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ABSTRACT
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Interpreting OLS Estimands When 
Treatment Effects Are Heterogeneous: 
Smaller Groups Get Larger Weights*

Applied work often studies the effect of a binary variable (“treatment”) using linear models 

with additive effects. I study the interpretation of the OLS estimands in such models when 

treatment effects are heterogeneous. I show that the treatment coefficient is a convex 

combination of two parameters, which under certain conditions can be interpreted as the 

average treatment effects on the treated and untreated. The weights on these parameters 

are inversely related to the proportion of observations in each group. Reliance on these 

implicit weights can have serious consequences for applied work, as I illustrate with two 

well-known applications. I develop simple diagnostic tools that empirical researchers can 

use to avoid potential biases. Software for implementing these methods is available in R 

and Stata. In an important special case, my diagnostics only require the knowledge of the 

proportion of treated units.
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I Introduction

Many applied researchers study the effect of a binary variable (“treatment”) on the expected value

of an outcome of interest, holding fixed a vector of control variables. As noted by Imbens (2015),

despite the availability of a large number of semi- and nonparametric estimators for average treat-

ment effects, applied researchers often continue to use conventional regression methods. In partic-

ular, numerous studies use ordinary least squares (OLS) to estimate

y = α + τd + Xβ + u, (1)

where y denotes the outcome, d denotes the treatment, and X denotes the row vector of control

variables, (x1, . . . , xK). Usually, τ is interpreted as the average treatment effect (ATE). This esti-

mation strategy is used in many influential papers in economics (e.g., Voigtländer and Voth, 2012;

Alesina et al., 2013; Aizer et al., 2016), as well as in other disciplines.

The great appeal of the model in (1) comes from its simplicity (Angrist and Pischke, 2009). At

the same time, however, a large body of evidence demonstrates the importance of heterogeneity in

effects (see, e.g., Heckman, 2001; Bitler et al., 2006), which is explicitly ruled out by this same

model. In this paper I contribute to the recent literature on interpreting τ, the OLS estimand, when

treatment effects are heterogeneous (Angrist, 1998; Humphreys, 2009; Aronow and Samii, 2016).

I demonstrate that τ is a convex combination of two parameters, which under certain conditions

can be interpreted as the average treatment effects on the treated (ATT) and untreated (ATU).

Surprisingly, the weight that is placed by OLS on the average effect for each group is inversely

related to the proportion of observations in this group. The more units are treated, the less weight

is placed on ATT. One interpretation of this result is that OLS estimation of the model in (1) is

generally inappropriate when treatment effects are heterogeneous.

It is also possible, however, to present a more pragmatic view of my main result. I derive a

number of corollaries of this result which suggest several diagnostic methods that I recommend to

applied researchers. These diagnostics are applicable whenever the researcher is: (i) studying the

effects of a binary treatment, (ii) using OLS, and (iii) unwilling to maintain that ATT is exactly
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equal to ATU. Typically, such a homogeneity assumption would be undesirably strong, because

those choosing or chosen for treatment may have unusually high or low returns from that treatment,

which would directly contradict the equality of ATT and ATU.

In deriving my diagnostics, I assume that the researcher is ultimately interested in ATE, ATT,

or both, and that she wishes to estimate the model in (1) using OLS but is concerned about treat-

ment effect heterogeneity. In this case, my diagnostics are able to detect deviations of the OLS

weights from the pattern that would be necessary to consistently estimate a given parameter. These

diagnostics are easy to implement and interpret; they are bounded between zero and one in abso-

lute value and they give the proportion of the difference between ATU and ATT (or between ATT

and ATU) that contributes to bias. Thus, if a given diagnostic is close to zero, OLS is likely a

reasonable choice; but if a diagnostic is far from zero, other methods should be used.

In an important special case, these diagnostics become particularly simple and immediate to

report. If we wish to estimate ATT, this “rule of thumb” variant of my diagnostic is equal to the

proportion of treated units, P (d = 1); if our goal is to estimate ATE, the diagnostic is equal to

2 · P (d = 1) − 1, twice the deviation of P (d = 1) from 50%. In short, OLS is expected to provide

a reasonable approximation to ATE if both groups, treated and untreated, are of similar size. If we

wish to estimate ATT, it is necessary that the proportion of treated units is very small.

It follows that OLS might often be substantially biased for ATE, ATT, or both. How common

are these biases in practice? In a subset of 37 estimates from Card et al. (2018), a recent survey of

evaluations of active labor market programs, the mean proportion of treated units is 17.7%.1 Using

the “rule of thumb” variants of my diagnostics, I establish that on average the difference between

the OLS estimand and ATE is expected to correspond to 64.6% of the difference between ATT and

ATU. Similarly, the expected difference between OLS and ATT is on average equal to 17.7% of

the difference between ATU and ATT. In other words, these biases might often be large.

The remainder of the paper is organized as follows. Section II presents a leading example

and the main theoretical results. Section III discusses two empirical applications. In a study of the

1This sample is restricted to studies that Card et al. (2018) coded as “selection on observables” and “regression.”
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effects of a training program (LaLonde, 1986), OLS estimates are very similar to ÂTT. On the other

hand, in a study of the effects of cash transfers (Aizer et al., 2016), OLS estimates are similar to

ÂTU. Section IV concludes. Proofs and several extensions are provided in the online appendices.

The main results are implemented in newly developed R and Stata packages, hettreatreg.

II A Weighted Average Interpretation of OLS

A Leading Example

To illustrate the problem with OLS weights, consider the classic example of the National Sup-

ported Work (NSW) program. Because this program originally involved a social experiment, the

difference in mean outcomes between the treated and control units provides an unbiased estimate

of the effect of treatment. LaLonde (1986) studies the performance of various estimators at repro-

ducing this experimental benchmark when the experimental controls are replaced by an artificial

comparison group from the Current Population Survey (CPS) or the Panel Study of Income Dy-

namics (PSID). Angrist and Pischke (2009) reanalyze the NSW–CPS data and conclude that OLS

estimates of the effect of NSW program on earnings in 1978 are similar to the experimental bench-

mark of $1,794.2 In particular, their richest specification delivers an estimate of $794. As I will

show, this conclusion is driven by the small proportion of treated units in these data.

In this example, ATT and ATU are likely to be substantially different. This is because the

treated group, unlike the CPS comparison (untreated) group, was highly economically disadvan-

taged. It is plausible that ATU might be zero or, due to the opportunity cost of program participa-

tion, even negative. Also, only 1.1% of the sample was treated, so ATE and ATU will be similar.

To demonstrate this, I modify the model in (1) to include all interactions between d and X.

Estimation of this expanded model, again using OLS, allows us to separately compute ÂTE, ÂTT,

2Subsequently to LaLonde (1986), these data were studied by Dehejia and Wahba (1999), Smith and Todd (2005),
and many others. Angrist and Pischke (2009) analyze the subsample of the experimental treated units constructed by
Dehejia and Wahba (1999), combined with “CPS-1” or “CPS-3,” i.e. two of the nonexperimental comparison groups
from CPS, constructed by LaLonde (1986). In this replication, I focus on “CPS-1.”
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and ÂTU. This method is usually referred to as “regression adjustment” (Wooldridge, 2010) or

“Oaxaca–Blinder” (Kline, 2011; Graham and Pinto, 2018). Using the control variables that deliver

the estimate of $794, we obtain ÂTE = −$4,930, ÂTT = $796, and ÂTU = −$4,996. It turns

out that, since ÂTE and ÂTU are indeed negative, the OLS estimate and ÂTE have different signs.

Moreover, if we represent the OLS estimate as a weighted average of ÂTT and ÂTU with weights

that sum to unity, we can write $794 = ŵATT · $796 + (1 − ŵATT ) ·
(
−$4,996

)
, where ŵATT is the

weight on ÂTT. Solving for ŵATT yields ŵATT = 99.96%. In other words, the hypothetical OLS

weight on the effect on the treated is similar to the proportion of untreated units, 98.9%.

This “weight reversal” is not a coincidence. As I demonstrate below, the intuition from this

example holds more generally, even though the OLS estimand is not necessarily a convex combi-

nation of two parameters from a procedure that controls for the full vector X.

B Main Result

This section presents my main result, which focuses on the algebra of OLS and “descriptive” esti-

mands that I define below. A causal interpretation of OLS also requires introducing the notion of

potential outcomes as well as certain conditions that I discuss in section IIC, including an ignora-

bility assumption. However, this is not needed for my main result.

If L (· | ·) denotes the linear projection, we are interested in the interpretation of τ in the linear

projection of y on d and X,

L (y | 1, d, X) = α + τd + Xβ, (2)

when this linear projection does not correspond to the (structural) conditional mean. Let

ρ = P (d = 1) (3)

be the unconditional probability of treatment and let

p (X) = L (d | 1, X) = αp + Xβp (4)

be the “propensity score” from the linear probability model or, equivalently, the best linear approx-
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imation to the true propensity score. Generally, the specification in (2) and (4) can be arbitrarily

flexible, so this approximation can be made very accurate; in fact, we can think of equation (2) as

partially linear, where we may include powers and cross-products of original control variables.

After defining p (X), it is helpful to introduce two linear projections of y on p (X), separately

for d = 1 and d = 0, namely

L
[
y | 1, p (X) , d = 1

]
= α1 + γ1 · p (X) (5)

and also

L
[
y | 1, p (X) , d = 0

]
= α0 + γ0 · p (X) . (6)

Note that equations (4), (5), and (6) are definitional. It is sufficient for my main result that the

linear projections introduced so far exist and are unique.

Assumption 1. (i) E(y2) and E(‖X‖2) are finite. (ii) The covariance matrix of (d, X) is nonsingular.

Assumption 2. V
[
p (X) | d = 1

]
and V

[
p (X) | d = 0

]
are nonzero, where V (· | ·) denotes the con-

ditional variance (with respect to E
[
p (X) | d = j

]
, j = 0, 1).

Assumption 1 guarantees the existence and uniqueness of the linear projections in (2) and (4).

Similarly, Assumption 2 ensures that the linear projections in (5) and (6) exist and are unique.3

The next step is to use the linear projections in (5) and (6) to define the average partial linear

effect of d as

τAPLE = (α1 − α0) + (γ1 − γ0) · E
[
p (X)

]
(7)

as well as the average partial linear effect of d on group j ( j = 0, 1) as

τAPLE, j = (α1 − α0) + (γ1 − γ0) · E
[
p (X) | d = j

]
. (8)

These estimands are well defined under Assumptions 1 and 2, and have a causal interpretation

under additional assumptions, as discussed in section IIC below.4 When the linear projections in
3Both assumptions are generally innocuous, although Assumption 2 rules out a small number of interesting ap-

plications, such as regression adjustments in Bernoulli trials and completely randomized experiments. In these cases,
however, OLS is consistent for the average treatment effect under general conditions (Imbens and Rubin, 2015).

4Moreover, τAPLE is similar to the “average regression coefficient” or “average slope coefficient” in Graham and
Pinto (2018), which is also a descriptive estimand in the sense of Abadie et al. (2020).
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equations (5) and (6) represent the conditional mean of y, the average partial linear effects of d

overlap with its average partial effects. It should be stressed, however, that Theorem 1, the main

result of this paper, is more general and only requires Assumptions 1 and 2.

Theorem 1 (Weighted Average Interpretation of OLS). Under Assumptions 1 and 2,

τ = w1 · τAPLE,1 + w0 · τAPLE,0,

where w1 =
(1−ρ)·V[p(X)|d=0]

ρ·V[p(X)|d=1]+(1−ρ)·V[p(X)|d=0] and w0 = 1 − w1 =
ρ·V[p(X)|d=1]

ρ·V[p(X)|d=1]+(1−ρ)·V[p(X)|d=0] .

Proof. See online appendix A. �

Theorem 1 shows that τ, the OLS estimand, is a convex combination of τAPLE,1 and τAPLE,0. The

definition of τAPLE, j makes it clear that τ is equivalent to the outcome of a particular three-step

procedure. In the first step, we obtain p (X), i.e. the “propensity score.” Next, in the second step,

we obtain τAPLE,1 and τAPLE,0, as in (8), from two linear projections of y on p (X), separately for

d = 1 and d = 0. This is analogous to the “regression adjustment” procedure in section IIA,

although now we control for p (X) rather than the full vector X. Finally, in the third step, we

calculate a weighted average of τAPLE,1 and τAPLE,0. The weight on τAPLE,1, w1, is decreasing in
V[p(X)|d=1]
V[p(X)|d=0] and ρ and the weight on τAPLE,0, w0, is increasing in V[p(X)|d=1]

V[p(X)|d=0] and ρ.5 This is clearly

undesirable, since τAPLE = ρ · τAPLE,1 + (1 − ρ) · τAPLE,0.

This weighting scheme is also surprising: the more units belong to group j, the less weight is

placed on τAPLE, j, i.e. the effect for this group. There are several ways to provide intuition for this

result. One is provided in the next section. Another intuition follows from an alternative proof of

Theorem 1, which is provided with discussion in online appendix B2. It parallels the intuition in

Angrist (1998) and Angrist and Pischke (2009) that OLS gives more weight to treatment effects

that are better estimated in finite samples.6

5A formal proof that the relationship between ρ and w1 (w0) is indeed always negative (positive) is provided in
online appendix B1. This proof additionally assumes that the conditional mean of d is linear in X.

6This proof uses a result from Deaton (1997) and Solon et al. (2015) as a lemma. The main proof of Theorem 1
uses a result on decomposition methods from Elder et al. (2010). See online appendix A for more details.
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C Causal Interpretation

The fact that Theorem 1 only requires the existence and uniqueness of several linear projections

makes this result very general. On the other hand, one concern about this result might be that

τAPLE,1 and τAPLE,0 do not necessarily correspond to the usual (causal) objects of interest. To define

these objects, we need two potential outcomes, y(1) and y(0), only one of which is observed for

each unit, y = y(d) = y(1)·d+y(0)·(1 − d). The parameters of interest, ATE, ATT, and ATU, are de-

fined as τAT E = E
[
y(1) − y(0)

]
, τATT = E

[
y(1) − y(0) | d = 1

]
, and τATU = E

[
y(1) − y(0) | d = 0

]
.

A causal interpretation of OLS also entails the following assumptions.

Assumption 3 (Ignorability in Mean). (i) E
[
y(1) | X, d

]
= E

[
y(1) | X

]
; and (ii) E

[
y(0) | X, d

]
=

E
[
y(0) | X

]
.

Assumption 4. (i) E
[
y(1) | X

]
= α1 + γ1 · p (X); and (ii) E

[
y(0) | X

]
= α0 + γ0 · p (X).

Assumptions 3 and 4 ensure that τ admits a causal interpretation. Assumption 3 is standard in the

program evaluation literature (Wooldridge, 2010). Assumption 4 is not commonly used. Sufficient

for this assumption, but not necessary, is that the conditional mean of d is linear in X and the

conditional means of y(1) and y(0) are linear in the true propensity score, which is now equal to

p (X). Linearity of E (d | X) is assumed in Aronow and Samii (2016) and Abadie et al. (2020). This

assumption is not necessarily strong, since X might include powers and cross-products of original

control variables. It is also satisfied automatically in saturated models, as in Angrist (1998) and

Humphreys (2009). The linearity assumption for E
[
y(1) | p (X)

]
and E

[
y(0) | p (X)

]
dates back

to Rosenbaum and Rubin (1983) but is restrictive. See also Imbens and Wooldridge (2009) and

Wooldridge (2010) for a discussion.

Corollary 1 (Causal Interpretation of OLS). Under Assumptions 1, 2, 3, and 4,

τ = w1 · τATT + w0 · τATU .

Proof. Assumption 3 implies that E
[
y(1) − y(0) | X

]
= E (y | X, d = 1) − E (y | X, d = 0). Then,

Assumption 4 implies that E
[
y(1) − y(0) | X

]
= (α1 − α0) + (γ1 − γ0) · p (X), which in turn implies

that τATT = τAPLE,1 and τATU = τAPLE,0. This, together with Theorem 1, completes the proof. �
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Corollary 1 states that, under Assumptions 1, 2, 3, and 4, the OLS weights from Theorem 1 apply

to the causal objects of interest, τATT and τATU . Hence, τ has a causal interpretation. The greater

the proportion of treated units, the smaller is the OLS weight on τATT . Again, this is undesirable,

since τAT E = ρ · τATT + (1 − ρ) · τATU .

To aid intuition for this surprising result, recall that an important motivation for using the model

in (1) and OLS is that the linear projection of y on d and X provides the best linear predictor of y

given d and X (Angrist and Pischke, 2009). However, if our goal is to conduct causal inference,

then this is not, in fact, a good reason to use this method. Ordinary least squares is “best” in

predicting actual outcomes but causal inference is about predicting missing outcomes, defined as

ym = y(1) · (1 − d) + y(0) · d. In other words, the OLS weights are optimal for predicting “what is.”

Instead, we are interested in predicting “what would be” if treatment were assigned differently.

Intuition suggests that if our goal were to predict “what is” and, without loss of generality,

group one were substantially larger than group zero, we would like to place a large weight on the

linear projection coefficients of group one (α1 and γ1), because these coefficients can be used to

predict actual outcomes of this group. As noted by Deaton (1997) and Solon et al. (2015), the OLS

weights are consistent with this idea. Indeed, Theorem 1 also implies that

τ =
[
E (y | d = 1) − E (y | d = 0)

]
− (w0γ1 + w1γ0) ·

{
E

[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]}
. (9)

Namely, the OLS estimand is equal to the simple difference in means of y plus an adjustment term

that depends on the difference in means of p (X) and a weighted average of γ1 and γ0. When group

one is “large,” w0, the weight on γ1, is large as well.

Conversely, if group one is “large” but our goal is to predict missing outcomes, we need to

place a large weight on α0 and γ0, because these coefficients can be used to predict counterfactual

outcomes of group one. To see this point, note that it follows from the discussion in Imbens and

Wooldridge (2009) that when the conditional means of y(1) and y(0) are linear in X, we can write

τAT E =
[
E (y | d = 1) − E (y | d = 0)

]
−

[
(1 − ρ) β1 + ρβ0

]
· [E (X | d = 1) − E (X | d = 0)] , (10)

where β1 and β0 are the coefficients on X in the conditional means of y(1) and y(0), respectively.
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Equations (9) and (10) reiterate the point of Corollary 1 that τ and τAT E have a very similar structure

but they differ substantially in how they assign weights. Indeed, in the case of τAT E, when group

one is “large,” the weight on β1 is small, the opposite of what we have seen for OLS.7

D Implications of Theorem 1

There are several practical implications of my main result. Throughout this section, I assume that

the researcher is interested in estimating τAT E, τATT , or both, and that she wishes to use OLS to

estimate the model in (1) but is concerned about the implications of Theorem 1 and Corollary 1. In

Corollaries 2 and 3, I show how to decompose the difference between τ and τAT E or τ and τATT into

components attributable to (i) the difference between τAPLE,1 and τATT , (ii) the difference between

τAPLE,0 and τATU (jointly referred to as “bias from nonlinearity”), and (iii) the OLS weights on

τATT and τATU (“bias from heterogeneity”).8 Because this paper generally focuses on what I now

term “bias from heterogeneity,” my discussion below is restricted to this source of bias, which is

equivalent to implicitly making Assumptions 3 and 4.

Corollary 2. Under Assumptions 1 and 2,

τ − τAT E = w0 ·
(
τAPLE,0 − τATU

)
+ w1 ·

(
τAPLE,1 − τATT

)︸                                                   ︷︷                                                   ︸
bias from nonlinearity

+ δ · (τATU − τATT )︸               ︷︷               ︸
bias from heterogeneity

,

where δ = ρ − w1 =
ρ2·V[p(X)|d=1]−(1−ρ)2·V[p(X)|d=0]
ρ·V[p(X)|d=1]+(1−ρ)·V[p(X)|d=0] . Also, under Assumptions 1, 2, 3, and 4,

τ − τAT E = δ · (τATU − τATT ) .

Corollary 3. Under Assumptions 1 and 2,

τ − τATT = w0 ·
(
τAPLE,0 − τATU

)
+ w1 ·

(
τAPLE,1 − τATT

)︸                                                   ︷︷                                                   ︸
bias from nonlinearity

+ w0 · (τATU − τATT )︸                 ︷︷                 ︸
bias from heterogeneity

.

7Note that the (infeasible) linear projection of the missing outcome, ym, on d and X would solve our problem of
“weight reversal.” The weights on τATT and τATU would still be different than ρ and 1 − ρ if V

[
p (X) | d = 1

]
and

V
[
p (X) | d = 0

]
were different; but, at least, the weight on τATT (τATU) would be increasing (decreasing) in ρ.

8Because “bias from nonlinearity” arises when Assumptions 3 and/or 4 are violated, it might be more accurate to
refer to this component as “bias from endogeneity and nonlinearity.” Yet, I use the former term for brevity.
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Also, under Assumptions 1, 2, 3, and 4,

τ − τATT = w0 · (τATU − τATT ) .

The proofs of Corollaries 2 and 3 follow from simple algebra and are omitted. These results show

that, regardless of whether we focus on τAT E or τATT , the bias from heterogeneity is equal to the

product of a particular measure of heterogeneity, namely the difference between τATU and τATT , and

an additional parameter that is easy to estimate, δ for τAT E and w0 for τATT . While w0 is guaranteed

to be positive under Assumptions 1 and 2, δ may be positive or negative. Both w0 and δ, however,

are bounded between zero and one in absolute value. Thus, w0 and |δ| can be interpreted as the

percentage of our measure of heterogeneity, τATU − τATT , which contributes to bias.9 It might be

useful to report estimates of w0 and δ in studies that use OLS to estimate the model in (1).

As an example, consider the empirical application in section IIA. In this case, ŵ0 = 0.017 and

δ̂ = −0.971. The interpretation of these estimates is as follows: if our goal is to estimate τATT ,

using the model in (1) and OLS is expected to bias our estimates by only 1.7% of the difference

between τATU and τATT . If instead we wanted to interpret τ as τAT E, our estimates would be biased

by an estimated 97.1% of the difference between τATT and τATU . Thus, in this application, it might

perhaps be acceptable to interpret τ as τATT but clearly not as τAT E.

Assumption 5. V
[
p (X) | d = 1

]
= V

[
p (X) | d = 0

]
.

The calculation of δ and w0 is further simplified under Assumption 5. If we use δ∗ and w∗0 to denote

the values of δ and w0 in this special case, we can write δ∗ = 2ρ − 1 and w∗0 = ρ. In this setting,

the knowledge of δ and w0 only requires information on ρ, the proportion of units with d = 1.

Of course, the special case where V
[
p (X) | d = 1

]
= V

[
p (X) | d = 0

]
is hardly to be expected in

practice. Still, δ∗ = 2ρ − 1 and w∗0 = ρ can potentially serve as a rule of thumb.

The practical implications of Assumption 5 are particularly clear when ρ is close to 0%, 50%,

or 100%. When few units are treated, τ ' τATT . When most of the units are treated, τ ' τATU .
9To be precise, |δ| can be interpreted as the percentage of sgn(δ) · (τATU − τATT ) that contributes to bias when

focusing on τAT E . Both δ and w0 also have an intuitive interpretation as the difference between (i) the weight that we
should place on τATT when focusing on τAT E or τATT and (ii) the weight that OLS actually places on this parameter.
Indeed, δ is equal to the difference between ρ and w1. Similarly, w0 = 1 − w1.
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Finally, when both groups are of similar size, τ ' τAT E. This can also be seen from Corollary 4.

Corollary 4. Under Assumptions 1, 2, and 5,

τ = (1 − ρ) · τAPLE,1 + ρ · τAPLE,0.

Also, under Assumptions 1, 2, 3, 4, and 5,

τ = (1 − ρ) · τATT + ρ · τATU .

The proof follows immediately from simple algebra. Corollary 4 provides conditions under which

OLS reverses the “natural” weights on τAPLE,1 and τAPLE,0 (or τATT and τATU). Indeed, under

Assumption 5, τ is a convex combination of group-specific average effects, with “reversed” weights

attached to these parameters. Namely, the proportion of units with d = 1 is used to weight the

average effect of d on group zero, and vice versa.

The results in this section allow empirical researchers to interpret the OLS estimand when

treatment effects are heterogeneous. Alternatively, it might be sensible to use any of the standard

estimators for average treatment effects under ignorability, such as regression adjustment (see sec-

tion IIA), weighting, matching, and various combinations of these approaches.10 It might also help

to estimate a model with homogeneous effects using weighted least squares (WLS). Indeed, in

online appendix B3, I demonstrate that when we regress y on d and p (X), with weights of 1−ρ
w0

for

units with d = 1 and ρ

w1
for units with d = 0, the WLS estimand is equal to τAPLE. In practice, of

course, τAPLE can also be obtained directly from equation (7).

E Related Work

This section discusses the relationship between my main result and those in Angrist (1998) and

Humphreys (2009). These papers focus on saturated models with discrete covariates, in which the

estimating equation includes an indicator for each combination of covariate values (“stratum”). In

10For recent reviews, see Imbens and Wooldridge (2009), Wooldridge (2010), and Abadie and Cattaneo (2018).
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particular, Angrist (1998) provides a representation of τn in

L (y | d, x1, . . . , xS ) = τnd +

S∑
s=1

βn,sxs, (11)

where x1, . . . , xS are stratum indicators. More precisely, Angrist (1998) demonstrates that

τn =

S∑
s=1

P (xs = 1) · P (d = 1 | xs = 1) · P (d = 0 | xs = 1)∑S
t=1 P (xt = 1) · P (d = 1 | xt = 1) · P (d = 0 | xt = 1)

· τs, (12)

where τs = E (y | d = 1, xs = 1) − E (y | d = 0, xs = 1). In online appendix B4, I demonstrate that

this result follows from Corollary 1 when the model for y is saturated.11 At the same time, the

interpretation of OLS in Angrist (1998) is different from Theorem 1 and Corollary 1. On the one

hand, unlike Corollary 1 and Humphreys (2009), Angrist (1998) does not restrict the relationship

between τs and P (d = 1 | xs = 1) in any way. On the other hand, Theorem 1 and Corollary 1 make

it arguably easier to identify whether in a given application the OLS estimand will be close to any

of the parameters of interest (cf. Corollaries 2 to 4). In particular, Angrist (1998) does not recover

a pattern of “weight reversal,” which is discussed in detail in this paper.

Unlike Angrist (1998), Humphreys (2009) does not derive a new representation of τn, but

instead presents further analysis of the result in equation (12). In particular, Humphreys (2009)

notes that τn can take any value between min(τs) and max(τs). Then, he demonstrates that τn is

also bounded by τATT and τATU if we restrict the relationship between τs and P (d = 1 | xs = 1) to be

monotonic. According to Corollary 1, τ is a convex combination of τATT and τATU if, among other

things, both potential outcomes are linear in p (X), which also implies a linear relationship between

τs and P (d = 1 | xs = 1) when the model for y is saturated. Of course, this linearity assumption is

stronger than the monotonicity assumption in Humphreys (2009). However, in return, we are able

to derive a closed-form expression for τ in terms of τATT and τATU , which is a major advantage

over the earlier literature, such as Angrist (1998) and Humphreys (2009).12

11Also, note that Aronow and Samii (2016) show that this result in Angrist (1998) is not specific to saturated
models; instead, it is sufficient to assume that the model for d is linear in X. My analysis in online appendix B4 covers
the results in both Angrist (1998) and Aronow and Samii (2016).

12Humphreys (2009) also provides a brief informal remark that the OLS estimand, as represented in Angrist (1998),
is similar to τATT (τATU) if propensity scores are “small” (“large”) in every stratum. This is a special case of the rule
of thumb derived from Corollaries 3 and 4. My rule of thumb does not impose any such restrictions on the propensity
score other than the requirement that the unconditional probability of treatment is close to zero or one.
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III Empirical Applications

This section discusses two empirical illustrations of Theorem 1 and its corollaries.13 In online

appendices C and D, I discuss the implementation of these results in Stata and R. Throughout the

current section τAPLE, τAPLE,1, and τAPLE,0 are implicitly treated as equivalent to τAT E, τATT , and

τATU , respectively. Although this might be restrictive, I also demonstrate that in both applications

sample analogues of τAPLE, τAPLE,1, and τAPLE,0, reported in the body of the paper, are similar to

other estimates of τAT E, τATT , and τATU , reported in online appendix E.

A The Effects of a Training Program on Earnings

I first consider the example from section IIA in more detail. This replication of the study of the

effects of NSW program in Angrist and Pischke (2009) constitutes an optimistic scenario for OLS.

In this application, as I explained in section IIA, the effect for the treated group (ATT) is likely to

be substantially larger than the effect for the CPS comparison group (ATU). Moreover, since the

experimental benchmark of $1,794 corresponds to ÂTT and not to ÂTU, the researcher should also

focus on ATT. It turns out that my diagnostic for estimating ATT, ŵ0, indicates that this parameter

should approximately be recovered by OLS, even if treatment effects are heterogeneous.14

The top and middle panels of Table 1 reproduce the estimates from Angrist and Pischke (2009)

and report my diagnostics. The specification in column 4 was discussed in section IIA. It turns out

that ŵ0 is between 0.1% and 1.9% for all specifications; similarly, the “rule of thumb” value of this

diagnostic, ŵ∗0, is, as always, equal to the proportion of treated units (only 1.1% in this sample).

These results are very simple to interpret. Namely, as in section IID, we estimate that the difference

between the OLS estimand and ATT is less than 2% of the difference between ATU and ATT. In

this case, it might indeed be sensible to rely on the OLS estimates of the effect of treatment.

The bottom panel of Table 1 provides an application of Corollary 1 to these results. In other

13In a follow-up paper, I apply these results in the study of racial gaps in test scores and wages (Słoczyński, 2020).
14It is well known that, in the NSW–CPS data, there is limited overlap in terms of covariate values between the

treated and untreated units (see, e.g., Dehejia and Wahba, 1999; Smith and Todd, 2005). Thus, it is important to note
that my theoretical results in section II do not impose the overlap assumption.
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Table 1: The Effects of a Training Program on Earnings

(1) (2) (3) (4)
Original estimates

OLS –3,437*** –78 623 794
(612) (596) (610) (619)

Diagnostics
ŵ0 0.019 0.001 0.017 0.017
ŵ∗0 = ρ̂ 0.011 0.011 0.011 0.011
δ̂ –0.970 –0.987 –0.971 –0.971
δ̂∗ = 2ρ̂ − 1 –0.977 –0.977 –0.977 –0.977

Decomposition
ÂTT –3,373*** –69 754 928

(620) (595) (619) (630)
ŵ1 0.981 0.999 0.983 0.983

ÂTU –6,753*** –6,289** –6,841*** –6,840***
(1,219) (2,807) (1,294) (1,319)

ŵ0 0.019 0.001 0.017 0.017

ÂTE –6,714*** –6,218** –6,754*** –6,751***
(1,206) (2,777) (1,281) (1,305)

Demographic controls X X X
Earnings in 1974 X
Earnings in 1975 X X X

ρ̂ = P̂ (d = 1) 0.011 0.011 0.011 0.011
Observations 16,177 16,177 16,177 16,177

Notes: The estimates in the top panel correspond to column 2 in Table 3.3.3 in Angrist and Pischke (2009, p. 89). The dependent variable is
earnings in 1978. Demographic controls include age, age squared, years of schooling, and indicators for married, high school dropout, black,
and Hispanic. For treated individuals, earnings in 1974 correspond to real earnings in months 13–24 prior to randomization, which overlaps
with calendar year 1974 for a number of individuals. Formulas for w0, w1, and δ are given in Theorem 1 and Corollary 2. Following these
results, OLS = ŵ1 · ÂTT + ŵ0 · ÂTU. Estimates of ATE, ATT, and ATU are sample analogues of τAPLE , τAPLE,1, and τAPLE,0, respectively. Also,
ÂTE = ρ̂ · ÂTT + (1 − ρ̂) · ÂTU. Huber–White standard errors (OLS) and bootstrap standard errors (ÂTE, ÂTT, and ÂTU) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

words, the estimates from Angrist and Pischke (2009) are now decomposed into two components,

ÂTT and ÂTU. The difference between these estimates is substantial. In column 4, while the esti-

mate of ATT is $928, ATU is estimated to be –$6,840. In other words, the OLS estimate of $794,

reported in Angrist and Pischke (2009) and discussed in section IIA, is actually a weighted average
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of these two estimates. The fact that it is close to $928, and not to –$6,840, is a consequence of the

small proportion of treated units in this sample, 1.1%. The weight on $928, ŵ1, is 98.3% and the

weight on –$6,840, ŵ0, is only 1.7%.

We might expect that if the proportion of treated units was larger, the weight on ÂTT would

be smaller and the “performance” of OLS in replicating the experimental benchmark would dete-

riorate. I confirm this conjecture in online appendix E1 by quasi-discarding “random” subsamples

of untreated units over a range of sample sizes. In particular, I reestimate the model in (1) using

WLS, with weights of 1 for treated and 1
k for untreated units. Figures E1.1 to E1.4 show that in this

application WLS estimates become more negative as k increases. This is because larger values of

k correspond to greater proportions of untreated units being “discarded,” and hence larger weights

on ÂTU, which is substantially more negative than ÂTT.

Additional extensions of my analysis are also presented in online appendix E1. For each spec-

ification in Table 1, I provide both a linear and a nonparametric estimate of the conditional mean

of the outcome given p (X), separately for treated and untreated units (Figures E1.5 to E1.8). A

visual comparison of both estimates provides an informal test of Assumption 4, which is necessary

for a causal interpretation of τAPLE, τAPLE,1, and τAPLE,0. The linearity assumption appears to be

approximately satisfied for the treated but usually not for the untreated units.

Thus, as a robustness check, I also report a number of alternative estimates of the effects of

NSW program in Table E1.1. I consider regression adjustment, as in section IIA, as well as match-

ing on p (X) and on the logit propensity score.15 In each case, I separately estimate ATE, ATT, and

ATU. These estimates are consistent with the claim that the general pattern of results in Table 1

is driven by the OLS weights. The estimates of ATE and ATU are always negative and large in

magnitude; the estimates of ATT are much closer to the experimental benchmark.

Finally, I repeat the following exercise from section IIA. When we match the OLS estimates

in Table 1 with the corresponding estimates of ATT and ATU in Table E1.1, we can write τ̂ =

ŵATT · τ̂ATT + (1 − ŵATT ) · τ̂ATU . Unless τ̂ATT and τ̂ATU are sample analogues of τAPLE,1 and τAPLE,0,

15In particular, the estimates discussed in section IIA are reported in column 4 of the bottom panel of Table E1.1.
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ŵATT does not need to be bounded between zero and one. Yet, we can solve for ŵATT for each set

of estimates. The mean of ŵATT across all sets of estimates in Table E1.1 is 98.3%, which is nearly

identical to the sample proportion of untreated units, 98.9%. This is reassuring for my claims.

B The Effects of Cash Transfers on Longevity

In my second application, I replicate a recent paper by Aizer et al. (2016) and study the effects

of cash transfers on longevity of the children of their beneficiaries, as measured by their log age

at death. In particular, Aizer et al. (2016) analyze the administrative records of applicants to the

Mothers’ Pension (MP) program, which supported poor mothers with dependent children in pre-

WWII United States. In this study, the untreated group consists only of children of mothers who

applied for a transfer, were initially deemed eligible, but were ultimately rejected. This strategy

is used to ensure that treated and untreated individuals are broadly comparable, and hence an

ignorability assumption might be plausible. Nevertheless, rejected mothers were slightly older and

came from slightly smaller and richer families than accepted mothers. Thus, as before, there is no

reason to believe that ATT and ATU are equal, although it is perhaps less clear a priori which is

larger. Unlike in section IIIA, it seems plausible that the researcher might be interested either in

the average effect of cash transfers, ATE, or in their average effect for accepted applicants, ATT.

The top and middle panels of Table 2 reproduce the baseline estimates from Aizer et al. (2016)

and report my diagnostics. While the OLS estimates are positive and statistically significant, my

diagnostics indicate that these results should be approached with caution. Namely, treated units

constitute the vast majority (or 87.5%) of the sample. It follows that OLS is expected to place a

disproportionately large weight on ÂTU, in which case the OLS estimates might be very biased for

both ATE and ATT (cf. Corollaries 2 and 3). Indeed, my estimates of δ suggest that the difference

between the OLS estimand and ATE is equal to 65.9–74.5% of the difference between ATU and

ATT. Also, the estimates of w0 suggest that the difference between OLS and ATT corresponds to

78.4–87.0% of this measure of heterogeneity. The estimates of δ∗ and w∗0 are similar. It turns out

that in this application the OLS estimates might be substantially biased for both of our parameters
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Table 2: The Effects of Cash Transfers on Longevity

(1) (2) (3) (4)
Original estimates

OLS 0.0157*** 0.0158*** 0.0182*** 0.0167***
(0.0058) (0.0059) (0.0062) (0.0061)

Diagnostics
ŵ0 0.861 0.870 0.784 0.784
ŵ∗0 = ρ̂ 0.875 0.875 0.875 0.875
δ̂ 0.736 0.745 0.659 0.659
δ̂∗ = 2ρ̂ − 1 0.750 0.750 0.750 0.750

Decomposition
ÂTT 0.0129** 0.0149** 0.0097 0.0089

(0.0064) (0.0071) (0.0078) (0.0079)
ŵ1 0.139 0.130 0.216 0.216

ÂTU 0.0162*** 0.0160*** 0.0206*** 0.0188***
(0.0057) (0.0059) (0.0063) (0.0064)

ŵ0 0.861 0.870 0.784 0.784

ÂTE 0.0133** 0.0150** 0.0110 0.0102
(0.0063) (0.0068) (0.0073) (0.0074)

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

ρ̂ = P̂ (d = 1) 0.875 0.875 0.875 0.875
Observations 7,860 7,859 7,859 7,857

Notes: The estimates in the top panel correspond to columns 1 to 4 in panel A of Table 4 in Aizer et al. (2016, p. 952). The dependent variable is
log age at death, as reported in the MP records (columns 1 to 3) or on the death certificate (column 4). State, county, and individual characteristics
are listed in Table E2.1 in online appendix E2. Formulas for w0, w1, and δ are given in Theorem 1 and Corollary 2. Following these results,
OLS = ŵ1 · ÂTT + ŵ0 · ÂTU. Estimates of ATE, ATT, and ATU are sample analogues of τAPLE , τAPLE,1, and τAPLE,0, respectively. Also,
ÂTE = ρ̂ · ÂTT + (1 − ρ̂) · ÂTU. Huber–White standard errors (OLS) and bootstrap standard errors (ÂTE, ÂTT, and ÂTU) are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

of interest. This would be a pessimistic scenario for OLS.

The results in the bottom panel of Table 2 suggest that these biases are indeed substantial. In
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this panel, following Corollary 1, each OLS estimate from Aizer et al. (2016) is represented as a

weighted average of estimates of two effects, on accepted (ATT) and rejected (ATU) applicants.

The estimates of ATU are consistently larger than those of ATT. Thus, OLS overestimates both

ATE (since δ̂ > 0) and ATT. While the implicit OLS estimates of these parameters remain statis-

tically significant in columns 1 and 2, this is no longer the case in columns 3 and 4, following the

inclusion of county fixed effects. Perhaps more importantly, these estimates of ATT are half smaller

than the corresponding OLS estimates. Clearly, this difference is economically quite meaningful.

To assess the robustness of these findings, I present several extensions of my analysis in online

appendix E2. The informal test of Assumption 4, as discussed in section IIIA, appears to suggest

that the conditional mean of the outcome given p (X) is approximately linear for both the treated

and untreated units (see Figures E2.5 to E2.8). I also report a number of alternative estimates of the

effects of cash transfers in Table E2.1. These additional results support my conclusion. Only one in

twelve estimates of ATT is statistically different from zero, and four of the insignificant estimates

are negative. While it is possible that cash transfers increase longevity, the OLS estimates reported

in Aizer et al. (2016) are almost certainly too large. Interestingly, this bias appears to be driven by

the implicit OLS weights on ATT and ATU, which were the focus of this paper.16

IV Conclusion

This paper proposed a new interpretation of the OLS estimand for the effect of a binary treatment

in the standard linear model with additive effects. According to the main result of this paper, the

OLS estimand is a convex combination of two parameters, which under certain conditions are

equivalent to the average treatment effects on the treated (ATT) and untreated (ATU). Surprisingly,

the weights on these parameters are inversely related to the proportion of observations in each

16I also repeat two further exercises from section IIIA. First, after I reestimate the model in (1) using WLS, with
weights of 1 for treated and 1

k for untreated units, I demonstrate in Figures E2.1 to E2.4 that these estimates become
more positive as k increases. As before, larger values of k translate into larger weights on ÂTU, which is now greater
than ÂTT. Second, when I use the estimates of ATT and ATU in Table E2.1 to recover the hypothetical OLS weights,
I obtain 22.8% as the mean of ŵATT . This is reasonably similar to the proportion of untreated units, 12.5%.
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group, which can lead to substantial biases when interpreting the OLS estimand as ATE or ATT.

One lesson from this result is that it might be preferable, as suggested by a body of work in

econometrics, to use any of the standard estimators of average treatment effects under ignorability,

such as regression adjustment, weighting, matching, and various combinations of these approaches.

Empirical researchers with a preference for OLS might instead want to use the diagnostic tools that

this paper also provided. These diagnostics, which are implemented in the hettreatreg package in

R and Stata, are applicable whenever the researcher is: (i) studying the effects of a binary treatment,

(ii) using OLS, and (iii) unwilling to maintain that ATT is exactly equal to ATU. In an important

special case, these diagnostics only require the knowledge of the proportion of treated units.
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Online Appendix

Appendix A Proof of Theorem 1

First, consider equation (2) in the main text, L (y | 1, d, X) = α + τd + Xβ. By the Frisch–Waugh
theorem, τ = τa, where τa is defined by

L
[
y | 1, d, p (X)

]
= αa + τad + γa · p (X) . (A1)

Second, note that (A1) is a linear projection of y on two variables: one binary, d, and one arbitrarily
discrete or continuous, p (X). Thus, we can use the following result from Elder et al. (2010).

Lemma A1 (Elder et al., 2010). Let L (y | 1, d, x) = αe +τed +βex denote the linear projection of y

on d (a binary variable) and x (a single, possibly continuous variable). Then, assuming all objects

are well defined,

τe =
ρ · V (x | d = 1)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· θ1

+
(1 − ρ) · V (x | d = 0)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· θ0,

where

θ1 =
Cov (d, y)

V (d)
−

Cov (d, x)
V (d)

·
Cov (x, y | d = 1)

V (x | d = 1)

and

θ0 =
Cov (d, y)

V (d)
−

Cov (d, x)
V (d)

·
Cov (x, y | d = 0)

V (x | d = 0)
.

Combining the two pieces gives

τ =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · θ∗1
+

(1 − ρ) · V
[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · θ∗0, (A2)

where
θ∗1 =

Cov (d, y)
V (d)

−
Cov

[
d, p (X)

]
V (d)

·
Cov

[
p (X) , y | d = 1

]
V

[
p (X) | d = 1

] (A3)

and
θ∗0 =

Cov (d, y)
V (d)

−
Cov

[
d, p (X)

]
V (d)

·
Cov

[
p (X) , y | d = 0

]
V

[
p (X) | d = 0

] . (A4)
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Third, notice that θ∗1 = τAPLE,0 and θ∗0 = τAPLE,1, as defined in equation (8) in the main text. Indeed,

Cov (d, y)
V (d)

= E (y | d = 1) − E (y | d = 0) (A5)

and also
Cov

[
d, p (X)

]
V (d)

= E
[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]
. (A6)

Moreover, for j = 0, 1,
Cov

[
p (X) , y | d = j

]
V

[
p (X) | d = j

] = γ j, (A7)

where γ1 and γ0 are defined in equations (5) and (6) in the main text, respectively. Because

E (y | d = 1) − E (y | d = 0) =
{
E

[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]}
· γ1

+ (α1 − α0) + (γ1 − γ0) · E
[
p (X) | d = 0

]
(A8)

and also

E (y | d = 1) − E (y | d = 0) =
{
E

[
p (X) | d = 1

]
− E

[
p (X) | d = 0

]}
· γ0

+ (α1 − α0) + (γ1 − γ0) · E
[
p (X) | d = 1

]
, (A9)

where again α1 and α0 are defined in equations (5) and (6) in the main text, we get the result that
θ∗1 = τAPLE,0 and θ∗0 = τAPLE,1. Note that equations (A8) and (A9) correspond to special cases of the
Oaxaca–Blinder decomposition (Blinder, 1973; Oaxaca, 1973; Fortin et al., 2011), which is also
the focus of Elder et al. (2010). Finally, combining the three pieces gives

τ =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · τAPLE,0

+
(1 − ρ) · V

[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

] · τAPLE,1, (A10)

which completes the proof.
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Appendix B Extensions

B1 Proportion of Treated Units and OLS Weights

To show formally that w1 is decreasing in ρ and that w0 is increasing in ρ, it is convenient to
additionally assume that E (d | X) is linear in X.

Assumption B1.1. E (d | X) = p (X) = αp + Xβp.

This restriction is satisfied automatically in saturated models, as studied by Angrist (1998) and
Humphreys (2009). It is also used by Aronow and Samii (2016) and Abadie et al. (2020). In
the present context there are two reasons why Assumption B1.1 is useful. First, it allows us to
rewrite w0 and w1 solely in terms of unconditional expectations of p (X) and its powers. Second,
it simplifies the calculation of the derivatives of w0 and w1 with respect to the intercept of the
propensity score model. Imposing a shift on this intercept is equivalent to changing ρ by a small
amount. It turns out that Theorem 1 and Assumption B1.1 imply the following result.

Proposition B1.1. Under Assumptions 1, 2, and B1.1,

dw1

dαp
< 0 and

dw0

dαp
> 0.

Proof. For simplicity, we first focus on a0 and a1, which we define as a0 = ρ · V
[
p (X) | d = 1

]
and a1 = (1 − ρ) · V

[
p (X) | d = 0

]
. As a result, w0 = a0

a0+a1
and w1 = a1

a0+a1
. It turns out that we can

rewrite a0 as

a0 = E (d) · E
({

p (X) − E
[
p (X) | d = 1

]}2
| d = 1

)
= E (d) ·

(
E

[
p (X)2

| d = 1
]
−

{
E

[
p (X) | d = 1

]}2
)

= E (d) ·

E
[
p (X)2 d

]
E (d)

−

{
E

[
p (X) d

]
E (d)

}2


= E
[
p (X)2 d

]
−

{
E

[
p (X) d

]}2

E (d)

= E
[
p (X)2 E (d | X)

]
−

{
E

[
p (X) E (d | X)

]}2

E [E (d | X)]

= E
[
p (X)3

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

] . (B1.1)
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Then, taking the derivative of a0 with respect to αp gives

da0

dαp
= 3E

[
p (X)2

]
−

4E
[
p (X)2

]
E

[
p (X)

]
E

[
p (X)

] +

{
E

[
p (X)2

]}2

E
[
p (X)

]2

= −E
[
p (X)2

]
+

{
E

[
p (X)2

]}2

E
[
p (X)

]2

=

{
E

[
p (X)2

]}2
− E

[
p (X)2

]
E

[
p (X)

]2

E
[
p (X)

]2

=
E

[
p (X)2

] {
E

[
p (X)2

]
− E

[
p (X)

]2
}

E
[
p (X)

]2

=
E

[
p (X)2

]
V

[
p (X)

]
E

[
p (X)

]2 > 0. (B1.2)

Similarly,

a1 = [1 − E (d)] · E
({

p (X) − E
[
p (X) | d = 0

]}2
| d = 0

)
= [1 − E (d)] ·

(
E

[
p (X)2

| d = 0
]
−

{
E

[
p (X) | d = 0

]}2
)

= [1 − E (d)] ·

E
[
p (X)2

]
− E

[
p (X)2 d

]
1 − E (d)

−

{
E

[
p (X)

]
− E

[
p (X) d

]
1 − E (d)

}2


= E
[
p (X)2

]
− E

[
p (X)2 d

]
−

{
E

[
p (X)

]
− E

[
p (X) d

]}2

1 − E (d)

= E
[
p (X)2

]
− E

[
p (X)2 E (d | X)

]
−

{
E

[
p (X)

]
− E

[
p (X) E (d | X)

]}2

1 − E [E (d | X)]

= E
[
p (X)2

]
− E

[
p (X)3

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

] (B1.3)

and

da1

dαp
= 2E

[
p (X)

]
− 3E

[
p (X)2

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2{
1 − E

[
p (X)

]}2

−
2 ·

{
1 − E

[
p (X)

]}
·
{
1 − 2E

[
p (X)

]}
·
{
E

[
p (X)

]
− E

[
p (X)2

]}
{
1 − E

[
p (X)

]}2

=
E

[
p (X)

]2
− E

[
p (X)2

]
{
1 − E

[
p (X)

]}2
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+
2E

[
p (X)

]
E

[
p (X)2

]
− 2E

[
p (X)

]3{
1 − E

[
p (X)

]}2

+
E

[
p (X)2

]
E

[
p (X)

]2
−

{
E

[
p (X)2

]}2{
1 − E

[
p (X)

]}2

=
−V

[
p (X)

]
·
{
1 − 2E

[
p (X)

]
+ E

[
p (X)2

]}
{
1 − E

[
p (X)

]}2

=
−V

[
p (X)

]
· E

{[
1 − p (X)

]2
}

{
1 − E

[
p (X)

]}2 < 0. (B1.4)

Finally, it follows that

dw1

dαp
< 0 and

dw0

dαp
> 0, (B1.5)

since w0 = a0
a0+a1

, w1 = a1
a0+a1

, a0 > 0, a1 > 0, da0
dαp

> 0, and da1
dαp

< 0. �
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B2 Further Intuition for Theorem 1

We begin by noting that because the linear projection passes through the point of means of all vari-
ables, which implies, for example, that E (y | d = 1) = α1 +γ1 ·E

[
p (X) | d = 1

]
and E (y | d = 0) =

α0 + γ0 · E
[
p (X) | d = 0

]
, the average partial linear effects of d on both groups of interest can also

be expressed as
τAPLE,1 = E (y | d = 1) −

{
α0 + γ0 · E

[
p (X) | d = 1

]}
(B2.1)

and
τAPLE,0 =

{
α1 + γ1 · E

[
p (X) | d = 0

]}
− E (y | d = 0) . (B2.2)

In other words, we only need the linear projection of y on p (X) in group zero, and not in group
one, to define τAPLE,1. Similarly, we need the linear projection of y on p (X) in group one, but not
in group zero, to define τAPLE,0. When all objects are well defined, τAPLE, j is also equivalent to the
coefficient on d in the linear projection of y on d, p (X), and d ·

{
p (X) − E

[
p (X) | d = j

]}
.

Then, an alternative intuition for the OLS weights in Theorem 1 follows from partial resid-
ualization that is implicit in least squares estimation. The first thing to note is that τ, the OLS
estimand, is equal to the coefficient on d in the linear projection of y − γa · p (X) on d, where γa is
defined in equation (A1). An implication of Deaton (1997) and Solon et al. (2015) is that γa is also
a convex combination of γ1 and γ0, where the weight on γ1 is increasing in ρ. It follows that τ is a
weighted average as well; it combines the coefficients on d in the linear projections of y−γ1 · p (X)

and y − γ0 · p (X) on d in group zero and one, respectively. While the weight on the former (latter)
is increasing (decreasing) in ρ, this parameter corresponds to τAPLE,0 (τAPLE,1), as can be seen from
equations (B2.1) and (B2.2). Indeed, as noted above, it is γ1 (and not γ0) that is necessary to define
τAPLE,0. The bottom line is that when there are more treated than untreated units, γ1 is likely to be
better estimated than γ0 and OLS gives more weight to the contrast of y − γ1 · p (X), which in turn
corresponds to τAPLE,0. Interestingly, this parallels the intuition in Angrist (1998) and Angrist and
Pischke (2009) that OLS gives more weight to treatment effects that are better estimated in finite
samples. Also, this discussion leads to an alternative proof of Theorem 1.

Proof. As in online appendix A, consider equation (2) in the main text, L (y | 1, d, X) = α+τd+Xβ,
and note that τ = τa, where τa is defined by L

[
y | 1, d, p (X)

]
= αa + τad + γa · p (X). We can write

this linear projection in error form as

y = αa + τad + γa · p (X) + υ. (B2.3)

As in the main text, we also consider separate linear projections for d = 1 and d = 0, namely

L
[
y | 1, p (X) , d = 1

]
= α1 + γ1 · p (X) (B2.4)
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and
L

[
y | 1, p (X) , d = 0

]
= α0 + γ0 · p (X) . (B2.5)

Henceforth, to simplify notation I will use l1(X) to denote α1 + γ1 · p (X) and l0(X) to denote
α0 + γ0 · p (X). To understand the relationship between γa, γ1, and γ0, we can use the following
result from Deaton (1997) and Solon et al. (2015).

Lemma B2.1 (Deaton, 1997; Solon et al., 2015). Let L (y | 1, d, x) = αe + τed + βex denote the

linear projection of y on d (a binary variable) and x (a single, possibly continuous variable). Then,

assuming all objects are well defined,

βe =
ρ · V (x | d = 1)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· β1,e

+
(1 − ρ) · V (x | d = 0)

ρ · V (x | d = 1) + (1 − ρ) · V (x | d = 0)
· β0,e,

where β1,e and β0,e are defined by

L (y | 1, x, d = 1) = α1,e + β1,ex

and

L (y | 1, x, d = 0) = α0,e + β0,ex.

An implication of Lemma B2.1 is that

γa = w0 · γ1 + w1 · γ0. (B2.6)

Next, we can rewrite equation (B2.3) as

y − w0 · γ1 · p (X) − w1 · γ0 · p (X) = αa + τad + υ

= E (y) − τa · E (d) − γa · E
[
p (X)

]
+ τad + υ. (B2.7)

Moreover, it turns out that

α1 = E (y | d = 1) − γ1 · E
[
p (X) | d = 1

]
(B2.8)

and also
α0 = E (y | d = 0) − γ0 · E

[
p (X) | d = 0

]
. (B2.9)
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It follows that

y − w0 · l1(X) − w1 · l0(X) = E (y) − w0 · E (y | d = 1) − w1 · E (y | d = 0)

+ w0 · γ1 ·
{
E

[
p (X) | d = 1

]
− E

[
p (X)

]}
+ w1 · γ0 ·

{
E

[
p (X) | d = 0

]
− E

[
p (X)

]}
− τa · E (d) + τad + υ. (B2.10)

In other words, in a linear projection of y − w0 · l1(X) − w1 · l0(X) on d, the coefficient on d is
equal to τa and the intercept is equal to E (y) − w0 · E (y | d = 1) − w1 · E (y | d = 0) + w0 · γ1 ·{
E

[
p (X) | d = 1

]
− E

[
p (X)

]}
+w1 ·γ0 ·

{
E

[
p (X) | d = 0

]
− E

[
p (X)

]}
−τa ·E (d). However, τa must

also be equal to the difference in expected values of the dependent variable for d = 1 and d = 0.
Using equations (B2.1) and (B2.2), we can write these expected values as

E
[
y − w0 · l1(X) − w1 · l0(X) | d = 1

]
= w1 · τAPLE,1 (B2.11)

and
E

[
y − w0 · l1(X) − w1 · l0(X) | d = 0

]
= −w0 · τAPLE,0. (B2.12)

Thus,
τ = τa = w1 · τAPLE,1 + w0 · τAPLE,0, (B2.13)

which completes the proof. �
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B3 A Weighted Least Squares Correction

Suppose we use weighted least squares (WLS) to estimate the model with d and p (X) as the only
independent variables. In this case we would like to obtain a set of weights, w, such that τw in

L
(√
w · y |

√
w,
√
w · d,

√
w · p (X)

)
= αw

√
w + τw

√
w · d + γw

√
w · p (X) (B3.1)

has a useful interpretation. An appropriate set of weights is provided in Proposition B3.1.

Proposition B3.1 (Weighted Least Squares Correction). Suppose that Assumptions 1 and 2 are

satisfied. Also, w =
1−ρ
w0
· d +

ρ

w1
· (1 − d). Then,

τw = τAPLE.

Suppose that Assumptions 1, 2, 3, and 4 are satisfied. Also, w =
1−ρ
w0
· d +

ρ

w1
· (1 − d). Then,

τw = τAT E.

The proof of Proposition B3.1 follows directly from the proofs of Theorem 1 and Corollary 1,
and is omitted. Proposition B3.1 establishes that the average effect of d can be recovered from a
weighted least squares procedure, with weights of 1−ρ

w0
for units with d = 1 and weights of ρ

w1
for

units with d = 0. These weights consist of two parts: either 1
w1

or 1
w0

; and either ρ or 1−ρ. The role
of the first part is always to undo the OLS weights (w1 and w0 in Theorem 1); the role of the second
part is to impose the correct weights of ρ on the average effect of d on group one and 1 − ρ on the
average effect of d on group zero. Finally, it is useful to note that there is no similar procedure to
recover the average effects of d on group zero and one; both of these objects, however, are easily
obtained from equation (8) in the main text.

Interestingly, the structure of the weighted least squares procedure in Proposition B3.1 resem-
bles the “tyranny of the minority” estimator in Lin (2013). This method uses weights of 1−ρ

ρ
for

units with d = 1 and weights of ρ

1−ρ for units with d = 0; it also controls for X instead of p (X).
It is important to note, however, that this method is designed to solve a different problem than
Proposition B3.1. In particular, Freedman (2008b,a) demonstrates that regression adjustments to
experimental data can lead to a loss in precision. On the other hand, Lin (2013) shows that this
is no longer possible if we additionally interact d with X (see also Negi and Wooldridge, 2019).
Then, Lin (2013) derives the “tyranny of the minority” estimator as an alternative procedure, based
on a single conditional mean, which does not suffer from this loss in precision. In the context of
observational data, however, the weights in Lin (2013) guarantee that τw = τAPLE only in a special
case, namely under Assumption 5, V

[
p (X) | d = 1

]
= V

[
p (X) | d = 0

]
.
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B4 Comparison with Angrist (1998) and Aronow and Samii (2016)

The result in Angrist (1998) states that if L (y | d, X) = τnd +
∑S

s=1 βn,sxs, where X = (x1, . . . , xS ) is
a vector of exhaustive and mutually exclusive “stratum” indicators, then

τn =

S∑
s=1

P (xs = 1) · P (d = 1 | xs = 1) · P (d = 0 | xs = 1)∑S
t=1 P (xt = 1) · P (d = 1 | xt = 1) · P (d = 0 | xt = 1)

· τs, (B4.1)

where τs = E (y | d = 1, xs = 1) − E (y | d = 0, xs = 1). Further, under standard assumptions, τs =

E
[
y(1) − y(0) | X

]
. In this appendix I show that equation (B4.1) follows from Corollary 1 when

the model for y is saturated.
The starting point is to note that, because the model for y is saturated, E (d | X) = p (X) =∑S

s=1 βp,sxs. Additionally, Assumptions 3 and 4 allow us to write E
[
y(1) − y(0) | X

]
= (α1 − α0) +

(γ1 − γ0) · p (X). It follows that equation (B4.1) can alternatively be expressed as

τn =
E

{
p (X) ·

[
1 − p (X)

]
·
[
(α1 − α0) + (γ1 − γ0) · p (X)

]}
E

{
p (X) ·

[
1 − p (X)

]}
= (α1 − α0) + (γ1 − γ0) ·

E
[
p (X)2

]
− E

[
p (X)3

]
E

[
p (X)

]
− E

[
p (X)2

] . (B4.2)

The same representation of the OLS estimand under Assumptions 3 and 4 follows from Aronow
and Samii (2016), who generalize the result in Angrist (1998) to any model, saturated or not, where
E (d | X) is linear in X.

To demonstrate that the results in Angrist (1998) and Aronow and Samii (2016) follow from
Corollary 1, we need to show that equation (B4.2) can be obtained by rearranging the expression
in Corollary 1. To see this note that, under Assumptions 3 and 4, τATT = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) | d = 1

]
and τATU = (α1 − α0) + (γ1 − γ0) · E

[
p (X) | d = 0

]
. Upon rearrangement,

τATT = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) d

]
E (d)

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)2

]
E

[
p (X)

] (B4.3)

and

τATU = (α1 − α0) + (γ1 − γ0) ·
E

[
p (X) · (1 − d)

]
1 − E (d)

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)

]
− E

[
p (X)2

]
1 − E

[
p (X)

] . (B4.4)
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Also, because E (d | X) is linear in X and hence equal to p (X), we can use the results from on-

line appendix B1, which state that ρ · V
[
p (X) | d = 1

]
= E

[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)] and (1 − ρ) ·

V
[
p (X) | d = 0

]
= E

[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)] . It follows that

w0 =
ρ · V

[
p (X) | d = 1

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

]
=

E
[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)]

E
[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

(B4.5)

and

w1 =
(1 − ρ) · V

[
p (X) | d = 0

]
ρ · V

[
p (X) | d = 1

]
+ (1 − ρ) · V

[
p (X) | d = 0

]
=

E
[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

E
[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

. (B4.6)

Consequently, an implication of Corollary 1 is that

τn = w1 · τATT + w0 · τATU

= (α1 − α0) + (γ1 − γ0) ·

{
E

[
p (X)2

]
− E

[
p (X)3

]
−
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
· E

[
p (X)2

]
{
E

[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
· E

[
p (X)

]

+ (γ1 − γ0) ·

{
E

[
p (X)3

]
−
{E[p(X)2]}2

E[p(X)]

}
·
{
E

[
p (X)

]
− E

[
p (X)2

]}
{
E

[
p (X)2

]
−
{E[p(X)2]}2

E[p(X)] −
{E[p(X)]−E[p(X)2]}2

1−E[p(X)]

}
·
{
1 − E

[
p (X)

]} (B4.7)

or, equivalently,

τn = (α1 − α0) + (γ1 − γ0) ·
λn

λd
, (B4.8)

where

λd =

E
[
p (X)2

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

] −

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

]
 · E [

p (X)
]
·
{
1 − E

[
p (X)

]}
(B4.9)

31



and

λn =

E
[
p (X)2

]
− E

[
p (X)3

]
−

{
E

[
p (X)

]
− E

[
p (X)2

]}2

1 − E
[
p (X)

]
 · E [

p (X)2
]
·
{
1 − E

[
p (X)

]}
+

E
[
p (X)3

]
−

{
E

[
p (X)2

]}2

E
[
p (X)

]
 · {E [

p (X)
]
− E

[
p (X)2

]}
· E

[
p (X)

]
. (B4.10)

Upon further rearrangement,

λd = E
[
p (X)2

]
· E

[
p (X)

]
+ E

[
p (X)2

]
·
{
E

[
p (X)

]}2
−

{
E

[
p (X)2

]}2
−

{
E

[
p (X)

]}3

=
{
E

[
p (X)

]
− E

[
p (X)2

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}

(B4.11)

and

λn =
{
E

[
p (X)2

]}2
+ E

[
p (X)3

]
·
{
E

[
p (X)

]}2
− E

[
p (X)3

]
· E

[
p (X)2

]
− E

[
p (X)2

]
·
{
E

[
p (X)

]}2

=
{
E

[
p (X)2

]
− E

[
p (X)3

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}
. (B4.12)

Finally, plugging equations (B4.11) and (B4.12) into equation (B4.8) gives

τn = (α1 − α0) + (γ1 − γ0) ·

{
E

[
p (X)2

]
− E

[
p (X)3

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}{

E
[
p (X)

]
− E

[
p (X)2

]}
·
{
E

[
p (X)2

]
−

{
E

[
p (X)

]}2
}

= (α1 − α0) + (γ1 − γ0) ·
E

[
p (X)2

]
− E

[
p (X)3

]
E

[
p (X)

]
− E

[
p (X)2

] . (B4.13)

The equivalence between equations (B4.2) and (B4.13) confirms that the result in Angrist (1998)
follows from Corollary 1 when the model for y is saturated. Similarly, the result in Aronow and
Samii (2016) follows from Corollary 1 when E (d | X) is linear in X.
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Appendix C Implementation in Stata

This appendix discusses the implementation of my theoretical results using the Stata package
hettreatreg. In particular, I show how to apply this package to obtain the estimates in column 4
of Table 1 in the main text. To download this package and the NSW–CPS data from SSC, type

. ssc install hettreatreg, all

in the Command window. Then, type

. use nswcps, clear

to open the NSW–CPS data set. Then, the standard way to obtain the OLS estimate in column 4 of
Table 1 in the main text would be to type

. regress re78 treated age-re75, vce(robust)

Linear regression Number of obs = 16,177

F(10, 16166) = 1718.20

Prob > F = 0.0000

R-squared = 0.4762

Root MSE = 7001.7

------------------------------------------------------------------------------

| Robust

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated | 793.587 618.6092 1.28 0.200 -418.9555 2006.13

age | -233.6775 40.7162 -5.74 0.000 -313.4857 -153.8692

age2 | 1.814371 .5581946 3.25 0.001 .7202474 2.908494

educ | 166.8492 28.70683 5.81 0.000 110.5807 223.1178

black | -790.6086 197.8149 -4.00 0.000 -1178.348 -402.8694

hispanic | -175.9751 218.3033 -0.81 0.420 -603.8738 251.9235

married | 224.266 152.4363 1.47 0.141 -74.52594 523.0579

nodegree | 311.8445 176.414 1.77 0.077 -33.9464 657.6355

re74 | .2953363 .0152084 19.42 0.000 .2655261 .3251466

re75 | .4706353 .0153101 30.74 0.000 .4406259 .5006447

_cons | 7634.344 737.8143 10.35 0.000 6188.146 9080.542

------------------------------------------------------------------------------

It is also possible, however, to obtain the same output and several additional estimates—including
those of my diagnostics and those of implicit estimates of ATE, ATT, and ATU—by typing
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. hettreatreg age-re75, o(re78) t(treated) noisily vce(robust)

Linear regression Number of obs = 16,177

F(10, 16166) = 1718.20

Prob > F = 0.0000

R-squared = 0.4762

Root MSE = 7001.7

------------------------------------------------------------------------------

| Robust

re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

treated | 793.587 618.6092 1.28 0.200 -418.9555 2006.13

age | -233.6775 40.7162 -5.74 0.000 -313.4857 -153.8692

age2 | 1.814371 .5581946 3.25 0.001 .7202474 2.908494

educ | 166.8492 28.70683 5.81 0.000 110.5807 223.1178

black | -790.6086 197.8149 -4.00 0.000 -1178.348 -402.8694

hispanic | -175.9751 218.3033 -0.81 0.420 -603.8738 251.9235

married | 224.266 152.4363 1.47 0.141 -74.52594 523.0579

nodegree | 311.8445 176.414 1.77 0.077 -33.9464 657.6355

re74 | .2953363 .0152084 19.42 0.000 .2655261 .3251466

re75 | .4706353 .0153101 30.74 0.000 .4406259 .5006447

_cons | 7634.344 737.8143 10.35 0.000 6188.146 9080.542

------------------------------------------------------------------------------

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = .011

P(d=0) = .989

w1 = .983

w0 = .017

delta = -.971

ATE = -6751

ATT = 928.4

34



ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

Alternatively, we may restrict our attention to this additional output by typing

. hettreatreg age-re75, o(re78) t(treated)

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = .011

P(d=0) = .989

w1 = .983

w0 = .017

delta = -.971

ATE = -6751

ATT = 928.4

ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

In any case, OLS is the estimated regression coefficient on the variable designated as treatment.
P(d=1) and P(d=0) correspond to ρ̂ and 1 − ρ̂, respectively. w1, w0, and delta correspond to
ŵ1, ŵ0, and δ̂, respectively. Finally, ATE, ATT, and ATU correspond to τ̂APLE, τ̂APLE,1, and τ̂APLE,0,
respectively. hettreatreg stores all these estimates in e(). Type

. help hettreatreg

for more information and additional examples.
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Appendix D Implementation in R

Similar to online appendix C, I now discuss the implementation of my theoretical results using the
R package hettreatreg. As before, I show how to obtain the estimates reported in column 4 of
Table 1 in the main text. To download this package and the NSW–CPS data from CRAN, type

> install.packages("hettreatreg")

in the R/R Studio console. Next, type

> library(hettreatreg)

to load hettreatreg and

> data("nswcps")

to open the NSW–CPS data set. Then, the standard way to obtain the OLS estimate in column 4 of
Table 1 in the main text would be to type

> lm(re78 ~ treated + age + age2 + educ + black + hispanic + married + nodegree

+ re74 + re75, data = nswcps)

Call:

lm(formula = re78 ~ treated + age + age2 + educ + black + hispanic +

married + nodegree + re74 + re75, data = nswcps)

Coefficients:

(Intercept) treated age age2 educ black

7634.3441 793.5870 -233.6775 1.8144 166.8492 -790.6086

hispanic married nodegree re74 re75

-175.9751 224.2660 311.8445 0.2953 0.4706

Using hettreatreg, it is possible to obtain several additional estimates, including those of my
diagnostics and those of implicit estimates of ATE, ATT, and ATU. Before doing so, it is useful to
designate an outcome variable, a treatment variable, and a list of control variables. To do this, type

> outcome <- nswcps$re78

> treated <- nswcps$treated

> our_vars <- c("age", "age2", "educ", "black", "hispanic", "married", "nodegree",

"re74", "re75")

> covariates <- subset(nswcps, select = our_vars)
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Then, type

> hettreatreg(outcome, treated, covariates, verbose = TRUE)

"OLS" is the estimated regression coefficient on treated.

OLS = 793.6

P(d=1) = 0.011

P(d=0) = 0.989

w1 = 0.983

w0 = 0.017

delta = -0.971

ATE = -6751

ATT = 928.4

ATU = -6840

OLS = w1*ATT + w0*ATU = 793.6

To interpret these estimates, note that OLS is the estimated regression coefficient on the variable
designated as treatment. P(d=1) and P(d=0) correspond to ρ̂ and 1 − ρ̂, respectively. w1, w0, and
delta correspond to ŵ1, ŵ0, and δ̂, respectively. Finally, ATE, ATT, and ATU correspond to τ̂APLE,
τ̂APLE,1, and τ̂APLE,0, respectively. Type

> ?hettreatreg

for more information and an additional example. Further information is also available from CRAN
at https://CRAN.R-project.org/package=hettreatreg.
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Appendix E Robustness Checks

E1 The Effects of a Training Program on Earnings

Figure E1.1: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 1 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.2: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 2 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.

39



Figure E1.3: WLS Estimates of the Effects of a Training Program on Earnings

-3
00

0
-2

00
0

-1
00

0
0

10
00

W
LS

 e
st

im
at

e

0 500 1000 1500 2000
Relative decrease in the number of untreated observations

Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 3 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.4: WLS Estimates of the Effects of a Training Program on Earnings
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Notes: The vertical axis represents WLS estimates of the effect of NSW program on
earnings in 1978 using the model in equation (1) in the main text and the specification
in column 4 of Table 1, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E1.5: Relationship Between Earnings and p (X)
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Notes: The vertical axis represents earnings in 1978. The horizontal axis represents
the LPM propensity score. The propensity score is estimated using the specification
in column 1 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.6: Relationship Between Earnings and p (X)
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the LPM propensity score. The propensity score is estimated using the specification
in column 2 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.7: Relationship Between Earnings and p (X)
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Notes: The vertical axis represents earnings in 1978. The horizontal axis represents
the LPM propensity score. The propensity score is estimated using the specification
in column 3 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Figure E1.8: Relationship Between Earnings and p (X)
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the LPM propensity score. The propensity score is estimated using the specification
in column 4 of Table 1. “Local mean smooth” is estimated using the Epanechnikov
kernel and a rule-of-thumb bandwidth.
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Table E1.1: Alternative Estimates of the Effects of a Training Program on Earnings

(1) (2) (3) (4)
Matching on the LPM propensity score

ÂTE –9,227*** –7,504** –6,245* –6,581*
(2,388) (3,518) (3,382) (3,370)

ÂTT –3,282*** 257 975 –892
(863) (694) (813) (906)

ÂTU –9,295*** –7,594** –6,328* –6,646*
(2,415) (3,556) (3,420) (3,409)

Matching on the logit propensity score
ÂTE –6,682** –7,683*** –4,187 –2,961

(2,773) (2,421) (3,012) (11,900)
ÂTT –3,855*** 265 2,117** 2,032**

(854) (695) (856) (860)
ÂTU –6,714** –7,775*** –4,260 –3,018

(2,804) (2,448) (3,046) (12,037)

Regression adjustment
ÂTE –6,132*** –6,218** –4,952* –4,930

(1,644) (2,534) (2,996) (3,073)
ÂTT –3,417*** –69 623 796

(628) (598) (628) (639)
ÂTU –6,163*** –6,289** –5,017* –4,996

(1,662) (2,561) (3,030) (3,108)

Demographic controls X X X
Earnings in 1974 X
Earnings in 1975 X X X

ρ̂ = P̂ (d = 1) 0.011 0.011 0.011 0.011
Observations 16,177 16,177 16,177 16,177

Notes: The dependent variable is earnings in 1978. Demographic controls include age, age squared, years
of schooling, and indicators for married, high school dropout, black, and Hispanic. For treated individuals,
earnings in 1974 correspond to real earnings in months 13–24 prior to randomization, which overlaps with
calendar year 1974 for a number of individuals. For “matching on the LPM propensity score” and “matching
on the logit propensity score,” estimation is based on nearest-neighbor matching on the estimated propensity
score (with a single match). The propensity score is estimated using a linear probability model (LPM) or
a logit model. For “regression adjustment,” estimation is based on the estimator discussed in Kline (2011).
Huber–White standard errors (regression adjustment) and Abadie–Imbens standard errors (matching) are in
parentheses. Abadie–Imbens standard errors ignore that the propensity score is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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E2 The Effects of Cash Transfers on Longevity

Figure E2.1: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 1 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.2: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 2 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.3: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 3 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.4: WLS Estimates of the Effects of Cash Transfers on Longevity
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Notes: The vertical axis represents WLS estimates of the effect of cash transfers on
log age at death using the model in equation (1) in the main text and the specification
in column 4 of Table 2, with weights of 1 for treated and 1

k for untreated units. The
horizontal axis represents k.
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Figure E2.5: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 1 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.6: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 2 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.7: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported in the MP records.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 3 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Figure E2.8: Relationship Between Longevity and p (X)
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Notes: The vertical axis represents log age at death, as reported on the death certificate.
The horizontal axis represents the LPM propensity score. The propensity score is
estimated using the specification in column 4 of Table 2. “Local mean smooth” is
estimated using the Epanechnikov kernel and a rule-of-thumb bandwidth.
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Table E2.1: Alternative Estimates of the Effects of Cash Transfers on Longevity

(1) (2) (3) (4)
Matching on the LPM propensity score

ÂTE 0.0110 0.0147* 0.0022 0.0011
(0.0070) (0.0089) (0.0099) (0.0098)

ÂTT 0.0106 0.0143 –0.0002 –0.0002
(0.0073) (0.0096) (0.0109) (0.0107)

ÂTU 0.0144** 0.0179** 0.0194** 0.0100
(0.0059) (0.0082) (0.0084) (0.0085)

Matching on the logit propensity score
ÂTE 0.0111 0.0183** –0.0019 –0.0054

(0.0073) (0.0081) (0.0166) (0.0166)
ÂTT 0.0107 0.0181** –0.0043 –0.0105

(0.0077) (0.0087) (0.0187) (0.0186)
ÂTU 0.0145** 0.0193** 0.0152* 0.0309***

(0.0059) (0.0083) (0.0085) (0.0083)

Regression adjustment
ÂTE 0.0105* 0.0100 0.0140 0.0130

(0.0063) (0.0070) (0.0110) (0.0110)
ÂTT 0.0096 0.0092 0.0133 0.0124

(0.0064) (0.0073) (0.0121) (0.0121)
ÂTU 0.0164*** 0.0160*** 0.0184*** 0.0170***

(0.0058) (0.0061) (0.0065) (0.0065)

State fixed effects X
County fixed effects X X
Cohort fixed effects X X X X
State characteristics X X X
County characteristics X
Individual characteristics X X X

ρ̂ = P̂ (d = 1) 0.875 0.875 0.875 0.875
Observations 7,860 7,859 7,859 7,857

Notes: The dependent variable is log age at death, as reported in the MP records (columns 1 to 3) or on the death
certificate (column 4). State characteristics include manufacturing wages, age of school entry, minimum age for
work permit, an indicator for a continuation school requirement, state laws concerning MP transfers (work re-
quirement, reapplication requirement, and maximum amounts for first and second child), and log expenditures
on education, charity, and social programs. County characteristics include average value of farm land, mean and
SD of socio-economic index, poverty rate, female lfp rate, and shares of urban population, widowed women,
children living with single mothers, and children working. Individual characteristics include child age at ap-
plication, age of oldest and youngest child in family, number of letters in name, and indicators for the number
of siblings, the marital status of the mother, and whether date of birth is incomplete. For “matching on the
LPM propensity score” and “matching on the logit propensity score,” estimation is based on nearest-neighbor
matching on the estimated propensity score (with a single match). The propensity score is estimated using a
linear probability model (LPM) or a logit model. For “regression adjustment,” estimation is based on the es-
timator discussed in Kline (2011). Huber–White standard errors (regression adjustment) and Abadie–Imbens
standard errors (matching) are in parentheses. Abadie–Imbens standard errors ignore that the propensity score
is estimated.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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