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1 Introduction

One lesser-known characteristic of the US labor market is that the wage returns

to different college majors are highly heterogeneous across space. For example,

among men in the 2010-2015 American Community Survey, the return to STEM

and business majors each range from 23% to 43%, relative to education majors.1

While much work has examined sorting of majors into occupations, occupational

sorting does little to narrow this gap: the return to a STEM major in a STEM

occupation relative to a STEM major in a non-STEM occupation ranges from 10%

in Texas to 26% in Oregon, with a similar range for other majors.2 This broad

range in returns to majors and occupations suggests that post-college migration,

and in particular its interaction with post-college occupational choice, might be a

significant driver of the observed spatial variation.

The objectives of this paper are (8) to uncover the extent to which selection into

residence location and occupation biases the observed wage returns to college ma-

jors (relative to education majors); and (88) to assess the extent to which migration

flows respond to cross-location differences in wage returns, occupational availabil-

ity, and local amenities. This is the first paper to examine the spatial dimension

of college major and occupation decisions, and the first to examine how the inter-

action of the two influences migration flows.3 In doing so, I find that correcting

for selection tends to reduce the measured returns by up to 30%. I also find that

migration of college majors is influenced twice as much by occupational density as

it is by wage returns.

1Returns calculated using a Mincerian regression of log earnings on a cubic in potential experi-
ence, demographic indicators, and MSA fixed effects.

2For overviewsof the literature on collegemajor choice and consequences, includingpost-college
occupational choice, see Altonji, Blom, and Meghir (2012) and Altonji, Arcidiacono, and Maurel
(2016). Lemieux (2014), Kinsler and Pavan (2015), and Altonji, Kahn, and Speer (2016) examine the
effect of occupational choice on major earnings premiums. Each of these studies abstracts from
location.

3Winters (2017) is the only paper in the literature analyzing the migration behavior of college
majors. He examines the migration response of different college majors to birth-state earnings
shocks to workers in the same major.
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It is important to know how college graduates make post-college migration

decisions. The answer is of interest not only to students who select their major, but

also to local governmentswho seek to attract and retain a skilledworkforce. Certain

majors may be more likely to move out of the state from which they graduated,

possibly in search of employment in a related occupation. If this is the case, then

a state government seeking to retain its college graduates could respond in two

ways: (8) increasing the tuition rate of the majors that are more likely to leave; or

(88) increasing the density of occupations related to the majors that are more likely

to leave. Knowing how sensitive graduates of specific majors are to occupation

relatedness can inform the effectiveness of such policies.

Using data onmale college graduates from the 2010-2015AmericanCommunity

Survey, I document substantial differences in earnings, occupational choice, and

locational choice across college majors. These differences provide support for the

existence of different location-occupation complementarities for different majors.

As an example, I show that STEM and business majors earn the highest returns to

and are much more likely to work in occupations related to their major. However,

business majors are much less likely to live outside their state of birth. These

results are consistent with a model where college graduates have preferences for

working in an occupation related to their field of study, but where occupational

concentration varies across space.

Additional evidence on the importance of location and occupation for college

majors can be seen by examining flows between specific locations. For example,

educationmajorswho originate inNewYork are highly unlikely towork as teachers

in NewYork unless they hold amaster’s degree. As a result, there is a large outflow

of bachelor’s-level education majors from New York to areas where working as a

bachelor’s-level teacher is more common, but where the wage returns to doing

so are much lower. Migration flows such as these show that non-wage factors,

specifically related occupation availability, are potentially strong determinants of
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the observed returns to college majors.

One would expect selection to result in naïve estimates being upward biased

if certain majors are more prone to migrate or choose a particular occupation

in response to favorable wage shocks. On the other hand, naïve estimates may

be downward biased if certain majors have strong non-wage preferences for a

particular location or occupation. Estimating the direction and magnitude of this

bias is one of the primary empirical questions of this paper.

To account for the various factors described above, I estimate an extended

Roy (1951) model that allows for nonpecuniary tastes in both the location and

occupationdimensions.4 Themodel divides occupations for eachmajor into related

and unrelated, and divides the United States into 15 groups of states. This paper

bridges previous work that has examined the role of selective migration on the

wage returns to a college degree (Dahl, 2002; Bayer, Khan, and Timmins, 2011) and

the role of selective occupational choice on the returns to college major (Lemieux,

2014; Kinsler and Pavan, 2015).

Estimation of an extended Roy model is difficult in a model with nonpecuniary

preferences and many choice alternatives. To estimate the model, I implement

methods pioneered by Lee (1983) and Dahl (2002) which show that a control func-

tion approach, where the control function includes a polynomial of a small number

of observed choice probabilities, is able to account for a variety of patterns in se-

lection.5 This polynomial serves as a multidimensional analog of the inverse Mill’s

ratio in the classicHeckman (1979) correctionmodel. As a result, the researcher can

obtain unbiased and consistent estimates of the selection-corrected returns using

OLS. With the selection-corrected returns in hand, I then examine the responsive-

ness of migration flows to spatial differences in wage returns, occupational density,

and non-wage amenities.

4For surveys on the Roy model and its empirical content, see Heckman and Vytlacil (2007a,b)
and French and Taber (2011).

5The assumption that a small number of probabilities can form a sufficient statistic for selection
is referred to by Dahl as the index sufficiency assumption.
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I implement the Lee andDahl approachwith amachine learningmethod known

as the conditional inference classification tree. While existingmethodshaveutilized

nonparametric bin estimation to derive selection probabilities, tree classification of

this type has the advantage of using the data to determine which covariates should

be included, and where bin cut points should be made. It also ensures that the

selection probabilities are not overfit, meaning that the out-of-sample prediction

remains good. The algorithm is especially useful in settings where it would be

infeasible to include all covariates. I assess the performance of the classification

tree relative to classical econometric estimators and show that it performs better

both in simulations and in practice.

Using these empirical methods, I find that OLS estimates of the returns to

college majors (relative to education majors) are upward biased. Correcting for

selective migration and occupational choice tends to lower the measured returns,

by up to 30% in some locations and consistent with other studies (Dahl, 2002; Bayer,

Khan, and Timmins, 2011). The bias is the strongest among business and STEM

majors who hold advanced degrees. Controlling for selection does not narrow the

spatial gaps in measured returns by very much. These findings imply that spatial

dispersion in the returns to major is likely primarily due to innate productivity

differences or compensating differentials.

With the corrected returns to major in hand, I analyze the determinants of

migration flows for different majors. I find that, in addition to differences in the

wage returns to major, migration flows for all majors are responsive both to the

availability of occupations related to the major, and to non-wage amenities such as

distance, weather, and local government characteristics. Surprisingly, the elasticity

of migration with respect to occupational density is more than twice the elasticity

with respect to earnings. This suggests that major choice may be influenced more

by occupational preferences than earnings (Wiswall and Zafar, 2018).

The findings of this paper have important implications for local governments
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seeking to attract or retain skilled workers. Specifically, the results highlight the

importance of employment in related occupations as a means of attracting college-

educatedworkers. For example, state governmentswho enact tuition subsidies that

are geared towards certain majors may not be able to retain those students if there

is not a sufficient density of occupations related to those majors in that location.6

Moreover, as discussed in Moretti (2012) and Kline and Moretti (2014), the success

of place-based policies is not guaranteed and often comes at significant cost. One

potential solution could be to offer different tuition by major that is indexed to the

local concentration of related occupations.

The remainder of the paper is organized as follows: Section 2 details the Roy

model which serves as the empirical basis of understanding selection. Section 3

discusses how to reduce the dimensionality of the choice set to make estimation

feasible. Section 4 describes the data construction and key variables used in the

estimation, and Section 5 discusses the estimation of the model, including the non-

parametric machine learning decision tree algorithm. Section 6 discusses the main

empirical findings, and Section 7 concludes.

2 A Roy Model of Migration, Occupation, and Earn-

ings

In this section, I introduce an extended Roy (1951) model of college major, oc-

cupational choice, and locational choice, using the framework developed in Dahl

(2002).7 It extends Roy’s original model in two ways: (8) both pecuniary and non-

pecuniary factors influence an individual’s decision; and (88) there are more than

two alternatives in the choice set.8

6For further discussion on the implementation of major-specific tuition rates, see Stange (2015).
7The Roy model has also been used in the migration literature by Borjas (1987) and Falaris

(1987), among others.
8See Heckman and Taber (2008) for an overview of the original Roy (1951) model and its various

extensions. Heckman and Honoré (1990) discusse identification of the Roy model, including the
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The focus of this paper is on how selective migration and occupational choice

in the United States affect the measured returns to the human capital investment

of college major. The objective is to examine how sensitive earnings in a particular

major are to selectivity in post-college location and occupational choice. Existing

models in the literature on college major and occupation have treated location as

fixed (Lemieux, 2014; Kinsler and Pavan, 2015; Ransom and Phipps, 2017). At the

same time, there is strong evidence that location is an increasingly important de-

terminant of labor market outcomes, particularly for the college educated (Moretti,

2012; Diamond, 2016). This paper serves to fill the gap between these two litera-

tures.

An extended Roy model serves as an appropriate lens through which to view

the joint location and occupation decisions of college graduates because it allows

for the inclusion of nonpecuniary components. Factors such as amenities and

distance have been shown to be important determinants of migration decisions

(Kennan and Walker, 2011; Ransom, 2020; Zabek, 2016; Koşar, Ransom, and van

der Klaauw, 2020), while nonpecuniary considerations have also been shown to

be important to occupational choice among college graduates (Arcidiacono et al.,

Forthcoming).

2.1 Model

This section formalizes each component of the Roy model and how each of the

components interact with each other. The primary components of the model are

earnings (the outcome equation) and preferences (the selection equation). In con-

trast with most of the Roy model literature, this paper emphasizes the empirical

results of the outcome equation as opposed to the selection equation. As such, it

assumptions on the distribution of earnings that are required to generate empirical content of the
Roy model. D’Haultfœuille and Maurel (2013) perform inference on an extended Roy model of
schooling decisions in France. Eisenhauer, Heckman, and Vytlacil (2015) discuss how to use the
generalized Roy model to separately identify costs and benefits of treatment.
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is appropriate to view the model as a reduced-form approximation of a Roy model

because I make no attempt to structurally model the selection equation.

The framework of the model is as follows. A geographical area (e.g. the United

States) is divided into ! mutually exclusive locations (e.g. groups of states). The

model has two periods. In the first period, individuals are born and make human

capital investment decisions. In the second period, individuals choose where to

live and in which occupation to work, and receive utility from both earnings and

nonpecuniary aspects of the chosen location and occupation.9

2.1.1 Earnings

Thepotential log annual earnings for individual 8 residing in location ℓ andworking

in occupation : are given by the following equation:

F8ℓ : = G8�1ℓ : + B8�2ℓ : + �8ℓ : , ℓ = 1, . . . , ! , : = 1, . . . ,  (2.1)

where G8 is a vector of individual characteristics and B8 is an (-dimensional vector

of dummy variables indicating 8’s college major and advanced degree attainment.

The parameter of interest in (2.1) is �2ℓ : , whichmeasures the link between earnings,

college major, and potential location and occupational choices. However, because

�8ℓ : is only observed in the chosen (ℓ , :) combination, and because the chosen (ℓ , :)
is the result of a non-random selection process, OLS estimates of �1ℓ : and �2ℓ : will

be biased.

9The choice to model location and occupation as once-and-for-all decisions is primarily due to
data limitations: longitudinal surveys containing data on college major, location, and occupation
do not have sufficient sample size to allow for meaningful estimation of location-specific outcomes.
Work by Kennan (2020) examines the interaction between migration and college completion in a
dynamic setting using the National Longitudinal Survey of Youth 1979 (NLSY79), but is unable to
capture heterogeneity across majors because of data limitations.
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2.1.2 Nonpecuniary utility

The nonpecuniary utility individual 8 receives from residing in location ℓ and

working in occupation : given birth in location 9 is given by:

D8 9ℓ : = I8
 9ℓ : + �8 9ℓ : , ℓ = 1, . . . , ! , : = 1, . . . ,  (2.2)

where I8 is a vector of individual characteristics. D8 9ℓ : encompasses all nonpecu-

niary utility components that could determine the utility of residing in location ℓ

and working in occupation : given origin 9. These include location characteristics

such as climate, crime, commuting time, distance from 9, being away from home,

geographical and cultural amenities, and many others. Also included are occu-

pational characteristics such as working conditions, relevance to previous human

capital investments, coincidencewith personal preferences, and flexibility of hours,

among many others.

I treat the parameters of this equation as nuisance parameters, sincemyobjective

is to uncover selectivity in earnings and not to measure the locational and occupa-

tional preferences of individuals. However, in Section 6 I measure the relationship

between migration and locational and occupational characteristics.

2.1.3 Overall preferences

Individuals have preferences for both earnings and nonpecuniary factors:

+8 9ℓ : = F8ℓ : + D8 9ℓ : , ℓ = 1, . . . , ! , : = 1, . . . ,  (2.3)

The overall preferences can be rewritten in terms of population means and
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individual-specific errors, as follows:

+8 9ℓ : = E [F8ℓ : | G8 , B8] + E
[
D8 9ℓ : | I8

]︸                               ︷︷                               ︸
E 9ℓ :

+�8ℓ : + �8 9ℓ :︸      ︷︷      ︸
48 9ℓ :

= E 9ℓ : + 48 9ℓ :

where �8ℓ : represents measurement error in earnings, and �8 9ℓ : represents prefer-

ence shocks for choosing to live in ℓ and work in occupation : given birth location

9. E 9ℓ : is referred to as either the subutility function (in the selection literature) or

the conditional value function (in the dynamic discrete choice literature).10

2.1.4 Utility maximization

Individuals maximize utility such that

38 9ℓ : = 1
[
E 9ℓ : + 48 9ℓ : ≥ E 9<= + 48 9<= ∀ (<, =) ≠ (ℓ , :)

]
(2.4)

where 1[�] is an indicator variable that takes a value of 1 when condition � is true

and 0 otherwise. (2.4) emphasizes that utility depends not only on the location of

residence, but also on the deterministic and stochastic elements of utility in each

location, including the location of birth. Furthermore, earnings are observed only

in the location that is selected.

10The model assumes that individuals have no uncertainty regarding their earnings or tastes in
other locations. While it is possible to allow for imperfect information, doing so would require, e.g.
assuming that the individual’s information set is shared by the econometrician. On the other hand,
the approach taken here to model migration in response to individual earnings shocks departs
from much of the migration literature, which assumes that migration decisions are influenced by
the deterministic portion of earnings (Kennan andWalker, 2011; Bishop, 2012; Ransom, 2020). This
assumption is typically made for tractability of dynamic models.
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2.1.5 Selection rule

The selection rule is given by

F8ℓ : observed ⇐⇒ 38 9ℓ : = 1 (2.5)

Specifically, earnings are only observed if all ! selection equations in (2.4) are

simultaneously satisfied. Thus, individuals observed to reside in ℓ are not a random

sample of the population; hence

E
[
�8ℓ : | F8ℓ : observed

]
= E

[
�8ℓ : | 38 9ℓ : = 1, G8 , I8

]
(2.6)

= E
[
�8ℓ : | 48 9<= − 48 9ℓ : ≤ E 9ℓ : − E 9<= , ∀ (<, =) ≠ (ℓ , :)

]
≠ 0

where E
[
�8ℓ : | ·

]
is the selectivity bias for 8.

Equations (2.1) through (2.6) comprise an extended Roy model of earnings,

migration, and occupational choice.

Unfortunately, this extended Roy model is difficult to estimate without making

additional assumptions about how the subutility functions affect the selection term

(i.e. the conditional expectation in (2.6)). There are two reasons for this: (8) the
number of locations ! needs to be sufficiently large in migration models in order

to accurately reflect the actual choice set faced by individuals, thus effecting the

curse of dimensionality; and (88) individuals derive utility from both earnings and

nonpecuniary aspects of the location, meaning that the researcher is required to

account for individual preferences. The problemwith the latter reason is that there

are a large number of variables that are important factors in the nonpecuniary

dimension, but which are unobserved or poorly measured.11

In the next section, I explain how I avoid these issues by implementing exist-

11See Koşar, Ransom, and van der Klaauw (2020) for recent research on using stated preference
data to resolve these issues surrounding locational choice.
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ing estimation methods (Lee, 1983; Dahl, 2002) which are designed to circumvent

parametric estimation of the subutility functions, and which work well on choice

sets that are otherwise prohibitively large.

3 Reducing the Dimensionality of the Problem

Estimating the problem described in Section 2 is infeasible without making addi-

tional assumptions. The difficulty arises out of the curse of dimensionality due

to the large set of locations and occupations in which a person can choose to live

and work. In this section, I provide intuition and a brief formal derivation on how

to feasibly estimate the aforementioned extended Roy model. I also informally

discuss how the model is identified. The key point is that I follow the strategy

developed by Lee (1983) and refined by Dahl (2002) to express the selection in the

earnings equation as a function of a small number of observed choice probabilities.

3.1 Overview

The intuition of this approach is as follows: examining equations (2.4) and (2.5)

reveals that the probability of observing an individual’s earnings in location ℓ and

occupation : is related to the probability that +9ℓ : is the maximum of all subutility

functions. Thus, the joint distribution between the error term in the earnings

equation (�8ℓ :) and the differenced subutility error terms (4 911−4 9<= , . . . , 4 9! −4 9<=)
can be reduced from ! ×  dimensions to two dimensions: the first dimension is

the earnings error and the second is the maximum order statistic of the differenced

subutility functions. The key assumption is that this bivariate distribution does not

depend on the subutility functions themselves, except through a small number of

choice probabilities.12 This allows the researcher to express the selection correction

12Dahl (2002) refers to this assumption as the index sufficiency assumption, which I discuss below
in more detail.
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term in the earnings equation (analogous to the inverse Mills ratio term in the

canonical Heckman selection model) as a function of a small number of observed

choice probabilities. Without this assumption, the researcher would be required

to estimate an (! − 1)-dimensional integral. This becomes quickly infeasible as !

grows large, as is the case in the current setting.

3.2 Technical details

Toaid the exposition, I nowbriefly formalize the above intuition. Readers interested

in a full derivation should consult Dahl (2002) and Lee (1983).

First consider a reformulation of (2.4) and (2.5):

F8ℓ : observed ⇐⇒ E 9ℓ : + 48 9ℓ : ≥ E 9<= + 48 9<= ∀ (<, =) ≠ (ℓ , :)

⇐⇒
(
E 911 − E 9ℓ : + 48 911 − 48 9ℓ : , . . . , E 9! − E 9ℓ : + 48 9! − 48 9ℓ :

)′ ≤ 0

(3.1)

⇐⇒ max
<,=

(
E 9<= − E 9ℓ : + 48 9<= − 48 9ℓ :

)
≤ 0

Now consider the joint density of the earnings error term and the maximum of

the differenced subutility functions, evaluated at the error realizations. We have

the following one-to-one mapping between the ! -dimensional density 59ℓ : and

the two-dimensional density 69ℓ : . Thismapping ismade possible by implementing

maximum order statistics (see Lee, 1983):

59ℓ :
(
�8ℓ : , 48 911 − 48 9ℓ : , . . . , 48 9! − 48 9ℓ :

)
(3.2)

= 69ℓ :

(
�8ℓ : ,max

<,=

(
E 9<= − E 9ℓ : + 48 9<= − 48 9ℓ :

)
| E 911 − E 9ℓ : , . . . , E 9! − E 9ℓ :

)
where the expression for 69ℓ : in (3.2) is written as being conditional on the differ-

ences in the subutility functions in order to emphasize this dependence.

In order to reduce the dimensionality of 69ℓ : (·), Dahl proposes an index suffi-
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ciency assumption as follows:

69ℓ :

(
�8ℓ : ,max

<,=

(
E 9<= − E 9ℓ : + 48 9<= − 48 9ℓ :

)
| E 911 − E 9ℓ : , . . . , E 9! − E 9ℓ :

)
(3.3)

= 69ℓ :

(
�8ℓ : ,max

<,=

(
E 9<= − E 9ℓ : + 48 9<= − 48 9ℓ :

)
| ?8 9ℓ : , ?8 9<=

)
where ?8 9ℓ : and ?8 9<= are two probabilities that are readily observed in the data. I

discuss later how to choose these probabilities. The implicit assumption in (3.3) is

that the probabilities ?8 9ℓ : and ?8 9<= contain all of the information about how the

index of subutility functions influences the joint distribution of the earnings error

term and the maximum of the subutility errors.

Applying the assumption in (3.3) to the earnings equation gives the following

corrected earnings equations that account for selective migration and occupational

choice, and that are feasibly estimated:

F8ℓ : = G8�1ℓ : + B8�2ℓ : +
!∑
9=1

38 9ℓ :� 9ℓ :
(
?8 9ℓ : , ?8 9<=

)
+ $8ℓ : , (3.4)

The implicationof the assumption in (3.3) is thatE
[
$8ℓ : | G8 , B8 , ?8 9ℓ : , ?8 9<= , 38 9ℓ : = 1

]
=

0, meaning that the selection problem has been resolved. Note also that the index

sufficiency assumption reduces the dimensionality of the selection correction func-

tions from an ! number of ! -dimensional control functions to an ! number of

bivariate control functions.

Because index sufficiency is an assumption, it is important to recognize the re-

strictions that it imposes. Index sufficiency holds, for example, if earnings errors

are composed of an individual fixed effect that is invariant to the location of resi-

dence. On the other hand, this assumption is less likely to hold in a setting where,

for example, an individual’s fixed effect on earnings could vary with location. I

discuss in Appendix A the results of Monte Carlo simulations that show that this

assumption holds for a variety of scenarios.
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In Section 5, I discuss details of the estimation of equation (3.4), including how to

estimate the probabilities of interest, and how to estimate the unknown correction

functions � 9ℓ : , as well as additional assumptions made to reduce the number of

control functions entering (3.4).

3.3 Identification

I now informally discuss how the model is identified. As discussed in other

implementations of the Roy model (Dahl, 2002; D’Haultfœuille and Maurel, 2013;

Bayer, Khan, and Timmins, 2011), separately identifying nonpecuniary preferences

from earnings in most cases requires an exclusion restriction—a covariate which

appears in the choice probabilities but does not affect wages.

Crucial to identification in this model is the existence of two such exclusion

restrictions: one for locational choice and one for occupational choice. I use two

related exclusion restrictions inspired by Kinsler and Pavan (2015). To separately

identify preferences for location from earnings, I use the fraction of demograph-

ically similar (including college major and advanced degree status) individuals

from the same birth state who stayed in their birth state, net of the national rate

of staying. To separately identify preferences for occupation from earnings, I com-

pute a similar number, but instead calculate the share who choose to work in an

occupation related to their major.

The ideal exclusion restriction for location or occupational choice would be an

adequate measure of search frictions. The rationale for this is as follows: individ-

uals have preferences for a certain location or occupation, but are unable to secure

employment in the preferred alternative because there are not enough vacancies.

While not a perfect measure of search frictions, the proposed exclusion restriction

recovers a reduced-form approximation of such.

Another advantage of using the above exclusion restrictions is that it allows

me to include birth location directly in the wage equation. Previous literature has
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shown that certain locations do a better job of educating their residents, which im-

plies that stayers in those locationsmay receivehigherwages thanmovers (Cardand

Krueger, 1992; Heckman, Layne-Farrar, and Todd, 1996;McHenry, 2011). Allowing

stayers to earn different wages than movers improves on the previous approaches

of Dahl (2002) and Bayer, Khan, and Timmins (2011) which require birth location to

be excluded from wages. Finally, research by Zabek (2016) finds that there is sub-

stantial heterogeneity across states in the fraction of peoplewho reside in their state

of birth. This result gives further credence to the exclusion restriction explained

above.13

In addition to the peer share exclusion restrictions, I also allow distance moved

and other demographic characteristics to influence the nonpecuniary portion of

utility. Specifically, these covariates are: an indicator for birth location in the same

Census region as the location of residence, and separate indicators for each of the

following: co-residence with a family member, spouse’s work status (if applicable),

spouse born in residence location, and presence of children aged 0-4 or 5-18. In

results not shown, I find that these demographic characteristics have much less

predictive power in the first stage than the two primary exclusion restrictions.14

The primary threat to the validity of these exclusion restrictions is if the location

or occupation decision of the demographic cell is driven by advantageous draws

from the earnings distribution in the home location or in a certain occupation. This

13The exclusion restriction rests on the assumption that certain states retain their natives at higher
frequencies than others for purely idiosyncratic reasons. For example, Texas is the “stickiest” state,
retaining 77% of its natives. On the other hand, Wyoming is the least sticky, retaining just 37% of
its natives. Stickiness is positively correlated with state population, but not very strongly (� = 0.45,
rank correlation = 0.72), indicating that this is not simply a mechanical relationship. Finally,
stickiness is strongly correlated across majors within state, indicating that preferences for staying
in one’s state of birth have more to do with nonpecuniary factors.

14For example, I estimate separate linear probabilitymodels formoving out of one’s birth location
and for working in a related occupation. The first-stage �-statistic for leaving the birth location is
51,387 ('2 = .081) when including only the migration peer share variable. When additionally
including all the other excluded variables, the �-statistic is 43,304 for the peer share variable, and
19,395 for all other excluded variables. For related occupation, the respective results are �-statistic
is 28,349 ('2 = .046) for the occupation peer share variable alone, and 28,318 for the peer share
variable when all excluded variables are in the regression, with an �-statistic of 332 for the other
excluded variables.
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is unlikely to be a strong driver of decisions because there is a strong correlation

across majors within a given state in the propensity to stay in that state. Thus,

propensity to stay in the state of birth appears to be driven more by nonpecuniary

factors.

4 Data and Descriptive Analysis

I nowdiscuss the data used in the estimation procedure. I also present a descriptive

analysis of the data trends which, when compared with the model estimates, will

be used to quantify the amount of selection in migration and occupation decisions.

4.1 Data

I use data from the American Community Survey (ACS) as compiled by Ruggles

et al. (2015) over the years 2010-2015. The ACS is an annual stratified random

sample of 1% of US households produced by the US Census Bureau. Sampled

households respond to the survey either on paper or via the internet, and non-

responding households receive a follow-up telephone call or visit by a Census

employee.

The ACS collects detailed data for each adult household member on income,

employment, education, demographic characteristics, and health. It also collects

information about the household, such as household and family structure and

housing unit characteristics. In this analysis, I focus on the following variables: lo-

cation of birth, location of residence, demographic characteristics (e.g. age, gender,

race, ethnicity, household composition), college major, advanced degree attain-

ment, occupation, and earnings.

The analysis sample consists of all native-bornmales between the ages of 22 and

54 with at least a bachelor’s degree, and who report earnings within a reasonable

range, who report their college major, who are not in school, do not live in group
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quarters, and who do not have imputed values for any of the variables of interest.

This corresponds to a 6% sample of the US population for this subgroup. The

estimation sample of the data comprises 583,913 individuals. Details on the number

of observations deleted with each criterion are listed in Table B1.

4.1.1 Definitions of majors, occupations, and locations

I nowdiscuss aggregation ofmajors, occupations, and locations in order to preserve

tractability in estimation.

Majors I aggregate majors into five categories, crossed with advanced degree

status so that B8 in equation (2.1) is a 10-dimensional vector. The ACS records

hundreds of distinct collegemajor fields following theClassificationof Instructional

Programs (CIP) established by the National Center for Education Statistics (NCES).

In order to focus the analysis and to maintain statistical power, I aggregate majors

into groups with similar pre- and post-graduation outcome characteristics. The set

of aggregated majors is: education, social sciences, business, STEM, and all others.

A detailed mapping of the 51 Department of Education major fields to these five

aggregated fields is provided in Table B2. Notably, the business field includes

economics majors and the STEM field includes pre-med majors.

Occupations I define occupation as having two values: related or unrelated (i.e.

 = 2). An occupation is related to a major if it is reported to have a 2% or larger

share of all 3-digit occupation codes within a detailed definition of major (i.e. the

51 Department of Education codes).15 The set of occupations that are related to

an aggregated major category is then the union of the set of related occupations

for each of the detailed majors corresponding to the aggregate. I allow the set of

15This is similar to the “Top 5” occupation distinction made by Altonji, Kahn, and Speer (2016),
but is more flexible in defining relatedness by taking into account the distribution of occupations
within a given major.
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related occupations to differ based on advanced degree status.

The cutoff of 2% was chosen so as to ensure that highly specialized majors

(i.e. majors with high concentration in few occupations) would have their most

concentrated occupations defined as related. To provide further intuition for this

approach, I present in Figure 1 the frequency distribution of occupations (sorted

from most to least frequent) for non-advanced-degree holders in four majors: pri-

mary education, history, economics, and computer programming. For each panel

of the figure, I include a vertical line along with the frequency distribution, which

serves to mark the cutoff between related and unrelated occupations. Figure 1

shows that the primary education and computer programming majors are highly

specialized, with 30%-40% of majors working in the most common occupation

(elementary school teachers and software developers, respectively). Furthermore,

computer programming majors are observed in many fewer occupations than the

other majors included in the figure, by a factor of four. On the other hand, eco-

nomics and history majors do not have clear-cut occupations corresponding to

them, as the most frequent occupation contains only 10% of majors (miscellaneous

managers for both). Figure 2 reports the same information but for advanced degree

holders only. The results are similar. The exact occupation titles that are related

to each of these majors are listed in Tables B3 and B4, respectively, by advanced

degree status.

While the 2% cutoff for defining related occupations may seem arbitrary, the

rule results in a construction of majors and occupations that aligns with common

sense and other papers in the literature.16 A list of related occupations for each of

16As an example, Kinsler and Pavan (2015) use a self-reported measure of occupational related-
ness andfind that there is considerable overlap acrossmajors amongworkerswho report being in the
same related occupation. The difference between my definition of relatedness and the self-reported
definition in Kinsler and Pavan is that my approach restricts all individuals in an occupation-major
category to be either related or unrelated. In contrast, the self-reported definition of relatedness
allows for both unrelated and related jobs to be observed in every occupation-major category.
Abel and Deitz (2015) pursue a different approach by mapping college majors to occupations

using the Department of Labor’s O*NET data and crosswalks provided by the Department of
Education’s National Center for Education Statistics (NCES). They distinguish between occupations
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the five aggregate college major categories is included in Table B5 for bachelor’s

degree holders and Table B6 for advanced degree holders. Importantly, the defi-

nition of relatedness explained here does not preclude the same occupation from

being related to two different majors. This distinction allows for the occupation

relatedness definition to match what is observed in the data.

To further illustrate my definition of occupation relatedness, I discuss four

different extremes observed from Tables B5 and B6. First, almost all engineering

occupations are not considered to be related to any major except STEM.17 Second,

salespersons andmiscellaneous administrators are considered to be related to every

major. Third, lower-level service jobs in food services, tourism, and administrative

support tend to only be related to other majors, reflecting the occupations that

aspiring performing artists and authors tend to work in. Finally, accountants

and auditors are related to business majors, other majors, and STEM majors. Of

additional note is that Table B6 includes a set of occupations not included in Table

B5 such as actuaries, pharmacists, and lawyers. These occupations all have the

expected relatedness with bachelor’s degree major: actuaries and pharmacists are

related only to STEM, while lawyers are related to all majors except education.

Based on this set of illustrative examples, the definition of occupation relatedness

posed here is reasonable.

Locations Because the empirical method employed in this paper does not work

well in small samples, I aggregate locations as anotherway ofmaintaining statistical

power. Specifically, I divide the United States into 15 locations, corresponding to

states or groups of adjacent states. The 15 locations consist of the five largest states

(California, Texas, Florida, New York, and Illinois), followed by the nine Census

that are a “college degree match” and occupations that are a “college major match” and find that
college graduates with better jobmatches earn higher wages and that better matches aremore likely
to occur in larger labor markets. In a similar fashion, Freeman and Hirsch (2008) use O*NET data
to map occupational skills to majors.

17Civil engineers and industrial engineers are also related to the “other” category of majors.
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divisions, with the South Atlantic division being divided in two. The resulting

locations range in population from 11.5 million to 39million. A detailed list of each

location is included in Table B7.

4.2 Descriptive Analysis

Tomotivate themodeling approachdescribed in Section 2, I nowdiscuss descriptive

evidence of the heterogeneity of migration and occupational choice across majors

at the national level, and heterogeneity in migration flows across certain locations

by college major, advanced degree status, and occupation.

4.2.1 Summary statistics

This subsection details the main differences across majors in earnings, propensity

to leave one’s state of birth, and propensity to work in a related occupation.

Table 1 lists differences across major in the three outcomes considered in this

paper. The results in the odd-numbered rows of the table are regression coefficients

on major dummies, estimated at the national level and controlling for demograph-

ics, advanced degree status, CBSA fixed effects, and a cubic in potential experience.

The results in parentheses are standard deviations of the distribution of state-level

coefficients.

The results of Table 1 show that education majors earn the least, leave their

birth state at the lowest rates, and work in related occupations at the highest rates.

What is interesting from the table is that there is no clearmonotonicity among these

three outcomes. For example, STEM and business majors each earn about the same

amount and work in related occupations at similar rates. However, STEM majors

are much more likely to leave their state of birth.

Finally, the standard deviations in Table 1 show that there is substantial hetero-

geneity in these outcomes across states, and that state-specificvariation inmigration

and availability of related occupations is as large as state-specific variation in earn-
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ings. While the spatial variation in earnings is well known, variation in migration

and concentration of related occupations is much less known. As discussed previ-

ously, variation in these latter two outcomes is a crucial component of identification

of the extended Roy model.

4.2.2 Transition Matrix

The results of the previous subsection indicate that there is sizable variation across

locations in all three outcomes that I consider. In this section, I present evidence

of how migration flows are related to the variation in location-specific outcomes

previously documented.

Figure 3 displays the migration transition matrix by major for the five largest

states, for those who do not hold an advanced degree. Rows indicate birth location,

while columns indicate residence location. Each rowand column contains five bars,

which correspond to the five majors. Each bar is divided in two, with the bottom

section corresponding to the share of individuals choosing the related occupation.

Examining Figure 3 reveals a number of facts that support the model. First, the

flow of workers fromNewYork to Florida is remarkable. Underscoring this pattern

is the fact that Florida is disproportionately popular for New Yorker education

majors. Furthermore, it is especially evident of non-pecuniary factors because

the education majors who stay in New York disproportionately leave the teaching

occupation, while the those who move to Florida are disproportionately in the

education occupation. The reverse is also true: educationmajors who leave Florida

(see the second row) are almost all thosewho choose the non-education occupation.

This fact is evident of nonpecuniary preferences, because, as will be shown, I find

that education majors who work as teachers in Florida face a wage cut for doing so.

This nonpecuniary dimension of the choice is likely to affect the observed earnings

distribution in a significant way.

Figure 4 is the transition matrix for advanced degree holders. While there are
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high flows from New York to Florida among this group, there are equally high

flows from New York to California. Furthermore, the education majors in New

York who earn master’s degrees stay in New York and work as teachers at much

higher rates than their counterparts who do not hold master’s degrees. These

findings are further evidence of self-selection in location and occupation decisions

that differ by college major and advanced degree status.

It is worth noting one other observation from Figures 3 and 4. Examining the

middle bar of the off-diagonal elements of columns 1 and 4 shows the fraction of

other majors who choose to move to California and New York. Of the movers who

choose these two locations, other majors are disproportionately represented. This

likely reflects the fact that other majors are composed of performing arts majors,

and California andNewYork are hubs for such occupations. This is consistent with

migration being a function not only of earnings, but also of availability of related

occupations. I formally show this effect in more detail later.

Taken together, the results from Figures 3 and 4 provide additional evidence

of the presence of nonpecuniary factors on the decision of where to live and in

which occupation to work. These nonpecuniary factors are likely to cause the

observed earnings distribution to look much different than if individuals were

placed randomly into locations and occupations.

5 Estimation

In this section, I discuss how to estimate the final equation (3.4) of the model

discussed in Sections 2 and 3. The estimation proceeds in two stages. First, I

estimate the choice probabilities
(
?8 9ℓ : , ?8 9<=

)
. Second, I estimate the parameters of

equation (3.4), including the unknown correction functions � 9ℓ : .
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5.1 Choice probabilities

There are a variety of ways in which one can estimate the choice probabilities.

Some options include the conditional logit model, the conditional probit model, or

non-parametric estimation techniques.

The conditional logit model is by far the most popular method used to estimate

choice probabilities (and in migration models in particular, because the dimension

of the choice set tends to be large) due to its simple closed-form expression for

the underlying choice probabilities. The primary drawback of this model is that it

suffers from the independence of irrelevant alternatives property.18

The conditional probit model (Hausman and Wise, 1978) allows for arbitrary

correlations among the choice alternatives, but is unsuitable for settings such as this

where the choice set is large. This is because the conditional probit model requires

estimation of a (� − 1)-dimensional integral, where � is the number of alternatives.

Using thismodelwouldwould eliminate the gains afforded by the index sufficiency

assumption discussed in Section 3.

Non-parametric estimation has two advantages. First, it does not require the

researcher to model location-specific characteristics, of which there are a large

number and many of which are poorly measured. Second, it does not require the

researcher to specify the dependence structure of the choice alternatives as would

be requiredwith the conditional probitmodel or a nested logit or other Generalized

Extreme Value (GEV) model.19

The primary drawback to non-parametric estimation is deciding how finely and

18For tractability reasons, dynamic migration models such as Kennan and Walker (2011) and
Ransom (2020) assume that migration probabilities take a conditional logit form. Davies, Green-
wood, and Li (2001) assume this form in a static setting. Monras (2015) argues that a nested logit is
more appropriate for characterizing migration decisions.

19Hausman and Wise (1978) note that the conditional probit model produces inconsistent es-
timates of the choice probabilities if dependence among the alternatives is incorrectly specified.
Likewise, the conditional logit model produces inconsistent estimates if there is in fact any de-
pendence among the alternatives. Estimates from the nested logit or other GEV models are also
inconsistent if the wrong nesting structure is specified.
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in which ways to divide the state space. Probabilities that are estimated from cells

that are too small will introduce a large amount of error into the estimation. On

the other hand, failure to create enough cells will result in probabilities that do not

accurately represent the data.

5.1.1 Non-parametric estimation using machine learning

I estimate the location and occupational choice probabilities non-parametrically

using a method from the machine learning literature called conditional inference

recursive partitioning, developed by Hothorn, Hornik, and Zeileis (2006) and im-

plemented in the R programming language by Hothorn and Zeileis (2015).

The algorithm is designed to overcome the drawbacks associated with non-

parametric estimation. The main advantage is that it prevents the researcher from

being required to make ad hoc assumptions about how the state space should be

divided when creating probability bins. It also has the advantage of automatically

aggregating sparse bins such that the algorithm does not return any empty bins or

any bins of excessively small size. I detail the conditional inference tree algorithm

in the following subsection.20

Generally speaking, machine learning is the practice of allowing computers to

learn for themselves without having to be explicitly programmed. In statistical

applications, machine learning amounts to usingmethods that combine estimation

withmodel selection to enhance out-of-sample prediction of statisticalmodels. The

result is an algorithmwhich automatically selectswhich covariates to includewhile

also estimating their parameters. In the current setting, the conditional inference

recursive partitioning algorithm selects which variables and which levels of the

variables matter most in predicting migration and occupations. For other settings

where the set of covariates is larger than the sample size, model selection methods

20There are other non-parametric machine learning methods. For example, Snoddy (2019) uses
a random forest to estimate a similar model to the one I use here. I choose the tree model because
it allows for a natural placement of observations into bins.

25



automatically choose which covariates should be included such that standard rank

and order conditions for identification are satisfied.21 Varian (2014) provides an

overview of basic machine learning algorithms and suggests ways in which they

can be used to improve existing research methods in economics. Asher et al. (2016)

prove consistency of classification trees for heterogeneous moment-based models.

Other examples of machine learning applications in economics include Athey and

Imbens (2016), Gentzkow, Shapiro, and Taddy (2019), and Belloni, Chernozhukov,

and Hansen (2011).22

5.1.2 Conditional inference recursive partitioning algorithm

The conditional inference recursive partitioning algorithm is a classification tree

algorithm designed to non-parametrically predict a dependent variable from a

set of covariates. The algorithm takes as inputs the dependent variable and the

covariates, and returns as outputs combinations of the covariates that form clusters

(nodes of the tree) or cells. Using an internal stopping criterion based on hypothesis

testing, it optimally trades off bias (creating too few clusters and, as a result, poorly

fitting the estimation data) and variance (creating toomany clusters and, as a result,

poorlyfittingout of sample) such that out-of-sampleprediction ismaximized.23 The

algorithm works for both continuous and categorical variables on both sides of the

equation.24 The current application contains a categorical dependent variable and

21This setting applies to Bajari et al. (2015) who show how a variety of machine learningmethods
can be used in demand estimation to evaluate advertising effectiveness.

22Athey and Imbens (2016) show how machine learning methods can be used to estimate het-
erogeneous treatment effects. Gentzkow, Shapiro, and Taddy (2019) illustrate how to use model
selection to estimate polarization in high-dimensional textual data. Belloni, Chernozhukov, and
Hansen (2011) develop methods for using model selection in instrumental variables models when
the number of instruments is larger than the sample size.

23Hothorn,Hornik, andZeileis (2006) emphasize that the internal stopping criterion acts similarly
to pruning or cross-validation methods that are commonly used in other machine learning settings
to penalize complexity.

24In the case of a continuous dependent variable, the algorithm minimizes the sum of squared
errors within each cluster to find the optimal cluster division. In the case of a continuous covariate,
the algorithm creates bins by choosing cut points. The algorithm can also be used in survival
analysis.
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covariates that are primarily categorical, but some of which are continuous.

Below, I detail the algorithm, which recursively iterates on the following two

steps:

1. Selection. The algorithm begins by testing whether the dependent variable

is independent of the covariates (i.e. testing whether the distribution of

the dependent variable . is different from the conditional distribution . |-9
for all covariates). If any member of this set of conditional distributions is

significantly different from the unconditional distribution, then the algorithm

selects the covariate with the strongest association with . as measured by a

?-value.

2. Splitting. Once a covariate has been selected, the algorithm optimally splits

it. This is done in a similar fashion as the selection, only the algorithm at

this phase selects among different subsets of the specified covariate. The

optimal split is the one that creates the most distinct pair of distributions of

the dependent variable, as measured by a ?-value. There are other criteria

involved in determining if a candidate split is carried out; namely how large

the resultant cluster will be. Clusters that are too small will predict poorly

out-of-sample and are skipped accordingly.

The algorithm then iterates on these two steps until at least one of the following

criteria is met:25

• No additional covariates can be selected because they fail to reject the null

hypothesis of independence.

25There are a few tuning parameters of the algorithm that the researcher can adjust. One is
the ?-value that determines splitting, another is the smallest number of observations allowed in a
cluster, and a third is the smallest number of observations allowed in a candidate node split (i.e.
the minimum number of observations required in each resulting subset of the split). I choose 5%
for the ?-value parameter, 50 observations for the minimum cluster size, and 50 observations for
the minimum candidate node split size. These were chosen via cross-validation, but in practice the
predictive accuracy of the tree algorithm was not sensitive to these tuning parameters.
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• Any further splits of the already-selected covariates would fail to reject the

null hypothesis of equality in the dependent variable across the split

• Any further splits would result in clusters with too few observations (i.e.

unsuitable for out-of-sample prediction)

• The candidate cluster already perfectly predicts the dependent variable

• No further splits are possible because the candidate cluster is composed of a

single combination of all independent variables

As an example of what the output of this algorithm looks like, I include Figure

5, which depicts a simple example of the output from a fictitious migration dataset.

Individuals are characterized only by their level of work experience and can choose

to live in 3 locations: New York, Texas, or elsewhere. The algorithm shows that

experience is the strongest predictor of location choice, and that the most distinct

difference occurs when splitting at a value of three, followed by an additional split

that occurs at a value of eight. The algorithm shows that New York is entirely

composed of individuals with less than four years of work experience, that Texas

is composed nearly perfectly of individuals with experience levels between four

and eight years, and that workers with nine or more years of experience almost

certainly live elsewhere. In the actual estimation, each tree will have many more

than three terminal nodes.

5.1.3 Implementation of the non-parametric estimation algorithm

I nowdiscuss in detail the estimation of the choice probabilities andwhich variables

are used to predict migration and occupational choice. Following Dahl (2002), I

use cell decision probabilities, where the cells are computed from the recursive

partitioning algorithm detailed above. The implicit assumption with this approach

is that observably similar people face similar unobserved earnings and preference
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shocks. Importantly, this implies that the researcher need not model the character-

istics of the alternatives, only the characteristics of the individuals.

Formally, the cell decision probability for all individuals, all origin locations 9,

and all destination locations ℓ and occupations : is

?8 9ℓ : = Pr
(
38 9ℓ : = 1 | E 91: − E 9ℓ : , . . . , E 9! − E 9ℓ :

)
(5.1)

= Pr
(
38 9ℓ : = 1 | cell

)
The conditional inference tree algorithm assigns cells based on the following

characteristics: whether the individual was born in the location of residence or in

the same Census region; college major; advanced degree status; age; race; marital

status; whether or not the individual is living with a family member or relative;

whether or not the individual’s spouse is working (if married); the presence of chil-

dren ages 0-4 and ages 5-18; and the two exclusion restrictions discussed in Section

3.3. I estimate the cell probabilities using the so-called “one-vs-all” classification

method: for each residence location and occupation, I compute the probability of

choosing the alternative under consideration vs. all others. I then assign individ-

uals into cells based on the terminal node of the tree.

5.1.4 Tree algorithm performance relative to more commonly used methods

A valid question regarding the conditional inference tree algorithm is how it com-

pares with the traditional non-parametric bin estimator or with the logit estimator,

the latter of which is by far the most popular estimation method for discrete choice

models.

The primary benefits of the tree algorithm are twofold: (8) it allows the re-

searcher to consider a large number of candidate covariates without having to

worry about encountering the curse of dimensionality (i.e. the result of which

would be empty bins); and (88) it allows the sample space to be divided into ir-
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regularly shaped bins. The first benefit arises out of model selection and could

be accomplished with other parameter regularization methods such as LASSO

(Belloni, Chernozhukov, and Hansen, 2011). The second benefit arises out of the

algorithm’s recursive nature: by not making all splits simultaneously, the division

of the state space can contain non-rectangular shapes. A final benefit of the algo-

rithm is that it performs slightly better at out-of-sample prediction than existing

methods.26 A summary of this is given in Table B8.27

The benefits of the tree algorithm are manifest in Appendix A where I compare

the small- and large-sample performance of various algorithms and error struc-

tures. The tree algorithm performs about as well as the bin estimator in large

samples, but much better in small samples. Furthermore, if the researcher mis-

specifies the bins (because of the curse of dimensionality), then the tree algorithm

significantly outperforms the simple bin estimator.

While the tree algorithm performs better in Monte Carlo simulations, does it

substantially alter the estimates of selection bias in the ACS data? The answer is

yes. In results not shown, but available from the author upon request, I find that

using either a bin or a logit estimator causes the degree of selection bias to be

understated. That is, the model estimates when using these two estimators tend

26Another general benefit of the tree algorithm is that it can inform structural modeling by pro-
viding the researcher with an ordered list of predictors. Traditionally, researchers have used theory
to choose a set of candidate covariates. Decisions should continue to be based on theory; however,
machine learning approaches can be combined with theory to give researchers an improved way of
informing structural models.

27To assess the performance of each of the estimators, I estimate the first-best choice probabilities
for each algorithm using the 2010-2015 ACS sample discussed previously. I then test the out-of-
sample predictive performance of each algorithm using a holdout sample of the 2010-2015 ACS. The
results from this exercise are detailed in Table B8. Each of the classification algorithms performs
roughly similarly in terms of raw predictive accuracy as well as penalized predictive accuracy, with
the tree algorithm slightly outperforming both of the alternatives. The definitions of each of these
accuracy metrics are detailed in Table B8. The superior performance of the tree classifier is due to
the inability of the bin estimator handle heterogeneous splits of the continuous covariates, foremost
of which are the two exclusion restrictions. In the bin scenario, the researcher must choose cut
points of this continuous variable in which to categorize the data. This process of discretization
throws out useful variation. In contrast, the tree algorithm allows different splits of the exclusion
restriction to be made at different combinations of the covariates.
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to fall in between those of OLS and the tree algorithm. This evidence is further

support for the appropriateness of the tree algorithm in this particular application.

5.2 Correction functions

I now describe how to feasibly estimate the unknown selection correction functions

in (3.4). As written, this equation contains ! bivariate correction functions for

each location ℓ and occupation :. To further simplify this, I make the assumption

that the selection correction functions are the same for everyone. In formal terms,

this assumption imposes that the correction term in (3.4) be rewritten as � 9ℓ : (·) =
�ℓ :

(
?8 9ℓ : , ?8 9<=

)
. While this assumption is restrictive, it allows me to estimate the

wage effect of staying in the birth location. In results not shown, I also test the

sensitivity of the measured returns to major when allowing separate correction

functions for stayers and movers. The estimates change very little.

I now discuss my choice for the probabilities ?8 9ℓ : , ?8 9<= . I assign as ?8 9ℓ : the

first-best choice probability, which is readily observable in the data. For ?8 9<= , I use

the probability that individual 8 would stay in the first-best location, but work in

the non-chosen occupation. This is simply ?8 9ℓ :′, where :′ denotes the non-chosen

occupation.

To estimate the unknown correction functions � 9ℓ : , I use a flexible polynomial

function of the probabilities as discussed in Dahl (2002). Extensive specification

testing leads me to choose a polynomial of degree three in each of the probabilities.

Also included are second- and third-order interactions between the two choice

probabilities. Including a higher degree polynomial or a larger number of proba-

bilities results in much less precise estimates with no appreciable increase in the

Wald test statistic of joint significance of the polynomial. Lower degree polynomi-

als do not appear to be flexible enough to adequately capture selection patterns.

The final estimating equation is of the same form as (3.4), except that there are no

summation operators because of the assumption that � 9ℓ : (·) = �ℓ :
(
?8 9ℓ : , ?8 9<=

)
, as
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discussed above.28

5.3 Earnings equation

The earnings equation parameters in (2.1) are estimated by OLS (separate equa-

tions for each location and occupation) after making use of the index sufficiency

assumption in (3.3) and the dimensionality reduction assumptions discussed in the

previous section.

5.3.1 Standard errors

The standard errors of the parameters associated with the selection functions must

be adjusted to account for two elements of the estimation: (8) the selection probabil-

ities are not i.i.d. across individuals because of the cell assumption in (5.1); and (88)

the estimation of the cell probabilities induces estimation error into the coefficients

because the true probabilities are not observed.

I present standard errors that are clustered at the cell level to address the first

issue. The implications for inference when using a model selection algorithm in

the first stage are not well understood, so it is not clear how to resolve the second

issue (Mullainathan and Spiess, 2017).

6 Empirical Results

In this section, I discuss the results of the estimation procedure described in the

previous section and their implications. I first present results on the estimation

of the decision probabilities, followed by a discussion of the selection-corrected

28In principle, one could use yet another machine learning algorithm (e.g. LASSO) to automat-
ically select the appropriate number of choice probabilities that enter the correction functions. I
chose not pursue this approach in order to maintain a closer link with the previous literature on
non-parametric selection models. As shown in Appendix A, using the two choice probabilities
mentioned above leads to a resolution of the selection problem.
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estimates of the returns to majors and occupational relatedness. Finally, I analyze

migration flows across space

6.1 Choice probabilities

The cell assumption in (5.1) states that the choice probability of a given cell is

the probability that all individuals in the cell make the same choice.29 Thus,

deviations from the cell mean correspond to a reduced-formmeasure of preference

shocks, which allowme to separate preferences from earnings. Because of their key

role in identification, I present in Table 2 moments of the distributions of average

cell probabilities, conditional on major, occupation, and move-stay decision. The

table also reports the number of individuals in each migration-occupation-major

classification and the number of different cells contributing to each classification.

An implication of the earlier discussion on identification is that identification

requires the decision probabilities acrossmajors within amigration-occupation bin

to be overlapping. Intuitively, the returns to major can be calculated by comparing

individuals in two different majors who have the same preferences, as measured

by the cell probabilities. Examination of the table reveals that there is a wide range

of overlap in probabilities across majors.

The probabilities listed in Table 2 also confirm the earlier descriptive analysis

of Figures 3 and 4. The cell probabilities in panels (a) and (c), which correspond

to working in a related occupation, are highest among education, business, and

STEM majors. Another way to see this is to compare the difference in average

cell probabilities for working in a related occupation relative to working in an

unrelated occupation. This difference is much higher for education, business, and

STEM majors than for the remaining two.

Finally, note that the number of cells is larger for movers than for stayers, and

29For parametric choice models, the analogous assumption is that the choice probability is the
same for all individuals with the same values for all covariates.
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that the number of cells roughly corresponds to the number of individuals within a

major-occupation category. The difference in the number of cells is much less stark

than if a bin estimator were to be used, because the tree algorithm automatically

merges together sparse bins, or bins that are not statistically distinct, to avoid

overfitting.

6.2 Earnings

I now discuss the parameter estimates of the earnings equation with and without

selection correction. The primary parameters of interest are the college major

dummies and their interactionwith a dummy for advanced degree attainment. The

primary research question is how these parameter estimates change once I account

for self-selection into locations and occupations. Throughout, I treat bachelor’s-

level education majors as the reference category.

6.2.1 Estimates for specific states

Table 3 lists the full estimates of equation (3.4)with the implemented simplifications

discussed in Section 5.2. While I estimate 30 equations, I present detailed results

for only three of the five most populous states. I later present aggregate results for

all 15 locations.

Table 3 reports the earnings equation estimates for each occupation in the three

states, for both the naive case and the corrected case. The first column within

each state and occupation reports the estimated returns to each major assuming

no selection bias, while the second column reports the estimated returns after

correcting for selection. The OLS estimate is upward biased for the vast majority of

all measured returns. The magnitude of the upward bias differs from state to state,

with the largest differences in New York and the smallest differences in Florida.

As noted previously, I am able to separately identify the earnings effect of

stayers. These estimates are reported on the last row of Table 3. There is actually a
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wage penalty for stayers in each of these three states. This penalty gets erased once

controlling for selection, indicating that what naively appears to be a compensating

differential for staying in one’s birth state is actually a selection effect.

It is important to keep inmind the interpretation ofwhat generates the direction

of the bias in returns. As noted inDahl (2002) andBayer, Khan, andTimmins (2011),

an upward bias in the returns to schooling is the result of individuals responding

to above-average earnings shocks. This comes about in the model through the

selection correction terms: if someone moves to a location when observationally

similar individuals do not, then it must be because of a favorable earnings shock.

Put differently, moves in response to favorable earnings shocks will overstate the

treatment effect of college major or occupation, compared to randomly assigning

individuals to live in a given location.

A remaining question upon examining the results in Table 3 is whether or not

the differences are statistically significant. I test for this in two ways: (8) I conduct a
Wald test for joint significance of the polynomial of choice probabilities; and (88) I
conduct a Hausman-type test where the null hypothesis is that the baseline OLS is

efficient and consistent, while the corrected estimates are consistent but inefficient.

The former is a necessary condition of the presence of bias, while the latter is a

sufficient condition. I present the Wald test statistics in the bottom of Table 3. In

all cases, the Wald tests have ?-values smaller than 0.003. I present the results

of the Hausman test for all locations for select major-occupation combinations

in Tables B9 through B20. In Florida, for example, the following returns have

Hausman ?-values less than 10%: advanced degree STEM, business, and social

science majors in related occupations; and BA social science and STEM majors in

unrelated occupations.

On aggregate, about one-third of all returns are significantly different. The

returns to major among advanced degree holders who work in related occupations

tend to be the most significantly different from OLS.

35



6.2.2 Estimates for all locations

To assess the magnitude of bias, I present in Table 4 the percentage change in

returns when correcting for selection. Some of the returns have very low bases on

which the percentage change is calculated, particularly for the low-earningsmajors.

Thus, I focus on STEM and businessmajors, and find that themagnitude of the bias

ranges from 0% to 45% with a median value of between 5% and 17%. As shown

in the earlier graphs, the magnitude of the bias is largest among advanced degree

holders who work in related occupations.

Results on the precise values of the returns to major for all locations for each

of the two occupations and advanced degree statuses are shown in the online ap-

pendix. Figures B1 through B4 contain plots for all majors and degree attainments.

The figures include a 45 degree line with the corrected return on the vertical axis

and the uncorrected return on the horizontal axis. Circles or dots represent pairs

of returns, where circles indicate that the difference is not significant while dots

indicate that the corrected estimate is statistically significantly different at the 10%

level or lower, using the Hausman-type test described previously.30

Finally, a valid question is whether or not correcting for selection bias in the

returns narrows the gap in returns across locations. Examining the graphs in

Figures B1 through B4 shows that the range of values is roughly the same for

both the horizontal and vertical axes. This means that the cross-location range

in returns is largely unaffected by the selection correction. This finding implies

that wage differences across locations are most likely due to factors such as innate

productivity differences or compensating differentials.

30In all figures there is upward bias in the returns to major for almost all locations and majors.
The magnitude of the bias is larger for business and STEM majors in related occupations, and
especially so for advanced degree holders.
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6.3 Migration flows

With estimates of individual-levelmigration probabilities and location-occupation-

level selection-corrected returns to major, I now investigate the cross-major com-

parative responsiveness of migration flows to earnings, occupational availability,

and local amenities.

To formalize ideas, consider the log migration flow from location 9 to ℓ for

college graduates in major < with advanced degree status 0 ∈ {0, 1}. This is

assumed to be

ln ?̂<09ℓ =#
<
00 + #1

∑
0

∑
:

(
F<
0ℓ :
− F<

09:

)
+ #<02 lndist9ℓ+ (6.1)

#03
(
ln'<0ℓ − ln'<09

)
+ #<4

(
ln�ℓ − ln� 9

)
+ �<09ℓ

where ?̂<
09ℓ
= 1

#0,<

∑
8

∑
: ?̂8 9ℓ :1 [B8 = (0, <)] is the average of the individual estimated

migration probabilities for all individuals of major < with advanced degree status

0. The estimates are taken from the procedure outlined in Section 5.

Equation (6.1) states that migration flows for individuals of a particular major

are a function of cross-location differences in the following characteristics: four

log earnings terms (F0ℓ : , 0 ∈ {0, 1}, : ∈ {unrelated, related}); log distance (Great

Circle formula, in miles); the log fraction of individuals in major < who work in a

related occupation, '; and log measures of local amenities �.31 Because each right

hand side variable is expressed in logs, the corresponding coefficients represent

elasticities. Importantly, I restrict the log earnings elasticity to be the same for both

occupations and both advanced degree statuses because there is a high level of

31Specifically, � includes a number of climate, geographical, and local government amenities
to capture differences in quality of life across locations. These amenities include: climate mea-
sures such as cloudiness, average wind speed, heating degree days, cooling degree days, morning
humidity, and precipitation; quality of life measures such as per-pupil schooling expenditures,
population density, health care expenditures per capita, and violent crime rates; and local spending
measures such as state budget expenditures per capita and higher education expenditures per full-
time-equivalent student. Variables are measured either at the city or state level and are aggregated
to the regional level by weighting by the component populations.
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correlation in these measures within locations. The theoretical implication of this

assumption is that all individuals valuemoney in the sameway. A similar argument

explains why I restrict #4 to be the same for both bachelors and advanced degree

holders.

In order to feasibly estimate the effect of earnings onmigrationflows, I difference

(6.1) with respect to individuals of a different major <′. Similar analyses have been

used by Dahl (2002) to investigate migration behavior and by Wiswall and Zafar

(2015) to investigate college major choice. Rewriting (6.1) gives

ln ?̂<09ℓ − ln ?̂<′0 9ℓ =
(
#<00 − #

<′
00

)
+ #1

∑
0

∑
:

[(
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09:
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Note that, according to equation (3.4), earnings differences only vary across

majors through the parameter on schooling, �02ℓ : . Thus, (6.2) can be rewritten in a

more compact form as

Δ< ln ?̂<09ℓ =#̃00 + #1
∑
0

∑
:

Δ<Δℓ �̂0,<2ℓ : + #̃02 lndist9ℓ+ (6.3)

#03Δ
<Δℓ ln'<0ℓ + #̃4Δ

ℓ ln�ℓ + �̃0 9ℓ

where Δ<Δℓ signifies the difference-in-differences operator across majors and loca-

tions.

Estimates of (6.3) are reported in Table 5. Each column is based on 2
(
!2 − !

)
observations, or the number of off-diagonal pairwise location combinations for

both advanced degree groups. In all columns, the normalized major <′ is educa-

tion. Thus, the estimates should be interpreted as determinants of migration for
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individuals with major < and advanced degree 0 relative to education majors of

advanced degree group 0. For each major, I report results with and without the

local amenity variables. My preferred results include the amenity variables, as

these are shown to contain a large amount of predictive power as measured by the

'2 statistic.

The results of Table 5 indicate that, in addition to differences in thewage returns

to major, migration flows for all majors relative to education are responsive to

distance and availability of related occupations. Most surprising is that, for all

majors, the elasticity for relatedoccupation concentration is larger than the elasticity

of earnings, by a factor of 2 or more. These large elasticities are strongest among

STEM and business majors with advanced degrees and among social science and

other majors without advanced degrees.

The response of migration to wage returns is weak for STEM majors compared

to the other three non-educationmajor groups. Allmajors showpositive elasticities

with respect to distance relative to education majors, but only for advanced degree

holders. This implies that education majors with master’s degrees face the largest

costs to migration, which is likely a result of state-level education policies.32 This

result, coupled with the low distance elasticity for business majors, is consistent

with descriptive evidence presented in Figures 3 and 4 which show that education

and businessmajors are the least likely to leave their state of birth, and thatmaster’s

level education majors are even less likely to leave.

Comparing the odd- and even-numbered columns of Table 5 reveals the effect of

including amenity measures on the estimated impacts. Including these measures

has the effect of lowering both the wage and related occupation elasticities for all

majors except STEM. The robustness of the earnings and occupation elasticities

32For example, Ashworth (2015) studies teachers’ decisions to obtain master’s degrees in North
Carolina where the associated wage premium is legislated by the state. Many states have similar
fixed salary schedules for primary and secondary school teachers. Thus, moving states may cause
a reduction in wages either because the worth of a master’s degree might be lower in the new state,
or because work experience may not be counted in the same way in the new state.
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even after accounting for a wide variety of amenities confirms their importance to

migration decisions.

The findings of this section have important implications for local governments

seeking to retain their educatedworkers, either through higher education subsidies

or other place-based policies. In particular the results underscore the importance

of employment in related occupations as a substantial component of the migration

decision of college graduates. If state governments wish to retain the college

graduates whose tuition they have partially subsidized, then it may be optimal to

index the tuition of differentmajors to the local concentration of related occupations

for those majors.33

The findings of this section also have important implications for the literature

on college major and occupational choice. The fact that college graduates have

preferences for working in related occupations and that these occupations are not

uniformly distributed across space implies that post-college outcomes are depen-

dent on local labor market characteristics. Thus, location preferences may be a

large component of the non-pecuniary factors that other studies have found when

studying the determinants of collegemajor choice (Wiswall and Zafar, 2015, 2018).

7 Conclusion

This paper examines the extent to which selection into residence location and occu-

pation biases thewage returns to collegemajors. To analyze this question, I develop

and estimate an extended Roy model where individuals have preferences for both

wage and non-wage aspects of given location-occupation pairs. Using estimates

of the model, I examine how sensitive migration flows of different majors respond

to cross-location differences in wage returns to major, availability of occupations

related to the major, and non-wage local amenities.

33For a review of major-specific tuition pricing policies, see Stange (2015).
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To estimate themodel, I implement the framework of Dahl (2002) and Lee (1983)

which allows for feasible estimation of the extended Roy model by expressing the

selection in terms of a small number of observed choice probabilities. I estimate the

model using data on college-educatedmen from the American Community Survey

from years 2010-2015. I also illustrate the advantages of using machine learning

methods to non-parametrically estimate the selection probabilities. The primary

advantage of this is in combining model selection and estimation.

I find that selective migration and occupational choice cause an upward bias

in the measured wage returns to college major, relative to education majors. The

percent change in the corrected returns ranges from 0% to 45% for STEM and

business majors, is strongest among advanced degree holders, and is statistically

significant in about one-third of all locations. Correcting for selection bias does

little to narrow the range in returns. This implies that cross-location differences in

the wage returns are due to other reasons, such as innate productivity differences

or compensating differentials.

My analysis ofmigration flows shows thatmigration decisions of college gradu-

ates are determined by the concentration of related occupations in addition towage

returns and non-wage amenities. The elasticity for related occupation concentra-

tion is twice that of earnings, and is strongest among advanced degree holders who

are business or STEM majors and among bachelors degree holders who are social

science or other majors.

Given that migration flows are sensitive to occupational density, these results

imply that place-based policies designed to retain or attract skilledworkersmay not

be successfulwithout taking into accountworkers’ preferences for occupations. The

results also point to the importance of considering migration and local occupation

concentrationwhen determiningmajor-specific tuition rates at universities (Stange,

2015).

These results also raise questions about what is in a student’s information set
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at the time of college major choice. Research on the determinants of college ma-

jor choice indicates that non-monetary preferences for class subject or post-college

occupation are a significant part of the major decision (Arcidiacono et al., Forth-

coming; Wiswall and Zafar, 2015). Such non-monetary occupational preferences

might also reflect preferences for a location because occupations are not distributed

evenly across space.
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Figures and Tables

Figure 1: Occupationdistributions for select detailedmajors: Non-advanceddegree
holders
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(c) Economics
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(d) Computer Programming

0
.0

5
.1

.1
5

.2
.2

5
.3

.3
5

.4
S

h
ar

e

0 20 40 60 80
Occupation Rank

Notes: Graphs represent occupation distributions conditional on detailed major. Vertical lines
represent the cutoff between related and unrelated occupations: those to the left of the line are
related, while those to the right are unrelated. Additional details regarding the definition of
occupation relatedness are provided in the text and the appendix.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure 2: Occupation distributions for select detailed majors: Advanced degree
holders
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(c) Economics
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(d) Computer Programming
0

.0
6

.1
2

.1
8

.2
4

.3
.3

6
.4

2
S

h
ar

e

0 5 10 15 20
Occupation Rank

Notes: Graphs represent occupation distributions conditional on detailed major. Vertical lines
represent the cutoff between related and unrelated occupations: those to the left of the line are
related, while those to the right are unrelated. Additional details regarding the definition of
occupation relatedness are provided in the text and the appendix.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Table 1: Differences in outcomes by college major, relative to education majors

Education Soc Sci Other Business STEM
Log Earnings 0.00 0.184 0.154 0.388 0.402

(—) (0.099) (0.079) (0.071) (0.080)
Pr (Lives outside birth state) 0.00 0.115 0.124 0.077 0.134

(—) (0.060) (0.072) (0.064) (0.062)
Pr

(
Works in related occupation

)
0.00 -0.154 -0.110 -0.021 -0.029
(—) (0.078) (0.085) (0.089) (0.091)

Frequency 5.32 11.35 20.90 28.53 33.91
N 31,043 66,276 122,015 166,569 198,011

Notes: Regression estimates at national level, controlling fordemographics, advanceddegree status, CBSA
dummies, and a cubic in potential experience. Standard deviation of state-specific estimates reported
below inparentheses. All variables except for log earnings anddistance are expressed in percentage points
and estimated from linear probability models. Sample taken from the 2010-2015 American Community
Survey and is restricted to males ages 22-54 with a bachelor’s degree or higher. Sample weights are
included in the computation. Additional details on sample selection can be found in Table B1.
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Figure 3: Migration and occupation transition matrix by major for the five largest states: Non-adv. deg. holders
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Notes: Markov transition matrix probabilities of living in a particular location and working in a particular occupation, by major, for the
five largest US states. Light-colored bar segments represent proportion working in an unrelated occupation. Dark-colored bar segments
represent proportion working in a related occupation.
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Figure 4: Migration and occupation transition matrix by major for the five largest states: Adv. degree holders
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Notes: Markov transition matrix probabilities of living in a particular location and working in a particular occupation, by major, for the
five largest US states. Light-colored bar segments represent proportion working in an unrelated occupation. Dark-colored bar segments
represent proportion working in a related occupation.
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Figure 5: Simple example of tree structure from conditional inference recursive
partitioning algorithm
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Note: Sample tree output from fictitious data using the algorithm described in Section 5.1.2
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Table 2: Summary of cell probabilities of observed decisions

(a) Stayers, Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile
Education Major 306 14, 359 0.5285 0.1662 0.2841 0.7220
Social Sciences Major 328 16, 121 0.3625 0.1316 0.1965 0.5214
Other Major 342 32, 107 0.3616 0.1164 0.2058 0.4924
Business Major 363 55, 839 0.4295 0.1158 0.2623 0.5554
STEMMajor 371 61, 008 0.4031 0.1158 0.2345 0.5284

(b) Stayers, Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile
Education Major 374 6, 061 0.3006 0.1505 0.1235 0.5182
Social Sciences Major 381 15, 922 0.3284 0.1376 0.1542 0.5068
Other Major 411 27, 934 0.3089 0.1148 0.1612 0.4421
Business Major 424 33, 417 0.2724 0.1014 0.1467 0.3830
STEMMajor 441 36, 431 0.2609 0.1023 0.1319 0.3760

(c) Movers, Related occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile
Education Major 637 7, 469 0.1728 0.1952 0.0089 0.4698
Social Sciences Major 783 17, 976 0.1031 0.1266 0.0088 0.2839
Other Major 799 33, 598 0.1009 0.1259 0.0088 0.2859
Business Major 860 47, 331 0.1269 0.1521 0.0083 0.3484
STEMMajor 885 67, 631 0.1167 0.1416 0.0103 0.3259

(d) Movers, Unrelated occupation

Education Level Cells Individuals Mean Std. Dev. 10th Percentile 90th Percentile
Education Major 627 4, 439 0.0906 0.1162 0.0050 0.2603
Social Sciences Major 743 16, 316 0.0831 0.1099 0.0067 0.2418
Other Major 777 26, 769 0.0789 0.1024 0.0065 0.2283
Business Major 761 26, 243 0.0750 0.0986 0.0054 0.2244
STEMMajor 810 36, 942 0.0694 0.0905 0.0056 0.1999

Note: Estimated decision probabilities and cell structure from the conditional inference recursive partitioning algorithm
described in Section 5.1.2. Probabilities correspond to the probability of making the decision that is observed in the
data.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Table 3: Uncorrected vs. corrected earnings equation estimates for select states

Florida New York Texas
Unrelated Occupation Related Occupation Unrelated Occupation Related Occupation Unrelated Occupation Related Occupation

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected
Bachelor’s degree

Education major 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Social sciences major 0.052 0.044 0.313*** 0.312*** 0.107*** 0.081* 0.212*** 0.181*** 0.066* 0.054 0.156*** 0.153***
(0.042) (0.059) (0.037) (0.043) (0.041) (0.045) (0.053) (0.064) (0.036) (0.043) (0.029) (0.041)

Other major 0.042 0.034 0.279*** 0.276*** 0.029 0.009 0.149*** 0.108* 0.049 0.033 0.133*** 0.130***
(0.040) (0.049) (0.032) (0.032) (0.038) (0.038) (0.050) (0.061) (0.034) (0.036) (0.024) (0.032)

Business major 0.165*** 0.158*** 0.500*** 0.500*** 0.172*** 0.134*** 0.467*** 0.413*** 0.161*** 0.155*** 0.380*** 0.385***
(0.040) (0.051) (0.030) (0.037) (0.039) (0.045) (0.049) (0.065) (0.033) (0.035) (0.023) (0.034)

STEM major 0.173*** 0.165*** 0.460*** 0.456*** 0.180*** 0.139*** 0.393*** 0.333*** 0.254*** 0.247*** 0.344*** 0.349***
(0.040) (0.044) (0.031) (0.035) (0.039) (0.040) (0.050) (0.063) (0.033) (0.041) (0.023) (0.033)

Advanced degree (interaction)
Education major 0.135 0.133 0.114 0.093 0.048 -0.061 0.130* 0.052 0.150* 0.140 -0.125** -0.140**

(0.105) (0.100) (0.074) (0.084) (0.079) (0.100) (0.067) (0.087) (0.084) (0.098) (0.058) (0.054)
Social sciences major 0.165* 0.167** 0.198*** 0.175* 0.184*** 0.111 0.210*** 0.157* 0.089 0.086 0.016 -0.003

(0.088) (0.073) (0.066) (0.092) (0.063) (0.081) (0.051) (0.086) (0.072) (0.090) (0.052) (0.073)
Other major 0.102 0.107 0.176*** 0.154** 0.122** 0.049 0.154*** 0.120 0.029 0.029 -0.044 -0.063

(0.086) (0.075) (0.063) (0.075) (0.060) (0.078) (0.047) (0.076) (0.071) (0.083) (0.049) (0.063)
Business major 0.097 0.099 0.205*** 0.181** 0.136** 0.074 0.236*** 0.211*** 0.071 0.071 0.051 0.028

(0.086) (0.073) (0.061) (0.074) (0.061) (0.085) (0.045) (0.071) (0.068) (0.085) (0.046) (0.062)
STEM major 0.149* 0.154** 0.288*** 0.265*** 0.250*** 0.183** 0.135*** 0.097 0.108 0.101 0.098** 0.076

(0.085) (0.070) (0.061) (0.083) (0.060) (0.081) (0.045) (0.060) (0.067) (0.090) (0.046) (0.057)
Born here -0.063*** -0.056** -0.056*** 0.020 -0.110*** -0.048 -0.113*** 0.014 -0.079*** 0.004 -0.077*** 0.008

(0.014) (0.026) (0.012) (0.021) (0.012) (0.047) (0.010) (0.028) (0.010) (0.051) (0.008) (0.017)
Cubic in experience X X X X X X X X X X X X
Demographics X X X X X X X X X X X X
CBSA fixed effects X X X X X X X X X X X X
Wald test for � terms 4.79 3.37 4.87 13.87 5.80 6.92

[0.000] [0.002] [0.000] [0.000] [0.000] [0.000]

'2 0.171 0.174 0.216 0.218 0.231 0.236 0.237 0.244 0.209 0.212 0.233 0.235
Observations 10,626 10,626 15,984 15,984 14,878 14,878 22,210 22,210 16,883 16,883 26,591 26,591

Note: Standard errors are listed below coefficients in parentheses. ?-values of statistical tests are listed below test statistics in brackets. *** p<0.01; ** p<0.05; * p<0.10.
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Table 4: Percent change in returns when correcting for selection

Unrelated occupation Related occupation
Major p10 Median p90 p10 Median p90
Bachelor’s degrees

Education 0 0 0 0 0 0
Social Sciences -126.5 -18 36.1 -14.5 -2.3 6.2
Other -143.5 -31.9 70.5 -20.9 -2.2 6.7
Business -14.9 -5.1 1.7 -7.1 -.3 1.5
STEM -13.4 -7.4 0.7 -14 -1.1 1.0

Advanced degrees
Education -70.1 -11.2 -0.5 -106.5 -29.9 0.1
Social Sciences -39.3 -7.4 0.9 -118.4 -27.7 -5.0
Other -31.6 -7.5 3.0 -330.5 -41.3 -12.6
Business -45.5 -9.7 1.1 -45.5 -16.6 -4.0
STEM -25.4 -9 3.2 -27.8 -17.3 -3.0

Note: Summary statistics of the 15-location distribution of the percent change be-
tween uncorrected and corrected returns to majors. Percentage changes are least
informative for education, social science, and other majors because these majors
have bases (i.e. uncorrected returns) that may be very close to zero.
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Table 5: Determinants of cross-location migration flows among majors

STEM Business Other Social Science

Dep. variable: ln
(
?<
09ℓ

)
− ln

(
?Edu
0 9ℓ

)
(1) (2) (3) (4) (5) (6) (7) (8)

Δ<Δℓ Corrected return, unrelated occ. × BA 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***
(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)

Δ<Δℓ Corrected return, related occ. × BA 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***
(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)

Δ<Δℓ Corrected return, unrelated occ. × Adv. deg. 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***
(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)

Δ<Δℓ Corrected return, related occ. × Adv. deg. 0.004 0.063 0.744*** 0.404** 0.793*** 0.482*** 1.224*** 0.395***
(0.190) (0.180) (0.146) (0.165) (0.175) (0.152) (0.119) (0.136)

ln
(
distance9:

)
× BA 0.033 0.031 -0.019 -0.020 0.040 0.038* 0.024 0.024

(0.023) (0.020) (0.018) (0.016) (0.027) (0.020) (0.024) (0.022)
ln

(
distance9:

)
× Advanced degree 0.130*** 0.128*** 0.037 0.042* 0.109** 0.107*** 0.087** 0.087**

(0.039) (0.030) (0.026) (0.022) (0.045) (0.037) (0.043) (0.034)
Δ<Δℓ ln (share related occ.) × BA 0.265*** -0.131 0.457*** 0.306** 1.582*** 1.112*** 0.823*** 0.761***

(0.097) (0.136) (0.057) (0.121) (0.083) (0.169) (0.064) (0.131)
Δ<Δℓ ln (share related occ.) × Adv. deg. 1.108*** 1.451*** 1.868*** 0.933*** -0.218 -0.516* -0.434 -0.272

(0.335) (0.355) (0.183) (0.216) (0.328) (0.309) (0.294) (0.264)
Advanced degree -0.488 -0.502** -0.250 -0.291 -0.308 -0.328 -0.296 -0.302

(0.299) (0.247) (0.209) (0.187) (0.350) (0.287) (0.331) (0.280)
Constant -0.097 -0.073 0.173 0.184* -0.136 -0.106 -0.007 -0.002

(0.149) (0.136) (0.118) (0.109) (0.181) (0.137) (0.159) (0.152)
Climate measures X X X X
Quality of life measures X X X X
Local spending measures X X X X
Wald test for joint significance of amenity variables 24.60 20.17 38.37 23.93

[0.000] [0.000] [0.000] [0.000]

'2 0.132 0.550 0.293 0.576 0.252 0.644 0.249 0.586
Observations 420 420 420 420 420 420 420 420

Note: Regression of cross-major log differences in migration flows among advanced degree group 0 from location 9 to ℓ on returns to major, distance, availability
of related occupations, and local amenity measures. Huber-White standard errors are listed below coefficients in parentheses. Δ<Δℓ signifies the difference-
in-differences operator, where differences are taken between majors < and Education, and between locations 9 and ℓ . Distance is measured in miles between
population centroids using the Great Circle formula. Amenity variables are included as log differences, where the difference is taken between locations 9 and
ℓ . Climate measures include cloudiness, average wind speed, heating degree days, cooling degree days, morning humidity, and precipitation. Quality of life
variables include per-pupil schooling expenditures, population density, health care expenditures per capita, and violent crime rates. Local spending measures
include state budget expenditures per capita and higher education expenditures per full-time equivalent student. State level variables are aggregated to regional
level weighting by component state populations. Number of observations equals 2

(
!2 − !

)
. *** p<0.01; ** p<0.05; * p<0.10.
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A Online Appendix: Monte Carlo Simulation

In this section I detail theMonte Carlo simulation used to compare the performance

of the conditional inference tree estimator with more traditional estimators.

A.1 Data generating process

Consider the following data generating process, structured similar to the model in

Section 2.

F8ℓ : = G8�1ℓ : + B8�2ℓ : + �8ℓ : (A.1)

D8 9ℓ : = I8) 9ℓ : + �8 9ℓ : (A.2)

+8 9ℓ : = F8ℓ : + D8 9ℓ : (A.3)

F8ℓ : observed ⇐⇒ +8 9ℓ : > +8 9ℓ ′:′ ∀ (ℓ ′, :′) (A.4)

In the baseline model, I consider the case where ℓ comes from a 15-dimensional

set, and where : is two-dimensional. Thus, there are 30 sectors in the model.

For simplicity, B8 is a binary variable while G8 contains a mixture of binary and

continuous variables. I8 contains a number of binary variables as well as two

continuous exclusion restrictions which measure preference intensity for staying

in the birth location and for working in the related occupation. In addition, I8
contains a number of interactions among this set of variables. �8ℓ : is assumed to be

distributed iid # (0, 1) across all individuals, locations, and occupations. The same

is true for �8 9ℓ : . In later simulations, I examine performance of the estimator when

these error terms are correlated across locations and occupations.

The estimate of interest is �̂2 in location 8 and occupation 2, which is chosen

without loss of generality. The true value of this parameter is set to 2. I con-

sider estimation of �2,8,2 in small samples (#=1,000 per sector) and large samples
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(#=10,000 per sector). Each simulation is repeated 100 times, and I report the

resulting mean and standard deviation of the parameter estimates, along with the

average root mean square error of each repetition.

I report the performance of nine different specifications under three different

error structures. As a baseline, I include the naive OLS estimator that would be

unbiased and consistent if no selection were present. I then consider four separate

estimates of the selection probabilities in the polynomial selection terms. For

each estimate, I consider including only the first-best probability, or the first-best

and location probabilities as implemented in the empirical section of the paper.

The four different probability estimators are as follows: (8) fully specified bin; (88)
conditional inference tree; (888) logit; and (8E) coarse (misspecified) bin. I specifically

include the coarse bin estimator to show the effect of the researcher being unable to

include all relevant choice predictors, e.g. due to the curse of dimensionality. The

three different error structures I consider are as follows: (8) the baseline described
above; (88) allowing the preference shocks to be correlated across locations and

occupations (i.e. �8 9ℓ : distributed iid # (0,Σ) across individuals, where Σ is a

random covariancematrix); and (888) allowing both preference shocks and earnings

shocks to be multivariate normal distributions.

The results of the simulations are reported in Table A1. Each of the three error

structures are reported respectively in Panels A, B, and C of the table. Within

each panel are the nine different specifications used to estimate �2,8,2. The main

takeaway from the simulations is that the tree algorithm performs very similarly

to the fully specified bin estimator in large samples, but that the tree algorithm

performs much better than all other estimators in small samples. The improved

small-sample performance of the tree algorithm is consistent with Asher et al.

(2016), who prove the consistency of tree classification and also show excellent

small sample performance. For all specifications, theOLS estimate of the parameter

of interest is severely downward biased, while the logit estimate is severely upward
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biased. The coarse bin estimator performs only slightly better than OLS and incurs

a high efficiency cost.

The purpose of Panels A and B is to show that the nonparametric estimator used

in this paper performs well when the distribution of preference shocks is either

normal or multivariate normal. In both of these two scenarios, index sufficiency

holds. In Panel C, however, index sufficiency is less likely to hold. In this case, none

of the estimators is able to completely resolve the selection problem. However, the

tree estimator performs best, again particularly in smaller samples.
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Table A1: Monte Carlo simulation results (true parameter value equals 2)

10,000 Observations per Sector 1,000 Observations per Sector
Ave. Ave.

Std. Sample Std. Sample
Mean Dev. RMSE Size Mean Dev. RMSE Size

Panel A: 30 sectors, baseline
OLS 1.6219 0.0308 0.8994 28502 1.6181 0.0984 0.8974 2857
1st Best Bin 1.9595 0.0304 0.8726 1.9281 0.0967 0.8724
1st Best Tree 1.9597 0.0309 0.8701 2.0147 0.0991 0.8722
1st Best Logit 2.1458 0.0336 0.8687 2.1401 0.1045 0.8675
1st Best Coarse Bin 1.8505 0.0344 0.8959 1.8389 0.1071 0.8942
1st+2nd Best Bin 1.9413 0.0332 0.8723 1.9085 0.1047 0.8720
1st+2nd Best Tree 1.9468 0.0327 0.8700 2.0021 0.1066 0.8715
1st+2nd Best Logit 2.1523 0.0409 0.8684 2.1734 0.1248 0.8673
1st+2nd Best Coarse Bin 1.6186 0.1148 0.8944 1.7443 0.2826 0.8931

Panel B: 30 sectors, �8 9ℓ : correlated across (ℓ , :)
OLS 1.6595 0.0311 0.9123 27504 1.6929 0.0875 0.9136 2755
1st Best Bin 1.9616 0.0340 0.8929 1.9576 0.0878 0.8949
1st Best Tree 1.9592 0.0330 0.8914 2.0265 0.0902 0.8951
1st Best Logit 2.1152 0.0361 0.8903 2.1405 0.0906 0.8912
1st Best Coarse Bin 1.8819 0.0372 0.9095 1.8991 0.0974 0.9110
1st+2nd Best Bin 1.9451 0.0376 0.8927 1.9468 0.1050 0.8947
1st+2nd Best Tree 1.9422 0.0352 0.8913 2.0054 0.1106 0.8948
1st+2nd Best Logit 2.1131 0.0431 0.8901 2.1627 0.1319 0.8909
1st+2nd Best Coarse Bin 1.6737 0.1149 0.9085 1.8045 0.2774 0.9100

Panel C: 30 sectors, both �8 9ℓ : and �8ℓ : correlated across (ℓ , :)
OLS 1.5404 0.0943 1.0715 26613 1.5386 0.1265 1.0681 2676
1st Best Bin 1.9428 0.0513 1.0437 1.8828 0.1055 1.0429
1st Best Tree 1.9394 0.0508 1.0417 1.9709 0.1080 1.0427
1st Best Logit 2.1334 0.0554 1.0400 2.1160 0.1184 1.0376
1st Best Coarse Bin 1.8703 0.0662 1.0670 1.8359 0.1362 1.0641
1st+2nd Best Bin 1.9232 0.0534 1.0433 1.8804 0.1230 1.0423
1st+2nd Best Tree 1.9207 0.0529 1.0414 1.9572 0.1285 1.0419
1st+2nd Best Logit 2.1329 0.0598 1.0397 2.1474 0.1698 1.0372
1st+2nd Best Coarse Bin 1.5805 0.1352 1.0658 1.7196 0.3794 1.0630

Note: 100 replications used for all specifications. “OLS” indicates OLS estimation of the parameter of interest, ignoring
potential selection bias. “1st Best Bin” indicates estimation of equation (3.4) using a cubic polynomial of the first-best
probability from a simple bin estimator. “1st+2nd Best Bin” indicates the same, except that both the first-best and
occupation probabilities are used, as described in Section 5.2. The polynomial is a full set of third-degree polynomial
terms, including interactions. “Tree” refers to estimationusingprobabilities from the conditional inference tree algorithm
described in Section 5.1.2. “Logit” indicates estimation using probabilities from a logit model. “Coarse Bin” refers to
estimation using probabilities from a more coarsely defined bin estimator, as would be required in the empirical
application of this paper.
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B Online Appendix: Data and Appendix Figures and

Tables

This section describes additional details relating to the construction of the earnings

and demographic variables used in the analysis.

Race and ethnicity I construct a measure of race and ethnicity by first assigning

anyone ofHispanic origin to beHispanic, and then assigning race based onwhether

the reported race is white, black, or other. Mixed-race individuals are classified as

other.

Earnings and employment Earnings are measured as the individual’s annual

wage and salary income, expressed in constant 2010 dollars. I drop any nominal

earnings measurements greater than $600,000 or less than $20,000. I classify a

person as employed if they reported being employed at the time of the survey. I

also create a variable indicating if the individual’s spouse is employed.

Work experience I define work experience as potential experience in the usual

way: age minus number of years of schooling minus 6.

Birth place I create separate variables indicating in which state the individual

was born, and in which state the individual’s spouse was born (if applicable).

Marital status and household composition Marital status is self-reported in the

survey as one of six categories. I aggregate these categories into three: married

(whether or not residing with spouse); divorced or separated; and single or wid-

owed. Number of co-resident children is given in the survey and I distill this

information into two dummies: one or more children under the age of 5; and one

or more children under the age of 18. Family co-residence status is distilled into
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one dummy variable indicating whether the individual is in the same household

as any relative. The relationship can be blood, or through marriage.

Dwelling characteristics Home ownership status is divided into “owned” or

“rented.”
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Table B1: Sample selection details

Criterion No. obs deleted Remaining obs.
Respondents in 2010-2015 ACS — 18,699,149
Drop those without a bachelor’s degree or higher 14,689,233 4,009,916
Drop those outside of 22-54 age range 1,547,395 2,462,521
Drop those currently enrolled in school 269,606 2,192,915
Drop those currently residing in group quarters 13,752 2,179,163
Drop those not born in the US 386,866 1,792,297
Drop those with positive annual earnings below $20,000 196,246 1,596,051
Drop those with annual earnings above $600,000 1,015 1,595,036
Drop those with zero annual earnings 212,871 1,382,165
Drop females 698,912 683,253
Drop those with imputed earnings or occupations 97,994 585,259
Drop those with imputed labor force status 1,346 583,913
Final analysis sample — 583,913
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Table B2: Aggregation of the 51 detailed Department of Education majors

Education STEM Other
Primary Education Agriculture and Agr. Science Architecture
Secondary Education All Other Engineering Area, Ethnic, and Civ. Studies

Biological Sciences Art History and Fine Arts
Social Sciences Chemical Engineering Commercial Art and Design
Family and Consumer Science Chemistry Communications
International Relations Civil Engineering Film and Other Arts
Other Social Science Computer Programming Foreign Language
Philosophy and Religion Computer and Info Tech History
Political Science Earth and Other Physical Sci Journalism
Psychology Electrical Engineering Leisure Studies
Social Work and HR Engineering Tech Letters: Lit, Writing, Other

Environmental Studies Music and Speech/Drama
Business Fitness and Nutrition Prec. Prod. and Ind. Arts
Accounting General Science Protective Services
Business Mgt. and Admin. Mathematics Public Admin and Law
Economics Mechanical Engineering Public Health
Finance Medical Tech
Marketing Nursing
Misc. Bus. and Med. Support Other Med/Health Services

Physics
Note: Aggregation of the 51 detailed Department of Education majors analyzed in Altonji, Kahn, and Speer (2016).
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Table B3: List of frequent occupations for select majors: Non-advanced degree
holders

(a) Primary Education
Occupation Share(%)
Primary school teachers 31.21
Secondary school teachers 13.26
Managers and administrators, n.e.c. 4.73
Salespersons, n.e.c. 3.12
Supervisors and proprietors of sales jobs 2.94
Teachers , n.e.c. 2.06
Police, detectives, and private investigators 1.75
Retail sales clerks 1.54
Computer systems analysts and computer scientists 1.33

(b) History
Occupation Share(%)
Managers and administrators, n.e.c. 9.41
Supervisors and proprietors of sales jobs 5.41
Salespersons, n.e.c. 5.35
Primary school teachers 4.67
Military 3.62
Computer systems analysts and computer scientists 3.33
Police, detectives, and private investigators 3.11
Secondary school teachers 2.78
Managers and specialists in marketing, advertising, and public relations 2.76
Retail sales clerks 2.12
Other financial specialists 2.07
Customer service reps, investigators and adjusters, except insurance 1.98
Chief executives and public administrators 1.94
Financial managers 1.54

(c) Economics
Occupation Share(%)
Managers and administrators, n.e.c. 11.32
Other financial specialists 8.53
Salespersons, n.e.c. 7.22
Supervisors and proprietors of sales jobs 5.42
Financial managers 4.87
Accountants and auditors 4.74
Computer systems analysts and computer scientists 4.6
Financial services sales occupations 4.02
Chief executives and public administrators 3.98
Managers and specialists in marketing, advertising, and public relations 2.98
Management analysts 2.71
Computer software developers 2.23
Retail sales clerks 1.8
Customer service reps, investigators and adjusters, except insurance 1.8
Insurance sales occupations 1.58

(d) Computer Programming
Occupation Share(%)
Computer software developers 41.25
Computer systems analysts and computer scientists 18.22
Managers and administrators, n.e.c. 6.9
Managers and specialists in marketing, advertising, and public relations 1.81
Chief executives and public administrators 1.46
Supervisors and proprietors of sales jobs 1.39

Notes: Tables list occupations within the given major that are above the 2% cutoff defining related-
ness, along with three additional occupations below the cutoff.
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Table B4: List of frequent occupations for select majors: Advanced degree holders

(a) Primary Education
Occupation Share(%)
Primary school teachers 39.73
Managers in education and related fields 15.54
Secondary school teachers 14.43
Subject instructors (HS/college) 3.85
Managers and administrators, n.e.c. 2.29
Special education teachers 1.65
Clergy and religious workers 1.65
Vocational and educational counselors 1.58

(b) History
Occupation Share(%)
Lawyers 23.8
Primary school teachers 9.34
Subject instructors (HS/college) 6.38
Managers and administrators, n.e.c. 6.26
Secondary school teachers 5.25
Managers in education and related fields 4.2
Physicians 2.53
Military 2.5
Clergy and religious workers 2.27
Chief executives and public administrators 2.14
Computer systems analysts and computer scientists 1.63
Other financial specialists 1.62
Financial managers 1.51

(c) Economics
Occupation Share(%)
Lawyers 18.77
Managers and administrators, n.e.c. 9.91
Financial managers 6.55
Other financial specialists 5.78
Accountants and auditors 5.11
Chief executives and public administrators 4.46
Management analysts 3.73
Subject instructors (HS/college) 3.52
Supervisors and proprietors of sales jobs 2.68
Computer systems analysts and computer scientists 2.67
Physicians 2.61
Salespersons, n.e.c. 2.47
Economists, market researchers, and survey researchers 2.43
Managers and specialists in marketing, advertising, and public relations 2.36
Financial services sales occupations 2.05
Primary school teachers 1.62
Managers in education and related fields 1.32
Computer software developers 1.1

(d) Computer Programming
Occupation Share(%)
Computer software developers 44.97
Primary school teachers 9.38
Supervisors and proprietors of sales jobs 5.98
Computer systems analysts and computer scientists 5.71
Industrial engineers 5.1
Designers 3.86
Auto body repairers 3.48
Retail sales clerks 3.23
Managers and administrators, n.e.c. 3.15
Salespersons, n.e.c. 2.33
Customer service reps, investigators and adjusters, except insurance 2.1
Electrical engineer 1.82
Editors and reporters 1.8
Subject instructors (HS/college) 1.74

Notes: Tables list occupations within the given major that are above the 2% cutoff defining related-
ness, along with three additional occupations below the cutoff.
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Table B5: Complete list of related occupations by major: Non-advanced degree
holders

Occupation Edu. Soc. Sci. Other Bus. STEM
Chief executives and public administrators X X X X
Financial managers X X X
Human resources and labor relations managers X X
Managers and specialists in marketing, advertising, and public relations X X X X
Managers of medicine and health occupations X
Managers of food-serving and lodging establishments X
Funeral directors X
Managers of service organizations, n.e.c. X
Managers and administrators, n.e.c. X X X X X
Accountants and auditors X X
Other financial specialists X X X X
Management analysts X X X X
Personnel, HR, training, and labor relations specialists X X
Inspectors and compliance officers, outside construction X
Architects X
Aerospace engineer X
Metallurgical and materials engineers, variously phrased X
Chemical engineers X
Civil engineers X X
Electrical engineer X
Industrial engineers X
Mechanical engineers X
Not-elsewhere-classified engineers X
Computer systems analysts and computer scientists X X X X
Actuaries X
Chemists X
Atmospheric and space scientists X
Geologists X
Physical scientists, n.e.c. X
Agricultural and food scientists X
Biological scientists X
Foresters and conservation scientists X
Registered nurses X
Pharmacists X
Respiratory therapists X
Occupational therapists X
Physical therapists X
Therapists, n.e.c. X
Primary school teachers X X X X
Secondary school teachers X X X
Teachers , n.e.c. X X
Vocational and educational counselors X
Economists, market researchers, and survey researchers X
Social workers X
Recreation workers X
Clergy and religious workers X X
Writers and authors X
Designers X
Musician or composer X
Actors, directors, producers X
Art makers: painters, sculptors, craft-artists, and print-makers X
Photographers X
Editors and reporters X
Athletes, sports instructors, and officials X
Clinical laboratory technologies and technicians X
Radiologic tech specialists X
Health technologists and technicians, n.e.c. X X
Engineering technicians, n.e.c. X
Drafters X
Surveyors, cartographers, mapping scientists and technicians X
Chemical technicians X
Airplane pilots and navigators X
Air traffic controllers X
Computer software developers X X X X
Legal assistants, paralegals, legal support, etc X
Supervisors and proprietors of sales jobs X X X X X
Insurance sales occupations X
Financial services sales occupations X
Salespersons, n.e.c. X X X X X
Retail sales clerks X X X X
Office supervisors X
Customer service reps, investigators and adjusters, except insurance X X X
Fire fighting, prevention, and inspection X X
Police, detectives, and private investigators X X X
Other law enforcement: sheriffs, bailiffs, correctional institution officers X
Guards, watchmen, doorkeepers X
Waiter/waitress X
Cooks, variously defined X X
Welfare service aides X X
Farmers (owners and tenants) X
Farm workers X
Supervisors of agricultural occupations X
Gardeners and groundskeepers X
Supervisors of construction work X
Production supervisors or foremen X
Military X X X

Note: Occupations not related to any college major are excluded from this table.
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Table B6: Complete list of related occupations by major: Advanced degree holders

Occupation Edu. Soc. Sci. Other Bus. STEM
Chief executives and public administrators X X X X X
Financial managers X X X X
Human resources and labor relations managers X
Managers and specialists in marketing, advertising, and public relations X X X X
Managers in education and related fields X X X X X
Managers of medicine and health occupations X X
Managers of food-serving and lodging establishments X
Managers of service organizations, n.e.c. X X
Managers and administrators, n.e.c. X X X X X
Accountants and auditors X X
Other financial specialists X X X
Management analysts X X X X
Personnel, HR, training, and labor relations specialists X X
Architects X
Aerospace engineer X X
Chemical engineers X
Civil engineers X
Electrical engineer X
Industrial engineers X
Mechanical engineers X
Not-elsewhere-classified engineers X
Computer systems analysts and computer scientists X X X X
Operations and systems researchers and analysts X
Actuaries X
Mathematicians and mathematical scientists X
Physicists and astronomers X
Chemists X
Atmospheric and space scientists X
Geologists X
Physical scientists, n.e.c. X
Agricultural and food scientists X
Biological scientists X
Foresters and conservation scientists X
Medical scientists X
Physicians X X X X
Dentists X X
Veterinarians X
Other health and therapy X
Registered nurses X
Pharmacists X
Physical therapists X
Speech therapists X
Therapists, n.e.c. X
Physicians assistants X
Subject instructors (HS/college) X X X X X
Primary school teachers X X X X X
Secondary school teachers X X X X
Teachers , n.e.c. X X
Vocational and educational counselors X X X
Archivists and curators X
Economists, market researchers, and survey researchers X
Psychologists X
Urban and regional planners X
Social workers X X
Clergy and religious workers X X
Lawyers X X X X
Writers and authors X
Designers X X
Musician or composer X
Art makers: painters, sculptors, craft-artists, and print-makers X
Editors and reporters X
Athletes, sports instructors, and officials X
Clinical laboratory technologies and technicians X
Radiologic tech specialists X
Health technologists and technicians, n.e.c. X X
Airplane pilots and navigators X
Computer software developers X X
Supervisors and proprietors of sales jobs X X X X
Financial services sales occupations X
Salespersons, n.e.c. X X X X
Retail sales clerks X
Office supervisors X
Customer service reps, investigators and adjusters, except insurance X
Police, detectives, and private investigators X X
Guards, watchmen, doorkeepers X
Cooks, variously defined X
Nursing aides, orderlies, and attendants X
Welfare service aides X
Farmers (owners and tenants) X
Auto body repairers X
Production supervisors or foremen X
Military X X X X

Note: Occupations not related to any college major are excluded from this table.
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Table B7: Aggregation of locations

Location 2010 Population
California 39,144,818
OH, IN, MI, WI 33,927,016
Texas 27,469,114
NC, SC, GA 25,153,808
Mountain Census Division 23,530,498
NJ, PA 21,760,516
West North Central Census Division 21,120,392
Florida 20,271,272
New York 19,795,791
East South Central Census Division 18,876,703
WV, VA, DC, MD, DE 17,851,684
New England Census Division 14,727,584
AK, HI, OR, WA 13,369,363
Illinois 12,859,995
OK, AR, LA 11,560,266

Notes: The Mountain Census Division includes the following states:
AZ, NM, CO, UT, NV, ID, MT, WY. The West North Central Census
Division includes the following states: ND, SD, NE, KS, MO, IA, and
MN. The East South Central Census Division is comprised of AL,MS,
TN, and KY. The New England Census Division is comprised of CT,
RI, MA, VT, NH, and ME.
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Table B8: Predictive performance of various algorithms

Classification algorithm
Performance Criterion Logit Bin Tree
Training set performance:

Accuracy 37.67% 36.43% 38.85%
Kappa 34.89% 33.62% 36.13%

Test set performance:
Accuracy 37.32% 35.29% 37.68%
Kappa 34.54% 32.43% 34.92%

Note: “Logit” refers to a flexibly specified logit; “Bin” refers to
a bin estimator; “Tree” refers to the conditional inference tree
classification algorithm detailed in Section 5.1.2. I estimate each
algorithm on a subset of the 2010-2015 ACS sample included in
this paper and compute predictive performance out-of-sample
using a holdout sample. To measure predictive performance,
I compute the predicted alternative, defined as the alternative
with the largest predicted probability. Predictive performance is
measured via a multi-dimensional confusion matrix using two
related but separate metrics: Accuracy and Kappa.
Accuracy = number of correctly classified predictions

number of predictions .

Kappa = Accuracy−Expected Accuracy
1−Expected Accuracy .

Expected Accuracy is defined as Expected Accuracy =∑�

9=1
[ (∑

8 38 9
) (∑

8 ?8 9
) ]
/# � , where 38 9 represents the observed

class for observation 8 in the data, ?8 9 represents the predicted
class for observation 8, and # represents the total number of ob-
servations. The Kappa statistic is meant to capture predictive
performance net of guessing. For example, the Kappa statistic
penalizes strategies that would predict that all observations be-
long to one class (for example, such strategies could yield high
accuracy for classification problems where one class is extremely
rare).
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Figure B1: Scatter plots of uncorrected and corrected returns to major and working
in an unrelated occupation

(a) Social Sciences
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(d) STEM
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Notes: Scatter plots of return to major for those working in an unrelated occupation. Solid black
lines are 45-degree lines. Blue circles or dots are state-specific pairs marking the uncorrected and
corrected returns. Solid dots indicate statistically significant difference at the 90% level or higher.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure B2: Scatter plots of uncorrected and corrected returns to major and working
in a related occupation

(a) Social Sciences
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Notes: Scatter plots of return to major for those working in an related occupation. Solid black lines
are 45-degree lines. Blue dots are state-specific pairs marking the uncorrected and corrected
returns.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure B3: Scatter plots of uncorrected and corrected returns to major and working
in an unrelated occupation, adv. degree holders
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Notes: Scatter plots of return to major for those working in an unrelated occupation. Solid black
lines are 45-degree lines. Blue circles or dots are state-specific pairs marking the uncorrected and
corrected returns. Solid dots indicate statistically significant difference at the 90% level or higher.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Figure B4: Scatter plots of uncorrected and corrected returns to major and working
in a related occupation, adv. degree holders
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Notes: Scatter plots of return to major for those working in an related occupation. Solid black lines
are 45-degree lines. Blue circles or dots are state-specific pairs marking the uncorrected and
corrected returns. Solid dots indicate statistically significant difference at the 90% level or higher.
Source: Author’s calculations from American Community Survey, 2010-2015.
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Table B9: Return to STEM majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms
California 0.161 0.162 0.015 1.937

(0.036) (0.039) [0.901] [0.051]
Texas 0.254 0.247 0.937 5.802

(0.033) (0.041) [0.333] [0.000]
Florida 0.173 0.165 2.887 4.789

(0.040) (0.044) [0.089] [0.000]
Illinois 0.210 0.191 1.561 2.649

(0.037) (0.035) [0.212] [0.010]
New York 0.180 0.139 2.166 4.874

(0.039) (0.040) [0.141] [0.000]
New England 0.213 0.185 3.365 5.033

(0.038) (0.039) [0.067] [0.000]
New Jersey & Penn. 0.308 0.279 6.257 5.400

(0.030) (0.036) [0.012] [0.000]
WV, VA, DC, MD, DE 0.221 0.215 0.883 6.509

(0.032) (0.043) [0.347] [0.000]
NC, SC, GA 0.241 0.235 1.305 3.193

(0.029) (0.035) [0.253] [0.002]
E S Central Div 0.218 0.202 4.337 2.730

(0.031) (0.035) [0.037] [0.010]
OH, IN, MI, WI 0.220 0.194 2.850 2.484

(0.022) (0.032) [0.091] [0.012]
W N Central Div 0.187 0.169 1.004 4.240

(0.024) (0.030) [0.316] [0.000]
OK, AR, LA 0.222 0.200 5.890 3.381

(0.040) (0.042) [0.015] [0.002]
Mountain Div 0.231 0.228 0.075 2.055

(0.030) (0.042) [0.784] [0.041]
OR, WA, AK, HI 0.167 0.175 0.631 1.970

(0.041) (0.033) [0.427] [0.051]
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Table B10: Return to STEM majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms
California 0.444 0.447 0.044 4.905

(0.032) (0.033) [0.834] [0.000]
Texas 0.344 0.349 0.294 6.917

(0.023) (0.033) [0.587] [0.000]
Florida 0.460 0.456 0.228 3.366

(0.031) (0.035) [0.633] [0.002]
Illinois 0.381 0.328 3.319 5.491

(0.034) (0.041) [0.068] [0.000]
New York 0.393 0.333 3.631 13.871

(0.050) (0.063) [0.057] [0.000]
New England 0.380 0.349 3.545 9.652

(0.033) (0.040) [0.060] [0.000]
New Jersey & Penn. 0.345 0.311 3.003 5.590

(0.023) (0.030) [0.083] [0.000]
WV, VA, DC, MD, DE 0.439 0.438 0.016 5.582

(0.027) (0.030) [0.899] [0.000]
NC, SC, GA 0.481 0.485 0.178 3.251

(0.024) (0.028) [0.673] [0.002]
E S Central Div 0.464 0.458 0.457 1.395

(0.027) (0.036) [0.499] [0.208]
OH, IN, MI, WI 0.400 0.364 2.966 5.115

(0.018) (0.023) [0.085] [0.000]
W N Central Div 0.401 0.376 2.008 4.081

(0.021) (0.029) [0.157] [0.000]
OK, AR, LA 0.482 0.477 0.325 4.775

(0.033) (0.040) [0.568] [0.000]
Mountain Div 0.481 0.479 0.032 1.439

(0.025) (0.018) [0.857] [0.178]
OR, WA, AK, HI 0.459 0.459 0.003 1.286

(0.037) (0.035) [0.958] [0.258]
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Table B11: Return to Business majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms
California 0.137 0.140 0.121 1.937

(0.036) (0.041) [0.728] [0.051]
Texas 0.161 0.155 1.300 5.802

(0.033) (0.035) [0.254] [0.000]
Florida 0.165 0.158 1.811 4.789

(0.040) (0.051) [0.178] [0.000]
Illinois 0.174 0.156 2.276 2.649

(0.037) (0.029) [0.131] [0.010]
New York 0.172 0.134 1.891 4.874

(0.039) (0.045) [0.169] [0.000]
New England 0.178 0.160 1.029 5.033

(0.038) (0.039) [0.310] [0.000]
New Jersey & Penn. 0.259 0.241 3.599 5.400

(0.029) (0.038) [0.058] [0.000]
WV, VA, DC, MD, DE 0.176 0.175 0.048 6.509

(0.032) (0.047) [0.826] [0.000]
NC, SC, GA 0.151 0.143 1.719 3.193

(0.029) (0.033) [0.190] [0.002]
E S Central Div 0.151 0.138 2.484 2.730

(0.031) (0.031) [0.115] [0.010]
OH, IN, MI, WI 0.198 0.179 1.265 2.484

(0.022) (0.030) [0.261] [0.012]
W N Central Div 0.186 0.177 0.265 4.240

(0.024) (0.029) [0.607] [0.000]
OK, AR, LA 0.104 0.089 3.673 3.381

(0.040) (0.046) [0.055] [0.002]
Mountain Div 0.163 0.159 0.492 2.055

(0.030) (0.041) [0.483] [0.041]
OR, WA, AK, HI 0.177 0.180 0.129 1.970

(0.041) (0.039) [0.720] [0.051]
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Table B12: Return to Business majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms
California 0.460 0.467 0.286 4.905

(0.032) (0.037) [0.593] [0.000]
Texas 0.380 0.385 0.663 6.917

(0.023) (0.034) [0.415] [0.000]
Florida 0.500 0.500 0.000 3.366

(0.030) (0.037) [0.988] [0.002]
Illinois 0.435 0.404 3.825 5.491

(0.033) (0.036) [0.050] [0.000]
New York 0.467 0.413 3.556 13.871

(0.049) (0.065) [0.059] [0.000]
New England 0.432 0.410 1.424 9.652

(0.033) (0.041) [0.233] [0.000]
New Jersey & Penn. 0.411 0.382 2.829 5.590

(0.023) (0.030) [0.093] [0.000]
WV, VA, DC, MD, DE 0.449 0.451 0.110 5.582

(0.027) (0.038) [0.741] [0.000]
NC, SC, GA 0.502 0.509 0.917 3.251

(0.024) (0.030) [0.338] [0.002]
E S Central Div 0.463 0.463 0.007 1.395

(0.027) (0.037) [0.933] [0.208]
OH, IN, MI, WI 0.420 0.393 1.734 5.115

(0.018) (0.029) [0.188] [0.000]
W N Central Div 0.407 0.390 0.906 4.081

(0.021) (0.030) [0.341] [0.000]
OK, AR, LA 0.485 0.485 0.011 4.775

(0.033) (0.047) [0.916] [0.000]
Mountain Div 0.483 0.481 0.153 1.439

(0.025) (0.024) [0.696] [0.178]
OR, WA, AK, HI 0.443 0.442 0.032 1.286

(0.037) (0.034) [0.857] [0.258]
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Table B13: Return to Soc. Sci. majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms
California 0.030 0.045 0.497 1.937

(0.037) (0.045) [0.481] [0.051]
Texas 0.066 0.054 1.417 5.802

(0.036) (0.043) [0.234] [0.000]
Florida 0.052 0.044 2.878 4.789

(0.042) (0.059) [0.090] [0.000]
Illinois 0.022 0.013 0.137 2.649

(0.041) (0.035) [0.711] [0.010]
New York 0.107 0.081 0.891 4.874

(0.041) (0.045) [0.345] [0.000]
New England 0.114 0.101 0.313 5.033

(0.040) (0.043) [0.576] [0.000]
New Jersey & Penn. 0.137 0.105 2.114 5.400

(0.032) (0.039) [0.146] [0.000]
WV, VA, DC, MD, DE 0.048 0.056 0.436 6.509

(0.034) (0.045) [0.509] [0.000]
NC, SC, GA 0.101 0.094 0.787 3.193

(0.032) (0.040) [0.375] [0.002]
E S Central Div -0.006 -0.014 0.807 2.730

(0.035) (0.035) [0.369] [0.010]
OH, IN, MI, WI 0.030 0.021 0.762 2.484

(0.024) (0.030) [0.383] [0.012]
W N Central Div 0.017 -0.018 4.604 4.240

(0.027) (0.030) [0.032] [0.000]
OK, AR, LA -0.086 -0.102 3.138 3.381

(0.047) (0.044) [0.076] [0.002]
Mountain Div 0.071 0.070 0.012 2.055

(0.032) (0.044) [0.913] [0.041]
OR, WA, AK, HI 0.006 0.008 0.065 1.970

(0.042) (0.037) [0.798] [0.051]
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Table B14: Return to Soc. Sci. majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms
California 0.312 0.331 2.963 4.905

(0.034) (0.036) [0.085] [0.000]
Texas 0.156 0.153 0.127 6.917

(0.029) (0.041) [0.721] [0.000]
Florida 0.313 0.312 0.019 3.366

(0.037) (0.043) [0.891] [0.002]
Illinois 0.244 0.199 2.512 5.491

(0.040) (0.055) [0.113] [0.000]
New York 0.212 0.181 0.950 13.871

(0.053) (0.064) [0.330] [0.000]
New England 0.231 0.220 0.263 9.652

(0.037) (0.042) [0.608] [0.000]
New Jersey & Penn. 0.155 0.146 0.146 5.590

(0.028) (0.040) [0.702] [0.000]
WV, VA, DC, MD, DE 0.263 0.280 3.683 5.582

(0.031) (0.038) [0.055] [0.000]
NC, SC, GA 0.282 0.285 0.054 3.251

(0.028) (0.030) [0.816] [0.002]
E S Central Div 0.187 0.184 0.069 1.395

(0.034) (0.052) [0.792] [0.208]
OH, IN, MI, WI 0.151 0.143 0.118 5.115

(0.023) (0.029) [0.731] [0.000]
W N Central Div 0.159 0.149 0.211 4.081

(0.028) (0.041) [0.646] [0.000]
OK, AR, LA 0.195 0.178 3.045 4.775

(0.044) (0.065) [0.081] [0.000]
Mountain Div 0.290 0.291 0.017 1.439

(0.029) (0.032) [0.896] [0.178]
OR, WA, AK, HI 0.243 0.242 0.020 1.286

(0.041) (0.036) [0.888] [0.258]
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Table B15: Return to Adv. Deg. STEM majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms
California 0.192 0.173 1.287 1.937

(0.058) (0.062) [0.257] [0.051]
Texas 0.108 0.101 0.315 5.802

(0.067) (0.090) [0.575] [0.000]
Florida 0.149 0.154 0.142 4.789

(0.085) (0.070) [0.706] [0.000]
Illinois 0.179 0.150 0.830 2.649

(0.079) (0.086) [0.362] [0.010]
New York 0.250 0.183 1.577 4.874

(0.060) (0.081) [0.209] [0.000]
New England 0.161 0.122 1.203 5.033

(0.065) (0.091) [0.273] [0.000]
New Jersey & Penn. 0.258 0.192 6.158 5.400

(0.061) (0.067) [0.013] [0.000]
WV, VA, DC, MD, DE 0.279 0.255 1.408 6.509

(0.055) (0.076) [0.235] [0.000]
NC, SC, GA 0.113 0.102 0.485 3.193

(0.062) (0.066) [0.486] [0.002]
E S Central Div 0.241 0.229 0.589 2.730

(0.079) (0.090) [0.443] [0.010]
OH, IN, MI, WI 0.229 0.204 0.892 2.484

(0.054) (0.070) [0.345] [0.012]
W N Central Div 0.127 0.099 2.386 4.240

(0.069) (0.107) [0.122] [0.000]
OK, AR, LA 0.233 0.240 0.230 3.381

(0.116) (0.152) [0.631] [0.002]
Mountain Div 0.378 0.372 0.816 2.055

(0.069) (0.080) [0.366] [0.041]
OR, WA, AK, HI 0.439 0.421 2.737 1.970

(0.093) (0.094) [0.098] [0.051]
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Table B16: Return to Adv. Deg. STEM majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State STEM Return STEM Return for Difference Correction Terms
California 0.253 0.215 4.298 4.905

(0.041) (0.059) [0.038] [0.000]
Texas 0.098 0.076 4.203 6.917

(0.046) (0.057) [0.040] [0.000]
Florida 0.288 0.265 3.991 3.366

(0.061) (0.083) [0.046] [0.002]
Illinois 0.212 0.175 1.369 5.491

(0.054) (0.067) [0.242] [0.000]
New York 0.135 0.097 0.679 13.871

(0.045) (0.060) [0.410] [0.000]
New England 0.124 0.080 2.288 9.652

(0.044) (0.053) [0.130] [0.000]
New Jersey & Penn. 0.329 0.254 6.393 5.590

(0.044) (0.059) [0.011] [0.000]
WV, VA, DC, MD, DE 0.200 0.180 3.535 5.582

(0.040) (0.050) [0.060] [0.000]
NC, SC, GA 0.232 0.213 6.744 3.251

(0.046) (0.049) [0.009] [0.002]
E S Central Div 0.196 0.174 3.755 1.395

(0.055) (0.056) [0.053] [0.208]
OH, IN, MI, WI 0.202 0.161 2.731 5.115

(0.036) (0.056) [0.098] [0.000]
W N Central Div 0.200 0.163 4.223 4.081

(0.046) (0.076) [0.040] [0.000]
OK, AR, LA 0.169 0.130 2.625 4.775

(0.079) (0.132) [0.105] [0.000]
Mountain Div 0.153 0.153 0.004 1.439

(0.051) (0.054) [0.949] [0.178]
OR, WA, AK, HI 0.184 0.178 0.589 1.286

(0.062) (0.088) [0.443] [0.258]
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Table B17: Return to Adv. Deg. Business majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms
California 0.093 0.076 0.931 1.937

(0.060) (0.069) [0.334] [0.051]
Texas 0.071 0.071 0.000 5.802

(0.068) (0.085) [0.996] [0.000]
Florida 0.097 0.099 0.034 4.789

(0.086) (0.073) [0.854] [0.000]
Illinois 0.169 0.143 0.523 2.649

(0.080) (0.096) [0.470] [0.010]
New York 0.136 0.074 1.345 4.874

(0.061) (0.085) [0.246] [0.000]
New England 0.088 0.047 1.117 5.033

(0.067) (0.092) [0.290] [0.000]
New Jersey & Penn. 0.209 0.138 7.567 5.400

(0.062) (0.066) [0.006] [0.000]
WV, VA, DC, MD, DE 0.312 0.282 2.017 6.509

(0.056) (0.074) [0.156] [0.000]
NC, SC, GA 0.132 0.128 0.059 3.193

(0.063) (0.066) [0.808] [0.002]
E S Central Div 0.178 0.169 0.391 2.730

(0.081) (0.087) [0.532] [0.010]
OH, IN, MI, WI 0.162 0.134 0.998 2.484

(0.055) (0.076) [0.318] [0.012]
W N Central Div 0.065 0.036 2.823 4.240

(0.071) (0.109) [0.093] [0.000]
OK, AR, LA 0.276 0.279 0.041 3.381

(0.119) (0.143) [0.839] [0.002]
Mountain Div 0.328 0.325 0.171 2.055

(0.071) (0.081) [0.680] [0.041]
OR, WA, AK, HI 0.373 0.357 1.365 1.970

(0.096) (0.100) [0.243] [0.051]
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Table B18: Return to Adv. Deg. Business majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Business Return Business Return for Difference Correction Terms
California 0.310 0.277 3.719 4.905

(0.042) (0.058) [0.054] [0.000]
Texas 0.051 0.028 4.804 6.917

(0.046) (0.062) [0.028] [0.000]
Florida 0.205 0.181 3.449 3.366

(0.061) (0.074) [0.063] [0.002]
Illinois 0.227 0.190 1.687 5.491

(0.054) (0.067) [0.194] [0.000]
New York 0.236 0.211 0.330 13.871

(0.045) (0.071) [0.566] [0.000]
New England 0.168 0.120 2.345 9.652

(0.045) (0.053) [0.126] [0.000]
New Jersey & Penn. 0.264 0.195 4.765 5.590

(0.045) (0.060) [0.029] [0.000]
WV, VA, DC, MD, DE 0.193 0.171 3.756 5.582

(0.041) (0.047) [0.053] [0.000]
NC, SC, GA 0.173 0.155 6.920 3.251

(0.047) (0.048) [0.009] [0.002]
E S Central Div 0.103 0.079 3.812 1.395

(0.055) (0.059) [0.051] [0.208]
OH, IN, MI, WI 0.128 0.080 3.151 5.115

(0.037) (0.061) [0.076] [0.000]
W N Central Div 0.162 0.124 4.027 4.081

(0.048) (0.067) [0.045] [0.000]
OK, AR, LA 0.006 -0.041 3.532 4.775

(0.081) (0.105) [0.060] [0.000]
Mountain Div 0.073 0.078 0.459 1.439

(0.052) (0.062) [0.498] [0.178]
OR, WA, AK, HI 0.128 0.123 0.359 1.286

(0.064) (0.081) [0.549] [0.258]
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Table B19: Return to Adv. Deg. Soc. Sci. majors in unrelated occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms
California 0.174 0.146 0.511 1.937

(0.060) (0.074) [0.475] [0.051]
Texas 0.089 0.086 0.049 5.802

(0.072) (0.090) [0.825] [0.000]
Florida 0.165 0.167 0.016 4.789

(0.088) (0.073) [0.898] [0.000]
Illinois 0.167 0.142 0.891 2.649

(0.082) (0.093) [0.345] [0.010]
New York 0.184 0.111 1.782 4.874

(0.063) (0.081) [0.182] [0.000]
New England 0.110 0.054 2.206 5.033

(0.068) (0.089) [0.137] [0.000]
New Jersey & Penn. 0.241 0.179 6.539 5.400

(0.064) (0.071) [0.011] [0.000]
WV, VA, DC, MD, DE 0.330 0.306 1.313 6.509

(0.056) (0.073) [0.252] [0.000]
NC, SC, GA 0.068 0.057 0.495 3.193

(0.066) (0.075) [0.482] [0.002]
E S Central Div 0.232 0.220 0.574 2.730

(0.085) (0.083) [0.449] [0.010]
OH, IN, MI, WI 0.217 0.191 0.890 2.484

(0.058) (0.076) [0.345] [0.012]
W N Central Div 0.112 0.105 0.093 4.240

(0.072) (0.115) [0.761] [0.000]
OK, AR, LA 0.239 0.245 0.250 3.381

(0.125) (0.161) [0.617] [0.002]
Mountain Div 0.363 0.356 0.747 2.055

(0.072) (0.070) [0.387] [0.041]
OR, WA, AK, HI 0.460 0.443 0.902 1.970

(0.095) (0.086) [0.342] [0.051]
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Table B20: Return to Adv. Deg. Soc. Sci. majors in related occupation, by location (uncorrected and corrected)

Uncorrected Corrected "2 Test Wald Test for
State Soc. Sci. Return Soc. Sci. Return for Difference Correction Terms
California 0.195 0.147 3.590 4.905

(0.045) (0.058) [0.058] [0.000]
Texas 0.016 -0.003 2.452 6.917

(0.052) (0.073) [0.117] [0.000]
Florida 0.198 0.175 3.659 3.366

(0.066) (0.092) [0.056] [0.002]
Illinois 0.114 0.082 1.115 5.491

(0.062) (0.081) [0.291] [0.000]
New York 0.210 0.157 0.873 13.871

(0.051) (0.086) [0.350] [0.000]
New England 0.109 0.053 3.010 9.652

(0.050) (0.056) [0.083] [0.000]
New Jersey & Penn. 0.224 0.139 7.469 5.590

(0.050) (0.072) [0.006] [0.000]
WV, VA, DC, MD, DE 0.211 0.178 6.762 5.582

(0.043) (0.056) [0.009] [0.000]
NC, SC, GA 0.106 0.088 5.874 3.251

(0.051) (0.052) [0.015] [0.002]
E S Central Div 0.070 0.044 3.042 1.395

(0.061) (0.071) [0.081] [0.208]
OH, IN, MI, WI 0.100 0.037 5.494 5.115

(0.041) (0.062) [0.019] [0.000]
W N Central Div 0.077 0.027 6.133 4.081

(0.052) (0.078) [0.013] [0.000]
OK, AR, LA 0.009 -0.022 1.338 4.775

(0.089) (0.154) [0.247] [0.000]
Mountain Div 0.087 0.091 0.262 1.439

(0.055) (0.064) [0.609] [0.178]
OR, WA, AK, HI 0.047 0.044 0.055 1.286

(0.068) (0.083) [0.815] [0.258]
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