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ABSTRACT
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Does the COVID-19 Pandemic Improve 
Global Air Quality? New Cross-National 
Evidence on Its Unintended Consequences*

Despite a growing literature on the impacts of the COVID-19 pandemic, scant evidence 

currently exists on its impacts on air quality. We offer the first study that provides cross-

national evidence on the causal impacts of COVID-19 on air pollution. We assemble a rich 

database consisting of daily, sub-national level data of air quality for 178 countries before 

and after the COVID-19 lockdowns, and investigate their impacts on air quality using a 

Regression Discontinuity Design approach. We find the lockdowns to result in significant 

decreases in global air pollution. These results are consistent across measures of air quality 

and data sources and robust to various model specifications. Some limited evidence also 

emerges that countries with a higher share of manufacturing in the economy or with an 

initial lower level of air pollution witness more reduced air pollution after the lockdowns; 

but the opposite result holds for countries near the equator. We also find that mobility 

restrictions following the lockdowns is a possible explanation for improved air quality.
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1. Introduction 

It has by now become clear that the COVID-19 pandemic is not only a global health emergency 

but has also led to a major global economic downturn. An emerging body of economic 

literature has examined impacts of COVID-19 on a wide range of outcomes including 

unemployment (Fairlie et al., 2020), household consumption (Baker et al., 2020), and 

individual income (loss) and behaviour changes for the whole population or for different 

income groups (Akesson et al., 2020; Dang et al., 2020). Most studies generally confirm the 

adverse effects of the pandemic on these various outcomes in both richer and poorer countries.  

 Yet, scant evidence currently exists on the impacts of the COVID-19 crisis on air quality, 

and there appears no conclusive evidence yet among the existing few studies on the impacts of 

the pandemic on air quality. Employing difference-in-differences models that compare cities 

with and without the pandemic-induced lockdown policies, He et al. (2020) find that city 

lockdowns led to considerable improvement in air quality as measured by Air Quality Index 

(AQI) and PM2.5. This result is consistent with the findings for the United States, where 

Brodeur et al. (2020) find ‘safer-at-home’ policies to decrease PM2.5 emissions. Research in 

other disciplines such as environment studies also suggest a considerable decline in pollutant 

parameters during and after the lockdown.1 Using a similar econometric approach to examine 

the linkage between COVID-19 and air pollution in Hubei, the province at the center of the 

outbreak in China, Almond et al. (2020) find that COVID-19 had ambiguous impacts on 

China's pollution, such as even some relative deterioration in air quality near the pandemic's 

epicenter. Furthermore, to our knowledge, the emerging literature on COVID-19 focuses on 

                                                 
1 For example, Ma et al. (2020) show a decrease in concentration of nitrogen dioxide (NO2) by 14 percent in 

Wuhan, China. Similarly, Tobías et al. (2020) find that NO2 concentration was reduced by half during the 

lockdown in Spain, another hot spot of COVID-19.  
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country-specific case studies rather than investigates the impacts of the pandemic on the global 

scale.2  

 We fill in this gap in the literature and offer the first assessment of the pandemic impacts 

on air pollution in a multi-country setting. Given that air pollution has been linked to heart and 

lung damage and many other health diseases, understanding how air quality is affected during 

the COVID-19 pandemic will provide important empirical evidence for health and 

environmental policies.  

 Specifically, we make several new contributions in this study. First, we offer global 

estimates for the causal impacts of COVID-19 on air quality, using a Regression Discontinuity 

Design (RDD) approach in a short period of time before and after each country implemented 

its lockdown policies. Since the lockdown—as most society-wide regulations or policies—

cannot be randomized across countries, the RDD offers us the most rigorous evaluation model 

that is available. Second, we provide estimates using several different measures of air quality. 

While most existing studies restrict analysis to one or two indicators of air quality, we employ 

two indicators NO2 and PM2.5 for our main analysis and several other indicators for robustness 

check including O3, PM10, and SO2. These various indicators help strengthen the estimation 

results.  

 Finally, we combine a variety of real-time data sources for richer analysis. We obtain 

daily data on air pollution, at the sub-national level, from two sources: satellite data (from the 

European Union’s Copernicus programme) and station-based data (from the World Air Quality 

Index). We then combine these air quality data with the Oxford COVID-19 Government 

Response Tracker (OxCGRT), which provides a unique measure of government 

                                                 
2 Other studies examine instead a related outcome, the impacts on health outcomes caused by the pandemic-

induced changes in air quality. For example, Cicala et al. (2020) use a sample of more than 3,100 counties in the 

US and show that reductions in emissions from travel and electricity usage reduced deaths by over 360 deaths per 

month. On the other hand, Cole et al. (2020) indicate that an increase in PM2.5 concentrations of 1𝜇/m3 is associated 

with an increase in COVID-19 cases of between 9.4 and 15.1. This study is based on a sample of 355 

municipalities in the Netherlands. Notably, these studies focus on one specific country only. 
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responsiveness to COVID-19. We also supplement our analysis with data from several other 

reliable sources including the National Oceanic and Atmospheric Administration, Google 

Community Mobility Reports, World Bank World Development Indicators, WHO Global 

Ambient Air Quality Database, and Economist Intelligence Unit.  

 The rich database that we assemble allows us to address a key issue in cross-country 

analysis, which is to construct lockdown dates for different countries. Indeed, identifying 

comparable cut-off dates across different countries is challenging. The term ‘lockdown’ can 

refer to anything from mandatory quarantines to bans on events and gatherings, closures of 

certain types of businesses or non-mandatory recommendations to stay at home. Some 

governments immediately respond to the outbreak by implementing a (regional or national) 

complete lockdown (e.g., China, Italy), while some implement gradual lockdowns in a 

staggering manner for different locations (e.g., the United States). We also present a number 

of robustness tests regarding our selected lockdown dates. Once we establish the causal 

relationship of COVID-19-induced lockdowns on air pollution, we explore the role of 

movement and travel restrictions as potential mechanisms.   

 We find strong evidence for reduction of air pollution after the lockdowns, with the 

reduction becoming stronger as the lockdowns go into effect for a longer period. In particular, 

the global decreases in NO2 and PM2.5 hover around 9 percent and 4 percent, respectively, 90 

days after the lockdowns. Our estimation results are qualitatively similar for different 

indicators of air quality and government policy indexes, and remain robust to different model 

specifications regarding bandwidths, functional forms, and the inclusion of different 

covariates. We also find some limited evidence that countries with a higher share of 

manufacturing in the economy have more reduced air pollution after the lockdown, as do 

countries with an initially lower level of air pollution. But the opposite result holds for countries 
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near the equator. Our findings suggest that mobility restrictions following the lockdown can be 

a channel that explains the improvement of air quality. 

 The remainder of the paper is organized as follows. We describe the database we 

construct for analysis in Section 2 before discussing the empirical models in Section 3. We 

present the estimation results in Section 4 and provide further discussion and conclude in 

Section 5. 

 

2. Data 

To examine the relationship between COVID-19 and air quality, we use two measures of air 

pollution, namely fine particulate matter PM2.5 (mass concentration of particles with diameters 

≤2.5 um) and nitrogen dioxide NO2. While other pollutants are available in our dataset, we 

select the PM2.5 and NO2 given their direct link to human health. PM2.5 is a common cause for 

adverse health outcomes such as chronic obstructive pulmonary disease (COPD) and lower 

respiratory infection (LRI) causing death of nearly three million people globally (Gakidou et 

al., 2017). At the same time, NO2 is the leading source of childhood asthma in urban areas 

globally (Achakulwisut et al., 2019). In this study, we collect these measures from 1st October 

2019 to 1st June 2020. We also use other pollutants, such as NO2, SO2 and O3, for robustness 

checks. 

 The NO2 data are derived from images of pollution-monitoring satellites released by the 

National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). 

In particular, we use data from the Sentinel-5P/TROPOMI (S5P) instrument of the European 

Union’s Copernicus programme. The Copernicus S5P provides daily global coverage of 

atmospheric parameters at high resolution (i.e., a pixel size of about 5.5 km x 3.5 km after 6th 
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August 2019).3 We then use Google Earth Engine to process and average air quality data at the 

sub-national level using administrative areas taken from Database of Global Administrative 

Areas (GADM).4 While the Copernicus S5P records a wide range of pollutants including NO2 

and others (O3, SO2, CO, CH4, and aerosols), we focus on NO2 because this is a noxious gas 

emitted by motor vehicles, power plants, and industrial facilities (Dutheil et al., 2020; Ogen, 

2020). Among other pollutants, NO2 is also a particularly well-suited data to analysis of 

emission because it has a short lifetime; this implies that molecules of NO2 stay fairly close to 

their sources and thus offer an appropriate measure of changes in emissions. 

 A potential concern of using satellite air quality, however, is cloud cover. This can bias 

results by obscuring the sensor’s view of the lower atmosphere. For example, concentrations 

of NO2 in the atmosphere are highly variable in space and time (for example the impacts of 

commuter traffic, weekdays and weekend days) as well as changes in weather conditions. 

Therefore, we follow suggestions from the Copernicus program and perform a cloud masking 

which excludes results from pixels with > 10 percent cloud fraction.5 We also averaged data 

over weekly periods as a robustness test. Finally, we include data on daily rainfall and 

temperature to control for weather conditions, which are derived from the National Center for 

Environmental Prediction (NCEP) at the National Oceanic and Atmospheric Administration 

(NOAA). The global dataset provides four 6-hour daily records of temperature and 

precipitation at the resolution of approximately 25 km. We extract the weather data at the sub-

national level using a similar process as with the air pollution data. 

 As an alternative measure of air quality, we use daily station-based air quality index 

(AQI) from the World Air Quality Index (WAQI) project. The AQI provides accurate and 

                                                 
3 The data has been used recently to study changes in air quality caused by COVID-19 (e.g. Chen et al., 2020; 

Ogen, 2020; Zambrano-Monserrate et al., 2020). 
4 The data is available at https://gadm.org/about.html.  
5 For more details, see: https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-

quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-

observations  

https://gadm.org/about.html
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
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reliable information on different air pollutant species from more than 12,000 ground-based air 

quality monitoring stations (primarily located at/near the US embassies and consulates) 

situated in 1,000 major cities in more than 100 countries from 2014 to present. However, there 

are certain limitations with station-based data. One is that station-based data are likely reported 

more slowly, and not in a ‘real-time’ fashion as satellite data. Another limitation is the locations 

of air quality monitoring stations are likely not random, so they may not provide representative 

data on an area’s air quality. Consequently, the satellite data are our preferred data for analysis.  

 We subsequently match the air pollution data with the country-level pandemic data from 

the Oxford COVID-19 Government Response Tracker (OxCGRT). The OxCGRT is a novel 

country-level dataset published by the Blavatnik School of Government at the University of 

Oxford, which contains information on various lockdown measures, such as school and 

workplace closings, travel restrictions, bans on public gatherings, and stay-at-home 

requirements (Hale et al., 2020).  

 As discussed earlier, lockdown dates vary from country to country, and countries may 

implement lockdowns with different degrees of strictness (i.e., business activities and travels 

can continue to varying extents for different countries). In fact, lockdown dates may differ even 

within the same country. For example, in quite a few countries, while all schools are shut down, 

universities operate on a different schedule, or different regions (states) impose different 

lockdown dates. To address this issue, the OxCGRT provides a unique composite measure 

which combines indicators on different aspects of lockdown policies into a general index.6 By 

using a range of different indicators, this stringency index accounts for any indicator that may 

be over- or mis-interpreted and thus allows for a systematic comparison across countries (Hale 

et al., 2020).  

 

                                                 
6 For the index components, see Table A1 (Appendix 1). 
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 For each country, we define the official lockdown date as the first day on which the 

stringency index becomes positive. Using our constructed measure, Figure A1 (Appendix 1) 

shows that most countries introduced lockdown policies in the last week of January and first 

week of February. Notably, the start date of lockdown does not correspond to the intensity of 

policy index as countries that implemented lockdown policies later tend to be more stringent 

in their response. 

 To explore a potential channel of COVID-19 on air quality, we collect data on mobility 

from Google Community Mobility Reports. The Google Community Mobility Reports provide 

daily data on Google Maps users who have opted-in to the ‘location history’ in their Google 

accounts settings across 132 countries. The reports calculate changes in movement compared 

to a baseline, which is the median value for the corresponding day of the week from January 

to present. The purpose of travel has been assigned to one of the following categories: retail 

and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential. 

In our analysis, we expect that the lockdown will lead to a reduction in mobility of all 

categories, except for the residential category. We also examine data from several additional 

sources for robustness checks.  

 

3. Empirical Model 

We first employ a panel data model with country fixed effects and time fixed effects to examine 

whether air quality improves in response to government COVID-19 lockdown policies  

𝐴𝑖,𝑡 = 𝛽𝑆𝑖,𝑡 +  𝛾𝑋𝑖,𝑡 + 𝛼𝑖 +  𝜏𝑡 +  𝜖𝑖,𝑡     (1) 

The coefficient of interest in Equation (1) is 𝛽, which measures how the air quality (𝐴𝑖,𝑡) in 

country i and date t changes in response to the stringency of government COVID-19 policies 

(𝑆𝑖,𝑡). Because 𝐴𝑖,𝑡 varies by country and date, this fixed-effects model allows for the inclusion 

of country fixed effects (𝛼𝑖) and time fixed effects (𝜏𝑡) to absorb the effects of unobservable 
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time-invariant country or time characteristics. 𝑋𝑖,𝑡 is a vector of time-varying control variables 

such as daily temperature and rainfall (or humidity). We estimate Equation (1) using global 

data at the sub-national level, and we also replicate our analysis at the country level as a 

robustness test. 

 Yet, Equation (1) will yield an inconsistent estimate of 𝛽 if there are omitted factors that 

affect air quality and simultaneously correlate with the government responses to COVID-19. 

Since the model is based on a sample after the lockdown date (i.e., the stringency index being 

positive), it does not take into account the fact that different countries can differ in terms of 

pre-COVID-19 characteristics such as governance quality and public preferences for protecting 

the environment. For example, countries with strong institutions likely implement stringent 

policies during the pandemic, and at the same time, may have had better programs in place that 

ensures better air quality. Another potential threat to Equation (1) is reverse causality. If air 

pollution is positively associated with the number of COVID-19 cases (see, e.g., Cole et al. 

(2020) and Yongjian et al. (2020)), this can lead to governments implementing more stringent 

policies on air quality.  

 In order to identify the causal effect of COVID-19 on air quality, we take advantage of 

the timing of lockdown as an exogenous policy shock and apply a sharp Regression 

Discontinuity Design (RDD) approach to estimate its impact on air pollution. In this approach, 

the observations immediately before the lockdown provide the counterfactual outcomes for 

those observations immediately after the lockdown because the lockdown (treatment) status 

will be randomized in a small neighborhood of the lockdown date (Hahn et al., 2001). 

Consequently, once we can identify the lockdown date for each country based on its stringency 

index as discussed earlier (i.e., when 𝑆𝑖𝑡 > 0), we can compare the average outcomes for the 

observations in a window of time (bandwidth) around this date to estimate the causal impacts 

of COVID-19-induced lockdowns on air quality.  
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 More formally, the treatment effect can be estimated as the change in air quality (𝐴) in 

the neighbourhood of lockdown dates 

𝜏𝑅𝐷 =  lim
𝜀↓0

𝐸[Α|𝑑 = 0 + 𝜀] −  lim
𝜀↑0

𝐸[Α|𝑑 = 0 + 𝜀]   (2) 

where 𝑑 is the number of days before and after the official date of lockdown. We thus estimate 

the following reduced form 

𝐴𝑖𝑡 = 𝛿𝐿𝑖𝑡 + 𝑓(𝑑𝑖𝑡) + 𝜃𝑋𝑖𝑡 + 𝜇𝑖 +  𝜋𝑡 + 𝜀𝑖𝑡    (3) 

where 𝐿𝑖𝑡 (treatment variable) is a dummy variable that equals 1 after the lockdown and 0 

otherwise, and 𝛿 is the parameter of interest. As we discussed earlier, the construction of 

lockdown date is measured on the first day when stringency index is positive. 𝑓(𝑑𝑖𝑡) denotes 

a function of the running variable 𝑑𝑖𝑡 (number of days from the lockdown date). Similar to 

Equation (1), 𝜇𝑖 and  𝜋𝑡 respectively denote the country fixed effects and the time fixed effects, 

and 𝜀𝑖𝑡 denotes the error term. We cluster the standard errors at the sub-national level in all 

models. 

 In summary, we offer a multiple-layered approach to ensure that estimation results are 

robust. First, the estimates using Equation (1) above provide the first set of evidence over 

whether air quality responds to the different levels of the government stringency policies. 

Second, we employ a parametric approach and use different functional forms of the running 

variable 𝑑𝑖𝑡 to estimate Equation (3). These include (i) the linear model, (ii) the linear model 

with the interaction term of the running variable and the treatment variable (𝐿𝑖𝑡*𝑑𝑖𝑡), (iii) the 

quadratic model, and (iv) the quadratic model with the interaction term of the running variable 

and the treatment variable (𝐿𝑖𝑡*𝑑𝑖𝑡
2 ). Third, we present results for a broad range of bandwidths 

including 30, 60, and 90 days before and after the official lockdown dates. As suggested by 

Figure 1, the impacts of lockdowns become stronger over time, so these different bandwidths 

help capture the impacts of lockdowns over different time windows. Finally, we also offer 

results using a non-parametric approach as well as a battery of robustness checks regarding the 
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bandwidths and different versions of the stringency index and other additional robustness tests 

in Section 4.2.7    

 An advantage of the RDD design is that the identification assumptions offer testable 

predictions. To validate our design, we present two types of tests. First, we investigate the 

distribution of observations (ADM1 level for satellite data and city level for station-based data) 

around the cut-off date.8 Figure A2 (Appendix 1) provides results of the manipulation test 

suggested by McCrary (2008) and Cattaneo et al. (2018) based on the nonparametric local 

polynomial density estimator. The confidence intervals on the two sides of the discontinuity 

overlap, which confirms there is no evidence of systematic manipulation of the running 

variable. Second, we test for discontinuity in the other covariates around the date of lockdown. 

The results, shown in Figure A3 (Appendix 1), rule out this concern. We further offer a number 

of other robustness tests in Section 4.2.   

 

4. Results 

4.1. Main findings 

We present in Table 1 the estimation results for Equation (1) using two data samples at the sub-

national level (columns 1 and 2) and at the country level (columns 3 and 4). Our preferred 

estimates are shown in columns (2) and (4), which control for daily temperature and 

precipitation (humidity for station-based data)9. But we also show the estimates without control 

                                                 
7 Although the OxCGRT data provides a systematic comparison across different countries as discussed earlier, it 

is still possible that not all business activities and travel cease exactly by the time of our proposed lockdown dates. 

In that case, a better approach is to employ the fuzzy RDD model than the sharp RDD model where the treatment 

variable 𝐿𝑖𝑡 can assume the value of 0 for 𝑆𝑖𝑡 > 0 for some countries. However, we do not have such additional 

information for 𝐿𝑖𝑡 in our case, since we uniformly define this treatment variable as 1 after the lockdown date for 

each country. But the various robustness checks that we present can help address this concern. In particular, the 

different time bandwidths of 30, 60, and 90 days can average out the outcomes where lockdown policies may not 

be strictly applied after the lockdown date. 
8 For satellite data, we measure air pollution at the first-order administrative division (ADM1). In some countries, 

the ADM1 refers to province level while for others, it refers to state/region level. 
9 We do not use precipitation from the station-based data due to its low frequency (a large number of stations do 

not record rainfall level). 
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variables in columns (1) and (3) for comparison and robustness checks. The estimation results 

are strongly statistically significant in our preferred models (columns 2 and 4) and point to 

reduced air pollution where government policies are more stringent. Overall, our findings 

suggest that global air quality improved in response to COVID-19-induced lockdown policies. 

 In particular, column (2) indicates that a one-point increase in the stringency index is 

associated with a 0.046 (mol/km2) decrease in NO2 (Panel A). When using station-based data, 

the corresponding figure is a 0.132 (µg/m3) decrease in PM2.5 (Panel B). Estimates are rather 

similar when we analyse the data at the country level (column 4). However, as discussed earlier, 

these estimates are likely biased since employing Equation (1) does not allow us to properly 

account for the unobservables that may be correlated with both the stringency index and air 

quality.  

 We subsequently present our main analysis which examines the change in air quality 

before and after the lockdown using the RDD model. For illustrative purpose, Figure 1 provides 

prima facie evidence of the impact of lockdown on air quality. The figure shows the results 

from a local regression of air pollution, measured by NO2 (Panel A) and PM2.5 (Panel B), using 

the optimal bandwidth proposed by Imbens and Kalyanaraman (2012). We observe a negative 

jump at the threshold of cut-off date, which suggests a reduction of air pollution after the 

lockdown. The downward sloping trend for air pollution in Figure 1 also suggests that the 

reduction in air pollution becomes stronger as the lockdown went into effect for a longer period. 

This is understandable, since a short period of time may not be sufficient to detect the changes 

in air quality. 

 We report the results of the RDD model in Table 2, which shows estimates using two 

data samples: the satellite data (panel A) and the station-based data (panel B). We consider 

three different bandwidths, 30 days, 60 days, and 90 days before and after the lockdown. As 

suggested by Figure 1, a wider time window from the lockdown date can capture a stronger 
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impact of the lockdown on air quality. Our preferred models are, again, those that control for 

weather conditions (columns 2, 4, and 6). In each panel of Table 2, we estimate four models 

using four different functional forms of the running variable as discussed earlier. Overall, Table 

2 shows that air quality improves after the lockdown, and the results are rather qualitative 

similar regardless of whether we include control variables, except for the shortest time window 

of 30 days around the lockdown date.  Estimation results are also statistically stronger with the 

satellite data, our main data for analysis.  

 Specifically, the coefficient on the lockdown variable is negative and statistically 

significant at the 1 percent level using the linear model (panel A, column 2). This indicates that 

a switch to lockdown leads to a 2.013 (mol/km2) decrease in the global concentration of NO2 

after 90 days. This translates into an 8.8 percent decrease compared to an average value of NO2 

of 22.914 mol/km2 before the lockdowns. We also find that using different functional forms 

(models 2 to 4) results in similar estimates. Finally, the negative impacts of lockdowns on NO2 

are rather consistent across bandwidths, but have a smaller magnitude with narrower 

bandwidths (as also seen with Figure 1). The decreases in concentration of NO2 are roughly 4 

percent for 60 days (panel A, column 4) and 2 percent for 30 days (panel A, column 6) after 

the lockdowns, respectively. 

 We turn next to the alternative station-based data and find a strong impact of the 

lockdown on PM2.5 using the bandwidth of 90 days (panel B, column 2). The global decrease 

in PM2.5 for 90 days after the lockdowns hovers around 3 to 4 percent depending on the 

functional form that we employ. But estimates become mostly statistically insignificant for the 

shorter bandwidths of 60 days and 30 days once we control for weather conditions. We then 

use different measures of air pollution available from the station-based data and reach a similar 

conclusion. Specifically, the results presented in Table A2 (Appendix 1) confirm the beneficial 

effects of lockdowns on air quality, as measured by NO2 and PM10, 90 days before and after 
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the lockdown. While there is no evidence of the lockdown effect on SO2, the indicator O3 is 

found to be positively associated with the lockdowns at the windows of 90 days and 60 days. 

A possible explanation for the increase in concentration of O3 is warmer weather during this 

period (Tobías et al., 2020). 

 

4.2. Robustness tests 

In this section, we conduct a battery of robustness tests on the estimation results. These include 

employing a nonparametric RDD method, adding different covariates to the regressions, using 

wider time bandwidths and different thresholds and versions of the stringency index, 

controlling for potentially differential time trends across countries, and converting the air 

quality variables into logarithmic form.  

 First, since employing specific functional forms can affect the parametric RDD 

estimation results, we adopt a nonparametric RDD method for robustness checks. An important 

feature of the nonparametric method is that the bandwidth is not selected arbitrarily; instead, it 

is calculated on a data-driven basis. In Table A3 (Appendix 1), we report the results of non-

parametric specifications using two optimal bandwidths: the mean squared error (MSE) 

bandwidth and the coverage error rate (CER) bandwidth. We find consistent impacts of the 

lockdown on NO2 using the satellite data, while there is little evidence of the impacts on PM2.5 

using the alternative station-based data.  

 Second, our main RDD specification assumes that the observations just below the cut-

off (i.e., lockdown date) form good comparisons to those just above the cut-off not only in 

terms of outcomes but also in terms of covariates. To check on the latter assumption, we have 

already included weather conditions in the set of covariates in our RDD regression. For further 

checks, we include other covariates to control for the pre-pandemic country characteristics, 

namely country’s log of GDP per capita (in constant 2010 USD), population density, log of 
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energy consumption per capita, the number of motor vehicles per 1,000 inhabitants, and the 

share of electricity generated by coal power. The country characteristics come from the World 

Development Indicators (WDI) database in the latest year when data is available. We present 

the results in Table A4 (Appendix 1) using both the parametric and non-parametric approaches 

(using the covariate-adjust RDD method proposed by Calonico et al. (2019)). The results are 

consistent with our main findings, which further confirm the validity of the RDD design. 

 Third, a potential issue of using daily air pollution data is that these data substantially 

vary from one day to another because of variations in emission and changes in weather 

conditions. Therefore, we replicate our parametric RDD approach using a weekly indicator. 

We employ different bandwidths of 5, 10 and 15 weeks before and after the lockdown date. 

The results are presented in Table A5 (Appendix 1), which are generally consistent with the 

main findings in Table 2. 

 Fourth, the lockdown dates are identified based on the stringency index becoming 

positive. As a robustness check, we also consider other thresholds of the stringency index that 

range from 0 to 50% (on a scale of 0-100%). Estimates, shown in Figure A4 (Appendix 1), 

change somewhat in magnitude but are still strongly statistically significant. Fifth, we use 

alternative measures of stringency index taken from the OxCGRT dataset. There are two 

versions of the stringency index: (i) a “regular” version which returns null values if there are 

not enough data to calculate the index, and (ii) a “display” version which extrapolates to smooth 

over the last seven days of the index based on the most recent complete data. We use the latter 

indicator for our main analysis, but we also find consistent results using the “regular” version 

(Appendix 1, Table A6), except for PM2.5 at the bandwidth of 60 days and 30 days. 

 Sixth, the stringency index in the OxCGRT dataset is calculated using a simple additive 

unweighted approach. It is thus possible that some dimensions with higher weights will be 

underestimated in the index. To address this issue, we create a new index based on the Principal 
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Component Analysis (PCA) method for all the dimensions of stringency index. Table A7 in 

Appendix 1 shows similar estimation results for our own index. Seventh, we further explore 

other indexes that are available from the OxCGRT dataset. They include: (i) Government 

response index, (ii) Containment and health index, and (iii) Economic support index.10 

Compared to our main measure, the government response index and the containment and health 

index include two additional dimensions: testing policy and contact tracing. Still, we find a 

consistent impact of the lockdown on air pollution when using these indexes (Appendix 1, 

Table A8). 

 Finally, we also check whether our results are driven by differential time trends across 

countries. We include in the regressions the interaction terms of country dummies with linear 

time trends. The results, presented in Table A9 (Appendix 1), are consistent with our main 

findings. Our findings also remain consistent when we use the logarithmic form of the air 

quality variable (Appendix 1, Table A10). 

  

4.3. Heterogeneity analysis 

Having shown that changes in air quality are driven by COVID-19, it is useful to understand 

whether the impact of lockdown differs by certain country characteristics. In particular, the 

impacts of lockdown can vary according to a country’s geographic location. For example, cities 

near the deserts are often affected by sand and dust storms, which can strongly impact air 

quality. We simply divide our sample into two subsamples based on whether they are near the 

equator and we interact this variable with the treatment variable (lockdown). The results 

presented in panel A of Table 3 show that countries near the equator have a higher 

concentration of NO2 after the lockdown. 

                                                 
10 Another index is Legacy stringency index; however, it is not recommended by the OxCGRT team (Hale et al., 

2020). Also the economic support index only includes income support programs and debt relief programs, which 

do not capture the overall responsiveness of the government. 



 16 

 A country’s institution may also affect the impacts of lockdown. A large body of 

economic literature has shown the important role of institutions and culture in shaping 

economic development (e.g. Gorodnichenko and Roland, 2017; Acemoglu et al., 2019). 

Consequently, we use the democracy index from the 2019 report of the Economist Intelligence 

Unit.11 We expect that countries with strong institutions are more able to take stringent policies 

during the time of COVID-19, and therefore have a better performance in terms of air quality. 

The results in panel B of Table 3, however, provide little support for this argument. In contrast, 

partial democratic countries and countries with hybrid regime appear to have a lower reduction 

in air pollution after the lockdown than authoritarian countries. 

 Another useful heterogeneity analysis is whether countries with high level of openness 

have a large reduction of air pollution after the lockdown. Whether trade is good or bad for the 

environmental outcomes has been a topic of debate in the literature. While there is evidence of 

the beneficial effect of trade on the environment (e.g. Antweiler et al., 2001; Frankel and Rose, 

2005), other studies show that trade openness could in fact lead to higher emissions (Managi 

et al., 2009, Li et al., 2015). To answer this question, we add a country’s share of manufacturing 

and share of trade in its GDP from the 2019 World Development Indicators (WDI) database. 

Our results are presented in panels C and D of Table 3. We find that countries with a larger 

share of manufacturing have a higher reduction of air pollution after the lockdown, while there 

are mixed results for the share of trade. 

 Finally, we examine whether countries with existing lower levels of air pollution may 

reduce air pollution more. We use the WHO Global Ambient Air Quality Database that 

summarises concentration of PM2.5 at the country level in 2018.12 We then split our sample 

into five quintiles and interact each with our treatment variable in the model specification. The 

                                                 
11 The report is available at: https://www.eiu.com/topic/democracy-index  
12 The data is available at: https://www.who.int/airpollution/data/en/  

https://www.eiu.com/topic/democracy-index
https://www.who.int/airpollution/data/en/
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results in panel E indicate that countries with an initial lower level of air pollution (i.e., the 1st 

quintile) have a higher reduction of air pollution compared to those with higher levels of air 

pollution.  

  

4.4. Stringency index and mobility restriction 

Once we established the relationship between government response to COVID-19 and air 

pollution, we shift our attention to the role of mobility restriction as the potential mechanism. 

Due to COVID-19, human mobility and relevant production and consumption activities have 

since decreased significantly. Given that one main source of air pollution comes from traffic 

mobility (Viard and Fu, 2015), it is reasonable to argue that more stringent policies will result 

in less mobility, thereby improving air quality.  

 We directly test this hypothesis by using data from the Google Community Mobility 

Reports. Since mobility data was not available before the lockdown date, we are unable to 

apply the more rigorous the RDD approach. Consequently, we estimate the panel data model 

with the country and time fixed effects in Equation (1). The estimation results obtained by this 

model discussed in the preceding sections are in fact qualitatively very similar to those obtained 

by the RDD approach.13 As such, applying the panel data can provide some qualitative 

evidence on the mechanism of impacts. 

 We present the estimation results in Table 4, which show that geographic mobility has 

declined significantly where government policies are more stringent. In particular, a higher 

stringency index is associated with less mobility in both ‘essential services’ (e.g., grocery and 

pharma, workplace) and ‘non-essential services’ (retail and recreation, parks), but more 

mobility in the ‘residential’ category. 

                                                 
13 In addition, the heterogeneity analysis in Table 3, panel B suggests that unobservables such as institutions may 

not bias the estimation results in the panel data model. 



 18 

5. Conclusions 

We contribute to the emerging literature on COVID-19 by offering the first study that provides 

cross-national evidence on the causal impacts of COVID-19 on air pollution. We assemble a 

rich database consisting of data from a number of different reliable sources, which we analyze 

with panel data and RDD econometric models.   

 Our findings provide a better understanding of the unexpected positive impacts of the 

pandemic on air quality. We find heterogeneous impacts for different country characteristics 

such as shares of manufacturing in the economy, initial levels of air pollution or proximity to 

the equator. We identify reduced mobility as a potential channel that can help reduce air 

pollution. Our findings suggest that while mobility restrictions appear not to be a long-term 

solution to address air pollution, reducing nonessential individual movements can help improve 

air quality on a global scale. A promising direction for future research can be more in-depth 

country studies on the impacts of the pandemic on air quality. 
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Figure 1: COVID-19 lockdown and air pollution 
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Table 1: Government response to COVID-19 and air pollution  

  ADM1/City level Country level 

 (1) (2) (3) (4) 

Panel A: Air quality is measured by NO2 (satellite data) 

Stringency index -0.032*** -0.046*** -0.040*** -0.040*** 

 (0.003) (0.003) (0.012) (0.012) 

Controls No Yes No Yes 

Country FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 250,838 216,170 14,850 12,756 

R-squared 0.381 0.353 0.657 0.644 

Panel B: Air quality is measured by PM2.5 (station-based data) 

Stringency index -0.167*** -0.132*** -0.181*** -0.154*** 

 (0.018) (0.017) (0.050) (0.040) 

Controls No Yes No Yes 

Country FE Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes 

Observations 79,464 73,041 12,457 11,659 

R-squared 0.452 0.458 0.592 0.613 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of panel model. Robust standard 

errors in parentheses. Standard errors are clustered at ADM1/city level in columns 

(1) and (2), and country level in columns (3) and (4). Regressions in columns (2) 

and (4) include country dummies and week dummies. Control variables are daily 

temperature and rainfall (humidity for station-based data). 
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Table 2: COVID-19 lockdown and air pollution 

Panel A: Satellite air pollution 

Air quality: +/-90 days +/-60 days +/-30 days 

NO2 (1) (2) (3) (4) (5) (6) 

Model 1: No running variable 

Lockdown=1 -2.037*** -2.013*** -1.209*** -0.880*** -0.568** -0.433* 

 (0.231) (0.231) (0.220) (0.207) (0.223) (0.234) 

Model 2: With running variable 

Lockdown=1 -1.973*** -1.968*** -1.182*** -0.843*** -0.540** -0.391* 

 (0.229) (0.230) (0.219) (0.206) (0.221) (0.232) 

Model 3: Quadratic term of running variable 

Lockdown=1 -1.987*** -1.991*** -1.197*** -0.868*** -0.551** -0.408* 

 (0.229) (0.231) (0.220) (0.207) (0.222) (0.233) 

Model 4: Cubic term of running variable 

Lockdown=1 -1.986*** -1.986*** -1.184*** -0.835*** -0.613*** -0.476** 

 (0.229) (0.230) (0.220) (0.205) (0.224) (0.236) 

Means before lockdown 22.914 22.914 23.316 23.316 22.719 22.719 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 381,872 329,735 255,628 221,174 128,041 110,864 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in parentheses. 

Standard errors are clustered at ADM1 level. Air pollution is measured by NO2 from satellite data. Model 

1 does not include running variable, Model 2 includes running variable, Model 3 includes quadratic term 

of running variable, Model 4 includes cubic term of running variable. All regressions include country 

dummies and week dummies. Control variables are daily temperature and rainfall. 

 

Panel B: Station-based air pollution 

Air quality:  +/-90 days +/-60 days +/-30 days 

PM2.5 (1) (2) (3) (4) (5) (6) 

Model 1: No running variable 

Lockdown=1 -4.539*** -2.665*** -1.952* -0.288 0.903 -0.669 

 (0.925) (0.912) (1.007) (0.914) (1.008) (1.047) 

Model 2: With running variable 

Lockdown=1 -3.905*** -2.182** -1.386 0.127 1.195 -0.493 

 (0.917) (0.900) (0.996) (0.905) (1.002) (1.049) 

Model 3: Quadratic term of running variable 

Lockdown=1 -4.057*** -2.271** -1.520 0.063 1.104 -0.570 

 (0.919) (0.901) (0.999) (0.905) (1.001) (1.049) 

Model 4: Cubic term of running variable 

Lockdown=1 -3.886*** -2.159** -1.331 0.081 1.295 -0.367 

 (0.918) (0.900) (0.996) (0.903) (1.007) (1.048) 

Means before lockdown 64.599 64.599 66.015 66.015 67.544 67.544 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 93,941 82,193 63,779 52,502 33,151 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in 

parentheses. Standard errors are clustered at city level. Air pollution is measured by PM2.5 from station-

based data. Model 1 does not include running variable, Model 2 includes running variable, Model 3 

includes quadratic term of running variable, Model 4 includes cubic term of running variable. All 

regressions include country dummies and week dummies. Control variables are daily temperature and 

humidity. 
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Table 3: Heterogeneity tests 

Air quality: NO2 +/-90 days +/-60 days +/-30 days 

 (1) (2) (3) 

Panel A: Location    
Lockdown*Countries near equator 4.016*** 3.571*** 1.710*** 

 (0.297) (0.294) (0.251) 

Observations 329,735 221,174 110,864 

Panel B: Democracy       

Reference: Authoritarian    

Lockdown*Hybrid regime 0.876 1.212* 0.735 

 (0.680) (0.719) (0.599) 

Lockdown*Partial democracy 1.229** 1.498** 0.737 

 (0.621) (0.679) (0.525) 

Lockdown*Full democracy 0.507 0.736 -0.377 

 (0.727) (0.775) (0.640) 

Observations 311,104 208,498 104,492 

Panel C: Share of trade    

Lockdown*Trade -0.012** -0.006 0.010** 

 (0.005) (0.006) (0.004) 

Observations 268,704 179,788 89,929 

Panel D: Share of manufacturing    

Lockdown*Manufacturing -0.366*** -0.393*** -0.308*** 

 (0.048) (0.060) (0.060) 

Observations 231,935 156,097 78,171 

Panel E: Air pollution index    
Reference: 1st quintile      

Lockdown*2nd quintile   0.794* 0.741* 0.820** 

 (0.441) (0.424) (0.379) 

Lockdown*3rd quintile   1.212*** 1.310*** 2.177*** 

 (0.397) (0.397) (0.390) 

Lockdown*4th quintile   -0.885 -0.575 0.718 

 (0.672) (0.647) (0.558) 

Lockdown*5th quintile   -0.216 -0.980 -0.289 

 (0.663) (0.750) (0.671) 

Observations 326,198 218,856 109,754 

Means before lockdown 22.914 23.316 22.719 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include 

interactions of running variable (linear and quadratic terms) with treatment variable. 

Robust standard errors in parentheses. Standard errors are clustered at ADM1 level. 

Air pollution is measured by NO2 from satellite data. All regressions include country 

dummies and week dummies. Control variables are daily temperature and rainfall. 
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Table 4: Stringency index and mobility restriction 

Mobility changes 
Retail and 

recreation 

Grocery and 

pharmacy 
Park Transit Workplaces Residential 

 (1) (2) (3) (4) (5) (6) 

Panel A: Sub-national level 

Stringency index -0.825*** -0.484*** -0.611*** -0.820*** -0.595*** 0.283*** 

 (0.007) (0.007) (0.012) (0.008) (0.006) (0.003) 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 122,839 120,069 111,574 107,215 142,524 101,186 

R-squared 0.742 0.489 0.534 0.669 0.633 0.732 

Panel B: Country level 

Stringency index -0.762*** -0.478*** -0.536*** -0.784*** -0.592*** 0.281*** 

 (0.023) (0.021) (0.032) (0.019) (0.020) (0.009) 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 11,016 11,016 11,016 11,016 11,016 11,003 

R-squared 0.801 0.605 0.663 0.839 0.704 0.783 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of panel model. Robust standard errors in parentheses. Standard 

errors are clustered at sub-region level in Panel A and country level in Panel B. Results of panel analysis. All 

regressions include country dummies and week dummies. Control variables are daily temperature and rainfall. 
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Appendix 1: Additional Figures and Tables  

Figure A1: Number of countries that introduced lockdown and policy stringency index, 

OxCGRT database  
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Figure A2: Manipulation test 
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Figure A3: COVID-19 lockdown and temperature/precipitation 
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Figure A4: Reduction of air pollution using alternative cut-offs of stringency index  

 
Notes: Air pollution is measured by NO2 from satellite data. Each point in the figure shows point 

estimate and 95 percent confidence interval of treatment variable (lockdown) using different percentiles 

of stringency index to construct lockdown date. The parametric RDD model includes interactions of 

running variable (linear and quadratic terms) with treatment variable. The running variable is number 

of days from the lockdown date. We use bandwidth of 90 days before and after the lockdown. All 

regressions include country dummies and week dummies. Control variables are daily temperature and 

rainfall. 
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Table A1: Stringency index components 

Number Components Description 

1 School closing Record closings of schools and universities 

2 Workplace closing Record closings of workplaces 

3 Cancel public events Record cancelling public events 

4 Restrictions on gatherings 
Record the cut-off size for bans on private 

gatherings 

5 Close public transport Record closing of public transport 

6 Stay at home requirements 
Record orders to “shelter-in- place” and 

otherwise confine to home. 

7 Restrictions on internal movement Record restrictions on internal movement 

8 International travel controls Record restrictions on international travel 

9 Public info campaigns Record presence of public info campaigns 

Notes: Each component is measured by an ordinal scale. The stringency index is measured by the 

OxCGRT team as simple averages of the individual component indicators. Each component is 

measured by an ordinal scale (e.g. 0 – no measures, 1 – recommended closing, 2 – require partial 

closing, 3 – require closing all levels). It is then rescaled by maximum value to create a score between 

0 and 100. These scores are then averaged to get the stringency index. 
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Table A2: COVID-19 lockdown and air pollution – Other parameters of pollution 

  (1) (2) (3) 

Bandwidths +/-90 days +/-60 days +/-30 days 

Panel A: Air quality is measured by PM10  

Lockdown=1 -1.529*** -0.423 -0.694 

 (0.552) (0.546) (0.582) 

Means before lockdown 30.676 30.904 31.242 

Observations 80,024 51,207 24,208 

Panel B: Air quality is measured by NO2  

Lockdown=1 -1.523*** -0.709*** 0.180 

 (0.233) (0.214) (0.200) 

Means before lockdown 12.747 12.899 12.815 

Observations 79,912 51,094 24,090 

Panel C: Air quality is measured by O3  

Lockdown=1 2.214*** 1.132*** -0.608** 

 (0.308) (0.214) (0.251) 

Means before lockdown 14.982 14.493 14.464 

Observations 74,209 47,295 22,372 

Panel D: Air quality is measured by SO2  

Lockdown=1 -0.457 -0.325 0.466 

 (0.331) (0.417) (0.649) 

Means before lockdown 4.535 4.697 4.866 

Observations 67,689 43,341 20,628 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD 

that include interactions of running variable (linear and quadratic 

terms) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at city level. Air 

pollution parameters are derived from station-based data. All 

regressions include country dummies and week dummies. Control 

variables are daily temperature and humidity. 
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Table A3: COVID-19 lockdown and air pollution – Non-parametric RDD 

 Satellite NO2 Station-based PM2.5 

Optimal bandwidth: MSE  CER MSE  CER 

Lockdown=1 (Conventional) -1.587*** -1.836*** -5.436 -4.328 

 (0.611) (0.695) (3.410) (3.804) 

Lockdown=1 (Bias-corrected) -1.876*** -1.975*** -6.741** -4.928 

 (0.611) (0.695) (3.410) (3.804) 

Lockdown=1 (Robust) -1.876*** -1.975*** -6.741* -4.928 

 (0.625) (0.701) (3.668) (3.975) 

Means before lockdown 22.914 22.914 64.599 64.599 

Controls Yes Yes Yes Yes 

Observations 329,735 329,735 82,193 82,193 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of non-parametric RDD. Standard 

errors in parentheses. Standard errors are clustered at ADM1 level (satellite data) and 

city level (station-based data). Mean of air quality before lockdown is calculated 90 

days before the official date of lockdown. Control variables are daily temperature and 

rainfall (humidity for station-based data). 
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Table A4: COVID-19 lockdown and air pollution – RDD with additional covariates 

Panel A: Parametric RDD 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -2.957*** -1.524*** -1.011*** -2.913*** -0.411 0.308 

 (0.322) (0.265) (0.371) (1.080) (1.184) (1.129) 

Controls Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Means before 

lockdown 
22.914 23.316 22.719 64.599 66.015 67.544 

Observations 252,827 169,261 84,589 78,705 50,297 23,818 

R-squared 0.160 0.161 0.164 0.421 0.441 0.466 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1 level. Control variables are daily 

temperature and rainfall (humidity for station-based data), log of GDP per capita (constant 

2010 USD), population density, log of energy consumption per capita, motor vehicles per 

1,000 inhabitants, and share of electricity generated by coal power. All regressions include 

week dummies. 

 

 

Panel B: Non-parametric RDD 

  

 Satellite NO2 Station-based PM2.5 

Optimal bandwidth: MSE  CER MSE  CER 

Lockdown=1 (Conventional) -1.771** -2.332*** -3.519 -6.295*** 

 (0.710) (0.877) (2.199) (2.359) 

Lockdown=1 (Bias-corrected) -2.170*** -2.529*** -4.312** -6.697*** 

 (0.710) (0.877) (2.199) (2.359) 

Lockdown=1 (Robust) -2.170*** -2.529*** -4.312* -6.697*** 

 (0.737) (0.891) (2.321) (2.436) 

Means before lockdown 22.914 22.914 64.599 64.599 

Controls Yes Yes Yes Yes 

Observations 252,827 252,827 78,705 78,705 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of non-parametric RDD following 

Calonico et al. (2019). Standard errors in parentheses. Standard errors are clustered at 

ADM1 level. Control variables are daily temperature and rainfall (humidity for station-

based data), log of GDP per capita (constant 2010 USD), population density, log of 

energy consumption per capita, motor vehicles per 1,000 inhabitants, and share of 

electricity generated by coal power. Mean of air quality before lockdown is calculated 

90 days before the official date of lockdown. 

 

 

  

 



 

 35 

Table A5: COVID-19 lockdown and air pollution - Weekly data   

Panel A: Satellite air pollution 

Air quality: +/-15 weeks +/-10 weeks +/-5 weeks 

NO2 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -2.291*** -2.310*** -1.235*** -0.652 -0.231 -0.070 

 (0.239) (0.246) (0.229) (0.477) (0.254) (0.269) 

Model 2: Linear interaction model 

Lockdown=1 -2.087*** -2.120*** -1.163*** -0.831*** -0.150 0.070 

 (0.235) (0.243) (0.227) (0.215) (0.247) (0.260) 

Model 3: Quadratic model 

Lockdown=1 -2.110*** -2.154*** -1.196*** -0.882*** -0.172 0.029 

 (0.236) (0.244) (0.227) (0.216) (0.249) (0.262) 

Model 4: Quadratic interaction model 

Lockdown=1 -2.098*** -2.135*** -1.191*** -0.840*** -0.257 -0.055 

 (0.235) (0.243) (0.228) (0.212) (0.256) (0.270) 

Means before lockdown 22.756 22.756 23.225 23.225 22.955 22.955 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 435,571 375,728 296,819 256,627 146,864 127,216 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in parentheses. 

Standard errors are clustered at ADM1 level. Air pollution is measured by NO2 from satellite data. Model 1 

uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, 

Model 3 includes quadratic term of running variable, Model 4 includes interactions of running variable (linear 

and quadratic terms) with treatment variable. All regressions include country dummies and week dummies. 

Control variables are daily temperature and rainfall. 

 

Panel B: Station-based air pollution 

Air quality: +/-15 weeks +/-10 weeks +/-5 weeks 

PM2.5 (1) (2) (3) (4) (5) (6) 

Model 1: Linear model 

Lockdown=1 -4.950*** -3.191*** -2.481** -0.756 -0.115 -1.099 

 (0.914) (0.941) (1.054) (0.989) (1.131) (1.144) 

Model 2: Linear interaction model 

Lockdown=1 -4.160*** -2.597*** -1.619 -0.203 0.732 -0.560 

 (0.902) (0.919) (1.044) (0.979) (1.100) (1.129) 

Model 3: Quadratic model 

Lockdown=1 -4.466*** -2.797*** -1.852* -0.358 0.595 -0.689 

 (0.905) (0.923) (1.046) (0.980) (1.098) (1.127) 

Model 4: Quadratic interaction model 

Lockdown=1 -4.173*** -2.505*** -1.461 -0.050 0.436 -0.660 

 (0.907) (0.930) (1.044) (0.978) (1.141) (1.167) 

Means before lockdown 63.477 63.477 65.666 65.666 66.682 66.682 

Controls No Yes No Yes No Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 107,611 95,855 73,452 61,863 38,031 28,633 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD. Robust standard errors in parentheses. 

Standard errors are clustered at city level. Air pollution is measured by PM2.5 from station-based data. Model 

1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment 

variable, Model 3 includes quadratic term of running variable, Model 4 includes interactions of running 

variable (linear and quadratic terms) with treatment variable. All regressions include country dummies and 

week dummies. Control variables are daily temperature and humidity. 
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Table A6: COVID-19 lockdown and air pollution – ‘Regular’ stringency index 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -2.013*** -0.880*** -0.433* -2.665*** -0.288 -0.669 

 (0.231) (0.207) (0.234) (0.912) (0.914) (1.047) 

Means before 

lockdown 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 329,735 221,174 110,864 82,193 52,502 24,910 

R-squared 0.335 0.341 0.366 0.525 0.562 0.603 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. All regressions include country 

dummies and week dummies. Control variables are daily temperature and rainfall (humidity 

for station-based data). 
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Table A7: Stringency index and air pollution – Principal Component Analysis 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Lockdown=1 -1.149*** -0.749*** 0.375* -1.758* 1.118 -2.563** 

 (0.209) (0.223) (0.227) (0.910) (1.040) (1.157) 

Means before 

lockdown 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 306,471 223,713 112,864 82,214 52,795 25,344 

R-squared 0.319 0.324 0.323 0.503 0.546 0.570 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions 

of running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. Stringency index is constructed 

using Principal Component Analysis. For all dimensions of stringency index, see Table A1 

(Appendix). All regressions include country dummies and week dummies. Control variables 

are daily temperature and rainfall (humidity for station-based data). 
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Table A8: Stringency index and air pollution – Alternative stringency indexes 

  Air pollution: NO2 

Bandwidth +/-90 days +/-60 days +/-30 days 

Panel A: Government response index 

Lockdown=1 -2.230*** -1.134*** -0.539** 

 (0.228) (0.200) (0.236) 

Observations 329,705 220,239 110,067 

R-squared 0.337 0.341 0.364 

Panel B: Containment and health index 

Lockdown=1 -2.234*** -1.147*** -0.539** 

 (0.228) (0.200) (0.235) 

Observations 329,586 220,250 110,064 

R-squared 0.337 0.341 0.364 

Panel C: Economic support index 

Lockdown=1 -0.356** 0.131 0.170 

 (0.181) (0.178) (0.226) 

Observations 272,178 204,216 104,539 

R-squared 0.339 0.342 0.361 

Means before 

lockdown 
22.914 23.316 22.719 

Controls Yes Yes Yes 

Country FE Yes Yes Yes 

Time FE Yes Yes Yes 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that 

include interactions of running variable (linear and quadratic) with 

treatment variable. Robust standard errors in parentheses. Standard 

errors are clustered at ADM1 level. All indexed are taken from “display” 

version of OxCGRT which will extrapolate to smooth over the last seven 

days of the index based on the most recent complete data. All regressions 

include country dummies and week dummies. Control variables are 

daily temperature and rainfall (humidity for station-based data). 
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Table A9: COVID-19 lockdown and air pollution – Country linear time trend   

 

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Model 1: Linear model 

Lockdown=1 -2.025*** -0.821*** -0.357 -2.979*** -0.347 -2.702** 

 (0.233) (0.210) (0.251) (0.923) (0.916) (1.099) 

Model 2: Linear interaction model 

Lockdown=1 -1.984*** -0.772*** -0.283 -2.484*** 0.104 -2.508** 

 (0.232) (0.209) (0.248) (0.909) (0.903) (1.089) 

Model 3: Linear interaction model 

Lockdown=1 -2.011*** -0.800*** -0.312 -2.575*** 0.043 -2.599** 

 (0.233) (0.210) (0.249) (0.910) (0.904) (1.092) 

Model 4: Quadratic interaction model 

Lockdown=1 -2.004*** -0.762*** -0.454* -2.460*** 0.067 -2.655** 

 (0.232) (0.208) (0.253) (0.910) (0.903) (1.122) 

Means before 

lockdown 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Country linear 

time trend Yes Yes Yes Yes Yes Yes 

Observations 329,735 221,174 110,864 82,193 52,502 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions of 

running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. All regressions include country 

dummies, week dummies, and interaction of country dummies with linear time trend. Control 

variables are daily temperature and rainfall (humidity for station-based data). 
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Table A10: COVID-19 lockdown and air pollution – Air pollution in log form   

  Air pollution: NO2 Air pollution: PM2.5 

Bandwidth +/-90 days +/-60 days +/-30 days +/-90 days +/-60 days +/-30 days 

Model 1: Linear model 

Lockdown=1 -0.069*** -0.032*** -0.001 -0.050*** -0.020 -0.013 

 (0.006) (0.006) (0.007) (0.014) (0.013) (0.017) 

Model 2: Linear interaction model 

Lockdown=1 -0.067*** -0.030*** 0.001 -0.045*** -0.015 -0.011 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Model 3: Linear interaction model 

Lockdown=1 -0.068*** -0.031*** -0.000 -0.046*** -0.017 -0.012 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Model 4: Quadratic interaction model 

Lockdown=1 -0.068*** -0.029*** -0.000 -0.045*** -0.016 -0.008 

 (0.006) (0.006) (0.007) (0.013) (0.013) (0.017) 

Means before 

lockdown 
22.914 23.316 22.719 64.599 66.015 67.544 

Controls Yes Yes Yes Yes Yes Yes 

Country FE Yes Yes Yes Yes Yes Yes 

Time FE Yes Yes Yes Yes Yes Yes 

Observations 326,647 218,821 109,580 82,193 52,502 24,910 

Notes: *** p<0.01, ** p<0.05, * p<0.1. Results of parametric RDD that include interactions of 

running variable (linear and quadratic) with treatment variable. Robust standard errors in 

parentheses. Standard errors are clustered at ADM1/city level. All regressions include country 

dummies and week dummies. Air pollutants are in log form. Control variables are daily 

temperature and rainfall (humidity for station-based data). 

 




