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ABSTRACT

IZA DP No. 13491 JULY 2020

Cognitive Performance in the Home 
Office - Evidence from Professional Chess

During the recent COVID-19 pandemic, traditional (offline) chess tournaments were 

prohibited and instead held online. We exploit this as a unique setting to assess the impact 

of moving offline tasks online on the cognitive performance of individuals. We use the 

Artificial Intelligence embodied in a powerful chess engine to assess the quality of chess 

moves and associated errors. Using within-player comparisons, we find a statistically and 

economically significant decrease in performance when competing online compared to 

competing offline. Our results suggest that teleworking might have adverse effects on 

workers performing cognitive tasks.
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1 Introduction

Teleworking (also known as telecommuting or working from home) has seen a steep increase

during the recent COVID-19 pandemic. In a recent survey, half of U.S. workers reported

working from home during the pandemic in April and May 2020 (Brynjolfsson et al., 2020).

While the jump has been driven both by voluntary and mandated social distancing, it is

arguably an acceleration of a broader trend towards more flexible work arrangements (Mas

and Pallais, Forthcoming) and more outsourcing enabled by digital technologies (Agrawal

et al., 2015) increasing the number of workers working from home. Dingel and Neiman

(2020) estimate that 37% of jobs in the U.S. could be done entirely from home.

An important question for firms and regulators is how this trend towards more telework-

ing affects workers’ productivity. Yet, despite the large societal relevance, the literature in

economics on the topic is sparse. A major hurdle for empirical work is to isolate changes

in the type of work and tasks that workers perform when working from home from changes

in individual productivity. We contribute towards filling this gap by analyzing the perfor-

mance of professional chess players who compete in chess tournaments that are organized

online and offline but that are otherwise conducted under comparable conditions.

The analysis is based on comparing the performance of elite professional chess players

competing in a recently organized online tournament to their performance during recent

offline tournaments. During the COVID-19 pandemic when physical contact among players

was prohibited, the current world champion Magnus Carlsen initiated an online event,

the Magnus Carlsen Invitational. We use this event to compare the performance of the

participating players to their performance in recent editions of the World Rapid Chess

Championship as organized by the World Chess Federation in a traditional offline setting.

Both tournaments are organized under comparable conditions, in particular giving players

the same amount of thinking time during a game, and offer comparable prize funds. Our
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benchmark of performance is based on evaluating the moves played by the participants

using a currently leading chess engine, which significantly outperforms the best human

players in terms of playing strength.

Comparing online with offline chess tournaments offers several advantages for assess-

ing the impact of moving tasks online on cognitive performance. First, playing chess is a

purely cognitive task, which requires complex strategic decision making under time con-

straints. Therefore, chess offers a unique setting for studying performance in a cognitive

task, which is important in many modern professional, managerial, technical, and creative

occupations (Autor and Price, 2013). Second, although until very recently high-stakes

chess tournaments were almost exclusively conducted with players competing face-to-face

in physical playing halls,1 most chess players are very familiar with unincentivized online

chess on various chess platforms. Due to the recent COVID-19 pandemic, several online

tournaments are being organized in which many of the world’s elite players are partici-

pating, usually playing from their homes. These tournaments offer significant amounts of

prize money to the players providing them with high incentives for performance. Third,

using the Artificial Intelligence embodied in modern chess engines makes it possible to con-

struct a benchmark of individual performance that is based on fine-grained move-by-move

data with a high degree of objectivity and accuracy. This benchmark makes it possible

to analyze both the probability and magnitude of making mistakes during a chess game.

Fourth, since all major global chess events were canceled during the pandemic, we are able

to observe a representative sample of elite players competing both online and offline, ruling

out selection-effects influencing our results.

Analyzing 27,267 individual moves played during 441 games in a regression model with

player fixed effects, we provide evidence for a statistically and economically significant

1The lack of official online tournaments with significant prize money is mainly due to the potential
for cheating by using a chess engine as even a chess engine running on a mobile device vastly surpasses
the human World Champion in terms of playing strength. Even in larger online tournaments with only a
couple of hundred dollars in prizes, there are frequent allegations of cheating, which is difficult to detect.
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decrease in performance when the same players compete online compared to competing

offline. While the probability of playing the best move as suggested by the chess engine is

not statistically different online and offline, we find that conditionally on making an error,

the magnitude of the error is 16.8% larger online for the sample player. This difference in

performance measured in terms of error size is statistically significant at the 1% level.

We contribute to the literature examining the impact of teleworking (also called telecom-

muting) and working from home on workers’ productivity. A large body of studies in psy-

chology uses mostly unincentivized survey data. In a meta-study, Gajendran and Harrison

(2007) find no effect on self-reported performance and a positive effect of teleworking on

supervisor-reported or archival records of performance. As a conclusion, they state that

“A common refrain in reviews of telecommuting research has been the inability, over 20

years of studies, to draw consistent conclusions about even its most basic consequences”

(p. 1538). A lack of clear evidence on the effect of telecommuting on productivity is also

reported in other literature surveys, e.g., Bailey and Kurland (2002) and Allen et al. (2015).

The seminal paper in the economics literature is Bloom et al. (2015), who examine

the productivity of call-center workers in a randomized controlled trial. They find positive

effects of working from home on productivity that are driven by higher effort (more minutes

per shift and fewer sick days) and effectiveness (more calls per minute due to a better work

environment). They also examine conversion rates and externally evaluated call quality,

and did not find statistically significant effects.

Our study complements the study of Bloom et al. (2015). In contrast to them, we

consider a highly specialized cognitively demanding task. In our setting, we can directly

measure performance using an Artificial Intelligence based measure instead of a proxy such

as effort or effectiveness. This allows us to estimate changes in individual productivity that

are due to working from home and are purely driven by task-level cognitive performance.

There are a few other related recent studies. Using public sector data, Linos (2016)
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finds in a within-subject design that teleworking patent officers have a lower productivity

per hour, but make up for it by spending a larger portion of their workday on their core

task and less time in meetings. Angelici and Profeta (2020) find increases in objective

worker productivity in a knowledge firm in which workers are randomized into a treatment

that allows for more flexible work arrangements in terms of hours worked and location. In

a lab experiment, Dutcher (2012) simulates a dull work task (typing numbers and letters

on a computer keyboard, mimicking data entry) and a creative task (playing tic-tac-toe

against a computer). He finds a positive impact on the creative task of conducting it online

and a negative impact for the dull task.

The literature discusses several potential reasons for productivity differences at home

compared to the office environment. Many employers fear shirking from home due to dis-

tractions while Beckmann (2016) (p.8) claims that for the call-center employees in the

Bloom et al. (2015) study, there is a “scope for productivity enhancements because em-

ployees working in large and noisy offices were easily distracted.” In our study, this channel

does not play a major role, as noise levels are low online and offline. In addition, players

were constantly monitored by webcams and highly incentivized to focus on their task.

A crucial difference to the offline setting is that the peer pressure to concentrate in a

playing hall is missing. For instance, Falk and Ichino (2006) find that students place letters

in envelopes at a higher speed when other students are faced with the same task sit in the

room. Finally, in general, players might have a dip in performance as either teleworking

or the pandemic could cause a reduction in the general mental well-being; e.g., Bloom et

al. (2015) report an increased feeling of loneliness among teleworkers.
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2 Data and Methods

We use chess as an empirical setting to study cognitive performance. Playing chess is a

complex, strategic, and cognitively demanding task that has been heavily used by cognitive

psychologists to investigate strategic and cognitive aspects of human thinking, such as per-

ception, memory, and problem-solving (e.g. de Groot, 1946; Chase and Simon, 1973; Simon

and Chase, 1973; Charness, 1992). Burgoyne et al. (2016) survey the empirical evidence

for the relationship between chess skill and general cognitive skills such as fluid reason-

ing, comprehension knowledge, short-term memory, and processing speed. In recent years,

economists have used chess to examine questions related to rationality (Palacios-Huerta

and Volij, 2009; Levitt et al., 2011; González-Dı́az and Palacios-Huerta, 2016; Zegners et

al., 2020), gender (Gerdes and Gränsmark, 2010; Backus et al., 2016), adverse effects of

pollution (Künn et al., 2019), and age (Bertoni et al., 2015; Strittmatter et al., 2020).

2.1 Data Collection

Our data consist of games from the World Rapid Chess Championships 2015 - 2019 played

offline in Berlin, Doha, Riyadh, Saint Petersburg and Moscow and the Magnus Carlsen

Invitational tournament played online from April 18, 2020 till May 3, 2020 on the Internet

chess platform chess24.com. The selected tournaments are identical with respect to the

time limit as players are given a time budget of 15 minutes to complete the game with

10 seconds added to a player’s time budget for each move played. In contrast to shorter

Blitz games (usually 3-5 minutes time limit per player), small differences in the time of

physically executing a move and pressing the clock as compared to entering the move to

a computer are unlikely to have a strong impact on the outcome in relatively longer rapid

games. Finally, the majority of players in the Magnus Carlsen Invitational also competed

in at least one edition of the World Rapid Chess Championships enabling us to make
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within-player comparisons of performance.

The World Rapid Chess Championships offered an overall prize pool of $200,000 in

2015 and 2016, $750,000 in 2017 and $350,000 in 2018 and 2019 to the participating

players. These included more than a hundred players among them many of the world’s

elite players. The tournament format was a 15 round Swiss tournament, i.e., players with

similar rankings in the tournament standing are paired against each other in each round,

but the same opponents can only play each other once. The winner was the player with

the highest score out of 15 games.2 To prevent cheating, there were certified walk-through

metal detectors at the entrance of the playing hall.

The Magnus Carlsen Invitational offered a prize pool of $250,000 to the participating

players. These included eight players who are among the world’s elite and are ranked be-

tween 1 and 21 in the official “FIDE World ranking” for classical chess. The tournament

differs from other online tournaments in terms of the strict anti-cheating measures that in-

cluded arbiters monitoring players at all times and standard automated cheating detection

systems in place.3 Moreover, several commentators agreed that given their high standing

in the world rankings, players would be very careful to avoid any suspicion of cheating as

this would greatly damage their reputation.4 The tournament was split into two phases,

first a league and then a knockout phase. In the league, each player played a mini-match

against each other participant. Each mini-match featured four games and the player who

scored more points obtained 3 points in the league, while the loser received 0 points.5 The

top four players then qualified for the semi-finals. The format of the semi-finals was similar

2In the case of a tie, playoff of “Blitz” games in which players have a substantially smaller time budget
took place to determine the World Rapid Chess Champion. We disregard such games from our analysis.

3These systems compare the moves played by a player to the optimal moves suggested by the leading
chess engines, flagging a player as suspect of cheating if there is a too large agreement to the engine or
thinking time patterns that are indicative of cheating.

4See for example https://en.chessbase.com/post/magnus-carlsen-invitational-2020-preview

(accessed on June 10, 2020)
5In the case of a tie, an “Armageddon Blitz” game with a substantially smaller time budget was played

to determine the winner of a match. We disregard these games from our analysis.

7

https://en.chessbase.com/post/magnus-carlsen-invitational-2020-preview


to a mini-match in the league, again with 4 games played with the same time budget for

each player.6 The winners of the semi-finals advanced to the finals, which were played

under the same format as the semi-finals.

We include in our analysis all games that were played in the online tournament and

all games from the offline tournaments in which one of the eight players from the online

tournament participated. We further remove the opening phase for each game, defined as

the first 15 moves for each player (as in Backus et al., 2016), because players usually play

moves that they memorize as part of their preparation and training. In total, we observe

8,260 (19,007) moves played in 123 (318) games from the online (offline) tournament.

2.2 Evaluation of Chess Moves

To estimate the effect of playing online on chess players’ performance, we evaluate each

move in each chess game in our sample using a chess engine. We use the chess engine

Stockfish 11 for this purpose, which during the last decade has been consistently ranked

first or near the top among chess engines. Modern chess engines such as Stockfish

11 considerably outperform every human player on off-the-shelve computer hardware in

terms of ELO rating, i.e., the method used by the World Chess Federation to measure the

strength of a player.7

We assess the performance of players based on the amount and size of errors they

make according to the evaluation of the chess engine. A chess game g consists of moves

mg ∈ {1, . . . ,Mg}, where a move consists of one individual move mig by each player i

6In the case of a tie, a playoff of games with a substantially smaller time budget was played to determine
the winner of a match. As before, we disregard these games from our analysis.

7As of May 2020, Stockfish 11 is rated with an estimated ELO rating of 3494 and hence, clearly
outperforms any human player. The ELO rating is a measure of relative chess strength introduced by
the Hungarian mathematician Arpad Elo (Elo, 1978). As a comparison, the best current human player is
Magnus Carlsen (also included in our sample) who has an ELO rating of 2863. The player with the lowest
rating in the online tournament in our sample has an ELO rating of 2728. See the unofficial rating list for
chess engines at http://www.computerchess.org.uk/ccrl and the official ELO rating list published by
the World Chess Federation at https://ratings.fide.com (both accessed on May 27, 2020).
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(the last move Mg might only feature one individual move by the player who has the

White pieces). For a given position of game g before individual move mig the chess engine

computes an evaluation of the position in terms of the pawn metric Pigm. As chess is

a zero-sum game, the advantage of one player is equal to the disadvantage of the other

player, where Pigm > 0 (Pigm < 0) indicates an advantage (disadvantage) for player i. The

numerical value of the pawn metric indicates the size of the advantage from the perspective

of player i, with one unit indicating an advantage that is comparable to being one pawn

up.8 The pawn metric is computed assuming that both players play optimal moves, i.e.,

the game proceeds along the optimal path computed by the chess engine.9 For each player

i in each game g at each move mig, we compute two pawn metrics: P igm denoting the

pawn metric before player i makes his move and P igm denoting the pawn metric of the

chess engine after player i makes his move. Using these two measures, we compute for each

move an error defined as

Errorigm = P igm − P igm, (1)

which reflects the change in the pawn metric after player i has made his move mig.

Intuitively, the Errorigm variable should be zero after an optimal move and positive

after a non-optimal move. Yet, there is a small amount of randomness in the evaluation

function, which we will account for with a random error term in our regression and in a

separate robustness analysis.10 We provide an example of the output of the chess engine

8Other characteristics of a chess position that are relevant for assessing a player’s winning chances such
as having a weak King’s position or a good pawn-structure are also factored-in into the pawn-metric. See
https://chess.fandom.com/wiki/Centipawn (accessed on June 16, 2020).

9The chess engine starts with the current position as the root of a game tree. It then builds the
game tree for a pre-specified number of moves in the tree ahead (the search depth) using an alpha-beta
pruning algorithm with iterative deepening (based on good play by both sides) and a transposition table.
It assigns positions at the terminal nodes of the tree a value using an evaluation function. For more details,
see http://rin.io/chess-engine/, last visited June 16, 2020). We restrict Stockfish 11 to a search
depth of 25 moves ahead to economize on computing costs.

10There are two sources of randomness: 1) As the engine is set to calculate the game tree arising from
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and the computation of the error metric in Figure A.1 in the appendix.

In addition to the evaluation of the position, the chess engine returns the number of

unique nodes of the game tree that it had to search to reach a pre-specified search depth.

We use this information as a measure of the complexity of the position, as it is directly

related to the branching factor of the game tree for a given chess position.

2.3 Estimation Strategy and Outcome Variables

To estimate the impact of playing online on a player’s performance, we estimate the fol-

lowing linear model:

Yigm = α + δOnlineg + βXigm + ηi + γm + Vigm, (2)

where Yigm is the outcome variable measured in game g played by player i at move m.

The term Onlineg denotes the treatment indicator taking the value one if game g was

played in the online tournament Magnus Carlsen Invitational and zero otherwise. Our

parameter of interest is denoted by δ, which measures the difference in outcome variables

between games conducted online and offline. We identify the parameter of interest by

observing the same individuals i playing moves in the online and the offline tournaments.11

Our regression model includes the following set of time-, game- and move-specific con-

trols that are included in vector Xigm: (i) A measure representing the complexity of the

position before the player makes his move, (ii) the current ELO rating of the player to

a position to a pre-specified search depth, it will calculate one move deeper in the position after a player
has made a move. 2) To save on computing time, a chess engine does not evaluate branches of the game
tree that it has found to be dominated by another branch. This creates an effect whereby the randomly
determined search-order of moves has a small impact on the final evaluation of a position. The impact of
these sources is empirically small in size, centered around zero, and unlikely to be correlated with other
characteristics of the position and variables included in the regression model. Therefore, in our view, they
will be sufficiently accounted for by the error term in our linear regression model.

11Our data also includes the moves of the opponents in the offline tournaments. Due to the individual
player fixed effects, however, these players do not contribute towards estimating the main effect of playing
online.
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move as well as the difference in the ELO rating to the opponent,12 (iii) the number of

games played before game g within the tournament as well as during a specific day, (iv)

the remaining time budget of a player before each move, and (v) the absolute value of the

current pawn metric of the position before the player makes his move P igm as well as its

squared term. ηi and γm are individual player and move fixed effects, respectively. Finally,

the error term Vigm is clustered at the game level to allow for arbitrary correlation within

each game.

Although we cannot make final statements concerning causality because of the absence

of an experimental setting, the rich specification makes us very confident that δ is likely

to represent the causal parameter of playing online (vs. offline) on outcome variables.

We use the following outcome variables that are constructed based on the raw error

measure in Eq. (1). The first is a binary transformation such that

MakeErrorigm =

 1 if Errorigm > 0

0 if Errorigm ≤ 0,
(3)

which indicates whether the move played decreases the pawn metric and thus is an error.

The second transformation uses the logarithm of the error of the form

LnErrorigm =

 ln(Errorigm) if MakeErrorigm = 1

0 otherwise,
(4)

which measures the magnitude of errors conditional on an error being conducted.

12We use the official ELO rankings by the World Chess Federation for rapid chess, see https://ratings.
fide.com/top_lists.phtml.
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3 Results

Table 1 contains our main estimation results and shows the estimated coefficient δ̂ based

on equation 2. Each row presents the results of a separate regression using the different

outcome variables as explained in Section 2.3.

Table 1 Main results: Offline vs. online tournament setting on perfor-
mance of chess players

Outcome Variable Number (1) (2) (3)
ind. moves

Make Error 27,267 0.010 -0.014 0.021
(0.396) (0.409) (0.138)

Ln Error if Make Error = 1 15,173 0.136*** -0.001 0.168***
(0.009) (0.989) (0.002)

Controls YES NO YES
Player FE NO YES YES
Move FE NO YES YES

Note: The table shows the estimated coefficient δ̂ based on equation 2. Each row presents
the results of a separate regression using different outcome variables. Standard errors are
clustered at the game level and p-values are reported in parenthesis. Section 2.3 describes the
construction of the outcome variables. The set of control variables includes: (i) a measure
representing the complexity of the position in which the move was made, (ii) the current
ELO rating of the player as well as the difference in the ELO rating to the opponent, (iii)
the number of games played before game g within the tournament as well as during a specific
day, (iv) the remaining time before each move, and (v) the absolute value of the current pawn
metric of the position before the player makes his move P igm as well as its squared term.
The opening phase of each game is excluded for each player (m ≤ 15). Descriptive statistics
of the included variables as well as full estimation results for the final specification (column 3)
are shown in Table A.1 and Table A.2 in the appendix, respectively. ∗: p < 0.1, ∗∗: p < 0.05,
∗∗∗: p < 0.01

In the following, we discuss our preferred model using the full specification including all

control variables and the full set of fixed effects as shown in column (3) in Table 1. Using

making an error as an outcome variable, we find a positive coefficient on the treatment

indicator (playing online) that is, however, not statistically significant at conventional levels

(p-value=0.138). Conditional on making an error, we find that players make on average

16.8% larger errors when playing online. This effect is statistically significant at the 1%-
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level indicating that the online setting induces a reduction in the performance of chess

players that is driven by an increase in the magnitude of errors.

To better assess the size of the effect, we provide a back-of-the-envelope calculation

for the change in playing strength when playing online as expressed in terms of the ELO

rating. In our sample, the coefficient on the ELO rating of the player (-0.0007672, rounded

to -0.001 in table A.2 in the appendix) indicates that if a player’s ELO rating increases

by one unit, the magnitude of the error is reduced by 0.077% on average. Playing online

increases the error size by 16.8% which corresponds to a loss of 219 points of ELO rating.

The factual drop in playing strength on a game level is likely to be lower. First, our analysis

excludes the opening stage which is prepared and memorized by the players prior to the

games. The quality of play in this part differs across players, but likely does not differ

online and offline. Second, we use a linear regression for our calculation for the translation

of error size to ELO. Yet, as error margins are smaller at the top, a further drop in error

by the same percentage likely results in a higher gain in terms of ELO rating at the top.

We test the sensitivity of our results with respect to (i) alternating the definition of the

opening phase, (ii) excluding moves in positions that are evaluated as |P igm| > 2 indicat-

ing that one player already faces a significant (dis)advantage potentially altering players’

behavior, and (iii) applying a more restrictive definition of errors, i.e., only considering

moves as errors with a change in the pawn metric larger than 0.1 and not being annotated

by the chess engine as the best possible move. The latter should test whether our results

are possibly driven by marginal or mechanical errors created by the randomness in the

evaluation of the chess engine. Table 2 summarizes the results of the sensitivity analysis.

First, when implementing a more restrictive definition of the opening phase (column 3) or

applying a more restrictive definition of errors (column 5), the effect on the probability

of making an error slightly increases in size compared to the main result (column 1) and

becomes statistically significant at conventional levels. However, when excluding moves
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in positions that are evaluated as |P igm| > 2 (column 4), the effect on the probability

to make an error disappears completely. This suggests that the effect on the probability

of making an error seems to be driven by errors in positions that are already relatively

(dis)advantageous for a player. In contrast, the effect on the size of the error is very robust

with respect to all sensitivity checks.

Table 2 Sensitivity analysis

Main results Excluding opening phasea) Excluding moves Restrictive def.
(see Table 1) m ≤ 10 m ≤ 20 with |P igm| > 2b) of errorsc)

(1) (2) (3) (4) (5)

Make Error 0.021 0.020 0.026* 0.000 0.025**
(0.138) (0.117) (0.092) (0.983) (0.034)
[27,267] [31,709] [22,922] [20,501] [27,267]

Ln Error if Make Error = 1 0.168*** 0.139*** 0.188*** 0.121** 0.145***
(0.002) (0.004) (0.002) (0.034) (0.008)
[15,173] [18,092] [12,308] [11,028] [7,805]

Controls YES YES YES YES YES
Player FE YES YES YES YES YES
Move FE YES YES YES YES YES

Note: The table shows the estimated coefficient δ̂ based on equation 2. Each row presents the results of a separate regression using
different outcome variables. Standard errors are clustered at the game level and p-values are reported in parenthesis. Number of individual
moves are in brackets. Section 2.2 describes the construction of the outcome variables. The set of control variables includes: (i) a measure
representing the complexity of the actual move, (ii) the current ELO rating score of the player as well as the difference in the ELO score
to the opponent, (iii) the number of games played before game g within the tournament as well as during a specific day, (iv) the remaining
time before each move, and (v) the absolute value of the current pawn metric of the position before the player makes his move P igm as
well as its squared term.
a) The estimation of the main results is based on a sample excluding the opening phase which is defined by the first 15 moves. Here, we

show the sensitivity of the results by further restricting (m ≤ 10) and extending (m ≤ 20) this condition.
b) Excluding moves in positions with a pawn metric |P igm| > 2.
c) Regarding the error variable, we exclude erroneous moves with marginal errors between zero and 0.1, or moves being the best possible

as indicated by the chess engine. ∗: p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01

Finally, we investigate potential effect heterogeneity with respect to (i) the strength

of the players, (ii) the duration of the games, and (iii) the progress in the tournaments.

By this, we test whether stronger players are more capable of playing online, and whether

the negative effect is transitory and maybe mitigates over the duration of the game or the

tournament. We include an interaction term between the online dummy and the variable
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of interest (ELO rating of the player, move number or the number of games played before

game g within the tournament) in our main regression model as shown in Equation 2. We

find no significant coefficients on the interaction terms indicating no effect heterogeneity

within our estimation sample.13

4 Conclusion

In this paper, we have compared the performance of professional chess players when playing

in traditional (offline) tournaments with their performance during a recent online tourna-

ment. The online tournament was organized during the COVID-19 pandemic when any

physical contact between players was prohibited. This provides a unique setting to assess

the potential impact of moving offline tasks online on the cognitive performance of indi-

viduals. Observing chess players has a number of advantageous features that allow us to

identify the effect. First, players were executing the same (purely) cognitive task repeat-

edly under identical tournament rules. Second, we have an objective measure of individual

performance by evaluating each move in our sample of games using a chess engine. Fi-

nally, all players in our sample faced strong incentives to exert high effort because of high

monetary prices.

Applying a fixed effect strategy, we identify the effect of playing online on players’

performance by comparing the quality of moves played during online and offline tourna-

ments by the same player. Our results indicate a significant decrease in performance when

playing online. In particular, while we do not find a statistically significant increase in

the probability of making an error, the size of an error when playing online increases by

16.8%. Thus, the cognitive performance of chess players is impaired when playing online.

This effect might be explained by missing peer pressure as well as the intense atmosphere

13Results are available upon request.
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during offline chess tournaments. Unfortunately, we are not able to provide an in-depth

consideration of underlying mechanisms due to the restricted dataset. Moreover, compar-

ing online games played during the COVID-19 pandemic with offline games played before

the pandemic, a possible concern is that the decrease in cognitive performance does not

just capture the effect of teleworking but also other confounding factors related to the

COVID-19 pandemic, such as uncertainty, anxiety, income loss etc. (Brodeur et al., 2020).

While we cannot completely rule out this possibility, we believe that such factors play a

negligible role in our setting given our focus on wealthy, highly trained, world-elite chess

players. It is unlikely that these confounding factors affect the players’ well-being and per-

formance on the chessboard (see e.g. Papageorge et al., 2020, documenting a larger burden

for individuals with lower incomes). Additionally, our sample includes players from a di-

verse set of countries, some of which experienced only mild outbreaks of the virus (e.g.

Norway) or that had already successfully contained the outbreak (e.g. China).

During the recent COVID-19 lockdown, millions of workers had to adjust to a home

office environment overnight, basically moving workers’ tasks and communication com-

pletely online. Our results suggest that such an adjustment might have adverse effects on

workers’ performance on cognitive tasks. It remains to investigate whether this adverse

effect on cognitive performance is rather transitory or permanent. People might adapt to

online tasks in the long-run. We could not find evidence supporting the adaption hypoth-

esis within the observed tournament which might be just because it captures a too short

period (123 games played over a period of two weeks).
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González-Dı́az, Julio and Ignacio Palacios-Huerta, “Cognitive performance in com-

petitive environments: Evidence from a natural experiment,” Journal of Public Eco-

nomics, 2016, 139, 40–52.
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A Appendix

Table A.1 Descriptive statistics

Number Mean s.d. Min Max
ind. moves

Outcome variables
Make Error 27,267 0.556 0.497 0 1

Error if Make error = 1 15,173 1.980 18.634 0.010 326.960

Control variables
Complexity nodes 27,267 5,517,568 7,040,391 56 4.62× 108

Elo score player 27,267 2,741.436 126.736 2,003 2,908
Difference in Elo score to opponent 27,267 2.400 176.278 -622 870
Number of games played before game g

within the tournament 27,267 9.282 7.366 0 35
during a specific day 27,267 1.809 1.312 0 4

Remaining time before move (in min) 27,267 6.424 4.635 0.117 19.233

Note: The table shows the descriptive statistics based on the main estimation sample, i.e., excluding the first 15 moves
of each game.
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(a) Engine evaluation before move

(b) Engine evaluation after move

Figure A.1 Computation of error variable: An example

Note: The two consecutive positions above are taken from a game in our dataset. Before the black player
made his move on move 24 of the game (upper panel), the chess engine evaluates the position with a pawn
metric of +0.13 in whites favor, which corresponds to a disadvantage of -0.13 pawn units for the black
player. The optimal move for the black player according to the chess engine is bishop to c4. However,
the black player chose to play pawn takes e4 (lower panel). After this move, the pawn metric increases to
+1.09 in whites favor, or -1.09 pawn units from the perspective of black. The error of black is computed
as -0.13 - (-1.09) = 0.96. To compute the best move with a search depth of 25, the chess engine calculated
5,141,000 nodes (or 5,141 kilonodes) of the game tree in the position before the move, which corresponds
to our measure of complexity.
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Table A.2 Full estimation results

Make Error Ln Error
if Make

Error = 1

Online 0.021 0.168***
(0.138) (0.002)

ln(ComplexityNodes) 0.120*** 0.370***
(0.000) (0.000)

ELO score player 0.000 -0.001**
(0.836) (0.019)

Difference in ELO score to the opponent -0.000 -0.000
(0.269) (0.869)

Number of games played before game g
within the tournament -0.000 -0.004

(0.871) (0.219)
during a specific day 0.004 0.020

(0.342) (0.160)
ln(Remaining time before move in min) -0.021*** -0.132***

(0.001) (0.000)
|Pawn metric of the position before the move| 0.002*** 0.079***

(0.000) (0.000)
|Pawn metric of the position before the move| (squared) -0.000*** -0.000***

(0.002) (0.000)
Constant -1.254*** -4.921***

(0.000) (0.000)

Number ind. moves 27,267 15,173
R2 0.178 0.191
Controls YES YES
Player FE YES YES
Move FE YES YES

Note: The table shows the full estimation results based on equation 2. Standard errors are clustered
at the game level and p-values are reported in parenthesis. Section 2.2 describes the construction of
the outcome variables. The opening phase of each game is excluded for each player (m ≤ 15). ∗:
p < 0.1, ∗∗: p < 0.05, ∗∗∗: p < 0.01

23


	Introduction
	Data and Methods
	Data Collection 
	Evaluation of Chess Moves
	Estimation Strategy and Outcome Variables

	Results
	Conclusion
	Appendix



