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there is selection into gains). We propose a simple partial identification technique using an 

adjusted version of the Lee bounds to account for women who select into employment due 

to having a college education, which we call college-induced selection into employment 

(CISE). We find that women are, on average, more than 17 percentage points more likely to 
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1 Introduction

A recent empirical literature (Carneiro et al., 2011; Nybom, 2017) studies the effect of
education on wages and goes beyond identifying local average treatment effects. By
estimating marginal treatment effects (MTEs), the authors not only derive (arguably)
more relevant treatment parameters, such as average treatment effects on the treated, but
they also learn about economic behavior such as “selection into gains”, meaning that
individuals who will benefit most from education are more likely to self-select into it.
This literature, as most of the previous causal literature in this field, restricts estimation to
men (see Angrist and Krueger, 1992, 1995; Lemieux and Card, 2001), mostly due to data
availability or because exploited exogenous variation only applies to men.

Estimating the labor market effects of education for women is beneficial, not least because
women have mainly benefited from educational expansions in previous decades through-
out the world. The rise in tertiary education has provided the strongest societal change in
individual education trajectories in the previous decades. For example, college graduation
rates in the U.S. increased from around 10 percent for those born 1920–1930 through 20
percent (birth cohorts 1940–1950) to 30–40 percent among the 1980 birth cohort (Goldin
et al., 2006). Similar developments are observed in other developed countries such as
Germany (see Figure A1). The rise in college education has been accompanied by the
“reversal of the college gender gap” (e.g., Goldin et al., 2006) or, more generally, the gender
education gap. While, historically, men have had higher tertiary education rates, women
have caught up over time and even surpassed men in the U.S. Again, this is fairly similar
in other countries. While full reversal was not accomplished in each and every country,
the gender education gap has been mostly closed throughout the developed world (Parro,
2012; Pekkarinen, 2012; Riphahn and Schwientek, 2015).

In this paper we contribute to the literature by estimating causal effects of education on
labor market outcomes for women using a representative German data set. Thus, to our
knowledge, we are the first to estimate MTEs of education for women using the approach of
Heckman and Vytlacil (2005) to learn about their underlying economic behavior. Of course,
female wage returns to education have been studied before in structural models that
allow to identify comparable magnitudes (see, e.g., Eckstein and Wolpin, 1989, Eckstein
and Lifshitz, 2011, Blundell et al., 2016).1 Arguably, the Heckman and Vytlacil (2005)
framework makes weaker distributional assumptions than fully parameterized models
but keeps the power to draw more externally valid conclusions than more reduced-form
approaches (Heckman, 2010).

1And, more generally, the structural econometric literature on female labor market behavior, not neces-
sarily related to education, is large; see Blundell and MaCurdy (1999) for a review.
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In our analysis, we measure wage returns in 2011/2012 while college education occurred
between 1961 and 1990, thus estimating long-term returns.2 For identification, we rely
on arguably exogenous variation induced by the German “educational expansion” that
strongly increased the number of colleges and available spots between 1960 and 1990 and
thus reduced college enrollment costs.

When estimating female wage returns to education, another selection problem (in addition
to the well-known problem that individuals who select into education probably also earn
more due to their innate abilities) arises: sample selection due to non-random selection into
employment. Individuals with certain unobserved characteristics not only self-select into
education but also into employment as a result of being college educated. Moreover, these
characteristics can also affect wages. We call this sample selection problem college-induced
selection into employment (CISE).

This problem cannot be fixed by an instrument for college education. Selection into the
labor market has been considered a source of estimation bias since the seminal works of
Gronau (1974) and Heckman (1979) but has recently predominantly not been addressed in
the returns to education literature.3 In some applications selection into the labor market
might not be empirically relevant (as in Zimmerman, 2014), particularly if effects are
only estimated for men. There, CISE might not matter too much, as male labor force
participation is very high anyway and is not easily manipulated (see Blau and Kahn, 2017).
Yet, if female college returns are considered, this might well become an issue, particularly
in applications from Europe where female employment rates are still lower than in the
U.S., leaving more room for sample selection problems.

Another reason the literature does not address the CISE problem could be due to difficulty
in solving it in applied work. Sample selection models in the spirit of Heckman (1979) rely
on instruments that affect employment but not wages. Strong and convincing instruments
of this kind are hardly available in practice. Apart from strong distributional assumptions
(which can, however, easily be relaxed), we assume this lack of appropriate instruments
to be a major reason why sample selection models have come somewhat out of fashion
in applied work. A notable exception are studies on trends in the gender wage gap over
time where observed wages for women are routinely adjusted for changing labor force
participation rates.4 Still, this literature does not aim at identifying causal returns to
education.

2We refer to college (education) and university (education) interchangeably. The average duration to
receive this education was 6 years in the time under review, the counterfactual being usually a vocational
education (see in what follows).

3In theoretical econometrics, non-random sample selection is still frequently being discussed; see, e.g.,
Arellano and Bonhomme (2017) and Fernandez-Val et al. (2018) for examples of recent work.

4See, e.g., Mulligan and Rubinstein (2008), Machado (2017), and the literature review by Blau and Kahn
(2017) for the estimation for gender gaps, as well as Huber and Melly (2015) and Bar et al. (2015) for a
discussion of the validity of those approaches.
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In addition to estimating marginal college wage premiums for women, we contribute to
the literature by proposing a simple partial identification solution explicitly addressing the
sample selection problem in an instrumental variables (IV) setting. Estimating MTEs and
distributions of potential outcomes help us to impose some, arguably mild, restrictions
and to nevertheless receive meaningful bounds on wage effects. We start by transferring
the natural bounds proposed by Lee (2009) from randomized controlled trials to our IV
setting. We then complement these bounds by imposing shape restrictions along the
unobserved distaste to study, which are used in the literature to derive more externally
valid, policy-relevant effects (Mogstad et al., 2018). These restrictions might be, for instance,
that MTEs are linear (as is also done in the literature in other settings; see Brinch et al.,
2017) and there is no selection into losses. Our scenarios complement each other and,
arguably, require weaker assumptions than the exclusion restrictions typically used in
sample selection models. Moreover, our approach is simple and easily implemented yet
is still informed by the underlying data and can deliver bounds narrow enough to draw
meaningful conclusions.

The work of Dong (2019) and Lee (2009) are most closely related to ours. The seminal paper
by Lee (2009) proposes a partial identification approach to bound the effect of selection
into employment when a (job training) treatment is randomly assigned. A major difference
in our study is that the treatment we analyze (college education) can hardly be considered
random. Dong (2019) applies Lee’s approach to a regression discontinuity framework
to derive sharp bounds at the cutoff. We build on her work and adjust Lee’s approach
to our MTE framework. Although the use of partial identification to address selection
in wage regressions is not completely new (see Blundell et al., 2007 and Lee, 2009), to
our knowledge, it has not been used in the context of returns to education—or, more
technically, to a setting with an endogenous variable that appears both in the selection and
in the outcome equation.

We find that women are, on average, more than 17 percentage points more likely to be
employed due to college education. The college-induced change in the propensity to work
varies a bit along the unobserved distaste to study (and therefore all treatment parameters
like the average treatment effect, ATE, the average treatment effect on the treated, ATT, or
the local average treatment affect, LATE, differ to some extent), but generally the effect
is substantial. This number makes sample selection a relevant issue in this application,
affecting not only MTEs but also possibly all wage estimates. Without adjusting for
selection, the ATE college wage premiums are estimated to be 10 percent per year of
education completed. After accounting for potential selection, we can bound the effects
between 6 and 12 percent. Thus, accounting for selection into employment may absorb
some portion of the college wage premium. Nevertheless, college education still seems to
be always pecuniary beneficial for women.
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The paper proceeds as follows. Section 2 discusses the empirical approach, selection
problems and our proposed solutions. Section 3 presents the policy environment and
the data used, and Section 4 reports the baseline results. Section 5 provides an outline of
an alternative partial identification strategy. Section 6 provides robustness checks, and
Section 7 concludes.

2 Empirical strategy

In this section, we first outline a conventional estimation approach, as is standard in the
returns to education literature, and discuss how selection into the labor market may affect
the structural estimates in this setting. We then introduce the estimation of marginal treat-
ment effects through potential outcomes and conclude by suggesting a bounding approach
for the potential outcome with college education under selection into employment.

2.1 Baseline identification strategy

Let Di be a binary treatment indicator that takes a value of one if individual i has college
education and zero otherwise. The observed outcome Yi is the gross log hourly wage of
individual i in year 2011/2012 (cross-section). Each individual has two potential outcomes,
Y0

i without college education and Y1
i with college education. Only one of the two is

observed, inducing the fundamental evaluation problem, as the individual causal effect
of college on wages, Y1

i − Y0
i , is unobserved. We can then specify the following simple

regression model:

Yi = α1 + β1Di +X
′
iγ1 + εi,1 if Li = 1, (1)

whereXi is a vector of individual and region specific controls, like birth cohort and county
fixed effects and other pre-determined variables. Li is a binary variable for the observed
employment status and a censoring indicator (or observation rule) in the wage regression
equation: wages are only observed for those who are employed.5

As is well known, college education is endogenous. Therefore, parameters from an
ordinary least squares (OLS) regression of Eq. (1) do not have causal interpretations.
Assume that we have an instrument Z which fulfills the exclusion restriction, is as good as
random conditional on controls, and has predictive power for D. Then we might want
to estimate the parameters in Eq. (1) by two-stage least squares (2SLS). Yet, this still does
not yield estimates of causal effects of education on wages, as there is a second problem.

5We use the terms “employment” and “working for pay” interchangeably.
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The parameters in Eq. (1) are only estimated for those who work. The employment status
could be determined by the following model:

Li = α2 + β2Di +X
′
iγ2 + εi,2. (2)

Again, Di is endogenous and could be instrumented by Zi. Yet, while the 2SLS coefficient
β̂2 is an estimate of the complier-specific causal effect of college education on working for
pay (if the necessary assumptions for the instrument hold), this does not hold for β̂1 in
Eq. (1), as the effect of Di on Li differs across individuals, partly based on unobservables.
Some individuals enter the regression sample in Eq. (1) irrespective of their realization of
D, while others change their employment status due to D. This selection problem cannot
be solved by the instrument Z alone.

One solution to this problem would be to find an instrument W that affects L but not Y
and solve the problem using a Heckman-type selection estimator. That is, estimate the
parameters in Eq. (2) and generate a term (e.g., an inverted Mills ratio) to be included in Eq.
(1) as a control function, and then use an IV estimator in this augmented regression. This
is proposed by Wooldridge (2010, chapter 19.6.2), although our model is slightly different
in that the endogenous variable also enters the selection equation. Schwiebert (2015)
explicitly derives the “Heckman model” with an endogenous variable that appears both in
the selection and in the outcome equation. Yet, the assumption that this instrument W can
be excluded from Eq. (1) usually does not seem innocuous in the setting of employment
and wages.

Thus, because finding sufficiently credible instruments is difficult, we abstain from this
approach and instead suggest partial identification. Our solution benefits from us esti-
mating MTEs instead of LATEs to generate more comprehensive and, arguably, more
policy-relevant treatment effects. Estimating marginal college and non-college wages, as
well as the corresponding employment probabilities needed to calculate the MTE, allows
us to make credible assumptions to partially identify effects that take sample selection
into account. In the next subsection we formalize the selection problem, while Section 2.3
briefly introduces the framework of MTEs and 2.4 proposes the main bounding solution.

2.2 College-induced selection into employment (CISE)

Like wages, employment has two potential outcomes, L1
i and L0

i , with and without college
education. In what follows, we suppress the individual indicator i. We start by ignoring
the sample selection problem and only addressing the endogeneity of D in Eq. (1). Assume
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for simplicity that Z is a binary instrument.6 Applying the IV approach to estimate the
effect of college education on wages yields effects for those who go to college because of a
change in the instrument (the compliers).

Table 1: Illustration of college-induced selection into employment (CISE) for the compliers
to the instrument Z

Type
Realization of Z 1© 2© 3© 4©

↓ L1 = 1, L0 = 1 L1 = 1, L0 = 0 L1 = 0, L0 = 1 L1 = 0, L0 = 0

Z = 1 L = 1 L = 1 L = 0 L = 0
⇒ D = 1 Y = Y1 observed Y = Y1 observed Y = Y1 : – Y = Y1 : –

A© C©

Z = 0 L = 1 L = 0 L = 1 L = 0
⇒ D = 0 Y = Y0 observed Y = Y0 : – Y = Y0 observed Y = Y0 : –

B© E© D©
Notes: Own illustration. This table categorizes compliers to the college instrument. The four columns show the four
types of compliers that characterize how their employment status responds to the treatment D. The two lines exhibit
two possible realizations of Z. Since we only consider compliers, the instrument Z determines the treatment status D.
Given the instrument assumptions hold, individuals randomly appear in either the upper or the lower part.

The subsample of compliers can be divided into four types depending on their employment
status in response to college education. Each type can further be divided into two groups
depending on whether the instrument is switched on or off. Table 1 illustrates the resulting
eight cells of compliers.7 The first type of college compliers (type 1, groups A and B in the
table) works whether or not they have a college education; i.e., both potential outcomes L0

and L1 as well as the observed outcome L take on a value of one, and wages of this type
are observed. In the spirit of Machado (2017) we call these compliers the always employed.
Women in group A are randomized into D by the instrument Z, and their observed wage
is Y = Y1. Women in group B do not go to college because of the instrument, and their
observed wage is Y = Y0.

For type 2 compliers, we observe the wage only if Z = 1, as they work only if they have a
college education (group C). For the counterpart of group C, type 2 with Z = 0, wages are
not observed (group E in the table). The opposite holds for type 3, where wages are only
observed in cases where Z = 0 (group D). No wages are observed for type 4, irrespective
of the instrument.

6We will not need this later and our instrument is, in fact, continuous. Yet, assuming a binary instrument
makes the exposition in this subsection much simpler.

7Note the similarity to the general setting of Heckman and Pinto (2018), who demonstrate identification
results not with two different binary endogenous variables (D and L) but with one (D) that can, however,
indicate more than one (unordered) choice. In their language, the columns of the matrix in Table 1 are the
response types or strata that are defined by counterfactual treatment choices (which are written in the cells).
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For the researcher, the types are unobserved. Observed instrument value and employment
status only allows the researcher to see that, for instance, an individual is either in group
A or C (if Z = 1 and L = 1) or in group B or D (if Z = 0 and L = 1). Assume there were
no type 2 or 3 individuals. The IV regression of Eq. (1) would then give us the causal
effect of education on wages, conditional on being employed. Yet, if there are type-2
individuals, identification is not possible. We refer to the existence of type 2 individuals
(i.e., the existence of individuals who only work conditional on having a college education)
as college-induced selection into employment (CISE). Under CISE, the IV regression puts
together groups A, B, and C and implicitly uses group B as a counterfactual outcome for
type 2 without college education. Hence, as long as outcomes B and E (for type 1 and 2)
differ, IV estimation is biased (this analogously applies to type 3). Due to the instrument
Z, it is random whether individuals appear in the upper or lower panel of Table 1. Yet, the
type of individuals, and thus whether wages are observed, is not random, and this issue is
not solved by Z.

A simple IV estimation of Eq. (1) provides us with E(Y1 | L1 = 1)− E(Y0 | L0 = 1) for
compliers. This is equal to E(Y1 | type 1 or 2)− E(Y0 | type 1 or 3). Note that, with a
binary instrument Z, these two parts can be identified separately, following the insights by
Imbens and Rubin (1997).8 The 2SLS estimation with a continuous instrument can only
identify the difference. Nevertheless, since the conditioning set of the two expectations
differs, the 2SLS estimand is not a meaningful number (i.e., may not be a causal effect).

Instead of E(Y1 | L1 = 1) − E(Y0 | L0 = 1), we want to obtain E(Y1 | L1 = 1, L0 =

1) − E(Y0 | L1 = 1, L0 = 1), the effect of education on wages for the always employed.
Because the labor force participation rate is already fairly high for women without a college
education (even though it is lower than for their college-educated peers) and because
female unemployment is not a major problem, always employed constitute, arguably, the
most interesting subpopulation of Table 1. This type of individuals is also studied in
Lee (2009) and Machado (2017). To arrive at the effect for always employed, we start with

8For “E(Y1 | L1 = 1) for compliers” start with

E(Y | Z = 1, D = 1, L = 1) =
φC

φC + φAT
E(Y | Z = 1, D = 1, L = 1, C)+

φAT
φC + φAT

E(Y | Z = 1, D = 1, L = 1, AT),

where C stands for compliers, AT stands for always-takers, and the φ are their respective shares. E(Y | Z =
1, D = 1, L = 1) is observed in the data (more correctly, it can be estimated using the observed numbers
Y, D, Z, L). With instrument exogeneity (first equality in the next equation) and monotonicity (second
equality), E(Y | Z = 1, D = 1, L = 1, AT) = E(Y | Z = 0, D = 1, L = 1, AT) = E(Y | Z = 0, D = 1, L = 1);
this number is also observable. As the shares of types can also be estimated using the same assumptions, we
can solve for E(Y | Z = 1, D = 1, L = 1, C), which is E(Y1 | L1 = 1) for compliers because E(Y | Z = 1, D =
1, L = 1, C) = E(Y1 | Z = 1, D = 1, L1 = 1, C) = E(Y1 | Z = 1, L1 = 1, C) = E(Y1 | L1 = 1, C), where the
second equality uses conditioning on compliers and the third, again, uses instrument exogeneity. Following
the same logic, one can derive E(Y0 | L0 = 1) for compliers, E(Y | D = 0, Z = 0, L = 1, C), by purging out
the respective outcome for never-takers from E(Y|Z = 0, D = 0, L = 1).
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separately estimating E(Y1 | L1 = 1) and E(Y0 | L0 = 1) and discuss how we deal with
both numbers in turn.

E(Y0 | L0 = 1) consists of type 2 and type 3 women. In what follows, we assume that no
woman is of type 3 so that E(Y0 | L0 = 1) directly yields E(Y0 | L1 = 1, L0 = 1). On the
individual level, this assumption corresponds to Pr(L1 ≥ L0) = 1 (see Lee, 2009), meaning
the incentive to work is monotonously increased by college education. This is comparable
to the IV monotonicity assumption (for a general treatment on choice restrictions, consult
Heckman and Pinto, 2018). We assume women who work without a college education
but who would not work if they had a college education are insignificantly few and hence
negligible. Certainly, this is not a trivial assumption. Yet, de Chaisemartin (2017) show
that causal effects are still identified as long as the potentially existing type 3 women have
the same average college returns as any arbitrary subset from the type 2 women, which
is a weaker assumption. Nevertheless, we are not aware of findings from the literature
that identify sizeable groups that systematically have negative causal effects of college
education on employment (a sufficient condition for the existence of type 3 women). In
Section 6.1 we discuss this assumption in more detail, provide evidence in favor of it and
discuss quantitative implications of its violation.

We call p1 = Pr(L1 = 1) and p0 = Pr(L0 = 1). Then, without type 3 women, p0

denotes the share of type 1 women in the population. The share of type 2 women is
Pr(L1 = 1)− Pr(L0 = 1) = p1 − p0. The fraction of type 1 women among those who work
with the treatment can be directly estimated by calculating p0/p1. In our data, 77.3 percent
of the compliers in our sample are always working women which, arguably, justifies our
focus on this group.

E(Y1 | L1 = 1) consists of type 1 and type 2 individuals. We show in Section 2.4 how we
follow Lee (2009) to make extreme assumptions on where the type 1 and 2 individuals are
located in the distribution of E(Y1 | L1 = 1) to generate upper and lower bounds of E(Y1 |
L1 = 1, L0 = 1) and, ultimately, upper and lower bounds of E(Y1 − Y0 | L1 = 1, L0 = 1).
Before we do this, we briefly sketch the MTE framework that we use. This framework
helps us in two dimensions. First, it enables us to separately estimate E(Y1 | L1 = 1) and
E(Y0 | L0 = 1) even with a continuous instrument. Note that we only assumed a binary
instrument in this section for exposition and actually employ a continuous instrument.
Second, while this section focused on the compliers to the instrument, the MTE framework
allows us to derive effects for other groups too, such as the ATE and the ATT.
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2.3 Estimating average college and non-college outcomes for marginal

women

Here we briefly sketch out how conditional mean wages and employment probabilities
with and without college education can be estimated for different groups of women who
are at the margin of having a college education: E(Y1|X = x, UD = u) and E(Y0|X =

x, UD = u), where X are observable variables and UD is an unobserved variable that
measures the willingness to take the treatment (see below). Carneiro and Lee (2009) derive
this potential outcome estimation approach and provide details. The difference between
both potential outcomes is the MTE at point UD = u, which is MTE(UD = u,X) =

E(Y1 − Y0|UD = u,X). The basic framework of MTE builds on Björklund and Moffitt
(1987) and Heckman and Vytlacil (2005, 2007). Carneiro et al. (2011) provide an in-depth
application of MTE estimation and Cornelissen et al. (2016) a gentle introduction.

The starting point of the MTE approach is the generalized Roy model, consisting of the
following:9

Y1 = X ′β1 + U1 and Y0 = X ′β0 + U0, (potential outcome equations)

Y = Y0 + D(Y1 −Y0), and (switching equation)

D = 1[D∗ ≥ 0], where D∗ = Z ′δ −V. (selection equation)

The potential outcomes are determined through observed characteristics X and unob-
served factors U. The realized outcome Y depends on the observed college decision D,
which in turn depends on the latent desire for college education D∗. D∗ is a function of
observed factorsZ (X plus the instruments) and the unobserved component V. Following
the conventional terminology, and without loss of generality, V can be interpreted as the
unobserved costs of college education, while Z ′δ denotes the observed benefits. A woman
decides to obtain a college education (D = 1) if her observed benefits Z′δ exceed or equal
her unobserved costs V. Her decision is denoted by the indicator function 1[·].

V may correlate with (U1,U0), introducing selection into both the level of college education
(the general endogeneity problem) and into its gains (heterogeneity in the returns). Using
the same monotonous transformation on both sides (applying a cumulative distribution
function), we can rewrite the treatment decision as D = 1[D∗ ≥ 0] = 1[Z ′δ ≥ V] =

1[Φ(Z ′δ) ≥ Φ(V)] = 1[P(Z) ≥ UD], where P(Z) ≡ P(D = 1|Z) = Φ(Z ′δ) is the
propensity score (i.e., the probability that a women enrolls in college given Z). UD is
uniformly distributed on the unit interval and measures an individual’s relative rank
within the distribution of V. As is standard in this literature, we refer to UD as the distaste
to education. Note, however, that this is just a label and can be termed differently.

9We restrict the exposition to outcome Y, and it is equivalent for outcome L. Moreover, for the sake of
exposition, we ignore the selection problem in this section.
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Individuals who are indifferent between taking the treatment or not (i.e., those with
P(Z) = UD) are shifted into the treatment by a marginal increase in P(Z), exogenously
induced by the instrument Z. These individuals identify treatment effects at different
observed values of P(Z). Because of the equality between P(Z) and UD, given the college
decision and the propensity score, we can infer the individuals’ otherwise unobserved
ranks within V (i.e., UD).

Estimating the parameters in the Roy model requires the standard IV assumptions: con-
ditional on X , the instruments are independent of the unobserved factors; exclusion
restriction; monotonicity; and relevance (see Vytlacil, 2002). As is common in the literature,
we additionally assume additive separability between the observed and unobserved fac-
tors. Without this assumption, the slope of the estimated MTEs would potentially depend
on which realization of X we condition on. Thus, assuming additive separability eases
the interpretational and computational burden of the MTE approach. We now simplify the
notation by keeping conditioning onX = x implicit. In the estimation, the analogous step
is to pre-process the outcome variable Y and adjust for any differences in the observables
X . We do this by applying the semiparametric estimator suggested by Robinson (1988).

In contrast to the conventional “joint estimation approach” which is the standard case
in the literature to estimate MTEs, we follow Carneiro and Lee (2009) and estimate both
potential outcomes separately. To estimate the unobserved potential outcomes, we use the
observed quantities

E(Y1|UD ≤ p, D = 1) = E(Y|P(Z) = p, D = 1) for college graduates, and

E(Y0|UD > p, D = 0) = E(Y|P(Z) = p, D = 0) for non-graduates.

This is the average outcome Y among all those willing to take the treatment (UD ≤ p)
and vice versa for D = 0. However, we want to have E(Y1|UD = p), which we get by
determining

E(Y1|UD = p) = E(Y1|UD ≤ p, D = 1) + p× ∂E(Y1|UD ≤ p, D = 1)
∂p

, (3)

where p is any value on the unit interval. Please refer to Carneiro and Lee (2009) for a
derivation of this formula. In Appendix B, we give a detailed exposition that provides the
intuition for it.

Similarly, we can infer from E(Y|P(Z) = p, D = 0) and the selection equation that only
individuals with larger values of UD than p will not opt for college education. To get the
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mean wage of indifferent women without college education with a rank equal to p, we
need to adjust E(Y|P(Z) = p, D = 0) as follows:

E(Y0|UD = p) = E(Y0|UD > p, D = 0)− (1− p)× ∂E(Y0|UD > p, D = 0)
∂p

. (4)

After the mentioned semiparametric pre-step that adjusts for observable differences, we
estimate the two unknown components within Eq. (3) and (4) by local linear regressions
that we evaluate at 100 values p over the unit interval. Doing this gives us the level and the
derivative of E(Y|P(Z) = p, D = 1) and E(Y|P(Z) = p, D = 0), respectively, at different
values of P(Z).

The difference between (3) and (4) yields the MTE. Combining this general exposition
of MTE estimation with the problem outlined in the previous subsection, we call the
MTE estimation that does not address CISE the naı̈ve marginal treatment effect (NMTE):
NMTE(UD) = E(Y1 | UD, L1 = 1)− E(Y0 | UD, L0 = 1).

2.4 Lee bounds for MTEs

To estimate E(Y1 | L1 = 1) with a continuous instrument, we need the MTE framework.
Yet, to estimate a meaningful causal effect, we also need E(Y1 | L1 = 1, L0 = 1) so that
we can calculate E(Y1 − Y0 | L1 = 1, L0 = 1). We know, however, that E(Y1 | L1 = 1)
consists of type 1 and type 2 women, with shares that can be estimated from the data.
Figure 1 presents the general intuition of a bounding approach in the spirit of Lee (2009).
We receive a lower bound of E(Y1 | L1 = 1, L0 = 1) if we assume that the wages of all type
2 women are located in the upper part of the distribution of Y1|L1 = 1. This assumption is
illustrated in the left panel of Figure 1. Given an estimate of the distribution fY1 , and the
shares p0 and p1, we can determine the threshold L as the p0

p1
percentile of the distribution

of Y1 (i.e., L = F−1
Y1

[
p0

p1

]
, where FY1(·) is the cumulative distribution function of Y1).

Thus, the lower bound of E(Y1 | L1 = 1, L0 = 1), denoted ELB in what follows, can be
calculated as the censored mean

ELB(Y1 | L1 = 1, L0 = 1) =

∫ L
−∞ y fY1(y)dy

FY1(L)
. (5)
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Figure 1: Stylized graph of upper and lower bound—General
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Vice versa, U = F−1
Y1

[
p1 − p0

p1

]
for the upper bound which can be determined as

EUB(Y1 | L1 = 1, L0 = 1) =

∫ ∞
U y fY1(y)dy
1− FY1(U)

. (6)

We carry out this procedure separately for many different values of UD (see Figure 2),
estimating a distribution fY1 and the shares of type 1 and type 2 women conditional on
UD.

Figure 2: Stylized graph of upper and lower bound—MTEs
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Notes: Own illustration.

We know that FY1(L|UD) in the denominator of Eq. (5), conditional on UD, equals p0
p1

,
but we also require the corresponding censoring threshold L, which is the wage at the
quantile p0

p1
. To get it, we proceed as follows. We define a set of indicator variables
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Ik = 1{Y ≤ yk} for many different values of y distributed over the support of Y. Now,
estimating E(Ik) = Pr(Y ≤ yk) yields an estimate of the observed outcome’s distribution
function FY. To get an estimate of the distribution function of the potential treated outcome
Y1, we estimate k separate marginal treatment response functions E(Ik|X , UD, D = 1) just
as E(Y1|X , UD) is estimated using the separate estimation approach outlined in Section
2.3 using the same set of control variables as in the main approach.10 Doing this gives us a
large number of values FY1(yk|UD) and thus, estimates of FY1 at all places over the entire
support of UD (see Figure 3). For each UD value, we determine the wage threshold L as
the wage yk for which E(Ik|X , UD, D = 1) = p0

p1
holds.

Figure 3: Stylized graph of FY1 |UD estimation
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Notes: Own illustration. We do not restrict the estimates to be linear and instead estimate flexibly without any assumptions on the
shape.

The estimation of
∫ L
−∞ y fY1(y)dy, the numerator of Eq. (5), conditional on UD, proceeds

similarly. We first define a set of variables Yk = Y · 1{Y ≤ yk} for the same values
yk as before. We estimate the marginal treatment response functions E(Yk|X , UD, D =

1) =
∫ yk
−∞ y fY1(y)dy. Now, we use E(Yk|X , UD, D = 1) for which the corresponding

E(Ik|X , UD, D = 1) equals p0
p1

for each value of UD, and normalizing by FY1(L, UD) gives
us a lower bound of ELB(Y1 | L1 = 1, L0 = 1, UD).

The estimation of the upper bound is analogous. See Appendix D for a technical remark
on the estimation of the upper bound. We also propose an alternative partial identification
approach that combines these bounds with an additional linearity assumption on the MTE
curvature. We wait explain the approach in Section 5, which follows the baseline results
reported in Section 4.

10We choose k = 100, but this is not a decisive choice.
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3 Policy environment and data

3.1 The German college expansion: Trends and causes

In this paper, we estimate effects of college education on employment and wages of women
in Germany. The treatment dummy (D in the previous section) is college education to
earn a Diplom degree, which is a master’s degree equivalent (there has been no bachelor’s
equivalent in the time under review). While earning a Diplom degree was formally possible
after 4.5 years, the average study duration was 6 years (see Lundgreen et al., 2008). The
alternative to college education in Germany typically is vocational training of 3 years
part-time, on-the-job training and part-time vocational schooling with a small salary to
cover the basic costs of living. Thus, we will estimate the effects of college education
(relative to the next-best alternative, which, in almost all cases, is vocational training).

As exogenous variation (Z in the previous section), we use variation across regions and
time in the availability to study as a result of the German college expansion.11 Between
1961, when the first women in the sample graduated from secondary schooling, and 1990,
the number of college districts in Germany doubled from 27 to 54.12 The number of overall
(female) students increased from 208,000 (47,000) to more than 1 million (413,000) (see
Figure A1 in Appendix A). While individuals deciding to go to college in the 1960s had
to travel an average of nearly 40 km to the closest college, those in the 1980s only had to
travel an average of less than 23 km (see Table 2). The basic idea behind instrumenting
college education using its availability is that living closer to a college meant spending less
money to attend (versus a college that was further away). For instance, cost may decrease
because the commute is shorter and there is less need to move. Likewise, if high school
graduates have an option to attend college close to them, they may become more aware of
the educational choices provided to them.

There are four reasons behind the college expansion (see the review by Bartz, 2007). First,
large parts of the population had low levels of education because it was previously not
appreciated by the political systems of the Third Reich and Imperial Germany (see Picht,
1964). In neither of these systems did education constitute a natural way of climbing up the
social ladder. Second, the outspread of new and more complex production technologies
increased firms’ demand for highly educated employees, not unlike the development
that the U.S. experienced a couple of decades earlier, as described in Goldin and Katz

11The description of the college expansion and its reasons in this section closely follows Kamhöfer et al.
(2019).

12The number of universities (German Universitäten) is taken from the Higher Education Compass of the
German Rectors’ Conference (2016). The number of students is taken from the German Statistical Yearbooks
1961–1991 (German Federal Statistical Office, 1991). Differences to Kamhöfer et al. (2019) emerge, as they only
use the latter source and derive openings from the number of students. However, those differences affect
only small colleges and the results are robust against this alternation. For the treatment of Fachhochschule
institutes and other non-traditional institutions, we also refer to Kamhöfer et al. (2019).
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(2008). Third, the prerequisite of expanding higher education was expanding secondary
schooling. As shown in, for instance, Jürges et al. (2011) and Kamhöfer and Schmitz (2016),
the number of academic secondary schools that (unlike the other school tracks at the time)
allowed students to enroll in higher education had developed similarly to the number of
universities. Fourth, in the time under review, Germany was still divided and education
was both outcome and means in West Germany’s efforts to outperform the competing East
German socialist system (see Picht, 1964, and Jürges et al., 2011).

While those four reasons applied to all German states that were (and are) in charge of
education policy, the pace of the educational expansion differed between the states.13 In
spite of expansive research on the subject, we were not able to detect a universal pattern
shaping the expansion in higher education. Some states, such as Bavaria, reinstalled
historical universities (e.g., the University of Bamberg was founded in 1647, downgraded
to a theological seminary in 1803, closed in 1939, and reinstalled in 197214). Other states,
like North Rhine-Westphalia, founded universities in rural and industrial regions to serve
as “advertisement for education” (Bildungswerbung; see NRW, 1971).15 Moreover, the
federal structure within the federal states caused negotiations and required cooperation
between the district governments and the state government. Those negotiations introduced
additional variation in the timing of the university openings (see, e.g., the account of
Weisser, 2005, for anecdotal evidence on the role of election cycles and the local provision
of construction sites). In the Supplementary Materials we provide more descriptive
statistics on the college openings and the temporal and spatial variation in the ability
to attend college. We also provide more information on the political process of college
openings.

While the build-up of colleges and capacities demonstrates the relevance of the instrument,
remaining questions may concern the validity and the exclusion restriction. We first discuss
validity and then the exclusion restriction. Even though the political process of opening
a college induced some degree of randomness, a major concern is that regions where
colleges were opened differed compared to those without openings in regard to differences
in levels of sociodemographic variables and dynamics and changes over time therein. In
Table 3 (taken from Kamhöfer et al., 2019), we report descriptive statistics on the regional
level at the year 1962 using German Micro Census data. Apart from population density
(large cities already had colleges before the educational expansion, and very sparsely
populated regions never opened any colleges), sociodemographic characteristics did not

13Some of these reasons might have been more pronounced in some states, e.g., because of a different
industry structure. However, such initial differences should be captured by including a full set of fixed
effects for the district of residence at the time of secondary schooling and district-specific linear trends in the
empirical analyses.

14See https://www.uni-bamberg.de/universitaet/profil/geschichte-und-tradition/
geschichte/.

15Initial differences in the affected population are, again, captured by including district fixed effects in the
model.
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Table 2: Distance to closest college districts (in km) by time of college decision

Average distance (in km) Average student density

Decision to study: 1958–70 1971–80 1981–90 1958–70 1971–80 1981–90

1st closest college district 38.9 26.7 22.7 32.7 32.6 58.3
2nd 73.6 52.4 46.7 34.2 34.2 56.4
3rd 100.4 71.0 60.9 30.6 33.0 58.6
4th 118.8 85.9 74.8 32.5 34.6 56.3
5th 138.3 98.6 85.1 32.0 31.2 53.5
6th 154.4 110.8 95.4 40.6 38.2 61.3
7th 167.9 121.8 104.7 37.1 37.8 66.2
8th 183.3 133.0 113.3 30.3 38.3 59.7
9th 195.8 143.8 122.4 35.7 37.1 61.3
10th 207.6 153.8 132.8 32.1 39.1 63.5

Notes: Own calculation based on German Federal Statistical Office (1991) and German Rectors’ Conference (2016).

differ strongly among the groups of districts. Yet population density decreased over time
in the districts that opened a college, while this was not the case in districts that did
not. Note, however, that the magnitudes are small. Nevertheless, to account for these
remaining differences, we include district fixed effects and district-specific linear time
trends in the analysis.

Another potential problem is general equilibrium effects. Given the college expansion’s
large scale, all college students (e.g., through peer effects or teaching quality) may be
affected in addition to marginally entering ones (see Bianchi, 2020). Moreover, the ex-
pansion may have had spillover effects on those without a college education (Moretti,
2004). In general, one may expect effects on local labor markets both in the short and
long run. As is standard in the literature, we cannot fully rule this out; however, there is
one potential concern that we can address—labor demand effects related to the college
expansion. Building new colleges may induce local labor demand shocks, affecting both
potential outcomes with and without college education (Y1 and Y0). To determine if the
creation of new colleges had effects on the local wage structure around the time of the
college opening, we exploit a data source that includes wages at that time.

We use individual-level data from the Sample of Integrated Labour Market Biographies
(SIAB).16. The data set provides social security records on a daily basis for about 2 percent
of all individuals who have either been in employment subject to social security or received
unemployment benefits. We use the spell data to generate a panel data set that includes
only women, the district they live in and their daily wages on January 1 of each year for
the period 1975–1990; 1975 is the first year the data are available for.

16This study uses the factually anonymous Sample of Integrated Labour Market Biographies (version
1975–2017). Data access was provided via a Scientific Use File supplied by the Research Data Centre (FDZ)
of the German Federal Employment Agency (BA) at the Institute for Employment Research (IAB).
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Table 3: Comparison of regions with and without college openings before college
openings using administrative data

(1) (2) (3) (4) (5) (6)

College opening...

before between after
1958 1958–1990 1990 or never

mean s.d. mean s.d. mean s.d.

Observations
Number of regions 27 30 190

Sociodemographic characteristics
Female (in %) 53.0 (2.0) 53.0 (1.4) 52.9 (4.3)
Average age (in years) 37.2 ( 1.1) 37.0 ( 1.1) 36.6 ( 1.9)
Singles (in %) 38.8 (2.5) 37.7 (2.3) 38.9 (4.6)
Population density per km2 in 1962 1381.9 (1076.7) 1170.1 (1047.3) 327.1 (479.7)
Change in population density 1962 to 1990 1.6 (186.3) −71.0 (202.8) 31.5 (98.5)
Migrational background (in %) 2.7 (3.0) 1.6 (1.5) 2.1 (2.3)

Socioeconomic characteristics
Share of employees to all individuals (in %) 47.0 (3.6) 45.3 (4.2) 46.2 (5.2)
Employees with income > 600 DM (in %) 27.3 (3.8) 24.8 (5.3) 25.9 (6.4)
Employees by industry (in %)
– primary 2.1 (5.2) 5.2 (5.2) 2.8 (5.5)
– secondary 52.9 (8.4) 54.7 (6.2) 54.3 (8.9)
– tertiary 45.0 (9.3) 40.1 (8.3) 42.9 (9.6)
Employees in blue collar occup. (in %) 53.6 (9.4) 59.0 (7.9) 56.5 (9.3)
Employees in academic occup. (in %) 22.0 (4.4) 17.5 (4.3) 20.3 (5.9)

Notes: This table is taken from Kamhöfer et al. (2019). Calculations are based on the Micro Census 1962; see Lengerer et al. (2008).
Regions are defined through administrative Regierungsbezirk entries and the degree urbanization (Gemeindegrößenklasse) and may
cover more than one district. College information is aggregated at the regional level, and a region is considered to have a college if
at least one of its districts has a college. Calculations for population density and change in population density based on district-level
data were acquired through personal correspondence with the statistical offices of the federal states. Data are available on request.
The variables “employees in blue collar occup.” and “employees in academic occup.” state the shares of employees in the region in
an occupation that is usually conducted by a blue collar worker/college graduate, respectively. Standard deviations (s.d.) are given
in italics in parentheses.

Figure 4 shows event study results where we regress individual-level daily gross wages on
indicators of college openings in the district. The event time is centered around the year of
the college opening and equals zero for the opening year. We can consider 17 openings
between 1975 and 1990 and allow for college opening effects five years before until six
years after the opening. We also account for calendar year and federal state fixed effects.
Please see the notes to Figure 4 for detailed information on the estimations. As this figure
shows, wages seem to be largely unaffected by the college openings. In particular, wages
did not increase due to college openings before the first students even graduated (i.e.,
within the first six years). Given that the vast majority of women at that time did not have
a college degree, we interpret this as evidence that non-college wages were not affected by
college openings in the short run.
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Figure 4: Wage developments before and after college openings

-4
-2

0
2

Ef
fe

ct
 o

n 
da

ily
 w

ag
es

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Event time

Uni, Alter, Deutsch, Year FE, Bula FE

Notes: Own illustration based on SIAB data, 1975–1990. The graph shows the results of event study regressions. The sample
consists of individual-level daily wage data in West Germany. The event is a college opening which took place in 17 districts
in the years 1975–1990. The dependent variable is gross daily wage as of January the 1st each calendar year, measured in prices
of 1990. The sample mean is 52 Euros. We include binary indicators for the event times –5 to 6, where –1 is the reference
category. Event times smaller than –5 and larger than 6 are captured by two additional indicators. The horizontal axis depicts
years relative to a college opening in event time 0, and the vertical axis represents effects on daily wages relative to the year
immediately before the opening, –1. Additional controls are calendar year and federal state fixed effects, individual age, and
a migrational background indicator. 95 percent confidence bands are constructed using district-level-clustered standard errors.
The sample includes all women who participate in the labor force. Restricting the analysis to women without a college degree
yields similar results, as the majority does not have a college degree at this time.

In Section 3.2.2 we show how we collapse information on college openings and expansions
over time into instruments. In brief, we will use variation in the set of university distance
and capacity measures outlined in Table 2 to instrument the decision to enroll into college.

3.2 Data and descriptives

For the main analysis, we combine the administrative records the expansion of college
opportunities with individual-level data from the Adult Starting Cohort of the German
National Educational Panel Study (NEPS); see Blossfeld and von Maurice (2011).17 In ten
waves (starting in 2007/2008), the Adult Starting Cohort assesses longitudinal information
on individual educational decisions, labor market participation and performance, current
and past socioeconomic environment, and competence development for 17,000 individuals
born between 1944 and 1989 (see LIfBi, 2015). Compared to other individual- or household-
level surveys (e.g., the German Socio-economic Panel Study or SIAB that we use for
explorative evidence), the main advantage of this data set is that it includes the district of
residence at the time of secondary school graduation (e.g., the year an individual decides
about going to college or not). This information is crucial for assigning individuals to the

17This paper uses data from the National Educational Panel Study (NEPS): Starting Cohort Adults,
10.5157/NEPS:SC6:8.0.0. From 2008 to 2013, NEPS data was collected as part of the Framework Program for
the Promotion of Empirical Educational Research funded by the German Federal Ministry of Education and
Research (BMBF). As of 2014, NEPS is carried out by the Leibniz Institute for Educational Trajectories (LIfBi)
at the University of Bamberg in cooperation with a nationwide network.
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correct college distances and sizes they faced when making the decision, since where they
live today might be determined by whether or not they decide to enroll in to college (e.g.,
if they move to a district to attend college; Card, 1995).

We use data from the fourth wave with interviews in 2011/12 from the Adult Starting
Cohort and only keep individuals who graduated from a West German secondary school
before 1990 because we focus on the West German educational expansion between 1960
and 1990.18 We also drop individuals aged 65+ in 2012 and those without information on
the district of residence before the college enrollment decision. The final sample includes
labor market information for 3,409 women.

The explanatory variable is a binary indicator of college education, taking on a value of
one if a woman has any higher educational degree, and zero otherwise. Dropouts are
treated as individuals without a college education. As Table 4 reveals, 22 percent of the
women in our sample have a college education.

3.2.1 Dependent variables: Wages and employment

We consider two labor market outcomes: working for pay and hourly wages. The variable
working for pay takes on a value of one if an individual reports to work five or more
hours per week for pay at the time of the interview and zero otherwise. The non-working
category includes voluntary and involuntary unemployment, participation in active labor
market policies, and early retirement.19 The working hours underlying the hourly wage are
calculated based on the actual weekly hours (including overtime) spent with employed or
self-employed work or, if missing, the contractual working hours. The summary statistics
of the dependent variables in Table 4 reveal a rather low employment rate of women. On
average, about 70 percent of the women report working for pay. What is more interesting
is the employment gradient by college education. The difference between women with
and without college education amounts to roughly 6.5 percentage points (or 9 percent).

Following the literature (e.g., Pischke and von Wachter, 2008), we define the gross hourly
wage as gross monthly income divided by 4.3 weeks times the average weekly working
hours. Income tax-free marginal employment jobs (with a monthly income up to 450 euros)
are disregarded, and if an individual has more than one job at the time of the interview, we
sum up all information (see the notes to Table 4 for all restrictions). The descriptive college
gradient in earnings in Table 4 exhibits that working women with a college education
earn, on average, more than one-third (8.82 euros) more than their peers without a college
education.

18Wave 4 includes the most observations because of a refreshment sample. West Berlin is excluded from
the analysis due to its special status.

19While individuals on parental leave would also fall into this category, the long-term perspective makes
parental leave unlikely (only 5 percent of the individuals in the final sample are below age 40).
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Table 4: Descriptive statistics and OLS estimates

(1) (2) (3) (4) (5)

OLS estimate
Mean values of college education

w/o with coeff- unit of
all college college icient measure

Working for pay sample

Observations 3,409 2,665 744

Working for pay (in %) 69.46 68.18 74.06 3.2∗∗ in percentage
(2.2) points

Wage sample

Observations 1,953 1,449 504

Gross hourly wage (in e ) 24.97 22.69 31.51
Log gross hourly wage 2.93 2.84 3.17 0.374∗∗∗ in log

(0.046) points

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12. The top panel (working for pay
sample) includes all women. Working for pay takes a value of one if an individual reports to work five or more hours a week
and zero otherwise. The bottom panel (wage sample) only includes women with complete wage information. Earnings are
in euros. The gross hourly wage is calculated as monthly gross income divided by 4.3 weeks times weekly working hours.
To avoid outliers, we do not consider hourly wages derived from gross monthly incomes below 450 euros (the marginal
employment threshold) or above the 99th quantile. Additionally, hourly wages below 5 euros are dropped, as they are
likely caused by a measurement error. The weekly working hours include contractual working hours and hours worked
overtime in employed and self-employed work using information on all jobs at the time of the interview. We allow for
individuals to be employed despite missing wage information. Final outcomes measures used in the analysis are in bold
font. Column 1 provides the unconditional mean values of the variables on the left. Columns 2 and 3 provides the mean
values conditioning on individuals with and without college education, respectively. Column 4 provides the OLS estimates
for the effect of college education on the outcome variables, and column 5 indicates their unit of measurement. Regressions
include the standard set of control variables as discussed in Section 3.2.3 and as also used throughout all analyses that
follow. The wage sample is conditioned on working for pay. District-clustered standard errors are in parentheses; ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01.

In column 4 of Table 4, we also report results from OLS regressions of the dependent
variables on college education and controls. The table shows that women with a college
education are 3.2 percentage points more likely to work for pay than without a college
education. The hourly wage increase associated with college education is 0.374 log points.20

3.2.2 Instruments

The college expansion increased both the number of colleges and the capacities of existing
ones. A priori, it is not clear how to capture these changes in the most efficient way.
The simplest way was chosen by the early studies that use college availability as an
instrument. Card (1995) and Currie and Moretti (2003) use a binary variable to indicate a
college in the district or the local labor market. Using a binary indicator, however, ignores
information on capacity. Moreover, when deciding to enroll in a college, many individuals

20Which, transferred to an annualized percent, is 100× (e0.374/6 − 1) = 6.4 percent per annum (p.a.).
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not only take their home district into account but also nearby districts and even remote
ones. Kamhöfer et al. (2019) boil down the information on the German college expansion
into a single variable that sums up the distance-Kernel-weighted share of students per
inhabitant over all districts. The calculation of this college availability index implicitly
assumes some structure of how the college expansion may affect the college enrollment
decision. Moreover, while the results are robust against several alternative specifications,
such a definition, in principle, entails some researcher discretion.

Mullainathan and Spiess (2017) suggest the use of variable selection techniques adopted
from machine learning to estimate the first stage in an IV setting (i.e.,, the propensity score
estimation in the MTE estimation) and even point out the possible application of variable
selection techniques when estimating the effect of a changing college environment on the
college enrollment decision as a promising example. Following Belloni et al. (2012), the
first-stage estimation can be seen as a prediction problem where many college expansion
indicators potentially explain the individual’s decision, but only few of these indicators
actually matter. The list of potentially relevant indicators (e.g., college in home district,
college in neighborhood district, more remote colleges, college size, variable interactions,
etc.) can become very large if the researcher wants to put as little structure as possible on
the problem and let the data speak. Empirically, we address this problem by running an
auxiliary regression using the least absolute shrinkage and selection operator (Lasso) that
minimizes the sum of squared residuals plus a penalty term for the number of parameters
(see, e.g., James et al., 2013, for an introduction). The advantage of Lasso as a variable
selection device is that parameters of variables deemed to have no significant predictive
power are set to zero and will thus be discarded in what follows. The full analysis will
then be performed with the subset of “relevant” variables.

As potential instruments, we consider ten variables on the distance to the ten college
districts in closest proximity (if a college is in the home district, the first variable takes
on a value of zero) and ten variables for the number of students per 1,000 inhabitants in
these districts. Distances are measured from centroid to centroid of the 326 West German
districts. The opening of new colleges in proximity to the home district changes the order
of the closest college districts, while increased capacities are reflected in the student density
measures. These potential instruments thereby account for both decreasing distances and
increasing capacities. Additionally, we include all squared and cubic distances as well
as all squared and cubic student densities of the college districts. Finally, we consider all
pairwise interactions between the distance and the student density within the same order
of proximity. All of these variables sum up to 70 potential instruments.

Table 2 reports average values of the potential instruments separately for different decades.
The table shows that the distance to colleges has declined strongly over time. As previously
mentioned, the average distance to the closest college has decreased over time from 38.9 to
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22.7 kilometers. The selection of the instruments is based on the larger working-for-pay
sample.21 The chosen variables are, in that order, the distance to the 2nd and 7th, the
student density of the 7th, and the distance to the 9th and 10th nearest university.22 In
Section 6 we report results using other specifications of the instrument.

3.2.3 Control variables

Our data include rich information on (pre-college) control variables; see Table A1 in the
Appendix for variable definitions and means by college education. The first group of
control variables, general information, includes the woman’s year of birth (in the analysis
captured by a full set of fixed effects), migrational background, and whether she lived in a
rural area when she decided to go to college (also captured by fixed effects). Pre-college
living conditions are all measured at the individual’s age of 15. They cover indicators like
parental unemployment and whether the parents have never been unemployed as well
as indicators for the family’s living arrangements (e.g., nuclear family or single parent).
Pre-college education controls for the average grade points of the highest school track and
grade repetition. Finally, parental sociodemographics include birth cohort fixed effects for the
mother and father as well as indicators for their highest educational degrees.

Table A1 in the Appendix indicates that individuals with a college education had better
grades in secondary school and less siblings and were more likely to live in an urban
area and have no migrational background. College graduates are also more likely to
have parents with jobs that require more skills. In terms of other variables, the difference
between both groups seems to be smaller.

As stated above, in addition to cohort fixed effects, we also include a full set of district fixed
effects (for the districts at the time of the college enrollment decision) in all regressions
(see Mazumder, 2008, for an assessment of the importance of including this). Moreover,
we also include district-specific linear time trends (see Stephens and Yang, 2014). Doing
this addresses the potential problem that colleges are opened in certain regions with
potentially different wage dynamics. Table 3 suggests that economically disadvantaged
regions were affected by college openings. Quantitatively, the differences between districts
with and without college opening are small, however. Nevertheless, district fixed effects
and district-specific time trends should largely account for this.

21We use the Stata ado lassoShooting provided by Christian Hansen on his website. Any errors are
our own responsibility. The Lasso regressions include full sets of control variables.

22This supports the finding of Kamhöfer et al. (2019) that university openings (reflected in the distance)
are sufficient for a strong first stage. Thus, even if one is willing to believe in the exogeneity of university
openings but not of their capacities, this does not alter our interpretation of the first stage.
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4 Baseline results

4.1 Marginal treatment effects

Table A2 in the Appendix reports results of the propensity score estimation,23 while Figure
A2 shows that the propensity score contains sufficient variation to identify MTEs over a
wide range of the unit interval. However, we only have a very small amount of identifying
variation at very high values of the propensity score. That is, some individuals have such
a high distaste for college education that even nearby colleges cannot persuade them
to enroll. To avoid the possibility that marginal effects with low support are mistaken
for reliable estimates, we trim the 5 percent of the observations with the lowest and the
highest estimated propensity scores, respectively. Trimming the 5 percent of observations
with the lowest propensity score results in disregarding marginal effects below the 1.8th

percentile of the distaste-to-study index (UD). Similarly, trimming the highest 5 percent of
observations results in disregarding observations with an unobserved distaste for college
education above the 67th percentile of the distribution. In other words, trimming the
propensity score leads to a range of UD from 0.018 to 0.67. Neglecting observations outside
this range is less critical than it appears at first glance. The trimmed quantiles at the upper
end contribute little to the estimation of the most important conventional treatment effects
(the ATT, the LATE, and any realistic policy-relevant treatment effect; see the argument in
Section 4.3).

To illustrate the effects of the instruments for identification, we use the propensity score
estimates, keep all control variables fixed at the sample means and only vary Z to predict
the propensity score. When using the average distances in the period 1971–1980 (reported
in Table 2), we obtain a propensity score of 0.164, while we obtain 0.347 when using
average distances in period 1981–1990 (note that all other variables such as time trends are
fixed). Increasing the distances to 300 km for the second closest college and 500 for the
seventh to tenth closest college, for instance, reduces the propensity score to basically zero,
meaning that only extremely motivated individuals would choose college education in
this scenario. Changing the average distance to 0 km for the second closest college and 100
for the seventh to tenth closest college increases the propensity score to 0.68. Of course,
once theX variables are also varied, there is a multitude of combinations that may lead to
very high or very low propensity scores.

Figure 5 presents the MTEs of college education on employment (solid curve) and wages
(dashed curve). We start by interpreting the findings for employment where the vertical
axis denotes percentage points. If one is willing to accept the assumptions put on the
instruments, these effects are causal. For women with a high preference for college

23To assess the instruments’ power, Table A3 in the Appendix states the instruments’ partial F-statistic at
the first stage of a conventional 2SLS approach.
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education (a low UD), there are very large effects (around 37.5 percentage points) and
negligible effects (less than 3 percentage points) for women with a medium preference for
college education. The pattern indicates a considerable effect heterogeneity, indicating that
there is a substantial number of women who are induced to work as a result of having a
college education (particularly for low UD values). This heterogeneity opens the door for
a considerable selection bias when estimating the ATE of college education on wages for
always employed.

Figure 5: (Naı̈ve) marginal treatment effects on employment and wages
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This figure depicts marginal treatment
effects (MTEs) on the probability to work for pay (solid curve) and on hourly wages (dashed curve). The
effects on wages are measured in log points. To have the correct percentage interpretation, note that the
MTE on wages needs to be transformed by the following formula: 100× (eMTE in log points − 1). The MTEs
are evaluated at values of the propensity scores after trimming 5 percent on each tail of the propensity score
distribution. Calculations are based on a local linear regression where the influence of the control variables
was isolated using a semiparametric Robinson estimator (Robinson, 1988). The outcome is then evaluated
by local linear regression separately by college education according to the method proposed by Carneiro
and Lee (2009). Standard errors are calculated using the joint estimation approach.

The dashed curve in Figure 5 reports MTEs on wages (again, not taking CISE into account).
The measure of the vertical axis is log points. One percent of a log point only approximately
corresponds to a one percent increase. For larger log-point changes, this one-to-one
mapping is not appropriate anymore (usually the uniformity between both scales is
accepted up to 0.4 log points). Thus, if we interpret the effects (often above 0.4 log points)
in percentage points, we need to transform the reported log-point effect first.24 We call this
dashed curve the naı̈ve MTE in Section 2. Interpreting this effect without the theoretical
reasoning and the quantitative support that there is (at least for some regions of UD) a
considerable share of type 2 women in our data, individuals with the highest taste for

24The transformation is 100× (elog points − 1) = percentage points. When we report annualized returns,
we divide the log points by the average study duration of six years first. A return of 1.2 log points, for
instance, would translate into an annualized return of 100× (e1.2/6 − 1) = 22.1 percent p.a.
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college education earn 22.1 percent more per year of college education completed. This
effect is strongly declining along the distribution of the taste for college (which is a sign
of selection into gains). For the largest part of the distribution, the wage premium per
year of college education is about 8.7 percent (0.5 log points in total for 6 years of college
education). As discussed in Section 2, however, the level of these effects, as well as the
slope, may be confounded by CISE.

Before moving to the bounds, we make a note on the p.a. effects of college education.
These effects are per year of education completed and are not the increase in wages per
year over the life cycle due to college education. As we pool women of all age groups
between around 40 and 65, we can only identify average effects of education on wages
at one point in time. The Roy model and our separate estimation of potential outcomes
allow for different earnings dynamics of women with and without college education. Yet,
due to sample size, we cannot identify life cycle effects or different effects for women with
different tenure. However, we do not confound short- with long-run effects, as all women
in our sample have been on the labor market for at least 10 years.

4.2 Lee bounds using MTEs

To account for CISE, we perform the bounds approach described in Section 2.4. If the iden-
tifying IV assumptions are valid, these bounds do not require any additional assumptions
and hence are true worst-case bounds. Figure 6 plots these bounds around the estimated
NMTE. The corresponding bootstrapped 90 percent confidence interval for the NMTE
surrounds these bounds.25

For the lowest identified quantile of unobserved heterogeneity, UD = 0.1, the bounds
range from 0.40 to 0.81 log points. This translates into wage returns ranging from 6.9 to 14.5
percent p.a. Unfortunately, we cannot identify the Lee bounds for UD values below 0.1, as
the identifying variation does not suffice to identify quantile MTE effects. We observe the
widest bounds for UD = 0.66, ranging from 0.16 to 0.77 log points (2.7 to 14.0 percent p.a.).
Naturally, we observe the narrowest bounds for the area of UD where the employment
effects are the lowest, from UD = 0.35 to UD = 0.55. For UD = 0.4, for example, the
bounds range from 0.35 to 0.63 log points (6.0 to 11.1 percent p.a.). Overall, the bounds are
strikingly narrow, and most importantly, the wage effects of college education are positive
throughout the identified area.

Despite the tightness of the bounds, they may still be quite wide to precisely pin down
wage returns. In the following section, we try to complement these bounds by an additional
restriction. Doing this is particularly important in order to also extrapolate the bounds to

25See Imbens and Manski (2004) for details on how to compute the asymptotic confidence interval that
contains the treatment effect (as opposed to the identified set) with a certain probability.
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Figure 6: Lee bounds for MTE
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This figure depicts marginal treatment
effects on hourly wages. Naı̈ve effect (dashed curve) are taken from Figure 5 and area of adjusted Lee
bounds as outlined in Section 2.4.

areas where UD < 0.1, which is necessary to compute more general treatment effects such
as the ATE and ATT.

4.3 Treatment parameters

Using MTEs, it is possible to calculate conventional treatment parameters such as the ATE;
the ATT; and the LATE, for our instruments as given by 2SLS estimation. To calculate
these parameters, we follow the approach of Heckman and Vytlacil (2007) and weight the
MTEs at each quantile of UD with their relative contribution to the average effect. Figure
7 presents the weights for the ATT and the LATE. Given that these weights are basically
zero outside the support, it will not matter quantitatively that we cannot identify MTEs on
the unit interval. However, it might matter for the ATE, which employs constant weights
on the unit interval. For the moment, we restrict the parameters to the ATT and LATE and
refer to Section for an alternative approach that uses slightly stronger assumptions to both
sharpen the bounds and extrapolate the MTE outside the identified interval so that we can
calculate the ATE.

The weighted averages of the MTEs are reported in panel A of Table 5. Whenever possible,
the corresponding bootstrapped standard errors are reported in parentheses. The first row
shows the effects on working for pay. Both treatment parameters reveal economically and
statistically significant effects on working for pay. On average, college education increases
the fraction of treated women who are employed by 23.6 percentage points, higher than
the estimated LATE of 17.6 percentage points. By definition, only type 2 women are
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Figure 7: Treatment parameter weights conditional on the propensity score
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Notes: Own illustration based on NEPS–Adult Starting Cohort data. The weights are estimated at values of the propensity scores
after trimming 5 percent on each tail of the propensity score distribution.

responsible for these effects (assuming the effect of college education on the probability of
being employed is always positive or zero but not negative, i.e., no type 3 women). Thus,
these effects directly translates into shares of the types of women, which we presented
in Table 1. The portion of women who work irrespective of college education—our type
1—ranges between 69 and 77 percent for the displayed treatment parameters (see panel
B of Table 5). This finding shows that CISE is non-negligible in our sample—between 23
and 31 percent. Consequently, the impact on both the marginal effects and conventional
treatment effects is likely to be non-negligible as well.

The first line in the panel on wage effects in Table 5 shows the wage effects based on the
NMTEs and is thus not adjusted for potential CISE. There is some heterogeneity between
the two treatment parameters. Women who actually attended college have, on average,
a wage premium of 12 percent p.a., whereas the estimated LATE is 10 percent p.a. Both
effects are significant.

Now we turn to the proposed bounds. Both treatment parameters are very similar and
correspond to an annual return ranging between 5.8 and 12.5 percent. This spread is
quite narrow given that these bounds do not require many assumptions. Moreover, even
the lower-bound returns are significantly different from zero at a significance level of 10
percent, as reported by the p-values in the brackets.

From all considered treatment parameters, the annual college returns range from 6 to 13
percent—within any treatment effect, the spread barely exceeds 6 percentage points. The
effect range is quite plausible and is in line with the effects found for men in the previous
literature in Sweden, where Nybom (2017) finds an annual return of 7.5 percent (ATT).
Our effects are considerably smaller than those identified for men in the U.S.; Carneiro
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Table 5: Bounds on the treatment parameters

(1) (2) (3) (4)

ATT LATE

log percent log percent
points p.a. points p.a.

Panel A

Working

Effect (in percentage points) 23.6 17.6
(8.3) (6.9)

Wages

Effect without considering CISE 0.682 12.0 0.572 10.0
(0.242) (0.221)

Lee bounds:

– Upper bound: 0.705 12.5 0.690 12.2
(0.253) (0.231)

– Lower bound: 0.348 6.0 0.337 5.8
(0.241) (0.220)

Treatment effects p-value: [0.074] [0.063]

Panel B

Share of type 1 individuals

Treated Compliers

p0/p1 0.687 0.771

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12.
The even columns state the results in log points; the odd columns show the results trans-

formed in percent p.a. The latter is calculated as 100×
[
e(log points/6) − 1

]
, assuming an av-

erage time spend in college of 6 years. The parentheses below the coefficients report cluster-
bootstrapped standard errors based on 250 replications. As pointed out by Imbens and Man-
ski (2004), the confidence interval for the treatment parameters within the identified sets are
tighter than for conventional tests at any confidence level.

et al. (2011) report 24.2 percent p.a. (ATT) and Zimmerman (2014) assesses the effect at 22
percent per year for men (a marginal effect of U.S. individuals who are indifferent between
college and the next best alternative). However, Zimmerman (2014) finds 0 percent p.a. for
women.

Compared to the CISE-unadjusted naı̈ve treatment parameters, our results also suggest
that these naı̈ve effects are most likely upper bounds. CISE will most likely induce type
2 women with high earnings potential to work, which will eventually lead to upwardly
biased naı̈ve effects.
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Our results so far have two shortcomings that are both related to the fact that the UD

support only ranges from approximately 0.1 to 0.65. First, we cannot derive the ATE, as
observations outside of this range also have a weight clearly larger than zero when the
ATE is calculated. Second, and more generally, we cannot determine MTEs outside of
the observed interval (e.g., to learn about the potential effects of future reforms). College
expansions are still an ongoing process in Germany, and future expansions are likely to
address women with larger values of UD, somewhere in the range of UD between 0.5 and
0.7. In the next section, we propose a refinement of the approach that combines the Lee
bounds with assumptions on the shape of the MTEs. Doing this allows us to sharpen the
bounds, extrapolate them on the full unit interval, and calculate ATEs.

5 Alternative approach: Combining Lee bounds with a MTE

linearity assumption

5.1 Approach

Because MTE-based Lee bounds are very data hungry, it is not possible to identify them
for the area UD < 0.1. This subsection presents a complementary approach that allows
us to not only bound the wage returns for small UD values but also further tighten them.
This approach bounds type 1 wage returns by assuming a functional form of the selection-
into-gains pattern that is compatible to Lee’s approach.

We first go back to the discussion in Section 2.2 where we talk about estimating E
(
Y1 | L1 = 1

)

and E
(
Y0 | L0 = 1

)
. E
(
Y1 | L1 = 1

)
is a mixture of type 1 and type 2 women with shares

that can be determined. Solving this for the type 1 women, we get

E
(

Y1 | L1 = 1
)

=

Type 1︷ ︸︸ ︷
E
(

Y1 | L1 = 1, L0 = 1
) p0

p1 +

Type 2︷ ︸︸ ︷
E
(

Y1 | L1 = 1, L0 = 0
) (p1 − p0)

p1

⇔ E
(

Y1 | L1 = 1, L0 = 1
)

= E(Y1 | L1 = 1)
p1

p0 − E(Y1 | L1 = 1, L0 = 0)
(p1 − p0)

p0 . (7)

By assumption of no type 3 women (which will be justified and relaxed below), we have
that

E(Y0 | L0 = 1) = E(Y0 | L1 = 1, L0 = 1). (8)
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Thus, by combining (7) and (8), we can write the causal effect of college education on
wages for the always workers as

E(Y1 −Y0|L1 = 1, L0 = 1) =
[

E(Y1 | L1 = 1)− E(Y0 | L0 = 1)
] p1

p0 (9)

−




E(Y1 | L1 = 1, L0 = 0)︸ ︷︷ ︸

College outcome for type 2
individuals: E(Y1| 2©)

−E(Y0 | L0 = 1)




(p1 − p0)

p0 .

Equation (9) has a MTE-equivalent if we only condition on UD. We leave this implicit
here. The equation makes explicit that if we could observe Y1 for type 2 women, we could
then estimate the effect for type 1 women. An alternative strategy to the Lee bounds for
MTE could be to just plug in maximum or minimum observed values of Y for the missing
Y1 of type 2 women (e.g., in the spirit of Horowitz and Manski, 2000). However, doing
this would lead to larger bounds than in the previous section without making weaker
assumptions. Instead, we try to make progress by relying on a linearity assumption on the
shape of the MTE.

Although this approach is feasible for any (continuous) functional form, we demonstrate
the approach for a linear selection into gains.26 Apart from simplifying the formal ex-
pressions, the data and previous literature speak in favor of linearity (see details below).
Assume that MTE(type 1, UD) = E(Y1 − Y0 | L1 = 1, L0 = 1, UD) = a + bUD. That is,
once we have identified the two unknown parameters a and b, we then know the wage
returns to college education for type 1 individuals. If appropriate, this restriction is a
powerful step towards higher external validity, as it also identifies effects for regions with
insufficient observations (Mogstad et al., 2018), such as UD < 0.1 in the application at
hand. Eq. (9) then simplifies to the following:27

a + bUD = NMTE(UD)
p1

p0 −
[

E(Y1|L1 = 1, L0 = 0, UD)− E(Y0 | L0 = 1, UD)
] p1 − p0

p0 .

26In Figure S8 in the Supplementary Materials we allow for a linear selection into losses. This slightly
increases the upper bound but does not alter our conclusion.

27Note that in p0 = E(L0|UD) and p1 = E(L1|UD) we leave conditioning on UD implicit for sake of
legibility.
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Solving for the unknown E(Y1 | L1 = 1, L0 = 0, UD), and making explicit that this
expression now is in part determined by the two parameters for the linear MTE {a, b}, we
get

E(Y1|type 2, UD, a, b) = NMTE(UD)
p1

p1 − p0 + E(Y0|L0 = 1, UD)− (a + bUD)
p0

p1 − p0 .

Since we can directly estimate NMTE(UD), E(Y0 | UD), p0 = E(L0|UD) and p1 =

E(L1|UD), E(Y1|type 2, UD) is determined once the parameters a and b are set and can
then be plugged into Eq. (9) to get the effect for type 1.

Although a linear true selection into gains is not necessary for this approach (any paramet-
ric functional form will do), there are several reasons why linearity is a good approximation
when bringing this strategy to the data:

• From an empirical point of view, linearity seems to be a fair assumption given the
data at hand. This becomes apparent from the UD area where the college effect has no
(statistically significant) effect on employment. We refer to this area as the “CISE-free”
UD range, going from 0.35 to 0.55 in Figure 5. Linearity seems a good approximation
for the functional form of the wage MTE returns in this CISE-free area. Although
statistical insignificance does not necessarily imply a zero effect, the exact UD range in
Figure 5 seems to play a minor role when looking at the selection-into-gains pattern.28

• Linearity has been found in the previous literature: semiparametric estimations of
MTEs of college education on wages for men (where CISE probably does not play a
large role)—that do not require any a priori fixed shape of the MTE—were fairly linear
in Carneiro et al. (2011) and Nybom (2017). Kamhöfer et al. (2019) find linear cognitive
skill and health returns. Cornelissen et al. (2018) require a parametric functional form
and find that a linear pattern provides a better fit than a quadratic or cubic functional
form.

• To extend the research frontier while keeping things as simple as possible, method-
ological papers frequently assume linearity. Brinch et al. (2017) suggest restricting
effect heterogeneity to be linear in order to be able to estimate MTEs using a binary
instrument (even with further assumptions on control variables or multinomial in-
struments, some form of parametric restriction remains). Other seemingly non-linear
distributions are often also approximately linear. For instance, the normal selection

28Following this line of reasoning, differences between linear functional form and the observed functional
form of the wage MTE returns outside the CISE-free area are driven by selection into employment. In
Appendix Figure A3 we extrapolate the linear selection-into-gains pattern estimated in the CISE-free area to
the entire identified UD range in order to bound type 1 wage returns. This third bounding approach lies in
between the Lee bounds and the approach presented in this subsection in terms of both how restrictive the
assumptions and how informative the bounds are.
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model (see Carneiro et al., 2011, or Heckman, 1979) as a traditional workhorse model
for MTEs implies an approximately linear MTE when the extreme tails of the distribu-
tion are discarded. Other examples for restricting the functional form of the selection
into gains to linearity include Moffitt (2008), French and Song (2014), and Kowalski
(2016).

While, in principle, the two parameters a and b (and thus the MTE) can take on any
value, note that the resulting E(Y1 | type 2) cannot. For natural bounds (conditional on
a linear MTE), we discard combinations of a and b that imply unreasonable values of
E(Y1 | type 2). To apply this approach to the data, we take the extreme values of the Lee
bounds to restrict the set of potential values for b:

• E(Y1 | type 2, UD) may not take on lower values than those implied by the corre-
sponding value under the lower Lee bound. Thus, we discard all combinations of a
and b that lead to lower values.

• Correspondingly, E(Y1 | type 2, UD) may not be larger than implied by the upper
value for the Lee bounds. Thus, we discard all combinations of a and b that lead to
those values where this is the case.

In essence, we want to try any {a, b} parameter combination, where a ∈ [−∞, ∞] and
b ∈ [−∞, 0]. Because this is computationally unfeasible, we conduct a grid search and
evaluate only specific {a, b} values at Ta discrete grid points for a and Tb points for b
to find the space of admissible MTE lines MTE(type 1, UD) = a + bUD.29 As there are
potentially many {a, b} combinations that fulfill these restrictions, this strategy bounds
the CISE-accounted value of MTE(type 1, UD) rather than suggesting a point estimator.

5.2 Results

Figure 8 shows the sets of all admissible marginal effect lines for type 1 individuals for
these two scenarios: Lee bounds alone and in combination with a presumed linear MTE.
Neglecting the fact that this procedure does not take potential sampling errors into account,
the dark gray-shaded area in Figure 8 is the set of admissible linear MTE lines allowed by
the existing degree of CISE in our data. This means that all linear lines that lie inside this
set are possible marginal effect lines for type 1 women. The light gray-shaded area uses
extrapolations of these bounds on the unit interval.

29We further a priori restrict compatible values of a and b using prior reasoning on potential MTE lines.
Doing this yields the following intervals: a ∈ [−max(Y|D = 1), max(Y|D = 1)] , b ∈ [−2 max(Y|D = 1), 0].
Moreover, we set Ta = 200 and Tb = 200 such that T = 4, 000. However, the resulting bounds are highly
insensitive to the choice of the number of iterations T. For the sake of clarity and generality, we did not
include this in the main text. Also, since these intervals are continuous in nature, we discretize them into
small bins of 0.01 increments, essentially conducting a grid search.
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Figure 8: Admissible linear MTE lines allowed by the degree of college-induced selection
into employment (CISE) in the sample
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This figure depicts the naı̈ve marginal
treatment effect (NMTE) for wages and corresponding bounds using linearity restrictions on the hypothe-
sized shape of the MTE for always employed. These bounds are shown by the gray lines that comprise the
marginal wage effect. Under this strategy, all linear MTEs that fit within these lines (highlighted by the
gray-shaded area) are considered possible.

Figure 8 shows several findings. First, on the interval between 0.1 and 0.65, the bounds
are slightly sharper than the Lee bounds alone. Second, the linearly restricted Lee bounds
are especially interesting for small UD values, where the Lee bounds with no further
restrictions are not identified. While NMTE estimates are particularly large for UD < 0.1,
up to 1.2 log points (22.1 percent p.a.), the bounds lie in a range between 0.45 and 0.9 log
points (7.8 and 16.2 percent p.a.). This finding indicates that CISE would result in greatly
misleading NMTE wage estimates, especially for always employed women with a high
unobserved desire to attend college. Third, we also observe that the upper bound is always
quite large and the lower bound only crosses the zero line at very large values of UD. As
expected, the bounds grow very large at UD values of more than 0.8 and should not be
used to draw inferences on this population. However, this is a population that is hard to
motivate to attending college anyway and most likely do not respond to any reasonable
education policy.

We now use this bounding approach to derive all conventional treatment parameters (ATE,
ATT, and LATE) and report their results in Table 6. As can be inferred from Figure 8, the
bounds on ATT and LATE do not differ significantly between the two bound versions
(Lee bounds only and Lee bounds with linearity; compare Table 5). They are now slightly
narrower, with the ATE a bit smaller with bounds of 3.9 to 11.6 percent. This finding is
expected due to the negative slope of the MTE and thus smaller effects at higher values of
UD that had not been taken into account for the ATT and LATE. Nevertheless, these effects
are still quite large.
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Table 6: Bounds on the treatment parameters

(1) (2) (3) (4) (5) (6)

ATT LATE ATE

log percent log percent log percent
points p.a. points p.a. points p.a.

Lee bounds in combination with a linear MTE:

– Upper bound: 0.731 13.0 0.685 12.1 0.661 11.6
– Lower bound: 0.395 6.8 0.371 6.4 0.228 3.9

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12. The even
columns state the results in log points, and the odd columns show the results transformed in percent p.a.

The latter is calculated as 100×
[
e(log points/6) − 1

]
, assuming an average time spend in college of 6 years.

As the linearly restricted MTEs are non-pivotal statistics, we do not report standard errors for them.

6 Robustness checks

6.1 Assumption of no type 3 individuals

In Section 2.2, we assumed that no women is of type 3; i.e., there are no women that
do not work in as a result of having a college education but do work if they have a
college education (Pr(L1 ≥ L0) = 1). The main reason for this assumption is simplicity.
Without this assumption, the exposition of the problem is more complicated and we
would need bounds for a second unobservable outcome. Here, we aim to show that this
assumption may be justified and, maybe more important, our results do not crucially
hinge on it. A major threat to this assumption is assortative mating and the infamous “Mrs.
Degree”. Women who entered college have been more likely to meet future husbands with
a higher earnings potential, allowing the women to reduce their labor market participation
compared to not having a college education. We now (i) provide some evidence in favor of
this assumption based on results along the dimension of unobserved heterogeneity, (ii)
provide results along the dimension of observed heterogeneity, and (iii) show that allowing
for minor deviations from this assumption does not affect the findings significantly.

(i): Returning to the employment MTE in Figure 5, these results indirectly lend support to
our assumption of no type 3 women. While we cannot test this, we can at least see that
over the entire range of UD, there is no area with a negative average effect of education on
employment, providing stronger evidence than if we only found a positive 2SLS coefficient
because we observe a whole distribution of mean effects.

(ii): In Table 7 we provide evidence on heterogeneity along observable characteristics. We
report 2SLS coefficients of the effect of college education on working for pay for different
subgroups based on all control variables used in the analysis. To do this, we go through all
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Table 7: 2SLS estimates of college education on employment by subgroups

(1) (2) (3)

2SLS effect of college
education on employment

if characteristic

Share does not
Characteristic (in percent) apply applies

Full sample benchmark
All women 0.171∗∗

(0.077)

General information
Born after 1960 (mean year of birth) 53.2 0.190∗∗ 0.124

(0.092) (0.136)
Grew up in rural area 23.7 0.088 0.480∗∗

(0.088) (0.223)
Migrational background 8.7 0.171∗∗ 0.178

(0.083) (0.163)
Pre-college living conditions (R = respondent)

Any siblings 84.2 0.088 0.185
(0.132) (0.120)

First born 30.7 0.182∗∗ 0.152
(0.088) (0.097)

Age 15: not lived in core family 9.3 0.189∗∗ −0.002
(0.083) (0.156)

Parents: both employed at R’s age of 15 45.5 0.209∗∗ 0.115
(0.090) (0.086)

Parents: both never unemployed until R’s age of 15 61.0 0.218∗∗ 0.134
(0.099) (0.091)

Pre-college education
Final school grade: excellent or good 22.5 0.204∗∗ 0.049

(0.086) (0.109)
Repeated at least one grade 18.6 0.197∗∗ 0.072

(0.086) (0.120)
Parental sociodemographics

Parents: vocational training 40.6 0.123 0.253∗∗∗

(0.080) (0.092)
Parents: further training 12.6 0.183∗∗ 0.094

(0.085) (0.132)
Parents: college education 6.0 0.174∗ 0.150

(0.089) (0.184)

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12. The sample includes information on 3,409
observations. Each row of the table gives the effect of college education on the probability of being employed, differentiated by the
individual characteristic given on the left. All characteristics are binary, taking on a value of one if the characteristic applies and
zero otherwise. The mean value of the characteristic (i.e., the share values of 1) is given in the first column. Instruments and control
variables are the same as in the baseline specifications of the paper. District-clustered standard errors are in parentheses; ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.

variables in Table A1 and group them to binary variables in order to split the sample in this
dimension. Table 7 reports results for all subgroups with at least a share of 5 percent in the
sample (as too small numbers make IV regressions infeasible). For nearly all subgroups,
we find striking evidence for non-negative effects of college education on working for pay.
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Of course, this is not a proof of non-existence of type 3 women. Thus, we continue in part
(iii) by calculating back-on-the-envelope results when we allow for a small share of type 3
women.

(iii): In an extended analysis in Appendix C we first derive Eq. (9) without assuming
that pD = 0. The new equation is defined through two unobserved expected values, one
for type 2 and one for type 3 women. We then, for observed parts of the formula, plug
in sample averages from our data set. For the unobserved factors, we define plausible
maximum and minimum values to calculate bounds. Thus, we do not carry out another
regression analysis but instead plug in numbers to learn about the potential magnitudes
of the effects that small shares of type 3 women can have on the bounds. We calculate
these bounds for three sets of plausible values: a baseline version that assumes pD = 0
but uses sample averages for the observed factors, version 2 that assumes pD = 0.01 and
thus a share of type 3 women who represent 1 percent of the population, and version 3
that assumes pD = 0.02. The resulting bounds for type 1 wages are the following (see
Appendix C):

– Baseline, pD = 0.00: 0.37–0.70,

– Version 2, pD = 0.01: 0.34–0.71, and

– Version 3, pD = 0.02: 0.30–0.72.

The baseline bounds are in line with those in Table 5 (this is how we calibrated the model).
Apparently, the bounds only slightly increase when there is a small number of type 3
women. The intuition is obvious: with a small number of type 3 individuals, the influence
of even large effects in this group on the results are comparably small.

The underlying model in Appendix C is a very simple one. Its goal is not to produce
numbers that can be taken at face values but to instead show that slight deviances of our
assumption of no type 3 women have only minor consequences. Of course, this also holds
for 3, 4, or 5 percent shares of type 3 women. Yet, based on the results above, we have no
reason to assume that the shares of type 3 women are substantially larger.

6.2 Instrument

While the machine-learning-based instrument selection has certain advantages (see Section
3.2.2), the lack of theoretical foundation with regard to the chosen subset of instruments
calls for robustness checks. This subsection discusses the sensitivity of the estimated
treatment parameters for two alternative instrument specifications. Table 8 compares the
ATT Lee bounds from the baseline specification in column 1 (taken from Table 5) with the
two other specifications in columns 2 and 3.
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We first use the distances to the ten nearest universities without further instrument selec-
tion. While using less relevant distances (those not chosen by the Lasso) adds noise to the
fitted value of the college decision, it is more intuitive to consider all ten college distances
rather than a theoretically unjustified subset. Column 2 of Table 8 reports the resulting
ATT when using the ten instruments in the selection equation. The upper and lower Lee
bounds are 0.716 and 0.387 log points, respectively. This is very close to Lee bounds for
the baseline specification, with an upper bound of 0.705 and a lower bound of 0.348.

Next, we boil down the college expansion into a single instrument, the college availability
index Zit, that links university distances and their capacities. It is used in Kamhöfer et al.
(2019) and is formally calculated as

Zit =
326

∑
j

K(distij)×
(

#studentsjt

#inhabitantsjt

)
.

For each year t, we calculate the college capacities as the number of students per inhabitant
across all j = 1, ..., 326 West German districts. When there is no college in district j in
year t, the capacities are zero, resulting in a heat map of college availability. While this
heat map only varies over time, we weight the exposure to the college expansion by the
kernel-weighted distance (K(distij)) from an individual’s i home district (the district of
high school graduation) to each district j. Using the Gaussian kernel with a bandwidth of
250 km as additional weight ensures that districts in closer proximity to the home district
matter relatively more compared to more remote districts.30 Column 3 of Table 8 shows
that the Lee bounds are, again, close to the baseline specification, with an upper bound of
0.720 and a lower bound of 0.516.

The Supplementary Materials includes the LATEs corresponding to the ATTs in Table 8.
Figure A4 in the Appendix plots the LATE weights for all three instrument specifications
(similar to Figure 7). The range of UD that can and cannot be identified using the college
expansion do not seem to depend on the specification of the instrument.

All in all, the alternative instrument specifications deliver bounds estimates that are very
comparable to the ones presented in the previous section. Again, all estimates suggest
positive and economically meaningful wage increases due to women having a college
education.

30While the home district has a kernel weight of 0.4, this weight reduces to 0.37 for colleges 100 km away
from the home district and 0.24 for colleges 250 km away (for perspective, the north–south distance from
Hamburg to Munich is about 600 km, and the east–west distance from Berlin to Cologne is 480 km). Thus,
for more remote colleges to matter as much as nearer ones, they have to be relatively more important in
terms of their capacities. Kamhöfer et al. (2019) show that the results are stable with respect to changes in the
instrument specification (e.g., using a different kernel bandwidth or using a binary college indicator instead
of capacities).

38



Table 8: ATT bounds for alternative instrument specifications

(1) (2) (3)

Instrument specification

Lasso All ten dist. Index
(baseline) (iv) (v)

Lee bounds
– Upper bound 0.705 0.716 0.720

(0.253) (0.204) (0.212)
– Lower bound 0.348 0.387 0.516

(0.241) (0.178) (0.209)

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in
2011/12. This table only states ATTs; the Supplementary Materials include the LATE
results. Column 1 repeats the baseline results from Table 5 for comparison.

6.3 Earnings as an outcome

One might want to use monthly earnings as an outcome instead of hourly wages. While
wages are usually seen as a productivity indicator, earnings are a compound measure of
productivity and labor supply. Moreover, CISE is not a problem when zero earnings for
women who do not work are included in the data; however, interpretations of the results
do change.

Column 1 in Table 9 reports 2SLS estimates of college education on monthly earnings (in
euros, including zero earnings for non-employed women). We report 2SLS for simplicity.
As before, the ATTs are very similar to the 2SLS effects. Having graduated from college
increases earnings by about 1,700 euros per month for the compliers. Compared to the
mean earnings for those who work of 2,400 euros, this translates into an increase of 71
percent, which is a p.a. effect of 9.3 percent and is thus in line with the previous baseline
results using wages, even though this is the average effect for type 1 and type 2 women.
Compared to the overall mean of 1,526 euros, this amounts to an increase of 13.3 percent
p.a. This effect is larger than our baseline bounds, as it is a compound of three effects: an
increase in hourly wages, an increase in labor force participation, and—as can be seen in
column 4—an increase in working hours, conditional on positive hours.

Column 4 reports the effect of college education on weekly working hours for the employed.
College education increases weekly working time by about 7 hours, about one-quarter
of the mean (see column 5). This increase indicates that there is a college-induced labor
supply effect that goes beyond the binary decision to work and is due to women switching
from part- to full-time work. Given that this effect is estimated conditional on working,
this is a naı̈ve effect, again, in the terminology of Section 4.

39



Table 9: 2SLS results for monthly earnings and weekly working hours

(1) (2) (3) (4) (5)

Monthly earnings Weekly working
(in euros, incl. 0) hours

2SLS Mean Mean 2SLS Mean
coeff. incl. 0 if >0 coeff. if > 0

College education 1, 695.7∗∗ 1, 526 2, 411 7.1∗∗ 28.4
(774.0) (3.0)

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12. Monthly
earnings are measured in euros and are set to zero if someone reports not to work (working hours miss-
ing). Earnings is based on 2,937 observations; 1,885 have a non-zero income. Weekly working hours
are defined in the same way as for the hourly wage calculation; see note to Table 4 (2,316 observations).
District-clustered standard errors are in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

7 Conclusion

Unlike most of the previous literature, this paper explicitly aims to identify causal wage
returns to college education for women. Looking at women’s returns is interesting not least
because women have benefited most from educational expansions in recent decades (see
the tightening or even reversal of gender education gaps). Aside from selection into college
education, an additional identification problem emerges. We call this manifestation of a
well-established sample selection problem college-induced selection into employment (CISE),
where individuals self-select into employment because of their increased education. This
problem may be particularly severe for women and renders any instrument assignment
non-random in wage samples.

To study the problem, we combine information on the college expansion in Germany with
representative data from the German National Educational Panel Study. Our outcome
measures are primarily the hourly wage and an indicator for working for pay. We find
that women with a college education are, on average, more likely to be employed by
more than 17 percentage points. This finding translates into a share of 22 percent of all
women who—due to being college educated—spill into the labor market without having
an appropriate counterfactual in any conventional IV wage regression. This finding also
clearly demonstrates that the CISE margin of labor supply is potentially hazardous for any
naı̈vely estimated treatment effect, also calling into question our naı̈ve IV wage returns of
roughly 10 percent p.a.

To address this problem explicitly, we develop a novel partial identification approach.
We complement the bounds by Lee (2009), which we adjust to non-random assignment
of college education, with restrictions on certain behavioral patterns along the essential
heterogeneity, more concretely, restrictions like linearly downward-sloping marginal treat-
ment effects (MTEs). Doing this helps us learn about the true effect for always employed
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women, those who are employed irrespective of their college education. Applying these
bounds to our data, we find that the female relative wage return per year of college is
6.0–12.5 percent (average treatment effects on the treated). These bounds may appear wide,
but they are considerably tighter than the heterogeneity in causal estimates (not suffering
from CISE) on male labor market returns of college education in the literature. Of course,
the bounds may also be tighter because German women are a more homogeneous sample.
The estimated treatment parameters without taking CISE into account are closer to the
upper bound than to the lower bound, which may suggest that women who work as a
result of having a college education have an above-average earnings potential.

Our results suggest considerable college wage returns for German women. Average effects
are considerable, and we find positive MTEs throughout the entire MTE distribution,
implying beneficial (gross) average returns—also for those who have a lower willingness to
obtain a college education. The results also point at selection into gains where women who
benefit most from education also have the highest willingness to obtain more education,
but the bounds do not rule out that there is no selection into gains.

Note, however, that our sample of women is older than in comparable studies interested
in life cycle income. Unfortunately, due to sample size, we cannot estimate the effects for
younger women only. Bhuller et al. (2017), for instance, find that returns to education (for
men) increase over the lifespan, implying that we should expect our estimates to be larger
than in comparable studies with a younger sample. Of course, comparability is not easy
anyway, as this is the first paper that addresses CISE-based heterogeneity in individual
returns.
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Appendix

A. Figures and tables

Figure A1: College education by cohort in Germany
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(b) Trend by gender

Notes: Own illustration based on representative data from the German Socio-economic Panel Study (SOEP), see Wagner et al. (2007).

Figure A2: Distribution and marginal distribution of the Propensity Score and college
decision
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Notes: Own illustration based on NEPS–Adult Starting Cohort data. The left panel depicts the estimated density of the propen-
sity score separately by college degree. The right panel shows the effective variation in the propensity score that we use for
identifying marginal effects. In this measure, we integrated out all influences from all control variables but the instruments. As
marginal effects may get unstable at the tails, we restrict our analysis to the middle part of the propensity score distribution, by
omitting the 5 percent lowest and 5 percent highest propensity score observations. The respective cutoff levels are .018 (lower
tail) and .670 (upper tail).
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Figure A3: Extrapolation of the selection into wage gains using CISE-free MTE estimates
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This graph depicts marginal treatment
effects on the probability to work for pay (solid line) and on hourly wages (dashed line). The effects on
wages are measured in log points. See notes to Figure 5 and the text for details on the calculation.

Figure A4: LATE weights for different instrument specifications
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Notes: Own illustration using NEPS–Adult Starting Cohort data. The instruments correspond to these
discussed in the robustness checks. Calculation similar to Table 7.
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Tables

Table A1: Control variables and means by college degree

Variable Definition Respondents

with w/o
college college
degree degree

General information (R=respondent, M=mother, F=father)
Age (FE) R’s age in 2011/12 53.2 52.7
Born abroad =1 if R was born abroad 0.01 0.01
No native speaker =1 if mother tongue is not German 0.00 0.00

Pre-college living conditions
Siblings Number of siblings 1.63 1.86
Older siblings Number of older siblings 1.10 1.27
First born =1 if R was the first born in the family 0.34 0.30
Married before college =1 if R got married before the year of the college

decision or in the same year
0.01 0.00

Parent before college =1 if R became a parent before the year of the college
decision or in the same year

0.00 0.00

Age 15: single parent =1 if R was raised by single parent 0.06 0.05
Age 15: patchwork =1 if R was raised in a patchwork family 0.01 0.03
Age 15: orphan =1 if R was an orphan at the age of 15 0.01 0.02
Age 15: M employed =1 if M was employed at the R’s age of 15 0.48 0.51
Age 15: M never unem-
ployed

=1 if M was never unemployed until the R’s age of 15 0.60 0.63

Age 15: F employed =1 if F was employed at the R’s age of 15 0.94 0.90
Age 15: F never unem-
ployed

=1 if F was never unemployed until the R’s age of 15 0.99 0.97

Pre-college education
Final school grade: excel-
lence

=1 if the overall grade of the highest school degree
was excellent

0.04 0.02

Final school grade: good =1 if the overall grade of the highest school degree
was good

0.25 0.19

Final school grade: satisfac-
tory

=1 if the overall grade of the highest school degree
was satisfactory

0.13 0.19

Final school grade: suffi-
cient or worse

=1 if the overall grade of the highest school degree
was sufficient or worse

0.01 0.01

Repeated one grade = if needed to repeat one grade in elementary or sec-
ondary school

0.15 0.18

Repeated two or more
grades

=1 if needed to repeat two or more grades in elemen-
tary or secondary school

0.02 0.01

Parental sociodemographics
M: year of birth (FE) Year of birth of the R’s M 1931.2 1932.1
M: migrational background =1 if M was born abroad 0.06 0.05
M: vocational training =1 if M has vocational training 0.26 0.25
M: further training =1 if M has further job qualification (e.g., Meister de-

gree)
0.05 0.02

M: college education =1 if M has a college degree 0.04 0.01
M: education unknown =1 if M’s highest educational degree is unknown 0.01 0.03
M: occupation unknown =1 if M’s occupation is unknown 0.46 0.46
F: year of birth (FE) Year of birth of the R’s F 1928.2 1929.2
F: migrational background =1 if F was born abroad 0.06 0.05
F: vocational training =1 if F has vocational training 0.22 0.33
F: further training =1 if F has further job qualification (e.g., Meister de-

gree)
0.14 0.10

F: college education =1 if F has a college degree 0.14 0.03

Number of observations (employment sample) 744 2,665

Notes: Information taken from NEPS–Starting Cohort 6, wave 4. Mean values refer to the employment sample. In the case of binary
variables, the mean gives the percentage of 1s. FE = variable values are included as fixed effects in the analysis.
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Table A2: Marginal effects of the main propensity score estimation

(1) (2)
Variable Coefficient Marginal Effect

Distance to 2nd nearest uni −0.0285∗∗∗ −0.0039∗∗∗
(0.0097) (0.0011)

Distance to 7th nearest uni 0.0097 0.0013
(0.0074) (0.0010)

Students 7th nearest uni 0.0121∗∗∗ 0.0016∗∗∗
(0.0023) (0.0003)

Distance to 9th nearest uni −0.0206∗∗ −0.0032∗∗
(0.0098) (0.0013)

Distance to 10th nearest uni −0.023∗∗∗ −0.003∗∗∗
(0.005) (0.001)

Migrational background −0.2080 −0.0281
(0.6330) (0.0856)

No native speaker −0.0281 0.0038
(1.1280) (0.1520)

First born 0.4500∗∗∗ 0.0609∗∗∗
(0.1290) (0.0173)

Siblings −0.2160∗∗∗ −0.0292∗∗∗
(0.0441) (0.0059)

Married before college 0.6390 0.0864
(0.704) (0.0951)

Parent before college 0.0824 0.0111
(0.9450) (0.1280)

Final school grade: excellent 1.645∗∗∗ 0.223∗∗∗
(0.363) (0.0485)

Final school grade: good 1.0440∗∗∗ 0.1410∗∗∗
(0.2310) (0.0309)

Final school grade: satisfactory 0.3200∗ 0.0433∗
(0.2420) (0.0328)

Final school grade: sufficient or worse 0.221 0.0298
(0.5960) (0.0806)

Grade repetition: 1 grade −0.1940 −0.0263∗
(0.1440) (0.0195)

Grade repetition: 2+ grades −0.0256 −0.00346
(0.4290) (0.0580)

Age 15: lived by single parent 0.420 0.0567
(0.2640) (0.0357)

Age 15: lived in patchwork family −1.0970∗∗ −0.1480∗∗
(0.4700) (0.0633)

Age 15: orphan −1.2660∗∗ −0.1710∗∗
(0.6150) (0.0830)

Age 15: mother unemployed −0.0461 −0.00623
(0.169) (0.0235)

Age 15: mother never employed −0.1020 −0.0138
(0.1740) (0.0235)

Age 15: father unemployed 0.3590 0.0485
(0.2520) (0.0241)

Age 15: father never employed 0.1480 0.0200
(0.5670) (0.0767)

M: migrational background 0.421∗ 0.0570
(0.2430) (0.0329)

M: further training 0.8900∗∗∗ 0.1200∗∗∗
(0.298) (0.0402)

M: vocational training 0.2970∗ 0.0402∗∗∗
(0.1610) (0.0217)

M: college education 2.0880∗∗∗ 0.282∗∗∗
(0.4760) (0.0217)

F: migrational background 0.270 0.0366
(0.2390) (0.0323)

F: further training 0.9620∗∗∗ 0.1300∗∗∗
(0.2510) (0.0336)

Continued on next page
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Table A2 – continued
(1) (2)

Variable Coefficient Marginal Effect

F: vocational training −0.1100 −0.0148
(0.2250) (0.0305)

F: college education 1.6240∗∗∗ 0.2200∗∗∗
(0.2950) (0.0392)

Notes: Own calculations based on NEPS-Adult Starting Cohort data for wave 4 in 2011/12.

Table A3: Partial F-statistic for instruments

Instrument

Lasso-chosen Distances to ten College
instruments nearest colleges availability index

Partial first-stage F-statistic 35.8 14.9 265.0

Number of instruments 5 10 1

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4 in 2011/12. This table
gives the partial F-statistics of the instruments at the first stage of a 2SLS estimation. The sample is for
working for pay as dependent variable at the second stage.
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B. Intuition behind Eq. (3) and (4)

What is the intuition behind the stated formulas in the separate estimation approach? We
start by Eq. (3):

E(Y1|UD = p) = E(Y1|UD ≤ p, D = 1) + p× ∂E(Y1|UD ≤ p, D = 1)
∂p

,

Say, we consider an instrument that affects individuals at p = 0.5. Individuals with
unobserved costs of college education below the median have already opted for college at
a lower value of p. We can think of them as the “always-takers,” who take college education
irrespective of a marginal instrument change at p = 0.5. The UD of these always-takers at
0.5 is below 0.5, otherwise they would not have opted for college education according to
the selection question. We observe E(Y|P(Z) = 0.5, D = 1), which is the average wage
for the always-takers at p = 0.5. Now, if we vary the instrument slightly at P(Z) = 0.5,
new individuals, those at the margin of college education at p = 0.5, spill in. They are the
compliers at 0.5. This may cause E(Y|P(Z) = 0.5, D = 1) to change, which is captured by
the marginal derivative ∂E(Y|P(Z)=0.5,D=1)

∂P(Z)
. As we are interested in the level rather than the

difference, we add the marginal derivative to the baseline wage E(Y|P(Z) = 0.5, D = 1).
Note that the derivative in the second term is multiplied by the weight p. As we want to
compare the (theoretically infinitesimal) small of group of individuals at the margin of
taking college education with the bigger group of always-takers, we scale the derivative
by p to adjust to the marginal individuals. Intuitively, the higher p, the less sensitive
E(Y|P(Z) = p, D = 1) is to the inflow of new individuals.

Similarly, we can infer from E(Y|P(Z) = p, D = 0) and the selection equation that only
individuals with larger values of UD than p will not opt for college education. To get
the mean wage of indifferent non-graduates with a rank equal to p, we need to adjust
E(Y|P(Z) = p, D = 0) as follows:

E(Y0|UD = p) = E(Y0|UD > p, D = 0)− (1− p)× ∂E(Y0|UD > p, D = 0)
∂p

.

The difference to (3) is twofold. First, the derivative is deducted, not added. This is because,
as the instrument is varied, complying women opt for college education and leave the
untreated group. Second, the weight is adjusted to the (1− p) share of women whose
rank in UD is higher than p. We estimate E(Y1|UD ≤ p, D = 1) and E(Y0|UD > p, D = 0)
by estimating local polynomial regressions for college and non-college-educated women
separately. We evaluate these non-parametric regressions at up to 100 different values of p
along the support of P(Z.
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C. Allowing for small shares of type 3 individuals

We now repeat the derivation of Eq. (7) to (9) from Section 5.1 without imposing the
assumption that pD=0 we get the following equations. Eq. (7) becomes:

E(Y1 | L1 = 1) = E(Y1 | L1 = 1, L0 = 1)
pA

p1

+E(Y1 | L1 = 1, L0 = 0)
pC

p1

⇔ E(Y1 | L1 = 1, L0 = 1) = E(Y1 | L1 = 1)
p1

pA

−E(Y1 | L1 = 1, L0 = 0)
pC

pA
(7’)

Eq. (8) becomes:

E(Y0 | L0 = 1) = E(Y0 | L1 = 1, L0 = 1)
pA

p0

+E(Y0 | L0 = 1, L1 = 0)
pD

p0

⇔ E(Y0 | L0 = 1, L1 = 1) = E(Y0 | L0 = 1)
p0

pA

−E(Y0 | L0 = 1, L1 = 0)
pD

pA (8’)

Eq. (9) becomes:

E(Y1 −Y0 | L1 = 1, L0 = 1) = E(Y1 | L1 = 1)
p1

pA
− E(Y0 | L0 = 1)

p0

pA
(9’)

−


E(Y1 | L1 = 1, L0 = 0)︸ ︷︷ ︸

Type 2

pC

pA
− E(Y0 | L0 = 1, L1 = 0)︸ ︷︷ ︸

Type 3

pD

pA




Thus, if pD > 0, we end up with two unobserved numbers (one for type 2, one for type 3)
when we want to determine E(Y1 −Y0 | L1 = 1, L0 = 1). To gain a better understanding
of how sensitive our bounds are with respect to the existence of a small percentage of
type 3 individuals, we consider some back-of-the-envelope calculations in what follows.
Note, that these calculations are not carried out for different values of UD as in the MTE
estimations. Instead, to keep things simple and illustrative, we calculate a point “estimate”
of E(Y1 −Y0 | L1 = 1, L0 = 1).

We calibrate Eq. (9’) such that it produces results similar to the ATT results without type 3
women in Table 5. The numbers are reported in Table C1 (note that wages Y are in logs).

Why these numbers? Figure C1 reports estimates of the potential outcomes for wages using
the separate estimation approach, following Carneiro and Lee (2009). The upper curve
reports E(Y1|L1 = 1, UD), the lower curve E(Y0|L0 = 1, UD). The difference between the
two curves yields the NMTE estimate for wages in Figure 5. We use the broad averages of
3.1 and 2.5 for the numbers in rows 1 and 2 in Table C1. The difference broadly corresponds
to the ATT in Table 5.
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Table C1: Parameter settings for the RHS of Eq. (9’)

Parameter Value Source

1 E(Y1|L1 = 1) 3.1 Broad average of Y1 over UD in Figure C1
2 E(Y0|L0 = 1) 2.5 Broad average of Y0 over UD in Figure C1
3 p1 0.8 Table 5
4 p0 0.6 Table 5

5 Lower bound E(Y0|L1 = 0, L0 = 1) 1.6 Min of Y0×0.85 in Figure C1
6 Upper bound E(Y0|L1 = 0, L0 = 1) 2.6 Max of Y0×0.93 in Figure C1
7 Lower bound E(Y1|L1 = 1, L0 = 0) 2.8 Min of Y1×0.90 in Figure C1
8 Upper bound E(Y1|L1 = 1, L0 = 0) 3.8 Max of Y1×1.15 in Figure C1

Notes: Own illustration. Values from Figure C1 and Table 5 are approximations. Parameters 5 to 8 are weighted
to mimic the benchmark results in Table 5. Table 5 does not directly state p1 and p0 but information on p0/p1 and
p1 − p0 allows calculating p1 and p0.

Figure C1: Potential outcomes for wages
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This graph depicts the levels of the poten-
tial outcomes for wages, Y1 and Y0. Estimates according to Carneiro and Lee (2009).

p0 and p1 in rows 3 and 4 Table in C1 are set such that they both lead to a difference of 0.2
(broadly the ATT on working in Table 5) and to a share of type 1 individuals of 0.75 (see
panel B, Table 5).

For the unobserved wage of type 2 and type 3 individuals (rows 5 to 8 Table in C1) we use
two extreme cases to calculate bounds: the minimum and the maximum of the potential
outcomes in Figure C1. We weight the minimum and maximum values such that they
produce bounds for the benchmark case of no type 3 women which are similar to those
in Table 5. As there is no theoretical justification for choosing exactly these numbers and
because we keep we same weights when allowing for small shares of type 3 women, this
calibration does not affect the interpretation of our results. Thus, we get four different
combinations of extreme values for type 2 and type 3 women.

Now, we present three versions: We allow pD to be zero percent (baseline case, no type 3),
one percent, and two percent. Then, the resulting employment rates for the types are:
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– pD = 0.00 → pA = 0.80 and pC = 0.20 (thus, p1 = pA + pC = 0.80 and p0 =
pA + pD = 0.60),

– pD = 0.01→ pA = 0.59 and pC = 0.21, and
– pD = 0.02→ pA = 0.58 and pC = 0.22.

Table C2 calculates E(Y1 −Y0 | L1 = 1, L0 = 1) by inserting all possible combinations of
type 2 and type 3 extreme wages as well as the three employment rates considered for
type 3 in (9’). While the columns state the different employment rates, the rows of the
table vary in the extreme values used.

Table C2: Sensitivity of the bounds with respect to different type 3 employment rates

Wage effect
Extreme values for E(Y1 −Y0 | L1 = 1, L0 = 1) for

Type 2 Type 3 Baseline Version 2 Version 3
E(Y1|L1 = 1, L0 = 0) E(Y0|L1 = 0, L0 = 1) pD = 0.00 pD = 0.01 pD = 0.02

Combination 1 3.8 2.6 0.37 0.35 0.34
Combination 2 3.8 1.6 0.37 0.34 0.30
Combination 3 2.8 2.6 0.70 0.71 0.72
Combination 4 2.8 1.6 0.70 0.69 0.68

Notes: Own calculations. The wage effects are based on Eq. (9’).

The resulting bounds for type 1 wages are

– Baseline, pD = 0.00: 0.37–0.70,
– Version 2, pD = 0.01: 0.34–0.71, and
– Version 3, pD = 0.02: 0.30–0.72.

This is a simplistic model. Its goal is not to produce numbers that can be taken at face
values. Instead its goal is to show that slight deviances of our assumption of no type 3
women have only minor consequences. Of course, this also holds for 3, 4, or 5 percent
shares of type 3 women.
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D. Technical remark on the estimation of the upper bound

The estimation of the censored mean of the upper bound is similar to the respective
estimation for the lower bound. But because of the sake of computational time, we use the
same definitions of Yk and Ik (instead of defining new indicators using ≥ in the indicator
function to acknowledge that the censored mean is larger than U for the upper bound)
and apply the following formula:

EUB(Y1 | L1 = 1, L0 = 1) =

∫ ∞
U y fY1(y)dy
1− FY1(U)

=

∫ ∞
−∞ y fY1(y)dy−

∫ U
−∞ y fY1(y)dy

1− FY1(U)

=
∫ ∞

−∞
y fY1(y)dy

︸ ︷︷ ︸
E(Y1|X,UD)

1
1− FY1(U)︸ ︷︷ ︸

A

−

B︷ ︸︸ ︷∫ U

−∞
y fY1(y)dy

1− FY1(U)︸ ︷︷ ︸
A

Where E(Y1|X, UD) simply is the unadjusted marginal college wage and A and B are
defined and estimated as:

A: (referring only to the term in the denominator)
p1 − p0

p1
, which we estimate using the

marginal potential employment probabilities by college state.

B: E(Yk|X, UD), where Yk = Y · 1(Y ≤ yk)

The question remains how we find the correct threshold yk. We estimate E(Ik|X, UD),
where Ik = Y ≤ yk for many different values of yk and take the one for which E(Ik|X, UD, D =

1) =
p1 − p0

p1
. We then take the respective yk and estimate the corresponding expression

E(Yk|X, UD, D = 1).
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Supplementary Materials A. The German educational ex-

pansion

Descriptive Figures of College Openings

The German educational expansion describes the rapid increase in both the number of
educational institutions offering more than compulsory education and the increase in
capacities in the already existing institutions. The right panel of Figure S1 shows the
trend in the number of universities over time, while the left panel plots the number
of female students. The total number of districts with a university increased from 27
districts in 1961 to 54 in 1990. The number of female students multiplied in the same
time by the factor of nine from about 47,000 to over 400,000.

Figure S1: Trends in universities and female students
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Notes: Own illustration. The number of universities is taken from the Higher Education Compass of the German Rectors’ Confer-
ence (2016). The number of students is taken from the German Statistical Yearbooks 1959–1991 (German Federal Statistical Office,
1991). Differences to Kamhöfer et al. (2019) emerge as they only use the latter reference and derive openings from the number of
students. As this affects only small universities, the results are robust against this alternation.

Figure S2 shows the university openings over time on district level (cities or rural ar-
eas within federal states). The figure indicates that university openings and, thereby,
the prerequisite of females enrolling in higher education exhibit a considerable tempo-
ral and spatial variation. This is the variation we exploit in the empirical analysis to
instrument the individual’s decision to take higher education.

More information on the process of college openings

In the years immediately after WWII, neither political decision makers nor society as
a whole were concerned with higher educational affairs (Bartz, 2007). Weisser (2005)

S2



Figure S2: Spatial variation of colleges across districts and over time
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Notes: Own illustration based on the German Statistical Yearbooks 1961–1991 (German Federal Statistical Office, 1991) and the
Higher Education Compass (German Rectors’ Conference, 2016). The maps show all 326 West German districts (Kreise, spatial
units of 2009) but Berlin in the years 1960 (first year in the sample), 1970, 1980, and 1990 (last year in the sample). Districts usually
cover a bigger city or some administratively connected villages. If a district has at least one college, the district is depicted darker.
Only few districts have more than one college. For those districts the number of students is added up in the calculations.
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argues that colleges have been enganged in reconstructing their facilities (and curric-
ula) as the rest of the country but almost unnoticed by society. This changed at the
beginning of the 1960s when politicians of all parties started to doubt that the exist-
ing colleges were able cope with newly arising challenges of an increasing demand
for higher education. This increased demand was partly driven by catch-up effect for
large parts of the population. The number of students in higher education in Germany
decreased by 50% between 1928 and 1938 and at the beginning of the 1960s and educa-
tional participation in Germany was much lower than in other industrialized countries
(Picht, 1964). For other factors that increased the pressure to political decision makers
to be involved in higher educational policies, consult the paper.

Various policy measures at the national level and in the 11 West German federal states
have been taken in order to address these challenges and finally led to expansion of
higher education. After WWII, the existing colleges adopted their former regulations
from the time before the Third Reich. Because the German Empire consisted of dozens
of microstates each college had basically its own rules (Bartz, 2007). To unify the reg-
ulations each of the federal state and the federal government passed so-called higher
education acts (Hochschulrahmengesetze) that allow them to intervene in university pol-
itics between 1966 and 1967. At the same time, the states and the federal government
also established the German Council of Science and Humanities (Wissenschaftsrat), an
advisory board for higher educational policies (Bartz, 2007). In its landmark report in
1960, the council suggested to increase the number of professors and lectures at the ex-
isting colleges by 40% (Wissenschaftsrat, 1960). In follow-up reports, it also proposed
to increase facilities of the existing colleges and to build new colleges (Wissenschaft-
srat, 1966, 1970). While the suggestions of the council have been rather broad and not
binding for the state’s governments, the states developed their own strategies to cope
with the expected increase in the number of students. Examples are the (not entirely
realized) Dahrendorf-Plan in the state of Baden-Württemberg and the introduction of
Gesamthochschulen (a combination of colleges and universities of applied science) in
North Rhine-Westphalia and some other states, see Bartz (2007). The reform process
went along with a public debate on higher education among academics and in the
media (see, e.g., the newspaper articles in Der Spiegel, 1967, and Die Zeit, 1967). More-
over, the discussion was spurred by the publication of the influential books “Education
as Civil Right” (Bildung als Bürgerrecht, Dahrendorf, 1965) and “The German Educa-
tional Disaster” (Die deutsche Bildungskatastrophe, Picht, 1964).

In order to learn more about the timing and the placement of the college construc-
tion within the states, we searched for records on the decision making process in the
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most-populated state of North Rhine-Westphalia.1 While the Council of Science and
Humanities suggested to link college openings to the expected increase in the pop-
ulation (NRW, 1971a), we find evidence that the state’s authorities also took criteria
into account that were independent of the expected demand. In a report on the found-
ing of five new Gesamthochschule institutions, the Minister of Education and Research
of North Rhine-Westphalia described the aim of the placement decision as “improv-
ing the equality of educational opportunities for all potential students by providing
a sufficient number of open spots” (NRW, 1971b, section 3.1, own translation). The
minister explicitly argued that the opening of colleges in regions that had no college
before would increase the participation in (secondary and higher) education in those
regions – the new colleges would serve as “advertisement for education” (Bildungswer-
bung, NRW, 1971c, section II.2.11). This reasoning is somewhat remarkable given that
decision makers expected a higher demand for college education in cities that already
had a college (NRW, 1971c). Another piece of evidence is provided by a review of the
history of the University of Bochum by Weisser (2005). Originally, decision makers
intended to open the new college in the city of Dortmund; however, the construction
site in Dortmund was found to be not sufficient. Thus, they decided to construct the
college in the close-by city of Bochum. The decision to open a college in Dortmund
was made a couple of years later “in the run-up to the state’s parliament elections”
(Weisser, 2005, own translation). We do not depict the decision marking processes for
all college openings in West-Germany, although we found evidence that the processes
went often similarly.

In our interpretation of the evidence, the decentralized decision making processes be-
tween the federal states and within the states introduced variation in the higher educa-
tional expansion that is likely to be independent from a demand for higher education.

1For North Rhine-Westphalia, records (in German language) of parliament hearings and debates are
available online, see the references for links.
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Supplementary Materials B. Proof of the adjustment equation

Proof: By the law of total probability (special case of the law of iterated expectations):

E
[
Y1 | (L1 = 1)

]
= E

[
Y1 | (L1 = 1), (L0 = 1)

]
Pr
(
(L0 = 1) | (L1 = 1)

)

+E
[
Y1 | (L1 = 1), (L0 = 0)

]
Pr
(
(L0 = 0) | (L1 = 1)

)

= E
[
Y1 | (L1 = 1), (L0 = 1)

] Pr
(
(L0 = 1) ∩ (L1 = 1)

)

Pr(L1 = 1)

+E
[
Y1 | (L1 = 1), (L0 = 0)

] Pr
(
(L0 = 0) ∩ (L1 = 1)

)

Pr(L1 = 1)

= E
[
Y1 | (L1 = 1), (L0 = 1)

] pA

p1 + E
[
Y1 | (L1 = 1), (L0 = 0)

] pC

p1 | If pD = 0

= E
[
Y1 | (L1 = 1), (L0 = 1)

] p0

p1 + E
[
Y1 | (L1 = 1), (L0 = 0)

] p1 − p0

p1
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Supplementary Materials C. College-induced selection into

employment and non-linear marginal wage returns: a sim-

ulation

This part is to show that college-induced selection into employment (CISE) can be re-
sponsible for estimating non-linear marginal treatment effects if CISE is not taken into
account (the naı̈ve MTE; NMTE), although the causal effect for always working indi-
viduals is indeed linear. Always working individuals are those who work irrespective
of their college education.

To provide an example, consider the following non-linear NMTE:

Figure S3: Non-linear NMTE (with CISE)
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We demonstrate in what follows that deviations from this linearity will be explained
completely by CISE.

CISE is present, once the potential employment probabilities differ by college status
(i.e., if p1 6= p0). In this example, the average marginal employment probabilities by the
unobserved distaste for college education (UD) are depicted in Figure S4. In this figure,
the propensity to be employed is not influenced by college education if UD ≥ .55. For
these values of UD, there is consequently no CISE. Yet, for smaller values of UD p1

and p0 deviate from each other. At UD = .01, the probability differential amounts to .8.
That is, if a woman in the lowest quantile of UD takes college education, her probability
of working increases by 80pp because of college education.
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Figure S4: Potential employment status by college education along the unobserved
distaste for college education, UD
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In total, the graph can be summarized as follows:

• Individuals with UD ≥ .55 are always working, independent of whether they
received college education or not (In the wording of the paper, these UD’s only
contain Type-1 individuals).

• For individuals with UD < .55 the propensity to work declines in UD, while they
would continue to be employed at a rate of 100 percent, if they had studied.

• This has consequences for the naı̈vely estimated MTE (NMTE), which statistically
equals the following expression: NMTE = E(Y1 | L1 = 1, UD) − E(Y0 | L0 =

1, UD).

• The fact that the expectations of both potential outcomes do not have the same
conditioning set emphasizes that the NMTE is not a ceteris paribus causal effect.

In this case the NMTE is a weighted average of the causal MTE for type-1 individuals
and the difference between the potential wage without college education for type-2 in-
dividuals and the potential wage without college for type-1 individuals (conditioning
on UD is suppressed):

NMTE = ωE(Y1 −Y0 | type 1) + (1−ω)
[

E(Y1 | type 2)− E(Y0 | L0 = 1)
]

,
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where ω is the share of type-1 individuals. This weight is determined by the college
effect on the probability to work (ω = p0/p1).

In our example, we know:

• The MTE of type-1 individuals: E(Y1 −Y0 | type 1, UD) = 1.1− .9×UD

• The potential college wage for type-2 individuals: E(Y1 | type 2, UD) = 1

• And the wage without college for type-1 individuals: E(Y0 | type 1, UD) = 0

These expressions are depicted in the Figure S5. Whereas the MTE for type-1 individ-
uals is falling linearly, the two potential outcomes are constant over the range of UD’s.

Figure S5: Components of the NMTE
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Starting at a UD = .55, the frequency of type-2 individuals increases, the lower UD

is. This can be seen most clearly if we plot the shares against UD, see Figure S6. At a
UD = 0, there are 80 percent of type-2 individuals and only 20 percent of our target
population, for which we want to identify causal effects. This appearance of type-2
individuals at UD < .55 may have severe consequences on the naı̈vely estimated MTE
(NMTE). It may confound the level of the estimated MTE at a given value of UD and,
therefore, the curvature (from which one can detect a selection-into-gains behavior)
may be biased as well.
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Figure S6: The CISE weights – the shares of type-1 and type-2 individuals
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The can be seen in Figure S7, where the type-specific shares (depicted in Figure S6) are
muted in the background. On top of this, the components of the NMTE are plotted (see
Figure S5). Now it becomes clear that the NMTE (which first appeared in Figure S3) is

Figure S7: The college wage premium and the CISE bias
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a weighted average of these components. The larger the weight for type-2 individuals
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and the larger the difference between the type-1 MTE and the difference between the
two remaining potential wages in this graph, the stronger the NMTE deviates from the
type-1 MTE. In this graph, all the deviations from a linear functional form of the MTE
comes from CISE. This can lead to a severe missinterpretation: not only would we fail
to detect selection into gains, for which the MTE is an important detection device. Also,
all conventional treatment parameters are heavily underestimated in this example.
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Supplementary Materials D. Additional results

Figure S8: Lee bounds in combination with a linear MTE when selection into losses is
allowed
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Notes: Own illustration using NEPS–Adult Starting Cohort data. This graph depicts the naı̈ve marginal
treatment effect (NMTE) for wages and corresponding bounds using linearity restrictions on the hypoth-
esized shape of the MTE for always employed. These bounds are shown by the grey lines that comprise
the marginal wage effect. All linear MTEs that fit within these lines (highlighted by the gray-shaded
area) are considered possible under this strategy. Unlike to Figure 8 in the paper, we allow for selection
into losses here. This increases the upper bound of the linear MTE-combined Lee bounds.

Table S1: LATE bounds for alternative instrument specifications

(1) (2) (3)

Instrument specification

Lasso All ten dist. Index
(baseline) (iv) (v)

Lee bounds
– Upper bound 0.690 0.696 0.700

(0.231) (0.182) (0.199)
– Lower bound 0.337 0.342 0.426

(0.220) (0.164) (0.203)

Notes: Own calculations based on NEPS–Adult Starting Cohort data for wave 4
in 2011/12. This table only states LATEs. See Table 8 in the paper for the corre-
sponding ATTs. Column 1 repeats the baseline results from Table 5 in the paper
for comparison.
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