
BSI TR 03137 – Part 2

JAB Code (Just Another Bar Code)

Color Bar Code Symbology
Specification

Federal Office for Information Security
Post Box 20 03 63
D-53133 Bonn
Phone: +49 22899 9582-0
E-Mail: eid@bsi.bund.de
Internet: https://www.bsi.bund.de
© Federal Office for Information Security 2016

Table of Contents

Table of Contents
1 Introduction and Scope... 5

2 Terms and definitions, abbreviations and symbols, mathematical and logical operations.............................6

2.1 Terms and definitions.. 6
2.1.1 Module... 6
2.1.2 Finder pattern... 6
2.1.3 Alignment pattern.. 6
2.1.4 Data interleaving... 6
2.1.5 Color palette.. 6
2.1.6 Padding bit / Stuffing bit... 6
2.1.7 Master symbol.. 6
2.1.8 Slave symbol.. 6
2.1.9 Host symbol... 6

2.2 Abbreviations... 7

2.3 Mathematical symbols.. 7

2.4 Mathematical and logical operations... 7

3 Symbol description.. 8

3.1 Basic characteristics.. 8

3.2 Summary of additional features... 9

3.3 Symbol structure.. 9
3.3.1 Square master symbol... 9
3.3.2 Rectangle master symbol.. 10
3.3.3 Square slave symbol.. 10
3.3.4 Rectangle slave symbol.. 11
3.3.5 Symbol side size.. 11
3.3.6 Finder pattern.. 14
3.3.7 Alignment pattern... 14
3.3.8 Color palette.. 18
3.3.9 Metadata... 18
3.3.10 Encoded data.. 18

3.4 Metadata structure... 18
3.4.1 Metadata of master symbol... 19
3.4.2 Metadata of slave symbol.. 22
3.4.3 Metadata error encodation.. 23
3.4.4 Reserved modules for metadata and color palette...24

3.5 Symbol Cascading... 30
3.5.1 Symbol docking rules... 30
3.5.2 Symbol decoding order... 30

4 Symbol generation.. 34

4.1 Encode procedure overview... 34

4.2 Data analysis.. 34

4.3 Encoding modes.. 36
4.3.1 Uppercase mode.. 36
4.3.2 Lowercase mode.. 36
4.3.3 Numeric mode... 37
4.3.4 Punctuation mode... 37
4.3.5 Mixed mode.. 38

Federal Office for Information Security 3

Table of Contents

4.3.6 Alphanumeric mode... 38
4.3.7 Byte mode.. 38
4.3.8 Extended Channel Interpretation (ECI) mode..38
4.3.9 FNC1 mode.. 39

4.4 Error correction... 39
4.4.1 Selectable error correction levels.. 40
4.4.2 Stuffing Bits... 40
4.4.3 Generating the error correction stream... 40

4.5 Data interleaving... 41

4.6 Metadata module reservation... 41

4.7 Data module encodation and placement... 42

4.8 Data masking... 43
4.8.1 Data mask patterns.. 43
4.8.2 Evaluation of data masking results.. 44

4.9 Metadata generation and module placement.. 45

5 User Guidelines... 46

5.1 Dimensions.. 46

5.2 Use selection of module color... 46

5.3 User selection of error correction level... 46

5.4 User selection of symbol and code shape.. 46

5.5 Guidelines for symbol print and scan... 47

6 Reference decode algorithm... 48

6.1 Decoding procedure overview.. 48

6.2 Locating the finder patterns... 48

6.3 Decoding the metadata.. 49

6.4 Locating the alignment patterns and establishing the sampling grid..50

6.5 Constructing the color palettes.. 51

6.6 Decoding the data message.. 51

6.7 Locating and decoding slave symbols... 52

Annex A: Error detection and correction... 53

Annex B: Matrix generation for metadata... 55

Annex C: JAB Code symbol encoding example...56

Annex D: Optimization of bit stream length.. 58

Annex E: Interleaving algorithm.. 60

Annex F: Guidelines for module color selection and color palette construction..61

4 Bundesamt für Sicherheit in der Informationstechnik

Introduction and Scope 1

1 Introduction and Scope
JAB Code is a color two-dimensional matrix symbology whose basic symbols are made of colorful square
modules arranged in either square or rectangle grids. JAB Code has two types of basic symbols, named as
master symbol and slave symbol. A JAB Code contains one master symbol and optionally multiple slave
symbols. Master symbol contains four finder patterns located at the corners of the symbol, while slave
symbol contains no finder pattern. A slave symbol can be docked to a master symbol or another docked slave
symbol in either horizontal or vertical direction. JAB Code can encode from small to large amount of data
correlated to user-specified percentages of error correction.

This specification defines the requirements for the symbology known as JAB Code. It specifies the JAB Code
symbology characteristics, symbol structure, symbol dimensions, symbol cascading rules, data character
encodation, error correction rules, user-selectable application parameters, print quality requirements and a
reference decode algorithm.

Federal Office for Information Security 5

2 Terms and definitions, abbreviations and symbols, mathematical and logical operations

2 Terms and definitions, abbreviations and symbols,
mathematical and logical operations

2.1 Terms and definitions

2.1.1 Module

A module is a single cell in a matrix symbology which is elemental entity used to encode data. In JAB Code a
module is the basic encoding entity which is a square in one color.

2.1.2 Finder pattern

Finder pattern is a fixed reference pattern at predefined positions in a matrix symbology, which enables the
decode software to locate the JAB symbol in an image.

2.1.3 Alignment pattern

Alignment pattern is a fixed reference pattern at predefined positions in a matrix symbology, which enables
the decode software to resynchronize the coordinate mapping of the modules in the event of moderate
amounts of distortion of the image.

2.1.4 Data interleaving

Data interleaving is a procedure which pseudo-randomly arranges the data in a matrix symbology.

2.1.5 Color palette

Color palette is a set of reference modules of used colors in the symbol, which is located at predefined
positions in a matrix symbology.

2.1.6 Padding bit / Stuffing bit

Padding/stuffing bits are the bits which are used to fill empty positions of the available encoding capacity
after the final bit of the encoded data. Padding/stuffing bits do not represent data.

2.1.7 Master symbol

Mater symbol in JAB Code is the main symbol which contains finder patterns and is used to locate the whole
JAB code.

2.1.8 Slave symbol

Slave symbol in JAB Code is appending symbols which may be used to encode more data with a lower
overhead in terms of auxiliary modules.

2.1.9 Host symbol

Host symbol is the symbol in a JAB Code which docks slave symbols on its horizontal or vertical sides. Either
master symbol or slave symbol may be a host symbol.

6 Federal Office for Information Security

Terms and definitions, abbreviations and symbols, mathematical and logical operations 2

2.2 Abbreviations

JAB Just Another Bar code

LDPC Low-Density Parity-Check code

SS in master symbol: symbol shape flag / in slave symbol: same shape and size flag

VF side-version fag

MSK masking reference

SF slave position flag

SE same error correction level

V side-version

E error correction parameter

S slave positions

m the raw data bits

c transmitted codeword

r received codeword

L number of iterations

2.3 Mathematical symbols

For the purposes of this document, the following mathematical symbols apply:

Nc the module color mode indicating the number of module colors in the symbol

C the symbol capacity in number of bits

Pn the symbol net payload (the number of raw data bits)

Pg the symbol gross payload (the number of encoded data bits)

K the number of error correction bits in the symbol, equal to Pg-Pn

H the parity check matrix of LDPC code

wr the number of 1’s in each row in H

wc the number of 1’s in each column in H

2.4 Mathematical and logical operations

For the purposes of this document, the following mathematical and logic operations apply.

max(x,y) is the greater of x and y

div is the integer division operator

mod is the remainder after division

XOR is the exclusive-or logic function that outputs one only when the two inputs differ.

Federal Office for Information Security 7

3 Symbol description

3 Symbol description

3.1 Basic characteristics

a. Encodable character set

(1) numeric data (digits 0 – 9; space, two punctuation characters: , .);

(2) uppercase letters (A – Z; space);

(3) lowercase letters (a – z; space);

(4) punctuation marks (32 characters, see Table 12);

(5) mixed characters (seven Germanic umlauts Ä Ö Ü ä ö ü ß; two other marks; control characters
and combinations, see Table 12);

(6) alphanumeric data (digits 0 – 9; uppercase letters A – Z; lowercase letters a – z; space);

(7) byte data (default interpretation: ISO/IEC 8859-15, corresponding to ECI 000017).

b. Symbol type

(1) In JAB Code there are two types of symbols: master symbol and slave symbol.

(2) A JAB Code may contain one master symbol and optionally multiple slave symbols.

c. Symbol shape

(1) Master symbol and slave symbol can be of either square or rectangle form.

(2) Master symbol and slave symbol in a JAB Code may be of different shapes.

d. Symbol size

(1) The smallest size of JAB Code symbol side (master or slave) is 21 and the largest is 145, namely
minimal 21×21 modules square and the maximal 145×145 modules.

(2) No quiet zone is required outside the bounds of the symbol.

e. Module color

(1) The number of module colors is configurable in eight modes.

(2) The minimal number of module colors is 4 and the maximal number of colors is 256.

(3) Guidelines for color selection are given in Annex F.

f. Representation of data

(1) A module represents log2(Nc) binary bits. See Section 4.7.

(2) The binary bits that a module represents correspond to the index value of the module color in
the color palette.

g. Data capacity

(1) The data capacity of JAB Code depends on the symbol size, the number of module colors, and
the error correction level.

(2) The capacity of a single-symbol square code is listed in Table 1.

h. Selectable error correction

(1) User-selectable error correction levels are supported.

(2) In one JAB code, different error correction levels may be configured in each symbol.

8 Federal Office for Information Security

Symbol description 3

i. Symbol cascading

(1) Slave symbols can be docked to the side of a master symbol or other slave symbols.

(2) JAB Code may have an arbitrary form by cascading master and slave symbols in horizontal and
vertical directions.

j. Code type: Matrix

k. Orientation independent: Yes

3.2 Summary of additional features

The use of the following additional features is optional in JAB Code:

a. Mirror Imaging: When JAB Code is obtained in mirror reversal, it is still possible to achieve a valid
decode of a symbol with the standard reader. Refer to Section 6.3.

b. Extended Channel Interpretation: The ECI mechanism enables data using character sets other than
the default encodable set (e.g. Arabic, Chinese, Cyrillic, Greek, Hebrew, etc.) and other data
interpretations or industry-specific requirements to be represented.

3.3 Symbol structure

3.3.1 Square master symbol

The structure of a square JAB Code master symbol is shown in Figure 1. A square master symbol shall
consist of function patterns including finder pattern, alignment pattern (from Side-Version 6), color palette,
metadata and encoded data region. Four finder patterns are located at the four symbol corners respectively,
with one module between the outermost layer and the border. No quiet zone surrounding the symbol is
required. The master symbol illustrated in Figure 1 is a square symbol of Side-Version 2, whose width and
height are 25 modules.

Federal Office for Information Security 9

Figure 1: Structure of a square master symbol

3 Symbol description

3.3.2 Rectangle master symbol

The structure of a rectangle JAB Code master symbol is shown in Figure 2. The structure of a rectangle
master symbol is the same as a square master symbol, except that the horizontal and vertical distance
between the finder patterns are not equal. Like square symbols, no quiet zone is required for rectangle
master symbols. The master symbol illustrated in Figure 2 is a rectangle symbol of combination of
Side-Version 5 and 2, of which the width is 37 modules and the height is 25 modules.

3.3.3 Square slave symbol

10 Federal Office for Information Security

Figure 2: Structure of a rectangle master symbol

Figure 3: Structure of a square slave symbol

Symbol description 3

The structure of a square JAB Code slave symbol is shown in Figure 3. Except finder patterns, slave symbols
contain the same function patterns as the master symbol, including alignment patterns, metadata regions
and encoded data region. In slave symbols, the four finder patterns are replaced by four alignment patterns.
Like the master symbol, no surrounding quiet zone is required for slave symbols. The slave symbol
illustrated in Figure 3 is a square symbol of Side-Version 2, whose width and height are 25 modules.

3.3.4 Rectangle slave symbol

The structure of a rectangle JAB Code slave symbol is shown in Figure 4. The structure of the rectangle slave
symbol is the same as the rectangle master symbol, except that the finder patterns are replaced by four
alignment patterns. Similarly, no quiet zone is required for rectangle slave symbols. The slave symbol
illustrated in Figure 4 is a rectangle symbol of combination of Side-Version 5 and 2, of which the width is 37
modules and the height is 25 modules.

3.3.5 Symbol side size

The side of a JAB Code symbol may have 32 different sizes referred to as Side-Version 1, Side-Version 2, …
Side-Version 32, as listed in Table 1. The side size increases in step of 4 modules from 21 modules in
Side-Version 1 to 145 modules in Side-Version 32. A square symbol has the same Side-Version for both the
horizontal and vertical sides, while a rectangle symbol may have any combination of two different
side-versions for the horizontal and vertical sides. The smallest square symbol measures 21×21 modules and
the largest square symbol measures 145×145 modules. The smallest rectangle symbol measures 21×25
modules and the largest rectangle symbol measures 141×145 modules. The rectangle symbol of 21×145 or
145×21 modules has the maximal proportion between the horizontal and vertical sides.

The capacities listed in Table 1 are based on the recommended error correction level 6 for square symbols. In
codes with 8 colors, the metadata take 15 modules for version 1 to 4, 16 modules for version 5 to 8, 17
modules for version 9 to 16 and 20 modules for version 17 to 32 for the master symbol. The metadata take 2
modules for slave symbols with the same configuration as the master symbol. The number of data modules
can be calculated as follows:

Distance of Finder pattern Center to Border: DFCB=4

Federal Office for Information Security 11

Figure 4: Structure of a rectangle slave symbol

3 Symbol description

Minimum Distance Between Alignment pattern: MDBA=16

Number of alignment pattern modules: ax=MAX (0, ⌊(SideSizex−DFCB×2+1)/MDBA−1⌋)
a y=MAX (0, ⌊(SideSizey−DFCB×2+1)/MDBA−1⌋)
a=((a x+2)×(a y+2)−4)×7

Number of color palette modules: CPalette=MIN (64,NumberOfModuleColor)×2

Number of finder pattern modules: FMaster=4×17 ; FSlave=4× 7

Number of data modules in master: SideSize x×SideSize y−a−CPalette−FMaster−Metadata

Number of data modules in slave: SideSize x×SideSize y−a−CPalette−FSlave−Metadata

where MAX(. , .) and MIN(. , .) are the maximum and minimum function.

12 Federal Office for Information Security

Symbol description 3

Table 1: Symbol side versions and square symbol capacity of JAB Code (Nc= 001, 010 (=4/8 colors), wc=4, wr=7)

Side-Version
Side size

(in modules)

Number of data modules Symbol net payload Pn (in bits)

Square Master
4 8

Square Slave
4 8

Square Master
4 8

Square Slave
4 8

1 21 364 363 423 416 312 466 362 534

2 25 548 547 607 600 469 703 520 771

3 29 764 763 823 816 654 981 705 1049

4 33 1012 1011 1071 1064 867 1299 918 1368

5 37 1290 1290 1351 1344 1105 1658 1158 1728

6 41 1602 1602 1663 1656 1373 2059 1425 2129

7 45 1946 1946 2007 2000 1668 2502 1720 2571

8 49 2322 2322 2383 2376 1990 2985 2042 3054

9 53 2727 2728 2791 2784 2337 3507 2392 3579

10 57 3167 3168 3231 3224 2714 4073 2769 4145

11 61 3639 3640 3703 3696 3119 4680 3174 4752

12 65 4143 4144 4207 4200 3551 5328 3606 5400

13 69 4679 4680 4743 4736 4010 6017 4065 6089

14 73 5247 5248 5311 5304 4497 6747 4552 6819

15 77 5847 5848 5911 5904 5011 7518 5066 7590

16 81 6479 6480 6543 6536 5553 8331 5608 8403

17 85 7140 7142 7207 7200 6120 9182 6177 9257

18 89 7836 7838 7903 7896 6716 10077 6774 10152

19 93 8564 8566 8631 8624 7340 11013 7398 11088

20 97 9324 9326 9391 9384 7992 11990 8049 12065

21 101 10116 10118 10183 10176 8670 13008 8728 13083

22 105 10940 10942 11007 11000 9377 14068 9434 14142

23 109 11796 11798 11863 11856 10110 15168 10168 15243

24 113 12684 12686 12751 12744 10872 16310 10929 16385

25 117 13604 13606 13671 13664 11660 17493 11718 17568

26 121 14556 14558 14623 14616 12476 18717 12534 18792

27 125 15540 15542 15607 15600 13320 19982 13377 20057

28 129 16556 16558 16623 16616 14190 21288 14248 21363

29 133 17604 17606 17671 17664 15089 22636 15146 22710

30 137 18684 18686 18751 18744 16014 24024 16072 24099

31 141 19796 19798 19863 19856 16968 25454 17025 25529

32 145 20940 20942 21007 21000 17948 26925 18006 27000

Federal Office for Information Security 13

3 Symbol description

3.3.6 Finder pattern

There are four types of finder patterns in JAB Code, i.e. Finder Pattern UL, Finder Pattern UR, Finder Pattern
LR, Finder Pattern LL, located at the upper left, the upper right, the lower right and lower left corners
respectively as illustrated in Figure 5. Each finder pattern contains two square references made up of 3×3
modules, connected with each other by an overlapping module (core module).

The finder patterns have different orientations. The core module of Finder Pattern UL and Finder Pattern
UR shall be the lower right module of the upper reference and the upper left module of the lower reference
respectively. In Finder Pattern LR and Finder Pattern LL, the core shall be the lower left module of the upper
reference and the upper right module of the lower reference.

Each square reference in a finder pattern is constructed of three layers, which are of the same width of one
module. The layers in the two references are symmetric with respect to the core module, as illustrated in
Figure 5. Finder Pattern UL and Finder Pattern LL consist of blue and yellow layers, while Finder Pattern UR
and Finder Pattern LR are made up of green and magenta layers. The color of each layer is different from its
adjacent layers and the core module of each type of finder pattern is in a unique color, i.e. Finder Pattern UL
has a blue core, Finder Pattern UR has a green core, Finder Pattern LR has a magenta core and Finder Pattern
LL has a yellow core.

3.3.7 Alignment pattern

There are four types of alignment patterns in JAB Code, i.e. Alignment Pattern U, Alignment Pattern L,
Alignment Pattern X0 and Alignment Pattern X1, as illustrated in Figure 6. Each alignment pattern is
constructed of two square references (2×2 modules) consisting of two layers, connected by an overlapping
core module. Alignment Pattern U and Alignment Pattern L have white outer layer and black core, while
Alignment Pattern X0 and Alignment Pattern X1 have black outer layer and white core.

14 Federal Office for Information Security

Figure 5: Finder patterns

Symbol description 3

Alignment Pattern U shall be placed in slave symbols at the same positions as Finder Pattern UL and Finder
Pattern UR in master symbols. Alignment Pattern L shall be placed in slave symbols at the same positions as
Finder Pattern LR and Finder Pattern LL in master symbols. Alignment Pattern X0 and X1 shall be placed
between finder patterns in master symbols and between Alignment Pattern U and Alignment Pattern L in
slave symbols.

Alignment Pattern X0 and Alignment Pattern X1 are present only in JAB Code symbols which has
Side-Version 6 or larger. The number of alignment patterns depends on the side-version of each symbol side
and the alignment patterns are spaced as evenly as possible. For each side-version, the number of alignment
patterns and the column/row coordinates of the core module of each alignment pattern are specified in
Table 2, where the coordinate of the top-left module in the symbol is defined as (1, 1).

In either master or slave symbols, alignment patterns shall be placed on the intersections of columns and
rows of the coordinates listed in Table 2 except the positions where a finder pattern is located. For example,
Table 2 indicates the coordinates 4, 20, 37 and 54 for Side-Version 10. Therefore, in a square master symbol of
Side-Version 10, the 12 alignment patterns are centered at (column, row) positions (4, 20), (4, 37), (20, 4), (20,
20), (20, 37), (20, 54), (37, 4), (37, 20), (37, 37), (37, 54), (54, 20), (54, 37).

The first alignment pattern, which is located next to Finder Pattern UL in master symbols or next to
Alignment Pattern U at the top-left corner in slave symbols in either horizontal or vertical direction, shall be
Alignment X1. At the following placement positions of alignment patterns, Alignment Pattern X0 and
Alignment Pattern X1 shall be placed alternatively in both horizontal and vertical directions, as illustrated in
Figure 7.

Federal Office for Information Security 15

Figure 6: Alignment patterns (left: Alignment Pattern UL, right: Alignment Pattern LR)

3 Symbol description

16 Federal Office for Information Security

Figure 7: Placement of alignment patterns

Symbol description 3

Table 2: Positions of alignment patterns

Side-Version
Side size

(in modules)

Number of
alignment

patterns
Column/Row (x/y) coordinates of core module

1 21 0 -

2 25 0 -

3 29 0 -

4 33 0 -

5 37 0 -

6 41 5 4 21 38

7 45 5 4 23 42

8 49 5 4 25 46

9 53 5 4 27 50

10 57 12 4 20 37 54

11 61 12 4 22 40 58

12 65 12 4 23 42 62

13 69 12 4 24 45 66

14 73 21 4 20 37 53 70

15 77 21 4 21 39 56 74

16 81 21 4 22 41 59 78

17 85 21 4 23 43 62 82

18 89 32 4 20 36 53 69 86

19 93 32 4 21 38 55 72 90

20 97 32 4 22 40 58 76 94

21 101 32 4 22 41 60 79 98

22 105 45 4 20 36 53 69 85 102

23 109 45 4 21 38 55 72 89 106

24 113 45 4 21 39 57 74 92 110

25 117 45 4 22 40 59 77 95 114

26 121 60 4 20 36 52 69 85 101 118

27 125 60 4 20 37 54 71 88 105 122

28 129 60 4 21 38 56 73 91 108 126

29 133 60 4 22 40 58 76 94 112 130

30 137 77 4 20 36 52 69 85 101 117 134

31 141 77 4 20 37 54 71 87 104 121 138

32 145 77 4 21 38 55 73 90 107 124 142

Federal Office for Information Security 17

3 Symbol description

3.3.8 Color palette

The color palette provides reference module color values for symbol decoding. As listed in Table 5, JAB Code
supports 8 module color modes, allowing minimally 4 and maximally 256 colors to be used in a symbol,
hence the color palette has a minimal size of 4 and maximal size of 256, containing up to 256 colors indexed
from 0 to 255. Table 3 shows an example of 8-color palette, corresponding to module color mode 2.

However, in either master or slave symbols, the color palettes embedded in the symbol contains only up to
64 colors indexed from 0 to 63. If there are less than or equal to 64 module colors in the symbol, all available
colors shall be included in the embedded color palette. If there are more than 64 module colors, the
embedded color palette shall contain only 64 selected colors. In addition, for metadata decoding the 8 colors
available in module color mode 2 shall be always placed in the first 8 entries in the embedded color palette.
Refer to Annex F for guidelines for module color specifications and color palette construction.

In either master or slave symbols, two color palettes shall be placed, which are located in different reserved
regions. The module placement of color palettes is specified in Section 3.4.4.

Table 3: Color palette for 8-color symbols

Index 0 1 2 3 4 5 6 7

Color Black Blue Green Cyan Red Magenta Yellow White

3.3.9 Metadata

The metadata defines the symbol properties, which provide necessary parameters for symbol decoding,
including the number of module colors, the symbol shape and size, the error correction parameters, the
masking type and the code structure. The metadata structure and placement is defined in Section 3.4, which
is different for master and slave symbols.

The metadata of either master or slave symbols are encoded in specific reserved regions which are defined in
Section 3.4.4. The metadata in master symbols are encoded in the modules around the four finder patterns,
as illustrated in Figure 8, while the metadata in slave symbols are encoded along the side docked to the host
symbol, as illustrated in Figure 9 and Figure 15. Because the length of metadata in both master and slave
symbols is variable, the number of modules that are used to encode these metadata also varies.

Metadata are secured by error correction codes. See Section 3.4.3.

3.3.10 Encoded data

Except the modules used for finder patterns, alignment patterns, color palette and metadata, all the
remaining modules shall be used to encode data, including the error correction codewords.

The placement of encoded data is specified in Section 4.7.

3.4 Metadata structure

The metadata of a JAB Code symbol defines the number of module colors, the symbol shape, the symbol size,
the error correction level, the positions of docked slave symbols and the masking type. The metadata is

18 Federal Office for Information Security

Symbol description 3

divided into three parts: Part I, Part II and Part III. The data in the preceding parts determine the encoding
modes and the length of variables in the following parts.

Dividing metadata into parts enables customizable metadata requirements in different symbol sizes. To
maximize the data capacity in small symbols, less metadata is required, while in large symbols, more
metadata can be specified to achieve high encoding flexibility. The total length of master symbol metadata
varies from 22 to 40 bits, while it varies from 3 to 27 bits in slave symbols.

Table 4: Metadata structure of master symbol

Metadata

Part I Part II Part III

Variable Length (Bits) Variable Length (Bits) Variable Length (Bits)

Nc 3

SS 1
V

variable (2-10), depending on SS
and VFVF 2

MSK 3 E variable (10-16), depending on VF

SF 1 S variable (0 or 4), depending on SF

Sum 3 Sum 7 Sum 12 to 30

Total length: variable from 14 to 42 bits

Nc - module color mode SS - symbol shape flag VF - side-version flag

MSK - masking reference SF - slave flag V - symbol side-version

E - error correction parameters S - positions of docked slave symbols

3.4.1 Metadata of master symbol

The metadata structure of master symbol is shown in Table 4. Part I defines the module color mode (Nc)
indicating the number of module colors, Part II defines a series of flags, including symbol shape flag (SS),
side-version flag (VF), masking reference (MSK) and slave flag (SF), and Part III defines symbol side-version
(V), error correction parameters (E) and positions of docked slave symbols (S).

Part I, Part II and Part III are concatenated to form the final metadata in the following order. The bit length
of variables in Part I and Part II is fixed and the bit-length of variables in Part III is determined by the flag
values in Part II.

Part I Part II Part III

Nc SS | VF | MSK | SF V | E | S

3 bits 1 bit 2 bits 3 bits 1 bit 2-10 bits 10-16 bits 0-4 bits

3.4.1.1 Module color mode

The variable Nc in Part I defines the module color mode which indicates the number of available module
colors in the symbol, whose possible values are listed in Table 5. It takes 3 bits and defines 8 color modes. Nc

shall be encoded in two-color mode which uses only the first module color and the last module color in the
color palette, namely black and white in all color modes except mode 001. In mode 001, blue and yellow shall

Federal Office for Information Security 19

3 Symbol description

be used. A black/blue module represents a binary zero and a white/yellow module represents a binary one.
Except Nc other metadata shall be encoded in multi-color mode using up to 8 colors. In the color modes
containing more than 8 colors, the metadata shall be encoded using the colors available in color mode 2,
namely only the first 8 colors in the placed color palette shall be used to encode the metadata. Refer to
Annex F for the specification of color palette construction.

Color mode 0 is reserved for future extensions, which can also be used for user-defined color modes.

Table 5: Module color modes in Part I of metadata of master symbol

Variable Value (binary) Color mode Number of module colors

Nc

000 0 reserved

001 1 4 module colors

010 2 8 module colors

011 3 16 module colors

100 4 32 module colors

101 5 64 module colors

110 6 128 module colors

111 7 256 module colors

3.4.1.2 Symbol shape

The symbol shape flag (SS) in Part II indicates whether the symbol is square or rectangle. As shown in Table
6, a binary zero stands for a square symbol and a binary one for a rectangle symbol.

3.4.1.3 Symbol size

The symbol size is specified by a combination of two variables: the side-version flag VF and the side-version
value V. As shown in Table 6, VF indicates the range of the side-version and V gives the version number. The
length of V is determined by SS and VF, varying from 2 to 10 as shown in Table 7. For square symbols, only
one side-version needs to be encoded in V. The side-version is encoded in the segments defined by VF. For
rectangle symbols, the horizontal and vertical side-versions have to be encoded respectively. In addition, the
horizontal and vertical side-versions may lie in different segments, therefore full encoding is required for
each side-version. Table 7 lists the required bit length for all cases.

3.4.1.4 Error correction level

The error correction level is determined by the variable E, which specifies the error correction parameters.
The length of E is determined by the maximal symbol size in each side-version segment indicated by VF,
varying from 10 to 16 bits as shown in Table 7. The first half part of E stores the parameter wc-3 and the
second half stores the parameter wr-4 as defined in Section 4.4.1. The variable length of E enables
customizable error correction in corresponding symbol sizes.

3.4.1.5 Positions of docked slaves

The flag SF in Part II indicates whether there are docked slave symbols as shown in Table 6. If there are
docked slave symbols, the four bits in variable S in part III represent the positions of the docked slave
symbols. The first to the fourth bits of S stand for the upper side, the right side, the lower side and the left

20 Federal Office for Information Security

Symbol description 3

side of the master symbol, respectively. A binary one indicates there is a docked slave symbol on the
corresponding side, while a binary zero indicates there is no docked symbol.

3.4.1.6 Masking type

The flag MSK in Part II contains the data mask pattern reference from Table 20.

This flag exists only in master symbols and all the slave symbols in a JAB Code share the same mask type as
the master symbol.

Table 6: Flag values in Part II of metadata of master symbol

Flag Value (binary) Description

SS
0 Square symbol

1 Rectangle symbol

VF

SS=0

00 Side-Version 1-4

01 Side-Version 5-8

10 Side-Version 9-16

11 Side-Version 17-32

SS=1

00 Side-Version 1-4

01 Side-Version 1-8

10 Side-Version 1-16

11 Side-Version 1-32

MSK 000 - 111 Mask pattern reference. See 20.

SF
0 No docked slave symbol

1 Positions of docked slaves are specified by S.

Table 7: Variable length in Part III of metadata of master symbol

Federal Office for Information Security 21

3 Symbol description

Flag Value (binary)
Length (Bits)

V E

SVF

SS=0

00 2 10

01 2 12

10 3 14

11 4 16

SS=1

00 4 10

01 6 12

10 8 14

11 10 16

SF
0 0

1 4

3.4.2 Metadata of slave symbol

The metadata structure of slave symbol is shown in Table 8. Part I defines three variables. The first one (SS)
indicates whether the symbol shape and size are identical to the host symbol. The second one (SE) indicates
whether the slave symbol shares the same error correction level as the host symbol. The third one (SF)
indicates whether there are further docked slaves. Part II defines two flags, including symbol side-version (V)
and positions of docked slaves (S). Part III contains only one variable, defining error correction level (E).

Part I, Part II and Part III are concatenated to form the final metadata in the following order. The bit length
of variables in Part I is fixed and the bit-length of variables in Part II and Part III is determined by the
variable values in Part I.

Part I Part II Part III

SS | SE | SF V | S E

1 bit 1 bit 1 bit 0 or 5 bits 0 or 3 bits 0-16 bits

As shown in Table 8, the metadata in a slave symbol may have a minimal length of bits, which provides
additional encoding space with low overhead.

Table 8: Metadata structure of slave symbol

22 Federal Office for Information Security

Symbol description 3

Metadata

Part I Part II Part III

Variable Length (Bits) Variable Length (Bits) Variable Length (Bits)

SS 1 V
variable (0 or 5),
depending on SS

E
variable (0 or 10-16),
depending on SE and VSE 1

S
variable (0 or 3),
depending on SFSF 1

Sum 3 Sum 0 to 8 Sum 0 to 16

Total length: variable from 3 to 30 bits

SS – same shape and size flag SE – same error correction level flag SF – slave position flag

V – symbol side-version S – positions of docked slave symbols E – error correction parameters

3.4.2.1 Symbol shape and size

The slave symbol may have a different shape from the host symbol. However, the docking side, which is
docked to the host symbol, must have the same size as the corresponding side of the host symbol. In other
words, the slave symbol has only one customizable side.

The symbol shape and size flag (SS) in Part I indicates whether the shape and the size of the slave symbol is
identical to the host symbol. As shown in Table 9, SS takes 1 bit and when SS is binary zero, no further data is
required to specify the symbol shape and size, therefore the length of V is 0. The corresponding metadata
from the host symbol shall be used in the decoding. When SS is binary one, the variable V takes 5 bits to
specify the side-version of the customizable side.

3.4.2.2 Error correction level

The slave symbol may either share the same error correction level as the host symbol or use its own error
correction level to encode data. The flag SE in Part I indicates whether a different error correction level is
specified in the slave symbol, as shown in Table 9.

If a different error correction level is specified, similar to the definition of error correction level in master
symbol, the variable E in Part III defines the error correction parameters. The length of E is determined by
the larger side version between the side versions in x and y directions as listed in Table 10.

3.4.2.3 Positions of docked slaves

Slave symbols may dock further slave symbols at the three free sides. The flag SF in Part I indicates whether
there are further docked slaves. As shown in Table 9, if there are further docked slaves, the variable S in Part
III contains 3 bits which represent the positions of docked slave symbols. The first to the third bits stand for
the three free sides in the same order as defined in Section 3.4.1.5, skipping the docking side to the host
symbol.

Table 9: Flag values in Part I and variable length in Part II and Part III of metadata of slave symbol

Federal Office for Information Security 23

3 Symbol description

Flag Value Length (Bits) Description

SS

0 V: 0
The slave symbol has the identical shape and size to
the host symbol.

1 V: 5
The side of the slave symbol that is not docked to the
master has different side-version specified by V.

SE

0 E: 0
The slave symbol shares the same error correction
level as the master.

1 E: 10 - 16
The slave symbol uses a different error correction
level specified by E.

SF
0 S: 0 No docked slave symbol.

1 S: 3 Positions of docked slaves are specified by S.

Table 10: Length of variable E in Part III of metadata of slave symbol

Side-Version Value Length of E (Bits)

max(side_version_x, side_version_y)

1-4 10

5-8 12

9-16 14

17-32 16

3.4.3 Metadata error encodation

Each part of the metadata is encoded using the LDPC code separately, which results in a doubled bit length.
Refer to Annex B for more details of error correction encoding of each part of the metadata.

The error correction bits for each metadata part shall be calculated as described in Annex B and appended to
the metadata bits. Table 11 lists the possible bit length for each metadata part in master and slave symbols. In
master symbols, the total length of the final encoded metadata varies from 44 to 80 bits, while in slave
symbols, it varies from 6 to 54 bits.

Table 11: Lengths of encoded metadata parts

Symbol type Metadata part Original length (Bits) Encoded length (Bits) Sum

Master

Part I 3 6

44 - 80Part II 7 14

Part III 12 - 30 24 - 60

Slave

Part I 3 6

6 - 54Part II 0, 3, 5, 8 0, 6, 10, 16

Part III 0, 10, 12, 14, 16 0, 20, 24, 28, 32

3.4.4 Reserved modules for metadata and color palette

The metadata and the color palette shall be encoded using the modules at predefined positions. If the
metadata are encoded using only two colors, which have the lowest encoding capacity per module, up to 80
modules are needed to encode the metadata in master symbols and up to 54 modules are needed in slave

24 Federal Office for Information Security

Symbol description 3

symbols. In addition, up to 128 modules are needed to store the two color palettes in either master and slave
symbols. Therefore, totally up to 208 modules in master symbols and 182 modules in slave symbols shall be
reserved for metadata and color palettes.

The placement order for the maximal metadata and color palettes in master and slave symbols is defined in
Figure 8 and Figure 9-12, where the modules with a black index number are reserved for metadata, while the
modules with a red number are for color palettes. The metadata placement position in slave symbols
depends on the position of the host symbol. As shown in Figure 9-12, the metadata in slave symbols are
placed along the side which is docked to the host symbol.

Since the metadata length and the palette size are both variable and the encoding capacity of each module is
determined by the number of available module colors, the actually required modules for metadata and color
palettes in a specific symbol may vary greatly. As the metadata can be encoded using up to 8 colors, in
symbols with more than 8 module colors, the maximal number of required modules for metadata in master
symbols are reduced to 31 and in slave symbols to 18.

The string of metadata bits including the error correction bits, from the most significant bit to the least
significant bit, shall be encoded into the reserved modules in master or slave symbols following the
placement order shown in Figure 8 and Figure 9. Each module contains one or more bits. The remaining bits
in the last used module shall be filled with binary zeros. If the number of required modules are less than the
reserved ones, in master symbols the unused modules shall be used for color palette placement or data
encoding. In slave symbols the unused modules shall be used for data encoding.

In either master or slave symbols, two color palettes shall be placed. In master symbols, the first 16 colors
shall be placed in the modules next to the finder patterns, numbered from 0 to 15, and the other 48 colors,
when available, shall be placed in the regions around finder patterns following the last used metadata
module, as shown in Figure 8. The position of the last used metadata module may be located in any of the
four metadata regions around finder patterns, depending on the actual metadata length. For example, if the
metadata encoding ends at the reserved module with index number 50, the color palette placement shall
start from the reserved module with index number 51 with the 16 th color in the color palette. Each color in
the palette shall be placed twice in the two diagonally opposite regions.

In salve symbols, the color palette shall be placed in the reserved modules close to Alignment Patter U and
Alignment Pattern L as shown in Figure 9. The first 8 colors in the color palette shall be placed in the
reserved modules close to the metadata (denoted as region A) and in the diagonally opposite reserved
modules (denoted as region B), following the placement order indicated by the index numbers. If there are
more than 8 module colors, the colors in the first half of the palette shall be placed in region A and region B,
while the colors in the second half of the palette shall be placed in the other two regions, following the
placement order indicated by the index numbers in each region, respectively.

In case there are less available module colors than the reserved modules, the unused modules shall be used
for data encoding.

Federal Office for Information Security 25

3 Symbol description

26 Federal Office for Information Security

Figure 8: Metadata and color palette module placement in master symbol

Symbol description 3

Federal Office for Information Security 27

Figure 9: Metadata and color palette module placement in slave symbols with left side docked to the host symbol

3 Symbol description

28 Federal Office for Information Security

Figure 10: Metadata and color palette module placement in slave symbol with right side docked to the host symbol

Symbol description 3

Federal Office for Information Security 29

Figure 11: Metadata and color palette module placement in slave symbol with top side docked to the host symbol

3 Symbol description

30 Federal Office for Information Security

Figure 12: Metadata and color palette module placement in slave symbol with bottom side docked to the host symbol

Symbol description 3

3.5 Symbol Cascading

3.5.1 Symbol docking rules

JAB Code may have arbitrary forms by cascading master and slave symbols in horizontal and vertical
directions. A JAB Code shall contain one and only one master symbol and may optionally have multiple
slave symbols. Slave symbols shall be docked to the master symbol or the other slave symbols.

The master and slave symbols in a JAB Code may be of different shapes, square or rectangle, namely, they
may have different Side-Versions for horizontal and vertical sides. Nevertheless, the docking side between
two adjacent symbols must share the same Side-Version. It is recommended that the master symbol in a JAB
Code possesses the largest symbol size.

Figure 13, Figure 14 and Figure 15 illustrate three example of JAB Code with cascaded symbols. The master
and slaves symbols in Figure 13 have the same shape and size. Figure 14 shows a code containing master and
slave symbols of different shapes and sizes. Figure 15 gives an example code with recursive symbol docking,
in which the slave symbol docked to the master has a further docked slave symbol.

3.5.2 Symbol decoding order

The JAB Code decoding shall always start from the master symbol. If more than one slave symbols are
docked to the master symbol, the decoding shall follow the order: top-bottom-left-right. If the slave symbols
docked to the master have further docked slave symbols, the decoding shall follow the order defined below.

1. The slave symbols that are directly docked to the master symbol shall be first decoded according to
the top-bottom-left-right order, which are denoted as the first layer.

2. According to the top-bottom-left-right order, the slave symbols in the first layer shall be checked in
turn. If there are further docked slave symbols, they shall be decoded according to the
top-bottom-left-right order. These slave symbols are denoted as the second layer.

3. Apply the same order to the other docked slave symbols in further layers until all the slave symbols
are decoded.

According to the decoding order defined by the rules above, the positions of the first 60 slave symbols are
defined in Figure 16. The slave symbols with smaller position numbers shall be decoded first.

Figure 17 illustrates an example of the decoding order of cascaded symbols. The symbols indices indicate the
decoding order. The symbols with a smaller index number shall be decoded first.

Federal Office for Information Security 31

3 Symbol description

32 Federal Office for Information Security

Figure 13: JAB Code with one square master and two square slave symbols

Figure 14: JAB Code with one rectangle master symbol and two square slave symbols

Symbol description 3

Federal Office for Information Security 33

Figure 16: Decoding order of cascaded master and slave symbols

Figure 15: JAB Code with one rectangle master symbol and multiple square and rectangle slave symbols

3 Symbol description

34 Federal Office for Information Security

Figure 17: Example of decoding order of cascaded master and slave symbols

Symbol generation 4

4 Symbol generation

4.1 Encode procedure overview

The following steps are required to convert input data to a JAB Code symbol.

(1) Data analysis

Analyze the input data to identify the most efficient modes to encode the characters. JAB Code
supports seven default encoding modes to convert input data into a binary string, which can be
switched to each other as needed by intermediary mode switch. Further character sets are enabled
by supporting Extended Channel Interpretation (ECI) and FNC1 encoding. See Section 4.3.

(2) Data encoding

Convert the data characters into a binary stream using selected encoding modes as specified in
Section 4.3.

(3) Error correction coding

Encode the binary stream using systematic LDPC for error correction and append the parity data to
the end of the source binary stream, as specified in Section 4.4.

(4) Data interleaving

Interleave the encoded data in each symbol as specified in Section 4.5 and add padding bits if
necessary.

(5) Metadata module reservation

Based on the code parameters, including the number of module colors, symbol shape, symbol size,
error correction level and code structure, calculate the actual metadata size and reserve the modules
which are required to accommodate the metadata, following the sequence specified in Section 3.4.4.

(6) Data module placement

First, place the finder patterns, the alignment patterns and the color palettes in the matrix. Second,
place the data modules (including the modules for error correction bits) in the remaining area of the
matrix (skipping the reserved modules for metadata) according to the interleaved data stream as
specified in Section 4.7.

(7) Data masking

Apply every available data mask pattern on the data modules and evaluate the masking results.
Select the most appropriate masking pattern which results in the most balanced module color
distribution and minimizes the occurrence of undesirable patterns, as specified in Section 4.8.

(8) Metadata generation and module placement

According to the code parameters, including the number of module colors, symbol shape, symbol
size, error correction level, masking type and code structure, generate the metadata information for
each symbol as defined in Section 3.4.1 and 3.4.2 and encode the generated metadata as specified in
Section 3.4.3. Finally, place the encoded metadata information into the reserved modules, following
the sequence specified in Section 3.4.4.

4.2 Data analysis

Analyze the character types of the input data and choose appropriate encoding modes in order to encode
the input data with the shortest bit stream. Annex D presents an algorithm for selecting the most
appropriate encoding modes to minimize the bit stream length.

Federal Office for Information Security 35

4 Symbol generation

Table 12: JAB Code character encoding modes

Upper Lower Numeric Punct Mixed Alphanumeric

Value Char ISO Char ISO Char ISO Char ISO Char ISO Value Char ISO Value Char ISO

0 SP 32 SP 32 SP 32 ! 33 # 35 0 SP 32 32 V 86

1 A 65 a 97 0 48 " 34 * 42 1 0 48 33 W 87

2 B 66 b 98 1 49 $ 36 + 43 2 1 49 34 X 88

3 C 67 c 99 2 50 % 37 < 60 3 2 50 35 Y 89

4 D 68 d 100 3 51 & 38 = 61 4 3 51 36 Z 90

5 E 69 e 101 4 52 ' 39 > 62 5 4 52 37 a 97

6 F 70 f 102 5 53 (40 [91 6 5 53 38 b 98

7 G 71 g 103 6 54) 41 \ 92 7 6 54 39 c 99

8 H 72 h 104 7 55 , 44] 93 8 7 55 40 d 100

9 I 73 i 105 8 56 - 45 ^ 94 9 8 56 41 e 101

10 J 74 j 106 9 57 . 46 _ 95 10 9 57 42 f 102

11 K 75 k 107 , 44 / 47 ` 96 11 A 65 43 g 103

12 L 76 l 108 . 46 : 58 { 123 12 B 66 44 h 104

13 M 77 m 109 P/S ; 59 | 124 13 C 67 45 i 105

14 N 78 n 110 U/L ? 63 } 125 14 D 68 46 j 106

15 O 79 o 111 MS @ 64 ~ 126 15 E 69 47 k 107

16 P 80 p 112 HT 9 16 F 70 48 l 108

17 Q 81 q 113 LF 10 17 G 71 49 m 109

18 R 82 r 114 CR 13 18 H 72 50 n 110

19 S 83 s 115 CR LF 10, 13 19 I 73 51 o 111

20 T 84 t 116 , SP 44, 32 20 J 74 52 p 112

21 U 85 u 117 . SP 46, 32 21 K 75 53 q 113

22 V 86 v 118 : SP 58, 32 22 L 76 54 r 114

23 W 87 w 119 € 164 23 M 77 55 s 115

24 X 88 x 120 § 167 24 N 78 56 t 116

25 Y 89 y 121 Ä 196 25 O 79 57 u 117

26 Z 90 z 122 Ö 214 26 P 80 58 v 118

27 P/S P/S Ü 220 27 Q 81 59 w 119

28 L/L U/S ß 223 28 R 82 60 x 120

29 N/L N/L ä 228 29 S 83 61 y 121

30 A/L A/L ö 246 30 T 84 62 z 122

31 MS MS ü 252 31 U 85 63 MS

36 Federal Office for Information Security

Symbol generation 4

4.3 Encoding modes

There are nine encoding modes in JAB Code: uppercase mode, lowercase mode, numeric mode, punctuation
mode, mixed mode, alphanumeric mode, byte mode, ECI mode and FNC1 mode. The first six character
encoding modes are defined in Table 12. In JAB Code, the default interpretation for values 0 to 31 (control
characters) is in accordance with the U.S. national version of ISO 646 and for values 32 to 255 in accordance
with the ISO/IEC 8859-15 character set, corresponding to ECI 000017.

Encoding can switched from one mode to another mode as often as needed in two ways: shift and latch.
Shift indicates a temporary switch only for the next character, e.g. shift to punctuation mode (P/S) and shift
to uppercase mode (U/S), while latch indicates a permanent switch for the following characters until
another switch is encountered, e.g. latch to lowercase mode (L/L), latch to numeric mode (N/L).

4.3.1 Uppercase mode

Uppercase mode encodes 27 characters, including 26 capital letters (A-Z) and SPACE, at 5 bits per character.
Each character is assigned a character value from 0 to 26 according to Table 12.

The remaining five values are used for mode switch, as defined in Table 13. The first four values from 27 to 30
define direct switch to punctuation, lowercase, numeric and alphanumeric modes. The last value 31 defines
an extension of more switches, which indicates four more mode switches by appending two bits at the end
of (11111)BIN, for example, (1111100)BIN indicates shifting into byte mode and (1111101)BIN indicates shifting
into mixed mode.

Data encoding starts by default in uppercase mode.

Table 13: Mode switch in uppercase mode

Value Char Mode Switch

Direct

27 P/S shift to punctuation mode for the next character

28 L/L latch to lowercase mode for the following characters

29 N/L latch to numeric mode for the following characters

30 A/L latch to Alphanumeric mode for the following characters

Extended 31 MS
more switches by
appending bits

00 shift to byte mode

01 shift to mixed mode

10 latch to ECI mode

11 latch to FNC1 mode

4.3.2 Lowercase mode

Lowercase mode encodes 27 characters, including 26 small letters (a-z) and SPACE, at 5 bits per character.
Each character is assigned a character value from 0 to 26 according to Table 12.

The remaining five values are used for mode switch, as defined in Table 14. The first four values from 27 to 30
define direct switch to punctuation, uppercase, numeric and alphanumeric modes. The last value 31 defines
an extension of more switches, which indicates three more mode switches and an end-of-message flag
(EOM) by appending two bits at the end of (11111)BIN, for example, (1111100)BIN indicates shifting into byte
mode and (1111111)BIN indicates the end of message bits.

Federal Office for Information Security 37

4 Symbol generation

Table 14: Mode switch in lowercase mode

Value Char Mode Switch

Direct

27 P/S shift to punctuation mode for the next character

28 U/S shift to uppercase mode for the next character

29 N/L latch to numeric mode for the following characters

30 A/L latch to Alphanumeric mode for the following characters

Extended 31 MS
more switches by
appending bits

00 shift to byte mode

01 shift to mixed mode

10 latch to uppercase mode

11 End of message (EOM)

4.3.3 Numeric mode

Numeric mode encodes 13 characters, including 10 digits (0-9), SPACE and two punctuation marks, at 4 bits
per character. Each character is assigned a character value from 0 to 12 according to Table 12.

The remaining three values are used for mode switch, as defined in Table 15. The first two values from 13 to
14 define direct switch to punctuation and uppercase modes. The last value 15 defines an extension of more
switches, which indicates four more mode switches by appending two bits at the end of (1111) BIN, for
example, (111100)BIN indicates shifting into byte mode and (111101)BIN indicates shifting into mixed mode.

Table 15: Mode switch in numeric mode

Value Char Mode Switch

Direct
13 P/S shift to punctuation mode for the next character

14 U/L latch to uppercase mode for the following characters

Extended 15 MS
more switches by
appending bits

00 shift to byte mode

01 shift to mixed mode

10 shift to uppercase mode

11 latch to lowercase mode

4.3.4 Punctuation mode

Punctuation mode encodes 16 commonly used punctuation characters, at 4 bits per character. Each
character is assigned a character value from 0 to 15 according to Table 12.

Punctuation mode has a fixed run-length of one character, after which encoding reverts to the mode from
which punctuation mode was invoked.

38 Federal Office for Information Security

Symbol generation 4

4.3.5 Mixed mode

Mixed mode encodes Germanic umlauts, more punctuation characters and other marks, control characters
and combinations, at 5 bits per character. Each character is assigned a character value from 0 to 31 according
to Table 12.

Like punctuation mode, mixed mode also has a fixed run-length of one character, after which encoding
reverts to the mode from which punctuation mode was invoked.

4.3.6 Alphanumeric mode

Alphanumeric mode encodes 63 characters, including 26 capital letters (A-Z), 26 small letters (a-z), 10 digits
(0-9) and SPACE, at 6 bits per character. Each character is assigned a character value from 0 to 62 according
to Table 12.

The remaining value 63 is used for mode switch, as defined in Table 16, which defines an extension of four
mode switches by appending two bits at the end of (111111)BIN, for example, (11111100)BIN indicates shifting
into byte mode and (11111110)BIN indicates shifting into punctuation mode.

Table 16: Mode switch in alphanumeric mode

Value Char Mode Switch

Extended 15 MS
more switches by
appending bits

00 shift to byte mode

01 shift to mixed mode

10 shift to punctuation mode

11 latch to uppercase mode

4.3.7 Byte mode

Byte mode encodes any 8-bit characters at 8 bits per character. Byte mode starts with a 4-bit binary value,
which, if non-zero, encodes the number of bytes (1-15) that follow, but if zero then the next 13 bits encode
the number of bytes less 15. Thus, byte mode can encode any ASCII characters that are not included in Table
12 and long strings of binary data, possibly filling the whole symbol. At the end of the byte string, encoding
returns to the mode from which byte mode was invoked.

4.3.8 Extended Channel Interpretation (ECI) mode

ECI mode enables data interpretation different from the default character set. ECI mode starts with a 6-digit
ECI assignment number which is encoded as an 8-bit, 16-bit or 22-bit binary string, as defined in Table 17.
The preceding indicating bits determines the length of the binary string.

• If it begins with a 0 bit, it contains 8 bits.

• If it begins with “10”, it contains 16 bits.

• If it begins with “11”, it contains 22 bits.

In each case, the following bits after the indicating bits are the binary representation of the ECI assignment
number, after which encoding returns to the mode from which ECI mode was invoked.

Federal Office for Information Security 39

4 Symbol generation

In the input data to be encoded, the ECI assignment number is represented as a backslash character, (5C) HEX,
followed by a 6-digit number, i.e. "\nnnnnn". When ECI protocol applies, if the input data contains a
backslash character, it shall be doubled as two (5C)HEX characters.

Data in an ECI sequence shall be handled as 8-bit byte values, which can be encoded using any encoding
modes irrespective of their significance. For example, a sequence of bytes in the range (30)HEX to (57)HEX would
be most efficiently encoded in the Numeric mode even if the sequence might not actually represent numeric
data.

Any ECI invoked shall apply until the end of the encoded data, or until another ECI is encountered.

Table 17: Encoding ECI assignment number

ECI Assignment Number Encoded value

000000 to 000127 0bbbbbbb

000000 to 016383 10bbbbbb bbbbbbbb

000000 to 999999 11bbbbbb bbbbbbbb bbbbbb

where b…b is the binary value of the ECI assignment number

4.3.9 FNC1 mode

FNC1 mode is used for messages containing specific data formats. When FNC1 precedes the first message
character, it designates data formatted in accordance with GS1 General Specifications. When FNC1
immediately follows a single upper or lower case letter or two digits at the beginning of the message, it
designates data formatted in accordance with a specific industry application previously agreed with AIM
Inc., identified by the preceding data. FNC1 mode applies to the entire symbol. When FNC1 occurs at any
other location in the data stream, it serves as a field separator and causes an ASCII 29 (<GS>) to be inserted in
its place in the output data string.

4.4 Error correction

The error correction coding is performed by the LDPC code and operates on binary data. After encoding the
message data to a binary stream as specified in Section 4.3, the LDPC code adds check bits to the binary
stream in order to enable the symbol to to remain decodable in case of damage. The LDPC code can correct
codewords with misdecoded bits caused by damage. The error correction level shall be selectable between 0
and 10. The default error correction level shall be 6.

Table 18 shows the recovery capability of the bit errors in more than 95% of cases. More errors can be
detected by the error correction code but with a probability less than 95%. The error correction level shall be
determined by the application requirements and expected symbol quality. The higher error recovery
capacity is achieved at the cost of larger stream size, leading to larger symbol size. The increase of the stream
size is indicated by the code rate R, which is defined as R=Pn/Pg.

40 Federal Office for Information Security

Symbol generation 4

Table 18: The approximated amount of bit error recovery capacity in %

Level Recovery capacity in % Code rate R

0 3 0.67

1 4 0.63

2 5 0.57

3 6 0.55

4 7 0.50

5 8 0.43

6 9 0.34

7 10 0.25

8 11 0.20

9 12 0.17

10 14 0.14

4.4.1 Selectable error correction levels

In JAB Code, 11 error correction levels are defined as listed in Table 18. Based on the input data and the
symbol capacity, the best combination of the two parameters wc and wr shall be determined. The value of wc

shall be an integer between 3 and 8, wr an integer between 4 and 9.

Given the symbol capacity and the net payload, the relation wr/wc=C/(C-Pn) holds. The parameters, wc and wr,

shall be determined by the code rate R= 1- wc /wr which is closest to but smaller than the corresponding code
rate of the specified error correction level.

With these two parameters wc and wr the number of error correction bits and the gross payload are specified
by

K=⌊
C×wc

w r

⌋ and Pg=Pn+K .

With Pg and K the size of the matrix H is determined and the matrix H shall be generated as defined in
Section 4.4.3.

4.4.2 Stuffing Bits

The number of stuffing bits SBit is Sbit=C-Pg. The stuffing bits are a sequence consisting of alternate '0's and '1's
starting with '0', filling up the unused capacity at the end of the error correction stream.

4.4.3 Generating the error correction stream

The error correction stream c is generated by multiplying the message m with the generator matrix G in the
GF(2) with c=m⊗G . There are four steps to obtain the generator matrix:

Step 1: Construct a matrix A0 with K/wc rows and Pg columns:

Federal Office for Information Security 41

4 Symbol generation

A0=[
1111⏟

w r

...0... ...0...

...0... 1111⏟
w r

...0...

...0... ...0... 1111⏟
wr

]
Step 2: Form the matrix A with K rows and Pg columns by stacking wc permutations:

A=[
π1(A0)

π2(A0)

π3(A0)

.

.

.
]

where π is the permutation. The permutation is performed by using the random number generator R(seed, A 0) as
defined in Annex E with the initial seed 785465 for the message data and the seed 38545 for the metadata with
π1=R(seed, A0), π2=R(seed, π1), π3=R(seed, π2), …

Step 3: Generate the matrix H by using the Gauss-Jordan elimination for the matrix A to obtain
H(CT∣I)∈(K x Pg) .

Step 4: The generator matrix is created by G(I∣C)∈(Pn x Pg) .

An example is given in Annex A.1.

4.5 Data interleaving

The final sequence of encoded data shall be constructed following the steps below.

1. Calculate the remaining capacity in the selected symbol, which is equal to C-Pg.

2. Fill the unused capacity with stuffing bits to get the final sequence. The stuffing bits shall be a binary
string containing alternating 0 and 1 and starting with 0, e.g. 0101010…

3. Interleave all bits in the final sequence using the random permutation algorithm with an initial seed
of 226759 as defined in Annex E.

4.6 Metadata module reservation

In JAB Code, the metadata in master and slave symbols are variable-length data. The actual metadata length
and the number of modules required to accommodate the metadata are determined by the following five
code parameters which shall be specified by user input:

• the number of module colors

• symbol shape

• symbol size

• error correction level

• code structure

42 Federal Office for Information Security

Symbol generation 4

If the number of module colors is not specified by user input, the color mode “010” (8 module colors) shall be
used.

If no symbol shape is specified by user input, square symbols shall be used.

If no symbol size is specified by the user input, the smallest square symbol, which will accommodate the
encoded data with the given error correction level, shall be used. However, in case of rectangle symbols, the
horizontal and vertical symbol sizes must be specified by user input, respectively.

If error correction level is not specified by user input, the error correction level, which will achieve the
highest error correction rate with the input data in the symbol in use, shall be used.

If neither symbol size nor error correction level is specified by user input, the smallest square symbol, which
will accommodate the input data encoded with the default error correction level, shall be used.

If no code structure is specified by user input, one single master symbol without docking slave symbols shall
be used.

Based on the length of the final metadata information and the error correction encodation, the number of
required metadata modules shall be determined and reserved in each symbol, following the placement order
defined in Section 3.4.4.

4.7 Data module encodation and placement

Before placing the modules for data message, the modules for finder patterns, alignment patterns and color
palettes shall be first placed in the matrix.

The bits of encoded data message, including the error correction bits, are graphically encoded using each
color module in the color palette to represent log2(Nc) bits. The log2(Nc) binary bits are encoded using the
index value of module color in the palette. For example, if there are eight module colors in a symbol, i.e.
log2(Nc)=3, the first module color in the color palette represents 000, the second one represents 001, and so
forth, as defined in Table 19.

The interleaved final sequence of encoded data shall be placed in the remaining modules, starting from the
most upper left available module, running downwards from left to right, to the most lower right available
module, skipping over the modules occupied by finder patterns, alignment patterns, metadata and color
palettes, as shown in Figure 18. The data module placement in slave symbols follows the same way as in
master symbols.

Table 19: Bit encoding using eight module colors

Module color Color index Binary bits

black 0 000

magenta 1 001

yellow 2 010

cyan 3 011

red 4 100

green 5 101

blue 6 110

white 7 111

Federal Office for Information Security 43

4 Symbol generation

4.8 Data masking

For reliable JAB Code reading, the distribution of color modules shall preferably meet the following two
conditions:

1. The color modules should be arranged in a well-balanced manner in the symbol.

2. The occurrences of patterns similar to finder patterns and alignment patterns in other regions of the
symbol should be avoided as much as possible.

In order to meet the above conditions, data masking shall be applied as following.

1. Data masking is only applied to data modules, not to modules for finder pattern, alignment patterns,
metadata and color palettes.

2. Apply each data mask pattern to data modules in turn. The masking result of each module is
calculated by the XOR operation between the module color and the mask pattern color, as defined in
Section 4.8.1.

3. Evaluate the masking results by charging penalties for undesirable features.

4. Select the data mask pattern with the lowest penalty point score.

4.8.1 Data mask patterns

JAB Code has eight data mask patterns as listed in Table 20. The binary reference values are used in metadata
to identify the masking type. Each data pattern covers only the modules in the data encoding region in a
symbol, excluding modules for finder pattern, alignment patterns, metadata and color palettes. The color of
each module in a data mask pattern is determined by the pattern module color generators as defined in
Table 20. The result of each generator indicates the index in the color palette of the symbol. In the
generators, x refers to the horizontal position of the module and y refers to its vertical position, with (x, y) =
(0, 0) for the upper left module in the symbol.

44 Federal Office for Information Security

Figure 18: Data module placement

Symbol generation 4

The data masking is applied to a data module through the bitwise XOR operation between the color index of
the data module and the color index of the corresponding module in the mask pattern. For example, in case
of Nc=3, if the module has the color index of 5, (101)BIN, and the corresponding module in the mask pattern
has the color index 3, (011)BIN, then the resulting module has the color index 6, (110)BIN.

Table 20: Data mask pattern generation conditions

Data mask pattern
reference

Pattern module color generator

000 (x+y) mod 2Nc+1

001 x mod 2Nc+1

010 y mod 2Nc+1

011 ((x div 2) + (y div 3)) mod 2Nc+1

100 ((x div 3) + (y div 2)) mod 2Nc+1

101 ((x+y) div 2 + (x+y) div 3) mod 2Nc+1

110 (((x×x×y) mod 7) + ((2×x×x + 2×y) mod 19)) mod 2Nc+1

111 (((x×y×y) mod 5) + ((2×x + y×y) mod 13)) mod 2Nc+1

4.8.2 Evaluation of data masking results

The masking results using each data mask pattern listed in Table 20 shall be evaluated by scoring penalty
points for each occurrence of the following undesirable features listed in Table 21. The higher the penalty
points, the less acceptable the masking result. In Table 21, each undesirable feature is scored by a weighting
factor, which is defined as W1=100, W2=3 and W3=3.

In the evaluation, all the modules are taken into account although the data masking shall be only applied to
the data modules. Furthermore, all the symbols in JAB Code, including the master symbol and the slave
symbols (if exist), shall be evaluated together.

After result evaluation according to Table 21, the data mask pattern that results in the lowest penalty score
shall be selected for the code.

Table 21: Scoring of data masking results

Feature Scoring condition Penalty points

Pattern with the same color and structure
as any finder pattern in row/column

Existence of the pattern
W1

Block of modules in same color block_size = m × n W2 × (m – 1) × (n – 1)

Adjacent modules in row/column in same
color

Number of modules = (5+k), k>0 W3 + k

Federal Office for Information Security 45

4 Symbol generation

4.9 Metadata generation and module placement

The final metadata information shall be constructed for each symbol as defined in Section 3.4.1 and 3.4.2 and
encoded using LDPC as specified in Section 3.4.3, including the number of module colors, symbol shape,
symbol size, data mask pattern type, error correction parameters and the code structure.

The bits of metadata including the error correction bits are graphically encoded into the reserved modules.
As defined in Section 3.4.1.1, up to 8 module colors shall be used to encode metadata, except the first part of
metadata in master symbols, which shall be encoded in two-color mode.

• Nc shall be encoded in two-color mode.

• In case of module color modes 1 and 2, corresponding to 4 and 8 module colors, the metadata shall
be encoded using all available colors.

• In case of other module color modes, which contain more than 8 modules colors, only the colors
available in color mode 2 shall be used to encode the metadata.

The encoded metadata bit stream shall be placed into the modules which are reserved in Section 4.6,
following the placement order specified in Section 3.4.4. If the length of metadata is not an exact multiple of
N, where N is the number of bits a metadata module represents, up to N-1 padding bits (all zeros) shall be
appended to the metadata bit stream to fill up the final used module.

46 Federal Office for Information Security

User Guidelines 5

5 User Guidelines

5.1 Dimensions

JAB Code symbols (both master and slave symbols) shall conform to the following dimensions:

X dimension: the width of a module shall be specified by the application, taking into account the
technologies used to produce and scan the symbol;

Y dimension: the height of a module shall be equal to the X dimension.

No limit is placed on the module size in this specification. However, all modules in the symbols of a JAB
Code shall be of the same size.

5.2 Use selection of module color

In JAB Code, eight module color modes are specified, which allow a symbol to contain up to 256 different
module colors. Using more module colors in a symbol allows higher data capacity, but it also puts higher
requirements upon the technologies used to produce and read the symbol. The selection of module colors
should be determined in relation to:

• the required data payload according to the application requirements;

• the expected symbol size according to the application requirements;

• the capability of the technologies used to produce and scan the symbol.

See Annex F for guidelines for module color specifications.

5.3 User selection of error correction level

An appropriate error correction level should be defined by the user according to the application
requirements. As specified in Section 3.4.1.4, JAB Code allows customizable error correction levels. For a
given message length, a higher level of error correction will lead to some increase in symbol size. The
recommended error correction level for normal use should be enforced as the default level in the encoder
and decoder.

If the symbol size is fixed in the application regardless of the message length, the highest possible error
correction level shall be used, with which the whole encoded data can be hold by the symbol, in order to
achieve the best robustness.

5.4 User selection of symbol and code shape

JAB Code allows square, rectangle symbols and arbitrary code shapes by symbol cascading. The user should
define the appropriate symbol shape and code structure to suit the application requirements.

The symbol shape should be determined by the shape of the space to place the symbol. In case of non-square
placing space, rectangle symbols can be used to accommodate more data than square symbols by making
the most of the available space.

With the same symbol size, slave symbols may accommodate more data than master symbols, as they have
lower overhead thanks to absence of finder patterns and shorter metadata. However, symbol cascading
increases the reading complexity of JAB Code and may consequently decrease decoding reliability. Therefore,
symbol cascading should only be used in the following cases:

• the data message can not be accommodated by a single master symbol;

Federal Office for Information Security 47

5 User Guidelines

• the available space to place the code has an irregular shape, which can not be fully utilized by a
single square or rectangle symbol.

• small symbols (small side-version) are preferred due to the application requirements.

5.5 Guidelines for symbol print and scan

Any JAB Code application must be viewed as a total system solution. All the symbology encoding/decoding
components (surface marker or printer, labels, readers) making up an application need to operate together as
a system. A failure in any link of the chain, or a mismatch between them, could compromise the
performance of the overall system.

While compliance with the specifications is one key to assuring overall system success, other considerations
come into play which may influence performance as well. The following guidelines suggest some factors to
keep in mind when specifying or implementing bar code systems:

• Select a print density which will yield tolerance values that can be achieved by the marking or
printing technology being used. Ensure that the module dimension is an integer multiple of the
print head pixel dimension.

• Choose a reader with a resolution suitable for the symbol density and quality produced by the
printing technology.

• Ensure that the optical properties of the printed symbol are compatible with the wavelength of the
scanner light source or sensor.

• Ensure that the lighting condition is consistent over the whole symbol when scanning the printed
symbol.

• Verify symbol compliance in the final label or package configuration. Overlays, show-through, and
curved or irregular surfaces can all affect symbol readability.

48 Federal Office for Information Security

Reference decode algorithm 6

6 Reference decode algorithm
This reference decode algorithm finds the symbols in an image and decodes them. This algorithm may be
used by practical reader implementations.

6.1 Decoding procedure overview

Decoding JAB Code from a captured image involves the following steps:

1. Preprocess the image which contains a JAB Code. When necessary, the captured image containing
the symbols should be denoised to remove isolated pixels which have colors greatly differing from
their neighbors.

2. Locate the master symbol within the image by finding the finder patterns.

3. Decode the metadata of master symbol and determine the code parameters, including module color
mode, side-versions, error correction parameters, mask pattern reference and docking positions of
slave symbols.

4. Locate the alignment patterns and establish the sampling grid.

5. Extract and construct the color palettes.

6. Decode the data modules by determining their color index in the color palette.

7. Release the data masking using the mask pattern corresponding to the decoded mask pattern
reference.

8. Deinterleave the data stream.

9. Detect and correct errors in the data stream.

10. Decode the data stream into the original message in accordance with the encoding modes in use.

11. If exist, locate the slave symbols docked to the master symbol and decode the metadata and the data
stream in the slave symbols.

12. If exist, locate and decode further docked slave symbols recursively, according to the symbol
decoding order.

6.2 Locating the finder patterns

The four finder patterns in JAB Code, Finder Pattern UL, Finder Pattern UR, Finder Pattern LR and Finder
Pattern LL, consist of five layers with a core module in unique color, located at the four corners of the master
symbol as described in Section 3.3.6. All of them have a distinct characteristic which may make them easy to
be identified in the image: layer widths in each finder pattern form a pC1-C2-C1-C2-qC1 sequence, where C1
and C2 represent the layer colors and the relative widths of each layer are p:1:1:1:q in all scanlines running
through the center of the core module. In this reference algorithm, the tolerance for each of these widths is
50%, corresponding to a range of 0.5 to 1.5).

When a candidate scanline with the above-mentioned characteristic is detected, note the position A where
the scanline intersects the border between the first and the second layer and the position B where the
scanline intersects the border between the fourth layer and the fifth layer, as shown in Figure 19. Repeat this
by scanning the adjacent pixel lines in the image until all pixel lines crossing the core module in the
horizontal direction have been identified.

Apply the last step on pixel columns to identify the pixel lines crossing the core module in the vertical
direction. Locate the center of the finder pattern by finding the midpoint between A and B in horizontal

Federal Office for Information Security 49

6 Reference decode algorithm

direction and between C and D in vertical direction, which is shown as point E in Figure 19. The orientation
of the finder pattern can be determined by repeating the line scanning step in diagonal directions.

All of the four finder patterns can be located by repeating these steps. After all finder patterns are located,
identify the type of each finder pattern by the detected core module color C1. Subsequently, determine the
rotational orientation of the symbol and possible mirroring by analyzing the coordinates of the four finder
patterns.

The horizontal and vertical module size in each finder pattern can be calculated by the distance between A
and B as below.

MX=dAB /3

MY=dCD /3

6.3 Decoding the metadata

After the finder patterns are identified, find the guide lines AB, CD, EF and GH, which pass through the
centers of the core modules of the four finder patterns as shown in Figure 20. The guide lines AB and CD are
perpendicular to EF and GH.

The sampling grid for each module center in the reserved metadata area around the finder patterns can be
determined based on the lines parallel to the guide lines, the central coordinates of each finder pattern and
the module size MX and MY of each finder pattern.

The modules that encode the metadata Part I shall be first decoded which are located at the reserved
positions as defined in Section 3.4.4. These modules are encoded in two-color mode as described in Section
3.4.1.1. The modules with lower luminance are decoded as dark modules, representing binary zero, and the
modules with higher luminance are decoded as light modules, representing binary one. Detect and correct
errors in the extracted 6-bit metadata to get the module color mode Nc.

After the used module color mode is identified, the reference colors used for metadata can be sampled in the
same way as metadata at the predefined positions. In this step, up to 8 colors in the color palette shall be
decoded. Based on the sampled reference colors, decode other parts of the metadata step by step as defined

50 Federal Office for Information Security

Figure 19: Scanlines in finder pattern

Reference decode algorithm 6

in Section 3.4.1 to determine the code parameters, including the side-versions, the error correction
parameters, the masking pattern reference and the docking positions of slave symbols.

6.4 Locating the alignment patterns and establishing the sampling grid

For Side-Version 6 or larger symbols, determine the provisional central coordinate of each alignment
pattern, Alignment Pattern X0 or X1, from the coordinates defined in Table 2, based on the central
coordinate of each finder pattern, the module size and the lines parallel to the guide lines AB, CD, EF and
GH, i.e. the lines A1B1, A2B2, C1D1, E1F1, E2F2 and G1H1 as shown in Figure 21. Scan the pixel lines around
the provisional central coordinate to find the actual central coordinate of each alignment pattern.

The sampling grid for each area surrounded by four alignment patterns in the symbol can be determined
based on the central coordinates of the four alignment patterns, the lines parallel to the guide lines
connecting the alignment pattern centers and the average module size. The average module size can be
calculated by the center-to-center distance of the alignment patterns and the number of modules between
the alignment pattern centers as defined in Table 2. Thus, the sampling grind can be established with lines
equidistantly spaced between the centers of the alignment patterns. In the areas at the four corners of the
symbol, one alignment pattern shall be replaced by the finder pattern at the corresponding coordinate to
determine the sampling grid.

For the symbols with side-version less than 6, in which there exists no alignment pattern, the sampling grid
is established solely based on the centers of the four finder patterns and the lines parallel to the guide lines
AB, CD, EF and GH.

Federal Office for Information Security 51

Figure 20: Finder patterns and guide lines

6 Reference decode algorithm

6.5 Constructing the color palettes

After the sampling grid is established, the modules which encode the reference colors can be sampled to
obtain the reference colors. For each reference color module located at the reserved positions as defined in
Section 3.4.4, sample an area of 3×3 image pixels centered on the intersection of the grid lines and store the
sampled color into the corresponding color palette. Repeat this step until the two embedded color palettes
are assembled.

For symbols that contain more than 8 module colors, rearrange the color entries in the two assembled color
palettes to obtain the original color palette. For symbols that contain more than 64 module colors, after
entry rearrangement, interpolate the assembled palettes to restore the absent reference colors and obtain the
original full-size color palettes. Refer to Annex F for the specification of color palette interpolation and
construction.

6.6 Decoding the data message

First, based on the sampling grids, sample an area of 3×3 image pixels centered on each intersection of the
grid lines and determine the color of the module based on the nearest color palette in the symbol. Map the
module color into the corresponding bit string according to its index in the color palette.

52 Federal Office for Information Security

Figure 21: Finder patterns and alignment patterns with guide lines

Reference decode algorithm 6

Second, based on the decoded mark reference from the metadata, apply the used masking pattern to the
decoded data modules to release the data masking and restore the original encoded bit strings. Sequentially
assemble the bit string of each data module to get the data stream. Subsequently deinterleave the data
stream to obtain the encoded data in the original sequence.

Third, based on the decoded error correction parameters from the metadata, detect errors in the data stream
and correct them if there exist errors using the LDPC decoder.

Finally, decode the data message into the original message in accordance with the encoding mode in use, as
described in Section 4.3.

6.7 Locating and decoding slave symbols

Based on the decoded metadata, if there exist slave symbols docked to the master symbol, locate and decode
them according to the symbol decoding order defined in Section 3.5.2.

1. Determine the provisional central coordinates of the two Alignment Pattern U or Alignment L close to
the docking side of the master symbol based on the central coordinates of the two finder patterns at the
docking side, the corresponding guide lines and the distance between the two finder patterns and the
two adjacent alignment patterns in the slave symbol which is fixed at 7 modules. For horizontally
docked slave symbols, the two Alignment Pattern U or L are located on the extension lines of AB and CD.
For vertically docked slave symbols, they are located on the extension lines of EF and GH. Scan the pixel
lines around the provisional central coordinate to find the actual central coordinate of each alignment
pattern.

2. Determine the sampling grid for the metadata and the color palette in the slave symbol based on the
central coordinates of the two finder patters and the detected alignment patterns, the lines parallel to
the guide lines connecting the finder pattern and alignment pattern centers and the side-version of the
docking side.

3. Sample the modules for the reference colors used for slave symbol metadata at the reserved positions as
defined in Section 3.4.4. Decode the metadata in the slave symbol at the reserved positions step by step
as defined in Section 3.4.2 to determine the slave symbol parameters, including the side-version of the
other side, the error correction parameters and the docking positions of further slave symbols.

4. Determine the provisional central coordinates of the other two Alignment Pattern U or Alignment L far
from the docking side based on the central coordinates of the two detected Alignment Pattern U or L,
the extension lines of the guide lines connecting the finder patterns at the docking side and the adjacent
Alignment Pattern U or L and the side-version of the non-docking side of the slave symbol. Scan the
pixel lines around the provisional central coordinate to find the actual central coordinate of each
alignment pattern.

5. Locate the other alignment patterns, Alignment Pattern X0 and X1, if exist, establish the sampling grid,
construct the color palettes and decode the data in the same way as the master symbol.

Repeat step 1-5 until all the slave symbols docked to the master symbol are decoded. If there exist further
docked symbols to the decoded slave symbols, locate and decode all the symbols recursively according to the
decoding order defined in Section 3.5.2.

Federal Office for Information Security 53

 Annex A: Error detection and correction

Annex A: Error detection and correction

A.1 Error encoding

The Low-Density Parity Check Code (LDPC) shall be used for error correction. The parity check matrix
H Pn

(CT
∣I)∈(K x Pg) in systematic form for each length of the message length Pn is defined by the three

parameter wc and wr and K. The parameter wc describes the number of '1's in each column and wr the
number of '1's in each rows. With wc and wr the rate R of the code is determinable with R=1-wc/wr . One way
to generate the matrix H is to randomly fill the columns with wc '1's such that wr holds and it comprise the
identity matrix I. It is recommended to select wc≥3 and wr ≥wc+1.

The generator matrix GPn
(I∣C)∈(Pn x Pg) is obtained by the matrix H and only shown for the first two

metadata length. The Codeword c is obtained by matrix multiplication in the GF(2) c=m⊗G .

Example:

Given the parameters w c=3,wr=6,K=5 , the message m=[1 0 1 0 1] , the generated matrix
H and G are as follows:

H5=[
1 0 1 1 0 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0
0 1 1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0 1

]→G5=[
1 0 0 0 0 1 1 0 1 0
0 1 0 0 0 1 0 1 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 1 1 1 0
0 0 0 0 1 1 0 0 1 1

]

The final codeword is obtained by c=m⊗G=[1 0 1 0 1 0 0 1 0 0] .

A.2.1 Error detection and correction with soft decision

The error correction for the metadata in JAB Code shall be computed using iterative Log Likelihood
decoding algorithm for binary LDPC Codes. After releasing the masking the error correction shall be
performed.

The Log Likelihood decoding requires the matrix HPn
(CT

∣I)∈(K x Pg) used for encoding, the received

codeword r (after releasing the masking) and the maximum number of iterations L.

The minimal Hamming distance dmin induced by the used H matrix gives the number of detectable errors

and ⌊(dmin−1)/2 ⌋ the number of correctable errors.

The decoding algorithm requires initializing the parameter ηu , v
[0]

=0 for all (u,v) with H(u,v)=1, λv
[0]

=r v
and the loop counter l=1 .

For each (u,v) with H(u,v)=1 the algorithm computes ηu , v
[l]

=−2 tanh−1
(Π
j∈V u , v

tanh(
−λ j

[l−1]
−ηu , j

[l−1]

2
)) and

λv
[l]
=r v+ Σ

u∈U v

ηu , v
[l]

. The algorithm makes a tentative decision with ĉv=1 if λv
[l]
>0 , else ĉv=0 .

54 Federal Office for Information Security

Annex A: Error detection and correction

If H ĉ=0 , the algorithm found the correct codeword, else the algorithm update the loop counter l,

ηu , v
[l] and λv

[l] as long as l< L . If l=L and H ĉ≠0 the decoder declares a decoding failure and
stops. It is recommended to use L=25.

Example:
Use matrix H from Annex A.1. Received vector λ

[0] is:
 λ[0]=[1.2 −1.1 1.3 −1.5 1.9 0.2 −1.5 −0.08 −1.7 −1.3]

η
[1]
=[

−0.21 −0.17 −0.19 0 0 0.16 −0.18 0 0 0.22
0.027 0 0.024 0 −0.15 −0.02 0 −0.026 0.03 0

0 0 −0.0013 −0.021 0.0083 0 −0.0013 0 −0.0017 0.0016
0 −0.0018 0 −0.03 0.012 0.0016 0 0.0021 0 0.0023

0.01 0.0083 0 0.14 0 0 0.0088 −0.0097 0.011 0
]

and

λ
[1]

=[1.4 −1.1 1.3 −1.7 2 0.072 −1.6 0.011 −1.8−1.4]

ĉ=[1 0 1 0 1 1 0 1 0 0] , H ĉ≠0

One further iteration brings the decoder to the result such that H ĉ=0 .

A.2.2 Error detection and correction with hard decision

The error correction for the message data in JAB Code shall be computed using hard decision decoding
algorithm for binary LDPC Codes. After releasing the masking the error correction shall be performed.

The decoding algorithm requires initializing the parameter ηu , v
[0]

=0 for all (u,v) with H(u,v)=1, λv
[0]

=0
and the loop counter l=1 .

For each (u,v) with H(u,v)=1 the algorithm computes ηu , v
[l]

=(ĉ∧ηu , j
[l−1]

) for j∈V u , v and λ v
[l]
= Σ

u∈U v

ηu ,v
[l]

.

The algorithm flip those bits with the maximum λv
[l]
>0 in each iteration step l.

If H ĉ=0 , the algorithm found the correct codeword, else the algorithm update the loop counter l,

ηu , v
[l] and λv

[l] as long as l< L . If l=L and H ĉ≠0 the decoder declares a decoding failure and
stops. It is recommended to use L=25.

Federal Office for Information Security 55

 Annex B: Matrix generation for metadata

Annex B: Matrix generation for metadata
The Low-Density Parity Check Code (LDPC) shall be used for error correction of metadata. The parity check
matrix H Pn

(CT
∣I)∈(K x Pg) in is generated with Pn as the metadata length. The generator matrix

GPn
(I∣C)∈(Pn x Pg) is obtained by the matrix H and only shown for the first two metadata length. The

Codeword c is obtained by matrix multiplication in the GF(2) c=m⊗G (see Annex A). The algorithm shall
create the matrix H as follows:

1. Set wc = 2 if the metadata length is shorter than 36 bits, else wc = 3.

2. Set the number of '1' in each row of matrix H to: ⌊C×K /wc+3 ⌋/K .

3. The '1's in each row shall be equal distributed. Matrix H will be obtained by using the interleaving
algorithm listed in Annex E to specify the position of the '1's in each row of the matrix.

56 Federal Office for Information Security

Annex C: JAB Code symbol encoding example

Annex C: JAB Code symbol encoding example
For instance the message “JAB Code 2016!” shall be encoded into the JAB Code symbol.

C.1 Creating the message bit stream

The characters are taken one after each other and processed according to Annex D. The output is shown in
Table 22:

Table 22: Message encoding for "JAB Code 2016!"

Input
Message

Encoding mode Value Binary Stream

J Uppercase 10 01010

A Uppercase 1 00001

B Uppercase 2 00010

SP Uppercase 0 00000

C Uppercase 3 00011

L/L Uppercase 28 11100

o Lowercase 15 01111

d Lowercase 4 00100

e Lowercase 5 00101

N/L Lowercase 29 11101

SP Numeric 0 0000

2 Numeric 3 0011

0 Numeric 1 0001

1 Numeric 2 0010

6 Numeric 5 0101

P/S Numeric 13 1101

! Punctuation 0 0000

C.2 Selecting symbol

The resulting binary message length is 78 bits. Using the default error correction level 2 and 8 colors the
metadata length is 10 modules. The gross message length Pg and the required error correction bits K are
obtained according to Section 4.4.1, Pg=182 and K=104. According to Table 1 the symbol Side-Version 1 is
selected with the side size 21. According to Section 4.4.2 and 4.4.3 the stuffing bits and the error correction
bits are added. Afterward the interleaving for the Side-Version 1 is applied according to Section 4.5 and the
masking according to Section 4.8.

C.3 Assembling the Metadata

The metadata are selected according to Section 3.4.1. The first part of the metadata is 010 and encoded
separately by LDPC according to Annex B and requires 6 modules. Part II of the metadata is SS=0, VF=00,

Federal Office for Information Security 57

 Annex C: JAB Code symbol encoding example

MSK=000 and SF=0, together 0000000. Part II is also encoded into 14 bits according Annex B. Part III is V=00,
E=0010100101 and encoded according Annex B. After encoding the length of part III is 24 bits. Part II and
Part III together require 13 modules.

C.4 Assembling the Symbol

The assembled symbol is shown in Figure 22.

58 Federal Office for Information Security

Figure 22: Sample symbol

Annex D: Optimization of bit stream length

Annex D: Optimization of bit stream length
As described in Section 4.3, JAB Code offers various encoding modes. The modes differs in the number of
required bits to represent given data characters. Since there is an overlap between the character sets of the
modes, it is necessary to choose the most appropriate mode to encode this data in the shortest sequence of
bits possible. The algorithm described in the following processes the input data characters one after each
other and output a trellis graph. After the last character is processed, the shortest sequence is known.

First some tables are set up to show the length of bits required to latch or shift from one mode to another.
The seven encoding modes are abbreviated by:

Encoding
Mode

Abbreviation
Character Size in Bit per

Character

Uppercase U 5

Lowercase L 5

Numeric N 4

Punctuation P 4

Mixed M 5

Alphanumeric A 6

Byte B 8

The following table present the length of bits required to shift from one to another mode, where 106

indicates a not possible shift.

To
From

U L N P M A B

U 106 106 106 5 7 106 11

L 5 106 7 5 7 106 11

N 6 106 106 4 6 106 10

P 0 0 0 106 106 0 106

M 0 0 0 106 106 0 106

A 106 106 106 8 8 106 12

B 0 0 0 106 106 0 106

The following table present the length of bits required to latch from one to another mode, where 106

indicates a not possible latch.

Federal Office for Information Security 59

 Annex D: Optimization of bit stream length

To
From

U L N P M A B

U 0 5 5 106 106 5 106

L 7 0 5 106 106 5 106

N 4 6 0 106 106 106 106

P 106 106 106 106 106 106 106

M 106 106 106 106 106 106 106

A 8 106 106 106 106 0 106

B 106 106 106 106 106 106 0

To optimize the bit stream length the algorithm use four varaiables. One variable with 14 integers
CharSizeC[EncodingMode(Latch), EncodingMode(Shift)] for each character and set the character size
according to the first table in this Annex if the character is encoded by the appropriate encoding mode (See
Table 12), otherwise set the value to 106. A further variable SwitchMode contain all the bit length to latch or
switch from one into another mode (see the second and third table of this Annex). The third variable
contains also 14 integer values and hold the information of the current binary sequence length
CurrSeqLen[EncodingMode(Latch), EncodingMode(Shift)]. The fourth variable is 14-character long for each
character and keep the information about the previous mode PrevMode, which induce the shortest length
for each mode.

Step 1. Initialize CharSize0[0 106 106 106 106 106 106 0 106 106 106 106 106 106] because the initial mode is the
Uppercase mode.

Step 2. Accept the first character.

Step 3. Set CurrSeqLen to the number of bits required to encode this character according to the encoding
mode.

Step 4. Use the CharSizeC and SwitchMode variable to update the CurrSeqLen variable with the minimum
length. Set the previous mode which induce the shortest length to PrevMode.

Step 5. Accept the next character and move on with Step 3 while no character remains.

Step 6. The shortest path through the trellis graph is known by picking the smallest number in CurrSeqLen
and go the whole graph back by means of PrevMode. Set all unused values in CharSizeC to 106.

60 Federal Office for Information Security

Annex E: Interleaving algorithm

Annex E: Interleaving algorithm
The following in-place random permutation algorithm is used to interleave a bit sequence in JAB Code.

Denote a bit sequence as S={b0, b1, b2, ……, bN-1} containing N bits.

1. Give an initial seed for the random number generator.

2. Set the variable L=N.

3. Generate a random number R between 0 and L-1.

4. Swap the bit bR at index R and the bit bL-1 at index L-1.

5. Update L=L-1.

6. Repeat the steps 3-5 until L=0.

The following C routine is used to generate random numbers in step 3.

#include <inttypes.h>

uint32_t temper(uint32_t x)

{

x ^= x>>11;

x ^= x<<7 & 0x9D2C5680;

x ^= x<<15 & 0xEFC60000;

x ^= x>>18;

return x;

}

uint32_t lcg64_temper(uint64_t* seed)

{

*seed = 6364136223846793005ULL * *seed + 1;

return temper(*seed >> 32);

}

Federal Office for Information Security 61

 Annex F: Guidelines for module color selection and color palette construction

Annex F: Guidelines for module color selection and
color palette construction

F.1 Module color selection

JAB Code supports eight color modes and up to 256 module colors are allowed to use in a symbol. In order to
optimize the decoding of JAB Code, the used colors shall be so distinguishable as possible. Therefore, the
used colors shall keep a distance from each other in the RGB color space cube as shown in Figure 23.

(a) In case of 4-color mode, blue, green, magenta and yellow shall be used.

(b) In case of 8-color mode, each color channel of R, G and B takes two values, 0 and 255, which will
generate the 8 colors at the vertexes of the cube, i.e. black, blue, green, cyan, red, magenta, yellow and
white. These 8 colors are included in all the following color modes.

(c) In case of 16-color mode, the color channel R takes 4 values, 0, 85, 170 and 255, and the channel G and B
take two values, 0 and 255, which will totally generate 16 colors as listed in Table 23.

(d) In case of 32-color mode, the color channel R and G take four values, 0, 85, 170 and 255, and the color
channel B takes two values, 0 and 255, which will totally generate 32 colors.

(e) In case of 64-color mode, each color channel of R, G and B takes four values, 0, 85, 170 and 255, which
will totally generate 64 colors.

(f) In case of 128-color mode, the color channel R takes eight values, 0, 36, 73, 109, 146, 182, 219 and 255, and
the color channel G and B take four values, 0, 85, 170 and 255, which will totally generate 128 colors.

(g) In case of 256-color-mode, the color channel R and G take eight values, 0, 36, 73, 109, 146, 182, 219 and
255, and the color channel B takes four values, 0, 85, 170 and 255, which will totally generate 256 colors.

62 Federal Office for Information Security

Figure 23: RGB color space cube

Annex F: Guidelines for module color selection and color palette construction

Table 23: Used colors in 16-color mode

Color index R G B Binary bits

0 0 0 0 0000

1 0 0 255 0001

2 0 255 0 0010

3 0 255 255 0011

4 85 0 0 0100

5 85 0 255 0101

6 85 255 0 0110

7 85 255 255 0111

8 170 0 0 1000

9 170 0 255 1001

10 170 255 0 1010

11 170 255 255 1011

12 255 0 0 1100

13 255 0 255 1101

14 255 255 0 1110

15 255 255 255 1111

F.2 Construction of the embedded color palette in the symbol

In either master and slave symbols, there are 128 modules reserved for two color palettes. Therefore, each
color palette can contain up to 64 colors.

(a) In case of 4-color to 64-color modes, all available colors shall be included in the embedded color
palettes.

(b) In case of 128-color mode, the colors whose R channel values are 0, 73, 182 or 255 shall be included in
the embedded color palettes.

(c) In case of 256-color mode, the colors whose R and G channel values are 0, 73, 182 or 255 shall be
included in the embedded color palettes.

In symbols containing more than 8 colors, the metadata are encoded using only the 8 colors available in the
8-color mode, namely the 8 colors at the vertexes of the RGB color cube. In order to enable metadata
decoding in early decoding steps, in which only the first part of the color palette is decoded, the color entries
in the embedded color palette containing more than 8 colors shall be rearranged. The 8 colors at the vertexes
shall be always moved to the first 8 entries, followed by the other selected colors in their original sequence.

In the symbol decoding, the extracted color palettes shall be first inversely arranged into their original
sequence. For symbols containing 128 and 256 colors, the original full-size color palette shall be
reconstructed by interpolating each color channel of the colors in the extracted color palettes. For example,
the colors whose original R channel value is 36 shall be restored by interpolating the colors whose original R
channel value is 0 and 73.

Federal Office for Information Security 63

	Table of Contents
	1 Introduction and Scope
	2 Terms and definitions, abbreviations and symbols, mathematical and logical operations
	2.1 Terms and definitions
	2.1.1 Module
	2.1.2 Finder pattern
	2.1.3 Alignment pattern
	2.1.4 Data interleaving
	2.1.5 Color palette
	2.1.6 Padding bit / Stuffing bit
	2.1.7 Master symbol
	2.1.8 Slave symbol
	2.1.9 Host symbol

	2.2 Abbreviations
	2.3 Mathematical symbols
	2.4 Mathematical and logical operations

	3 Symbol description
	3.1 Basic characteristics
	3.2 Summary of additional features
	3.3 Symbol structure
	3.3.1 Square master symbol
	3.3.2 Rectangle master symbol
	3.3.3 Square slave symbol
	3.3.4 Rectangle slave symbol
	3.3.5 Symbol side size
	3.3.6 Finder pattern
	3.3.7 Alignment pattern
	3.3.8 Color palette
	3.3.9 Metadata
	3.3.10 Encoded data

	3.4 Metadata structure
	3.4.1 Metadata of master symbol
	3.4.1.1 Module color mode
	3.4.1.2 Symbol shape
	3.4.1.3 Symbol size
	3.4.1.4 Error correction level
	3.4.1.5 Positions of docked slaves
	3.4.1.6 Masking type

	3.4.2 Metadata of slave symbol
	3.4.2.1 Symbol shape and size
	3.4.2.2 Error correction level
	3.4.2.3 Positions of docked slaves

	3.4.3 Metadata error encodation
	3.4.4 Reserved modules for metadata and color palette

	3.5 Symbol Cascading
	3.5.1 Symbol docking rules
	3.5.2 Symbol decoding order

	4 Symbol generation
	4.1 Encode procedure overview
	4.2 Data analysis
	4.3 Encoding modes
	4.3.1 Uppercase mode
	4.3.2 Lowercase mode
	4.3.3 Numeric mode
	4.3.4 Punctuation mode
	4.3.5 Mixed mode
	4.3.6 Alphanumeric mode
	4.3.7 Byte mode
	4.3.8 Extended Channel Interpretation (ECI) mode
	4.3.9 FNC1 mode

	4.4 Error correction
	4.4.1 Selectable error correction levels
	4.4.2 Stuffing Bits
	4.4.3 Generating the error correction stream

	4.5 Data interleaving
	4.6 Metadata module reservation
	4.7 Data module encodation and placement
	4.8 Data masking
	4.8.1 Data mask patterns
	4.8.2 Evaluation of data masking results

	4.9 Metadata generation and module placement

	5 User Guidelines
	5.1 Dimensions
	5.2 Use selection of module color
	5.3 User selection of error correction level
	5.4 User selection of symbol and code shape
	5.5 Guidelines for symbol print and scan

	6 Reference decode algorithm
	6.1 Decoding procedure overview
	6.2 Locating the finder patterns
	6.3 Decoding the metadata
	6.4 Locating the alignment patterns and establishing the sampling grid
	6.5 Constructing the color palettes
	6.6 Decoding the data message
	6.7 Locating and decoding slave symbols

	Annex A: Error detection and correction
	Annex B: Matrix generation for metadata
	Annex C: JAB Code symbol encoding example
	Annex D: Optimization of bit stream length
	Annex E: Interleaving algorithm
	Annex F: Guidelines for module color selection and color palette construction

