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dynamics. Using a vector autoregression approach, we show that uncertainty shocks 

measured by stock market volatility have a significant impact on the U.S. unemployment 

rate. We then develop a quantitative version of the Diamond-Mortensen-Pissarides (DMP) 

model, in which uncertainty shocks hit the economy. Given the significant nonlinearities of 

the DMP model, we show that the introduction of uncertainty shocks not only allows this 
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1 Introduction

After the last recession, many economists emphasized the importance of understanding the role of
uncertainty in shaping labor market outcomes, as it affects core expectations of future economic
activity, which is important for investment and employment decisions. Large increases in uncertainty
occur in periods of big changes. Economic uncertainty increased significantly during the 2008
financial crisis. The Brexit announcement is another important source of uncertainty for businesses
in the UK (see Bloom et al. (2018)). Finally, the current coronavirus crisis also seems to suggest
that significant uncertainty may lead to a deep recession. In sum, macro uncertainty seems to
be countercyclical: episodes of high uncertainty are times of low economic activity. These rises in
uncertainty can have persistent effects, by affecting expectations that drive long-term commitments,
such as hiring decisions, and thus, unemployment dynamics.

We focus on the impact of uncertainty shocks on the aggregate unemployment rate. We show
that lower vacancies and employment are characteristics of the economy in case of high variance
of marginal returns, that is, when uncertainty increases. To understand this phenomenon, we use
the Diamond (1982)-Mortensen (1982)-Pissarides (1985) matching model (DMP model). Although
this model has become the dominant framework for analyzing labor market fluctuations, extensive
analysis of its non-linearity—by Petrosky-Nadeau and Zhang (2017), Petrosky-Nadeau et al. (2018),
Ferraro (2018), Ferraro (2020) and Adjemian et al. (2019)—is relatively recent. Moreover, these
developments do not take into account that uncertainty can change over the business cycle.1 This
study bridges this gap.2 More precisely, we show that a negative transitory shock has a larger effect
when the variance is high. Therefore, time-varying uncertainty can magnify the impact of recessions;
fixed costs lead decision makers to delay hiring decisions until they have clearer information about
the future state of the economy. Moreover, in periods of large uncertainty, the optimal number of
vacancies in recessions can be zero. This induces deep recessions, which are persistent because the
matching model is nonlinear and asymmetrical. Indeed, if the small pool of vacancies for many
unemployed workers gives firms incentives to post new vacancies just after the trough of a recession,
the recovery implies that additional vacancies will not only cause a dribble in the probability of
filling a vacancy (congestion effect) but also raise the marginal cost of hiring. This will slow down
job creation and make recovery more gradual.3

Before presenting the model’s implications, we first identify some stylized facts about the re-
lationship between unemployment and uncertainty. There is no objective measure of uncertainty.
However, a large body of literature presents proxies of it, and on the relationship between recession
and uncertainty. In fact, recession and uncertainty mutually affect each other. First, in recession,

1Sims and Zha (2006) show that a VAR with a time-varying matrix of variance-covariances of shocks has a higher
likelihood than a VAR with time-varying autoregressive coefficients. Therefore, the more parsimonious approach is
to assume a time-varying volatility for shocks that drive economic fluctuations. We follow this method.

2Fernandez-Villaverde and Guerron-Quintana (2020) present a survey of the literature that discusses the impact
of uncertainty shocks modeled as a time-varying variance of exogenous processes in macroeconomic models. The
dynamics of unemployment are absent from this literature review.

3Unlike Sterk (2016) for example, we do not need to use a model with multiple equilibria to account for the
persistent impact of the crisis on the dynamics of U.S. unemployment.
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activity slows down, and firms no longer trade actively, which reduces the flow of information and
ultimately raises uncertainty.4 Second, when business conditions are unfamiliar, as they are in
recessions, forecasting becomes very difficult.5 As stated in Baker et al. (2016), even policy un-
certainty increases during recessions, as politicians use new tools that are beyond their comfort
zones. Therefore, we need proxy measures of these changes in uncertainty. They can be based on
mentions of uncertainty in newspaper articles or in the Federal Reserve’s Beige Book.6 They can
also be based on the volatility of the stock market; this proxy is one of the most used, as it simply
embodies the idea that when a data series becomes more volatile, it is more difficult to forecast,
and hence, uncertainty increases. In this study, using a VAR approach based on U.S. monthly stock
market volatility (S&P500 and VXO)7 and unemployment rate from 1962 until 2017, we show that
an innovation on the uncertainty shocks, proxied by the volatility of the S&P500, leads to decreases
in vacancies, and increases the U.S. unemployment rate.8

These first empirical results encourage us to go further in our analysis via a more structured
approach. We then propose a quantitative version of the DMP model, which considers uncertainty
shocks. Following Petrosky-Nadeau and Zhang (2017), we solve the model using a global algorithm
that allows for non-linearities and considers that vacancies can hit the zero bound. Following
Bloom (2009), the changes in uncertainty are modeled by assuming that the volatility of the firm’s
productivity follows a two-state Markov process. To the best of our knowledge, no previous study
has presented such a perspective. Our structural model allows us to estimate that uncertainty
shocks account for 25% of unemployment variance and 20% of the job find rate. We also show that
uncertainty per se influences agents’ decisions, and consequently, magnifies productivity shocks.
Finally, we show that the model’s impulse response function to an uncertainty shock is very close
to the one based on the VAR estimation. These findings underline that the DMP model seems
to be a promising framework to account for the U.S. labor market fluctuations, if it takes into
account uncertainty shocks. Given this empirical success, we use the model to predict the impact

4Micro-uncertainty such as dispersion of productivity, profits, and returns shocks to firms may increase during
recession. Kehrig (2011) found that the dispersion of plant-level shocks to total factor productivity is higher in a
recession than in an upturn. However, dispersion can change without any modifications in uncertainty if there is
heterogeneity in loading on aggregate risk factors (see Jurado et al. (2010)).

5When professional forecasters do not agree on their different predictions, this reflects high uncertainty. In fact,
Bloom et al. (2014) have shown that between 1968 and 2012, the standard deviation across 50 different forecasts of
US industrial production growth was 64 percent higher during recession. Hence, those disagreements are more likely
to happen in downturns. However, the disagreements on the forecasts more likely reflect differences in opinion than
uncertainty (see Diether et al. (2002)).

6Baker et al. (2016) used this proxy to measure the economic policy of uncertainty. This measure is based on
counting the frequency of articles incorporating the words “economy,” “economics,” “uncertain” and “uncertainty” in
ten leading US newspapers or counting the word “uncertain” in the Federal Reserve’s Beige Book. The results showed
that this proxy is also highly countercyclical.

7Compared to Bloom (2009)’s data, our data present more information about how and when the stock market
volatility decreases after the 2008 credit crunch. It also includes two important economic crises that influence monthly
stock market volatility: the Euro-zone Crisis in September 2011 and the Chinese stock market crash in 2015.

8This empirical part of our work complements Bloom (2009) who estimates a range of VARs on monthly U.S. data
from June 1962 to June 2008 to produce the impulse responses of uncertainty shocks, defined as the high volatility
spikes of the S&P500, on some macroeconomic aggregates, and shows that uncertainty shocks produce a rapid drop
and rebound in aggregate output and employment.
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of rare events such as economic crisis on the labor market. We show that a combination of shocks
on firms’ marginal returns and on uncertainty allows the model to reproduce the unemployment
dynamics after the 2008 crisis. Therefore, we propose a scenario that forecasts the impact of the
2020 coronavirus crisis on U.S. unemployment.

The remainder of this paper is as follow: Section 2 presents an empirical study that measures the
effect of uncertainty on the U.S. vacancies and unemployment rate using a VAR approach. Section
3 presents the model, and Section 4 presents its results. We also conduct a sensitivity analysis
to check the robustness of the model in section 5. Section 6 studies the capacity of our model to
account for the impact of an economic crisis on U.S. labor market dynamics. Finally, Section 7
concludes this paper.

2 Stylized fact: impact of uncertainty shocks on the labor market

We now present a VAR estimation of the impact of uncertainty shocks on the U.S. labor market,
which identifies uncertainty shocks using a volatility index of the U.S. stock market, as in Bloom
(2009).

Uncertainty shocks. For U.S. monthly stock market volatility, we use the VXO index of percentage-
implied volatility. However, pre-1986, the VXO index data is nonexistent; hence, the actual monthly
returns volatilities are given by the monthly standard deviation of the daily S&P500 index normal-
ized to the same mean and variance as the VXO index when they overlap from 1986 onward (see
Bloom (2009)). The timing is from 1962 until 2017. Therefore, the data used is S&P500 and VXO,
both found on the CBOE website.9

To ensure that identification comes from large and exogenous volatility shocks rather than from
the smaller ongoing fluctuations, we use an indicator function.10 It is constructed as follows: the
events chosen as stock-market volatility jumps are those with a stock-market volatility bigger than
1.65 standard deviation above the mean value of the de-trended stock market volatility series.11.
Figure 1 shows that all the volatility peaks are related to some bad event; in 1987, Black Monday
was an economic crunch event. The 9/11 terrorist attack in September 2001 was a terror event or
the Gulf War I in October 1990, which was a war event. None of these events could have been
predicted, and therefore, they induce uncertainty in the stock market (see Appendix A for more
details).

Var estimation on the impact of stock market volatility shocks. As stated, to study
the effect of uncertainty shocks on some real economic outcomes, we follow Bloom (2009)closely.
However, we estimate a more concise Vector Auto-Regression (VAR) model using extended data

9See http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/
vix-historical-data

10For more details, see Bloom (2009).
11The series are de-trended using the Hoddrick-Prescott (HP) with a smoothing parameter λ = 250, 000
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Figure 1: Monthly U.S. stock market volatility. Notes: For scaling purposes, the monthly VXO was
capped at 50. The uncapped values for the Black Monday peak are 58.2 and 64.4 for the credit
crunch. The peaks present the 19 events stated in the following table.

from June 1962 through December 2016. In addition to the stock market volatility time-series, we
introduce uncertainty through a stock-market volatility indicator; we allocate each uncertainty event
to the month with the largest volatility spike (highest volatility). The main measure of the stock-
market volatility is an indicator that takes a value of 1 for each of the events and 0 otherwise. The
set of VAR variables in the estimations is log(S&P500 level), the stock-market volatility indicator
(i.e. uncertainty shocks), log(unemployment) and log(vacancies).12′13 This ordering is based on the
assumptions that shocks instantaneously influence the stock market (levels and volatility), followed
by unemployment and vacancies. When we introduce the stock-market levels as the first variable
in the VAR, we identify uncertainty shocks as the innovations of this time series.

The impulse response function of unemployment shows that uncertainty shocks generate a rapid
spike, undershoot, and finally a rebound. In fact, Figure 2 displays an increase of around 2.8%

within 5 months followed by a recovery and rebound starting from six months after the shock. The
one standard-error bands highlight that the result is statistically significant at the 5% level. The
increase in unemployment is due to the real option value of inaction. Panel (b) of Figure 2 shows
that vacancies decrease by 4.8% when uncertainty hits the economy, as decision makers choose to
postpone their employment decisions rather than incur some non-refundable fixed cost. Employing
is a form of labor-investment and firms pay hiring costs when employing. However, as it is difficult
to forecast the future state of the economic activity because of uncertainty, firms choose to neither
employ nor fire workers, and by not opening vacancies, hold their investment. However, exogenous
labor attrition increases unemployment, leading to a recession in the labor market.

12See, the Appendix B for more details on the VAR estimation.
13The data for unemployment rate are described in Section 3.5.2, whereas the data used as proxy for vacancies are

the Help-wanted index build by Barnichon (2010) over the period 1951m01 to 2016m12 (see https://sites.google.
com/site/regisbarnichon/data). To obtain stationary data, we use the cyclical component of the HP filter.
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(a) Unemployment (b) Vacancies

Figure 2: The impact of uncertainty shock. Dashed lines are 95% confidence bands of the
response to a volatility shock

3 Model

The environment includes workers and a representative firm whose only productive input is labor.
Workers can be either employed or unemployed. The total mass of individuals is a unit mass.
Workers are risk neutral with a time discount factor β.

3.1 Matching

The representative firm opens new vacancies Vt to hire new workers Ut. They are filled with constant
returns to scale matching function:

G(Ut, Vt) =
UtVt

(U τt + V τ
t )1/τ

(1)

with τ being a constant and positive parameter. The matching probabilities lie between 0 and 1.
Using Equation (1), the probability for an unemployed worker to find a job per unit of time is

f(θt) =
G(Ut, Vt)

Ut
= (1 + θ−τt )−1/τ

and the vacancy filling rate is defined as follows:

q(θt) =
G(Ut, Vt)

Vt
= (1 + θτt )−1/τ

Hence, f(θt) = θtq(θt) with θt = Vt
Ut

the labor market tightness. When the market is tight, unem-
ployed workers are able to find jobs easily. However, employers take more time to fill vacancies.
This could also be explained by the average duration of a vacancy (1/q(θt)). In fact, given that
q′(θt) < 0, the average duration of a vacancy is such that it becomes harder to fill a vacancy when
the number of vacancies increases more than the number of unemployed workers. The law of motion
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of employment is
Nt+1 = (1− s)Nt + q(θt)Vt (2)

where, 0 < s < 1 is the exogenous probability of job destruction. Finally, as stated, there is a unit
mass of agent, we have Ut +Nt = 1.

3.2 Firms

Firms produce Yt using constant returns to scale production technology as follows:

Yt = AtNt (3)

The firm’s productivity is defined by an AR(1) process:

at = ρat−1 + σtεt (4)

where, at ≡ log(At) and εt is an i.i.d normal shock drawn independently across firms, 0 < ρ < 1 and
σt > 0 are the auto-correlation and conditional volatility of the production process, respectively. We
assume that the firm’s stochastic volatility follows a two-state Markovian process with σt ∈ {σL, σH}
and Pr(σt+1 = σj |σt = σk) = πj,k, where σL and σH are the low and high volatility, respectively.
Hence, we can have two different regimes in the economy: one with a normal volatility and the other
with a higher volatility. We expect the more volatile regime to react differently, as it represents
higher uncertainty. However, at each period, the probability is πj,k to move from a state k to another
state j.

The representative firm has to pay a unit cost per vacancy, given by

κt = κ0 + κ1q(θt)

where κ0 is the constant part of the proportional costs (the constant part of the marginal costs)
and κ1 is the variable part of these proportional costs because q(θt) is given at the level of the firm
(variable component of the marginal costs).

Hence, the dividend of the firm’s shareholders are Dt = Yt −WtNt − κtVt. Taking the wage
Wt and q(θt) as given and using Equation (3), the firm posts the optimal number of vacancies to
maximize the market value of equity St:

St = max
Vt+τ ,Nt+τ+1

Et

[ ∞∑
τ=0

βτ (At+τNt+τ −Wt+τNt+τ − κt+τVt+τ )

]
(5)

s.t

{
Nt+1 = (1− s)Nt + q(θt)Vt

Vt ≥ 0

The first-order conditions of the firm’s program lead to the following inter-temporal job creation
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condition:
κt
q(θt)

− λt = βEt
[
At+1 −Wt+1 + (1− s)

(
κt

q(θt+1)
− λt+1

)]
(6)

The inter-temporal job creation condition is equalizing the marginal costs of hiring at time t to the
marginal value of hiring to the firm, which is represented by its marginal benefits of hiring at time
t+ 1 discounted to t with the stochastic discount factor β. Intuitively, this marginal cost should be
higher in the economy with higher variance as the marginal benefits include the marginal product
of labor net of wages. The Kuhn-Tucker conditions are given by

q(θt)Vt ≥ 0, λt ≥ 0, and λtq(θt)Vt = 0 (7)

When λt = 0, the equilibrium paths are the same as in the DMP model. When λt > 0, we have
Vt = 0 and the solution is constrained with θt = 0 and Nt+1 = (1− s)Nt until Nt > 0.

3.3 Wage Bargaining

To find the equilibrium wage endogenously, we use a simple sharing rule of a generalized Nash
bargaining process between the worker and the firm, which is given by

Wt = η(At + κtθt) + (1− η)b (8)

where η ∈ (0, 1) is the workers’ relative bargaining weight, b is the workers’ flow value of unem-
ployment activities. For a given bargaining weight, the higher the costs of filling a vacancy and the
more productive the worker, the higher the wages earned.

3.4 Equilibrium

We assume that all labor incomes are consumed as follows: Ct = WtNt + b(1−Nt), ∀t, where the
wage is given by Equation (8) and unemployment benefits b(1 − Nt) are financed by a lump-sum
tax paid by all workers (employed and unemployed). The competitive equilibrium is defined by i)
the hiring decisions given by Equations (6) and (7), and ii) the employment dynamics (Equation
2). Using Equation (3), the goods market clears and implies Ct + κtVt = AtNt, ∀t.

3.5 Solving Method and Calibration

3.5.1 Projection Algorithm

We discretize the states in the economy. The productivity process (Equation (4)) is approximated
with the discrete space method of Rouwenhorst (1995): At can take a finite number of values
Ax ∈ {An}nxx=1 with nx the number of grid points.14 The grid is even-spaced. The distance between
any two adjacent grid points is dx = 2σi√

(1−ρ2)(nx−1)
, where 0 < ρ < 1 is the persistence, σi, for

i = L,H, is the conditional volatility of At. For the numerical implementation, we choose nx = 17.
14This method presents high accuracy when approximating a persistent first-order auto-regressive process
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The competitive equilibrium is solved using a projection algorithm that accounts for transitions
between the two regimes of the economy, as well as for fluctuations within each regime. On the
state space Ax ∈ {An}nxx=1, we find the optimal values for vacancy V (An) and the multiplier λ(An)

using Equations (6) and (7). To do so, the first step is to estimate the right hand side of the
inter-temporal job creation condition as follows:

E(At,σk) = β

 ∑
j=H,L

πjkEt,σj
[
At+1 −Wt+1 + (1− s)

(
κt

q(θt+1)
− λ(At+1

)] for k ∈ {H,L}

where Et,σj denotes the conditional expectations when σt = σj . We compute E(At,σj ), for j = H,L

using a collocation approach with Chebyshev polynomials of order three. With one state variables
(At), we identify the policy rule by setting the Euler equation residuals equal to zero on a grid with
seventeen nodes, and we approximate the expectations using the Gauss-Hermite quadrature.
In the second step, under the restriction that the lowest value for A ensures that E(A1) > 0,15 we
use these conditional expectation functions E(At,σj ), for j = H,L, to compute Vt,σj and λt,σj as
well as q̃j(θt) = κt

E(At,σj )
for j = H,L. If q̃j(θt,σj ) < 1. Then, the Vtσj ≥ 0 constraint is not binding.

Therefore, we set λt,σj = 0 and q(θt,σj ) = q̃j(θt,σj ). Hence, we can solve θt,σj = q−1(q̃j(θt,σj )) and
Vt,σj = θt,σj (1−Nt). However, if q̃j(θt,σj ) ≥ 1, then the Vt,σj ≥ 0 constraint is binding; we can set
Vt,σj = 0, θt,σj = 0, q(θt,σj ) = 1 and λt,σj = κt−E(At,σj ). Once solving optimal vacancy, multiplier,
and market tightness given each state An, we deduce the employment dynamics using equation (2).

3.5.2 Calibration

We aim to test the ability of our augmented DMP model to reproduce the usual moments of the
U.S. labor market. We first set a subset of parameters using external information. Second, we find
the reminder parameters by minimizing the distance between model’s implications and observed
data.

Parameters coming from external information The subset of parameter restricted to be
equal to those found in the literature is

χ = {β, ρ, s, πHH , πLH}

where the time discount factor β is equal to 0.9954 to match the mean discount rate in international
data 5.73% per annum. The persistence of the aggregate productivity ρ is set to 0.951/3 following
Petrosky-Nadeau et al. (2018). The exogenous separation rate is 0.025, which is the mean value of
the US job separation rate data constructed by Adjemian et al. (2019). The probability matrix of
transition is set following Bloom (2009): πL,H = 1

36 as the uncertainty shock is to be expected every
three years and πH,H = 0.71, which represent the average two-month half-life of an uncertainty

15With our calibration, this constraint is binding for 17.5% of the grid points.
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shock. The data also provides information about the relative standard deviation; we set σH = 2×L
as in Bloom (2009).

Parameters chosen to match selected moments The vector of structural parameters chosen
to minimize the distance between the model’s implications and observed data is

Θ = {η, b, τ, κ0, κ1, σL}

which are the worker’s bargaining power η and their flow value of unemployment benefits b, elasticity
of labor matching function τ , proportional costs of opening a vacancy κ0, and the fixed costs κ1.
The solution for Θ is chosen as follows:

Θ = arg min [m(Θ, χ)−mUS,T ]′ Id [m(Θ, χ)−mUS,T ]

where m(Θ, χ) denotes the vector of simulated moments

m(Θ, χ) = {E[ur],E[jfr],V[ur],V[jfr],E[ur · ur−1],E[jsr · jsr−1]} .

with Ex and Vx the mean and the variance of x = ur, jfr where ur denotes the unemployment rate
and jfr the job finding rate, and mUS,T the corresponding moments from the data on a sample size
equals to T . The moments E[x ·x−1] for x = ur, jfr represent the auto-correlation.16 As we do not
perform an estimation, the weight matrix is the identity matrix (Id).

Data. We use Adjemian et al. (2019)’s data, who extend the data set of Lise and Robin (2017) to
the current period. The data are from the BLS and cover the period from 1951m1 to 2018m12.17

These monthly employment and unemployment levels for all people aged 16 and over are seasonally
adjusted. To construct worker flows, Adjemian et al. (2019) use the number of unemployed workers
with unemployment durations of more than five weeks. After dividing the unemployment levels
in each month by the sum of unemployment and employment, they obtain monthly series for Um
and U5

m (m refers to the monthly frequency), which correspond to the proportion of unemployed
individuals and the proportion of individuals unemployed for more than five weeks. The worker
flows are given by JSRm =

Um+1−U5
m+1

Em
and JFRm =

Um−U5
m+1

Um
. All data are stationarized using a

HP filter with parameter 2.5× 105.

Estimated parameters and targeted moments. In Table 1, we report the solution for param-
eters allowing the model to match these selected moments. We also report the targeted moments

16We only focus on moments of order one and two to identify the parameters of the model in order to have
information that is homogeneous to that usually retained in the literature during the calibration of the DMP model.
Remark that Petrosky-Nadeau et al. (2018) or Ferraro (2018) retain only first order moments for the calibration
their models. Only Adjemian et al. (2019) provide an estimation of structural parameters that take into account all
nonlinearites of the DMP model.

17We use series LNS12000000, LNS13000000, LNS13008396, LNS13008756, LNS13008516, and LNS13008636.
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and the simulated moments to check the accuracy of the model’s fit.

Parameters Value Moments Data Model
Flow value of unemployment benefits b 0.39 E[jfr] 40.89% 41.98%
Worker’s bargaining power η 0.19 E[ur] 5.8% 6.13%
Elasticity of matching function τ 0.51 V[ur] 1.7527× 10−4 1.7523× 10−4

Proportional cost of posting a vacancy κ0 0.65 V[jfr] 3.46× 10−3 3.27× 10−3

Fixed cost of posting a vacancy κ1 0.75 E[ur · ur−1] 0.9992 0.9838
Low standard deviation σL 0.08 E[jfr · jfrr−1] 0.9974 0.9124

Table 1: Model’s Calibration and Target and Simulated Moments

First, it appears that the gaps between targeted and simulated moments are very small. There-
fore, we can take the solution of the parameter vector seriously. The value of the opportunity cost
of employment b (Flow value of unemployment benefits) is equal to 0.39. This value is close to
the calibration of Shimer (2005) used to show that the DMP model does not match the U.S. data.
However, this value is much lower than the calibration chosen by Robin (2011) (close to 0.86), and it
is also lower than the estimates of Hall and Milgrom (2008) (close to 0.70), Christiano et al. (2016)
or Petrosky-Nadeau et al. (2018) (0.88 - 0.85) and the extreme calibration proposed by Hagendorn
and Manovskii (2008) (close to 0.95).18 Our value of bargaining power (η = 0, 19) is close to the
long-run average of this wage bargaining power computed by Langot and Pizzo (2019) using OECD
data and larger than the one used by Hagendorn and Manovskii (2008) or Petrosky-Nadeau et al.
(2018). The elasticity of the matching function (τ) is equal to 0.51, which is slightly larger than the
value used by Petrosky-Nadeau and Zhang (2017) (0.407); however, it is significantly lower than the
value obtained by Denhaan et al. (2000) (1.27). This result is not surprising because Denhaan et al.
(2000) do not target the same set of moments than in this study. The parameters of the function
cost of posting a vacancy (κ0, κ1) are pinned down to 0.65 and 0.75, two values close to the ones
used by Petrosky-Nadeau et al. (2018)of 0.5 and 0.5, respectively, which result in hiring costs to be
in the range of the estimates provided by Merz and Yashiv (2007). Finally, the standard deviation
of the uncertainty shock in the regime of low variance (σL) is equal to 0.08, a largely lower value
than the ones estimated by Bloom (2009), which is between 0.1 and 0.44. Section 5 provides a
sensitivity analysis on these parameter choices.

With these parameter values, which exclude extreme calibrations, the model is able to reproduce
the observed volatility of the U.S. labor market. This result reconciles the DMP model with the
stylized facts summarized by the second order moments. Figure 3 shows that the cyclical dynamics
of unemployment rate can reach a value of 17.9% and go down to a value of 1.74%, these fluctuations
being centered around a mean equal to 6.13%. This basic simulation illustrates the capacity of the
model to generate large fluctuations. Indeed, our model generates a negative impact of uncertainty
on vacancies; the number of grid points where it is optimal to choose a vacancy equals to zero
in the low variance regime is lower (4/17≈23.5% of the grid points) than in the high variance

18It is also lower than the estimation provided by Adjemian et al. (2019).
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Figure 3: Unemployment simulation in the basic framework. Time series of unemployment
generated by the model using a draw for the sequences of ε and σ over sample size of 2500 months.

regime (5/17≈29.4% of the grid points). Hence, the comparison of the decision rules between
frameworks with different degrees of uncertainty suggests that uncertainty plays a major role in
coercing employers to stop recruiting. Consequently, a DMP model with uncertainty shocks induces
higher unemployment; as decision-makers take into account the costs related to opening vacancies,
they are more prudent when employing, as the risks are high.

The model also generates a negative correlation between unemployment and vacancies. It is
equal to -0.4, whereas this correlation is equal to -0.7 in the U.S. data. This result is counter-
intuitive, because when we shut off uncertainty shocks, the model’s correlation goes up to -0.5.
Therefore, the model, regardless of an uncertainty shock, slightly underestimates the correlation
between unemployment and job vacancies. This result is not very surprising, considering the diffi-
culties experienced by the DMP model in matching this moment, since Merz (1994), Langot (1995),
Andolfatto (1996) among others. Note also that the strong non-linearity of the Beveridge curve
(stronger in the model with uncertainty shocks) decreases the relevance of this moment approach-
ing a linear slope in the unemployment-job vacancy plan.

4 How Do Uncertainty Shocks Affect Unemployment Fluctuations?

To assess the impact of uncertainty shocks on U.S. labor market dynamics, we compare simulations
from two different economies. The first is the baseline economy and the second is the same economy,
except that the agents know that the variance of the shocks does not change and remains at its
lowest level, here σL. This latter counterfactual economy is one without uncertainty shocks.
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4.1 Impact of Uncertainty Shocks on Labor Market Moments

Table 2 compares moments generated by the baseline economy and the one without uncertainty.19

The averages of the aggregate are very close; the changes in uncertainty increase the average unem-
ployment rate by only 0.02 pp, that is, an increase by 0.45% of the unemployment rate.

Moments E[ur] E[jfr] V[ur] V[jfr] E[ur · ur−1] E[jfr · jfrr−1]
Baseline 6.13% 41.98% 1.75× 10−4 3.27× 10−3 0.9838 0.9124
Without uncertainty shocks 6.11% 41.47% 1.3× 10−4 2.73× 10−3 0.9829 0.9186
∆ 0.45% 1.25% 74% 83% - -

Table 2: Model’s Decomposition. “Baseline” refers to statistics based on simulations of the
complete model, whereas “Without uncertainty shocks” refers to simulations of the model where
σt = σL, ∀t, and thus, πLH = 0. In the two first columns, ∆ measures the percentage of change to
go from the average aggregates (E) of the economy “without uncertainty shocks” to the ones of the
“baseline” economy. In columns 3 and 4, ∆ measures the share in the variance (V) of the “baseline”
explained by the economy “without uncertainty shocks.”

Hairault et al. (2010) have already shown that the relation between the stochastic realizations
of unemployment rate (ur) and the stochastic realizations of the job finding rate (jfr) is a convex

function. This can be approximated by Eur ≈ ur + ur(1 − ur)2
(
Vjfr
Ejfr

)2
using the steady state

value of unemployment rate Eur = E s
s+jfr with s a constant separation rate. Therefore, if the

variance of the job-finding rate is higher in the baseline than in the economy without uncertainty
shocks, the average unemployment rate will be larger. Table 2 shows that this is the case; the
economy without uncertainty shocks can explain only 83% of the total variance of the job finding
rate observed in the baseline. Table 2 also shows that jfr is higher on average in the baseline
than in the economy without uncertainty shocks. This suggests that the introduction of uncertainty
shocks convexify the relation between the stochastic realization of the jfr and aggregate shocks.
This phenomena is moderate but reaches jfr by 0.51pp, that is, an increase of 1.25%. Table 2 also
shows that uncertainty shocks increase the variance of unemployment rate; this source of uncertainty
explains 26% of the variance of unemployment rate.20 This underlines that uncertainty shocks play
a significant role in U.S. labor market dynamics. Finally, Table 2 shows that the auto-correlation
of unemployment and job finding rates are not sensitive to the introduction of uncertainty shocks.
Using Impulse Response Functions (IFR), we describe the economic mechanisms at work in the
following section.

19To study the effect of different shocks on the economy, we start by simulating an artificial data in continuous
state space 5000 times. For each draw of a sequence for εt, a Markov chain gives the transitions from a regime to
the other. To eliminate the initial conditions, which are arbitrary, we simulate the economy 8000 times, and do not
consider the 3000 first observations, thereby, preventing the influence of the initial state on the results.

20Indeed, the Table 2 shows that if we normalize the unemployment variance in the baseline model at 100, the
unemployment variance of a model without uncertainty is only 74. Thus, the share of unemployment variance
explained by uncertainty shocks is 26 = 100− 74.
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4.2 Impact of TFP Shocks

In the baseline economy, two sets of IRF to an innovation ε must be distinguished: the first is
conditional to an ε-shock that occurs in the regime where σ = σL, and the second is conditional to
a ε-shock that occurs in the regime where σ = σH .21
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Figure 4: Impact of ε-shock conditionally to be initially in a regime where σ = σL. The
size of the shock is σL. The red-solid lines represent the dynamics of the economy after a positive
shock, whereas the blue-dotted lines display the opposite of the dynamics after a negative shock.
We report only the median of the IRF distribution.

Before analyzing the impact of uncertainty shocks on the IRF, let us first illustrate the substantial
non-linearities of our model that generate asymmetric impacts of a ε-shock. Panel (a) of Figure 4
shows that a negative shock has a larger impact on unemployment than a positive shock.22 This is
largely explained by the decreasing returns of the matching function leading to a positive variation

21To compute these IRFs in nonlinear economies, we draw n ∈ N sequences for {εn,t}Tt=0, and we apply a shock
of standard error magnitude to their first points. Using the difference with a simulation without shock on the first
point, we deduce the impact of a shock for a particular draw n ∈ N . We then characterize the distribution of the
IRF over the N draws.

22In the Appendix C we show that this result also occurs in an economy where the ε-shock hits the economy while
it is initially in a regime where σ = σH , and thus, where the size of the shock is σH .
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in vacancies (panel (b) of Figure 4), which has a lower impact on the job finding rate (panel
(c) of Figure 4) than a negative variations. This phenomena account for the congestion effects.
More precisely, there are more vacancies than unemployed workers during expansions, and thus, an
additional vacancy will not only cause a dribble in the probability of filling a vacancy but also a
raise in the marginal cost of hiring, which slows down the job creation motion and makes expansion
more gradual. Hence, during a boom, a small increase in vacancy posting is sufficient to largely
decrease the job-finding rate, leading to small response of unemployment.

Beyond the nonlinear properties of the matching model, the model’s simulations provide a
quantitative measure of the interaction between shocks and uncertainty. Figure 5 allows us to
compare the IRFs conditionally to the “level” of uncertainty perceived by the agents. When agents
know that there are no uncertainty shocks (the variance is constant over time and set at its lowest
level), the magnitude of the impact of ε shock is the lowest; this is the usual IRFs of the DMP
model.

Even if the initial condition is in the regime where the variance is low (and at the same level than
in an economy without uncertainty shocks), when agents know that there are uncertainty shocks,
that is, the economy can become more risky, they are more reactive to a productivity shock than
in an economy without uncertainty shocks. The red lines (ε-shock conditionally to be the regime
where σ = σL) of all Figure 5’s panels display an IRF having a larger magnitude than the green lines
(without uncertainty shocks). Hence, uncertainty per se magnifies the impact of shocks. Indeed,
when uncertainty shocks matter, firm integrate in their expectations the possibility to switch in the
regime where the variance is high. Therefore, without certainty equivalence (the model solution does
not use linearization techniques), even if the variance is low, the decision rules take into account
that the transition to a more risky economy is possible, which makes entrepreneurs more sensitive
to market fluctuations.

If the ε-shock occurs when the economy is in a regime where σ = σH , the magnitude of the
IFRs are the largest (the blue lines in Figure 5). Indeed, in the case of a recession (negative ε-
shock), it is more likely that entrepreneurs choose not to open a vacant job, choosing the option of
delaying their hires, waiting for uncertainty to dissipate. This precautionary behavior then leads
to unemployment rising sharply. Therefore, both the precautionary behaviors of the entrepreneurs
and the direct impact of the uncertainty size magnify the size of the IFRs.

4.3 Uncertainty Shock: Are Model IRFs Close to the VAR Estimates?

The impact of uncertainty shock is measured by a rise in the variance of business-conditions, which
is modeled by a shock on the variance of productivity (e.g. shock on σ). Hence, the economy that
is initially at the low variance state jumps instantly to an economy of higher variance and reacts
accordingly to the decision rule.

Panel (a) of Figure 6 shows that unemployment increases by 1.5% three months after an un-
certainty shock. This slightly underestimates the IFR of the VAR, but the model’s IRF is in the
confidence band of the VAR. Panel (b) of Figure 6 shows that uncertainty shock increases the num-
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Figure 5: Impact of a negative ε-shock conditionally to be initially in each regime σ =
σL, σH and in an economy without uncertainty shocks. The sizes of the shocks are σL or σH ,
according the regime at the initial period. For the economy without uncertainty, the magnitude of
the shock is σL. The red lines represent the dynamics in the regime where σ = σL. The blue lines
display the dynamics in the regime where σ = σH . The green lines correspond to the dynamics of
the economy without uncertainty shocks. We report only the median of the IRF distribution.
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Figure 6: Uncertainty Shock. The red lines display the model’s IFR. The blue lines are the IRF
based on the VAR presented in section 2. The dashed lines represent the confidence bands at 95%
of the VAR IRF.

ber of unopened vacancies. This is explained by the fact that uncertainty increases the real option
value of inaction because of the costs of opening vacancies. Indeed, uncertainty makes the future
economic activity barely “forecastable.” Hence, decision-makers tend to freeze their hiring decisions,
and therefore, do not open new vacancies, as they do not know if the economic activity will im-
prove or worsen. However, there is an exogenous attrition of workers. Hence, this temporary freeze
generates a drop in the number of opened vacancies and increases unemployment in the economy.
However, once the uncertainty shock dissipates, the hiring decisions bounce back, as firms answer
to their hold up decisions of hiring new workers and posting new vacancies.
These results underline that the model’s calibration is not only able to match second order moments
(unconditional moments) but also conditional moments identified using usual structural VAR esti-
mation. This over-identifying “test” suggests that the DMP model could be a good framework to
account for U.S. labor market fluctuations. Note that we obtain this result using a solution method
that preserves the non-linearities of the model.23

5 Sensitivity Analysis

To check the robustness of our results, we propose five alternative calibrations of the model.24 More
precisely, this section studies the sensitivity of the results to calibration. Table 3 shows how the
moments generated by the model change for alternative parameter values of {b, η, κ1, σH}, which
band those retained in our calibration. Table 3 shows that simulated moments are highly sensitive to
the level of opportunity cost of employment (b). For values of b around its reference value (b = 0.39)

23See Petrosky-Nadeau et al. (2018) or Adjemian et al. (2019) for other examples, where accounting for non-
linearities allows the DMP model to explain the U.S. labor market dynamics.

24Figures that compare the IFRs of the VAR and the model’s IFR for different parameter values are in the Appendix
C.
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Moments E[ur] E[jfr] V[ur] V[jfr]

Model 6.13% 41.98% 1.75× 10−4 3.27× 10−3

b = 0.2 5.270% 46.530% 2.53× 10−5 1.79× 10−3

(-14.0) (10.8) (-85.5) (-45.2)

b = 0.6 10.180% 34.280% 3.35× 10−3 7.25× 10−3

(66.0) (-18.3) (1814.2) (121.7)

η = 0.05 4.150% 59.320% 1.89× 10−5 2.28× 10−3

(-32.3) (41.3) (-89.2) (-30.2)

η = 0.5 12.449% 21.739% 1.16× 10−3 2.32× 10−3

(103.0) (-48.2) (562.8) (-29.0)

κ1 = 0 5.600% 44.399% 7.77× 10−5 2.61× 10−3

(-8.6) (5.7) (-55.6) (-20.1)

κ1 = 1 6.330% 41.079% 2.37×10−4 3.43× 10−3

(3.2) (-2.1) (35.4) (4.8)

σH = 1.5× σL 6.130% 41.649% 1.54× 10−4 2.95× 10−3

(0) (-0.7) (-12.0) (-9.7)

σH = 3× σL 6.150% 42.750% 2.35× 10−4 4.20× 10−3

(0.3) (1.8) (34.2) (28.4)

Table 3: Robustness. First and second order simulated moments for {ur, jfr} based on model
calibrated with different values for parameters {b, η, κ1, σH}. In parenthesis: the variations with
respect to the baseline in percentage.

of -0.2 or +0.2 (b = 0.2 or b = 0.6), the average unemployment rate (job finding rate) can vary from
-14% to +66% (+10.8% to -18.3%). For the variances, the deviations from the reference moments
are even more important; with a b = 0.6, the unemployment variance can increase by 1814.2%.
Indeed, when unemployment benefits increase, the number of grid points where it is optimal to not
open vacancies largely increases, increasing the sensitivity of the economy to shocks (by reducing the
profit size, a large b magnifies the sensitivity of the economy to shocks). These results are similar
to Hall and Milgrom (2008) or Hagendorn and Manovskii (2008) who have already shown that
the business cycle properties of the DMP model are highly sensitive to the level of unemployment
benefits. Table 3 also shows that higher the bargaining power, the lower the simulated moments
generated by the model. These results have been discussed by Hagendorn and Manovskii (2008). A
larger fixed cost for opening vacancy (κ1) magnifies the impact of the shocks on the labor market
aggregate. Table 3 shows that the model’s sensitivity to this parameter is not as large as in the two
previous (b and η), suggesting that this vacancy cost function á la Petrosky-Nadeau et al. (2018) is
not crucial for the results.

Table 3 shows that the amplitude of the labor market fluctuations significantly increase with the
size of uncertainty. These results underline that the DMP model, with its costs to open vacancies
and its congestion effects, lays the foundations of a real option of waiting, which amplifies the size
of the hiring flow when uncertainty dissipates.
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6 Accounting for the Economic Crisis: From 2008 to 2020

The last economic crisis started in August 2007 through the subprime crisis to become a global crisis
in September 2008 (bankruptcy of Lehman Brothers). The impact of this crisis on unemployment
became apparent in April 2008. Which exceptional combination of shocks on marginal returns
(in the model the TFP shocks) or/and on uncertainty can generate the observed unemployment
dynamics over this period? Panel (a) of Figure 7 shows that if the size of the shock is five times
σL and the sequence of uncertainty shocks is such that its duration is 36 months (variance in the
economy is high for three years), the model can reproduce the impact of 2008 crisis on the U.S.
unemployment rate.25 The model shows that when uncertainty dissipates, unemployment decreases
rapidly after an initial rapid increase and stagnation during one year at a level higher than 9%.
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Figure 7: Impact of Crisis on Unemployment. In panel (a), the red line displays the model’s
forecasts (size of the shock: 5 × σL. Three years of duration for the uncertainty regime) and the
blue line the unemployment data (see section 4). In panel (b), the blue (red) line is a scenario in
which the shock size is 8× σL (3× σL) and the duration of the regime with high uncertainty is 1/2
year (20 years), and the green line is the scenario used for the 2008 crisis. For these three scenarios,
the initial condition is the U.S. unemployment rate in February 2020.

If the model can reproduce the impact of the 2008 crisis on the U.S. unemployment rate, we can
use it to forecast different scenarios for the current coronavirus crisis. On Wednesday, March 18,
2020, the S&P500 had its worst day in more than a decade. Its drop was the worst for stocks
in the United States since December 2008, when the country was still reeling from the collapse
of Lehman Brothers. It puts the index close to 20% below its record high, a drop that would
have ended the bull market for stocks that began exactly 11 years ago. It is too early to predict
the course of the economic downturn we face because of the coronavirus. However, a recession is
inevitable. If we now look at the indicators of variation of uncertainty, the daily data from the
S&P100 Volatility Index shows that since February 18, 2020, this index has gone from 14.64 to

25We do not re-calibrate the model by increasing σH and πHH . We simply draw one particular story for the shocks
in their calibrated distribution.
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93.85 on Tuesday, March 16, 2020. This increase in uncertainty is faster and exceeds that observed
during the 2008 crisis; this index was at 14.73 in July 2007 and ended its rise with its highest value
on November 2009 at 87.24.26 Panel (b) of Figure 7 forecasts the implications of the forthcoming
recession on unemployment by displaying two different scenarios and by comparing them to the one
used to explain the 2008 crisis. As the comparative developments in stock market statistics seem
to suggest, if the most likely scenario is where the size of the shock is larger than the 2008 crisis,
but where the duration of the period of great uncertainty is shorter (the coronavirus crisis reaches
less fundamentals of the economy than the financial crisis of 2008), the rise in unemployment may
be more significant and lasting. Indeed, the scenario presented in panel (b) of Figure 7 shows that
unemployment can go from its current value of 3.5% to a peak at 10.5% in less than 12 months
(against a peak at 9.5% in 2010). It will reduce to a value of 5% only in 9 years after the period of
shock occurrence (5 years in the case of the 2008 financial crisis).

7 Conclusion

Business cycles are not as regular as suggested by the analyses of the framework of the DSGE models.
In particular, crises often accompany an increase in uncertainty. This can have a significant impact
on the labor market, as hiring is a risky decision that entrepreneurs have to make in the presence
of fixed costs. In this study, we propose an extension of the Diamond-Mortensen-Pissarides model,
which allows taking into account the variations of uncertainty observed during the business cycle
(changes in the variance of macroeconomic shocks).

In this context, we show that uncertainty shocks explain 25% of the variance in unemployment
and 20% of the variance in the job finding rate. We obtain these results with a calibration of struc-
tural parameters such as unemployment benefits or bargaining power, very close to the ones reported
by the OECD, and therefore, far from the extreme calibrations chosen to allow the linearized version
of DMP model to match the U.S. labor market fluctuations. Therefore, these results highlight the
importance of nonlinearities coupled with uncertainty shocks in explaining the dynamics of U.S.
unemployment. An over-identification test, based on the ability of our model to reproduce the IRF
from unemployment to an uncertainty shock estimated by a VAR model, shows that our theoretical
framework is fairly close to the stylized facts of the U.S. labor market.

With these good empirical results, we show that the model can also account for the impact of
major crises on unemployment, such as the 2008 recession, via a combination of traditional shocks on
the marginal revenue of companies but also via an increased uncertainty. This leads us to propose a
scenario for forecasting the impact of the coronavirus crisis on the labor market; U.S. unemployment
could rise from 3.5% to a peak of 10.5% in less than 12 months, and could return to a value of 5%
only 9 years after the beginning of the crisis.

26See these daily data on https://fred.stlouisfed.org/series/VXOCLS.
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A Uncertainty shocks

Event Max Volatility First Volatility Type
Cuban missile crisis October 1962 October 1962 Terror
Assassination of JFK November 1963 November 1963 Terror
Vietnam buildup August 1966 August 1966 War
Cambodia and Kent State May 1970 May 1970 War
OPEC I, ArabÂIsraeli War December 1973 December 1973 Oil
Franklin National October 1974 September 1974 Economic
OPEC II November 1978 November 1978 Oil
Afghanistan, Iran hostages March 1980 March 1980 War
Monetary cycle turning point October 1982 August 1982 Economic
Black Monday November 1987 October 1987 Economic
Gulf War I October 1990 September 1990 War
Asian Crisis November 1997 November 1997 Economic
Russian, LTCM default September 1998 September 1998 Economic
9/11 terrorist attack September 2001 September 2001 Terror
Worldcom and Enron September 2002 July 2002 Economic
Gulf War II February 2003 February 2003 War
Credit crunch October 2008 August 2007 Economic
Eurozone Crisis September 2011 May 2010 Economic
Chinese stock market crash September 2015 January 2015 Economic

Table 4: Summary of the events, nature, and dates of major stock-market volatility shocks

B VAR estimation

To ensure stationarity and to focus on the cyclical components, we use the HP filter to de-trend all
variables in log, using smoothing parameter equals to λ = 2.5 × 105. Bloom (2009) use the value
λ = 129, 600 for the HP filter; we have checked that this does not change the results. We have
chosen the value λ = 2.5×105 because it is retained in the literature on unemployment fluctuations
(see, e.g., Shimer (2005), Robin (2011) or Lise and Robin (2017)). To remove the seasonal trend,
we differentiate the series using 12 lags, as the data is monthly.

The estimated VAR model is

yt = A1yt−1 + ...+Akyt−k + et

with

{
yt = [log(S&P500), IS&P500, log(ut), log(vt)]

′

E(ete
′
t) = Σ

where yt is the vector of the endogenous variables: log(S&P500), the stock-market volatility indi-
cator (IS&P500), log(unemployment) and log(vacancies). Ai are the coefficient associated with the
VAR, k the number of lags (in our case k = 12), et are the error terms and Σ is the covariance matrix
of the errors. The ordering of the variable in the VAR is based on the assumption that shocks in-
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stantaneously influence the stock market (levels and volatility) first then quantities (unemployment
and vacancies). Moreover, to ensure that the impact of volatility shocks is already controlled for,
we include the stock-market levels as the first variable in the VAR. To allow for contemporaneous
relationships among its variables, we can rewrite the previous VAR to

Ayt = C1yt1 + ...+ Ckytk + εt

where the A matrix represents the contemporaneous relationships among the variables in the VAR.
As we only study the effect of uncertainty shock using the impulse response function, we must hold
all other shocks constant. To decompose the error terms into orthogonal shocks, we have to rewrite
the error terms as a linear combination of the structural shocks, as follows: εt = But, while imposing
E(utu

′
t) = I. Henceforth, we have to identify A, Ci, and B. To do so, we start by estimating the

reduced-form matrices Ai and Σ from the first VAR equation. We then rewrite Ai = A−1Ci and
A−1BB′A−1′ = Σ. At this point, we need to impose some restrictions on A and B to obtain their
estimation from Σ. Hence, using the Cholesky identification, we impose A = I and B is set to
be a lower-triangular matrix because of our imposed ordering condition. For example, shocks to
unemployment rate equation contemporaneously affect vacancies but only affect stock market levels
and volatility equations with a lag. Finally, we can recover B from a Cholesky decomposition of Σ:
BB′ = Σ.

C Robustness Analysis
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Figure 8: Robustness. Comparison between VAR’s and model’s IFR after an uncertainty shock,
b = 0.85. The red lines display the model’s IFR. The blue lines are the IRF based on the VAR
presented in section 2. The dashed lines represent the confidence bands at 95% of the VAR IRF.
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Figure 9: Robustness. Comparison between VAR’s and model’s IFR after an uncertainty shock,
η = 0.5. The red lines display the model’s IFR. The blue lines are the IRF based on the VAR
presented in section 2. The dashed lines represent the confidence bands at 95% of the VAR IRF.
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Figure 10: Robustness. Comparison between VAR’s and model’s IFR after an uncertainty shock,
κ1 = 0. The red lines display the model’s IFR. The blue lines are the IRF based on the VAR
presented in section 2. The dashed lines represent the confidence bands at 95% of the VAR IRF.
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Figure 11: Robustness. Comparison between VAR’s and model’s IFR after an uncertainty shock,
σH = 3× σL. The red lines display the model’s IFR. The blue lines are the IRF based on the VAR
presented in section 2. The dashed lines represent the confidence bands at 95% of the VAR IRF.
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