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Summary

The computational processes deployed by the brain to represent, process and transmit
information are largely unknown. Cell assemblies (highly inter-connected groups of neu-
rons) have been hypothesized to be the building block of the computational processes in
the cerebral network. The coordination of spikes emission among neurons at millisecond
temporal acale is one of the possible mechanisms of information coding and a signature of
assembly activation. In particular, specific temporally precise spike sequences in the input
can reliably cause a spike emission in a post-synaptic neuron. Evidences of coordination
of the spiking activity at milliseconds precision have been collected in the past, yet such
studies present two main limitations: in most cases they consider few neurons recorded in
parallel and the correlation analysis are limited to spike synchronicity.

Recent developments of the recording devices overcome the first limitation. Modern
electrophysiological technologies enable to obtain the spiking activity of hundreds of neu-
rons in parallel, a number which is destined to grow. The size of the current available
data requires optimized computational analysis technique and sophisticated statistical ap-
proaches.

In this work we address the second limitation, developing a method to detect spatio-
temporal patterns of spikes in large parallel recordings. In particular we extend the Spike
Pattern Detection and Evaluation (SPADE) method, originally limited to synchronous
patterns detection, to search for any repeated sequence of spikes. SPADE can be sum-
marized in two steps: a) extraction of all the repeated spike sequences using the frequent
item-set mining framework, b) statistical evaluation of the significance of the mined se-
quences In respect to the null hypothesis of independent spike emissions in time. We
extensively refined and validated the method using ground-truth artificial data designed
to resemble experimental data to test the statistical performances of the method. We then
made the python implementation of SPADE publicly available online as a submodule of
the Electorphysiological Analysis Toolkit (Elephant).

We applied SPADE to in-vivo parallel recordings of neuronal activity in the motor
area of two macaque monkeys performing a reach-to-grasp task, finding a large number
of significant spike patterns. We then investigated the statistical features of the detected
patterns in terms of neuronal composition, temporal occurrences and relation to behavior.
Most of the patterns oceur during the reach movement of the task and they are formed
by two to four different neurons. Furthermore the neurons forming the patterns differ for
different grip types, hinting to a high specificity of the patterns to the different behavioral
contexts.

In the last part of this work we compare SPADE to other existing methods in the
context of a more general review of methods for the analysis of correlations in parallel
spike trains. In particular we argue for the importance of a thorough comparison of the
different methods and for the integration different methodologies that highlight different
aspects of the correlation structure of the data.

In summary we show that SPADE robustly detects and selects significant precise spike
sequences and that multiple significant patterns repeat during the execution of a reach
to grasp task. Nevertheless the spatio-temporal patterns alone do not guarantee a com-
plete description of the correlation structure of the data, hence we present and compare
alternative correlation analysis methods for parallel spike trains.
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Zusammenfassung

Die rechnerischen Prozesse, die das Gehirn zur Darstellung, Verarbeitung und Ubertragung
von Informationen einsetzt, sind weitgehend unbekannt. Es wird angenommen, dass Zel-
Iverbande (hochgradig miteinander verbundene Neuronengruppen) die Bausteine der rech-
nerischen Prozesse im zerebralen Netzwerk sind. Einer der méglichen Mechanismen der
Informationscodierung ist die Koordination von Emission von Aktionspotentialen (Spikes)
zwischen Neuronen in Millisekundenprazision was eine Signatur von der Aktivierung von
Zellverbinden ist. Insbesondere, spezifische zeitlich prazise Spikesequenzen im Input, kn-
nen zuverléssig eine Spike-Emission in einem postsynaptischen Neuron verursachen. Ev-
idenz fiir die Koordination der Spikeaktivitat in Millisekundenprazision wurde bereits in
der Vergangenheit gesammelt, dennoch weisen solche Studien zwei Hauptbeschrankungen
auf: in den meisten Fallen beriicksichtigen sie nur wenige parallel aufgezeichnete Neuronen
und die Korrelationsanalyse ist auf Synchronizitat beschrankt.

Jingste Entwicklungen der Aufzeichnungsmethodik iiberwinden die erste Beschrankung.
Moderne elektrophysiologische Technologien ermoglichen das aufnehmen der neuronaler
Aktivitat von Hunderten von Neuronen in parallel, eine Zahl, die dazu bestimmt ist zu
wachsen. Die Groe der bereits derzeit verfgbaren Daten erfordert eine optimierte rechner-
iache analyse und anspruchsvolle statistische Ansatze.

In dieser Arbeit befassen wir uns mit der zweiten Einschrankung, indem wir eine Meth-
ode entwickeln, um raumlich-zeitliche Muster von Spikes in groen parallelen Aufnahmen zu
erkennen. Insbesondere erweitern wir die Spike Pattern Detection and Evaluation Meth-
ode (SPADE), die urspriinglich auf die Erkennung synchroner Muster beschriankt war,
um nach einer beliebigen wiederholten Sequenz von Spikes zu suchen. SPADE kann in
zweil Schritten zusammengefasst werden: a) Extraktion aller wiederholten Spike-Sequenzen
unter Verwendung des Frequent-Item-Set-Mining-Frameworks, b) statistische Auswertung
der Signifikanz der gefunden Sequenzen in Bezug auf die Nullhypothese unabhéangiger
zeitlicher Spikeemissionen. Wir haben das Verfahren umfassend verfeinert und wvalidiert,
wobei kiinstliche Daten verwendet wurden, die den experimentellen Daten &ahneln, um
die statistischen Leistungen der Methode zu testen. Anschlieend haben wir die Python-
Implementierung von SPADE o6ffentlich als Submodul des Elektorphysiological Analysis
Toolkit (Elephant) online zur Verfligung gestellt.

‘Wir haben SPADE auf in-vivo Aufzeichnungen paralleler neuronaler Aktivitat im mo-
torischen Areal von zwei Makaken angewandt, die einen reach-to-grasp task durchfithrten,
und eine groe Anzahl signifikanter Spikemuster gefunden. Anschlieend untersuchten wir
die statistischen Merkmale der erkannten Muster in Bezug auf die neuronale Zusammenset-
zung, zeitliches Vorkommen und die Beziehung zum Verhalten der Makaken. Die meisten
Muster treten wihrend der Greifbewegung auf und setzen sich aus zwel bis vier ver-
schiedenen Neuronen zusammen. Daruber hinaus unterscheiden sich die Neuronen in den
Zellverbinden fiir die verschiedenen Grifftypen, was auf eine hohe Spezifitit der Muster
fir die verschiedenen Verhaltenskontexte hinweist.

Im letzten Teil dieser Arbeit vergleichen wir SPADE mit anderen existierenden Meth-
oden im Rahmen einer allgemeineren Evaluierung von Methoden fir die Korrelationsanal-
yse von parallelen Spiketrains. Insbesondere argumentieren wir fiir die Wichtigkeit eines
grndlichen Vergleichs der verschiedenen Methoden und fiir die Integration verschiedener
Methoden, die verschiedene Aspekte der Korrelationsstruktur der Daten hervorheben.

Zusammentassend zeigen wir, dass SPADE es ermoglicht, signifikante prazise Spike-
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Sequenzen robust zu erkennen und auszuwéhlen, und dass sich mehrere signifikante Muster
wahrend der Austhrung eines reach-to-grasp tasks wiederholen. Dennoch garantieren die
raumlich-zeitliche Muster allein keine vollstindige Beachreibung der Korrelationsstruktur
der Daten, daher prasentieren und vergleichen wir alternative Korrelationsanalysen fiir
parallele Spikedaten.
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Chapter 1

Introduction

This work introduces a new statistical method for the detection of Spatio-Temporal Pat-
terns (STPs) in Massively Parallel Spike Trains (MPST). The method is first extensively
validated on artificial data and then applied to electrophysiological recordings of MPST
from the motor cortex of a behaving Macaque Monkey.

In the last chapter we tackle the problem of how to compare results of different statisti-
cal techniques applied to electophysiological recordings, focusing in particular on methods
for detection of spike synchronization and more general spatio-temporal spike patterns.

This chapter introduces the motivation for investigating the presence of spike patterns
in modern electrophysiological recordings and for the necessity of a standardized approach
to the comparison of different techniques in data analysis.

1.1 Neuron and spikes

The cerebral cortex is an highly interwoven network. Neuronal cells (schematic represen-
tation in Figure 1.1A) are the fundamental building blocks of the cortical network. The
whole cortex contains billions of neurons connected by thousands of billions of synapses.
Each of them can receive inputs from more than 10000 neurons and project to 10000
other neurons (Braitenberg and Schiiz, 1991). Neurons are excitable cells that transmit
information via electrical impulses, known as action potentials or spikes. The spikes are
generated in the cell body (soma) and they travel down along the cell axon to the synapses
connecting the cell to its post-synaptic neurons. The input spikes generate a post-synaptic
current (PSCs). In the post-synaptic cells all the PSCs are summed and if sufficient inputs
in a sufficiently short time arrive to the cell, they trigger a spike, leading to the propaga-
tion of the information. In the next paragraph we illustrate this electrical micro-dynamic
in more details.

The properties of cell’s membrane enable to keep a voltage gradient between the inside
and the outside (extracellular medium) of the neuron. This gradient is called membrane
potential. In absence of electrical inputs the membrane has a low permeability to exchange
of ions (e.g. Nat, KT, Cl~). Consequently, the higher concentration of positive-charged
lons extra-cellular medium, in respect to the inside of the cell, leads to a constant negative
difference called resting potential. The permeability of the membrane potential can change
via the opening of specific protein structures called ion-channels, which are selective to
a specific ion type that can pass through. Two important classes of channels are the
voltage-gated channels, whose opening probability depends on the membrane potential
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itself, and the chemically-gated channels, opened by chemicals called neurotransmitters.
Input currents to a neuron cause the opening of specific ion channels, allowing the passage
of specific ions. This dynamic (excitatory post-synaptic potential, ePSP) changes the
voltage gradient, depolarizing the cell towards smaller negative values or even hyper-
polarizing it to positive values. In absence of new inputs the membrane potential will
gradually decrease again towards the resting potential. Instead, if the increase of the
membrane potential is sufficient to reach a characteristic level called firing threshold (e.g
due to a large number of incoming spikes in a short time), the voltage-gated channels
open. The opening of these channels allows a much faster influx of positively charged ions
and consequently to a rapid and strong depolarization. A spike consists of such a fast
depolarization which is propagated through the axon to other neurons. Figure 1.1B shows
in details the membrane potential trace during a stereotypical spike. The spike can be
decomposed in three successive phases: 1) when the membrane potential reaches the firing
threshold, the Na™ voltage channels open leading to a fast hyper-polarization, ii) after the
potential reached a maximum, the Na™ channels close and the Kt channels open and the
efflux of Kt causes a fast negative excursion of the membrane potential, iii) after reaching
a negative peak also Kt channels close and the resting potential is restored. This last
phase, which lasts for about 1ms, is also called refractory period, since during this time
gpan the neuron is not excitable and cannot emit new spikes.

The focus of this study is not the microscopic dynamics of spike emission but rather the
interactions between multiple neurons that propagate and process information. The single
apikes are the "atoms” of the neural code and can be metaphorically considered as the
single letter used by neurons, all together forming the alphabet used by the brain. We are
rather interested in the next level of complexity of the brain language, i.e. what could be
considered as the words and the sentences that the neurons use to encode the information.
In the next section we introduce two different hypotheses about the mechanisms (in terms
of our metaphor the syntax forming the brain’s language) that the cortical network can
implement to propagate information using sequences of spikes.

The electrical excursion (spike wave) of the membrane potential during a spike emission
is stereotypical for each neuron (e.g. the spike amplitude and duration is the same for
each spike emission). When interested in the macroscopic interactions between neurons
and not to the details of the electro-chemical dynamics regulating spike emission, it is
then possible to reduce the neuronal activity to a sequence of events, each related to the
time of emission of one spike. Mathematically such sequence of events can be described
as a point process, often referred to with the term spike train. To reduce each spike wave
to a single point in time it is possible to consider the time of one specific feature of the
complete electrical trace (e.g. the positive peak, correspondent to the Nat closing or the
negative one, corresponding to the K+ channels closing).

1.2 Spike patterns: temporal and rate coding

The discovery of spikes (Adrian, 1926b) and of the microscopic mechanisms that regu-
late the electrophysiology of neurons, led to the modern interpretation of a spike-based
information process implemented in the brain. Nevertheless the exact scheme that reg-
ulates this processes is widely debated and most of the efforts deployed in the analysis
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Figure 1.1: Sketch of a biological neuron and an action potential. A) Structure
of a typical neuron and a chemical synapse (source: US National Institutes of Health,
National Institute on Aging). B) Stereotypical shape of the action potential. Synaptic
inputs to the neuron raise the membrane potential from the resting potential. This rise
happens because of the opening of Nat channels and it continues until the potential
reaches a maximum value. Then the Na't channels get inactivated. At this point the K+
channels open and restore the membrane potential.
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of electrophysiological recordings aim to provide new hints towards the understanding of
the brain syntax. Two fundamental properties of neurons have to be taken into account
to formulate a hypothesis about the computational acheme implemented by the cerebral
cortex.

The first is the leakiness of the neuronal membrane. As already explained in the pre-
vious section, in absence of inputs the membrane potential tends to decrease towards the
resting potential. In terms of computation this implies that to propagate the information
and generate a spike in a post-synaptic neuron, it is necessary that pre-synaptic neurons
emit multiple spikes in a short amount of time. In particular synchronous ePSPs maximize
the probability of spikes emission.

The second property was already hypothesized by Hebb (1949a). In his work Hebb
(1949a) hypothesized that temporally precise causal relations between spikes emissions can
shape (reinforce or depress) the connections between neurons. This hypothesis, known as
Hebbian Rule, has been experimentally confirmed by the discovery of spike-time dependent
plasticity (STDP) (Bi and Poo, 1998). STDP is a mechanism of synaptic adaptation,
which consists in potentiation (Bliss and Lomo, 1973; Lgmo, 2003) and depotentiation
(Stent, 1973; Massey and Bashir, 2007) of synaptic strength depending on the input-
output temporal relation between two connected neurons. In particular, if a spike in
the pre-synaptic neuron precedes by few milliseconds the emission of a spike in the post-
synaptic cell (causal relation) then the synaptic connection is strengthened, vice versa
if a spike in the post-synaptic cell precedes one in the pre-synaptic one the synapse is
weakened. The sign (positive corresponding to potentiation and negative corresponding
to depotentiation) and the amplitude of the adaptation is highly dependent on small
variation of the delays between pre- and post-synaptic spikes.

Hebb derived by his rule a more elaborate learning scheme and introduced the concept
of cell assembly. Cell assemblies are defined as groups of highly interconnected neurons
(generated via the potentiation of specific synaptic pathways) that are hypothesized to
be the building block of the information process in the brain. Such theory is also known
as Hebbian learning and anticipated modern biological computation theories decades ago.
In particular, in the last decades two prominent hypothesis on how spikes are organized
to encode the information emerged (for a review see Brette, 2015): rate coding and tem-
poral coding. The fundamental difference is that in the rate framework the information
contained in the precise spike times is irrelevant and the information is rather encoded
in the average firing rates (e.g. average number of spikes in time intervals), while at the
opposite in the temporal coding the information is carried by the exact time emission of
the spikes.

1.2.1 Rate coding

Firing rate modulation has been one of the earliest observation after the discovery of
spikes (Adrian, 1926a). In particular it has been observed across different cortical areas
and species that specific neurons increase their firing rate as a function of different stimuli
or task performed (e.g. Georgopoulos et al., 1986; Lamme and Spekreijse, 1998; Roelfsema
et al., 2004). This property is known as receptive field, since neurons appear to be tuned to
a preferred stimulus and/or action ( e.g. Figure 1.2 shows the tuning of to specific direction
of movement in the motor area of a macaque monkey). In the context of the theories about
information propagation in the brain such observation led to the rate code hypothesis. A
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Figure 1.2: Tuning of motor neurons in a Macaque Monkey. Intracellular recording
of the spiking activity of a motor cortical cell in a macaque monkey performing a center-
out movement in six direction. All the spikes emitted from the cell are showed for different
trials in which the monkey moved a cursor in one of the 6 different direction. The time
is aligned with the movement on-set. The neuron show a preferred direction for which it
increase the rate of spike emission. Vice-versa for the opposite direction the firing rate
decrease around the movement onset. (Figure modified from Georgopoulos et al. (1982)).

neuron processes its input by integrating the incoming spikes in temporal windows of tens
to hundreds of milliseconds. Hence the information is encoded in rate modulations rather
than in the precise occurrences of the single spikes. This makes the computation robust to
noise and random fluctuations of the membrane potential (Shadlen and Newsome, 1994,
1995; London et al., 2010). On the other hand several studies also suggest that this
computational scheme would be too slow to propagate information (Gautrais and Thorpe,
1998; VanRullen et al., 2005) and too limited to provide a unique representation of the
huge variety of sensory stimuli that has to be encoded (Gerstner et al., 1997).

1.2.2 Temporal coding

In contrast to rate coding, the temporal code is relying on the fact that the neurons form
an interwoven and complex network that can operate with a high temporal precision,
producing highly correlated and structured spike outputs. In particular, it is well possible
that their connections are organized through synaptic modulations (STDP) such that

17



neurons operate as coincidence detectors (e.g. a spike emission in a postsynaptic neurons
iz causally related to the emission of multiple apikes from a specific set of presynaptic
neurons, arriving synchronously to the postsynaptic neuron) (Abeles, 1982). Furthermore
neurons have been shown to propagate more reliably synchronous inputs rather than
asynchronous, due to the leakiness of their memebrane (Kandel et al. (1991), chapter 12).
Experimental evidences for the existence of neurons that work as coincidence detectors
have been collected in several studies in the last decades (Roy and Alloway, 2001; Bender
et al., 2006; Fino et al., 2010; Perez-Orive et al., 2004; Hong et al., 2012). Building on
the concept of coincidence detectors, for the temporal code hypothesis the information is
encoded in structured packet of synchronous spikes that propagate through the network.
Detailed and formalized models that can implement the temporal coding scheme have
been proposed and one of the most prominent is the synfire chain model (Abeles, 1991;
Diesmann et al., 1999; Tkegaya et al., 2004; Hosaka et al., 2008). Spike synchronization
has been found in recordings of parallel spike train in a number of different species and
brain areas, such as auditory cortex (Seki and Eggermont, 2003; Carr, 2004; Eggermont,
2015), retina (Van Rullen and Thorpe, 2001; Hu and Bloomfield, 2003; Shlens et al., 2006;
Pillow et al., 2008), visual cortex (von der Malsburg, 1986; Engel et al., 1992; van der
Togt et al., 2006; Berger et al., 2007; Smith and Kohn, 2008; Martin and von der Heydt,
2015), motor cortex (Riehle et al., 1997b) (Figure 1.3), (Baker et al., 2001; Shimazaki
et al., 2012; Torre et al., 2016b), somatosensory cortex (Steinmetz et al., 2000; Reed et al.,
2008; Harvey et al., 2013), hippocampus (Sakurai, 1996; Diba et al., 2014), frontal and pre-
frontal cortex (Vaadia et al., 1995; Sakurai and Takahashi, 2006; Fujisawa et al., 2008; Pipa
and Munk, 2011). This studies showed that the occurrences of patterns of synchronous
apikes is related to behavior, supporting the idea that synchrony is used to encode and
propagate sensory inputs and outputs.

Testing the hypothesis of rate and temporal code presented from the very beginning
highly challenging problems. If on the one hand rate changes and spike synchronization
in relation to different stimuli have both not only been observed in data since decades,
but can also be considered a trivial expectation for the dynamics of a neural network.
However, disentangling the two options is as necessary as non-trivial when one wants to
test the different coding hypotheses. The first challenge is given by the fact that the
two observations can reciprocally be a byproduct of the other: rate changes could be a
consequence of spike synchronization and vice versa increasing rates cause an increase
of spike synchronization. In the first scenario it could be that the receptive field that
is commonly considered as a primary feature of single neurons could be the byproduct
of a network effect (e.g. precise synchronization of multiple neurons) that involve other
neurons that are not recorded. On the other hand increased firing rate of multiple neurons
increases trivially the chance of synchronous spike emission in such neurons. Furthermore
not only it is difficult to distinguish the two phenomena, but also they might well be
both implemented in the cortical network and be used for information processing. In a
simpler scenario it is possible that different brain regions of different neurons implement
different coding frameworks, but it could also be that the two coexists in the same area.
Hence it is crucial to be able to distinguish between possible correlation on the different
time scales. For this reason it is crucial to develop sophisticated and ad hoc techniques
to detect and evaluate the statistical significance of correlations of the spiking activity of
neurons recorded in parallel and on the different time scales. In particular to test the
temporal hypothesis it is not sufficient to detect synchronous spiking activity, but it is
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Figure 1.3: Increased synchronization of two cell in correspondence of a motor
cue. Intracellular simultaneous recordings of two motor cell for different trials of a reach
and touch task in the motor area of a macaque monkey. In red are highlighted synchronous
spikes which occurred more often than what expected by chance synchronization. The
monkey was trained in previous trials to expect the cue to start the movement in 3 different
time point (ES1, ES2, ES3), preceding the actual time (RS) of the visual cue that signals
the monkey to reach and touch a screen. The fact that synchronous events are aligned with
two of these expect cues and with the actual go signal suggests that they are signature of
the preparatory process for the movement. (Figure modified from Riehle et al. (1997b)).

necessary to test for their significance in respect to the firing rate dynamic (e.g. firing rate
modulations). In particular in the last chapter, we will introduce different methods that
alm to analyze MPST to test the temporal coding hypothesis distinguishing chance by
statistically significant correlations. In this work we refer to precise temporal correlation
to indicate synchronization of individual spikes (e.g. on millisecond time scale) and to
firing rate correlation for average spike counts correlations (e.g tens of milliseconds time
scales).

1.3 Beyond synchronization: Spatio-Temporal Patterns

So far, we have purposely avoided to include in our argument another fundamental prop-
erty of the cortical network: the axonal conduction delays. Different experiments showed
a large variability of spike propagation speed in the mammalian neocortex (Ferster and
Lindstrém, 1983; Swadlow, 1988, 1994; Salami et al., 2003). In particular the axonal de-
lays can be as small as 0.1 ms and as large as 44 ms (Figure 1.4). Such an experimental
observation poses a natural question: why would the brain maintain such different but
reliably precise spike propagation delays? A possible answer is given in the context of
the temporal coding: the different delays are used to increase computational performance.
‘While in the case of same delays, a given set of neurons can form one unique patterns and
the information of a spike pattern is completely and only contained in the neuronal com-
position of the pattern (which neurons emits a spike synchronously), including in the same
coding scheme different propagation delays enable a set of neurons to form a multitude
of patterns depending on the order in which they spike (e.g. the same neurons spiking in
different spiking sequences may activate different post-synaptic cells).

19



cortico-cortical connections

10T

number of pairs

10 B 20 30
axonal conduction delay (ms)

Figure 1.4: Distribution of experimentally measured conduction delays of cor-
tical axons running through the corpus callosum (Figure modified from Izhikevich

(2006)).

To better understand this concept it is possible to think of a simple example (see Figure
1.5) in which we have two pre-synaptic neurons (A,B) projecting to two different post-
synaptic neurons (C, D). Lets assume that the synchronous input of two spikes is sufficient
to elicit a new apike in the post-synaptic neurons. In the case of identical delays between
pre- and post-synaptic neurons, every time that neurons A and B spike synchronously,
both neurons C and D will emit a spike. With such scheme the two post-synaptic neurons
are replicas and it is not possible to use them to encode different information. In order
to use them as a classifier (e.g. distinguishing between two different inputs given that one
between either C emit a spike or D emit a spike) we would need to add at least 2 more
neurons E F. If each of them is respectively connected to only one of neuron C and neuron
D it is then possible to elicit a spike only in one of the two post synaptic neurons. In such
a way it would be possible to represent three different inputs using three different possible
aynchronous patterns: the pair A,B elicits a spike in both C and D, the pair A E leads
only neuron C to spike while the pair B,F causes a spike only in neuron D. In other words,
this simple network is capable to implement the AND/OR. operations.

Yet, the same computation is possible also using only two pre-synaptic neurons if the
connectivity allows for heterogeneous conduction speeds. In such a case, it is possible
to organize the spike emission times in different temporal sequences in order to elicit a
apike in both post-synaptic neurons or, alternatively, in only one of the two. For instance
we can consider the case in which a spike emitted by A needs 2 milliseconds to reach
neuron C and 4 milliseconds to neuron D, while for the connections between B and C
and B and D have the opposite propagation delays (B to C 4 milliseconds and B to D 2
milliseconds). In such case it is possible to cause a spike only in C whenever A emits a
apike 2 milliseconds before B and viceversa D emits a spike whenever a spike form B is
followed by a spike in A after 2 milliseconds. In order to have the AND condition in which
both C and D emit a spike synchronously it sufficient that A and B both emit two spikes
each, one 2 milliseconds after the other. This is just a biologically unrealistic toy-example
and many other network implementations of an AND/OR. function exist, nevertheless it
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Figure 1.5: Sketch of an example of two functionally equivalent networks: one
with a larger number of neurons (top) and the second with propagation delays (bottom)

makes evident how "storing” the information also in the connectivity delays may reduce
the number of neurons necessary to deliver the activity to the relevant network.

In such a context the temporal coding for the propagation of information would rely on
repeated precise sequences of spikes (Spatio-Temporal Patterns, STPs), rather than syn-
chronous spike emissions only.

1.4 Detection Spatio-Temporal Patterns in Massively Par-
allel Spike Trains

Several studies (e.g. Abeles, 1991; Bienenstock, 1995; Diesmann et al., 1999; Izhikevich,
2006) studied the formation of spike patterns in network models, showing that these can
be reliably propagated through the network and could emerge from the development of
specific connectivity patterns due to synaptic plasticity.

Other works showed evidences of the occurrences of precise STPs in electrophysiological
recordings (e.g. Prut et al., 1998; Takahashi et al., 2015) and introduced statistical analyses
to detect spike patterns (e.g. Shimazaki et al., 2012; Torre et al., 2016a). The main
challenges posed by the detection of spatio-temporal patterns in parallel spike trains are
the following:

e the computational cost of the extraction from the data of all repeated spike se-
quences, which number grows exponentially with the number of parallel neurons

e the multiple testing problem caused by the large number of possible tests to perform
in order to assess the significance of the patterns

For such reasons most of the methods introduced in the past consider only the interaction
between few neurons or focuses on specific temporal structures which are not generalizable

21



to arbitrary sequences of spikes.

In this work we introduce a method for detection and statistical evaluation of spike patterns
in massively parallel spike trains. In particular, we extend the Spike Pattern Detection
and Evaluation (SPADE), method that Torre et al. (2013) developed for detection of
aynchronous spike patterns, to arbitrary sequences of spikes. We validate the method in
multiple scenarios with artificial data and we then apply the method to two datasets of
parallel spike trains recorded in vivo in the motor cortex of a macaque monkey performing
a reach-to-grasp task.

1.5 Reproducibility and Comparability

The continuous growth of available data and analysis methodologies should allow a con-
stant increase in the understanding of the fundamental cognitive mechanisms. Neverthe-
less, the efficacy of the research depends on the achievement of two fundamental standards:
reproducibility and comparability.

The minimal requirement to validate a scientific study is its reproducibility. A results
that cannot be reproduced and consequently validated is not beneficial to the scientific
field development. The complexity of the experimental setups and analysis methodologies
adopted in contemporary neuroscience poses the challenge of preserving the reproducibil-
ity of the research (e.g. Denker and Griin, 2015; Manninen et al., 2018). In this study we
address such problem providing and publishing an implementation of the novel method in
the context of the Elephant Python package (http://python-elephant.org) and publishing
online the entire workflow for the analysis of the data.

The reproducibility of the research is not the only requisite for the advancement of a cer-
tain field of studies. It is also crucial to have the possibility to compare results among
different datasets and methodology applied. In the second of this two scenarios it is firstly
necessary to compare different assumptions and limitations of the analysis tools used. In
this work we address such challenge by developing a comparative review of the available
methods for detection of synchronous and spatio-temporal patterns in massively parallel
apike trains.
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Chapter 2

Detection of Spatio-Temporal
Spike Patterns in Massively
Parallel Spike Trains using Formal
Concept Analysis

2.1 Introduction

In this chapter we present an approach to detect spatio-temporal patterns (STPs) of
precisely timed spikes occurring in parallel spike trains.

Torre et al. (2013) addressed this problem by introducing an efficient method (Spike
Pattern Detection and Evaluations, in short SPADE) to assess the presence of patterns of
synchronous spikes in massively parallel spike trains that occur inexcess to the expecta-
tion. In a first step this method exploits to this aim frequent itemset mining techniques
(Borgelt, 2012), and in a second step assesses the statistical significance of detected pat-
terns. However, it can only detect synchronous spike patterns, and not more general STPs
in which the apikes belonging to a pattern follow each other in a temporal sequence.

We develop a novel approach designed to find and evaluate such types of STPs. Com-
pared to the analysis of synchronous spike patterns, this poses a number of additional
challenges. One challenge lies in the increased number of patterns to look for. Adding
the temporal dimension yields a number of possible patterns which is orders of magnitude
larger. The occurrences of each of these patterns have to be counted, and non-chance
patterns have to be differentiated from chance patterns based on properties such as the
number of composing spikes or the number of pattern repetitions. Another challenge lies
in the decreased contrast between these STPs and background activity, due to the fact
that the events forming the STPs are here individual spike scattered across multiple points
in time rather than synchronous spikes, leading to a higher-dimensional space in which
patterns are represented. These leads to a large increase in the number of required com-
putations, that prevents the practical application of the method in its original form. We
deal with the first challenge by considering only patterns that actually happened, rather
than all possible patterns, making use of the mining techniques provided by the formal-
ism of the Formal Concept Analysis (FCA) (Ganter and Wille, 1999). More precisely, as

we describe in section 2.2.1, we study patterns that form the intent of formal concepts,
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Figure 2.1: Constructing a formal context from spike recordings in parallel
channels. A: we analyze parallel neuronal recordings in multiple channels by discretizing
time into bins of duration dt and chopping time windows of length At = K - dt out of the
recorded data stream. The gray spikes are background spikes, the black spikes are members
of an STP. B: we concatenate the recorded spike trains within a window horizontally. C:
incidence table representation of panel B. The objects of this formal context are the time
windows, indexed by their starting time. The attributes are the spike time-indexes relative
to the window start, combined with the channel identities.

repeated in multiple position of a sliding window. We address the second challenge by
evaluating the intensional stability (Kuznetsov, 2007) of these concepts as an indicator for
the non-randomness of a concept, as explained in detail in section 2.2.1.

In section 2.3.2 we validate the proposed method on test data consisting of parallel
apike trains which comprise different independent background activity, each including
different known statistical properties of parallel spike trains (e.g. firing rate changes),
where patterns arise purely by chance, and multiple occurrences of an STP injected in the
independent data. We investigate the performance of the new method in terms of true
positive (TP) and false positive (FP) detections of STPs and quantify their precision and
recall properties. We also demonstrate how the computational load of the method varies
for different data and analysis parameters.

2.2 Methods

2.2.1 FCA on spike data

Regarding FCA, we use the standard definitions (Ganter and Wille, 1999): a formal
context is a triple K = (G, M,I) comprising a set of formal objects G, a set of formal
attributes M, and a binary relation I between the objects in G and the attributes in M.
If (g,m) € I with g € G, m € M, we also write gIm. We denote the set of all attributes
shared by a set of objects A C Gas A’ = {m € M|Vg € A : gIm} and likewise the set of all
objects which have all the attributes in BC M as BC M: B' = {g € G|Vm € B : gIm}.

A formal concept is a tuple (A4, B) with extent A C G and intent B C M such that
A" = B and B’ = A. Let B(K) be the set of all concepts of K. Concepts are (partially)
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ordered under set inclusion on the extents: V(A Bi),(A2,B2) € B(K) : (A1, By) <
(Ag, Ba) & A; C Ay, (B(K), <) is a complete lattice (Ganter and Wille, 1999).

In our application, the objects are time windows within which spiking activity of
neurons was observed. The example in Figure 2.1A depicts two such windows labeled by
their starting times ¢;and t3. The attributes are tuples (channel-number, time-index) of
the channel (or neuron) number from which a given spike was recorded, and of the spike
time index relative to the window onset. Figure 2.1 illustrates the process of computing
the relation I from spike data. Suppose we record spike trains (temporal sequences of
spikes) from 3 channels, each channel recording the spikes of one neuron. We discretize
the time axis into contiguous bins of duration dt. Then, we slide a time window of
duration At = K - dt across these data, in increments of dt. dt is chosen depending
on the resolution of the recording device and on the analysis needs, K is selected based
on the expected maximal duration of an STP. We set dt = 1ms throughout this paper,
which ensures that there is at most one spike from the same neuron in each bin. The
value of K is discussed below. The contents of each window across all channels are then
concatenated horizontally (see panel B). Lastly, spikes are converted to crosses, yielding
the familiar incidence-table representation of I (panel C), to which we apply FCA. We use
a pure Python implementation of the fast-FCA algorithm (Lindig, 2000). This algorithm
creates the concepts in an order that embeds the usual concept order, which simplifies the
subsequent evaluation of stability.

Figure 2.1A also shows by black ticks an STP. In this example, these spikes correspond
to the attribute set B = {(1,1),(2,7),(3,4)}. B(K) contains a concept whose intent
consists of these spikes only, plus concepts whose intent comprises time-shifted versions
of these spikes at all possible times within Af. Any of these concepts corresponds to
the STP we are interested in. We arbitrarily choose the one where the first spike is
aligned with the window onset. However, typically such an STP does not appear in
isolation, but is embedded in background spiking activity (gray spikes). Hence, after
the application of FCA, there will be many concepts which are due to these background
processes, and which we wish to separate from the STP concept. We experiment with
conceptual stability analysis for this purpose (Kuznetsov, 2007). Specifically, we compute
an intensional stability index of concepts (A, B) € B(K) (Roth et al., 2008) by

_ He c A|¢" = B}
a(A,B) = T (2.1)
with the algorithm described in that paper, and filter out all concepts whose stability
index is lower than a pre-fixed threshold (see Section 2.3.1). Furthermore, we filter out

concepts that are time-shifted superconcepts of concepts whose stability index is higher
than the threshold.

2.2.2 Ground truth data generation

To test the performance of FCA in detecting STPs we use artificial ground truth data with
controllable pattern occurrences and pattern size. We generate parallel Poisson processes
to simulate independent background activity. We also generate data sets which contain
STPs by injecting spike patterns into independent background activity, cf. (Grin et al.,
2008; Berger et al., 2010a). The background rates are chosen to comply with the firing rates
of experimental neurons, while the type of spike patterns resembles that which would be
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observed in data from synfire-like networks (Abeles, 1991; Bienenstock, 1995; Izhikevich,
2006).

For the background activity we generate independent spike trains as realizations of
50 parallel independent Poisson processes of duration T = 1 sec. The theoretical firing
rates r € {5Hz, 10 Hz, 15Hz} used to draw the processes are identical for all neurons. We
generate 100 realizations for each value of r, yielding a total of 300 different background
activity-only data sets. Such independent data sets are used to study the occurrence
of false positives (FP), i.e. cases where patterns are detected although there were none
injected.

In a second type of data set, which we use for the evaluation of true positives (TPs)
and false negatives (FNs), we generate ¢ occurrences of an STP composed of a sequence
of z spikes from different neurons. To this end, we randomly select ¢ time points t;,...,%.
in the interval [0, — z - 5ms]. These times correspond to the times of the first spike of
the patterns for each of the ¢ repetitions of the pattern. Each following spike of the STP
iz injected 5 ms after the preceding one and into a different neuron. Therefore, the total
duration of such patterns is (z — 1) - 5 ms. The pattern is chosen with regular spike delays
for convenience, but this choice is not relevant for their detectability. We vary both z and
¢ in the range {3,4,...,10}. For each of the 64 combinations of these two parameters
we generate 100 different realizations of the patterns, which we inject in an independent
background activity data set generated as explained above, for each rate level r. This
yields a total of 64 - 100 - 3 = 19200 data sets, each containing a total of 50 neurons, z
of which are involved in an STP. We then extract all concepts from each data set using
FCA as explained in section 2.2.1. Since the maximum pattern length is equal to 45 ms for
z = 10, we fix the length K of the sliding window to 50 ms, so that the longest pattern is
covered by one single window. For a data set containing a pattern with parameters (z,¢),
we define as a TP the correct detection of the concept (A, B), such that A = {t1,...,%.}
and B = {(1,0),(2,5),...,(z,(z—1)-5)}. Any other detected concept is considered as an
FP. Since in each of the data sets only one pattern type is injected, the number erp of TPs
per data set is either 0 or 1. Reciprocally, the number of false negatives is ey = 1 — erp.
For a given parameter tuple (r, z, ¢), we determine the fraction of the 100 data sets in which
we find an FP or an FN, providing us with the FP rate and the FN rate, respectively.

2.3 Results

2.3.1 Independent data

We start evaluating the performance of the method by analyzing the occurrence of FPs
in the background-only data sets. Concepts detected in these data sets are thus chance
occurrences of specific spike sequences and are considered as FPs. The two parameters by
which we characterize a concept (A, B) are its extent size |A| and its intent size |B|. In
terms of the spike data the extent size corresponds to the number of windows in which
a specific sequence occurred, and the intent size to the number of spikes composing the
sequence.

Figure 2.2 shows in gray code the number of concepts detected in independent data
as a function of their intent size (horizontal axis) and extent size (vertical axis). We call
this type of display ’pattern spectrum’ in line with (Gerstein et al., 2012) and (Torre
et al., 2013). Concepts with an extent or an intent of size 1 are not counted or displayed,
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Figure 2.2: Pattern spectra of independent background-only data: each panel
shows the concept counts as a function of their intent size |B| (horizontal axis) and of
their extent size |A| (vertical axis) detected in 100 independent data sets, composed of
50 parallel spike trains without any pattern injection mimicking background noise, for
different firing rates (from left to right: 5,10,15 Hz). The number of counts is given in
gray colors, as indicated by the color bar (white corresponds to 0, black to 10° counts).

since single spike ocecurrences and non-repeating sequences are not considered as potential
STPs. Each panel shows the pattern spectrum for a different neuronal firing rate . The
area of non-zero entries and thus the total number of concepts increases with the firing
rate of the neurons (see also Figure 2.3), which is expected since more spike sequences
may occur by chance at higher firing rates due to the increased number of spikes. Most
detected concepts have extent size of |A| = 2 or intent size of |B| = 2.

As mentioned above, we aim to select the true positive STPs by applying a stability
analysis to the concepts. We wish to determine a stability threshold value such that the
concepts that oceur by chance are discarded. A suitable threshold value needs to fulfill the
following constraints: 1) avoid detection of FPs, 2) have a high degree of TP detection.
The histograms in Figure 2.3 (left to right) correspond to the pattern spectra shown in
Figure 2.2 (left to right). The gray parts of the stacked bars show the counts of concepts
whose intent contains only 2 spikes (|B| = 2) or whose extent contains only two windows
(JA| = 2). Vice versa, the black parts correspond to the concept count for |A| > 2 and
|B| > 2. Concepts with stability larger than or equal to 0.6 have always either intent
or extent size equal to 2. This fact provides us with a suitable criteria for classifying all
concepts which have either intent or extent size 2, or stability < 0.6 as chance patterns.

2.3.2 Performance of pattern detection

Now that we have defined a suitable criteria to reject all the chance patterns composed
only of spikes of the background activity (intent> 2, extent> 2, stability> 0.6), we can
evaluate the performance of the method for the detection of STPs injected into artificial
data, as described in section 2.2.2. Figure 2.4, top row shows the number cpp of FPs
for data with injected patterns, and background rates r = 5,10,15Hz from the left to
the right panel. Each panel shows, in shades of gray, the number of data sets which
contain at least one FP as a function of the number z of spikes (horizontal axis) and of the
number ¢ of occurrences of the pattern injected in the data sets (vertical axis). Because
100 simulations were carried out for each parameter set (z,r,¢), the value of each entry
ranges from 0 to 100. The total number of FPs is low (usually 3 or lower) but increases
both with the firing rate, as we can expect from the results of the previous section, and
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Figure 2.3: Stability histogram of the concepts in independent background-only
data: each of the three panels shows the histogram of the number of concepts found in
independent background data, for different stability values. The data analyzed are the
same as shown in Figure 2.2, with the firing rates of the neurons changing from 5 to 15 Hz
in the panels from left to right. The height of each bar in the histograms represents the
number of concepts whose stability is in the range indicated on the horizontal axis (bin
width: 0.1). The black bars (that is, the black parts of the stacked bars) show the counts
of concepts with both extent and intent size larger than 2, whereas the gray bars show
their counts when one of the two size values is equal to 2. The thin gray line indicates a
threshold for the stability above which no black bars are visible, indicating that patterns
with this or higher stability values have extent or intent size (or both) 2.

with the pattern parameters z and ¢. The reason for the latter is that the larger and more
frequent the injected pattern is, the more likely is the repetition of spurious sequences of
apikes which by chance occur with the injected pattern and which thus result in a concept
with a stability index > 0.6.

In the second row of Figure 2.4 we show equivalent diagrams with FN counts (cpn).
Each entry shows the number of data sets (out of 100 realizations) in which the injected
pattern is not detected. For each rate level, the number of FINs shows a sharp decrease
at a particular number of pattern injections ¢, independent of the pattern size z (e.g.
for r = 5Hz at ¢ = 4). This border increases to higher ¢ levels for higher firing rates
(from left to right). The number of FNs increases with the rates due to an increased
probability of spurious superpatterns of the injected STP, causing the correct STP to be
ignored by our current concept filtering procedure in favour of the superpatterns. The
independence from the pattern size is a feature of intensional stability, combined with our
data generation process: all windows containing the target STP are guaranteed to contain
all its constituting spikes (plus possibly additional noise spikes), no matter how large z
iz. For all studied firing rates, patterns occurring just 3 times are never detected, but all
patterns occurring 5 or more times are correctly detected, which is a consequence of our
choice of the stability threshold.

In order to get further insight in the performance of the our approach, we compute
for each data set with parameters (r, z,c) its precision and recall as defined in Olson and

Delen (2008):

CTP recall = CTP

precision = ——, R —
CTP + CFP TP + CFN

We calculate the two measures separately for the same data sets used for the FP/FN
evaluation. Figure 2.4, third row shows the average precision and recall as a function
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Figure 2.4: Performance of the method for various data parameters. Top half:
FPs and FNs in data with injected STPs: each panel shows the number of data
sets which contain at least one FP or one FN after filtering the concepts using a stability
threshold of 0.6 and a lower threshold value of 2 for both intent and extent size. The
firing rates are varied from left to right from » = 5 Hz to » = 15 Hz. For each display we
varied along the horizontal and vertical axis the size z and the number of injections ¢ of
the injected pattern, respectively. Bottom half: Precision and recall corresponding
to the FP/FN counts shown in the top half. The color bar for precision and recall ranges
from 0.8 to 1.0, whereas all values below < 0.8 are set to white.
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of the parameters (r, z,c). Since we are particularly interested in the high performance
regime, we emphasize this range by adjusting the color code such that it covers only the
interval [0.8,1.0], and we set all values < 0.8 to white. Black corresponds to a value of
1.0. The performances expressed by either measure are very similar, which is due to the
fact that in the high precision/high recall regime, both cpp and cpN are very small. Both
are close to 0 for low numbers of pattern occurrences ¢, but drastically increase for data
sets with 5 or more injections, and are basically independent of the pattern size z. This
is due to the behavior of the FINs.

The acceptable tradeoff between FPs and FNs depends on the hypothesis to be tested.
Since we wish to show the existence of STPs, we prefer to choose a conservative threshold
guaranteeing virtually no FPs, even if that incurs some FNa.

2.3.3 Runtime behavior of the FCA Algorithm

‘We test the runtime behavior of our method on data sets containing independent spike data
without injected STPs. The presence of a few STPs would not noticeably affect the overall
computational effort. Our goal is to determine whether our current implementation, which
also uses the SciPy toolbox Jones et al. (2001), is fast enough to enable the analysis of
typical experimental data sets from multi-channel recordings. Since the total runtime of
FCA would in general increase with the context fill ratio, we generate the data sets with
a fairly high baseline firing rate of 15Hz. We simulate 50 neurons in parallel, a number
comparable to the size of modern multi-electrode recordings. We would like to be able to
analyze up to 30 repeated trials of the same experiment, in chunks of 500 ms. Hence, the
average number of spikes in the data iz 11250. Note, however, that this number is likely
to grow as experimental techniques advance.

For the profiling results shown in Figure 2.5, we use a cluster with nodes consisting
of 2x Intel Xeon E5-2680v3 processors with 2.5 GHz processing speed and 8 x 16 GB
DDR4 RAM, and report the time taken for context construction (circles), FCA (stars)
and stability (diamonds) as a function of the total number of spikes in the data set. The
number of spikes is the actual number taken from the data set used for each run. Most of
the time is consumed by the computation of stability, consistent with the scaling analysis
presented by Roth et al. (2008): exact stability evaluation time grows quadratically with
the number of concepts. The curves in Figure 2.5 are fits performed with a linear function
for context construction, a quadratic function for FCA and thus a quartic fit for the
atability. Exact stability evaluation is feasible within a day up to about 4000 spikes,
corresponding to 12 experimental trials with the above-mentioned features (number of
neurons, trial duration, average neuronal firing rates). Extrapolation of the runtime to 30
trials based on the quartic fit yields = 45 days.

2.4 Discussion

Information in the cerebral cortex has been hypothesized to be encoded and processed
in terms of spatio-temporal patterns (STPs) of spikes generated from different neurons.
Under this hypothesis, an STP is assumed to be the signature of active cell assemblies
through which temporal sequences of spikes propagate at millisecond precision. Various
network models, such as the synfire chain Abeles (1991) and synfire braid Bienenstock
(1995); Izhikevich (2006) exist, which process information by propagation of STPs. These
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Figure 2.5: Profiling results on synthetic data: nine data sets with different
number of spikes were evaluated: The compute time to calculate the FCA (asterix),
formal contexts (filled circle), stability (diamond) and the corresponding fitted curves on
each data set are shown. For details, see text.

models are compatible with known features of biological networks, in particular in terms of
neuronal connectivities. Nevertheless, they remain of a speculative nature because their
existence is hard to prove. Earlier work provided evidence for the occurrence of STPs
in data from small numbers of simultaneously recorded neurons Nadasdy et al. (1999);
Prut et al. (1998). However, these methods do not scale to massively parallel spike trains
as recorded nowadays on a regular basis Riehle et al. (2013); Schwarz et al. (2014). We
started to exploit a new approach based on formal concept analysis (FCA, Ganter and
Wille (1999)) to mine parallel spike train data for STPs involving any possible subgroup
of neurons of an observed population. We use FCA for an extensive search for potential
STPs, which are expressed as formal concepts. To construct the formal context a window
of pre-defined duration is attached to each time step. Thus, potential STPs longer than
the analysis window are not detected. Only concepts that repeat at least three times
are further considered. STPs found in parallel spike trains may either occur by chance
or be generated by an underlying network process, which may reoccur and thus cause
repeated occurrences of the patterns. To disentangle chance from real patterns we used
the stability measure introduced in Kuznetsov (2007) and explored which threshold on the
stability would serve this purpose.

‘We tested the approach based on ground-truth data which we generated by stochastic
simulations of 50 parallel spike trains. We used independent spike trains to explore the
detection rate of mere chance patterns, i.e. false positives (FPs). We found that the FP
rate is generally low, but increases with the neuronal firing rate (varied from 5 to 15Hz).
Most FP patterns have either low intent size (= 2) or low extent size (= 2). The stability
distribution of these FPs revealed that chance patterns with extent and intent size both
larger than 2 always had stability lower than 0.6. In the light of these considerations, we
minimized the risk of FPs by adopting a criteria which classifies as non-chance patterns
only the STPs which occur at least 3 times and are composed of at least 3 spikes, as already
done for instance in Prut et al. (1998), and additionally have stability 0.6 or larger. We
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then further generated data that contained STPs injected into independent background
activity to investigate the amount of FPs that occurred in STP data as a result of the
overlap of the injected patterns with background spikes, as well as the amount of false
negatives (FNs). The rates for the background activity in these data varied again from 5
to 15Hz, while the STPs involved 3 to 10 neurons and were injected 3 to 10 times in the
data, at random time points. It turned out that FPs of this type were rare (usually less
than 3 out of 100 simulations) and were always superpatterns of the injected STP. No FPs
disjoint from the injected STP, i.e. composed of background spikes only, occurred. Instead,
the FN rate decreased abruptly for a rate-dependent specific number of occurrences. The
reason is that with more occurrences the stability of the pattern increases. The number
of oceurrences representing the border between high and low FN levels did not depend on
the size z of the injected STP. We could draw analogous conclusions from the evaluation of
the precision and recall of the method. Both quantities were low (< 0.8) for a low number
of pattern occurrences, but drastically increased for data sets containing patterns with 5
or more injections. Besides, both were almost independent of the pattern size z, which is
due to the behavior of the FNs mentioned above. We experimented also with larger values
for the stability threshold than 0.6 (up to a threshold of 0.8). Higher thresholds yielded a
lower amount of FPs at the expense of higher FN levels. In the light of this trade-off, 0.6
seemed to be a suitable threshold for stability in our settings.

For potential applications of the method to experimental data, a suitable value for the
atability threshold remains to be determined. Several Monte Carlo techniques exist that
use independent surrogates of the original data in order to derive the statistical significance
of correlations present in the original data Griin (2009). The independent surrogates are
generated from the original data by intentionally destroying the precise timing of spikes
(and thus STPs as well) while preserving other features of the data (e.g. firing rates or
spiking regularity) as much as possible Louis et al. (2010c). Using such surrogate data
could be an effective way to determine typical stability values of chance patterns and thus
to set a suitable stability threshold. This approach however remains to be investigated.
Additionally, we plan to investigate the relation between the approach suggested here to
detect STPs and methods we introduced e.g. in Griin et al. (2008); Torre et al. (2013) to
detect patterns of synchronous spikes on the basis of their statistical significance. Both
the stability value proposed here and statistical p-values used in other studies are meant
as measures to distinguish chance and non-chance STPs. Suitable thresholds for these
values must account for typical features of spiking activity, such as regularity of inter-
apike intervals, temporal modulation of neuronal firing rates, rate heterogeneity across
neurons, and so on.

Finally, another aspect needs to be solved before our approach becomes applicable to
data of larger size than considered here (e.g. larger number of neurons, higher firing rates,
longer recording time). Namely, our runtime analysis revealed that context construction
and FCA are reasonably fast, but the time taken to compute the pattern stability scales
as a quartic function of the number of spikes. Various steps could be undertaken to
improve the computational performance of the method: a more efficient implementation
of the FCA algorithm we used Lindig (2000), the use of a faster algorithm Kuznetsov and
Obiedkov (2002); Andrews (2009), a parallel FCA algorithm Krajca and Vychodil (2009),
or an approximate rather than exact evaluation of pattern stability Babin and Kuznetsov

(2012).
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Chapter 3

Extending SPADE to
Spatio-Temporal Spike Patterns

3.1 Introduction

In this chapter, we provide an extension of SPADE (Torre et al., 2013) to spatio-temporal
patterns. In chapter 2, we addressed this problem by a new approach based on Formal
Concept Analysis (FCA; see Ganter and Wille, 1999) to efficiently find STPs in MPST
data, count their occurrences, and evaluate their stability (see Kuznetsov, 2007) as a mea-
sure for non-randomness. We successfully applied the method to artificial test datasets
of moderate size, e.g., 50 spike trains at 15 Hz for 1s. The analysis was computation-
ally too expensive to be applied on larger data sets as often realtistically encountered in
neurophysiological experiments (e.g. Brochier et al., 2018).

Here, we improve the methodology introduced in the previous chapter in three re-
spects. First, we use frequent item set mining on a suitably restructured format of the
data as an equivalent but computationally more efficient alternative to currently available
FCA algorithms. This shift of paradigm makes the method equivalent to SPADE from a
procedural point of view. Second, we approximate exact stability with the Monte-Carlo
approach suggested by Babin and Kuznetsov (2012), which reduces the cost of stability
computation (previously the runtime bottleneck) by several orders of magnitude. Thus,
one may compute different types of pattern stability and develop different criteria to filter
patterns on the basis of these types improving further the performance of pattern detec-
tion. Third, we extend to STPs the evaluation of pattern significance originally introduced
in Torre et al. (2013) and compare it with the approach based on pattern stability.

Section 3.2 presents the various steps of our novel method and links them to previous
methods, mainly to the work we presented in chapter 2 and in Torre et al. (2013). Section
3.3 compares the performance of the stability-based (see section 2.2.1) and significance-
based (SPADE) approaches for patterns filtering, and provides selection criteria for candi-
date patterns. We demonstrate the efficacy of the extended SPADE method in detecting
STPs, while largely avoiding false positive detections in simulated MPST with different fea-
tures typical for electrophysiological data, in particular different forms of non-stationarity
such as firing rates varying over time and across neurons. Finally, section 3.4 discusses the
advantages of SPADE over existing techniques for the analysis of correlations in MPST
and proposes future studies.
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3.2 Methods

The problem we are concerned with in this work is the extraction of spatio-temporal spike
patterns in massively parallel spike trains and the classification of these STPs into those
that occur reliably and those which do not, i.e. non-chance vs chance events. Here we
first review a state-of-the-art method based on Formal Concept Analysis (FCA) which
we introduced in chapter 1 to address this problem, and then we improve this method
in various respects. The following sections describe the three main steps of the novel
method, namely pattern extraction (section3.2.1), identification of reliable patterns by
means of various stability measures (section 3.2.2), and statistical assessment of pattern
significance (section 3.2.3).

3.2.1 Extracting non trivial patterns from large-size data

In our setting, an STP is defined as a pattern of spikes, emitted from a given collection
of neurons, that have the same temporal relationship with each other across different
occurrences. In chapter 1 we introduced how Formal Concept Analysis (FCA) can be used
for extracting closed frequent patterns from large data sets, adapting the methodology to
parallel spike train data, here we relate the Frequent Item set Mining (FIM) to FCA.

FP-growth as an equivalent alternative to fast-FCA

In chapter 1, we employed our pure Python implementation of the fast-FCA algorithm
(Lindig, 2000). This algorithm creates the concepts in an order which simplifies the
subsequent exact evaluation of stability used for isolating stable patterns from noise (see
below). Unfortunately, the runtime of the computation of exact stability (see Roth et al.
2008) scales roughly with the fourth power of the number of spikes, as illustrated in Figure
3.1. This leads to a slow computation preventing the application to data sets of several tens
of neurons. In chapter 1 we extrapolated the computation time to > 60 days on a data set
of 153 duration composed of simultaneous recordings of 100 neurons. However, when one
does not compute stability, or computes it approximately rather than exactly (see below),
the concept order is not needed, as explained in Babin and Kuznetsov (2012). Modern FCA
algorithms exist that only compute the concepts and are, therefore, considerably faster,
such as In-Close (Andrews, 2009) which is currently the fastest one to our knowledge.
Unfortunately, at the time of writing, the state-of-the-art C' implementation of In-Close
exited because of a memory overflow when we input our data. The C' implementation
solving this problem will be provided soon (Kodoga, personal communication).

Instead, we explored another option for implementing a faster search for concepts. We
exploited a known correspondence between FCA and (closed) frequent item set analysis
(Zaki and Ogihara, 1998; Piskovd and Horvéth, 2013): formal objects can be mapped onto
transactions, formal attributes onto items, intents onto closed itemsets and extent sizes
onto supports, see also table 3.1. This allows us to compute the concepts based on the
FP-growth algorithm known in the data mining community (Han et al., 2004). FP-growth
iz a frequent item set mining algorithm widely used to mine closed frequent item sets in
large data sets. Specifically, we use a C' implementation of FP-growth (Borgelt, 2012) to
mine closed frequent patterns. Picado-Muino et al. (2013) already used the algorithm to
mine patterns of synchronous spikes in MPST data. The re-formatting of the data used
here (‘attribute scaling’ in the terminology of FCA, see (Ganter and Wille, 1999)) allows
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us to extend the application of the FP-growth algorithm to the search for more general
spike patterns, i.e. STPs.

Closed vs non-chance patterns

By use of fast-FCA/FP-growth algorithms, formal concepts / closed frequent item sets
can be efficiently collected. Closed patterns can be understood as patterns, which are not
trivial subsets of other patterns in the data, and which, therefore, may convey information
not stored in any superset of them. However, not all closed patterns are necessarily of
interest. Indeed, virtually any data set of simultaneous point processes contains closed
patterns, even when the processes are completely independent of each other. Thus, many
(usually the large majority) of closed patterns are merely chance events. A critical task
that remains to be solved is, therefore, that of identifying non-chance patterns among the
multitude of closed ones.

Several approaches can be taken to draw this assessment, depending on the features of
the patterns used to discriminate interesting from non-interesting STPs. Simple pattern
filtering criteria are often based on pattern size (intent size) and pattern occurrence count
(extent size), see e.g. (Prut et al., 1998). These criteria are motivated by the following
observations. First, the larger a pattern is the leas likely it will occur by chance if spikes
are independent events (Griin et al., 2002b). Likewise, under this independence assump-
tion, the probability that a chance pattern has a given occurrence count decreases with
increasing count (Griin et al., 2008). We found that rejecting all patterns with less than
three spikes or less than three occurrences massively reduces the false positive pattern
detection in our data. Another classical approach in the FCA community is to evaluate
the (intensional) stability of a pattern (Kuznetsov, 2007), which loosely speaking can be
understood as the tendency of a pattern to be an intent among any subset of windows
where the pattern occurred. Stable patterns are of interest because they are unlikely to
be produced by independent processes or neurons. Another approach consists in evaluat-
ing the statistical significance of the patterns found and in retaining only those patterns,
which are not to be expected in the data given other statistics, such as the firing rates of
the individual neurons (Griin et al., 2002a). This approach is common when testing the
two alternative hypotheses of temporal coding (based on millisecond precise coordination
of spikes among cell assemblies) versus rate coding (based on temporally less precise spike
coordination and characterized by the rate profiles of the individual neurons). The next
two sections are dedicated to reviewing the approach based on stability computation and
the other based on evaluation of statistical significance and to integrate them into the
analysis framework derived so far.

3.2.2 Filtering patterns by stability

As shown in chapter 1 conceptual stability (Kuznetsov, 2007) is a potential tool for sepa-
rating chance patterns from non-chance STPs. In this section, we introduce the definition
of extensional conceptual stability, in respect to the intensional stability used in chapter 1,
and we illustrate advantages and computational issues thereof. We also show how recently
developed efficient Monte-Carlo techniques can be used to approximate stability and, thus,
make it applicable to large-size data.
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Entity

Description

Precise temporal sequence of spikes repeated

Spatio-temporal | more often than expected under the hypothesis
pattern (STP) | of independent firing
Item set / Set of spikes that form an STP

Attribute set

Pattern size /
Attribute set size

Number of spikes forming an STP

Occurrence times

/ Object set

Set of time points at which an STP repeatedly
oceurs

Support / Object
set size

Number of occurrences of an STP

Closed item set /
Intent of formal
concept

STP which is maximal in time and space, i.e.
no larger set of time windows contains the
STP, and no spike could be added to the STP
without having to give up at least one
occurrence time window. Formally defined as
the pair of STP intent and STP extent.
Extracted from parallel spike train data by the
FP-growth /fast-FCA algorithm.

Support of closed
item set / Extent
size

Number of occurrences of a STP which is
maximal in time and space

Closed frequent
item set / Intent
of frequent
formal concept

STP which is maximal in time and space, and
occurs at least a given number of times.

Signature (z,c)

Pair of parameters (z =pattern size,
¢ =support), that characterize each concept
and that are tested for significance with PSF

Stability

Measure that quantifies how reliably a pattern
repeats identically across all its repetitions

P-value spectrum

Matrix whose entries z, ¢ contain the p-values
of pattern signatures (z,c), evaluated by PSF

Table 3.1: Summary of terms often used in this chapter. When two alternative
terms appear in the left column, the first one is from frequent item set mining terminology
and the second one from formal concept analysis terminology.
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Intensional stability

Given a formal context C and the set B(C) of all of its concepts, the intensional stability
of a concept (A, B) € B(C), as already introduced in chapter 1, is defined

_ e c A’ =B}
o(4,B) = =S——0 (3.1)

where C’ is the set of all attributes shared by the objects in C' (see also Chapter 1). In
words, the stability of an intent is the fraction of subsets of the extent (set of the indices
of the starting points of time windows), which share exactly the attributes of the intent
(pattern). This can be viewed as a kind of cross-validation (Kuznetsov, 2007): a pattern
has a high stability index if it is found as a concept intent in many time windows. In the
previous chapter, we computed the stability with the exact algorithm of Roth et al. (2008)
and kept only those concepts whose stability exceeded a threshold. However, we found
that this exact algorithm is too slow for application to large data sets due to its quadratic
runtime scaling in the number of concepts.

Approximation of stability

Hence, we employ a fast Monte-Carlo approximation of the stability suggested by Babin
and Kuznetsov (2012). Instead of iterating through all subsets of an extent in the numer-
ator of the right hand side of 3.1 and checking whether the attributes shared by a given
subset equal the intent, one performs this check only on a fixed number Z of randomly
drawn extent subsets. The denominator is then replaced by Z.

Extensional stability

By definition, intensional stability only accounts for the occurrence count of a pattern
and not for its size. Therefore, its value is unaffected (see chapter 1) by the number of
spikes forming the pattern. This behavior is evident in the statistical evaluation results
shown below. This feature is independent of the approach (exact or approximated) used
to compute the stability. However, pattern size should play a role in determining whether
a pattern is to be retained as a true pattern or rejected as a chance event. Indeed, more
independent events (spikes) are less likely to re-occur in a specific temporal sequence by
chance than fewer events. To account for this fact, we introduce here a filtering rule based
on extensional stability, which accounts for the pattern composition (size) rather than the
pattern occurrence count. Formally, extensional stability of a concept (A, B) is defined by
exchanging extent and intent on the right hand side of 3.1:

{C < Blc = a)
oA B) ="

Extensional stability can be calculated - as intensional stability - either in exact form
or by approximation. A new filtering criterion can be devised for closed patterns based on
extensional stability by retaining only those patterns whose extensional stability exceeds
some pre-defined threshold.
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Choice of stability threshold

An issue that remains to be addressed is how to set the stability threshold(s) used to
distinguish STPs from chance patterns. In chapter 1, we set the threshold for intensional
atability to 0.6 following an heuristic approach, as this choice turned out to provide a
good balance between FPs and FNs on a broad range of simulated data with various
parameters. Real data, however, may need different thresholds depending on their size
(number of neurons and/or duration), the firing statistics and other features of the spike
trains. Because we are interested in using stability as a measure to determine which
patterns are more stable than one would expect a chance pattern to be, an appropriate
threshold should be such that the stability of patterns found in independent data, i.e. of
chance events, would not cross the threshold. We, therefore, propose here to estimate the
appropriate stability threshold from independent surrogates of the original data via the
following Monte-Carlo approach.

First, surrogates of the original data that contain only chance patterns need to be
generated in such a way that other features of the data characterizing the null hypothesis of
independence (importantly, the firing rate profiles) are preserved. A variety of techniques
exists to this end (see Griin, 2009; Louis et al., 2010b). Among them, we opt for spike
dithering, which moves each spike by a random amount (up to a few ms) around its
original position. STPs occurring above chance level, if existing are, thus, destroyed, while
firing rates - which are defined on a larger time acale - are almost unaffected. Second, we
extract patterns from the surrogate data by use of FP-growth, compute their stability, and
thereby derive the distribution of pattern stability under the null hypothesis. The stability
threshold is finally set to a chosen upper quantile of the null distribution. In our settings,
a single surrogate data set contains always several thousands of chance patterns and is,
therefore, sufficient to obtain close estimates of small quantiles of the null distribution.
‘We separately derive the thresholds fint and fext for intensional and extensional stability,
respectively.

3.2.3 Filtering patterns by statistical significance

An alternative to stability-based filtering to identify non-chance patterns among the closed
frequent patterns extracted by FP-growth is to test the statistical significance of STPs di-
rectly. The null hypothesis of the test here is that the spike trains are mutually independent
and no patterns exist in the data except for chance ones. The alternative hypothesis states
that some patterns indeed occur too many times to be considered as chance events.
Testing the statistical significance of all closed frequent patterns one by one is not an
option in applications to large-size data such as MPST data from tens or hundreds of
neurons recorded simultaneously. Indeed, the immense amount of occurring patterns and,
therefore, of tests to be performed raises severe multiple testing issues. We addressed this
problem in the context of testing for synchronous spike patterns in Torre et al. (2013),
where we developed an alternative statistical approach, here named SPADE (Synchronous
PAttern Detection and Evaluation), that allows us to avoid such massive multiple testing.
In that publication, we employed FP-growth to extract synchronous patterns, as we have
done here for the more general case of spatio-temporal spike patterns. Thus, we aim
to employ the statistical framework of SPADE to test for STPs. In the following we
summarize the various steps of the SPADE analysis to assess pattern significance.
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Pattern Spectrum Filtering

The first component of SPADE for assessing the significance of closed frequent patterns
found by FP-growth is Pattern Spectrum Filtering (PSF). Instead of testing individually
each of the thousands of closed frequent patterns, statistical significance is assessed for
patterns of same size z and same number of occurrences ¢, 1.e. for each pattern signature
(z, €). The probability of having a pattern with signature (z, ¢) under the null hypothesis
Hp of independence is evaluated via a Monte-Carlo technique on surrogate data which
are generated from the original data by dithering. By repeated generation of surrogates
and counting closed frequent item sets we implement the null-hypothesis of independence.
SPADE then determines the p-value of each signature (z, c) as the fraction of surrogates
that contain closed frequent item sets with that signature, based on a large total number
K of surrogates. Here, differently from what was necessary for the choice of the stability
threshold, a large number of surrogates is needed, because each one contributes with only
one instance (pattern of a certain signature (z, ¢) present or not) to the Monte Carlo
sampling. Since multiple tests are performed (one per signature found in the original
data), we correct the significance level o using the false discovery rate (FDR) correction
(Benjamini and Hochberg, 1995). All patterns mined in the original data with signatures
(z, ¢) that have a p-value smaller than the FDR corrected threshold are classified as
statistically significant.

Pattern set reduction

In Torre et al. (2013) we showed that the presence of repeated occurrences of a real pattern
A tends to increase the significance of patterns resulting from the chance overlap of pattern
A with background activity. In other words, PSF correctly rejects FPs entirely composed
by chance patterns, but, in the presence of a real pattern, it tends to overestimate the
significance of patterns resulting from chance overlap with background spikes. The reason
is that the size z and/or the occurrence count c of these patterns are indeed not entirely
due to chance, but are boosted by the presence of the real pattern beyond the chance level
that PSF determined under H,.

Pattern Set Reduction (PSR), the last step of the SPADE analysis, aims at removing
these FPs by testing the patterns filtered with PSF reciprocally for conditional significance.
When testing for a pattern A given a sub-pattern B of A (such that z4 > zp and ¢4 < ¢cpg),
PSR re-assesses the significance of A through the p-value of the signature (zA| B = %A —
zB+h, ca) already stored in the p-value spectrum previously computed by PSF. z4p is a
smaller value than z4, penalized by the presence of B. Similarly, B is re-tested conditioning
on the presence of A by replacing its occurrence count cp with cgq =cp—ca +k. h
and k are correction factors accounting for the fact that the p-values of (zA| B, cp) and
(za, cp 4) are taken from the original p-value spectrum, which is calculated over all time
bins rather than over the time bins only where A and B occur. In our study we set h =0,
k = 2, which proved to be a good heuristical choice in the validation of SPADE (see also
Torre et al., 2013). If only (z4p, ca) is significant, the method retains A and discards
B, and vice versa if only (zp,cp)s) is significant. If both (24 p, ca) and (zp)a, cB) are
significant, both patterns are kept. If neither signature is significant, in light of the fact
that PSF returned both and, therefore, at least one of the two patterns should be a true
positive, PSR retains the pattern covering the largest number of spikes, i.e. the patterns
with the largest z X ¢ score. For patterns A and B that only partially overlap (AN B # 0,
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A ¢ B and B ¢ A) the conditional tests are performed over the conditioning pattern
AnB.

3.3 Results

‘We presented above two different techniques to distinguish between chance patterns and
selected STPs, based on stability measures and based on statistical significance of sig-
natures (SPADE), respectively. Both of them take as input the concepts mined with
FP-growth and return those that are statistically surprising because the assessed feature
(stability or signature) is significantly larger for these patterns than for chance patterns.
In this section we illustrate how each of the two methods performs, both in terms of
computational time and of false positives and false negatives.

3.3.1 Computational efficiency

We first compare the computational efficiency of the components introdueced already in
chapter 1 (fast-FCA, exact stability) to the proposed components introduced in the section
above (FP-growth, approximate stability, PSF). Figure 3.1 shows the runtimes of these
components applied to simulations of 50 parallel, mutually independent Poisson spike
trains with a firing rate of 15Hz each. The runtime of these various analyses components
iz evaluated on 10 data sets of different number of spikes, achieved by data sets of different
duration, increasing from 1 to 10s in steps of 13. The measured runtimes are marked by
aymbols, and their fitting curves are shown as solid lines in the same color. The profiling
results were obtained on a compute cluster with 32 nodes, each consisting of a 2 x Intel
Xeon E5 processor with 2.5 GHz processing speed and 8 x 16 GB DDR4 RAM.

In chapter 1, we made use of the fast-FCA algorithm introduced by Lindig (2000)
after pre-processing the data as described in Chapter 1. The runtime behavior of the
fast-FCA algorithm implemented in Python (same as used in chapter 1) and shown in
Figure 3.1 (red) is fitted by a function which is quadratic in the number of spikes. Based
on this function we extrapolate the runtime of larger data sets, in particular to the typical
experimental data we aim to analyze, i.e. 100 parallel neurons with an average firing rate
of 15Hz of each neuron, recorded for 15 seconds and, thus, containing a total of 22500
apikes on average. Mining the concepts in a data set of this size with this implementation
of fast-FCA would take about 68 days of compute time. FP-growth (brown) is significantly
faster and exhibits a significantly slower and linear trend. For a data set of the same size
the runtime is 4.5h instead. Thus, the speed up gained by using FP-growth instead of
FCA enables the extraction of non-trivial patterns also from large-size data that were
beyond the reach of our previous approach. Therefore, we decide to base our analysis on
FP-growth.

The second step of our analysis is the computation of the stability (intensional and
extensional stability) of all non-trivial patterns extracted by FP-growth, to filter out non
trivial patterns (section 3.2.2). The stability can either be computed exactly or can be
approximated by a Monte-Carlo approach (see section 3.2.2). We show here only the result
for the intensional stability, since the runtime for the calculation of extensional stability is
approximately the same (not shown here). The runtime necessary to derive the stability
as described in section 3.2.2 is the sum of the time required to compute the stability on the
original, empirical data set for each pattern and the time needed to compute its significance
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threshold. The latter requires the generation of a surrogate data set, the extraction of
closed patterns, and the computation of their stability. Thus, the total runtime of our
stability-based STP detection approach (see section 3.2.2) is twice the time needed for the
calculation of the stability, plus twice the time consumed by FCA (see section 3.2.2). As
shown in Figure 3.1, the computation of the exact stability (green) dominates the total
runtime, increasing quartically with the number of spikes in the data. The approximate
stability (aquamarine), in contrast, has a runtime which is several orders of magnitude
smaller and shows a linear trend.

Overall, replacing FCA by FP-growth and replacing exact stability by approximate
stability yields a compute time, which is about three orders of magnitude smaller and,
thus, enables applications to data of unprecedented size.

The third and last step of the method that needs to be investigated in terms of runtime
is the calculation of the statistical significance of the patterns by means of pattern spectrum
filtering (PSF) and pattern set reduction (PSR). To derive the p-value for PSF for each
signature, we need to generate at least 1000 surrogate data, each of which requires to
be analyzed by FP-growth to extract closed frequent patterns in order to build up the
statistics for each signature. Therefore, PSF is quite compute time intensive (Figure 3.1,
blue - for a data set of 22500 spikes it would take about 1366 days) if processed in a serial
way as shown here. Trivial parallelization (i.e. parts of the analysis can be run independent
from each other to save compute time) of the analysis program can be applied to PSF,
which absorbs the majority of the computational load of the method and reduces severely
the computational time. To this end, the FIM analysis on different surrogates can be
distributed over different computing cores and run in parallel. The independent results
(closed frequent patterns of each surrogate data set) are finally collected to compute the
p-value spectrum. The PSR runtime is negligible (not shown here) since it is linear and
it is applied only to significant patterns which is typically a small number as compared
to the mined concepts. It does not directly depend on the total number of spikes but on
the actual significant patterns. For this reason we do not consider it as a computational
component that might determine the computational feasibility of SPADE.

3.3.2 Stochastic models for validation

The increased computational performance achieved by combining FP-growth and approx-
imate stability calculation enables the application to larger data sets than previously
possible. We are, therefore, interested in generating ground truth artificial data with com-
parable size and properties of data typically obtained in electrophysiological recordings.
To this end, we follow the same approach taken in chapter 1 and generate data consisting
of a superposition of independent background activity and repeated STPs. The back-
ground activity is modeled by a set of N = 100 parallel independent Poisson processes,
each having a firing rate r which may be stationary or variable over time, and identical
or different across neurons, and lasts for a total period T' = 1s. An STP occurrence is
modeled as a temporal sequence of z spikes from the first z neurons (without loss of gener-
ality) and with a constant time lag of 5 ms between successive spikes. Multiple occurrences
of the STP are realized by injecting the sequence at multiple, random times within the
simulation interval [0, T7].
We first consider stationary data with three different constant firing rates r € {15Hz, 20 Hz,25Hz}

for each of the 100 neurons. Then, we test the performance of the method for a variety
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Figure 3.1: Profiling results for different components of the methods. In the
top panel the runtimes as a function of the number of spikes in a data set are shown for
pattern mining using fast-FCA (red, asterix) and FP-growth (brown, filled circles). We
also compare the run times for the stability analyses, exact stability ( green, diamonds)
and approximate (aquamarine, triangles) and of PSF (blue, squares). The solid lines are
fitted functions quantifying their characteristics. The bottom panel shows the same data
in log-log scaling: the computational times follow approximately different power laws.
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of non-stationary data sets that mimic typical statistical features of experimental data
and have the tendency to generate FPs in correlation analyses. In particular, we analyze
artificial data that include three different types of rate non-stationarity or variability (see
Figure 3.2):

1. Non-stationary firing rates over time by means of a sudden rate jump, coherent
across all neurons (Figure 3.2, top panel): all neurons have the same firing rate,
equal to 10Hz in the intervals [0s,0.6s] and [0.7s,13], and 60Hz in the interval
[0.6s,0.7s];

2. Heterogeneity of the firing rates across neurons (Figure 3.2, middle panel): firing
rates are stationary over time but different across neurons, and increase from 5 Hz
(for the first neuron) to 25Hz (for the last neuron) in steps of 0.2Hz. The spike
trains in which the patterns are later injected are randomly selected;

3. Short lasting, simultaneous, sequential rate jumps of subsets of neurons (Figure 3.2,
bottom panel): the 100 neurons are grouped into 20 subsets of 5 neurons each. At
two different time onsets (50 ms and 550ms), the first group instantly changes its
firing rate from a baseline level of 14 Hz to 100 Hz for an interval of 5ms. When
group i goes back to baseline level group i + 1 experiences the same rate jump (5ms

later), i=1,...,19.

Models 1 and 2 were already used in Torre et al. (2013) to explore the sensitivity of SPADE
to rate variability. The third model was introduced in Torre et al. (2016a) to validate
another method, called ASSET, designed for the analysis of sequences of synchronous
spike events in massively parallel spike train data.

In total, we use 6 different models of background activity, three with different levels
of stationary rates and three with variable rates across times or neurons. We then vary,
for each of these models, the number z of neurons involved in an injected STP and the
number ¢ of its repetitions from 3 to 10 in steps of 1, for a total of (number of models x
zx¢) = (6 x 8 x 8) = 384 parameter combinations. For each choice, we determine the
performance of our approaches in terms of the average number of false positives (FPs)
and false negatives (FNs), defined below, obtained over 100 stochastic realizations of the
respective background model, yielding a total of 38400 data sets to analyze.

3.3.3 False positives and false negatives

In pattern discovery, different definitions of false positives (FPs) and false negatives (FNs)
are possible. The identification of the exact injected pattern is a clear example of correct
identification (true positive, TP), while the identification of a pattern being completely dis-
joint from the injected pattern is a clear FP result. Similarly, the complete non-detection
of an inserted pattern or subsets of it is an unambiguous FN outcome. Cases in between
are less clear and need to be defined. For instance, the identification of a pattern whose
spikes form a subset of the real pattern may be considered, depending on the portion of
spikes of the found pattern relative to the true pattern, sufficient for a correct identification
(TP). Here we adopt the most strict definition of a TP, i.e. classifying a found pattern
as a TP if it consists of all and only the spikes forming each occurrence of the injected
pattern. Otherwise, the pattern is detected as a FP and the absence of TPs yields an FN
outcome.
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Figure 3.2: Different background models for non-stationary and inhomogeneous
data. Each row illustrates one model of the test data: top: co-varying firing rates with a
large rate step of all neurons; middle: inhomogeneous but stationary rate of each neuron;
bottom: coherent short rate changes in subsets of neurons at consecutive time points. The
columns show from left to right: the underlying rate profiles, an exemplifying raster plot
of the spiking activity (one dot per spike), and a raster plot of the respective background
activity enriched with ¢ = 5 injections of an pattern of size z = 5 (spikes in red).
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We compute two types of FPs. One is based on purely independent data, i.e. we only
realize the respective background model without pattern injection. This provides us the
FP level which is purely resulting from the stochasticity of the processes. The second type
of FPs we are exploring are STPs that were detected but were not the injected STPs. This
is relevant if we want to make sure that injected patterns are not forming new patterns
with the background activity. The results for the latter ones are shown in figures below,
the former ones will be just mentioned.

For evaluation of FNs as a function of the signature (z,c) of the injected pattern, we
vary the parameters z, ¢ between 3,...,10 to get all combinations. For each signature we
perform R realizations of a given background rate model and insert a pattern of size z
and with ¢ oceurrences. We evaluate in how many of the R realizations we detected the
injected pattern. The resulting FN rate, 1.e. the fraction of realizations in which we did
not detect the pattern divided by R, is entered in a matrix at the signature z (x-axis) and
¢ (y-axis). By varying the signatures and performing this procedure again we fill the FN
matrix.

For evaluation of the FP matrix, we use the same data as for the FN evaluation. For
each signature, we count the number of realizations in which one or more patterns are
detected as significant that are not identical to the pattern injected. The ratio of the
realizations for which this occurred divided by the number of realizations R is entered at
the signature of the injected pattern.

In the next sections, we test the performance of our approaches in terms of FPs and
FNs on our artificial, simulated test data.

3.3.4 Performance of approximate stability

In order to quantify the error introduced by the approximated stability (section 3.2.2), we
compute the exact and the approximate intensional stability for all patterns extracted by
the mining technique (FP-growth) from synthetic data. We set the number Z of subsets
used for the Monte-Carlo approximation of the stability to 500, while for the computation
of the exact stabhility all possible subsets are used. The data, already used in chapter 1,
comprised parallel spike trains from 50 neurons firing independently of each other at a
constant of rate r = 15 Hz each, for a total duration T' = 1s. In addition, we also generate
data sets containing in addition an injected STP. The STP consists of z = 8 spikes from
& different neurons, falling within a window of duration w = 50ms. The STP is injected
¢ =9 times in the data, at random positions in the simulation period [0, T']. We define the
approximation error as the absolute difference between the exact and the approximated
stability values, both computed for each pattern extracted by FCA. The distribution of
the errors greater than 0 is illustrated in Figure 3.3 (gray bars), with an average error of
1.888 %1072 and a maximum error of 0.14 (i.e. 14% of the max. stability value). However,
no errors at all (black bar in Figure 3.3) occur for the majority (282510 out of 283451, i.e.
99.67%) of the patterns. The results indicate that approximating the intensional stability
is a suitable alternative to the computationally unaffordable calculation of exact stability
and, thus, allows one to apply approximate stability of data sets of more than 50 neurons.

Furthermore, we test whether or not the (small) error introduced by approximated
stability does affect the performance of STP detection. To that end, we compare the results
gained using exact stability and approximate stability to select significant concepts applied
to the very same data. The data are also identical to the data analyzed in the previous
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Figure 3.3: Error of approximate calculation of intensional stability. The his-
togram shows the number of patterns (in logarithmic scale) as a function of the absolute
difference between the approximated and the exact intensional stability of one simulated
data set. The leftmost black bar represents the number of patterns for which no difference
oceurs for the exact and the approximated stability which is the majority of the patterns
(99.67% ). The largest absolute errors (rightmost bar) are in the range of 0.13 — 0.14 and
occur for 4 out of 283451 total patterns. The average error (including also the error equal
to 0, black bar) is 2.189 x 1074,
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Figure 3.4: Comparison of pattern selection based on exact and approximate
stability. The left column shows the FP matrix (top) and the FN matrix (bottom)
for FCA analysis followed by exact stability filtering. The right column shows FP and
FN after application of the approximate stability filter instead. For both approaches the
threshold for the stability was > 0.6 for filtering the patterns. Each element of the matrices
contains the FP or FN rate for a particular signature (z,¢) of pattern size z (horizontal
axis) and occurrence count c (vertical axis). The data analyzed are Poisson data (N = 50
neurons with stationary rate r = 15 Hz) with STPs injected with the respective signatures.
R = 100 simulations are performed for FP / FN extraction.

47



chapter composed of 50 neurons, simulated for 1s with injected patterns with parameters
z,¢ varying between 3 and 10, with 100 realizations for each parameter combination.
Significantly stable concepts are detected if their stability crosses the threshold of #;; =
0.6, i.e. the same as used in chapter 1. Figure 3.4 shows the results in terms of number
of realizations returning FPs (top) and FNs (bottom) out of 100 simulations for each
signature (z, ¢). The left column shows the results using exact stability, the right column
using the approximated stability. The performances of both methods, both in terms of
FPs and FNs, are qualitatively identical (maximum of the absolute value difference of the
two matrices smaller than 0.1 for the FP-rate as well smaller than 0.5 for the FN-rate and
randomly distributed across the matrix entries), showing that the error introduced by the
Monte-Carlo approximation of the stability is negligible.

3.3.5 Validation on artificial data

‘We assess and compare now the performance in terms of FPs and FNs of the two variants
of our analysis method, i.e. one that filters patterns on the basis of their stability and the
other based on significance evaluation. We use the test data described in section 3.3.2,
i.e. data with a certain type of background activity (three different types with stationary
rates, and three types with time-varying or inhomogeneous firing rates), and combined with
injected STPs of a certain signature (z, ¢). For each data model, we generate R = 100
realizations (data sets), analyze each of them for the occurrence of STPs surviving the
filtering process.

Stability based filter results for stationary data

We first examine the performance of pattern filtering based on intensional (or extensional)
atability. After choosing one of the two measures, this approach classifies patterns found
by FP-growth as stable (and, thus, retains them as reliably reoccurring patterns) if their
stability exceeds a pre-determined threshold #. As explained in section 3.2.2, we derive
6 as a chosen quantile of the null distribution of stability values, obtained from indepen-
dent data. We set the overall significance level to o« = 0.01 and set # to the percentile
corresponding to the Bonferroni corrected level qeorr =

total number o{'?:mnoepts tested
To obtain stable patterns by application of the stability evaluation we make use of

surrogate data, i.e. independent data generated by dithering (see section 3.2.2) from the
original data, to derive the null distribution and, thus, the stability threshold #. For our
extensive validation of data containing injected STPs we would have to derive the stability
threshold for each of the total 100 x 6 x 8 x 8 = 38400 (see 3.3.2) data sets. To avoid
such massive computations, we make use of the assumption that the few additional spikes
injected by insertion of STPs do not change the null distribution of the stability values
under the hypothesis of independence. Therefore, to evaluate FPs and FNs across all these
scenarios, we derive a single stability threshold # for all models with the same background
rate as follows: we generate 100 data sets with independent background activity according
to the rate model, and derive # as the 95% quantile of the empirical distribution of pattern
atability values in this case where no patterns were inserted. This threshold is then used
for the assessment of FPs and FNs in all 64 models with the same background rate but
containing STPs of different size and occurrence count. This approach, was already used
in (Torre et al., 2013) and was shown to be appropriate in chapter 1, since the distribution
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Figure 3.5: Performance in terms of FPs and FNs for stationary data. The results
shown here are all for the data model in which all neurons have a stationary firing rate
of 25Hz. All data sets consist of 100 neurons simulated for 1s. The parameters used
for FP-growth are a bin size of 1 ms and a window length of 50 ms. We show the results
for all types of injected patterns entered at their respective signature (64 signatures, all
possible combinations for the size z (x-axis) and the number of occurrences ¢ (y-axis)).
Size and number of occurrences are varied between 3 and 10. For each pattern signature
we perform and analyze 100 realizations. Each matrix element (signature) shows the
fraction of realizations for which the filtered results contain one or more FPs (top row)
/ FNs (middle row). The bottom row shows the maximum rate of either the FPs or the
FNs. First column: Results of the intensional stability filter, using a significance level of
a = 0.01 and Bonferroni corrected, yielding a stability threshold of #;,; &~ 0.55. Second
column: Results of the extensional stability filter and stability threshold of . =~ 0.8
resulting from the same significance level as for the intensional stability. Third column:
Reaults of the combined stability filter, where the Bonferroni correction was adjusted by a
factor 2 to account for each concept being tested twice (once for the extensional and once
for the intensional stability). Fourth column: Results of PSF. Significance level a = 0.01,
corrected with the FDR criterion. Fifth column: Results of PSF4+PSR. Significance level
a = 0.01, corrected with the FDR criterion. The PSR parameters are set to h =0, k = 2.
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of f is not affected by the insertion of a few STP spikes. In addition, this approach makes
our validation considerably (64 times) faster.

Performance of intensional and extensional stability

We first analyze stationary data with constant firing rates, r € {15Hz, 20 Hz, 25 Hz} con-
taining injected STPs. We filter the patterns found by FP-growth on the basis of either
their intensional or their extensional stability, and calculate the corresponding significance
thresholds 6, and . as explained above. In the following, only the results for r = 25 Hz
are shown, as those for » = 15Hz and r = 20Hz are comparable and lead to identical
conclusions. The FPs on purely independent data sets (only background activity) as de-
fined in section 3.3.3 has a FP rate of 0.01, i.e. in only 1% of the total realizations of the
independent data FPs are detected (not shown).

Then we evaluate the performances for data with injected patterns. In the columns on
the left of Figure 3.5, we show the FP and FN matrix for the analysis using intensional and
extensional stability, respectively. Each entry in the matrices corresponds to one signature
(2, ¢) of the injected pattern, and the color-coded value represents the FP (top panels)
or FN (middle panels) rate. The FP rates for both, the intensional (left column) and the
extensional stability (second column from left), are low, but somewhat higher (some times
at 0.05, marked by circles in Figure 3.5) than for FPs in purely independent data.

The FN rates (Figure 3.5, middle row) are large (often close to maximum) for about half
of the matrix elements for both stability measures but differ in respect to the signatures
at which they occur. For intensional stability, the FNs are large for the whole range of z
, but only for small ¢ (about 3 - 6), and decrease abruptly for larger c. In contrast, when
filtering with extensional stability, the FNs are high for all ¢, but only for small = (about 3-
6) and decrease for larger z. These results are not unexpected since, as explained in section
3.2.2, intensional stability is almost exclusively affected by the number of occurrences of a
pattern, while extensional stability is emphasizing the number of spikes forming a pattern.
Nevertheless, these are undesired results, since in independent data chance patterns decay
with their number of occurrence and the pattern size (see e.g. Torre et al., 2013)) and,
thus, we expect that the border of selected patterns should also decay as a function of the
combination of both parameters.

Combined stability

Aiming at a method whose FNs decay with the size z and the occurrence count ¢ of the
patterns, we combine the filtering criteria based on intensional and extensional stability.
This approach keeps all concepts whose intensional or extensional stability value is larger
than the respective thresholds. This procedure applied to independent data leads to a
maximum FP rate equal to 0.02 (not shown), and can be explained by the application
of two tests on the data. The results for the data sets containing the STPs are shown
in the third column from left in Figure 3.5. The FP rate iz again smaller than 0.05 for
most of the entries, and higher than 0.05 for entries in the right bottom corner of the
matrix, which result from data sets that contain patterns of large size occurring only 3
times and easily combine with background spikes and, therefore, become significant. The
FNs instead decrease gradually, both as a function of pattern size z and of the pattern
count ¢. Thus, the combined filter retains large patterns due to their high extensional
atability, and patterns with a large occurrence count due their high intensional stability.
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Significance based filter results for stationary data

For further comparison we analyze the same data as above using FP-growth followed by
PSF and PSR. We set the significance level for the PSF to a = 0.01, corrected by the
number of different pattern signatures in the data using FDR correction. Note that when
setting the threshold for extensional and intensional stability we use the more conservative
Bonferroni correction instead, because FDR did not provide an adequate compensation
(i.e., it leads to a large number of FPs, not shown here).

The FP rate of independent data is as for the stability filtering smaller or equal to 0.01
(not shown). In the independent data, PSF alone suffices to achieve this performance.
PSR is not necessary, because the probability that completely chance patterns exceed
the PSF significance threshold and overlap is close to 0. In contrast, PSR is a critical
step for data containing non-chance patterns, where it is designed to remove the false
positives found by PSF due to the overlap of the true patterns with the background
activity. Without correcting for overlapping patterns the results show very high FP rates
for any combination of size and number of occurrences of the patterns (Figure 3.5, fourth
column, top). Using PSR the FP rates for data with injected patterns (Figure 3.5, right
column, top) are similarly low as for the other approaches, i.e. at the level of 0.05. Some
FPs have a FP rate larger than 0.05, and occur for data containing injected patterns with
large size and small number of occurrences (¢ = 3) . As for the other methods, these FPs
are due to combinations of injected patterns and background activity. The FNs decay as
a function of z and ¢, but much faster than the combined stability approach (Figure 3.5,
right column, middle). The PSR moderately increases the number of FNs for patterns
with few neurons occurring often or composed by many spikes and occurring few times.
This is due to the fact that these are the two conditions in which it is more likely to
have one or more spikes of the noise background that overlap by chance with the injected
pattern forming a larger, more significant pattern. Such chance overlap may cause the
rejection of the injected pattern in the PSR.

Counting the number of STPs obtained after each step of the of the method clarifies
the impact of that step on the overall performance. While these numbers change in
magnitude depending on the parameters (z,c) of the injected pattern, their proportion
between different steps of the method was very similar across different values of (z,c). We
can, therefore, illustrate the results for one specific configuration (z = 10,c¢ = 10). Each
step is maximally effective if the number of STPs it keeps as non-chance patterns is 1 and
if this pattern is the single injected pattern. For z = ¢ = 10, we obtained on average:
a) 1089.92 STPs after FIM (which retains all frequent closed patterns), b) 2 STPs after
either the combined or the intensional-only filtering, and 1 STP after extensional-only
filtering, c) 24.41 STPs after PSF, and d) 1.02 STPs after PSF+PSR (almost exclusively
the injected pattern).

In conclusion, based on the validation of stationary data, the approach based on PSF
and PSR, i.e. the SPADE method extended to spatio-temporal patterns, performs best and
has the highest detection power as compared to the methods based on stability analysis.
Even the combined stability analysis that uses the two stability measures independently
has a smaller range of signatures with low FNs and improves only if at least one of the
patterns’ parameters z or ¢ is large enough. In contrast, SPADE is also sensitive to
the total number of spikes (z x c) in the patterns. Thus, both approaches (stability or
significance based) show the desired feature of a) small number of FPs, b) decreasing
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number of FNs for increasing (z,c). However, SPADE produces a smaller total number of
FNs for comparable FP rate and, thus, has the best performance. We finally note that the
patterns found by extensional stability filtering were almost always found by PSF+PSR
too (which is slightly less conservative, and which was less prone to false negatives).
Thus, combinations of these two selection criteria do not seem a valid option here. For
instance, retaining all patterns found by any of the two criteria would be often identical
to accepting the results from PSR+PSR. Retaining only patterns found by both would
most of the times be equivalent to accepting the results from extensional stability. Both
options would additionally sum the computational costs of the two methodologies.

Performance of SPADE in the presence of multiple STPs

The experiments illustrated so far were performed on data containing a single true STP,
which the method was able to find with high reliability. Real data, however, are likely
to contain STPs from more than one group of neurons. Experimental studies (e.g. Torre
et al., 2016b; Riehle et al., 1997b) revealed, for example, an abundance of synchronous spike
patterns arising during task execution. Torre et al. (2016b) used the original version of
SPADE, demonstrating its ability to retrieve multiple synchronous patterns, when present.
To demonstrate that our extended method can achieve the same for STPs, we investigated
an additional scenario with data containing two different types of injected STPs. Both
STPs had size z = 5, were injected ¢ = 10 times, and had an inter-spike delay of 5ms.
We generated 100 realizations of this model. At each iteration, the neurons involved in
each STP were selected randomly, but such that they would not form two identical sets.
‘We obtained no FPs and no FNs. For the realizations where the two patterns overlapped,
PSR successtully retrieved them, while correctly rejecting their intersection as a FP.

3.3.6 Validation of SPADE on inhomogeneous data

From the validation on stationary data we conclude that SPADE performs better than
filtering methods based on stability measures. Therefore, we now concentrate on the
SPADE method only. We aim at evaluating the performance of SPADE on data that mimic
more closely features of experimental data, such as non-stationarity of firing rates in time
and inhomogeneous firing rates across neurons. In particular, we study three cases (firing
rate co-modulation, rate hetereogeneity across neurons, and rate change propagation, as
introduced in section 3.3.2) that are known to be potentially strong generators of false
positives for correlation analysis methods for (see e.g. Griin et al., 2003; Griin, 2009;
Louis et al., 2010b; Torre et al., 2016a). The results are shown in Figure 3.6. The FP
rate of the analysis of data with injected pattern is generally low (less than 0.05), for all
three types of data. For firing rate co-modulation and rate inhomogeneity the FP rate
is often virtually zero (white squares) but is somewhat more homogeneously at 0.05 for
rate change propagation. This is somewhat surprising that such successive increases of
firing rate, occurring repeatedly, do not elicit a higher level of FPs. The FNs decay with =
and cin all three scenarios and fastest for the rate propagation model. Interestingly, these
results are not worse than for the stationary data, meaning that SPADE can deal well with
data that contain features that are typically generating FPs. In conclusion, SPADE can
tolerate coherent rate non-stationarities and inhomogeneous rates and, thus, is qualified
to be applied to experimental data.
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Figure 3.6: Performance of SPADE on non-stationary and inhomogeneous data.
SPADE is applied to stochastic simulations of different rate data models, left column: rate
coherence, middle column: rate heterogeneity, right column: rate propagation. For the
FP rate (top row) and FN rate evaluation (middle row), patterns of a given size z and
number of occurrences ¢ are inserted into the same background rates (given by the data
model). In the bottom row, the maximum of FP or FN of each (z,c) signature is shown.
The same settings are used for FP-growth and SPADE as in Figure 3.5.
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3.3.7 Summary of the Validation Results

Our validations highlight the following aspecta:

o fast-FCA and FP-growth lead to identical mining results, however, the better com-
putational performance of FP-growth allows one to mine concepts of real-sized data
(100 or more neurons recorded over several seconds).

e Stability (approximate) filtering and significance filtering (the combination of PSF
and PSR, i.e. SPADE) are efficient statistical techniques to reject chance patterns
in independent (STP-free) data, as they all exhibit a small FP rate (< 1% for
PSF+PSR, intensional stability and extensional stability; < 2% for the combined
stability filter).

e FPs on data with injected patterns shows that all methods perform about the same
with FPs on the 5% level.

® Significance filtering (SPADE) is the technique that best detects injected STPs in
the data, exhibiting a FN rate below 5% for patterns with lower size or occurrence
counts than stability filtering,.

o These considerations for SPADE also hold for data with highly variable firing rates
over time and across neurons, which suggests that the combination of FP-growth,
PSF and PSR is the best technique to detect STP in real recordings.

e At the same time the stability based analyses, which have an equally low FP rate,
although less sensitive to the presence of STPs, is applicable to particularly long
recordings for which PSF is computationally not feasible.

3.4 Discussion

The ever growing number of neurons that modern electrophysiological techniques allow to
record in parallel provides access to the coordinated spiking activity of neuronal popula-
tions of unprecedented size. The investigation of millisecond-precise spatio-temporal spike
patterns (STPs) in large scale recordings becomes, therefore, possible. However, suitable
analysis techniques have been lacking so far due to the exponential growth of the number
of STPs in such large data, which yields severe computational and multiple testing issues.

Here we addressed this problem by introducing a method, named SPADE (Spike Pat-
tern Detection and Evaluation), that extracts STPs from massively parallel spike train
data and assesses their statistical significance under the hypothesis of spike independence.
SPADE builds on and brings together two techniques that we had previously introduced
for the identification of STPs in massively parallel spike trains and for the statistical
evaluation of patterns of synchronous spikes (Torre et al., 2013). The latter avoided the
computational and multiple testing issues that usually prevent applying such analyses to
large data sets. The underlying pattern mining algorithm FP-growth, however, was im-
plemented such that the technique was applicable for the discovery of synchronous spike
patterns only. A restructuring of the input data format (’attribute scaling’ in the lan-
guage of FCA, see Ganter and Wille (1999)) allowed us now to use FP-growth (or similar
frequent pattern mining techniques, see e.g. Borgelt, 2012) to extract more general STPs.
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Thus, FP-growth served here the same purpose that fast-FCA served in chapter 1, that
is, counting the occurrences of non trivial repeating patterns (there named “intents”). As
known from the literature (Zaki and Ogihara, 1998) FIM and FCA yield results that can
be mapped one to one onto each other: they extract closed frequent itemsets / formal con-
cept intents including their occurrence count. Our implementation of FP-growth, however,
proved to be much faster than the state-of-the-art implementations of the FCA algorithms
available to our knowledge. Soon, a C implementation of the FCA’s In-Close algorithm
(Andrews, 2009) will be made available by S. Andrews, N. Kodoga and colleagues, which
may provide a mathematically equivalent but computationally even faster algorithm to
mine re-occurring STPs.

SPADE assesses the significance of the patterns identified by FP-growth or equivalent
algorithms via the same analysis steps as in Torre et al. (2013). First, pattern spectrum
filtering (PSF) is used to determine the p-value of signatures (z, ¢), i.e. pairs of pattern
size z and occurrence count ¢, and retains patterns with significant signatures only. The
number of different signatures in data is typically orders of magnitude smaller than the
number of different patterns. Thus, testing for the signatures reduces the multiple testing
problem to a size that can be handled with standard statistical corrections, such as false
discovery rate. Then, pattern set reduction (PSR) is applied to test all patterns identified
by PSF, conditioned on the presence of any other pattern in the remaining list. This allows
one to distinguish, among overlapping patterns, the genuine ones from those that can be
explained as a chance overlap of real patterns with background spikes. Validation on test
data generated by different stochastic models of STPs injected into background activity
demonstrated the ability of the method to discriminate real and chance STPs, ensuring
low false negative (FN) and low false positive (FP) levels despite the large number of STPs
to test (up to millions). For example, in simulated data consisting of 100 neurons spiking
independently at an average rate of 15 Hz each for a period of 1 second, an injected STP
was successtully isolated from the background activity as soon as it involved at least 5
neurons and it repeated 3 times, or it involved as low as 3 neurons and repeated 5 or more
times. The method showed high power (FN rate lower than 5%) and reliability (FP rate
lower than 5%) in different scenarios replicating various features of the firing rates often
observed in experimental data, which typically represent strong generators of FPs (Louis
et al., 2010b). These include abrupt and coherent rate changes over time, largely different
firing rates across neurons, sudden rate changes propagating from one group of neurons
to the other. Our method performs well in all of these scenarios.

Besides qualifying STPs as excess patterns on the basis of their statistical significance,
we additionally explored various ways to extract them from background activity on the
basis of their extensional or intensional stability. In FCA terminology, the extent of a
concept in our context (frequent closed pattern) is the set of windows the patterns falls into.
The intent of a concept is its composition, i.e. the neuron index and time index (within
the window) of each composing spike. Intensional stability quantifies the tendency of a
pattern occurring in a set of windows to be the largest pattern common to those windows
(or any subset thereof). Low intensional stability indicates that the intersection of any
number of those windows tends to contain supersets of that pattern and, therefore, that
the pattern occurrences may have been the result of intersections of fewer occurrences of
different larger patterns. Similarly, extensional stability quantifies the tendency of a set of
windows to contain a subpattern of the pattern which comprises its intent, such that the
subpattern is not found in any window that does not contain the pattern. Intensional and

55



extensional stability are used as indicators of how reliably the pattern can be considered as
a genuine event, rather than the sum of occurrences of larger patterns or the superposition
of smaller patterns occurring in the same time segments, respectively. In chapter 1 we
explored the use of intensional stability to isolate reliably re-occurring STPs from high
background activity. The exact computation of the stability of each pattern, however, is
computationally very demanding, and was possible only on data comprising a maximum
of 50 neurons simulated for a few seconds. Here we adopted the Monte-Carlo based
approximation of stability introduced by Babin and Kuznetsov (2012), which allowed us
to speed up the computation by several orders of magnitude while introducing negligible
errors and, thus, enabled the application of intensional as well as extensional stability
based pattern filtering to larger data. In particular, we computed a statistical threshold
for both intensional and extensional pattern stability, using independent surrogate data,
and we filtered out patterns whose (intensional, extensional, or both) stability values were
lower than the respective thresholds. Compared to the previous approach based on pattern
significance, all of these stability-based criteria were computationally less demanding but
yielded increased FINs, especially when the injected STP to be retrieved had low pattern
size. Nevertheless, other combinations of these approaches may be envisioned in the future
to improve the performance of the method even further if even more spike trains become
available in parallel.

Existing methods for the identification of repeating STPs are either not applicable to
data sets of large size, or limit the search to patterns with specific features (of fixed, usu-
ally small size, or exhibiting specific inter-spikes intervals such as synchronous patterns).
SPADE does not suffer from these limitations thanks to a combination of attribute scaling,
fast frequent item set mining, and a hierarchy of tests of pattern significance, which avoids
severe multiple testing. Its extensive validation ensures its reliability in applications to real
data, as well as to simulated data resulting from network models. SPADE can be applied
not only to spike data, but also to any data consisting of parallel point processes, such
as discretized calcium imaging data (e.g. Roth et al., 2012), discretized voltage-sensitive
dye imaging data (Ayzenshtat et al., 2010) or discretized MEG recordings (e.g. see Tal
and Abeles, 2016). In the work of Ayzenshtat et al. (2010) and Tal and Abeles (2016)
the authors defined and extracted special events from their analog recordings (voltage-
sensitive dye imaging and MEG, respectively) and reduced them to point events. In the
published work they analyzed subsets of the resulting parallel point processes for pair-wise
of triple-wise correlations or spatio-temporal patterns, respectively, and identified those in
relation to the behavior. With SPADE the complete data sets from these recordings (i.e.
massively parallel point processes) could be analyzed. The analysis time scale is thereby
not restricted to milliseconds (as employed here) but can be freely adjusted depending on
the research question.
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Chapter 4

Detection and Analysis of
Spatio-Temporal Patterns of

Multiple Time Durations -
SPADE extended

4.1 Introduction

In the previous chapters we introduced SPADE, a method for detection of Spatio-Temporal
Patterns in parallel spike trains. The method consists of two main steps: a) a mining
technique applied to the spike trains to detect all repeated STPs, b) statistical evaluation
of the found STPs.

In the previous chapter we implicitly assumed that the patterns have the same duration
(i.e. the time from first to last spike in the pattern). In this chapter we show that
patterns of different durations have different distributions under the null hypothesis of
independent spiking. Hence, in order to have an unbiased test for patterns with different
durations, it is necessary to revise the statistical evaluation of SPADE by testing separately
patterns of different durations. Using artificial ground truth data for the validation of the
new statistical procedure, we show that the correction adopted in the testing procedure
increases the statistical power without affecting the robustness of the method.

‘We then apply the extended version of SPADE to experimental data, in order to verity
the hypothetical presence and computational role of STPs in cortical spiking activity.
In particular we analyze two in-vivo recording sessions of massively parallel spike trains
from motor cortex of two macaque monkeys performing a reach-to-grasp task (Brochier
et al., 2018; Riehle et al., 2013). The monkeys were trained to execute four different
motor behaviors, given by the combinations of two different grips and two different force
levels. We analyzed separately the data of the different behavioral types to assess whether
different spike patterns occur in different behavioral contexts, with the question in mind
if we find indications of different active assemblies in different behavioral context.

In section 4.2 we introduce the new statistical testing procedure adapted to consider
patterns with different durations. In section 4.3 we report validation results and results
from the analysis of experimental parallel spike trains recordings.
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4.2 Extension of SPADE

In section 4.2.1 we present the problem of considering data containing patterns of different
durations. In addition we also discuss an alternative cause for false detection, i.e. coherent
rate changes of neurons, on different time-scales. Consequently we propose an improve-
ment of the statistical testing in SPADE to overcome such problems. In section 4.2.2 we
introduce the artificial datasets that we use to evaluate the statistical performance of the
new statistical test.

4.2.1 3-dimensional Pattern Spectrum

In chapter 3 we presented the SPADE method for detection of Spatio-Temporal patterns.
In particular, that the Pattern Spectrum Filtering (PSF) is used to discriminate significant
spatio-temporal patterns from chance occurrences, by avoiding massive multiple testing.
If all individual patterns would be tested on their own separately, we would run into that
problem. Instead of testing the significance of each closed frequent itemset, detected by
FIM, all pattern candidates with same size z and number of occurrences ¢ are pooled
together and tested together. Thus, each pattern is characterized only by its signature,
defined as the pair (z,c¢). The probability to observe any pattern with signature (z,c)
iz then derived using a Monte-Carlo technique based on surrogates. This approach was
already introduced for synchronous patterns by Torre et al. (2013) and was also introduced
for testing spatio-temporal patterns. Nevertheless, since multiple signatures are tested,
we correct the significance threshold using a False Discovery Rate Correction.

‘We have shown that that SPADE is statistically robust and discards efficiently chance
STPs if applied to artificial data . Yet so far we did not consider the case of spatio-
temporal patterns of different durations in the data. In such a case the PSF pools patterns
of different durations in one signature. Thus, for example, it is possible that the very same
p-value is assigned to synchronous patterns or patterns with long temporal extension. The
problem with such an approach is that, even in case of independent spiking, patterns with
different durations have different probability to occur, because of the different number of
possible spike combinations for different durations. It is possible to consider the minimal
example of two Poisson Processes (X1,X2), each with one single spike, respectively at
time ¢, and tp, in the time domain [0,7]. Because of the poissonianity of the processes,
the two spike times ¢; and t5 are two uniform random variable in the interval [0,T]; hence
it is possible to compute the probability of the two spikes being synchronous given one
binsize dt. This probability is equal to the probability that the two spikes are in the same
bin:

r
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bins, with 0 < d < %. In this case, we have the combination of two possibilities, that ¢;
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This simple calculation shows that even in the most simple case of two single Poisson
spikes two patterns with the same signature (z = 2,¢ = 1) but different durations have

different probability to occur. The example here considered can be easily extended to the
case where we have multiple spikes, for which the combination of different patterns for
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each duration is even larger.

Furthermore we will show that the p-values obtained using the pattern spectrum, as
defined in chapter 3, depend on the window length used for the pattern detection. In
particular, if we consider two window lengths Ky and K3, such that K < Ko, the p-value
assigned to a certain signature (z,c¢) is different. Indeed for the smaller window we count
all the chance patterns in the surrogates with = spikes and occurring ¢ times that have
duration d < K;j. For the second window the count includes also the patterns with the
same signature but which duration is such that K; < d < K»3. Since more and more
chance patterns are pooled together with increasing window lengths, the p-value assigned
to a certain signature is larger when using a larger window. This implies that results
obtained analyzing the same data, but using different window lengths are not comparable.
In particular not considering the different pattern durations in the testing introduces a
bias for short patterns, which are more likely to be significant with short windows, while no
longer when pooled together with longer patterns using a longer window for the detection.

However, there is also another issue that effects the statistical evaluation of the STPs:
delayed co-nonstationary firing rates. For example, in the case in which two neurons
increase their firing rate with a constant delay, a large number of chance patterns in the
same temporal delay range will be present in the surrogate data as well since they are
designed to preserve the firing rate profiles. This results in a large p-value, i.e. non-
significant, also for patterns with different duration but same signature. For example we
can consider the case in which two neurons increase their firing rate with a constant delay
I, such that [ iz smaller of the window used for pattern detection K. Using the current
version of the p-value spectrum, a pattern in order to be significant needs to occur more
than the most frequent pattern of the same size in the surrogate data. In such particular
case many chance patterns of durations ! would occur because of the delayed firing rate
increase. Hence, also patterns with a different duration d (e.g. synchronous patterns with
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d = 0) would need to occur more than the number of chance patterns of duration ! found
in the surrogate. This makes the test over-conservative, because patterns with duration d
may occur less likely than pattern with duration ! in the surrogates.

In order to overcome these limitations, we here propose an alternative definition of
the pattern spectrum. We replace the original pattern signature (z,c) with the a triplet
(z,c,d) signature, with the duration d defined as the number of bins between the first
and the last spike of the pattern. We then derive the p-values independently for each
3-dimensional signature, again with the same bootstrap surrogate sampling as done for
the 2-dimensional (chapter 3). This solution largely increases the number of tests to be
performed and consequently may cause an increase in the number of false positives. In
order to approximately obtain the same significance level as before, we apply the Holm-
Bonferroni multi-comparison correction (Holm, 1979), which is more conservative than the
False Discovery Rate (FDR) correction (Benjamini and Hochberg, 1995) used for the 2-d

spectrum.

4.2.2 Artificial Data

In order to expose the problems with the previous definition of the significance test based
on the 2-d spectrum, and to show how using the 3-dimensional signature amends them,
we consider here two types of simulated datasets. Both types consist of N = 100 parallel
processes.

The first is composed of stationary independent (see Figure 4.1) Poisson processes
of constant firing rate r = 15Hz lasting in total 7' = 10s. Into these processes we
inject a total of 5 patterns with identical size z = 3 but of different durations (d =
Oms, 2 ms, 6 ms,8ms, 12 ms , respectively). We then derive the minimal number of occur-
rences of a pattern of size 3 in order to be significant using a significance level equal to
0.05 and a binsize equal to dt = 1 ms. Given our selection of firing rate and time domain,
such number of occurrences is equal to 4. We will show that with the original 2-d p-value
apectrum all the patterns are not significant for the window length K = 13, which is larger
than the maximal duration and should allow to detect all the patterns. At the same time
for shorter window lengths the patterns are significant, but not all are detected because
having a duration longer than the selected window length. On the other hand with the 3d
p-value spectrum all patterns injected are always significant, as expected given the Pois-
son distribution, since the window length does not affect the computation of p-values. In
particular using the single window length K = 13 it is possible to retrieve all the injected
patterns.

For the second dataset (Figure 4.2) we use two different groups of non-stationary
Poisson processes, now with time domain 7' = 5s. The first 50 Poisson Processes have
a firing rate equal to 5Hz in the intervals [0s,1s] and [1.05s, 5s], while in the 50 ms gap
the processes have a coherent increase of the firing rate to 60 Hz. The second half of the
population has the same firing rate profile but the increase is delayed by 50ms (firing
rate equal to 60 Hz in the interval [1.05s,1.1s]). We then inject one single synchronous
pattern of size z = 3, occurring ¢ = 4 times. In order to emphasize the potential effect of a
correlation of the rate changes onto the p-values of the patterns we choose the quantity ¢
such that the pattern should become significant (0.05 quantile of the Poisson distribution).
The use of the 3d-spectrum enables to include the effect of rate correlations in the null
hypothesis only for the patterns with a duration equal to the delay in the rate changes,
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Figure 4.1: Stationary artificial data with multiple patterns. Each row corresponds
to one of the parallel simulated Poisson processes, each dot corresponds to one spike. The
several sequences of red dots show the injection of the same injected pattern. Here only
0.5s and the first 15 out of the 100 processes are shown.

allowing the synchronous pattern which is not affected by the delayed rate changes to be
correctly detected as significant.

Additionally, we analyze also 4 (stationary firing rates equal to 25 Hz, coherent increase
of firing rate for all the neurons, heterogeneous stationary firing rates, propagation of firing
rate changes) of the datasets presented in the previous chapter (section 3.3.2), in order
to assess the statistical performance of the PSF using the 3-d spectrum (in terms of false
positives and false negatives).

4.2.3 Analysis of artificial data

In the following we compare results of the analysis of artificial data using SPADE in
the 2d and the 3d version. For doing that we created multiple STPs with different pat-
tern durations (section 4.2.2). For both types of analysis we used window lengths K of
(1,4,7,10,13) bins. Other parameters, (dt = 1ms, a = 0.05) were not changed and are
identical to ones used in the previous chapter. Since in this example application we do
not focus on the statistical power of the method, we use the FDR. correction for both (2-d
and 3-d spectrum) as also previously done when applying SPADE.

In Figure 4.3 we show the number of patterns detected using the two different spectra.
For the 2-d spectrum (top panel) all patterns are correctly detected for window lengths 1,
4 and 7. For window lengths 10 and 12 no significant patterns are found, although there
were injected in the data. Including the pattern duration in the pattern signature (3-d
spectrum bottom panel) enables to correctly detect all the injected patterns for all the
different window lengths. In particular using a window length of 13 ms, that is larger than
the longest duration of all the injected patterns (here 12ms), makes the detection of all
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Figure 4.2: Non-stationary artificial data raster plot. Each row correspond to one
of the parallel simulated Poisson processes, each dot is a spike, each line shows the spike

trains of different neurons. The red dots denote the injected patterns. Here only the first
1s of data are showed.
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patterns possible.

The difference of the results using the 2d and the 3d spectra is explained by the p-
values of patterns of size 3 shown in Figure 4.4. Indeed, in the 2-d spectrum, for window
lengths larger than 10, patterns occurring 4 times do not become significant, while they
do for shorter window lengths. The reason is that the p-values computed with the 2-d
spectrum depend on the window length (see section 4.2.1). In particular smaller window
have smaller p-values, simply because only shorter patterns can be extracted and less
patterns are pooled together in the same entry of the spectrum. Vice-versa including the
pattern duration as an additional dimension in the p-value spectrum enables to remove
the dependency from the window length, causing the patterns to be significant also for
longer windows.

For the analysis of the second data set we consider the case in which the firing rates
are covarying, and contain per neuron one firing rate step (see 4.2). From studies on spike
synchrony (e.g. Griin et al., 2002b; Louis et al., 2010c)we know that such coherent rate
changes are potential generators of false positive results. Thus we here use data that are
also potential false positive generators. However, since we deal here with spatio-temporal
patterns, we insert two coherent rates steps with a certain delay. First we study here the
potential effect of false negatives when delayed rate changes prevent the detection of the
inserted patterns with the 2-d spectrum. In the next section we study also false positives.
‘We set here the window lenght to 100 ms, because this is the temporal range of the two
coherent rate steps and thus will generate chance STPs on that time scale. The other
parameters are the same as used for the previous data set (dt = 1ms, a = 0.05), and
we analyze this data also with the 2-d and 3-d spectrum for comparison. Indeed the 2-d
pattern spectrum resulted in a non-significant entry for the signature (z,¢) = (3,4) (for
all the pattern durations) which should include our injected patterns. It does not become
significant, because of the many chance STPs that are due to the delayed coherent rate
steps. On the other hand, in the analysis using the 3d-spectrum, patterns of size z = 3
and ¢ = 4 occurrences are not significant for patterns of a duration of 50ms - the delay
of the firing changes. Instead, the signature of the injected pattern (z,e,d) = (3,4,0) is
significant, and is not affected by the rate changes.

4.2.4 FP/FN performance

In order the statistical performance of the 3-d spectrum as compared to the 2d-spectrum
we reanalyze the data that were already analyzed with the 2-d spectrum in the previous
chapter (section 3.3.2). See the previous chapter for the definition of False Positive (FP)
rate and False Negative (FN) rate. The FP rate for data with no patterns injected is
below 0.05 (not shown). Figure 4.5 shows the FP and FN results for all configurations of
pattern parameters (z = 3,...,10,c = 3,...,10), each column for one of the four datasets
already used in the previous for the validation of the 2-d spectrum. The FP rate iz below
0.05 for most of the pattern configurations. On the other hand, most of the patterns
occurring more that 4 times are correctly identified, i.e. with low FN rates (second row).
In conclusion, the 3-d spectrum have analogous statistical performance to the 2-d p-value
spectrum, but it enables to test independently for patterns of different durations.
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Figure 4.3: Count of STPs. The histograms show the number of detected significant
STPs (y-axis) as a function of window length (x-axis). The green triangles mark the
number of injected patterns with durations equal or shorter than the correspondent window
length. The top panel shows the results when using the 2d-spectrum, the lower panel shows
for the same data the results when using the 3d-spectrum. Other parameters: df = lms,
a = 0.05, 5000 surrogates, FDR correction.
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Figure 4.5: Performance of SPADE using the 3-d spectrum. SPADE is applied to
stochastic simulations of different rate data models, left column: constant homogeneous
firing rate (25Hz) for all the neurons, second column: rate coherence, third column:
rate heterogeneity, right column: rate propagation. For the FP rate (top row) and FN
rate evaluation (middle row), patterns of a given size z and number of occurrences c are
inserted into the same background rates (given by the data model). In the bottom row,
the maximum of FP or FN of each (z,c) signature is shown.



4.3 Analysis of Experimental Data

‘We learned from the previous sections that the SPADE analysis with the 3d-spectrum
performs much better as the 2d-spectrum version. The extension of the 2d-spectrum by the
axis of pattern durations makes the analysis much more reliable in detecting patterns (less
FNs). Here we show example applications of the 3d-version of SPADE on experimental
data sets from the Reach-To-Grasp experiment (see section 4.3.1).

4.3.1 Reach-to-Grasp Data

Experimental protocol and experimental setup. We will analyze massively parallel
spike train data from electrophysiological recordings from motor cortex of two different
monkeys (macaca mulatta). The monkeys were trained to perform an instructed-delay
reach-to-grasp task during the recordings. A detailed description of settings, setup and
data preprocessing can be found in Brochier et al. (2018), Riehle et al. (2013), and Torre
et al. (2016b). In brief, the experiment design was: the monkey was indicated to grasp
and pull a cubic object horizontally, via two possible grips, either a full-hand side grip
(SG) or a two-fingers precision grip (PG). Furthermore, the grip had to be performed with
either of two different forces, either low (1N) or high (2V), respectively, indicated as low
force (LF) and high force (HF). Both grip types and force types were indicated to the
monkey with a 5-LED system situated above the to-be-pulled object. In order to get the
reward, the monkey had to perform the reach and grasp and pull the object for 500ms
and hold it within a given range. A scheme of the trial can be found in Figure 4.6. The
time schedule of the experiment was: 400ms after the monkey self-initiated a new trial
(trial start, TS), the LEDs system shortly lighted up in order to attract the attention of
the monkey (WS). After 400ms a first visual cue, lasting 300ms, appeared to inform the
monkey about which grip to perform. After 1000ms, both the force type and the GO
signal were indicated to the monkey with a second visual cue. Thus, four possible trial
types were designed: PGHF, PGLF, SGHF, SGLF. Each of them had the same probability
to be requested, in a sequence of approximately 130 successful trial executions constituting
a recording session (15 minutes). The stimuli, switch release and other behavioral data
were also stored for offline analysis.

The recordings were performed by a 10-by-10-electrode Utah array (Blackrock Mi-
crosystems, Salt Lake City, UT, USA), positioned partly across the dorsal premotor (PMd)
and primary motor (M1) cortex. The electrode lengths were 1.5mm, thus approximately
reaching layer 5. The inter-electrode distance was 400pm.

For this study we selected two recording sessions, that are published online and de-
scribed in detail in Brochier et al. (2018). The two datasets have been recorded from two
different monkeys, monkey L and monkey N, respectively. In the two sessions 93 single
units (SUAs) were recorded from monkey L, and 156 SUAs from monkey N. The spike
sorting to extract the SUAs was performed offline using Plexon Offline Sorter (version

3.3.3). For any further details we refer to Brochier et al. (2018).

Definition of Epochs We aim at getting insight in the dynamics of pattern occurrence
in relation to behavior. Typically a sliding window analysis is adopted for such a purpose
(e.g. Griin et al., 2002b). However, since this would be too computationally too expensive
we decided for a quasi-time resolved analysis by defining windows that capture behaviorally
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Figure 4.6: Reach-to-grasp experimental protocol. The trial start (TS) was self-
initiated by the monkey by pressing the home switch. A warning signal (WS) prepared
the monkey for a visual cue (C-ON until C-OFF) providing the instruction about the
grip type to use: SG or PG. 1s later a second visual cue turned on which at the same
time indicated the GO signal for movement initiation, specifying the force needed to
pull the object (HF or LF). The movement onset is marked by the switch release (SR).
After object touch (OT) the monkey pulled the object and had to hold it for 500 ms in a
narrow position window until he was rewarded (RW) by a drop of juice. The timing of
the behavioral events SR, OT and RW, which follow the GO signal, varied across trials
depending on the monkey’s reaction times and movement speed.

epoch name | trigger tpre tpost
start WS 250 ms | 250 ms
cue C-ON | 250 ms | 250 ms
early delay C-OFF | Oms | 500 ms
late delay GO 500 ms | 0 ms
moverment SR 200 ms | 300 ms
hold RW 500 ms | 0 ms

Table 4.1: Definition of trial epochs. The table summarizes the six different epochs
defined for the analysis. Each epoch is a 500 ms time window starting a time t,,. before
a trigger and ending a time tpe after that trigger (fpre + tpost = 500 ms).
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Figure 4.7: Trial types and behavioral epochs. Each panel shows the simultaneous
spiking activity of all neurons (vertical axis) over time (horizontal axis), for four example
trials (one per panel) of different behavioral types, from a representative session of monkey
N. Each dot indicates a spike. The trials are aligned to trial start (TS). The six colored
windows represent the position of the six epochs in a trial. The trigger associated to each
epoch and the corresponding epoch are shown at the bottom (see 4.1 for details). The
movement (green) and hold (yellow) epochs are centered around triggers that change the
time of occurrence from trial to trial depending on the reaction time (time from GO to

SR) of the monkey.
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relevant epochs during the trial. Thus we divide each trial into six epochs of equal duration
of 500ms, identified by triggers and behavioral contexts. The epochs of one selected trial
are illustrated as colored windows in Figure 4.7, and outlined in Table 4.1: start represents
the time interval around the warning signal (WS) indicating to the monkey the beginning
of a new trial; cue is centered around the first visual cue, informing the monkey which of
the two grips to use; early delay and late delay relate, respectively, the first and the second
half of the preparatory period, spanning in total the time between the first and the second
visual cue (GO signal); movement covers the time during movement; hold indicates the
epoch in which the object had to be hold until the reward was delivered.

Since we are interested In assoclating spatio-temporal patterns also to different move-
ment behavior and its preparation, we divided each session into the different trial types
(PG-LF, PG-HF, SG-LF and SG-HF). Each of these trials were divided into the 6 behav-
ioral epochs mentioned before, such that we end up with 24 datasets (6 epochs x 4 trial
types). Each dataset is composed by concatenated data pieces of the same epoch in the
respective trial type, which then enter the analysis.

4.3.2 Parameters of the SPADE Analysis

For the analysis of the experimental data we set the SPADE parameters as follows: bin-
gize dt = 3ms, sliding window duration K = 20 bins, 5000 surrogates, dithered in the
interval [—15,15] ms, and a significant level of & = 0.05 corrected by the Holm-Bonferroni
correction (Holm, 1979).

Reducing compute time

The extension of SPADE to STPs leads to a considerable compute time increase, even
when using parallel computing on a compute cluster. For example, the analysis of one data
session of 24 data epochs of 500ms each, and about 30 trials each, hits the computation
wall-time of 48 hours on a compute cluster with 32 nodes, each consisting of a 2 x Intel
Xeon E5 processor with 2.5 GHz processing speed and 8 x 16 GB DDR4 RAM. We were
able to reduce this time considerably (to about 24 hours) by restricting the analysis to a
selected set of patterns. In particular it is possible to derive a priori a minimal number of
occurrences of a pattern to be considered in the analysis, reducing the number of patterns
to mine and consequently the computational time. To derive such a minimal number we
apply two criteria, that both have to be fulfilled. The first is that any pattern has to
occur a global minimal number of occurrences, independently of its size. We request in
particular that a pattern occurs in a minimal fixed portion of the trials, i.e. here where
we have about 30 trials per trial type, we fix the minimal number of occurrences to 10.
The idea behind that is that if a particular assembly is active in relation to a particular
behavior, it should occur at least in 1 every 3 trials.

The second criteria is to derive analytically a minimal number of times ¢ for any given
pattern size z, assuming Poisson distribution and constant firing rates. It is then possible
to ensure that the signature (z,¢) is not significant under the assumption of independent
Poisson spiking and constant firing rate A, given a significance level & and a binsize dt.
Here we fixed the firing rate A as the 90-th percentile of the distribution of firing rates of
all the neurons in each behavioral context of the recordings. The probability to have one
specific pattern occurrence in one window, for the Poisson and independence assumption
is given by:
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p=(r-dt)"

The total number of possible combinations of z spikes from N neurons forming a
pattern in a window of length K bins is given by:

r= == (Y

Hence, the minimal number of oceurrences ¢ can be obtained solving the following equa-
tion:

T
(@) (1 —p)Ft

Furthermore, according to the first criteria, we do not consider patterns for which é
is smaller than the % of the number of trials, having about 30 trials per trial type here
we considered only &, such that ¢ > 10. In conclusion in our analysis we consider only
patterns, which the number of occurrences ¢ is such that ¢ > é > 10.

4.3.3 Results

‘We analyzed the two recording sessions of the Reach-to-Grasp experiment (described in
section 4.3.1), using SPADE with the 3-d p-value spectrum. Figure 4.8 summarizes the
features of the detected significant patterns for the two monkeys. Panel A shows the
number of significant patterns found in each of the 6 epochs (along the x-axis) and 4
trial types (coded in color). Most of the patterns for both monkeys occur during the
movement epoch. This finding is coherent with the results of the synchronous pattern
analysis Torre et al. (2016b). In monkey Na larger number of patterns occurred, which is
not too surprising since a larger number of single units are available for monkey N (96 for
monkey L and 156 for monkey N).

In the panels below of the same figure only patterns of the movement epoch are further
considered. Panel B shows the number of patterns of different sizes. Most of the patterns
involve two neurons only, but we detect also a considerable number of patterns of size 3
and 4. The patterns exhibit a variety of different lags on different time scales (Panel C),
but their number decreases with increasing lag.

The pattern occurrences in the two monkeys have different temporal dynamics. Panel
D shows the counts of spikes involved in one or more patterns in respect to the time in the
movement epoch (time axis is aligned to the movement on-set ). For monkey N patterns
ocecur after movement, while for monkey L they occur primarily before movement onset.
This may reflect an anticipation of the movement in monkey L, which is also consistent
with the higher number of patterns found during the late delay epoch. Furthermore, the
average reaction time is shorter for monkey L than for monkey N (see Brochier et al.,
2018).

Next, we investigated the neural compositions of the patterns and their spatial dis-
tribution on the Utah recording array. Figure 4.9 shows sketches of the electrode array,
each for a different trial type. Each square of the array represents one of the 100 record-
ing electrodes, organized in 10x10 grid of the Utah array. For the exact position of the
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Figure 4.8: Features of found significant patterns: A) shows the number of sig-
nificant patterns found in each of the 6 epochs (horizontal axis) and 4 trial types (color
coded). B), C) and D) show only results of the patterns found during the movement pe-
riod: B) histogram of the number of patterns with a specific pattern size, C) histogram
of the number patterns of a particular lag, D) PSTHs of spikes involved in a pattern in
a particular trial type (aligned on movement onset, SR).

arrays on the cortex surface we refer to Brochier et al. (2018) and Torre et al. (2016b)..
The colors indicate the number of patterns a neuron recorded from a particular electrode
participated to (no patterns formed by different neurons recorded on the same electrode
were found and no patterns are detected for monkey L in trial type SGHF). Interestingly,
for both monkeys we find that only a few neurons that participate in patterns ( 4/156 for
monkey N and 4/96 for monkey L). For monkey N, the contributing neurons are identical
for PGHF and PGLF, but with slightly different counts. The neuron involvements differ
alightly for SGHF and SGLF: 5 neurons stay identical, one changes. However, there is
also a strong overlap of neurons (3) that are active also in patterns occurring in SG. For
monkey L there is a larger difference across trial types: the neurons involved in patterns
do overlap between PGHF and PGLF, but additional ones are involved during PGHF. In
SGHF no patterns occur, but in SGLF, 2 neurons overlap with the PG patterns, but there
are additional neurons involved. Thus, the neurons involved in patterns are specific for the
different grip modes but not for the force levels, yet there are neurons which participate
in the patterns regardless of the trial types.

Currently, we cannot link the positions of the neurons involved to functional aspects
of the behavior.

4.4 Software and Workflow

Reproducibility is an essential element for rigorous scientific research. To this aim we
make all the software used in this study publicly available. This includes also the workflow

72



PGHF PGLF » SGHF . SGLF .
|| || ||

o I“‘v o o

= usll ol g g
= & @ ‘q ‘q
£ o3 o ] ]
o o o o

= e =g 2 2
.- " 3 3

. .
PGHF PGLF SGHF SGLF
w0 . - -
mEm : .
u .

" . wn v
2 L * s B o
| w3 ol
E 8 || 8 3 || 8
2 158 8 amg B
3 A A 3

. i -

_:H o ' o am

am

Figure 4.9: Pattern counts on the Utah array. Each panel shows the spatially resolved
count of pattern participation of the neurons at the respective electrodes to patterns during
movement, for the 4 different trial types. Each aquare in each of the panel corresponds
to the position of one electrode on the 10x10 Utah electrode. The number of patterns in
which the neurons are involved are color coded.

necessary to reproduce results and figures presented here.

The SPADE method, with all the different possible variants developed in this work
(e.g. computation of pattern stability, 2-d and 3-d p-values spectra) has beed integrated by
me into the Electrophysiology Analysis Toolkit!(Elephant, RRID:SCR_003833), an open
source toolbox providing data analysis tools for electrophysiology data, developed in our
lab.

Typically, software on its own is not sufficient to reproduce a scientific results. The
knowledge about the whole analysis workflow (e.g. parameters configuration, input-output
relations, etc.) is in most cases crucial to reproduce a result. For keeping track of these
workflows several provenance tracking and workflow managment tools emerged in the past
years for research and analysis. In this study we make use of three of them to publish our
analysis and keep track of the analysis workflow. We make use of the Snakemake? workflow
management system for the definition and implementation of the analysis workflow. Figure
4.10 illustrates the Directed Acyclic Graph (DAG) representation of the workflow used to
generate and analyze the artificial data. The code necessary to reproduce the entire study,
including both SPADE (https://github.com/NeuralEnsemble/elephant) and the anal-
ysis workflow (https://github.com/INM-6/SPADE_analysis), is available on the web-
based hosting service for version control GitHub®. The code necessary to simulate artificial
data used in this study is included in the repository together with the Snakemake workflow.
The data of the Reach-to-Grasp experiment analyzed here were published (Brochier et al.,

lhttp://python-elephant.org
2https ://snakemake .readthedocs.io
3h1:1:ps ://github. com/
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Figure 4.10: The Directed Acyclic Graph (DAG) of the SPADE workflow to an-
alyze the first artificial dataset. Snakemake allows to obtain and visualize a diagram
of the entire workflow and parameters used. Each node of the graph corresponds to one
step of the analysis workflow, the connecting links represent the input-output relations.
The steps that can be run in parallel form one layer of the graph. When one step requires
external parameters, the values that each of them assumes are reported explicitly in the
DAG (e.g. the rule analyze data requires the parameter of the dimensionality of the
spectrum to use and the window length for the FIM analysis).

2018)and thus are publicly available (at G-Node* ) and are accompanied by meta-data,
and loading scripts (https://web.gin.g-node.org/INT/multielectrode_grasp).

4.5 Discussion

In this chapter three results concerning SPADE were shown: a) that is it necessary that
patterns of different durations are evaluated for significance separately and why; b) we
applied the new method to experimental data, and ¢) we found STPs that are specific to
the behavior. In the following we discuss these issues separately.

STPs of different durations (time between first and last spike of the sequence) need to
be analyzed for their significance separately, since otherwise the significance of STPs of
larger durations are underestimated. We showed that the reason is that shorter patterns
of the same number of spikes are by chance so many more that longer patterns may be
overseen. In order to correct for that, we extend the p-value spectrum (introduced in
previous chapter) to a third dimension, i.e. the pattern duration. Patterns of same size,
number of occurrences and duration are now pooled into corresponding bins before to
be tested for significance, while in the 2-d spectrum all the patterns with same size and
number of occurrences were tested together regardless their duration. We present the
application to artificial data using the 3-d p-values spectrum, and show that it amends
the missed detection of injected patterns when using the 2-d spectrum. The 3-d spectrum
ensures a larger statistical power than the 2-d p-value spectrum. In order to ensure that
the new testing procedure does not affect the robustness of the method, we also validate
its performance in terms of false positives and false negatives. We found the necessity
of using a different multiple testing correction (Holm-Bonferroni rather than FDR) in
order to compensate for the larger amount of tests to be performed. In conclusion, the
performances of the revised pattern spectrum filtering are similar to the ones of the 2-d

‘https://web.gin.g-node.org/
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spectrum in the case of a single pattern injection, but improved considerably for detection
of multiple patterns with different durations.

Next we applied SPADE, with the 3-d spectrum testing, to two experimental datasets.
‘We considered two recording sessions of massively parallel spike trains, obtained from the
pre-/motor area of two macaque monkeys performing a reach-to-grasp task (Riehle et al.,
2013). The data were separated into trials of different behavioral conditions (PGHF,
PGLF, SGHF, SGLF) and performed for each of them a quasi time-resolved analysis
to capture dynamic aspects of pattern occurrence. We found that significant patterns
primarily occur during the reach and grasp movement.

To our surprise (see also discussion in Torre et al. (2016b)) the size of the patterns
range between 2 and 4 spikes, less than 5% of the total number of observed neurons.
They exhibit a variety of temporal lags. .Different patterns, both in terms of neuronal
composition and spatial arrangement of the involved neurons, appear to characterize the
different grips (precise and side grip). In addition, some neurons participate in all patterns
of a trial type, and even their individual spikes participate in different patterns. The same
neurons also appear in different patterns across trial types.

In a next step we aim to analyze many more sessions of the same experiment, to test
if the same observations of pattern features occur there as well. In addition, we aim
to interpret the spatial arrangement of the neurons involved in patterns in terms of the
functional map in pre-/motor cortex (Riehle et al., 2013). A further direction of research
will be to relate pattern spikes to frequency and phase of the local field potentials in the
spirit of Denker et al. (2011).

The entire analysis of both artificial and experimental data is publicly available online®,
as well as the SPADE implementation in python®.

She tps://github. com/INM-6/SPADE_analysis
Shttps://github.com/NeuralEnsemble/elephant
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Chapter 5

Review of Methods for
Identification of Spike Patterns in
Massively Parallel Spike Trains

5.1 Introduction

In the previous chapters SPADE has been extended for detection higher order correlation
expressed by Spatio-Temporal Patterns with an explicit temporal dimension. However,
over the last years also several other methods to detect correlations in MPST have been
developed. Each of them has specific assumptions and aim to highlight different aspect
of the correlated activity. In this chapter we review such analysis approaches. We omit
methods that are either not suitable for MPST data, or that reduce their attention to
patterns driven by external stimuli. We identify in particular two classes of methods for
the analysis of temporally precise spike correlations. The first class consists of methods
that analyze what we call population correlation, i.e. correlation that manifests at the
level of the (full) population of neurons being examined, and does not (necessarily) involve
specific cell assemblies. The second class consists of methods designed to identify specific
cell assemblies that produce specific types of STPs. In total, we discuss and compare nine
methods (four of the first class, five of the second class).

The outline of the chapter is as follows. Section 5.2 introduces different models of
correlations in parallel spike trains. Section 5.3 describes the methods for correlation
analysis considered here, with a focus on clarifying their assumptions and detailing for
which type of correlation they were designed to detect. Section 5.4 compares the considered
methods in terms of their sensitivity to the different correlation models, and discusses their
ability to reconstruct (entirely or partially) those correlation structures. A perspective on
new research avenues that the combination of different methods opens is given in section
5.5. For consistency we also describe again briefly the functioning of SPADE, in order to
compare it with the other methods.

5.2 Models for parallel correlated spike trains

Temporal coding has been associated to different (but not necessarily incompatible) forms
of apike correlation at fine temporal scale, i.e. with ms precision. These can range from
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aynchronization of always different cell groups, to spike sequences from specific neurons in
a specific temporal order, to sequences of synchronous activity. Each method considered
in this paper was designed to determine the presence of one such correlation structure in
MPST data. Hence, it is first necessary to introduce the respective correlation models,
and to highlight their similarities and differences. This section presents five different types
of fine temporally correlated spiking activities that have been associated to mechanisms
of temporal coding in the literature, either in theoretical or in experimental studies. Ad-
ditionally to the heuristic description provided in this section, in section 5.2.6 we define
formally a Point Process framework that can be used to model and generate artificial data
for the different correlation structures here introduced.

5.2.1 Population synchronization

Population synchronization refers to spiking activity where some of (or all) the neurons
observed emit synchronous spikes, repeatedly over time. The neurons involved are not
hypothesized to be always the same, although they may. For this reason, methods designed
to detect the presence of synchronization at the population level do not need to look for
and to assess the statistical significance of a multitude of different spike patterns.

This fact per se does not exclude the presence of specific cell assemblies in the data
being recorded. A neural network model that contains cell assemblies and may or may not
produce repeated spike patterns, depending on the model parameters, is the synfire chain.
A synfire chain is a network with a high convergent and divergent connectivity from one
layer of neurons to the next (Abeles, 1991). The network exhibits synchronous spiking
activity that, triggered by stimulation of the first layer, propagates through the next layers.
The propagation is robust to noise (Diesmann et al., 1999). However, the latter study also
showed that the composition of the active neurons may vary at each run, depending on
the layer connectivity and its strength. If so, recordings from neurons in the same layer
would contain different, although possibly overlapping, synchronous spike patterns (see
Figure 5.1C). From a statistical perspective, a probabilistic model of parallel spike trains
able to generate different but overlapping synchronous spike patterns, and often used for
method validation to generate ground truth data, is the multiple interaction model (Kuhn

et al., 2002, 2003).

5.2.2 Pairwise synchronization

In the 1960s researchers first started to look into correlations between spike trains with the
idea that correlated neurons reflect functional correlation. Gerstein and Clark (1964) and
Perkel et al. (1967) developed the cross-correlation analysis to detect correlations between
two parallel spike trains beyond trivial effects like stimulus dependent rate increase. Many
other studies then followed, a large collection of which is found in the book by Eggermont
(1990).

In pairwise synchronization pairs of neurons synchronize their spikes independent of
each other. Thus, higher-order correlations are absent. Patterns of size 3 or larger are
atill possible, however, only as the result of chance simultaneous spike emissions from
individual neurons or neuron pairs. This type of spiking activity is shown in Figure 5.1A.

In studies concerned with the analysis of spike correlations, there was and there still
is a focus on pairwise analysis in the field (Riehle et al., 1997a; Kilavik et al., 2009;
Vaadia et al., 1995; Zandvakili and Kohn, 2015). The reason is not that the theory would
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predict pairwise correlations only (see, e.g., Abeles, 1982), but rather the simplicity of
such analyses over that of higher-order correlations. Nevertheless, the study of purely
pairwise correlations may reveal, in MPST data, interesting dependence structures that
hint to larger interacting groups of neurons, cross-area interactions or spatial interactions.
Some of the methods reviewed in this paper analyze pairwise correlations for statistical
significance, and then group them into larger groups of interacting neurons.

5.2.3 Synchronous Spike Patterns

A neuron receiving synchronous synaptic inputs is more likely to emit a spike than asyn-
chronously arriving inputs, as predicted by theory (Abeles, 1982; Ko6nig et al., 1996; Fries,
2005; Schultze-Kraft et al., 2013) and shown in experiments (Ashida et al., 2016). This
observation led to hypothesize that neurons synchronize their activities beyond pairs. To
investigate this hypothesis in real data by statistical testing, as well as to generate syn-
thetic data for method validation, probabilistic models of parallel spike trains including
higher than pairwise synchronization were formulated. Two examples are the single in-
teraction model by Kuhn et al. (2002), and the maximum entropy model by Schneidman
et al. (2003). A realization of the single interaction process where a synchronous spike
pattern has multiple occurrences is shown in Figure 5.1B.

5.2.4 Spatio-temporal Patterns

Spike synchrony can be generalized by adding a temporal dimension to the correlation:
the neurons involved in the coordinated activity do not necessarily spike synchronously,
but in specific temporal sequences with fixed (up to a given precision) delays between
consecutive spikes (see Figure 5.1E). This type of activity is generally referred to as a
spatio-temporal pattern (STP; Prut et al., 1998).

STPs may be the results of the large variability of conduction delays observed in
cortical network (see e.g. Swadlow, 1994), and may arise in different network models. For
instance, a synfire chain produced STPs where neurons in the same layer of the chain
fire synchronously, while neurons belonging to different layers fire at fixed delays. If one
would record only one neuron per layer, the STP would reduce to asynchronous spikes
with fixed delays. Another model that generates STPs is the synfire braid (Bienenstock,
1995), also called polychrony model (Izhikevich, 2006). It is a generalization of the synfire
chain, in which spikes produced in one layer arrive at the next layer at different times due
to different propagation delays. Various methods have been developed to extract STPs
from a small number of parallel spike trains (Dayhoff and Gerstein, 1983; Prut et al., 1998;
Abeles and Gerstein, 1988) , and these methods retrieved statistically significant STPs in
experimental data (see, e.g., Prut et al., 1998).

5.2.5 Sequences of synchronous spike events

A specific type of temporal correlation that features spike synchronization and temporal
propagation is represented by sequences of synchronous events (SSEs). These consist of
multiple synchronous events, each involving a specific group of neurons, occurring at a
fixed temporal delay one after another. Parallel recordings from multiple layers of an
active synfire chain would for instance exhibit such spike patterns (Schrader et al., 2008;
Gerstein et al., 2012). The sets of neurons involved in different synchronous events may or
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may not overlap. A realization of one specific SSE occurring two times is shown in Figure

5.1E.

5.2.6 Point Processes models for Correlated Spike Trains

The correlated parallel spike trains models described in section 5.2 can be formalized as
Marked Point Processes (MPP). We can consider an MPP M (t) where the k-th event is
marked with a random variable Py, which corresponds to one subset of the set {1,...,n},
where n is to the total number of neurons. P}, consists of the set of indexes of the neurons
that fires simultaneously at that point in time. The firing times of the i-th neuron can be
described by the counting process X;(t) = N;(t)+ M;(t) where N;(t) counts the individual
spikes of neuron i occurring with background rate A; and M;(t) = M(t) - Lep,) gives the
spikes due to synchronous activity. If M(t) and all N;(t) are independent Poisson processes
then the population process Z(t) = > 1 ; X;(t) (sum of the spikes of all the neurons) is a
compound Poisson process CPP(N(t), A), where N (t) counts the total number of events
until time ¢ and Ay indicates the number of synchronous spikes in the k-th event, that is,
either one if the event is a single neuron firing and otherwise the size of the corresponding
set Si . The complexity of the process is the size of the largest possible set.

Using this framework, it is possible to derive a formal model for each of the correlation
structures introduced in section 5.2.

The population synchronization corresponds exactly to the model just introduced,
where Pj can correspond to any possible subset of the set {1,...,n}. The pairwise syn-
chronization can be modeled by considering P} assuming all and only values in the set
of possible pairs (i,j) with i,j € {1,...,n}. For the synchronous pattern P} is fixed for
every event and it represents the set of the indexes of the neurons involved in the pattern.
For the spatio-temporal pattern we need to additionally define a set of delays {dq,...,d}
that represents the lags between the firat and each of the other spikes forming the pattern,
such that M;(t) = (M(t)+6;) - L{ica,}- Similarly for the SSEs we can define the neuronal
sets forming the successive layers of synchronous spikes {L1,...,L;} and their respective
delays {dg,...,d1}, such that P, = {L; U...U L;}in order to define the sequences by
M;(t) = (M(t) + 8;) - Lyier;y-

5.3 Higher-order correlation analysis methods

In this section we summarize existing statistical methods for the detection of higher-order
correlations in MPST data. We give a short description of these methods, highlighting
their features and limitations, in particular with regard to how they deal with different
properties of uncorrelated background activity in the data. For details we refer to the
original publications.

Generally, two classes of methods can be distingunished, which investigate different
aspects of spike correlation. The first classaim to identify the correlation order (number of
neurons involved) rather than the identity of the neurons involved. Thus, each correlated
event may involve a random subset of neurons or may be composed of a specific, always
identical group. We refer to the correlation type underlying this analysis class as population
synchronization. The other class of analysis methods assumes a correlation model in which
the correlated neurons form stereotypical synchronous spike events or temporal sequences

80



-
0

. . LR " . . e o .
. .o e ..
. e e . . . . . . . . ] .
. . . . . . . . .
. " [ . . . . e .
2 . " . . " e . . .
K . . L . . [ .,
5 ] . o . . L T T T T ] T}
a . . . e .o .o
2| . . . LI I | L . . LR ]
. . . . . . . .
. ] LR ] . . . e .
] T T . . . . . [ ] .o L . . e
B . . . . . LI . Do (1] . . L] L]
e (] .o . .
. . . . I A . . . . .
. . . . T . e .. .
. . e ¥ . . . .
i . . . . . . . . ' .
gl e e [ . [ LI . . o ) L] e . .
5 . LI T T Y ] T} o . ) . " .
[] e .o " . D T e . I T ]
Z| #» .. . . e 0 . .. . LI ] LI}
. . . . . .
. . .o . . e . " .
] LI ] . . . . . . . .
E . . . . . . .
e .o
. . o " LR ] .
. . . .
" . . . "
C . . . . .
gl . . LI
3 LI T T T S ] .o .
4 . o [ "
20w .o L . oo
. . .
. . e .
. LI ) . .. . . e
time:

Figure 5.1: Raster plots of different correlation types. Each panel shows the spiking
activity of parallel spike trains (one neuron per row) over time (horizontal axis). Each
dot represents a spike; the red dots in particular represent spike belonging to a spike
pattern. Different panels refer to different forms of temporal spike correlation. A) Pairwise
correlation model. The population contains 6 pairs of synchronized neurons (the latter
indexed from bottom to top): (1,2), (1,3), (2,4), (8,9), (8,14), (13,14). B) Synchronous
spike patterns. Neurons 4,5,6,7 are repeatedly involved in the pattern. C) Differently
from the spike patterns in panel A, the neurons involved in each synchronous event are
randomly selected and change from one event to the next. D) Spatio-temporal patterns.
The red spikes correspond to occurrences of an STP. The neurons involved in the patterns
are 4,5,6,7, as in panel A, but their spikes occur now in a fixed temporal succession with
fixed delays. E) Sequences of synchronous spike events. Two occurrences of the same SSE
are shown. Here all observed neurons are involved, and groups of 4-4-4-3 synchronously
firing neurons fire in short succession.
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of spikes. We refer to these events as spike patterns. The aim of these methods is to
retrieve the neuronal composition and the oceurrence times of the spike patterns.

5.3.1 Methods to detect population synchronization

One of the challenges in the statistical assessment of synchronous spike events in MPST
data is posed by the exponential growth of the number of possible patterns with the num-
ber of neurons being considered. However, this problem can be simplified if the research
interest lies solely on assessing the presence and the order of excess (i.e. above-chance)
aynchronization, without resolving the specific neuron identities involved. Also, the data
may contain patterns of synchronous spikes that change their neuronal composition each
time, so that the correlation is distributed possibly across the full population being oh-
served. We refer to synchrony which does not (or which is not assumed to) involve specific
subgroups of neurons in the observed population as population synchronization.

Most methods for population synchronization analysis reduce the spike data to the
number of active neurons (i.e. spikes) observed at any time bin. A spike train i is
fully described by its spike times and, . given a time discretization in small temporal
bins, we can define the population histogram as the count of spikes that occurred in
the same time bin. The maximum possible count fo the histogram is thus the number
N of neurons. The first three methods presented here are based on statistics derived
from the population histogram. They were developed in succession, each to overcome
the limitations of the previous one. The first method, the Complexity Distribution (CD)
analysis (Griin et al., 2008), proposes a simple statistical approach purely based on the
distribution of the entries of the population histogram. It compares such an empirically
derived distribution to that expected from neurons firing independently to determine the
presence of excess synchronization. The second method, the CUmulant Based Inference
of Correlation (CuBIC, Staude et al., 2010b), derives the null distribution analytically
under more specific assumptions about the data, and infers the minimum correlation order
existent in the data. The third method, the Population Unitary Event (PUE, Rostami
(2017)) analysis, works under the same assumptions as CuBIC, but uses a different test
atatistic which enhances the statistical power of the test, thereby requiring samples of
smaller size for a correct identification of excess synchrony and thus also enabling a time
resolved analysis.

The fourth method, called here the correlation information index (CII), is an approach
originally suggested by Schneidman et al. (2006) as a way to condense the information
delivered by maximum entropy models built on parallel spike train data to a single scalar.
The method accounts for the neuronal identity of each spike in the observed synchronous
patterns, and builds a full probabilistic model of those. This model is used to obtain a
single scalar, the CII, that quantifies the amount of surplus of information contained in
the data which is delivered by correlations of a given order.

Complexity Distribution (CD)

The value taken by each entry in the population histogram is called the bin complexity.
Each synchronous spike event increases the empirical complexity in the bin of it's occur-
rence as compared to the scenario of independent spiking. Therefore, it also increases
the value of the empirical complexity distribution at that complexity value. Grin et al.
(2008) developed a method that tests for spike train independence based on the difference
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Method Target Null model Alternative Ref
correlations model
g CD Population Independent Population Griin et al. (2008)
g% Synchroniza- spike trains synchroniza- Louis et al. (2010a)
E—' 5 tion tion
a3 g | CUBIC Population v Population Population Staude et al.
< —g Synchroniza- Synchroniza- synchroniza- (2010b)
o tion tion of order tion of order Staude et al.
3 £4+1 (2010a)
PUE Population Population Population Rostami (2017)
synchroniza- synchroniza- synchroniza-
tion tion of order tion of order
£ £+1
CII Population Maximum Maximum Schneidman et al.
Synchroniza- entropy model | entropy model | (2003)Schneidman
tion of order ¢ of order £ +1 et al. (2006)
MEM Synchronous Maximum Synchronous Schneidman et al.
Spike Patterns | entropy model | spike patterns | (2003)Schneidman
of order ¢ et al. (2006)
B Shimazaki et al.
g (2012)Kelly and
E Kass (2012)
9 GIC Synchronous Independent Pairwise Berger et al.
A, Spike Patterns synchrony (2010a)
@ SPADE Synchronous Independent Synchronous Borgelt (2012)
and Spatio- pattern, Torre et al. (2013)
temporal Spike Spatio- Quaglio et al.
Patterns temporal (2017)
patterns
CAD Synchronous Poisson Synchronous Russo and
and Spatio- Independent pattern, Durstewitz (2017)
temporal Spike Spatio-
Patterns temporal
patterns
ASSET Sequences of Poisson SSEs Schrader et al.
Synchronous Independent (2008)
Events Gerstein et al.
(2012)
Torre et al. (2016a)

Table 5.1: Table of analysis methods, their assumptions, and related references.
The table summarizes the methods that we discuss here and their assumed data models
(column 2 from left, all introduced in Section 2). Columns 3 and 4 describe the assumed
null and the alternative hypothesis, respectively. Column 5 lists the publications in which

each method has been introduced or further developed.
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between the empirical complexity distribution and the null distribution. Excess synchrony
causes the difference between the two distributions to have a positive bump at larger com-
plexities. Due to the conservation of the total probability mass, a negative bump appears
at lower complexities. Depending on the assumptions about the spiking behavior of each
neuron, the null distribution may be available analytically (e.g. by assuming that the
spike trains are stationary Poisson processes) or be approximated by Monte Carlo surro-
gate techniques (see Griin, 2009; Louis et al., 2010c,a), and will in general depend on the
atatistics of each spike train as well as on the chosen bin size.

An example of artificial test data is illustrated in Figure 5.2, modified from Griin
et al. (2008). Panel A, top, shows data from a stochastic simulation of 100 parallel spike
trains, 80 of which are independent Poisson. The first 20 neurons exhibit, in addition to
independent spiking activity, also synchronous firing events. The synchronous events are
hardly visible by eye in the raster plots if the neuron ids on the vertical axis are sorted
randomly (Panel A, middle), but can be retrieved in the population histogram (Panel A,
bottom; bin size: 1ms), although with a loss of information about the involved neurons.
Panel B shows the empirical complexity distribution (top), the null distribution computed
by randomizing the spike times of each neuron (middle), and the difference between the
two distributions (bottom). The latter contains a visible bump centered at complexity
é = 22. Importantly, the bump is right-skewed and is centered to the right of the true
aynchronization order £ = 20. The reason for the offset in the peak is that the inserted
aynchronous events of fixed size £ overlap with background activity from the other neurons,
resulting in a higher total complexity. The bin width w determines the statistics of the
random component of the total count.

Under the assumption that all spike trains are Poisson processes with identical firing
rates, the null distribution can be computed analytically based on combinations of Bino-
mial distributions (Griin et al., 2008; Figure 5.2B, solid). Otherwise it can be computed
by surrogates, e.g. by spike time dithering (Figure 5.2B, dots). Confidence intervals are
computed analogously, and allow to accept or reject the null hypothesis of independence
(Louis et al., 2010a). Varying the bin size enables to determine the temporal jitter inherent
to the synchronous events (for details, see Louis et al., 2010c).

CUmulant Based Inference of Correlation (CuBIC)

The complexity distribution method discussed above visualizes correlations among parallel
spike trains. The CUmulant Based Inference of Correlation (CuBIC; Staude et al., 2010b)
advances this technique by relaxing the hypothesis of independence and testing for the
presence of correlations of progressively higher-order, given those of lower order observed
in the data.

CuBIC comprises the following steps. Starting from & = 1 (spike train independence),
it assesses whether peaks in the complexity distribution of the data could be explained
entirely by assuming correlations of order at most £. If that iz not the case, the method
accepts the alternative hypothesis that correlations of order £ + 1 or higher must exist. It
then tests for correlations of order £ 4+ 1 against those of order £ + 2 or higher, and so on.
The procedure stops as =oon as a value E is accepted. E 1s interpreted as the minimum order
of population synchronization that has to be assumed to explain the observed amount of
synchronous events in the data. The sequence (py, ..., pé) of test p-values is guaranteed to
increase, because synchronous events of higher complexities correspond to higher expected
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Figure 5.2: Complexity distribution based correlation identification. A) Top:
Parallel spike trains comprising a synchronous spike events among the first 20 neurons,
firing in synchrony with a rate of A, = 5 1/s, plus 80 independent neurons. Middle:
randomization of the neuron ids (vertical axis) of the top panel. Bottom: population
histogram of the data (bin width: w = 1ms). B) Top: Complexity distribution of the data
in A. Middle: null distribution obtained analytically (solid line) or by surrogates through
spike time randomization in time (dots). Bottom: difference between the observed and the
null complexity distributions. Figure modified with permissions from Griin et al. (2008).
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Figure 5.3: CuBIC analysis. A-B) Illustration of the generation of correlated parallel
apike trains using a marked point process. This process is the null model used to test
& = 6. Spikes are assumed to be copied from a hidden process z(t), (A, top) consisting
of spike times ¢; drawn from a Poisson process and associated labels a; drawn from the
amplitude distribution f4 (panel B, top). Each spike ; in the hidden process is copied
into a;j spike trains, randomly selected each time from the full population x1,...,znN.
The population histogram Z (A, bottom) is computed by segmenting the time axis into
consecutive bins of a few ms. The complexity distribution fz (B, bottom panel) is derived
from Z. C)Application of CuBIC to simulated correlated data. The Figure shows, from
top to bottom: the amplitude distribution used to generate the correlated data, the raster
plot of the generated data, the derived population histogram, the empirical complexity
distribution (blue) and its logarithmic transform (green), the test p-values for different
orders of correlation tested by CuBIC. Figure modified with permissions from Staude
et al. (2010b).

correlations, and thus eventually exceeds the selected significance threshold «, terminating
the procedure (see last row of panel C in Figure 5.3).

The test p-value is obtained analytically in the limit of a large number L of i.i.d. ob-
servations (time bins), and by assuming that all spike trains are Poisson processes. In
particular, the case £ = 1 corresponds to the assumption that the spike trains are inde-
pendent. The case £ > 1 corresponds to the assumption that up to £ neurons synchronize
their spikes with positive probability. The probability of synchronous events of a given
size is modelled by the so-called amplitude distribution (see panel B in 5.3). The ana-
lytical formulation makes CuBIC computationally inexpensive, but requires L to be large
enough (according to Staude et al., 2010b, L > 10° bins) to get reliable results. The
analysis is therefore limited to applications of relatively long and stationary data. The
length of the data required does not enable the method to reveal changes of the correlation
order over time. While the original publication developed the method for stationary data,
generalizations had been later on provided for populations of spike trains with specific
firing rate distributions, such as Gamma or uniform distributions (Staude et al., 2010a)
or non-stationary processes (Reimer et al., 2012).
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Figure 5.4: Population Unitary Event analysis. A) Top: raster plot of 6 neurons
firing over time. Bottom: illustrative example of the test statistic n., showing for given
values of ¢ (¢ = 2 blue, ¢ = 3 red, ¢ = 4 green) and for each bin of the population
histogram containing Z;, > 2 spikes, the number (Z;) of patterns of size ¢ that can be
extracted from the Zj spikes. B) Time resolved PUE analysis applied to simulated data.
The simulated data consist of N = 150 parallel spike trains with duration 7' = 2000 ms,
generated as a realization of a correlated Poisson process of order £ = 6 in the time
window [800 ms, 1200 ms| (indicated in gray), and of order £ = 2 elsewhere. The firing
rate of each individual spike train is set to 10 Hz and the pairwise correlation coefficient
to 0.005. The data are analyzed with PUE varying the hyperparameter ¢ from 1 to 6.
From top to bottom: Time course of synchrony order £, raster plot of the data, population
histogram (1 ms bin size), cross-neuron average of empirical pairwise correlation coefficients
calculated over a 300 ms sliding window, average firing rate estimated over the same sliding
window, and surprise measure of the PUE statistic using different values of the parameter
¢. The surprise is calculated for each time window with null order £y = 2. Different colors
correspond to different values of c. The gray dashed line indicates the 5% significance level.
C) Estimation of the synchronization order ¢ in the central analysis window (highlighted
in gray in panel B), for a null order & increasing from 1 to 8. The data are obtained by
concatenating 15 model realizations generated as explained in B, and mimicking identically
distributed experimental trials. The blue dashed line indicates the 5% significance level
and the vertical red line shows the true synchronization order £ = 6. Figure modified with
permissions from Rostami (2017).
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Population Unitary Event (PUE)

As mentioned in the previous section, CuBIC is limited in its application to long stretches
of stationary data. However, experimental results regarding pairwise correlation analysis
using the unitary events analysis method (Riehle et al., 1997b; Kilavik et al., 2009) revealed
that excess synchronization may appear dynamically and is related to behavior. Thus,
time resolved analysis methods for detection higher-order correlation are required. The
population unitary event (PUE) analysis method is designed to enable that. The test
atatistic of PUE is the number of synchronous spike events of a given size ¢ observed in
the data, which is extracted from the population histogram. For bins containing spike
counts Z, we consider the total number of possible constellations of ¢ from Z, thus (Zc")
per bin k. Thus in a total of L bins we derive the number of synchronous spike events
ch = Zé:] TZZ,G{T}' For example, as shown in

Figure 5.3.1A, ng, n3 and ny are the total number of distinet pairwise, triple-wise and

of size ¢ according to n. = Zé:]

quadruple-wise synchronous spike events present in the data.

The PUE analysis exploits the following framework for testing the significance of the
empirical test statistic observed in the empirical data. The null hypothesis of the PUE
method is defined by a presumed order of synchrony among the spike trains, i.e. the null
order £p, and assumes that the order of synchrony among the given spike trains is at most
the null order £. The null distribution and the associated test p-value are computed
numerically by a Monte Carlo simulation by realizing a marked Poisson process (see Ehm
et al., 2007; Staude et al., 2010b) used to model a multidimensional correlated Poisson
process (as also assumed and introduced in CuBIC, section 5.3.1). The parameters for
the null-model are adapted by the firing rate and the pairwise correlation parameters
extracted from the data (see details in Rostami, 2017; Staude et al., 2010b).

The analysis can be performed in a time-resolved fashion by sliding a window through
the data in steps of a few time bins, and by analyzing each time window separately. As
shown in Figure 5.3.1B, the surprise measure, defined as a logarithmic transformation of
the p-value (Palm, 1981), becomes significant when the analysis window overlaps with the
aynchronization period. This enables a time resolved analysis which is able to discover
changes in the correlation order over time.

‘When multiple experimental trials are available, the PUE method may pool data from
different trials to achieve increased statistical power, under the assumption of cross-trial
stationarity. Figure 5.3.1C shows an example where the order of synchrony is inferred by
PUE using alll5 trials. By computing the surprise as a function of the null order &g, the
estimate .f of true order of synchrony in the data can be obtained as the lowest value of the
null order &g for which the surprise measure is not significant. PUE has higher statistical
power (and therefore needs less evidence) than CuBIC to detect existing correlations in

data.

Correlation information index (CII)

Maximum entropy models (MEMs) have been introduced to evaluate the occurrence prob-
ability of each synchronous spike pattern (seen as a binary sequence of on/off states) given
the observed firing rates, pairwise correlations, and possibly higher-order moments of a
population of observed neurons. Once a maximum entropy distribution accounting for all
and only the observed correlations up to a given order £ is inferred from data (see section
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5.3.2 for more details), the amount of information delivered by such correlations can be
quantified as follows.

The larger is the order £ of the moments one accounts for to construct the maximum
entropy distribution, the smaller is the total entropy H; of the maximum entropy distri-
bution (that is, its uncertainty). At one extreme (¢ = 1, only average firing rates being
considered) one gets the uniform distribution, where the probability of a state is propor-
tional to the product of the firing rates of the “on” neurons. At the other extreme (£ = N,
where N is the number of neurons) one gets the empirical distribution. The entropy H¢
of the maximum entropy distribution constrained on all moments up to order ¢ decreases,
for { increasing from £ =1 to { = N, from H; to Hy. The difference H; — H; quantifies
the reduction of the entropy (i.e., of the uncertainty about all possible states) due to the
knowledge of all correlations of order 2 to &, that is, the amount of information conveyed
by those correlations. The difference H; — Hy quantifies the total information delivered
by correlations of any order. Thus, the ratio

Re= oM

Hi — Hy

characterizes the portion of the total correlation information delivered by correlations
of order 2 to £&. This measure is called here the correlation information index (CII). Rs
was suggested by Schneidman et al. (2003) to assess whether or not triple- or higher-order
correlations play a role in information processing in the nervous system. Schneidman et al.
(2006), Shlens et al. (2006) and Tang et al. (2008), among others, applied this measure to
data from the retina and from various cortical areas, reporting values ranging from 0.85
to over 0.95. Based on these high values, they concluded that higher-order correlations
were negligible in the examined data. It should be noted, nevertheless, that even for
extremely high values of Ry (Rg > 0.99), highly statistically significant spike patterns of 3
or more neurons may be present in the data (Torre, 2016). In addition, Roudi et al. (2009)
showed in a theoretical study that conclusions obtained from MEMSs built on data from
few neurons cannot be extrapolated to larger samples of parallel spike data. Nevertheless,
this approach may be helpful to quantify the amount of information present in parallel
spike train data which is delivered by correlations of a certain order.

5.3.2 Methods for spike pattern detection

The second group of methods covered in this review is designed to detect groups of neu-
rons involved in millisecond-precise spiking patterns. These methods achieve this goal by
detecting spike patterns that repeat sufficiently many times to be classified as non-chance
patterns. Non-chance patterns are considered a signature of assembly activation Abeles
(1991), and have been associated to behavior in several experimental studies (Prut et al.,
1998). The large number of possible patterns in large scale recordings often poses non-
trivial computational and statistical problems. To get a flavor of this problem, consider a
population of N neurons recorded in parallel. These neurons may organize their activity
in up to 2V different patterns of synchronous spikes, which is close to 103 for N = 100, as
regularly available in modern extracellular recordings. This number increases by orders of
magnitude if arbitrary STPs, and not only synchronous events, are considered. Without
any previous knowledge about the neurons possibly involved in the correlation, a blind
search for patterns occurring more than expected under some null hypothesis has to be
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performed, accounting for all these possibilities. The computational burden may be ex-
cessive (even allocation of the occurrence counts of all possible patterns to memory may
be impossible). Besides, testing all patterns individually for statistical significance would
yield insurmountable multiple testing issues. Finally, the amount of data needed to collect
adequate statistical evidence would be immense, and most likely unavailable. The methods
considered here have been developed to address these issues. We specifically restrict our
attention to methods that can be applied to large scale recordings, and whose ability to
discover existing patterns has been demonstrated on simulated data. Also, we disregard
those methods that search only for patterns temporally locked to some stimulation. A
recent review of the latter can be found in Levakova et al. (2015).

Maximum entropy models (MEM)

As mentioned already in section 5.3.1, MEMs provide the possibility to assess the likelihood
of apecific spike patterns based not only on the average neuronal firing rates, but also on
the observed second and higher-order correlations. As shown in Figure 5.3.2, a MEM of
order £ converts spike trains to binary sequences by binning, computes the average zero-lag
correlations up to order £ (the vector of average firing rates, the matrix of second order
correlation coefficients, the tensor of third order correlations, and so on), and then provides
an analytical estimate of the p-value of any spike pattern under these constraints (and
under the additional assumption that the spike trains are Poisson). A joint distribution of
N binary states (on/off neurons) is fully specified if and only if all multivariate moments
up to order N are given. MEMSs specify only the correlations up to an order £ < N,
and then determine the maximum entropy (the least assertive) distribution among all the
distributions compatible with the given constraints (see Jaynes, 1957).

By constraining the distribution to correlations up to a given order, the presence of
“genuine” higher-order correlations (that is, of correlations that are not expected based
solely on the observed lower order correlations) can be ascertained. The analytical treat-
ment provides an efficient way to analyze data from relatively large parallel recordings.
This methodology has been used in a number of studies to search for statistically sig-
nificant synchronous spike patterns, constraining on the observed average neuronal firing
rates and average pairwise correlations (¢ = 2) (see, e.g., Schneidman et al., 2006; Tkacik
et al., 2006; Tang et al., 2008). Shimazaki et al. (2012) extended the method to account
for time varying interactions. Kass et al. (2011) and Kelly and Kass (2012) incorporated
in the null hypothesis history effects that make the spike trains deviate from the Poiszon
assumption.

Despite these efforts, a number of short-comings limits the applicability of MEMs to
MPST data. First, the maximum entropy distribution among a large number of neurons
iz computationally demanding to evaluate due to the large number of parameters to be
determined. This is even the more so if non-stationarities are taken into account, which is
necessary in most applications to avoid biased statistics. Second, evaluating the p-value
of each pattern individually leads in MPST data to multiple testing issues, resulting in
excessive false positives (or false negatives after standard statistical corrections like e.g. the
Bonferroni correction). Third, Rostami et al. (2017) studied in detail the aptness of MEMs
in application to MPST data and showed that MEMSs predict a bimodal distribution for
the population-averaged activity, when it is applied to typical experimental recordings of
150 or more neurons. Thus the MEM distribution is not uniquely predicted, but switches
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Figure 5.5: Maximum entropy models. A) A segment of the simultaneous responses of
40 ganglion cells in the salamander retina to a natural movie clip (top panel). Discretiza-
tion of parallel spike trains into binary patterns is shown below (green). The binary
vectors describe the joint activity patterns of the cells at a given time point. For clarity,
10 out of 40 cells are shown (bottom panel). B) Using the same group of 10 cells from
panel A, the rate of occurrence of each firing pattern predicted from a maximum entropy
model P, that takes into account all pairwise correlations is plotted against the pattern
rate measured in the recorded data (red dots). For comparison, the independent model Py
is also plotted in grey. The black line indicates equality. Figure modified with permissions
from Schneidman et al. (2006).

between different states of activities for long data sets. For these reasons, the MEM model
does not easily scale to data of large populations of neurons. Nevertheless, for smaller data
sets (up to 30 — 40 parallel recordings) MEMSs provide a valuable tool to analyze genuine
higher-order synchronous events.

Neuronal cliques and Groups of Intra-Correlated cliques (GIC)

A first approach to analyze MPST data for the presence of cell assemblies of possibly large
size involved in correlated activity is the Groups of Intracorrelated Cliques (GIC) analysis,
developed by Berger et al. (2007). The method first determines pairs of correlated neurons
using the cross-correlation histogram (CCH; Perkel et al., 1967), then groups overlapping
pairs into larger groups which possibly indicate higher-order interactions.

The CCH between a reference and a target neuron is a histogram whose entries count,
for any positive or negative temporal delay At, the number of spikes that the target neuron
emits with delay At from any one spike of the reference neuron. If the target neuron
tends to fire with delay At before the reference (At negative) or after it (At positive), a
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Figure 5.6: Cliques of pairwise correlated spike data. A) Raster display of 84
simultaneously recorded multi-unit (MUA) spike trains, i.e. spikes of the same train were
not sorted into single neurons. Some of the electrodes did not record any data, thus
the corresponding line is empty. B) Arrangement of the 100 electrode recording array
(Utah array). Empty circles mark electrodes that were not connected, electrodes marked
with a cross did not work. The rest (red dots) indicate working electrodes, from which
the data in panel A were recorded from. The non-diagonal next electrode distance was
L = 400 pm. C. Example CCH of two multi-unit spike trains. Black: cross-correlation
of the recorded data, bin width: 1ms, red line: smoothed CCH (rectangular kernel of
10ms width). The green line shows the bin-wise average CCHs of the surrogate data (100
repetitions) generated by spike dithering with +35 ms, and smoothed as the original CCH.
It represent the expected CCH under the null hypothesis. The blue line indicates +2 std
of the bin-wise entries of the surrogate CCHs. A pair of MUASs is considered significantly
correlated if the smoothed original CCH (red) exceeded at or around 7 = 0 this significance
level. D) Clusters of cliques of significantly correlated pairs of MUAs. A significantly
correlated MUA pair is represented by two nodes (each MUA id is shown in the respective
rectangle). Groups of 3 or more all-to-all correlated MUAs are clustered into cliques.
Cliques sharing at least one node are further combined into a group of intracorrelated
cliques (GIC). The resulting four clusters are marked in different colors (red, green, cyan
and blue). MUAs not fulfilling these criteria are marked by gray squares, connected by
dashed lines to the other MUA they are correlated with. Figure modified with permissions
from Berger et al. (2007).
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peak in the CCH arises, centered at At. Other effects not related to correlated activity,
such as firing rate variability and high regularity of the individual spike trains, may also
cause peaks or oscillations in the CCH. Unbiased predictors of the CCH under the null
hypothesis of spike train independence that account for these factors have been developed
based on data surrogates (Louis et al., 2010c). For instance, a predictor accounting for
both rate changes and spike regularity can be computed using a Monte Carlo approach
as the average CCH obtained from surrogates of the original data generated by spike
dithering. Confidence intervals can be obtained analogously.

Poasible interactions among more than two spike trains are then obtained combining
the information provided by the CCHs between all pairs. The proposed method works in
three steps. Statistically significant pairwise correlations are determined on the basis of
suitable predictors (for synchrony: at time lag At = 0, or slightly larger to account for
jitter). Second, cliques of all-to-all correlated pairs are collected, and all cliques above
a preselected minimum size (e.g., all cliques of 3 or more neurons) are retained. Third,
cliques sharing at least one neuron are merged into a single GIC.

Berger et al. (2007) applied this procedure to MPST data collected from cat V1 during
visual stimulation with full field flash stimuli, and found four spatially clustered, distinet
GICs comprising 3 to 21 neurons (Figure 5.3.2D, each GIC shown in a different color).
These GICs also formed clusters in cortical space and were speculated to reflect activity
from underlying connectivity forming orientation columns as was shown by optical imaging
(e.g. Hiibener et al., 1997).

The method relies on the computation of the CCHs between all pairs of investigated
neuronal activities and the evaluation of their statistical significance. The first amounts
to ({D pairs for N neurons, a number that grows quadratically with N. Testing each
CCH for significance using a Monte Carlo approach further requires the computation of
up to hundreds of surrogate CCHs. The computational burden may become unaffordable
without resorting on compute clusters. For this reason, Berger et al. (2010a) worked out a
pre-processing approach that excludes from the analysis individual neurons contributing
weakly to synchronous events. The pre-processing step was used effectively on the same
data and verified the original analysis, however at considerably reduced computational
cost.

GICs formed by three or more neurons may be evidence for, but not necessarily imply,
the presence of higher-than-pairwise correlation. The method does not test for genuine
higher-order correlations (i.e., correlations that remain statistically significant when con-
ditioning on correlations of lower order). The corresponding model of spiking activity
is the pairwise correlated point process described in section 5.2.2. On the other hand,
higher-order correlations in the data may be, but not necessarily are, found as GICs.

Cell Assembly Detection (CAD)

Russo and Durstewitz (2017) recently introduced a different method to tackle the multiple
testing problem arising in the search of repeated spike patterns in MPST data. The
authors suggested an agglomerative algorithm (which we refer to here as Cell Assembly
Detection, or CAD) that is composed of two recursive steps: a) a statistical test for pairwise
correlations, and b) a clustering procedure that agglomerates pairwise interactions into
patterns of larger size. A very similar idea was introduced by Gerstein et al. (1978).

In step a), spike trains are segmented in small time bins of width w. Then, for each
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pair (A,B) of spike trains, the algorithm counts the number n 4 p,r of times that one spike
of spike train A is followed by a spike of spike train B after [ bins. The lag [ is chosen to
maximize the observed joint spike count n,pr. Under the null hypothesis that the spike
trains are realizations of independent Poisson processes, the method then derives the null
distribution of the statistic

NARBA] = TAB] — "AB,—I*;

where [* is an arbitrary reference lag for which n 4 BT Z MABl+- Considering n4pp Al
instead of n,p is necessary to compensate for bias due to firing rate non-stationarity
(see Figure 5.7). If nypp A deviates significantly from 0, then the spike train pair AB
iz considered to be part of the same spike pattern. The advantage of this approach is
that it avoids high computational cost by deriving all p-values analytically. However, this
atrategy heavily relies on the assumption of Poissonianity - which may not be a feature of
the data and may lead to false positives (e.g. see Pipa et al., 2013). Also, (1;) atatistical
tests are performed at this step in the presence of N spike trains, leading to a moderate
multiple testing issue.

In step b), larger spike patterns are obtained by recursively testing patterns previously
formed with any other neuron, i.e. triplets are formed by testing each single significant
pair AB with any other unit C using the same framework introduced for pairs. In order
to make use of the null distribution derived for pairwise testing, all spikes of A with lag
lap are considered to form a new artificial unit (AB,l4p), representing then the pattern
occurrences. The test is then performed on the pair ((AB,lap)C,laB)c). By proceeding
iteratively with this agglomerative procedure, the algorithm extends from pairs to patterns
of any size. Thus, this approach does not explicitly test for higher-order correlations, which
leads to a lower statistical power than methods testing directly for higher-order correlations
(see section 5.5).

CAD can detect not only STPs, but also correlations of average spike counts (e.g.
firing rate modulation). To do so the method allows the user to increase the bin size w,
such that more than one spike is contained in a bin. For example in case that neuron
A shows repeated increase in the firing rate, followed by an increase in neuron B after [
bins (e.g. correlated non-stationary firing rates) appearing as spike count correlations in
nappa,- In particular, it is possible — in the case of multiple spikes in the same bin -
to decompose each process in a sum of binary processes and to successively assess their
gignificance using the same framework previously introduced. For additional details we
refer to the original publication. Thus CAD is not limited to detect fine temporal spike
pattern, but is also capable to detect correlations on a larger time scale.

Spike Patterns Detection and Evaluation (SPADE)

Spike synchrony (see section 5.2.3) or spatio-temporal spike patterns (section 5.2.4) in
MPST data can be effectively detected by the Spike PAttern Detection and Evaluation
(SPADE) analysis method (see Torre et al., 2013, and Quaglio et al., 2017, respectively).
SPADE comprises three steps: a) a data mining procedure to efficiently extract repeat-
ing synchronous spike patterns that are suitable candidates to be significant patterns, b)
statistical testing to assess the significance of the mined pattern candidates, and c¢) assess-
ment the conditional significance of each pattern retained after step b), given any other
found pattern overlapping with it; the last step is needed to reject patterns that are due
to chance overlap of real patterns with background activity.
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Figure 5.7: CAD pairwise test: Sketch of the statistical pairwise test of the CAD
method. The count nap; of spikes with with a lag [ is tested if it is significantly larger
than the count at a reference lag. Here the reference lag is chosen equal to —I, which
correspond to the count ngp _; = np4y. Under the null hypothesis of independent Poisson
processes the ohservable nappa, := naB; — npa, has average equal to 0 also in case of
firing rate non stationary firing rate. Figure modified with permissions from Russo and
Durstewitz (2017).

Step a) is accomplished by Frequent Itemset Mining (FIM, Zaki and Ogihara 1998 or
equivalently Formal Concept Analysis Ganter and Wille 1999; Piskova and Horvath 2013).
Time is discretized into consecutive bins of duration w, and the sets of neurons emitting
a spike in each bin are collected (see Figure 5.8A). The activity of a synchronous cell
assembly immersed in a larger population of recorded neurons (e.g., neurons 1, 3 and 4)
typically appears as a set of spikes falling in the same time bin, together with additional
spikes emitted by other neurons and falling in the same bin by chance. Revealing active
synchronous cell assemblies thus requires to assess the statistical significance of all subsets
of all transactions. However, for N neurons the latter may be as many as 2V different
patterns, yielding severe computational and statistical issues. Of interest among these
patterns are those which are frequent, i.e. occur at least a minimum number of times
(in our case, 2 times), and which are closed, i.e., do not always occur as a subset of the
same super-pattern. All patterns which are not frequent or not closed may be discarded
under the rationale that they are either too sporadic, or trivially explained by larger
patterns in the data. Figure 5.8A shows infrequent (black), frequent but not closed (blue)
and frequent and closed (red) patterns extracted from the transactions in panel A. The
latter are typically a small fraction of the total patterns. Therefore, testing them only
for significance drastically reduces the computational burden and the multiple testing
problem, without causing any information loss. FIM provides a class of efficient algorithms
to collect closed frequent patterns in data of large size.

Similar approaches based on different, more heuristical data mining frameworks had
been developed in previous work. See in particular Abeles and Gerstein (1988) and Gansel
and Singer (2012) for two different algorithms to pre-filter patterns based on their neuronal
composition. For an application of the former to MEG data, see Tal and Abeles (2016).
These methods, however, do not guarantee that the filtered patterns are all closed (that
is, all non-trivial) patterns in the data, thereby possibly leading to a loss of information.
Also, neither of the two methodologies is accompanied by an approach to test for the
statistical significance of the filtered patterns designed for MPST data.

Step b) of SPADE, called pattern spectrum filtering (PSF; see Figure 5.8B), assesses
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the statistical significance of each closed frequent pattern (typically thousands or more
in MPST data) on the basis of the pattern size z (i.e. the number of neurons forming
the pattern) and of the occurrence count ¢ (i.e. the number of times the pattern occurs),
irrespective of the specific neuronal composition of the pattern. The pair (z, c) is called
the pattern signature. Because the number of different pattern signatures is orders of mag-
nitude smaller than the total number of different patterns, this pooling strategy avoids
the multiple testing issue that would arise from testing each closed frequent pattern indi-
vidually. PSF computes the p-value of each observed signature based on surrogate data
that preserve the marginal properties of the original spike trains such as the inter-spike
intervals and the firing rate profiles (see Pipa et al., 2008; Louis et al., 2010c).

The presence of a real synchronous spike pattern in data tends to increase the occur-
rence count, and therefore the significance, of other patterns that result form a chance
overlap of the pattern’s spikes with background activity. Step c) of SPADE, called pat-
tern set reduction (PSR) (see Figure 5.8C), detects and removes these false positives by
assessing the conditional significance of all patterns found after step b) given any other
overlapping one.

The present study and related publications ( Yegenoglu et al., 2016; Quaglio et al., 2017)
extended SPADE to detect arbitrary STPs (defined in section 5.2.4). STPs spanning a
maximum number of K bins (for synchrony: K = 1) can be similarly defined as subsets
of transactions constructed as follows. A window of K bins is slid through the data over
time in steps of 1 bin (Figure 5.9A). Each window position corresponds to a transaction
whose elements (items) are pairs (i, ), one pair per spike in the window, ¢ represents the
id of the neuron that emitted the spike, while j represents the relative location of the spike
inside the window (j = 1,...,K) (Figure 5.9B-C). Data formatted in transactions this
way can be screened for closed frequent STPs by FIM (equivalently, FCA) algorithms.
The evaluation of the statistical significance of closed frequent STPs requires the same
steps as for synchronous patterns, namely PSF and PSR. The only difference is that the
p-value spectrum can be extend to a third dimension (pattern duration d) to differentiate
patterns with different time scales. Other approaches that filter patterns based on their
stability (loosely speaking, the tendency of a pattern to reoccur identically) rather than on
statistical significance were also investigated in Yegenoglu et al. (2016), but had a higher
computational cost or yielded a lower performance.

Analysis of Sequences of Synchronous EvenTs (ASSET)

Sequences of synchronous spike events (SSEs) constitute one type of coordinated spiking
where synchrony propagates from one group of neurons to the next in a temporally precise
manner. The synfire chain was proposed as one potential model for such kind of network
processing. Torre et al. (2016a) introduced the Analysis of Sequences of Synchronous
EvenTs (ASSET) to reveal this type of correlated activity in MPST data. The method
builds on the work of Schrader et al. (2008), extending it by introducing statistical tests
and thereby allowing for a fully automated analysis.

First, time is segmented into consecutive bins of length w (see 5.10A, left). Second,
any two time bins are compared for the number of neurons that spike in these two bins, i.e.
the intersection of the two sets. The results of all these comparisons form the intersection
matrix I such that the comparison of bin i and j is entered in the matrix element I ;.
Synchronous events composed of the same (or many overlapping) neurons lead to a larger
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Figure 5.8: SPADE analysis. A) Sketch of the discretization of the parallel spike data
into binned spike trains. The set of neuron ids (“items”) spiking in each bin form a
“transaction”. The subsets extracted from each transaction, or “item sets”, represent
all observed synchronous spike patterns present in the data. The FIM data mining step
organizes the item sets in a search tree and eventually returns all closed frequent item
sets (right panel, circled in red), discarding the infrequent (black) and non closed (blue)
ones. B) Significance evaluation. Illustration of assessment of closed frequent patterns
for statistical significance of simulated data consisting of a synchronous pattern of size
z = 10 occurring ¢ = 6 times and embedded in a population with 90 additional inde-
pendent spike trains). From left to right: pattern spectrum of the number of patterns
for each signature (z, ¢) found in data; p-value spectrum of each signature under the
null hypothesis computed over statistically independent surrogates of the original data;
significant (red) and non significant (gray) signatures in the original data (significance
threshold: a = 0.01, corrected for multiple tests by false discovery rate correction). C)
Patterns found as statistically significant after PSF (lower lists in B) are tested for recip-
rocal conditional significance. Conditionally significant patterns are retained (here, the
true pattern 1,2,...10 occurring 6 times), the others are discarded as chance overlap of
the significant ones with the background activity. Figure modified with permissions from

Torre et al. (2013).
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Figure 5.9: Detection of spatio-temporal spike patterns. A) Construction of a
transaction data base. Spike trains are binned, and a window of length K bins is alid in
time in steps of 1 bin. For window positions which start with a spike, the spikes falling
into the window are collected. These are transformed in time such that the spikes per
neuron are concatenated to a vector such that a list of pairs (4, j) of spike id i and relative
spike time j, j = 1,..., K are formed. B) Transformed spiking activities from two window
positions concatenated to parallel binary sequences enabling to search STPs by detection
of synchronous entries as shown in C). Figure modified with permissions from Quaglio

et al. (2017).
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Figure 5.10: ASSET analysis. A) Sketch of a raster plot of parallel spike trains of multiple
neurons (vertical axis) over time (horizontal axis). Dots in each row correspond to the
spike times of one neuron. Time is discretized into adjacent bins (marked by white and
blue shaded backgrounds) to define synchronous events. Synchronous spikes forming an
SSE repeating twice are indicated by colored dots (one color per event). On the right:
Intersection matrix I. Each matrix entry I;; (values encoded by gray levels) contains the
degree of overlap of neurons active in time bins b; and b;. B) Significance evaluation of
repeating SSEs. Left: The cumulative probability P;; calculated for each entry I; ; ana-
lytically under the null hypothesis Hy that the spike trains are independent and marginally
Poisson. Second from left: The 1 largest neighbors of I; jin a rectangular area extending
along the 45 degree direction are isolated by means of a kernel and their joint cumulative
probability is assigned to the joint probability matrix J at position J; ;. Third from left:
For a chosen significance threshold a; for the probability of individual entries F;; and a
significance threshold aj for the joint probability of the neighbors of entries .J; ; each entry
of I for which F;; > aq and J;; > as is classified as statistically significant. Significant
entries of I are retained in the binary masked matrix M; ;, which takes value 1 at positions
(i,7) where I is statistically significant and 0 elsewhere. B, right: 1-valued entries in M
falling close-by are clustered together (or discarded as isolated chance events) by means
of a DBSCAN algorithm, which thus isolates diagonal structures. Figure modified with
permissions from Torre et al. (2016a).

99



value of I; ; compared to independent data, i.e. chance overlap.

An SSE composed of (largely) the same neurons occurring two times in the data yields
one diagonal structure of large entries in the intersection matrix I. Thus, a diagonal
atructure in the intersection matrix indicates the occurrence of a repeated SSE. ASSET
detects and isolates diagonal structures in the intersection matrix by a statistical proce-
dure. The method first transforms the intersection matrix I into a probability matriz P
(Figure 5.10B, left) defined such that Pj; represents the probability for I;; to be at most
the observed value, under the null hypothesis of spike train independence. F;; is obtained
analytically or by Monte Carlo simulation. Values of I; larger than expected correspond
to values of Pj; closer to 1. P is further transformed into a joint probability matriz J
whose entries J;; represent the joint probability of overlaps all the intersections Iy, where
the bins h,k form a neighborhood of (i,;) (Figure 5.10B, second from left). Diagonal
atructures in I due to a repeated SSEs lead to highly significant values both in P and in
J. Individual, isolated repeated synchronous events yield a statistically significant entry
in P but not in J. In light of these considerations, a masked matriz M is constructed,
whose entries take binary values: M;; = 1 if both Fj; and J;; are statistically significant,
M;; = 0 otherwise (Figure 5.10B, third from right). Finally, close-by one-valued entries in
the masked matrix are clustered together in the cluster matrix C' of diagonal structures.
This step allows to identify the diagonal structures as individual entities, and to discard
spurious isolated entries in M (Figure 5.10B, right).

ASSET is robust to firing rate variability over time and across neurons, as well as to the
presence of spike correlations different from SSEs (see Torre et al., 2016a). Furthermore,
simulations of large balanced neuronal networks were used to demonstrate that the method
iz able to successfully discover SSEs resulting from the repeated synfire chain activation.

5.4 Method comparison

In the previous sections we gave an overview of nine methods for the analysis of temporally
precise spike correlations in MPST data. We also illustrated the different ways these
methods deal with the combinatorial and statistical challenges that characterize such an
analysis. The various methods aim to reveal different types of correlated spiking activity.
To this end, they rely on different statistics.

In the upcoming subsections we give a comparative overlook of the applicability of
these methods to data characterized by different correlation structures. In particular, we
discuss the sensitivity of each method to correlations of a different type than the one it was
designed to detect. A natural question here is whether a method designed to analysis a
particular correlation structure may still provide partial information about different types
of correlated spiking. If so, analyzing a data set with different methods may provide the
researcher with a richer picture of the possibly present correlations, and even aid a correct
interpretation of the results. In the following we discuss how the introduced methods react
to different correlation structures. 5.2 summarizes the results.

5.4.1 Population Synchronization

In the case when synchronous spike events involve different neurons at each occurrence
time, no particular spike pattern reoccurs. CuBIC and PUE find the minimum order of
excess synchronous events to be assumed in the data. The test statistics are based on the
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Method Pairwise | Synchronous Population STPs | SSEs
Correla- Patterns Synchronization
tion
Complexity (V) (V) v (V)
distribution
CuBIC (V) (V) v (V)
PUE ) ) v )
Max. Entropy v v*
Information
Max. Entropy v e
Models
Cliques v (V) (v) (V)
SPADE (V) v (V) v v
CAD (V) v (V) v v
ASSET v

Table 5.2: Table of methods and stochastic models. The table summarizes the
ability of each method to retrieve correlations represented by different models. «: the
method is designed to detect that particular model and the output matches perfectly
and describes completely the correlation structure of the data. (v') : The method was
designed for a different correlation model, but it is still possible to get partial information
about the correlation structure of the data. v#: The method is in principle applicable,
but in practice affected by computational and/or multiple testing issues when used on
MPST data; the results may lead to misinterpret the correlation structure due to lack of
information about it. For the remaining entries the method does not provide sufficient
information to reconstruct the correlation structure.
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complexity distribution, which does not include information about the neuronal compo-
gition of each synchronous event. PUE can additionally be performed in a time resolved
fashion, and therefore may discover time varying correlation orders. The CII approach
quantifies the amount of information about the probability distribution of synchronous
apike patterns that is delivered by correlations of a given order or lower, out of the total
information delivered by all correlations. Thus, it may also be used to detect the maxi-
mum order of correlation in the data to account for a given percent (e.g., 99%) of such
information. In practice though, CII is computationally intensive and typically cannot be
used for MPST data to discriminate beyond second versus higher-order correlations.

The methods designed to detect specific groups of correlated neurons (MEMs, GIC,
SPADE, CAD and ASSET), instead, are generally blind or weakly sensitive to population
correlations. If the data are long enough and the population synchronization involves
by chance the same spike patterns repeatedly, some of these methods may be able to
classify such patterns as statistically significant. This, however, will provide only partial
information about the true underlying correlation structure.

5.4.2 Pairwise Synchronization

The goal of the analysis of a data set containing pairwise synchronization consists in finding
all the pairs of neurons involved in above-chance synchronous firing. In this scenario,
CuBIC and PUE are expected to return the minimum order of correlation é necessary
to explain the data, i.e. é = 2. This holds also true for the case of overlapping pairs of
correlated neurons. However, if the total amount of synchronous spike pairs present in
the data is not high enough, these methods may report spike train independence instead.
However, since the identity of the neurons involved in synchronous firing is not resolved,
the specific correlated pairs are not found. CII instead takes values very close to 1, thus
highlighting the absence of higher-order correlations. In the presence of time varying spike
train statistics, CuBIC is prone to report higher values of é because the method assumes
stationary conditions. The PUE analysis and the CII, instead, can account for time varying
rates (the former by a time-resolved analysis). For the CII approach, however, this comes
at a significantly increased computational cost.

Among the considered methods for detection of cell assemblies, GIC and CAD directly
evaluate the statistical significance of each pair of synchronous firing neurons. Testing
only for pairwise interactions makes these methods particularly efficient (high statistical
power, relatively low computational burden). GIC can also cope well with time vary-
ing firing rates, as suitable CCH predictors (surrogates) exist for this case (Louis et al.,
2010b). However, it may fail in properly characterizing time varying pairwise correlations,
gince it relies on the cross-correlogram, which is a time average measure. CAD instead
detect all the occurrences of the synchronous activation, allowing the reconstruction of the
exact temporal evolution of the pairs synchronizations. Furthermore, the more relevant
difference between GIC and CAD is that the first groups together pairs or neurons which
are mutually correlated, while CAD, if the single occurrences of synchronization involves
only pairs of neurons, does not group them, but it returns patterns formed by individual
pairs. SPADE is designed to detect specific sets of correlated neurons, including pairwise
aynchronization. It’s statistical power, however, is lower than that of GIC and CAD for
pairwise synchronization. Indeed, SPADE first tests for pattern significance on the basis
of the pattern size and occurrence count, irrespective of the neuronal composition. Thus,
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a specific pair has to exhibit a larger number of synchronous events to be detected as
significant, compared to direct statistical tests.
Finally, ASSET cannot retrieve correlated pairs of neurons, because they do not pro-

duce repeated SSEs.

5.4.3 Synchronous Spike Patterns

In the presence of synchronous spike patterns of size larger than 2, the optimal pattern
detection would be a complete description of the correlated set of neurons: the neuron
identities of the neurons in a synchronous event and their occurrence times.

In this scenario, methods to characterize population correlations (CuBIC, PUE, CII)
generally tend to underestimate the correlation order in the data. The number of syn-
chronous events of size £ or larger needed for these methods to report a minimum order
¢ of population correlation is much larger than the number of occurrences needed for a
single pattern of size £ to become statistically significant. Unless several patterns of size £
exist, and their overall count is large enough, population methods will report correlations
of lower order. This is particularly true for the CII index for £ = 2, which has been shown
to take values very close to 1 (meaning that correlations of order 3 or higher contribute
negligibly to the total information about the probability distribution of synchronous spike
patterns) also when highly significant synchronous spike patterns of much larger size are
present in the data (Torre, 2016).

The GIC and CAD analysis may detect some of (but typically not all) the neurons
forming a synchronous spike pattern of size larger than 2. The occurrences of the full
pattern increase to some extent the peak in cross-correlations of the pairs contained in
it, possibly leading to statistical significance for some of them. Only if all pairs become
statistically significant, though, the two methods are guaranteed to further group them
together and to reconstruct thereby the full pattern. This is typically not the case for pat-
terns of larger size, since those typically exhibit lower occurrence counts in experimental
data (see Torre et al., 2016b). An advantage of CAD, is the limited computational cost
required to carry out the full analysis, due to the analytical formulation of the null distri-
bution. Additionally for CAD the detected group form a pattern which occurs multiple
times with the same neural composition, while with GIC it is not possible to distinguish
between actual spike pattern and a groups of neurons that are mutually but independently
correlated pairs.

MEM and SPADE are designed specifically to reliably detect reoccurring synchronous
spike patterns, and therefore perform optimally in this acenario. MEM provides in addi-
tion a generative probabilistic model of the spiking activity, which allows for resampling.
In addition, it allows one in principle to include correlations of any order among the neu-
rons, as well as history effects that make the spike trains non-Poisson. On the down side,
determining the model parameters becomes increasingly computationally demanding as
more of such features are included. Also, testing for the statistical significance of each ob-
served pattern runs into the multiple testing problem, effectively limiting the applicability
of MEM to data with at most a few dozens of neurons. SPADE instead only indirectly
conditions on existing correlations as it tests for the conditional significance of a pattern
with a statistically significant signature given any other patterns overlapping with it. The
method is also designed to drastically reduce the multiple testing issue. Importantly, it is
very sensitive to synchronous events of large size, which need only few repetitions to reach
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the significance threshold. In contrast, low order events need to occur more times to be
identified as statistically significant (see Torre et al., 2013, Figure 2). A downside com-
pared to MEM is that SPADE solely assesses pattern significance, and does not provide a
probabilistic model of the spiking activity.

ASSET, finally, does not detect isolated synchronous spike patterns (i.e., patterns not
forming fixed, repeating sequences). The reason is that these events only produce isolated
high-valued entries in the intersection matrix, but no diagonal structures.

5.4.4 Spatio-temporal patterns

STPs are the generalization of synchronous patterns to the case when neurons fire in
a fixed temporal order (yielding a synchronous spike pattern in the special case when
the delays are 0). The general definition of STPs also includes SSEs as a special case.
Methods designed to detect population synchronization (such as CuBIC, PUE, CII), as
well as methods limited to the detection of spike synchrony (GIC, MEMS), are not sensitive
to STPs (except, of course, for synchronous spike patterns). Methods like SPADE and
CAD are able to identify STPs of the general type. Specifically, SPADE allows to correctly
identity and statistically test for any repeating spike sequence with pre-assigned maximum
time lag. No additional assumptions are made on the structure of the pattern. The same
holds for CAD, where also the maximum time lag is fixed before the analysis and thus
limited to the maximum allowed delay.

Finally, ASSET is only able to identify STPs of the SSE type, a special case which is

discussed next.

5.4.5 Sequences of synchronous spike events

An SSE consists of multiple synchronous events which occur at specific, fixed delays after
one other. The presence of a reoccurring SSE (for instance due to the activation of an
active synfire chain, see section 5.2.5) thus increases the overall amount of synchronization
observed in data. If the SSE comprises sufficiently many events or these events involve
sufficiently many spikes, population correlation methods could therefore detect the pres-
ence of synchrony. If the size of all synchronous events in the SSE is the same, say £,
CuBIC and PUE would ideally return synchronization order £ in the data. If instead the
different synchronous events in the SSE have different size, they should return the maxi-
mum size. In both cases, however, both methods will typically return a lower correlation
order. Furthermore, neither of the two methods identifies the neuronal composition of the
events or their temporal structure. CII, instead, will report an information index Hg very
close to 1 if all events in the SSE comprize two spikes, and lower than if larger events are
present. Computing indices R¢ for { > 2 may help highlighting the existence of higher-
order correlations, but it is computationally demanding. Besides, it would not provide a
description of the complex correlation structure.

The GIC analysis could theoretically reconstruct the individual events forming an SSE.
For this to be possible, the SSE has to oceur sufficiently many times such that zero-delay
pairwise correlations among all pairs of neurons involved in the same synchronous event
become statistically significant. The method would then further group the overlapping
pairs together, thus reconstructing each synchronous event separately. Besides that, even
in this optimal scenario the synchronous events would be found in isolation, and further
work would be needed to group them together into an SSE.
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Since SSEs are a special case of STPs, they can be fully reconstructed with SPADE or
CAD, if they occur sufficiently many times and if the total time span of one occurrence is
shorter than the chosen analysis window. The number of occurrences needed for signifi-
cance drops exponentially fast with the total number of involved neurons(see Torre et al.,
2013). Thus, for SSEs involving sufficiently many neurons, even just a few repetitions are
sufficient for detection by SPADE.

Finally, ASSET is specifically designed to detect SSEs occurring at least two times
in the data. Unlike SPADE and CAD, the method accounts for their precise tempo-
ral structure (synchronous events and delays between them) to assess their significance.
Specifically, ASSET computes the p-value of the SSEs as the joint probability of having
synchronous events of the observed size in sequence. SPADE instead computes the prob-
ability of having any STP of different composition comprising the same number of spikes.
For this reason, the statistical power of ASSET for SSEs occurring two times is higher
than that of SPADE. This allows ASSET to retrieve SSEs composed of fewer neurons
than SPADE is able to discover. SPADE does, on the other hand, more easily detect SSEs
occurring more than 2 times, because it collects evidence from all pattern occurrences.
ASSET, instead, evaluates by default only the significance of pairs of SSE occurrences,
unless intersection tensors of higher dimension are built (see Gerstein et al., 2012, for
dimension 3), which is possible but computationally demanding.

5.5 Discussion and Conclusions

In this manuscript we discussed methods which enable the analysis of massively parallel
spike trains (the spiking activity of tens to hundred(s) of neurons recorded in parallel) for
fine temporal correlations in the ms precision range. The common aim of such analyses
is to identify spiking activity indicative of the presence of active cell assemblies (Hebb,
1949Db), defined as groups of neurons that form building blocks for information processing
in the cortex. Discovering and differentiating various types of temporally precise spike
patterns in experimental spike data may be critical in understanding debated mechanisms
of computations in the brain.

While no existing analysis method is able alone to distinguish among the different
types of spike patterns discussed in the literature, combining the information delivered by
different methods may provide a better strategy. Therefore, we suggest to apply multi-
ple methods, in a particular sequence to approach unknown data. First, one would like
to explore if there are at all indications for correlated activity. For doing that data can
first be analyzed with computationally efficient methods, such as the complexity distri-
bution (Griin et al., 2008) or other ’scanning’ methods (e.g. Berger et al. (2010b)). If
the complexity distribution provides no indication for the presence of higher-order cor-
relations, pairwise or low order correlations or spatio-temporal patterns may still exist
since the method is not sensitive for them. However, when correlations are found with the
complexity distribution, or the maximum entropy methods, the sole interpretation is 'the
data contain higher-order synchrony correlation’, or in case of the application of CuBIC
'the data contain HOC exceeding order X'. Only SPADE, CAD or ASSET allow to iden-
tify higher-order spike correlations including temporal delay between the spikes and they
identify the neurons involved in. If such spatio-temporal patterns are found, their spatial
occurrence on the recording array (e.g. Utah array) may be identified (e.g. Torre et al.,
2016b). With additional knowledge on the detailed position of the array on the cortex
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potentially involved local areas and the propagation direction may be uncovered. If on
the other hand recordings are performed directly from different areas, e.g. as in Zandvak-
ili and Kohn (2015), ASSET may uncover the propagation of sequences of synchronous
activity from area to area.

Depending on the protocol of the experiment and the behavioral design, data can be
aplit into different trials or segments that allow different interpretation. If for example
data are split and pooled according different behavioral conditions, the analysis of the
two with the same method (e.g. SPADE) may result in the presence of different spike
patterns, which may be interpreted as 'in behavior A a different assembly was activated
than in behavior B’. Even more informative are time-resolved analysis approaches which
can identify dynamically occurring spike patterns, as done in Riehle et al. (1997b); Kilavik
et al. (2009) using the UE analysis. PUE, as a further development of the CuBIC analysis,
enables also such a time-resolved analysis due to the low computational requirement.
Other methods that have a higher computational load, such as SPADE or ASSET, can
be applied in a pseudo time-resolved fashion by segmenting the full data into epochs of
interest and pooling across trials. Different significant spike patterns may oceur in different
epochs or experimental condition, which may be interpreted as 'different cell assemblies
are activated in different behavioral contexts’ (for an application of SPADE, see Torre
et al. (2016b)).

Experimental data typically exhibit various types of variability - non-stationary firing
rates, rate inhomogeneity across neurons or trials, and inter-spike intervals being more
or less irregular than a Poisson process are common ohservations. These features need
to be included in the null-hypothesis to avoid false positive findings (Griin et al., 2003;
Pipa et al., 2013; Griin et al., 2002b). However, an analytical desecription of the null-
hypothesis is for most of the cases mathematically not possible, or difficult in practice
(for instance, parameters such as instantaneous firing rates cannot be well estimated from
data; for a review see Griin (2009)). Surrogate data, i.e. modifications of the original
data obtained by destroying the aspect that is tested for, e.g. fine temporal correlations,
provide a practical alternative solution (see Louis et al. (2010c); Grin (2009), Platkiewicz
et al. (2017)). For most of the methods discussed here, surrogates are used to derive the
null-distribution(s) in the presence of such non-stationarities. The downside is that this
approach leads typically to a higher computational load.

The temporal resolution (binning) chosen for the analyses is a matter of choice, and
may also be varied as a parameter for finding the relevant time scale. Furthermore, the
discussed methods can be applied to data not consisting of parallel spike trains, such as
continuous signals, as long as they can be reduced topoint processes, and then to binary
sequences by binning. . This approach is common for calcium imaging data, which
are typically reduced to events in time of the potential underlying spikes(Grewe et al.,
2010). The time resolution is much lower than of electrophysiologically recorded spike
data. However, the result is then a matter the interpretation. Another example are spike-
like signals in MEG recordings (Abeles, 2014). These were reduced in (Tal and Abeles,
2018) to point processes, and can then be treated as binary processes and analyzed hy the
methods discussed in this review.

‘We compared the methods with respect to the correlation model they are designed
for, and their abilities to detect other correlation structures. A quantitative comparizon
of the methods would likely provide more insights. However, we learned from previous

pairwise comparisons of some of such methods (e.g. CAD and SPADE, Stella (2017), FIM
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and the accretion algorithm, Picado-Muino et al. (2013)) there are very few parameter
configurations (e.g. temporal resolution, number of occurrences and size of the patterns or
total length of the data) for which the performances are practically comparable. Moreover,
the problem is not only about parameter configurations, but it is about the mathematical
formulation, the different and not “hierarchical” definitions of correlated activity, which
make a quantitative comparison difficult. A practical aspect for the difficulty of such
comparisons is the fact that the various approaches are typically implemented in different
software. A first step for an improvement of the situation would be a common software
platform or even a common toolbox, as e.g. Elephant?.

However, one may not forget that the number of neurons recorded in parallel are still
small compared to the number of neurons contained in the tissue under observation. For
example, the number of neurons contained in a piece of cortex covered by e.g. a 100
electrode Utah array (Blackrock Microsystems, Utah, USA) (4x4 mm?) are about 10%—
10%. Thus sampling 100 or 200 neurons from the tissue is still sparse compared to the
number of neurons therein. In addition, we still do not know how cell assemblies are
spatially embedded. Thus, unfortunately, it is very likely that we still miss neurons from
active assemblies. For improving this situation a further increase of the number of neurons
in parallel recorded should be aimed at and technically seems soon possible. This provides
new opportunities to study large networks in even more details but will also require further
extensions and developments of analysis methods.

1http:/ /neuralensemble.org/elephant /
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Chapter 6

Summary and Discussion

In this thesis we deal with the challenge of the detection of spatio-temporal patterns
(STPs) in parallel electrophysiological spike recordings. In this context, we refer to spike
patterns which consist of temporally precise (within a few ms) repeated spike sequences.
Such patterns have been hypothesized to carry information in the brain and to be a
signature of active cell assemblies (Hebb, 1949a; Gerstein and Kirkland, 2001; Harris,
2005). The analysis of parallel recordings for the detection of spike patterns presents
challenging difficulties, both, in terms of data mining and statistical analysis. The number
of possible combinations of spikes forming an STP scales exponentially, both, in respect to
the number of simultaneously recorded neurons and to the maximal temporal duration of
them. We developed a method that is capable of robustly detecting significant occurrences
of precize spike patterns in massively parallel recordings. In particular we extended the
Spike Pattern Detection and Evaluation (SPADE, Torre et al. (2013)) analysis. This
method, originally designed to detect synchronous spike patterns, was here extended to
detect general spike patterns with arbitrary inter-spikes lags. SPADE consists of two
steps, addressing separately the challenges of the pattern analysis: a) it deploys Frequent
Itemset Mining (FIM) to detect all the repeated spike patterns, b) it combines a bootstrap
technique with a dimensionality reduction approach to test for the significance of the
detected pattern candidates.

In more details, in the firat chapter of this thesis we introduce the theoretical formal-
ism of Formal Concept Analysis (FCA, Ganter and Wille (1999)) and show that such a
framework is equivalent to Frequent Itemset Mining (Zaki and Ogihara, 1998; Piskové and
Horvdth, 2013), previously adapted by Picado-Muifio et al. (2013) for spiking data and
used in SPADE to detect synchronous spike activity. Then we presented how FCA (or
equivalently FIM) can be also used to detect repeated spatio-temporal spike patterns, ex-
tracted by using a temporal sliding window. Furthermore, it is possible to use the stability
measure to discriminate between chance and relevant patterns. This measure was already
introduced before as a metric which measures the amount of self-consistency of a Formal
Concept and assigns a value between 0 and 1 to each mined concept (Kuznetsov, 2007).
Here we showed that repeated spike sequences have a stability close to 1 and used the
stability measure to discriminate relevant patterns from background noise. The perfor-
mance of the approach was tested on simulated parallel point processes and showed that
the main limitation of this approach is the considerable computational time required for
the calculation of the stability measure. Indeed it is possible using FCA to select spike
patterns forming stable concepts but only for a limited number of neurons (here only 50
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parallel spike trains were considered) without incurring in an untreatable explosion of the
time required for computing the stability. Furthermore, we showed that the stability mea-
sure does not depend on the pattern size. As a consequence, large patterns occurring a
few times, and having a small stability value, were erroneously discarded thereby causing
a large number of False Negatives. Part of this work was published in Yegenoglu et al.
(2016).

In the second chapter we describe how we overcame the problem of the large computa-
tional time required for the computation of the stability measure, namely by replacing it
with a computationally optimized approximation (Babin and Kuznetsov, 2012). We were
able to show that the use of the approximated stability does not affect the performance
of selecting the injected patterns (TPs). By speeding up the computation of the stability
by the approximated stability, we were then able to compute a second stability measure,
i.e. extensional stability, which depends on the pattern size and enables the detection of
large patterns that occur only a few times.

Additionally we completed the extension of SPADE to STPs by adapting the statis-
tical evaluation of the patterns deployed in the original publication (Torre et al., 2013).
As described in the first chapter, the STPs are detected by a sliding window approach,
and therein the patterns are mined by FIM/FCA. The output of the mining detection
procedure is then analyzed for significance by the Pattern Spectrum Filtering (PSF), fol-
lowed by the Pattern Set Reduction (PSR) approach, as done for synchronous patterns
by the original SPADE method (Torre et al., 2013). The PSF deals with the multiple
testing problem by grouping the patterns according to their size (number of spikes) and
frequency (number of occurrences). Then a bootstrap technique is used to evaluate the
atatistical significance of each group of patterns. The PSR is an additional test designed
to reject spurious patterns which are not conditionally significant on the ones that are
already identified as significant. Thereby the significance of each pattern that resulted
from PSF as significant is tested again, conditioned on the presence of other significant
patterns.

The stability filtering and PSF followed by PSR were then compared using ground truth
data, i.e. simulated data containing STPs and a variety of different statistical features of
typical experimental data, such as different degrees of firing rates and correlated changes
of firing rates. We showed that the combination of PSF and PSR performs better than the
atability filtering, in particular we showed that PSF-PSR has a higher statistical power
as a function of pattern size and frequency as compared to the stability measure. Yet
the computational time required for the approximation of the stability iz smaller than
the one required for the bootstrap technique deployed by the PSF. In the case of very
large datasets or the non-availability of a compute cluster for parallelizing the bootstrap
analysis, one can resort to the stability approach to select the relevant patterns, at the cost
of missing some of the statistically significant patterns (larger number of False Negatives)
. These results were published in Quaglio et al. (2017).

A limitation of SPADE as introduced in chapter 1 and 2 arises when patterns, that are
considered in the analysis, have different durations, defined as the time between the first
and the last spike of the pattern. The pattern spectrum pools together patterns with the
same size and same number of occurrences independently from their durations. However,
within a longer time window may occur many more patterns by chance (more combinations
possible) than in shorter windows. Therefore longer patterns require a different null-
hypothesis than shorter ones, and thus should not be pooled for the significance estimation.
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In chapter 3 we illustrated this limitation based on artificial data in which multiple patterns
of different durations were embedded in the background activity. As a result, patterns
of longer durations were not detected when pooled and evaluated together with shorter
patterns. Therefore we proposed for improvement to extend the Pattern Spectrum to
a third dimension, i.e. for different pattern durations. By this, patterns of different
durations are tested separately from patterns of same size and number of occurrences. This
extension to a 3d-pattern spectrum enables a statistical evaluation that does not depend
on the length of the sliding window and enhanced the sensitivity of SPADE considerably.
In order to avoid the increase of False Positive we used additionally a more conservative
multiple testing correction (Holm, 1979).

The extended SPADE method, presented here for the first time, has still a few limita-
tions that should be improved in the future. A first issue is the detection of spatio-temporal
patterns in discretized time (small time bins), in order to apply FIM for the detection of
repeated STPs. The capability of detecting STPs in continuous time would enable to con-
sider also patterns which do not repeat with exact lags but with some variable time jitter.
Detecting the patterns in continuous time would present very complex technical challenges
and would require a re-implementation of the mining algorithm (as done for synchronous
patterns in Borgelt and Picado-Muino, 2014). Another limitation is the requirement of
the exact repetition of the STPs in terms of neuronal compositions (e.g. FIM, in order to
detect a pattern repetition, requires that all the spikes are present in every occurrence).
Allowing also for partial activation of an assembly (thus only part of the pattern would
be detectable), would enable us to detect more potential patterns. Such change would re-
quire to develop a new ad hoc mining technique to replace FIM for detection of incomplete
pattern occurrences.

From the computational perspective most of the compute time is taken by the sig-
nificance analysis based on the surrogates. If these could be replaced by an analytical
expression of the null-hypothesis it would provide a significant speed up of the whole pro-
cedure. Obtaining such a null-distribution in a closed form is far from trivial and requires
to make specific and strict assumptions in terms of the underlying statistical model of
the spiking activity, i.e. the type of process and its time dependent changes (e.g. Poisson
process, firing rate profiles). Such assumptions would limit the applicability of the method
to data that fulfill such assumptions, which is not always the case for typical experimental
data. In contrast the surrogate bootstrap method, deployed by SPADE, does not assume
a specific spiking model or firing rate, but was designed such that it harms as little as
possible the original processes (Griin, 2009; Louis et al., 2010c). All the observations here
listed concern exceptional cases of spike patterns that SPADE does not take into account,
but do not prejudicate the validity of the current results.

Once the development of the SPADE method was finalized, we applied the analysis to
parallel spike recordings from pre- and motor cortex of two macaque monkeys performing
a reach-to-grasp task (data published in Brochier et al., 2018). In each of the trials the
monkeys received the instruction which (of two) grip to use to grasp the object after having
reached for it. The amount of force needed to pull the object is indicated at the beginning
of the trial by the cue signal (Riehle et al., 2013). In chapter 3 we present the results of
such analysis. We found that SPADE detects precise STPs occurring a significant number
of times and repeat over trials of the same behavioral type. Most of the patterns occur
during the reaching movement and involve (are of size) 2, 3 or 4 neurons. The patterns
show a variety of lags and durations, while the neurons forming the patterns appear to be a
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relatively small subset of all the recorded units (less then 10 out of the about 100 recorded
neurons in all trial conditions and the two monkeys). Different patterns, both in terms of
neuronal composition and delays, occur for different grips and thus are behavior specific
(Quaglio et al., 2018a). The work is currently extended to analyze many sessions of each
monkey to enable a quantitative description of the results over sessions and monkey, as
for example performed for synchronous pattern in (Torre et al., 2016b). We further aim
to relate the patterns to other electrophysiological signals of a different scale, such as the
Local Field Potential (LFP). In former studies we and others found evidence that spikes
and excess spike synchrony lock preferentially to the phase of the LFP (Denker et al.,
2011; Kim et al., 2011; Takahashi et al., 2015).

By applying SPADE to the reach-to-grasp data, we found significant repetitions of
a variety of precise STPs across different trials. Such a result provides evidence for the
temporal coding hypothesis. Our analysis extend the previous observations of behaviorally
relevant synchronous spike patterns in the recordings from the same experiment (Torre
et al., 2016b) to spatio-temporal spike patterns. However, we are surprised that only
a very small number of neurons are comprising significant STPs (typically 4 out of 160
recorded neurons = 1/40). The reason for recording massively parallel spike trains was
to increase the probability to find neurons involved in correlated activity, and that the
number of neurons involved in such activity would increase. Such an observation may
have two reasons. First, the recorded neurons (100 - 160) are a small sample in respect to
all the neurons in the motor cortex below the array (about 10%). In addition, it is still not
clear how a cell assembly is distributed in space. Further, we have to assume that our data
contain only recordings from one cortical layer. With a length of 1.5 mm of the electrodes
implanted, we can assume the recordings are in intermediate cortical layers from deep
layer III to layer V (Brochier and Riehle, personal communication). It may well be that
there are large assemblies, however spread over most of the motor cortex, and we only
record from a few neurons that are involved in the processing of a particular movement.
The second reason is that our analysis is very conservative - most of the actually repeated
spatio-temporal patterns have been discarded because they did not occur often enough to
become significant. The reasons are: a) in the analysis we require that a repeating pattern
occurs at least in a third of the trials to be behaviorally relevant, b) The significance tests
deployed by SPADE are very conservative as also shown in the performance tests on
artificial data, in particular for patterns with a size of 3-4 spikes as found here. We choose
such an approach that guarantees that the significant patterns cannot be explained by a
correlation of firing rate modulations, but discards repeated patterns which do not occur
often enough to be surprising. Nevertheless, a non-significant number of occurrences does
not imply that a pattern is not relevant for the information processing in the brain. Third,
we exclude auto-patterns, i.e. an individual neuron may not contribute with more than
one spike in a pattern. The reason is that the spike trains in motor cortex have a tendency
to be rather regular, and thus may lead to false positive chance patterns. This limitation
may be considerable and may be an explanation why we have so many patterns in which
the same neurons are involved.

Some years ago, when only a few neurons could be recorded simultaneously, pairwise
correlations were found (e.g. as Unitary Events in Riehle et al., 1997a; Maldonado et al.,
2008; Kilavik et al., 2009; Shimazaki et al., 2012) in about 1/3 of the recorded data sets.
Now we find in massively parallel recordings synchrony or STP patterns in each of the
recordings. Thus it seems more likely to record from cell assemblies by the use of more
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electrodes in parallel.

In this work we were interested in assessing the presence of significant precise patterns
in the context of detecting patterns beyond the effect of rate changes and covariation,
a concept that was also followed in the Unitary Events analysis (Griin et al., 2002a,b).
Nonetheless, if one would not be interested in significant patterns only, but in any precise
STP, for instance to correlate their occurrences to the behavior, it would still be possible to
use SPADE for the detection without any statistical evaluation of the patterns. In terms of
data analysis the natural continuation of this work is to extend the application of SPADE
to more data in order to corroborate the results of this thesis, both, to more recording
sessions of the reach-to-grasp experiment and to recordings in different experiments in
different labs.

Many other methods have been developed for the analysis of spike correlations in
massively parallel recordings. However, they consider different statistical aspects as a
correlation and assume different models underlying the correlations, (e.g. Staude et al.,
2010b). Thus they make use of different statistical measures. In order to get an under-
standing in how far these methods are complementary or detect similar correlations, we
focused in the last chapter on reviewing a selection of such methods (Griin et al., 2008;
Staude et al., 2010b; Rostami, 2017; Schneidman et al., 2003; Berger et al., 2010a; Russo
and Durstewitz, 2017; Torre et al., 2016a; Quaglio et al., 2017), including SPADE. The
methods and their performances are compared qualitatively, in particular in respect to
which type of correlation structure they detect (e.g. pairwise correlation, sparse higher
order correlations, spike patterns, etc.). We limited ourselves to a qualitative analysis be-
cause the first condition necessary for a quantitative analysis is the rigorous standardized
implementation of each method and this is not yet the case for all of them. This work was
published as Quaglio et al. (2018b).

In our comparative review we argue that SPADE is the only method of the ones
considered that is capable to detect precise spatio-temporal patterns and test directly for
the significance of such higher-order correlations. Indeed, all other methods considered in
our comparison either do not resolve the neuronal composition of the correlation (Griin
et al., 2008; Staude et al., 2010b; Rostami, 2017; Schneidman et al., 2003) or are built
on pairwise testing (Berger et al., 2010a; Russo and Durstewitz, 2017). Nevertheless,
an increasing interest in the detection of spike patterns led recently to developments of
new methodologies for such analyses (e.g Watanabe et al., 2017; Peter et al., 2017; Kreuz
et al., 2017; Grossberger et al., 2018; Mackevicius et al., 2018). All these methods have
different assumptions as well as formalisms which require a thorough comparison both in
terms of performance as well as compatibility of the object of the analysis (e.g. temporal
scale used for the definition of the patterns). As already mentioned the first necessary
condition for a quantitative analysis of the different methodologies is their standardization
in terms of implementation and accessibility. To enable also others for comparison of
methods we made the documented implementation of SPADE publicly available (https:
//github.com/NeuralEnsemble/elephant), as well as all the artificial and experimental
data analyzed in this thesis (https://web.gin.g-node.org/INT/multielectrode_grasp
and https://github. com/INM-6/SPADE_analysis).
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