and Se-Se inspection game with k = 1 interim inspection is at
�rst sight so surprising, that we consider now the case of k = 2 interim inspections which has
not been treated for the No-No inspection game with α > 0 and β > 0. Suppose there exists
a pure equilibrium strategy (t∗2, t

∗
1) of the Inspectorate. Using a generalization of (9.50), the

Operator's Nash equilibrium conditions in the No-No inspection game are

−2 f α ≥



d
[
(1− β) (t∗2 − s) +

+ β (1− β) (t∗1 − s) + β2 (t0 − s)
]
− b : 0 ≤ s < t∗2 < t∗1 < t0

d
[
(1− β) (t∗1 − s) + β (t0 − s)

]
− α f − b : 0 < t∗2 ≤ s < t∗1 < t0

d (t0 − s)− 2α f − b : 0 < t∗2 < t∗1 ≤ s < t0

,

which are equivalent to

b

d
≥



(1− β) (t∗2 − s) +

+ β (1− β) (t∗1 − s) + β2 (t0 − s) + 2α
f

d
: 0 ≤ s < t∗2 < t∗1 < t0

(1− β) (t∗1 − s) + β (t0 − s) + α
f

d
: 0 < t∗2 ≤ s < t∗1 < t0

t0 − s : 0 < t∗2 < t∗1 ≤ s < t0

,

or, after taking into account those s which maximize the right hand sides of these inequalities,

b

d
− 2 f

d
α ≥ (1− β) t∗2 + β (1− β) t∗1 + β2 t0

b

d
− f

d
α ≥ (1− β) (t∗1 − t∗2) + β (t0 − t∗2)

b

d
≥ t0 − t∗1 ,

which are the �rst three inequalities in (12.27) for the Se-Se inspection game if we take t3 = 0.
The Inspectorate's Nash equilibrium conditions are again ful�lled as equality.

In fact it can be seen nearly immediately that this equivalence holds for any number k of
interim inspections. Suppose again the existence of a pure Inspectorate's equilibrium strategy
(t∗k, . . . , t

∗
1). Then a generalization of (9.50) yields for the Operator's Nash conditions in the

No-No inspection game

− k f α
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≥



d
[
(1− β) (t∗k − s) +

+ β (1− β) (t∗k−1 − s) + . . .+ βk (t0 − s)
]
− b : 0 ≤ s < t∗k

d
[
(1− β) (t∗k−1 − s) +

+ β (1− β) (t∗k−2 − s) + . . .+ βk−1 (t0 − s)
]
− α f − b : t∗k ≤ s < t∗k−1

... :
...

d (t0 − s)− k α f − b : t∗1 ≤ s < t0

.

If we manipulate these inequalities in the same way as those for k = 2 interim inspections and
take those s which maximize their right hand sides, then we get the inequalities

b

d
− k f

d
α ≥ (1− β) t∗k + β (1− β) t∗k−1 + . . .+ βk t0

b

d
− (k − 1) f

d
α ≥ (1− β) (t∗k−1 − t∗k) + β (1− β) (t∗k−2 − t∗k) + . . .+ βk−1 (t0 − t∗k)
...

b

d
≥ t0 − t∗1 .

These inequalities, however, are equivalent to those for the Se-Se inspection game; see (12.53)
with tk+1 = 0. Again, the Inspectorate's Nash equilibrium conditions are ful�lled as equality.
Thus we have: If the Operator behaves legally and the Inspectorate has a pure equilibrium
strategy (t∗k, . . . , t

∗
1), then the Inspectorate's set of pure equilibrium strategies coincides in both

the No-No and the Se-Se inspection game.

Finally, let us come back to the system quantities, in our case primarily time points and intervals,
which as mentioned in Section 1.4, are physical quantities and thus, may serve as important
yardsticks for practitioners. Before, however, let us remember what we pointed out in detail on
pp. 139, 153 and 259. The inspection games considered in Part II are either zero sum games,
namely those in Sections 9.1 � 9.3, 10.1, and Chapter 11, or they are, for α = 0, strategically
equivalent to zero sum games, namely those in Sections 9.4 and 10.3 and Chapter 12, all of
them with the expected detection time as payo� to the Operator. This means that in the �rst
case a priori only physical quantities are used, whereas in the second one these quantities can
be deduced from the solutions as it has already been shown in Chapter 12.

In Tables 13.1 and 13.2 we have collected the most important system quantities of some of
those models described and analysed in Parts I and II. In order to present an overview in which
these system quantities can be compared directly, we have omitted many important results,
e.g., in case of discrete time inspection games special results for k > 1 interim inspections, or
in case of continuous time inspection games results for α > 0. Note that time points, e.g.,
E(S) and t∗, are always related to the beginning of the reference time interval so that they can
also be considered as time intervals like Op∗1. Only then an expression like EP ∗(S) = t∗ −Op∗1
in Table 13.1 makes sense.

In Table 13.1 we present system quantities for the No-No inspection games with discrete and
continuous time. Since, according to Theorem 3.1, there exists a solution for the discrete time
case only for k = 1 interim inspection and any number N of possible time points, for the
purpose of comparison we present the corresponding results for the continuous time case also
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only for k = 1 interim inspection. Remember that the discrete and the continuous time No-Se
inspection games are not generalized to any number k of interim inspections, but that for k = 1
interim inspection there is no di�erence between the No-No and the No-Se inspection games.

Table 13.1 System quantities for the No-No inspection games for k = 1 interim inspection
and α = β = 0.

Discrete time Continuous time

Length of the
reference time

interval
N + 1 t0

Cut-o� value/
time point

n∗ = min

n :

n∑
j=1

1

N − j + 1
≥ 1


N large: n∗ ≈ (N + 1)

(
1− 1

e

) t∗ = t0

(
1− 1

e

)

Optimal expected
detection time

Op∗N,1 =

n∗∑
j=1

N − n∗ + 1

N − j + 1

N large: Op∗N,1 ≈


N + 1− n∗

N + 1

e

Op∗1 = t0 − t∗ =
t0
e

1

Optimal expected
time point for the
start of the illegal

activity

Ep∗(S) = n∗ −Op∗N,1 EP ∗(S) = t∗ −Op∗1

Optimal expected
interim inspection

time point

Eq∗(T1) = Op∗N,1 EQ∗(T1) = Op∗1
1

1 Note that also for k > 1 interim inspections the optimal expected detection time is equal to
the time from the cut-o� value to the end of the reference time interval t0, and is also equal to
the time from the beginning of the reference time interval to the optimal expected time point
of the �rst interim inspection.

We see striking similarities between the system quantities of both inspection games if we re-
member that the length of the reference time interval is N + 1 for the discrete time and t0
for the continuous time case. Whereas this is not so surprising for large N , it is by no means
trivial for the optimal expected time point for the start of the illegal activity and the optimal
expected interim inspection time point; see the last two rows.

In Table 13.2 we present system quantities for the Se-No inspections games, now for any number
k of interim inspections, but again only for the case α = β = 0, even though for the continuous
time Se-No inspections game Theorem 10.1 provides a solution for β > 0. Also remember that
for the discrete and continuous time case and α = β = 0, the Se-Se inspection games are
equivalent to the Se-No inspection games in the sense that Inspectorate's optimal strategies



Chapter 13: Comparison of models in Part II and between models in Parts I and II 271

can be transformed into each other. Note that the length of the reference time interval in the
continuous time case is t0 − tk+1 due to the di�erent procedures in both parts; in fact, in the
Theorems we always could choose tk+1 = 0.

Table 13.2 System quantities for the Se-No inspection games for any number k of interim
inspections, one facility and α = β = 0.

Discrete time Continuous time

Length of the
reference time

interval
N + 1 t0 − tk+1

Cut-o� value/
time point

Does not exist

Optimal expected
detection time

Op∗N,k =
N + 1

k + 1
Op∗k =

t0 − tk+1

k + 1

Optimal expected
time point for the
start of the illegal

activity

E(g∗,q∗)(S) =
k

2
Op∗N,k E(g∗,t∗)(S) =

k

2
Op∗k + tk+1

Optimal expected
interim inspection

time points

Eq∗(Tn) = (k − n+ 1)Op∗N,k
n = 1, . . . , k

t∗n − tk+1 = (k − n+ 1)Op∗k
1

n = 1, . . . , k

Optimal expected
time point of the �rst
interim inspection

Eq∗(Tk) = Op∗N,k t∗k − tk+1 = Op∗k
1

Optimal expected
time point of the last
interim inspection

Eq∗(T1) = k Op∗N,k
= N + 1−Op∗N,k

t∗1 = k Op∗k = t0 −Op∗k 1

1 Note that because t∗n, n = 1, . . . , k, is not a random variable, they do not represent expectations but
only the optimal time point(s) of the interim inspection(s).

Here, the similarities between the discrete and continuous time Se-No inspections games are
even more pronounced maybe due to the fact that here a cut-o� value/time point does not exist:
If we identify N + 1 and t0 − tk+1, then all system quantities have the same analytical forms.
But there are also similarities within the discrete and within the continuous time inspections
games and between all models: The optimal expected time point of the �rst interim inspection
(for k = 1 the only one) is just the optimal expected detection time.

Also, common to all these models is that the optimal expected detection times are related to
the ending parts of the reference time interval: Either they are equal to the time between the
last possibility for an interim inspection, n∗ respectively t∗, and the end of the reference time
interval, or equal to the time between the expected time point of the last interim inspection
and, again, the end of the reference time interval. This holds even for the continuous time
Se-No inspection game with β > 0; see (10.27).
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Part III

Critical Time

In Part III inspection games are considered which are characterized by an inspection philosophy
called critical time: The illegal behaviour of the Operator must be detected within that time,
otherwise he is presumed to have achieved his illegal objectives. In practical applications the
critical time may have quite di�erent meanings. We mentioned on p. 4 that the critical time
concept has its origin in the conversion time introduced by the IAEA: The Inspectorate has
"won" the game if the illegal activity is detected within the critical time, otherwise it has "lost"
it. In this and related applications, where a �xed critical time is considered, it can be argued
that the Inspectorate performs its inspections only at integer multiples of the critical time. In
other words, time is considered to be discrete.

In other applications, like the control of waterways or straits by Customs, the critical time may
mean a night during which smugglers have a chance to cross the water without being detected
even though the illegal activity itself, i.e., the crossing, may need only one hour. In fact, here
there is a given number of nights in which Smugglers may try to cross the water with their
boats, and customs o�cers try to catch them during some of these nights. It does not interest
either party at which night and at which part/time of a night Smugglers are caught or not.
The point is that time is not an issue in this case, but the mathematical models are basically
the same for all con�ict situations considered in Part III.

An important consequence of this new philosophy is that, as indicated by the wording "achieved
his illegal objectives", from the very beginning idealized payo�s, in technical terms utilities, �
in contrast to the detection time in Parts I and II which has a physical meaning � have to be
introduced which describe the gains or losses of both players in case of detected or undetected
illegal behaviour, or legal behaviour of the Operator. More, however, will be said on this
important issue in the course and in particular in the �nal Chapter 18 of Part III.

Part III is structured as follows: We consider after the general assumptions in Chapter 14 the
No-No and the Se-Se inspection games in Chapters 15 and 16. There will be, however, no
No-Se nor Se-No inspection games since they have not yet been analysed. In addition, because
of the large literature and due to some peculiarities, in Chapter 17 strait control models and
models with multiple illegal activities are treated.

In the �nal Chapter 18 the models of Part III are compared and research gaps are identi�ed.
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Chapter 14

General assumptions

This Part III di�ers from Parts I and II basically by the inspection philosophy. This implies
further reaching consequences than one would imagine at the �rst sight. Therefore the full set
of assumptions for the inspection models to be described and analysed subsequently is presented
here. But, as already mentioned in the beginning of Part II, this also serves the purpose that
Part III can be read independently.

Like in Chapters 2 and 8, we consider in Chapter 15 a simple inspected object, for example a
production line, or a nuclear or chemical facility which is subject to inspections in the framework
of agreed rules, formal agreements or an international treaty, and a reference time interval (a
week, a month, or a calender year) consisting of L complete critical time periods of length t;
see Figure 14.1.

Figure 14.1 Top: A reference time interval consisting of L complete critical time periods of
length t. Below: L inspection opportunities with not necessarily equidistant time points.

t

L 2 1 0L− 1 L− 2

Chapter 15:

L L− 1 L− 2 2 1

Chapters 16, 17 and 24:

In contrast to Parts I and II, in the inspection games in Part III �xed inspection activities at the
beginning and at the end of the reference time interval (PIVs) do not exist. This is also the
reason why the inspections are no longer called interim inspections, because the word "interim"
indicates that there are some �xed inspection activities at the beginning and at the end of the
reference time interval.

In addition, it is assumed that by agreement k inspections are strategically placed at integer
multiples of the critical time, which is de�ned as the time period within which an illegal activity
has to be detected. Thus, if t is the critical time and if the reference time interval consists
of L complete critical time periods, the game starts at L and has the inspection opportunities
(L − 1) t, . . . , 1 t, 0, which are abbreviated by L − 1, . . . , 1, 0 and which are called steps; see
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Figure 14.1. At an inspection a preceding failure or illegal activity will eventually be detected
with some probability lower or equal than one. Also, associated with each inspection which is
not preceded by a failure or an illegal activity a false alarm may be raised which is assumed to
be clari�ed with certainty.

The Operator may behave illegally at the beginning of the reference time interval or at multiple
integers of the critical time except for the end of the reference time interval, i.e., he may behave
illegally at steps L, . . . , 1. Again, we label the potential inspection opportunities in backward
order, i.e., according to the number of remaining inspection opportunities.

The objective of the Operator is � in case he behaves illegally � to place the illegal activity
such that it is not detected within the critical time, and the objective of the Inspectorate is to
perform its inspections such that the illegal activity is detected within the critical time. Due to
this new inspection philosophy utility functions have to be used from the very beginning of the
analysis which describe the gains and losses of both the Operator and the Inspectorate for all
outcomes of the inspection game; see (14.1) and (14.2).

The situation in Chapters 16 and 17 is in some aspects di�erent to that of Chapter 15. While
in Chapter 16 it can still be assumed that inspections are performed within the framework of
agreed rules, formal agreements or an international treaty, this assumption can no longer be
made for the inspection games in Chapter 17 between Customs and Smuggler. As already
mentioned on p. 18 there exist no agreed rules, formal agreements or international treaties in
these con�ict situations. Nevertheless, we assume that the following assumptions hold also for
these inspection games.

Again, it is assumed that in Chapter 16 by agreement and in Chapter 17 by Smugglers' long
term observation of Customs' activities, see p. 18, k inspections are strategically placed at
steps L, . . . , 1, and that the Operator may behave illegally at steps L, . . . , 1; see Figure 14.1.
What has been said above about the detection of the illegal activity at an inspection resp. false
alarms holds here as well. Note that in Figure 14.1 we intentionally do not use equidistant time
points, because the steps can be any event which does not have to happen the same time after
the previous step. Absolute time in the sense of detection time does matter in the inspection
games considered here but only the fact of timeliness.

A note on wording: To be consistent with Chapter 17, in Chapter 16 we use the word "con-
trol(s)" although we refer to "inspection(s)". In Chapter 17, the steps are also called nights,
due to the di�erent applications for which the models were originally developed, and instead of
Operator and Inspectorate the players are called Smuggler and Customs.

Let us summarize the assumptions in the following list, which are structured like those for
Parts I and II. Note, however, that while in Parts I and II eleven assumptions are listed, here
only ten are needed: Because PIVs do not exist in the inspection problems analyzed in Part
III, assumption (iii) of Chapters 2 and 8 is omitted. For the sake of brevity, we formulate the
following list only using the terms Operator, Inspectorate, steps and inspections.

(i) There are two players: the Operator and the Inspectorate.

(ii) The Inspectorate performs k inspections at steps L−1, . . . , 0 in Chapter 15, and at steps
L, . . . , 1 in Chapters 16, 17 and 24.

(iii) The Operator may behave illegally at most once at the steps L, . . . , 1. In Section 17.2
this assumption is extended.
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(iv) During an inspection the Inspectorate may commit errors of the �rst and second kind
with probabilities α and β. These error probabilities are the same for all k inspections.

(v) The number k of inspections is known to the Operator.1

(vi) The Operator decides � if he behaves illegally at all � at the beginning of the reference
time interval at which step to behave illegally, or he only decides whether to behave
illegally immediately at step L or to postpone it; in the latter case he decides whether to
behave illegally at step L− 1 or to postpone it again; and so on.

The Inspectorate decides at the beginning of the reference time interval at which steps
to perform the inspection(s), or it decides only whether to perform an inspection at step
L or not; in the latter case it decides whether to perform an inspection at step L − 1,
and so on, keeping in mind that it has to fully use k inspections.

(vii) Both players decide independently of each other, i.e., no bindings agreements are made.

(viii) The payo�s to the two players (Operator, Inspectorate) are given by

(d,−c) for an untimely inspection or

a timely inspection and no detection of the illegal behaviour

(−b,−a) for a timely inspection and detection of the illegal behaviour

(−f,−g) for legal behaviour and a false alarm

(0, 0) for legal behaviour and no false alarm ,

(14.1)

where the parameters satisfy the conditions

0 < f < min(b, d) and 0 < g < a < c . (14.2)

(ix) An inspection does not consume time. For the model in Chapter 15 and in case of the
coincidence of the start of the illegal behaviour and an inspection, the illegal behaviour
may only be detected at the occasion of the next inspection.

(x) The condition when an inspection game ends are speci�ed separately in the following
chapters.

Let us comment assumption (viii): The Operator's most desirable outcome is to behave illegally
without being detected, i.e., his maximum payo� is d > 0. Next he prefers to behave legally and
that no false alarm occurs, which gives him the second-best payo� 0. His third-best outcome
is to have to accept a false accusation leading to the payo� −f and least of all does he want
to be caught leading to the payo� −b. This ordering implies −b < −f < 0 < d which is
equivalent to the left hand inequality of (14.2) assuming that the false alarm costs f are less
than the gain d in case of an undetected illegal behaviour, i.e., f < d.

The best, i.e., most desirable, outcome for the Inspectorate is legal behaviour of the Operator
and no false alarm leading to the payo� 0. Thus, the Inspectorate's highest priority is deterrence;
see Section 7.3. The second-best is to have raised a false alarm leading to the payo� −g. Its
third-best outcome is to have detected the illegal behaviour leading to the payo� −a, and �nally

1The possibility that the expected number of inspections is �xed and known to the Operator is addressed
in Chapter 24; see also the comment on p. 18.
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not to have detected the illegal behaviour, which gives, because it is the worst outcome, the
minimum payo� −c. Therefore we get the ordering −c < −a < −g < 0 which is equivalent to
the right hand inequality of (14.2).

Note that the payo� (0, 0) in case of legal behaviour and no false alarm implies that inspection
costs are not part of the Inspectorate's payo�, but rather imposed by the external parameter k;
see also p. 136. Also note that we could have normalized a second payo� parameter for each
player, e.g., to one. For the sake of clarity and for convenience in dimensional considerations,
however, we have preferred not to do so. Note that the payo� −c to the Inspectorate did not
occur in Parts I and II, see (7.5), (7.26) and (8.1), since there it was assumed that an illegal
activity is always, eventually only at the end of the reference time interval, detected by the
Inspectorate and furthermore, timeliness in the sense of this part was not an issue. Also note
that, as indicated in (14.1), the Operator gains d and the Inspectorate looses c not only in
case of an untimely inspection, but also in case of a timely inspection and no detection � with
probability β � of the illegal activity. Finally note that a and d are absolute payo�s, i.e., not
proportional to time like in Parts I and II.

There is an important correspondence to what has been said on p. 153 in the context of the
playing for time inspection games: If false alarms can be excluded and the Operator decides at
the beginning of the game whether to behave legally or not, then the game is strategically equiv-
alent to a zero-sum game with the timely detection probability as payo� to the Inspectorate;
see also p. 391.

Finally, more assumptions have to be made which are neither covered by the classi�cation
scheme given by Figure 1.1 nor by the list presented above. In order to give an idea of this
kind of assumptions, in Figure 14.2 the branch "critical time and discrete time" of Figure 1.1 is
extended by two levels: "Operator's illegal activity" and "End of Inspectorate's activities". One
realizes that not all possibilities of this classi�cation scheme are shown, in fact only those are
taken into account for which game theoretical models exist and are described and analysed in
the following three chapters. Note that for the sake of simplicity and better overview in Figure
14.2 the wording reference time interval and inspections is maintained throughout, i.e., also for
those models for which the wording steps and controls is used.
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Figure 14.2 Classi�cation of critical time inspection games. Note that in case of at most one
illegal activity � which is common knowledge � the payo�s to both players are the same if the
Inspectorate's activities end after the detection of an illegal activity or only at the end of the
reference time; see Section 15.4 for an exception.
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Chapter 15

No-No inspection game:

Canty-Rothenstein-Avenhaus

model

Like in Parts I and II we consider �rst the No-No inspection game which has been analysed
by Canty et al. (2001) and which we call Canty-Rothenstein-Avenhaus inspection model. This
model can also be used for the description of the con�ict between Smugglers and Customs
which is the subject of Chapter 17. Quite a di�erent simple application will be discussed on p.
302. In the following we present this game theoretical model and its solution along the lines of
the paper; we will, however, add some essential new �ndings and also some explanations. More
than that, we will return to this model in Chapters 16, 17 and 24.

In this chapter, assumption (vi) of Chapter 14 is speci�ed as follows:

(vi') The Operator decides at the beginning of the reference time interval, i.e., at the beginning
of period L, when to behave illegally or whether to behave legally throughout the game.

The Inspectorate decides at the beginning of the reference time interval when to perform
its k inspections.

Assumptions (iv) and (x) will be speci�ed in the following sections, while the remaining as-
sumptions of Chapter 14 hold throughout this chapter.

Assumption (viii) of Chapter 14 de�nes the payo�s to the two players (Operator, Inspectorate).
Note that in Canty et al. (2001) no relation between d and f is speci�ed, i.e., the false alarm
costs f are allowed to be higher than the gain d in case of an undetected illegal activity, i.e., in
case of an untimely inspection or a timely inspection and no detection of the illegal behaviour.
We will come back to this point on pp. 293 and 304. Associating with each inspection an error
second kind with probability β and an error �rst kind with probability α, the payo�s to the two
players (Operator, Inspectorate) are

(−b (1− β) + d β,−a (1− β)− c β) for timely inspection and illegal behaviour

(−f α,−g α) for legal behaviour.
(15.1)

If we introduce the quantities

A := (b+ d) (1− β) > 0 and B := (c− a) (1− β) > 0 , (15.2)

281
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then (15.1) simpli�es to

(d−A,B − c) for timely inspection and illegal behaviour

(−f α,−g α) for legal behaviour
(15.3)

Furthermore, we assume that the Inspectorate's decision whether or not to call an alarm is
based on an unbiased test procedure, i.e., if α+β < 1, which implies, using (14.2) and (15.2),

A− f α > 2 f (1− β)− f α = 2 f α− f α > 0 , (15.4)

a relation, that is frequently used throughout this chapter.

In Sections 15.1 � 15.3 the No-No inspection game is analysed under the assumption that only
inspections which are performed before an illegal activity may incur false alarm costs. These
sections go along the lines of Canty et al. (2001). In Section 15.4 we demonstrate the sensitivity
of the game theoretical solution of the No-No inspection game if now inspections which are
performed before and after an illegal activity may incur false alarm costs. Section 15.5 deals
with the optimal value of the false alarm probability α.

Note that in Chapter 24 a Se-No critical time inspection game with an expected number of
inspections in one facility is analysed, see also p. 18, which has surprising relations to the
No-No inspection game of Sections 15.1 � 15.3.

15.1 Two periods and one inspection; errors of the �rst and
second kind

The inspection game analysed in this section and Sections 15.2 and 15.3 is based on the
following speci�cations:

(iv') During an inspection the Inspectorate may commit errors of the �rst and second kind with
probabilities α and β. These error probabilities are the same for all inspections. Only
inspections which are performed before an illegal activity may incur false alarm costs.
This assumption is soften on p. 307.

(x') The game ends either at the beginning of period L in case the Operator behaves legally
throughout the game, or one period after the Operator behaves illegally.

Let us discuss these assumptions. Ad (iv'): Why, should one assume that only inspections which
are performed before an illegal activity may incur false alarm costs? This can be justi�ed as
follows: Even though both players plan non-sequentially, the actual inspection game is played
over time. If an illegal activity is detected timely, i.e., in case of a timely inspection and
detection of the illegal behaviour, the game ends anyhow because of assumption (x'), and thus,
false alarms and their costs after the illegal activity will not occur. If an illegal activity is not
detected timely, i.e., in case of an untimely inspection or a timely inspection and no detection
of the illegal behaviour, we assume that the Inspectorate will somehow �nd out about it and
any inspections that may still be planned will no longer make sense, i.e., will not take place,
because the Inspectorate has lost the game anyhow. This is expressed by the elimination of
the false alarm costs. Formally: Suppose the Operator behaves illegally at the beginning of
the period i, i = L, . . . , 1, i.e., at the beginning of L− i+ 1-th period, then at all inspections
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which are performed at L − 1, . . . , i a false alarm may be raised which leads to false alarm
costs for both players, while at all eventually planned inspections at i − 2, . . . , 0 false alarm
costs are put to zero, i.e., do not occur; see p. 307 for an inspection game with a modi�ed
assumption (iv'). Note that while in the critical time inspection games of Part III it has to
be de�ned whether false alarms may occur after an undetected illegal activity, in the playing
for time inspection games treated in Section 10.3 and Chapter 12 of Part II, this is obsolete,
because once an illegal activity is started it is persistent until the interim inspection at which it
is detected or the �nal PIV. Thus, false alarms at interim inspections performed after the start
of the illegal activity do not occur by de�nition.

Ad (x'): Suppose the Operator behaves illegally at the beginning of the period i, i = L, . . . , 1,
then the game ends at the beginning of period i− 1 regardless whether the illegal behaviour is
detected at i− 1 or not. In the latter case, the Operator has successfully performed his illegal
activity and thus, the game ends as well.

Let us begin by considering the inspection game with L = 2 complete critical time intervals,
i.e., two periods and k = 1 inspection. The Operator's three pure strategies are to behave
illegally at the beginning of the reference time interval, i.e., at 2, at the beginning of period 1,
i.e., at 1, or to behave legally. Thus, his set of pure strategies is given by

I2 = {2, 1, le} .

The Inspectorate inspects at the end of period 2, i.e., at 1, or at the end of period 1, i.e., at
0. Hence its set of pure strategies is given by

J2,1 = {1, 0} .

There are two strategy combinations of both players in which the inspection is timely, namely
(2, 1) and (1, 0), leading to the payo�s d−A and B−c; see (15.3). For the strategy combination
(2, 0) the inspection is untimely and the payo�s are d and −c. Note that in this case by
assumption (iv') no false alarm is incurred at 0. In case of the strategy combination (1, 1), at 1
a false alarm may occur before the Operator behaves illegally at 1, thus, false alarm costs have
to be included and the payo�s are given by d− f α and −c− g α. In case of legal behaviour of
the Operator the payo�s to both players are −fα and −g α, independently of the Inspectorate's
strategy. The normal form of this inspection game is given in Table 15.1.

Let pi denote the probability for behaving illegally at i, i = 2, 1, or behaving legally ple, and let
qj denote the probability of inspecting at j, j = 1, 0. Then, the set of mixed strategies of the
Operator is given by

P2 :=
{
p = (p2, p1, ple)

T ∈ [0, 1]3 : p2 + p1 + ple = 1
}

(15.5)

and that of the Inspectorate by

Q2,1 :=
{
q := (q1, q0)

T ∈ [0, 1]2 : q1 + q0 = 1
}
. (15.6)

Then the (expected) payo� to the Operator is, for any p ∈ P2 and any q ∈ Q2,1, using (19.3),
given by

Op2,1(p,q) = (p2, p1, ple)

 d−A d
d− f α d−A
−f α −f α

 (
q1
q0

)
, (15.7)
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Table 15.1 Left: Normal form of the No-No inspection game with L = 2 periods and k = 1
inspection. Right: Reference time interval consisting of L = 2 complete critical time periods.
The probabilities pi, i = 2, 1, and qj , j = 1, 0, are explained in the text.

1 0

2
B − c −c

d−A d

1
−c−g α B − c

d− f α d−A

le
−g α −g α

−f α −f α

2

p2

1

p1

q1

0

q0

and, using (19.4), that to the Inspectorate by

In2,1(p,q) = (p2, p1ple)

 B − c −c
−c− g α B − c
−g α −g α

 (
q1
q0

)
. (15.8)

The game theoretical solution of this inspection game, see Canty et al. (2001), is presented in

Lemma 15.1. Given the No-No inspection game with L = 2 periods and k = 1 inspection,
errors of the �rst and second kind, and an unbiased test procedure. The sets of mixed strategies
are given by (15.5) and (15.6), and the payo�s to both players by (15.7) and (15.8).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2,1 :=
Op2,1(p

∗,q∗) and In∗2,1 := In2,1(p
∗,q∗):

(i) For

d >
(A− f α)2

2A− f α
(15.9)

the Operator behaves illegally and an equilibrium strategy is given by

p∗2 =
B + g α

2B + g α
, p∗1 =

B

2B + g α
and p∗

le
= 0 . (15.10)

An equilibrium strategy of the Inspectorate is given by

q∗1 =
A

2A− f α
and q∗0 =

A− f α
2A− f α

. (15.11)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 = d− A2

2A− f α
and In∗2,1 = −c+

B2

2B + g α
. (15.12)
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(ii) For

d <
(A− f α)2

2A− f α
(15.13)

the Operator behaves legally, i.e., p∗2 = p∗1 = 0 and p∗
le

= 1. The Inspectorate's set of
equilibrium strategies is given by

d+ f α

A
≤ q∗1 ≤ 1− d

A− f α
and q∗0 = 1− q∗1 . (15.14)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 = −f α and In∗2,1 = −g α . (15.15)

Proof. According to (19.6) we have to prove that (p∗,q∗) ∈ P2 ×Q2,1 ful�ls

Op∗2,1 ≥ Op2,1(i,q∗) and In∗2,1 ≥ In2,1(p∗, j) (15.16)

for all i = 2, 1, le and for all j = 1, 0.

Ad (i): Because −c < B− c, d−A < d− f α due to (15.4), −c− gα < B− c and d−A < d,
the payo�s are cyclic. Thus, the normal form game possesses a unique Nash equilibrium which
is the solution of the two equations

Op2,1(2,q
∗) = Op2,1(1,q

∗) and In2,1(p
∗, 1) = In2,1(p

∗, 0)

with the solutions (15.10), (15.11) and (15.12). Condition (15.9) guarantees that

Op∗2,1 > −f α = Op2,1(le,q
∗) .

Thus, the Nash equilibrium conditions (15.16) are ful�lled.

Ad (ii): The Operator's Nash equilibrium condition can be, using (15.15) and (15.16), written
as

−f α ≥ Op2,1(1,q∗) = q∗1 (d−A) + (1− q∗1) d and

−f α ≥ Op2,1(2,q∗) = q∗1 (d− f α) + (1− q∗1) (d−A) ,

which holds because of (15.14). Furthermore, we have for any q ∈ Q2,1 that In2,1(le,q) =
In∗2,1 = −g α, i.e., the Inspectorate's Nash equilibrium condition is also ful�lled. Inequality
(15.13) assures the existence of q∗1 with 0 < q∗1 < 1.

Let us comment the results of Lemma 15.1: First, equality will be considered neither in (15.9)
nor in (15.13) since the payo� parameters can be estimated only imprecisely in reality. For later
purposes let us note the following equivalent formulation of condition (15.9): With

x := 1− f α

A

for which 0 < x < 1 holds because of (15.4), we get, using (15.9), that

d >
Ax2

1 + x



286 Chapter 15: No-No inspection game

is equivalent to

x2 <

(
1 +

A

d
(1− x)

)−1
. (15.17)

We will �nd a generalization of this condition in Theorem 15.1.

Second, in case of α = 0, i.e., if attribute sampling is considered, case (i) leads to equilibrium
strategies which are independent of the payo� parameters. In fact, this could have been guessed
since in this case neither the �rst nor the second inspection opportunity can be preferred to the
other.

Third, because condition (15.13) is equivalent to both

d+ f α

A
<

A

2A− f α
and

A

2A− f α
< 1− d

A− f α
,

the equilibrium strategy (q∗1, q
∗
0)T given by (15.11) ful�lls (15.14). Thus, (q∗1, q

∗
0)T is a robust

equilibrium strategy in the sense that given the payo� parameters d, b and f , and the probabil-
ities α and β, the Inspectorate can just play (q∗1, q

∗
0)T according to (15.11) and does not need

to check whether (15.9) or (15.13) is ful�lled. A corresponding statement for No-No inspection
games with k ≥ 2 inspections and L > k periods only holds for α = 0; see pp. 292 and
304, and Table 7.3 on p. 142 for an overview of inspection games with a robust Inspectorate's
equilibrium strategy.

Fourth, it can be shown, for example with the LCP-formalism, see Avenhaus and Canty (1996)
Chapter 9, that (15.10) and (15.11) together with the legal behaviour solution (15.14) are in
fact the only Nash equilibria.

Finally, since the detection probability 1− β is a function of the false alarm probability α and
since the latter can be �xed by the Inspectorate, the question arises as to the �best� value of
α. We will return to this question in Section 15.5.

15.2 Three periods and two inspections; errors of the �rst
and second kind

Before turning to the general case, let us consider the inspection game with L = 3 periods
and k = 2 inspections, because here two new features which do not yet occur in the case of
L = 3 periods and k = 1 inspection can be studied: First, the Inspectorate's mixed strategies
are transformed into strategies better suited the solve the inspection game, see (15.21), and
second, in the game theoretical solution three cases instead of two need to be distinguished
in Lemma 15.2. Also, the case of L = 3 periods and k = 2 inspections shows already many
features of the general case which is analysed in Section 15.3.

The inspection game analysed in this section is based on the speci�cations (iv') and (x') on p.
282.

The Operator's four pure strategies are to behave illegally at the beginning of period i, i =
3, 2, 1, or to behave legally. Thus, his set of pure strategies is given by

I3 = {3, 2, 1, le} .
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The Inspectorate performs its inspections at (2, 1), (2, 0) or (1, 0). Thus, its set of pure strate-
gies is given by

J̃3,2 := {(2, 1), (2, 0), (1, 0)} .

The notation J̃3,2 instead of J3,2 is chosen, because for the general game (L, k) treated in
Section 15.3 a di�erent representation of the pure strategies is used.

In Table 15.2 the normal form of this inspection game is represented. The entries in the bimatrix
have, using (15.3), exactly the same meaning as those in the bimatrix in Table 15.1, and need
not be explained again.

Table 15.2 Left: Normal form of the No-No inspection game with L = 3 periods and k = 2
inspections. Right: Reference time interval consisting of L = 3 complete critical time periods.
The probabilities pi, i = 3, 2, 1, are explained in the text.

(2, 1) (2, 0) (1, 0)

3
B − c B − c −c

d−A d−A d

2
B−c−g α −c− g α B − c

d−A−f α d− f α d−A

1
−c− 2 g α B−c−g α B−c−g α

d− 2 f α d−A−f α d−A−f α

le
−2 g α −2 g α −2 g α

−2 f α −2 f α −2 f α

3

p3

2

p2

1

p1

0

In analogy to the Section 15.1, let pi denote the probability for behaving illegally at i, i = 3, 2, 1,
or behaving legally ple. Thus, the Operator's set of mixed strategies is given by

P3 :=
{
p = (p3, p2, p1, ple)

T ∈ [0, 1]4 : p3 + p2 + p1 + ple = 1
}
. (15.18)

The mixed strategies of the Inspectorate are, for reasons to be understood in Section 15.3,
denoted by q̃(2,1), q̃(2,0) and q̃(1,0). Thus, its set of mixed strategies is given by

Q̃3,2 :=
{
q̃ = (q̃(2,1), q̃(2,0), q̃(1,0))

T ∈ [0, 1]3 : q̃(2,1) + q̃(2,0) + q̃(1,0) = 1
}
.

Then, using Table 15.2, the payo� to the Operator is for any of his pure strategies and any
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q̃ = (q̃(2,1), q̃(2,0), q̃(1,0))
T ∈ Q̃3,2 given by

Op3,2(3, q̃) = q̃(2,1) (d−A) + q̃(2,0) (d−A) + q̃(1,0) d

Op3,2(2, q̃) = q̃(2,1) (d−A− f α) + q̃(2,0) (d− f α) + q̃(1,0) (d−A)

Op3,2(1, q̃) = q̃(2,1) (d− 2 f α) + q̃(2,0) (d−A− f α) + q̃(1,0) (d−A− f α)

Op3,2(le, q̃) = −2 f α .

(15.19)

Let qj , j = 2, 1, 0, be the probability that at j an inspection is performed. Then we have

q2 = q̃(2,1) + q̃(2,0) , q1 = q̃(2,1) + q̃(1,0) and q0 = q̃(2,0) + q̃(1,0) , (15.20)

and consequently

2∑
j=0

qj = 2 .

Thus, we de�ne the Inspectorate's strategy set (not a set of mixed strategies) by

Q3,2 :=

q = (q2, q1, q0)
T ∈ [0, 1]3 :

2∑
j=0

qj = 2

 . (15.21)

Note that here in case of L = 3 periods and k = 2 inspections there is a one-to-one correspon-
dence between qj , j = 2, 1, 0, in (15.21) and the elements of (15.20):q̃(2,1)q̃(2,0)

q̃(1,0)

 =
1

2

 1 1 −1
1 −1 1
−1 1 1

 q2q1
q0

 . (15.22)

Thus, for any q̃ ∈ Q̃3,2 there exists a q ∈ Q3,2 such that (15.19) can be written as

Op3,2(3, q̃) = d−Aq2 =: Op3,2(3,q)

Op3,2(2, q̃) = d− (Aq1 + f α q2) =: Op3,2(2,q)

Op3,2(1, q̃) = d− (Aq0 + f α (q1 + q2)) =: Op3,2(1,q)

Op3,2(le, q̃) = −2 f α =: Op3,2(le,q)

(15.23)

or, in closed form, as

Op3,2(i,q) = d−Aqi−1 − f α
2∑
j=i

qj , i = 3, 2, 1, and Op3,2(le,q) = −2 f α , (15.24)

where
∑2

j=3 qj := 0. Hence, the (expected) payo� to the Operator is, for any p ∈ P3 and any
q ∈ Q3,2, given by

Op3,2(p,q) =

3∑
i=1

piOp3,2(i,q)− ple 2 f α

=

3∑
i=1

pi

d−Aqi−1 − f α 2∑
j=i

qj

− ple 2 f α .

(15.25)
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To obtain a closed form of the Inspectorate's payo�, we �rst get with Table 15.2 for any
q̃ = (q̃(2,1), q̃(2,0), q̃(1,0))

T ∈ Q̃3,2

In3,2(3, q̃) = B (q̃(2,1) + q̃(2,0))− c

In3,2(2, q̃) = B (q̃(2,1) + q̃(1,0))− g α (q̃(2,1) + q̃(2,0))− c

In3,2(1, q̃) = −2 g α q̃(2,1) + (B − g α) (q̃(2,0) + q̃(1,0))− c

In3,2(le, q̃) = −2 g α ,

which implies, using (15.20) and (15.22),

In3,2(3, q̃) = B q2 − c =: In3,2(3,q)

In3,2(2, q̃) = B q1 − g α q2 − c =: In3,2(2,q)

In3,2(1, q̃) = −g α (q2 + q1 − q0) + (B − g α) q0 − c =: In3,2(1,q)

In3,2(le, q̃) = −2 g α =: In3,2(le,q) .

(15.26)

Thus, we get by (15.26) for i = 3, 2, 1

In3,2(i,q) = B qi−1 − c− g α
2∑
j=i

qj .

Therefore, the (expected) payo� to the Inspectorate is, for any p ∈ P3 and any q ∈ Q3,2, given
by

In3,2(p,q) =

3∑
i=1

pi In3,2(i,q)− ple 2 g α

=

3∑
i=1

pi

B qi−1 − c− g α 2∑
j=i

qj

− ple 2 g α .

(15.27)

De�ne

x := 1− f α

A
(∈ (0, 1)) and y := 1 +

g α

B
(> 1) . (15.28)

The game theoretical solution of this inspection game, which is structurally more complicated
than the one of Lemma 15.1, is presented in

Lemma 15.2. Given the No-No inspection game with L = 3 periods and k = 2 inspections,
errors of the �rst and second kind, and an unbiased test procedure. The Operator's set of
mixed strategies is given by (15.18), the Inspectorate's strategy set by (15.21), and the payo�s
to both players by (15.25) and (15.27). Let x and y be de�ned by (15.28).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗3,2 :=
Op3,2(p

∗,q∗) and In∗3,2 := In3,2(p
∗,q∗):
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(i) For

x3 < min

[
1− 2 (1− x),

(
1 + 2

A

d
(1− x)

)−1]
(15.29)

the Operator behaves illegally and an equilibrium strategy is given by

p∗i =
y − 1

y3 − 1
yi−1 , i = 3, 2, 1, and p∗

le
= 0 . (15.30)

An equilibrium strategy of the Inspectorate is given by

q∗j = 2
1− x
1− x3

x2−j , j = 2, 1, 0 . (15.31)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = d− 2A
1− x
1− x3

and In∗3,2 = −c+ 2B
y − 1

y3 − 1
. (15.32)

(ii) For(
1 + 2

A

d
(1− x)

)−1
< 1− 2 (1− x) and

(
1 + 2

A

d
(1− x)

)−1
< x3 (15.33)

the Operator behaves legally, i.e., p∗3 = p∗2 = p∗1 = 0 and p∗
le

= 1. The Inspectorate's set
of equilibrium strategies is given by

q∗2 ≥
d

A
+ 2 (1− x) (15.34)

q∗1 + (1− x) q∗2 ≥
d

A
+ 2 (1− x) (15.35)

q∗0 + (1− x) (q∗1 + q∗2) ≥ d

A
+ 2 (1− x) (15.36)

q∗2 + q∗1 + q∗0 = 2 . (15.37)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = −2A (1− x) = −2 f α and In∗3,2 = −2B (y − 1) = − 2 g α .

(iii) For

1− 2 (1− x) <

(
1 + 2

A

d
(1− x)

)−1
and 1− 2 (1− x) < x3 (15.38)

the Operator behaves illegally and an equilibrium strategy is given by

p∗3 = 1 , p∗2 = p∗3 = 0 and p∗
le

= 0 . (15.39)

An equilibrium strategy of the Inspectorate is given by

q∗2 = 1 , q∗1 = x and q∗0 = 1− x . (15.40)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = d−A and In∗3,2 = −c+B . (15.41)
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Proof. To prove the Nash equilibrium conditions, we have to show that the inequalities

Op∗3,2 ≥ Op3,2(i,q∗) , (15.42)

In∗3,2 ≥ In3,2(p∗,q) (15.43)

are ful�lled for all i = 3, 2, 1, le and any q ∈ Q3,2; see (19.8).

Ad (i): It is clear that p∗i , i = 3, 2, 1, as well as q∗j , j = 2, 1, 0, as given by (15.30) and (15.31)
both sum up to 1. Because y > 1, we get from (15.30) that 0 < p∗1 < p∗2 < p∗3 < 1 and
therefore, p∗ ∈ P3. Using (15.31) and the fact that x ∈ (0, 1), we obtain for the Inspectorate's
equilibrium strategy 0 < q∗0 < q∗1 < q∗2. Thus, q

∗
2 < 1 if an only if x3 < 1− 2 (1− x), which is

ful�lled due to (15.29), i.e., q∗ ∈ Q3,2.

Because f α = A (1− x), see (15.28), we get, using (15.24), (15.31) and (15.32),

Op3,2(3,q
∗) = d− 2A

1− x
1− x3

= Op∗3,2

Op3,2(2,q
∗) = d− 2

1− x
1− x3

(Ax+A (1− x)) = Op∗3,2

Op3,2(1,q
∗) = d− 2

1− x
1− x3

(Ax2 +A (1− x) (1 + x)) = Op∗3,2 .

Because the inequality

x3 <

(
1 + 2

A

d
(1− x)

)−1
is equivalent to

−2 f α = −2A (1− x) < d− 2A
1− x
1− x3

,

we obtain, using (15.24),

Op3,2(le,q
∗) = −2 f α < d− 2A

1− x
1− x3

= Op∗3,2 .

Therefore, (15.42) is ful�lled as equality for i = 3, 2, 1 and as inequality for i = le.

To prove the Inspectorate's Nash equilibrium inequality we get, using (15.27), (15.30) and
g α = (y − 1)B,

In3,2(p
∗,q) =

3∑
i=1

y − 1

y3 − 1
yi−1

B qi−1 − c− g α 2∑
j=i

qj



= −c+B

 3∑
i=1

y − 1

y3 − 1
yi−1 qi−1 − (y − 1)

3∑
i=1

y − 1

y3 − 1
yi−1

2∑
j=i

qj



= −c+B

 3∑
i=1

y − 1

y3 − 1
yi−1 qi−1 − (y − 1)2

2∑
j=1

qj

j∑
i=1

yi−1

y3 − 1





292 Chapter 15: No-No inspection game

= −c+B

 3∑
i=1

y − 1

y3 − 1
yi−1 qi−1 + (y − 1)

2∑
j=1

qj
1− yj

y3 − 1



= −c+B

 y − 1

y3 − 1
q0 +

y − 1

y3 − 1

2∑
j=1

qj

 = −c+ 2B
y − 1

y3 − 1

for any q ∈ Q3,2, i.e., (15.43) is ful�lled as equality.

Ad (ii): The left hand inequality in (15.33) is equivalent to d/A+2 (1−x) < 1, which assures the
existence of q∗2 ∈ [0, 1] ful�lling (15.34), and further implies the existence of q∗1 and q

∗
0 according

to (15.35) and (15.36). Because (15.34) � (15.36) are equivalent to −2 f α ≥ Op3,2(i,q∗) for
all i = 3, 2, 1, (15.42) is ful�lled. Using (15.27), we have In3,2(le,q) = In∗3,2 = −2 g α for any
q ∈ Q3,2, i.e., (15.43) is ful�lled as equality.

Ad (iii): From (15.23) and (15.40) we get

Op3,2(3,q
∗) = Op3,2(2,q

∗) = d−A

Op3,2(1,q
∗) = d− (A (1− x) + f α (1 + x)) = d−A (2− x− x2) . (15.44)

Because the right hand inequality of (15.38) is equivalent to 1 < 2 − x − x2 we obtain
Op3,2(1,q

∗) < d − A by (15.44). Finally, because the left hand inequality of (15.38) is
equivalent to −2 f α = −2A (1 − x) < d − A, we get Op3,2(le,q

∗) = −2 f α < d − A, i.e.,
(15.42) is ful�lled. Using (15.27) and (15.39), we have In3,2(p

∗,q) = B q2 − c, which is
maximized for q∗2 = 1, i.e., (15.43) is valid. This completes the proof.

Let us comment the results of Lemma 15.2: First, as mentioned at the beginning of this section,
the solution given by Lemma 15.2 shows two new features as compared to that of Lemma 15.1:
1) there is a new type of solution, namely (iii), and 2) the Inspectorate's strategies are reformu-
lated, because the equilibrium strategy can be better expressed the new way. Also, as shown in
(15.22), there is a one-to-one-correspondence between the original strategies q̃(2,1), q̃(2,0) and
q̃(1,0) and the transformed ones qj , 2, 1, 0. This is no longer true in the general inspection game
with L periods and L > k inspections to be considered in Section 15.3. On the other hand,
we will see that the game theoretical solution of the general game has the same structure as
that with L = 3 periods and k = 2 inspections.

Second, because x > 0, the case α = 0 is not covered in Lemma 15.2, but can be obtained by
considering x→ 1 and y → 1. The result is a special case of Corollary 15.1.

Third, the regions of the solutions, i.e., conditions (15.29), (15.33) and (15.38), are represented
in Figure 15.3.

Fourth, in the inspection game with L = 2 periods and k = 1 inspection we have shown that
the equilibrium strategy (q∗1, q

∗
0)T given by (15.11) is a robust equilibrium strategy in the sense

that playing (q∗1, q
∗
0)T is always an equilibrium strategy no matter whether (15.9) or (15.13) is

ful�lled. A corresponding statement for the inspection game with L = 3 periods and k = 2
inspections does not hold for two reasons: First, the equilibrium strategy (15.31) yields q∗2 > 1
under the right hand inequality in (15.38), which is a contradiction. Second, (15.31) solves
(15.34) � (15.37) if and only if in addition to (15.33) the inequality x3 < 1 − 2 (1 − x) is
ful�lled, which assures q∗2 < 1. Thus, (15.31) is not a robust equilibrium strategy in the sense
that it is an equilibrium strategy no matter whether (15.29), (15.33) or (15.38) is ful�lled. In
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Corollary 15.1 it is shown that for α = 0 the case (iii) in Lemma 15.2 vanishes, and that (15.31)
is then indeed a robust equilibrium strategy; see also Table 7.3 on p. 142 for an overview of
inspection games with a robust Inspectorate's equilibrium strategy.

Finally, as mentioned on p. 281, Canty et al. (2001) do not specify a relation between d
and f , but only f < b is assumed. Thus, the case 1 − 2 (1 − x) = 1 − 2 f α/A < 0 is
considered that leads in case (iii) to an additional equilibrium strategy of the Inspectorate:
q∗ := (q∗2, q

∗
1, q
∗
0)T = (1, 1, 0)T and to the same equilibrium payo�s (15.41): From (15.23) and

(15.40) we get

Op3,2(3,q
∗) = d−A , Op3,2(2,q

∗) = d−A− f α < d−A = Op3,2(3,q
∗)

Op3,2(1,q
∗) = d− 2 f α < d−A , Op3,2(le,q

∗) = −2 f α < −A < d−A ,

i.e., the Operator's inequalities in (15.42) are ful�lled. For the Inspectorate we get, using
(15.27) and (15.39), as in the proof of the Lemma that In3,2(p

∗,q) = B q2 − c, which is
maximized for q∗2 = 1. The case f > d seems to be of little practical relevance, because the
payo� f in case of a false alarm is usually much smaller than the gain d for an undetected
illegal behaviour; see also the comment on p. 304.

15.3 Any number of periods and inspections; errors of the
�rst and second kind

Let us now turn to the general case of L > k periods and k inspections. The inspection game
analysed in this section is based again on the speci�cations (iv') and (x') on p. 282.

The Operator's pure strategies are to behave illegally at the beginning of period i, i = L, . . . , 1,
or to behave legally. Thus, his set of pure strategies is given by

IL := {L,L− 1, . . . , 2, 1, le} ,

and the corresponding set of mixed strategies by

PL :=

{
p = (pL, . . . , p1, ple)

T ∈ [0, 1]L+1 :

L∑
i=1

pi + ple = 1

}
. (15.45)

Again, pi denotes the probability of behaving illegally at i, i = L, . . . , 1, or behaving legally
with probability ple. In contrast to Sections 15.1 and 15.2 we do not consider bimatrix games
in this section. Therefore, it is of no importance whether the elements in (15.45) and below in
(15.47) are seen to be row or column vectors. To be consistent with the notation in Sections
15.1 and 15.2, however, we keep the notation as column vectors.

A pure strategy of the Inspectorate is a k-tupel (jk, . . . , j1) with L > jk > . . . > j1 ≥ 0 where
jn means that the k−n+ 1-th inspection is performed at jn. A pure strategy (jk, . . . , j1) can
be identi�ed with an L-tupel r = (rL−1, rL, . . . , r0)

T ∈ {0, 1}L with
∑L−1

j=0 rj = k. Since this
representation is more useful in the context here we de�ne the set of pure strategies JL,k of
the Inspectorate by

JL,k :=

r = (rL−1, rL, . . . , r0)
T ∈ {0, 1}L :

L−1∑
j=0

rj = k

 , (15.46)
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containing
(
L
k

)
elements. If q̃r denotes the probability that the pure strategy r ∈ JL,k is chosen,

then a mixed strategy q̃ = (q̃r)
T
r∈JL,k

with
∑

r∈JL,k
q̃r = 1 of the Inspectorate is a probability

distribution over its set of pure strategies, i.e., the Inspectorate's set of mixed strategies is given
by

Q̃L,k :=

q̃ = (q̃r)
T
r∈JL,k

∈ [0, 1](
L
k) :

∑
r∈JL,k

q̃r = 1

 . (15.47)

Note that for solving the Canty-Rothenstein-Avenhaus inspection game a di�erent strategy set
of the Inspectorate is considered; see (15.51) and p. 304.

The payo� to the Operator resp. the Inspectorate is for any r ∈ JL,k given by

OpL,k(i, r) =

{
d−Ari−1 − f α

∑L−1
j=i rj for i = L,L− 1, . . . , 2, 1

−k f α for i = le
(15.48)

and

InL,k(i, r) =

{
B ri−1 − c− g α

∑L−1
j=i rj for i = L,L− 1, . . . , 2, 1

−k g α for i = le
(15.49)

where
∑L−1

j=L rj := 0. (15.48) can be justi�ed as follows: Suppose the Operator behaves
illegally at the beginning of period i. If the Inspectorate inspects at i − 1 (ri−1 = 1), the
Operator's payo� is d β − b (1 − β) = d − A; see (15.3). If it does not inspect at i − 1
(ri−1 = 0), the Operator's payo� d, because the next inspection is not timely. In addition,
the payo� depends on the number of false alarms that the Inspectorate caused at L− 1, . . . , i.
Because

∑L−1
j=i rj is the number of inspections performed until i, the expected false alarm costs

are f α
∑L−1

j=i rj . Inspections perform at i− 2, . . . , 0 will not a�ect the Operator's payo�; see
assumption (iv') and also Figure 15.1. A similar argumentation justi�es (15.49).

Figure 15.1 Illustration of the payo�s (15.48) and (15.49) under the assumption that the
Operator behaves illegally at the beginning of period i, i = L, . . . , 1.

i

(−f ∑L−1
j=i rj

−g
∑L−1

j=i rj

)
α

(
0

0

)
1− α

ri−1 = 0

(
−b
−a

)
1− β

(
d

−c

)
β

ri−1 = 1

In order to solve the Canty-Rothenstein-Avenhaus inspection game, a transformation into an-
other game is necessary which was already demonstrated in Section 15.2. In analogy, let qj ,
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j = L− 1, . . . , 0, be the probability that an inspection is performed at j, i.e., we have

qj :=
∑

r∈JL,k:rj=1

q̃r , j = L− 1, . . . , 0 .

Let eTn ∈ {0, 1}L, n = 1, . . . , L, be the unit vector with a 1 at the n-th component. Because
eTL−j r = 1 if and only if rj = 1, j = L− 1, . . . , 0, qj can also be expressed as

qj =
∑

r∈JL,k

eTL−j r q̃r . (15.50)

Using (15.50) we get

L−1∑
j=0

qj =

L−1∑
j=0

 ∑
r∈JL,k

eTL−j r q̃r

 =
∑

r∈JL,k

q̃r

L−1∑
j=0

eTL−j r

 =
∑

r∈JL,k

q̃r k = k

and de�ne the Inspectorate's strategy set, which is, like Q3,2, not a set of mixed strategies, by

QL,k :=

q = (qL−1, . . . , q0)
T ∈ [0, 1]L :

L−1∑
j=0

qj = k

 . (15.51)

Only for k = 1 and k = L − 1 inspection(s) we have the same numbers of q̃r and qj . For
1 < k < L − 1 there are more q̃r than qj thus, the qj are uniquely determined by the q̃r, but
not vice versa. We will come back to this point on p. 304 and in the context of the generalized
Thomas-Nisgav inspection game; see Section 17.1.

The payo� to the Operator is, using (15.48) and (15.50), for all i = L,L − 1, . . . , 1 and any
q̃ = (q̃r)

T
r∈JL,k

∈ Q̃L,k, given by

OpL,k(i, q̃) = d−A
∑

r∈JL,k

ri−1 q̃r − f α
L−1∑
j=i

∑
r∈JL,k

rj q̃r

= d−A
∑

r∈JL,k

eTL−(i−1) r q̃r − f α
L−1∑
j=i

∑
r∈JL,k

eTL−j r q̃r

= d−Aqi−1 − f α
L−1∑
j=i

qj

=: OpL,k(i,q) .

(15.52)

Hence, the (expected) payo� to the Operator is, for any p ∈ PL and any q ∈ QL,k, given by

OpL,k(p,q) =

L∑
i=1

piOpL,k(i,q)− ple k f α

=

L∑
i=1

pi

d−Aqi−1 − f α L−1∑
j=i

qj

− ple k f α .
(15.53)
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In analogy, the payo� to the Inspectorate is, using (15.49), for all i = L,L− 1, . . . , 1 and any
q ∈ QL,k, given by

InL,k(i,q) = B qi−1 − c− g α
L−1∑
j=i

qj ,

and thus, the (expected) payo� to the Inspectorate is, for any p ∈ PL and any q ∈ QL,k, given
by

InL,k(p,q) =

L∑
i=1

pi

B qi−1 − c− g α L−1∑
j=i

qj

− ple k g α . (15.54)

The game theoretical solution of this inspection game, see Canty et al. (2001), is presented
in Theorem 15.1. Let us emphasize that according to our best knowledge this and the Se-Se
playing for time inspection game treated in Chapter 12 is the only inspection game over time
including errors of the �rst and second kind for which a game theoretical solution for the whole
parameter space has been found.

Theorem 15.1. Given the No-No inspection game with L > k periods and k inspections,
errors of the �rst and second kind, and an unbiased test procedure. The Operator's set of
mixed strategies is given by (15.45), the Inspectorate's strategy set by (15.51), and the payo�s
to both players by (15.53) and (15.54). Let x and y be de�ned by (15.28).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗L,k :=
OpL,k(p

∗,q∗) and In∗L,k := InL,k(p
∗,q∗):

(i) For

xL < min

[
1− k (1− x),

(
1 + k

A

d
(1− x)

)−1]
(15.55)

the Operator behaves illegally and an equilibrium strategy is given by

p∗i =
y − 1

yL − 1
yi−1 , i = L, . . . , 1 and p∗

le
= 0 . (15.56)

An equilibrium strategy of the Inspectorate is given by

q∗j = k
1− x

1− xL
xL−j−1 , j = L− 1, . . . , 0 . (15.57)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗L,k = d− k A 1− x
1− xL

and In∗L,k = −c+ k B
y − 1

yL − 1
. (15.58)

(ii) For(
1 + k

A

d
(1− x)

)−1
< 1− k (1− x) and

(
1 + k

A

d
(1− x)

)−1
< xL (15.59)
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the Operator behaves legally, i.e., p∗L = . . . = p∗1 = 0 and p∗
le

= 1. The Inspectorate's

set of equilibrium strategies is given by (
∑L−1

j=L q
∗
j := 0)

− k f α ≥ d−Aq∗i−1 − f α
L−1∑
j=i

q∗j , i = L, . . . , 1, and
L−1∑
j=0

q∗j = k . (15.60)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗L,k = −k f α and In∗L,k = −k g α .

(iii) For

1− k (1− x) <

(
1 + k

A

d
(1− x)

)−1
and 1− k (1− x) < xL (15.61)

let m be the integer, 0 < m < k, satisfying

xL−n > 1− (k − n) (1− x) > 0 for n = 0, 1, . . . ,m− 1 and

xL−m ≤ 1− (k −m) (1− x) .
(15.62)

The Operator behaves illegally and an equilibrium strategy is given by

p∗L = 1 , p∗i = 0 , i = L− 1, . . . , 1, and p∗
le

= 0 . (15.63)

An equilibrium strategy of the Inspectorate is given by

q∗j =


xL−j−1 for j = L− 1, . . . ,m
k −m− x− . . .− xL−m−1 for j = m− 1
1 for j = m− 2, . . . , 0

. (15.64)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗L,k = d−A and In∗L,k = −c+B . (15.65)

Proof: According to (19.8), the Nash equilibrium conditions are given by

Op∗L,k ≥ OpL,k(i,q∗) (15.66)

In∗L,k ≥ InL,k(p∗,q) . (15.67)

for all i = L, . . . , 1, le and any q ∈ QL,k.

Ad (i): Because of y > 1 we have by (15.56) that 0 < p∗1 < . . . < p∗L < 1. Using the geometric
series we see that p∗ ∈ PL. Because x ∈ (0, 1) we have 0 < q∗0 < . . . < q∗L−1. Then condition
xL < 1− k (1− x) in (15.55) is necessary for making sure that q∗L−1 < 1, which implies that
0 < q∗j < 1 for j = L− 2 . . . , 0. Again applying the geometric series gives us q∗ ∈ QL,k.

Using (15.28), (15.53) and (15.57), we get for all i = L,L− 1, . . . , 1

OpL,k(i,q
∗) = d−A

q∗i−1 + (1− x)

L−1∑
j=i

q∗j


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= d−A
[
k

1− x
1− xL

xL−i + (1− x) k
1− xL−i

1− xL

]
= d−Aq∗L−1 = Op∗L,k ,

i.e., (15.66) is ful�lled as equality for all i = L,L− 1, . . . , 1. Using (15.55), the inequality

xL <

(
1 + k

A

d
(1− x)

)−1
is equivalent to

d−Ak 1− x
1− xL

> − k (1− x)A = − k f α .

Thus, we get OpL,k(le,q
∗) = −k f α < d − Aq∗L−1 = Op∗L,k, i.e., (15.66) is also ful�lled for

i = le.

In order to show (15.67), note that (15.28) implies

L∑
i=1

p∗i

B qi−1 − g α L−1∑
j=i

qj

 = B

 L∑
i=1

p∗i qi−1 − (y − 1)

L∑
i=1

p∗i

L−1∑
j=i

qj

 , (15.68)

which yields, using (15.56),

(y − 1)

L∑
i=1

p∗i

L−1∑
j=i

qj = (y − 1)

L−1∑
j=1

qj

j∑
i=1

p∗i = (y − 1)

L−1∑
j=1

qj
yj − 1

yL − 1

=

L−1∑
j=1

qj (p∗j+1 − p∗1) . (15.69)

Therefore, (15.68) simpli�es by use of (15.69) to

B

 L∑
i=1

p∗i qi−1 −
L−1∑
j=1

qj (p∗j+1 − p∗1)

 = k p∗1 . (15.70)

Thus, (15.54) and (15.70) leads for any q ∈ QL,k to

InL,k(p
∗,q) = −c+ k B p∗1 = In∗L,k(p

∗,q∗) ,

so that (15.67) is satis�ed as equality.

Ad (ii): The left hand inequality in (15.59) assures that existence of q∗ ful�lling (15.60).
Furthermore, the inequalities (15.60) are equivalent to −k f α ≥ OpL,k(i,q

∗) for all i, i =
L, . . . , 1, and thus, the Operator's Nash equilibrium condition (15.66) is ful�lled. Using (15.54),
we have InL,k(le,q) = In∗L,k = −k g α for any q ∈ QL,k, i.e., (15.67) is valid.

Ad (iii): The right hand inequality of (15.61) assures the existence of the integer m ful�lling
(15.62). Using (15.51) and (15.64), q∗m−1 can be rewritten as

q∗m−1 = k − (m− 1)− 1− xL−m

1− x
. (15.71)
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Because

xL−m ≤ 1− (k −m) (1− x)

is equivalent to

k − (m− 1)− 1− xL−m

1− x
= q∗m−1 ≤ 1 ,

condition (15.62) guarantees that q∗m−1 ≤ 1.

The payo� to the Operator, if he behaves illegally at the beginning of period i, i = L . . . ,m+1,
is, using (15.28), (15.53) and (15.64), given by

OpL,k(i,q
∗) = d−Aq∗i−1 − f α

L−1∑
j=i

q∗j = d−AxL−i − f α
L−1∑
j=i

xL−j−1

= d−AxL−i − f α 1− xL−i

1− x

= d−A
[
xL−i + 1− xL−i

]
= d−A .

If the Operator behaves illegally at the beginning of period i = m, we get for his payo�, again
using (15.53) and (15.64),

OpL,k(m,q
∗) = d−Aq∗m−1 − f α

L−1∑
j=m

q∗j

= d−A
[
q∗m−1 +

f α

A
(k − (m− 1)− q∗m−1)

]
(15.72)

and prove that

q∗m−1 +
f α

A
(k − (m− 1)− q∗m−1) > 1 . (15.73)

The left hand side of (15.73) simpli�es by (15.71) to

q∗m−1 +
f α

A
(k − (m− 1)− q∗m−1)

= k − (m− 1)− 1− xL−m

1− x
+
f α

A

(
k − (m− 1)− (k − (m− 1)) +

1− xL−m

1− x

)

= k − (m− 1)− x 1− xL−m

1− x
.

Using (15.62) for n = m− 1, we see that

xL−(m−1) > 1− (k − (m− 1)) (1− x)

is equivalent to

k − (m− 1)− x 1− xL−m

1− x
> 1 .
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Thus, (15.73) is ful�lled, and (15.72) yields OpL,k(m,q
∗) < d − A. If the Operator behaves

illegally at the beginning of period i, i = m − 1, . . . , 1, his payo� is, again using (15.53) and
(15.64), given by

OpL,k(i,q
∗) = d−Aq∗i−1 − f α

L−1∑
j=i

q∗j = d−A− f α (k − i) < d−A ,

because i ≤ m− 1 < k. Because the left hand inequality of (15.61) is equivalent to −k f α <
d − A, we get OpL,k(le,q

∗) = −k f α < d − A, i.e., (15.66) is ful�lled. Using (15.54) and
(15.63) we have InL,k(p

∗,q) = B qL−1− c, which is maximized for q∗L−1 = 1. This completes
the proof.

Before we comment on the results of Theorem 15.1 on p. 303, we discuss the case α = 0,
i.e., the case x = 1, which is excluded in Theorem 15.1 because of x ∈ (0, 1). Indeed, the
conditions (15.55), (15.59), and (15.61) are meaningless in this case at �rst sight. We see,
however, that

xL ≷ 1− k (1− x)

is equivalent to

k ≷ 1 + x+ . . .+ xL−1 , (15.74)

and thus, for x = 1 equivalent to the condition k ≷ L. Because of k < L, the inequality
xL > 1−k (1−x) in (15.74) does not hold for x = 1 and therefore, case (iii) of Theorem 15.1
vanishes. Furthermore,

xL ≷

(
1 + k

A

d
(1− x)

)−1
is equivalent to

xL k
A

d
≷ 1 + x+ . . .+ xL−1 ,

therefore, for x = 1 we get

A

d
≷
L

k
.

Thus, one obtains the following Corollary 15.1, which describes an attribute sampling problem
because of α = 0. For later purposes we use the explicit forms of A and B as given by (15.2).

Corollary 15.1. Given the No-No inspection game with L > k periods and k inspections,
errors of the �rst and second kind, and an unbiased test procedure analysed in Theorem 15.1.

Then for x→ 1 and y → 1 the Nash equilibrium in Theorem 15.1 reduces as follows:

(i) For

k

L
<

1

1− β
1

1 + b/d
(15.75)
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the Operator behaves illegally and an equilibrium strategy is given by

p∗i =
1

L
, i = L, . . . , 1 and p∗

le
= 0 . (15.76)

An equilibrium strategy of the Inspectorate is given by

q∗j =
k

L
, j = L− 1, . . . , 0 . (15.77)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗L,k = d− (1− β) (b+ d)
k

L
and In∗L,k = −c+ (1− β) (c− a)

k

L
. (15.78)

(ii) For

k

L
>

1

1− β
1

1 + b/d
(15.79)

the Operator behaves legally, i.e., p∗L = . . . = p∗1 = 0 and p∗
le

= 1. The Inspectorate's
set of equilibrium strategies is given by

0 ≥ d− (b+ d) (1− β) q∗j , j = L− 1, . . . , 0, and
L−1∑
j=0

q∗j = k , (15.80)

where q∗j , j = L− 1, . . . , 0, given by (15.77) ful�ls (15.80).

The equilibrium payo�s to the Operator and to the Inspectorate are Op∗L,k = In∗L,k = 0.

Let us comment the results of Corollary 15.1: First, surprisingly enough, we will encounter
the game theoretical results again in the next two chapters; see pp. 336, 368 and 391, and in
Chapter 24. Note that one obtains the same results as in Corollary 15.1, if one uses immediately
the payo�s (15.48) and (15.49) for α = 0.

Second, because q∗ = (q∗L−1, . . . , q
∗
0)T according to (15.77) constitutes a vector of probabilities

no matter whether (15.75) or (15.79) is ful�lled, and because we have under condition (15.79)

0 > d− (1− β) (b+ d)
k

L
= OpL,k(i,q

∗) for all i = L, . . . , 1 ,

q∗ is an element of (15.80), i.e., it is a robust equilibrium strategy in contrast to the case α > 0
and k ≥ 2 inspections; see p. 304 and Table 7.3 on p. 142 for an overview of inspection games
with a robust Inspectorate's equilibrium strategy.

Third, the condition (15.79) for legal behaviour, i.e., Op∗L,k < 0 in (15.78), can be interpreted
as a minimum condition on the number of inspections required for deterrence. Obviously this
inspection frequency has to be the larger, the smaller the ratio of sanctions to gains for the
illegally behaving Operator. Note that because k/L < 1, a necessary condition for (15.79) is

1 >
1

1− β
1

1 + b/d

which is equivalent to −b (1−β) +d β < 0, i.e., the expected payo� to the Operator for illegal
behaviour in case of a timely inspection is smaller than zero.
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Figure 15.2 Representation of (15.79) for three β-values.
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Fourth, relation (15.79) is remarkable since it combines �ve model parameters in a simple and
intuitive inequality. This simplicity is re�ected in Figure 15.2 in which for a given value of 1−β
the area above the 1− β-curve represents legal behaviour of the Operator.

Fifth, let us consider a simple application. A facility with a valuable equipment or a museum
with art treasures has to be protected by night watchmen against burglary. One inspection
night shift lasts 12 hours. An illegal activity, e.g., removing and carrying away some expensive
tool or art treasure lasts 1/4 hour, about the same time, by design, as an inspection tour
through the factory, thus, L = 48. For 1−β = 1 and b/d = 3 we get k/L = 1/4 which means
that k = 12 inspections have to be performed, i.e., on the average one inspection per hour.1

Whoever would have thought to justify a night watchmen's rounds in this way? In practice,
of course, inspection frequencies of this kind are determined on the basis of practicability and
related common sense arguments. Nevertheless at least our results may help, given the model
describes reality appropriately, to clarify underlying assumptions on the value of b/d and other
model parameters.

Finally, the equilibrium strategies (15.76) and (15.77) do not depend on the payo� parameters
a, b, c and d. Is this a surprising result? Denote for any p ∈ PL and any q ∈ QL,k the
probability that the illegal activity is timely detected by wL,k(p,q): If the Operator behaves
illegally at the beginning of period i, i = L, . . . , 1, then the Inspectorate needs to inspect at
i−1 and must detect the illegal activity (with probability 1−β). Thus, in the No-No inspection
game the timely detection probability wL,k(p,q) is given by

wL,k(p,q) := (1− β)

L∑
i=1

pi qi−1 . (15.81)

1Con�ict situations of this kind are presented professionally in some famous action movies with well-known
actors, e.g., Topkapi (1964) with M. Mercouri, P. Ustinov and M. Schell, How to Steel a Million (1966) with
A. Hepburn and P. O'Toole, and Entrapment (1999) with C. Zeta-Jones and S. Connery. In the second one
manipulated false alarms are part of the burglars' strategy.
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In case of illegal behaviour and no false alarms, i.e., ple = 0 and α = 0, the Operator's
and Inspectorate's payo�s can be expressed as a function of the timely detection probability
wL,k(p,q): (14.1) in case of illegal behaviour implies

OpL,k(p,q) = d (1− wL,k(p,q))− bwL,k(p,q) and

InL,k(p,q) = −c (1− wL,k(p,q))− awL,k(p,q) ,

and thus, using (14.2), (p∗,q∗) is a Nash equilibrium if and only if the saddle point inequalities

wL,k(p
∗,q) ≤ wL,k(p∗,q∗) ≤ wL,k(p,q∗) (15.82)

are ful�lled for any p ∈ PL and any q ∈ QL,k. Note that in (15.82) the Inspectorate is the
maximizing player, while the Operator is the minimizing player, as expected due to the meaning
of wL,k. We will return to this important point on p. 391. Using the equilibrium strategies
(15.76) and (15.77), we get by (15.81) for the timely detection probability in equilibrium

wL,k(p
∗,q∗) =

L∑
i=1

p∗i q
∗
i−1 (1− β) = (1− β)

L∑
i=1

1

L

k

L
= (1− β)

k

L
.

Let us now comment the results of Theorem 15.1: First, the regions of the solutions, i.e.,
conditions (15.55), (15.59) and (15.61), are represented in Figure 15.3 along the xL-axis. Let
us mention that

1− k (1− x) ≷

(
1 + k

A

d
(1− x)

)−1
is equivalent to

−k f α ≷ d−A = d β − b (1− β) ,

the left hand side being the expected false alarm costs of the Operator in case of legal behaviour,
and the right hand side his expected gain in case of a timely inspection.

Figure 15.3 Structure of the solutions of Theorem 15.1.

1

xL

0 1− k (1− x)

(i) (iii)

1

xL

0 1− k (1− x)

(i) (ii)

(
1 + k

A

d
(1− x)

)−1

Second, note that for the case of k = 1 inspection the solution given by part (iii) of the Theorem
does not exist because in this case 1− k (1− x) = x is larger than xL for any L > 1 periods.
Conditions (15.9) and (15.13) are, using (15.17), the same as (15.55) and (15.59) for L = 2
periods and k = 1 inspection.
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Third, like in the inspection game with L = 3 periods and k = 2 inspections, the equilibrium
strategy (15.57) is not a robust equilibrium strategy; see p. 292 and Table 7.3 on p. 142 for
an overview of inspection games with a robust Inspectorate's equilibrium strategy.

Fourth, as mentioned on p. 293 for the game L = 3 periods and k = 2 inspections, the case
1− k (1− x) < 0, which is excluded here because of (14.2) but treated in Canty et al. (2001),
leads in case (iii) to the additional Inspectorate's equilibrium strategy:

(q∗L−1, q
∗
L−2, . . . , q

∗
0) = (1, 1 . . . 1︸ ︷︷ ︸

k

, 0, 0 . . . 0︸ ︷︷ ︸
L−k

) .

The proof can be found in Canty et al. (2001).

Fifth, we mentioned on p. 295 that only for k = 1 and k = L − 1 inspection(s) we have the
same numbers of q̃r and qj . In all other cases, i.e., 1 < k < L−1, there are more q̃r than qj . To
give an equilibrium strategy of the Inspectorate of the original No-No inspection game, i.e., with
the strategy sets PL and Q̃L,k, see (15.47), the strategies q̃∗ have to be somehow calculated
utilizing q∗ as given by Theorem 15.1. Because the q̃∗ are not unique, the Inspectorate has the
freedom to choose the strategy which �ts best to its practice, e.g., mixing as few as possible
pure strategies. A similar situation is discussed for the discrete time Se-No inspection game on
p. 58.

Sixth, we discuss whether the Operator can be induced to legal behaviour; see p. 260 for similar
considerations in the context of the continuous time Se-Se inspection game. For illustration we
consider the parameters

d = b = 19 , f = 1 , and α =
4

16
, β =

1

16
.

Then (14.2) and α+ β < 1 are ful�lled, and with (15.2) and (15.28) we get

A = (b+ d) (1− β) = 35.625 and x =
283

285
≈ 0.993 .

In Figure 15.4, the functions 1 − k (1 − x) and (1 + k f α/d)−1 as well as the three cases 1)
x50 for k = 1, . . . , 50 (top horizontal line), 2) x120 for k = 1, . . . , 120 (middle horizontal line),
and 3) x140 for k = 1, . . . , 140 (bottom horizontal line), are depicted.

Let us comment on Figure 15.4: First, the case of k = 1 inspection leads in all three cases to
(i) of Theorem 15.1. Second, for increasing k we observe a transition from (i) to (ii) in case 1),
and a transition from (i) to (iii) for the cases 2) and 3). Thus, only in case 1) the Inspectorate
has a deterrence strategy and it chooses the smallest k such that legal behaviour is induced,
i.e., k∗ with (

1 + k∗
A

d
(1− x)

)−1
< xL <

(
1 + (k∗ − 1)

A

d
(1− x)

)−1
.

In cases 2) and 3) the Inspectorate has no deterrence strategy and it should choose k such that
its equilibrium payo� In∗L,k is maximized: Let k′ be given by

1− (k′ + 1) (1− x) < xL < 1− k′ (1− x) .
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Figure 15.4 Illustration of the transition between the cases (i), (ii) and (iii) of Theorem 15.1.
The solid part of the x50-line describes legal behaviour of the Operator.
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Then we obtain, using (15.58) and (15.65), the decision rule

number of inspections is


k′ for k′ >

yL − 1

y − 1

k′ + 1 for k′ <
yL − 1

y − 1

.

Finally, let us consider a numerical example: We assume L = 8 periods and k = 6 inspections
as well as

x = 0.95 , d = 55 , b = 47 , f = 40 and α =
29

1209
,

x = 0.90 , d = 92 , b = 88 , f = 49 and α =
58

387
,

x = 0.85 , d = 17 , b = 3 , f = 2 and α =
87

133
,

x =
5

6
, d = 85 , b = 67 f = 17 and α =

22

107
.

Then we have in all four cases that

1− 6 (1− x) <

(
1 + 6

A

d
(1− x)

)−1
, (15.83)

i.e., only case (i) and (iii) of the Theorem 15.1 can arise. In Figure 15.5, the Inspectorate's
equilibrium strategies for the four examples are depicted from top to bottom. In the left-hand
graphs the top rows of points show the sequence

x8, x7, . . . , x ,
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Figure 15.5 Illustration of the Inspectorate's equilibrium strategy q∗ for the inspection game
with L = 8 periods and k = 6 inspections and various values of x. Left hand column: Upper
sequence x8, x7, . . . , x. Lower sequence 1−6 (1−x), 1−5 (1−x), . . . , x. Right hand column:
q∗7, q

∗
6, . . . , q

∗
0.
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and the bottom rows the sequence

1− 6 (1− x), 1− 5 (1− x), . . . , 1− 2 (1− x), x

for the above given values of x. In the right hand plots the components q∗7, . . . , q
∗
0 of the

Inspectorate's equilibrium strategy are shown.

Let us consider the top pair of graphs: Because of x8 < 1 − 6 (1 − 0.95), i.e., the leftmost
point in the bottom row lies to the right of the leftmost point in the top row, and because of
(15.83) condition (i) of Theorem 15.1 is valid, and the equilibrium strategy (15.57) is plotted
on the right hand side. For the next three pairs of graphs we have x8 > 1− 6 (1− 0.95) and
because of (15.83) condition (15.61) is met. We get, using (15.62),

x = 0.9 : x8−0 > 1− (6− 0) (1− x) and x8−1 ≤ 1− (6− 1) (1− x), i.e., m = 1

x = 0.85 : x8−1 > 1− (6− 1) (1− x) and x8−2 ≤ 1− (6− 2) (1− x), i.e., m = 2

x = 5/6 : x8−2 > 1− (6− 2) (1− x) and x8−3 ≤ 1− (6− 3) (1− x), i.e., m = 3 .

Thus, we obtain in these cases by (15.64) the results that q∗7 is one; see the right hand plots
of Figure 15.5.

15.4 Sensitivity considerations

In order to demonstrate the sensitivity of the game theoretical solution of the No-No inspection
game on assumption (iv'), see p. 282, we assume in this section that also false alarm costs for
inspections performed after the illegal activity are taken into account, i.e., the inspection game
analysed in this section is based on the following speci�cations:

(iv�) During an inspection the Inspectorate may commit errors of the �rst and second kind
with probabilities α and β. These error probabilities are the same for all inspections.
Inspections which are performed before and after an illegal activity may incur false alarm
costs.

(x�) The game ends either at the beginning of period L in case the Operator behaves legally
throughout the game, or one period after the Operator behaves illegally, or after the last
inspection.

Let us discuss these assumptions. Ad (iv�): Suppose the Operator behaves illegally at the
beginning of the period i, i = L, . . . , 1, then at all inspections which are performed at L −
1, . . . , i and at i − 2, . . . , 0 a false alarm may be raised which leads to false alarm costs for
both players. Ad (x�): In contrast to assumption (x') on p. 282 and its justi�cation on p. 283,
we have to include all inspections which are performed at the beginning of periods i− 2, . . . , 0
because false alarms may be raised.

In Figure 15.3 the payo� matrices for the No-No inspection game with L = 2 resp. L = 3
periods and k = 1 resp. k = 2 inspection(s) are presented under assumption (iv�). The entries
in a box indicate di�erences to the payo� matrices in Tables 15.1 and 15.2. The entry (2, 0) in
the payo� matrix on top can be explained as follows: Because there is no inspection at 1, the
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illegal activity is not timely detected, i.e., payo� d to the Operator, and there may be a false
alarm at 0, thus, the Operator's payo� is d − f α. The entry (2, (2, 0)) in the payo� matrix
below can be explained as follows: The illegal activity is not timely detected, because there
is no inspection at 1, but there may be a false alarm at 2 and one at 0. Therefore, we have
d− 2 f α.

Table 15.3 Normal forms of the No-No inspection game under the assumption (iv�) with L = 2
periods and k = 1 inspection (top), and with L = 3 periods and k = 2 inspections (below).

1 0

2
B − c −c −g α

d−A d −f α

1
−c−g α B − c

d− f α d−A

le
−g α −g α

−f α −f α

(2, 1) (2, 0) (1, 0)

3
B− c −g α B− c −g α −c −2 g α

d−A −f α d−A −f α d −2 f α

2
B − c− g α −c −2 g α B− c −g α

d−A− f α d −2 f α d−A −f α

1
−c− 2 g α B − c− g α B − c− g α

d− 2 f α d−A− f α d−A− f α

le
−2 g α −2 g α −2 g α

−2 f α −2 f α −2 f α

The payo� matrices without the row "legal behaviour" are symmetric, and thus, a game the-
oretical solution for the case of illegal behaviour of the Operator, i.e., p∗le = 0, can be given
easily: In case of L = 2 periods and k = 1 inspection, and under the condition d > (A−f α)/2,
we have

p∗2 = p∗1 = q∗1 = q∗0 =
1

2
and

Op∗2,1 = d− 1

2
(A+ f α) and In∗2,1 = −c− 1

2
(B + g α) ,

which is very di�erent from the equilibrium strategies and payo�s given in (i) of Lemma 15.1. We
see that a change from modelling assumption (iv') to (iv�) leads to a completely di�erent game
theoretical solution. For the inspection game with L = 3 periods and k = 2 inspections the
game theoretical solution in case of illegal behaviour of the Operator, i.e., under the condition
d > 2 (A− f α)/3, is given by

p∗3 = p∗2 = p∗1 =
1

3
and q∗(2,1) = q∗(2,0) = q∗(1,0) =

1

3
and (15.84)
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Op∗2,1 = d− 2

3
(A+ 2 f α) and In∗2,1 = −c− 2

3
(B + 2 g α) .

In terms of the probabilities qj , j = 2, 1, 0, that at j an inspection is performed, we get from
(15.84) that q∗2 = q∗1 = q∗0 = 1/3, which is also very di�erent from the equilibrium strategies
and payo�s given in (i) of Lemma 15.2.

A generalization to any number L of periods and any number k of inspections can be found
easily. We consider again the Operator's set of mixed strategies (15.45) and the Inspectorate's
strategy set (15.51). If the Operator behaves illegally at the beginning of period i, i = L, . . . , 1,
and the Inspectorate performs an inspection at i− 1, then the Operator's payo� is given by

d−A− (k − 1) f α , (15.85)

because d − A is the Operator's payo� for a detected illegal activity and the remaining k − 1
inspections all may lead to a false alarm. If, however, the Inspectorate does not perform an
inspection at i− 1, then the Operator's payo� is given by

d− k f α , (15.86)

because he receives payo� d for an untimely inspection and the k inspections may all lead
to a false alarm. The payo� to the Inspectorate is given by (15.85) and (15.86) with the
replacements A → −B, d → −c and f → g. Using (15.85) and (15.86), the payo� to the
Operator resp. the Inspectorate is, in analogy to (15.48) and (15.49), for any r ∈ JL,k given
by

ÕpL,k(i, r) =

{
d−Ari−1 − f α (k − ri−1) for i = L,L− 1, . . . , 2, 1
−k f α for i = le

and

ĨnL,k(i, r) =

{
B ri−1 − c− g α (k − ri−1) for i = L,L− 1, . . . , 2, 1
−k g α for i = le

.

Thus, using (15.50) and (15.52), the (expected) payo� to the Operator is, for all i = L,L −
1, . . . , 1 and any q̃ = (q̃r)

T
r∈JL,k

∈ Q̃L,k, given by

d− (A− f α)
∑

r∈JL,k

ri−1 q̃r − k f α = d− (A− f α) qi−1 − k f α =: ÕpL,k(i,q) ,

and �nally for any p ∈ PL

ÕpL,k(p,q) =

L∑
i=1

pi ÕpL,k(i,q)− ple k f α

=

L∑
i=1

pi

[
d− (A− f α) qi−1

]
− k f α . (15.87)

The Inspectorate's (expected) payo� is, for any p ∈ PL and any q ∈ QL,k, given by

ĨnL,k(p,q) =

L∑
i=1

pi

[
− c− (B − g α) qi−1

]
− k g α . (15.88)

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in
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Theorem 15.2. Given the No-No inspection game under assumption (iv�) with L > k periods
and k inspections, errors of the �rst and second kind, and an unbiased test procedure. The
Operator's set of mixed strategies is given by (15.45), the Inspectorate's strategy set by (15.51),
and the payo�s to both players by (15.87) and (15.88).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Õp
∗
L,k :=

ÕpL,k(p
∗,q∗) and Ĩn

∗
L,k := ĨnL,k(p

∗,q∗):

(i) For

d >
k

L
(A− f α) (15.89)

the Operator behaves illegally and an equilibrium strategy is given by

p∗i =
1

L
, i = L, . . . , 1 and p∗

le
= 0 . (15.90)

An equilibrium strategy of the Inspectorate is given by

q∗j =
k

L
, j = L− 1, . . . , 0 . (15.91)

The equilibrium payo�s to the Operator and to the Inspectorate are

Õp
∗
L,k = d− k

L

(
A+ (L− 1) f α

)
and

Ĩn
∗
L,k = −c− k

L

(
B + (L− 1) g α

)
.

(15.92)

(ii) For

d <
k

L
(A− f α) (15.93)

the Operator behaves legally, i.e., p∗L = . . . = p∗1 = 0 and p∗
le

= 1. The Inspectorate's
set of equilibrium strategies is given by

0 ≥ d− (A− f α) qi−1 , i = L, . . . , 1, and
L−1∑
j=0

q∗j = k . (15.94)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗L,k = −k f α and In∗L,k = −k g α .

Proof: Ad (i): The strategies given by (15.90) and (15.91) obviously belong to PL and QL,k,
respectively. Using (15.91) and (15.92), (15.87) yields for any p ∈ PL

ÕpL,k(p,q
∗) = d− (A− f α)

k

L
− k f α = Õp

∗
L,k ,

and (15.90) together with (15.88) leads for any q ∈ QL,k to

ĨnL,k(p
∗,q) =

1

L

[
− cL− (B − g α) k

]
− k g α = Ĩn

∗
L,k ,
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i.e., the Nash equilibrium conditions are ful�lled as equality.

Ad (ii): (15.94) follows directly from the Operator's Nash equilibrium condition.

Let us comment the results of Theorem 15.2: First, it is impressive how the game theoreti-
cal solution changes with the change of assumption (iv') to (iv�). We will observe a similar
sensitivity to a modelling assumption between the Dresher-Höp�nger and the original Thomas-
Nisgav inspection game: In the �rst one at most one illegal activity can be performed, while
in the latter one (exactly) one illegal activity must be performed. This little change leads to
a considerable change in the game theoretical solutions; see (16.11) � (16.13) for b = d = 1,
c = 1 and a = −1 in contrast to (17.31) � (17.33) for b = d = 1 and β = 0.

Second, the equilibrium strategy (15.91) of the Inspectorate in case of illegal behaviour of the
Operator is a robust equilibrium strategy, because it also ful�ls (15.94), i.e., the Inspectorate
can just play (15.91) and does not need to check whether (15.89) or (15.93) is valid; see also
Table 7.3 on p. 142 for an overview of inspection games with a robust Inspectorate's equilibrium
strategy.

Third, if we choose a uniform distribution over the set JL,k, see (15.46), i.e.,

q̃r =

(
L

k

)−1
for any r ∈ JL,k ,

we get

qj =

(
L

k

)−1(L− 1

k − 1

)
=
k

L
for all j = L− 1, . . . , 0 ,

i.e., q∗j given by (15.91).

Third, Rinderle (1996) analysed the Se-Se inspection game under assumption (iv�), and he
obtained in case of d−A > −f α equilibrium strategies which can be transformed into (15.90)
and (15.91), and equilibrium payo�s that coincide with (15.92). Note that d − A > −f α
implies that (15.89) is ful�lled. This equivalence between the game theoretical solutions of
the No-No inspection game discussed in this section and Rinderle's Se-Se inspection game is
remarkable because under assumption (iv') such an equivalence only exists in case of L = 2
periods/steps and k = 1 inspection/control; see case (i) of Lemmata 15.1 and 16.3 and p. 351.

As mentioned at the beginning of this section, the main reason for assumption (iv'), as opposed
to assumption (iv�), was to demonstrate the sensitivity of solutions to small changes in the
assumptions. In fact, we think that assumption (iv') � no false alarms and related costs after
any timely or untimely detected illegal activity � in most cases meets reality best. However,
formal agreements and jurisdiction sometimes may have odd consequences if, for example, as
it happened, the State has to grant some compensation to convicted subjects for treatment
against formal rules. In that wider sense assumption (iv�) may appropriately describe strange
real situations.

15.5 Choice of the false alarm probability

Again, like in Sections 9.5 and 12.4, we ask for the optimal value of the false alarm probability
α and limit our considerations to one inspection in L = 2 periods. Throughout this section we
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assume that (9.69) is ful�lled again. The proceeding goes along the same lines as in Sections
9.5 and 12.4, as only the analytical form of the equilibrium payo�s to both players in case of
illegal behaviour of the Operator di�ers.

According to (15.12) and (15.15) the equilibrium payo� to the Operator is given by

Op∗2,1(α) :=

{
Op∗2,1 for Operator's illegal behaviour

−f α for Operator's legal behaviour

=


d− A2

2A− f α
for d >

(A− f α)2

2A− f α

−f α for d <
(A− f α)2

2A− f α

.

(15.95)

De�ning F (α) for any α ∈ [0, 1] by

F (α) := d− (b+ d)2 (1− β(α))2

2 (b+ d) (1− β(α))− f α
, (15.96)

we see that F (α) = Op∗2,1 if and only if d > (A− f α)2/(2A− f α). Using (9.69), (14.2) and
(15.96) we have

F (0) = d and F (1) = d− (b+ d)2

2 (b+ d)− f
< F (0) .

Like in Sections 9.5 and 12.4, F (α) is a monotone decreasing function on [0, 1]: De�ne

F̃ (α, β) := d− (b+ d)2 (1− β)2

2 (b+ d) (1− β)− f α
.

Then we have F (α) = F̃ (α, β(α)) and get for any α ∈ (0, 1) assuming that β(α) is a di�er-
entiable function on (0, 1)

d

dα
F (α) =

(
∂

∂α
F̃ (α, β),

∂

∂β
F̃ (α, β)

) ∣∣∣
α=α,β=β(α)

(
1

β′(α)

)

=
(b+ d)2 (1− β(α))

(2A− f α)2
(
−f (1− β(α)) + 2 (A− f α)β′(α)

) ∣∣∣
A=(b+d) (1−β(α))

,

which is less than zero, because of β′(α) < 0 and (15.4).

Figure 15.6 represents F (α) and −f α as well as the resulting Op∗2,1(α) using (9.74) with
(µ1−µ0)/σ = 1.5. Again, depending on the regions of de�nition, see (15.95), F (α) and −f α
are solid or dashed, and Op∗2,1(α) is solid for any α ∈ [0, 1]. We choose here b = 10 and f = 3;
the three graphs correspond again to d = 4 (left top), d = 6 (right top) and d = 12 (bottom),
which ful�l (14.2).

As in Sections 9.5 and 12.4, we distinguish the cases (i) and (ii) from (9.75) with the special
cases (9.76) and (9.77), because F (α) is a monotone decreasing function on [0, 1]. In case (ii)
and no intersection point, the Operator will behave illegally for all values of α (bottom graph),
because we have F (α) > −f α for any α ∈ [0, 1].
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Figure 15.6 The equilibrium payo� (15.95) to the Operator for b = 10, f = 3 and d = 4 (top
left), d = 6 (top right) and d = 12 (bottom).
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To determine the optimal value of α, we use the Inspectorate Leadership Principle again:
According to (15.12) and (15.15), the equilibrium payo� to the Inspectorate is

In∗2,1 :=

{
In∗2,1 for Operator's illegal behaviour

−g α for Operator's legal behaviour

=


G(α) for d >

(A− f α)2

2A− f α

−g α for d <
(A− f α)2

2A− f α

,

(15.97)

where G(α) is, using (15.2) and (15.12), for any α ∈ [0, 1] de�ned by

G(α) := −c+
(c− a)2 (1− β(α))2

2 (c− a) (1− β(α)) + g α
. (15.98)
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Again, G(α) is coincides with In∗2,1, see (15.97), if and only if d > (A − f α)2/(2A − f α).
Using (9.69), (14.2) and (15.98) we get

G(0) = −c and G(1) = −c+
(c− a)2

2 (c− a) + g
< −g .

Figure 15.7 illustrates In∗2,1(α) (solid curve) for the sets of parameters used in Figure 15.6 and
c = 11, a = 10 and g = 3, which ful�l (14.2).

Figure 15.7 The equilibrium payo� (15.97) to the Inspectorate for the sets of parameters used
in Figure 15.6 and c = 11, a = 10, g = 3.
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For d = 4 and d = 6 (top row), we see that for α = α∗ resp. α = α∗1 and legal behaviour of
the Operator the Inspectorate's payo� is maximized. This is, as outlined in Section 9.4, the
optimal choice of both players in which the Operator is deterred from behaving illegally.

Again, in case (ii) and no intersection point in (9.75), i.e., the bottom graph in Figure 15.7,
the application of the Inspector Leadership Principle does not result in the deterrence of the
Operator.
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Se-Se inspection game:

Dresher-Höp�nger model and

extensions

The earliest known inspection game over time has been described and analysed by Dresher
(1962). In the terminology of Table 2.1 it is a critical time Se-Se inspection game. Whereas
Dresher formulated it as a zero-sum game with idealized payo�s, Höp�nger (1971) considered
a non-zero-sum game with general payo�s. The model and its solution have become very in�u-
ential both from the methodological point of view and because of its wide range of applications.
Therefore we will call this game in honour of both authors the Dresher-Höp�nger model.

Whereas in all previous chapters we used the term inspections we will now, for historical reasons
and in view of the next chapter, replace this term by control. Also, as mentioned in Chapter 14,
we will use the term step instead of critical time. Thus, quite generally and having in mind all
assumptions in Chapter 14, we consider L steps in at most one of which the Operator behaves
illegally, i.e., performs an illegal activity, and in which the Inspectorate performs k controls.

In this chapter, assumptions (vi) and (x) of Chapter 14 are speci�ed as follows:

(vi') The Operator decides at the beginning, i.e., at step L, whether to behave illegally at that
step. If he behaves legally at steps L, . . . , ` + 1 (1 ≤ ` ≤ L − 1), then the Operator
decides whether to behave illegally at step `; and so on. The Operator does not need to
behave illegally throughout the game; see assumption (iii).

The Inspectorate decides at the beginning whether to control at step L. If it has still
controls at its disposal, then the Inspectorate decides at step L − 1 whether to control
at that step; and so on.

(x') The game ends either at the step at which the Operator behaves illegally, or at that step
at which the number of controls left is zero, or at that step at which the number of
controls left is equal to the number of steps left, or at step 1.

Assumptions (iv) and (viii) will be speci�ed in the following sections, while the remaining
assumptions of Chapter 14 except (ix) hold throughout this chapter. Regarding assumption
(x') we note that if the Operator behaves illegally at step i, i = L, ..., 1, then the game ends

315
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at step i regardless whether the illegal behaviour is detected at that step or not. In the latter
case, the Operator has successfully performed his illegal activity and thus, the game ends as
well.

In Section 16.1 we start as usually with a special case, and present thereafter the general
Dresher-Höp�nger model with the complete proof of the game theoretical solution. In Section
16.2 we take into account errors of the second kind, and in the Section 16.3 errors of the �rst
and second kind. In the latter section a solution has been found only for k = 1 control during
L steps, but it is interesting, nevertheless, because of its relation to the No-No inspection game
of Chapter 15 and its game theoretical solution. Finally, we discuss in Section 16.4 for the
Dresher-Höp�nger inspection game with L = 2 steps and k = 1 control the choice of the best
value of the false alarm probability α.

Let us specify what we said already in the introduction to this Part III: For the models considered
in this and the next chapter, time is a priori no issue; the steps introduced here may be days,
nights or weeks, and the objectives of the players are just the gains and losses in case of detected
or undetected illegal behaviour of the inspected side. Nevertheless, let us repeat, we call this
Part III Critical Time because these models describe also critical time con�icts.

16.1 Any number of steps and controls

The inspection game analysed in this section is based on the speci�cations:

(iv') During a control the Inspectorate does not commit any errors of the �rst and second
kind, i.e., if the illegal activity is carried through at the same step at which a control is
performed, then it is detected with certainty at that step.

(viii') The payo�s to the two players (Operator, Inspectorate) are given by

(d,−c) for an untimely control and illegal behaviour

(−b,−a) for a timely control and illegal behaviour

(0, 0) for legal behaviour ,

(16.1)

where the parameters satisfy the conditions

0 < min(b, d) and 0 < a < c . (16.2)

If the Operator behaves illegally, then the case "untimely control" means that no control is
performed at the step at which the Operator behaves illegally.

Consider �rst the Dresher-Höp�nger model with L = 2 steps and k = 1 control which is
abbreviated by Γ(2, 1), and the extensive form of which is presented in Figure 16.1. Note that
according to the comment on p. 50, all extensive form games in this chapter start with the
Operator's decision at L. Since it is the �rst of many subsequent ones, we describe it in major
detail.

At step 2, i.e., at the top of the tree, the Operator decides to behave illegally immediately (¯̀2)
or not (`2). In the latter case he decides at step 1 to behave illegally immediately (¯̀1) or not
(`1). Also at step 2 the Inspectorate decides, not knowing the Operator's decision, to control
(c2) or not (c̄2). At step 1 it cannot control (c̄1) any more if it does so at step 2 (c2), and it
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Figure 16.1 Extensive form of the Dresher-Höp�nger inspection game Γ(2, 1).
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has to control (c1) if it does not at step 2 (c̄2). If the Inspectorate does not control at step
2 (c̄2), then it does not know at step 1 if the Operator behaved illegally at step 2 (¯̀2) or not
(`2), and if he behaves illegally at step 1 (¯̀1) or not at all (`1) (middle information set). If the
Operator chooses `2 and the Inspectorate c2, then the Inspectorate does not know at step 1
whether the Operator behaves illegally at step 1 (lowest information set). The payo�s to the
two players are given at the end nodes of the tree and are, using (16.1), self-explaining. Note
that � as mentioned in the introduction to this chapter � the Operator does not necessarily
behave illegally.

Let us comment the two information sets of the Inspectorate at step 1: They represent the
state of information of the Inspectorate, but they have no operational meaning since at all
nodes contained in these two sets there are no alternatives. Thus, if one is only interested in
the decisions of the Inspectorate, one can omit these information sets. If one, furthermore,
omits the strictly dominated strategy `1 resp. ¯̀

1 of the Operator in the subgames starting after
the moves `2c2 resp. `2c̄2, then one arrives at the reduced extensive form game and its normal
form represented in Figure 16.2. Note that in all subsequent extensive form games we will no
longer consider information sets without alternatives at their nodes, in other words, we will
consider only the reduced extensive forms corresponding to Figure 16.2 for the game Γ(2, 1).

Let the probability of behaving illegally at step 2 (¯̀2) be p̄2,1. For the Inspectorate, let q2,1
be the probability to control at step 2 (c2). If the Operator behaves legally at step 2 (`2),
then � depending on the Inspectorate's behaviour at step 2 � the subgame Γ(1, 1) or Γ(1, 0)
at step 1 is reached. In both games the Inspectorate has no strategic alternatives because in
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Figure 16.2 Reduced extensive form and the corresponding normal form of the inspection game
in Figure 16.1.
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Γ(1, 1) it has to control, i.e., q1,1 = q∗1,1 = 1, and in Γ(1, 0) it cannot perform a control, i.e.,
q1,0 = q∗1,0 = 0. Thus, the probabilities q1,1 and q1,0 are �xed, and are therefore excluded from
the Inspectorate's set of behavioural strategies Q2,1 de�ned below. Formally, and in contrast
to the Inspectorate, the Operator has strategic alternatives in the games Γ(1, 1) and Γ(1, 0):
He can choose any probability p̄1,1 ∈ [0, 1] resp. p̄1,0 ∈ [0, 1], where in equilibrium we have
p̄∗1,1 = 0 and p̄∗1,0 = 1 because of the strict dominance. Therefore, p̄1,1 and p̄1,0 are excluded
from Operator's set of behavioural strategies P2,1. Summing up, we have

P2,1 = {p̄2,1 : p̄2,1 ∈ [0, 1]} and Q2,1 = {q2,1 : q2,1 ∈ [0, 1]} . (16.3)

Let us note that contrary to the notation of the strategies for the Se-Se inspection game in
Part I, we use here p and q instead of g and h, because we transform the extensive form games
into normal form games in which the notation p and q is utilized in Part I. Also note that in
order to be consistent with the notation in Chapter 17, we already use here the notation p̄2,1.

The Operator's (expected) payo� is, for any p̄2,1 ∈ P2,1 and any q2,1 ∈ Q2,1, using the bimatrix
in Figure 16.2 and (19.3), given by

Op2,1(p̄2,1, q2,1) = (p̄2,1, 1− p̄2,1)
(
−b d
d 0

) (
q2,1

1− q2,1

)
(16.4)

and that of the Inspectorate, using (19.4), by

In2,1(p̄2,1, q2,1) = (p̄2,1, 1− p̄2,1)
(
−a −c
−c 0

) (
q2,1

1− q2,1

)
. (16.5)

The game theoretical solution of this inspection game, see Canty et al. (2001), is presented in
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Lemma 16.1. Given the Se-Se inspection game with L = 2 steps and k = 1 control, i.e.,
Γ(2, 1). The sets of behavioural strategies are given by (16.3), and the payo�s to both players
by (16.4) and (16.5).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2,1 :=
Op2,1(p̄

∗
2,1, q

∗
2,1) and In∗2,1 := In2,1(p̄

∗
2,1, q

∗
2,1):

The Operator behaves illegally at step 2 with probability

p̄∗2,1 =
c

2 c− a
, (16.6)

and the Inspectorate controls at step 2 with probability

q∗2,1 =
d

2 d+ b
. (16.7)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 =
d2

2 d+ b
and In∗2,1 = − c2

2 c− a
. (16.8)

Proof. Consider the normal form given in Figure 16.2. According to (16.2), the preference
directions are cyclic, so that there exists a unique equilibrium in mixed strategies. Then the
method of rendering the adversary indi�erent as regards to the choice of his strategy leads to
the equilibrium strategies given by (16.6) and (16.7) and the corresponding equilibrium payo�s
(16.8); see Theorem 19.1.

This equilibrium is quite di�erent from the solution of the No-No inspection game; see (15.10)
to (15.12) with α = β = 0. First, as one would expect, the ability to make use of the
information available at step 1 gives the Operator an advantage with respect to the No-No
inspection game. Indeed, subtracting the Operator's equilibrium payo� in the No-No inspection
game from that for the Se-Se inspection game, we obtain, using (15.12) and (16.8),

d2

2 d+ b
− d− b

2
=
b

2

b+ d

2 d+ b
> 0.

Second, because p̄∗2,1 < 1, the Operator will behave legally with positive probability, irrespective
of his payo� parameters, i.e., he cannot be deterred from behaving illegally.

Let us now turn to the general case of any number L of steps and k controls which is denoted
by Γ(L, k), and which has been analysed �rst by Dresher (1962). He considered a zero-sum
game with payo�s to the Inspectorate as given by +1 for detected illegal behaviour, −1 for
undetected illegal behaviour, i.e., d = b = 1 in (16.1), and 0 for legal behaviour of the Operator.
As mentioned on p. 315, Dresher's model and its recursive treatment represents a landmark
in the area of inspection games over time and has been modi�ed and extended in the decades
after its invention as we will show later on.

The payo�s in Dresher's model have been generalized by Höp�nger (1971). He assumed that
the Operator's gain for a successful illegal activity need not equal his loss if he is caught,
and also solved the resulting recurrence equation explicitly. Furthermore, zero-sum payo�s are
not fully adequate since a caught illegal activity, compared to behaving legally throughout, is
usually undesirable for both players since for the Inspectorate this demonstrates a failure of his
surveillance system. The recursive form of the inspection game as analysed by Höp�nger (1971)
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and later by Rinderle (1996) is given in Figure 16.3 both in extensive and in normal form, where
we have already presented the subgame which is reached in case the Operator behaves legally
at steps L, . . . , ` + 1 (for ` < L), and ` steps as well as k′ controls are left. The variables `
and k′ are subject to 2 ≤ ` ≤ L and 1 ≤ k′ ≤ min(`− 1, k). The cases ` = 1 as well as k′ = 0
and k′ = ` are excluded from the game theoretical analysis; see the explanations before (16.9).

Figure 16.3 Recursive extensive form and corresponding recursive normal form of the subgame
Γ(`, k′) of the Dresher-Höp�nger inspection game Γ(L, k), if ` steps and k′ controls are left,
and the Operator behaves legally at steps L, . . . , `+ 1 (2 ≤ ` ≤ L, 1 ≤ k′ ≤ min(`− 1, k)).

Operator at `

(
−b
−a

)
c`

(
d

−c

)
c̄`

¯̀̀

(
Op`−1,k′−1
In`−1,k′−1

)
c`

(
Op`−1,k′

In`−1,k′

)
c̄`

``

Inspectorate at `

c` c̄`

¯̀̀ −a −c
−b d

``
In`−1,k′−1 In`−1,k′

Op`−1,k′−1 Op`−1,k′

The payo�s in both games in Figure 16.3 can be explained as follows: Suppose the Operator
behaves illegal at step ` ( ¯̀̀ ). If the Inspectorate performs a control at step ` (c`), then the
illegal activity is detected leading to the payo�s (−b,−a), and if it does not control at step `
(c̄`), then the illegal behaviour has been successful and the payo�s are (d,−c). If, on contrary,
the Operator behaves legal at step ` (``), then depending on the Inspectorate's decision (c` or
c̄`) two subgames are reached the (expected) payo� in which are abbreviated as follows: Let
Op`−1,k′ and In`−1,k′ resp. Op`−1,k′−1 and In`−1,k′−1 denote the (expected) payo�s to both
players in the subgame with `− 1 steps and k′ resp. k′ − 1 controls.

A remark on the notation: In Parts I and II the illegal and legal behaviour are denoted by ¯̀ and
`, respectively. In Part III we keep this notation for consistency reasons, however, because L is
the number of steps, it is appealing to abbreviate any step between L, . . . , 1 by the letter ` as
n and N in the step by step game of Section 5.3. This implies that the legal behaviour at step
` is denoted by ``. We do not expect the reader to be confused by this notation.

Two pairs of (`, k′)-values deserve a special attention. Note that we always have k′ ≤ `. First,
if k′ = ` then the Inspectorate controls at any of the remaining ` steps and thus, the Operator
will behave legally in all these steps because 0 > −b, i.e., we have for the equilibrium payo�s
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Op∗`,` = 0 and In∗`,` = 0 for all 1 ≤ ` ≤ L. Second, if k′ = 0 then there is no control left
and thus, the Operator will behave illegally in one of the remaining steps because d > 0. Here
we get for the equilibrium payo�s Op∗`,0 = d and In∗`,0 = −c for all 1 ≤ ` ≤ L. Thus, the
equilibrium payo�s need to ful�l for any 1 ≤ ` ≤ L the boundary conditions

Op∗`,` = 0 , In∗`,` = 0 and Op∗`,0 = d , In∗`,0 = −c . (16.9)

Let p̄L,k denote the probability of behaving illegally at step L (¯̀L) and let qL,k be the probability
to control at step L (cL). Suppose the Operator behaves legally at steps L, . . . , `+1, 1 ≤ ` < L,
then the game has reached step `, i.e., ` steps are left, and suppose that the Inspectorate has
still k′ controls at its disposal, 1 ≤ k′ ≤ min(` − 1, k). Then p̄`,k′ denotes the probability
to behave illegally at step ` ( ¯̀̀ ) and q`,k′ denotes the probability to control at step ` (c`).
Although for a complete description of the game the sets of behavioural strategies of both
players needs to be de�ned, we omit this here, as it is cumbersome, because each subgame
contains two further subgames, and is not further used.

The game theoretical solution of this inspection game, see Rinderle (1996), is presented in

Theorem 16.1. Given the Se-Se inspection game with L > k steps and k controls, i.e., Γ(L, k),
the recursive extensive and normal forms of which are represented in Figure 16.3. The payo�s
to both players are de�ned recursively using the recursive normal form representation in Figure
16.3, and the equilibrium payo�s to both players ful�l the boundary conditions (16.9).

Suppose ` steps, 2 ≤ ` ≤ L, and k′ controls, 1 ≤ k′ ≤ min(`−1, k), are left, and the Operator
behaves legally at steps L, . . . , `+1, i.e., the subgame Γ(`, k′) is reached. De�ne the functions

f(`, k′) :=

k′∑
i=0

(
`

i

) (
b

d

)k′−i
and g(`, k′) :=

k′∑
i=0

(
`

i

) (
−a
c

)k′−i
. (16.10)

Then a Nash equilibrium in the subgame Γ(`, k′) is given by the following equilibrium strategies
and payo�s Op∗`,k′ and In

∗
`,k′ :

The Operator behaves illegally at step ` with probability

p̄∗`,k′ = 1−
1− a

c

−
(
`−2
k′

)
g(`− 1, k′)

+

(
`−2
k′−1

)
g(`− 1, k′ − 1)

+ 1− a

c

, (16.11)

where
(
`−2
`−1
)

:= 0, and the Inspectorate controls at step ` with probability

q∗`,k′ =
f(`− 1, k′ − 1)

f(`, k′)
. (16.12)

The equilibrium payo�s to the Operator and to the Inspectorate in the subgame Γ(`, k′) are

Op∗`,k′ = d

(
`−1
k′

)
f(`, k′)

and In∗`,k′ = −c
(
`−1
k′

)
g(`, k′)

, (16.13)

which � for ` = L and k′ = k � are the equilibrium payo�s of the entire game Γ(L, k).
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Proof. We proceed in four steps.

1. In order to show that (16.11) and (16.12) constitute probabilities, we �rst prove that g(`, k′)
satis�es the two recursive relations:

g(`, k′) = g(`− 1, k′) + g(`− 1, k′ − 1) and (16.14)

g(`, k′) = −a
c
g(`, k′ − 1) +

(
`

k′

)
. (16.15)

In fact, with the well-known binomial addition formula(
n

i

)
+

(
n

i− 1

)
=

(
n+ 1

i

)
, 1 ≤ i ≤ n , (16.16)

and an appropriate change of summation we get by (16.10)

g(`, k′) =
(
−a
c

)k′
+

k′∑
i=1

(
`

i

) (
−a
c

)k′−i

=

(
`− 1

0

) (
−a
c

)k′
+

k′∑
i=1

((
`− 1

i

)
+

(
`− 1

i− 1

)) (
−a
c

)k′−i

=

k′∑
i=0

(
`− 1

i

) (
−a
c

)k′−i
+

k′∑
i=1

(
`− 1

i− 1

) (
−a
c

)k′−i

=

k′∑
i=0

(
`− 1

i

) (
−a
c

)k′−i
+

k′−1∑
i=0

(
`− 1

i

) (
−a
c

)k′−(i+1)

= g(`− 1, k′) + g(`− 1, k′ − 1) ,

i.e., (16.14), and

g(`, k′) =

k′∑
i=0

(
`

i

) (
−a
c

)k′−i
=

k′−1∑
i=0

(
`

i

) (
−a
c

)k′−i
+

(
`

k′

)

=
(
−a
c

) k′−1∑
i=0

(
`

i

) (
−a
c

)k′−i−1
+

(
`

k′

)

=
(
−a
c

)
g(`, k′ − 1) +

(
`

k′

)
,

i.e., (16.15). f(`, k′) also ful�ls (16.14) and (16.15) if one replaces −a/c by b/d. Using (16.10)
we get for all 1 ≤ ` ≤ L

g(`, `) =
(

1− a

c

)`
and g(`, 0) = 1 ,
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and thus, (16.14) yields g(`, k′) > 0, i.e., the ratios regarding g(`− 1, k′) and g(`− 1, k′ − 1)
in (16.11) are well-de�ned. To prove that p̄∗`,k′ ∈ (0, 1), it is su�cient to show that(

`−2
k′−1

)
g(`− 1, k′ − 1)

>

(
`−2
k′

)
g(`− 1, k′)

,

which is, using (16.14), equivalent to

g(`− 1, k′ − 1)
`− 1

k′
< g(`, k′) . (16.17)

We prove this inequality by induction. For k′ = 1 we have by (16.10)

g(`− 1, 0) (`− 1) = `− 1 < `− a

c
= g(`, 1)

which holds because of a < c; see (16.2). Assume now k′ > 1 and assume that (16.17) holds
for all 1, . . . , k′ − 1. Using (16.15) with `− 1 and adding it to (16.14) we get

g(`, k′) =
(

1− a

c

)
g(`− 1, k′ − 1) +

(
`− 1

k′

)
and shifting both variables by −1

g(`− 1, k′ − 1) =
(

1− a

c

)
g(`− 2, k′ − 2) +

(
`− 2

k′ − 1

)
.

Multiplying the second equation with (`−1)/k′ and subtracting it from the �rst we get, keeping
in mind that `− 1 ≥ k′ > 1 implies (`− 1)/k′ ≤ (`− 2)/(k′ − 1),

g(`, k′)− g(`− 1, k′ − 1)
`− 1

k′
=
(

1− a

c

) (
g(`− 1, k′ − 1)− g(`− 2, k′ − 2)

`− 1

k′

)

≥
(

1− a

c

) (
g(`− 1, k′ − 1)− g(`− 2, k′ − 2)

`− 2

k′ − 1

)
.

Due to the induction assumption, the right hand side is larger than zero, i.e., (16.17) is shown,
and we have p̄∗`,k′ ∈ (0, 1).

Because f(`, k′) is larger than 0 by de�nition, and because (16.14) for f(`, k′) instead of g(`, k′)
implies f(`, k′) > f(`− 1, k′ − 1), we see, using (16.12), that q∗`,k′ ∈ (0, 1).

2. For any ` with 2 ≤ ` ≤ L and any k′ with 1 ≤ k′ ≤ min(` − 1, k) we consider the
normal form given in Figure 16.3. In part 4 of the proof it is shown that the payo�s are cyclic,
see (16.31) and (16.32), which implies that there exists a unique Nash equilibrium in mixed
strategies which is determined with the help of the indi�erence principle, see Theorem 19.1,

Op∗`,k′ = q∗`,k′ (−b) + (1− q∗`,k′) d = q∗`,k′ Op
∗
`−1,k′−1 + (1− q∗`,k′)Op∗`−1,k′ (16.18)

and

In∗`,k′ = −p̄∗`,k′ a+ (1− p̄∗`,k′) In∗`−1,k′−1 = −p̄∗`,k′ c+ (1− p̄∗`,k′) In∗`−1,k′ . (16.19)
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This leads to

q∗`,k′ =
d−Op∗`−1,k′

Op∗`−1,k′−1 −Op∗`−1,k′ + b+ d
(16.20)

and

p̄∗`,k′ =
In∗`−1,k′ − In∗`−1,k′−1

In∗`−1,k′ − In∗`−1,k′−1 + c− a
. (16.21)

Inserting (16.20) into (16.18) and (16.21) into (16.19), we get the following recursive relations
for Op∗`,k′ and In

∗
`,k′ :

Op∗`,k′ =
dOp∗`−1,k′−1 + bOp∗`−1,k′

Op∗`−1,k′−1 −Op∗`−1,k′ + b+ d
(16.22)

and

In∗`,k′ =
c In∗`−1,k′−1 − a In∗`−1,k′

In∗`−1,k′ − In∗`−1,k′−1 + c− a
. (16.23)

Two observations are important: First, if we replace b by a and d by −c in the right hand side
of (16.22), then we get the right hand side of (16.23), which means that the two recursive
relations have the same structure. Second, if we write (16.23) in the form

In∗`,k′

c
=

In∗`−1,k′−1
c

− a

c

In∗`−1,k′

c
In∗`−1,k′

c
−
In∗`−1,k′−1

c
+ 1− a

c

, (16.24)

then we see that In∗`,k′/c depends only on the single parameter a/c which simpli�es the deter-
mination of the solution of the recursive relations considerably.

3. With the transformations

Ĩ∗`,k′ :=
In∗`,k′

c
and ã := −a

c
,

we have to show that

Ĩ∗`,k′ = −
(
`−1
k′

)
g̃(`, k′)

with g̃(`, k′) =

k′∑
i=0

(
`

i

)
ãk
′−i (16.25)

ful�ls by (16.24) the recursive relation

Ĩ∗`,k′ =
Ĩ∗`−1,k′−1 + ã Ĩ∗`−1,k′

Ĩ∗`−1,k′ − Ĩ∗`−1,k′−1 + 1 + ã
(16.26)

together with the boundary conditions, see (16.9),

Ĩ∗`,` = 0 and Ĩ∗`,0 = −1 . (16.27)
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We see immediately that (16.27) is ful�lled. In order to show that the recursive relation (16.26)
is ful�lled we use (16.14) and (16.15) which imply that g̃(`, k′) satis�es

g̃(`, k′) = g̃(`− 1, k′) + g̃(`− 1, k′ − 1) (16.28)

and

g̃(`, k′) = ã g̃(`, k′ − 1) +

(
`

k′

)
. (16.29)

Substituting Ĩ∗`,k′ from (16.25) into (16.26) we get

−
(
`−1
k′

)
g̃(`, k′)

=

−
(
`−2
k′−1

)
g̃(`− 1, k′ − 1)

− ã
(
`−2
k′

)
g̃(`− 1, k′)

−
(
`−2
k′

)
g̃(`− 1, k′)

+

(
`−2
k′−1

)
g̃(`− 1, k′ − 1)

+ 1 + ã

or equivalently,

−
(
`−1
k′

)
g̃(`, k′)

= (16.30)

=

(
`−2
k′−1

)
g̃(`− 1, k′) + ã

(
`−2
k′

)
g̃(`− 1, k′ − 1)(

`−2
k′

)
g̃(`− 1, k′ − 1)−

(
`−2
k′−1

)
g̃(`− 1, k′)− (1 + ã) g̃(`− 1, k′ − 1) g̃(`− 1, k′)

.

The nominator on the right hand side of (16.30) is by (16.16) and (16.29)(
`− 2

k′ − 1

)
g̃(`− 1, k′) + ã

(
`− 2

k′

)
g̃(`− 1, k′ − 1)

=

(
`− 2

k′ − 1

) (
ã g̃(`− 1, k′ − 1) +

(
`− 1

k′

))
+ ã

(
`− 2

k′

)
g̃(`− 1, k′ − 1)

= ã g̃(`− 1, k′ − 1)

((
`− 2

k′ − 1

)
+

(
`− 2

k′

))
+

(
`− 2

k′ − 1

)(
`− 1

k′

)

= ã g̃(`− 1, k′ − 1)

(
`− 1

k′

)
+

(
`− 2

k′ − 1

)(
`− 1

k′

)

=

(
ã g̃(`− 1, k′ − 1) +

(
`− 2

k′ − 1

)) (
`− 1

k′

)
.

Therefore, (16.30) is equivalent to

−
(
ã g̃(`− 1, k′ − 1) +

(
`− 2

k′ − 1

))
g̃(`, k′)

=

(
`− 2

k′

)
g̃(`− 1, k′ − 1)−

(
`− 2

k′ − 1

)
g̃(`− 1, k′ − 1)− (1 + ã) g̃(`− 1, k′ − 1) g̃(`− 1, k′)

or, using (16.28), equivalent to

−
(
ã g̃(`− 1, k′ − 1) +

(
`− 2

k′ − 1

)) (
g̃(`− 1, k′) + g̃(`− 1, k′ − 1)

)
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=

(
`− 2

k′

)
g̃(`− 1, k′ − 1)−

(
`− 2

k′ − 1

)
g̃(`− 1, k′ − 1)− (1 + ã) g̃(`− 1, k′ − 1) g̃(`− 1, k′)

which is equivalent to

−
(
ã g̃(`− 1, k′ − 1) +

(
`− 2

k′ − 1

))
g̃(`− 1, k′ − 1)

=

(
`− 2

k′

)
g̃(`− 1, k′ − 1)− g̃(`− 1, k′ − 1) g̃(`− 1, k′)

or, �nally, after diving by g̃(` − 1, k′ − 1)(> 0) and using (16.16), equivalent to (16.29), i.e.,
Ĩ∗`,k′ from (16.25) ful�ls the recursive relation (16.26).

With the remark given above, the validity of Op∗`,k′ can be shown in the same way.

In order to obtain the equilibrium strategies (16.11) and (16.12), we substitute (16.13) into
the left hand equalities (16.18) and (16.19) and use, in case of (16.12), the relations (16.14)
and (16.15) for f(`, k′) instead of g(`, k′). At this point we see the reason for the di�erent
complexities of the optimal strategies (16.11) and (16.12): Whereas with (16.18) we can relate
q∗`,k′ just to Op∗`,k′ , according to (16.19) the probability p̄∗`,k′ is related to both In∗`,k′ and
In∗`−1,k′−1.

4. Let us come back to the preference directions which are given by

Op∗`−1,k′−1 > − b and Op∗`−1,k′ < d (16.31)

and furthermore,

In∗`−1,k′−1 < In∗`−1,k′ . (16.32)

Note that −c < −a holds by de�nition; see (16.2). Because f(`, k′) > 0 for all 2 ≤ ` ≤ L
and all k′ with 1 ≤ k′ ≤ min(` − 1, k), we have Op∗`−1,k′−1 > 0 > −b. Further we get from
(16.10)

f(`, k′) =

k′∑
i=0

(
`

i

) (
b

d

)k′−i
>

(
`

k′

)
>

(
`− 1

k′

)
,

which implies by (16.13) that Op∗`−1,k′ < d. Relation (16.32) is by (16.13) equivalent to

g(`− 1, k′ − 1)
`− 1− k′

k′
< g(`− 1, k′) (16.33)

or, using (16.14), equivalent to

g(`− 1, k′ − 1)
`− 1

k′
< g(`, k′) .

The validity of this inequality, however, has already been proven after (16.17), which completes
the proof.

On p. 319 we have shown for L = 2 steps and k = 1 control that the equilibrium payo� of
the Se-Se inspection game is larger than that of the No-No inspection game. This statement



Chapter 16: Se-Se inspection game 327

is also true for any L > 1 steps and k = 1 control, because, using case (i) in Corollary 15.1 for
β = 0 and (16.13), we get

d

(
L−1
1

)
f(L, 1)

−
(
d− (b+ d)

1

L

)
=

b (b+ d)

L (Ld+ b)
> 0 .

Furthermore, the statement is true for any L > k > 1: Because (16.15) for b/d instead of
−a/c implies

f(L, k) = f(L− 1, k) + f(L− 1, k − 1) ,

and because (16.33) yields for f instead of g

f(L, k − 1)
L− k
k

< f(L− 1, k) ,

we get

d

(
L−1
k

)
f(L, k)

− d+ (b+ d)
k

L
= d

k

L

b

d

(
−L− k

k

f(L, k − 1)

f(L, k)
+ 1

)

=
k

L

b

f(L, k)

((
1− L

k

)
f(L, k − 1) + f(L, k)

)
> 0 ,

i.e., the equilibrium payo� of the Se-Se inspection game is larger than that of the No-No inspec-
tion game. Note that the Operator will behave legally in equilibrium with positive probability
since p̄∗`,k′ < 1, however, the Inspectorate has no deterring strategy.

In Theorem 16.1 we have determined a Nash equilibrium using the recursive structure of the
game. What happens if we solve the extensive form game instead? Do we get additional
equilibrium strategies and if yes, are they payo� equivalent to those already found? Here, these
questions have not yet been addressed. In Chapter 17, however, we show that in fact the
equilibrium strategies of the generalized Thomas-Nisgav inspection game, which is also solved
using its recursive structure, are no longer unique. There are more equilibrium strategies of the
second player (called Customs in Section 17.1), if one considers the extensive form as a whole,
but they are all payo� equivalent.

As mentioned on p. 315, the Dresher-Höp�nger model has become very in�uential. A slightly
di�erent and very interesting variant will be discussed in Chapter 17: In the original Thomas-
Nisgav inspection game it is assumed that the Smuggler must perform an illegal activity, in
contrast to the Dresher-Höp�nger inspection game where the Operator can perform at most
one illegal activity. This change of the modelling assumption leads to a considerable change
in the game theoretical solutions; see (16.11) � (16.13) for b = d = 1, c = 1 and a = −1
in contrast to (17.31) � (17.33) for b = d = 1 and β = 0 and also p. 368. A numerical
comparison can be found in Krieger and Avenhaus (2018b).

16.2 Any number of steps and controls; errors of the second
kind

In case of attribute sampling procedures errors of the second kind may occur, in other words an
illegal activity will, even in case the control is timely, only be detected with probability 1 − β.
Thus, the inspection game analysed in this section is based on the speci�cations:
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(iv') During a control the Inspectorate may commit an error of the second kind, i.e., if the
Operator behaves illegally at the same step at which the Inspectorate performs a control,
then the illegal activity is not detected with probability β. This non-detection probability
is the same for all controls.

(viii') The payo�s to the two players (Operator, Inspectorate) are given by

(d,−c) for an untimely control and illegal behaviour, or

a timely control and no detection of the illegal behaviour

(−b,−a) for a timely control and detection of the illegal behaviour

(0, 0) for legal behaviour,

(16.34)

where the parameters satisfy (16.2).

In Figure 16.4 the extensive form of the Dresher-Höp�nger inspection game Γ(2, 1) with errors
of the second kind is represented for the case of L = 2 steps and k = 1 control. The chance
moves are not explicitly named, but can be identi�ed via the probabilities 1− β and β.

Figure 16.4 Extensive form of the Dresher-Höp�nger inspection game Γ(2, 1) with errors of
the second kind.
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Let us compare this new extensive form with that of Figure 16.1: As announced on p. 317
we have omitted now the information sets of the Inspectorate at step 1 and consequently, we
have omitted its choices c̄1 and c1. Instead, a chance move is introduced after a control the
outcomes of which lead to di�erent payo�s than before.

Also we see that the Operator decides at step 1 to eventually act illegally even in case that



Chapter 16: Se-Se inspection game 329

there will be a control since it may not be detected. If we introduce the payo�s1

−b̃ := − b (1− β) + d β and − ã := −a (1− β)− c β , (16.35)

then we see that on the right hand side of the game in Figure 16.4 the Operator will decide for

¯̀
1

`1
for − b̃ ≷ 0 or β ≷

b

b+ d
. (16.36)

Thus, if we replace in Figure 16.4 the chance moves by the payo�s (16.35) and if we omit the
strictly dominated strategy `1 in the subgame starting after the moves `2c2 and if we, depending
on (16.36), omit the strictly dominated strategy ¯̀

1 resp. `1 in the subgame starting after the
moves `2c̄2, then we arrive at a reduced extensive form of this game � which is not presented
here � and its normal forms which are given in Table 16.1 and which correspond to that given
in Figure 16.3.

Table 16.1 Normal forms of the inspection game given in Figure 16.4. Left: β < b/(b + d),
Right: β > b/(b+ d).

c2 c̄2

¯̀
2

−ã −c
−b̃ d

`2
−c 0

d 0

c2 c̄2

¯̀
2

−ã −c
−b̃ d

`2
−c −ã

d −b̃

The only di�erence of the left hand normal form in Table 16.1 to that of Figure 16.2 is that we
have replaced the payo�s a and b by ã and b̃. Using (16.2) and (16.35), we see that −b̃ < d
and −c < −ã. Therefore, both normal forms have a cyclic payo� structure and thus, a unique
equilibrium in mixed strategies. Note that after the moves `2c̄2, the Operator decides at step
1 according to (16.36).

The game theoretical solution of this inspection game is presented in

Lemma 16.2. Given the Se-Se inspection game with L = 2 steps, k = 1 control, and with
errors of the second kind, i.e., Γ(2, 1). The sets of behavioural strategies are given by (16.3)
and the payo�s to both players by (16.4) and (16.5) appropriately modi�ed according to the
normal form representations in Table 16.1.

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2,1 :=
Op2,1(p̄

∗
2,1, q

∗
2,1) and In∗2,1 := In2,1(p̄

∗
2,1, q

∗
2,1):

(i) For

1 >
1

1− β
1

1 + b/d

1In Chapter 15 we have introduced the abbreviations A and B in (15.2) which have a similar meaning as ã
and b̃; in fact we have ã = c−B and b̃ = A− d. Comparing the payo� matrix in Figure 16.3 to them in Table
16.1, it is mandatory to identify −b resp. −a with −b̃ and −ã. Thus, the de�nitions (16.35) are natural for the
inspection game discussed in this section. In Chapter 15, however, the notation A and B for easier reference
to the original paper is maintained.
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the Operator behaves illegally at step 2 with probability

p̄∗2,1 =
c

2 c− ã
,

and the Inspectorate controls at step 2 with probability

q∗2,1 =
d

2 d+ b̃
.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 =
d2

2 d+ b̃
and In∗2,1 = − c2

2 c− ã
.

(ii) For

1 <
1

1− β
1

1 + b/d

the Operator behaves illegally at step 2 with probability

p̄∗2,1 =
1

2
,

and the Inspectorate controls at step 2 with probability

q∗2,1 =
1

2
.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 =
1

2
(−b̃+ d) and In∗2,1 =

1

2
(−ã− c) .

Proof. Because −b̃ < d and −c < −ã, both normal forms in Table 16.1 have a cyclic payo�
structure and thus, a unique equilibrium in mixed strategies which can be found with the help
of the indi�erence principle; see Theorem 19.1. Alternatively the Nash equilibrium conditions
(19.6) can be easily seen.

Now let us turn to the general Dresher-Höp�nger inspection game with errors of the second
kind. It would be tempting � at least for β < b/(b+ d) � to immediately replace a and b by ã
and b̃ in the reduced extensive and normal forms as given in Figure 16.3 and modify Theorem
16.1 appropriately. This is however not so easily done since the information structure of the
Dresher-Höp�nger inspection game with errors of the second kind and more than one control
is more complicated than that with just k = 1 control. In order to illustrate this, we consider
the game Γ(3, 2) with L = 3 steps and k = 2 controls. Its extensive form is given in Figure
16.5.

Figure 16.5 can be explained as follows: First of all, and as announced on p. 317, the information
sets of the Inspectorate with just one alternative and the subsequent moves are omitted. Second,
and this is new, we see that if the Inspectorate controls at step 3 and in case the illegal activity
of the Operator is not detected, the Inspectorate does not know at step 2 if an illegal activity
did take place and was not detected, or if it did not yet take place. Thus, the second (left)
information set of the Inspectorate includes the node following the moves ¯̀

3c3β which then
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Figure 16.5 Extensive form of the Dresher-Höp�nger inspection game Γ(3, 2) with errors of
the second kind.
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leads to the same payo�s (d,−c) independently of how the Inspectorate decides. This fact
permits us to cut the information set in the way indicated in Figure 16.5. Third, following the
moves `3c̄3 ¯̀

2 we get the payo�s (−b̃,−ã), whereas following the moves `3c̄3`2 we get either
(−b̃,−ã) or (0, 0): Using (16.36), ¯̀

1 is strictly dominated by `1 if and only if −b̃ < 0 and vice
versa. Thus, for −b̃ > 0 we get for both ¯̀

2 and `2 the payo�s (−b̃,−ã), whereas for −b̃ < 0
the decision ¯̀

2 is strictly dominated by `2, and thus, the payo�s are (0, 0).

In sum, having cut the second (left) information set of the Inspectorate we can replace the
moves following `3c3 by the subgame Γ(2, 1), and the moves following `3c̄3 by the payo�s as
described above. This way we arrive at the reduced extensive forms of the Dresher-Höp�nger
inspection game Γ(3, 2) with errors of the second kind which are represented in Figure 16.6.

We see that the recursive extensive form of the game Γ(3, 2) is for the case β < b/(b+d) just a
special case of the one given in Figure 16.3 if we replace a and b by ã and b̃. Thus the solution
of this game is just given by Theorem 16.1 for L = 3 steps and k = 2 controls and ã and b̃
instead of a and b. Generalizing this procedure to the analysis of the general Dresher-Höp�nger
inspection game Γ(L, k) with errors of the second kind, we arrive immediately at its game
theoretical solution.
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Figure 16.6 Recursive extensive form of the inspection game in Figure 16.5. Left: β <
b/(b+ d), Right: β > b/(b+ d).
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The case β > b/(b + d) is di�erent. Having cut the information set as described before, we
can formulate the general recursive game Γ(L, k) in the same way as in Figure 16.3, but now,
other than before, with the new boundary conditions for the equilibrium payo�s

Op∗`,k′ =

{
−b̃ for k′ = `

d for k′ = 0
and In∗`,k′ =

{
−ã for k′ = `

−c for k′ = 0
(16.37)

for any 1 ≤ ` ≤ L. Note that for both cases the recursive normal form is represented in Table
16.2.

Table 16.2 Recursive normal form of the subgame Γ(`, k′) of the Dresher-Höp�nger inspection
game Γ(L, k) with errors of the second kind, if ` steps and k′ controls are left, and the Operator
behaves legally at steps L, . . . , `+ 1 (2 ≤ ` ≤ L, 1 ≤ k′ ≤ min(`− 1, k)).

c` c̄`

¯̀̀ −ã −c
−b̃ d

``
In`−1,k′−1 In`−1,k′

Op`−1,k′−1 Op`−1,k′

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Theorem 16.2. Given the Se-Se inspection game with L > k steps, k controls, and with
errors of the second kind, i.e., Γ(L, k), the recursive normal form of which is represented in
Table 16.2. The payo�s to both players are de�ned recursively using the recursive normal form
representation in Table 16.2, and the equilibrium payo�s to both players ful�l the boundary
conditions (16.9) in case (i) and (16.37) in case (ii).
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(i) For

1 >
1

1− β
1

1 + b/d
(16.38)

a Nash equilibrium and the corresponding payo�s are given by Theorem 16.1 in which a
and b are replaced by ã and b̃ as de�ned by (16.35).

(ii) For

1 <
1

1− β
1

1 + b/d
(16.39)

and in case ` steps, 2 ≤ ` ≤ L, and k′ controls, 1 ≤ k′ ≤ min(`− 1, k), are left, and the
Operator behaves legally at steps L, . . . , ` + 1, i.e., the subgame Γ(`, k′) is reached, a
Nash equilibrium in the subgame Γ(`, k′) is given by the following equilibrium strategies
and payo�s Op∗`,k′ and In

∗
`,k′ :

The Operator behaves illegally at step ` with probability

p̄∗`,k′ =
1

`
, (16.40)

and the Inspectorate controls at step ` with probability

q∗`,k′ =
k′

`
. (16.41)

The equilibrium payo�s to the Operator and to the Inspectorate in the subgame Γ(`, k′)
are

Op∗`,k′ = d− (1− β) (b+ d)
k′

`
and In∗`,k′ = −c+ (1− β) (c− a)

k′

`
,

(16.42)

which � for ` = L and k′ = k � are the equilibrium payo�s of the entire game Γ(L, k).

Proof. As already indicated we need only to prove (ii). We proceed as in the proof of Theorem
16.1.

1. It is obvious that (16.40) and (16.41) constitute probabilities.

2. We will see in step 4 that the preference directions of the bimatrix in Table 16.2 are cyclic.
This means that there exists a unique equilibrium in mixed strategies. It is determined by the
following recursive relations which we have written for convenience in a way slightly di�erent
from that in the proof of Theorem 16.1, see (16.22) and (16.23):

Op∗`,k′ = d− (b̃+ d)
d−Op∗`−1,k′

Op∗`−1,k′−1 −Op∗`−1,k′ + b̃+ d
(16.43)

and

In∗`,k′ = −c+ (c− ã)
c+ In∗`−1,k′

In∗`−1,k′ − In∗`−1,k′−1 + c− ã
. (16.44)
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Also we get, using (16.20) and (16.21),

q∗`,k′ =
d−Op∗`−1,k′

Op∗`−1,k′−1 −Op∗`−1,k′ + b̃+ d
and p̄∗`,k′ =

In∗`−1,k′ − In∗`−1,k′−1
In∗`−1,k′ − In∗`−1,k′−1 + c− ã

,

which simplify by (16.42) to (16.40) and (16.41).

3. We see that (16.42) satis�es both the boundary condition (16.37) and the recursive relation
(16.43): In fact, the right hand side of (16.43) is, using the left hand side of (16.42) and
(16.35),

d− (b̃+ d)
(1− β)

k′

`− 1

(1− β)− (1− β)

(
k′ − 1

`− 1
− k′

`− 1

) = d− (b̃+ d)
k′

`

= d− (1− β) (b+ d)
k′

`
= Op∗`,k′ ,

which is the left hand side of (16.43). Similarly, the right hand side of (16.42) ful�ls (16.44)
and the boundary condition (16.37):

−c+ (c− ã)

k′

`− 1
k′

`− 1
− k′ − 1

`− 1
+ 1

= −c+ (c− ã)
k′

`
= In∗`,k′ .

4. We show that the preference directions of the bimatrix in Table 16.2 are cyclic: From (16.2)
and (16.35) we get −c < −ã. Because b̃ + d = (1 − β) (b + d) > 0 we have by (16.42) that
Op∗`−1,k < d and, because k′ < `,

Op∗`−1,k−1 = d− (b̃+ d)
k′ − 1

`− 1
> d− (b+ d) (1− β) = −b̃ .

From (16.42) we also get

In∗`−1,k−1 < In∗`−1,k ,

which completes the proof.

Let us comment the results of Theorem 16.2: First, and most importantly, it is surprising that
a slight change of the parameter β from (16.38) to (16.39) changes the type of the solution so
fundamentally, but this can be understood as follows: This change is equivalent to a change
of −b (1 − β) + d β from larger to smaller than zero, i.e., it is equivalent to a change of the
expected payo� to the Operator in case of a timely inspection from larger to smaller than zero.
Whereas in the �rst case the solution is still of the Dresher-Höp�nger type solution, in the
second case it is totally di�erent and much simpler. In particular, the equilibrium strategies of
both players do not depend on the payo� parameters a, b, c and d. In fact, the structure of
the equilibrium strategy of the Operator is the same as that for the Se-No and Se-Se inspection
game in Part I and for the Se-No and Se-Se inspection game with β = 0 resp. α = β = 0 in
Part II. Thus, this structure shows a universal character. We will return to this second type of
solution in part (i) of Theorem 17.1 and in Theorem 17.2.
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Although the equilibrium payo�s are so di�erent under (i) and (ii), they coincide � as expected
� for β to b/(b+ d) from the left and the right hand side. We show this statement only for the
Operator's equilibrium payo�: For (i) we get by (16.35), that b̃ = 0 for β = b/(b+ d). Thus,
we obtain from (16.10) with b̃ instead of b

f(L, k) =

k∑
i=0

(
L

i

) (
b̃

d

)k−i
=

(
L

k

)
and, using (16.13),

Op∗L,k = d

(
L−1
k

)
f(L, k)

= d

(
L−1
k

)(
L
k

) = d

(
1− k

L

)
.

Thus, (16.42) yields for β = b/(b+ d)

Op∗L,k = d− (1− β) (b+ d)
k

L
= d

(
1− k

L

)
,

i.e., both expressions coincide.

Second, because (16.38) is equivalent to β < b/(b+ d), the Operator behaves � according to
case (i) � legally with positive probability for small β, whereas in case (ii) he behaves illegally with
certainty because of the decision ¯̀

1 in (16.36). Figure 16.7 illustrates this property explicitly.

Figure 16.7 Illustration of P(behaving illegally) = 1 for case (ii) of Theorem 16.2.
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The property P(behaving illegally) = 1 can be shown as follows: Let Ai be the event that the
Operator does not behave illegally before step L− i, i = L− 1, . . . , 1. Using Figure 16.7, we
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get for i = L− 1, . . . , 1

P(Ai) =

i∏
j=1

(
1− 1

L− (j − 1)

)
=
L− i
L

and therewith

P(behaving illegally) =
1

L
+

L−1∑
i=1

1

L− i
P(Ai) =

1

L
+
L− 1

L
= 1 .

Therefore, because there exists a probability distribution for the step at which the Operator
behaves illegally, we can determine its expected step:

Ep∗(S) = 1
1

L
+ 2

(
L− 1

L

1

L− 1

)
+ 3

(
L− 1

L

L− 2

L− 1

1

L− 2

)
+ . . .+ L

(
L− 1

L
. . . 1

)

=
1

L

L∑
i=1

i =
L+ 1

2
,

which, after all, is not surprising.

Third, in case (ii) the equilibrium strategies of both players do neither depend on the payo�
parameters nor on the detection probability 1 − β which again is surprising and which makes
this solution attractive for practitioners. Note that the Operator's probability p̄∗`,k′ as given by
(16.40) only depends on the number of steps left, and thus, they form a harmonic progression;
see also Table 4.1 on p. 72 for an overview of inspection games with this property.

Finally, the equilibrium payo�s to both players in case (ii) of Theorem 16.2 are the same as that
in case (i) of Corollary 15.1; see p. 300. Also the equilibrium strategies can be transformed
into each other: The probability that the Operator behaves illegally at step `, ` = L, . . . , 1, is,
using (16.40) or Figure 16.7, given by 1/L which is p∗i given by (15.76) in Corollary 15.1. For
Inspectorate's probability to control at steps L,L− 1 and L− 2 respectively we get for k ≥ 3:

q∗L,k =
k

L
= q∗L−1 ,

k

L

k − 1

L− 1
+

(
1− k

L

)
k

L− 1
=
k

L
= q∗L−2 ,

(
1− k

L

) [(
1− k

L− 1

)
k

L− 2
+

k

L− 1

k − 1

L− 2

]

+
k

L

[(
1− k − 1

L− 1

)
k − 1

L− 2
+
k − 1

L− 1

k − 2

L− 2

]
=
k

L
= q∗L−3 ,

where the q∗· on the right hand side are the probabilities (15.77). It can be conjectured that for
all remaining steps this equivalence holds as well. Note however, that although the equilibrium
payo�s to both players coincide and the equilibrium strategies can be transformed into each
other, the conditions (15.75) and (16.38) are not identical. Nevertheless, this result is very
surprising and remarkable since it has no equivalent in Parts I and II.
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16.3 Any number of steps and one control; errors of the �rst
and second kind

Consider a last time inspections where variable sampling procedures are used which means that
errors of the �rst and second kind may occur. Thus, the inspection game analysed in this
section is based on the speci�cation:

(iv') During a control the Inspectorate may commit errors of the �rst and second kind with
probabilities α and β. These error probabilities are the same for all controls. Only controls
which are performed before an illegal activity may incur false alarm costs.

Assumption (iv') is justi�ed on p. 282. Because false alarms have not yet been considered
in this chapter, the payo�s to the Operator and Inspectorate as given by (16.34) need to be
extended to the payo�s (14.1) with (14.2) as to include the payo�s in case of legal behaviour
of the Operator and a false alarm.

Throughout this section we use again the quantities A and B that are de�ned by (15.2), i.e.,

A = (b+ d) (1− β) > 0 and B = (c− a) (1− β) > 0 .

Also we assume again that the test procedure is unbiased, i.e., α + β < 1, which implies
A− f α > 0; see also (15.4).

As in Section 16.2 we start with the most simple case of the Se-Se inspection game with errors
of the �rst and second kind: L = 2 steps and k = 1 control, the extensive form of which is
shown in Figure 16.8. Again, the chance moves in Figures 16.8 and 16.10 are not explicitly
named, but can be identi�ed via the probabilities 1− β and β as well as 1− α and α.

Let us describe Figure 16.8 in some detail and compare it with Figure 16.1. Due to the more
complicated structure we have reduced the tree wherever possible.

At step 2, i.e., at the top of the tree, the Operator decides to behave illegally immediately (¯̀2)
or not (`2). At step 1 he has to behave legally if he behaves illegally at step 2 (left branch),
otherwise (right branch) he decides to behave illegally at step 1 (¯̀1) or not (`1).

Also at step 2, the Inspectorate decides, not knowing the Operator's decision, to control (c2) or
not (c̄2). At step 1 it cannot control any more if it does so at step 2 (c2), and it has to control
if it does not at step 2 (c̄2). In that case it does not know if the Operator behaves illegally at
step 1 (¯̀1) or not (`1); in fact it also does not know whether the Operator behaved illegally
already at step 2. Thus, formally the three nodes reached after the moves ¯̀

2c̄2, `2c̄2 ¯̀
1 and

`2c̄2`1, and which are all followed by c1 should be in one information set. This situation is not
displayed in Figure 16.8, but see Figure 16.1 which indicates the overlapping information set.
If the Inspectorate controls, then a chance move has to be considered: In case the Operator
behaves illegally, this will be detected with probability 1 − β or not with probability β. In
case the Operator behaves legally, a false alarm will be raised with probability α or not with
probability 1− α. A subtle modelling aspect, which already occurred in the No-No inspection
game, see assumption (iv') and p. 282, has to be highlighted: If the Operator behaves illegally
at step 2 and the Inspectorate controls at step 1, formally a false alarm may be raised at step
1. We ignore this possibility since in this case we consider the game to be �nished with step 2,
see assumption (x) of Chapter 14: The Operator has successfully completed the illegal activity.



338 Chapter 16: Se-Se inspection game

Figure 16.8 Extensive form of the Dresher-Höp�nger inspection game Γ(2, 1) with errors of
the �rst and second kind.
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The payo�s to the two players are given at the end nodes of the tree and are, using (14.2),
self-explaining. Like in all games of this chapter, the Operator does not necessarily behave
illegally.

If both players wait till step 1, then the Operator will behave illegally at step 1 if d−A > −f α,
i.e., if his expected gain for behaving illegally is larger than that for legal behaviour. Thus,
depending on d − A ≷ −f α, the reduced game can be represented in normal form as shown
in Table 16.3.

Table 16.3 Normal forms of the inspection game given in Figure 16.8. Left: d − A < −f α.
Right: d−A > −f α.

c2 c̄2

¯̀
2

B − c −c
d−A d

`2
−c−g α −g α

d− f α −f α

c2 c̄2

¯̀
2

B − c −c
d−A d

`2
−c−g α B − c

d− f α d−A

The normal form in case of d − A > −f α is identical to that of the No-No inspection game
in Table 15.1; the pure strategy 1 dominates the legal strategy. Note that conceptually, a
timely detection of an illegal activity can only happen in the No-No inspection game when an
inspection is performed at the time point after the illegal activity, while in the Se-Se inspection
game the control has to happen at the same step. Thus, if the critical time t, see p. 275, is
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set to zero, the strategies of both inspection games can be compared: The numbers 1 and 0 in
the �rst row of the normal form in Table 15.1 would then be shifted to 2 and 1, respectively.

As in Section 16.1, let p̄2,1 denotes the Operator's probability to behave illegally at step 2
(¯̀2). For the Inspectorate, let q2,1 be the probability to control at step 2 (c2). With the same
argumentation as on p. 317 we reach � in case of legal behaviour at step 2 (`2) � the subgame
Γ(1, 1) or Γ(1, 0) at step 1, and the respective equilibrium strategies are given by

p̄∗1,1 =

{
1 for d−A > −f α

0 for d−A < −f α

q∗1,1 = 1

and
p̄∗1,0 = 1

q∗1,0 = 0 .
(16.45)

Again, as on p. 317, we exclude the probabilities p̄1,1, p̄1,0 and q1,1, q1,0 from the sets of
behavioural strategies (16.3). The (expected) payo�s two both players are given by (16.4) and
(16.5) using the bimatrices in Table 16.3.

The game theoretical solution of this inspection game, see Canty et al. (2001), is presented in

Lemma 16.3. Given the Se-Se inspection game with L = 2 steps, k = 1 control, errors of
the �rst and second kind, and an unbiased test procedure, i.e., Γ(2, 1), the extensive and the
normal forms of which are represented in Figure 16.8 and Table 16.3. The sets of behavioural
strategies are given by (16.3), and the payo�s to both players by (16.4) and (16.5) appropriately
modi�ed according to the normal form representations in Table 16.3.

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2,1 :=
Op2,1(p̄

∗
2,1, q

∗
2,1) and In∗2,1 := In2,1(p̄

∗
2,1, q

∗
2,1):

(i) For

d−A < −f α

the Operator behaves illegally at step 2 with probability

p̄∗2,1 =
c

c+B
, (16.46)

and the Inspectorate controls at step 2 with probability

q∗2,1 =
d+ f α

d+A
. (16.47)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 = d−A d+ f α

d+A
< d and In∗2,1 = −c+B

c− g α
c+B

> −c . (16.48)

(ii) For

d−A > −f α

the Operator behaves illegally at step 2 with probability

p̄∗2,1 =
B + g α

2B + g α
, (16.49)
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and the Inspectorate controls at step 2 with probability

q∗2,1 =
A

2A− f α
. (16.50)

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗2,1 = d− A2

2A− f α
< d and In∗2,1 = −c+

B2

2B + g α
> −c . (16.51)

Proof. In both bimatrices in Table 16.3 the preference directions are cyclic which means, that
there exists a unique Nash equilibrium in mixed strategies which can be found with the help of
the indi�erence principle; see Theorem 19.1.

Let us comment the results of Lemma 16.3: First, because the game Γ(2, 1) in this section is a
generalization of the corresponding game with only errors of the second kind, see Section 16.2,
the results of Lemma 16.3 coincide in case of α = 0 with the results of Lemma 16.2.

Second, (16.45) implies that in case d − A > −f α the Operator will behave illegally with
certainty because we have p̄∗2,1 + (1 − p̄∗2,1) p̄∗1,1 = 1, while in case d − A < −f α he behaves
illegally with probability p̄∗2,1 ∈ (0, 1). Thus, the Operator cannot be induced to behaving legally
with certainty.

Third, it has been mentioned on p. 338 that in case of d−A > −f α the normal form of the
No-No inspection game is equivalent to the normal form of the Se-Se inspection game. Thus,
the equilibrium strategies and payo�s should coincide. Indeed, if d−A > −f α, then condition
(15.9) is ful�lled:

(A− f α) 2

2A− f α
= (A− f α)

A− f α
2A− f α

< (A− f α) < d .

Comparing (15.10) with (16.49) and (15.11) with (16.50) we get

p∗2 = p̄∗2,1 , p∗1 = (1− p̄∗2,1) p̄∗1,1 = 1− p̄∗2,1

q∗1 = q∗2,1 , q∗0 = 1− q∗2,1 ,

where the results of Lemma 15.1 are displayed on the left hand side of the equal sign. The
equilibrium payo�s are obviously the same. This surprising result may be understood as follows:
d − A > −f α implies that the Operator's (expected) payo� in case of a timely detection is
larger than for legal behaviour. Therefore, he will behave illegally regardless of the Inspectorate's
behaviour. Thus, given that he behaved legally at step 2, knowing the Inspectorate's decision
at that step (c2 or c̄2) does not add any valuable information to the Operator. So, he could
just pick a step for the illegal activity right before the game starts.

In case d − A < −f α and condition (15.9) is ful�lled, the Operator has an advantage in the
Se-Se inspection game, because d − A < −f α is equivalent to the fact that Op∗2,1 given by
(15.12) is smaller than that given by (16.48).

Let us now consider the Dresher-Höp�nger inspection game with errors of the �rst and second
kind for any number L of steps but k = 1 control, i.e., Γ(L, 1). The recursive form of this
inspection game is presented in Figure 16.9 both in extensive and in normal form, where we
have already presented the subgame which is reached if the Operator behaves legally at steps
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Figure 16.9 Recursive extensive form and corresponding recursive normal form of the subgame
Γ(`, 1) of the Dresher-Höp�nger inspection game Γ(L, 1) with errors of the �rst and second
kind, if ` steps and 1 control are left, and the Operator behaves legally at steps L, . . . , ` + 1
(2 ≤ ` ≤ L).

Operator at `

(
d−A
−c+B

)
c`

(
d

−c

)
c̄`

¯̀̀

(
Op`−1,0 − f α
In`−1,0 − g α

)
c`

(
Op`−1,1
In`−1,1

)
c̄`

``

Inspectorate at `

c` c̄`

¯̀̀ B − c −c
d−A d

``
In`−1,0 − g α In`−1,1

Op`−1,0−f α Op`−1,1

L, . . . , `+ 1 (for ` < L), and ` steps as well as one control are left (2 ≤ ` ≤ L). The payo�s
Op`−1,· and In`−1,· are explained below.

Let p̄L,1 denote the probability to behave illegally at step L (¯̀L), and let qL,1 be the probability
to control at step L (cL). Suppose the game has reached step ` with 2 ≤ ` < L and the
Inspectorate has still the only control at its disposal. Then p̄`,1 denotes the probability to
behave illegally at step ` if the Operator does not do so before ( ¯̀̀ ) and q`,1 denotes the
probability to control at step ` (c`). In case of ` = 1, the equilibrium strategies are again given
by (16.45). Again, the sets of behavioural strategies are omitted; see the comment on p. 321.

The (expected) payo�s to both players is de�ned recursively using the normal form represen-
tation in Figure 16.9, where Op`−1,· and In`−1,· denote the (expected) payo�s to both players
in the subgame with `− 1 steps and 1 or 0 controls left. The equilibrium payo�s need to ful�l
the boundary conditions

Op∗2,1 and In∗2,1 according to (16.48) or (16.51)

Op∗`,0 = d and In∗`,0 = −c for any 1 ≤ ` ≤ L .
(16.52)

The game theoretical solution of this inspection game, see Canty et al. (2001), is presented in

Theorem 16.3. Given the Se-Se inspection game with L ≥ 3 steps, k = 1 control, errors of
the �rst and second kind, and an unbiased test procedure, i.e., Γ(L, 1), the recursive extensive
and the recursive normal forms of which are represented in Figure 16.9. The payo�s to both
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players are de�ned recursively using the recursive normal form representation in Figure 16.9,
and the equilibrium payo�s to both players ful�l the boundary conditions (16.52).

Suppose ` steps, 3 ≤ ` ≤ L, are left and the Inspectorate has still the only control at its
disposal, i.e., the subgame Γ(`, 1) is reached.

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗`,1 and
In∗`,1:

The Operator behaves illegally at step ` with probability

p̄∗`,1 =
In∗`−1,1 + c+ g α

In∗`−1,1 + c+ g α+B
, (16.53)

and the Inspectorate controls at step ` with probability

q∗`,1 =
d−Op∗`−1,1

d− f α−Op∗`−1,1 +A
. (16.54)

The equilibrium payo�s to the Operator and to the Inspectorate in the subgame Γ(`, 1) are,
using (16.48) or (16.51) depending on the respective case,

Op∗`,1 = d− f α

1−

(
1− f α

d−Op∗2,1

) (
1− f α

A

)`−2 (16.55)

and

In∗`,1 = −c− g α

1−

(
1 +

g α

c+ In∗2,1

) (
1 +

g α

B

)`−2 , (16.56)

which � for ` = L � are the equilibrium payo�s of the entire game Γ(L, 1).

Proof. It is obvious that p̄∗`,1 ∈ [0, 1] and, because of (15.4), also q∗`,1 ∈ [0, 1].

For any ` with 2 ≤ ` ≤ L we consider the recursive normal form representation of the subgame
Γ(`, 1) in Figure 16.9. The preference directions of the payo�s are cyclic again, which will be
shown at the end of the proof and is assumed to be given at present. Because of this cyclic
structure there exists a unique Nash equilibrium in mixed strategies which is determined, using
(16.52), with the help of the indi�erence principle, see Theorem 19.1:

Op∗`,1 = q∗`,1 (d−A) + (1− q∗`,1) d = q∗`,1 (d− f α) + (1− q∗`,1)Op∗`−1,1 (16.57)

and

In∗`,1 = p̄∗`,1 (B − c) + (1− p̄∗`,1) (−c− g α) = −p̄∗`,1 c+ (1− p̄∗`,1) In∗`−1,1 , (16.58)

which leads to (16.53) and (16.54). Inserting (16.53) into (16.58) and (16.54) into (16.57),
we obtain the following recursive relations for Op∗`,1 and In∗`,1:

Op∗`,1 = d−Aq∗`,1 = d−A
d−Op∗`−1,1

d− f α−Op∗`−1,1 +A
(16.59)
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and

In∗`,1 =
−c (c+ g α) + (B − c) In∗`−1,1

In∗`−1,1 + c+ g α+B
= −c+B

c+ In∗`−1,1
In∗`−1,1 + c+ g α+B

. (16.60)

With some elementary manipulations it can be shown that (16.55) and (16.56) ful�l (16.59)
and (16.60), respectively.

To prove that the preference direction are cyclic we start with the case ` = 3: (16.48) and
(16.51) both imply Op∗2,1 < d and In∗2,1 > −c. Furthermore, we have B − c > −c, and, using
(15.4), d − A < d − f α. Thus, the preference directions are cyclic for ` = 3. The proof is
now conducted by induction using the fact that Op∗`,1 as given by (16.59) is smaller than d
(induction hypothesis is Op∗`−1,1 < d), and In∗`,1 as given by (16.60) larger than −c (induction
hypothesis is In∗`−1,1 > −c), which completes the proof.

Let us comment the results of Theorem 16.3: First, the distinction of the cases d−A ≷ −f α
which can be expected from Theorem 16.2 and Lemma 16.3 enter Theorem 16.3 via the
boundary conditions (16.48) or (16.51) that are used in (16.55) and (16.56). Note for ease
notation we have presented the equilibrium strategies as a function of the equilibrium payo�s.
For further discussion we now derive the explicit expressions as well as their limiting behaviour
for α→ 0. Let x and y be de�ned as in (15.28), i.e.,

x = 1− f α

A
(∈ (0, 1)) and y = 1 +

g α

B
(> 1) .

We obtain in case of d−A < −f α for (16.55) and (16.56), using (16.48), the expressions

Op∗`,1 = d−A 1− x

1− d

d+A (1− x)
x`−1

and

In∗`,1 = −c+B
y − 1

c

c− (y − 1)B
y`−1 − 1

,

(16.61)

which simplify for α→ 0, or equivalently x→ 1 and y → 1, using L'Hospital's rule to

Op∗L,1 = d−A d

A+ d (L− 1)
and In∗L,1 = −c+B

c

B + c (L− 1)
. (16.62)

Furthermore, (16.62) implies, using (16.53) and (16.54), for α→ 0

p̄∗`,1 =
c

B + c (`− 1)
and q∗`,1 =

d

A+ d (`− 1)
. (16.63)

In case of d−A > −f α, we obtain for (16.55) and (16.56), using (16.51), the expressions

Op∗`,1 = d−A 1− x
1− x`

and In∗`,1 = −c+B
y − 1

y` − 1
, (16.64)

which lead, using (16.53) and (16.54), to the explicit forms of the equilibrium strategies

p̄∗`,1 =
y − 1

y` − 1
y`−1 and q∗`,1 =

1− x
1− x`

. (16.65)
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(16.64) and (16.65) simplify for α→ 0, which is again equivalent to x→ 1 and y → 1, using
L'Hospital's rule to

p̄∗`,1 = q∗`,1 =
1

`
and Op∗L,1 = d− A

L
and In∗L,1 = −c+

B

L
. (16.66)

Second, for α = β = 0 the solution of Theorem 16.3 coincides with those of Theorem 16.1 for
k = 1 control: (16.10) implies with k′ = 1

f(L, 1) =

1∑
i=0

(
`

i

) (
b

d

)1−i
=
b

d
+ ` and g(`, 1) =

1∑
i=0

(
`

i

) (
− a
c

)1−i
= − a

c
+ `

and thus, we get for (16.11), (16.12) and (16.13), using g(`− 1, 0) = 1 and f(`− 1, 0) = 1,

p̄∗`,1 =
c

−a+ c `
and q∗`,1 =

d

b+ d `
, (16.67)

with the equilibrium payo�s

Op∗L,1 = d

(
L−1
1

)
f(L, 1)

= d2
L− 1

b+ dL
and In∗L,1 = −c

(
L−1
1

)
g(L, 1)

= −c2 L− 1

−a+ cL
. (16.68)

Because α = β = 0 implies d − A = −b < 0, we see, using the de�nition of A and B, that
(16.67) and (16.68) coincide with (16.63) and (16.62). Thus, the game theoretical solution
of the Se-Se inspection game discussed in this section is for α = β = 0 the same as that for
Theorem 16.1 and k = 1 control, as expected.

Third, for α = 0 but β > 0 we see that the condition d−A < 0 is equivalent to β < b/(b+d),
i.e., case (i) in Theorem 16.2 is valid. Then, using (16.67) and (16.68) with ã and b̃ de�ned
by (16.35) instead of a and b, respectively, we get

p̄∗`,1 =
c

−(a (1− β) + c β) + c `
and q∗`,1 =

d

(b (1− β)− d β) + d `
, (16.69)

with the equilibrium payo�s

Op∗L,1 = d2
L− 1

(b (1− β)− d β) + dL
and In∗L,1 = −c2 L− 1

−(a (1− β) + c β) + cL
. (16.70)

Using the de�nition of A and B, (16.69) and (16.70) are seen to be equivalent to (16.63) and
(16.62).

Because the condition d− A < 0 is equivalent to β < b/(b + d), case (ii) in Theorem 16.2 is
valid. Again, it can be seen by simple comparison that (16.66) coincide with (16.40), (16.41)
and (16.42). In sum, we have shown that the game theoretical solution of the Se-Se inspection
game discussed in this section is for α = 0 but β > 0 the same as that for Theorem 16.2 and
k = 1 control, again as expected.

Fourth, as in the special case L = 2 steps, the Operator cannot be induced to behaving legally
with certainty. While in the case of d− A > −f α he behaves, using of (16.45), illegally with
certainty, in case of d−A < −f α he behaves legally with positive probability.

Finally, we draw the attention to the relation of the Se-Se to the No-No inspection game already
mentioned on p. 340 for the case L = 2 steps: For d−A > −f α we have

1 +
f α

d
= 1 +

f α

A

1

d

A

< 1 +
f α

A

1

1− f α

A

=
1

1− f α

A

,
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and thus, for all L > 2,(
1 +

f α

d

) (
1− f α

A

)L
<

(
1− f α

A

)L−1
< 1 .

Using (15.28), we get

xL <

(
1 +

f α

d

)−1
=

(
1 +

A

d
(1− x)

)−1
,

i.e., (15.55) is ful�lled for k = 1 control. Obviously, the equilibrium payo�s (15.58) coincide
with (16.64). Furthermore, the equilibrium strategies can be transformed into each other:
The probability that the Operator behaves illegally at step L is the same; see (16.65) for
` = L and p∗L as given by (15.56). Furthermore, the probability that he behaves illegal at step
`, 1 ≤ ` ≤ L− 1, is, using (16.65), given by

(1− p̄∗L,1) (1− p̄∗L−1,1) . . . (1− p̄∗`+1,1) p̄
∗
`,1 = p̄∗`,1

L∏
i=`+1

(1− p̄∗`,1)

=
y − 1

y` − 1
y`−1

L∏
i=`+1

(
1− y − 1

yi − 1
yi−1

)
=

y − 1

y` − 1
y`−1

L∏
i=`+1

yi−1 − 1

yi − 1
=

y − 1

yL − 1
y`−1 ,

i.e., p∗i as given by (15.56) for i = `. For the Inspectorate similar considerations can be made:
For ` = L, (16.65) coincides with (15.57) for j = L − 1. Also, the Inspectorate's probability
of controlling at step `, 1 ≤ ` ≤ L− 1, is, using (16.65), in analogy to the last equation

(1− q∗L,1) (1− q∗L−1,1) . . . (1− q∗`+1,1) q
∗
`,1 =

1− x
1− xL

xL−` ,

i.e., q∗j as given by (15.57) for j = `+ 1.

In sum, for d−A > −fα the game theoretical solution of the Se-Se inspection game coincide
resp. can be transformed into the game theoretical solution of the No-No inspection game for
k = 1 control. We have observed this remarkable property already for k > 1 inspections and
any number L of steps in case of α = 0; see p. 336. We will see that for k > 1 and α > 0 this
does not hold any more; see p. 351.

As for the case L = 2 steps, the Operator has an advantage in the Se-Se inspection game in
case of d − A < −f α and (15.55) is ful�lled, because d − A < −f α is equivalent to the
inequality

d−A 1− x

1− d

d+A (1− x)
xL−1

> d−A 1− x
1− xL

,

i.e., the equilibrium payo� Op∗L,1 to the Operator in the No-No inspection game given by (15.58)
is smaller than that in the Se-Se inspection game given by (16.61).

Due to the complexity of conditions to be taken into account, further generalizations of the
above result to k > 1 inspections at L > 1 steps in the sense of Theorems 16.1 or 16.2 seem
infeasible. Therefore, we present two observations and consider then the special case Γ(3, 2)
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of the Dresher-Höp�nger inspection game with errors of the �rst and second kind in order to
illustrate the complexity of the general game Γ(L, k):

First, if k = L, then the Operator will behave legally at any step provided d − A < −Lf α.
Otherwise he will behave illegally right at step L in order to avoid false alarm costs, because
they are � by assumption � excluded after an illegal activity; see assumption (iv').

Second, if k < L, then in the course of the game all possible situations are reached with positive
probability in which an illegal activity has not yet occurred and the same number of steps and
controls remain. Therefore, the cases

d−A ≷ −k′ f α for k′ = k, k − 1, . . . , 1

have all to be considered.

We now analyse the Dresher-Höp�nger inspection game Γ(3, 2) with errors of the �rst and
second kind the reduced extensive form of which is presented in Figure 16.10.

Let us describe Figure 16.10. At step 3, i.e., at the top of the tree, the Operator decides to
behave illegally immediately (¯̀3) or not (`3). At step 2, he has to behave legally, if he behaves
illegally at step 3 (left branch), otherwise (right branch) he decides to behave illegally (¯̀2) or
not (`2) at step 2. The same holds then for step 1 in case he behaves legally at step 2.

Also at step 3, the Inspectorate decides, not knowing the Operator's decision, to control (c3)
or not (c̄3). If it decides to control at step 3, then it decides at step 2 to control (c2) or not
(c̄2). In the �rst case it cannot control any more at step 1, in the second case it has to control
at step 1. If the Inspectorate decides not to control at step 3, it has to control at steps 2
(c2) and 1 (c1). The information sets of the Inspectorate at steps 3 and 2 are shown in Figure
16.10, its information set at 1 is not shown for simplicity since here it has to control which
leads to the payo�s shown in the Figure. Note that the subtle modelling aspect described
in assumption (iv') and on p. 337 regarding false alarms holds here as well: If, for example,
the Operator behaves illegally at step 3 and the Inspectorate does not control at step 3, then
formally false alarms may be raised at steps 2 and 1. We ignore this possibility since in this case
we consider the game to be �nished with step 3: The Operator has successfully completed the
illegal activity. Chance moves are no longer shown in this reduced form of the game instead, the
error �rst and second kind probabilities are included in the payo�s to both players at the end
nodes. As in Figure 16.8, not all information sets are depicted in Figure 16.10. For example:
the three nodes reached after the moves ¯̀

3c̄3, `3c̄3 ¯̀
2 and `3c̄3`2, and which are all followed by

the strategy c2c1 should be in one information set.

In order to solve this inspection game, the three cases

(i): d−A < −2 f α (ii): − 2 f α < d−A < −f α and (iii): − f α < d−A

have to be distinguished. The solution is di�erent for each one of the above, and each case
involves subcases.

The game theoretical solution of this inspection game is presented in Lemma 16.4, where only
case (iii) is treated in Canty et al. (2001) explicitly.

Lemma 16.4. Given the Se-Se inspection game with L = 3 steps, k = 2 controls, errors of
the �rst and second kind, and an unbiased test procedure, i.e., Γ(3, 2), the extensive form of
which is represented in Figure 16.10.
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Figure 16.10 Reduced extensive form of the Dresher-Höp�nger inspection game Γ(3, 2) with
errors of the �rst and second kind.
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Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗3,2 and
In∗3,2:

(i) For

d−A < −2 f α

an equilibrium strategy of the Operator is given by

p̄∗3,2 = c
c− g α

(B + c)2 − c (B + g α)
, p̄∗2,k′ =

{
0 for k′ = 2

(16.46) for k′ = 1
,

and an equilibrium strategy of the Inspectorate by

q∗3,2 =
(A+ d) (d+ 2 f α)

(A+ d)2 − d (A− f α)
, q∗2,k′ =

{
1 for k′ = 2

(16.47) for k′ = 1
.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = d−Aq∗3,2 and In∗3,2 = −c p̄∗3,2 − 2 g α (1− p̄∗3,2) .

(ii) For

−2 f α < d−A < −f α (16.71)

and

d+ f α

d+A
+
f α

A
< 1 (16.72)

an equilibrium strategy of the Operator is given by

p̄∗3,2 = 1−B B + c

(2B + c) (B + g α)
, p̄∗2,k′ =

{
1 for k′ = 2

(16.46) for k′ = 1
,

and an equilibrium strategy of the Inspectorate by

q∗3,2 = A
A+ d

(2A+ d) (A− f α)
, q∗2,k′ =

{
1 for k′ = 2

(16.47) for k′ = 1
.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = d−Aq∗3,2 and In∗3,2 = −c+B (1− p̄∗3,2) .

If (16.72) is not ful�lled, the Operator behaves illegally at step 3 with probability one,
i.e., p̄∗3,2 = 1, and the Inspectorate controls at step 3 with probability one, i.e., q∗3,2 = 1.
The equilibrium payo�s to the Operator and to the Inspectorate are Op∗3,2 = d− A and
In∗3,2 = B − c.
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(iii) For

−f α < d−A (16.73)

and (
1− f α

A

) (
2− f α

A

)
> 1 (16.74)

an equilibrium strategy of the Operator is given by

p̄∗3,2 = 1−B 2B + g α

(2B + g α)2 −B2
, p̄∗2,k′ =

{
1 for k′ = 2

(16.49) for k′ = 1
,

and an equilibrium strategy of the Inspectorate by

q∗3,2 = A
2A− f α

(2A− f α)2 −A2
, q∗2,k′ =

{
1 for k′ = 2

(16.50) for k′ = 1
.

The equilibrium payo�s to the Operator and to the Inspectorate are

Op∗3,2 = d−Aq∗3,2 and In∗3,2 = −c+B (1− p̄∗3,2) .

If (16.74) is not ful�lled, the Operator behaves illegally at step 3 with probability one,
i.e., p̄∗3,2 = 1, and the Inspectorate controls at step 3 with probability one, i.e., q∗3,2 = 1.
The equilibrium payo�s to the Operator and to the Inspectorate are Op∗3,2 = d− A and
In∗3,2 = B − c.

Proof. Ad (i): Using Figure 16.10, the Operator chooses in this case after the moves `3c3`2c̄2
the strategy `1 and after the moves `3c̄3 the strategy `2. Thus, we arrive at the recursive
normal form given in Table 16.4, where the equilibrium payo�s Op∗2,1 and In∗2,1 are given by
(16.48).

Table 16.4 Recursive normal form of the Dresher-Höp�nger inspection game Γ(3, 2) with errors
of the �rst and second kind for case (i).

c3 c̄3

¯̀
3

B − c −c
d−A d

`3
In∗2,1 − g α −2 g α

Op∗2,1−f α −2 f α

The non-trivial requirements for cyclic preferences for the bimatrix of Table 16.4 are then given
by

d−A < Op∗2,1 − f α and In∗2,1 − g α < −2 g α . (16.75)
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The �rst requirement is ful�lled, because d − A < −2 f α and f α < A imply d f α − A2 <
−2 f αA, which is equivalent to

d+ f α

d+A
+
f α

A
< 1 ,

which is equivalent, using (16.48), to the left inequality in (16.75). Using (16.48) again, the
second requirement is equivalent to c > 0, which is true because of (14.2). Thus, the game
has cyclic preferences, and the equilibrium strategies and payo�s can be found again with the
help of the indi�erence principle; see Theorem 19.1.

Ad (ii): In this case, the Operator chooses after the moves `3c3`2c̄2 the strategy `1 like in case
(i), but after the moves `3c̄3 the strategy ¯̀

2; see Figure 16.10. The recursive normal form of
this game is given in Table 16.5, where again the equilibrium payo�s (16.48) are used.

Table 16.5 Recursive normal form of the Dresher-Höp�nger inspection game Γ(3, 2) with errors
of the �rst and second kind for cases (ii) and (iii).

c3 c̄3

¯̀
3

B − c −c
d−A d

`3
In∗2,1 − g α B − c

Op∗2,1−f α d−A

To obtain cyclic preference directions, the inequalities

d−A < Op∗2,1 − f α and In∗2,1 − g α < B − c (16.76)

have to be valid. The �rst requirement is, using (16.48), equivalent to (16.72). Table 16.3
implies that the best Inspectorate's payo� in the game Γ(2, 1) is B − c. Thus, the second
condition holds as well. Therefore, the preference directions are cyclic and again the indi�erence
principle leads to the equilibrium strategies and payo�s.

If condition (16.72) is not ful�lled, then the preferences are not cyclic and the game has a
unique equilibrium in pure strategies in which the Operator behaves illegally right at step 3 and
the Inspectorate inspects at step 3, i.e., p̄∗3,2 = q∗3,2 = 1. Their respective payo�s are d − A
and B − c.

For illustration, if α = 0.5, β = 0.25, f = 5, and d = b = 8, then (16.71) and (16.72) are
ful�lled. If α = 0.95, β = 0.04, f = 20, and d = b = 22, however, only (16.71) is valid.

Ad (iii): Using Figure 16.10, the Operator chooses after the moves `3c3`2c̄2 the strategy ¯̀
1.

and after the moves `3c̄3 he chooses ¯̀
2 like in case (ii). The recursive normal form is also given

in Table 16.5, where � instead of (16.48) � the equilibrium payo�s Op∗2,1 and In∗2,1 are given
by (16.51).

The non-trivial requirements for cyclic preferences are given by (16.76). The �rst condition is,
using (16.51), explicitly given by (16.74). The second requirement holds again, because B − c
is the best Inspectorate's payo� in the game Γ(2, 1). The equilibrium strategies and payo�s can
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be found again with the help of the indi�erence principle. The argumentation in case (16.74)
is not ful�lled goes along the same lines as in case (ii).

For illustration, if α = 0.7, β = 0.25, f = 5, and d = b = 6, then (16.73) and (16.74) are
ful�lled. If α = 0.95, β = 0.04, f = 20, d = 41, and b = 21, however, only (16.73) is valid.

This completes the proof.

As remarked on p. 282, taking into account the possibility of errors �rst and second kind in
time-critical inspection problems leads to a large number of model variants. For example: If
instead of assumption (iv') on p. 337, assumption (iv�) on p. 307 is used, then the game
theoretical solution of the No-No and the Se-Se inspection game can be transformed into each
other; see the comment on p. 311.

Let us conclude with what has been announced on p. 345: Other than in the case of k = 1
control, the game theoretical solution of the Dresher-Höp�nger inspection game Γ(3, 2) with
errors of the �rst and second kind given in Lemma 16.4 is very di�erent from that of the
corresponding No-No inspection game given in Lemma 15.2.

16.4 Choice of the false alarm probability

Like in Sections 9.5, 12.4 and 15.5 we ask for the optimal value of the false alarm probability
α, and again we limit our considerations to k = 1 control at L = 2 steps, and assume that
(9.69) is ful�lled again. The situation here, however, is di�erent from the previous ones because
the Operator will behave illegally with positive probability for all values of α; see Lemma 16.3.
Thus, we are just looking for that value of α which maximizes the Inspectorate's equilibrium
payo�.

Because β(α) is assumed to be a monotone decreasing function of α, see (9.69), the function
d− (b+ d) (1− β(α)) is also a decreasing function with the value d > 0 for α = 0 and, using
(14.2), −b < −f for α = 1. Thus, there exists a unique α∗ ∈ (0, 1) being the solution of

d− (b+ d) (1− β(α∗)) = −f α∗ .

According to (16.48) and (16.51), the Inspectorate's equilibrium payo� is given by

In∗2,1(α) =


−c+

B2

2B + g α
for α < α∗

−c+B
c− g α
c+B

for α > α∗
, (16.77)

and thus, using B = (c− a) (1− β), c > a and g > 0,

In∗2,1(0) = −c and In∗2,1(1) = −c+
(c− a) (c− g)

2 c− a
< −a .

Because of (9.69), the function (c − a) (1 − β(α)) + g α is monotone increasing from 0 for
α = 0 to c − a + g < c for α = 1, we have (c − a) (1 − β(α)) + g α < c for any α ∈ [0, 1]
which is equivalent to

−c+
B2

2B + g α
< −c+B

c− g α
c+B

.
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Figure 16.11 The equilibrium payo� (16.77) to the Inspectorate for the parameters d = 12, b =
6, f = 3 and c = 11, a = 6, g = 3.

1
α

-a

-c

In2,1
* (α)

α*

In Figure 16.11, the solid curve represents In∗2,1(α) according to (16.77) for the parameters
d = 12, b = 6, f = 3 (for �nding α∗) and c = 11, a = 6, g = 3, which ful�l (14.2).

It depends on β(α) where the maximum α∗∗ of In∗2,1(α) is attained: at α∗∗ = α∗, at α∗∗ ∈
(α∗, 1) or even at α∗∗ = 1. In the latter case the Inspectorate has to call for an alarm under
any circumstances at the control, which means that the detection system needs to be revised.



Chapter 17

Strait control and models with

multiple illegal activities

There is a large number of models which deal with Smugglers who want to cross a strait with
some contraband and with Customs who want to catch them. In principle, these models can
also be interpreted in terms of critical times and inspections, but here this wording sounds
somewhat super�cial. In addition, and this is new here, there are models dealing with multiple
illegal activities. Therefore and, as mentioned already on p. III, because of the large literature,
we consider in this chapter this class of models separately.

In doing so, we do not just present the models and their game theoretical solutions. Rather we
discuss the assumptions underlying these models, since they have not been formulated explicitly
in many cases, and we show that some limiting assumptions need not be made, in particular
in view of the information states of the players in the course of the game; see von Stengel's
inspection game in Section 17.2.

Note that in this chapter and other than so far, we name the games by their authors. Also it
should be mentioned that according to our best knowledge von Stengel (1991) was the �rst
who discussed carefully the issue of information in recursive inspection games.

In Section 17.1 we introduce the generalized Thomas-Nisgav inspection model and derive its
game theoretical solution which is published in this monograph for the �rst time. Thereafter, we
describe and analyse the inspection game by Baston and Bostock (1991), in which a situation
is considered where Customs has two patrol boats that can be used during the same night.
Section 17.2 deals with inspection models with multiple illegal activities.

Note that the assumptions of Chapter 14 are speci�ed separately in Sections 17.1 and 17.2.
While most of these assumptions are rather unproblematic, assumption (v) needs a justi�cation
because in con�ict situations between Customs and Smuggler no agreed rules, formal agree-
ments or international treaties exist the Smuggler has to adhere: How does the smuggler know
the number k of controls? Assumption (v) can be justi�ed keeping in mind that Customs has
to obey rules given by its State, and that Smugglers can observe the long term activities of
Customs; see also pp. 18 and 276.

Note that in Chapter 24 a Se-No critical time inspection game with an expected number of
inspections in one facility is analysed, see also p. 18, which has surprising relations to the
generalized Thomas-Nisgav inspection game treated in Section 17.1.

353
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17.1 Any number of nights and controls; errors of the sec-
ond kind: Generalized Thomas-Nisgav model, Models
by Baston and Bostock and by Garnaev

Let us start with the work of Thomas and Nisgav (1976) which deals with problems the most
simple one is close to that analysed by Dresher (1962). But let us mention already now that
there is a fundamental di�erence in the assumptions between these two model which lead to
completely di�erent solutions. Let us quote Thomas and Nisgav:

We consider a long, narrow strait where smuggling activity is taking place. Let
side A represent a patrol unit whose objective is to capture or reduce the value of
contraband held by side B, the in�ltrator or smuggler seeking escape by crossing the
strait to exit from side A's territory. The contraband held by side B is perishable
with a lifetime of M time units; consequently, he must make his escape within
M time units in order to bene�t from his in�ltration. An example of the type of
contraband is intelligence information. Side A is under a single command equipped
with speedboats containing search radar and communication units. Side B is an
individual unit with small motorboats.

Although side A has search radar, due to the narrowness of the strait, side B's
radar echo will be shadowed by land, thus making radar detection near the shore
virtually impossible. Thus, A can detect B only if B is su�ciently far from shore.
For obvious reasons, side B only attempts escape at night, and he departs from a
point near a village or parallel to a village located on the other side of the strait.
Although the patrol boats are much faster than B's, the fact that the strait is long
and narrow gives side B a chance to cross successfully without being detected.

Let us return to our convention, i.e., let the �rst player represent the In�ltrator or Smuggler,
seeking to escape by crossing the strait to exit from the second player's territory. This activity is
in the following called illegal activity or smuggling. The second player is the patrol unit, in the
following called Customs, whose objective is to capture or reduce the value of contraband held by
the �rst player. The contraband itself is perishable with a lifetime of L time units; consequently,
he must make his escape within L time units in order to bene�t from his in�ltration.

Thomas and Nisgav (1976) analyse �rst a zero-sum game where each side, Smuggler and
Customs, has a single boat each and where the Smuggler is detected with probability 1 − β
when the patrol boat controls the strait. They assume the payo� to Customs to be 1 if it
catches the Smuggler and −1 if it does not.

In this section the inspection model of Thomas and Nisgav is generalized in two ways: First, it
is assumed that the Smuggler decides at the beginning of the L nights either to behave illegally
during these L nights with certainty or not at all. Second, a non-zero-sum game is considered
with the payo�s given below; see (17.1) and (17.2).

Furthermore, it is assumed that there are no errors of the �rst kind, that the Customs's resources
are limited to k ≤ L night patrols, which are then distributed on the L nights, that the
Smuggler's success requires a single crossing of the strait during one of the L nights, and that
both players know the values of k and L.

In this section, assumptions (iii), (iv), (vi), (viii) and (x) of Chapter 14 are speci�ed as follows:
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(iii') The Smuggler may behave illegally at most once at the steps L, . . . , 1.

(iv') During a control Customs may commit an error of the second kind, i.e., if the Smuggler
behaves illegally at the same step at which Customs performs a control, then the illegal
activity is not detected with probability β. This non-detection probability is the same for
all controls.

(vi') The Smuggler decides at the beginning, i.e., at step L, whether to behave legally through-
out the game or not. In the latter case he decides whether to behave illegally at step L.
If the Smuggler behaves legally at steps L, . . . , ` + 1 (1 ≤ ` ≤ L − 1), then he decides
whether to behave illegally at step `; and so on. The Smuggler behaves illegally latest at
step 1, if he decided at the beginning to behave illegally.

Customs decides at the beginning whether to control at step L. If it has still controls at
its disposal, then Customs decides at step L− 1 whether to control at that step; and so
on.

(viii') The payo�s to the two players (Smuggler, Customs) are given by

(d,−c) for undetected smuggling

(−b,−a) for detected smuggling

(0, 0) for no smuggling ,

(17.1)

where the parameters satisfy the conditions

0 < min(b, d) and 0 < a < c . (17.2)

(x') The game ends either at step L in case the Smuggler behaves legally throughout the
game, or at the step at which the Smuggler behaves illegally, or at that step at which
the number of controls left is zero, or at that step at which the number of controls left
is equal to the number of steps left, or at step 1.

The remaining assumptions of Chapter 14 except (ix) hold throughout this section.

Four comments on the above assumptions and the wording in this section: First, in the following
the term "step" is used synonymously to the term "night" referring to the application the original
Thomas-Nisgav inspection game was developed for.

Second, assumption (vi') indicates that the generalized Thomas-Nisgav inspection game is a
Se-Se inspection game. Between the three Se-Se inspection models analysed in Chapters 12, 16,
and this section the following important di�erence is emphasized: While in the Avenhaus-Canty
inspection game and in the Dresher-Höp�nger inspection game, the Operator decides to behave
legally or illegally in the course of the game, in the generalized Thomas-Nisgav inspection game
discussed here the Smuggler makes this decision only at the very beginning of the game.

Third, note that "undetected smuggling" means "untimely control or a timely control and
no detection of the smuggling", and that "detected smuggling" means "timely control and
detection of the smuggling".

Fourth, regarding assumption (x') we note that if the Smuggler behaves illegally at step i,
i = L, ..., 1, then the game ends at step i regardless whether the illegal behaviour is detected at
that step or not. In the latter case, the Operator has successfully performed his illegal activity
and thus, the game ends as well.
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In order to obtain the payo�s for the above described original Thomas-Nisgav inspection game,
we have to choose a = −1, c = 1, and thus, b = d = 1 because it is a zero-sum game.
Note that at �rst sight this is not literally a special case of the generalized Thomas-Nisgav
inspection game since a = −1 contradicts (17.2). Because, however, the "no smuggling" case
in (17.1) is excluded in the original Thomas-Nisgav inspection game, the normalization (0, 0)
for "no smuggling" disappears, and only the condition a < c remains in (17.2), which is ful�lled
because a = −1 < 1 = c.

In order to understand the information structure of the generalized Thomas-Nisgav inspection
game � which we abbreviate by Γ(L, k) � we consider �rst the special cases Γ(2, 1) and Γ(4, 2).
Figure 17.1 represents the extensive form of the game Γ(2, 1). Note that according to the
comment on p. 50, all extensive form games in this section start with the Smuggler, and that
chance moves are not explicitly named, but can be identi�ed via the probabilities 1− β and β.

Figure 17.1 Extensive form of the generalized Thomas-Nisgav inspection game Γ(2, 1).
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Before the �rst night the Smuggler decides either to smuggle during the �rst night (¯̀2), postpone
it to the next night (`2) or decide not to smuggle at all (le stands for legal behaviour). Not
knowing the Smugglers decision at step 2, Customs can either decide to patrol in the �rst night
(c2 stands for control) or not to patrol in the �rst night (c̄2 stands for not control) which
means that it needs to patrol in the second night. With the abbreviations

− b̃ = − b (1− β) + d β and − ã = −a (1− β)− c β , (17.3)

which have already been introduced in (16.35) and are repeated here for easier reference, we
get immediately the reduced normal form which is given in Table 17.1. Note that in the original
work by Thomas and Nisgav (1976) not the extensive form but the (recursive) normal form of
the inspection game is considered from the very beginning. We will come back to this important
issue on p. 368.

In order to solve the extensive form games in this chapter, we transform them into normal form
games. Thus, we use � as in Chapter 16 � from the very beginning the notation p and q instead
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Table 17.1 Reduced normal form of the generalized Thomas-Nisgav inspection game Γ(2, 1).

c2 c̄2

¯̀
2

−ã −c
−b̃ d

`2
−c −ã

d −b̃

le
0 0

0 0

of g and h; see also the comment on p. 318.

Because the Nash equilibria are presented in behavioural strategies, the sets of pure strategies
for the players is neither introduce here for the game Γ(2, 1) nor later for the general game
Γ(L, k). Instead, let in analogy to Section 16.1, p̄2,1 denote the probability to smuggle in the
�rst night (¯̀2 at 2), p2,1 denote the probability not to smuggle in the �rst night, and ple be the
probability not to smuggle at all. In case of illegal behaviour � which happens with probability
p̄2,1 +p2,1 � and in case the smuggle is not performed in the �rst night, i.e., `2 with probability
p2,1, it has to be done in the second night independent of the number of controls k′ available
in the second night, i.e., p̄1,k′ = 1 for k′ = 0, 1. This implies that p̄1,k′ = 1 is not a strategic
variable and is thus not considered in the Smuggler's set of behavioural strategies

P2,1 :=
{
p := (p̄2,1, p2,1, ple)

T ∈ [0, 1]3 : p̄2,1 + p2,1 + ple = 1
}
. (17.4)

For later purpose we also introduce the Smuggler's set of behavioural strategies in case legal
behaviour is not taken into account:

P ′2,1 := {p := p̄2,1 : p̄2,1 ∈ [0, 1]} . (17.5)

For Customs, let q2,1 be the probability to control in the �rst night (c2 at 2). In case of the
decision c̄2, i.e., no control in the �rst night (with probability 1− q2,1), Customs has to control
in the second night. In analogy to the Smuggler's p̄1,k′ = 1, the probability q1,1 is 1, i.e., not
a strategic variable, and is thus not considered in the Custom's set of behavioural strategies

Q2,1 := {q := q2,1 : q2,1 ∈ [0, 1]} . (17.6)

The Smuggler's (expected) payo� is, for any p ∈ P2,1 and any q ∈ Q2,1, using Table 17.1,
given by

Op2,1(p,q) := p̄2,1

(
− b̃ q2,1 + d (1− q2,1)

)
+ p2,1

(
d q2,1 − b̃ (1− q2,1)

)
(17.7)

and that of Customs by

In2,1(p,q) := p̄2,1

(
− ã q2,1 − c (1− q2,1)

)
+ p2,1

(
− c q2,1 − ã (1− q2,1)

)
, (17.8)

see (19.3) and (19.4). Note that although we call in this section the players Smuggler and
Customs, we remain with the old notation for the payo�s.
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Comparing the normal form game in Table 17.1 for the "illegal" game, i.e., the game in which
the Smuggler smuggles with certainty, with the one of the Dresher-Höp�nger inspection game
with errors of the second kind for the case β > b/(b + d), see the right hand normal form of
Table 16.1, we see that both normal forms coincide.

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Lemma 17.1. Given the generalized Thomas-Nisgav inspection game with L = 2 nights, k = 1
control, and with errors of the second kind, i.e., Γ(2, 1), the extensive and reduced normal forms
of which are represented in Figure 17.1 and Table 17.1. The sets of behavioural strategies are
given by (17.4) and (17.6), and the payo�s to both players by (17.7) and (17.8).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗2,1 :=
Op2,1(p

∗,q∗) and In∗2,1 := In2,1(p
∗,q∗):

(i) For

1

2
<

1

1− β
1

1 + b/d
(17.9)

the Smuggler behaves illegally in the entire game Γ(2, 1), i.e., p∗
le

= 0. An equilibrium
strategy of the Smuggler is given by

p̄∗2,1 = p∗2,1 =
1

2
,

and an equilibrium strategy of Customs by

q∗2,1 =
1

2
. (17.10)

The equilibrium payo�s to the Smuggler and to Customs are

Op∗2,1 = d− (1− β) (b+ d)
1

2
and In∗2,1 = −c+ (1− β) (c− a)

1

2
.

(ii) For

1

2
>

1

1− β
1

1 + b/d
(17.11)

the Smuggler behaves legally in the entire game Γ(2, 1), i.e., p∗
le

= 1 and p̄∗2,1 = p∗2,1 = 0.
Equilibrium strategies of Customs are given by

1

1− β
1

1 + b/d
≤ q∗2,1 ≤ 1− 1

1− β
1

1 + b/d
, (17.12)

where q∗2,1 given by (17.10) ful�ls (17.12).

The equilibrium payo�s to the Smuggler and to Customs are

Op∗2,1 = In∗2,1 = 0 .
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Proof. Ad (i): As mentioned before this Lemma, the normal form of the "illegal" game
coincides with the one of the Dresher-Höp�nger inspection game with errors of the second kind
for the case β > b/(b + d). Thus, its solution is given by Lemma 16.2 (ii). The condition
Op2,1(le,q

∗) = 0 < Op∗2,1 is ful�lled by virtue of (17.9).

Ad (ii): The equilibrium strategy of Customs in case of no smuggling is determined by

¯̀
2 : 0 ≥ −b̃ q∗2,1 + d (1− q∗2,1) and `2 : 0 ≥ d q∗2,1 − b̃ (1− q∗2,1) ,

which leads, using (17.3), to (17.12). Condition (17.11) ensures that (17.12) is not empty.

Note that (17.10) is a robust equilibrium strategy; see also Table 7.3 on p. 142 for an overview
of inspection games with a robust Inspectorate's equilibrium strategy.

Before treating the generalized Thomas-Nisgav inspection game Γ(L, k), we consider now the
game Γ(4, 2). At �rst sight it may be surprising that other than in the last chapter, this game
is chosen instead of the simpler game Γ(3, 2). It will turn out, however, that we will encounter
a new property for the solution of the game Γ(4, 2) which cannot yet be observed in the game
Γ(3, 2); see p. 369.

Figure 17.2 represents the extensive form of the generalized Thomas-Nisgav inspection game
Γ(4, 2).

Because it is the most complex extensive form game analysed in this monograph, we comment
it in some detail. The moves of the Smuggler are quickly explained: Before the �rst night
(step 4) he decides to behave illegally immediately (¯̀4), to postpone the illegal activity (`4),
or to behave legally throughout the four nights (le). In the second case, he decides before the
second night (step 3) to smuggle immediately (¯̀3) or not (`3), and so forth. If after two nights
Customs has already spent its two controls (c4 and c3) and the Smuggler has not yet smuggled
(`4 and `3), then he does this in the third or fourth, i.e., last, night.

The situation of Customs is more complicated: Of course, if the Smuggler behaves illegally
during the �rst night, and Customs controls and detects it (with probability 1 − β), then the
game ends with payo�s (−b,−a) to the two players. Also, it is clear that Customs, when
deciding before the �rst night (step 4) to control in this night (c4) or not (c̄4), does not know if
the Smuggler will behave illegally immediately (¯̀4), or if he postpones the illegal activity (`4),
or if he will behave legally throughout the four nights (le). This is indicated by the information
set named "Customs at 4". What is Customs information state before the second night, if, for
example, it does not control during the �rst night (c̄4)? Customs does not know, if 1) Smuggler
behaved illegally during the �rst night (¯̀4), if 2) Smuggler behaved legally during the �rst night
(`4) and will smuggle or not in the second night (¯̀3 or `3), or if 3) the Smuggler will behave
legally throughout the four nights. This is indicated by the upper of the two information sets
named "Customs at 3". All subsequent information sets can be explained analogously.

In order not to let this �gure become too complicated, some of the chance moves are not
explicitly shown instead, they are replaced by the (expected) payo�s (−b̃,−ã). And also, as in
earlier extensive form games, the moves c1 and c̄1 of Customs are not explicitly shown since
before the last night Customs has no longer a choice: Either it controlled already twice, then
it cannot any more, or not, then it has to do so.

Looking at Figure 17.2, we see that we can simplify the extensive form game considerably:
First, if the Smuggler behaves illegally during the �rst night then he will either be detected or
not. In any case the payo�s are (−b̃,−ã) thus, we can cut the information sets as shown in
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Figure 17.2 Extensive form of the generalized Thomas-Nisgav inspection game Γ(4, 2).
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the Figure. The same happens if the Smuggler decides to behave legally throughout the four
nights: Then the payo�s are (0, 0) and the information sets can be cut appropriately.

Let, in analogy to the notation in the generalized Thomas-Nisgav inspection game Γ(2, 1), p̄4,2
be the probability to smuggle in the �rst night, p4,2 be the probability not to smuggle in the
�rst night, and ple be the probability not to smuggle at all. In case of illegal behaviour (with
probability p̄4,2 + p4,2) and in case the smuggle is not performed in the �rst night, a game with
three nights and 1 (c4) or 2 (c̄4) remaining controls is reached.

Let in the game with ` = 3 nights, k′, k′ = 1, 2, denote the number of controls left. Then p̄3,k′

denotes the probability to smuggle immediately (¯̀3). Because the decision to behave legally
throughout the entire game can only be made at the very beginning of the game (at 4), the
probability p3,k′ of postponing the illegal activity to one of the next two nights (`3) is given by
1 − p̄3,k′ . If the game with ` = 2 nights is reached, and k′ = 1 control is still left, then p̄2,1
denotes the probability to smuggle immediately (¯̀2). Note that in case of ` = 2 nights and
k′ = 2 controls left, in both nights controls have to be performed. Thus, Smuggler's set of
behavioural strategies is, using (17.5), given by

P4,2 :=
{

(p̄4,2, p4,2, ple)
T ∈ [0, 1]3 : p̄4,2 + p4,2 + ple = 1

}
× P ′3,1 × P ′3,2 × P ′2,1 . (17.13)

Formally two di�erent probabilities p3,2(c4) and p3,2(c̄4) (say) would need to be introduced:
If Smuggler decides for `4 then p3,2(c4) after Customs choice c4 is potentially di�erent from
p3,2(c̄4) after its choice c̄4. Because Theorem 17.1 indicates that in equilibrium both probabil-
ities coincide, we model them as equal from the very beginning.

For Customs, let q4,2 resp. 1− q4,2 be the probability to control in the �rst night (c4) resp. not
to control in the �rst night (c̄4). Suppose the game with ` = 3 nights and k′, k′ = 1, 2, controls
is reached. Then q3,k′ denotes the probability to control in the next night (c3). The probability
q3,2 belongs to the upper of the two information sets named "Customs at 3" in Figure 17.2,
and q3,1 belongs to the lower one. In case the game with ` = 2 nights and k′ = 1 control is
reached (the case k′ = 2 controls implies q2,2 = q1,1 = 1), the probability to control in the
third night (c2) is denoted by q2,1. Note that formally two di�erent probabilities in this case
need to be introduced, because at 2 Customs has two information sets: One in the subgame
starting after the moves `4c4`3c̄3, and the other one in the subgame starting after the moves
`4c̄4`3c3). Figure 17.2, however, demonstrates that both subgames are identical, and therefore,
only one probability q2,1 is introduced. Thus, Custom's set of behavioural strategies is given by

Q4,2 := {q4,2 : q4,2 ∈ [0, 1]} × {q3,2 : q3,2 ∈ [0, 1]}×

× {q3,1 : q3,1 ∈ [0, 1]} × {q2,1 : q2,1 ∈ [0, 1]} . (17.14)

Let the Smuggler's illegal strategies ¯̀
4, `4 ¯̀

3, `4`3 ¯̀
2 and `4`3`2 ¯̀

1 be numbered by i, i = 4, . . . , 1.
Using Figure 17.2, the (expected) payo� to the Smuggler is, for any q = (q4,2, q3,2, q3,1, q2,1) ∈
Q4,2, given by

Op4,2(4,q) = q4,2 (−b̃) + (1− q4,2) d

Op4,2(3,q) = q4,2

(
q3,1 (−b̃) + (1− q3,1) d

)
+ (1− q4,2)

(
q3,2 (−b̃) + (1− q3,2) d

)
Op4,2(2,q) = q4,2

(
q3,1 d+ (1− q3,1)

(
q2,1 (−b̃) + (1− q2,1) d

))
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+ (1− q4,2)
(
q3,2

(
q2,1 (−b̃) + (1− q2,1) d

)
+ (1− q3,2) (−b̃)

)
Op4,2(1,q) = q4,2

(
q3,1 d+ (1− q3,1)

(
q2,1 d+ (1− q2,1) (−b̃)

))
+ (1− q4,2)

(
q3,2

(
q2,1 d+ (1− q2,1) (−b̃)

))
+ (1− q3,2) (−b̃)

)
,

or, equivalently, by

d−Op4,2(4,q)

b̃+ d
= q4,2

d−Op4,2(3,q)

b̃+ d
= q4,2 q3,1 + (1− q4,2) q3,2

d−Op4,2(2,q)

b̃+ d
= q4,2 (1− q3,1) q2,1 + (1− q4,2)

(
q3,2 q2,1 + 1− q3,2

)
d−Op4,2(1,q)

b̃+ d
= q4,2 (1− q3,1) (1− q2,1) + (1− q4,2)

(
q3,2 (1− q2,1) + 1− q3,2

)
.

(17.15)

The right hand side of (17.15) consists of probabilities only. But what do they mean? In order
to answer this question, we consider the six possibilities

43, 42, 41, 32, 31, 21 ,

for Customs to distribute its two controls on the four nights and furthermore, the probabilities
q̃j , j = 4, . . . , 1, to control in the 4− j + 1-th night. Thus, we have

q̃4 = P(43) + P(42) + P(41) , q̃3 = P(43) + P(32) + P(31) ,

q̃2 = P(42) + P(32) + P(21) , q̃1 = P(41) + P(31) + P(21) .
(17.16)

Determining now the probabilities on the right hand side of (17.16) with the help of Figure
17.2, we get

P(43) = q4,2 q3,1 , P(42) = q4,2 (1− q3,1) q2,1 , P(41) = q4,2 (1− q3,1) (1− q2,1) ,

P(32) = (1− q4,2) q3,2 q2,1 , P(31) = (1− q4,2) q3,2 (1− q2,1) ,

P(21) = (1− q4,2) (1− q3,2) ,

and therefore, using (17.16),

q̃4 = q4,2

q̃3 = q4,2 q3,1 + (1− q4,2) q3,2

q̃2 = q4,2 (1− q3,1) q2,1 + (1− q4,2)
(
q3,2 q2,1 + 1− q3,2

)
q̃1 = q4,2 (1− q3,1) (1− q2,1) + (1− q4,2)

(
q3,2 (1− q2,1) + 1− q3,2

)
.

(17.17)
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Thus, we see, surprisingly enough, that the terms on the right hand side of (17.15) are just the
probabilities q̃j , j = 4, . . . , 1. De�ne

Q̃4,2 =

q̃ := (q̃4, q̃3, q̃2, q̃1) ∈ [0, 1]4 :

4∑
j=1

q̃j = 2

 . (17.18)

Note that we do not transpose the vectors in (17.18) and (17.20) because we do not de�ne the
payo�s to the two players using matrix operations as in (17.7) and (17.8). Then, using (17.15)
and (17.17), the Smuggler's payo� can be written in terms of q̃ ∈ Q̃4,2:

Op4,2(i, q̃) := d− q̃i (b̃+ d) , i = 4, . . . , 1 . (17.19)

Let p̃i denote the Smuggler's probability for choosing the illegal strategy i (remember that his
illegal strategies ¯̀

4, `4 ¯̀
3, `4`3 ¯̀

2 and `4`3`2 ¯̀
1 are numbered by i, i = 4, . . . , 1), and let p̃le

denote the probability to behave legally throughout the entire game. De�ne

P̃4,2 :=

{
p̃ := (p̃4, p̃3, p̃2, p̃1, p̃le) ∈ [0, 1]5 :

4∑
i=1

p̃i + p̃le = 1

}
. (17.20)

Then, using (17.19), we get for Smuggler's (expected) payo�

Op4,2(p̃, q̃) =

4∑
i=1

p̃i

(
d− q̃i (b̃+ d)

)
+ p̃le 0 = d (1− p̃le)− (b̃+ d)

4∑
i=1

p̃i q̃i . (17.21)

Custom's (expected) payo� can be determined from (17.21) by replacing d by −c and b̃ by ã.
Thus, we have

In4,2(p̃, q̃) =

4∑
i=1

p̃i (−c− q̃i (ã− c)) + p̃le 0 = −c (1− p̃le)− (ã− c)
4∑
i=1

p̃i q̃i . (17.22)

The game theoretical solution of this inspection game � based on the strategy sets (17.20) and
(17.18) instead of the behavioural strategy sets (17.13) and (17.14) � which is published in
this monograph for the �rst time, is presented in

Lemma 17.2. Given the generalized Thomas-Nisgav inspection game with L = 4 nights,
k = 2 controls, and with errors of the second kind, i.e., Γ(4, 2), the extensive form of which
is represented in Figure 17.2. The Smuggler's set of mixed strategies is given by (17.20), the
Inspectorate's strategy set by (17.18), and the payo�s to both players by (17.21) and (17.22).

Then a Nash equilibrium is given by the following equilibrium strategies and payo�s Op∗4,2 :=
Op4,2(p̃

∗, q̃∗) and In∗4,2 := In4,2(p̃
∗, q̃∗):

(i) For

1

2
<

1

1− β
1

1 + b/d
(17.23)

the Smuggler behaves illegally in the entire game Γ(4, 2), i.e., p̃∗
le

= 0. An equilibrium
strategy of the Smuggler is given by

p̃∗i =
1

4
, i = 4, . . . , 1 , (17.24)
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and an equilibrium strategy of Customs by

q̃∗j =
1

2
, j = 4, . . . , 1 . (17.25)

The equilibrium payo�s to the Smuggler and to Customs are

Op∗4,2 = d− (1− β) (b+ d)
1

2
and In∗4,2 = −c+ (1− β) (c− a)

1

2
.

(ii) For

1

2
>

1

1− β
1

1 + b/d

the Smuggler behaves legally in the entire game Γ(4, 2), i.e., p̃∗
le

= 1 and p̃∗i = 0,
i = 4, . . . , 1. Equilibrium strategies of Customs are given by

1

1− β
1

1 + b/d
≤ q̃∗j , j = 4, . . . , 1 with

4∑
j=1

q̃∗j = 2 , (17.26)

where q̃∗j , j = 4, . . . , 1, given by (17.25) ful�ls (17.26).

The equilibrium payo�s to the Smuggler and to Customs are Op∗4,2 = In∗4,2 = 0.

Proof. Ad (i): Using (17.21), (17.23) and (17.24), we get for any p̃ ∈ P̃4,2

Op4,2(p̃, q̃
∗) =

(
d− 1

2
(b̃+ d)

)
(1− p̃le)

{
= Op∗4,2 for p̃le = 0

< Op∗4,2 for p̃le > 0
,

i.e., the Nash inequality for the Smuggler is ful�lled. For Customs, (17.22) and (17.24) with
p̃∗le = 0 imply for any q̃ ∈ Q̃4,2

In4,2(p̃
∗, q̃) = −c− 1

4
(ã− c)

4∑
i=1

q̃i = In∗4,2 .

Thus, Customer's Nash inequality is ful�lled as equality.

Ad (ii): Applying the Nash criterion for the Smuggler to (17.21) yields (17.26).

Note that (17.25) is a robust equilibrium strategy; see also Table 7.3 on p. 142 for an overview
of inspection games with a robust Inspectorate's equilibrium strategy.

So far, we have determined the equilibrium strategy of Customs in terms of the q̃j and not in
the original ones. The relation between q̃4, q̃3, q̃2, q̃1 and q42, q3,2, q3,1, q2,1 is given by (17.17).
Using (17.25), the solution of (17.17) are given by

q∗4,2 =
1

2
, q∗3,2 =

2

3
, q∗3,1 =

1

3
and q∗2,1 =

1

2
(17.27)

and

q∗4,2 =
1

2
, q∗3,1 + q∗3,2 = 1 , q∗3,2 (2 q∗2,1 − 1) = 0 and q∗3,2 (1− 2 q∗2,1) = 0 . (17.28)
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Thus, (q∗3,2, q
∗
3,1) = (1/4, 3/4) or (q∗3,2, q

∗
3,1) = (0, 1) can be chosen in (17.27). Note that only

(17.27) will be covered in the recursive approach in Theorem 17.1. We will come back to this
issue on p. 368.

How can we solve the generalized Thomas-Nisgav inspection game Γ(L, k)? Let us consider
again the extensive form of the game Γ(4, 2) in Figure 17.2. If we cut the information sets
of Customs as described on p. 359 we can represent this game in recursive extensive form as
shown in Figure 17.3, where the subgames Γ′(3, 1) and Γ′(3, 2) represent only the "illegal"
parts of the game Γ(3, 1) and Γ(3, 2).

Figure 17.3 Reduced extensive form of the inspection game in Figure 17.2. Γ′(3, 1) and
Γ′(3, 2) are the "illegal" parts of the game Γ(3, 1) and Γ(3, 2).
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We can solve this recursive extensive form game by using the corresponding recursive normal
form representation and by replacing Γ′(3, 1) resp. Γ′(3, 2) by their equilibrium payo�s Op∗3,1
and In∗3,1 resp. Op

∗
3,2 and In

∗
3,2. This procedure leads us to a recursive treatment of the general

game Γ(L, k) which we applied already to the Dresher-Höp�nger inspection game. Figure 17.4
represents the recursive extensive form as well as the corresponding recursive normal form of
the generalized Thomas-Nisgav inspection game Γ(L, k). Comparing this Figure with Figure
16.3 we see that the "illegal" parts are identical if we replace a and b by ã and b̃. Again, we
do not expect that the reader is confused by the notation ¯̀̀ and ``; see p. 320.

Let p̄L,k denote the probability to smuggle in the �rst night (¯̀L at L), pL,k denote the probability
not to smuggle in the �rst night (`L at L), and ple be the probability not to smuggle at all.
Suppose ` nights with 2 ≤ ` < L are left for smuggling and Customs has k′ controls at its
disposal, 1 ≤ k′ ≤ min(` − 1, k). Then p̄`,k′ denotes the probability to smuggle in the next
night, i.e., in the �rst of ` remaining nights. This implies � because behaving legally is not
a choice in this subgame � that 1 − p̄`,k′ is the probability not to smuggle in the next night.
For Customs, let q`,k′ be the probability to control in the next night. The cases ` = 1 as well
as k′ = 0 and k′ = ` are excluded from the game theoretical analysis; see p. 320 and the
boundary conditions (17.29).

As argued on p. 321 we do not introduce the sets of behavioural strategies. The (expected)
payo�s to both players is de�ned recursively using the normal form representation in Figure
17.4, where Op`−1,· and In`−1,· denote the (expected) payo�s to both players in the subgame
with `− 1 steps and k′ or k′ − 1 controls left. For brevity, we suppress in Op`−1,· and In`−1,·
Smuggler's and Customs strategies in the remaining ` nights. The same boundary conditions
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Figure 17.4 Recursive extensive form and corresponding recursive normal form of the subgame
Γ(`, k′) of the generalized Thomas-Nisgav inspection game Γ(L, k), if ` nights and k′ controls
are left, and the Smuggler behaves legally during the nights L, . . . , `+ 1 (2 ≤ ` ≤ L, 1 ≤ k′ ≤
min(`− 1, k)). The edge labelled by le applies only in case of ` = L.
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as that of the Dresher-Höp�nger inspection game with errors of the second kind, see (16.37),
have to be met. We repeat them here for easier reference

Op∗`,k′ =

{
−b̃ for k′ = `

d for k′ = 0
and In∗`,k′ =

{
−ã for k′ = `

−c for k′ = 0
(17.29)

for all 1 ≤ ` ≤ L.

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Theorem 17.1. Given the generalized Thomas-Nisgav inspection game with L > k nights, k
controls, and with errors of the second kind, i.e., Γ(L, k), the recursive extensive and normal
forms of which are represented in Figure 17.4. The payo�s to both players are de�ned recursively
using the recursive normal form representation in Figure 17.4, and the equilibrium payo�s to
both players ful�l the boundary conditions (17.29).

Suppose ` nights, 2 ≤ ` ≤ L, are left for smuggling, Customs has k′ controls at its disposal,
1 ≤ k′ ≤ min(` − 1, k), and the Smuggler behaves legally at steps L, . . . , ` + 1, i.e., the
subgame Γ(`, k′) is reached.
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Then a Nash equilibrium in the subgame Γ(`, k′) is given by the following equilibrium strategies
and payo�s Op∗`,k′ and In

∗
`,k′ :

(i) For

k

L
<

1

1− β
1

1 + b/d
(17.30)

the Smuggler behaves illegally in the entire game Γ(L, k), i.e., p∗
le

= 0. An equilibrium
strategy of the Smuggler is given by

p̄∗`,k′ =
1

`
, (17.31)

and an equilibrium strategy of Customs by

q∗`,k′ =
k′

`
. (17.32)

The equilibrium payo�s to the Smuggler and to Customs in the subgame Γ(`, k′) are

Op∗`,k′ = d− (1− β) (b+ d)
k′

`
and In∗`,k′ = −c+ (1− β) (c− a)

k′

`
, (17.33)

which � for ` = L and k′ = k � are the equilibrium payo�s of the entire game Γ(L, k).

(ii) For

k

L
>

1

1− β
1

1 + b/d
(17.34)

the Smuggler behaves legally in the entire game Γ(L, k), i.e., p∗
le

= 1, and p̄∗`,k′ = p∗`,k′ =
0 for all ` = 2, . . . , L and all k′ = 1, . . . , `. Equilibrium strategies of Customs are given
by the set of inequalities

0 ≥ OpL,k(i,q∗) for i = ¯̀
L, `L ¯̀

L−1, `L`L−1 ¯̀
L−2, . . . , `L . . . `2 ¯̀

1 , (17.35)

where q∗`,k′ given by (17.32) ful�ls (17.35).

The equilibrium payo�s to the Smuggler and to Customs are Op∗L,k = In∗L,k = 0.

Proof. Ad (i): As mentioned, comparing Figure 17.4 with Figure 16.3 we see that the "illegal"
parts are identical if we replace a and b by ã and b̃. Thus, part (i) of Theorem 17.1 corresponds
to part (ii) of Theorem 16.2.

Ad (ii): The equilibrium strategies q∗ of Customs have to satisfy the Nash equilibrium condition
for the Smuggler. Formulating this condition in terms of the pure strategies of the Smuggler,
see Section 19.2, we obtain the inequalities (17.35).

Let us comment the results of Theorem 17.1: First, comparing the equilibrium strategies and
payo�s as given by (17.31) � (17.33) with (16.40) � (16.42), and with (15.76) � (15.78), we
see that they coincide, which means that the equilibrium strategies and payo�s of the "illegal"
generalized Thomas-Nisgav inspection game are the same as that of the Dresher-Höp�nger
inspection game with errors of the second kind and 1 < 1/((1 − β)(1 + b/d)) which are the
same as that for the Canty-Rothenstein-Avenhaus inspection game for α = 0. In the latter case



368 Chapter 17: Strait control and models with multiple illegal activities

the conditions for illegal and legal behaviour are even the same as those given here; compare
(15.75) with (17.30) and (15.79) with (17.34). However, they are still di�erent games from a
structural point of view! On p. 391 we will present an explanation for these surprising properties:
We will show that all games mentioned above are strategically equivalent to zero-sum games
with the probabilities of not detecting the illegal activity as payo�s to the Operator/Smuggler.
Note that like in Section 16.2 the Smuggler's probability p̄∗`,k′ as given by (17.31) only depends
on the number of steps left, and thus, they form a harmonic progression; see also Table 4.1 on
p. 72 for an overview of inspection games with this property.

Second, the equilibrium strategy of Customs in case of the Smuggler's legal behaviour, case
(ii), are given implicitly, because their explicit form appears to be infeasible for the general case.
The �rst inequality in (17.35) for i = ¯̀

L is

0 ≥ q∗L,k (−b̃) + (1− q∗L,k) d ,

or, equivalently

1

1− β
1

1 + b/d
≤ q∗L,k

and corresponds to (17.12) and (17.26). Furthermore, the equilibrium strategy (17.32) of
Customs is a robust equilibrium strategy; see also Table 7.3 on p. 142 for an overview of
inspection games with a robust Inspectorate's equilibrium strategy.

Third, as mentioned on p. 356, in case of a = −1, c = 1, and b = d = 1 the original
Thomas-Nisgav inspection game is considered and (17.33) implies

In∗L,k = −1 + (1− β) 2
k

L
, (17.36)

which is the result obtained by Thomas and Nisgav (1976). Note that conditions (17.30) and
(17.34) does not play any role in Thomas and Nisgav's work, because the Smuggler must
behave illegally and will get � in case (17.34) is met � a negative equilibrium payo�. As
mentioned on p. 327, the change of the modelling assumption "at most one illegal activity" in
the Dresher-Höp�nger inspection game to the assumption "(exactly) one illegal activity" in the
original Thomas-Nisgav inspection game leads to a considerable change in the game theoretical
solutions; see (16.11) � (16.13) for b = d = 1, c = 1 and a = −1 in contrast to (17.31)
� (17.33) for b = d = 1 and β = 0. A numerical comparison can be found in Krieger and
Avenhaus (2018b).

Fourth, because Theorem 17.1 is based on the recursive extensive form in Figure 17.4, it
remains an open problem if the game theoretical solution of the generalized Thomas-Nisgav
game in extensive form representation has the same solution as given by Theorem 17.1. For that
purpose it has to be proven that the extensive form representation can indeed be transformed
in a recursive extensive form, i.e., if information sets can be cut in a way that leads to the
recursive extensive form in Figure 17.4. For the game Γ(4, 2) this could be directly seen by
inspecting Figure 17.2 which led to Figure 17.3; see also the comment on p. 371.

Finally, we realize that the recursive procedure leads in case (i) to a unique equilibrium strategy
of Customs, but that the analysis of the game Γ(4, 2) shows that the solution is not unique; see
(17.28). Of course, the special equilibrium strategy of Customs in Theorem 17.1 is for the game
Γ(4, 2) contained in the set of equilibrium strategies given in Lemma 17.2. We encountered
the same situation in Chapter 15; see the comment on p. 295. More than that, for α = 0
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the equilibrium payo�s to both players given in Corollary 15.1 are the same as those given in
Theorem 17.1. Whereas at �rst sight this is surprising, this is no longer so if one re�ects the
assumptions for the generalized Thomas-Nisgav game: Because it is not important in which
night the Smuggler is caught or not, and because he decides at the beginning whether to behave
legally during the next L nights or not, the No-No inspection game with α = 0 analysed in
Corollary 15.1 is basically equivalent to the Se-Se inspection game considered here in the sense
that the equilibrium strategies can be transformed into each other and that they lead to the
same payo�s to both players.

Combining this insight with the results for the game Γ(4, 2) as given by Lemma 17.2 we are
led to the following

Conjecture 17.1. Given the generalized Thomas-Nisgav inspection game with L > k nights,
k controls, and with errors of the second kind, i.e., Γ(L, k). Let p̃i, i = L, . . . , 1, be the
Smuggler's probability to smuggle in the L − i + 1-th night, i.e., i = L refers to the illegal
strategy ¯̀

L, i = L − 1, . . . , 1 to the illegal strategy `L`L−1 . . . `i+1
¯̀
i, and i = 0 to legal

behaviour `L`L−1 . . . `1, and let q̃j , j = L, . . . , 1, be Customs's probability to control in the
L− i+ 1-th night.

In case of illegal behaviour of the Smuggler � case (i) of Theorem 17.1 � an equilibrium strategy
of the Smuggler is given by

p̃∗i =
1

L
, i = L, . . . , 1 and p̃∗

le
= 0 ,

and that of Customs by

q̃∗j =
k

L
, j = L, . . . , 1 .

The equilibrium payo�s to the Smuggler and to Customs are given by (17.33).

In case of legal behaviour of the Smuggler � case (ii) of Theorem 17.1 � an equilibrium strategy
of Customs is given by

1

1− β
1

1 + b/d
≤ q̃∗j , j = L, . . . , 1 with

L∑
j=1

q̃∗j = k .

The equilibrium payo�s to the Smuggler and to Customs are Op∗L,k = In∗L,k = 0.

Note that there are
(
L
k

)
possibilities of Customs for distributing its k controls on the L nights;

only in the special cases k = 1 and k = L− 1 control(s) the probabilities for these possibilities
are in case of illegal behaviour of the Smuggler uniquely determined by the q∗j . This was the
reason why we considered the game Γ(4, 2) instead of the simpler Γ(3, 2): In the latter one we
would not have detected the non-uniqueness of the solution of the general game.

So far, we could have interpreted this game, like the Dresher-Höp�nger inspection game, in
terms of inspections and critical times. But then, Thomas and Nisgav (1976) proceed to
consider a situation where Customs has two patrol boats, which can be used during the same
night, and here, there is no longer a reasonable interpretation in terms of inspections. They
distinguish two cases: 1) identical boats of Customs, i.e., boats which are characterized by
the same detection probability, and 2) two types of boats, i.e., having di�erent detection



370 Chapter 17: Strait control and models with multiple illegal activities

probabilities. For both cases, Thomas and Nisgav formulate the respective linear programming
problems without solving them. It was the achievement of Baston and Bostock (1991) to
present the optimal payo� to Customs resp. Smuggler explicitly for case 2); see Theorem 17.2
below. However, they did not provide any optimal strategies.

For case 2) of two non-identical boats the assumptions on p. 355 are further speci�ed as
follows:

(iii�) The Smuggler performs an illegal activity once at one of the steps L, . . . , 1.

(iv�) During a control Customs may commit an error of the second kind. If only patrol boat
i, i = 1, 2, is used during the night in which the Smuggler attempts to cross the strait,
then wi ∈ (0, 1] is the probability that the Smuggler is detected and therefore caught.

If both patrol boats are used during the night in which the Smuggler attempts to cross
the strait, then w with w > max(w1, w2) is the probability that the Smuggler is detected
and therefore caught.

The detection probabilities w1, w2 and w are the same for all controls.

(vi�) The Smuggler decides at the beginning, i.e., at step L, whether to behave illegally at
that step. If the Smuggler behaves legally at steps L, . . . , ` + 1 (1 ≤ ` ≤ L − 1), then
he decides whether to behave illegally at step `; and so on. Because of assumption (iii�),
the Smuggler behaves illegally latest at step 1.

Customs decides at the beginning whether to control at step L. If it has still controls at
its disposal, then Customs decides at step L− 1 whether to control at that step; and so
on.

(viii�) The payo�s to the two players (Smuggler, Customs) are given by

(1,−1) for undetected smuggling

(−1, 1) for detected smuggling .
(17.37)

(x�) The game ends either at the step at which the Smuggler behaves illegally, or at that step
at which the number of controls for each boat left is zero, or at that step at which the
number of controls left for each boat is equal to the number of steps left, or at step 1.

Three comments on these assumptions: First, note that while so far in this monograph the
detection probabilities are denoted by 1 − β, we use in assumption (iv�) and in the remainder
of this section the notation w,w1 and w2 in order to make the following analysis easier to be
comparable to the original work by Baston and Bostock (1991), and to keep the equations as
simple as possible. Also note that we exclude the cases w = max(w1, w2) and w = w1 + w2,
because w1, w2, and w cannot be estimated precisely.

Second, (17.37) indicates that Baston and Bostock (1991) model this situation as a zero-sum
game with the same payo�s as used by Thomas and Nisgav (1976); see p. 356. If the Smuggler
behaves illegally during the same night in which Customs controls, then the (expected) payo�
to the Smuggler is given by

1− 2w1 if the �rst boat is used
1− 2w2 if the second boat is used
1− 2w if both boats are used.
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Third, again we note with respect to assumption (x') that if the Smuggler behaves illegally at
step i, i = L, ..., 1, then the game ends at step i regardless whether the illegal behaviour is
detected at that step or not. In the latter case, the Smuggler has successfully performed his
illegal activity and thus, the game ends as well.

Let Γ(L, k1, k2) denote the inspection game in which the Smuggler makes the attempt to cross
the strait in one of the L nights, and in which Customs has ki(> 0) patrols available for patrol
boat i, i = 1, 2. It is also assumed that if the Smuggler does not attempt to cross the strait
during a given night then he learns what patrol boats Customs used during that night.

Suppose there are ` nights left (2 ≤ ` ≤ L), and Customs has 1 ≤ k′1 ≤ min(` − 1, k1)
and 1 ≤ k′2 ≤ min(` − 1, k2) patrols left for each boat. If the Smuggler has not crossed the
strait during the nights L, . . . , ` + 1, then the subgame Γ(`, k′1, k

′
2) is reached, in which the

(expected) payo�s to the Smuggler is denoted by Op`,k′1,k′2 . Again, for brevity, we suppress
in the expression Op`−1,·,· Smuggler's and Customs strategies in the remaining ` nights. The
recursive normal form of the Baston-Bostock inspection game is given in Table 17.2.

Table 17.2 Recursive normal form of the subgame Γ(`, k′1, k
′
2) of the Baston-Bostock inspection

game Γ(L, k1, k2), if ` nights and k
′
1 resp. k

′
2 controls are left, and the Smuggler behaves legally

during the nights L, . . . , `+ 1 (2 ≤ ` ≤ L, 1 ≤ k′1 ≤ min(`− 1, k1), 1 ≤ k′2 ≤ min(`− 1, k2)).

patrol with 1st
boat

patrol with 2nd
boat

patrol with 1st
and 2nd boat

no patrol

¯̀̀ 1− 2w1 1− 2w2 1− 2w 1

`` Op`−1,k′1−1,k′2 Op`−1,k′1,k′2−1 Op`−1,k′1−1,k′2−1 Op`−1,k′1,k′2

We mentioned on p. 368 that a formal proof for cutting the information sets in the generalized
Thomas-Nisgav inspection game remains an open task. Note that from here on and especially in
the next section only the recursive normal form of the inspection games are considered and not
the respective extensive form games which would be appropriate to illustrate the information
situation of the players during the course of the game. A potential trap when starting right away
with the recursive normal form is that crucial information sets are not recognized. What would
be the right approach from our point of view? There are two: First, one starts with modelling
the inspection game in extensive form and proves that information sets can be cut in a way
that leads to a recursive extensive form game and then to a recursive normal form game. The
only inspection game in this Chapter for which these steps were performed consequently is von
Stengel's inspection game in Section 17.2. Second, one assumes that after each step/night both
players have full information, which can lead to strange modelling assumptions; see Hohzaki's
inspection game in Section 17.2. However, also in this case the recursive approach can be
justi�ed.

Let p̄L,k1,k2 denote the probability to smuggle in the �rst night, and pL,k1,k2 denote the proba-
bility to postpone the smuggling. Note that because the Smuggler has to cross the strait, the
probability ple which had to be considered in the generalized Thomas-Nisgav inspection game,
is zero. For any ` with 2 ≤ ` < L, suppose that the Smuggler behaves legally during the
nights L, . . . , `+ 1, and Customs has 1 ≤ k′1 ≤ min(`− 1, k1) resp. 1 ≤ k′2 ≤ min(`− 1, k2)
resources left for boat 1 resp. 2, i.e., the game has reached the subgame Γ(`, k′1, k

′
2). Then

p̄`,k′1,k′2 denotes the probability to smuggle in the (L− `+ 1)-th night, and p`,k′1,k′2 the proba-
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bility to postpone the smuggling again. Because the Smuggler has to cross the strait, we have
p̄1,k′1,k′2 = 1.

In the generalized Thomas-Nisgav inspection game only the probability q`,k′ for Customs to
control in the next night had to be considered. In the Baston-Bostock inspection game, however,
it also has to be distinguished which boat is used. In order to keep the notation simple, let q0
denote the probability that no patrol is scheduled for the next night, let qi denote the probability
that patrol boat i, i = 1, 2, is going to patrol next night, and �nally let q12 denote the probability
that patrol boats 1 and 2 are going to patrol next night. It is clear that q0 + q1 + q2 + q12 = 1.
Note that we ignore `, k′1 and k′2 in the q· for the sake of brevity.

Again, in order to solve the recursive inspection game, boundary conditions for the optimal
payo� to the Smuggler have to be met. For all 1 ≤ ` ≤ L we have

Op∗`,k′1,k′2
=



1 for k′1 = k′2 = 0

1− 2 k′1w1

`
for 1 ≤ k′1 ≤ min(`, k1), k

′
2 = 0

1− 2 k′2w2

`
for k′1 = 0, 1 ≤ k′2 ≤ min(`, k2)

1− 2w for k′1 = k′2 = `

(17.38)

which can be justi�ed as follows: If no control is left, then the payo� to the Smuggler is one.
If only resources for one boat are left, i.e., k′1 > 0 and k′2 = 0 or vice versa, then the original
Thomas-Nisgav inspection situation is met, and the boundary conditions are given by (17.33)
with b = d = −1. In case k′1 = k′2 = `, i.e., the number of patrols left for each boat is the
same as the number of nights left, then Customs controls in any of the remaining ` nights with
both boats, and the payo� to the Smuggler is 1− 2w.

Although Baston and Bostock (1991) have only derived the optimal payo� to the Smug-
gler/Customs, we provide in addition the corresponding optimal strategies of both players,
which were found using M. Canty's Mathematica R© programs; see Canty (2003).

The game theoretical solution of this inspection game is presented in

Theorem 17.2. Given the Baston-Bostock inspection game with L nights, 1 ≤ k1 ≤ k2 ≤ L
patrols for boat 1 and 2, and with detection probabilities w1, w2 and w, i.e., Γ(L, k1, k2), the
recursive normal form of which is given in Table 17.2. The payo� to the Smuggler is de�ned
recursively using the recursive normal form representation in Table 17.2, and the optimal payo�
to the Smuggler ful�ls the boundary conditions (17.38).

Suppose ` nights, 2 ≤ ` ≤ L, are left for smuggling, Customs has k′1 and k′2 resources for
boat 1 resp. 2 at its disposal, 0 ≤ k′1 ≤ min(` − 1, k1) and 0 ≤ k′2 ≤ min(` − 1, k2)), and
the Smuggler behaves legally during the nights L, . . . , ` + 1, i.e., the subgame Γ(`, k′1, k

′
2) is

reached.

Then optimal strategies and the optimal payo� Op∗`,k′1,k′2
to the Smuggler in the subgame

Γ(`, k′1, k
′
2) are given as follows: An optimal strategy of the Smuggler is given by

p̄∗`,k′1,k′2
=

1

`
. (17.39)

In case k′1 = 0 and k′2 ≥ 1 an optimal strategy of Customs is given by q∗2 = k′2/` and in case
of k′1 ≥ 1 and k′2 = 0 by q∗1 = k′1/`. If k

′
1 k
′
2 > 0 an optimal strategy of Customs is given by
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1) For w > w1 + w2 by

q∗12 =
1

w

1

`

(
k′1w + (k′2 − k′1)w2

)
, q∗0 = 1− q∗12 , q∗1 = q∗2 = 0 . (17.40)

2) For w < w1 + w2 and

• for k′1 + k′2 ≤ ` and

� w1 < w2 by

q∗2 =
1

w2

1

`

(
k′1w1 + k′2w2

)
, q∗0 = 1− q∗2 , q∗1 = q∗12 = 0 . (17.41)

� w1 > w2 by

q∗1 =
1

w1

1

`

(
k′1w1 + k′2w2

)
, q∗0 = 1− q∗1 , q∗2 = q∗12 = 0 . (17.42)

• for k′1 + k′2 ≥ ` and

� w1 < w2 by

q∗2 =
1

w − w2

1

`

(
(2 `− k′1 − k′2)w − (`− k′2)w1 − (`− k′1)w2

)
,

q∗12 = 1− q∗2 , q∗0 = q∗1 = 0 .

(17.43)

� w1 > w2 by

q∗1 =
1

w − w1

1

`

(
(2 `− k′1 − k′2)w − (`− k′2)w1 − (`− k′1)w2

)
,

q∗12 = 1− q∗1 , q∗0 = q∗2 = 0 .

(17.44)

The optimal payo� to the Smuggler in the subgame Γ(`, k′1, k
′
2) is

1) for w > w1 + w2

Op∗`,k′1,k′2
= 1− 2

`

(
k′1w + (k′2 − k′1)w2

)
, (17.45)

2) for w < w1 + w2

Op∗`,k′1,k′2
=


1− 2

`

(
k′1w1 + k′2w2

)
for k′1 + k′2 ≤ `

1− 2

`

(
(k′1 + k′2 − `)w

+ (`− k′2)w1 + (`− k′1)w2

)
for k′1 + k′2 ≥ `

, (17.46)

which � for ` = L, k′1 = k1 and k′2 = k2 � is the optimal payo� to the Smuggler of the entire
game Γ(L, k1, k2).
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Proof. According to Figure 17.2 we deal with a 2× 4 zero-sum matrix game. In the following
we will only prove solution (17.40); the other ones can be shown in the same way.

Mixing the 3rd and 4th column we get with q∗1 = q∗2 = 0, q∗ = q∗12 and 1 − q∗ = q∗0 the
following condition for the optimal payo� Op∗`,k′1,k′2

, which makes the Smuggler indi�erent with

regard to the choice of his pure strategies, see Theorem 19.1:

Op∗`,k′1,k′2
= q∗ (1− 2w) + (1− q∗)

= q∗Op∗`−1,k′1−1,k′2−1
+ (1− q∗)Op∗`−1,k′1,k′2 ,

(17.47)

which leads to

q∗ =
1−Op∗`−1,k′1,k′2

2w +Op∗
`−1,k′1−1,k′2−1

−Op∗
`−1,k′1,k′2

. (17.48)

Inserting (17.48) into the �rst equation of (17.47) leads to the recursive relation for the optimal
payo�

Op∗`,k′1,k′2
− 1 = −2w

1−Op∗`−1,k′1,k′2
2w +Op∗

`−1,k′1−1,k′2−1
−Op∗

`−1,k′1,k′2

. (17.49)

It can be seen immediately that (17.45) ful�ls (17.49) as well as the 1st, 3rd and 4th boundary
condition in (17.38). In the comment below on the asymmetry of (17.40) and (17.45) it is
shown that k1 ≤ k2 implies k′1 ≤ k′2, and thus, the 2nd boundary condition in (17.38) is not
applied. Inserting (17.45) into (17.48) leads to (17.40).

Using (17.39) and (17.45), it can be seen immediately that

Op∗`,k′1,k′2
= (1− 2w)

1

`
+Op∗`−1,k′1−1,k′2−1

(
1− 1

`

)

Op∗`,k′1,k′2
=

1

`
+Op∗`−1,k′1,k′2

(
1− 1

`

)
.

In order to prove that the saddle point criterion for Customs is satis�ed, we also need to consider
the 1st and 2nd column; we have to show that

Op∗`,k′1,k′2
≤ (1− 2w1)

1

`
+Op∗`−1,k′1−1,k′2

(
1− 1

`

)
(17.50)

Op∗`,k′1,k′2
≤ (1− 2w2)

1

`
+Op∗`−1,k′1,k′2−1

(
1− 1

`

)
. (17.51)

Using (17.45), it can be seen that (17.50) holds only because of the condition w > w1 + w2,
whereas (17.51) is ful�lled as equality.

As mentioned above, (17.46) can be obtained in the same way as demonstrated for (17.45):
(17.41) and (17.42) are obtained by mixing the 2nd and 4th, respectively the 1st and 4th
columns, and (17.43) and (17.44) are obtained by mixing the 2nd and 3rd, respectively the 1st
and 3rd columns.

Let us comment the results of Theorem 17.2: First, as in the generalized Thomas-Nisgav
inspection game, see case (i) in Theorem 17.1, it is remarkable that the optimal strategy
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(17.39) of the Smuggler is independent of Customs' detection probabilities w1, w2 and w,
and independent of the inspections resources k′1 and k′2 available. The Smuggler's probability
p̄∗`,k′1,k′2

as given by (17.39) only depends on the number of steps left, and thus, they form a

harmonic progression; see also Table 4.1 on p. 72 for an overview of inspection games with
this property.

Second, the optimal payo� in the Thomas-Nisgav inspection game can be obtained from (17.45)
as follows: Let us assume that no patrol boat 1 is available, i.e., (k′1 ≤)k1 = 0. Then (17.45)
simpli�es to

Op∗L,0,k2 = 1− 2

L
k2w2 ,

regardless whether w > w1 + w2 or w < w1 + w2, i.e., the result obtained by Thomas and
Nisgav (1976); see (17.36).

Third, we see that the expressions (17.41) � (17.44) and (17.46) are somehow symmetric in
k′1 and k′2. This is not true for (17.40) and (17.45). Why? Because we have assumed w.l.o.g.
that k1 ≤ k2 and because (17.40) implies q∗12 > 0 and q∗0 > 0, we know that before the second
night either k′1 = k1 and k′2 = k2 or k′1 = k1 − 1 and k′2 = k2 − 1 must hold, i.e., k′1 ≤ k′2,
and so on. Thus, the asymmetry in (17.40) and (17.45) is due to the assumption k1 ≤ k2.

Fourth, although only one optimal strategy of Customs is given in Theorem 17.2, in case 1)
there are two additional optimal strategies of Customs which are obtained by mixing the 2nd
and 4th, respectively the 2nd and 3rd columns, which require, however, additional conditions
to k′1, k

′
2, `, w2 and w; see (17.51) which is ful�lled as equality in case 1). The same e�ect

occurs in case 2).

Fifth, Customs might switch between the optimal probabilities (17.41) and (17.43) or (17.42)
and (17.44), respectively. For example: Consider the game Γ(6, 2, 3) and w1 < w2. Then the
following subgames can be reached during the course of the game:

Γ(6, 2, 3)
(17.41)−→ Γ(5, 2, 3)

(17.43)−→ Γ(4, 2, 2)
(17.43)−→ Γ(3, 1, 1)

(17.41)−→ . . . .

Sixth, in Baston and Bostock (1991) it is mentioned, that because "nowhere [it is] assumed
that w1 6= w2, it is clear that the case when the two patrol boats are identical can be obtained
by taking w1 = w2 in the above." The word above refers here to (17.45) and (17.46). It is true
that formally w1 = w2 can be chosen. But what does that mean in practice? According to the
recursive normal form of the Baston-Bostock inspection game in Table 17.2, they distinguish
from our point of view even in the case w1 = w2 two types of patrol boats (maybe having
di�erent related costs, di�erent boats need specialized sta� for operation, etc.), but with the
same detection probabilities w1 = w2. From our point of view they do not treat the case
of identical patrol boats in the sense of Thomas and Nisgav (1976), i.e., case 1 on p. 369,
because the recursive normal form of that inspection game is given in Table 17.3, and it is
clearly di�erent from that of the Baston-Bostock inspection game in Table 17.2.

Seventh, note that the optimal payo� depends on the relation between the probabilities w and
w1 + w2. In case the two boats operate stochastically independently, then the non-detection
probabilities are multiplied, i.e.

1− w = (1− w1) (1− w2)
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Table 17.3 Recursive normal form of the subgame Γ(`, k′) of the Thomas-Nisgav inspection
game with two identical boats Γ(L, k), if ` nights and k′ controls for both patrol boats together
are left, and the Smuggler behaves legally during the nights L, . . . , `+ 1 (2 ≤ ` ≤ L, 2 ≤ k′ ≤
min(2 `− 1, k)).

patrol with one boat patrol with two boats no patrol

¯̀̀ 1− 2w1 1− 2w 1

`` Op`−1,k′−1 Op`−1,k′−2 Op`−1,k′−1

which implies, because wi ∈ (0, 1], that, beside max(w1, w2) < w, we have

w < w1 + w2 ,

i.e., they are subadditive. Thus, (17.45) holds only if the two boats' detection activities are
positively correlated.

Eight, what has been said on p. 368 regarding the generalized Thomas-Nisgav inspection game
applies here as well: It remains an open problem whether the game theoretical solution of
the Baston-Bostock inspection game in extensive form representation has the same solution as
given by Theorem 17.2.

Finally, let us repeat that Baston and Bostock (1991) did not present optimal strategies of
Customs. This is somewhat surprising since these optimal strategies are advices to Customs,
in other words, important for those practitioners who are not able to derive these advices
themselves.

But nevertheless, there are further interesting questions to the Baston-Bostock inspection game
and its game theoretical solution which still wait for an answer. Why, for example, is the 1st
column never used in an optimal strategy of Customs under the condition w > w1 + w2; see
q∗1 = 0 in (17.40)? Or, why is the 3rd column never used in an optimal strategy of Customs
under the conditions w < w1 + w2 and k′1 + k′2 ≤ `; see q∗12 = 0 in (17.41) and (17.42)?
Or, why is the 4th column never used in an optimal strategy of Customs under the conditions
w < w1 + w2 and k′1 + k′2 ≥ `; see q∗0 in (17.43) and (17.44)?

Garnaev (1991) and Garnaev (2000) extended the work by Baston and Bostock (1991) such
that he considered three di�erent types of control boats which are characterized by di�erent
detection probabilities. He used linear programming in order to �nd optimal strategies for
some cases. He showed that also in the three boat variant of the inspection game an optimal
strategy of the Smuggler is given by (17.39). He also noted that by its structure the Customs
and Smuggler game is similar to the Searcher-Evader game with a time lag; see Gal (1980).

17.2 Multiple illegal activities: Models by von Stengel, by
Sakaguchi, by Ferguson and Melolidakis, and by Hohzaki

This section is devoted to models which deal with multiple illegal activities. We will see that
they do not only generalize the inspection models with exactly one and at most one illegal
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activity, but show also interesting and surprising structural relations to models considered in
Chapter 16 and Section 17.1. It should be mentioned, however, that according to our best
knowledge these models are not the results of studies of real world inspection problems; we will
return to this issue on p. 392.

The players in the inspection games treated in this section are di�erently named by the authors.
While the Operator or Smuggler is sometimes called inspectee or attacker, the Inspectorate or
Customs is referred to as inspector or defender. In the following, due to the di�erent possible
applications, we call synonymously the two players Operator or Smuggler and Inspectorate or
Customs, and we use the general terms step(s) and control(s).

Let us start with the inspection game by von Stengel (1991), for which assumptions (iii), (iv),
(vi), (viii) and (x) of Chapter 14 are speci�ed as follows:

(iii') The Operator may perform at most m illegal activities at the steps L, . . . , 1, i.e., m is
the number of intended illegal activities, where he can behave illegally at most once per
step.

(iv') During a control the Inspectorate does not commit any errors of the �rst and second
kind, i.e., if the illegal activity is carried through at the same step at which a control is
performed, then it is detected with certainty at that step.

(vi') The Operator decides at the beginning, i.e., at step L, whether to behave illegally at that
step. At a step ` (1 ≤ ` ≤ L − 1) and in case the Operator can still perform an illegal
activity, see assumption (iii'), he decides whether to behave illegally at that step; and so
on.

The Inspectorate decides at the beginning whether to control at step L. If it has still
controls at its disposal, then the Inspectorate decides at step L − 1 whether to control
at that step; and so on.

(viii') The payo�s to the two players (Operator, Inspectorate) are given by

(1,−1) for an untimely control and illegal behaviour

(−b, b) for a timely control and illegal behaviour

(0, 0) for legal behaviour ,

with b > 0.

(x') The game ends either at the step at which the Smuggler behaves illegally and a control
is performed, or at that step at which the number of controls left is zero, or at that step
at which the number of controls left is equal to the number of steps left, or at that step
at which the number of intended illegal activities left is zero, or at step 1. In case of a
timely control, the Operator does not need to return the payo� he received for previous
successful illegal activities.

The remaining assumptions of Chapter 14 except (ix) hold throughout this section.

As before, L and k denote the number of steps and controls, respectively. Note that like in
Dresher (1962) the inspection game is a zero-sum game. Also note that von Stengel (1991)
uses instead of L, k and m a di�erent notation; see also Table 18.1 on p. 389.
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Suppose ` steps are left (2 ≤ ` ≤ L), the Inspectorate has still k′ controls at its disposal
(1 ≤ k′ ≤ min(` − 1, k)), and the Operator has m′ intended illegal activities left (1 ≤ m′ ≤
min(`,m)). Then the subgame Γ(`, k′,m′) is reached, in which the (expected) payo� to the
Operator is denoted by Op`,k′,m′ . We suppress again Operator's and Inspectorate's strategies
in the expression Op`−1,·,·. The recursive normal form of von Stengel's inspection game is
presented in Table 17.4.

Table 17.4 Recursive normal form of the subgame Γ(`, k′,m′) of the von-Stengel inspection
game Γ(L, k,m), if ` steps, k′ controls and m′ intended illegal activities are left (2 ≤ ` ≤ L,
1 ≤ k′ ≤ min(`− 1, k), 1 ≤ m′ ≤ min(`,m)).

c` c̄`

¯̀̀ −b 1 +Op`−1,k′,m′−1

`` Op`−1,k′−1,m′ Op`−1,k′,m′

Table 17.4 can be explained as follows: Let us assume that the Operator behaves illegally ( ¯̀̀ )
at step `. If the Inspectorate controls (c`), then the game terminates, and the Operator has
to pay −b (< 0) for being detected, but, according to assumption (x'), the Operator need not
return the payo� he gets for previous successful illegal activities. If the Inspectorate does not
control at step ` (c̄`), a payo� of 1 is credited to the Operator and m′ reduces to m′ − 1. If
the Operator behaves legally (``) in that step, then m′ leaves unchanged. Furthermore, it is
assumed that even after a step without a control, it becomes common knowledge whether the
Operator behaved legally or not. At �rst sight this assumption seems to be absurd. It will turn
out on p. 380, however, that the optimal strategies of this inspection game do not depend on
this assumption.

Suppose ` steps, k′ controls and m′ intended illegal activities are left with 2 ≤ ` ≤ L, 1 ≤ k′ ≤
min(`− 1, k), and 1 ≤ m′ ≤ min(`,m)). Let p̄`,k′,m′ denote the probability to behave illegally
at step ` (2 ≤ ` ≤ L). Then 1− p̄`,k′,m′ is the probability to postpone the m′ intended illegal
activities. Note that p̄∗`,`,m′ = 0, especially p̄∗1,1,m′ = 0, and p̄∗1,0,1 = 1. The probability for the
Inspectorate to perform a control at step ` is denoted by q`,k′,m′ . The optimal payo� to the
Operator is denoted by Op∗`,k′,m′ .

In order to solve this recursive inspection game, the boundary conditions for the optimal payo�
to the Operator

Op∗`,k′,m′ =


0 for k′ = `

m′ for k′ = 0, 1 ≤ m′ ≤ min(`,m)

0 for m′ = 0, 1 ≤ k′ ≤ min(`− 1, k)

(17.52)

for all 1 ≤ ` ≤ L have to be met, which can be justi�ed as follows: If the Inspectorate must
control in every remaining step (k′ = `), then the Operator will not gain anything by behaving
illegally. Thus, he will behave legally and Op∗`,`,m′ = 0. If the Inspectorate has no controls left
(k′ = 0), then the Operator will behave illegally as often as he intended to (but � by assumption
� at most once in every remaining step), each time increasing the Operator's payo� by one,
i.e., Op∗`,0,m′ = m′. If there is no intended illegal activity left (m′ = 0), then the Operator
behaves legally in all remaining steps, and his optimal payo� is zero.
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The game theoretical solution of this inspection game, see von Stengel (1991), is presented in

Theorem 17.3. Given the von-Stengel inspection game with L > k steps, k controls, and
at most m intended illegal activities (m ≤ L), i.e., Γ(L, k,m), the recursive normal form of
which is represented in Table 17.4. The payo� to the Operator is de�ned recursively using the
recursive normal form representation in Table 17.4, and the optimal payo� to the Operator
ful�ls the boundary conditions (17.52).

Suppose ` steps, 2 ≤ ` ≤ L, are left, the Inspectorate has k′ controls at its disposal, 1 ≤ k′ ≤
min(` − 1, k), and the Operator has m′ intended illegal activities left, 1 ≤ m′ ≤ min(`,m),
i.e., the subgame Γ(`, k′,m′) is reached.

De�ne

s(`, k′) =

k′∑
i=0

(
`

i

)
bk
′−i .

Then optimal strategies and the optimal payo� Op∗`,k′,m′ to the Operator in the subgame
Γ(`, k′,m′) are given as follows: An optimal strategy of the Operator is given by, using (17.55),

p̄∗`,k′,m′ =
Op∗`−1,k′−1,m′ −Op∗`,k′,m′

b+Op∗`−1,k′−1,m′
, (17.53)

and an optimal strategy of the Inspectorate by

q∗`,k′,m′ =
s(`− 1, k′ − 1)

s(`, k′)
. (17.54)

The optimal payo� to the Operator in the subgame Γ(`, k′,m′) is given by

Op∗`,k′,m′ =

(
`

k′+1

)
−
(
`−m′
k′+1

)
s(`, k′)

, (17.55)

which � for ` = L, k′ = k and m′ = m � is the optimal payo� to the Operator of the entire
game Γ(L, k,m).

Proof. Like in earlier cases, we apply the principle of making the adversary indi�erent; see
Theorem 19.1. Given that the payo� matrix in Table 17.4 is cyclic, we get with q∗ = q∗`,k′,m′

Op∗`,k′,m′ = q∗ (−b) + (1− q∗) (1 +Op∗`−1,k′,m′−1)

= q∗Op∗`−1,k′−1,m′ + (1− q∗)Op∗`−1,k′,m′ .
(17.56)

This leads to

q∗ =
−1−Op∗`−1,k′,m′−1 +Op∗`−1,k′,m′

−b− 1−Op∗`−1,k′,m′−1 −Op∗`−1,k′−1,m′ +Op∗`−1,k′,m′
. (17.57)

Inserting q∗ from (17.57) into the �rst equation of (17.56) we get the following recursive relation
for Op∗`,k′,m′ :

Op∗`,k′,m′ = (−b)
−1−Op∗`−1,k′,m′−1 +Op∗`−1,k′,m′

−b− 1−Op∗`−1,k′,m′−1 −Op∗`−1,k′−1,m′ +Op∗`−1,k′,m′
(17.58)
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+ (1−Op∗`−1,k′,m′−1)
−b−Op∗`−1,k′−1,m′

−b− 1−Op∗`−1,k′,m′−1 −Op∗`−1,k′−1,m′ +Op∗`−1,k′,m′
.

With the help of rather cumbersome algebraic manipulations, see von Stengel (1991) for details,
one can show that (17.55) indeed ful�ls the recursive relation (17.58) as well as the boundary
conditions (17.52). Inserting (17.55) into (17.57) one obtains (17.54).

Using the payo� matrix in Table 17.4, the Operator's optimal strategy p̄∗ = p̄∗`,k′,m′ can be
determined from

Op∗`,k′,m′ = p̄∗ (−b) + (1− p̄∗)Op∗`−1,k′−1,m′

which leads to (17.53). Note that p̄∗`,k′,m′ can not be expressed in terms on s(`, k′) as simple
as q∗`,k′,m′ ; see also (16.11) in Theorem 16.1.

Finally, it is shown by von Stengel that the payo�s in Table 17.4 are cyclic, which completes
the proof.

Let us comment the results of Theorem 17.3: First, note that the Inspectorate's optimal payo�
−Op∗L,k,m decreases with the number m of intended illegal activities. However, that payo� is

constant for all m ≥ L− k since then
(
L−m
k+1

)
= 0. Indeed, the Operator will not perform more

than L− k illegal activities since otherwise he would be caught with certainty.

Second, (17.54) illustrates that the Inspectorate's optimal probability q∗`,k′,m′ of a control at
step ` does not depend on m′. This means that the Inspectorate need not know the value of
m′ in order to play optimally. Hence, the assumption in this game about the knowledge of the
Inspectorate after a step without a control can be removed, see p. 378: The solution of the
recursive game, see Theorem 17.3, is also the solution of the inspection game without recursive
structure, where � more realistically � the Inspectorate does not know what happened at a
step without a control. This is analysed by von Stengel (1991) using the extensive form of the
game. As mentioned on p. 371, von Stengel's inspection game is the only one in this chapter
� except the generalized Thomas-Nisgav inspection games Γ(2, 1) and Γ(4, 2) of Section 17.1
� for which the reduction of the extensive form representation to the recursive form has been
shown.

Third, Theorem 17.3 generalizes the zero-sum version of the Dresher-Höp�nger inspection
game, i.e., d = c = 1 and a = −b in (16.1), see Figure 16.3 and Theorem 16.1, to any m ≥ 1.
Note, that in a later work, von Stengel (2016) generalizes this model insofar as varying rewards
to the Operator for successful illegal behaviour are introduced. Also, non-zero-sum models as
well as an inspector leadership version of the original game are considered.

Sakaguchi (1994) has analysed an inspection problem which is very similar to that of von Stengel
(1991). The basic di�erence is that Sakaguchi assumes that the game is not terminated after
the detection of an illegal activity, but rather continues throughout the L steps. A minor
di�erence is that Sakaguchi assumes b = 1 in assumption (viii'). Thus, only assumption (x')
from p. 377 is speci�ed as follows:

(x') The game ends either at the step at which the number of controls left is zero, or at that
step at which the number of controls left is equal to the number of steps left, or at that
step at which the number of intended illegal activities left is zero, or at step 1.

Note that Sakaguchi (1994) uses a slightly di�erent notation from ours; see Table 18.1 on p.
389. The recursive normal form of this inspection game is given in Table 17.5. We see, if
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we compare Tables 17.4 and 17.5, that in case of detected illegal activity the game continues
(indicated by Op`−1,k′−1,m′−1) and that −b is replaced by −1. The boundary conditions
coincide with (17.52). The probabilities p̄`,k′,m′ and q`,k′,m′ are de�ned as in von Stengel's
inspection game.

Table 17.5 Recursive normal form of the subgame Γ(`, k′,m′) of the Sakaguchi inspection
game Γ(L, k,m), if ` steps, k′ controls and m′ intended illegal activities are left (2 ≤ ` ≤ L,
1 ≤ k′ ≤ min(`− 1, k), 1 ≤ m′ ≤ min(`,m)).

c` c̄`

¯̀̀ −1 +Op`−1,k′−1,m′−1 1 +Op`−1,k′,m′−1

`` Op`−1,k′−1,m′ Op`−1,k′,m′

In contrast to von Stengel (1991), Sakaguchi was not able to prove the cyclic nature of the
payo� matrix in Table 17.5 although numerical calculations led to the conjecture that it holds
indeed.

The game theoretical solution of this inspection game, see Sakaguchi (1994), is presented in

Theorem 17.4. Given the Sakaguchi inspection game with L > k steps, k controls, and at
most m intended illegal activities (m ≤ L), i.e., Γ(L, k,m), the recursive normal form of
which is represented in Table 17.5. The payo� to the Operator is de�ned recursively using the
recursive normal form representation in Table 17.5, and the optimal payo� to the Operator
ful�ls the boundary conditions (17.52).

Suppose ` steps, 2 ≤ ` ≤ L, are left, the Inspectorate has k′ controls at its disposal, 1 ≤ k′ ≤
min(` − 1, k), and the Operator has m′ intended illegal activities left, 1 ≤ m′ ≤ min(`,m),
i.e., the subgame Γ(`, k′,m′) is reached.

De�ne

µ`,k′ =
−
(
`−1
k′

)∑k′

i=0

(
`
i

)
and let us assume that

µ`−2,k′−1 µ`,k′

µ`−1,k′−1 µ`−1,k′
> 1 . (17.59)

Then optimal strategies and the optimal payo� Op∗`,k′,m′ to the Operator in the subgame
Γ(`, k′,m′) are given as follows: An optimal strategy of the Operator is given by

p̄∗`,k′,m′ =
m′ (µ`−1,k′ − µ`−1,k′−1)
2 + µ`−1,k′ − µ`−1,k′−1

,

and optimal strategy of the Inspectorate by

q∗`,k′,m′ =
1 + µ`−1,k′

2 + µ`−1,k′ − µ`−1,k′−1
=

∑k′−1
i=0

(
`−1
i

)∑k′

i=0

(
`
i

) .
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The optimal payo� to the Operator in the subgame Γ(`, k′,m′) is given by

Op∗`,k′,m′ = (−m′)µ`,k′ = m′
(
`−1
k′

)∑k′

i=0

(
`
i

) , (17.60)

which � for ` = L, k′ = k and m′ = m � is the optimal payo� to the Operator of the entire
game Γ(L, k,m).

Proof. Once more, the principle of making the adversary indi�erent is applied; see Theorem
19.1. Thus, the proof goes along the same lines as that of Theorem 17.3: It is shown that
(17.60) ful�ls the recursive relation

Op∗`,k′,m′ =
(1 +Op∗`−1,k′−1,m′−1)Op

∗
`−1,k′,m′ − (−1 +Op∗`−1,k′,m′−1)Op

∗
`−1,k′−1,m′

2 +Op∗`−1,k′−1,m′−1 +Op∗`−1,k′,m′ −Op∗`−1,k′,m′−1 −Op∗`−1,k′−1,m′
.

as well as the boundary conditions (17.52). The details of this � again � cumbersome calculation
can be found in Sakaguchi's original work. Let us note that the assumption (17.59) guarantees
the cyclic structure of the payo� matrix in Table 17.5, and that 0 < p̄∗`,k′,m′ < 1.

We see that the optimal payo� to the Operator according to (17.60) has a similar structure
as that according to (17.55). In case of m = 1 intended illegal activity, the game theoretical
solution of Sakaguchi's inspection game coincides with the game theoretical solution of Dresher-
Höp�nger's inspection game for b = d = 1, see Theorem 16.1, which coincides with the game
theoretical solution of von-Stengel's inspection game for b = 1, see Theorem 17.3, as expected.

There is, however, more to say, about recursive inspection games with multiple illegal activities:
We now shortly discuss the work by Sakaguchi (1977), by Ferguson and Melolidakis (1998)
and by Sakaguchi (2003), and will conclude this section with the inspection game by Hohzaki
(2011) .

In an earlier paper Sakaguchi (1977) considered an inspection model with the assumptions (iv')
and (viii') with b = 1 from p. 377, assumptions (x') from p. 380, and assumptions (iii') and
(vi') are speci�ed as follows:

(iii') The Operator performs m illegal activities at the steps L, . . . , 1, where he can behave
illegally at most once per step.

(vi') The Operator decides at the beginning, i.e., at step L, whether to behave illegally at that
step. At a step ` (1 ≤ ` ≤ L− 1) and in case the Operator must still perform an illegal
activity, see assumption (iii�), he decides whether to behave illegally at that step; and so
on.

The Inspectorate decides at the beginning whether to control at step L. If it has still
controls at its disposal, then the Inspectorate decides at step L − 1 whether to control
at that step; and so on.

Whereas, of course, the recursive normal form is the same as that given in Table 17.5, the
boundary conditions for the optimal payo� to the Operator are now, only the �rst one is
di�erent from them in (17.52):

Op∗`,k′,m′ =


−m′ for k′ = `

m′ for k′ = 0, 1 ≤ m′ ≤ min(`,m)

0 for m′ = 0, 1 ≤ k′ ≤ min(`− 1, k)

(17.61)



Chapter 17: Strait control and models with multiple illegal activities 383

for all 1 ≤ ` ≤ L: Because the Operator has to perform the m′ illegal activities, he will be
caught with certainty in case the Inspectorate performs a control at every step (k′ = `). Thus,
the Operator looses m′.

The probabilities p̄`,k′,m′ and q`,k′,m′ are de�ned as in von Stengel's inspection game. Note,
however, that p̄`,`,` = 1.

The game theoretical solution of this inspection game, see Sakaguchi (1977), is presented in

Theorem 17.5. Given the Sakaguchi inspection game with L > k steps, k controls, and m
illegal activities (m < L), i.e., Γ(L, k,m), the recursive normal form of which is represented
in Table 17.5. The payo� to the Operator is de�ned recursively using the recursive normal
form representation in Table 17.5, and the optimal payo� to the Operator ful�ls the boundary
conditions (17.61).

Suppose ` steps, 2 ≤ ` ≤ L, are left, the Inspectorate has k′ controls at its disposal, 1 ≤ k′ ≤
min(` − 1, k), and the Operator has m′ illegal activities left, 1 ≤ m′ ≤ min(`,m), i.e., the
subgame Γ(`, k′,m′) is reached.

Then optimal strategies and the optimal payo� Op∗`,k′,m′ to the Operator in the subgame
Γ(`, k′,m′) are given as follows: An optimal strategy of the Operator is given by

p̄∗`,k′,m′ =
m′

`
,

and optimal strategy of the Inspectorate by

q∗`,k′,m′ =
k′

`
.

The optimal payo� to the Operator in the subgame Γ(`, k′,m′) is given by

Op∗`,k′,m′ = m′
(

1− 2 k′

`

)
,

which � for ` = L, k′ = k and m′ = m � is the optimal payo� to the Operator of the entire
game Γ(L, k,m).

Proof. The proof can be found in Sakaguchi (1977).

Note that the optimal strategies as well as the optimal payo�s to the Operator in the two
versions of Sakaguchi's inspection game, see Theorems 17.4 and 17.5, are totally di�erent! This
demonstrates the sensitivity of the optimal strategies and payo�s on the model assumptions,
an e�ect that can also be observed in the Dresher-Höp�nger's inspection game with errors of
the second kind; see Theorem 16.2.

Ferguson and Melolidakis (1998) consider the same recursive structure as Sakaguchi (1994), see
Table 17.5, but they use di�erent payo�s which result in di�erent boundary conditions which
then, of course, result in di�erent solutions. Since, however, the presented models of v. Stengel
and Sakuguchi � more than one illegal activity without and with the termination of the game
after the �rst detection of an illegal activity � which we still call fundamental, Ferguson and
Melolidakis analyse variations of Sakaguchi's model. Therefore, we do not present their work
here, but refer the interested reader to the original work. We will come back to the issue of
fundamental models at the end of this section on p. 388.
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Sakaguchi (2003) analysed in a later work the case that the illegal activity (expressed as cargo
to be smuggled during one night) is considered to be a uniformly distributed random variable
which then leads back to a game the recursive structure of which has only two variables.

Let us conclude our collection of models with multiple illegal activities with an inspection
game presented by Hohzaki (2011), see also Hohzaki et al. (2006), which deals with multiple
smuggling as well, the di�erence to the notation in this monograph can be found in Table 18.1
on p. 389: During L steps � Hohzaki considers days � the Smuggler tries to smuggle the
contraband x ∈ N, which may be divided in portions 1, 2, . . . , x− 1, which then are smuggled
in separate steps. If portion y, y = 1, . . . , x, is smuggled, and if a patrol boat is under way,
then the smuggling is detected with probability q1(y), and it is not detected with probability
q2(y), where q1(y) + q2(y) ≤ 1. According to Hohzaki, the probability of no capture and no
successful smuggling (no event) is 1 − q1(y) − q2(y). We do not understand what no event
means, but this is not important for the subsequent analysis.

Customs can patrol at most k times. Before each step, Customs decides to patrol or not.
Unless Customs captures the Smuggler, the game transfers to the next step. Before each step,
both players, Smuggler and Customs, get information about the strategies their adversaries
took before the previous step. Especially the portion y smuggled in the last step � if at all � is
known to Customs. Upon capture of the Smuggler or the expiration of the preplanned number
of steps, the inspection game ends.

The payo� to both players is zero-sum. Successful smuggling yields the Smuggler a reward of
1 per unit of smuggled contraband while Customs looses the same. If Customs captures the
Smuggler, it gets a reward α > 0 (α should not be confused with the false alarm probability
used so far in this monograph), which is an amount relative to the value of the contraband.

Therefore, the assumptions from p. 377 are speci�ed as follows:

(iii') The Smuggler smuggles at steps L, . . . , 1 as much as possible from the contraband x
which may be divided in portions 1, 2, . . . , x− 1.

(iv') During a control Customs may commit an errors of the second kind, i.e., if portion y,
y = 1, . . . , x, is smuggled at the same step at which a control is performed, then the
smuggling is detected with probability q1(y), and not detected with probability q2(y)
where q1(y) + q2(y) ≤ 1.

(vi') The Smuggler decides at the beginning, i.e., at step L, which portion 0, 1, . . . , x to
smuggle at that step, where portion 0 refers to "no smuggling". At a step ` (1 ≤ ` ≤
L−1) and in case the Smuggler can still smuggle, see assumption (iii'), he decides which
portion 0, 1, . . . to smuggle from the remaining contraband at that step; and so on.

Customs decides at the beginning whether to control at step L. If it has still controls at
its disposal, then Customs decides at step L− 1 whether to control at that step; and so
on.

(viii') The payo�s to the two players (Smuggler, Customs) are given by

(1,−1) for an untimely control and illegal behaviour

(−α, α) for a timely control and illegal behaviour

(0, 0) for legal behaviour ,

with α > 0.
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(x') The game ends either at the control at which the smuggle is detected, or at that step
at which the portion of contraband left is zero, or at that step at which the number of
controls left is zero, or at step 1.

Suppose ` steps are left (2 ≤ ` ≤ L), Customs has k′ patrols at its disposal (1 ≤ k′ ≤
min(`−1, k)), and the Smuggler has the contraband x′ with 1 ≤ x′ ≤ x left. Let Op∗`,k′(x

′−y)
be the optimal payo� to the Smuggler, if ` steps and k′ patrols remain, and when the contraband
x′ − y still has to be smuggled. The recursive normal form of this inspection game has x′ + 1
rows and 2 columns; it is presented in Table 17.6.

Table 17.6 Recursive normal form of the subgame Γ(`, k′, x′) of the Hohzaki inspection game
Γ(L, k, x), if ` steps, k′ controls and the contraband x′ are left (2 ≤ ` ≤ L, 1 ≤ k′ ≤
min(`− 1, k), 1 ≤ x′ ≤ x).

c` c̄`

0 (y = x′)
−α q1(x′) + x′ q2(x

′)
+ (1− q1(x′))Op`−1,k′−1(0)

x′ +Op`−1,k′(0)

1 (y = x′ − 1)
−α q1(x′−1)+(x′−1) q2(x

′−1)
+(1−q1(x′−1))Op`−1,k′−1(1)

x′ − 1 +Op`−1,k′(1)

...
...

...

x′ − y (y)
−α q1(y) + y q2(y)

+(1−q1(y))Op`−1,k′−1(x
′−y)

y +Op`−1,k′(x
′ − y)

...
...

...

x′ − 1 (y = 1)
−α q1(1) + y q2(1)

+(1−q1(1))Op`−1,k′−1(x
′−1)

1 +Op`−1,k′(x
′ − 1)

x′ (y = 0) Op`−1,k′−1(x
′) Op`−1,k′(x

′)

Boundary conditions for the optimal payo� to the Smuggler are given by

Op∗`,k′(x
′) =

{
0 for x′ = 0, 1 ≤ k′ ≤ min(`− 1, k)

x′ for k′ = 0, 1 ≤ x′ ≤ x
(17.62)

for all 1 ≤ ` ≤ L: If nothing is left to be smuggled (x′ = 0), then the Smuggler's payo� is
zero. If no control is left (k′ = 0), then he can smuggle the remaining amount whenever he
wants, i.e., he gains x′.

In order to �nd closed expressions for the optimal strategies and optimal payo�, Hohzaki further
assumes a constant detection probability q1 := q1(y), and a constant non-detection probability
q2 := q2(y).

Now Hohzaki proceeds as follows: He assumes the no-partially smuggling assumption, i.e., the
Smuggler considers only two pure strategies in each step: Either not to smuggle at all during
the next step (y = 0), or to smuggle the whole contraband that is left (y = x′). Thus, the
recursive normal form game presented in Table 17.6 is reduced to the 2 × 2-game presented
in Table 17.7, where (17.62) and the constant detection and non-detection probabilities have
already been taken into account.



386 Chapter 17: Strait control and models with multiple illegal activities

Table 17.7 Reduced recursive normal form of the subgame Γ(`, k′, x′) of the Hohzaki inspection
game Γ(L, k, x) of Table 17.6.

c` c̄`

0 −α q1 + x q2 x

x Op`−1,k′−1(x) Op`−1,k′(x)

Hohzaki solves the inspection game in Table 17.7 and shows that the "no-partially smuggling
assumption" is valid for the original game in Table 17.6, i.e., it is indeed optimal for the
Smuggler to smuggle the total contraband x′ at the next step or not.

In the next Theorem we only present the optimal payo� to the Smuggler. Statements on the
optimal strategies can be found in Hohzaki (2011).

Theorem 17.6. Given the Hohzaki inspection game with L > k steps, k controls, and a
contraband x, the recursive normal form of which is represented in Table 17.6. The payo�
to the Smuggler is de�ned recursively using the recursive normal form representation in Table
17.7, and the optimal payo� to the Smuggler ful�ls the boundary conditions (17.62).

Then the optimal payo� to the Smuggler is given by

Op∗L,k(x) =



x− γ(x)
k

L
for α q1 − x q2 < 0(

L− 1

k

)
xk+1

k∑
i=0

(
L− k + i− 1

i

)
xi (γ(x))k−i

for α q1 − x q2 > 0
, (17.63)

where γ(x) = α q1 − x q2 + x.

Proof. The proof can be found in Hohzaki (2011).

Let us look at the recursive normal form of the Dresher-Höp�nger inspection game, given in
Figure 16.3 with a and b replaced by ã and b̃, and at Theorem 16.2. If we de�ne b̃ := α q1−x q2
and d := x, then we get γ(x) = b̃+d = (1−β) (b+d), and the optimal payo� (17.63) coincides
with the equilibrium payo�s to the Operator (16.42) in case of α q1−x q2 < 0, and with (16.13)
in case of α q1 − x q2 > 0: Whereas for the case α q1 − x q2 < 0 this can be seen immediately,
the other case takes a little more e�ort: Here we have according to (17.63)

Op∗L,k(x) = d

(
L− 1

k

)
k∑
i=0

(
L− k + i− 1

i

) (
1 +

b̃

d

)k−i , (17.64)
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and according to Theorem 16.2, i.e., using (16.13),

Op∗L,k = d

(
L−1
k

)
f(L, k)

= d

(
L− 1

k

)
k∑
i=0

(
L

i

) (
b̃

d

)k−i = d

(
L− 1

k

)
k∑
j=0

(
L

k − j

) (
b̃

d

)j . (17.65)

Let us write the denominator of Hohzaki's form (17.64) as

k∑
i=0

(
L− k + i− 1

i

) (
1 +

b̃

d

)k−i
=

k∑
i=0

(
L− k + i− 1

i

) k−i∑
j=0

(
k − i
j

) (
b̃

d

)j
.

Changing the order of summation leads to

k∑
j=0

k−j∑
i=0

(
L− 1− (k − i)

i

)(
k − i
j

) (
b̃

d

)j
,

thus, both the denominators of (17.64) and (17.65) are equal if

k−j∑
i=0

(
L− 1− (k − i)

i

)(
k − i
j

)
=

(
L

k − j

)
,

or, substituting k − i→ i and

(
L− 1− i
k − i

)
=

(
L− 1− i
L− 1− k

)
, if

k∑
i=j

(
L− 1− i
L− 1− k

)(
i

j

)
=

(
L

k − j

)
(17.66)

for all L = 2, 3, . . ., k = 1, . . . , L− 1 and j = 0, . . . , k.

Indeed, this can be shown by induction with respect to L. For L = 2 this can be seen directly.
Let us assume that (17.66) is ful�lled for L− 1, all k = 1, . . . , L− 1, and all j = 0, . . . , k. We
have to show that

k∑
i=j

(
L− i
L− k

)(
i

j

)
=

(
L+ 1

k − j

)
(17.67)

for all k = 1, . . . , L and all j = 0, . . . , k. For L−1 towards L we have for all k = 1, . . . , L−1,
using elementary properties of binomial coe�cients,

k∑
i=j

(
L− i
L− k

)(
i

j

)
=

k∑
i=j

[(
L− 1− i
L− 1− k

)
+

(
L− 1− i
L− k

)] (
i

j

)

=

k∑
i=j

(
L− 1− i
L− 1− k

)(
i

j

)
+

k∑
i=j

(
L− 1− i

L− 1− (k − 1)

)(
i

j

)

=

(
L

k − j

)
+

k−1∑
i=j

(
L− 1− i

L− 1− (k − 1)

)(
i

j

)
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=

(
L

k − j

)
+

(
L

k − 1− j

)
=

(
L+ 1

k − j

)
,

i.e., the right hand side of (17.67). Using (4.50) with a = j and b = L, we obtain for the left
hand side of (17.67) in case of k = L

L∑
i=j

(
L− i
L− L

)(
i

j

)
=

L∑
i=j

(
i

j

)
=

(
L+ 1

j + 1

)
=

(
L+ 1

L− j

)
,

i.e., the right hand side of (17.67) for k = L. Thus, (17.66) is proven, and it is shown that
the optimal payo� (17.63) coincides with the equilibrium payo�s to the Operator (17.65) resp.
(16.42).

The interesting point of this identity is the fact that in the original Dresher-Höp�nger inspection
game, i.e., (16.13), the �rst solution in (17.63) � identical to that of the generalized Thomas-
Nisgav inspection game as given by Theorem 17.1! � could not be seen since b was assumed
to be positive; only b̃ can be positive or negative.

Note that it would be interesting to �nd out, whether and like in von Stengel's inspection game,
the result of Theorem 17.6 can also be obtained if one does not assume that Customs is always
fully informed, i.e., also after those steps where no patrol boat was under way or no smuggling
was detected.

Let us conclude this chapter with a remark concerning the subtitle of this monograph: Today, it
may be a question of taste whether one considers the inspection games presented in this section
still as fundamental or not. We have taken them into account here in order to demonstrate
that some of the approaches developed for the analysis of simpler games, e.g., recursive ones
with only two variables, still can be applied successfully and furthermore, in order to give some
idea of already existing extensions of assumptions and models. Once the inspection games
considered in this section are better understood than now and above all can be supported by
convincing practical applications, we think that they can also be called fundamental models
without hesitation.



Chapter 18

Classi�cation of models in Part III

Even for those who have already studied inspection games of the kind described in Chapters
16 and 17, it is not so easy to maintain control over all the di�erent assumptions underlying
these games. They all satisfy, of course, the general assumptions listed in Chapter 14. But it
was also pointed out there that many more assumptions are required to specify completely an
inspection game over time dealing with Customs and Smugglers and related problems. Figure
14.2 extends Figure 1.1 by the two levels Operator's illegal activity and End of Inspectorate's
activities.

Before continuing let us keep in mind that all games considered in Chapters 16 and 17 are
Se-Se inspection games in the sense of Table 2.1. More than that, they are step-by-step games
in contrast to the games in Chapters 5, except for Section 5.3, and 12 which may be called
event-by-event games: Both players take their decisions only after an inspection/control.

For the inspection games presented in Section 17.2 we recommend to study the original papers
in order to fully understand the models and their analysis. Since in these papers the notations
di�ers considerably and may lead to confusion, in Table 18.1 an overview on the notation for
the most important quantities in the publications dealing with multiple illegal activities is given.

Table 18.1 Overview of the notation used in this monograph and by di�erent authors.

This
monograph

von Stengel
(1991)

Sakaguchi (1994),
Sakaguchi (1977)

Ferguson and Melolidakis
(1998)

Hohzaki (2011),
Hohzaki et al.

(2006)

number of
steps/nights

L n n n n

number of
inspections/
controls

k m k k k

number of illegal
activities/
smuggling

m k l l

optimal payo�
to Operator/
Smuggler

OpL,k,m −v(n,m, k) −vk,l(n) −V (n, k, l) −v(n, k, x)
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In Table 18.2 an attempt has been made to present a quick overview on the Se-Se inspection
games of Chapters 16 and 17. Basically they are classi�ed according to the scheme given in
Figure 14.2: The rows describe the Operator's legal or illegal behaviour, and the columns the
termination of the game. The columns are subdivided according to the sampling procedure
used by the Inspectorate resp. Customs. Obviously not all assumptions can be covered by such
an overview, and not all variants are taken into account, e.g., the Dresher-Höp�nger inspection
game with errors �rst and second kind and one inspection. Also, Table 18.2 does not re�ect the
fact that small changes in the assumptions may lead to totally di�erent optimal strategies and
payo�s, compare, e.g., the model by von Stengel (1991) and Sakaguchi (1994) on one hand
and those by Sakaguchi (1977) and Ferguson and Melolidakis (1998) on the other. Thus, for
all these details one has to look at the models themselves.

Table 18.2 Classi�cation according to Figure 14.2: Se-Se inspection games of Chapters 16
and 17.

game ends after a detection of an illegal
activity or after L resp. n steps

game ends only
after L resp. n steps

β = 0 β ≥ 0 β = 0

at most one
illegal activity

Dresher (1962),
Höp�nger (1971)

Generalized Dresher-Höp�nger1

Generalized Thomas-Nisgav1,2

(exactly) one
illegal activity

Thomas and Nisgav (1976), one boat
Baston and Bostock (1991), two boats

Garnaev (1991), three boats

at most m (≥ 1)
illegal activities

von Stengel (1991),
von Stengel (2016) Sakaguchi (1994)

Hohzaki (2011)

(exactly) m (≥ 1)
illegal activities

Sakaguchi (1977),
Ferguson and Melolidakis

(1998)

1 Published in this monograph for the �rst time.
2 Smuggler decides at the beginning of the game whether to behave illegally or not.

One aspect in Table 18.2 which is hidden behind the terms at most and exactly deserves special
attention, and it will be paid in the next paragraph. Before let us remember that in all inspection
problems analysed in Parts I and II which were described as zero-sum games and in which only
the expected detection time was the payo� to the Operator, it was assumed that the Operator
behaves illegally with certainty. Furthermore, it was pointed out in Chapters 7 and 12 that
under this assumption and for the case that false alarms can be excluded, the games under
consideration are equivalent to zero-sum games with the expected detection time as payo� to
the Operator.
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Now, in Part III we consider inspection problems where it is either assumed that at the beginning
of the game the Operator decides to behave legally or not � Chapter 15 and the generalized
Thomas-Nisgav inspection game in of Section 17.1 � or he decides this in the course of the
game � Chapter 16, the Baston-Bostock inspection game in of Section 17.1 and Section 17.2.
More than that, in case the Operator decides to behave illegally during the course of the game,
part (ii) of Theorem 16.2 shows that in equilibrium the Operator behaves illegally with certainty
even though he has not decided this at the beginning of the game. Note that in this case the
equilibrium payo�s to the players are the same as if the Operator would have taken this decision
at the beginning of the game.

Let us consider those cases where the Operator decides at the beginning of the game whether
to behave legally or not, i.e., the No-No inspection game of Chapter 15 and the generalized
Thomas-Nisgav inspection game treated in Section 17.1. In case he behaves illegally, and if we
denote the timely detection probability by wL,k, then quite generally and according to (14.1),
the (expected) payo�s to the two players are given by

OpL,k = d (1− wL,k)− bwL,k and InL,k = −c (1− wL,k)− awL,k , (18.1)

or, slightly changed,

OpL,k = d− (b+ d)wL,k and InL,k = −c+ (c− a)wL,k .

In other words, these payo�s are linear functions of wL,k, and the games under consideration
are strategically equivalent to zero-sum games with the timely detection probability as payo� to
the Inspectorate, independently of how wL,k is composed of the strategies of both players. This
implies that the equilibrium strategies of both players do not depend on the payo� parameters
a, b, c and d. We have observed this property in Corollary 15.1, in Theorem 16.2 (ii) as well
as in Theorem 17.1, see (15.78), (16.42) and (17.33), but typically not in Theorem 16.1. This
may also explain why the equilibrium payo�s in all three cases are the same and therefore, why
the equilibrium probability of timely detection

w∗L,k = (1− β)
k

L

is the same in all three cases: As mentioned on p. 273, it does not interest either party at which
point of time an illegal activity is detected or not, and furthermore, the equilibrium payo� to
the Operator in case of illegal behaviour is positive. Therefore, the Operator behaves illegally
in any case, and the equilibrium strategies of both parties lead to the same results.

Of course, if we consider a priori zero-sum games with the timely detection probability as payo�
to the Operator, then we do not get any more a condition for legal behaviour of the Operator
being his equilibrium strategy. In the original game and according to (18.1), this condition is
given by

Op∗L,k = 0 > d (1− w∗L,k)− bw∗L,k

or equivalently,

w∗L,k >
1

1 + b/d
,

which means that the larger the ratio b/d is, the smaller needs the timely detection probability
to be in equilibrium. But even if this ratio b/d of the payo� parameters can hardly be estimated
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it helps, as we have seen, that the equilibrium strategy of the Inspectorate in case of illegal
behaviour of the Operator is also an equilibrium strategy in case of legal behaviour.

This situation corresponds to that in Parts I and II where we use the detection time � the time
between the start of an illegal activity and its detection � as payo� to the Operator. This holds
also for the case α = 0 of the Se-Se inspection game with continuous time which is analysed
in Chapter 12: If the Operator behave illegally in equilibrium then we see again, part (i) of
Theorem 12.1, that the equilibrium payo�s are again proportional to the optimized expected
detection time.

If false alarms cannot be avoided, then the situation is much more complicated since the game
is no longer strategically equivalent to a zero-sum game. The same holds if the Operator does
not decide at the beginning of the game whether to behave legally or not, and if certain illegal
behaviour is not his equilibrium strategy. In this case neither the detection time nor the non-
detection probability can be de�ned therefore, general payo�s have to be introduced in the way
we did it or some other � openendedness has its prize.

These considerations apply primarily to practitioners: If expected detection times in Parts I
and II and probabilities of detection in Part III can be used as payo�s to the Operator in zero-
sum games, then only purely technical parameters describe the inspection problem, see Section
1.4, and thus, in most real world inspection problems the use of optimal inspection strategies
becomes much more attractive.

These �ndings lead us to a �nal remark: One quickly realizes that there are several white areas
in Table 18.2. They indicate plenty of material for further studies in this exciting area. However,
even though not all of the models in this Table have been motivated by real world problems,
we maintain our view expressed earlier that it is wise not just to try to �ll gaps in the literature
and change or generalize assumptions, but rather to study interesting applications and try to
model them as carefully as possible.
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Chapter 19

Non-cooperative two-person

games

Before starting, some friendly warning: For those readers of this monograph, who do not know
game theory, the study of the following pages does not replace that of a textbook on the subject
like that by Morris (1994) or more elaborate, by Myerson (1991). Rather, the purpose of this
description is twofold, namely �rst, to let the reader know which game theoretical concepts
and tools are used throughout this monograph, and second, to present the notation for these
concepts and tools which in game theory, as mentioned on p. 10, is not yet so uni�ed as it
should be.

Throughout this monograph we consider games in normal and in extensive form. Both forms
are equivalent in the sense that each extensive form game can be represented as a normal form
game and vice versa � we make abundantly use of this fact � however, it is necessary to make
a reservation: If one addresses the problem of equilibrium selection then one has to realize that
there are subtle di�erences between these two forms; see van Damme (1987).

In the following we consider only �nite games, i.e., games with �nite sets of pure strategies of
the players. In Part II we consider also in�nite games, but they are explained and analysed in
detail at the hand of the concrete problems treated in that part such that we need not discuss
them here again in general.

Also, we consider only two-person games according to the basic inspection problem considered
in this monograph where there is only an Operator and an Inspectorate. Of course, there exist
inspection problems with more than two players which then have to be described with the help
of n-person games, n > 2, but again, we do not deal with them in this monograph.

19.1 Normal form games

For the purpose of illustration we propose to keep in mind the games described in Sections 3.1
and 7.2 even though we will consider now more general ones. Let us start with the assumption
that the �rst player � the Operator � has |I| pure strategies1 and that the second player � the
Inspectorate � has |J | pure strategies. The i-th resp. the j-th pure strategy of the Operator

1For a �nite set A the number of elements is denoted by |A|.
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resp. the Inspectorate represents the i-th resp. the j-th unit vector. In order to avoid problems
with the enumeration we will write � although mathematically slightly incorrect � i instead of
ei and j instead of ej . If both the Operator and the Inspectorate decide to play the pair of
strategies (i, j) then the Operator receives the payo� Op(i, j) and the Inspectorate the payo�
In(i, j). Since these payo�s can be arranged in the form of two |I| × |J | matrices, we call this
type of games also bimatrix games.

Note that in game theory it is assumed that both players know the pure strategy sets (the own
and that of the other player) and also the payo�s to both players. This condition is called
common knowledge without which game theory � as used in this monograph � would not work.

In the �rst example in Section 3.1 we see that there is no pure strategy combination (i∗, j∗) with
the property that any unilateral deviation of one player from his strategy i∗ resp j∗ does not
improve his payo�. Thus, a new idea is needed in order to get closer to a satisfactory concept
of a solution of a bimatrix game, if there is no such (i∗, j∗): Each player should choose a pure
strategy at random. In this way, the other player has no way of predicting which pure strategy
will be used. The probabilities with which the various pure strategies are chosen will probably
be known to both opponents, since they both can make game theoretical consideration and
because of the common knowledge assumption; the particular pure strategy chosen for a game,
i.e., the realization of the random experiment, however, will only be known to the adversary
when the game is actually played.

Formally, one has to introduce � following a general procedure, see Peters and Vrieze (1992),
Morris (1994) or Myerson (1991) � the concept of mixed strategies. A mixed strategy of a
player is a probability distribution over his set of pure strategies. Thus, the Operator's set of
mixed strategies is given by

P :=

p := (p1, . . . , p|I|)
T ∈ [0, 1]|I| :

|I|∑
i=1

pi = 1

 (19.1)

and that for the Inspectorate by

Q :=

q := (q1, . . . , q|J |)
T ∈ [0, 1]|J | :

|J |∑
j=1

qj = 1

 . (19.2)

If the players decide to play the mixed strategy combination (p,q), then the (expected) payo�
to the Operator is given by

Op(p,q) :=

|I|∑
i=1

|J |∑
j=1

pi qj Op(i, j) (19.3)

and that to the Inspectorate by

In(p,q) :=

|I|∑
i=1

|J |∑
j=1

pi qj In(i, j) . (19.4)

Thus, we de�ne

De�nition 19.1. The quadruple (P,Q,Op, In) is called a two-person game in normal form.
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Having in mind inspection games where both players do not cooperate in the sense that they do
not take into account mutually binding agreements, we consider only so-called non-cooperative
two-person games. The solution concept for these games is the so-called Nash equilibrium, see
Nash (1951), which says that any unilateral deviation from this equilibrium does not improve
the deviator's payo�:

De�nition 19.2. Given the two-person normal form game (P,Q,Op, In) as de�ned by (19.1)
� (19.4). Then the pair of strategies (p∗,q∗) ∈ P × Q consitutes a Nash equilibrium if and
only if

Op∗ := Op(p∗,q∗) ≥ Op(p,q∗) and In∗ := In(p∗,q∗) ≥ In(p∗,q) (19.5)

for any p ∈ P and any q ∈ Q,

It can be shown, see Nash (1951), that every non-cooperative two-person game with �nite pure
strategy sets possesses at least one Nash equilibrium in mixed strategies, but of course � see
the example in Section 3.1 � not always in pure strategies.

How can equilibrium strategies be found? Let us just mention three techniques; a comprehensive
overview can be found in McKelvey and McLennan (1996): First, Nash's proof relies on the
fact that a Nash equilibrium can be seen as a �x point of an appropriate continuous vector
function that maps a closed, bounded and convex set onto itself. Applying Brouwer's �x point
theorem provides the existence of a �x point and thus, of a Nash equilibrium. An algorithm for
�nding a Nash equilibrium that uses �x point computations has been developed by Scarf; see
Scarf (1967) and Scarf and Hansen (1973).

Second, it can be shown that a Nash equilibrium of a bimatrix game is equivalent to the
determination of a solution of an appropriate Linear Complementary Problem (LCP); see Peters
and Vrieze (1992) or Canty (2003). The LCP formulation has the advantages that � in principle
� all Nash equilibria of a bimatrix game can be found, and that there exist e�cient algorithms
for �nding at least one solution of an LCP, a well-known one being the algorithm of Lemke and
Howson (1964) that �nds one Nash equilibrium, but usually, not all. It should be mentioned
that Canty's Mathematica R© programs, see Canty (2003), allow the determination of symbolic
Nash equilibria, a possibility � in particular for the explicit solution of large size games as they
occur in practical applications � that has, at least from our point of view, not yet received
the attention it deserves. His programs has been used to �nd Nash equilibria resp. optimal
strategies (see below) for the games in Sections 6.1, 6.3 and 17.1, and in Chapters 12 and 15,
which con�rms in a convincing way the programs' usefulness.

Third, Nash equilibria can be found using the indi�erence principle that is explicitly applied in
Section 5.2 and Chapters 16 and 17.2

Theorem 19.1 (Indi�erence Principle). Given the two-person normal form game (P,Q,Op, In)
as de�ned by (19.1) � (19.4). Then the two statements are equivalent:

(i) (p∗,q∗) ∈ P ×Q constitutes a Nash equilibrium with the payo�s Op∗ and In∗.

(ii) If Op∗ > Op(i,q∗) for a pure strategy i ∈ I, then p∗i = 0, and if In∗ > In(p∗, j) for a
pure strategy j ∈ J , then q∗j = 0.

2The ominous explicitly refers to the fact that many other Nash equilibria resp. optimal strategies in this
monograph have been determined using the indi�erence principle, for which the determination, however, is not
presented here but only the prove that they constitute a Nash equilibrium resp. saddle point.
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Proof. The proof can be found in Myerson (1991), pp. 93, or � for zero-sum matrix games �
in Morris (1994), pp. 49.

The name indi�erence principle can be motivated from (ii) of Theorem 19.1: The equilibrium
strategy of the Inspectorate q∗ is determined such that the Operator is rendered indi�erent
regarding his pure strategies which he plays with positive probability, and the Operator's equi-
librium strategy p∗ is determined such that the Inspectorate is rendered indi�erent regarding
its pure strategies which it plays with positive probability.

As mentioned, De�nition 19.2 does not give any advise how to �nd equilibria. But even in case
one wants to prove that a pair of strategies (p∗,q∗) � found in some way or other � is a pair of
equilibrium strategies, one may encounter technical di�culties. Therefore, it is helpful to know
that (p∗,q∗) constitutes a Nash equilibrium if and only if

Op∗ ≥ Op(i,q∗) for all i = 1, . . . , |I| and

In∗ ≥ In(p∗, j) for all j = 1, . . . , |J | ,
(19.6)

in other words, it is su�cient to consider only the pure strategies of the players. If one compares
the complexity to �nd a Nash equilibrium (see the techniques above) to the relatively simple
task of showing that the |I|+ |J | inequalities in (19.6) are ful�lled, it becomes clear why it is
much easier to prove that proposed equilibrium strategies ful�l the Nash equilibrium conditions;
see also the comment on p. 25 for zero-sum games.

Nash equilibria are not unique in general, neither the equilibrium strategies nor the equilibrium
payo�s. In the case that there are multiple equilibria, the selection of one equilibrium, which
is then considered the solution of the game, represents a major problem; see van Damme
(1987). In this monograph this problem is not addressed systematically, i.e., no attempt is
made either to determine all equilibria of a game or else, to prove that the presented equilibria
are unique. There are, however, exceptions: For special reasons, multiple equilibrium strategies
are discussed in Sections 15.2, 15.3 and 17.1. More than that, sets of equilibrium strategies of
the Inspectorate are presented in all cases in which the Operator behaves legally.

At some places in this monograph we use the concept of strategically equivalent games, see
Maschler et al. (2013): Two normal form games (P,Q,Op, In) and (P,Q, Õp, Ĩn) are called

strategically equivalent, if and only if Õp resp. Ĩn is a positive a�ne transformation of Op
resp. In, i.e., there exist a, b > 0 and c, d ∈ R with Õp(i, j) = aOp(i, j) + c resp. Ĩn(i, j) =
bOp(i, j) + d for any (i, j) ∈ I × J . It follows directly from this de�nition, that each Nash

equilibrium in (P,Q,Op, In) remains a Nash equilibrium in (P,Q, Õp, Ĩn) with the equilibrium

payo�s Õp
∗

= aOp∗ + c and Ĩn
∗

= b In∗ + d.

If we de�ne for any a, b > 0, any cj ∈ R, all j = 1, . . . , |J |, any di ∈ R, and all i = 1, . . . , |I|,

Õp(i, j) := aOp(i, j) + cj and Ĩn(i, j) := b In(i, j) + di , (19.7)

then the game (P,Q,Op, In) is strategically equivalent to the game (P,Q, Õp, Ĩn).

So far, the Inspectorate's strategy set (19.2) consists of probabilities which add up to one. In
Chapters 15 and 24 and Section 17.1, however, the Inspectorate/Customs uses another type
of strategy set; see (15.51), (17.18) and (24.21). Thus, for demonstration, let us assume that
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the Inspectorate's/Customs strategy set is now given by

Q̃ :=

q̃ := (q̃1, . . . , q̃|J |)
T ∈ [0, 1]|J | :

|J |∑
j=1

q̃j = k

 ,

where k is a given integer with k ≤ |J |. Thus, a strategy set is considered in which the
probabilities q̃j do no longer add up to one. The payo�s to both players in Chapters 15 and 24
and Section 17.1 have essentially the same structure as (19.3) and (19.4).

The Nash equilibrium of the normal form game (P, Q̃,Op, In) is still de�ned by (19.5), the
inequalities (19.6), however, need to be modi�ed: (p∗, q̃∗) constitutes a Nash equilibrium of
(P, Q̃,Op, In) if and only if

Op(p∗, q̃∗) ≥ Op(i, q̃∗) and In(p∗, q̃∗) ≥ In(p∗, q̃) (19.8)

for all i = 1, . . . , |I| and any q̃ ∈ Q̃.

An important special class of non-cooperative games is the class of zero-sum games. Here,
the payo�s to both players add up to zero for any (pure) strategy combination, i.e., In(i, j) =
−Op(i, j) for all i = 1, . . . , |I| and for all j = 1, . . . , |J |, and thus,

In(p,q) = −Op(p,q) , (19.9)

for any p ∈ P and any q ∈ Q, which means that only the payo� to the Operator needs to be
speci�ed. Accordingly we also call these games matrix games.

Because for zero-sum games the Nash conditions (19.5) reduce to simple forms,

Op(p∗,q∗) ≥ Op(p,q∗) and − Op(p∗,q∗) ≥ −Op(p∗,q)

for any p ∈ P and any q ∈ Q, we call the Nash equilibrium in this case a saddle point, and
the Nash conditions saddle point condition:

De�nition 19.3. Given the two-person normal form game (P,Q,Op) as de�ned by (19.1),
(19.2) and (19.9). Then the pair of strategies (p∗,q∗) ∈ P × Q constitutes a saddle point if
and only if

Op(p,q∗) ≤ Op(p∗,q∗) ≤ Op(p∗,q) (19.10)

for any p ∈ P and any q ∈ Q.

Saddle point strategies are also called optimal strategies. In analogy to the property in (19.6),
p∗ and q∗ are optimal strategies if and only if

Op(i,q∗) ≤ Op(p∗,q∗) ≤ Op(p∗, j) , (19.11)

for all i = 1, . . . , |I| and for all j = 1, . . . , |J |, i.e., both inequalities have only to be proven for
the pure strategies of the players.

An important property of zero-sum games for practical applications is the following: If a zero-
sum game has the saddle points (p∗,q∗) and (p∗1,q

∗
1), then (p∗,q∗1) and (p∗1,q

∗) are also
saddle points of the game with the property

Op(p∗,q∗) = Op(p∗,q∗1) = Op(p∗1,q
∗) = Op(p∗1,q

∗
1) ,
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i.e., all saddle points are interchangeable and lead to the same optimal payo� to the Operator.
For this reason �nding all saddle points is more a mathematical challenge than necessary for
applications. There is, however, an exception: In Section 4.2 it is demonstrated that a selection
of optimal strategies based on practical considerations may be useful.

Again, there are di�erent techniques for �nding saddle points. Quite generally, saddle points
of a matrix games can be determined with the help of Linear Programming methods; see von
Neumann and Morgenstern (1947), Karlin (1959b) or Morris (1994). Symbolic saddle points
can again be found using the Mathematica R© programs in Canty (2003).

19.2 Extensive form games

Normal form games are deceptively simple. The concept of a strategy, however, comprises many
di�erent aspects, for example sequencing, information, chance and others. These aspects, which
are so important for the description and analysis of real life con�icts, are much better expressed
in extensive form games.

A non-cooperative game in extensive form is a graphical representation of the possible moves
of all players from the beginning of the game until its end. It has the form of the tree � growing
from the top to the bottom � where a set of branches starting at some point indicate a player's
alternative at that point.

A precise mathematical de�nition of extensive form games has been given, for example, by Hart
(1992) and Myerson (1991) and goes as follows. Let us mention in passing that we present the
general de�nition for n-person extensive form games, even though we consider only the case
n = 2, since it is not more complicated then the special one.

De�nition 19.4. An n-person game non-cooperative extensive form game is a rooted tree �
usually growing from the top to the bottom � together with labels at every decision point or
node and decision alternative or branch, de�ned as follows:

• Each non-terminal node has a player label that is taken from the set {0, 1, . . . , n}. Nodes
that are assigned a player label 0 are called chance nodes. The set {1, 2, . . . , n} represents
the set of players in the game, and for each individual player i in this set, the nodes with
the player label i are decision nodes that are controlled by that player.

• Every alternative at a chance node has a label that speci�es its probability. At each chance
node, these chance probabilities of the alternatives are non-negative numbers that sum
to one.

• Every decision point or node that is controlled by a player has a second label that speci�es
the information state that the player would have if the path of the play reached this node.
When the path of the play reaches a node controlled by a player, the player knows only the
information state on the current node. Thus, two nodes that belong to the same player
should have the same information state only if the player would be unable to distinguish
between the situations represented by these nodes when either occurs in the play of the
game.

• Each alternative or branch at a node that is controlled by a player has an alternative or
move label. Furthermore, for any two nodes x and y that have the same player label and
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the same information label, there must be one alternative or move at both nodes that
has the same move label.

• Each terminal or outcome node has a payo� label for each player, such that for each
player i, there is a payo� ui, measured on some utility scale.

As mentioned above, we consider only two-person games. Chance nodes play a major role in
the inspection games of this monograph: Once the Inspectorate performs an inspection after
the beginning of an illegal activity, a chance node describes whether it will be detected with
probability 1 − β, or not with probability β. Or, once the inspection is performed before the
beginning of an illegal activity, a chance node describes whether the legal behaviour will be
con�rmed with probability 1− α or a false alarm will be raised with probability α.

A pure strategy in an extensive form game is any rule for determining a move at every possible
information state in the game. Mathematically, a strategy is a function that maps information
states into moves. For each player i let Si denote the set of possible information states of
player i in the game. For each information state s in Si let Ds denote the set of moves that
would be available to player i when he moved at a node with information state s. Then the set
of pure strategies for player i in the extensive form game is the cartesian product ×s∈Si Ds. In
other words, a pure strategy of a player is a complete plan for his choices at all his information
sets.

A mixed strategy means that the player chooses, before the beginning of the game, one such
comprehensive plan at random according to a certain probability distribution.

An alternative method of randomization for the player is to make an independent random choice
at each one of his information states. That is, rather than selecting for every information set,
one de�nite choice � as in a pure strategy � he speci�es instead a probability distribution over
the set of choices there; moreover, the choices at di�erent information sets are stochastically
independent. These randomization procedures are called behaviour(al) strategies.

Without going into details of games with perfect recall � which we are considering exclusively
in our applications � we assert that mixed strategies and behavioural strategies of these games
are equivalent to each other in the sense that they lead to the same (expected) payo�s; see
Hart (1992).

The concept of the Nash equilibrium and the saddle point in a zero-sum game is de�ned in
the same way as in normal form games. It can be determined in di�erent ways, let us just
mentioned three of them: In extensive form games with perfect information, i.e., in extensive
form games where all information states of all players consists of exactly one decision node, a
backward induction procedure is used which means that non-optimal moves are eliminated from
the bottom to the top. In this monograph such games do not occur, even though we apply this
method to some branches of extensive games. Or one uses behavioural strategies and tries to
�nd a Nash equilibrium with the help of the Nash conditions. Or one transforms the extensive
form game into a normal form game and applies the solution techniques available for this type
of games. In our application we use both methods.

It should be mentioned in passing that normal form games, which are derived from an extensive
form game, may have more Nash equilibria than the latter ones, but in our applications we do
not encounter this di�culty.
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Chapter 20

Receiver Operating Characteristic

of a binary classi�er system

In Section 9.5 we have introduced the Receiver Operating Characteristic (ROC) to illustrate the
performance of a binary classi�er system, and we have assumed that the requirements (9.69)
are ful�lled. In this chapter two test procedures namely an intuitive test and a Neyman-Pearson
test are considered for two test problems. It will be shown, that all tests meet the requirements
(9.69), but that the ROC curve is not always a concave function. Note that the concavity of
the ROC curve is usual needed to show that game theoretical solutions are unique; see, e.g.,
Avenhaus and Canty (1996) and Avenhaus and Krieger (2014). It is, however, not utilized in
this monograph.

We introduce the requirements (9.69) here again for easy reference, namely

β(0) = 1 and β(1) = 0, (20.1)

α+ β(α) ≤ 1, (20.2)

β′(α) < 0 . (20.3)

Requirement (20.1) can be motivated as follows: If one wants to avoid any false alarm, i.e.,
α = 0, then one must never raise an alarm, which means that an illegal activity will never be
detected, i.e., β = 1. Conversely, if one wants to detect the illegal activity with certainty, i.e.,
β = 0, then one always has to raise an alarm, i.e., α = 1. In condition (20.2) the false alarm
probability α has to be smaller than the detection probability 1− β(α), i.e., the probability to
raise an alarm, if there is no illegal activity, must not be smaller than the probability to detect
the illegal activity. A decision procedure with this property is called unbiased ; see Rohatgi
(1976). Finally, (20.3) means that the non-detection probability decreases with increasing false
alarm probability. This is a reasonable requirement to any detection system, consider, e.g., a
simple �re alarm device consisting of a bi-metal strip.

In statistical terms we deal here with a test problem: Let us call H0 the null hypothesis which is
in our case the hypothesis that the Operator behaves legally, and H1 the alternative hypothesis,
in our case the hypothesis that the Operator behaves illegally. Then, α is the probability to
reject H0 if it is true, and β the probability to reject H1 if it is true.

For the purpose of illustration a sample of size one is taken to test the two simple hypotheses
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H0 and H1.
1 Consider a Gaussian (or Normally) distributed random variable X with expected

value µ and variance σ2 and assume

H0 : X ∼ N (µ0, σ
2
0) and H1 : X ∼ N (µ1, σ

2
1) , (20.4)

where µ0 < µ1 is assumed and the both cases σ20 = σ21 and σ20 6= σ21 are considered. Because
EH0(X) = µ0 < µ1 = EH1(X) an intuitive test is given by the critical region C

C := {x ∈ R : x > c} (20.5)

for some c, i.e., for a realization x larger than a threshold c, H0 is rejected and H1 accepted,
and for a realization x smaller than the threshold, H1 is rejected and H0 accepted. Because
we are interested in a size α test, i.e., PH0(C) = α, we get for the threshold c

c = µ0 + σ0 Φ−1(1− α) , (20.6)

where Φ(.) denotes the cumulative distribution function of a Gaussian distributed random
variable with expected value 0 and variance 1 (standard normal cumulative distribution function)

Φ(z) :=

∫ z

−∞

1√
2π

e−x
2/2 dx

and where Φ−1(.) is the inverse function of Φ(.). Thus, using (20.6), the error second kind
probability, i.e., the non-detection probability β = β(α), is for any σ0 and σ1 given by

β(α) = PH1(C̄) = PH1(X < c) = Φ

(
c− µ1
σ1

)
= Φ

(
σ0
σ1

Φ−1(1− α)− µ1 − µ0
σ1

)
. (20.7)

This function, i.e., one minus the ROC curve for the intuitive test, is represented in Figure 20.1
for µ0 = 0 and µ1 = 1, and for the cases σ20 = σ21 = 1 and σ20 = 1, σ21 = 4. A random guess
would give a point along the diagonal line which is also called the line of no-discrimination.2

Before discussing Figure 20.1 in more detail, we present the Neyman-Pearson test for two
simple hypotheses, in our case for the test problem (20.4), i.e., a size α test which minimizes
the second kind error probability β; see Rohatgi (1976) or Casella and Berger (2002). Let
fH0(x) and fH1(x) be the density functions of the random variable X under H0 and H1. Then
according to the Neyman-Pearson Lemma the critical region of this test is given by

Ck :=

{
x ∈ R :

fH1(x)

fH0(x)
≥ k

}
(20.8)

for some k ∈ [0,∞). Using the density functions

fH0(x) =
1√

2π σ0
e−x

2/(2σ2
0) and fH1(x) =

1√
2π σ1

e−(x−1)
2/(2σ2

1) ,

we obtain for the test problem (20.4) with µ0 = 0 and µ1 = 1 the critical region

Ck′ :=

{
x ∈ R : −(x− 1)2

σ21
+
x2

σ20
≥ k′

}
(20.9)

1In Statistics, a hypothesis is called simple if all parameters of the distribution of the random variable under
consideration are speci�ed, in contrast to composite hypothesis, in which not all of the parameters are speci�ed.

2The 45◦ ROC curve is attained using a detector that bases its decision on �ipping a coin, ignoring all the
data; see Kay (1998).
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Figure 20.1 The Receiver Operating Characteristic (ROC) curves for the four tests.
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for some k′. Note that if σ20 = σ21, then the critical region (20.9) simpli�es to the critical region
(20.5) of the intuitive test. This is the reason why in Figure 20.1 the case σ20 = σ21 = 1 is also
referred to as Neyman-Pearson test.

For σ20 = 1 and σ21 = 4, (20.9) simpli�es to

Ck′′ =
{
x ∈ R : 3x2 + 2x− 1 ≥ k′′

}
=

(
−∞, 1

3

(
− 1−

√
4 + 3 k′′

)]
∪
[

1

3

(
− 1 +

√
4 + 3 k′′

)
,∞
)

for some k′′. Because β(α) cannot be given explicitly as in (20.7), we �rst determine numerically
for any α = i/100, i = 1, . . . , 99, the threshold k′′ that ful�ls

PH0(Ck′′) = 1−
(

Φ

(
1

3

(
− 1 +

√
4 + 3 k′′

))
− Φ

(
1

3

(
− 1−

√
4 + 3 k′′

)))
=

i

100
,

and determine then the error second kind probability

β

(
i

100

)
= PH1(C̄k′′)

= Φ

(
1

6

(
− 1 +

√
4 + 3 k′′

)
− 1

2

)
− Φ

(
1

6

(
− 1−

√
4 + 3 k′′

)
− 1

2

)
.

The pairs (i/100, β(i/100)), i = 1, . . . , 99, lead to the curve referred to as "Neyman-Pearson
tests, σ20 = 1, σ21 = 4" in Figure 20.1.
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Let us comment Figure 20.1: First, (20.1) is ful�lled for all four tests which lead only to three
di�erent ROC curves.

Second, only the Neyman-Pearson tests ful�l (20.2).

Third, for σ20 = 1 and σ21 = 4 the ROC curve of the Neyman-Pearson test lies well above that
of the intuitive test for all α, which illustrates that the Neyman-Pearson test maximizes the
detection probability 1− β(α) for all size α tests, i.e., especially for the intuitive test.

Fourth, while all three tests have a monotone increasing ROC curve, i.e., (20.3) is valid, only
the Neyman-Pearson tests lead to concave ROC curves. The intuitive test is biased for all
0.8414 < α < 1.

Finally, and in view of further studies, note that according to van Trees (1968) and Pepe
(2004), the following statements regarding the ROC curve hold for all simple hypothesis testing
problems: Let fH0(x) and fH1(x) be the density functions of the random variable X under H0

and H1. If the so-called likelihood ratio fH1(x)/fH0(x) is a continuous function, then

(1) the points (0, 0) and (1, 1) belong to the ROC curve;

(2) the ROC curve is a concave function;

(3) the ROC curve is above the line of no-discrimination, i.e., the test/classi�er is unbiased.
This property follows from (1) and (2).



Chapter 21

Proof of Lemma 10.3

We have to prove that the Nash equilibrium conditions

Op∗2(t3) ≥ Op2(t3; (g3, g2(t
∗
2), g1(t

∗
1)), (t

∗
2, t
∗
1)) and (21.1)

In∗2(t3) ≥ In2(t3; (g∗3, g
∗
2(t2), g

∗
1(t1)), (t2, t1)) (21.2)

are ful�lled for any g = (g3, g2(t
∗
2), g1(t

∗
1)) ∈ G2 and any t = (t2, t1) ∈ T2, where Op2(t3;g, t)

and In2(t3;g, t) are de�ned by (10.39) and (10.40), respectively.

Ad (i): We �rst prove that the Operator's Nash equilibrium condition (21.1) is satis�ed. Using
(10.43), we get

t∗1 − t∗2 =
1− β
2− β

(t0 − t3 − (t∗2 − t3))−
f

d

α

2− β

=
1− β

3− 2β
(t0 − t3)−

f

d
α

1

2− β

(
1− (1− β) (3− 3β + β2)

3− 2β

)
(21.3)

and therewith

t∗1 − t3 = t∗1 − t∗2 + t∗2 − t3 = 2
1− β

3− 2β
(t0 − t3)−

f

d
α

3− β
3− 2β

(21.4)

and further

t0 − t∗1 = t0 − t3 − (t∗1 − t3) =
1

3− 2β
(t0 − t3) +

f

d
α

3− β
3− 2β

. (21.5)

Therefore, the coe�cient of g1(t
∗
1) in Op2(t3; (g3, g2(t

∗
2), g1(t

∗
1)), (t

∗
2, t
∗
1)) according to (10.39)

is

−d (t0 − t∗1) + b = −d
(

1

3− 2β
(t0 − t3) +

f

d
α

3− β
3− 2β

)
+ b < 0

because of the left hand inequality of (10.41). Thus, the right hand side of (21.1) is maximized
by g∗1(t∗1) = 0, and we get

Op2(t3; (g3, g2(t
∗
2), g1(t

∗
1)), (t

∗
2, t
∗
1)) ≤ Op2(t3; (g3, g2(t

∗
2), 0), (t∗2, t

∗
1))
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for any g1(t
∗
1) ∈ [0, 1]. Furthermore, we obtain, using (21.3) and (21.5), for the coe�cient of

g2(t
∗
2) in Op2(t3; (g3, g2(t

∗
2), 0), (t∗2, t

∗
1))

−f α− d [t∗1 − t∗2 − (1− β) (t0 − t∗1)] = 0

i.e., the coe�cient of g2(t
∗
2) vanishes. Using this fact and (10.43), (21.4) and (21.5), we get

for the coe�cient of g3 in Op2(t3; (g3, 0, 0), (t∗2, t
∗
1))

−d [(1− β) (t∗2 − t3) + β (1− β) (t∗1 − t3) + β2 (t0 − t3)] + d (t0 − t∗1)− 2 f α = 0

after some lengthy calculations. Therefore, we �nally have by (10.39), (10.44) and (21.5),

Op2(t3; (g3, g2(t
∗
2), g1(t

∗
1)), (t

∗
2, t
∗
1)) ≤ Op2(t3; (0, 0, 0), (t∗2, t

∗
1))

= d (t0 − t∗1)− b− 2 f α = Op∗2(t3)

for any g3, g2(t
∗
2), g1(t

∗
1) ∈ [0, 1], i.e., the Operator's Nash equilibrium condition (21.1) is

ful�lled.

In order to prove that the Inspectorate's Nash equilibrium condition (21.2) we obtain from
(10.40) for any t = (t2, t1) ∈ T2, using (10.42),

In2(t3; (g∗3, g
∗
2(t2), g

∗
1(t1)), (t2, t1))

=
1

3− 2β

(
− a [(1− β) (t2 − t3) + β (1− β) (t1 − t3) + β2 (t0 − t3)]

)
+

1− β
3− 2β

(
− a [(1− β) (t1 − t2) + β (t0 − t2) + (t0 − t1)]− 3 g α

)
.

Collecting the terms with t1, t2 and t3 yields

In2(t3; (g∗3, g
∗
2(t2), g

∗
1(t1)), (t2, t1))

=
− a

3− 2β

(
t3 [−(1− β)− β (1− β)− β2 ] + t2 [1− β − (1− β)2 − β (1− β) ]

+ t1 [β (1− β) + (1− β)2 − (1− β)] + t0 [β2 + β (1− β) + (1− β)]
)
− 3 g α

1− β
3− 2β

=
− a

3− 2β
(t0 − t3)− 3 g α

1− β
3− 2β

,

i.e., In∗2(t3) according to (10.44) for any t = (t2, t1) ∈ T2. Thus, (21.2) is ful�lled as equality.

We still have to show t3 < t∗2 < t∗1 < t0. The inequality t3 < t∗2 is, using (10.43), equivalent to

(1− β) (t0 − t3)−
f

d
α (3− 3β + β2) > 0

which is equivalent to the right hand inequality of (10.41). Because of

1− (1− β) (3− 3β + β2)

3− 2β
=
β (2− β)2

3− 2β
,
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(21.3) is equivalent to

t∗1 − t∗2 =
1− β

3− 2β
(t0 − t3)−

f

d
α
β (2− β)

3− 2β
.

Thus, t∗2 < t∗1 is equivalent to

(1− β) (t0 − t3)−
f

d
αβ (2− β) > 0 . (21.6)

Because of

3− 3β + β2 − β (2− β) = 3− 5β + 2β2 = (3− 2β) (1− β) > 0

we obtain

3− 3β + β2 > β (2− β)

and with the right hand inequality of (10.41)

f

d

α

1− β
<

t0 − t3
3− 3β + β2

<
t0 − t3
β (2− β)

,

which is equivalent to (21.6). Finally, t∗1 < t0 is by (21.5) equivalent to

t0 − t3 +
f

d
α (3− β) > 0 ,

which is ful�lled anyhow.

Ad (ii): Because the payo� to the Operator in case of legal behaviour is −2 f α, he will choose
this strategy in equilibrium, using (10.44), if

−2 f α ≥ d 1

3− 2β
(t0 − t3)− f α

3 (1− β)

3− 2β
− b

which follows from (10.45). Whereas the Nash equilibrium condition (21.2) for the Inspectorate
is ful�lled as equality, the proof of (21.1) is more complicated. We �rst note that (21.1) is
equivalent to

Op∗2(t3) ≥ Op2(t3; (0, g2(t
∗
2), g1(t

∗
1)), (t

∗
2, t
∗
1)) (21.7)

Op∗2(t3) ≥ Op2(t3; (1, 0, g1(t
∗
1)), (t

∗
2, t
∗
1)) (21.8)

Op∗2(t3) ≥ Op2(t3; (1, 1, 0), (t∗2, t
∗
1)) (21.9)

Op∗2(t3) ≥ Op2(t3; (1, 1, 1), (t∗2, t
∗
1)) . (21.10)

This can be seen as follows:

=⇒: Because (21.1) holds for any g3, g2(t2), g1(t1) ∈ [0, 1], we get (21.7) by successively
choosing {g3 = 0, g2(t

∗
2) ∈ [0, 1], g1(t

∗
1) ∈ [0, 1]}, {g3 = 1, g2(t

∗
2) = 0, g1(t

∗
1) ∈ [0, 1]},

{g3 = g2(t
∗
2) = 1, g1(t

∗
1) = 0} and �nally {g3 = g2(t

∗
2) = g1(t

∗
1) = 1}.
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⇐=: We multiply (21.10) by g1(t
∗
1) and (21.9) by 1−g1(t∗1) and add the two inequalities. This

gives

−2 f α ≥ (1− g1(t∗1))Op2(t3; (1, 1, 0), (t∗2, t
∗
1)) + g1(t

∗
1)Op2(t3; (1, 1, 1), (t∗2, t

∗
1)) .

Now let us multiply this inequality by g2(t
∗
2) and (21.8) by 1 − g2(t

∗
2) and add these two

inequalities. This gives

−2 f α ≥ (1− g2(t∗2))Op2(t3; (1, 0, g1(t
∗
1)), (t

∗
2, t
∗
1))

+ g2(t
∗
2)
[
(1− g1(t∗1))Op2(t3; (1, 1, 0), (t∗2, t

∗
1)) + g1(t

∗
1)Op2(t3; (1, 1, 1), (t∗2, t

∗
1))
]
.

If we �nally multiply this inequality by g3 and (21.7) by (1−g3) and add these two inequalities,
we get (21.1). Thus the equivalence is shown.

Whereas (21.10) is ful�lled as equality, the inequalities (21.7) � (21.9) are explicitly given by

−2 f α ≥ d [(1− β) (t∗2 − t3) + β (1− β) (t∗1 − t3) + β2 (t0 − t3)]− b

−2 f α ≥ d [(1− β) (t∗1 − t∗2) + β (t0 − t∗2)]− b− f α

−2 f α ≥ d (t0 − t∗1)− b− 2 f α ,

which are equivalent to (10.46).

This completes the proof of Lemma 10.3.



Chapter 22

Recurrence relations used in

Chapters 10, 11 and 12

In this chapter we prove the equivalence of three recursive relations.

Lemma 22.1. Let β ∈ [0, 1). For k > 1 and arbitrary t0, t1, . . . , tk, tk+1 ∈ R the three
recursive relations

tn − tk+1 = (1− β)
k + 1− n

1 + k (1− β)
(t0 − tk+1) (22.1)

tn − tn+1 =
1− β

1 + n (1− β)
(t0 − tn+1) and (22.2)

tn − tn+1 =
1− β

1 + k (1− β)
(t0 − tk+1) , (22.3)

where n = 1, . . . , k, are equivalent. If tk+1 < t0 then tk < . . . < t1.

Proof. The proof consists of three parts:

1: (22.1) ⇐⇒ (22.3): For all n = 1, . . . , k− 1 we subtract (22.1) with n→ n+ 1 from (22.1)
and get

tn − tn+1 =
1− β

1 + k (1− β)

(
k + 1− n− k + n

)
(t0 − tk+1) =

1− β
1 + k (1− β)

(t0 − tk+1) ,

i.e., (22.3) for n = 1, . . . , k − 1. In case n = k, (22.1) and (22.3) are equivalent by de�nition.

Starting with (22.3) we get

tn − tk+1 = (tn − tn+1) + (tn+1 − tn+2) + . . .+ (tk − tk+1)

= (k + 1− n)
1− β

1 + k (1− β)
(t0 − tk+1) ,

i.e., (22.1) for n = 1, . . . , k−1. Again, for k = n, (22.3) and (22.1) are equivalent by de�nition.
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2: (22.1) and (22.3) =⇒ (22.2): From (22.1) with n→ n+ 1 we get

tn+1 = (1− β)
k − n

1 + k (1− β)
t0 +

(
−(1− β)

k − n
1 + k (1− β)

+ 1

)
tk+1

= (1− β)
k − n

1 + k (1− β)
t0 +

1 + n (1− β)

1 + k (1− β)
tk+1 ,

or, equivalently

tk+1

1 + k (1− β)
=

1

1 + n (1− β)

(
tn+1 −

(1− β) (k − n)

1 + k (1− β)
t0

)
.

Inserting this into (22.3) we get

tn − tn+1 =
1− β

1 + k (1− β)
t0 −

1− β
1 + n (1− β)

(
tn+1 −

(1− β) (k − n)

1 + k (1− β)
t0

)

=
1− β

1 + k (1− β)

(
1 +

(1− β) (k − n)

1 + n (1− β)

)
t0 −

1− β
1 + n (1− β)

tn+1

=
1− β

1 + n (1− β)
(t0 − tn+1) ,

i.e., (22.2).

3: (22.2) =⇒ (22.1): We show by induction with respect to k that (22.1) follows from (22.2).
For k = 1 both equations are identical. Thus, we have to show that

tn − tn+1 =
1− β

1 + n (1− β)
(t0 − tn+1) , n = 1, . . . , k

implies

tn − tk+1 = (1− β)
k + 1− n

1 + k (1− β)
(t0 − tk+1) , n = 1, . . . , k (22.4)

also holds for k + 1, i.e., we have to prove that

tn − tn+1 =
1− β

1 + n (1− β)
(t0 − tn+1) , n = 1, . . . , k,

and

tk+1 − tk+2 =
1− β

1 + (k + 1) (1− β)
(t0 − tk+2) (22.5)

imply

tn − tk+2 = (1− β)
k + 1 + 1− n

1 + (k + 1) (1− β)
(t0 − tk+2) , n = 1, . . . , k + 1 . (22.6)
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We have for n = 1, . . . , k and (22.4)

tn − tk+2

= tn − tk+1 + tk+1 − tk+2

= (1− β)
k + 1− n

1 + k (1− β)
(t0 − tk+1) + tk+1 − tk+2

= (1− β)
k + 1− n

1 + k (1− β)
(t0 − tk+2 − (tk+1 − tk+2)) + tk+1 − tk+2

= (1− β)
k + 1− n

1 + k (1− β)
(t0 − tk+2)−

(
(1− β)

k + 1− n
1 + k (1− β)

− 1

)
(tk+1 − tk+2) .

Using (22.5) it follows that

tn − tk+2

=

[
(1− β)

k + 1− n
1 + k (1− β)

−
(

(1− β)
k + 1− n

1 + k (1− β)
− 1

)
1− β

1 + (k + 1) (1− β)

]
(t0 − tk+2)

=
1− β

1 + k (1− β)

[
k + 1− n− (1− β) (k + 1− n)− (1 + k (1− β))

1 + (k + 1) (1− β)

]
(t0 − tk+2) ,

which simpli�es to

tn − tk+2 = (1− β)
k + 1 + 1− n

1 + (k + 1) (1− β)
(t0 − tk+2) ,

which was to be shown for n = 1, . . . , k. For n = k + 1, (22.5) and (22.6) are equivalent by
de�nition.

If tk+1 < t0 then tk < . . . < t1 follows directly from (22.3), which completes the proof.

All three variants play their roles in Section 10.1. Note that it follows from (22.3) that the time
di�erences tn − tn+1, n = 1, . . . , k, between two subsequent interim inspections are the same
up to the last one which is by (22.1)

t0 − t1 = t0 − tk+1 − k
1− β

1 + k (1− β)
(t0 − tk+1) =

t0 − tk+1

1 + k (1− β)
, (22.7)

and which is the optimal expected detection time in the inspection game considered in Section
10.1. (22.7), however, also plays � in a modi�ed form � an important role in Chapters 11 and
12. (22.2) and (22.3) for instance can be generalized to any number N ≥ 2 of facilities; see
(11.53) and (11.64).
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Chapter 23

Supplementary considerations to

Sections 11.2 and 11.3

In Section 23.1 it is proven that the heuristically derived strategies on p. 221 do not satisfy
the saddle point criterion. Thereafter, in Section 23.2 two Lemmata are provided the results of
which are essential for the proof of Theorem 11.2.

23.1 Proof of (11.41)

With g̃∗ = (g∗3, g̃
∗
2), where g∗3 resp. g̃∗2 are given by (11.25) resp. (11.40), we get by (11.24)

(N + 2 (1− β))OpN,2(g̃
∗, (q, t))

=
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
(t0 − t1) (1− β)

+ (t0 − t2)
1− β
N

N∑
r=1

β1i1 (r) + (t0 − t3)
N∑
r=1

β
∑2

j=1 1ij
(r)

+ (t1 − t2)
(1− β)2

N
+ (t1 − t3) (1− β)β1i2 (i1) + (t2 − t3) (1− β)

]
. (23.1)

Because we have for all i1 = 1, . . . , N

N∑
r=1

β1i1 (r) = N − 1 + β

and, by (11.39), for any (i2, i1) ∈ {1, . . . , N}2

N∑
r=1

β
∑2

j=1 1ij
(r) =

{
N − 2 + 2β for i2 6= i1

N − 1 + β2 for i2 = i1
,

the coe�cients A0, . . . , A3 of t0, . . . , t3 are, using (23.1) and

S :=
1

N
−

N∑
i2=1

q(i2,i2) ,
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given by

A0 =
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
(1− β) +

1− β
N

(N − 1 + β) +

N∑
r=1

β
∑2

j=1 1ij
(r)
]

= (1− β) +
1− β
N

(N − 1 + β) +

N∑
i2=1

q(i2,i2) (N − 1 + β2)

+

N∑
i2=1

N∑
i1=1,i1 6=i2

q(i2,i1) (N − 2 + 2β)

= N − (1− β)2 S ,

by

A1 = −(1− β) +
(1− β)2

N
+ (1− β)

∑
(i2,i1)∈{1,...,N}2

q(i2,i1) β
1i2

(i1)

= −(1− β) +
(1− β)2

N
+ (1− β)

(
N∑
i2=1

q(i2,i2) β + 1−
N∑
i2=1

q(i2,i2)

)

= (1− β)2 S ,

by

A2 =
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
− 1− β

N
(N − 1 + β)− (1− β)2

N
+ (1− β)

]
= 0 ,

and by

A3 =
∑

(i2,i1)∈{1,...,N}2
q(i2,i1)

[
−

N∑
r=1

β
∑2

j=1 1ij
(r) − (1− β)β1i2 (i1) − (1− β)

]

=

N∑
i2=1

q(i2,i1)

[
− (N − 1 + β2)− (1− β)β − (1− β)

]

+

N∑
i2=1

N∑
i1=1
i1 6=i2

q(i2,i1)

[
− (N − 2 + 2β)− (1− β)− (1− β)

]
= −N .

Thus, (23.1) yields

(N + 2 (1− β))OpN,2(g̃
∗, (q, t)) = t0

[
N − (1− β)2 S

]
+ t1 (1− β)2 S − t3N ,

i.e., (11.41), which completes the proof.
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23.2 Lemmata for the proof of Theorem 11.2

The following Lemma 23.1 is used for proving the right hand inequality of (11.55).

Lemma 23.1. Consider for any k ∈ N with k ≥ 2, any N ∈ N, any (ik, . . . , i1) ∈ {1, . . . , N}k
and arbitrary tk+1, . . . , t0 ∈ R the function R de�ned by (11.57).

Then we have for any (ik, . . . , i1) ∈ {1, . . . , N}k

R(ik, . . . , i1) =
N

1− β
(t0 − tk+1) . (23.2)

Proof. Let (ik, . . . , i1) ∈ {1, . . . , N}k be a �xed but arbitrary combination of facilities to be
inspected. We collect the coe�cient Ah of th, h = 1, . . . , k, and get by (11.57)

Ah := −1ih(ih−1) (1− β)−R(h)− β
∑h−1

j=1 1ij
(ih)

+ 1ih+1
(ih) (1− β) + L(h) + β

∑k
j=h+1 1ij

(ih)

(23.3)

with 1i1(i0) := 0, 1ik+1
(ik) := 0,

∑k
j=k+1 1ij (ih) := 0 and

∑0
j=1 1ij (ih) := 0, and where

R(h) =


∑h−2

`=1 1ih(i`)β
∑h−1

j=`+1 1ij
(i`) (1− β) : h = 3, . . . , k

0 : h = 1, 2
and (23.4)

L(h) =


∑k

m=h+2 1im(ih)β
∑m−1

j=h+1 1ij
(ih) (1− β) : h = 1, . . . , k − 2

0 : h = k − 1, k
. (23.5)

We start by evaluating R(h) for h = 3, . . . , k. Case 1: If
∑h−2

`=1 1ih(i`) = 0, then 1ih(i`) = 0

for all ` = 1, . . . , h− 2, i.e., R(h) = 0. Case 2: If
∑h−2

`=1 1ih(i`) ≥ 1 then ih = i` for at least
one ` = 1, . . . , h − 2. As a consequence there exist a largest index ˜̀∈ {1, . . . , h − 2} and a
smallest index ˆ̀∈ {1, . . . , h− 2} with i˜̀ = iˆ̀ = ih and ˜̀≥ ˆ̀. With (23.4) we get

R(h)

1− β
=

h−2∑
`=1

1ih(i`)β
∑h−1

j=`+1 1ij
(i`) =

∑
1≤`≤h−2:
i`=ih

β
∑h−1

j=`+1 1ij
(ih)

= β
∑h−1

j=ˆ̀+1
1ij

(ih) + β
∑h−1

j=ˆ̀+1
1ij

(ih)+1
+ . . .+ β

∑h−1

j=˜̀+1
1ij

(ih) . (23.6)

By de�nition of ˜̀ we know that i˜̀+1 6= ih, i˜̀+2 6= ih, . . . , ih−2 6= ih. Therefore, we have∑h−1
j=˜̀+1

1i`(ih) = 1ih−1
(ih). Also we obtain by the de�nition of ˆ̀ that iˆ̀ = ih but iˆ̀−1 6=

ih, . . . , i1 6= ih which implies
∑h−1

j=ˆ̀+1
1ij (ih) =

∑h−1
j=1 1ij (ih)− 1. Now (23.6) yields

R(h)

1− β
= β

∑h−1

j=ˆ̀+1
1ij

(ih) + β
∑h−1

j=ˆ̀+1
1ij

(ih)+1
+ . . .+ β1ih−1

(ih)

=


(

1− β
∑h−1

j=ˆ̀+1
1ij

(ih)+1
)
/(1− β) for ih−1 6= ih

β

(
1− β

∑h−1

j=ˆ̀+1
1ij

(ih)
)
/(1− β) for ih−1 = ih
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=


(

1− β
∑h−1

j=1 1ij
(ih)
)
/(1− β) for ih−1 6= ih(

β − β
∑h−1

j=1 1ij
(ih)
)
/(1− β) for ih−1 = ih

. (23.7)

Case 1 together with (23.7) of case 2 lead for all h = 3, . . . , k to

R(h) = β1ih−1
(ih) − β

∑h−1
j=1 1ij

(ih) . (23.8)

Note that (23.8) even holds for h = 2: R(2) = β1i1 (i2) − β1i1 (i2) = 0 in accordance with
(23.4).

Evaluating L(h) for h = 1, . . . , k−2 we proceed in a similar way. Case 1: If
∑k

j=h+2 1ij (ih) = 0

then 1im(ih) = 0 for all m = h + 2, . . . , k, i.e., L(h) = 0. Case 2: If
∑k

j=h+2 1ij (ih) ≥ 1
then ij = ih for at least one j = h + 2, . . . , k. As a consequence there exist a largest index
˜̀ ∈ {h + 2, . . . , k} and a smallest index ˆ̀ ∈ {h + 2, . . . , k} with i˜̀ = iˆ̀ = ih and ˜̀≥ ˆ̀. It

follows that
∑ˆ̀−1

j=h+1 1ij (ih) = 1ih+1
(ih). With (23.5) we get

L(h)

1− β
=

k∑
m=h+2

1im(ih)β
∑m−1

j=h+1 1ij
(ih) =

∑
h+2≤m≤k:
im=ih

β
∑m−1

j=h+1 1ij
(ih)

= β
∑ˆ̀−1

j=h+1 1ij
(ih) + β

∑ˆ̀−1
j=h+1 1ij

(ih)+1 + . . .+ β
∑˜̀−1

j=h+1 1ij
(ih) . (23.9)

With a similar argument as above we have
∑ˆ̀−1

j=h+1 1ij (ih) = 1ih+1
(ih) and

∑˜̀−1
j=h+1 1ij (ih) =∑k

j=h+1 1ij (ih)− 1, and thus get by (23.9)

L(h)

1− β
= β1ih+1

(ih) + β
∑ˆ̀−1

j=h+1 1ij
(ih)+1 + . . .+ β

∑˜̀−1
j=h+1 1ij

(ih)

=


(

1− β
∑˜̀−1

j=h+1 1ij
(ih)+1

)
/(1− β) for ih+1 6= ih

β

(
1− β

∑˜̀−1
j=h+1 1ij

(ih)
)
/(1− β) for ih+1 = ih

=


(

1− β
∑k

j=h+1 1ij
(ih)
)
/(1− β) for ih+1 6= ih(

β − β
∑k

j=h+1 1ij
(ih)
)
/(1− β) for ih+1 = ih

. (23.10)

Case 1 together with (23.10) of case 2 lead for all h = 1, . . . , k − 2 to

L(h) = β1ih+1
(ih) − β

∑k
j=h+1 1ij

(ih) . (23.11)

In analogy to R(2), (23.11) holds also for h = k − 1: We have L(k − 1) = β1ik (ik−1) −
β1ik (ik−1) = 0, in accordance with (23.5).

Using (23.8) and (23.11), (23.3) simpli�es for all h = 2, . . . , k − 1 (only applicable in case of
k ≥ 3) to

Ah = −1ih(ih−1) (1− β)− β1ih−1
(ih) + 1ih+1

(ih) (1− β) + β1ih+1
(ih) , (23.12)
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for h = 1 with 1i1(i0) := 0 and
∑0

j=1 1ij (ih) := 0 to

A1 = −1i1(i0) (1− β)− β
∑0

j=1 1ij
(i1) + 1i2(i1) (1− β) + β1i2 (i1)

= −1 + 1i2(i1) (1− β) + β1i2 (i1) , (23.13)

and for h = k with 1ik+1
(ik) := 0 and

∑k
j=k+1 1ij (ih) := 0 to

Ak = −1ik(ik−1) (1− β)− β1ik−1
(ik) + 1ik+1

(ik) (1− β) + β
∑k

j=k+1 1ij
(ik)

= −1ik(ik−1) (1− β)− β1ik−1
(ik) + 1 . (23.14)

Evaluating (23.12) � (23.14) for the four cases ih−1 = ih = ih+1, ih−1 = ih 6= ih+1, ih−1 6=
ih = ih+1 and ih−1 6= ih, ih 6= ih+1 leads to Ah = 0 for all h = 1, . . . , k.

Because (ik, . . . , i1) ∈ {1, . . . , N}k was a �xed but arbitrary combination of facilities to be
inspected, we have A1 = . . . = Ak = 0 for any (ik, . . . , i1) ∈ {1, . . . , N}k, and therefore by
(11.57)

R(ik, . . . , i1) = t0 − tk+1 +

k∑
m=2

t0 β
∑m−1

j=1 1ij
(im)

+ (t0 − tk+1)
1

1− β

N∑
r=1

β
∑k

j=1 1ij
(r) −

k−1∑
`=1

tk+1 β
∑k

j=`+1 1ij
(i`)

(23.15)

for any (ik, . . . , i1) ∈ {1, . . . , N}k. From (23.15) we get for the coe�cient A0 of t0 � we write
for the sake of clarity A0(ik, . . . , i1) �

A0(ik, . . . , i1) = 1 +

k∑
m=2

β
∑m−1

j=1 1ij
(im) +

1

1− β

N∑
r=1

β
∑k

j=1 1ij
(r) , (23.16)

and show by induction with respect to k that A0(ik, . . . , i1) = N/(1− β). For k = 2 we have
for any (i2, i1) ∈ {1, . . . , N}2 by (23.16)

A0(i2, i1) = 1 + β1i1 (i2) +
1

1− β

N∑
r=1

β1i1 (r)+1i2 (r)

=


1 + β1 +

1

1− β
(
N − 1 + β2

)
for i1 = i2

1 + β0 +
1

1− β
(N − 2 + 2β) for i1 6= i2

=
N

1− β
.

Let A0(ik, . . . , i1) = N/(1 − β) for an arbitrary k ≥ 3 and any (ik, . . . , i1) ∈ {1, . . . , N}k.
Let (ik+1, ik, . . . , i1) ∈ {1, . . . , N}k+1 be a �xed but arbitrary combination of facilities to be
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inspected in the game with k + 1 interim inspections. Using 1ik+1
(r) = 0 for r 6= ik+1 and

1ik+1
(ik+1) = 1, (23.16) yields for k → k + 1

A0(ik+1, ik, . . . , i1)

= 1 +

k+1∑
m=2

β
∑m−1

j=1 1ij
(im) +

1

1− β

 N∑
r=1

r 6=ik+1

β
∑k

j=1 1ij
(r) + β

∑k
j=1 1ij

(ik+1)+1



= 1 +

k∑
m=2

β
∑m−1

j=1 1ij
(im) + β

∑k
j=1 1ij

(ik+1) +
1

1− β
β
∑k

j=1 1ij
(ik+1)+1

+A0(ik, . . . , i1)− 1−
k∑

m=2

β
∑m−1

j=1 1ij
(im) − 1

1− β
β
∑k

j=1 1ij
(ik+1)

= A0(ik, . . . , i1) .

Therefore, we have A0(ik, . . . , i1) = N/(1−β) for all k ≥ 2 and any (ik, . . . , i1) ∈ {1, . . . , N}k.

Let (ik, . . . , i1) ∈ {1, . . . , N}k be again a �xed but arbitrary combination of facilities to be
inspected. For the coe�cient Ak+1 of tk+1 we get again from (23.15)

Ak+1(ik, . . . , i1) = −1− 1

1− β

N∑
r=1

β
∑k

j=1 1ij
(r) −

k−1∑
`=1

β
∑k

j=`+1 1ij
(i`) . (23.17)

Replacing i` by ik−`+1, ` = 1, . . . , k, in (23.17), we get by (23.16)

Ak+1(ik, . . . , i1) = −A0(ik, . . . , i1) =
N

1− β

for any (ik, . . . , i1) ∈ {1, . . . , N}k. Therefore, (23.15) simpli�es to (23.2), which completes
the proof.

It should be noted that (23.2) holds for any tk+1, . . . , t0 ∈ R and not just for (tk, . . . , t1) ∈ TN,k,
as required in the proof of Theorem 11.2.

The next Lemma is used for proving the left hand inequality of (11.55).

Lemma 23.2. Consider for any k ∈ N with k ≥ 2, any N ∈ N and any g ∈ GN,k the function
L(g) de�ned by (11.62). Then we have for any g ∈ GN,k

L(g) = Nk+1 . (23.18)

Proof. We evaluate (11.62) separately for each gm, m = 2, . . . , k + 1, and start with g2. For
the sake of brevity we again suppress the arguments of gm in the following equations. Because
w3 depends on (ik, . . . , i3, tk, . . . , t3) and g2 on (ik, . . . , i2, tk, . . . , i2), we obtain for the terms
of (11.62) containing g2

w3

N∑
i1=1

[
g2,i1 (1− β)2 + (N + 1− β)

N∑
r=1

g2,r β
1i1

(r)
]
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= w3

[
(1− g2) (1− β)2 + (N + 1− β)

N∑
r=1

g2,r

N∑
i1=1

β1i1 (r)
]

= w3

[
(1− g2) (1− β)2 + (N + 1− β) (N − 1 + β) (1− g2)

]
= w3N

2 (1− g2) . (23.19)

Therefore, we get

S2(ik, . . . , i1)

:=
∑

(ik,...,i2)∈{1,...,N}k−1

w3

N∑
i1=1

[
g2,i1 (1− β)2 + (N + 1− β)

N∑
r=1

g2,r β
1i1

(r)
]

= N2
∑

(ik,...,i2)∈{1,...,N}k−1

w3 (1− g2) . (23.20)

For gm with m ∈ {3, . . . , k + 1} we get from (11.62) for the terms containing gm

Sm(ik, . . . , i1) :=
∑

(ik,...,im)∈{1,...,N}k−m+1

∑
(im−1,...,i1)∈{1,...,N}m−1

[
wm+1 gm,im−1 (1− β)2

+ (N + (m− 1) (1− β))wm+1

N∑
r=1

gm,r β
∑m−1

j=1 1ij
(r)

+

m−2∑
`=1

(m− `)wm+1 gm,i` β
∑m−1

j=`+1 1ij
(i`) (1− β)2

]
. (23.21)

To evaluate (23.21) we perform some preliminary calculations regarding the expressions in line
1, 2 and 3 in (23.21). First, we have

∑
(im−1,...,i1)∈{1,...,N}m−1

gm,im−1 =

N∑
im−1=1

gm,im−1

∑
(im−2,...,i1)∈{1,...,N}m−2

1

= Nm−2 (1− gm) . (23.22)

Second, in order to simplify the expression

∑
(im−1,...,i1)∈{1,...,N}m−1

N∑
r=1

gm,r β
∑m−1

j=1 1ij
(r)

=

N∑
r=1

gm,r
∑

(im−1,...,i1)∈{1,...,N}m−1

β
∑m−1

j=1 1ij
(r) , (23.23)

we count the tuples (im−1, . . . , i1) ∈ {1, . . . , N}m−1 that lead to
∑m−1

j=1 1ij (r) = `, ` ∈
{0, . . . ,m− 1} and get the results in Table 23.1.
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Table 23.1 Number of tuples (im−1, . . . , i1) ∈ {1, . . . , N}m−1 that lead to
∑m−1

j=1 1ij (r) = `,
` ∈ {0, . . . ,m− 1}.

`
tuples (im−1, . . . , i1) ∈ {1, . . . , N}m−1

that lead to
∑m−1

j=1 1ij (r) = `

0
(
m−1
0

)
(N − 1)m−1

1
(
m−1
1

)
(N − 1)m−1−1

...
...

`
(
m−1
`

)
(N − 1)m−1−`

...
...

m− 1
(
m−1
m−1

)
(N − 1)m−1−(m−1)

Thus, we obtain using the binomial theorem and the results of Table 23.1

∑
(im−1,...,i1)∈{1,...,N}m−1

β
∑m−1

j=1 1ij
(r) =

m−1∑
`=0

(
m− 1

`

)
β` (N − 1)m−1−` = (N − 1 + β)m−1 ,

and therefore by (23.23)

∑
(im−1,...,i1)∈{1,...,N}m−1

N∑
r=1

gm,r β
∑m−1

j=1 1ij
(r) = (N − 1 + β)m−1 (1− gm) . (23.24)

Third, we evaluate the term

m−2∑
`=1

(m− `)
∑

(im−1,...,i1)∈{1,...,N}m−1

gm,i` β
∑m−1

j=`+1 1ij
(i`) . (23.25)

For a �xed `, ` ∈ {1, . . . ,m− 2}, we get∑
(im−1,...,i1)∈{1,...,N}m−1

gm,i` β
∑m−1

j=`+1 1ij
(i`)

=
∑

(i`−1,...,i1)∈{1,...,N}`

N∑
i`=1

gm,i`
∑

(im−1,...,i`+1)∈{1,...,N}m−`−1

β
∑m−1

j=`+1 1ij
(i`)

= N `−1 (1− gm) (N − 1 + β)m−`−1 . (23.26)

Therefore, we get by (23.25), using (23.26) and z := (N − 1 + β)/N ,

m−2∑
`=1

(m− `)
∑

(im−1,...,i1)∈{1,...,N}m−1

gm,i` β
∑m−1

j=`+1 1ij
(i`)
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= Nm−2 (1− gm)

m−2∑
`=1

(m− `) zm−`−1 . (23.27)

Because z ∈ (0, 1), we have

m−2∑
`=1

(m− `) zm−`−1 =

m−2∑
`=1

(`+ 1) z` =

m−2∑
`=1

d

dz
z`+1 =

d

dz

(
m−2∑
`=1

z`+1

)

=
d

dz

(
z2

1− zm−2

1− z

)
=
z (2− z)− zm−1 (m− (m− 1) z)

(1− z)2

and obtain, using the de�nition of z,

m−2∑
`=1

(m− `)
(
N − 1 + β

N

)m−1−`

=
N2

(1− β)2

(
1−

(
N − 1 + β

N

)m−1 N + (m− 1) (1− β)

N

)
− 1 .

and therewith by (23.27)

m−2∑
`=1

(m− `)
∑

(im−1,...,i1)∈{1,...,N}m−1

gm,i` β
∑m−1

j=`+1 1ij
(i`)

= (1− gm)

(
Nm

(1− β)2
− (N − 1 + β)m−1 (N + (m− 1) (1− β))

(1− β)2
−Nm−2

)
. (23.28)

Because (11.47) implies wm+1 gm = wm, (23.21) simpli�es for m = 3, . . . , k, using (23.22),
(23.24) and (23.28), to

Sm(ik, . . . , i1) = Nm
∑

(ik,...,im)∈{1,...,N}k−m+1

wm+1 (1− gm)

= Nm
∑

(ik,...,im)∈{1,...,N}k−m+1

(wm+1 − wm) (23.29)

and for m = k + 1, because of wk+2 = 1, see (11.47), to

Sk+1(ik, . . . , i1) = Nk+1 (1− gk+1) . (23.30)

Thus, using (23.20), (23.29) and (23.30), (11.62) simpli�es to

L(g) =
∑

(ik,...,i1)∈{1,...,N}k
N w2 +

k+1∑
m=2

Sm(ik, . . . , i1)

=
∑

(ik,...,i1)∈{1,...,N}k
N w2
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+N2
∑

(ik,...,i2)∈{1,...,N}k−1

(w3 − w2)

...

+Nk
∑

ik∈{1,...,N}

(wk+1 − wk)

+Nk+1 (1− gk+1) .

Keeping in mind that wm, m = 2, . . . , k, only depends on (ik, . . . , im), we �nally obtain
(23.18), which completes the proof.



Chapter 24

A Se-No inspection game with an

expected number of inspections:

Krieger-Avenhaus model

As mentioned on p. 18, there are two reasons why in this monograph so far only inspection
games with a deterministically1 �xed integer 1, 2, . . . of inspections resp. controls are considered.
In short, let us repeat that these inspection games were in the focus of the research interests
from the very beginning, and also, that practitioners have only been interested in this type of
inspection game; see Avenhaus et al. (2010). There exist, however, a priori no reasons why
inspection games with a �xed number of inspections should be preferred to inspection games
with an expected number of inspections.

We saw in Chapter 11 that for a �xed number k of interim inspections for all N facilities the
optimal strategy of the Inspectorate means to randomize the number of interim inspections in
each of the N facilities. Thus, for the sake of clarity we emphasize that in this chapter we
consider just one facility for which the expected number of interim inspections for some time
period is given and known to the Operator.

Recently the interest in inspection models with an expected number of inspections has increased.
Where does this interest come from? We have observed two reasons: First, practitioners like
to argue with the term unpredictability, and they usually mean the following: "Because the
Operator only knows the expected number of inspections per year, he never knows how many
inspections are truly carried out, and this should be somehow advantageous for the Inspectorate
because there is always the possibility that another inspection is performed after all." One way
to evaluate this statement is to compare the optimal payo� to the Operator for the inspection
model with a �xed number k of inspections to that with an expected number of µ = k
inspections. If the latter optimal payo� is smaller than the �rst one, the practitioner would
prefer the inspection model with an expected number of inspections. Note, however, that
planning considerations are neglected: The number of inspections can be larger or smaller than
k, which can be seen as an disadvantage from the planning point of view.

Second, some practitioners argue "that in case the Operator plans sequentially, i.e., a Se-No

1In contrast to an expected or even random number of inspections resp. controls. In the following we use
just the wording �xed and expected number.

425
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or a Se-Se inspection game with a �xed number of inspections is considered, the Operator
could wait until the last inspection is performed and then behave illegally immediately (in case
of playing for time games) or else, behave illegally at one of the remaining steps (in case of
critical time games)." This, however, is a faulty argument, because this strategy is in none of
the inspection games discussed in this monograph an optimal resp. an equilibrium strategy of
the Operator.

For purpose of illustration and to address the �rst reason given above we treat in this chapter a
Se-No critical time inspection game with an expected number of inspections, where the analysis
can be seen as a starting point for further research, see Section 1.5, in two directions: First,
the game considered in this chapter could be solved taking payo� parameters into account as
in the corresponding games in Part III. Second, any other inspection game of this monograph
might be worth to be analysed under the assumption of an expected instead of a �xed number
of inspections resp. controls.

In this chapter, assumptions (iii), (iv), (v), (vi), (viii) and (x) of Chapter 14 are speci�ed as
follows:

(iii') The Operator performs an illegal activity once at one of the steps L, . . . , 1.

(iv') During an inspection the Inspectorate may commit an error of the second kind, i.e., if
the Operator behaves illegally at the same step at which the Inspectorate performs an
inspection, then the illegal activity is not detected with probability β. This non-detection
probability is the same for all inspections.

(v') The Inspectorate performs an expected number µ ∈ Q (Q is the set of rational numbers)
of inspections at steps L,L− 1, . . . , 1 with 0 < µ < L. The number µ is known to the
Operator.

(vi') The Operator decides at the beginning, i.e., at step L, whether to behave illegally at that
step. If he behaves legally at steps L, . . . , ` + 1 (1 ≤ ` ≤ L − 1), then the Operator
decides whether to behave illegally at step `; and so on. The Operator behaves illegally
latest at step 1; see assumption (iii').

The Inspectorate decides at the beginning when the inspections are performed; see as-
sumption (v').

(viii') The payo�s to the two players (Operator, Inspectorate) are given by

(1,−1) for an untimely inspection or

a timely inspection and no detection of the illegal behaviour

(−1, 1) for a timely inspection and detection of the illegal behaviour

(24.1)

(x') The game ends either at the step at which the Operator behaves illegally, or at step 1.

The remaining assumptions of Chapter 14 except (ix) hold throughout this chapter. Because
of the payo�s (24.1), the Se-No inspection game treated in this chapter is the analogon to
the original Thomas-Nisgav game with a �xed number of controls; see p. 356. Regarding
assumption (x') we note again that if the Operator behaves illegally at step i, i = L, ..., 1,
then the game ends at step i regardless whether the illegal behaviour is detected at that step
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or not. In the latter case, the Operator has successfully performed his illegal activity and thus,
the game ends as well.

In Section 24.1 the Se-No inspection game with L = 3 steps is analysed and special optimal
strategies of the Inspectorate are discussed. Section 24.2 deals with a simpli�ed Se-No inspec-
tion game with L steps which is used to formulate a conjecture about the optimal strategies
of both players and the optimal payo� to the Operator of the original Se-No inspection game.
Surprising relations to the generalized Thomas-Nisgav and the Canty-Rothenstein-Avenhaus
inspection games are highlighted.

24.1 Three steps; errors of the second kind

For the purpose of illustration we start with the case of three steps, i.e., L = 3, the extensive
form of which is presented in Figure 24.1. Because the Inspectorate behaves non-sequentially,
the game starts with the Inspectorate's decision; see the comment on p. 50. Here, the chance
moves are already incorporated into the Operator's payo�.

At step 3, i.e., at the top of the tree, the Inspectorate's decides when to perform its inspections:
0 resp. 1 indicates no resp. an inspection, where the �rst component of the triple refers to
the Inspectorate's decision at step 3, the second component to its decision at step 2, and the
third one to its decision at step 1. Note that in contrast to the inspection games with a �xed
number of inspections here the expected number of inspections is not part of the game tree,
but only appears in the boundary condition (24.3).

The Operator decides at step 3 � not knowing the Inspectorate's decision � to behave illegally
immediately (¯̀3) or not (`3). In the latter case he decides at step 2 to behave illegally imme-
diately (¯̀2,0 resp. ¯̀

2,1) or not (`2,0 resp. `2,1). In the latter case he must behave illegally at
step 1 because of assumption (iii'). The payo� to the Operator is given at the end nodes of the
tree and are, using (24.1), self-explaining keeping in mind that in case of a timely inspection
the payo� is 1β + (−1) (1− β) = 2β − 1.

The Operator's two information sets can be explained as follows: At step 2 he only knows
whether there was an inspection at step 3 or not. Thus, all decision nodes of the Operator
at step 2 that belong to triples of the kind (0, ·, ·) resp. (1, ·, ·) need to be in the same in
information set. To indicate the Operator's decisions at the information sets, they are denoted
by ¯̀

2,0 resp. ¯̀
2,1 and `2,0 resp. `2,1 where the second index indicates whether there was an

inspection at step 3 or not.

In accordance with the notation in Parts I and II, let the probability of behaving illegally at step
3 (¯̀3) be 1 − g3, and behaving illegally at step 2 (¯̀2,0 resp. ¯̀

2,1) be 1 − g2,0 resp. 1 − g2,1.
Because of assumption (iii'), the Operator must behave illegally at step 1. Thus, the Operator's
set of behavioural strategies is given by

G3 :=
{
g := (g3, g2,0, g2,1) ∈ [0, 1]3

}
. (24.2)

The Inspectorate chooses its triples (j3, j2, j1) ∈ {0, 1}3 with probability q(j3,j2,j1), where they
do not only have to add up to one, but also have to lead to expected value µ. Therefore, the
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Figure 24.1 Extensive form of the Se-No inspection game with L = 3 steps and with errors of
the second kind.
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Inspectorate's strategy set is given by

Q3 :=
{
q := (q(0,0,0), q(1,0,0), . . . , q(0,1,1), q(1,1,1)) ∈ [0, 1]8 :

∑
(j3,j2,j1)∈{0,1}3

q(j3,j2,j1) = 1 and

q(1,0,0) + q(0,1,0) + q(0,0,1) + 2 (q(1,1,0) + q(1,0,1) + q(0,1,1)) + 3 q(1,1,1) = µ
}
.

(24.3)

Using Figure 24.1, the (expected) payo� to the Operator is, for any g ∈ G3 and any q ∈ Q3,
given by

Op3(g,q) := q(0,0,0) + q(1,0,0)

(
(1− g3) (2β − 1) + g3

)
+ q(0,1,0)

(
1− g3 + g3

(
(1− g2,0) (2β − 1) + g2,0

))
+ q(0,0,1)

(
1− g3 + g3

(
1− g2,0 + g2,0 (2β − 1)

))
+ q(1,1,0)

(
(1− g3) (2β − 1) + g3

(
(1− g2,1) (2β − 1) + g2,1

))
+ q(1,0,1)

(
(1− g3) (2β − 1) + g3

(
1− g2,1 + g2,1 (2β − 1)

))
+ q(0,1,1)

(
1− g3 + g3 (2β − 1)

)
+ q(1,1,1) (2β − 1) .

(24.4)

The game theoretical solution of this inspection game, which is published in this monograph
for the �rst time, is presented in

Lemma 24.1. Given the Se-No inspection game with L = 3 steps, the expected number
µ(> 0) of inspections, and with errors of the second kind. The Operator's set of behavioural
strategies is given by (24.2), the Inspectorate's strategy set by (24.3), and the payo� to the
Operator by (24.4).

Then an optimal strategy of the Operator is given by

g∗3 =
2

3
and g∗2,0 = g∗2,1 =

1

2
, (24.5)

and an optimal strategy of the Inspectorate by

q∗(0,0,0) =: a0 and q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) =: a1

q∗(1,1,0) = q∗(1,0,1) = q∗(0,1,1) =: a2 and q∗(1,1,1) =: a3 ,
(24.6)

where the ai, i = 0, . . . , 3, have to satisfy

a0 + 3 a1 + 3 a2 + a3 = 1 and 3 a1 + 6 a2 + 3 a3 = µ . (24.7)

The optimal payo� to the Operator is

Op∗3 := Op3(g
∗,q∗) = 1− 2 (1− β)

µ

3
. (24.8)
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Proof. Using (24.5) and (24.6) with (24.7), it is easily seen that g∗ ∈ G3 and q∗ ∈ Q3. We
have to show that

Op3(g,q
∗) ≤ Op3(g∗,q∗) ≤ Op3(g∗,q) (24.9)

for any g ∈ G3 and any q ∈ Q3. By (24.3), (24.4) and (24.5) we get for the coe�cient of
2β − 1

1

3

(
q(1,0,0) + q(0,1,0) + q(0,0,1) + 2

(
q(1,1,0) + q(1,0,1) + q(0,1,1)

)
+ 3 q(1,1,1)

)
=
µ

3
.

Thus, we get, using the abbreviations a := q(0,0,0), b := q(1,0,0) + q(0,1,0) + q(0,0,1), c :=
q(1,1,0) + q(1,0,1) + q(0,1,1) and d := q(1,1,1),

Op3(g
∗,q)

= (2β − 1)
µ

3
+

3

3
q(0,0,0) +

2

3

(
q(1,0,0) + q(0,1,0) + q(0,0,1)

)
+

1

3

(
q(1,1,0) + q(1,0,1) + q(0,1,1)

)
= (2β − 1)

µ

3
+

1

3

(
3 a+ 2 b+ c

)
, (24.10)

where a+ b+ c+ d = 1 and b+ 2 c+ 3 d = µ. These boundary conditions yield, by elimination
of d, 3 a + 2 b+ c = 3− µ. Therefore, (24.10) �nally simpli�es to Op3(g

∗,q) = Op∗3 for any
q ∈ Q3, and the right hand side of (24.9) is ful�lled as equality.

To prove the left hand side of (24.9), we �rst note that we have for any g ∈ G3(
(1− g3) (2β − 1) + g3

)
+
(

1− g3 + g3

(
(1− g2,0) (2β − 1) + g2,0

))
+
(

1− g3 + g3

(
1− g2,0 + g2,0 (2β − 1)

))
= (1− g3) (2β + 1) + g3

(
1 + (1− g2,0) (2β − 1) + g2,0 + 1− g2,0 + g2,0 (2β − 1)

))
= 2β + 1

and(
(1− g3) (2β − 1) + g3

(
(1− g2,1) (2β − 1) + g2,1

))
+
(

(1− g3) (2β − 1) + g3

(
1− g2,1 + g2,1 (2β − 1)

))
+
(

1− g3 + g3 (2β − 1)
)

= (1− g3)
(

2 (2β − 1) + 1
)

+ g3

(
(1− g2,1) (2β − 1) + g2,1 + 1− g2,1 + g2,1 (2β − 1) + (2β − 1)

)
= 4β − 1 .

Thus, (24.4), (24.6) and (24.7) imply for any g ∈ G3

Op3(g,q
∗) = a0 + a1 (2β + 1) + a2 (4β − 1) + a3 (2β − 1) = 1− 2 (1− β)

µ

3
= Op∗3 ,
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i.e., the left hand side of (24.9) is ful�lled as equality, which completes the proof.

Let us comment the results of Lemma 24.1: First of all, the optimal strategy (24.6) and (24.7)
of the Inspectorate is not unique; we will come back to this important point on p. 437. We
can choose, e.g., the probabilities q(j3,j2,j1) such that only the nearest integer values of µ are
mixed:

• For 0 < µ ≤ 1

q∗(0,0,0) = 1− µ and q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) =
µ

3

q∗(1,1,0) = q∗(1,0,1) = q∗(0,1,1) = q∗(1,1,1) = 0 ,

(24.11)

• For 1 ≤ µ ≤ 2 by

q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) = −µ
3

+
2

3
and q∗(1,1,0) = q∗(1,0,1) = q∗(0,1,1) =

µ− 1

3

q∗(0,0,0) = q∗(1,1,1) = 0 ,

(24.12)

• For 2 ≤ µ ≤ 3 by

q∗(1,1,0) = q∗(1,0,1) = q∗(0,1,1) =
3− µ

3
and q∗(1,1,1) = µ− 2

q∗(0,0,0) = q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) = 0 .

(24.13)

Second, for µ = 1, 2, 3, i.e., for an integer (expected) number of inspections, the optimal
inspection strategies (24.11) � (24.13) indicate that in these cases the number of inspections
is not randomized. Instead of using (24.11) � (24.13) for µ = 1, 2, 3, one can, however, also
choose a mixed strategy. For µ = 2, e.g., one can choose a0 = a2 = 0 and thus, by (24.7) one
gets a1 = 1/6 and a3 = 1/2. Therefore, another optimal strategy of the Inspectorate is, for
µ = 2, given by

q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) =
1

6
and q∗(1,1,1) =

1

2

q∗(0,0,0) = q∗(1,1,0) = q∗(1,0,1) = q∗(0,1,1) = 0 .

Note that with Lemma 24.1 we have also found the solution of the corresponding Se-No
inspection game with a �xed integer number of inspections. In case of one inspection one just
have to put q(0,0,0) = q(1,1,0) = q(1,0,1) = q(0,1,1) = q(1,1,1) = 0 in (24.4) to obtain the payo� to
the Operator, and then g∗3 = 2/3 and g∗2,0 = 1/2 as well as q∗(1,0,0) = q∗(0,1,0) = q∗(0,0,1) = 1/3

are optimal strategies in the inspection game with (exactly) one inspection.

Third, we compare the results of Lemma 24.1 with those of the generalized Thomas-Nisgav
inspection game for L = 3, d = b = 1 and k/3 < 1/(2 (1 − β)). We see that the Operator's
optimal strategies (24.5) coincide with the equilibrium strategy (17.31) of the Smuggler

p̄∗3,k =
1

3
= 1− g∗3 and p̄∗2,k′ =

1

2
= 1− g∗2,0 = 1− g∗2,1 ,
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and that the optimal payo� (24.8) coincides with the equilibrium payo� (17.33) for k = µ.
Therefore, if the Operator decides sequentially, then he need not care whether the Inspectorate
decides non-sequentially using the expected number µ of inspections, or decides sequentially
using the �xed number k = µ of inspections. These properties of optimal strategies we have
already observed in Chapter 6.

Fourth, we compare the results of Lemma 24.1 with those of the Canty-Rothenstein-Avenhaus
inspection game for L = 3, a = b = c = d = 1, α = 0 and k/3 < 1/(2 (1 − β)). Let pi,
i = 3, 2, be the probability that the Operator behaves illegally at step i. Then (24.5) implies

p∗3 = 1− g∗3 =
1

3
and p∗2 = g∗3 (1− g∗2,0) = g∗3 (1− g∗2,1) =

1

3
,

i.e., (15.76) for L = 3. Let qj , j = 3, 2, 1, denote the probability that the Inspectorate performs
an inspection at step j. Then we have

q3 = q(1,0,0) + q(1,1,0) + q(1,0,1) + q(1,1,1)

q2 = q(0,1,0) + q(1,1,0) + q(0,1,1) + q(1,1,1)

q1 = q(0,0,1) + q(1,0,1) + q(0,1,1) + q(1,1,1) ,

(24.14)

and (24.11) � (24.13) imply independently of µ that

q∗3 = q∗2 = q∗1 =
µ

3
,

which coincides with q∗2 = q∗1 = q∗0 in (15.77) for k = µ and L = 3. Again, the optimal payo�
(24.8) coincides with the equilibrium payo� (15.78) for k = µ. Thus, if the Inspectorate decides
non-sequentially (either using the expected number µ of inspections or using the �xed number
k = µ of inspections), then it need not care whether the Operator decides sequentially or not.
We did not observe these properties of optimal strategies in Chapter 6.

We mentioned on p. 427 that the probabilities g2,0 and g2,1 need to be distinguished from
a modelling view point, because the Operator might choose a di�erent probability depending
whether there was an inspection at step 3 or not. The fact g∗2,0 = g∗2,1 is a result of the game
theoretical analysis. However, the game tree in Figure 24.1 points to an interesting heuristic
argument: Suppose the Operator behaves legally at step 3 (`3), then the decision situation
he faces at step 2 is independent of whether there was an inspection at step 3 or not. For
example, if the Inspectorate chooses one of the triples (0, 0, 0) or (1, 0, 0), then the (not proper)
subgames entered after the decision `3 are equal. The same is true if the Inspectorate chooses
(0, 1, 0) or (1, 1, 0), or if it chooses (0, 0, 1) or (1, 0, 1), or if it chooses (0, 1, 1) and (1, 1, 1).
According to this heuristic argument it can be assumed that the probabilities g2,0 and g2,1 are
equal and we abbreviate them by g2. Thus, the Operator's strategy set is then given by

G̃3 :=
{
g̃ := (g3, g2) ∈ [0, 1]2

}
. (24.15)

Putting g2,0 = g2,1 =: g2 we obtain for the coe�cient of 2β − 1 from (24.4), using (24.14),

(1− g3)
(
q(1,0,0) + q(1,1,0) + q(1,0,1) + q(1,1,1)

)
+ g3 (1− g2)

(
q(0,1,0) + q(1,1,0) + q(0,1,1) + q(1,1,1)

)
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+ g3 g2

(
q(0,0,1) + q(1,0,1) + q(0,1,1) + q(1,1,1)

)
= (1− g3) q3 + g3 (1− g2) q2 + g3 g2 q1 . (24.16)

The expression in (24.16) is the probability that an inspection is performed at the same step at
which the Operator behaves illegally. The payo� to the Operator is in this case 2β − 1. The
remaining terms in (24.4) simplify, using (24.14), to

(1− g3)
(
q(0,0,0) + q(0,1,0) + q(0,0,1) + q(0,1,1)

)
+ g3 (1− g2)

(
q(0,0,0) + q(1,0,0) + q(0,0,1) + q(1,0,1)

)
+ g3 g2

(
q(0,0,0) + q(1,0,0) + q(0,1,0) + q(1,1,0)

)
which gives by (24.14)

(1− g3) (1− q3) + g3 (1− g2) (1− q3) + g3 g2 (1− q1) , (24.17)

i.e., the probability that no inspection is performed at the step at which the Operator behaves
illegally. The payo� to the Operator is in this case +1. Note that using (24.14) as basis for
the Inspectorate's behaviour, its strategy set is now

Q̃3 :=
{
q̃ := (q3, q2, q1) ∈ [0, 1]3 : q3 + q2 + q1 = µ

}
. (24.18)

Using (24.4), the Operator's payo� can be expressed, for any g̃ ∈ G̃3 and any q̃ ∈ Q̃3, by

Õp3(g̃, q̃) := (2β − 1) ((1− g3) q3 + g3 (1− g2) q2 + g3 g2 q1)

+ (1− g3) (1− q3) + g3 (1− g2) (1− q3) + g3 g2 (1− q1) .
(24.19)

This expression will be generalized in Section 24.2 to any L = 4, 5, . . ..

24.2 Any number of steps; errors of the second kind

We now consider the case of L steps, and solve �rst the simpli�ed Se-No inspection game with
an expected number µ of inspections. "Simpli�ed" refers here to the fact that this game is
based on the assumption that the Operator's probabilities at step j, j = L− 1, . . . , 1, do not
depend on the history of the game, i.e., do not depend on what will have happened at steps
L, . . . , j + 1. As a consequence � see last section � we can utilize the probability qj that an
inspection is performed at step j; see (24.14) for L = 3 steps.

As a generalization of (24.15), the Operator's strategy set in the simpli�ed Se-No inspection
game is given by

G̃L :=
{
g̃ := (gL, gL−1, . . . , g2) ∈ [0, 1]L−1

}
, (24.20)

where g` denotes the probability of not behaving illegally at step `, and that of the Inspectorate,
as a generalization of (24.18), is given by

Q̃L :=

q̃ := (qL, . . . , q1) ∈ [0, 1]L :

L∑
j=1

qj = µ

 , (24.21)
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where qj denotes the probability that the Inspectorate performs an inspection at step j.

As a generalization of (24.16) and (24.17), the probability that an inspection is performed at
the same step at which the Operator behaves illegally is given by

L∑
i=1

(1− gi) qi
L∏

`=i+1

g` , (24.22)

where
∏L
`=L+1 g` = 1 and g1 = 1, and the probability that no inspection is performed at the

step at which the Operator behaves illegally is given by

L∑
i=1

(1− gi) (1− qi)
L∏

`=i+1

g` .

Therefore, the (expected) payo� to the Operator is, for any g̃ ∈ G̃L and any q̃ ∈ Q̃L, given by

ÕpL(g̃, q̃) := (2β − 1)

L∑
i=1

(1− gi) qi
L∏

`=i+1

g` +

L∑
i=1

(1− gi) (1− qi)
L∏

`=i+1

g` . (24.23)

Of course, (24.23) simpli�es to (24.19) for L = 3 steps.

The game theoretical solution of the simpli�ed Se-No inspection game, see Krieger and Aven-
haus (2018a), is given in Lemma 24.2. Even though the following result applies to any L, we
do not formulate it as a Theorem � as we have done throughout this monograph � but as a
Lemma to indicate the provisional nature of our analysis.

Lemma 24.2. Given the simpli�ed Se-No inspection game with L steps, the expected number
µ(> 0) of inspections, and with errors of the second kind. The Operator's set of behavioural
strategies is given by (24.20), the Inspectorate's strategy set by (24.21), and the payo� to the
Operator by (24.23).

Then an optimal strategy of the Operator is given by

g∗` =
`− 1

`
, ` = L, . . . , 2 , (24.24)

and an optimal strategy of the Inspectorate by

q∗` =
µ

L
, ` = L, . . . , 1 . (24.25)

The optimal payo� to the Operator is

Õp
∗
L := ÕpL(g̃∗, q̃∗) = 1− 2 (1− β)

µ

L
. (24.26)

Proof. Obviously, we have g̃∗ ∈ G̃L and q̃∗ ∈ Q̃L. We have to prove that

ÕpL(g̃, q̃∗) ≤ ÕpL(g̃∗, q̃∗) ≤ ÕpL(g̃∗, q̃) (24.27)

for any g̃ ∈ G̃L and any q̃ ∈ Q̃L. Because (24.23) can be written as

ÕpL(g̃, q̃) =

L∑
i=1

(1− gi)
(

1− 2 (1− β) qi

) L∏
`=i+1

g` ,



Chapter 24: A Se-No inspection game with an expected number of inspections 435

we get by (24.25) and g1 = 1

ÕpL(g̃, q̃∗) =
(

1− 2 (1− β)
µ

L

) L∑
i=1

(1− gi)
L∏

`=i+1

g` = 1− 2 (1− β)
µ

L
= Õp

∗
L

for any g̃ ∈ G̃L, and by (24.21) and (24.24)

ÕpL(g̃∗, q̃) =

L∑
i=1

1

i

(
1− 2 (1− β) qi

) L∏
`=i+1

`− 1

`
=

1

L

L∑
i=1

(1− 2 (1− β) qi) = Õp
∗
L

for any q̃ ∈ Q̃L, i.e., the saddle point criterion (24.27) is ful�lled as equality.

Let us comment the results of Lemma 24.2: First, we see that the Operator's optimal strategy
(24.24) coincides with that of the generalized Thomas-Nisgav inspection game for d = b = 1
and k/L < 1/(2 (1−β)) in (17.31). Also, the optimal payo�s (17.33) and (24.26) are the same
for k = µ. The relation between the Inspectorate's optimal strategies (17.32) and (24.25), i.e.,
k′/` resp. µ/L, is, for ` = L − 1, . . . , 1, unclear. Using the Operator's optimal strategy as
given by (24.24), we see that 1 − g∗2, . . . , 1 − g∗L form a harmonic progression; see also Table
4.1 on p. 72 for an overview of inspection games treated in this monograph with this property.

Second, comparing the results of the Canty-Rothenstein-Avenhaus inspection game for a = b =
c = d = 1, α = 0 and k/L < 1/(2 (1 − β)), we see that the Operator's optimal strategies
can be transformed into each other. Let pi, i = L . . . , 2, be the probability that the Operator
behaves illegally at step i if he does not do so before. Then (24.24) implies for all i = L, . . . , 1

pL = 1− g∗L =
1

L
and p∗i = g∗L . . . g

∗
i+1 (1− g∗i ) =

L− 1

L
. . .

1

i+ 1
=

1

L
,

i.e., (15.76). This is intuitive since the Operator who ignores the history in fact behaves
non-sequentially, like in the Canty-Rothenstein-Avenhaus inspection game. The Inspectorate's
optimal strategies (15.77) and (24.25) obviously coincide for k = µ. Again, the optimal payo�s
to the Operator (15.78) and (24.26) are the same.

Third, let us assume that instead of the critical time concept which is the basis of (24.23),
the probability to detect the illegal behaviour is considered as the objective function. This
probability is, using (24.22), given by

PL(detect the illegal behaviour) = (1− β)

L∑
i=1

(1− gi) qi
L∏

`=i+1

g` . (24.28)

It can be shown that (24.24) and (24.25) are also optimal strategies if (24.28) is taken as the
objective function. The resulting optimal probability to detect the illegal behaviour is

P∗L(detect the illegal behaviour) = (1− β)
µ

L
.

Thus, it does not matter whether the Inspectorate plans its inspections based on the (expected)
payo� (24.23) or based on the probability to detect the illegal behaviour (24.28), because they
both lead to the same optimal inspection strategy. This issue is also addressed on p. 391.

Fourth, introducing payo�s to the Operator as in (17.1), it can be shown that he behaves legally
if and only if condition (17.34) is ful�lled; see Krieger and Avenhaus (2018a).
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Having solved the simpli�ed Se-No inspection game with the expected number µ of inspec-
tions, we get back to the original game. Again, let gL be the probability to postpone the illegal
behaviour at step L, and let g`,(jL,...,j`+1) be the probability to postpone the illegal behaviour
at step ` if the inspection history (jL, . . . , j`+1) has been observed. The Inspectorate chooses
(jL, . . . , j1) with probability q(jL,...,j1). Let the strategy sets GL and QL be de�ned as appro-
priate generalizations of (24.2) and (24.3). The payo� to the Operator is, for any g ∈ GL and
any q ∈ QL, given by

OpL(g,q) =
∑

(jL,...,j1)∈{0,1}L
q(jL,...,j1)

(
(1− gL) (1− 2 (1− β) 1jL(1))

+

L−1∑
n=2

(1− gn,(jL,...,jn+1)) gL

L−1∏
`=n+1

g`,(jL,...,j`+1) (1− 2 (1− β)1jn(1))

+ gL

L−1∏
`=2

g`,(jL,...,j`+1) (1− 2 (1− β)1j1(1))
)
,

(24.29)

where, like (11.23), the indicator function is given by

1i(j) :=

{
0 : i 6= j
1 : i = j

.

Then Lemmata 24.1 and 24.2 lead to

Conjecture 24.1. Given the Se-No inspection game with L steps, the expected number µ(> 0)
of inspections, and with errors of the second kind. The Operator's set GL of behavioural
strategies and the Inspectorate's strategy set QL are appropriate generalizations of (24.2) and
(24.3), and the payo� to the Operator is given by (24.29).

Then an optimal strategy of the Operator is given by

g∗L =
L− 1

L
and g∗`,(jL,...,j`+1)

=
`− 1

`

for all ` = L− 1, . . . , 2 and any (jL, . . . , j`+1) ∈ {0, 1}L−` ,
(24.30)

and an optimal strategy of the Inspectorate as follows: Any of the tuples (jL, . . . , j1) ∈ {0, 1}L
with k-times "1" is chosen with probability ak, k = 0, . . . , L, such that these probabilities
satisfy

L∑
k=0

(
L

k

)
ak = 1 and

L∑
k=1

k

(
L

k

)
ak = µ .

The optimal payo� to the Operator is given by (24.26).

The right hand side of the saddle point inequality (24.27) with OpL(g,q) instead of ÕpL(g̃, q̃)
can be proven as follows: Using (24.30), (24.29) simpli�es for any q ∈ QL to

OpL(g∗,q) = 1− 2 (1− β)
∑

(jL,...,j1)∈{0,1}L
q(jL,...,j1)

( 1

L
1jL(1)
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+

L−1∑
n=2

1

n

L− 1

L

L− 2

L− 1
. . .

n

n+ 1
1jn(1) +

L− 1

L

L− 2

L− 1
. . .

1

2
1j1(1)

)

= 1− 2 (1− β)
1

L

∑
(jL,...,j1)∈{0,1}L

q(jL,...,j1)

L∑
n=1

1jn(1)

= 1− 2 (1− β)
µ

L
= Op∗L .

So far we were not able to prove the left hand side of the saddle point inequality (24.27) for
any L, but only for L = 3, see the proof of Lemma 24.1, and for L = 4, not presented here.
Even though this proof does not seem to be out of reach, we leave it to our readership, thus
encouraging further research in this fascinating area.

Most importantly, we realize, as we did already after Lemma 24.1, that the optimal strategy
of the Inspectorate is not unique. A special optimal strategy of the Inspectorate is given by
choosing it such that only the nearest integer values of µ are mixed, more precisely: Any of
the tuples (jL, . . . , j1) ∈ {0, 1}L with exactly bµc "1", i.e., bµc inspections are performed, is
chosen with probability2

1 + bµc − µ(
L
bµc
) , (24.31)

and any of the tuples (jL, . . . , j1) ∈ {0, 1}L with exactly bµc+ 1 "1", i.e., bµc+ 1 inspections
are performed, is chosen with probability

µ− bµc(
L

bµc+1

) . (24.32)

Any of the tuples (jL, . . . , j1) ∈ {0, 1}L with less than bµc or more than bµc+1 "1" are chosen
with probability 0. If µ is an integer, then µ− bµc = 0 and (24.31) and (24.32) yield

q∗(jL,...,j1) =


(
L
µ

)−1
for (jL, . . . , j1) ∈ {0, 1}L with

∑L
n=1 1jn(1) = µ

0 for (jL, . . . , j1) ∈ {0, 1}L with
∑L

n=1 1jn(1) 6= µ
. (24.33)

Let us close this chapter with two remarks on the applicability of these results: First, of course,
we provide optimal strategies even in the case that for some reason or other the given number
of expected inspections is not an integer. If it is an integer, then the Inspectorate can either
use this �xed number leading to (24.33), or it can use some mixed strategy, e.g., (24.31) and
(24.32). In the former case the number of inspections is exactly µ and thus, the Inspectorate's
inspection e�ort is a priori �xed. In the latter case there might be actually more or less than µ
inspections, which � in case of more than µ inspections � is a disadvantage for the Inspectorate.

Second, we answer the question "Is there any advantage of using inspection games with an
expected number instead of a �xed number of inspections?"; see p. 425. If the optimal payo�
to the Operator is used to decide whether an expected or a �xed number of inspections should
be preferred, then the Se-No inspection game treated in this chapter shows that both models
are equivalent in the sense that they result in the same optimal payo� to the Operator for

2The �oor function b c maps x to the greatest integer less than or equal to x.
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any integer value of µ. So here, there is neither an advantage nor a disadvantage of using a
model with an expected number of inspections, and a model can only be selected by taking
into account further criteria such as organizational ones which may favour a solution as given
by (24.31) to (24.32), or the initially mentioned unpredictability.

If the latter one has the highest priority, then all possibilities k = 0, . . . , L of numbers of
inspections should be used, e.g., by

q∗(jL,...,j1) =


1− µ

L

(
2− 1

2L−1

)
: (jL, . . . , j1) = (0, . . . , 0)

µ

L 2L−1
: (jL, . . . , j1) ∈ {0, 1}L \ {(0, . . . , 0)}

if µ is small

µ

L

(
2− 1

2L−1

)
< 1 ,

and by

q∗(jL,...,j1) =


(

1− µ

L

) 1

2L−1
: (jL, . . . , j1) ∈ {0, 1}L \ {(1, . . . , 1)}

1−
(

1− µ

L

) (
2− 1

2L−1

)
: (jL, . . . , j1) = (1, . . . , 1)

if µ is large

µ

L

(
2− 1

2L−1

)
≥ 1 .

This, on the other side, makes planning di�cult; perhaps the responsible o�cials will prefer a
solution of the kind given by (24.11) � (24.13) resp. (24.31) and (24.32). Life is not always
made easier by freedom of choice.
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