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ABSTRACT
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Bounding Program Benefits When 
Participation Is Misreported*

In empirical research, measuring correctly the benefits of welfare interventions is incredibly 

relevant for policymakers as well as academic researchers. Unfortunately, the endogenous 

program participation is often misreported in survey data and standard instrumental 

variable techniques are not sufficient to point identify and consistently estimate the effects 

of interest. In this paper, we focus on the weighted average of local average treatment 

effects (LATE) and (i) derive a simple relationship between the causal and the identifiable 

parameter that can be recovered from the observed data, (ii) provide an instrumental 

variable method to partially identify the heterogeneous treatment effects, (iii) formalize 

a strategy to combine administrative data on the misclassification probabilities of treated 

individuals to further tighten the bounds. Finally, we use our method to reassess the 

benefits of participating to the 401(k) pension plan on savings.
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1 Introduction

There is increasing evidence that the endogenous participation to social programs is substantially

misreported in survey data (Meyer et al., 2015). Since participation is binary, attempting to evalu-

ate the benefits of a program using a standard instrumental variable method would lead to biased

estimates.1 As shown by Millimet (2011), this is a problem of primary importance because, even

with infrequent arbitrary errors, the bias can be severe. In this paper, we develop an instrumen-

tal variable method to partially identify the heterogenous treatment effect when the endogenous

treatment variable is misclassified. Our method requires minimal additional assumptions and can

be applied to a wide range of empirical settings. Moreover, we formalize a strategy to combine ad-

ministrative data on the misclassification probabilities of program receipts which can provide tight

bounds.

We focus on the weighted average of local average treatment effects (LATE),2 which is a parame-

ter that can be estimated to measure the benefits of a program in case of non-compliance (Athey and

Imbens, 2017). Here the true treatment is endogenous, the treatment effects are heterogeneous,

and binary, discrete or multiple discrete instrument(s) are available. In our setting, the instrumental

variable(s) satisfy some familiar conditions: (i) They are independent of the measurement error;

(ii) They affect the outcome and the mismeasured treatment only through the true treatment status;

and (iii) They affect the true treatment monotonically. Furthermore, we place no restriction on the

marginal distributions of the measurement error, nor on the dependence between the measurement

error with the potential outcomes and treatments. This means that we allow for a general form of

(endogenous and heterogeneous) misclassification error in the recorded treatment status, such as

endogenous misreporting and strategic answering, which may be due to stigma or the sensitivity of

information collected.3

We start by showing the limitations of the standard LATE approach when the observed binary

treatment is a mismeasured proxy of the true treatment. We derive a simple relationship between

the causal and the identifiable parameter that can be recovered from the observed data, which

can be captured by a summary statistic of the weighted average of the treatment misclassification

probabilities. The relationship is useful because it can be used by researchers to hypothesize the

bias of the benefits of a program for different values of the misclassification probabilities. Then,

we show that one endogenous misclassified treatment variable already suffices the main partial

identification result of the paper. Two strategies yield the bounds for the weighted average of

LATEs: First, via the identified sets of LATEs; Second, via the identified sets of the local average of

1In a classical measurement error scenario, an instrumental variable is a standard method to correct for both endogeneity and measurement
error of the treatment variable at the same time. However, in case of a binary treatment, measurement error is always nonclassical because the
only way to misclassify a true treated is downwards, as a control, whereas the only way to misclassify a true control is upwards, as a treated.
This creates a negative correlation between the true treatment status and the error term, which leads to severe bias.

2The LATE parameter of Imbens and Angrist (1994) is the average effect of the treatment for compliers when the scalar instrument is binary.
The presence of discrete, or similarly, multiple, instruments, gives rise to a different parameter which is the weighted average of local average
treatment effects. In our paper, we provide results valid for both parameters, hence, to avoid any confusion, throughout the text one should
be careful to distinguish when we refer to LATE and when to the weighted average of LATEs.

3Indeed, according to Meyer et al. (2015), among the reasons for the misreporting of transfer benefits in household surveys there is: “[...]
Desire to shorten the time spent on the interview, the stigma of program participation, the sensitivity of income information, or changes in the
characteristics of those who receive transfers.” (page 219). Our method can deal with all these scenarios.
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treatment misclassifications (LATMs). We also provide sufficient conditions under which the bounds

of LATEs and LATMs are sharp. We call this method P-LATE, for partially identified weighted average

of LATEs.

We proceed by developing a strategy to improve the partial identification of the parameter. Our

approach is based on the idea that administrative records of program receipts can provide accurate

information about the extent of misreporting in survey data. We formalize a way to incorporate such

information into the framework and show that, potentially, it can lead to tight bounds of program

benefits. The idea is motivated by the observation that, in the literature, an increasing number

of studies report misclassification probabilities for a wide range of programs. For example, using

data from the Survey of Income and Program Participation (SIPP) merged with information from

tax records, Dushi and Iams (2010) find that the participation rate in defined contribution (DC)

pension plans is about 11% higher when using tax records rather than survey reports. In a similar

vein, Meyer et al. (2018) use administrative data on Food Stamp Program (SNAP) participation

and link them to the American Community Survey (ACS), the Current Population Survey (CPS),

and SIPP. They find that 23% of true food stamp recipient households do not report receipt in the

SIPP, 35% in the ACS, and 50% in the CPS. Misclassification probabilities of other US government

transfer programs are reported in Meyer and Mittag (2019a,b). As more researchers gain access to

linked administrative data, similar information can be obtained for other countries and be utilized

to improve the partial identification results.

Regarding inference, we construct confidence intervals for the identified sets with uniformly and

asymptotically size control. They are built based on a two-step bootstrap procedure following the

seminal work by Chernozhukov et al. (2019). The confidence intervals of the weighted average of

LATEs are computed depending on how its identified set is built. Specifically, it is either a union of

the confidence intervals of the LATEs, or a union of the confidence intervals of the LATMs. Additional

information about the accuracy of the measurement can also be taken into account. We demonstrate

the finite sample properties of the proposed inference methods through a series of Monte Carlo

simulations

We extend these results in two main directions. Firstly, in order to further improve the identified

set on the parameter of interest, we show the benefits of having multiple treatment indicators, or

repeated measures of the same treatment, in case of discrete and multiple instrument(s). Impor-

tantly, we do not restrict the dependence among our treatments, thus the extra measures might

be endogenous. Secondly, since the instrument(s) may be confounded without conditioning on

some covariates, or, treatment effects may be heterogeneous across the population characterized

by different attributes, we show how to use the propensity score index to include covariates in the

analysis. Furthermore, we use our method to reassess the benefits of participating to the 401(k)

pension plan on savings.

Overall, our article shows that researchers measuring the benefits of a program can obtain

bounds of the weighted average of LATEs if the binary treatment is misclassified. These bounds

can potentially be tight, provided that information about the extent of misreporting in survey data
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can be found. In many applications, these information are readily available from studies of admin-

istrative records of program receipts. In other applications, one could also rely on small validation

studies, repeated measurements of the same individual, as well as economic theory. We propose a

method that is applicable as the leading identification strategy in any setting where the practitioner

knows that the endogenous binary treatment is not well measured. Alternatively, one could also ap-

ply our method as the leading robustness check either (i) in case misreporting is only suspected, or

(ii) to assess the sensitivity of program benefits under different assumptions of the misclassification

probabilities. Although our method is primarily motivated by the program evaluation literature, it

is not limited to applications within this context. Indeed, it can be applied to any setting where

the endogenous binary treatment is misclassified by endogenous measurement error. The weighted

average of LATEs could also be used to extrapolate to the average treatment effects, or other pa-

rameters of interest, which commonly require additional assumptions (Imbens, 2010).

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.

Section 3 presents our framework and the main results. Section 4 develops an inference procedure

for the parameter of interest. Section 5 discusses extensions, how to use P-LATE in practice, sim-

ulations and an application. Concluding remarks are in Section 6. Proofs and additional material

are in the Appendix.

2 Related Literature

Our paper is primarily motivated by the extensive literature documenting misclassification error

in the observed treatment (Bollinger, 1996; Angrist and Krueger, 1999; Kane et al., 1999; Card,

2001; Hernandez et al., 2007). Particularly Bound et al. (2001) and Black et al. (2003) argue that

measurement error is likely to be endogenous in some applications, such as educational attainment.

Recent works by Meyer et al. (2015, 2018) and Meyer and Mittag (2019a,b) document extensive

and increasing endogenous measurement error also in the participation to social programs. Impor-

tantly, Kreider (2010) shows how severe the identification problem is in a binary regressor model

given the presence of even infrequent arbitrary errors. Similarly, Millimet (2011) studies the per-

formance of several estimators, commonly used in the treatment effects literature, in the presence

of measurement error in the binary treatment indicator, and emphasizes the importance of not

ignoring the measurement error in this case.

Using an instrumental variable (IV) is a standard approach to correct for both endogeneity and

measurement error of the treatment variable at the same time.4 In the context of endogenous

treatment and endogenous measurement error, Nguimkeu et al. (2018) provide point identification

of homogeneous treatment effects under the availability of two instrumental variables and strong

4In the context of an exogenous treatment subject to exogenous misclassification, many authors, such as Aigner (1973), Kane et al. (1999),
Black et al. (2000) and Frazis and Loewenstein (2003), use instrumental variables techniques to estimate homogeneous (constant) treatment
effects of a mismeasured binary regressor. More recently, Mahajan (2006), Lewbel (2007) and Hu (2008), also use instruments to point
identify average treatment effects, without assuming that treatment effects are homogeneous, in the case of an exogenous and mismeasured
binary (or discrete) treatment indicator. The partial identification treatment effects literature has also been active. Indeed, under more general
conditions, bounds on average treatment effects with misclassified treatment are provided by Klepper (1988), Bollinger (1996), Kreider and
Pepper (2007), Molinari (2008) and Imai and Yamamoto (2010).
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parametric and distributional assumptions. Differently from this paper, we focus on nonparametric

heterogeneous treatment effects and provide a partial identification method that does not require

such strong assumptions.

We aim to estimate the weighted average of local average treatment effects (LATE) of Imbens

and Angrist (1994).5 For this reason, our paper is primarily related to Ura (2018), who investigates

the identifying power of a binary instrumental variable and provides the conditions to set identify

the effect of an endogenous and misclassified treatment variable in a heterogeneous treatment effect

framework.6

With respect to the latter, our contribution is to generalize his results in three main directions.

First, we derive a simple relationship between the weighted average of LATEs and the identifi-

able parameter that can be recovered from the observed data. Similar formal relationships in an

IV context are provided by Frazis and Loewenstein (2003), Lewbel (2007), Battistin and Sianesi

(2011), Calvi, Lewbel, and Tommasi (2018) and Stephens Jr. and Unayama (2020). Second, we

generalize his method to discrete and multiple instrumental variable settings by using all informa-

tion contained in the IVs. In particular, we gain identification power by making use of multiple

total variation distances, which capture the distributional effect of the instrument(s) on observable

variables, and form a tighter bound for the proportion of the compliers. We find that when the

instrumental variable(s) are discrete, there are two sources of information that can be extracted

from the observable data to conduct partial identification for the weighted average of LATEs. One

is directly used to build the sets for LATEs. The other one contains two key factors: the relationship

between the causal and the identifiable parameter that we discovered is this paper, and the identi-

fied sets of LATMs. Finally, similarly to Lewbel (2007), Kreider and Pepper (2007), Molinari (2008),

Battistin and Sianesi (2011), Kreider et al. (2012) and Battistin et al. (2014), we formalize an ap-

proach to potentially further tighten the bounds which is based on the use of external information

about misclassification probabilities.

3 Theoretical framework

This section proceeds in four acts. First, we describe our theoretical framework and show the limita-

tions of the standard LATE approach when the treatment variable is contaminated by measurement

error. This leads to a simple relationship between the true and mismeasured parameter, which can

be captured by a summary statistic of the weighted average of the misclassification probabilities.

Second, we provide the conditions to obtain the identified sets of the LATEs and of the misclas-

sification probabilities. We do not restrict the dependence between the misclassification and the

potential outcomes, nor between the misclassification and the potential treatments. This means

5See Huber and Wuthrich (2018) for a recent review of methodological advancements in the evaluation of heterogeneous treatment effect
models based on instrumental variable (IV) methods.

6Whereas Calvi, Lewbel, and Tommasi (2018) address the problem of exogenous misclassification of the true treatment status in a setting
with a binary treatment and a binary instrument. For a recent application of their estimator, see Tommasi (2019). For a recent extension,
see Hoagland (2019). Other related papers, albeit not necessarily focused on LATE, are Battistin et al. (2014), Chalak (2017), DiTraglia and
García-Jimeno (2018), Jiang and Ding (2019), Kasahara and Shimotsu (2019), Kedagni (2019) and Yanagi (2019).
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that we can allow for endogenous and heterogeneous misclassification error, such as endogenous

misreporting and strategic answering. Third, we show that one endogenous binary misclassified

treatment indicator already suffices the main partial identification result. Moreover, we provide

two main strategies based on different sources of information to partially identify the parameter

of interest. Fourth, we show that the resulting bounds can be tightened by making use of external

information regarding the extent of the misclassification probabilities. This constitutes our third

main partial identification strategy.

3.1 Set up and limitations of standard LATE approach

We introduce some notations which will be used throughout the text. For the moment, we derive our

results without conditioning on covariates. Later, we extend the partial identification and inference

procedure to accommodate a generic vector X of observable characteristics.

Let D be the true binary treatment variable that affects the outcome of interest. D is not observed

and its effects cannot be consistently estimated. Let Z be a h×1 vector of discrete instruments, each

of which is unconfounded (e.g., randomized), correlated with D, and satisfies the standard Imbens

and Angrist (1994) assumptions of instruments for LATE estimation. Let ΩZ = {z0, z1, ..., zK} be the

support of Z with zk ∈ Rh. Suppose that the random binary variables Dk, for k = 0, 1, ..., K , are

potential treatments corresponding to possible realizations zk of Z . By definition,

D =
K
∑

k=0

1[Z = zk]Dk,

where 1[·] denotes the indicator function. Denote Pr(zk) = E(D = 1|Z = zk) the propensity score.

Let Y be an observed outcome of interest and let random variables Y1 and Y0 be the potential

outcomes Yd with d ∈ {0,1} for possible realizations d of D. Denote by Y ⊂ R the support of Y , Y1

and Y0. Then,

Y = DY1 + (1− D)Y0.

A common way to exploit multiple instruments is to introduce a scalar function g : ΩZ 7→ R. In a

standard instrumental variables approach, g(z) can be an estimate of Pr(z) or other known func-

tions.7

Assumption 3.1. Y , D and Z satisfy the standard Imbens and Angrist (1994) assumptions:

(i) (i.i.d.) (Y1, Y0, {Dk}Kk=0, Z) are independent and identically distributed across all individuals and

have finite first and second moments;

(ii) (Unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0) and Pr(z) = E(D|Z = z) for z ∈ ΩZ is a nontrivial

function of z; 0< πk = Pr(Z = zk)< 1, k = 0, 1, ..., K;

7If Z is a single binary instrument, g(z) = z is the special case considered by Ura (2018). Moreover, note that if Z consists of a single discrete
instrument, we can simply set g(z) to be an identity function. If Z includes multiple instruments, g(z) can be set as, for example, an estimate
of E[Y |Z = z] or of Pr(T = 1|Z = z) for z ∈ ΩZ , where T represents a proxy of the true treatment and will be introduced later.
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(iii) (First stage) Cov(D, g(Z)) 6= 0;

(iv) (Monotonicity) For any zl , zw ∈ ΩZ , with probability one, either Dl ≥ Dw for all individuals,

or Dl ≤ Dw for all individuals. Furthermore, for all zl , zw ∈ ΩZ , either Pr(zl) ≤ Pr(zw) implies

g(zl)≤ g(zw), or Pr(zl)≤ Pr(zw) implies g(zl)≥ g(zw).

The monotonicity assumption ensures no defiers. Throughout the paper, we denote compliers

(Dk−1 = 0, Dk = 1) as Ck. If D was observed, under the conditions listed in Assumption 3.1, the

Imbens and Angrist (1994)’s weighted average of local average treatment effect (LATE) would be

identified by the instrumental variables estimand:

αIV =
Cov(Y, g(Z))
Cov(D, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(D−E(D))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γIV
k αk,k−1, (1)

where γIV
k are the weights and αk,k−1 is the local average treatment effect E[Y1 − Y0|Ck] for each

subgroup of compliers Ck. The weights {γIV
k }

K
k=1 are nonnegative and

∑K
k=1 γ

IV
k = 1. However, since

we do not observe D, we cannot implement this standard approach.

Instead of D, suppose we can observe a binary treatment indicator T , which could be a proxy

for D, or could correspond to reported values of D that are misclassified for some observations.

This means that T does not equal D for some individuals because of misclassification error. Define

random variables T0 and T1 as potential observed treatments so that Td with d ∈ {0,1} is for possible

realizations d of D. Then by definition:

T = DT1 + (1− D)T0.

The variables T0 and T1 can be interpreted as indicators of whether treatment is correctly measured

or not. That is, if T0 = 0 and T1 = 1, then the true treatment D is not misclassified. This shows

that, in a binary treatment setting, there are two possible measurement or classification errors: if

T0 = 1, then a true D = 0 is misclassified as treated, and if T1 = 0, then a true D = 1 is misclassified

as untreated.

Assumption 3.2. The treatment indicator T is such that the following conditions are satisfied:

(i) (Extended unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0, T1, T0);

(ii) (Extended first stage) Cov(T, g(Z)) 6= 0.

Assumption 3.2-(i) combines the LATE unconfoundedness assumption that Z ⊥
�

Y1, Y0, {Dk}Kk=0

�

with the assumption that the instruments are also independent of the potential measurement errors,

and hence of (T1, T0). Random assignment would be sufficient to make 3.2-(i) hold.8 Assumption

3.2-(ii) is a minimal relevance condition saying that T , although suffers from potential misclassifi-

cation error, still provides some information regarding D. Hence T is correlated with g(Z).
8Notice that the definitions used for Y and T assume implicitly that, once the true treatment D is controlled for, there is no direct effect of

Z on Y , nor of Z on T . That is, Z satisfies the individual-level exclusion restriction. See Swanson et al. (2018) for a recent and comprehensive
review of the various versions of exclusion restriction.

7



Using the proxy T in place of D leads to the identification of a new parameter, which is useful

to characterize. Let pd,k = E (Td | Ck) for d ∈ {0, 1} and k = 1,2, ..., K . By definition, p1,k is the

probability that compliers Ck would have their treatment correctly observed if they were treated.

That is, p1,k is the probability that the compliers would have T = 1 if they were assigned D = 1. In

contrast, p0,k is the probability that compliers Ck would have their treatment incorrectly observed

if they were untreated. That is, p0,k is the probability that the compliers would have T = 1 if they

were assigned D = 0.

Theorem 3.1. Let Assumption 3.1 and 3.2 hold for T . Then:

αMis =
Cov(Y, g(Z))
Cov(T, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(T −E(T ))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γMis
k αk,k−1, (2)

where γMis
k are the weights for each subgroup of compliers Ck.

Proof of Theorem 3.1. See Appendix A.1.1.

Intuitively, αMis denotes the parameter that we estimate if we ignore the misclassification error

and use a mismeasured treatment indicator T in place of the true treatment D. Clearly, αMis 6= αIV

because γMis
k 6= γIV

k . A sufficient condition for αMis = αIV is that p1,k = 1 and p0,k = 0, for k =

1,2, ..., K (no misclassification error). There is a simple relationship between αIV and αMis which

can be captured by a summary statistic of the weighted average of the misclassification probabilities.

This relationship will become useful later on in conducting partial identification of αI V .

Corollary 3.1. Let Assumption 3.1 and 3.2 hold for T and, without loss of generality, assume γIV
k 6= 0

and γMis
k 6= 0 for ∀k. Then, there exists a summary statistic ξ such that:

αMis =
K
∑

i=1

γIV
k αk,k−1 ×

γMis
k

γIV
k

=⇒ αIV = ξαMis (3)

where the ratio ξ= γIV
k /γ

Mis
k =

∑K
k=1 γ

IV
k (p1,k − p0,k).

Proof of Corollary 3.1. See Appendix A.1.2.

The parameter ξ is a weighted average of the difference between misclassification probabilities,

it is constant across k, with absolute value less than or equal to one, and unobserved in practice. and

unobserved in practice. Corollary 3.1 demonstrates that, in case of misclassification of the binary

treatment variable, the estimated weighted average of LATEs exceeds αIV by a factor 1/ξ.

A final remark is in order. αMis generalizes the B-LATE (for Biased LATE) estimator of Calvi,

Lewbel, and Tommasi (2018) to a multiple instruments setting. The latter paper is among the first

to show that, in the standard LATE framework, if T is misclassified, the estimated LATE exceeds the

true LATE parameter by a factor 1/p, where p is the fraction of individuals correctly reporting their

treatment status. Our factor 1/ξ becomes 1/p when a scalar binary instrument is used. Similar cal-

culations in an IV context are provided by Frazis and Loewenstein (2003), Lewbel (2007), Battistin
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and Sianesi (2011) and Stephens Jr. and Unayama (2020). Note that all these papers are related to

one another and benefited from the result by Hausman et al. (1998). First, similarly to Frazis and

Loewenstein (2003) and Stephens Jr. and Unayama (2020), but differently from Lewbel (2007) and

Battistin and Sianesi (2011), we assume an endogenous treatment. However, the assumed model in

these papers is parametric, therefore the treatment effects are homogeneous. Second, similarly to

Lewbel (2007) and Battistin and Sianesi (2011), we assume a nonparametric model, therefore the

treatment effects are heterogeneous. However, they assume an exogenous treatment, hence uncon-

foundedness, which is not required in our context. Finally, differently from Frazis and Loewenstein

(2003), we assume a monotone IV. This allows us to derive the misclassification probabilities in

terms of the compilers.

3.2 Identified sets of the LATEs and of the misclassification probabilities

We introduce an additional assumption needed for partial identification ofαIV (besides Assumptions

3.1 and 3.2).

Assumption 3.3. (Ascending order) The support of ΩZ = {z0, z1, ..., zK} is ordered in such a way that

∀l, w= 0,1, ..., K, l < w implies Pr(zl)≤ Pr(zw), and this order is known.

Assumption 3.3 says that, even though the propensity scores cannot be recovered from the

observed data (because D is unobserved in practice), the ascending order of them in Z is still known.

This can be seen as a structural restriction imposed on the true treatment D to recover the sign of

αk,k−1. Therefore, the ascending order is itself informative.9 As noticed by Abadie et al. (2002),

an example of sufficient condition for Assumption 3.3 is a constant-coefficient latent-index model.

That is, suppose the treatment is generated by D = 1(γZ > η), where γ is a parameter and η is

an error term independent of Z . Then, the order of Pr(zk), which is required in Assumption 3.3, is

determined by the sign of γ. It is plausible in many applications that the sign of γ can be retrieved

from economic theory.10 For example, in the study of the returns to schooling, distance to college

is often used as an instrument for completed college education (e.g. Card (2001) among others).

In this specific example, the parameter γ is negative.

Given Assumption 3.3, we use the concept of total variation (TV) distance introduced by Ura

(2018), and adapt it to our general framework. For any generic random variable (or vector) A and

zk, zk−1 ∈ ΩZ , TV is a L1 distance between the two conditional distribution functions fA|Z=zk
and

fA|Z=zk−1
, defined as follows:

T VA,k =
1
2

∫

| fA|Z=zk
(a)− fA|Z=zk−1

(a)|dµA(a),

9Indeed, if the ascending order of ΩZ is known, even without an observable treatment D, we can still identify the sign of αk,k−1, for those
k satisfying (i) Pr(zk) 6= Pr(zk−1) and (ii) E(Y |Z = zk) and E(Y |Z = zk−1) are finite. The fact that the sign of αk,k−1 cannot be identified if
Pr(zk) = Pr(zk−1) is immaterial, because in this case we would have γIV

k = 0, indicating that αk,k−1 contributes nothing to and will not affect
the estimand αIV . When Pr(zk) = Pr(zk−1), we also have γMis

k = 0 and therefore αk,k−1 does not affect αMis as well.
10A similar structural restriction on treatment D is employed by Chalak (2017), when recovering treatment effects with instrument suffering

from measurement error. A sufficient condition is a threshold crossing in D with a monotonic latent function. See his Assumption 4 and the
discussion below it.
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where µA denotes a dominating measure for the distribution of A.11 If A is discrete, the integral

is replaced by summation across all possible values of A. The T VA,k is identifiable and it captures

the extent of the distributional effect of Z on A, when Z changes from zk−1 to zk. If A = Y , then

T VY,k is the distribution version of the “intent-to-treat” effect. The TV will play a crucial role in

characterizing the identification set of the probability of compliers.12

Lemma 3.1. Let Assumption 3.1-(ii) to (iv), 3.2-(i) and 3.3 hold for T . We have that, for ∀k =

1, 2, ..., K:

T V(Y,T ),k ≤ Pr(Ck)≤ 1−
∑

k′ 6=k

T V(Y,T ),k′.

Proof of Lemma 3.1. See Appendix A.1.4.

Lemma 3.1 provides an intuitive and simple identified set for the probability of the compliers

when the actual treatment D is unobservable.13 The width of the bound in Lemma 3.1 depends

on the strength of the instrument(s). For example, if the change of Z from zk−1 to zk causes no

distributional variation of the outcome and the treatment proxy, the lower bound of Pr(Ck) reduces

to 0. Similarly, if no distributional variation is triggered by the change of Z from zk′−1 to zk′ for all

k′ 6= k, the upper bound of Pr(Ck) increases to 1.

Given Lemma 3.1, we can now proceed to consider the identified sets for each LATE, αk,k−1,

and for the difference between misclassification probabilities, ∆pk = p1,k − p0,k. For convenience,

hereafter we refer to ∆pk as the local average of treatment misclassification (LATM):

LAT M =∆pk = E(T1 − T0|Ck)

because the conditional expectation is analogous to the LATE if we replace Y1− Y0 by T1− T0. Let P

be an arbitrary data generating process of (Y, T, Z). Denote the class of data generating processes

of P as P0, then we have P ∈ P0. Denote Θ to be the parameter space of αIV , αMis and of all αk,k−1.

For example, Θ = {−1,1} if outcome Y is binary, and Θ = R if outcome Y is continuous with infinite

support.14 For notational simplicity, we denote∆kE(Y |Z) = E(Y |Z = zk)−E(Y |Z = zk−1). Theorem

1 in Imbens and Angrist (1994) says that under Assumption 3.1 in this paper, we have:

∆kE(Y |Z) = αk,k−1P(Ck). (4)

Multiplying both sides of (4) by αk,k−1, we obtain that:

αk,k−1∆kE(Y |Z) = α2
k,k−1Pr(Ck)≥ 0. (5)

11For two σ-finite measures µ and µ′, the measure µ′ is dominated by µ, if, for any measurable set A , µ(A ) = 0 implies µ′(A ) = 0. For
more detailed definition, see the Radon-Nikodym Theorem in Billingsley (2008).

12Similar identification strategies have been introduced in the partial identification literature. See e.g. the integrated envelope in Kitagawa
(2009).

13Throughout the paper, the “identified set” is referred to as a set which includes the collection of possible values of the parameter of interest,
and those values are all compatible with the data and the assumptions. The identified set here may not be sharp. Chesher (2010) uses “outer
region” to refer the “identified set” in this paper. Throughout the paper, we also refer to “bound” as the two extreme values of a identified set
when the set is a interval.

14The parameter space for each αk,k−1 may be different for each k. However, we ignore this possibility for notational simplicity.
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Moreover, by applying Lemma 3.1 to the absolute value of (4), we have:

|∆kE(Y |Z)| ≤ |αk,k−1|



1−
∑

k′ 6=k

T V(Y,T ),k′



 , (6)

|∆kE(Y |Z)| ≥ |αk,k−1|T V(Y,T ),k. (7)

Thus, under Assumptions 3.1, 3.2 and 3.3, each LATE αk,k−1 satisfies the inequalities (5)-(7). In-

equality (5) indicates that the sign of αk,k−1 is identified by ∆kE(Y |Z) whenever Pr(Ck) is nonzero.

In addition, when ∆kE(Y |Z) 6= 0, inequalities (6) and (7) give the lower and upper bounds of

|αk,k−1|, respectively. Denote the set of αk,k−1, characterized by (5)-(7), as Θαk (P) ⊂ Θ.

Similar to equation (4), we also have ∆kE(T |Z) = ∆pkPr(Ck), and similar arguments can be

applied to obtain the inequalities (8)-(10) below, satisfied by each ∆pk:

∆pk∆kE(T |Z)≥ 0, (8)

|∆kE(T |Z)| ≤ |∆pk|



1−
∑

k′ 6=k

T V(Y,T ),k′



 , (9)

|∆kE(T |Z)| ≥ |∆pk|T V(Y,T ),k. (10)

Denote the set of∆pk, characterized by (8)-(10), as Θp
k(P) ⊂ [−1, 1]. In the next Lemma, we derive

the explicit expression for Θαk (P) and Θp
k(P) under different conditions. We also give sufficient

conditions under which the identified sets are sharp.

Lemma 3.2. Let Assumption 3.1-(ii)-(iv), 3.2-(i) and 3.3 hold for T . Then, for ∀k = 1, 2, ..., K:

(i) If T V(Y,T ),k = 0, then Θαk (P) = Θ. Whereas if T V(Y,T ),k > 0, then:

Θαk (P) =



















h

∆kE(Y |Z)
1−
∑

k′ 6=k T V(Y,T ),k′
, ∆kE(Y |Z)

T V(Y,T ),k

i

, if ∆kE(Y |Z)> 0,

{0}, if ∆kE(Y |Z) = 0,
h

∆kE(Y |Z)
T V(Y,T ),k

, ∆kE(Y |Z)
1−
∑

k′ 6=k T V(Y,T ),k′

i

, if ∆kE(Y |Z)< 0;

(11)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, thenΘαk (P) = Θ is the sharp identified set ofαk,k−1. Whereas, if T V(Y,T ),k >

0 and T V(Y,T ),k′ = 0 for all k′ 6= k, then Θαk (P) in (11) is the sharp identified set of αk,k−1.

Proof of Lemma 3.2. See Appendix A.1.5.

Lemma 3.2 shows that, if T V(Y,T ),k = 0, then no useful information can be extracted from the

observable data, so that Θαk (P) excludes no values from the parameter space of αk,k−1, i.e. Θαk (P) =

Θ. It also indicates that the instrument variation from zk−1 to zk has no identification power. Once

T V(Y,T ),k > 0, the instrument has nontrivial identification power, and an explicit expression of the

identified set can be derived for αk,k−1. To be more specific, if ∆kE(Y |Z) = 0, then αk,k−1 is point
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identified as zero. If ∆kE(Y |Z) 6= 0, the sign of αk,k−1 is identified by the sign of ∆kE(Y |Z). In

addition, Lemma 3.2 provides the sufficient condition for sharp identified set of each LATE in case

of multiple or multi-valued instrumental variable(s).15

Similarly, the Lemma below gives the identified set of ∆pk, as well as the sufficient conditions

for the sharpness of the identified set.

Lemma 3.3. Let Assumption 3.1-(ii)-(iv), 3.2-(i) and 3.3 hold for T . For ∀k = 1, 2, ..., K,

(i) If T V(Y,T ),k = 0, then Θp
k(P) = [−1, 1]. Whereas, if T V(Y,T ),k > 0, then:

Θ
p
k(P) =



















h

∆kE(T |Z)
1−
∑

k′ 6=k T V(Y,T ),k′
, ∆kE(T |Z)

T V(Y,T ),k

i

, if ∆kE(T |Z)> 0,

{0}, if ∆kE(T |Z) = 0,
h

∆kE(T |Z)
T V(Y,T ),k

, ∆kE(T |Z)
1−
∑

k′ 6=k T V(Y,T ),k′

i

, if ∆kE(T |Z)< 0;

(12)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, then Θp
k(P) = [−1,1] is the sharp identified set of ∆pk. Whereas, if

T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 for all k′ 6= k, then Θp
k(P) in (12) is the sharp identified set of

∆pk.

Proof of Lemma 3.3. See Appendix A.1.6.

We require the identified set of ∆pk because it plays a crucial role in characterizing the bias of

αMis relative to the object of interest, αIV . As shown in Lemma 3.3, the sign and an informative

bound for∆pk can be obtained as long as T V(Y,T ),k > 0. It is also clear that, in order to construct the

identified set of∆pk, we do not need any prior or external information about how severely the treat-

ment proxy T is contaminated by measurement error. The identified sets of the LATEs, {αk,k−1}Kk=1,

and of the LATMs, {∆pk}Kk=1, provide the fundamental basis for constructing the identified set of

the estimand αIV .

Two final remarks are in order. First, Lemma 3.1 generalizes Lemma 3 of Ura (2018) to ac-

commodate multiple or multi-valued instrument(s). Notice that, with a binary instrument, this

author proposes to use only the subpopulation where the instrument takes two values, and con-

struct the identified set as T V(Y,T ),k ≤ Pr(Ck) ≤ 1. However, Lemma 3.1 demonstrates the possi-

ble identification power gain of such a strategy, as we can actually bound Pr(Ck) from above by

1 −
∑

k′ 6=k T V(Y,T ),k′ instead of 1. This improvement is due to the fact that all groups of compli-

ers {Ck}Kk=1 are mutually exclusive, and that all Pr(Ck′) with k′ 6= k can be bounded from below

by their corresponding total variation distances. Second, compared to the subpopulation strategy

proposed by Ura (2018), Lemma 3.2 improves one side of the bound of αk,k−1, from ∆kE(Y |Z) to

∆kE(Y |Z)/(1−
∑

k′ 6=k T V(Y,T ),k′). Such an improvement is substantial, especially when there exists

at least one k′ 6= k such that T V(Y,T ),k′ > 0.

15Two further points about Lemma 3.2 are worth noticing. First, if there is only one k such that T V(Y,T ),k > 0, while T V(Y,T ),k′ = 0 for all
k′ 6= k, then Θαk (P) in Lemma 3.2-(ii) is sharp, and it is identical to the identified set suggested by Ura (2018) using only a subpopulation. The
latter result is intuitive, because T V(Y,T ),k′ = 0 for all k′ 6= k implies that Ck is the only compliers group that induces nonzero changes in the
potential outcomes or the potential treatment indicators. Thus, only the subpopulation that includes the compliers Ck matters. Second, for
more general cases, where more than two total variation distances are nonzero, our identified set Θαk (P) is going to be more informative about
each LATE αk,k−1 than the identified set of this author.
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3.3 Partial Identification of αIV

We begin by proposing two main strategies to partially identify αIV . Both strategies do not rely on

additional or external sources of information.

First strategy. Recall that the estimand αIV is a weighted average of LATEs {αk,k−1}Kk=1 with

nonnegative weights {λIV
k }

K
k=1 summing up to one. Hence the first partial identification strategy is

based on the identified sets of {αk,k−1}Kk=1:

min
k=1,2,...,K

{αk,k−1} ≤ αIV =
K
∑

i=1

λIV
k αk,k−1 ≤ max

k=1,2,...,K
{αk,k−1} (13)

Denote our first identified set of αIV as Θα(P), where the superscript α means that it is constructed

from {Θαk (P)}
K
k=1. Then, Θα(P) can be obtained from (13) and the identified sets of LATEs given in

Lemma 3.2.

Theorem 3.2. Let Assumptions 3.1, 3.2, and 3.3 hold for T . Then, Θα(P) =
⋃

k∈{1,2,...,K}Θ
α
k (P).

Proof of Theorem 3.2. See Appendix A.1.7.

Theorem 3.2 shows that the identified set of αIV is the union of the identified sets of LATEs

{αk,k−1}Kk=1. In principle, the set Θα(P) might be uninformative about the direction of the weighted

average of local average treatment effects in situations where at least two LATEs, αk,k−1 and αk′,k′−1,

have opposite signs. Fortunately, however, we are still able to recover the sign of αIV as long as all

the LATEs stand on the same side of zero. Furthermore, we can recover the sign of all the LATEs from

the observed data and Lemma 3.2.16 We refer to this feature of the data as “direction consistency”

of LATEs. This knowledge reveals partly how the treatment affects the outcome which, in many

empirical applications, is supported by economic theory. For example, in a study of the returns to

schooling, a higher education level secures (on average) higher wages. Hence, in this case, the

“direction consistency” of LATEs is positive.17

Corollary 3.2. Let Assumption 3.1, 3.2, and 3.3 hold for T .

(i) If ∆kE(Y |Z)> 0 for all k = 1, 2, ..., K, then αIV > 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ 6=k T V(Y,T ),k′

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T ),k

��

.

16As discussed in Appendix A.1, we actually allow the sign of αk,k−1 for the “ineffectual subgroups”, representing compliers subgroups making
no contributions to the objective of interest, to be unknown.

17Although Corollary 3.2 does not require any sign restriction to ensure direction consistency of the LATEs, imposing them might be useful
for inference. It is useful especially when some compliers with small, or close to zero, probability (by Lemma 3.1) with estimated LATEs have
opposite sign as compared to other complier groups. This inconsistency of direction may be caused by small samples, and, removing those
small probability events via sign restrictions, will improve the identified set substantially. Such sign restriction, or direction consistency as we
call it, is commonly assumed in the treatment effects partial identification literature, usually referred to as “monotonicity” assumptions. For
example, the monotone treatment response Y1 ≥ Y0 (or Y1 ≤ Y0) for all individuals in Manski (1997), Manski and Pepper (2000, 2009) and
Bhattacharya et al. (2008) among others. Another weaker condition is the monotonicity of average outcomes in treatment at strata level,
E(Y1|Ck) ≥ E(Y0|Ck), proposed by Chen et al. (2018). The strata level monotonicity is more plausible in practice, without restricting the sign
for all individuals.
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(ii) If ∆kE(Y |Z)< 0 for all k = 1, 2, ..., K, then αIV < 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T ),k

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ 6=k T V(Y,T ),k′

��

.

Proof of Corollary 3.2. The proof follows from Lemma A.2 in Appendix and Theorem 3.2.

The Corollary above provides the identification of the sign of αIV , as well as the explicit expres-

sion of Θα(P), when the direction consistency of LATEs is satisfied. If some ∆kE(Y |Z) = 0, the

results above still hold with possibility αIV = 0, as long as their corresponding T V(Y,T ),k > 0.18

Second strategy. Our second strategy is built upon the relation between αIV and αMis, and

the identified sets of {∆pk}Kk=1. Recall from Corollary 3.1 that αIV = ξαMis, where ξ = γIV
k /γ

Mis
k =

∑K
k=1 γ

IV
k ∆pk. Based on the definition of ξ, we have:

min
k=1,2,...,K

{∆pk} ≤ ξ=
K
∑

k=1

γIV
k ∆pk ≤ max

k=1,2,...,K
{∆pk}. (14)

Denote our second identified set of αIV as Θp(P), where the superscript p represents its key com-

ponents {Θp
k(P)}

K
k=1. Θp(P) can be characterized by the Theorem below.

Theorem 3.3. Let Assumption 3.1, 3.2, and 3.3 hold for T . Then,

Θp(P) =

¨

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K

Θ
p
k(P)

«

, (15)

where ∆p represents any generic value in the union
⋃

k=1,2,...,K Θ
p
k(P).

Proof of Theorem 3.3. See Appendix A.1.8.

Theorem 3.3 gives the general form of the identified set Θp(P), based on both the identifiable

estimand αMis and the identified sets of {∆pk}Kk=1. If αMis = 0, αIV is point identified as zero. Again,

there are situations where Θp(P) may fail to recover the sign of αIV , when at least one set Θp
k(P)

includes both positive and negative elements. However, we argue that, in most empirical appli-

cations, ∆pk should be at least nonnegative. This is quite intuitive because it indicates that, for

compliers, the probability of having their treatment status correctly observed, if they were treated,

is larger than the probability of being wrongly observed as treated, if they were untreated (false

positive). For example, in the study of the effects of SNAP in the US, up to 50% of true participants

does not report to be treated and only less than 5% of true non-participants reports to be treated

(Meyer et al., 2018). Hence, in this case, the “direction consistency” of the difference in misclassi-

fication probabilities is positive (0.50− 0.05 = 0.45 > 0). Such a feature is often mild to assume

18As long as T V(Y,T ),k > 0, the identified set of αk,k−1 has an explicit expression as in Lemma 3.2(ii), and it is not Θ. If T V(Y,T ),k = 0 for at
least one k, then Θα(P) = Θ.
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and identifiable by Lemma 3.3.19

Corollary 3.3. Let Assumption 3.1, 3.2, and 3.3 hold for T . Suppose ∆kE(T |Z) > 0 for all k =

1,2, ..., K.

(i) If αMis ≥ 0, then αIV ≥ 0 and

Θp(P) = αMis ×
�

min
k=1,2,...,K

�

∆kE(T |Z)
1−

∑

k′ 6=k T V(Y,T ),k′

�

, max
k=1,2,...,K

�

∆kE(T |Z)
T V(Y,T ),k

��

,

(ii) If αMis < 0, then αIV < 0 and

Θp(P) = αMis

�

min
k=1,2,...,K

�

∆kE(T |Z)
T V(Y,T ),k

�

, max
k=1,2,...,K

�

∆kE(T |Z)
1−

∑

k′ 6=k T V(Y,T ),k′

��

.

Proof of Corollary 3.3. It follows directly from Lemma A.2 in Appendix and Theorem 3.3.

The Corollary above gives the sign of αIV , and the explicit expression of Θp(P), when the direc-

tion consistency of {∆pk}Kk=1 holds.

First vs Second strategy. The two strategies introduced thus far are both compatible with the

observable data under Assumptions 3.1, 3.2 and 3.3. Moreover, they make distinct contributions to

the partial identification of αIV because they are based on different sources of information. Since the

two identified sets are likely to be different, it is important to determine their relative performance.

In order to facilitate this comparison, we re-write Θα(P) and Θp(P) as the unions of the re-scaled

Θ
p
k(P).

Corollary 3.4. Let Assumption 3.1, 3.2 and 3.3 hold for T . Θα(P) and Θp(P) can be rewritten as

follows:

Θα(P) =
⋃

k=1,2,...,K

§

αk,k−1

∆pk
×∆p : ∆p ∈ Θp

k(P)
ª

,

Θp(P) =
⋃

k=1,2,...,K

�

αIV

ξ
×∆p : ∆p ∈ Θp

k(P)

�

,

where αIV =
∑K

k=1 γ
IV
k αk,k−1 and ξ =

∑K
k=1 γ

IV
k ∆pk are weighted average of LATEs and weighted

average of the LATMs, respectively, and ∆p is any generic value in Θp
k(P).

Proof of Corollary 3.4. See Appendix A.1.9.

Corollary 3.4 delivers four crucial messages. First, in general, unless more information are

available, it is not a-priori obvious which identified set outperforms the other, since αk,k−1/∆pk may

19Our second strategy does not require any sign restrictions on {∆pk}Kk=1. However, for finite sample inference, such restrictions may be
helpful to rule out the possibility that ∆pk have the opposite sign for some compliers, with small or close to zero proportion, with respect to
other compliers.
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not be uniformly larger or smaller than αIV/ξ across all k. Second, when the ratios {αk,k−1/∆pk}Kk=1

are the same across all k, we have that Θα(P) = Θp(P). This special case, however, relies on

both unconfounded treatment and homogenous misclassification, which may be quite restrictive

in practice. Third, for all∆p ∈ Θp
k(P) and all k, the closer to 1 is the ratio∆p/ξ, the narrower is the

identified set delivered by strategy 2 (that is, the narrower is the set Θp(P) of αIV ). Fourth, at the

limit, if, for all k, ∆pk = ξ, that is, the data satisfy homogeneous misclassification, then Θp
k(P) = ξ.

In this last case, point identification is achieved by Θp(P) as follows:

Θp(P) =
⋃

k=1,2,...,K

{αIV}= αIV .

However, for ∆pk = ξ, the improvement of strategy 1 is not as good as that of strategy 2. This is

because, although αk,k−1 can be point identified by ξ∆kE(Y |Z)/∆kE(T |Z),20 from Corollary 3.4 we

have:

Θα(P) =
�

min
k=1,2,...,K

{αk,k−1}, max
k=1,2,...,K

{αk,k−1}
�

which only partially identifies αIV . Thus, whenever the misclassification error is close to be ho-

mogenous (that is, the correlation between the misclassification error and the potential treatments

is small), strategy 2 should, in general, outperform strategy 1.

Two final remarks are in order. First, following the method of intersecting the bounds, which is

commonly applied in the treatment effect partial identification literature,21 there is no issue prevent-

ing us from intersectingΘα(P) andΘp(P) to achieve even tighter bound. However, when considering

inference, adopting only one identification set (instead of both) may be beneficial for computational

simplicity. Second, it is interesting to note that, if the instrument is binary, αIV is just the LATE and

αMis with g(x) = x reduces to:

αMis =
E[Y |Z = 1]−E[Y |Z = 0]
E[T |Z = 1]−E[T |Z = 0]

=
E[Y1 − Y0|D1 = 1, D0 = 0]

p1 − p0
.

Then, Theorems 3.2 and 3.3 will be identical. In addition, our first two identified sets will also

coincide with that in Ura (2018), because K = 1 and
∑

k′ 6=k T V(Y,T ),k′ will degenerate to zero.

3.4 Partial Identification of αIV using external information

The increase availability of administrative records of program receipt inspires our third main partial

identification strategy. Accurate information about the extent of misreporting in survey data can

offer a potential strategy to reduce the bounds of program benefits. These information can be

obtained from external sources of information, such as: administrative data, validation studies,

repeated measurements of the same individual, or from economic theory. Suppose the practitioner

has some prior or external information about the possible range of ξ, and this range is narrower

20This is because ∆kE(Y |Z)
∆kE(T |Z)

= αk,k−1

∆pk
. If ∆pk = ξ for a known ξ, then αk,k−1 = ξ

∆kE(Y |Z)
∆kE(T |Z)

is point identified.
21See, for example, Manski (1990), Heckman and Vytlacil (1999), Manski and Pepper (2000), Chesher (2010).
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than that in Equation (14). Then we can replace Θp
k(P) in Θp(P) by this known range to further

tighten the bounds.

Denote our third identified set of αIV as Θξ(P), where the superscript ξ indicates extra in-

formation about measurement accuracy. At the risk of repetition, recall from Corollary 3.1 that

αIV = ξαMis, where ξ= γIV
k /γ

Mis
k =

∑K
k=1 γ

IV
k ∆pk.

Theorem 3.4. Let Assumption 3.1 and 3.2 hold for T . Suppose there exist two known constants ξ≤ ξ
and ξ,ξ ∈ (0,1], such that ξ≤ ξ≤ ξ.

(i) If αMis ≥ 0, then αIV ≥ 0 and Θξ(P) =
�

ξαMis,ξαMis
�

.

(ii) If αMis ≤ 0, then αIV ≤ 0 and Θξ(P) =
�

ξαMis,ξαMis
�

.

Proof of Theorem 3.4. See Appendix A.1.10.

Intuitively, the constants ξ and ξ are two bounds of the weighted average of LATMs. A similar

approach of using external information is adopted, in various contexts, by Lewbel (2007), Kreider

and Pepper (2007), Molinari (2008), Battistin and Sianesi (2011), Kreider et al. (2012) and Bat-

tistin et al. (2014). By using these extra information, the identified set Θξ(P) will be at least as

good as that in Corollary 3.3 (second strategy). If no extra information about the measurement

accuracy is available, one could (in principle) simply set ξ and ξ as the lower and upper bounds

of
⋃

k=1,2,...,K Θ
p
k(P). Therefore, compared to the first two identification strategies, which are based

purely on the observable data, by following our third strategy one can further tighten the bounds

of αIV and obtain (potentially) significant improvements.

From Theorem 3.4, two sets of conditions suffice to obtain tighter bounds. Firstly, having ξ close

to 1 means less overall misclassification. At the extreme, when ξ = 1, we have no misclassifica-

tion error at all (p1,k = 1 and p0,k = 0), hence we can achieve point identification of αIV = αMis.

Secondly, having (ξ,ξ) close to each other indicates more accurate knowledge of the overall misclas-

sification probabilities, which produces a narrower bound as well. At the extreme, when ξ= ξ= ξ,

we can also achieve point identification of αIV = ξαMis. Notice that, in application, the constants

ξ and ξ are going to be two approximations of the bounds of the misclassification probabilities.

Hence, if the practitioner can set ξ = ξ = ξ, the point estimate delivered by the estimator ξαMis

is going to be biased with respect to αIV , unless ξ is the exact value of misclassification. If ξ and

ξ are approximations, then our P-LATE, combined with external information, can be used as a bias

reduction method with respect to a naïve IV estimator.

4 Inference

In this section, we construct the confidence intervals of the partially identified αIV . Recall that,

given the data generating process P of (Y, T, Z), Θαk (P) denotes the identified set of αk,k−1, and

Θ
p
k(P) denotes the identified set of ∆pk. Since, in practice, the partial identification of αIV is based

on some union of either Θαk (P) or Θp
k(P), we proceed with the estimation in three steps. First, we
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construct the moment inequalities of the identified sets αk,k−1 and ∆pk. Second, we construct the

confidence intervals for both αk,k−1 and∆pk. Third, depending on the chosen identification strategy,

we construct the appropriate confidence intervals of αIV by taking the unions of the confidence

intervals of either αk,k−1 or ∆pk.

4.1 Moment inequalities of the identified sets

One feasible estimation of the identified sets is via the bootstrap-based testing of moment inequal-

ities method proposed by Chernozhukov et al. (2019). We follow Ura (2018) and extends his

results to accommodate multiple or multi-valued instrumental variables. The Lemma below shows

that Θαk (P) and Θp
k(P) have equivalent expressions in terms of unconditional moment inequalities.

Lemma 4.1. Let Assumption 3.1-(ii)-(iv), 3.2-(i) and 3.3 hold for T . Denote a random variable

ϕk =
1[Z = zk]πk−1 − 1[Z = zk−1]πk

πkπk−1

for k = 1,2, ..., K. Then, Θαk (P) can be characterized by the following moment inequalities:

E
�

−ϕksign(αk,k−1)Y
�

≤ 0, (16)

E
�

ϕk

�

|αk,k−1|h(Y, T )− sign(αk,k−1)Y
�	

≤ 0, ∀h ∈ H (17)

E



ϕksign(αk,k−1)Y − |αk,k−1|

 

1−
∑

k′ 6=k

ϕk′hk′(Y, T )

!



≤ 0, ∀hk′ ∈ H. (18)

Moreover, Θp
k(P) can be characterized by the following moment inequalities:

E [−ϕksign(∆pk)T]≤ 0, (19)

E {ϕk [|∆pk|h(Y, T )− sign(∆pk)T]} ≤ 0, ∀h ∈ H (20)

E



ϕksign(∆pk)T − |∆pk|

 

1−
∑

k′ 6=k

ϕk′hk′(Y, T )

!



≤ 0, ∀hk′ ∈ H, (21)

where πk = Pr(Z = zk), H is a set of measurable functions mapping (y, t) ∈ ΩY ×{0,1} to {−0.5, 0.5}
and sign(x) = 1[x ≥ 0]− 1[x < 0].

Proof of Lemma 4.1. See Appendix A.1.11.22

∆kE[h(Y, T )|Z] with h ∈ H can bound the total variation distance:

∆kE[h(Y, T )|Z]≤ T V(Y,T ),k,

22We use subscript k′ to distinguish different hk′ , because each ϕk′ can be multiplied by different hk′ and it is not necessarily the same with
h. For simplicity, in this paper we may not distinguish h and hk′ elsewhere if it is not necessary, and we use h to denote any generic function in
H.
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and ϕk helps rewrite the conditional moments to unconditional ones:

∆kE[Q|Z] = E[ϕkQ],

for Q ∈ {Y, T, h(Y, T )}.
Next, we introduce some regularity conditions on the data generating process. Denote π =

(π0,π1, ...,πK)′ and its parameter space as Π ⊂ [0,1](K+1). Suppose (1 − ηπ)-confidence interval

for all πk, denoted as Cπk
(ηπ), and (1−ηαMis)-confidence interval for αMis, denoted as CαMis(ηαMis),

are available.

Assumption 4.1. The parameter space Θ×Π×P0 satisfies the following conditions:23

(i) max{E[Y 3]2/3,E[Y 4]1/2}< M for some constant M. Θ is bounded.

(ii) All random variables inside E[·] in Lemma 4.1 have nonzero variance for ∀h ∈ H, ∀αk,k−1 ∈ Θ
and ∀∆pk ∈ [−1,1].

(iii) lim inf
n→∞

inf
P∈P0

Pr[πk ∈ Cπk
(ηπ)]≥ 1−ηπ for k = 1,2, ..., K.

(iv) lim inf
n→∞

inf
P∈P0

Pr[αMis ∈ CαMis(ηαMis)]≥ 1−ηαMis .

The number of the moment inequalities in Lemma 4.1 can be either finite or infinite, depending

on the support of Y . If Y is discrete, the number of possible h ∈ H is finite, so as the total number

of the moment inequalities in Lemma 4.1. When Y is continuous, the number of elements in H

will be infinite and we are then facing an infinite number of moment inequalities. To deal with

the potential uncountable infinite moment inequalities, we consider a sequence of sets Hn, which

converges to H in the sense defined in Assumption 4.2.24 The key in forming Hn is the partition

ΩY×{0, 1}=
⋃

l=1,2,...,Ln
In,l , in which Ln is the number of the partitions {In,l}, and Ln may grow with

the sample size n. Denote by hn, j, j = 1, 2, ..., 2Ln, the function that mapsΩY×{0,1} into {−0.5, 0.5},
which is a constant over each In,l , l = 1,2, ..., Ln. We can then define Hn = {hn,1, hn,2, ...,hn,2Ln} to

be the collection of all such functions.

By construction, Hn is a subset of H. Replacing H by Hn in the moment inequalities in Lemma

4.1 yields two sets, denoted by eΘαk (P) and eΘ
p
k(P). They cover and converge to Θαk (P) and Θp

k(P),

respectively, as the sample size increases. We refer to eΘαk (P) and eΘp
k(P) as the “approximated iden-

tified sets”, and their convergence will be formally defined in Assumption 4.2 below. Thus, the

confidence intervals considered later will be based on the moment inequalities that characterize
eΘαk (P) and eΘp

k(P).

Let κn = 2Ln be the number of functions in Hn, and denote by pn the number of moment in-

equalities that describe the approximated identified sets. Then, pn = 1 + κn + κK−1
n . Assumption

4.2 below outlines the sufficient assumptions on the DGP and the partition {In,l}
Ln

l=1 that ensure the

convergence of the approximated identified sets eΘαk (P) and eΘp
k(P) to Θαk (P) and Θp

k(P).

23Confidence intervals of πk and αMis are needed since they are regarded as nuisance parameters in the inference process and will be
estimated in advance.

24When H has finite dimension, we can simply let Hn = H.
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Assumption 4.2. The following assumptions hold:

(i) The density function f(Y,T )|Z=zk
(y, t) is Hölder continuous in (y, t) ∈ ΩY × {0,1} with the Hölder

constant M0 and exponent m.

(ii) The partition In+1,1, In+1,2, ..., In+1,Ln+1
is a refinement of the partition In,1, In,2, ..., In,Ln

.

(iii) There is a positive constant M1 such that In,l is a subset of some open ball with radius M1/Ln in

ΩY × {0,1}.

(iv) There exist some constants c1 ∈ (0,1/2) and C1 > 0 such that pn satisfies

log7/2(pnn)≤ C1n1/2−c1, log1/2 pn ≤ C1n1/2−c1, log3/2 pn ≤ C1n.

Assumption 4.2-(i) restricts the smoothness of the density function of observable (Y, T ) and 4.2-

(ii) implies the sequence {Hn} satisfying Hn ⊂ Hn+1 ⊂ · · · ⊂ H. Assumption 4.2-(iii) is used to make

sure that the partition becomes finer as sample size increases. Assumption 4.2-(iv) is borrowed

from Chernozhukov et al. (2019) for the asymptotic performance of the confidence interval.

If Hn = {hn,1, hn,2, ...,hn,κn
} based on partition {In,l}

Ln

l=1 satisfies Assumption 4.2, we have the

convergence of eΘαk (P) and eΘp
k(P) to Θαk (P) and Θp

k(P), as formally stated by the following Lemma.

Lemma 4.2. Let Assumption 3.1, 3.2, 3.3, 4.1 and 4.2 hold for T . Then, Θαk (P) ⊂ eΘ
α
k (P) and Θp

k(P) ⊂
eΘ

p
k(P). As sample size increases, the convergence below hold uniformly over (π,P) ∈ Π×P0.

sup
h∈H
E [ϕkh(Y, T )]−max

h∈Hn

E [ϕkh(Y, T )]→ 0,

inf
{hk′}∈HK−1



1−
∑

k′ 6=k

E[ϕk′hk′(Y, T )]



− min
{hk′}∈HK−1

n



1−
∑

k′ 6=k

E[ϕk′hk′(Y, T )]



→ 0.

Proof of Lemma 4.2. See Appendix A.1.12.

Given the convergence result in Lemma 4.2, we can now proceed to the inference stage of the

approximated identified sets.

4.2 Confidence intervals of the approximated identified sets

For simplicity, hereafter we use θk to represent αk,k−1 or ∆pk, and use Θθk (P) to represent Θαk (P)

(when θk = αk,k−1) or Θp
k(P) (when θk = ∆pk). In addition, and with slight abuse of notation, we

also use Θ to represent the parameter space of θk, and Θ = [−1,1] when θk =∆pk.

Given η ∈ (0, 0.5) and ηπ ∈ (0,η/2), suppose (1 − ηπ)-confidence intervals of πk−1 and πk,

Cπk−1
(ηπ) and Cπk

(ηπ), are available to the practitioner. We can then construct a (1 − η − 2ηπ)-
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confidence interval of θk:

Cθk
(η+ 2ηπ) =

⋃

πk∈Cπk
(ηπ), πk−1∈Cπk−1

(ηπ)

¦

θk ∈ Θ : τ(θk,πk,πk−1)≤ ck(η)
©

, (22)

where the test statistic τ(θk,πk,πk−1) and the critical value ck(η) are defined in the two-step mul-

tiplier bootstrap procedure of Chernozhukov et al. (2019) described in our Appendix A.2. The

testing procedure is for the pn moment inequalities which characterize the approximated identified

sets.25 To obtain Equation (22), πk−1 and πk are regarded as nuisance parameters and estimated

in advance. The following Theorem holds for both θk = αk,k−1 and θk =∆pk.

Theorem 4.1. Let Assumption 3.1, 3.2, 3.3, 4.1 and 4.2 hold for T . Construct the test statistic

τ(θk,πk,πk−1) and the critical value ck(η) by the two-step multiplier bootstrap described in Appendix

A.2.

(i) The confidence interval Cθk
(η+ 2ηπ) controls the asymptotic size uniformly over P0,

lim inf
n→∞

inf
P∈P0, θk∈Θθk (P)

Pr
�

θk ∈ Cθk
(η+ 2ηπ)

�

≥ 1−η− 2ηπ.

(ii) Given π0
k = Pr(Z = zk) and π0

k−1 = Pr(Z = zk−1), for any fixed alternative θk /∈ Θθk (P),

lim
n→∞

Pr
�

τ
�

θk,π0
k,π0

k−1

�

≤ ck(η)
�

= 0.

Proof of Theorem 4.1. See Appendix A.1.13.

Theorem 4.1-(i) shows that the confidence intervalCθk
(η+2ηπ) defined in Equation (22) covers

any point in the identified set with probability at least (1−η−2ηπ) uniformly overP0. In addition,

Theorem 4.1-(ii) tells us that the confidence interval, evaluated at the true πk−1,πk, will exclude

any fixed point outside the identified set with probability going to one. Hence, it is reasonable to

expect that Cθk
(η + 2ηπ) will not be too conservative for large enough sample sizes, as long as

the standard
p

n-consistent estimator of the nuisance parameter π and its associated confidence

interval are used to construct Equation (22).

In practice, a simpler version of the confidence interval of θk, denoted by Ĉθk
(η), can be imple-

mented as below:

Ĉθk
(η) =

¦

θk ∈ Θ : τ(θk, π̂k, π̂k−1)≤ ĉk(η)
©

, (23)

where (π̂k, π̂k−1) are
p

n-consistent estimators of (πk,πk−1), and ĉk(η) is obtained in the two-step

multiplier bootstrap using π̂k, π̂k−1. The asymptotic properties of the confidence interval, con-

structed by testing the moment inequalities with estimated nuisance parameters, are considered

25The critical value ck(η) also depends on (θk,πk,πk−1). For notation simplicity, we simplify it to be ck(η).
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in Appendix B.2 of Chernozhukov et al. (2019).26 Moreover, the simpler version confidence in-

terval Ĉθk
(η) in Equation (23) can also be applied to construct C α(βα) or C p(β p) for practical

purpose.

4.3 Confidence intervals of αIV

Given the results in Theorems 3.2-3.4 and given the confidence intervals of αk,k−1 and ∆pk, we can

now move on to construct a confidence interval of αIV . Firstly, we propose a (1− βα)-confidence

interval C α(βα), according to the first partial identification strategy in Theorem 3.2:

C α(βα) =
⋃

k=1,2,..,K

Cαk,k−1
(η+ 2ηπ), (24)

where the size βα = η+ 2ηπ.

In addition, another (1 − β p)-confidence interval of αIV , denoted by C p(β p), is based on the

second partial identification strategy in Theorem 3.3:

C p(β p) =
⋃

α∈CαMis(ηαMis)

¨

α×∆p : ∆p ∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ)

«

, (25)

where the size β p = ηαMis +η+ 2ηπ.

The last confidence interval, denoted by C ξ(βξ), comes from our partial identification strategy

with external sources of information in Theorem 3.4:

C ξ(βξ) =
⋃

α∈CαMis(ηαMis)

¦

α×∆p : ∆p ∈
�

ξ,ξ
�©

, (26)

where βξ = ηαMis and ξ,ξ are given such that the true value of ξ ∈
�

ξ,ξ
�

.

The next Corollary gives the asymptotic properties of C α(βα), C p(β p) and C ξ(βξ).

Corollary 4.1. Let the assumptions in Theorem 4.1 hold for T . Furthermore, let θ be any point in

Θ j(P ), j ∈ {α, p,ξ}. Then, C α(βα), C p(β p) and C ξ(βξ) defined in (24)-(26) all control their sizes

asymptotically and uniformly over P0, i.e.

lim inf
n→∞

inf
P∈P0, θ∈Θ j(P)

Pr
�

θ ∈ C j
�

β j
��

≥ 1− β j, for all j ∈ {α, p,ξ}.

Proof of Corollary 4.1. See Appendix A.1.14.

Corollary 4.1 proves that, for all the three confidence intervals of αIV , their asymptotic coverage

26Although our moment inequalities in Lemma 4.1 fail to satisfy the necessary condition of the uniform size control for the simpler Ĉθk
(η)

(Comment B.2 of Chernozhukov et al. (2019)), simulation results in Appendix A.7 show that Ĉθk
(η) still performs good in terms of achieving

the desired coverage rates and of indicating the sign and the true value of the treatment effect in all the DGP designs considered in this paper.
Therefore, practitioners may apply the simpler version for practical purpose, because it is less computational consuming and less conservative.
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rate, at any point inside the associated identified set, achieves the desired level.27 Moreover, for

given η and ηπ, C α(βα) has a higher coverage rate than C p(β p), because C p(βα) is constructed

also based on the (1−ηαMis)-confidence interval of αMis. The coverage rate of C ξ(βξ) is in general

the highest, since we can set ηαMis ≤ βα.
The results thus far can be summarized as follows. The partial identification of αIV can be

achieved by following one of three strategies. Strategy 1 depends only on the bounds of LATEs.

Strategy 2 uses the estimand αMis together with the bounds of LATMs {∆pk}Kk=1. Strategy 3 exploits

external sources of information to restrict the possible range of {∆pk}Kk=1 and further improve the

bounds of the second strategy.

5 Extensions and Applications

This section is organized in four parts. First, we sketch two extensions of P-LATE which are fully

developed in the Appendix. Second, we show how to implement P-LATE in practice. Third, we

sketch the main ideas and results behind our Monte Carlo simulations which are fully presented in

the Appendix. Finally, we apply our method to measure the benefits of participating to the 401(k)

pension plan on savings.

5.1 Extensions

In Appendix A.4 and A.5, we present two main extensions that are briefly discussed here.

Multiple treatments or repeated measurements. The results in Section 3.3 and 3.4 re-

quire only one binary treatment indicator T . Nevertheless, if there are multiple treatment proxies

(or repeated measurements), we can (potentially) further tighten the bounds of αIV , since each

proxy may carry different and relevant information about the actual (and unobservable) treatment

D.28 Based on the results presented in Appendix A.4, when multiple treatment proxies (or repeated

measurements) are available, all three confidence intervals can be obtained in the same manner as

in Equations (24)-(26). Moreover, there are two main differences between our approach and that

commonly used in the literature when multiple treatments (or repeated measurements) are avail-

able to the practitioner.29 First, we do not restrict the dependence among our treatment proxies,

therefore the extra measures might be endogenous and do not have to be instruments. In addition,

our proxies may be built upon the same, not repeated, measurement, by creating multiple (and

binary) treatment dummies from the same discrete treatment variable and capturing various pieces

of useful information in the same measurement.
27More details about how we construct the confidence intervals of the there identified sets Θα(P), Θp(P) and Θξ(P) are given in Appendix

A.3.
28Here we refer to multiple treatment measures as “multiple treatment proxies”, in the sense that the extra treatment measures (other than

the binary T used in the previous sections), can be binary, discrete or continuous.
29Indeed, in the presence of misclassification error, multiple treatment proxies in the form of repeated measurements are widely used in both

point and partial identification of treatment effects literature (see e.g. Hausman et al. (1991) among others).
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Including covariates. In many applications, the instruments may be confounded without

conditioning on some covariates. In addition, treatment effects may be heterogeneous across the

population characterized by different attributes. Hence, in the identification of causal effects, par-

ticular attention has been paid to accounting for covariates (see e.g. Abadie (2003), Frölich (2007)

and Angrist and Fernandez-Val (2010) among many others). Following this literature, in Appendix

A.5 we define our target parameter the conditional IV estimand αIV (x), which can be expressed as

a weighted average of the conditional LATEs {αk,k−1(x)}kK=1:

αIV (x) =
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

=
K
∑

k=1

γIV
k (x)αk,k−1(x), (27)

where X is a vector of observables with supportΩX , and γIV
k (x) is the weight such that

∑K
k=1 γ

IV
k (x) =

1 for∀x ∈ ΩX . In this case, we show that the extension of the three main partial identification strate-

gies to accommodate for covariates is straightforward. This is because their respective identified

sets for αIV (x) are the conditional-on-covariates version of the identified sets obtained in Section

3.3, once Assumptions 3.1, 3.2 and 3.3 hold conditional on X . In Appendix A.6, we provide guid-

ance on the inference procedure which, following Dehejia and Wahba (1999) and Battistin and

Sianesi (2011), is based on the idea of stratification matching.

5.2 How to use P-LATE in practice

We provide some guidance about: (i) How to choose among the three partial identification strate-

gies; and (ii) How to incorporate external information about the misclassification error and calculate

the bounds using strategy 3.

First, the choice of which strategy to adopt depends on the information available. If no prior or

external information about measurement accuracy is available, then both strategy 1 and 2 can be

applied with the available dataset. Moreover, based on the discussion of Corollary 3.4, in situations

where the practitioner suspects that the value of LATM, ∆pk, does not vary much across k (at the

limit, the data exhibit homogeneous misclassification), we suggest to use strategy 2. Note that, as

we pointed out at the end of Section 3.3, if the available instrument is binary, there is no choice

to make between strategy 1 and 2 because they are exactly the same and they coincide with the

strategy by Ura (2018). Lastly, when there are available information about the weighted average

of LATMs, ξ, and we are quite confident about the accuracy of the range [ξ,ξ], then strategy 3 is

strongly recommended.

Second, prior information about the misclassification error is useful because it is likely to help

improving the bounds of αIV . For illustrative purpose, suppose αIV = 1 but the practitioner can only

obtain an estimate of αMis, using a conventional 2SLS, such that eαMis = 1.5 and the 95% confidence

interval is [0.52,2.48]. The objective of strategy 3 is to combine these information with information

about the misclassification error in order to obtain the tightest bounds of αIV . Denote the weighted

average probability of false negative as wn = 1 −
∑K

k=1 γ
IV
k p1,k (this is the probability of treated

24



individuals misclassified as untreated) and false positive as wp =
∑K

k=1 γ
IV
k p0,k (this is the probability

of untreated individuals misclassified as treated). Then, by definition, ξ = 1− wn − wp. In order

to show how to implement at best the third strategy, we consider four examples and illustrate how

one should set the range [ξ,ξ] in each scenario. We also calculate the corresponding confidence

intervals of αIV using Equation (26).

Example 1. The first example mimics a context where, for each group of compliers, Ck, the

number of false positive is lower than the number of false negative: that is, 0 ≤ p0,k ≤ 1 − p1,k

(implying 0 ≤ wp ≤ wn). This is a common situation under poor recalling of treatment status.

Moreover, suppose only wn is known. Then, ξ≤ 1−wn because wp is nonnegative, and ξ≥ 1−2wn

because wp ≤ wn. In this case, a practitioner can set ξ ∈ [1− 2wn, 1− wn]. Assume wn = 0.50.

Given the aforementioned estimate of αMis, the 95% confidence interval for αIV in this case would

be [0, 1.49].30

Example 2. In the second example, consider again a context where, for each group of com-

pliers, Ck, 0 ≤ p0,k ≤ 1− p1,k. However, differently from before, suppose only wp is known. Then,

ξ ≤ 1− 2wp because wp ≤ wn, and ξ ≥ −wp because 1− wn is nonnegative. In this case, a prac-

titioner can set ξ ∈ [−wp, 1 − 2wp]. Suppose wp = 0.05. Given the estimate of αMis, the 95%

confidence interval for αIV would be [−0.12,2.23].31

Four remarks follow directly from these first two examples. Firstly, if the value of false negative

wn is larger than 0.5 (that is, more than 50% of individuals who are truly treated report to be

untreated), the range of ξ, in Example 1, would lie in an interval including both negative and

positive values and would make Θξ fail to identify the sign of αIV . This would occur even if the

confidence interval of αMis stood on one side of zero. This is intuitive because it suggests that the

data collected are heavily contaminated by misclassification error. In such a situation, we warn the

practitioner to be cautious about the interpretation of the results obtained. Secondly, if the only

available information is the value of false positive, in general such information is likely to be too

weak to recover, confidently, the sign of αIV . This is because, in Example 2, when the false positive

wp ≤ 0.5, ξ would also lie in an interval including both negative and positive values and would

make, again, Θξ fail to identify the sign of αIV . In such a situation, we recommend to impose

further restrictions, such as the probability of false negative to be at most 0.5, leading to a narrower

bound ξ ∈ [0.5−wp, 1−2wp]. The latter choice should be motivated by the specific context. Thirdly,

30The confidence interval (CI) is calculated using Equation (26). The ending points correspond to the smallest and largest points in the
interval C ξ(βξ). The rule to find these two extremes is straightforward. Multiplying the two ending points of CI of αMis by ξ and ξ, gives us
four values. Then, the smallest and largest value among these four values, will be the two ending points of the CI of αIV . For example, given
the CI of αMis, since both its extremes are positive, the CI is αIV ∈ [0.52× 0,2.48× 0.5] = [0,1.49]. The rule is slightly more complicated to
apply if the confidence interval of the 2SLS estimate contains both positive and negative values. For example, suppose the practitioner uses
a smaller sample size, so that, eαMis = 1.5, but the 95% confidence interval of this 2SLS estimate is [−0.08,3.08], which is less precise than
before because the range is wider and contains both positive and negative values of the effect. In this case, if we apply the same rule, the CI
would be calculate as follows: αIV ∈ [−0.08× 0.5,3.08× 0.5] = [−0.04, 1.54].

31The complication in this case is caused by the negative ξ. Given the estimate of αMis, the CI of αIV is [2.48 × (−0.05), 2.48 × 0.9] =
[−0.12, 2.23]. Whereas, if eαMis = 1.5, but the 95% confidence interval of this 2SLS estimate is [−0.08,3.08], the CI would be αIV ∈ [(−0.08)×
0.9,3.08× 0.9] = [−0.07,2.8].
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both remarks imply that the information about false negative is in general more powerful than the

information about false positive. This is also intuitive because, knowing the probability of false

negative is equivalent to knowing the probability of true treated correctly reporting their treatment

status (which is equal to 1 − wn). It can be thought as a measure of the quality of the sample

collected. Finally, even if ξ and ξ are both positive, it is possible that Θξ(P) may fail to identify the

sign of αIV if the confidence interval of αMis is on both side of zero.

Example 3. The third example mimics a context where the practitioner does not know the

approximate number of false positive or false negative, but only an upper bound of wn and wp: For

example, wn ≤ 0.5 and wp ≤ 0.05. In this case, the range of ξ can be set as [0.45, 1], where the

lower bound is computed by 1 minus the summation of the two maximum values of wn and wp,

and the upper bound by 1 minus the summation of the two minimum values, which are 0. One

special case is when the practitioner knows that the false positive is approximately 0; in this case

ξ ∈ [0.5, 1]. Let us take the range ξ ∈ [0.45,1] as prior information. Given the estimate of αMis,

the 95% confidence interval for αIV would be [0.23, 2.48].32

Example 4. In the last example, we mimic a situation where the practitioner has a good

approximation of both wp and wn, which is equivalent to having a good approximation of ξ =

1−wn−wp. In this case, the identified set Θξ(P) degenerates to a point αMis(1−wn−wp). Suppose

wn = 0.50 and wp = 0.05, then ξ = 0.45. Given the estimate of αMis, the point estimate of αIV

would be 0.675 with a 95% confidence interval of [0.23,1.12].33 However, it is worth pointing out

that, in practice, exactly because the value of wn and wp are likely to be only approximations of

their true values, the point estimate obtained in this case will be biased with respect to the true

αIV . Nevertheless, our P-LATE estimator can still be used in place of a conventional IV estimator as

a bias reduction method. Moreover, our simulation results in Appendix A.7 demonstrate that the

confidence interval of the point estimates αMis(1−wn −wp) yields a desirable coverage rate of the

true value of αIV .

5.3 Monte Carlo Simulations

In Appendix A.7, we use Monte Carlo simulations to illustrate the finite sample properties of the

confidence intervals C j(β j), with j = α, p,ξ, proposed in Section 4. We study the performance of the

three strategies for practical applications, hence we compute the simplified version of the confidence

intervals of αk,k−1 and ∆pk as in Equation (23). Based on this, the confidence intervals of αIV are

constructed in the same manners as in Equations (24), (25) and (26). We explore extensively the

sensitivity of the bounds along three dimensions: (i) strength of the instrumental variable, (ii)

extent of the misclassification error, and (iii) external information. Overall, the conclusion is that

P-LATE represents a reliable alternative estimator when practitioners can only use a mismeasured

32Whereas, if eαMis = 1.5, but the 95% confidence interval of this 2SLS estimate is [−0.08, 3.08], the CI of αIV would be again [−0.08, 3.08].
33Whereas, if eαMis = 1.5, but the 95% confidence interval of this 2SLS estimate is [−0.08, 3.08], the CI of αIV would be [−0.036, 1.39].
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binary treatment T in place of D to estimate the benefits of a program. Moreover, P-LATE becomes

very powerful, and works at best, when external information about the accuracy of the measurement

error can be taken into account.

5.4 Application to the 401(k) pension plan

In this Section, we use our method to measure the benefits of participating to the 401(k) pension

plan on savings and compare the results with the existing literature. This is one of the most popular

defined contribution retirement plan, which is aimed at increasing financial savings through tax

deducibility of the contributions to retirement accounts. The effects of this plan have been studied

by, among others, Poterba et al. (1995), Abadie (2003) and Ura (2018). One of the main charac-

teristics of the plan is that it is provided by employers, hence only workers in firms offering such

program are eligible.

There are two main difficulties in measuring its benefits: endogenous participation to the plan

and misreporting of participation. The first problem may arise due to unobserved differences in

saving behaviors. That is, participants to this plan may save more than those who do not partic-

ipate, even in the absence of the 401(k). Hence, a comparison of accumulated financial assets

between participants and non-participants is likely to yield a positive bias of the true effect of the

program. Whereas, the second problem may arise because individuals find it difficult to remember

or understand their pension plan, leading to the issue of reporting error. Indeed, Gustman et al.

(2007) document that about one-fourth of respondents to the Health and Retirement Study (HRS)

survey misreport their pension plan. Furthermore, Dushi and Iams (2010) document that, in the

Survey of Income and Program Participation (SIPP) survey, over 17% of participants to the plan

self-report as non-participants (false negative) and almost 10% of non-participants self-report as

participants (false positive). Understanding the benefits of such programs is relevant for the eco-

nomic well-being of future retirees because these plans are an important part of retirement income

security.

We use data from the SIPP survey round of 1991. The construction of the dataset follows Abadie

(2003). Hence, our sample includes only households where at least one person is employed and

has no income from self-employment. Moreover, the sample is restricted to individuals with annual

family income between $10,000 to $200,000, because eligibility to the plan is rare outside of this

interval. Table 1 reports the summary statistics of the main variables used in the analysis. The

average family net financial assets (which is the outcome Y ) is around $19,000, roughly 27% of the

observations report to participate in the 401(k) pension plan (which is the misreported treatment

T), whereas 39% are eligible to the plan (which is the instrument Z). The set of covariates X

includes a constant, family income, age, age squared, marital status and family size. The resulting

sample size is 9,275.

Table 2 reports the empirical results. Column (1) reports the conventional 2SLS estimates as

shown in column (3) of Table 2 by Abadie (2003). This represents our benchmark result of a biased
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Table 1: Summary statistics

Variable Mean Standard deviation Minimum Maximum

Family net financial assets 19.0 63.9 -0.5 1,536
Participation to 401(k) 0.276 0.447 0 1
Eligibility to 401(k) 0.392 0.4356 0 1
Family income 39.2 24.1 10.0 199.0
Age 41.1 10.3 25 64
Family size 2.9 1.5 1 13

Notes: The Table reports the mean, standard deviation, minimum and maximum values of the main variables used
in the paper. There is a total of 9,275 observations. The average family net financial assets (in 1,000$ units) is the
outcome Y , the participation to the 401(k) pension plan is the misreported treatment T , whereas the eligibility to
the plan is the instrument Z . The set of covariates X includes a constant, family income (in 1,000$ units), age, age
squared, marital status and family size.

Table 2: Empirical results

(1) (2) (3) (4) (5) (6) (7)

Existing results P-LATE

Abadie Ura Strategy Strategy 3

(2003) (2018) 1 & 2 wn only wp only appr. wn and wp exact wn and wp

9.4 (4.4, 28.3) (4.4, 28.3) (3.3, 11.2) (-1.4, 10.9) (1.8, 13.6) 6.8
(5.3, 13.5) (3.8, 9.8)

Notes: Results in this Table are in 1,000$ units. Column (1) reports the conventional 2SLS estimates as shown in column (3) of
Table 2 by Abadie (2003). Column (2) reports the best 95% confidence interval of the local average treatment effect as shown
in Table 2 by Ura (2018). Column (3)-(6) report the 95% confidence interval of P-LATE under different assumptions regarding
the misclassification probabilities. Finally, column (7) delivers a point estimate of the effect.

point estimate. The effect is statistically significant and says that participating to the 401(k) plan

increases the total financial assets by roughly $9,400, with a 95% confidence interval lying between

$5-13,000. Column (2) reports the best 95% confidence interval of the local average treatment

effect as shown in Table 2 by Ura (2018). This is our benchmark result for P-LATE. As one can notice,

although the interval accounts for the misclassification error of the treatment variable, the upper

bound is more than twice as large as the upper bound of the previous interval. Column (3)-(6) report

the 95% confidence interval of P-LATE under different assumptions regarding the misclassification

probabilities. Column (3) assumes no information about the misclassification probabilities. Since

the instrumental variable is binary, strategy 1 and 2 coincide with one another and are equivalent to

the method developed by Ura (2018). Furthermore, column (4) assumes that only the probability

of false negative wn is known; column (5) assumes that only the probability of false positive wp

is known; column (6) assumes that only an upper bound of both these probabilities is known. As

one can see, the confidence intervals delivered by P-LATE are similar, and in some cases even better,

than those in column (1). Finally, column (7) assumes that both probabilities are known, hence in

this case P-LATE delivers a point estimate of the effect.
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6 Conclusion

In the evaluation of treatment effects, the endogenous participation is often misreported in survey

data. When treatment is binary, using a standard instrumental variable method would lead to biased

estimates. Even with infrequent arbitrary errors in the binary treatment indicator, the bias can be

severe. In this paper, we focus on the weighted average of local average treatment effects (LATE),

which is a parameter that can be estimated to measure the effects of a treatment in case of non-

compliance. We start by showing the limitations of the standard LATE approach when the binary

treatment is a mismeasured proxy of the true treatment and derive a simple relationship between

the causal and the identifiable parameter that can be recovered from the observed data. Then, we

provide strategies to set identify the weighted average of LATEs and to further tighten the bounds

using external information on the misclassification probabilities.

Overall, our article shows that researchers who aim to measure treatment effects with a mis-

classified binary treatment can obtain bounds of the weighted average of LATEs. These bounds

can potentially be tight, provided accurate information about the extent of misreporting in survey

data can be found. These information can come from the increase availability of administrative

records of treated individuals. There are applications where such information are readily available.

In other applications, one could also rely on small validation studies, repeated measurements of the

same individual, as well as economic theory. Our main conclusion is that our proposed method is

universally applicable as the leading identification strategy, or the leading robustness check, in any

setting where the practitioner suspects that the endogenous binary treatment is not well measured

and instrument(s) are available.
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A Appendix

This Appendix contains seven sections with proofs, additional material and analysis. The infor-

mation are organized as follows. Appendix A.1 contains the proofs of Section 3. Appendix A.2

provides the details about the two-step multiplier bootstrap method introduced by Chernozhukov

et al. (2019) and about how to use it to construct the confidence intervals for P-LATE. Appendix

A.3 provides the details about how, in practice, confidence intervals are constructed in our paper.

Appendix A.4 provides the details about the partial identification results using multiple treatment

proxies. Appendix A.5 and A.6 provide the details about how to use P-LATE in empirical applications

with covariates. Appendix A.7 contains the Monte Carlo simulations, tables and figures.

A.1 Proofs of Section 3

A.1.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Assumption 3.2-(ii) guarantees that the denominator of αMis is nonzero and

thus αMis is well-defined. Consider the denominator of αMis in equation (2),

E[T (g(Z)−E[g(Z)])]

=
K
∑

l=0

E
�

T
�

�Z = zl
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(g(zl)−E[g(Z)])πl
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K
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k=1
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E(T |Z = zk)−E(T |Z = zk−1)
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(g(zl)−E[g(Z)])πl
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K
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k=1
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E(T |Z = zk)−E(T |Z = zk−1)
�

K
∑

l=k

(g(zl)−E[g(Z)])πl . (A1)

For any zl , zw ∈ ΩZ , by the definition of T and Assumption 3.2-(i) (extended unconfoundedness),

E(T |Z = zl)−E(T |Z = zw)

=E[T0 + D(T1 − T0)|Z = zl]−E[T0 + D(T1 − T0)|Z = zw]

=E[T0 + Dl(T1 − T0)|Z = zl]−E[T0 + Dw(T1 − T0)|Z = zw]

=E[(Dl − Dw)(T1 − T0)]

=E[T1 − T0|Dl − Dw = 1]Pr(Dl − Dw = 1)−E[T1 − T0|Dl − Dw = −1]Pr(Dl − Dw = −1).

Due to Assumption 3.1-(iv) (monotonicity), it is either that Dl ≥ Dw and Pr(Dl − Dw = −1) = 0,

or Dl ≤ Dw and Pr(Dl − Dw = 1) = 0. Since zk is ordered such that P(zk−1) ≤ P(zk), we have that
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Dk−1 ≤ Dk
34. Therefore,

E(T |Z = zk)−E(T |Z = zk−1) = E(T1 − T0|Ck)Pr(Ck). (A2)

Plug (A2) into (A1), we get

E[T (g(Z)−E[g(Z)])] =
K
∑

k=1

E(T1 − T0|Ck)Pr(Ck)
K
∑

l=k

(g(zl)−E[g(Z)])πl . (A3)

For the numerator of equation (2), using the same proof of Imbens and Angrist (1994), we have

E[Y (g(Z)−E[g(Z)])] =
K
∑

k=1

αk,k−1Pr(Ck)
K
∑

l=k

(g(zl)−E[g(Z)])πl . (A4)

Thus, based on equation (A3) and (A4), the mismeasured LATE is:

αMis =

∑K
k=1αk,k−1Pr(Ck)

∑K
l=k (g(zl)−E[g(Z)])πl

∑K
k=1E(T1 − T0|Ck)Pr(Ck)

∑K
l=k (g(zl)−E[g(Z)])πl

=
K
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k=1

γMis
k αk,k−1. (A5)

A.1.2 Proof of Corollary 3.1

Proof of Corollary 3.1. For ∀k, by definitions of γIV
k and γMis

k we have:

γIV
k

γMis
k

=
K
∑

k=1

Pr(Ck)
∑K

l=kπl (g(zl)−E[g(Z)])
∑K

m=1 Pr(Cm)
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l=mπl (g(zl)−E[g(Z)])
× (p1,k − p0,k) =

K
∑

k=1

γIV
k (p1,k − p0,k). (A6)

A.1.3 Effectual and ineffectual subgroups

Let us first introduce some notation and definitions. For any generic random variable A and B,

denote fA the distribution function of A, and denote fA|B the conditional distribution function of A

given B. If A is a discrete random variable, then fA(a) represents the probability of taking value a.

Furthermore, we define an effectual subgroup the subgroup of compliers (Ck) with nonzero γIV
k and

nonzero αk,k−1 such that this subgroup has nonzero contribution to αIV . On the contrary, we define

an ineffectual subgroup the subgroup of compliers (Ck) with either zero weight γIV
k , or zero LATE

αk,k−1. That is, an ineffectual subgroup is a group of compliers that makes no contribution to αIV .

From equation (4), it is easy to see that if E(Y |Z = zk)−E(Y |Z = zk−1) = 0, then the subgroup k

is one of the ineffectual subgroups. In addition, a subgroup k such that
∑K

l=k(g(zl)−E[g(Z)])πl = 0

34In discrete IV setting, P(zk−1) ≤ P(zk) implies Dk−1 ≤ Dk can be simply proved by contradiction under Assumption 3.1-(ii) that Z ⊥
(Y1, Y0, Dk) for k = 0, 1, ..., K .
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is also an ineffectual subgroup. An effectual subgroup k′, instead, is such that E(Y |Z = zk′) −
E(Y |Z = zk′−1) 6= 0 and

∑K
l=k′ (g(zl)−E[g(Z)])πl 6= 0.

Lemma A.1. Suppose Assumptions 3.1-(ii)-(iv), 3.2-(i) and 3.3 hold. Denote Se as the collection of

indicators for effectual subgroups (Ck). Then the effectual and the ineffectual subgroups are identifiable.

For any effectual subgroup k ∈ Se, we have T V(Y,T ),k > 0, and the sign of αk,k−1 is identified by the sign

of ∆kE(Y |Z).

Proof of Lemma A.1. This proof is based on the proof of Theorem 1 in Imbens and Angrist (1994).

Since the order of the support ΩZ is given, we have that Pr(zk) ≥ Pr(zk−1) for k = 1, 2, ..., K . By

virtue of (4), we know that

αk,k−1Pr(Ck) =∆kE(Y |Z),

where ∆kE(Y |Z) is identifiable given the joint distribution of (Y, Z). If ∆kE(Y |Z) = 0, then it is

either αk,k−1 = 0, or P(zk)−P(zk−1) = 0 implying γk = 0. In addition, because g(·) is a known func-

tion, we can also identify whether
∑K

l=k (g(zl)−E[g(Z)])πl is zero or not based on the distribution

of Z . Thus, those ineffectual subgroups are identified, as well as those effectual subgroups.

For those effectual subgroups, we have ∆kE(Y |Z) 6= 0 and Pr(zk)− Pr(zk−1) 6= 0. Therefore,

T V(Y,T ),k > 0 follows directly from Lemma A.2-(ii). In addition,

sign(αk,k−1) = sign
�

∆kE(Y |Z)
Pr(Ck)

�

= sign(∆kE(Y |Z)),

where sign(x) = 1[x ≥ 0]− 1[x < 0], and the last equality is due that Pr(zk) > Pr(zk−1). Hence,

the sign of αk,k−1 of the effectual subgroup can be identified by the sign of ∆kE(Y |Z).

Denote the collection of the effectual subgroups Se ⊂ {1,2, ..., K}. If k ∈ Se, then subgroup

(Ck) has nonzero contribution to the weighted average treatment effect αIV . By definition of the

effectual subgroup, αIV and αMis, we have γkαk,k−1 = γMis
k αk,k−1 = 0 for k 6∈ Se. Therefore,

αIV =
∑

k∈Se

γkαk,k−1, and αMis =
∑

k∈Se

γMis
k αk,k−1.

Then, the sufficient conditions needed for the proofs about the identified sets αIV , based on the

expression of either αIV or αMis, can be relaxed in the sense that they can be only imposed on Se.
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A.1.4 Proof of Lemma 3.1

Proof of Lemma 3.1. By law of iterated expectation and the independence of instrument Z ,

f(Y,T )|Z=zk
= f(Y,T )|Ck,Z=zk

Pr(Ck)

+ f(Y,T )|Dk−1=0,Dk=0,Z=zk
Pr(Dk−1 = 0, Dk = 0)

+ f(Y,T )|Dk−1=1,Dk=1,Z=zk
Pr(Dk−1 = 1, Dk = 1)

= f(Y1,T1)|Ck
Pr(Ck)

+ f(Y0,T0)|Dk−1=0,Dk=0Pr(Dk−1 = 0, Dk = 0)

+ f(Y1,T1)|Dk−1=1,Dk=1Pr(Dk−1 = 1, Dk = 1).

Similarly,

f(Y,T )|Z=zk−1
= f(Y0,T0)|Ck

Pr(Ck)

+ f(Y0,T0)|Dk−1=0,Dk=0Pr(Dk−1 = 0, Dk = 0)

+ f(Y1,T1)|Dk−1=1,Dk=1Pr(Dk−1 = 1, Dk = 1).

Therefore, we can get that

T V(Y,T ),k =
1
2

∑

t=0,1

∫

| f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)|dµY (y)

=
1
2

∑

t=0,1

∫

�

� f(Y1,T1)|Ck
(y, t)− f(Y0,T0)|Ck

(y, t)
�

� dµY (y)Pr(Ck)

≤
1
2

∑

t=0,1

∫

�

f(Y1,T1)|Ck
(y, t) + f(Y0,T0)|Ck

(y, t)
�

dµY (y)Pr(Ck)

=Pr(Ck).

By the monotonicity assumption, we know that compliers groups are mutually exclusive. Then,

Pr(Ck) =1−
∑

k′ 6=k

Pr(Ck′)− Pr(D0 = D1 = ...= DK = 0)− Pr(D0 = D1 = ...= DK = 1)

≤1−
∑

k′ 6=k

Pr(Ck′)

≤1−
∑

k′ 6=k

T V(Y,T ),k′,

where the last inequality is due that T V(Y,T ),k ≤ Pr(Ck) for all k = 1, 2, ..., K .

A.1.5 Proof of Lemma 3.2

The proofs of Lemma 3.2 are similar to the proof of Theorem 17 in Ura (2018), but with nontrivial

adjustments to deal with the multi-valued instrument setting of our paper. In order to prove this
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Lemma, we need to introduce Lemma A.2 below. In what follows, we first prove Lemma A.2 and

then proceed to the proof of Lemma 3.2.

Lemma A.2. Under Assumptions 3.1-(ii)-(iv), 3.2-(i) and 3.3, we have that for ∀k = 1,2, ..., K,

(i) T V(Y,T ),k ≥ |∆kE(T |Z)|;

(ii) |∆kE(Y |Z)|> 0 ⇒ T V(Y,T ),k > 0.

Proof of Lemma A.2. (i) This is a multi-valued instrument version of the proof of Lemma 5 in Ura

(2018).

T V(Y,T ),k =
1
2

∑

t=0,1

∫

| f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)|dµY (y)

≥
1
2

∑

t=0,1

�

�

�

�

∫

f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)dµY (y)

�

�

�

�

=
1
2

∑

t=0,1

�

� fT |Z=zk
(t)− fT |Z=zk−1

(t)
�

�

=
1
2

��

� fT |Z=zk
(1)− fT |Z=zk−1

(1)
�

�+
�

� fT |Z=zk
(0)− fT |Z=zk−1

(0)
�

�

�

=
�

� fT |Z=zk
(1)− fT |Z=zk−1

(1)
�

�

= |∆kE(T |Z)| .

(ii) We prove (ii) by verifying ∆kE(Y |Z) 6= 0 implies that

Pr
��

(y, t) ∈ ΩY × {0,1} :
�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

� 6= 0
	�

> 0. (A7)

It can be verified by proof by contradiction as below. Suppose ∆kE(Y |Z) 6= 0 but the probability in

(A7) is zero. It means with probability one that

�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

�= 0

⇔ f(Y,T )|Z=zk
(y, t) = f(Y,T )|Z=zk−1

(y, t), for both t = 0, 1

⇔
∑

t=0,1

f(Y,T )|Z=zk
(y, t) =

∑

t=0,1

f(Y,T )|Z=zk−1
(y, t)

⇔ fY |Z=zk
(y) = fY |Z=zk−1

(y)

⇔ ∆kE(Y |Z) =
∫

y[ fY |Z=zk
(y)− fY |Z=zk−1

(y)]dµY (y) = 0, (A8)

which contradicts ∆kE(Y |Z) 6= 0. Therefore, |∆kE(Y |Z)| > 0 implies (A7), and we have that

T V(Y,T ),k > 0 by definition.

Now we can proceed to the proof of Lemma 3.2.
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Proof of Lemma 3.2. (i) If T V(Y,T ),k = 0, then by Lemma A.2 ∆kE(Y |Z) = 0, and any αk,k−1 ∈ Θ
satisfies the inequalities (5), (6) and (7). If T V(Y,T ),k > 0, we have 1−

∑

k′ 6=k T V(Y,T ),k′ > 0 and

|∆kE(Y |Z)|
1−

∑

k′ 6=k T V(Y,T ),k′
≤ |αk,k−1| ≤

|∆kE(Y |Z)|
T V(Y,T ),k

,

and the sign of αk,k−1 is identified by the sign of ∆kE(Y |Z).

(ii) The sharpness can be proved by the same proof of Lemma 3.3(ii), via replacing ∆kE(T |Z)
and∆pk in the proof of Lemma 3.3(ii) by∆kE(Y |Z) and αk,k−1 respectively. Due to space limitation,

we skip it.

A.1.6 Proof of Lemma 3.3

Proof of Lemma 3.3. (i) If T V(Y,T ),k = 0, ∆kE(T |Z) = 0 by Lemma A.2, and any ∆pk ∈ [−1,1]

satisfies the inequalities (8), (9) and (10). If T V(Y,T ),k > 0, we have 1−
∑

k′ 6=k T V(Y,T ),k′ > 0 and

|∆kE(T |Z)|
1−

∑

k′ 6=k T V(Y,T ),k′
≤ |∆pk| ≤

|∆kE(T |Z)|
T V(Y,T ),k

,

and the sign of ∆pk is identified by the sign of ∆kE(T |Z).

(ii) The proof of sharpness can be implemented in two steps.

In Step 1, we show that if max
0≤m≤K

V T(Y,T ),m = 0, which means all V T(Y,T ),m = 0 for ∀m= 1, ..., K ,

the sharp identified set for∆pk is [−1,1]. In Step 2, we show that if T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0

with all k′ 6= k, then any point lies inΘp
k(P) equals to∆pk under some DGP which generates (Y, T, Z).

Step 1. Since V T(Y,T ),m = 0 for all m, we know

f(Y,T )|Z=z0
(y, t) = f(Y,T )|Z=z1

(y, t) = ...= f(Y,T )|Z=zK
(y, t) = f(Y,T )(y, t) (A9)

almost sure for all (y, t) ∈ ΩY × {0, 1}.
Denote f1, f0 to be any arbitrary pair of well-defined probability functions with support [0,1],

satisfying 0 ≤ f1, f0 ≤ 1 and
∑

t=0,1 f1 =
∑

t=0,1 f0 = 1. Define a data generate process P∗f1, f0
based

on f1, f0 as below:

Z ∼ fZ , Dk|Z = 1 for all k = 0, 1, ..., K ,

(Y1, T1)|({Dk}Kk=0,Z) ∼







f(Y,T ), if all Dk are equal,

fY f1, if at least one Dk 6= Dk−1.

(Y0, T0)|({Dk}Kk=0,Z) ∼ fY f0,
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where fZ , fY and f(Y,T ) are the true marginal distributions of the observable (Y, T, Z). In what

follows, we denote f ∗ as any density function associated with the DGP P∗. Next, we show that for

any arbitrary pair f1, f0 described above:

(a) P∗f1, f0
satisfies Assumptions 3.1-(ii)-(iv) and 3.2-(i).

(b) P∗f1, f0
generates the data (Y, T, Z).

(c) Under P∗f1, f0
, we have that ∆pk = f1(1)− f0(1) for all k = 1,2, ..., K .

(a) The DGP P∗fT1
, fT0

above shows that Z⊥(Y1, Y0, {Dk}Kk=0, T1, T0), and Dl ≥ Dw almost surely and

P(zl)≥ P(zw) for l > w.

(b) Denote f ∗ as the distribution function under P∗f1, f0
, e.g. f ∗Y is the distribution of Y generated

by the DGP P∗f1, f0
. Then, for ∀k = 0, 1, ..., K

f ∗(Y,T )|Z=zk
(y, t) = f ∗(Y,T )|D0=1,D1=1,...,DK=1,Z=zk

(y, t)

= f ∗(Y1,T1)|D0=1,D1=1,...,DK=1,Z=zk
(y, t)

= f(Y,T )(y, t)

= f(Y,T )|Z=zk
(y, t)

where the third equality is due that (Y1, T1)|({Dk}Kk=0,Z) ∼ f(Y,T ) if all Dk are equal, and the last equality

is because of (A9). Thus, P∗f1, f0
generates (Y, T, Z), since f ∗(Y,T )|Z=zk

= f(Y,T )|Z=zk
.

(c) Under P∗f1, f0
, we have the independence of Z to (T1, T0, {Dk}Kk=0),

∆pk = EP∗f1, f0
[T1 − T0|Ck]

= EP∗f1, f0
[T1 − T0|Ck, Z]

= f ∗T1|Ck,Z(1)− f ∗T0|Ck,Z(1)

=

∫

f ∗Y1,T1|Ck,Z(y, 1)dµY (y)−
∫

f ∗Y0,T0|Ck,Z(y, 1)dµY (y)

= f1(1)

∫

fY (y)dµY (y)− f0(1)

∫

fY (y)dµY (y)

= f1(1)− f0(1).

Given that P∗f1, f0
with any pair of ( f1, f0) satisfies (a)-(c), it fulfills the proof of Step 1.

Step 2. We prove the statement in Step 2 above in three sub-steps.

(a) There exists a DGP P∗L that satisfies Assumptions 3.1-(ii)-(iv) and 3.2-(i), generates (Y, T, Z)

and ∆pk =∆kE(T |Z) under P∗L .

(b) There exists a DGP P∗U that satisfies Assumptions 3.1-(ii)-(iv) and 3.2-(i), generates (Y, T, Z)

and ∆pk =
∆kE(T |Z)
T V(Y,T ),k

under P∗U .
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(c) For some constant ψ ∈ [0, 1], the mixture ψP∗L + (1−ψ)P
∗
U satisfies Assumptions 3.1-(ii)-(iv)

and 3.2-(i), generates (Y, T, Z) and ∆pk =ψ∆kE(T |Z) + (1−ψ)
∆kE(T |Z)
T V(Y,T ),k

.

(a) Given T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 with all k′ 6= k, define a DGP P∗L as below:

Z ∼ fZ , (Dk−1, Dk)|Z = (0,1), Dl ≤ Dw if l < w

(Y1, T1)|({Dk}Kk=0,Z) ∼ f(Y,T )|Z=zk

(Y0, T0)|({Dk}Kk=0,Z) ∼ f(Y,T )|Z=zk−1
.

It is easy to see that under P∗L , Z⊥(Y1, Y0, {Dk}Kk=0, T1, T0)′, Dl ≥ Dw almost surely and Pr(zl) ≥
Pr(zw) for l > w. Denote f ∗L as the distribution functions under P∗L . Then, for ∀m≤ k− 1,

f ∗L(Y,T )|Z=zm
(y, t) = f ∗L(Y,T )|D=0,Z=zm

(y, t)

= f ∗L(Y0,T0)|Dm=0,Z=zm
(y, t)

= f(Y,T )|Z=zk−1

= f(Y,T )|Z=zm
,

where the last equality is due to T V(Y,T ),k′ = 0 for all k′ 6= k, implying f(Y,T )|Z=zm
= f(Y,T )|Z=zk−1

for all

m≤ k− 1. Furthermore, for ∀m≥ k,

f ∗L(Y,T )|Z=zm
(y, t) = f ∗L(Y,T )|D=1,Z=zm

(y, t)

= f ∗L(Y1,T1)|Dm=1,Z=zm
(y, t)

= f(Y,T )|Z=zk

= f(Y,T )|Z=zm
,

where the last equality is due to T V(Y,T ),k′ = 0 for all k′ 6= k, implying f(Y,T )|Z=zm
= f(Y,T )|Z=zk

for all

m≥ k. Hence, we have shown that the DGP P∗L generates (Y, T, Z).

Next, consider ∆pk under P∗L :

∆pk = EP∗L
[T1 − T0|Ck]

= EP∗L
[T1|Ck, Z = zk]−EP∗L

[T0|Ck, Z = zk−1]

= fT |Z=zk
(1)− fT |Z=zk−1

(1)

= E[T |Z = zk]−E[T |Z = zk−1]

=∆kE[T |Z],

which fulfills the proof of (a).

(b) Given T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 with all k′ 6= k, we first define a random variable

H = 0.5× sign(∆k f(Y,T )|Z(Y, T )), where∆k f(Y,T )|Z(Y, T ) = f(Y,T )|Z=zk
(Y, T )− f(Y,T )|Z=zk−1

(Y, T ). Then,
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let us define a DGP P∗U as follows

Z ∼ fZ ,

(Dk−1, Dk)|Z =















(0, 1), Dl ≤ Dw if l < w, with probability ∆kE[H|Z],

(0, 0), Dl = Dw for all l, w, with probability Pr(H = −0.5|Z = zk),

(1, 1), Dl = Dw for all l, w, with probability Pr(H = 0.5|Z = zk−1).

(Y1, T1)|({Dk}Kk=0,Z) ∼







∆k f(Y,T,H)|Z(y,t,0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T )|H=0.5,Z=zk−1
(y, t), if Dk−1 = Dk

(Y0, T0)|({Dk}Kk=0,Z) ∼







−∆k f(Y,T,H)|Z(y,t,−0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T )|H=−0.5,Z=zk
(y, t), if Dk−1 = Dk

First of all, noticing that

∆kE[H|Z] = E[H|Z = zk]−E[H|Z = zk−1]

=
1
2

∑

t=0,1

�

∫

sign(∆k f(Y,T )|Z(y, t)) f(Y,T )|Z=zk
(y, t)dµY (y)

−
∫

sign(∆k f(Y,T )|Z(y, t)) f(Y,T )|Z=zk−1
(y, t)dµY (y)

�

=
1
2

∑

t=0,1

�∫

sign(∆k f(Y,T )|Z(y, t))∆k f(Y,T )|Z(y, t)dµY (y)

�

=
1
2

∑

t=0,1

∫

�

�∆k f(Y,T )|Z(y, t)
�

� dµY (y)

= T V(Y,T ),k.

It’s easy to check that DGP P∗U satisfies Assumptions 3.1-(ii)-(iv) and 3.2-(i). Denote f ∗U as the

distribution functions under P∗U . We first show that f ∗U is well-defined in the sense that (b.1)

the summation of the probabilities of all possible combinations for {Dk}Kk=0 is one, and (b.2) the

density functions of (Y1, T1)|({Dk}Kk=0,Z) and (Y0, T0)|({Dk}Kk=0,Z) under P∗U are nonnegative and (b.3) their

integrals are one.

(b.1) Consider the following summation.

∆kE[H|Z] + Pr(H = −0.5|Z = zk) + Pr(H = 0.5|Z = zk−1)

=0.5Pr(H = 0.5|Z = zk)− 0.5Pr(H = −0.5|Z = zk)− 0.5Pr(H = 0.5|Z = zk−1)

+ 0.5Pr(H = −0.5|Z = zk−1) + Pr(H = −0.5|Z = zk) + Pr(H = 0.5|Z = zk−1)

=0.5Pr(H = 0.5|Z = zk) + 0.5Pr(H = −0.5|Z = zk) + 0.5Pr(H = 0.5|Z = zk−1)

+ 0.5Pr(H = −0.5|Z = zk−1)

=0.5+ 0.5= 1.
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(b.2) We show that the density functions of (Y1, T1)|({Dk}Kk=0,Z) and (Y1, T1)|({Dk}Kk=0,Z) under P∗U are

nonnegative and integral are one.

∆k f(Y,T,H)|Z(y, t, 0.5) = f(Y,T,H)|Z=zk
(y, t, 0.5)− f(Y,T,H)|Z=zk−1

(y, t, 0.5)

= f(Y,T )|Z=zk
(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]− f(Y,T )|Z=zk−1

(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]

=∆k f(Y,T )|Z(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]≥ 0. (A10)

Moreover,

∆k f(Y,T,H)|Z(y, t,−0.5) = f(Y,T,H)|Z=zk
(y, t,−0.5)− f(Y,T,H)|Z=zk−1

(y, t,−0.5)

= f(Y,T )|Z=zk
(y, t)1[∆k f(Y,T )|Z(y, t)< 0]− f(Y,T )|Z=zk−1

(y, t)1[∆k f(Y,T )|Z(y, t)< 0]

=∆k f(Y,T )|Z(y, t)1[∆k f(Y,T )|Z(y, t)< 0]≤ 0. (A11)

Since ∆kE[H|Z] = T V(Y,T ),k > 0, the density functions are both nonnegative.

(b.3) From (A10) and (A11) we have that

∑

t=0,1

∫

�

∆k f(Y,T,H)|Z(y, t, 0.5) +∆k f(Y,T,H)|Z(y, t,−0.5)
�

dµY (y)

=
∑

t=0,1

∫

∆k f(Y,T )|Z(y, t)dµY (y) = 0, (A12)

and

∑

t=0,1

∫

�

∆k f(Y,T,H)|Z(y, t, 0.5)−∆k f(Y,T,H)|Z(y, t,−0.5)
�

dµY (y)

=
∑

t=0,1

∫

∆k f(Y,T )|Z(y, t)sign(∆k f(Y,T )|Z(y, t))dµY (y)

=
∑

t=0,1

∫

|∆k f(Y,T )|Z(y, t)|dµY (y)

=2T V(Y,T )|Z . (A13)

Based on (A12) and (A13), we get that

∑

t=0,1

∫

∆k f(Y,T,H)|Z(y, t, 0.5)dµY (y) = T V(Y,T )|Z , (A14)

∑

t=0,1

∫

∆k f(Y,T,H)|Z(y, t,−0.5)dµY (y) = −T V(Y,T )|Z . (A15)

Given (A14) and (A15), it is clear that the integrals of the density functions are all one.
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Next, we show that P∗U generates the data (Y, T, Z). For ∀m≤ k− 1,

f ∗U(Y,T )|Z=zm
(y, t) = f ∗U(Y,T )|D0=...=DK=0,Z=zm

(y, t)Pr(H = −0.5|Z = zk)

+ f ∗U(Y,T )|D0=...=DK=1,Z=zm
(y, t)Pr(H = 0.5|Z = zk−1)

+ f ∗U(Y,T )|D0=0,...,=Dk−1=0,Dk=1,...,DK=1,Z=zm
(y, t)∆kE[H|Z]

= f(Y,T )|H=−0.5,Z=zk
(y, t)Pr(H = −0.5|Z = zk)

+ f(Y,T )|H=0.5,Z=zk−1
(y, t)Pr(H = 0.5|Z = zk−1)

−∆kE[H|Z]
∆k f(Y,T,H)|Z(y, t,−0.5)

∆kE[H|Z]
= f(Y,T,H)|Z=zk−1

(y, t, 0.5) + f(Y,T,H)|Z=zk−1
(y, t,−0.5)

= f(Y,T )|Z=zk−1
(y, t)

= f(Y,T )|Z=zm
(y, t),

where the last equality is because T V(Y,T ),m = 0 for all m≤ k− 1. Moreover, we have for m≥ k,

f ∗U(Y,T )|Z=zm
(y, t) = f ∗U(Y,T )|D0=...=DK=0,Z=zm

(y, t)Pr(H = −0.5|Z = zk)

+ f ∗U(Y,T )|D0=...=DK=1,Z=zm
(y, t)Pr(H = 0.5|Z = zk−1)

+ f ∗U(Y,T )|D0=0,...,=Dk−1=0,Dk=1,...,DK=1,Z=zm
(y, t)∆kE[H|Z]

= f(Y,T )|H=−0.5,Z=zk
(y, t)Pr(H = −0.5|Z = zk)

+ f(Y,T )|H=0.5,Z=zk−1
(y, t)Pr(H = 0.5|Z = zk−1)

+∆kE[H|Z]
∆k f(Y,T,H)|Z(y, t, 0.5)

∆kE[H|Z]
= f(Y,T,H)|Z=zk

(y, t,−0.5) + f(Y,T,H)|Z=zk
(y, t, 0.5)

= f(Y,T )|Z=zk
(y, t)

= f(Y,T )|Z=zm
(y, t),

where the last equality is because of T V(Y,T ),m = 0 for all m ≥ k. Thus, so far we have shown that

P∗U generates the data (Y, T, Z).

The last step in (b) is to prove that under P∗U , ∆pk =
∆kE(T |Z)
T V(Y,T ),k

:

∆pk =EP∗U
[T1 − T0|Ck]

=EP∗U
[T1|Ck, Z]−EP∗U

[T0|Ck, Z]

=

∫

∆k f(Y,T,H)|Z(y, 1, 0.5)

∆kE[H|Z]
dµY (y) +

∫

∆k f(Y,T,H)|Z(y, 1,−0.5)

∆kE[H|Z]
dµY (y)

=

∫

∆k f(Y,T )|Z(y, 1)

∆kE[H|Z]
dµY (y)

=
∆kE[T |Z]
T V(Y,T ),k

.
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(c) For any ψ ∈ [0, 1], denote the mixture DGP P∗mix := ψP∗L + (1 −ψ)P
∗
U , which means with

probability ψ the data (Y, T, Z) is generated from P∗L and with probability 1−ψ the data (Y, T, Z) is

generated from P∗U . Given the results in Steps 1 and 2, we have that if T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0

with all k′ 6= k, the DGP P∗mix satisfies Assumptions 3.1-(ii)-(iv) and 3.2-(i); P∗mix generates the data

(Y, T, Z); and under P∗mix , ∆pk =ψ∆kE(T |Z) + (1−ψ)
∆kE(T |Z)
T V(Y,T ),k

.

A.1.7 Proof of Theorem 3.2

Proof of Theorem 3.2. We have min
k∈{1,2,...,K}

{αk,k−1} ≤ αk,k−1 ≤ max
k∈{1,2,...,K}

{αk,k−1} holds for ∀k. Since

the weight γIV
k ≥ 0 for all k = 1,2, ..., K , then

K
∑

k=1

γIV
k αk,k−1 ≤ max

k∈{1,2,...,K}
{αk,k−1}

K
∑

k=1

γIV
k = max

k∈{1,2,...,K}
{αk,k−1},

K
∑

k=1

γIV
k αk,k−1 ≥ min

k∈{1,2,...,K}
{αk,k−1}

K
∑

k=1

γIV
k = min

k∈{1,2,...,K}
{αk,k−1}.

Thus, min
k∈{1,2,...,K}

{αk,k−1} ≤ αIV ≤ max
k∈{1,2,...,K}

{αk,k−1}. Because each LATE is partially identified by

Θαk (P), based on which we have αIV ∈
⋃

k=1,2,...,K Θ
α
k (P).

A.1.8 Proof of Theorem 3.3

Proof of Theorem 3.3. Since ξ=
∑K

k=1 γ
IV
k ∆pk, we know that

min
k=1,2,...,K

{∆pk} ≤ ξ≤ max
k=1,2,...,K

{∆pk}.

Thus, the identified set for ξ is
⋃

k=1,2,...,K Θ
p
k(P). It results from Equation (3), αIV = ξαMis, that

Θp(P) =

¨

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K

Θ
p
k(P)

«

,

where αMis is identifiable by observable data.

A.1.9 Proof of Corollary 3.4

Proof of Corollary 3.4. It yields from the definitions of ∆kE(Y |Z) and ∆kE(T |Z) that

∆kE(Y |Z)/∆kE(T |Z) = αk,k−1/∆pk.
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From Theorem 3.2, we have that

Θα(P) =
⋃

k=1,2,...,K

Θαk (P) =
⋃

k=1,2,...,K







∆kE(Y |Z)
pc

: pc ∈



T V(Y,T ),k, 1−
∑

k′ 6=k

T V(Y,T ),k′











=
⋃

k=1,2,...,K







αk,k−1

∆pk
×
∆kE(T |Z)

pc
: pc ∈



T V(Y,T ),k, 1−
∑

k′ 6=k

T V(Y,T ),k′











=
⋃

k=1,2,...,K

§

αk,k−1

∆pk
×∆p : ∆p ∈ Θp

k(P)
ª

,

where the last equality is due to the definition of Θp
k(P). Similarly, from Theorem 3.3 and (3)

Θp(P) =

¨

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K

Θ
p
k(P)

«

=

¨

αIV

ξ
×∆p : ∆p ∈

⋃

k=1,2,...,K

Θ
p
k(P)

«

=
⋃

k=1,2,...,K

�

αIV

ξ
×∆p : ∆p ∈ Θp

k(P)

�

.

A.1.10 Proof of Theorem 3.4

Proof of Theorem 3.4. Since 0 < ξ ≤ ξ ≤ ξ̄ ≤ 1, it yields from αIV = ξαMis that αIV is between

ξαMis and ξαMis, and its sign is determined by the sign of αMis.

A.1.11 Proof of Lemma 4.1

Proof of Lemma 4.1. Recall πk = Pr(Z = zk). Denote ϕk =
1[Z=zk]πk−1−1[Z=zk−1]πk

πkπk−1
. Similar to Abadie

(2003)’s binary instrument case, we can get for any generic random variable Q and ∀k,

∆kE[Q|Z] =E[Q|Z = zk]−E[Q|Z = zk−1]

=
1
πk
E [πkQ|Z = zk]−

1
πk−1
E [πk−1Q|Z = zk−1]

=E
�

Q× 1[Z = zk]
πk

�

−E
�

Q× 1[Z = zk−1]
πk−1

�

=E
�

1[Z = zk]πk−1 − 1[Z = zk−1]πk

πkπk−1
Q
�

=E[ϕkQ], (A16)
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where 1[·] is the indicator function. In addition, it holds that for ∀h ∈ H,

∆kE[h(Y, T )|Z] =
∑

t=0,1

∫

h(y, t)∆k f(Y,T )|Z(y, t)dµY (y)

≤
1
2

∑

t=0,1

∫

�

�∆k f(Y,T )|Z(y, t)
�

� dµY (y) = T V(Y,T ),k, (A17)

where the inequality is by definition of h(y, t) ∈ {−0.5,0.5} and the last equality holds if and only

if h is such that for all (y, t) ∈ ΩY ×{0,1}, h(y, t)∆k f(Y,T )|Z(y, t)≥ 0. Moreover, (A17) also implies

that for ∀h ∈ H,

1−
∑

k′ 6=k

T V(Y,T ),k′ ≤ 1−
∑

k′ 6=k

∆k′E[hk′(Y, T )|Z], (A18)

where the equality holds if and only if hk′ is such that ∀(y, t) ∈ ΩY×{0,1}, hk′(y, t)∆k′ f(Y,T )|Z(y, t)≥
0 for all k′ 6= k. Given (A17) and (A18) above, we can then rewrite Θαk as

−sign(αk,k−1)∆kE [Y |Z]≤ 0,

|αk,k−1|∆kE [h(Y, T )|Z]≤ sign(αk,k−1)∆kE [Y |Z] , for all h ∈ H

sign(αk,k−1)∆kE [Y |Z]≤ |αk,k−1|



1−
∑

k′ 6=k

∆k′E[hk′(Y, T )|Z]



 , for all hk′ ∈ H.

Applying (A16) to the above inequalities gives us the desired results. Same arguments can be

applied to prove the results for Θp
k .

A.1.12 Proof of Lemma 4.2

Proof of Lemma 4.2. Assumption 4.2(ii) implies Hn ⊂ Hn+1 ⊂ · · · ⊂ H. Thus, it is straightforward

that the approximated identified set eΘαk (P) and eΘ
p
k(P) cover the identified sets Θαk (P) and Θp

k(P),

respectively.

Define h∗k(y, t) = 0.5×sign(∆k f(Y,T )|Z(y, t)) and h∗k,n = arg maxh∈Hn
∆kE[h(Y, T )|Z]. Since (A17)

holds for ∀h ∈ H and the equality holds if and only if h is such that for all (y, t) ∈ ΩY × {0,1},
h(y, t)∆k f(Y,T )|Z(y, t)≥ 0, we know that

T V(Y,T ),k = sup
h∈H
∆kE[h(Y, T )|Z]. (A19)

In addition, because H = h∗k(Y, T ), where the random variable H is defined in the proof of Lemma

3.3 and we have shown that ∆kE[H|Z] = T V(Y,T ),k, it yields that

h∗k = arg sup
h∈H
∆kE[h(Y, T )|Z].
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Due that f(Y,T )|Z=zk
is Hölder continuous, for l = 1, 2, ..., Ln

max
(y,t)∈In,l

∆k f(Y,T )|Z(y, t)− min
(y ′,t ′)∈In,l

∆k f(Y,T )|Z(y
′, t ′)

≤ max
(y,t)∈In,l

f(Y,T )|Z=zk
(y, t)− min

(y,t)∈In,l

f(Y,T )|Z=zk−1
(y, t)− min

(y ′,t ′)∈In,l

f(Y,T )|Z=zk
(y ′, t ′)

+ max
(y ′,t ′)∈In,l

f(Y,T )|Z=zk−1
(y ′, t ′)

≤2M0(
2M1

Ln
)m. (A20)

Denote Mn = 2M0(
2M1
Ln
)m. If max(y,t)∈In,l

|∆k f(Y,T )|Z(y, t)| > Mn, from (A20) it has to be the max-

imum and minimum of ∆k f(Y,T )|Z(y, t) over (y, t) ∈ In,l both stand on one side of zero. Thus,

sign(∆k f(Y,T )|Z(y, t)) is a constant over In,l , and h∗k = h∗k,n for those In,l . Therefore, for each In,l ,

we have either h∗k = h∗k,n and |∆k f(Y,T )|Z(y, t)| > Mn, or |∆k f(Y,T )|Z(y, t)| ≤ Mn. Now, consider the

following three cases. Firstly, h∗k = h∗k,n and |∆k f(Y,T )|Z(y, t)|> Mn. Then,

h∗k(y, t)∆k f(Y,T )|Z(y, t)− h∗k,n(y, t)∆k f(Y,T )|Z(y, t)≤ Mn, (A21)

since the left hand side of (A21) is zero and Mn ≥ 0. Secondly, for (y, t) such that h∗k(y, t) =

h∗k,n(y, t) and |∆k f(Y,T )|Z(y, t)| ≤ Mn, (A21) still holds. Lastly, for (y, t) such that h∗k(y, t) = −h∗k,n(y, t)

and |∆k f(Y,T )|Z(y, t)| ≤ Mn, we have

h∗k(y, t)∆k f(Y,T )|Z(y, t)− h∗k,n(y, t)∆k f(Y,T )|Z(y, t)

=2h∗k(y, t)∆k f(Y,T )|Z(y, t)

=2h∗k(y, t)si gn(∆k f(Y,T )|Z(y, t))|∆k f(Y,T )|Z(y, t)|

=2× 0.5|∆k f(Y,T )|Z(y, t)|

≤Mn,

where the third equality is because h∗k(y, t) = 0.5× si gn(∆k f(Y,T )|Z(y, t)), and the last inequality is

due to |∆k f(Y,T )|Z(y, t)| ≤ Mn. Therefore, (A21) holds for ∀(y, t) ∈ ΩY × {0, 1}.

0≤ sup
(π,P)∈Π×∈P0

§

sup
h∈H
E [ϕkh(Y, T )]−max

h∈Hn

E [ϕkh(Y, T )]
ª

= sup
(π,P)∈Π×∈P0

¦

E
�

ϕkh∗k(Y, T )
�

−E
�

ϕkh∗k,n(Y, T )
�©

= sup
(π,P)∈Π×∈P0

¨

∑

t=0,1

∫

h∗k(y, t)∆k f(Y,T )|Z dµY (y)−
∑

t=0,1

∫

h∗k,n(y, t)∆k f(Y,T )|Z dµY (y)

«

= sup
(π,P)∈Π×∈P0

¨ Ln
∑

l=1

∫

In,l

�

h∗k(y, t)− h∗k,n(y, t)
�

∆k f(Y,T )|Z dµY (y)dµT (t)

«

≤ sup
(π,P)∈Π×∈P0

Mn→ 0,
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which gives the first convergence in Lemma 4.2, since Mn→ 0 uniformly over Π×P0.

Moreover, recall that (A18) is satisfied by ∀hk′ ∈ H, and the equality holds if and only if hk′ is

such that ∀(y, t) ∈ ΩY × {0, 1}, hk′(y, t)∆k′ f(Y,T )|Z(y, t)≥ 0 for all k′ 6= k. Thus,

1−
∑

k′ 6=k

T V(Y,T ),k′ = inf
{hk′}∈HK−1



1−
∑

k′ 6=k

∆k′E[hk′(Y, T )|Z]



= 1−
∑

k′ 6=k

sup
hk′∈H

∆k′E[hk′(Y, T )|Z]. (A22)

Hence, it follows from (A21) and (A22) that

0≤ sup
(π,P)∈Π×∈P0







min
{hk′}∈HK−1

n



1−
∑

k′ 6=k

E[ϕk′hk′(Y, T )]



− inf
{hk′}∈HK−1



1−
∑

k′ 6=k

E[ϕk′hk′(Y, T )]











= sup
(π,P)∈Π×∈P0

(

∑

k′ 6=k

�

sup
hk′∈H

∆k′E[ϕk′hk′(Y, T )]− max
hk′∈Hn

E [ϕk′hk′(Y, T )]

�

)

≤ sup
(π,P)∈Π×∈P0

∑

k′ 6=k

Mn = (K − 1)Mn→ 0.

A.1.13 Proof of Theorem 4.1

By abuse of notation, denote byΘ the parameter space of θk, and denote by eΘθk (P) the approximated

identified set of θk. Before we proceed to the proof of Theorem 4.1, let us introduce a theorem used

in Theorem 21 by Ura (2018), which is taken from Corollary 5.1 and Theorem 6.1 in Chernozhukov

et al. (2019) of the asymptotic size and power of the test statistic τ(θk,πk,πk−1). Due that the test

is for the pn inequalities which characterize the approximated identified set, results in Theorem A.1

below are also derived for the the approximated identified set eΘθk (P).

Theorem A.1. By abuse of notation, we denote π0
k = Pr(Z = zk) to emphasis that it is the true

probability. Given a sequence of εn > 0 with εn→ 0 and εn

p

log(pn)→∞, denoteH0,n as

H0,n =
¦

(θk,π,P) ∈ Θ×Π×P0 : θk ∈ eΘθk (P), (πk−1,πk) = (π
0
k−1,π0

k)
©

.

DenoteH1,n as

H1,n =

�

(θk,π,P) ∈ Θ×Π×P0 : max
j=1,...,pn

m j(θk,πk,πk−1)

σ j(θk,πk,πk−1)
≥(1+ εn)

√

√2 log(pn)
n

, and

(πk−1,πk) = (π
0
k−1,π0

k)

�

.

Under assumptions in Theorem 4.1,

(i) lim inf
n→∞

inf
(θk,π,P)∈H0,n

Pr [τ(θk,πk,πk−1)≤ ck(η)]≥ 1−η.
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(ii) lim
n→∞

sup
(θk,π,P)∈H1,n

Pr [τ(θk,πk,πk−1)≤ ck(η)] = 0.

Now, the proof of Theorem 4.1 can be shown as below.

Proof of Theorem 4.1. Denote the event A as A= {π0
k ∈ Cπk

(ηπ),π0
k−1 ∈ Cπk−1

(ηπ)} and its comple-

ment as AC .

(i) Under assumptions in Theorem 4.1, for any P ∈ P0 such that θk ∈ eΘθk (P), we can get

Pr
�

θk /∈ Cθk
(η+ 2ηπ)

�

=Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

θk /∈ Cθk
(η+ 2ηπ), AC

�

≤Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

AC
�

≤Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

≤Pr
�

τ(θk,π0
k,π0

k−1)> ck(η), A
�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

≤Pr
�

τ(θk,π0
k,π0

k−1)> ck(η)
�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

, (A23)

where the second last inequality is by definition of Cθk
. Therefore, it follows from Theorem A.1-(i),

Assumption 4.1 and the convergence of eΘθk (P) to Θθk (P) in Lemma 4.2, that

lim inf
n→∞

inf
P∈P0, θk∈Θθk (P)

Pr
�

θk ∈ Cθk
(η+ 2ηπ)

�

≥ 1− (η+ 2ηπ).

(ii) Given Theorem A.1-(ii), for ∀(θk,π,P) ∈ Θ ×Π×P0 such that (πk−1,πk) = (π0
k−1,π0

k) and

θk /∈ Θθk (P), it suffices to show that the above (θk,π,P) ∈ H1,n, when n is sufficiently large. Since

if so, Theorem A.1-(ii) leads to that for any fixed θk /∈ Θθk (P), we have Pr
�

τ(θk,π0
k,π0

k−1)> ck(η)
�

going to one. By Assumption 4.1-(i), suppose there exists a constant M2 such that σ j(·) < M2 for

all j = 1, 2, ..., pn. Consider the two cases below.

Case 1. θk = αk,k−1. If αk,k−1 /∈ Θαk (P), at least one of (16)-(18) is violated. If (16) does not

hold, then E[−ϕksi gn(αk,k−1)Y ] > 0 at (πk−1,πk) = (π0
k−1,π0

k), which means its sample analogue

m̂1(αk,k−1,π0
k,π0

k−1)> 0 for large enough n. By the definition of the test statistic τ(αk,k−1,πk,πk−1)

and the boundedness of σ j(·), we have that

τ(αk,k−1,πk,πk−1) = Op(
p

n)→∞.

While, it yields from εn→ 0 and the assumption on the rate of pn that (1+εn)
Ç

2 log(pn)
n goes to zero.

Therefore, we know that (θk,π,P) ∈H1,n for large enough n.

If (17) does not hold, it implies that

sup
hk∈H
E
�

ϕk

�

|αk,k−1|hk(Y, T )− sign(αk,k−1)Y
�	

> 0.

Based on the first convergence result in Lemma 4.2 and the fact that ϕk|αk,k−1| is bounded by
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Assumption 4.1, there exists some hk ∈ Hn such that when n is large enough,

E
�

ϕk

�

|αk,k−1|hk(Y, T )− sign(αk,k−1)Y
�	

> 0. (A24)

Let c > 0 be the value of the left hand side of (A24). We can then conclude that there exists a j =

2, ...,κn+1 such that m j(θk,πk,πk−1)≥ c when n is sufficiently large, leading toτ(αk,k−1,πk,πk−1) =

Op(
p

n)→∞. Thus, (θk,π,P) ∈H1,n is satisfied.

If (18) does not hold, it implies

sup
hk∈H
E



ϕksign(αk,k−1)Y − |αk,k−1|

 

1−
∑

k′ 6=k

ϕk′hk′(Y, T )

!



> 0.

The same arguments for (A24) can be applied to arrive the same conclusion, based on the second

convergence in Lemma 4.2 as well as the fact that ϕk′|αk,k−1| is bounded. Hence, we can conclude

that if αk,k−1 /∈ Θαk (P), then (αk,k−1,π,P) ∈ H1,n. The desired result follows directly from Theorem

A.1-(ii).

Case 2. θk =∆pk. Since∆pk /∈ Θ
p
k(P), at least one of Equations (19)-(21) is violated. The same

arguments for Case 1 can be applied to achieve the desired results.

A.1.14 Proof of Corollary 4.1

Proof of Corollary 4.1. (i) Consider C α(βα). Denote the set H α
0,n = {(θ ,P) ∈ Θα(P)×P0} . Since

Θα(P) =
⋃

k=1,2,..,K Θ
α
k (P), for ∀θ ∈ Θα(P), there exists a k∗ such that θ ∈ Θαk∗(P). Now, for ∀θ ∈

Θα(P), the probability such a θ does not lie in C α(βα) is

Pr [θ /∈ C α(βα)]≤Pr
�

θ /∈ Cαk∗,k∗−1
(η+ 2ηπ)

�

,

where the inequality is due that θ /∈ C α(βα) implies such θ not in any Cαk,k−1
(η + 2ηπ) for k =

1,2, ..., K . It yields from the above inequality and Theorem 4.1-(i) that

lim inf
n→∞

inf
(θ ,P)∈H α

0,n

Pr [θ ∈ C α(βα)]≥ lim inf
n→∞

inf
θ∈Θαk∗(P),P∈P0

Pr
�

θ ∈ Cαk∗,k∗−1
(η+ 2ηπ)

�

≥ 1− (η+ 2ηπ).

(ii) Consider C p(β p). Denote set H p
0,n = {(θ ,P) ∈ Θp(P)×P0} . Recall αMis = Cov(Y,g(Z))

Cov(T,g(Z)) . For

∀θ ∈ Θp(P), there exists a ∆p such that θ = αMis ×∆p and ∆p ∈
⋃

k=1,2,..,K Θ
p
k(P). Then, there

exists a k∗ ∈ {1,2, ..., K} such that ∆p ∈ Θp
k∗(P). Hence, for ∀θ ∈ Θp(P), probability such a θ does
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not lie in C p(β p) is

Pr (θ /∈ C p(β p))

=Pr
�

θ /∈ C p(β p),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

θ /∈ C p(β p),αMis /∈ CαMis(ηαMis)
�

≤Pr

�

∆p /∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ),α

Mis ∈ CαMis(ηαMis)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr

�

∆p /∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈ Cp1,k∗−p0,k∗
(η+ 2ηπ)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

,

where the last inequality is due that∆p does not lie in any C∆pk
(η+2ηπ) for ∀k = 1,2, ..., K , which

implies ∆p /∈ Cp1,k∗−p0,k∗
(η+ 2ηπ). By Theorem 4.1 and Assumption 4.1,

lim inf
n→∞

inf
(θ ,P)∈H p

0,n

Pr [θ ∈ C p(β p)]≥ lim inf
n→∞

inf
(θ ,P)∈H p

0,n

Pr
�

∆p ∈ Cp1,k∗−p0,k∗
(η+ 2ηπ)

�

− lim inf
n→∞

sup
P∈P0

Pr
�

αMis /∈ CαMis(ηαMis)
�

≥ 1− (η+ 2ηπ +ηαMis).

(iii) Similarly for C ξ(βξ), let H ξ
0,n be the set H ξ

0,n =
�

(θ ,P) ∈ Θξ(P)×P0

	

. Then, for ∀θ ∈
Θξ(P), there is a∆p such that θ = αMis×∆p and∆p ∈ [ξ,ξ]. Now, for ∀θ ∈ Θξ(P), the probability

such a θ does not lie in C ξ(βξ) is

Pr
�

θ /∈ C ξ(βξ)
�

=Pr
�

θ /∈ C ξ(βξ),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

θ /∈ C ξ(βξ),αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈
�

ξ,ξ
�

,αMis ∈ CαMis(ηαMis)
�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr
�

αMis /∈ CαMis(ηαMis)
�

,

where the last inequality is because Pr
�

∆p /∈
�

ξ,ξ
�

,αMis ∈ CαMis(ηαMis)
�

= 0 for θ ∈ Θξ(P).
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A.2 Details about the Two-Step Multiplier Bootstrap

This section provides the details of the two-step multiplier bootstrap method proposed in Cher-

nozhukov et al. (2019) and how to use it to construct confidence intervals in our paper. For the

sake of notation consistency, we use θk and πk,πk−1 to denote the parameter of interest and the

nuisance parameters, respectively.

Denote the data as {Vi}ni=1 = {Yi, Ti, Si, Zi}ni=1 and V = {Y, T, S, Z}. As slight abuse of notations,

for hk, hk′ ∈ Hn and Q = {Y, T}, define moment functions in Lemma 4.1 as

g1(V,θk,πk,πk−1) = −ϕksign(θk)Q,

g j(V,θk,πk,πk−1) = ϕk [|θk|hk(Y, T )− sign(θk)Q] , for j = 2, ...,κn + 1,

g j(V,θk,πk,πk−1) = ϕksign(θk)Q− |θk|

 

1−
∑

k′ 6=k

ϕk′hk′(Y, T )

!

, for j = κn + 2, ..., pn,

where Q = Y when θk = αk,k−1 and Q = T when θk =∆pk. Denote

m̂ j(θk,πk,πk−1) =
1
n

n
∑

i=1

g j(Vi,θk,πk,πk−1),

σ̂2
j (θk,πk,πk−1) =

1
n

n
∑

i=1

�

g j(Vi,θk,πk,πk−1)− m̂ j(θk,πk,πk−1)
�2

.

The test statistic for H0 : E[g j(θk,πk,πk−1)]≤ 0 for all j = 1,2, ..., pn is defined as

τ(θk,πk,πk−1) = max
1≤ j≤pn

p
nm̂ j(θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)

Given the above test statistic, τ(θk,πk,πk−1), its critical value ck(η) can be calculated by the two-

step multiplier bootstrap procedure, including two main steps: moment inequalities selection and

approximating the distribution of the test statistic by bootstrapping. For selecting inequalities, we

use β = βn as size and follow Chernozhukov et al. (2019) that βn satisfies βn ≤ η/3 and log(1/βn)≤
C1 log(n). Detailed algorithm of calculating critical value is given below.

A.2.1 Algorithm

(1) Generate i.i.d. standard normal random variables ε1,ε2, ...,εn that are independent of {Vi}ni=1.

(2) Construct the multiplier bootstrap test statistic,

τB,1(θk,πk,πk−1) = max
1≤ j≤pn

p
nm̂B

j (θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
,

where m̂B
j (θk,πk,πk−1) =

1
n

∑n
i=1 εi

�

g j(Vi,θk,πk,πk−1)− m̂ j(θk,πk,πk−1)
�

. Repeat the pro-

cess in (1)-(2) N B times, and get the conditional (1− βn)-quantile of τB,1(θk,πk,πk−1) given
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{Vi}ni=1, denoted as cB,1
k (βn).

(3) Select inequalities and define the set Ĵk by

Ĵk =

�

j = 1,2, ..., pn :

p
nm̂ j(θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
> −2cB,1

k (βn)

�

.

(4) Calculate the critical value ck(η) for the test statistic τ(θk,πk,πk−1) as follows. Construct the

multiplier bootstrap test statistic,

τB,2(θk,πk,πk−1) =max
j∈Ĵk

p
nm̂B

j (θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
,

where τB,2(θk,πk,πk−1) = 0 if Ĵk is empty. The critical value ck(η) is the conditional (1−η+
2βn)-quantile of τB,2(θk,πk,πk−1) given {Vi}ni=1.
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A.3 How confidence intervals are constructed in practice

This section provides some details about the procedure to construct the confidence intervals of the

there identified sets Θα(P), Θp(P) and Θξ(P). For illustration simplicity, we focus on the case of a

single treatment proxy T case. By abuse of notation, we use θk to denote either αk,k−1 or ∆pk, and

use Ĉθk
(η) to represent their identified sets respectively.

Step 1. Construct identified sets of θk for k = 1,2, ..., K .

(a) Partition the support of (Y, T ) into Ln subsets as ΩY × {0, 1} =
⋃

l=1,2,...,Ln
In,l , where the sub-

script n means that the number of partitions Ln may increase with sample size n. For exam-

ple, if Y takes two values {0,1}, then Ln = 4 with In,1 = (1,1), In,2 = (1,0), In,3 = (0,1) and

In,4 = (0,0).

(b) Generate a function h : ΩY × {0, 1} 7→ {0.5,−0.5} such that h(y, t) is a constant (either 0.5

or -0.5) over each partition (y, t) ∈ In,l . Since there are Ln partitions of ΩY × {0,1}, then the

total number of all possible functions h is κn := 2Ln. From now on, we eliminate the subscript

n in function h, and denote the series of functions h as {h j} j=1,2,...,κn
. Using the example from

step 1(a), there will be κn = 24 = 16 different functions h, as

h1 h2 hn,3 · · · h6 h7 · · · h12 h13 · · · h16

Partitions

In,1 = (1, 1) 0.5 -0.5 -0.5 . . . 0.5 -0.5 · · · 0.5 -0.5 · · · 0.5
In,2 = (1, 0) 0.5 -0.5 0.5 . . . 0.5 -0.5 · · · 0.5 -0.5 · · · -0.5
In,3 = (0, 1) 0.5 -0.5 0.5 . . . 0.5 0.5 · · · -0.5 -0.5 · · · -0.5
In,4 = (0, 0) 0.5 -0.5 0.5 . . . -0.5 0.5 · · · -0.5 0.5 · · · -0.5

where h1 is constant 0.5 on all 4 partitions; h2 is constant -0.5 on all 4 partitions; h3 to h6

map 1 partition to -0.5 and rest 3 partitions to 0.5; h7 to h12 map 2 partitions to -0.5 and rest

2 partitions to 0.5; and h13 to h16 map 3 partitions to -0.5 and 1 partition to 0.5.

(b.1) Remark: The simulation results in Section A.7 suggests that the number of partitions κn

impacts the width of C α(βα) differently, based on the misclassification probability, the

number of available treatment proxies, and the instrument strength. However, since its

effects onC p(β p) are negligible, the choice of κn is not critical when the second strategy

is applied. The same reasoning applies to the third strategy. As for the first strategy, a

data-driven process of choosing κn is left for future research.35

(c) Design the grid of candidate values (δ1,δ2, ...,δM) for θk based on its parameter space Θ,

for instance, an evenly distributed grid between the two boundaries of Θ. If θk = αk and

ΩY = {0,1}, then the grid is over the interval [−1,1]. If θk = ∆pk, then the grid is also over

the interval [−1, 1].36

35For binary instrument cases, Ura (2018) suggests a possible rule-of-thumb choice for κn such that at least a certain number of observations,
e.g. 30, are contained in each partition In,l .

36In practice, we may restrict the grid for∆pk within [0, 1]. It is reasonable because negative values of∆pk indicates the correct classification
probability of treated individuals as treated is less than the incorrect classification probability of untreated individuals as treated. It contradicts
the assumption p1,k ≥ p0,k which is typically invoked in the literature, see e.g. Battistin and Sianesi (2011), and implies that the quality of the
collected data is too poor to draw any reliable conclusions.
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(d) Obtain
p

n-consistent estimator π̂k of πk = Pr(Z = zk) and its associated ηπ-confidence

interval Cπk
(ηπ).

(e) In what follows, we take θk = αk,k−1 as an example to illustrate the rest of this step. Recall

that Vi = (Yi, Ti, Si, Zi). Given the κn functions {h j} in (b), for each candidate value δm with

m= 1,2, ..., M in the grid of θk in (c), following Lemma 4.1 to calculate the sample analogue

of the moment inequalities m̂ j(δm, π̂k, π̂k−1), and their sample variance σ̂2
j (δm, π̂k, π̂k−1) as:

m̂ j(δm, π̂k, π̂k−1) =
1
n

n
∑

i=1

g j(Vi,δm, π̂k, π̂k−1),

σ̂2
j (δm, π̂k, π̂k−1) =

1
n

n
∑

i=1

�

g j(Vi,δm, π̂k, π̂k−1)− m̂ j(δm, π̂k, π̂k−1)
�2

,

where

g1(Vi,δm, π̂k, π̂k−1) = −ϕ̂i,ksign(δm)Yi,

g j(Vi,δm, π̂k, π̂k−1) = ϕ̂i,k [|δm|hk(Yi, Ti)− sign(δm)Yi] , for j = 2, ...,κn + 1,

g j(Vi,δm, π̂k, π̂k−1) = ϕ̂i,ksign(δm)Yi − |δm|

 

1−
∑

k′ 6=k

ϕ̂i,k′hk′(Yi, Ti)

!

, for j = κn + 2, ..., pn,

with pn = 1+ κn + κK−1
n and ϕ̂i,k =

1[Zi=zk]π̂k−1−1[Zi=zk−1]π̂k
π̂kπ̂k−1

as defined in Lemma 4.1.

(f) For each δm in the grid of θk, calculate the test statistic for H0 : E[g j(δm,πk,πk−1)] ≤ 0 for

all j = 1,2, ..., pn, defined as

τ(δm, π̂k, π̂k−1) = max
1≤ j≤pn

p
nm̂ j(δm, π̂k, π̂k−1)

σ̂ j(δm, π̂k, π̂k−1)
.

(g) For each (δm, π̂k, π̂k−1), calculate ck(η), the critical value of the test statistic τ(δm, π̂k, π̂k−1)

follows the detailed algorithm in Appendix A.2.

(h) Repeat (e)-(g) for all candidate values in the grid of θk and all (π̃k, π̃k−1) ∈ Cπk
(ηπ) ×

Cπk−1
(ηπ). Then, construct the (1 − η − 2ηπ)-confidence interval of θk as

�

δk,δk

�

, where

δk = min
m=1,...,M , π̃k∈Cπk

(ηπ), π̃k−1∈Cπk−1
(ηπ)

¦

δm : τ(δm, π̃k, π̃k−1)≤ ck(η)
©

,

δk = max
m=1,...,M , π̃k∈Cπk

(ηπ), π̃k−1∈Cπk−1
(ηπ)

¦

δm : τ(δm, π̃k, π̃k−1)≤ ck(η)
©

.
(A25)

(h’) In practice, the confidence interval of θk in step (h) can be replaced by a simplified version as
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discussed in Section 4 and (23), denoted by Ĉθk
(η) :=

h

δ̂k, δ̂k

i

:

δ̂k = min
m=1,...,M

¦

δm : τ(δm, π̂k, π̂k−1)≤ ck(η)
©

,

δ̂k = max
m=1,...,M

¦

δm : τ(δm, π̂k, π̂k−1)≤ ck(η)
©

,
(A26)

where we only repeat the process in (e)-(g) for all candidates δm while fixing (π̂k, π̂k−1) to be

the
p

n-consistent estimators of (πk,πk−1).

Step 2. Construct the confidence interval of the identified sets of αIV . Denote (δαk ,δ
α

k) and

(δp
k,δ

p

k) as the corresponding lower and upper bounds of αk,k−1 and ∆pk in (A25), respectively.

(a) For the confidence interval of Θα(P) is given by

C α(βα) =
�

min
k=1,2,...,K

¦

δαk

©

, max
k=1,2,...,K

¦

δ
α

k

©

�

,

where δαk and δ
α

k can be replaced by the simplified version in (A26).

(b) For the confidence interval of Θp(P), firstly, calculate the ηαMis-confidence intervalCαMis(ηαMis)

of the estimand αMis. Then, we can construct the confidence interval as

C p(β p) =
�

min
k=1,2,...,K , α∈CαMis (ηαMis )

¦

α×δp
k

©

, max
k=1,2,...,K , α∈CαMis (ηαMis )

¦

α×δ
p

k

©

�

,

where δp
k and δ

p

k can be replaced by the simplified version in (A26).

(c) For the confidence interval of Θξ(P), still calculate the ηαMis-confidence interval CαMis(ηαMis)

of the Wald estimand αMis first. Then, create the possible range of ξ, i.e. [ξ,ξ], according

to the external information (e.g. following the suggestions discussed in Section 4). At last,

construct the confidence interval as

C ξ(βξ) =
�

min
α∈CαMis (ηαMis )

¦

α× ξ
©

, max
α∈CαMis (ηαMis )

¦

α× ξ
©

�

.

57



A.4 Extension: Partial Identification of αIV using multiple treatment proxies

Consider two treatment proxies T and S, where T is the binary indicator used in Section 3.2 and

S is a discrete or continuous variable (hence, for the moment, we do not restrict the support of S).

The extension to multiple treatment measurements is straightforward, hence we do not discuss it

here. Let us first introduce a lemma analogue to Lemmas 3.2 and 3.3, but under two treatment

measures T and S. Denote ΘpW

k (P) as Θp
k(P) associated with W ∈ {T, S}.

Lemma A.3. Let Assumptions 3.1-(ii)-(iv) and 3.3 hold, and suppose Assumption 3.2-(i) is satisfied

by both T and S.

(i) For ∀k = 1, 2, ..., K,

(1) if T V(Y,T,S),k = 0, then Θαk (P) = Θ; if T V(Y,T,S),k > 0, then

Θαk (P) =



















h

∆kE(Y |Z)
1−
∑

k′ 6=k T V(Y,T,S),k′
, ∆kE(Y |Z)

T V(Y,T,S),k

i

, if ∆kE(Y |Z)> 0,

{0}, if ∆kE(Y |Z) = 0,
h

∆kE(Y |Z)
T V(Y,T,S),k

, ∆kE(Y |Z)
1−
∑

k′ 6=k T V(Y,T,S),k′

i

, if ∆kE(Y |Z)< 0.

(A27)

(2) if max
0≤m≤K

T V(Y,T,S),m = 0, then Θαk (P) = Θ is the sharp identified set of αk,k−1;

if T V(Y,T,S),k > 0 and T V(Y,T,S),k′ = 0 for all k′ 6= k, then Θαk (P) in (A27) is the sharp

identified set of αk,k−1.

(ii) For ∀k = 1,2, ..., K and ∀W ∈ {T, S},

(1) if T V(Y,T,S),k = 0, then ΘpW

k (P) = [−1, 1]; if T V(Y,T,S),k > 0, then

Θ
pW

k (P) =



















h

∆kE(W |Z)
1−
∑

k′ 6=k T V(Y,T,S),k′
, ∆kE(W |Z)

T V(Y,T,S),k

i

, if ∆kE(W |Z)> 0,

{0}, if ∆kE(W |Z) = 0,
h

∆kE(W |Z)
T V(Y,T,S),k

, ∆kE(W |Z)
1−
∑

k′ 6=k T V(Y,T,S),k′

i

, if ∆kE(W |Z)< 0.

(A28)

(2) if max
0≤m≤K

T V(Y,T,S),m = 0, then ΘpW

k (P) = [−1, 1] is the sharp identified set of ∆pW
k ;

if T V(Y,T,S),k > 0 and T V(Y,T,S),k′ = 0 for all k′ 6= k, then ΘpW

k (P) in (A28) is the sharp

identified set of ∆pW
k .

Proof of Lemma A.3. The proof of Lemma A.3-(i) is similar to the proof of Lemma A.3-(ii), so we

only consider (ii). For (ii), we use ∆pT
k as an example, analogue proof can deliver the results for

∆pS
k . The same proof of Lemma 3.3, together with Lemma A.4, can be used to get the results for
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∆pT
k , with H = 0.5× sign(∆k fY,T,S|Z(Y, T, S)), and change P∗f1, f0

, P∗L , P∗U as follows. P∗f1, f0
becomes to

Z ∼ fZ , Dk|Z = 1 for all k = 0,1, ..., K ,

(Y1, T1, S1)|({Dk}Kk=0,Z) ∼







f(Y,T,S), if all Dk are equal,

fY,S f1, if at least one Dk 6= Dk−1.

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼ fY,S f0,

P∗L is constructed as

Z ∼ fZ , (Dk−1, Dk)|Z = (0,1), Dl ≤ Dw if l < w

(Y1, T1, S1)|({Dk}Kk=0,Z) ∼ f(Y,T,S)|Z=zk

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼ f(Y,T,S)|Z=zk−1
.

P∗U should be changed to

Z ∼ fZ ,

(Dk−1, Dk)|Z =















(0, 1), Dl ≤ Dw if l < w, with probability ∆kE[H|Z],

(0, 0), Dl = Dw for all l, w, with probability Pr(H = −0.5|Z = zk),

(1, 1), Dl = Dw for all l, w, with probability Pr(H = 0.5|Z = zk−1).

(Y1, T1, S1)|({Dk}Kk=0,Z) ∼







∆k f(Y,T,S,H)|Z(y,t,s,0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T,S)|H=0.5,Z=zk−1
(y, t, s), if Dk−1 = Dk

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼







−∆k f(Y,T,S,H)|Z(y,t,s,−0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T,S)|H=−0.5,Z=zk
(y, t, s), if Dk−1 = Dk.

We then introduce the Lemma below, which shows that, when multiple proxies are available,

the identified set of compliers’ probability can be improved.

Lemma A.4. Let Assumption 3.1-(ii)-(iv) and 3.3 hold for T , and suppose Assumption 3.2-(i) is sat-

isfied by both T and S. For k = 1,2, ..., K,

T V(Y,T ),k ≤ T V(Y,T,S),k ≤ Pr(Ck)≤ 1−
∑

k′ 6=k

T V(Y,T,S),k′ ≤ 1−
∑

k′ 6=k

T V(Y,T ),k′.

Proof of Lemma A.4. Consider two treatment proxies T and S. If S is discrete, we can simply replace

the second integral in the equation below by a summation over the support of S. By the triangle
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inequality, we have that for k = 1,2, ..., K

T V(Y,T,S),k =
1
2

∑

t=0,1

∫∫

�

�

� f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s)
�

�

�dµY (y)dµS(s)

≥
1
2

∑

t=0,1

∫ �

�

�

�

∫

f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s)dµS(s)

�

�

�

�

dµY (y)

=
1
2

∑

t=0,1

∫

�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

� dµY (y)

= T V(Y,T ),k.

In addition, we can get

f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s) =Pr(Ck)
�

f(Y1,T1,S1)|Ck
(y, t, s)− f(Y0,T0,S0)|Ck

(y, t, s)
�

.

Then, T V(Y,T,S),k ≤ Pr(Ck)≤ 1−
∑

k′ 6=k T V(Y,T,S),k′ follows from same proof of Lemma 3.1.

Lemma A.4 says that the bounds of Pr(Ck) shrink from [T V(Y,T ),k, 1 −
∑

k′ 6=k T V(Y,T ),k′], when

only a single proxy T is used, to [T V(Y,T,S),k, 1−
∑

k′ 6=k T V(Y,T,S),k′], when both T and S are used. The

improved identified set of Pr(Ck) also leads to narrower bounds of (i) LATEs, (ii) LATMs, and (iii) the

IV estimand αIV . The identified sets of αk,k−1 and∆pk, and their sharpness results, are summarized

by Lemma A.3. In what follows, we focus on refining our partial identification strategies for αIV

when multiple treatment proxies are available.

First strategy. Recall that, in our first partial identification strategy, we denote the identified

sets of αIV using only the sets of {αk,k−1}Kk=1 as Θα(P). For the multiple treatment proxies case, the

Corollary below gives the sign of αIV and the expression of Θα(P).

Corollary A.1. Let Assumption 3.1, 3.3 hold hold for T . Suppose T and S satisfy Assumption 3.2.

(i) If ∆kE(Y |Z)> 0 for all k = 1, 2, ..., K, then αIV > 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ 6=k T V(Y,T,S),k′

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T,S),k

��

.

(ii) If ∆kE(Y |Z)< 0 for all k = 1, 2, ..., K, then αIV < 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T,S),k

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ 6=k T V(Y,T,S),k′

��

.

Proof of Corollary A.1. The proof follows from Theorem 3.2, Lemma A.4, and Lemmas A.2 and A.3

in Appendix A.1.

If we relax Corollary A.1-(i) by ∆kE(Y |Z) ≥ 0, while keeping T V(Y,T,S),k > 0 for all k, the ex-

pression of Θα(P) is still valid and αIV ≥ 0. Similarly for A.1-(ii), ∆kE(Y |Z)≤ 0, but T V(Y,T,S),k > 0
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for all k, leads to the same expression of Θα(P) and αIV ≤ 0. If the direction consistency of LATEs

does not hold, the general form of Θα(P) will simply be the union of the {Θαk (P)}
K
k=1 under multiple

proxies given in Lemma A.3, while we fail to recover the sign of αIV . The identification gains of

Θα(P) in Corollary A.1 are only due to the improvement of the possible region for Pr(Ck), from

[T V(Y,T ),k, 1−
∑

k′ 6=k

T V(Y,T ),k′]

with single proxy T , to

[T V(Y,T,S),k, 1−
∑

k′ 6=k

T V(Y,T,S),k′]

with multiple proxies (T, S). It is important to point out that, at this stage, no information on the

misclassification error, nor on αMis, have been used yet.

Second and Third strategy. For our second and third partial identification strategies with

multiple treatment proxies, we require all proxies to be binary. This is because both strategies rely

on the existence of the LATMs, ∆pk, for all proxies available.

Denote the estimand αMis in Equation (2), associated with T and S, as αMis,T and αMis,S, respec-

tively. Furthermore, denote the LATMs, for T and S, as ∆pT
k and ∆pS

k , respectively. Recall that we

use Θp(P) to denote the identified set of αIV , using αMis and the identified sets of {∆pk}Kk=1. The

sign of αIV and Θp(P), using our second identification strategy with multiple treatment proxies, are

characterized by the following Corollary.

Corollary A.2. Let Assumption 3.1, 3.3 hold for T and S. T and S are both binary and satisfy As-

sumption 3.2.

(i) For W ∈ {T, S}, if ∆kE(W |Z)> 0 for ∀k = 1, 2, ..., K, then

Θp =

�

max
W∈{T,S}

min
k∈{1,2,...,K}

�

∆kE(W |Z)
1−

∑

k′ 6=k T V(Y,T,S),k′
αMis,W

�

,

min
W∈{T,S}

max
k∈{1,2,...,K}

�

∆kE(W |Z)
T V(Y,T,S),k

αMis,W

��

.

(ii) For W ∈ {T, S}, if ∆kE(W |Z)< 0 for ∀k = 1, 2, ..., K, then

Θp =

�

max
W∈{T,S}

min
k=1,2,...,K

�

∆kE(W |Z)
T V(Y,T,S),k

αMis,W

�

,

min
W∈{T,S}

max
k=1,2,...,K

�

∆kE(W |Z)
1−

∑

k′ 6=k T V(Y,T,S),k′
αMis,W

��

.

Proof of Corollary A.2. The proof follows from Theorem 3.3, Lemma A.4, and Lemmas A.2 and A.3

in Appendix A.1.

Corollary A.2 states that, by employing multiple treatment measures, there are two sources of
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gains compared to Corollary 3.3. Firstly, we narrow down the range of Pr(Ck) by using multiple

measurements (T, S). Secondly, we shrink the bound of αIV by intersecting its bounds associated

with T and S, respectively. The intersection contributes to tightening the bound of αIV , as long

as S contains additional information about the true treatment D, other than those contained in T ,

leading to different values of ∆kE(W |Z) and αMis,W with W ∈ {T, S}.
Next, for our third partial identification strategy with multiple treatment proxies, denote by

(ξT ,ξ
T
) and (ξS,ξ

S
) the lower and upper bounds of the LATMs ∆pT

k and ∆pS
k , respectively. Like

before, these bounds may come from external sources of information.

Corollary A.3. Let Assumption 3.1, 3.3 hold for T and S. T and S are both binary and satisfy As-

sumption 3.2. Suppose 0< ξT ≤ ξ
T
≤ 1 and 0< ξS ≤ ξ

S
≤ 1.

(i) If αMis,T ≥ 0 and αMis,S ≥ 0, then αIV ≥ 0 and

Θξ(P) =
h

max
¦

ξTαMis,T ,ξSαMis,S
©

,min
n

ξ
T
αMis,T ,ξ

S
αMis,S

oi

.

(ii) If αMis,T ≤ 0 and αMis,S ≤ 0, then αIV ≤ 0 and

Θξ(P) =
h

max
n

ξ
T
αMis,T ,ξ

S
αMis,S

o

,min
¦

ξTαMis,T ,ξSαMis,S
©
i

.

Proof of Corollary A.3. The proof follows directly from Theorem 3.4 and the fact that αIV lies in

both of the identified sets derived using T and S.

We can summarize the results of this subsection as follows. When multiple treatment proxies

are available, we have three further strategies to partially identify αIV . The improvements of the

identified sets are, in general, nontrivial compared to those with one binary proxy. This is because

different proxies may provide different and relevant information about the true treatment. Again,

by intersecting the identified sets we can obtain, potentially, even tighter bounds of αIV .
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A.5 Extension: P-LATE with covariates

This section shows how to use P-LATE in the presence of covariates. We proceed in two steps. First,

we introduce the extended assumptions required for P-LATE, as well as the identification target.

Second, we present the main partial identification results.

Let X be a vector of observable covariates with support ΩX . For ∀x ∈ ΩX , denote πk(x) =

Pr(Z = zk|X = x) with k = 0,1, ..., K and P(z, x) = E(D|Z = z, X = x).

Assumption A.1. (Covariates) Y , D, T , Z and X satisfy the following assumptions:

(i) (i.i.d.) (Y1, Y0, {Dk}Kk=0, T1, T0, Z , X ) are independent and identically distributed across all indi-

viduals and have finite first and second moments;

(ii) (Unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0, T1, T0)|X . For ∀x ∈ ΩX , P(z, x) with z ∈ ΩZ is a

nontrivial function of z and 0< πk(x)< 1, k = 0, 1, ..., K;

(iii) (First stage) For ∀x ∈ ΩX , Cov(D, g(Z)|X = x) 6= 0 and Cov(T, g(Z)|X = x) 6= 0;

(iv) (Monotonicity) For any zl , zw ∈ ΩZ , with probability one, either Dl ≥ Dw for all individuals, or

Dl ≤ Dw for all individuals. Furthermore, for all zl , zw ∈ ΩZ and all x ∈ ΩX , either P(zl , x) ≤
P(zw, x) implies g(zl)≤ g(zw), or P(zl , x)≤ P(zw, x) implies g(zl)≥ g(zw);

Assumption A.2. (Conditional ascending order) For any given x ∈ ΩX , the support ofΩZ = {z0, z1, ..., zK}
is ordered in such a way that ∀l, w = 0,1, ..., K, l < w implies P(zl , x) ≤ P(zw, x), and this order is

known.

Assumptions A.1 and A.2 extend Assumptions 3.1, 3.2 and 3.3 to accommodate covariates. They

are sufficient to obtain the desired partial identification results.

For ∀x ∈ ΩX , define the conditional LATE as αk,k−1(x) = E[Y1−Y0|Ck, X = x] and the conditional

LATM as ∆pk(x) = E[T1 − T0|Ck, X = x] = p1,k(x)− p0,k(x), where pd,k(x) =Pr(Td = 1|Ck, X = x)

and d = {0,1}. Our identification target is the conditional IV estimand αIV (x), which can be

expressed as a weighted average of the conditional LATEs:

αIV (x) =
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

=
K
∑

k=1

γIV
k (x)αk,k−1(x), (A29)

with weights

γIV
k (x) =

Pr(Ck|X = x)
∑K

l=k (g(zl)−E[g(Z)|X = x])πl(x)
∑K

m=1 Pr(Cm|X = x)
∑K

l=m (g(zl)−E[g(Z)|X = x])πl(x)
,

where Pr(Ck|X = x) is the conditional probability of compliers group.

Instead of D, suppose we can observe a binary treatment indicator T , which could be a proxy

for D, or could correspond to reported values of D that are misclassified for some observations. In
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this case, we can obtain the biased conditional IV estimand αMis(x):

αMis(x) =
Cov(Y, g(Z)|X = x)
Cov(T, g(Z)|X = x)

=
K
∑

k=1

γMis
k (x)αk,k−1(x), (A30)

with weights

γMis
k (x) =

Pr(Ck|X = x)
∑K

l=k (g(zl)−E[g(Z)|X = x])πl(x)
∑K

m=1∆pm(x)Pr(Cm|X = x)
∑K

l=m (g(zl)−E[g(Z)|X = x])πl(x)
.

Derivations of (A29) and (A30) can be obtained under Assumption A.1 by applying similar argu-

ments used in the proof of Theorem 3.1 when conditional on X . The relationship between the actual

and the biased conditional IV estimands can be summarized by the theorem below.

Theorem A.2. Let Assumption A.1 hold for T . Then:

αIV (x) = ξ(x)αMis(x),

where ξ(x) =
∑K

k=1 γ
IV
k (x)∆pk(x) is the weighted average of the conditional LATMs.

Proof of Theorem A.2. Let ξ(x) = γIV
k (x)/γ

Mis
k (x). The proof follows directly from the expressions

of γIV
k (x), γ

Mis
k (x) and αMis(x).

Given the conditional ascending order in Assumption A.2, let us define the conditional total

variation distance for any generic random variable A as below:

T VA,k(x) =
1
2

∫

| fA|Z=zk,X=x(a)− fA|Z=zk−1,X=x(a)|dµA(a),

which bounds the conditional probability of compliers as shown by the lemma below.

Lemma A.5. Under Assumptions A.1 and A.2, for k = 1,2, ..., K and ∀x ∈ ΩX ,

T V(Y,T ),k(x)≤ Pr(Ck|X = x)≤ 1−
∑

k′ 6=k

T V(Y,T ),k′(x).

Proof of Lemma A.5. This proof is a direct extension of the proof of Lemma 3.1 when conditional

on X .

From the expressions of αIV (x), αMis(x) and their relationship in Theorem A.2, it is clear that

the partial identification for αIV
k (x) relies on the identified sets of {αk,k−1(x)}Kk=1 or of {∆pk(x)}Kk=1.

For notational simplicity, let ∆kE(A|Z , X = x) = E(A|Z = zk, X = x)−E(A|Z = zk−1, X = x). Under

Assumption A.1, we have that the conditional LATE satisfies

∆kE(Y |Z , X = x) = αk,k−1(x)P(Ck|X = x), (A31)
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based on which we can derive a identified set of αk,k−1(x), denoted by Θαk (P, x) ⊂ Θ. Similarly, the

following equation holds for each ∆pk(x):

∆kE(T |Z , X = x) =∆pk(x)P(Ck|X = x). (A32)

which can be used to construct the identified set of ∆pk(x), denoted by Θp
k(P, x) ⊂ [−1, 1]. Given

(A31), (A32) and Lemma A.5, we can obtain the following Lemmas that establish the identified sets

of αk,k−1(x) and ∆pk(x).

Lemma A.6. Let Assumption A.1 and A.2 hold for T . The results below hold for ∀k = 1, 2, ..., K and

∀x ∈ ΩX .

(i) If T V(Y,T ),k(x) = 0, then Θαk (P, x) = Θ. Whereas if T V(Y,T ),k(x)> 0, then:

Θαk (P, x) =



















h

∆kE(Y |Z ,X=x)
1−
∑

k′ 6=k T V(Y,T ),k′(x)
, ∆kE(Y |Z ,X=x)

T V(Y,T ),k(x)

i

, if ∆kE(Y |Z , X = x)> 0,

{0}, if ∆kE(Y |Z , X = x) = 0,
h

∆kE(Y |Z ,X=x)
T V(Y,T ),k(x)

, ∆kE(Y |Z ,X=x)
1−
∑

k′ 6=k T V(Y,T ),k′(x)

i

, if ∆kE(Y |Z , X = x)< 0;

(A33)

(ii) If max
0≤m≤K

T V(Y,T ),m(x) = 0, then Θαk (P, x) = Θ is the sharp identified set of αk,k−1(x). Whereas,

if T V(Y,T ),k(x) > 0 and T V(Y,T ),k′(x) = 0 for all k′ 6= k, then Θαk (P, x) in (A33) is the sharp

identified set of αk,k−1(x).

Proof of Lemma A.6. The proof is a direct extension of the proof of Lemma 3.2 when conditional on

X .

Lemma A.7. Let Assumption A.1 and A.2 hold for T . The results below hold for ∀k = 1, 2, ..., K and

∀x ∈ ΩX .

(i) If T V(Y,T ),k(x) = 0, then Θp
k(P, x) = [−1, 1]. Whereas, if T V(Y,T ),k(x)> 0, then:

Θ
p
k(P, x) =



















h

∆kE(T |Z ,X=x)
1−
∑

k′ 6=k T V(Y,T ),k′(x)
, ∆kE(T |Z ,X=x)

T V(Y,T ),k(x)

i

, if ∆kE(T |Z , X = x)> 0,

{0}, if ∆kE(T |Z , X = x) = 0,
h

∆kE(T |Z ,X=x)
T V(Y,T ),k(x)

, ∆kE(T |Z ,X=x)
1−
∑

k′ 6=k T V(Y,T ),k′(x)

i

, if ∆kE(T |Z , X = x)< 0;

(A34)

(ii) If max
0≤m≤K

T V(Y,T ),m(x) = 0, thenΘp
k(P, x) = [−1, 1] is the sharp identified set of∆pk(x). Whereas,

if T V(Y,T ),k(x) > 0 and T V(Y,T ),k′(x) = 0 for all k′ 6= k, then Θp
k(P, x) in (A34) is the sharp

identified set of ∆pk(x).

Proof of Lemma A.7. The proof is a direct extension of the proof of Lemma 3.3 when conditional on

X .
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For x ∈ ΩX , the identified set ofαIV (x) constructed using either the identified sets of {αk,k−1(x)}Kk=1

or {∆pk(x)}Kk=1 or external information are denoted asΘα(P, x), Θp(P, x) andΘξ(P, x), respectively.

Given Lemmas A.6 and A.7, the same logic of partial identification Strategies 1, 2 and 3 still holds,

thus can be extended straightforwardly to conditional on covariates.

Strategy 1 with covariates. Let Assumption A.1 and A.2 hold for T . Then, for ∀x ∈ ΩX :

(i) Θα(P, x) =
⋃

k∈{1,2,...,K}Θ
α
k (P, x);

(ii) If ∆kE(Y |Z , X = x)> 0 for all k = 1, 2, ..., K , then αIV (x)> 0 and

Θα(P, x) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
1−

∑

k′ 6=k T V(Y,T ),k′(x)

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
T V(Y,T ),k(x)

��

.

(iii) If ∆kE(Y |Z , X = x)< 0 for all k = 1, 2, ..., K , then αIV (x)< 0 and

Θα(P, x) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
T V(Y,T ),k(x)

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
1−

∑

k′ 6=k T V(Y,T ),k′(x)

��

.

Strategy 2 with covariates. Let Assumption A.1 and A.2 hold for T . Then, for ∀x ∈ ΩX :

(i) Θp(P, x) =
�

αMis(x)×∆p : ∆p ∈
⋃

k=1,2,...,K Θ
p
k(P, x)

	

, where∆p represents any generic value

in the union
⋃

k=1,2,...,K Θ
p
k(P, x).

(ii) If αMis(x)≥ 0, then αIV (x)≥ 0 and

Θp(P, x) = αMis(x)×
�

min
k=1,2,...,K

�

∆kE(T |Z , X = x)
1−

∑

k′ 6=k T V(Y,T ),k′(x)

�

, max
k=1,2,...,K

�

∆kE(T |Z , X = x)
T V(Y,T ),k(x)

��

,

(iii) If αMis(x)< 0, then αIV (x)< 0 and

Θp(P, x) = αMis(x)×
�

min
k=1,2,...,K

�

∆kE(T |Z , X = x)
T V(Y,T ),k(x)

�

, max
k=1,2,...,K

�

∆kE(T |Z , X = x)
1−

∑

k′ 6=k T V(Y,T ),k′(x)

��

.

Strategy 3 with covariates. Let Assumption A.1 hold for T . Suppose there exist two known

constants ξ(x)≤ ξ(x) and ξ(x),ξ(x) ∈ (0,1], such that ξ(x)≤ ξ(x)≤ ξ(x). Then:

(i) If αMis(x)≥ 0, then αIV (x)≥ 0 and Θξ(P, x) =
�

ξ(x)αMis(x),ξ(x)αMis(x)
�

.

(ii) If αMis(x)≤ 0, then αIV (x)≤ 0 and Θξ(P, x) =
�

ξ(x)αMis(x),ξ(x)αMis(x)
�

.

where values of ξ(x) and ξ(x) may be obtained from external sources of information, such as:

validation studies, administrative data, repeated measurements of the same individual, or from

economic theory.
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Further extension. We conclude this section by showing the technical challenge one would

face if the identification target was the unconditional IV estimand:

Cov(Y, g(Z))
Cov(D, g(Z))

=
E
¦

Y
�

g(Z)−E[g(Z)]
�©

E
¦

D
�

g(Z)−E[g(Z)]
�© =
EX

¦

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

EX

¦

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

.

Unlike Frölich (2007), since Z is discrete, the expression of Cov(Y, g(Z))/Cov(D, g(Z)) in terms of

the conditional LATEs {αk,k−1(X )}Kk=1 is not straightforward and might requires further restrictions.

Consider first the mean independence of Z to X , E[Z |X ] = E[Z]. Although it weakens the

necessity of assuming the unconfoundedness of the instrument(s), it may be infeasible in some

empirical studies. Without restricting the mean independence of Z , E[Y (g(Z)− E[g(Z)])|X ] can

no longer be expressed as some function of the conditional LATEs {αk,k−1(X )}Kk=1.37 Suppose that

E[Z |X ] = E[Z]. Then:

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�

=
K
∑

k=1

Pr(Ck|X )
K
∑

l=k

(g(zl)−E[g(Z)])πl(X )αk,k−1(X ),

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�

=
K
∑

k=1

Pr(Ck|X )
K
∑

l=k

(g(zl)−E[g(Z)])πl(X ).

(A35)

However, even if (A35) is satisfied,

Cov(Y, g(Z))
Cov(D, g(Z))

=
K
∑

k=1

EX

�

Pr(Ck|X )
∑K

l=k (g(zl)−E[g(Z)])πl(X )αk,k−1(X )
�

∑K
k=1EX

�

Pr(Ck|X )
∑K

l=k (g(zl)−E[g(Z)])πl(X )
�

6=
K
∑

k=1

EX

�

Pr(Ck|X )
∑K

l=k (g(zl)−E[g(Z)])πl(X )
�

∑K
k=1EX

�

Pr(Ck|X )
∑K

l=k (g(zl)−E[g(Z)])πl(X )
�EX [αk,k−1(X )]

where the inequality holds in general. This is because, for two random variables A and B, E[AB] 6=
E[A]E[B] unless A is uncorrelated with B. Therefore, we cannot conduct the partial identification

using a method analogue to Strategies 1, 2 and 3, because all of them rely on the target estimand

being rewritten as weighted average of some form, either conditional or unconditional, of LATEs.

Secondly, we wonder if Cov(Y, g(Z))/Cov(D, g(Z)) andEX

�

αIV (X )
�

are two different estimands.

Because if they are the same, then the suggested estimation method for EX

�

αIV (X )
�

can be applied

37Because if E[Z |X ] 6= E[Z], then the term

K
∑

l=0

E(Y |Z = z0, X )(g(zl)−E[g(Z)])πl(X ) = E[Y |Z = z0, X ](E[g(Z)|X ]−E[g(Z)]) = 0

does not hold in general (unless E[Y |Z = z0, X ] = 0), which is required for deriving (A35).
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to Cov(Y, g(Z))/Cov(D, g(Z)). However,

Cov(Y, g(Z))
Cov(D, g(Z))

=
EX

¦

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

EX

¦

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

6=EX







E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�







= EX

�

αIV (X )
�

,

where the inequality holds, unless the denominator E [D (g(Z)−E[g(Z)]) |X ] is degenerate, i.e.

is not a function of X . One sufficient condition for degenerate E [D (g(Z)−E[g(Z)]) |X ] is that

(D, Z) ⊥ X , which, however, is quite restrictive and infeasible in many scenarios such as observa-

tional studies.
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A.6 Details: How to incorporate covariates in practice

There are two main scenarios. First, the simplest case is when all covariates in X take on a finite

number of values, that is, ΩX is a finite set. Angrist and Fernandez-Val (2010) (Section 4) also

study the estimation and inference for conditional treatment effects when assuming covariates are

discrete. Assuming covariates are discrete is not required for partial identification of αIV (x), but it

maintains the inference process very similar to before. Indeed, in this case, a practitioner can simply

implement the same inference process outlined in Section 4 (and further detailed in Appendix A.3)

for each covariate-defined subpopulation with X = x and x ∈ ΩX . The only requirement is that

there must be a large enough sample size for each covariate-cell. Second, when covariates are

continuous and/or high-dimensional, the inference procedure must be adjusted.38 In this case, we

suggest to follow a method adopted by Dehejia and Wahba (1999) and Battistin and Sianesi (2011)

which is based on the idea of stratification matching. More specifically, each of our main partial

identification strategies can be implemented following three steps:

Step 1. For the sake of dimension reduction, denote e(x) =Pr(T = 1|X = x) as the observable

propensity score of the treatment proxy T , which is an index summarizing the information contained

in covariates. Estimate e(x) from a logit or probit regression, where polynomials and interactions

of X may be included as regressors to account for possible nonlinear effects of X on the probability

of being observed as treated.

Step 2. Given the estimated propensity score ê(x), stratify the sample into a finite number

of strata over the common support of the score. These strata can be either equally spaced, or user-

specified, such that the number of observations within each stratum is large enough to conduct

inference. This step is equivalent to converting the continuous variable e(x) into a discrete one.

Step 3. Within each stratum, proceed with the chosen partial identification strategy and

conduct inference following the detailed procedure outlined in Section 4 (and further detailed in

Appendix A.3). Specifically for Strategy 3, this means to obtain first an estimate of αMis(x) and

its confidence interval, via a conventional 2SLS, using a sample for each stratum. Then, following

Equation (26), construct the confidence interval of αIV (x) using information on the misclassification

error (see Section 5.2 for guidance).

Three final remarks are in order. Firstly, we focus on the conditional IV estimand, αIV (x), be-

cause this parameter has a clear relationship with the conditional LATEs, which are the foundation

of our partial identification strategies in the presence of covariates. Alternatively, one could tar-

get the unconditional IV estimand. For example, in case of a binary instrument, the practitioner

has already the tools to target the unconditional LATE (Ura, 2018). This would be the same if the

practitioner applied our strategies in the same context. Whereas, in the more general case, when

38We do not attempt to solve issues in inference arising from infinite dimensional covariates. By “high-dimensional”, we mean a relatively
large but still finite number of covariates, which may cause the curse of dimensionality when using traditional semi or nonparametric estimation
methods.
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instrument(s) are discrete, targeting the unconditional IV estimand is not as straightforward. One

way to construct a bound for the overall treatment effect EX [αIV (x)] is to take expectations of the

lower and upper bounds of the identified set of αIV (x). However, a rigorous exploration along

this line, particularly the development of methods able to deal with continuous covariates without

relying on stratification, is beyond the scope of this paper and left for future research.39

Secondly, in the context of an endogenous treatment response model with valid instrument(s)

and exogenous covariates, the 2SLS estimator is commonly adopted and it is often justified by

imposing linear model restrictions with constant treatment response (see e.g. Heckman and Robb

(1985) and Angrist (2001) among many others). Hence, it is interesting to see what is the potential

advantage for us if we use these further restrictions. Suppose, first, that the binary treatment D is

observed and the practitioner assumes (i) Y = αD+ βX + V (model linearity and constant effect),

with V being the unobservable error term, and (ii) E[V |g(Z), X ] = 0 (instrument validity). Then,

the conditional IV estimand defined in Equation (27), αIV (x), becomes invariant to covariates:

αIV (x) =
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

=
αCov(D, g(Z)|X = x) + βCov(V, g(Z)|X = x)

Cov(D, g(Z)|X = x)
= α,

and, under mild regularity conditions, the probability limit of the linear 2SLS estimator converges

to the true value:

�

α̂2SLS

β̂2SLS

�

=





1
n

n
∑

i=1

�

g(Zi)

X i

��

Di

X i

�′




−1
�

1
n

n
∑

i=1

�

g(Zi)

X i

�

Yi

�

p
→

�

α

β

�

. (A36)

However, when D is unobserved and T is used as a proxy, if we use the same assumptions (i) and

(ii) as above, the mismeasured conditional IV estimand αMis(x) becomes:40

αMis(x) =
Cov(Y, g(Z)|X = x)
Cov(T, g(Z)|X = x)

=
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

Cov(D, g(Z)|X = x)
Cov(T, g(Z)|X = x)

=
α

ξ(x)
,

where ξ(x) is the weighted average of the conditional LATMs. This expression makes clear that a

feasible linear 2SLS estimator eα2SLS, obtained by replacing D with T in Equation (A36), does not

converge in probability to αMis(x) (nor, of course, to α). This is because αMis(x) varies with x

through ξ(x), whereas eα2SLS is constant for all individuals. Thus, even when model linearity and

constant effect are assumed, without making further (strong) restrictions on the misclassification

error, our strategy 3 cannot be implemented by using the conventional 2SLS estimator on the entire

39The challenge is the following. Suppose the covariates are continuous, then the inference procedure should be conducted for identified
set characterized by unconditional moment inequalities, rather than conditional ones. This is because the probability of observing samples
conditional on covariates at any fixed value x ∈ ΩX is zero. However, consider Strategy 1 as an example; one can show that:

EX

h

min
k
{αk,k−1(X )}

i

≤EX [α
IV (X )]≤ EX

h

max
k
{αk,k−1(X )}

i

.

Since the random variables mink{αk,k−1(X )} and maxk{αk,k−1(X )} are order statistics whose distributions are complicated and unknown, we
fail to obtain explicit identified set of EX [αIV (X )] characterized by unconditional moment inequalities. In Appendix A.5 we provide further
details and insights.

40See Appendix A.5 for the definition of the estimand αMis(x) and further details.

70



sample in place of αMis(x). Hence, also with a linear model and constant effect, the way to proceed

to obtain bounds of the conditional IV estimand αIV (x) is to follow the procedure outlined in Step

1 to 3.

Finally, the discussion above raises the question of whether and under what conditions it is pos-

sible to link the feasible linear 2SLS estimators with covariates eα2SLS to the conditional IV estimand

αIV (x). As discussed in Abadie (2003), Section 5, when the instrument is binary and Pr(Z = 1|X )
is linear in X , the infeasible linear 2SLS estimator α̂2SLS converges to the best linear least squares

approximation of LATE. The investigation of whether eα2SLS has a similar interpretation, and how to

use it for bias correction, is beyond the scope of this paper and left for future research.
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A.7 Details of Monte Carlo Simulations

Consider the following data generating process (DGP):

Y0 = 0.5+ 0.2X +O+ V0,

Y1 = 1.5+ 0.2X +O+ V1,

Y = DY1 + (1− D)Y0,

where Y0 and Y1 are potential outcomes, X is an independently generated covariate taking values

in ΩX = {0, 1,2, 3} with equal probabilities, O is unobservable (omitted variable), and V0 and V1 are

standard normal random errors. The unobserved true treatment D is generated by

D = 1[γ0 + γ1Z + γ2X + VD ≥ 0],

where γ0 = −2, γ1 ∈ {1,1.5} (instrument strength) and γ2 = 0.5. The randomly generated discrete

instrument Z takes values in a finite set ΩZ = {0, 1,2} with probabilities π0 = 0.4,π1 = 0.4,π2 =

0.2. Assume we can observe (Y, Z , T, S, X ), where T and S are misclassified endogenous binary

treatment proxies generated by:

T = DT1 + (1− D)T0, where T0 = 1[Φ(UT )< µT
], T1 = 1[Φ(UT )≥ µT],

S = DS1 + (1− D)S0, where S0 = 1[Φ(US)< µS
], S1 = 1[Φ(US)≥ µS].

(A37)

where UT and US are the key components of the misclassification error of the treatment proxies

T and S, respectively. For W = {T, S}, µ
W

is the probability of opposite reporting, and 1 − µW is

the probability of correctly reporting. In our simulations, we set µ
T
= 0.05 and µT ∈ {0.1,0.3};

µ
S
= 0.05 and µS = 0.25. Furthermore, the unobservable terms (O, VD, UT , US)′ follow a joint

normal distribution:
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Since UT , US are endogenous, in the sense that they are correlated with (O, VD)′, the misclassification

errors (T1, T0) and (S1, S0) are also endogenous.

Table A1 reports the true values of the LATEs αk,k−1 in panel (a), and of the LATMs of proxy T

(∆pT
k = pT

1,k−pT
0,k) in panel (b), conditional on X = x and under different values of (µ

T
,µT ), as well

as their identified sets Θαk (P) and ΘpT

k (P). As we can see, the identified set of LATEs becomes wider

as the probability of correct recall 1 − µT decreases (more misclassification error), while the true

value of αk,k−1 remains the same. In addition, as 1−µT decreases, the true value of∆pT
k decreases,

with its identified set moving downward but not necessarily expanding. Finally, it is clear that the
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information provided by the multiple proxies helps to narrow down the identified sets.

Figure A1 and A2 plot the true values of αIV , αMis,T and αMis,S, as well as the identified sets

of αIV , using our three strategies. In both figures the instrument strength is γ1 = 1, whereas the

misclassification error is µT = 0.1 and µT = 0.3, respectively. The full set of numerical results,

for each figure and different values of instrument strength, are reported in Table A2. Specifically

for strategy 3, we consider only two examples discussed in Section 5.2. First, Example 1, with

ξT ∈ [ξT ,ξ
T
], where ξT = 1 − 2µT and ξ

T
= 1 − µT , the resulting identified set is denoted by

Θξ(P). Second, Example 4, with ξT = ξ
T
= 1− µT − µT

, with the resulting identified set denoted

by Θξ∗ (P).

Looking at the figures, one can see that, as the probability of correctly reporting 1−µT decreases

(more misclassification error), the bias of αMis,T gets worse. In addition, the identified sets Θα(P),

Θp(P) andΘξ(P) all become wider. Moreover, the upper bounds ofΘp(P) andΘξ(P) are smaller than

αMis,T and αMis,S in all different settings. The upper bound of Θα(P) becomes smaller than αMis,T

when, for example, the correct reported probability is relatively small (γ1 = 1,µT = 0.3), or when

multiple proxies are available. This implies that, by implementing our method, the results would

outperform those obtained following a naïve IV approach. Besides, consistent with the theoretical

results, using multiple proxies T and S reduces the width of the identified sets of αIV . Finally, in

Appendix one can see that, as expected, using a stronger instrument significantly narrows down the

width of the identified sets.
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Table A1: Identified Set of LATEs and LATMs under Endogenous Misclassification

(a) LATE

Θα1 (P) Θα2 (P)
(µ

T
,µT ) α1,0 singe multiple α2,1 single multiple

γ1 = 1

X = 0
(0.05,0.1)

1
[0.194,1.320] [0.199,1.217]

1
[0.382,1.201] [0.386,1.136]

(0.05,0.3) [0.177,1.717] [0.190,1.327] [0.374,1.540] [0.384,1.234]

X = 1
(0.05,0.1)

1
[0.220,1.276] [0.226,1.175]

1
[0.407,1.208] [0.412,1.141]

(0.05,0.3) [0.201,1.697] [0.217,1.301] [0.395,1.534] [0.407,1.232]

X = 2
(0.05,0.1)

1
[0.255,1.272] [0.262,1.184]

1
[0.426,1.183] [0.431,1.121]

(0.05,0.3) [0.235,1.672] [0.254,1.294] [0.405,1.496] [0.420,1.202]

X = 3
(0.05,0.1)

1
[0.289,1.259] [0.296,1.168]

1
[0.443,1.171] [0.450,1.115]

(0.05,0.3) [0.263,1.633] [0.286,1.271] [0.425,1.483] [0.442,1.196]

γ1 = 1.5

X = 0
(0.05,0.1)

1
[0.528,1.241] [0.547,1.160]

1
[0.690,1.152] [0.705,1.105]

(0.05,0.3) [0.455,1.630] [0.522,1.275] [0.644,1.426] [0.685,1.173]

X = 1
(0.05,0.1)

1
[0.577,1.245] [0.598,1.164]

1
[0.702,1.154] [0.719,1.107]

(0.05,0.3) [0.497,1.622] [0.567,1.271] [0.648,1.422] [0.694,1.173]

X = 2
(0.05,0.1)

1
[0.614,1.232] [0.632,1.151]

1
[0.698,1.142] [0.718,1.102]

(0.05,0.3) [0.537,1.598] [0.608,1.268] [0.642,1.408] [0.692,1.165]

X = 3
(0.05,0.1)

1
[0.653,1.232] [0.671,1.155]

1
[0.698,1.142] [0.719,1.102]

(0.05,0.3) [0.582,1.596] [0.652,1.263] [0.632,1.399] [0.689,1.161]

(b) LATM

Θ
pT

1 (P) Θ
pT

2 (P)
(µ

T
,µT ) ∆pT

1 single multiple ∆pT
2 single multiple

γ1 = 1

X = 0
(0.05,0.1) 0.765 [0.146,0.991] [0.149,0.914] 0.832 [0.317,0.997] [0.320,0.943]
(0.05,0.3) 0.520 [0.090,0.879] [0.097,0.680] 0.611 [0.227,0.933] [0.233,0.748]

X = 1
(0.05,0.1) 0.774 [0.171,0.994] [0.176,0.916] 0.836 [0.337,0.999] [0.341,0.944]
(0.05,0.3) 0.526 [0.105,0.884] [0.113,0.678] 0.622 [0.242,0.941] [0.250,0.756]

X = 2
(0.05,0.1) 0.781 [0.199,0.992] [0.204,0.924] 0.841 [0.360,0.999] [0.364,0.946]
(0.05,0.3) 0.539 [0.125,0.892] [0.136,0.690] 0.631 [0.257,0.951] [0.267,0.764]

X = 3
(0.05,0.1) 0.785 [0.229,0.996] [0.234,0.924] 0.847 [0.378,0.998] [0.384,0.951]
(0.05,0.3) 0.548 [0.146,0.905] [0.158,0.705] 0.640 [0.272,0.949] [0.283,0.765]

γ1 = 1.5

X = 0
(0.05,0.1) 0.791 [0.423,0.996] [0.439,0.931] 0.868 [0.598,0.999] [0.611,0.959]
(0.05,0.3) 0.554 [0.253,0.906] [0.290,0.709] 0.676 [0.436,0.964] [0.463,0.793]

X = 1
(0.05,0.1) 0.797 [0.461,0.996] [0.478,0.930] 0.872 [0.608,0.999] [0.622,0.958]
(0.05,0.3) 0.562 [0.280,0.915] [0.320,0.717] 0.682 [0.439,0.964] [0.470,0.795]

X = 2
(0.05,0.1) 0.802 [0.497,0.996] [0.511,0.931] 0.877 [0.611,0.999] [0.628,0.964]
(0.05,0.3) 0.573 [0.308,0.917] [0.349,0.727] 0.688 [0.441,0.966] [0.475,0.799]

X = 3
(0.05,0.1) 0.807 [0.528,0.996] [0.543,0.934] 0.881 [0.611,0.999] [0.629,0.964]
(0.05,0.3) 0.580 [0.334,0.916] [0.374,0.724] 0.697 [0.438,0.969] [0.477,0.805]

Notes: In panel (a), columns αk,k−1 (k = 1,2) display the true values of LATEs. Columns Θαk (P) is the true identified set for LATE αk,k−1, “single”
is when only T is available, and “multiple” is the identified set using both T and S. In panel (b), columns ∆pT

k (k = 1,2) are the true values of

the LATMs of proxy T . Columns ΘpT

k (P) (k = 1,2) are the true identified set for ∆pT
k . Columns “single” display the identified sets using only

T , and columns “multiple” report the identified sets under multiple proxies T, S, given in Lemma A.3 in Appendix.
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Figure A1: True Identified Sets (γ1 = 1, µ̄T = 0.1)
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Notes: The red, green and cyan lines are the true values of αIV (x), αMis,T (x) and αMis,S(x) using T and S as proxy, respectively. The upper and
lower bars of blue intervals are the ending points of the identified sets. In panel (a), Θα(P), Θp(P), Θξ(P) and Θξ∗ (P) report the true identified
sets of αIV (x), conditional on X = x , using T as proxy. In panel (b), Θα(P), Θp(P) and Θξ(P) are the intersection of the true identified sets
of αIV (x), conditional on X = x , using T, S as proxies. In both panels, Θξ(P) is constructed given [ξW (x), ξ̄W (x)], where ξW (x) = 1− 2µW ,

ξ
W
(x) = 1− µW for all x ∈ ΩX and W = {T, S}. Θξ∗ (P) is a special case of the third identification strategy, where the possible range of ξW (x)

with W = {T, S} is set to be a point ξW (x) = ξ̄W (x) = 1−µW −µW
for all x ∈ ΩX .
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Figure A2: True Identified Sets (γ1 = 1, µ̄T = 0.3)
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Notes: The red, green and cyan lines are the true values of αIV (x), αMis,T (x) and αMis,S(x) using T and S as proxy, respectively. The upper and
lower bars of blue intervals are the ending points of the identified sets. In panel (a), Θα(P), Θp(P), Θξ(P) and Θξ∗ (P) report the true identified
sets of αIV (x), conditional on X = x , using T as proxy. In panel (b), Θα(P), Θp(P) and Θξ(P) are the intersection of the true identified sets
of αIV (x), conditional on X = x , using T, S as proxies. In both panels, Θξ(P) is constructed given [ξW (x), ξ̄W (x)], where ξW (x) = 1− 2µW ,

ξ
W
(x) = 1− µW for all x ∈ ΩX and W = {T, S}. Θξ∗ (P) is a special case of the third identification strategy, where the possible range of ξW (x)

with W = {T, S} is set to be a point ξW (x) = ξ̄W (x) = 1−µW −µW
for all x ∈ ΩX .
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Next, we study the finite sample properties of the confidence intervals C j(β j) with j = α, p,ξ

proposed in Section 4. To focus on their performance in practical applications, we compute the

simplified version of the confidence intervals of αk,k−1 and ∆pk with k = 1,2 as in Equation (23).

Based on this, the confidence intervals of αIV are constructed in the same manners as in Equations

(24), (25) and (26). Monte Carlo simulations are implemented with sample size n = 8, 000 and

1,000 replications. We choose the number of partition κn = 4, size η = 0.05 and ηαMis = 0.01 (for

C p(β p)) and ηαMis = 0.05 (for Cξ(βξ)). We calculate the coverage rates as how often the confidence

interval includes a given parameter value out of 1,000 simulations. The critical values used to build

the confidence intervals are obtained by two-step multiplier bootstrap with size β = 0.1% for the

moment selection and 500 bootstrap repetitions.41

Figure A3 plots the coverage rates of the confidence intervals associated with µT = 0.1 and

γ1 = 1, for X = 0. The complete set of results is reported below.42 One can see that all the

confidence intervals cover their corresponding true identified sets with probability at least 95%,

whileC p(β p) significantly outperformsC α(βα) in the sense that compared toC α(βα), the coverage

rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. This

is intuitive because the second strategy utilizes the information from both αMis and the identified

sets of {∆pk}Kk−1. In addition, when extra information of the range [ξT ,ξ
T
] is given, C ξ(βξ) gives

the least conservative 95% confidence interval which includes the true value of αIV . Besides, all

confidence intervals become less conservative when multiple proxies are available and/or when

instrument strength becomes stronger.

Our conclusion is that P-LATE represents a reliable alternative estimator when practitioners can

only use a mismeasured binary treatment T in place of D to estimate the benefits of a program.

Moreover, P-LATE becomes very powerful, and works at best, when external information about the

accuracy of the measurement error can be taken into account.

41See the two-step multiplier bootstrap in Appendix A.2 for the details about the moment selection and its size β .
42Here we provide further robustness checks associated to µT ∈ {0.1, 0.3} and γ1 ∈ {1,1.5}, and for all stratification of the covariate X . The

qualitative results do not change.
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Figure A3: Coverage Rate of Confidence Intervals (γ1 = 1,µ
T
= 0.05, X = 0)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1, µ
T
= 0.05 and stratification X = 0. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Table A2: Identified Set of αIV under Endogenous Misclassification (αIV = 1)

(a) Single proxy

(µ
T
,µT ) αMis,T Θα(P) Θp(P) Θξ(P) Θξ∗ (P)

γ1 = 1

X = 0
(0.05,0.1) 1.247 [0.194,1.320] [0.182,1.243] [0.997,1.122] 1.060
(0.05,0.3) 1.759 [0.180,1.755] [0.159,1.640] [0.703,1.231] 1.143

X = 1
(0.05,0.1) 1.235 [0.220,1.276] [0.212,1.234] [0.988,1.112] 1.050
(0.05,0.3) 1.724 [0.201,1.697] [0.180,1.623] [0.690,1.207] 1.121

X = 2
(0.05,0.1) 1.221 [0.255,1.272] [0.243,1.220] [0.977,1.099] 1.038
(0.05,0.3) 1.681 [0.235,1.672] [0.210,1.598] [0.672,1.176] 1.092

X = 3
(0.05,0.1) 1.209 [0.289,1.259] [0.277,1.207] [0.967,1.088] 1.028
(0.05,0.3) 1.654 [0.263,1.633] [0.241,1.569] [0.662,1.158] 1.075

γ1 = 1.5

X = 0
(0.05,0.1) 1.190 [0.528,1.241] [0.504,1.189] [0.952,1.071] 1.011
(0.05,0.3) 1.597 [0.455,1.630] [0.404,1.540] [0.639,1.118] 1.038

X = 1
(0.05,0.1) 1.195 [0.577,1.245] [0.551,1.195] [0.956,1.076] 1.016
(0.05,0.3) 1.595 [0.497,1.622] [0.447,1.538] [0.638,1.116] 1.036

X = 2
(0.05,0.1) 1.186 [0.614,1.232] [0.589,1.184] [0.949,1.067] 1.008
(0.05,0.3) 1.581 [0.537,1.598] [0.488,1.528] [0.633,1.107] 1.028

X = 3
(0.05,0.1) 1.189 [0.653,1.232] [0.628,1.188] [0.951,1.070] 1.010
(0.05,0.3) 1.583 [0.582,1.596] [0.529,1.535] [0.633,1.108] 1.029

(b) Multiple proxies

(µ
T
,µT ) αMis,T αMis,S Θα(P) Θp(P) Θξ(P) Θξ,T

∗ (P) Θξ,S
∗ (P)

γ1 = 1

X = 0
(0.05,0.1) 1.247

1.510
[0.199,1.217] [0.187,1.173] [0.997,1.122] 1.060

1.057
(0.05,0.3) 1.759 [0.187,1.299] [0.180,1.255] [0.755,1.133] 1.143

X = 1
(0.05,0.1) 1.235

1.500
[0.226,1.175] [0.218,1.163] [0.988,1.112] 1.050

1.050
(0.05,0.3) 1.724 [0.217,1.301] [0.211,1.263] [0.750,1.125] 1.121

X = 2
(0.05,0.1) 1.221

1.479
[0.262,1.184] [0.249,1.154] [0.977,1.099] 1.038

1.035
(0.05,0.3) 1.681 [0.254,1.294] [0.243,1.237] [0.740,1.111] 1.092

X = 3
(0.05,0.1) 1.209

1.462
[0.296,1.168] [0.287,1.140] [0.967,1.088] 1.028

1.024
(0.05,0.3) 1.654 [0.286,1.271] [0.275,1.226] [0.731,1.097] 1.075

γ1 = 1.5

X = 0
(0.05,0.1) 1.190

1.450
[0.547,1.160] [0.523,1.141] [0.952,1.071] 1.011

1.015
(0.05,0.3) 1.597 [0.522,1.275] [0.498,1.216] [0.725,1.088] 1.038

X = 1
(0.05,0.1) 1.195

1.453
[0.598,1.164] [0.573,1.143] [0.956,1.076] 1.016

1.017
(0.05,0.3) 1.595 [0.567,1.271] [0.544,1.219] [0.728,1.091] 1.036

X = 2
(0.05,0.1) 1.186

1.442
[0.632,1.151] [0.613,1.132] [0.949,1.067] 1.008

1.010
(0.05,0.3) 1.581 [0.608,1.268] [0.584,1.218] [0.726,1.089] 1.028

X = 3
(0.05,0.1) 1.189

1.449
[0.671,1.155] [0.650,1.139] [0.951,1.070] 1.010

1.015
(0.05,0.3) 1.583 [0.652,1.263] [0.627,1.214] [0.724,1.086] 1.029

Notes: Columns αMis,T and αMis,S are true values of αMis(x) using T and S as proxy, respectively. In panel (a), Θα(P), Θp(P), Θξ(P) and Θξ∗ (P)
report the true identified sets of αIV (x), conditional on X = x , using T as proxy. In panel (b), Θα(P), Θp(P) and Θξ(P) are the intersection
of the true identified sets of αIV (x), conditional on X = x , using T, S as proxies. In both panels, Θξ(P) is constructed given [ξW (x), ξ̄W (x)],

where ξW (x) = 1− 2µW , ξ
W
(x) = 1−µW for all x ∈ ΩX and W = {T, S}. Θξ∗ (P) is a special case of the third identification strategy, where the

possible range of ξW (x) with W = {T, S} is set to be a point ξW (x) = ξ̄W (x) = 1−µW −µW
for all x ∈ ΩX .

79



Figure A4: True Identified Sets (γ1 = 1.5, µ̄T = 0.1)
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Notes: The red, green and cyan lines are the true values of αIV (x), αMis,T (x) and αMis,S(x) using T and S as proxy, respectively. The upper and
lower bars of blue intervals are the ending points of the identified sets. In panel (a), Θα(P), Θp(P), Θξ(P) and Θξ∗ (P) report the true identified
sets of αIV (x), conditional on X = x , using T as proxy. In panel (b), Θα(P), Θp(P) and Θξ(P) are the intersection of the true identified sets
of αIV (x), conditional on X = x , using T, S as proxies. In both panels, Θξ(P) is constructed given [ξW (x), ξ̄W (x)], where ξW (x) = 1− 2µW ,

ξ
W
(x) = 1− µW for all x ∈ ΩX and W = {T, S}. Θξ∗ (P) is a special case of the third identification strategy, where the possible range of ξW (x)

with W = {T, S} is set to be a point ξW (x) = ξ̄W (x) = 1−µW −µW
for all x ∈ ΩX .
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Figure A5: True Identified Sets (γ1 = 1.5, µ̄T = 0.3)
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(a) single proxy

(b) multiple proxies

Notes: The red, green and cyan lines are the true values of αIV (x), αMis,T (x) and αMis,S(x) using T and S as proxy, respectively. The upper and
lower bars of blue intervals are the ending points of the identified sets. In panel (a), Θα(P), Θp(P), Θξ(P) and Θξ∗ (P) report the true identified
sets of αIV (x), conditional on X = x , using T as proxy. In panel (b), Θα(P), Θp(P) and Θξ(P) are the intersection of the true identified sets
of αIV (x), conditional on X = x , using T, S as proxies. In both panels, Θξ(P) is constructed given [ξW (x), ξ̄W (x)], where ξW (x) = 1− 2µW ,

ξ
W
(x) = 1− µW for all x ∈ ΩX and W = {T, S}. Θξ∗ (P) is a special case of the third identification strategy, where the possible range of ξW (x)

with W = {T, S} is set to be a point ξW (x) = ξ̄W (x) = 1−µW −µW
for all x ∈ ΩX .
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Figure A6: Coverage Rate of Confidence Intervals (γ1 = 1,µ
T
= 0.05, X = 1)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1, µ
T
= 0.05 and stratification X = 1. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A7: Coverage Rate of Confidence Intervals (γ1 = 1,µ
T
= 0.05, X = 2)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1, µ
T
= 0.05 and stratification X = 2. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A8: Coverage Rate of Confidence Intervals (γ1 = 1,µ
T
= 0.05, X = 3)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1, µ
T
= 0.05 and stratification X = 3. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A9: Coverage Rate of Confidence Intervals (γ1 = 1.5,µ
T
= 0.05, X = 0)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1.5, µ
T
= 0.05 and stratification X = 0. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A10: Coverage Rate of Confidence Intervals (γ1 = 1.5,µ
T
= 0.05, X = 1)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1.5, µ
T
= 0.05 and stratification X = 1. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A11: Coverage Rate of Confidence Intervals (γ1 = 1.5,µ
T
= 0.05, X = 2)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1.5, µ
T
= 0.05 and stratification X = 2. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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Figure A12: Coverage Rate of Confidence Intervals (γ1 = 1.5,µ
T
= 0.05, X = 3)
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Notes: This figure plots the coverage rates of the confidence intervals associated with γ1 = 1.5, µ
T
= 0.05 and stratification X = 3. We vary

µT = 0.1 and µT = 0.3. The blue curve is the coverage rate of the confidence intervals, and the red vertical dashed-lines are the ending points
of true identified sets. The blue horizontal dotted-line is the 95%. We can see that all the confidence intervals cover their corresponding true
identified sets with probability at least 95%. C p(β p) significantly outperforms C α(βα) in the sense that, compared to C α(βα), the coverage
rate of C p(β p) drops dramatically faster for those parameter values outside the identified set. In addition, when extra information of the range

[ξT ,ξ
T
] is given, C ξ(βξ) gives the least conservative 95% confidence interval which includes the true value of αIV . Besides, all confidence

intervals become less conservative when multiple proxies are available.
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