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ABSTRACT

IZA DP No. 13376 JUNE 2020

Dynamics of Social Mobility during the 
COVID-19 Pandemic in Canada

As the number of cases increases globally, governments and authorities have continued to 

use mobility restrictions that were, and still are, the only effective tool to control for the 

viral transmission. Yet, the relationship between public orders and behavioral parameters 

of social distancing observed in the community is a complex process and an important 

policy question. The evidence shows that adherence to public orders about the social 

distancing is not stable and fluctuates with degree of spatial differences in information 

and the level of risk aversion. This study aims to uncover the behavioural parameters of 

change in mobility dynamics in major Canadian cities and questions the role of people’s 

beliefs about how contagious the disease is on the level of compliancy to public orders. 

Our findings reveal that the degree of social distancing under strict restrictions is bound by 

choice, which is affected by the departure of people’s beliefs from the public order about 

how severe the effects of disease are. Understanding the dynamics of social distancing thus 

helps reduce the growth rate of the number of infections, compared to that predicted by 

epidemiological models.
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1.  Introduction 
As the number of cases increases globally, governments and authorities have 
continued to use mobility restrictions that were, and still are, the only effective tool 
to control for the viral transmission.  Centers for Disease Control and Prevention 
defines these public responses as Nonpharmaceutical Interventions (NPIs): “actions, 
apart from getting vaccinated and taking medicine, that people and communities 
can take to help slow the spread of illnesses like pandemic influenza (flu)”.4  There 
are recent studies (Chen and Qiu 2020, Zang et al. 2020, Fang et al. 2020) 
investigating how effective lockdown policies are by looking at the daily incidence 
of COVID19 and mobility patterns.  Although the evidence unambiguously 
indicates that implementing NPIs with successful social distancing measures have 
the largest effect on curbing the pandemic, in a recent study, Askitas et al. (2020) 
find that restrictions on internal movement, public transport closures and 
international travel controls do not lead to a significant reduction of new infections. 
They explain that the reason of this limited impact of mobility restrictions is due 
to the lack of stringency in the policy implementations. 

As in any democratic system, the relationship between public orders and 
behavioral parameters of obedience to those orders observed in a community is a 
complex process and an important policy question.  It is vital for public authorities 
to understand this relationship as well as how it manifests across time and regions. 
Mobility patterns show how effective the lockdown policies are to control for 
infectious disease spread.  The evidence confirms that adherence to public orders 
about the social distancing is not stable and fluctuates with degree of spatial and 
temporal differences in information and the level of risk aversion.  From a policy 
perspective, policy makers must understand the determinants of adherence to 
movement restrictions to analyze the efficacy of the public health orders in any given 
time and region, which will also help them prepare for the possible second wave of 
COVID19.5 

This study aims to uncover the behavioural parameters of change in mobility 
dynamics in major Canadian cities and questions the role of people’s beliefs about 

 
4 https://www.cdc.gov/nonpharmaceutical-interventions/index.html 
5 Studies that have looked at a possible second wave of COVID-19 include Leung et al (2020). 
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how contagious the disease is on the level of compliancy to public orders.  
Traditionally, studies examining mobility have ignored individual-level spatial and 
temporal variation in where people spend time. More recently, these issues have been 
addressed using the concept of an individual’s activity space (defined as 
encompassing all the locations a person interacts with over time), yielding a much 
more accurate picture of social mobility. In an effort to understand the COVID19 
transmission due to movement, Google, Apple, and Facebook released their own 
interfaces to explore how much mobility has been impacted as a result of the states 
of emergencies that each province implemented.   For instance, we show daily 
changes in three mobility modes before and after mobility restrictions in Halifax in 
Figure 1. 
 
Figure 1: Apple Mobility Index - Halifax 

 
Source: Authors’ own calculations using Apple Community Mobility Report data 

 
To the best of our knowledge, this is the first Canadian study that explores 

aggregated city level mobility data. We attempt to uncover how mobility modes 
such as daily changes in volumes of citizens using public transit have been impacted 
due to public sentiments that reflect the people’s beliefs about how severe the effects 
of disease are by examining variables such as the previous day's case and death 
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count from COVID19.  The study also controls for high-dimensional local weather 
conditions and removes unobserved spatial heterogeneity across cities.  Our findings 
reveal that the degree of social distancing even under strict restrictions is bound by 
choice, which is affected by the departure of people’s beliefs from the public order 
about how grim the crisis is.  Understanding the dynamics of social distancing thus 
helps reduce the growth rate of the number of infections, compared to that 
predicted by epidemiological models. 

The remainder of the paper is organized as follows: Section 2 introduces the data, 
accompanying descriptive summaries, and illustrations; Section 3 reports the 
estimation results and the discussions about the finding; and we provide the 
concluding remarks in Section 4. 

 

2.  Data 
There are three types of data that are prerequisites in this study: mobility measures, 
local and high-dimensional weather metrics, and a proxy for a sentiment that 
reflects how the pandemic compromises our emotional stability and results in 
spatial and temporal deviance from or compliance with the public health order.  All 
the sources represent unconventional, high-dimensional, and dynamic data 
structures with additional requirements for data management issues.  The following 
subsections will give the details of these data sources and illustrate the information 
structures that each source offers.  
 
2.1 Mobility Data 
In April, regional mobility trends were made available for public use by Apple, 
Google, and Facebook to aid COVID19 efforts. This is the first time in history that 
one can publicly access the data covering different modes and levels of people’s 
mobility in daily frequency for more than 131 countries and major cities.  All three 
providers commented on their websites that the availability of their data is 
temporary for a limited time during the COVID19 pandemic.  Apple's Mobility 
Trends Report was released on April 14th by Apple, which is the main data source 
used in this paper.   Apple provides a csv file (wide form) directly downloadable 
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from their dedicated website starting from January 13, 2020.6 This anonymized 
data captures daily movement patterns across cities globally. The data provides 
the daily changes in volumes for driving, walking, and transit compared to the 
baseline volume indexed to 100 on the first date of observation (January 13) for a 
given mode of transport.  The following six graphs shows the mobility trends for 
six cities. 
  
Figure 2: Apple Mobility Index – All Six Cities 

 
Source: Authors’ own calculations based on Apple Community Mobility data 

 

 
6 https://www.apple.com/covid19/mobility  
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Google also provides regional Community Mobility Reports mobility trends to help  
researchers look into predicting epidemics, plan urban and transit infrastructure, 
and understand people’s mobility and responses to conflict and natural disasters.7 
Although the data provide more detailed modes of mobility including retail, grocery, 
parks, transit, workplaces and residential, Google does not provide disaggregated 
city-level data for Canada.  This level of aggregation at the provincial level masks 
important geotemporal differences specially for larger provinces. 
 
Figure 3: Google and Facebook – Nova Scotia 

 
Source: Authors’ own calculations based on Google and Facebook mobility data 

 
7 https://www.google.com/covid19/mobility/ 
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Finally, Facebook’s Movements Range Data is released in their website8 
stating that the data inform researchers and public health experts about how 
populations are responding to physical distancing measures. The Facebook data is 
the only data in finer spatial scales, at the county-level. Hence. the size of the data 
is big without any level of aggregation at the provincial level.  These datasets have 
two different metrics: Change in Movement and Stay Put. The Change in 
Movement metric looks at how much people are moving around and compares it to 
a baseline period that predates most social distancing measures. The Stay Put 
metric looks at the fraction of the population that appears to stay within a small 
area surrounding their home for an entire day.  We provide an illustration in Figure 
3 to give a better idea how Google and Facebook (Change in Movement) data look 
like. 

As it appears in these three mobility datasets, there is a trade-off between the 
level of information on mobility details and the level of spatial aggregation. 
Therefore, the ideal data for our work would be the Apple data with a city-level 
aggregation and just-enough details in mobility modes.  
 
2.2 Weather Data  
Although the historical climate data can be obtained from multiple sources, it 
requires a substantial amount of time and effort to select the right one. These 
sources compile the information based on physical weather stations located in 
different sections in the region. The most reliable data with minimum missing 
values are from stations that are located at the airports and many studies use their 
values for the cities.  We have tried multiple data sources such as Climate Data 
Extraction Tool from the Government of Canada’s website9, and Air Quality 
Open Data Platform10, which provides a worldwide weather and air quality 
dataset specially organized for researches on the COVID-19 pandemic.  Data 
collection is based on the physical weather stations located in different sections in 
the city. Because the most reliable data with minimum missing values are from 
stations that are located at the airports, we use their values for the cities.  The 

 
8 https://data.humdata.org/dataset/movement-range-maps  
9 https://climate-change.canada.ca/climate-data/#/daily-climate-data  
10 https://aqicn.org/data-platform/covid19/verify/a1e436e6-5829-4b50-bfb3-82d2f4865d7c  
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most reliable weather data, however, is provided at WeatherStats.ca.11  Their 
Weather Data Dashboard reports high-dimensional high-frequency data based 
on their own forecasting algorithms. Their data are collected over time from 
Environment and Climate Change Canada as well as Citizen Weather Observer 
Program (CWOP).  The data contains 70 unique meteorological metrics for each 
city.  The details are provided in Appendix. 
 
2.3 COVID-19 Data  
The data on COVID-19 for Canada was taken from the R package CanCovidData 
written by Von Bergmann (2020)12. We used the provincial data as a proxy for 
COVID-19 sentiment in major Canadian cities. Their data lines up with the official 
updates from the Public Health Agency of Canada.  Table 1 below provides the 
most updated numbers for each province: 
 
Table 1: COVID-19 pandemic in Canada by province (June 13) 

Province Population Tests Cases Recov. Deaths Active 
 British Columbia 5,110,917 165,256 2,709 2,354 168 187 
 Alberta 4,413,146 325,149 7,346 6,811 159 346 
 Saskatchewan 1,181,666 54,508 663 627 13 23 
 Manitoba 1,377,517 55,255 301 289 7 5 
 Ontario 14,711,827 953,015 31,726 26,187 2,498 3,041 
 Quebec 8,537,674 515,673 53,666 20,823 5,148 27,695 
 New Brunswick 779,993 36,125 154 125 1 28 
 Prince Edward Island 158,158 8,463 27 27 0 0 
 Nova Scotia 977,457 48,787 1,061 995 62 4 
 Newfoundland and Lab. 521,365 14,256 261 256 3 2 
 Canada 37,894,799 2,178,345 97,943 58,513 8,049 31,371 
Source: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Canada  

 
We are aware that a sentiment analysis at diverse temporal and spatial scales is 
not a simple task and the use of cases or deaths as a proxy for the local sentiment 
on COVID19 pandemic would be problematic. One of the essential issues is that 

 
11 https://www.weatherstats.ca  
12 https://mountainmath.github.io/CanCovidData/ 
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even if the number of cases or deaths rises, it would be possible to observe that the 
people’s feeling become positive.  In a recent work, Yu et al.13 mine the Twitter 
data for the content of COVID-19 related tweets to see how people’s feelings and 
expressions changed over time during the pandemic in the U.S.  Figure 4 below 
shows five segments of sentiment, one of which is fearfulness.  As it is clear from 
the figure, even though the number of cases rises, people feel less fearful.  In our 
estimations in the next section, we will comment on this fact. 
 
Figure 4: Segments of Sentiment in the U.S due to COVID19 Pandemic 

 
Source: https://public.tableau.com/profile/nanluo#!/vizhome/Book2_v2_15887433980520/SentimentLevel  

 
3. Empirical framework and estimation results 
3.1 Framework 
Our empirical objective is to explore the sensitivity of the social mobility to local 
weather conditions and sentiment that reflects the people’s feeling about beliefs on 
how contagious the disease is.  Since the state of emergency rules do not change 
day by day, any significant effect of the weather conditions as well as the sentiment 

 
13 https://github.com/xxz-jessica/COVID-19_UCD_Challenge  
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that is captured by the lag values of pervious COVID19 cases (or deaths) on the 
local social mobility demonstrate the degree to which people’s choice departs from 
the public order.  

After merging all three data sources, we obtain an unbalanced long panel with 
six cities and about 420 observations between March 1 and May 10.  Due to time 
dimension of the data, we applied several panel unit root tests (Breitung and 
Pesaran, 2008), and none of them indicated the existence of a unit root. 

We start our analysis by estimating the determinants of the mobility 
discussed in data section. In these estimations, we utilize the pooled OLS, fixed 
effect and random effect models. These estimates further help us to calculate the 
weather elasticity of mobility, and sentiment elasticities of mobility. More 
specifically, we first estimate the following regression using pooled OLS for city i in 
a given day t:  

 
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡 = 𝛼 + 𝛽1𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠𝑖𝑡−1 + 𝛽2𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡 + 𝛿𝑖  + 𝑑𝑜𝑤𝑡  + 𝜀𝑖𝑡     (1)   

 
where 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 is a vector of seventy different measures of weather conditions listed 
in Appendix.  We define our outcome variable, 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑡, separately in 
specification as transit, driving, and walking from the Apple data.  In order to 
capture an overall mobility index, we also use two average values.  First, since 
driving and transit indices generally move in opposite directions, they may cancel 
out each other.  Therefore, the average of driving and transit may capture the 
overall daily mobility within the city.  Second, we also use the total mobility, which 
is defined as the average of three modes of mobility. As for sentiments towards 
COVID19 in each city and day, we use the daily numbers of new deaths and new 
cases from the previous day, which is denoted by 𝑠𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑠𝑖𝑡−1.Using the values 
from the previous day allows for the potential delays in announcements by health 
and provincial authorities. We control for city dummies, 𝛿! to account for the 
unobserved heterogeneity across cities. Finally, as illustrated in the graphs, all 
mobility measures exhibit cyclical daily trends.  Hence, we control for these trends 
by adding day of the week dummies, 𝑑𝑜𝑤𝑡.14 

 
14 We also tested time fixed effects for each day.  Their addition does not improve the results, which 
are also rejected by a simple F-test. 
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As it is an ad-hoc empirical model, Specification (1) can be extended by the 
choice of variables and the introduction of nonlinearity with different levels of 
polynomials and interactions.  In order to find the most explanatory weather 
variables among seventy different metrics, we applied penalized regression methods 
(LASSO) to reduce the high dimensionality in Specification (1).  At the end of the 
process, very few weather variables are chosen as significant predictors.  We used 
these variables as our base set and expanded it with different specifications.  As for 
the nonlinearity, we applied several different non-parametric models (mostly 
ensemble learning algorithms and TensorFlow applications) and compared their 
predictive powers with the base and extended models. The results indicate that 
linear models with the selected weather variables can capture the essence of 
relationship between mobility metrics and the selected covariates.15 

After these estimations, we calculated the average marginal effect of weather 
and sentiments at the means of other variables. Using these average marginal 
effects, we calculated the elasticity of daily cases of transit, driving, and walking.  
In a similar way, we calculated elasticity of temperature, and precipitation of 
mobility, and each city as well. Moreover, we calculated marginal elasticities at 
different level of sentiments, and weather conditions. 
 
3.2 Results 
We begin by estimating a fixed-effect model given in Equation (1) by using a 
dummy variable least square method.  The objective of this estimation to 
investigate the association between the factors abstracted in the previous sections 
and the mobility of the local population within a city. The estimation results for 
each mobility mode are summarized in Table 2.  For each mobility model, we define 
three specifications starting from a base model with maximum temperature and 
add precipitation amount and the minimum wind speed in the second and third 
specifications, respectively. 
 
 
 

 
15 The results of LASSO and nonparametric estimations and their scripts can be provided upon request. 
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Table 2. Estimations of transportation modes within city 
Variables Transit   Driving   Walking 

 
(1) (2) (3) 

 
(4) (5) (6) 

 
(7) (8) (9) 

Cases -0.03** -0.03** -0.03**  -0.03** -0.03** -0.03**  -0.03** -0.03** -0.03** 

 (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) 
Temperature -1.03** -1.02** -1.05**  -0.18 -0.18 -0.20  0.04 0.06 0.02 

 (0.21) (0.20) (0.21)  (0.18) (0.17) (0.18)  (0.24) (0.23) (0.24) 
Precipitation  -0.49* -0.44   -0.55** -0.50*   -0.92** -0.84** 

  (0.20) (0.23)   (0.17) (0.19)   (0.22) (0.25) 
Wind speed   -0.18    -0.18    -0.27 

   (0.29)    (0.26)    (0.34) 
Observations 420 420 420  420 420 420  420 420 420 
R-squared 0.28 0.29 0.29   0.26 0.27 0.27   0.29 0.31 0.31 

Robust standard errors clustered at the city-level are in parenthesis. Significance levels are (**) is p < 0.01 and (*) is p 
< 0.05. All specifications include city and day-of-week fixed effects. Cases represents the number of previous day’s new 
COVID19 cases. Temperature measures the daily maximum temperature. Wind speed represents the daily minimum wind 
speed value. Precipitation is the daily total precipitation level. 

 
The findings in columns (1-3) in Table 2 are consistent with expectations that the 
use of public transportation decreases when the number of COVID19 cases rises.  
Our results also indicate that the transit usage decreases when daily temperature 
increases. Similarly, an increase in precipitation also leads to a decline in the 
utilization of transit.  However, wind does not have any statistical effect on transit 
usage. 

In the following columns of Table 2, we further analyze the effect of the same 
factors on driving.  We again find that a rise in COVID19 cases and more 
precipitation decreases the likelihood of driving.  However, our results indicate that 
temperature does not have any effect on driving within a city.  Similarly, in 
Columns (6-9), we show that cases and precipitation decrease walking, while 
temperature does not seem to be affecting the individual’s decision to walk.  

We next turn to investigate whether the combination of indexes, which could 
be a better measure of overall mobility, will yield different findings.  The results 
are summarized in Table 3.  In Columns (1-3), our main outcome for mobility is 
the average of transit and driving indices.  A strong negative correlation between 
driving and transit during the pandemic indicates that people switch their mode of 
transportation without necessarily cutting back their overall mobility.  Therefore, 
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averaging these two modes would provide a better index to measure the variation 
in social mobility.  Following the same reasoning, in Columns (4-6), the main 
outcome is the average of three modes we used in our analyzes.  Mainly, we are 
interested in capturing whether these modes of mobility act as substitutes or the 
changes in the local weather and sentiment affect people’s overall mobility. Our 
results reveal that the number of cases, temperature, and precipitation lead to a 
decline in overall driving and transit use within a city. However, the effect of 
temperature becomes less robust when we include all transportation modes, which 
may indicate that people substitute using transit and cars with walking when the 
temperature increases. 

 
  Table 3. Estimations of mobility index within city 

Variables Average of Driving + Transit   Average of all modes 

 (1) (2) (3)  (4) (5) (6) 
Cases -0.03** -0.03** -0.03**  -0.03** -0.03** -0.03** 

 (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00) 
Temperature -0.61** -0.60** -0.62**  -0.39 -0.38 -0.41* 

 (0.19) (0.19) (0.19)  (0.20) (0.20) (0.20) 
Precipitation  -0.52** -0.47*   -0.65** -0.59** 

  (0.18) (0.21)   (0.19) (0.22) 
Wind speed   -0.18    -0.21 

   (0.27)    (0.29) 
Observations 420 420 420  420 420 420 
R-squared 0.26 0.27 0.27   0.25 0.27 0.27 

Robust standard errors clustered at the city-level are in parenthesis. Significance levels are (**) is p < 0.01 
and (*) is p < 0.05. All specifications include city and day-of-week fixed effects. Cases denotes the number of 
previous day’s new COVID19 cases. Temperature measures the daily maximum temperature. Wind speed 
represents the daily minimum wind speed value. Precipitation is the daily total precipitation level. 
 

After examining what factors are significantly associated with the modes of 
mobility, we also quantify their impact.   One convenient way to understand the 
magnitude of their effects is the elasticity of different modes of mobility with respect 
to weather and sentiment. More specifically, we show the percentage change of 
mobility when each factor changes by 1 percent. 
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In Table 4, we present the overall factor elasticities of different modes of 
mobility. All these elasticities are calculated using the most comprehensive 
specifications, which are the last columns of each modes of mobilities, presented in 
Table 2 and Table 3. Moreover, all these elasticities are calculated at the mean 
values of each control variable. In Column (1), we show that the elasticity of daily 
cases is -0.31, and the elasticity of the temperature is -0.25, and the elasticity of 
the precipitation is -0.03. Taken together, these elasticities demonstrate that each 
1% increase in the number of cases in the previous day leads to a decline in the 
transit usage by 0.3%.  To capture sentiments, we also use an alternative measure, 
the number of deaths in the previous deaths. The results are very similar as 
expected as cases and deaths are highly correlated. The correlation between these 
two measures are 0.86 and cannot be used in the same estimation. We present these 
results in appendix table 1 and 2.  
 
Table 4. Elasticity of mobility modes 
 Variables Transit Driving Walking Mobility1 Mobility2 

 
(1) (2) (3) (4) (5) 

Cases -0.32** -0.14** -0.17** -0.21** -0.19** 

 (-0.04) (-0.02) (0.02) (0.03) (0.02) 
Temperature -0.26** -0.03 0 -0.11** -0.07* 

 (-0.05) (0.03) (0.01) (0.04) (0.01) 
Precipitation -0.03 -0.02* -0.03** -0.02* -0.03 

 (-0.01) (0.00) (0.00) (0.03) (0.03) 
Robust standard errors are in parenthesis. **p<0.01, *p<0.05. Elasticities are calculated for previous day’s cases, 
daily maximum temperature, and daily precipitation levels. Mobility1 is the average of 2 mobility modes (transit 
and driving). Mobility2 is the average of 3 mobility modes (transit, driving and walking).  
 

The descriptive statistics illustrate that the average minimum transit index 
is 31 in Ottawa, while maximum is 37 in Calgary during the closure period 
compared to the baseline of 100. On the other hand, the average minimum driving 
index is 53 also in Ottawa, and maximum is 65 in Halifax. These indexes show a 
clear drop both in driving and transit usage after closures. Moreover, the average 
minimum of walking index is 54 in Toronto, and maximum is 88 in Calgary. These 
figures also demonstrate that there is a clear drop in walking in Toronto. However, 
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the extent of walking has not decreased too much in Calgary as it was not that 
high to begin with. All these indexes averages are around 100 before closures, and 
we present a detailed information on each index by city in Figure 2 above. 
Meanwhile, during the same period, the average number of cases was 320, 
temperature was 8.5 Celsius and precipitation was 2.2mm on average. 

Using these values and elasticities presented in Column (1) of Table 4, we 
calculate the magnitudes in a more useful way for policy makers. When a given city 
has 10 more cases than average, transit usage decreases approximately by 1%. 
When temperature increases by 1Celsius than its average,8.5C, the transit decreases 
by 3%. When precipitation increases by 1mm, then transit decreases 1.4%.  

In Figure 5, we present the daily number of previous cases’ elasticity of 
different modes of transport. The horizontal lines represent the elasticity at the 
average value of variables, which are the coefficients in Table 4, while the vertical 
lines illustrate the average number of cases, which is used to calculate the 
aforementioned elasticities. As known, elasticities could be different over the 
varying number of cases. Alluding to this, we find in Figure 5 that the elasticity 
for each type of mobility significantly decreases when there is an upsurge in the 
number of cases. 

In a similar way, Figure 6 demonstrates the temperature elasticities of transit, 
driving and walking at different level of temperatures. We find in Figure 6 that the 
elasticity of transit usage and driving is very conducive to the changes in 
temperature, where the intensity of both modes of transportation plunge with rising 
temperatures. Interestingly, the elasticity of walking is increasing with higher levels 
of temperature, and it turns to be positive when temperature is above 5 Celsius. 
Moreover, from figure 6, we clearly observe that when weather gets warmer people’s 
tendency for walking also significantly rises as well. 

Finally, the precipitation elasticity of mobility is illustrated in Figure 7. As 
evident from the figure, these elasticities are negative and very small in magnitude 
when there is a light precipitation, less than 4mm. However, we also see in Figure 
7 that all different types of mobility were affected negatively and substantially 
when precipitation amount exceeds 5mm. 
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4.  Conclusion 
The COVID19 outbreak has been recorded in more than 200 countries with several millions 
of confirmed cases and around seven percent mortality rate.  In the later stages of the 
epidemic, after failing to “trace” each infection back to its origin, nonpharmaceutical 
interventions - commonly referred as “social distancing” or “lockdown” policies - were 
undertaken.  The aim of these interventions was to slow down the pandemic by limiting the 
level of mobility and to keep health system capacities serviceable.  Mobility restrictions 
were, and still are, the only effective tool to control for the viral transmission. 

 Although the evidence unambiguously indicates that implementing NPI’s with 
successful social distancing measures have the largest effect on curbing the pandemic, they 
do not lead to a significant reduction of new infections due to the lack of stringency in the 
policy implementations.  The adherence to public orders about the social distancing is not 
stable and fluctuates with degree of spatial differences in information and the level of risk 
aversion.  Understanding the dynamics of social distancing thus helps reduce the growth 
rate of the number of infections, compared to that predicted by epidemiological models. 

This study aims to uncover the behavioural parameters of change in mobility 
dynamics in major Canadian cities and questions the role of people’s beliefs about how 
contagious the disease is on the level of compliancy to public orders.  We attempted to 
uncover how mobility modes have been impacted due to public sentiments as well as 
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weather conditions.  The panel structure of the data allowed us to remove unobserved 
spatial heterogeneity across cities so that our findings reveal how the degree of social 
distancing measured by three modes of mobility are associated with their major 
determinants.   

All results indicate that the sentiment proxied by the number of daily COVID19 
cases has a strong impact on all modes of mobility.  Among the seventy different weather 
metrics, we find only three variables, temperature, precipitation, and wing speed, have 
significant effects on the level of local mobility.  Moreover, we document sizable elasticities 
of mobility modes with respect to case numbers, temperature and precipitation suggesting 
that individual's mobility decision indeed is conducive to these factors. Thereby, the future 
public health interventions could potentially incorporate such responses in the design of 
their policies. Our results further allude to varying elasticities between modes of 
transportation and factors contributing these decisions depending on their levels. More 
specifically, we find that elasticities for each mode of transportation increases by an 
increasing COVID19 cases, temperature, and precipitation. 
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Appendix 
 

Table A.1 Effect of different factors on modes of transportation within city 
Variables Transit   Driving   Walking 

 (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 
Deaths -0.18** -0.18** -0.18**  -0.09** -0.10** -0.10**  -0.15** -0.16** -0.16** 

 (0.03) (0.03) (0.03)  (0.03) (0.03) (0.03)  (0.03) (0.03) (0.04) 
Temperature -1.25** -1.23** -1.27**  -0.43* -0.41* -0.45*  -0.22 -0.19 -0.24 

 (0.21) (0.21) (0.22)  (0.18) (0.18) (0.19)  (0.25) (0.24) (0.25) 
Precipitation  -0.47* -0.40   -0.52** -0.45*   -0.90** -0.80** 

  (0.21) (0.24)   (0.17) (0.20)   (0.22) (0.26) 
Wind speed   -0.24    -0.24    -0.33 

   (0.32)    (0.28)    (0.36) 
Observations 414 414 414  414 414 414  414 414 414 
R-squared 0.17 0.17 0.18   0.15 0.16 0.16   0.20 0.22 0.22 

Robust standard errors are in parenthesis. **p<0.01, *p<0.05. All columns are controlled for city and day of the week 
fixed effects. Temperature represents the daily maximum temperature. Wind speed represents the daily minimum wind 
speed value. Precipitation represents the daily total precipitation level.  

 
 
 

 
 

 Table A.2 Effect of different factors on alternative measures of transportation within city 
Variables Average of 2 mobility modes   Average of 3 mobility modes 

 (1) (2) (3)  (4) (5) (6) 
Deaths -0.13** -0.14** -0.14**  -0.14** -0.15** -0.15** 

 (0.03) (0.03) (0.03)  (0.03) (0.03) (0.03) 
Temperature -0.84** -0.82** -0.86**  -0.63** -0.61** -0.65** 

 (0.20) (0.20) (0.20)  (0.21) (0.21) (0.22) 
Precipitation  -0.49** -0.43*   -0.63** -0.55* 

  (0.19) (0.22)   (0.19) (0.23) 
Wind speed   -0.24    -0.27 

   (0.30)    (0.32) 
Observations 414 414 414  414 414 414 
R-squared 0.14 0.15 0.15   0.14 0.15 0.15 

Robust standard errors are in parenthesis. **p<0.01, *p<0.05. All columns are controlled for city and day of the week 
fixed effects. Deaths represent number of previous day’s new deaths. Temperature represents the daily maximum 
temperature. Wind speed represents the daily minimum wind speed value. Precipitation represents the daily total 
precipitation level. 
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Table A.3 : List of Weather Variables  
maximum temperature   heating degree days  
average hourly temperature   cooling degree days  
average temperature   growing degree days base 5 
minimum temperature   growing degree days base 7 
maximum humidex   growing degree days base 10 
minimum windchill   precipitation 
maximum relative humidity   rain 
average hourly relative humidity   snow 
average relative humidity   snow amount on ground (cm) 
minimum relative humidity   time of sunrise 
maximum dew point   time of sunset 
average hourly dew point   amount of daylight 
average dew point    sunrise forecast 
minimum dew point   sunset forecast  
maximum wind speed   minimum UV forecast 
average hourly wind speed    maximum UV forecast 
average wind speed   minimum high temperature forecast 
minimum wind speed   maximum high temperature forecast 
maximum wind gust   minimum low temperature forecast 
wind gust direction speed    maximum low temperature forecast  
maximum sea pressure    solar radiation 
average hourly sea pressure    maximum cloud cover 4 oktas 
average sea pressure    average hourly cloud cover 4 oktas 
minimum sea pressure    average cloud cover 4 
maximum station pressure   minimum cloud cover 4 
average hourly station pressure    maximum cloud cover 8 oktas 
average station pressure    average hourly cloud cover 8 oktas 
minimum station pressure    average cloud cover 8 
maximum visibility   minimum cloud cover 8 
average hourly visibility   maximum cloud cover 10 oktas 
average visibility   average hourly cloud cover 10 oktas 
minimum visibility   average cloud cover 10 
maximum health index   minimum cloud cover 10 
average hourly health index     
average health index     
minimum health index     

Source: https://www.weatherstats.ca/ 


