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Abstract

The pace of the current data revolution depends on the world’s technological capabil-
ity to store and process information. A great share of that is done by manipulating
magnetic materials with astonishing speed and precision, which involves several dy-
namical processes. Among the latter are the collective spin excitations known as
spin waves. Just like the strings of a guitar, spin waves are the natural “tunes” of
a material’s magnetization, and knowing their properties allows to predict, design
and control technological devices.

In this thesis, we study the properties of spin waves in complex magnets focus-
ing on systems of low-dimensionality. The manifestation of spin waves in collinear
magnets, such as ferromagnets, has been extensively investigated. However, spin
waves in noncollinear magnets are not fully understood yet. For instance, no ex-
perimental data is available concerning large-wavevector spin waves in thin films
and surfaces. Nevertheless, novel noncollinear spin textures, such as the topologi-
cally nontrivial skyrmions, are at the heart of many recent proposals of information
nanotechnologies for the future.

Therefore, we develop in this thesis an atomistic description of the spin waves
in noncollinear magnets applicable to real materials. We achieve that by combining
the density functional theory, as implemented within the Korringa-Kohn-Rostoker
method, with the spin-wave adiabatic approximation. Effectively, we parametrize
from first-principles a generalized quantum Heisenberg Hamiltonian accounting for
relativistic effects of the spin-orbit coupling. Thus, besides calculating the magnetic
exchange interaction, we also have access to the Dzyaloshinskii-Moriya interaction
(DMI) and the magnetocrystalline anisotropy. To further relate our results with ex-
perimental works, we calculate the inelastic-electron-scattering spectrum using time-
dependent perturbation theory. This led us to propose spin-resolved electron-energy-
loss spectroscopy (SREELS) as an experimental tool to probe large-wavevector spin
waves in noncollinear magnets.

We investigate ferromagnetic reconstructed cobalt thin films deposited on tung-
sten – Co/W(110). Our results are found to be in good agreement with recent high-
resolution measurements with electron-energy-loss spectroscopy. Then, we study
spin waves in a spin spiral and a skyrmion lattice to find that, counterintuitively,
noncollinear magnets can host spin waves with zero spin angular momentum. Fur-
thermore, we demonstrate that a full characterization of the spin waves in these
systems requires spin-resolved spectroscopy such as SREELS.

We also explore antiferromagnetic materials and their complex spin textures,
such as antiferromagnetic skyrmion lattices. From first-principles, we study two
materials, a manganese monolayer on β–tungsten Mn/β–W and the Mn5Si3 com-
pound. Using atomistic spin-dynamics simulations, we obtain an antiferromagnetic
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spin-spiral ground state for the Mn/β–W. The Mn5Si3 has an antiferromagnetic
collinear ground state just before the paramagnetic transition, where we investigate
the hypothesis of the coexistence of collective spin excitations and diffusive spin
fluctuations.

We predict the first material to host in-plane skyrmions (skyrmions living in
an in-plane magnetization) stabilized by the DMI: 1 monolayer of reconstructed
Co/W(110). Moreover, we demonstrate that its in-plane magnetization preserves
the mirror symmetry of the crystal structure, which guarantees the coexistence of
in-plane skyrmions and their antiparticles, the in-plane antiskyrmions, in the same
material. Therefore, these in-plane skyrmions hold great potential for technologi-
cal applications, especially because the dipole-dipole interaction, which limits the
miniaturization of the usual skyrmions, acts to reduce the in-plane-skyrmion sizes.
Finally, we also investigate the nonreciprocity of spin waves in noncollinear magnets
induced by the DMI, which causes spin waves to acquire different properties while
propagating in opposite directions. This allows us to propose experimental setups
to extract the strength and direction of DMI in noncollinear magnets from inelastic
scattering spectra, something which was so far not possible.
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Zusammenfassung

Die Geschwindigkeit der gegenwärtigen digitalen Wandlung hängt von den weltweit
verbreiteten technischen Leistung, Daten zu speichern und zu verarbeiten, ab. Ein
großer Anteil ist auf die außerordentlich schnelle und präzise Manipulation von mag-
netischen Materialen zurückzuführen, welche viele dynamische Prozesse involviert.
Letzteres beinhaltet die kollektive Spinanregung, welche auch als Spinwellen bekannt
ist. Spinwellen sind, wie die Seiten einer Gitarre, die natürlichen Stimmen der Mag-
netisierung eines Materials. Das Kennen ihrer Eigenschaften erlaubt es technische
Geräte vorherzusagen, zu entwerfen und zu kontrollieren.

Wir untersuchen die Merkmale von Spinwellen in komplexen Magneten mit Fokus
auf niederdimensionale Systeme in dieser Arbeit. Die Ausprägung von Spinwellen
in kollinearen Magneten, wie zum Beispiel in ferromagnetischen Materialien, wurde
umfangreich erforscht. Dennoch sind Spinwellen in nicht kollinearen Magneten noch
nicht vollständig verstanden. Zum Beispiel sind keine experimentelle Daten für Spin-
wellen mit großen Wellenvektoren in dünnen Schichten oder Oberflächen verfügbar.
Dessen ungeachtet sind neuartige nicht kollineare Spinoberflächenstrukturen, wie
die topologisch nicht trivialen Skyrmionen, das Herzstück der neuesten Vorschläge
für die zukünftige Informationsverarbeitung im Bereich der Nanotechnologien.

Daher entwicklen wir in dieser Arbeit eine atomare Beschreibung der Spinwellen
in nicht kollinearen Magneten, welche auf echte Materialen angewendet werden kann.
Wir gelangen zu dieser Darstellung durch die Kombination der Dichtefunktional-
Theorie, welche in der Korringa-Kohn-Rostoker Methode implementiert ist, mit der
adiabatischen Spinwellennäherung. Wir parametrisieren aus den quantenmechanis-
chen Grundprinzipien einen verallgemeinerten Heisenberg Hamiltonian, welcher für
die relativistischen Effekte der Spin-Orbit-Koppelung Rechnung trägt. Daher haben
wir, über die Berechnung der magnetischen Austauschwechselwirkung hinausge-
hend, Zugang zu der Dzyaloshinskki-Moriya Wechselwirkung (DMI) und der magne-
tokristallinen Anisotropie. Um unsere Ergebnisse weiter mit experimentellen Daten
in Beziehung zu setzen, berechnen wir die inelastische Elektronenstreuung durch
zeitabhängige Störungstheorie. Dies führt uns zu dem Vorschlag Spin-aufgelöste
Elektronenenergieverlustspektroskopie (SREELS) als ein experimentelles Instrument
zu verwenden, um Spinwellen mit großen Wellenvektoren in nicht kollinearen Mag-
neten zu testen.

Wir untersuchen in Wolfram plazierte ferromagnetisch rekonstruierte feine Kobalt-
schichten – Co/W(110). Unsere Resultate zeigen, dass sie in guter Übereinstimmung
mit den neuesten hochaufgelösten Messungen der Elektronenenergieverlustspektro-
skopie sind. Darauffolgend untersuchen wir Spinwellen in Spinspiralen und in einem
Skyrmiongitter und stellen entgegen unserer Erwartungen fest, dass nicht kollineare
Magnete Spinwellen ohne Spindrehimpuls aufnehmen können. Des Weiteren zeigen
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wir, dass für eine vollständige Charakterisierung der Spinwellen in diesen Systemen
Spin-aufgelöste Spektroskopie wie SREELS benötigt wird.

Wir erforschen ebenfalls antiferromagnetische Materialien und ihre komplexen
Spinstrukturen wie antiferromagnetische Skyrmiongitter. Von Grund auf unter-
suchen wir zwei Materialien, eine Mangan Monoschicht auf β-Wolfram Mn/β–W
und die Mn5Si3 Verbindung. Durch die Verwendung von atomarer Spindynamiksim-
ulationen ergibt sich der antiferromagnetische Spin-Spiral-Grundzustand für Mn/ß-
W. Mn5Si3 hat einen antiferromagnetisch kollinearen Grundzustand kurz vor dem
paramagnetischen Übergang, wo wir die Hypothese der Koexistenz von kollektiven
Spinanregungen und diffusen Spinfluktuationen erforschen.

Wir prognostizieren das erste Material, welches in Ebene Skyrmionen, Skyrmio-
nen welche in einem in Ebene magnetisiertem Material leben, beinhaltet und durch
DMI stabilisiert wird: Eine Einzelschicht aus rekonstruiertem Co/W(110). Weit-
erhin zeigen wir, dass die Magnetisierung in die Ebene die Spiegelsymmetrie der
Kristallstruktur, welche die Koexistenz der in Ebene Skyrmionen und ihrer An-
titeilchen, Antiskyrmionen in Ebene, im gleichen Material garantiert, erhält. Daher
ergibt sich großes Potential für technische Anwendungen der in Ebene Skyrmionen,
besonders auf Grund der Dipol-Dipol Wechselwirkung, welche die Miniaturisierung
der gewöhnlichen Skyrmionen limitiert und reduzierend auf die in Ebene Skyrmio-
nengröße wirkt.

Schlussendlich untersuchen wir die Nichtreziprozität von Spinwellen induziert
durch DMI in nicht kollinearen Magneten, welche Spinwellen unterschiedliche Eigen-
schaften annehmen lässt während sie in gegensätzliche Richtungen propagieren. Dies
erlaubt uns experimentelle Aufbauten vorzuschlagen, um die Stärke und Richtung
von DMI in nicht kollinearen Magneten aus inelastischen Streuungsspektren zu ex-
trahieren, was bis her noch nicht möglich gewesen ist.
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Chapter 1

Introduction

Our society is generating an unimaginable amount of data at ever-increasing rates.
It is the era of Big Data and it is clear that we need to change our paradigms for
data process and storage if we are to keep up with that demand. For the last two
decades, the scientific community has been pushing to explore not only the charge
but also the spin of the electrons in electronic devices, within the research field called
spintronics. Despite the advances in the field, spintronics still relies on the motion
of electrons, which often causes Ohmic losses. However, the spins of the electrons
behold technological opportunities that go beyond charge and spin currents.

The electronic spins are responsible for most of the magnetism phenomenon in
materials. In turn, every magnetic material behaves as an elastic medium: a per-
turbation of the local magnetization can propagate throughout the material anal-
ogously to the propagation of a wave in the sea. We call this phenomenon a spin
wave, which are collective spin-excitations of magnetic materials. They were theo-
retically predicted by Bloch in 1930 and first measured almost three decades later
by Brockhouse [1, 2].

Spin waves have a wide potential for technological applications. That is because
they can propagate transporting energy, linear and angular momenta, and thus al-
lowing information transmission through the material. Furthermore, because each
spin can have a precessional motion while localized at a given crystal site, a spin
wave propagates without transporting charge. Thus, we could think of a device that
converts a voltage input into a spin wave for wave-based computing, which then
generates an output that is converted back into a voltage. Such a device could have
the advantages of parallel data processing on different wave frequencies, low power
consumption, and allowing for neuromorphic and non-Boolean computing because
we could also exploit the wave phase [3]. Spin waves have a wide range of wave-
lengths: from a few nanometers (and frequencies up to THz), where the magnetic
exchange interaction dominates; to macroscopic wavelengths that are usually domi-
nated by the magnetic dipole interaction. All these factors, together with the recent
development of experimental techniques and the field of material sciences, attracted
much attention to spin waves in the recent years [3–6]. The field of research that
aims to develop means of using spin waves for information technologies is known as
magnonics, and it is closely intertwined with spintronics.

Another current revolution in the field of magnetism concerns the exquisite spin
textures (also called magnetic textures or magnetic configurations) related to chiral
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interactions in noncentrosymmetric systems. These are noncollinear magnetic struc-
tures such as skyrmions, domain walls, magnetic bobbers and spin spirals [7–10],
which arise from the delicate balance between intrinsic and extrinsic interactions,
such as the magnetic exchange and Dzyaloshinskii-Moriya interactions, the magne-
tocrystalline anisotropy and external magnetic fields. While most studies focus on
the static properties of these novel magnetic states, in this thesis, we focus on their
dynamical properties due to the spin waves.

Besides the underlying magnetic interactions, spin waves are also sensitive to
the magnetic textures. Therefore, understanding their properties in the various
magnetic media is essential for future applications. A skyrmion, for example, is a
localized noncollinear spin texture whose spins continuously winds from its parallel
alignment with the background magnetization towards an antiparallel alignment at
the center [7, 11, 12]. It is topologically distinct from the conventional magnetic
textures, such as ferromagnetic and antiferromagnetic phases. It happens that spin
waves of a topologically-nontrivial spin texture can inherit the topological properties
of the medium. An example is the formation of topologically-protected edge states
of a skyrmion lattice, which are immune to elastic backscattering [13, 14]. Thus,
the study of unorthodox magnetic textures becomes relevant to the emergent field
of topotronics, whose goal is to develop dissipationless electronics devices exploring
the topological features of solid-state systems.

Due to their distinct topologies, it is not possible to transform a skyrmion into a
ferromagnetic state without passing through a discontinuity of its topological prop-
erties, such as the topological charge. In the magnetization continuum limit, this
discontinuity maps into an infinite barrier that guarantees the stability of skyrmions.
In a real-world magnetic lattice, however, this energy barrier is finite, and while it
assures robustness for the skyrmions, it is no longer sufficient to guarantee its sta-
bility. Instead, the occurrence and stability of skyrmions also depend on the specific
magnetic properties of the system-material. Therefore, it becomes imperative in the
latter context to accurately describe the magnetic properties of realistic materials,
which requires cutting-edge first-principles simulations based on density functional
theory (DFT).

The Dzyaloshinskii-Moriya interaction (DMI), responsible for the magnetic non-
collinearity in the systems of our interest, can be best tailored by engineering the
interface and surfaces between various materials. Often, we interface a magnetic ma-
terial, such as Fe, Co, and Ni with heavy-element materials, such as W and Pt [15,
16]. This combination enhances spin-orbit coupling effects in the magnetic layers,
which gives rise to a strong DMI. Therefore, multilayers, thin films, and surfaces
are the perfect playground for our investigations. These structures have the further
advantage of being inherently suitable for technological applications due to their
reduced dimensionality.

The appeal of studying spin waves goes beyond their technological potential.
They are also of fundamental interest in magnetism. In many cases, measuring
the spin-wave properties of a system is the only way to determine its magnetic
properties, such as the spatial dependence of the magnetic exchange interactions.
The latter leads us to the next aspect of the present work, which is to advance the
methodology of detecting and measuring spin waves.

An essential experimental technique to measure spin waves in magnetic thin
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films is the electron-energy-loss spectroscopy (EELS) and its spin-polarized ver-
sion (SPEELS) [17, 18]. While other techniques also have surface sensitivity, such
as the Brillouin-light-scattering spectroscopy [19], only EELS can measure short-
wavelength spin waves in thin films. However, up to now, EELS has only been
used to investigate spin waves in ferromagnets. In such an experiment, an incom-
ing electron can only excite spin waves in a ferromagnet if its spin is antiparallel
to the spin of the magnetic sample. Thus, the spin of the electron can undergo a
spin-flip process, which also transfers energy and linear momentum, decreasing the
net magnetization of the sample by creating a spin-wave quantum, also known as a
magnon. This picture changes, however, when the electrons are scattering from a
noncollinear spin texture. Will the creation of a magnon require a spin-flip of the
probing electron?

Thus, this thesis aims at contributing to three different aspects of the physics
of spin waves and their applications: i) studying new spin textures; ii) providing a
framework for material-specific investigation by parameterizing the magnetic mod-
els from first-principles calculations; iii) and connecting the theoretical results to
experimental measurements. This thesis is organized as follows.

In Chapter 2, we give an introduction to magnetism, which shall help us to un-
derstand why some materials are magnetic while others are not. We introduce a
generalize Heisenberg Hamiltonian that provides us with an adiabatic description
of magnetic materials, which are regarded as composed of localized magnetic mo-
ments. In particular, we demonstrate that spin waves are the natural spin-excitation
modes of magnetically ordered systems. We conclude by discussing how the spin-
wave spectrum of a general noncollinear magnet can be systematically calculated
within the adiabatic approximation. This equips us with a formalism suitable for
a numerical implementation by writing the Hamiltonian in a matrix form, perform-
ing a Holstein-Primakoff transformation, and then a Bogoliubov diagonalization to
obtain the spin-wave spectrum.

Chapter 3 is dedicated to discuss the ab initio methods used to obtain the
Hamiltonian parameters in order to characterize the spin-wave properties of specific
materials. Thus, we start providing an introduction to DFT and the Green func-
tion Korringa-Kohn-Rostoker (KKR) method [20]. Then, we discuss how the sys-
tem’s Green function connects to the parameters of the magnetic exchange and the
Dzyaloshinskii-Moriya interactions by applying the infinitesimal rotation method [21,
22].

In Chapter 4, we develop a theory for the inelastic scattering of spin-1
2

particles
from spin waves in noncollinear magnets. The scattering cross-section is propor-
tional to the spin-spin correlation function, for which we derive a formula as a
function of the spin-wave eigenvalues and eigenfunctions obtained in the adiabatic
approximation described in Chapter 2.

Due to the recent high-resolution EELS experiments that measured for the first
time up to three spin-wave modes [23–25], in Chapter 5, we study ferromagnetic
ultrathin films with 3-8 monolayers of cobalt deposited on the tungsten (110) surface.
The large lattice mismatch between cobalt and tungsten leads to the reconstruction
of the cobalt film, which requires a large supercell to theoretically describe the
resulting structure that consequently reduces the Brillouin zone (BZ). We discuss
how one can unfold the spin-wave dispersion into the BZ of the unreconstructed
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crystal structure, which enables a direct comparison between the theoretical and
experimental results. Thus, because of the available experimental data, this study
gives us a great opportunity to test our theoretical framework before we advance to
investigate noncollinear magnets.

Within Chapter 6, we study our first noncollinear spin textures. Based on the
scattering theory derived in Chapter 4, we propose the augmentation of the current
(SP)EELS setups to include a spin filter of the scattered electrons. We called the
resulting experiment, which provides us with the spin-resolved spin-wave spectra, a
spin-resolved electron-energy-loss spectroscopy (SREELS) [26]. Then, we consider a
model system consisting of a hexagonal-lattice monolayer with interactions between
the nearest neighbors. We discuss the resulting SREELS spectra for three of the
system’s phases: a ferromagnetic phase, a spin spiral, and a skyrmion lattice. We
dedicated the rest of the chapter to determine the main properties of the spin waves
in these noncollinear magnets, showing how they can be detected through SREELS,
and how they differ from the known textbook physics of ferromagnets. For example,
we demonstrate that noncollinear spin textures can have spin-wave modes with
opposite or even vanishing angular momenta, which is in strong contrast to spin
waves of ferromagnets.

We dedicate Chapter 7 to investigate spin waves in noncollinear systems whose
exchange interaction is predominately antiferromagnetic. Among others, we study
antiferromagnetic spin spiral and antiferromagnetic skyrmion phases. We then study
two particularly interesting materials: Mn/β–W and Mn5Si3 [27–29]. The results
for the thermoelectric Mn5Si3 were compared with the experimental data provided
by our collaborators, which contributed to elucidate an open question related to the
spin-fluctuations of this material.

In Chapter 8, we focus on even thinner films, 1-3 monolayers, of Co/W(110),
where the effects of the Dzyaloshinskii-Moriya interaction are expected to be more
relevant. Thus, we employ the relativistic KKR method to determine the DMI
properties of these films. The cobalt reconstruction breaks the C2v symmetry of the
W(110) substrate reducing the symmetry of the combined system into the Cs point
group. As a result, we obtain nonvanishing out-of-plane components of the DMI.
This property, together with the dominant in-plane magnetocrystalline anisotropy,
makes 1Co/W(110) the first material predicted to host in-plane skyrmions, i.e.,
skyrmions that leaves in an in-plane magnetized system. This discovery has a pro-
found impact on skyrmion research because it widens the scope of materials where
skyrmions can be found by showing that in-plane magnetized material can host
them too. While the dipole-dipole interaction prevents the formation of ultrasmall
out-of-plane skyrmions [30], it helps to make in-plane skyrmions even smaller, which
is desirable for technological devices. The in-plane magnetization of 1Co/W(110)
preserves the mirror plane of the crystal structure. We demonstrate that this leads
to skyrmion and antiskyrmion being energy degenerate, which guarantees their co-
existence in this film. That is because these quasiparticles can be brought into each
other via the symmetry operation given by the preserved mirror plane. Furthermore,
the nanometric size of these skyrmionic structures, together with other conceptual
advances, makes them of great interest in the field of spintronics, magnonics, and
topotronics.

Chapter 9 concerns the phenomenon called nonreciprocity of spin waves, related
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to the asymmetries of the spin-wave properties in the reciprocal space. It is caused
by the Dzyaloshinskii-Moriya interaction and it was predicted theoretically to occur
in ferromagnets, and it was subsequently observed with SPEELS in thin films of
Fe on W(110) [31–33]. Measuring this nonreciprocity allows us to determine both
the strength and the vectorial orientation of the DMI. In this last result chapter,
therefore, we explore and solve the nontrivial problem of determining if spin waves
in noncollinear magnets can also be nonreciprocal due to the DMI and under which
condition this happens. Furthermore, we discuss the role of SREELS in unveiling
these nonreciprocities. Finally, in Chapter 10, we conclude with our final remarks
and perspectives for the present work.

After each chapter, the reader may find the appendices that concern the details
and derivations of the results presented in the main text. While the comprehension
of the discussion and results in the main text does not demand an examination of
the appendices, the readers looking for a deeper insight will certainly benefit from
the appendices’ contents.
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Chapter 2

Theory of spin waves

Spin waves are elementary collective spin excitations of magnetic materials. They
cause the atomic spin moments to precess around their equilibrium axes in a coher-
ent manner. The quantum of spin wave is called a magnon and its creation reduces
the material’s total angular momentum by ~. In this chapter, we present the foun-
dations of the theoretical description of the spin-wave phenomenon in the adiabatic
approximation. We start with an introduction to magnetism to understand the ori-
gin of the magnetic moments and the interactions they are often subjected to, such
as the magnetic exchange and the Dzyaloshinskii-Moriya interactions. Next, we in-
troduce a generalized Heisenberg model which provides us with a simple Hamiltonian
to describe the magnetic properties, both static and dynamics of magnetic materi-
als. Finally, we introduce the concept of spin waves within a semiclassical picture,
which appears as natural precession modes of the interacting magnetic moments.
Lastly, we show a quantum mechanical formalism for spin waves which allows us to
systematically determine the energies and eigenmodes of any noncollinear magnet
described by generalized Heisenberg Hamiltonian.

2.1 Introduction to magnetism

Magnetic materials are indispensable in our society. Their applications are countless
going from data storage devices, passing through energy generation, up to medical
therapies. But why are some materials magnetic while others are not? In fact, most
materials we encounter in our daily lives seem to be nonmagnetic, i.e., they appear
not to interact with a magnetic field or other magnets, such as wood, glass, plastics,
etc. For a material to feature a finite magnetization, just like the decorative magnets
on your fridge door, it has to fulfill a series of criteria. First, at the microscopic level,
it has to be composed of atoms that possess finite magnetic moments, that is, atoms
that are like tiny bar magnets themselves. Next, the atomic magnetic moments need
to feature a long-range order such that they align along a preferential direction. The
materials that fulfill these conditions are called ferromagnets.

However, many other magnetic materials present all sorts of orderings. Antifer-
romagnets, for example, have adjacent moments of the same magnitude anti-aligned
to each other. There are even more complex structures, which have canted mag-
netic moments generating a noncollinear configuration, such as in spin spirals and
skyrmion lattices. Spin spirals are formed when the magnetic moment orientation ro-
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tates around a given axis with a well-defined rate when we move across the material.
A skyrmion lattice, for example, can be obtained by superimposing multiple spin
spirals, each with a different rotational axis. However, skyrmions can also appear
isolated as local perturbations of a uniform magnetic background. We elaborate on
these structures when discussing the ground states of magnetic systems in Sec. 2.2.
Magnetic materials with no long-range ordering are called paramagnetic, and ma-
terials whose atoms have no permanent magnetic moments are called diamagnetic.
For more detail, please refer to the standard texts on condensed matter physics such
as Kittel [34] or Ashcroft and Mermin [35]. Many of the discussions in this chapter
were also inspired by Refs. [36–39]. In the next section, we establish some important
concepts in magnetism and discuss the origin of the atomic magnetic moments.

2.1.1 Magnetic moment and magnetization

The magnetic dipole moment m of an object is defined through the relation between
the aligning torque τ it experiences when subject to an external magnetic field B:

τ = m×B . (2.1)

Such torque is experienced, for example, by a current-carrying loop of wire when we
apply a uniform magnetic field not aligned with the loop axis. For short, we refer
to m as a magnetic moment.

In general, the magnetism in materials arises almost entirely from the magnetic
moments due to electrons. The magnetic moments from the atomic nuclei are about
103 smaller than the electronic ones, therefore they are negligible for our study.
We also neglect induced magnetic moments, which are generated as a response to
external magnetic fields. We rather focus on permanent magnetic moments. There
are two contributions to the total magnetic moment of an electron: the orbital and
spin magnetic moments.

Orbital angular momentum

The orbital magnetic moment comes from the motion of the bound electrons in their
stationary orbits and the current loops they cause within an ion [37]:

morb =
1

2

∫
r× j d3r , (2.2)

considering that the ion rests in the origin. The magnetization current density can
be expressed as:

j = −e
∑
j=1

δ(r− rj)vj , (2.3)

where vj is the velocity of the ion j-th electron with electrical charge −e. As j is
due to bound electrons, it must satisfy ∇· j = 0, which ensures that its flux through
any arbitrary volume is zero. Putting together the last two equations, we obtain:

morb = −e
2

∑
j

rj × vj = −1

~
µB

∑
j

Lj , (2.4)
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where Lj = rj × (mevj) is the angular momentum of the j-th electron, µB =
e~/2me is the Bohr magneton, me is the electron mass, and ~ is the reduced Planck
constant. The above expression relates the orbital magnetic moment of the electrons
to their orbital angular momenta. As we can see, the magnetic moment and the
angular momentum are always antiparallel to each other because the electron charge
is negative. In the literature, however, often the minus sign is disregarded, which is
the convention we follow for the whole of this thesis.

Spin angular momentum

The second contribution to the electronic magnetic moment comes from the spin
angular momentum S of the electrons, and they are related by:

mspin =
1

~
µBgeS . (2.5)

The Lande’s spin g-factor is given by

ge = 2
(

1 +
α

2π
+O(α2)

)
∼ 2.0023 , (2.6)

where α = 1/137 is the Sommerfeld’s fine-structure constant. For most applications,
we can assume ge = 2 making the total magnetic moment, combining the orbital
and spin contributions, to be given by

m =
µB
~

(L + 2S) . (2.7)

Note that the magnetic moment m is not parallel/antiparallel to the total angular
momentum J = L + S.

Another common concept used in magnetism is that of the magnetization, which
is defined as the volumetric density of magnetic moments and it can be written as:

M(r) =
dm

dV
. (2.8)

In general, it varies from point to point inside of the material. Next, we want to
understand two important aspects, the reason why some materials have atoms with
permanent magnetic moments, and how do they order.

2.1.2 Magnetic moment origin

Isolated atom

We saw that a magnetic moment of an atom is associated with the orbital and spin
momenta of its electrons. Let us now study how an isolated atom ends up with net
orbital and spin momenta by considering a hydrogen atom. Because the elostractic
potential of the hydrogen nucleus is spherically symmetric, the possible state for a
single electron can be completely characterized by four quantum numbers, n, l, ml,
and ms [38]:

1. n is the principal quantum number, which is associated with the number of
radial nodes in the wavefunction;

23



CHAPTER 2. THEORY OF SPIN WAVES

2. l is the orbital-angular-momentum quantum number also called the azimuthal
quantum number, and it is associated with the expectation value of orbital
angular momentum: 〈L2〉 = ~2l(l + 1), where 0 ≤ l ≤ n− 1;

3. ml is the eigenvalue of the z-component of the orbital angular momentum in
unit of ~, also known as the magnetic quantum number: 〈Lz〉 = ~ml, with
−l ≤ ml ≤ l ;

4. And ms is the spin quantum number, associated with the z–component of the
spin angular momentum: 〈Sz〉 = ~ms, where ms = ±1/2.

Note that we do not need to specify a quantum number associated with the total
spin angular momentum, such as S2, because it is always 1/2.

States with the same principal quantum number n form a shell. In each shell,
states with the same orbital angular momentum l form a subshell. By further spec-
ifying the magnetic quantum number ml, we have an orbital. Each orbital has two
channels since the spin quantum number ms can assume two values. Each subshell
is often labeled by a nX expression, where n is the principal quantum number and
X denote l = 0, 1, 2, 3 by the letters s, p, d, f , respectively.

As we mentioned before, magnetic moments can have two origins, spin and orbital
angular momenta. Since the addition of quantum angular momenta is no simple
matter, especially when considering multiple electrons, we will consider the L − S
coupling scheme (also known as the Russel-Saunders coupling scheme). In this
approximation, all the electron spins combine to form a single spin S =

∑
i Si and

similarly, all the orbital angular momenta combine too L =
∑

i Li. The total angular
momentum of the atom can then simply be written as J = L + S. This approach
allows us to use the quantum numbers of the combined angular momenta L, ML, S
and MS to label the states of the entire atom. Each of these numbers is simply the
arithmetic sum of the correspondent values for each electron. Now, we also need to
specify S, which can assume values different of 1/2.

Next, we discuss how an isolated atom accommodates multiple electrons, and
how we can determine its ground state [36, 38]. The energy of the orbitals depends
only on n and l. In the ground state, an isolated atom will fill in first the orbitals
with the lowest energies while respecting Pauli’s exclusion principle, that is, no two
electrons can share the same set of quantum numbers. Furthermore, the priority
within each subshell is given by the Hund’s rules: Electrons must occupy the orbitals
that maximize S. This means that the orbitals of a subshell are each occupied
with one electron, of parallel spins, before doubling the occupancy of each orbital.
This first rule permits to minimize the Coulomb repulsing among electrons in the
same subshell. For a given value of S, L is then maximized. This implies that
the interaction among spins and among orbital momenta are both ferromagnetic,
but the spin-spin interaction is stronger. The total angular momentum is given by
J = |L − S| if the subshell is less than half-full, or J = L + S if it is more than
half-full. When the subshell is half-full, L = 0, and so J = S. These differences
in the total angular momentum are caused by a relativistic effect called spin-orbit
coupling, which we will be discussed further in this chapter.
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Localized magnetism

Hund’s rules imply that no net angular momentum is expected from full subshells
because for each electron with a given spin projection ms there is another with
−ms; and similarly, there should be electrons with the opposite azimuthal quantum
numbers. This is the case of the noble gases. Thus, it is easy to see that most
elements of the periodic table will have a net angular momentum and, therefore, a
magnetic moment when isolated.

That is also important to understand the origin of the permanent magnetic mo-
ment of some solids. It is especially the case for elements whose angular momentum
comes from inner incomplete subshells whose electrons are less susceptible to be
involved with bonding in a crystal. These elements can retain their magnetic mo-
ment when in a solid, which are then said to possess localized magnetism, once the
electrons responsible for the magnetic moment are well localized in their respective
crystal sites, such as in insulators.

Nevertheless, the observed magnetic moment in solids is often completely differ-
ent from that in an isolated atom. This is especially true for the orbital angular
momentum L, which is quenched because of the nonspherical electrostatic potential
from surrounding atoms.

Itinerant magnetism - Hubbard model

In some metallic materials, the same electrons responsible for the electrical conduc-
tion give rise to magnetism [37]. Examples are 3d materials such as Fe, Co, and Ni.
In this case, the Coulomb interaction produces a spin-dependent band shift when
the system is below its critical temperature. In this way, one spin orientation be-
comes more favorable than the other, and the imbalance in the number of electrons
in each spin channel yields a finite magnetization.

A simple model that describes this phenomenon is the Hubbard model [40], which
is described by the Hamiltonian:

H =
∑
ijσ

tijc
†
iσcjσ +

1

2
U
∑
iσ

niσniσ̄ . (2.9)

The operator c†iσ creates an electron with spin σ on the crystal site i, while cjσ
destroys it on site j, and niσ = c†iσciσ is the occupation number operator. σ̄ represents
the opposite spin projection of σ. The hopping integral tij contains the kinetic
energy and the crystal potential, and it is associated with the probability of an
electron to hop from site i to j. In this model, electrons are considered to interact
among themselves only when on the same site, where they feel the screened effective
Coulomb potential given by the parameter U . Therefore, it is a good approximation
for metallic systems, where the Coulomb interaction is strongly screened.

The Hubbard model can be solved within the mean-field approximation using
the Hartree-Fock decoupling of the four-operators terms of Eq. (2.9). Each of these
terms is replaced by a combination of all possible operator pairs multiplied by the
remaining operators’ mean values. Thus, one obtains that the paramagnetic state
is unstable when the system satisfies the Stoner criterion

Uρ(EF) ≥ 1 , (2.10)
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Figure 2.1: Density of states for the electrons in the majority and minority spin channels.
The total number of electrons is given by the area between the curves and the horizontal
axis integrated up to the Fermi level EF. Due to the shift in the bands caused by the
electron-electron interaction, the total number of electrons in the majority spin channel is
larger than electrons in the minority one yielding a net magnetization.

where ρ(EF) is the density of states at the Fermi energy EF. The system then orders
magnetically and as a result, the density of states of the two spin channels are shifted
apart in energy by

∆ = Um , (2.11)

where the magnetization m = n↑ − n↓, and nσ =
∑

i〈niσ〉/N . The imbalance of
electrons due to the on-site exchange interaction that yields a net magnetization is
illustrated in Fig. 2.1.

In some of the crystal sites, the density of electrons with spin up differs from
that of electrons with spin down, which yields to a net local magnetic moment mi.
One should have in mind, however, that these localized moments are generated by
itinerant electrons that are not particularly localized in any atomic site. In this
thesis, we consider the adiabatic approximation that regards the fast motion of the
electrons as decoupled from the slower dynamics of the localized magnetic moments.

2.1.3 Zeeman energy

After understanding the origin of the magnetic moments, it is time to investigate
how they interact with an applied magnetic field. For that, consider the quantum-
mechanical Hamiltonian of a charged particle in an electromagnetic field, which is
given by [38]

H =
1

2m

(
~
i
∇− qA

)2

+ qφ . (2.12)

We postulate that all the properties of the particle are described by the wavefunction
ψ(r, t), which is a solution of the Schrödinger equation:

i~
dψ

dt
= Hψ . (2.13)
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For a static electromagnetic field, this last equation describes how the wavefunc-
tion evolves with time while the Hamiltonian operator is time-independent within
the Schrödinger picture. Thus, the wavefunction can be written as

ψ(r, t) = ψ(r)e−iEt/~ . (2.14)

Replacing this expression in Eq. (2.13), we have that ψ = ψ(r) must satisfy

− ~
2m
∇2ψ − ~

i

q

2m

(
∇ · (Aψ) + A · ∇ψ

)
+
( q2

2m
A2 + qφ

)
= Eψ . (2.15)

To evaluate the second term of the above equation, we will consider the following
properties.

Using the Coulomb gauge, ∇ ·A = 0, we have that

∇ · (Aψ) = (∇ ·A)ψ + A · ∇ψ = A · ∇ψ . (2.16)

Furthermore, for a uniform magnetic field, we have that:

∇× (B× r) =B∇ · r− r∇ ·B + (r · ∇)B− (B · ∇)r

=(∇ · r)B− (B · ∇)r

=3B−B = 2B

=2∇×A .

(2.17)

From the last equation, we can choose to write

A =
1

2
(B× r) , (2.18)

which is known as the symmetric gauge. To derive the last two equations, we used
the triple product expansion and the Maxwell’s equation derived from Gauss’ Law:

∇ ·B = 0 , (2.19)

which permit us to write B = ∇×A.
Thus, from the results in Eqs.(2.18) and (2.16), the second term of Eq. (2.15)

becomes:

−~
i

q

m
A · ∇ψ =− ~

i

q

2m

(
B× r

)
· ∇ψ

=− q

2m
B ·

(
r×

(
~
i
∇
))

ψ

=− q

2m
B ·
(
r× p

)
ψ

=− q

2m
B · Lψ

=−m ·Bψ ,

(2.20)

where we used the scaler triple product identity a · (b × c) = (a × b) · c, and
the classical definition of angular momentum L = r × p. Disregarding the term
proportional to A2, which is usually negligible for small fields, we can define the
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Zeeman energy that describes the interaction between a particle’s magnetic moment
and an external magnetic field:

HZee = −m ·B . (2.21)

This equation implies that the energy is minimized when the dot product is maxi-
mum, i.e., when the magnetic moment m is parallel to the field. Even though we
demonstrated the Zeeman interaction by considering a magnetic moment of orbital-
angular-momentum origin, it also applies for the spin angular momentum.

A magnetic moment changes with a rate given by the torque it is subjected to:

τ =
dm

dt
=
µB
~

dL

dt
. (2.22)

Furthermore, the time evolution of the angular momentum operator under the in-
fluence of a magnetic field is given by Schrödinger’s equation of motion:

dLα

dt
=− i

~
[Lα,HZee]

=
i

~
∑
β

[
Lα,mβBβ

]
=

i

~
µB
~
∑
β

[
Lα, Lβ

]
Bβ

=− µB
~
∑
βγ

εαβγL
γBβ ,

(2.23)

where we used the angular momentum commutation relation[
Lα, Lβ

]
= i~

∑
γ

εαβγL
γ . (2.24)

α, β, and γ are Cartesian-component indices, and εαβγ is the Levi-Civita symbol.
In the last line of Eq. (2.23), we can identify the components of the cross product
between the angular momentum and the magnetic field: (L×B)α =

∑
βγ εαβγL

βBγ.
As a result, we then obtain that

τ = m×B , (2.25)

which recovers the phenomenological result in Eq. (2.1) that was our starting point
for discussing magnetic moments.

2.1.4 Magnetic exchange interaction

The magnetic exchange interaction (MEI) is a coupling between spins of fundamental
importance in magnetism. It is one of the main sources of long-range ordering in
ferromagnets and antiferromagnets. The discussions in this section were inspired by
Refs. [37, 38].

To understand the origin of the magnetic exchange interactions, let us consider
a hydrogen molecule, constituted by two atoms, each with a proton and an electron.
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The idea is to determine how the system energy is affected by the relative alignment
of the electron spins. The energy is given by the expectation value of the Hamiltonian
operator,

〈E〉 =

∫
Φ∗(r1)HΦ(r2)d3r1d3r2∫
Φ∗(r1)Φ(r2)d3r1d3r2

, (2.26)

where the Hamiltonian can be split into a unperturbed part and an interaction term:

H =
2∑
i=1

Hi +HI . (2.27)

The unperturbed, single-particle Hamiltonians of each electron are given by

H1 =
p2

1

2m
− q2

r1a

,

H2 =
p2

2

2m
− q2

r2b

,

(2.28)

where pi is the momentum of the i-th electron, and rix the distance between that
electron and the x-proton. The interaction part is given by

HI = q2

(
1

r12

+
1

Rab

− 1

r1b

− 1

r2a

)
, (2.29)

where the first two terms are due to the repulsive interaction between particles of
the same charge, and the last two are due to the attraction between particles of
opposite charges. We neglected the kinetic energy of the protons assuming that
their positions are fixed, for they are much heavier than the electrons. Thus, the
distance between protons a and b, Rab, becomes a parameter. We are also neglecting
the dipole-dipole interaction between the electron spins, as it is much weaker than
the electrostatic interactions.

Symmetric and antisymmetric eigenfunctions

If the two atoms, a and b, are far apart in comparison to the atomic diameter, we can
assume that a reasonable wavefunction Φ can be constructed from the ground-state
orbitals of the isolated atoms given by:

H1ϕa(r1) =E0ϕa(r1)

H2ϕb(r2) =E0ϕb(r2) .
(2.30)

We could try

ΦI(r1, r2) = ϕa(r1)ϕb(r2) , (2.31)

or

ΦII(r1, r2) = ϕa(r2)ϕb(r1) , (2.32)

where r1(2) corresponds to the position of the first (second) electron. ΦI considers
that the electron 1 is in the orbital of atom a, and electron 2 in atom b. In ΦII ,
the picture is reversed. Because the electrons are indistinguishable, both trials seem
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equally probable, leading us to consider their superposition instead. There are two
possible combinations that lead to the correctly normalized probability:

Φ±(r1, r2) =
1√
2

(ϕa(r1)ϕb(r2)± ϕa(r2)ϕb(r1)) . (2.33)

Φ+ is a symmetric function because when we exchange one electron for the other
it remains unchanged. Doing this exchange in Φ−, it acquires a minus sign, which
makes it an antisymmetric function.

Pauli’s exclusion principle

It also happens that electronic systems need to satisfy Pauli’s exclusion principle,
which states that no two fermions can occupy the same state simultaneously. This
requirement is only satisfied by antisymmetric wavefunctions. This can be seen by
assuming that both electrons occupy the same orbital by making a = b in Eq. (2.33),
which results in Φ− = 0. Nevertheless, we cannot disregard the symmetric function
Φ+ just yet, because Pauli’s exclusion principle requires the total wavefunction to
be antisymmetric and Φ± corresponds only to the space part of it.

Since the Hamiltonian in Eq. (2.27) is spin independent, the total wavefunction
Ψ must be an antisymmetric product of the space |Φ〉± and spin |S,m〉± parts:

|Ψ〉 = |Φ〉± |S,m〉∓ . (2.34)

The plus (minus) sign indicates that the wavefunction is symmetry (antisymmetric).
In a two-electron system, the total spin can have to values S = 0 or 1, thus, the
spin part can be constructed as an antisymmetric singlet state

|0, 0〉− =
1√
2

(|↑↓〉 − |↓↑〉) , (2.35)

or a symmetric triplet state

|1, 1〉+ = |↑↑〉

|1, 0〉+ =
1√
2

(|↑↓〉+ |↓↑〉)

|1,−1〉+ = |↓↓〉 .

(2.36)

Effective spin hamiltonian

We have then four antisymmetric solutions of Eq. (2.34):

|Ψ1〉 = |Φ〉+ |0, 0〉−

|Ψ2,m〉 = |Φ〉− |1,m〉+ , m = 0,±1 .
(2.37)

As the Hamiltonian of Eq. (2.27) only acts on the space part H |Φ〉± = E± |Φ〉±, we
have:

H |Ψ1〉 =E+ |Ψ1〉
H |Ψ2,m〉 =E− |Ψ2,m〉 .

(2.38)
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This indicates that the spin-independent Hamiltonian H can be replaced by an
effective Hamiltonian H̃ that acts exclusively on the electron spins such that:

H̃ |0, 0〉 =E+ |0, 0〉
H̃ |1,m〉 =E− |1,m〉 .

(2.39)

To understand how such a Hamiltonian should look like, let us have Si being the
spin of the electron i. The expectation value of the spin operator square is given by

S2
i = ~2S(S + 1) = ~2 3

4
, (2.40)

and for the total spin, we have

S2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1 · S2 =
3

2
~2 + 2S1 · S2 (2.41)

and in comparison with Eq. (2.40), we obtain

1

~2
S1 · S2 =

1

2
S(S + 1)− 3

4
=

{
−3

4
if S = 0

1
4

if S = 1
. (2.42)

From that, we can deduce that

H̃ =
1

4

(
E+ + 3E−

)
− (E+ − E−)

1

~2
S1 · S2 , (2.43)

which has the same eigenvalues as H. This new Hamiltonian describes the molecular
Heisenberg model:

H = J0 − J12S1 · S2 , (2.44)

where the exchange coupling parameter is given by

J12 =
1

~2

(
E+ − E−

)
. (2.45)

This shows that if E+ 6= E−, automatically a spontaneous magnetic order is favored.
For J12 > 0, the spins couple ferromagnetically, tending to align parallel to each
other. When the exchange parameter is negative, an antiferromagnetic alignment is
favored, when the spins are aligned antiparallel.

Origin of the exchange coupling

To understand the origin of the energy difference between symmetric and antisym-
metric space wavefunctions, which is proportional to the magnetic exchange param-
eter, let us further develop Eq. (2.26). The denominator is given by∫

(Φ±(r1, r2))∗Φ±(r1, r2)d3r1d3r2 = 1± α2 , (2.46)

where we assumed that the atomic orbitals are normalized
∫
|φ(r)|d3r = 1, and α is

the overlap integral given by

α =

∫
φ∗a(r)φb(r)d3r . (2.47)
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Similarly, the numerator is found to be∫
(Φ±(r1, r2))∗H(r1, r2)Φ±(r1, r2)d3r1d3r2 = 2E0(1± α2) + V ± U , (2.48)

where V is the coulomb integral and U the exchange integral, defined by

V =

∫
ϕ∗a(r1)ϕ∗b(r2)HI(r1, r2)ϕa(r1)ϕb(r2)d3r1d3r2 ,

U =

∫
ϕ∗a(r2)ϕ∗b(r1)HI(r1, r2)ϕa(r1)ϕb(r2)d3r1d3r2 .

(2.49)

U is called exchange integral because it corresponds to the transition probability of
electrons switching positions, which becomes possible due to the interaction Hamil-
tonian. The energy of the symmetric and antisymmetric states are then

E± = 2E0 +
V ± U
1± α2

, (2.50)

and therefore, the difference is given by

E+ − E− = −2
V α2 − U
1− α4

= ~2J12 . (2.51)

The strength and sign of the exchange parameter depends on the balance between
U , V and α. For the hydrogen molecule, J12 is negative meaning that the ground
state corresponds to the antiparallel alignment of the electron spins.

We demonstrated that the interaction between electrons plus Pauli’s exclusion
principle leads to magnetic effects, even when the Hamiltonian is spin-independent,
therefore unable to describe directly the interaction between two magnetic moments.
Furthermore, the Heisenberg model can then be postulated as the generalization of
the above developments for N interacting spins:

H = −1

2

∑
ij

JijSi · Sj , (2.52)

where we ignored the zero of Energy because we are mostly interested in the low
excitations above the ground state. We could demonstrate that this Hamiltonian is
valid for a pair of couple spins, however, there is no guarantee that for N -coupled
spins the effective Hamiltonian keeps a similar form. In a real system, the interac-
tions are often very complex such that the exchange interaction ceases to be well
defined [38]. Nevertheless, it seems that the Heisenberg Hamiltonian as written
above manage to capture and describe many observable magnetic phenomena in
actual solids.

2.1.5 Spin-orbit coupling: MCA and DMI

The relativistic theory of the atom by Dirac leads to the spin-orbit coupling (SOC)
correction to the energy. The SOC is in general small but it can be proportional to
the square power of the atomic number, meaning that it becomes very important
for heavy elements [36].
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Instead, we can illustrate the origin of the spin-orbit coupling by considering the
following [37]. In the rest frame of a charged nucleus, an electron moves through
an electrostatic field, E = −∇φ due to the nucleus. The electron in its rest frame
“sees” a magnetic field B, which in relativistic electrodynamics is given by

B̄ = γ

(
B− 1

c
β × E

)
− γ2

γ + 1
β(β ·B) , (2.53)

where γ =
(
1 − v2/c2

)−1
is the Lorentz factor, c is the speed of light in vacuum,

β = v/c, E and B are the fields in the rest frame of the nucleus (B = 0), and bar
fields are the ones in the electron rest frame. If v � c, γ ≈ 1, then we have

B̄ ≈ − 1

c2
v × E . (2.54)

We could then postulate that the spin moment couples to this field, and so we should
have an additional therm in the Hamiltonian:

HSOC = 2
µB
~

B̄ · S =
e

mec2
(E× v) · S . (2.55)

In principle, any source of electric field can give rise to a coupling between the
motion of the electron and its spin. However, because of the prefactor in the above
equation, the effect is very small unless the field is very large. Such large fields can
be experienced by electrons very near to the nucleus of an atom. Assuming that the
electric field due nucleus is spherically symmetric:

E = −r

r

dφ

dr
, (2.56)

where φ is the electric potential, and using that L = mer× v, we finally obtain

HSOC = − e

m2
ec

2

(
1

r

dφ

dr

)
L · S . (2.57)

This term couples the electron spin with its orbital motion due to the electric field
of the nucleus. The above expression is too large by a factor of two from the one
obtained through Dirac’s theory.

Magnetocrystalline anisotropy

In an isolated isotropic atom, a change in the spin direction drags the orbital an-
gular momentum along because of the spin-orbit coupling. In a crystal, however,
the spatial isotropy is broken. This means that the system’s energy depends on the
alignment of the spherically asymmetric orbitals with the major axes of the crys-
tal. Consequently, because of the SOC, the system’s energy also will depend on
the magnetic moment orientation. We name this phenomenon magnetocrystalline
anisotropy (MCA).

If the system favors the alignment of the magnetic moment along a single par-
ticular direction, we say that it has a uniaxial anisotropy, and the spin Hamiltonian
of this interaction can be written as

HK = −K
∑
i

(
k̂ · Si

)2

, (2.58)

33



CHAPTER 2. THEORY OF SPIN WAVES

where k̂ is a unity vector along the preferred direction, and K the anisotropy pa-
rameter that corresponds to the energy difference between the magnetic moments
point along K̂ or perpendicular to it. If K > 0, we say that the system has an
easy-axis, for the energy is minimized when the magnetic moments are parallel to
K̂. It can happen, however, that K is negative, implying that the energy is minimal
when the magnetic moments point anywhere perpendicular to K̂. In this case, we
say that the system has an easy-plane.

Depending on the crystal symmetry and electronic properties, some systems
might be better modeled by two anisotropy axes, therefore they are called biaxial
systems. There are even higher-order anisotropy effects, where the energy depends
on the orientation of the spins relative to multiple axes, but that are not considered
in this work.

Dzyaloshinskii-Moriya interaction

Besides giving rise to the magnetocrystalline anisotropy, spin-orbit coupling is also
responsible for the Dzyaloshinskii-Moriya interaction (DMI) [41, 42]. It is a pair
interaction that favors a perpendicular alignment between two spins. The DMI is
represented by a vectorial coupling parameter that, besides containing the interac-
tion strength, also determines a favored plane of rotation for the spin canting. The
spin Hamiltonian of the DMI can be represented as

HDMI = −1

2

∑
ij

Dij · Si × Sj . (2.59)

For this equation to make sense, the evaluation of the cross product should precede
the inner product. The DMI only occurs in systems with broken inversion sym-
metry [42], a condition easily satisfied at surfaces and interfaces, but that can also
happen in bulk materials. Heterostructures combining heavy metals with magnetic
materials can induce strong and designable DMI.

The Dzyaloshinskii-Moriya interaction leads to multiple phenomena in mag-
netism. It can induce the formation of spin-spiral magnetic structures, skyrmions,
and other noncollinear magnetic textures, which are the object of interest of this
thesis. Also, the DMI leads to asymmetries in the spin-wave properties through the
reciprocal space, which is known as the nonreciprocity of spin waves [31]. Chapter 9
is entirely dedicated to studying this phenomenon in noncollinear magnetic systems.

2.1.6 Generalized Heisenberg Hamiltonian

We can finally put all the magnetic interactions we discussed this far to obtain the
following generalized Heisenberg Hamiltonian:

H =− 1

2

∑
ij

Jij Si · Sj −
1

2

∑
ij

Dij · (Si × Sj)−
∑
i

B · Si −
∑
α

Kα
∑
i

(Sαi )2 .

(2.60)

The first term corresponds to the magnetic exchange interaction, whose parameter
Jij couples the magnetic moments of sites i and j. Similarly, in the second term, Dij
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represents the vector parameter of the Dzyaloshinskii-Moriya interaction. The third
term is the Zeeman energy, due to a uniform external magnetic field. In comparison
with Eq. (2.21), B was renormalized as µB/~B → B for simplicity. And finally,
the last term corresponds to the uniaxial magnetocrystalline anisotropy with axes
along α = x, y, z. The Heisenberg model was conceptualized for magnetic insulators.
However, it is also applicable to magnetic metals provided that they feature localized
magnetic moments [37].

A very useful way to represent the above Hamiltonian is through its matrix
representation:

H = −1

2

∑
ij

S†iJijSj −
∑
i

B · Si , (2.61)

where the exchange matrix Jij contains all the intrinsic interactions of the system:

Jij =

Jxij + 2Kxδij Dz
ij −Dy

ij

−Dz
ij Jyij + 2Kyδij Dx

ij

Dy
ij −Dx

ij Jzij + 2Kzδij

 . (2.62)

The spin operators should be regarded as column vectors and their adjoint as row
vectors:

Si =

SxiSyi
Szi

 , S†i =
(
Sxi Syi Szi

)
. (2.63)

Therefore, B =
(
Bx By Bz

)
should also be regarded as a row vector. The Hamil-

tonian representation in Eq. (2.61) is going to be particularly useful to calculate
the spin-wave spectrum of noncollinear magnetic systems because it allows us to
perform the various transformation in the Hamiltonian in a systematic manner.

2.2 Classical ground-state spin configurations

Previously, we discussed the origin of the magnetic moments and their interactions,
such as the MEI and DMI. We focus now on the role of the different terms of the
generalized Heisenberg Hamiltonian of Eq. (2.60) and their consequence to the clas-
sical ground-state spin configuration. We consider the limit of large spin quantum
number S, such that we can replace each spin operator Si in the Hamiltonian by
classical vectors. Then, we search for the spin alignments with respect to each other,
to the external fields, and to anisotropy axes, that are energetic mostly favorable.
Sometimes, we find states that correspond to the minimum total energy, which cor-
responds to the ground state. However, there are states that correspond to local
minima of the energy, which are called metastable states. We also consider that the
magnitude of Si is constant. The search for the ground state and meta-stable config-
urations is not a trivial matter. In general, we resort to numerical and/or analytical
approached depending on the complexity of the set of interactions. Nevertheless,
a metastable spin configuration of a system is the starting point to determine its
spin-wave properties in the adiabatic approach.
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2.2.1 Ferromagnetic and antiferromagnetic ground states

Let us consider a model system containing only a magnetic exchange interaction
between nearest neighbors (n.n.), as described by

H = −J
2

∑
〈ij〉

Si · Sj . (2.64)

If J > 0, the energy is minimized when the inner product is maximal, that is, when
Si and Sj are parallel. We then say that the system has a ferromagnetic ground
state. For J < 0, however, the energy is minimized when the spins are antiparallel
to each other if allowed by the lattice geometry, resulting in an antiferromagnetic
ground state.

Note, the above Hamiltonian is completely isotropic, therefore it has nothing to
say about the orientation of the spins with respect to a global reference frame. Thus,
the MEI can give rise to long-range order, with spins parallel or antiparallel to each
other, without determining the overall direction. In real materials, a preferential
direction k̂ is often set by the magnetocrystalline anisotropy, which transforms the
Hamiltonian into

H = −J
2

∑
〈ij〉

Si · Sj −K
∑
i

(
k̂ · Si

)2

. (2.65)

Because the anisotropy term depend on the square of the projection of the spins
along k̂, it does not distinguish between a ferromagnetic and an antiferromagnetic
configuration.

In fact, the Mermin-Wagner theorem guarantees that the isotropic Heisenberg
model does not present any long-range order at finite temperature in one and two
dimensions [43]. Therefore, for surface and thin films, such as the ones that we
study in this thesis, long-range order requires interactions that break the spin-
rotational invariance, for instance, an external magnetic field or the magnetocrys-
talline anisotropy.

2.2.2 Cycloidal spin spirals - Analytical solution

Now, let us study the effects of the Dzyaloshinskii-Moriya interaction on the ground-
state spin configurations. For that, consider a single layer of a hexagonal lattice of
primitive vectors a1 = ax̂ and a2 = a(x̂/2 +

√
3ŷ/2), where a is the lattice constant.

Let us take into account only n.n. J > 0 and Dij ∝ ẑ × r̂ij perpendicular to
the bonds connecting sites. Spin spirals whose rotational axes are perpendicular to
the plane that contains the spins are called cycloidal spin spirals. Assume that the
classical ground state is a cycloidal spin spiral propagating with wavevector Q = Qŷ
and rotation axis along x, i.e., with the spins rotating in the y− z plane. Our job is
to determine which Q corresponds to the lowest energy. With the help of Fig. 2.2,
we rewrite the Hamiltonian as
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Figure 2.2: Sketch of a hexagonal lattice. The z-axis points out of the page. The spins
tilt in the y − z plane, but in the figure, we projected them onto the page plane.

H =− 1

2

∑
ij

[JijSi · Sj + Dij · (Si × Sj)]

=− 1

2

∑
ij

[
JijSiSj cos θij +Dx

ijSiSj sin θij
]

=− 1

2
S2
∑
i

[J(2 + 4 cos θ) + 4Dx sin θ]

=− S2N [J(1 + 2 cos(dQ)) + 2Dx sin(dQ)]

(2.66)

where θ = Qd and d = a
√

3/2.
To find the minimal energy, we need to find the zeros of the derivative of this

equation in respect to Q:

dH
dQ

= 2dS2N [J sin(dQ)−D cos(dQ)] = 0 , (2.67)

and therefore

J sin(dQ)−Dx cos(dQ) =0

J√
J2 +Dx2

sin(dQ)− Dx2√
J2 +Dx2

cos(dQ) =0

cosα sin(dQ)− sinα cos(dQ) =0

sin(dQ− α) =0 ,

(2.68)

where we defined

cosα = J/
√
J2 +Dx2 and sinα = Dx/

√
J2 +Dx2 . (2.69)

This gives that
α = arctan(Dx/J) . (2.70)

To satisfy Eq. (2.68), the argument of the sine function must equal nπ with
n = 0,±1,±2, ..., which yields

Q =
nπ + α

d
. (2.71)
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The only two inequivalent solutions are for n = 0, 1. For all other n, a translation
by a reciprocal lattice vector brings the solution back to one of these two cases. If
one of the solutions is a point of minimal energy the other one has to be of maximal
energy. To check this, we have to take the second derivative of the Hamiltonian:

d2H
dQ2

= 2d2S2N {J cos(dQ) +Dx sin(dQ)} , (2.72)

which for the two cases reads (dropping the pre-factor that doesn’t matter for the
sign analysis):

n = 0
d2H
dQ2

=J cosα +Dx sinα ,

n = 1
d2H
dQ2

=J cos (π + α) +Dx sin (π + α) = −(J cosα +Dx sinα) .

(2.73)

This already proves that the two solutions have opposite concavity, therefore one
must be a minimum energy point and the other a maximum point. By using
Eq. (2.69), we have:

n = 0
d2H
dQ2

= +
J2 +Dx2√
J2 +Dx2

> 0 ,

n = 1
d2H
dQ2

=− J2 +Dx2√
J2 +Dx2

< 0 ,

(2.74)

which shows that
Q = α/d (2.75)

is the cycloidal spin spiral of the lowest energy. In the particular case where J = 1
and D = 2/

√
3, such that Dx = 1, we obtain that Q = π/4d, which corresponds to a

spin-spiral wavelength λ = 8d. One should have in mind that we have no guarantee
to have found the ground state because, in the beginning, we restricted our search
among a particular set of spin spirals. However, it is easy to show that this spin
spiral is lower in energy than the ferromagnetic order.

2.2.3 Skyrmion lattice - Atomistic spin dynamics simulation

We now consider the same model used in the previous section: a hexagonal mono-
layer with n.n. MEI and DMI. This time, let us apply a magnetic field B = Bẑ
perpendicular to the crystal plane. The Hamiltonian reads

H = −1

2

∑
ij

[
JijSi · Sj + Dij · Si × Sj

]
−B

∑
i

(Szi )2 . (2.76)

Differently from our search for spin spirals, this time we do not assume a specific
form for the spin configuration. Often, we have no idea what the ground state looks
like. Instead, we use a spin relaxation method based on the Landau–Lifshitz–Gilbert
(LLG) [44–46] equation of motion:

∂Si
∂t

= − γ

(1 + λ2)

[
Si ×Beff

i + λSi × (Si ×Beff
i )
]

, (2.77)
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where γ is the gyromagnetic ratio, Beff
i is the effective field on site i, and the effective

field is given by

Beff
i = −∂H

∂Si
. (2.78)

The first term in the right-hand side of the LLG equation is called the driving
field, which means that an effective field perpendicular to the spins sets them into
precession. The second term is a phenomenological damping term, which accounts
for the energy transfer from the spins to the heat bath, and it is parametrized by
λ. This atomistic spin dynamics method consists of starting from a guess spin
configuration, e.g., a random configuration, then use the LLG equation to evolve
the spin in time until an equilibrium configuration is reached. Throughout this
thesis, we study spin textures and obtain the ground state and metastable phase
of the systems in investigation using the Spirit code [47], which is an open-source
multifunctional platform for atomistic spin dynamics simulations.

Let us make n.n. J = 1, D = 1 and B = 0 and choose a simulation box of dimen-
sions 64a1 × 64a2, with periodic boundary condition. Starting the spin dynamics
simulation from a random configuration, very often we obtain a spin spiral, as de-
scribed in the previous section. Eventually, other metastable states are obtained,
but one can verify that they have higher energy in comparison to the spin spiral.

(a) (b)

Figure 2.3: (a) Skyrmion lattice. An external magnetic field turns the spin-spiral
ground state into a skyrmion lattice. (b) An isolated skyrmion is also stable. The spin
configurations were obtained using atomistic spin dynamics simulation with the Spirit
code. The Hamiltonian parameter were set to J = 1, Dx = 1, and B = 1.5 J .

Finally, taking B = 1.5J , we find that a skyrmion lattice becomes the ground-
state configuration, as shown in Fig. 2.3 (a). As an external magnetic field is re-
quired, we say that this skyrmionic phase is stabilized by the field. We can also
stabilize an isolated skyrmion, by initializing the system in a ferromagnetic phase
then nucleating the skyrmion by reversing the magnetization of a small circular area.
As a result, the system relaxes into the skyrmion shown in Fig. 2.3 (b).

2.3 Introduction to spin waves

In the previous sections, we introduced the Heisenberg Hamiltonian and the mag-
netic interactions it describes. Furthermore, we demonstrated analytical and nu-
merical techniques to obtain a system’s classical ground state. This classical spin
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configuration is our starting point to understand the spin-wave dynamics in the
adiabatic approximation.

Let us start studying the spin dynamics of a crystal with localized magnetic
moments in the limit of large spin quantum number S, where the spin operators can
be regarded as classical vectors. We consider the following Hamiltonian with only
the magnet magnetic exchange interaction:

H = −1

2

∑
ij

JijSi · Sj . (2.79)

We can write a classical equation of motion for each spin. An exerted torque in S
due to an effective field causes it to precess, and the motion is governed by Landau-
Lifshitz equation:

~
dSi
dt

= −Si ×Beff
i , (2.80)

and the effective field is given by

Beff
i = −dH

dSi
=
∑
j

JijSj . (2.81)

This means that all other spins coupled to Si through the exchange interaction
contribute to the effective field that it experiences.

Substituting Eq.(2.81) into (2.80), we obtain

dS

dt
= −

∑
j

Jij
(
(Syi S

z
j − Szi S

y
j )x̂ + (Szi S

x
j − Sxi Szj )ŷ + (Syi S

x
j − Sxi S

y
j )ẑ
)

. (2.82)

Now, suppose that we have a ferromagnetic ground state with magnetization along
z and that the motion of the spin consists of a precession of small amplitude around
the equilibrium direction. This implies that Sz ≈ S and that we can disregard
higher-order terms of Sx and Sy. Thus, we obtain

dSi
dt

= −S
∑
j

Jij
(
(Syi − S

y
j )x̂ + (Sxj − Sxi )ŷ

)
. (2.83)

Note that in Eq. (2.83), the dynamics of the x–components of the spins de-
pends on the dynamics of the y–components, and vice-versa. We can decouple the
equations for the spin components through the following transformation

S± = Sx ± iSy . (2.84)

S± are known as circular components of S. As a result, we obtain

−i
dS+

i

dt
=S

∑
j

Jij(S
+
i − S+

j )

i
dS−i
dt

=S
∑
j

Jij(S
−
i − S−j ) .

(2.85)
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λ

Figure 2.4: Schematic spin dynamics of a spin wave. All spins precess with the same
frequency around their equilibrium axes. The phase shift is determined by spin-wave
wavevector k. The wavelength λ = 2π/k.

Now, the equations of motion can be solved independently. Exploiting the trans-
lational symmetry of the system, we can Fourier transform the above equations to
obtain

∓i
dS±k (t)

dt
= S(J0 − Jk)S±k (t) , (2.86)

where Jk =
∑

i e
ik·rijJij . The solutions of the above equation are of the type

S±k (t) = S±k e
−iω±k t, we then obtain the following eigenvalue equations:

∓ω±k S
±
k = S(J0 − Jk)S±k , (2.87)

where the eigenvalues are
ω±k = ∓S(J0 − Jk) . (2.88)

These eigenvalues correspond to the energies of the system’s eigenmodes. The dy-
namics of the spins for one of such an eigenmode with wavevector k is represented
in Fig. 2.4. Each spin is in precessing around the magnetization direction with a
frequency given by ωk. The phase shift of the precessional motion from site i to site
j is given by k · rij. Thus, this natural collective precessional eigenmode is called a
spin wave, which propagates in a ferromagnet with wavelength λ = 2π/k.

2.3.1 Quantum theory of spin waves

In the previous sections, we saw that spin waves surge as eigenstates of the classical
Heisenberg Hamiltonian. Now, we want to regard the spins as quantum operators
again. Let us then consider the following Hamiltonian:

H = −1

2

∑
ij

JijSi · Sj −
∑
i

BzSzi , (2.89)

with Jij > 0. In sec. 2.2.1, we saw that a ferromagnetic phase is the classical ground
state of such a model. Here, we are also considering a small field along z to break
the infinite degeneracy due to the invariance of the EMI under a global rotation.
Thus, all spins point up along z. This ferromagnetic state is also the exact ground
state of the quantum Hamiltonian, which we can represent as

|0〉 =
N∏
i=1

|S〉i . (2.90)

This means that each spin is in an eigenstate of Szi with eigenvalue S:

Szi |S〉i = S |S〉i . (2.91)
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It is also defined by:

H |0〉 = E0 |0〉 , (2.92)

where E0 is the ground state energy. |0〉 is the state that corresponds to the maxi-
mum magnetization Sztot = NS. For simplicity, in this section, we use the convention
that ~ = 1.

Spin circular components

Now, our task is to find the excited states of the Hamiltonian of Eq. (2.89). For
that, let us use the circular components of S operator, as introduced in Eq. (2.84).
Because the Cartesian components of the spin operator obey the commutation re-

lation given, using Einstein summation convention, by
[
Sαi , S

β
j

]
= iεαβγδijS

γ
i , the

circular components must obey:[
S+
i , S

−
j

]
= δij2S

z
i and

[
S±i , S

z
j

]
= ∓δijS±i . (2.93)

S− and S+ are also known as lowering and raising operators, respectively, because
they act to create a local deviation of 1 in the eigenvalue of the Sz operator:

S−i |S,m〉i =
√

(S −m+ 1)(S +m) |S,m− 1〉i ,

S+
i |S,m〉i =

√
(S −m)(S +m+ 1) |S,m+ 1〉i ,

Szi |S,m〉i =m |S,m〉i .

(2.94)

Here, we have changed the notation to have S and m corresponding to the eigen-
values of S2 and Sz, respectively.

Holstein-Primakoff transformation

Let us introduce the local spin-deviation operator defined as:

n̂ = S − Sz , (2.95)

whose eigenvalues are

n = S −m . (2.96)

A decrease in m, i.e., lowering the spin projection, increases the local spin deviation
n. Note that the eigenvalues of n is bounded: 0 ≤ n ≤ 2S. For a fixed S, we can
label the |S,m〉 states in terms of n. Thus, the action of S− can be written as:

S− |n〉 =
√

(2S − n)(1 + n) |n+ 1〉

=
√

2S

√
1− n

2S

√
1 + n |n+ 1〉 .

(2.97)

The last equation reminds us of how the harmonic-oscillator creation operator
acts:

a† |n〉 =
√
n+ 1 |n+ 1〉 , (2.98)
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where n is the number of energy quanta in the state |n〉. Thus, we can relate the
circular components of the spin operator to the harmonic-oscillator creation and
annihilation operators:

S−i =
√

2Sa†i f̂i ,

S+
i =
√

2Sf̂iai ,

Szi =S − n̂i ,

(2.99)

where n̂i = a†iai. This is the so called Holstein-Primakoff transformation [48–50]. f̂i
is a nonlinear operator defined by:

f̂i =

√
1− n̂i

2S
, (2.100)

which is only well defined if ni ≤ 2S implying that Eq. (2.99) is not truly compatible
with the harmonic oscillator that has a unbounded spectrum of n̂.

Nevertheless, we expect that at low temperatures very few spin deviations occur,
such that the statistical average of n̂ is small and

n̂

2S
� 1 . (2.101)

In this case, we can assume f̂ = 1, which linearizes Eq. (2.99). Also, the creation
and annihilation operators obey boson commutation relations:[

ai, a
†
j

]
= δij ,

[
a†i , a

†
j

]
= 0 , [ai, aj] = 0 , (2.102)

which follow directly from the commutation relations of the spin operators.

Magnons: the spin-wave quanta

In the ferromagnetic ground state, each local spin is in a state |S〉i of maximum spin
projection along z, that is, m = S. Thus, the creation and annihilation operators
act in such a state as follows:

a†i |S〉i = |S − 1〉i ,

ai |S〉 =0 .
(2.103)

Within the adiabatic approximation, we can construct N linearly independent states
by acting with creation operator on the ground state:

|i〉 = a†i |0〉 = |S − 1〉i
N∏
j 6=i

|S〉j . (2.104)

Each one of those states has a localized reduction of the expectation value of Szi in
a different site i. For that, |i〉 is known as a one-deviation state and has a total
magnetization of (N − 1)S. One can verify that none of the one-deviation states is
an eigenfunction of the Hamiltonian.
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However, if the spins are in a Bravais lattice such that the Hamiltonian has
translational symmetry, we can Fourier transform the one-deviation state such as to
obtain:

|k〉 =
1√
N

∑
i

eik·ri |i〉 . (2.105)

Each state characterized by the wavevector k is a superposition of all the one-
deviation states, each with a different phase given by k · rn and, because of that, it
resembles classical spin waves. We can also see the above equation as:

|k〉 = a†k |0〉 , where a†k =
1√
N

∑
i

eik·ria†i . (2.106)

Because |k〉 has total magnetization of NS − 1, we say that a†k creates a state with
one quantum of spin wave, which is called a magnon, with wavevector k and spin
angular momentum of −1. This angular momentum is not localized, but spread out
evenly throughout the entire system, as can be inferred by the expectation value of
the local spin deviation:

〈k| n̂i |k〉 =
1

N
. (2.107)

Likewise, ak can destroy a magnon with the corresponding wavevector:

ak |k〉 = |0〉 , where ak =
1√
N

∑
i

e−ik·riai . (2.108)

a†k and ak are called creation and annihilation magnon operators, respectively. They
leave invariant the boson commutation relations:[

ak, a
†
k′

]
= δkk′ , [ak, ak′ ] = 0 ,

[
a†k, a

†
k′

]
= 0 . (2.109)

Most importantly, |k〉 is also an eigenstate of the Hamiltonian, as we will show next.

Spin-wave spectrum

To evaluate the action of the Hamiltonian on |k〉, let us first rewrite it in terms
of the magnon operators. Starting from the spin circular components of Eq.(2.84),
we can relate the Hamiltonian to the creation and annihilation operators through
the Holstein-Primakoff transformation of Eq. (2.99), assuming the low-temperature
regime and keeping only terms up to the quadratic order:

H =− 1

2

∑
ij

Jij(S
x
i S

x
j + Syi S

y
j + Szi S

z
j )−

∑
i

BzSzi

=− 1

2

∑
ij

Jij

(
S(aia

†
j + a†iaj) + (S − aia†i )(S − aja

†
j)
)
−
∑
i

Bz(S − a†iai)

=− 1

2

∑
ij

JijS
(
aia
†
j + a†iaj − a

†
iai − a

†
jaj + S

)
−
∑
i

Bz(S − a†iai) .

(2.110)
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Next, we can use the boson commutation relations to relate all the terms that depend
on the creation and annihilation operators:

H =− 1

2

∑
ij

(
JijS

(
aia
†
j + a†iaj + S

)
− J0S

(
a†iaj + a†iaj

)
δij

)
−
∑
i

Bz(S − a†iai)

=− 1

2

∑
ij

(
JijS

(
δij + 2a†iaj + S

)
− J02Sa†iajδij

)
−NSBz +

∑
ij

Bza†iajδij

=
∑
ij

(
(J0S +Bz)δij − JijS

)
a†iaj −

1

2
NS2J0 −NSBz ,

(2.111)

where J0 =
∑

i Jij. Above, the constant term, which does not depend on the
operators, can be identified as the energy of the ground state:

E0 = −1

2
NS2J0 −NSBz . (2.112)

We proceed by expressing the operators in terms of their Fourier counterparts, given
by the inverse Fourier transformations of Eqs. (2.106) and (2.108). After some
derivation, we obtain:

H =
∑
ij

(
(J0S +Bz)δij − JijS

) 1

N

∑
kk′

e−ik·rieik′·rja†kak′ + E0

=
∑
kk′

∑
ij

(
(J0S +Bz)δij − JijS

)
eik′·rij 1

N
e−i(k−k′)·ria†kak′ + E0

=
∑
kk′

(
J0S +Bz − Jk′S

)
δ(k− k′)a†kak′ + E0

=
∑
k

εka
†
kak + E0 ,

(2.113)

where the energy of the spin wave with wavevector k is

εk = S(J0 − Jk) +Bz , (2.114)

and the Fourier transformation of the MEI parameter is given by:

Jk =
∑
j

Jije
ik·rij , rij = rj − ri . (2.115)

During the derivation of Eq. (2.113), we used the following properties: Jii = 0,
because the MEI does not couple a spin to itself; Jij = Jji, which implies that the
MEI is symmetric; Eq. (2.115), naturally, assumes translational symmetry of the
lattice; and

δ(k− k′) =
1

N

∑
i

e−i(k−k′)·ri . (2.116)

Note that if Jij > 0, then εk ≥ 0 implying that the energies of the spin waves are
always equal or higher than that of the ground state. Therefore, every spin wave
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corresponds to an excitation. For k = 0 and Bz → 0, we have that εk → 0, which
means that this spin wave has the same energy as the ground state. In other words,
it does not cost energy to excite such a state. This state that corresponds to all
spins precessing in phase is predicted by the Goldstone’s theorem and, therefore, is
called Goldstone’s mode.

Also, all the eigenfunction forms a basis that diagonalizes the Hamiltonian:

〈k′|H |k〉 = (E0 + εk)δk′k. (2.117)

In this sense, determining the energies and eigenfunction of the spin waves is equiv-
alent to the diagonalization of the linearized Holstein-Primakoff Hamiltonian.

By keeping only up to the quadratic order of the creation and annihilation opera-
tors, we have simplified the Heisenberg model Hamiltonian, whose set of eigenstates
consists of one-magnon states. Thus, this approach is called the harmonic approaxi-
mation or the linear spin-wave approaximation of the Heisenberg model. It is exact
for a single magnon but might represent a good approximation if the number of
magnons is small, which is the case for the low-temperature regime.

2.4 Spin waves in noncollinear magnets

In the previous section, we presented a quantum mechanical description of spin waves
in ferromagnets. We saw that a quantum of spin waves can be created through the
action of a boson creation operator in the ground state. As a result, we obtain a
state with a total angular moment reduced by 1. Now, we determine the spin-wave
properties of systems whose ground state is a noncollinear spin configuration. We
do so by using the same concepts used previously to calculate the spectrum and
eigenfunctions of spin waves of a ferromagnet. The difference relies on: the need to
represent each spin in its local reference frame, where we can properly define the
Holstein-Primakoff transformation; and the need to carefully and numerically diag-
onalize the Hamiltonian, which evokes a Bogoliubov transformation to ensure that
the obtained eigenstates remain bosons. Furthermore, with the matrix representa-
tion of the Hamiltonian, given in Eq. 2.61, one is able to systematize the process in
such a way that is very suitable for numerical implementation.

2.4.1 Local reference frame and Holstein-Primakoff trans-
formation

Once again, towards computing the spin-wave spectrum of a noncollinear magnet,
we must determine its classical ground state. The direction of each spin in this state
determines the z–axis of a new and local reference frame for that spin. Operators
in the local reference frame are indicated by a prime. Thus, this transformation can
be written as

Si = OiS
′
i , (2.118)

where the rotation matrix is given by

Oi =Oz(φi)Oy(θi) =

cosφi − sinφi 0
sinφi cosφi 0

0 0 1

 cos θi 0 sin θi
0 1 0

− sin θi 0 cos θi

 . (2.119)

46



2.4. SPIN WAVES IN NONCOLLINEAR MAGNETS

φi is the polar and θi is the azimuthal angle of Si in the global reference frame.
Now, with each spin pointing along z (in its reference frame), we can perform a
Holstein-Primakoff transformation as given by Eq. (2.99), which will replace the
spin operator by creation and annihilation operators:

S′i = Miai , (2.120)

where

Mi =

√
Si
2

 1 1 0
−i i 0

0 0
√

2
Si

 and ai =

 ai
a†i

Si − a†iai

 . (2.121)

After these two processes, the transformed Hamiltonian can now be written as:

H =− 1

2

∑
ij

a†i J̃ijaj −
∑
i

B̃i · ai , (2.122)

where

J̃ij =M†
iO

T
i JijOjMj =

 J̃++
ij J̃+−

ij J̃+z
ij

J̃−+
ij J̃−−ij J̃−zij
J̃z+ij J̃z−ij J̃zzij

 =

(
A2×2
ij B2×1

ij

B1×2
ij J̃zzij

)
(2.123)

and

B̃i = BiOiMi =
(
B̃−i B̃+

i B̃z
i

)
. (2.124)

Next, we can group terms of different order of the creation/annihilation operators
keeping only up to the quadratic order:

H = H0 +H1 +H2 , (2.125)

where

H2 = −1

2

∑
ij

a†iHijaj and H0 = −1

2
J̃zz0 (

∑
i

Si+N)−
∑
i

B̃z
i (Si+

1

2
) , (2.126)

with

Hij = A2×2
ij −

(
B̃z
i + J̃zz0

)
I2×2δij =

(
H++
ij H+−

ij

H−+
ij H−−ij

)
,

J̃zz0 =
∑
j

J̃zzij Sj and now ai =

(
ai
a†i

)
.

(2.127)

The zero-order term H0 is a constant and correspond to the energy of the classical
ground state. The first-order H1 vanishes if the correct classical ground state has
been considered. The second-order H2 describes the excited states and, therefore,
we will focus on it now.
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Considering that the system has periodicity given by the translation vectors r,
we can perform the following Fourier transformation:

ak =
1√
N

∑
i

e−ik·riai , where ak =

(
ak
a†−k

)
. (2.128)

Our Hamiltonian features now this very simple form:

H2 = −1

2

∑
k

a†kHkak , (2.129)

whose matrix Hk is, in general, not diagonal. In fact, it is only diagonal for ferro-
magnets with one atom in the unit cell.

2.4.2 Diagonalization and Bogoliubov transformation

To find the spin-wave excitations, we consider the quantum mechanical equation of
motion of the creation and annihilation operators [51, 52]:

i
dai
dt

= [ai,H2] . (2.130)

By evaluating the commutator in the previous equation, we obtain:

i
dai
dt

=
∑
j

Dijaj , (2.131)

where the dynamical matrix is given by

Dij = −1

2

(
(H++

ij +H−−ji ) (H+−
ij +H+−

ji )
−(H−+

ij +H−+
ji ) −(H++

ji +H−−ij )

)
. (2.132)

Because H2 is Hermitian, the following relations hold:

H++
ij = H−−ji , H++

ij = (H−−ij )∗ , H+−
ij = H+−

ji , H+−
ij = (H−+

ij )∗ .
(2.133)

Therefore, the dynamical matrix in Eq. (2.132) can be simplified to

Dij =

(
−H++

ij −H+−
ij

H−+
ij H−−ij

)
= gHij , (2.134)

where

g =

(
−1 0
0 1

)
. (2.135)

Please note that gg = 1. Considering the Fourier transformation of Eq. (2.128) and
assuming stationary solutions of these operators ak, such that they depend on time
only via a global phase, as in

ak(t) = e−iωktak , (2.136)

48



2.4. SPIN WAVES IN NONCOLLINEAR MAGNETS

we obtain for Eq. (2.131) the following eigenvalue equation:

Dkak = ωkak . (2.137)

For the general problem, we diagonalize Dk numerically, but for a simple set of
interactions, it can also be solved analytically. The eigenvalues of Dk equals the
one of the Hamiltonian Hk, but they come in pairs with opposite signs. On the
following, we are going to show how diagonalizing Dk provides the eigenvalues and
eigenfunctions of Hk. For simplicity, we are going to drop the k index. D is not
Hermitian, therefore we need to define left and right eigensolutions as follows:

DRr = ωrRr , LrD = ωrLr , (2.138)

where Rr is a column eigenvector, Lr is a row eigenvector and r is the eigenvalue
index. In matrix form, this can be written as

DR = RΩ , LD = ΩL , (2.139)

where L and R contain all left and right eigenvectors of D as rows and columns,
respectively. Ω is a diagonal matrix containing the eigenvalues of D. In this way,
we have that

LDR = LRΩ . (2.140)

Because we want R to represent boson operators, it must satisfy the proper com-
mutation relations that can be expressed as [51, 53]:

R†gR = g , RgR† = g . (2.141)

Based on Eq. (2.141), we can show that knowing the right eigenvectors we can
construct the left ones via:

L = gR†g . (2.142)

Here follows the proof:

DR =RΩ

ggDR =RΩ

RgR†gDR =RΩ

gR†gDR =Ω

LDR =Ω

LDRL =ΩL
LD =ΩL ,

(2.143)

where we have used the implication of this construction that LR = RL = 1.
Starting from Eq. (2.140), we have:

LDR = Ω

gR†gDR = Ω

R†HR = gΩ = Λ

H = L†ΛL ,

(2.144)
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where Λ = gΩ is diagonal and positive. This equation reveals that R generates a
transformation into a basis where the Hamiltonian is diagonal:

H2 = −1

2

∑
k

a†kHkak = −1

2

∑
k

a†kL
†
kΛkLkak = −1

2

∑
k

b†kΛkbk , (2.145)

H2 = −1

2

∑
k

b†kΛkbk = −1

2

∑
k

b†kR
†
kHkRkbk = −1

2

∑
k

a†kHkak , (2.146)

where
bk = Lkak , b†k = a†kL

†
k , (2.147)

ak = Rkbk , a†k = b†kR
†
k . (2.148)

bk and b†k are a new set of bosons, the magnon annihilation and creation opera-
tors, respectively. This transformation is known as the Bogoliubov transformation,
especially famous in the field of superconductivity.

2.4.3 Spin-wave dispersion of: a ferromagnet, a spin-spiral
and a skyrmion lattice

Now, we would like to show the dispersion-relation obtained with the formalism of
the previous sections for a ferromagnet, a spin spiral, and a skyrmion lattice. The
dispersion-relation consists of the eigenvalues of the Hamiltonian as a function of
the wavevector k. We calculated all these three cases with the same Bravais lattice
of primitive vectors a1 = ax̂ and a2 = a(1

2
x̂ +

√
3

2
ŷ), with a = 8; and with same

unit cell containing 64 atoms. The ground-state spin configurations inputted were
the ones obtained as described in Sec. 2.2. The parameters used were: ferromagnet
{J = 1}; spin spiral {J = 1, D = 2J/

√
3}; and skyrmion lattice {J = 1, D = J ,

K = 0.25J , B = 0.36J}.
Fig. 2.5 (a) shows the dispersion curves for the ferromagnetic case. Many bands

appear because the Goldstone mode of the ferromagnet gets folded due to the re-
duction of the Brillouin zone when considering many atoms in the unit cell. We
discuss the unfolding of such a spectrum in Chapter 5. Fig. 2.5 (b-c) presents the
dispersion curves for the spin spiral and the skyrmion lattice. We can observe that
the dispersion curves of the skyrmion lattice feature many gaps and some dispersion-
less bands. The dispersion relations were calculated through the reciprocal space
path shown on the bottom-right corner of Fig. 2.5. More details on the spin-wave
properties of these systems are discussed in Chapter 6, together with their inelastic
scattering spectra.

Spin-wave dynamics

We can use the following equations to describe the spin precession of every site in
the local reference frame:

S ′
x,r
i (k) =Ax,ri cos(ωrt+ ri · k + φx,ri ) ,

S ′
y,r
i (k) =Ax,ri sin(ωrt+ ri · k + φy,ri ) ,

S ′
z,r
i (k) =1 ,

(2.149)
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Figure 2.5: Spin-wave dispersion for (a) a ferromagnetic phase, (b) a spin spiral, and (c)
a skyrmion lattice as obtained with the schemed described in this section. We considered
the same unit cell with 64 atoms for all the three systems. For the ferromagnet and the
spin spiral, that is not the minimum unit cell, which yields the folding of the spin-wave
dispersion curves.

where the phases and amplitudes were obtained from the calculated right-eigenvectors
via:

R+,r
i = Ax,ri eiφ

x,r
i and R−,ri = Ay,ri eiφ

y,r
i . (2.150)

Here, i labels the atomic sites, r is the mode index and k the wavevector of the
spin-wave. Rr

i are the right-eigenvector elements. Then, the precessing spin was
brought into the global reference frame via:

Sri = OiS
′r
i . (2.151)

2.5 Angular momentum of spin waves in noncolli-

near magnets

In this section, we want to compute the angular momentum of a given spin-wave
mode. This quantity will be fundamental to understand the inelastic-electron-
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scattering spectra studied in Chapters 6, 7, and 9. First, we calculate the total
magnetization of a system for a given spin-wave mode. We then compare it to the
magnetization of the ground state. The magnetization difference is then attributed
to the angular momentum of the spin-wave mode. The total magnetization of a
spin-wave state of wavevector q and mode index s is a vector quantity given by the
expectation value of the total spin operator:

〈Stotqs 〉 =
∑
iµ

〈qs|Siµ|qs〉 =
∑
µ

OµMµ

∑
i

〈0̃|bqsaiµb†qs|0̃〉 , (2.152)

where the sums run over all unit cells i and all basis sites µ. In our notation, the
vector of creation and annihilation operators is

aiµ =

 aiµ
a†iµ

Sµ − a†iµaiµ

 . (2.153)

Next, we need to write a and a† in the reciprocal space and in terms of b and b†.
The Fourier transformation is given by

a†iµ =
1√
N

∑
k

e−ik·Ria†kµ ,

aiµ =
1√
N

∑
k′

eik′·Riak′µ ,

a†iµaiµ =
1

N

∑
k′k

ei(k′−k)·Ria†kµak′µ ,

(2.154)

and the Bogoliubov transformation is as follows:

a†kµ =
∑
α,r

R+α
µr (k)bαkr , ak′µ =

∑
β,r′

R−βµr′(k
′)bβk′r′ . (2.155)

Here, we can already conclude that the first two components of 〈0̃|bqaib†q|0̃〉 will
be zero because it evolves the expectation value of an odd number of one of the new
boson operators on the ground state. Focusing on the third component, we have:

a†iµaiµ =
1

N

∑
k′k

ei(k′−k)·Ri

∑
αβ,r′r

R+α
µr (k)R−βµr′(k

′)bαkrb
β
k′r′ . (2.156)

We will see that the terms where α = β will give a zero expectation values, because
they result on an even number of b or b† operators. Now we can evaluate the local
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expectation value:

〈0̃|bqsaziµb†qs|0̃〉 =Sµ − 〈0̃|bqsa†iµaiµb†qs|0̃〉

=Sµ −
1

N

∑
k′k

ei(k′−k)·Ri

∑
αβ,r′r

R+α
µr (k)R−βµr′(k

′) 〈0̃|bqsbαkrb
β
k′r′b

†
qs|0̃〉

=Sµ −
1

N

∑
k′k

ei(k′−k)·Ri×∑
r′r

(R++
µr (k)R−−µr′ (k

′) +R+−
µr (k)R−+

µr′ (k
′))δ(q− k)δ(q− k′)δsrδsr′

=Sµ −
1

N

(
R++
µs (q)R−−µs (q) +R+−

µs (q)R−+
µs (q)

)
.

(2.157)

In the above equation, only terms for α 6= β survived, otherwise an odd number of b
or b† would be obtained, which assures the vanishing of the expectation values. As
all states of the kind |qs〉 form an orthonormal basis, it follows that the expectation
value is only nonzero for q = k = k′, and s = r = r′. Finally, the total expectation
value is

〈Stotqs 〉 =
∑
µ

OµMµ

∑
i

〈0̃|bqsaiµb†qs|0̃〉

=
∑
µ

Oµ

√
Sµ
2

 1 1 0
−i i 0

0 0
√

2
Sµ

∑
i

 0
0

〈0̃|bqsaziµb†qs|0̃〉


=
∑
µ

Oµ

 0
0

NSµ −
(
R++
µs (q)R−−µs (q) +R+−

µs (q)R−+
µs (q)

)
 .

(2.158)

Good. But, what about the expectation value in the ground state? Let us first
calculate the local expectation value:

〈0̃|aziµ|0̃〉 =Sµ − 〈0̃|a†iµaiµ|0̃〉

=Sµ −
1

N

∑
k′k

ei(k′−k)·Ri

∑
αβ,r′r

R+α
µr (k)R−βµr′(k

′) 〈0̃|bαkrb
β
k′r′|0̃〉

=Sµ −
1

N

∑
k′k

ei(k′−k)·Ri

∑
r′r

R+−
µr (k)R−+

µr′ (k
′)δ(k− k′)δr′r

=Sµ −
1

N

∑
kr

R+−
µr (k)R−+

µr (k) ,

(2.159)

then, the total expectation value is given by:

〈Stot0 〉 =
∑
µ

OµMµ

∑
i

〈0̃|aiµ|0̃〉

=
∑
µ

Oµ

 0
0

NSµ −
∑

krR+−
µr (k)R−+

µr (k)

 .

(2.160)
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We can define the angular moment of the spin wave as the difference between the
expectation value of Stotqs in the spin-wave state and the ground state one:

〈Stotqs 〉 − 〈Stot0 〉 =
∑
µ

Oµ

 0
0

Fµs(q)

 , (2.161)

where for simplicity, we defined

Fµs(q) =
∑
kr

R+−
µr (k)R−+

µr (k)−
[
R++
µs (q)R−−µs (q) +R+−

µs (q)R−+
µs (q)

]
. (2.162)

Note that the first term of this quantity is constant but requires an integration
through the entire Brillouin zone, which is related to the amplitude of the zero-
point spin fluctuations of the ground state.

2.6 Summary

In this chapter, we gave a short introduction to magnetism. We saw that the mag-
netic exchange interaction has a purely electrostatic and quantum mechanical origin,
where Pauli’s principle played an important role. Furthermore, we discussed that
spin-orbit coupling is responsible for the Dzyaloshinskii-Moriya interaction and mag-
netocrystalline anisotropy. Bringing these interactions together, we introduced the
generalized Heisenberg Hamiltonian, which is an effective spin Hamiltonian that
allows us to study the magnetic properties of a material in a very efficient way.

We went further on understanding the role of each of the above-mentioned in-
teractions for the classical ground state. For example, we saw that the MEI is
responsible for the ferromagnetic and antiferromagnetic phases. Meanwhile, non-
collinearity could be brought in via the DMI, which can favor spin spiral and, in
competition with an external magnetic field, skyrmion formations.

We introduced the concept of spin waves. Then, we derived the spin-wave dis-
persion in the adiabatic approximation for noncollinear magnets by determining the
eigenstates and eigenvalues of the quantum Heisenberg Hamiltonian. To achieve
this goal, we considered a matrix representation of the Hamiltonian, where we could
transform the spins to their local frame in a simple manner. Then, we performed
the Holstein-Primakoff transformation, replacing the spins with creation and anni-
hilation operators. Finally, we studied how to diagonalize the resulting Hamiltonian
preserving the boson character of the eigenfunctions via the Bogoliubov transforma-
tion.

There are other methods to calculate the spin-wave spectrum of a material. For
example, by calculating the transversal dynamical magnetic susceptibility [54–56],
one can access a material’s magnetic excitation spectrum, which includes spin waves.
Often, this magnetic response function is obtained in linear response theory, and it
can provide information about the life-time of the spin excitations. However, such
a method is much more computationally demanding and involving in comparison
with the adiabatic approximation that will be used throughout this thesis.

In the next chapter, we discuss how to calculate the parameters of the interac-
tion, such as the MEI Jij or the DMI Dij, from first-principles calculations. For
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that, we will discuss how to map the electronic structure obtained via density func-
tional theory as implemented within the Korringa-Kohn-Rostoker method to the
generalized Heisenberg Hamiltonian.
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Chapter 3

First-principles parametrization of
the Heisenberg Hamiltonian

In Chapter 2, we introduced a generalized Heisenberg Hamiltonian. It lets us deter-
mine the spin-wave properties in the adiabatic approximation for materials whose
magnetic moments are seen as localized in the atomic sites. To predict the properties
of a specific material, we need the system-specific parameters of the Hamiltonian
associated with all the pertinent interactions. A way to obtain these parameters is
by fitting the model predictions to the experimental data if any is available. Yet,
this might not be a trivial task given the possibility of too many degrees of freedom
being involved or insufficient experimental data. Alternatively, we resort to ab initio
simulations, that allow us to determine the model parameters from a fundamental
quantum-mechanical description of the electronic structure of a crystal. As a re-
sult, we end up with a parametrized Heisenberg Hamiltonian that allows us to make
realistic predicts for the material.

This chapter starts with an introduction to the quantum-mechanical many-body
problem for electrons in a crystal. Next, we discuss the density functional theory
(DFT) [57, 58], which tackles the many-body problem by focusing on the charge den-
sity of the electronic system instead of its wavefunction. Among the many possible
DFT frameworks, we introduce the Korringa-Kohn-Rostoker method (KKR) [59–
62], based on Green functions and multiple-scattering theory. Once a system’s Green
function is known, we can calculate its magnetic exchange and Dzyaloshinskii-Moriya
interactions through the infinitesimal-rotations method [21, 31, 63].

3.1 Introduction

Everything we experience in our daily life results from the quantum mechanical
manifestation of nature (except for gravity!). In this sense, classical physics is a
set of approximative models, which reproduce the results of quantum mechanics in
the appropriate limits. We can use classical mechanics to engineer a building, e.g.,
the Burj Khalifa with its height of 0.8 km, by just knowing that concrete and steel
have, respectively, good resistance against compression and tension. However, as
soon as we ask ourselves why these materials have these particular properties, you
are exposed to the peculiarities of quantum mechanics.

In conclusion, whatever is the faced problem, a few layers in-depth, it is fun-
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damentally quantum mechanical. Consider, for example, the problem of producing
and storing clean energy, which is one of our main contemporary challenges. Solving
it demands new technologies, which in turn requires new materials exploiting novel
condensed-matter phenomena. Therefore, soon enough we are in need of a quantum
description of the materials because their constituents, atoms and molecules, obey
the laws of quantum mechanics.

The good news is, it seems that we have already a pretty good idea of the
quantum mechanics laws, that is, the equations that govern the interactions between
atomic and subatomic particles. Furthermore, the predictions that we have made
through it are of incredible accuracy. On the downside, we cannot solve these
equations exactly for any practical problem in condensed matter physics! In this
section, some of the discussions are inspired by Ref. [64].

3.1.1 Schrödinger equation and wavefunction

We want to describe a condensed matter system composed of nuclei and electrons.
By now, let us assume that the nuclei are static. In quantum mechanics, all the
information that can be inquired about such a physical system with N interacting
electrons is provided by its many-body wavefunction ψ(r1, r2, ..., rN , t) (we disre-
garded the spins in this notation). In turn, this wavefunction is the antisymmetric
solution of the time-dependent Schrödinger equation, which is given by:

i
∂

∂t
ψ(r1, r2, ..., rN , t) = Hψ(r1, r2, ..., rN , t) . (3.1)

In this chapter, we use the atomic Rydberg units, where ~ = 2me = e2/2 = 1,
where me is the rest mass of the electron and e its charge. Neglecting relativist
corrections, the Hamiltonian that appears in the Schrödinger equation is composed
by three contributions:

H = −
N∑
i=1

∇2
i +

∑
i<j

2

|ri − rj|
−

N∑
i

M∑
j

2Zj
|ri −Rj|

, (3.2)

where M is the number of nuclei of the system. The first term corresponds to the
total kinetic energy of the electrons. It is a noninteracting term since the kinetic
energy of an electron does not explicitly depend on the other electrons. The second
term is the Coulomb potential of the interaction between all the electrons among
themselves, and therefore, it is a many-body term. Likewise, the last term is also
a many-body contribution that describes the interaction between the electrons and
the electrically charged nuclei of the atoms.

Solving analytically the Schrödinger equation for a system with more than a
few electrons is impossible. And the fact that the wavefunction is a function of
the position of all particles involved is an insurmountable impediment for a direct
computational attempt. To clarify that, consider that we want to calculate the wave-
function of an iron atom with its 26 electrons. Let us try to discretized the space,
within a box containing the Fe atom, in a grid of 10×10×10 points. That makes 103

possible positions for each electron. Furthermore, the wavefunction should inform
the probability of finding an electron in a given position for each possible configu-
ration of the remaining electrons. That accounts for 1078 possible configurations,
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and for each of them, we need to evaluate the wavefunction. Even before thinking
about how to solve the Schrödinger equation of such a problem, let us consider to
store this function: If we could use a hydrogen atom to store a complex number,
the required physical memory would have the mass of the observable universe! [65]

3.1.2 Born-Oppenheimer approximation

In fact, nuclei of atoms do move and their vibrations are directed related to the tem-
perature of the material. Nevertheless, nuclei are much more massive than electrons,
therefore, their dynamics are much slower. Thus, one might consider that during the
dynamics of the nuclei, the electrons follow and adapt to every new configuration
almost instantaneously. On the other hand, in the electron dynamics perspective,
the nuclei are fixed, hence their positions become no more than parameters. This is
the Born-Oppenheimer approximation [66] (adiabatic approximation), that decou-
ples the motion of nuclei and electron, and effectively reduces the electron-nucleus
interactions in Eq. (3.2) into a noninteracting term. Thus, the electrostatic potential
from the nucleus can be regarded as an external potential just like other externally
applied fields. The Hamiltonian can then be written as

H = T +W + Vext , (3.3)

where T is the kinetic energy, W the electron-electron interaction, and Vext is the
external potential which includes the nuclear electrostatic potential.

This is the first simplification towards an effective description of a system of
interacting particles, for it leaves only the electron-electron interaction responsible
for all the difficulties.

3.2 Density functional theory - DFT

Until the 50s, we believed that determining the quantum mechanical behavior of a
system requires to solve the Schrödinger equation to obtain the system’s wavefunc-
tion. A game-changer came with the work of Hohenberg and Kohn that demon-
strated that we could actually determine all observables of a given system as a
functional of the charge density, which could be obtained via an energy minimiza-
tion process.

3.2.1 Hohenberg and Kohn theorem

In 1960, Hohenberg and Kohn [57] demonstrated the theorem that states the fol-
lowing:

Theorem 1 Consider the Hamiltonian of Eq. 3.3 with an arbitrary external poten-
tial, if the ground-state is nondegenerate, there is a one-to-one mapping between the
external potential up to a constant, the ground-state wavefunction, and the ground-
state electron density:

Vext(r)⇐⇒ ψgs(r1, r2, . . . , rN)⇐⇒ ngs(r) . (3.4)
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In the above equation, ψgs is the ground-state wavefunction and ngs(r) the ground-
state density:

ngs(r) =
N∑
i=1

∫
d3r1· · ·

∫
r3rNψ

∗
gs(r1, . . . , rN)δ(r− ri)ψgs(r1, . . . , rN) . (3.5)

The uniqueness of the ground-state density allows us to represent not only the
Hamiltonian but any other observable as a functional of the density, which gives the
name density functional theory. Nevertheless, we still need to be able to find that
density. Hohenberg and Kohn went further and also showed that [57]:

Theorem 2 The ground-state density ngs(r) minimizes the total energy functional
E[n] = 〈H〉:

min
[
E[n]

]
= E[ngs] . (3.6)

This means that we can obtain the density through the variational principle. For
example, we could start with a guess for the density, then making small variations in
search of the energy functional minimum while preserving the number of electrons
N =

∫
d3n(r). The problem is that we do not know the functional E[n]. If it were

known and sufficiently simple, determining the ground-state energy would be a sim-
ple minimization exercise of a functional of the three-dimensional density function.
Therefore, a major part of solving the many-body problem consists of determining
good approximations of the energy functional.

For magnetic materials, the energy is written as a functional of the charge density
and of the spin density, which for collinear magnetic materials can be written as:

mgs(r) = n↑gs(r)− n↓gs(r) , (3.7)

where nαgs(r) is the spin-dependent density. Hence, the energy, that can now be
written as E[ngs,mgs], should be minimized with respect to the charge and spin
densities.

3.2.2 Kohn and Sham equation

Kohn and Sham proposed to construct a fictitious system of noninteracting particles
that has the same ground-state density as the many-body system of interest [58].
The solutions of the noninteracting problem could be found by solving the Kohn-
Sham equation: (

−∇2 + Veff [ngs]
)
φi(r) = εiφi(r) , (3.8)

which has the form of a single-particle Schrödinger equation, and φi are known
as Kohn-Sham orbitals. εi are the orbital eigenvalues, which individually have no
meaning unless the system is of noninteracting electrons. The mapping between
the many-body and the noninteracting problems is obtained through the effective
potential Veff , which is a unknown functional of the ground-state density. Note that
the density can be computed from the Kohn-Sham orbitals simply via

n(r) =
occ.∑
i=1

|φi(r)|2 . (3.9)
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However, these orbitals are solutions of Eq. (3.8), which depends on the density.
Therefore, the Kohn-Sham equation is solved self-consistently. This process consists
of starting from a plausible guess for the density, solve the Kohn-Sham equation to
compute the orbitals from which a new density is obtained to be used in the next
recursive step. The circle is repeated until the input density equals to the output
one within the required precision.

We attempt to construct the unknown effective potential in the following way:

Veff(r) = Vext(r) + VH(r) + Vxc(r) , (3.10)

where Vext is the external potential including the nuclear electrostatic potentials; VH

is the Hartree potential given by

VH(r) =

∫
2n(r′)

|r− r′|
d3r′ , (3.11)

which represents a noninteracting mean-field electrostatic contribution from the elec-
trons in the system; and Vxc is the exchange-correlation potential, which is defined
by Eq. (3.10). That is, the exchange-correlation potential is given by the difference
between the true and unknown potential and the Hartree-approximation potential
(Vext(r) + VH(r)), therefore it accounts for the many-body effects, such as the ex-
change coupling due to Pauli’s exclusion principle and electronic correlations. Our
hope is that the two first terms of Eq. (3.10) are the most relevant and that Vxc,
which is unknown, accounts for a small contribution.

Thus, the energy functional of the Kohn-Sham system, which needs to be mini-
mized, can be written as

E[n] = Ts[n] + EH[n] + Exc[n] + Eext[n] . (3.12)

The first term is the noninteracting kinetic energy of the occupied Kohn-Sham or-
bitals:

Ts[n] = −
occ.∑
i=1

∫
φ∗i (r)∇2φi(r)d3r . (3.13)

The second corresponds to the Hartree energy, which can be written as

EH[n] =

∫∫
n(r)n(r′)

|r− r′|
d3rd3r′ . (3.14)

The third term Exc is the exchange-correlation energy, which remains unknown, and
it is connected to Vxc by

Vxc[ngs](r) =
δExc[n]

δn(r)

∣∣∣∣
n(r)=ngs(r)

. (3.15)

Next, we discuss a simple, yet very useful, approximation for the exchange-correlation
energy.
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3.2.3 Local density approximation - LDA

One of the biggest challenges for any DFT approach is to properly approximate the
exchange-correlation energy such that we can reproduce the properties of the desired
system. Another important fact to be taken into account is the computational cost
of a given approach. One of the first and simplest methods is called the local density
approximation (LDA) [58], where the exchange-correlation energy is given by:

ELDA
xc [n] =

∫
ehom

xc

(
n(r)

)
d3r , (3.16)

where ehom
xc [n(r)] is the exchange-correlation energy of the homogeneous electron

gas, which is a local function of the density and can be calculated accurately with
a combination of analytical result and quantum Monte Carlo simulation [67].

The LDA is then a reasonable approach for a system whose density varies slowly
throughout the space. In this thesis, we use an extension of this approximation,
which accounts for different spin channels called the local spin density approximation
(LSDA) [67]:

ELSDA
xc [n,m] =

∫
ehom

xc

(
n(r),m(r)

)
d3r , (3.17)

where m = |m| with the spin density is given in terms of the Kohn-Sham orbitals
by

m(r) =
∑
i

φ†i (r)σφi(r) . (3.18)

Here, σ = (σx, σy, σz) is a vector of Pauli matrices. There are many other ap-
proximations for the exchange-correlation energy, such as the generalized gradient
approximation (GGA), which involves not only the local density by also its local
gradient.

3.3 Korringa-Kohn-Rostoker method - KKR

We extend our discussion to the Korringa-Kohn-Rostoker (KKR) method, which was
formulated by Korringa [59] in 1947 and later by Kohn and Rostoker [60] in 1954.
It is a multiple-scattering theory that consists of dividing the problem of calculating
the electronic structure of a solid into two parts: solving a single-site scattering
problem for each atom in isolation; then incorporating the structural information of
the solid by solving a multiple-scattering problem.

This approach becomes particularly powerful when formulated in terms of Green
functions [61, 68]. For example, it allows us to treat systems without translational
invariance such as single impurities and clusters in real space. This is possible
because we can compute the Green functions of different parts of the systems in
isolation and obtain the Green function of the total system via the Dyson equation.
This section follows some of the discussions contained in Refs. [20, 64, 69–71].

3.3.1 Green-function basics

Consider a system described by a time-independent Hamiltonian H0 subject to a
perturbation given by a potential V . Let us suppose that the eigenfunctions of H0
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are known:

H0 |ψ0〉 = ε0 |ψ0〉 , (3.19)

and that we seek for the eigenfunctions |ψ〉 of the perturbed system given by H =
H0 + V , which are solutions of the Schrödinger equation:

(H0 + V) |ψ〉 =ε |ψ〉
(ε−H0) |ψ〉 =V |ψ〉 .

(3.20)

V |ψ〉 can be identified as the inhomogeneous part of this differential equation in
comparison to Eq. (3.19). The Green function of the unperturbed system is defined
as the operator that satisfies:

(z1−H0)G0(z) = 1 , (3.21)

where z is a complex number and 1 is the identity operator.
Similarly, the Green function of the whole (perturbed) system described by H =

H0 + V is given by

G(z) = (z1−H)−1 . (3.22)

If the complete set of eigenfunctions of this Hamiltonian is {|ψn〉}, we can write a
spectral representation of the Green function, which is given by:

G(z) =
∑
n

|ψn〉 〈ψn|
z − εn

. (3.23)

The Green function has different limits in the real axis depending on from each side
of the complex plane we are approaching:

G+(ε) = lim
|η|→0

G(ε+ i|η|) ,

G−(ε) = lim
|η|→0

G(ε− i|η|) .
(3.24)

G+ is called advanced and G− retarded Green functions, and they are the adjoint
conjugate of each other.

The Lippmann-Schwinger equation allows us to obtain the solution of the per-
turbed system in terms of the perturbation potential V , and the unperturbed solu-
tion |ψ0〉:

|ψ〉 = |ψ0〉+ G0(ε)V |ψ〉 . (3.25)

However, the desired solution |ψ〉 appears in both side of the equation. We can
iteratively insert the above equation into itself to produce a Born series:

|ψ〉 = |ψ0〉+ G0(ε)V |ψ0〉+ G0(ε)VG0(ε)V |ψ0〉+ G0(ε)VG0(ε)VG0(ε)V |ψ0〉+ . . .

= |ψ0〉+ G0(ε)T |ψ0〉 ,

(3.26)

where we defined the transition matrix (t–matrix) as

T (z) = V + VG0(z)V + VG0(z)VG0(z)V + . . . . (3.27)

63



CHAPTER 3. FIRST-PRINCIPLES PARAMETRIZATION OF THE
HEISENBERG HAMILTONIAN

The Born series do not always converge. Nevertheless, one could still obtain the
t–matrix through a direct inversion.

In fact, we do not need to calculate a system’s eigenfunction to obtain the ex-
pected value of a given observable, this can be calculated directly from the Green
function, via

〈A〉 = ∓ 1

π
Im

∫ +∞

−∞
f(ε)Tr[AG±(ε)]dε , (3.28)

where f(ε) is the Fermi-Dirac distribution function [72]. The density of states can
be obtained simply by taking the trace of the Green function:

n(ε) = ∓ 1

π
Im TrG±(ε) . (3.29)

Thus, it is also important to know how to obtain the Green functions of the
perturbed system, such that we can obtain its properties without the need for com-
puting its eigenfunctions, which allows the implementation of efficient methods that
scale linearly with the number of atoms [73, 74]. This can be obtained via the Dyson
equation:

G(z) = G0(z) + G0(z)VG(z) = G0(z)(1− G0(z)V)−1 . (3.30)

The matrix inversion required in this equation is sometimes an insurmountable prob-
lem, e.g., when the matrix is nonsparse and of very high order. Inserting the last
equation into itself iteratively, we obtain

G(z) = G0(z) + G0(z)T G0(z) , (3.31)

where the t–matrix T could be calculated via Eq. (3.27) without a direct inversion.
When the perturbation potential V is small, such that the series in Eq. (3.27) con-
verges well, the accuracy of the calculation can be controlled by choosing where to
truncate the series.

3.3.2 Atomic sphere approximation - ASA

In the Green function formalism of the KKR method, we divide the space that
contains the material through a Voronoi decomposition. In this process, we usually
pick the center of each atom as seeds for the decomposition. Then, we identify the
region of space whose points are closer to a particular seed. Each region is called a
Voronoi cell. Often, we have to divide the vacuum regions near to the material in a
similar manner by choosing vacuum atomic sites.

Centered in each Voronoi seed, we construct a Wigner–Seitz cell: a sphere with
the same volume as the Voronoi cell. By construction, the Wigner-Seitz spheres
overlap. For the sake of simplicity, we do not consider spin-orbit coupling for now,
nor noncollinear magnetic structures, such that the Green function is diagonal in
the spin space requiring only a single label σ =↑, ↓ to characterize the spin. The
Kohn-Sham potential in a given position of space r is then given by the sum over
all Wigner-Seitz cells:

V σ(r) =
N∑
i=1

vσi (ri) , (3.32)
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where ri = r−Ri and Ri is the location of the i–th Wigner-Seitz-cell center. In the
atomic sphere approximation (ASA), we consider that all the charge is contained
within the Wigner-Seitz sphere and that its electrostatic potential is spherically
symmetric:

vσi (r) =

{
vσi (r) : r < rWS

0 : r > rWS
, (3.33)

where rWS is the radius of the correspondent Wigner-Seitz sphere.
Our goal now is to obtain the Green function for each spin channel, which should

satisfy (
E −Hσ(r)

)
Gσ(r, r′, E) = δ(r− r′) , (3.34)

where Hσ(r) = −∇2 +V σ(r). For that, we divide the problem into two steps. First,
we solve a single-site problem for each Wigner-Seitz cell. Then, we solve a structural
problem connecting the single-site solutions. Throughout the following subsections,
we drop the spin index σ.

3.3.3 Single-site problem

We want to calculate the Green function of an isolated atom. We start by considering
a free electron system, that is, when v(r) = 0, which we will use as a reference system
because we can obtain an analytical solution for it. The free-electron Green function
g(r, r′, E) is simply given by:

g(r, r′, E) = − 1

4π

eik|r−r′|

|r− r′|
, (3.35)

where eik|r−r′| represents an outgoing spherical wave, which is an eigenfunction of the
free-electron problem with k =

√
E. As the potential is zero, this system is spheri-

cally symmetric. Even when it is nonzero, within the atomic sphere approximation,
the potential inside of each Wigner-Seitz cell is considered spherically symmetric.
This invites us to expand the Eq. (3.35) in terms of the spherical functions:

g(r, r′, E) =
∑
L

YL(r̂)gl(r, r
′, E)YL(r̂′) , (3.36)

where r̂ = r̂/r is a unit vector in the direction of r, and YL(r̂) is the real spherical
harmonics of the combined index L = (l,m) of angular momentum l and magnetic
quantum number m. The coefficients are given by

gl(r, r
′, E) = −ikjl(kr<)hl(kr>) , (3.37)

where r< = min(r, r′) and r> = max(r, r′). jl(x) is the spherical Bessel function and
hl(x) = jl(x) + inl(x) is the spherical Hankel function of the first kind, which is a
linear combination of a Bessel function with a Neumann function nl(x). All of these
functions, jl(x), nl(x) and hl(x) are solutions of the free-particle radial Schrödinger
equation: (

−1

r

∂2

∂r2
r +

l(l + 1)

r2

)
Rl(r, E) = ERl(r, E) , (3.38)
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which is obtained by assuming a decomposition of the wavefunction into a radial
and an angular solutions: ψ(r, E) = Rl(r, E)YL(r̂). Equation (3.37) diverges at the
origin because the Hankel function diverges for x → 0, while the Bessel function
remains finite.

Spherical potential of finite range

For a general spherical potential vi(r) nonvanishing inside of the i–th Wigner-Seitz
cell, we cannot find an analytical expression for the Green function. However, we
can construct the solution by considering the free-electron system as an unperturbed
system and the potential v(r) as the perturbation. The single-site Green function
G̊ then reads

G̊(r, r′, E) =
∑
L

YL(r̂)G̊l(r, r
′, E)YL(r̂′) , (3.39)

where the expansion coefficients are given in terms of the solution of the perturbed
problem:

G̊l(r, r
′, E) = −ikRl(r<, E)Hl(r>, E) . (3.40)

Note that these coefficients only depend on l, instead of l and l′. That is because the
spherical potential conserves angular momentum, therefore, no transition between
states of different angular momentum is allowed. The wavefunctions of the perturbed
system can be obtained in terms of the unperturbed (free-electron) Green function
and wavefunctions through the Lippmann-Schwinger equation in its integral form:

Rl(r, E) =jl(kr) +

∫ rMT

0

r′2gl(r, r
′, E)v(r′)Rl(r

′, E)dr′ ,

Hl(r, E) =hl(kr) +

∫ rMT

0

r′2gl(r, r
′, E)v(r′)Hl(r

′, E)dr′ .

(3.41)

For r > rWS, these functions read

Rl(r, E) =jl(kr)− iktl(E)hl(r
′, E) ,

Hl(r, E) =hl(kr) ,
(3.42)

where the t-matrix for the single-site problem is given by

tl(E) =

∫ rMT

0

r′
2
jl(kr

′)v(r′)Rl(r
′, E)dr′ . (3.43)

3.3.4 Structural problem

Recalling, we have divided the space into Wigner-Seitz cells. A general position of
the space is given by x = r + Ri, where Ri is the location of the i–th cell center
and r is contained in its Wigner-Seitz sphere. An addition theorem for the Hankel
functions reads: [20]

hL(r′ + Rij, E) =
∑
L′

gstr
iL,jL′(E)JL′(r

′, E) , (3.44)
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where Rij = Rj −Ri, and we used the abbreviations:

JL(r, E) =jl(kr)YL(r̂) ,

HL(r, E) =hl(kr)YL(r̂) .
(3.45)

The coefficients of the expansion in Eq. 3.44 are the structural Green functions given
by

gstr
iL,jL′(E) = −(1− δij)4πi

√
E
∑
L′′

il−l
′+L′′CLL′L′′HL′′(−Rij, E) . (3.46)

The summation in the above equation is finite because the Gaunt coefficients

CLL′L′′ =

∫
YL(r̂)YL′(r̂)YL′′(r̂)dΩ (3.47)

vanish for l′′ > l + l′. Thus, the free-electron Green function can now be written
as [61]

g(x,x′, E) =gij(r, r
′, E)

=− 1

4π

eik|(r+Ri)−(r′+Rj)|

|(r + Ri)− (r′ + Rj)|
=− ik

∑
L

JL(r<, E)HL(r>, E)δij +
∑
LL′

JL(r, E)gstr
iL,jL′(E)JL′(r

′, E) .

(3.48)

Structural Green function with spherical potential

Note that the Green function in Eq. (3.48) has the following general form:

gij(x,x
′, E) = g̊ii(x,x

′, E)δij + gstr
ij (x,x′, E) . (3.49)

The first term in the right-hand side is a single-site contribution and the second
term is a nonlocal contribution that corresponds to the structural part. Again using
the free-electron problem as the unperturbed system, we can construct the Green
function for the system with the spherical Kohn-Sham potential: Gij(x,x

′, E) =

G̊ii(x,x
′, E)δij +Gstr

ij (x,x′, E), where the single-site term is given by Eq. (3.39) and

Gstr
ij (x,x′, E) =

∑
LL′

YL(r̂)RiL(r, E)Gstr
iL,jL′(E)RjL′(r, E)YL′(r̂) . (3.50)

The regular and irregular solutions are given by Eq. (3.41), and the coefficients that
contain the information about the multiple scattering process are given by:

Gstr
iL,jL′(E) = gstr

iL,jL′(E) +
∑
kL′′

gstr
iL,kL′′(E)tl′′(E)Gstr

kL′′,jL′(E) , (3.51)

where tl(E) is the single-site t–matrix of Eq. (3.43). In practice, we exploit via
Fourier transformation the translational periodicity to solve the above equation in
reciprocal space:

GL,L′(k, E) = gstr
L,L′(k, E) +

∑
L′′

gstr
L,L′′(k, E)tl′′(E)Gstr

L′′,L′(k, E) . (3.52)

67



CHAPTER 3. FIRST-PRINCIPLES PARAMETRIZATION OF THE
HEISENBERG HAMILTONIAN

For layered systems, instead of using directly a free-electron system as the refer-
ence to construct the full Green function, one can use a constant muffin-tin repulsive
potential as the reference system. This yields sparse the matrix that needs to be
inverted to obtain the t–matrix. Hence, this process can be made to scale linearly
with the number of atoms [73].

Energy integration

Within the Green function KKR method, to reduce the computational costs, we
perform energy integrations such as in Eq. (3.28) by dividing the integration interval
into two parts: ∫ EF

−∞
dE =

∑
core states

+

∫ EF

EB

dE . (3.53)

This requires to identify an energy EB that is higher than the energies of the core
states but lower than those of the valence states. Furthermore, we explore the ana-
lytical continuity properties of the Green function. Thus, we perform the integration
through an energy contour integration in the complex plane instead of sticking to
the real axis [72]. This helps to improve the accuracy of the calculation because the
Green function is smoother away from the real axis.

3.3.5 Full potential

We can go beyond the atomic sphere approximation, where the Kohn-Sham potential
of each site is regarded as spherically symmetric and confined to the muffin-tin
sphere. In the full-potential treatment [69, 70], we divide the space through the
Voronoi construction. Now, we also introduce a step-function for each site i, such
that

Θi(x) =

{
1 for x in the Voronoi cell i ,
0 otherwise ,

(3.54)

which we refer to as shape-function, that allows us to write a continuous description
of the crystal potential

Vi(x) = V (x + Ri)Θi(x) . (3.55)

The shape-function can also be expressed in terms of spherical harmonics:

Θi(x) =
∑
L

ΘiL(x)YL(x) . (3.56)

The expansion of the Green function in the full-potential case follows procedures
similar to those discussed before. We also subdivide the on-site problem into spheri-
cal and nonspherical parts. Furthermore, we can treat the nonspherical contribution
as a perturbation because it is usually small compared to the spherical part. Thus,
we first obtain the solutions for the spherical potential, then we calculate the whole
on-site Green function through the Lippmann-Schwinger equation, for example.
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3.3.6 Spin-orbit coupling

As discussed in Sec. 2.1.5, a very important relativist effect in magnetism is the
coupling between the spin and orbital angular momenta of the electrons, which in
the nonrelativistic limit, v � c, can be described by the following Hamiltonian:

HSOC = VSOC =
1

M(r)2c2

(
1

r

dV (r)

dr

)
L · S , (3.57)

where c is the speed of light in vacuum. V (r) refer to the Kohn-Sham potential, as
it depends on the derivate of the potential, one expect it to be stronger the closer
the electrons are to the nuclei. The second consequence is that the SOC scales
with the nuclei charges, hence, it becomes more prominent for heavy elements. The
relativistic mass M(r) is given by

M(r) =
1

2
+
E − V (r)

2c2
. (3.58)

We consider the SOC as an addition to the Hamiltonian, therefore, the total
potential that goes into the Schrödinger equation can be decomposed as

V tot =

(
V ↑↑ 0
0 V ↓↓

)
+

(
V ↑↑SOC V ↑↓SOC

V ↓↑SOC V ↓↓SOC

)
. (3.59)

This means that SOC couples the two spin channels, and, in contrast to what we
have been doing so far, we need to explicitly take the spin into account.

To determine SOC potential, we need to calculate the prefactor in Eq. (3.57),
which involves a derivative of the potential. To improve the derivative accuracy, we
can split the potential into a contribution from the nucleus charge Z, which has an
analytical form −2Z/r, and the electronic contribution:

∂V (r)

∂r
=

2Z

r2
+
∂V e(r)

∂r
. (3.60)

The electrons contribution to the potential, which consists of the Hartree and
exchange-correlation terms, is differentiated numerically.

Because the single-site solutions are expanded in real spherical harmonics, it is
also convenient to expand L ·S on the same basis. The SOC potential can be written
as

V 2×2
SOC =− 1

M(r)2c2

(
1

r

dV (r)

dr

)(
Lz L−

L+ −Lz
)

, (3.61)

where L± are the ladder operators L± = Lx ± iLy, which can be easily decomposed
in terms of complex spherical harmonics Ylm because we know how the operators
act on them:

Lz |Ylm〉 = m |Ylm〉 , L± |Ylm〉 =
√
l(l + 1)−m(m± 1) |Ylm〉 . (3.62)

Finally, one needs to transform the complex spherical harmonics into real ones.
Once, we have the SOC potential, it can be treated as a perturbation potential from
which the total Green function is obtained by solving the Dyson and Lippmann-
Schwinger equations as explained previously. More details can be found in Ref. [70,
75].

69



CHAPTER 3. FIRST-PRINCIPLES PARAMETRIZATION OF THE
HEISENBERG HAMILTONIAN

3.3.7 KKR self-consistent cycle

To conclude this introduction to the Green function KKR method, let us have a
look at the steps required for a practical implementation of the Green function
KKR method [69]:

1. We start by determining the Voronoi cells centered around the atoms. For
surface calculations, the vacuum regions in touch with the material are also
split into Voronoi cells just if they were atomic layers.

2. An initial potential V ini is chosen. For bulk calculations, often we use poten-
tial previously computed for isolated atoms. For a thin film, the converged
potential for a corresponding bulk material could be used.

3. Solving the single-site problem for each cell, to obtainRl and tl using Eqs. (3.41)
and (3.43).

4. Setting up the reference system gstr
L,L′ through Eq. (3.46).

5. Solving the Dyson equation in Eq. (3.52) and integrating over the k–space to
obtain the real-space Green function and therefore the on-site elements Gii(E),
which are required to compute the charge density.

6. Performing the energy contour integration to obtain the charge density.

7. Determining the new potential V out by solving the Poisson’s equation and
computing the exchange-correlation potential Vxc.

8. Comparing the initial and final potential. If they differ more than a set toler-
ance, mix V ini and V out then do all the steps again from item 3.

3.4 Parametrization of the Heisenberg model

The generalized Heisenberg Hamiltonian, introduced in Sec. 2.1.6, provides a seem-
ingly simplified description of the magnetism for materials with localized magnetic
moments:

H =− 1

2

∑
ij

Jij Si · Sj −
1

2

∑
ij

Dij · (Si × Sj)−
∑
i

B · Si −
∑
α

Kα
∑
i

(Sαi )2 .

(3.63)

The four terms are: the magnetic exchange interaction (MEI) with parameter Jij;
the Dzyaloshinskii-Moriya interaction (DMI) with vector parameter Dij; the Zee-
man coupling to an external magnetic field B; and the uniaxial magnetocrystalline
anisotropies (MCA) whose parameters are Kα.

The simplest term is the Zeeman energy, that couples an external magnetic field
to the spin moments. It requires the determination of the net magnetic moment
in each site. Also, as this magnetic moment can be composed of orbital and spin
angular momentum, the proper g-factor would have to be determined. In this thesis,
however, we only consider magnetic moment from the spins and so, g = 2.
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In the rest of this section, we aim at obtaining MEI and DMI parameters from
the Green function KKR method, which we described in the previous sections, as
well as the magnetocrystalline anisotropy. The Hamiltonian is treated as classical.

3.4.1 Infinitesimal-rotations method for the MEI and DMI

Let us start with the magnetic exchange interaction. Taking only the MEI into
consideration, the Hamiltonian reads

HMEI = −1

2

∑
ij

Jij Si · Sj , (3.64)

where the spins are classical vectors and for simplification, we take Si = 1. In the
following, we discuss two methods to calculate the magnetic exchange parameter
Jij.

Energy difference between states with local spin flips

The first method is based on computing the total energy difference when one or more
spins are flipped locally. Consider that the system is described by the Hamiltonian
in Eq. (3.64) and that it has a ferromagnetic ground state. In that state, the system
has total energy given by

EGS = EFM + C , (3.65)

where EFM = −1
2

∑
ij Jij is the energy due to the magnetic interactions and C

accounts for all the nonmagnetic contribution to the energy. If we flip the spin in
site i, the total energy changes to

Ei = EGS + 2

(
1

2

∑
j

Jij +
1

2

∑
j

Jji

)
= EGS + 2Ji , (3.66)

where we used that the symmetry properties of the MEI, Jij = Jji, and we also
defined Ji =

∑
j Jij. Similarly, we construct another state by flipping two spins, one

in site i and another in site j, whose total energy reads

Eij = EGS + 2Ji + 2Jj − 4Jij . (3.67)

Isolating Jij, we obtain that the MEI coupling between sites i and j is given by:

Jij =
1

4

(
− EGS + Ei + Ej − Eij

)
. (3.68)

To evaluate the expression in Eq. (3.68), one needs to compute the total energy
of four configurations: the ground state; the state with the i–th spin flipped; the
one with the j–th spin flipped; and the state with both, the i–th and j-th spins
simultaneously flipped. This method can also be used for magnetic ground states
other than the ferromagnetic, and it is mostly suitable for confined systems, such
as magnetic molecules. For periodic systems, such as crystals, it would require an
ab initio scheme where one can flip a single spin in real space, which is most of the
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time a nontrivial task. If the interactions are very short-ranged, however, one can
overcome this drawback by using supercells.

The current method requires determining the total energy of the system accu-
rately because the energy variation due to the flip of one or two spins might be
small in comparison with the total energy of the ground state. Also, this approach
assumes that the magnetic exchange parameter does not change from one magnetic
configuration to the other. This assumption is not very severe for magnetic insu-
lators, where the exchange parameter seems mostly constant for various magnetic
configurations [21, 76]. However, if this assumption is not satisfied, we must find
other means through which we can compute the Jij parameters.

Infinitesimal-rotations method

The expansion of the energy up to second-order on the small deviations of the
spins have the form of the Heisenberg Hamiltonian. Thus, strictly speaking, the
Hamiltonian in Eq. (3.64) is valid to describe the system’s dynamics that only involve
small deviations from its ground state. Therefore, the parametrization of the model
ideally should satisfy these restrictions too. In this context, Liechtenstein et al. [21]
proposed computing Jij from the total energy difference caused by infinitesimal
rotations of the spin moments from their ground-state orientations. This would,
therefore, respect the validity regime of the model Hamiltonian. Nevertheless, this
approach would still suffer from the problem of needing the determination of the
total energy with high accuracy.

The issue was solved using Andersen’s magnetic force theorem [77, 78], which
approximates the change in the total energy by the corresponding change of the
one-particle energies:

δE =

∫ EF

−∞
(E − EF)δn(E) dE = −

∫ EF

−∞
δN(E) dE , (3.69)

where n(E) = dN
dE

is the density of states, and N(E) is the number of electronic
states with energy smaller or equal to E. Next, the one-particle energy variation is
associated with the system’s t-matrix via Lloyd’s formula [79]:

N(E) = N0(E) +
1

π
ImTr ln T(E) , (3.70)

where the scattering path operator T whose inverse is given by

(T−1)ijLσ,L′σ′ = t−1
iLσσ′δijδLL′δLL′ −G

ij
LL′δσσ′ , (3.71)

and t is the single-site t-matrix and G is the Green function. In the final result, one
connects directly the MEI parameters to the nonrelativistic KKR Green functions:

Jij =
1

4π

∫ EF

ImTrL

[
∆i(E)Gij

↑ ∆j(E)Gji
↓ (E)

]
dE , (3.72)

where ∆i = ti↑ − ti↓ is the difference between the spin up and down channels of
the t-matrix on site i. The expression in Eq. (3.72) is known as the Liechtenstein-
Katsnelson-Antropov-Gubanov formula or, for short, the LKAG formula.
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Relativistic effects

As discussed in Sec. 2.1.5, relativistic effects are important for a system without
inversion symmetry, such as in layered systems and interfaces. In the relativistic
framework, the Hamiltonian in Eq. (3.64) is no longer valid since the invariance
under a global rotation of the spins is lost. Thus, Udvardi et al. [22] proposed an
extension of the work by Liechtenstein et al. [21] by mapping the energy change due
to the infinitesimal rotations to a fully relativistic KKR method.

The first-principles results are then mapped on a classical spin Hamiltonian [63]:

H = −1

2

∑
ij

ST
i JijSj −

∑
i

K(Si) , (3.73)

where Jij is a 3 × 3 inter-site interaction matrix and Si is regarded as a column
unit vector. The second term corresponds to the on-site magnetic anisotropy. The
interaction matrix can be decomposed as

Jij = Jij1 + J S
ij + J A

ij , (3.74)

where 1 is the identity matrix, the isotropic MEI is given by

Jij =
1

3
TrJij , (3.75)

and the symmetric and antisymmetric parts of Jij are defined by

J A
ij =

1

2

(
Jij − J T

ij

)
,

J S
ij =

1

2

(
Jij + J T

ij

)
− Jij1 ,

(3.76)

where J T
ij is the transpose of Jij.

The antisymmetric contribution to the interaction matrix corresponds to the
Dzyaloshinskii-Moriya interaction, which can be shown to map onto

HDMI = −1

2

∑
ij

Dij · Si × Sj , (3.77)

where the DMI vector components are given by

Dx
ij =

1

2

(
J yz
ij −J

zy
ij

)
, Dy

ij =
1

2

(
J xz
ij −J zx

ij

)
, Dz

ij =
1

2

(
J xy
ij −J

yx
ij

)
. (3.78)

Finally, the symmetric traceless contribution J S
ij corresponds to an anisotropic

exchange interaction. In particular, the on-site term ST
i JiiSi contains only the sym-

metric contribution, which can be added as a second-order contribution to the mag-
netic anisotropy K(Si) [22]. It turns out that J S

ij is generally small, and therefore,
we do not consider its effect in the present work.

In practice, to access all the elements of the interaction matrix, one needs to
perform the calculation with the magnetization aligned along three orthogonal di-
rections, e.g. x, y and z.
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CHAPTER 3. FIRST-PRINCIPLES PARAMETRIZATION OF THE
HEISENBERG HAMILTONIAN

Magnetocrystalline anisotropy - MCA

For each magnetization-rotated direction, x, y, and z, we compute the total energy
of the system, which then gives us their energy differences:

Exy =Ey − Ex ,

Eyz =Ez − Ey ,

Ezx =Ex − Ez .

(3.79)

These energy difference are used to parametrize the MCA axes. Imagine that the
system has a single MCA axis along z, then

Kz = Ezx = −Eyz . (3.80)

and Exy = 0 . In case of two axes, let say along x and y, we have

Kx =− Ezx ,

Ky =Eyz .
(3.81)

The signs were chosen such that a positive value of K corresponds to an easy-axis,
and a negative value to an easy-plane. At using this method to compute the MCA
parameters, one should have in mind that these energy differences are very small in
comparison to the total energy, which makes it a numerical challenge.

3.5 Conclusions

In this chapter, we introduced the density functional theory to describe quantum
mechanically the electronic and magnetic properties of materials. In particular, we
discussed the Korringa-Kohn-Rostoker method [61], which is based on a multiple-
scattering theory to evaluate the physical properties of materials in terms of their
Green functions. Finally, we discussed how this ab initio method allows us to
parametrize the Heisenberg Hamiltonian through the infinitesimal-rotations method
introduced by Liechtenstein et al. [21], and extended by Udvardi et al. [22] to ac-
count for relativist effects. Within this approach, we can obtain the parameters for
the magnetic exchange interaction, Dzyaloshinskii-Moriya interaction, and the mag-
netocrystalline anisotropy. Together, these tools give us the potential of describing
and predicting material and system-specific properties, including their spin waves.
The first-principles parametrization scheme described in this chapter will be used
to study, thin films of Co/W(110) in Chapters 5 and 8, and a thin film of Mn/β-W
and bulk Mn5Si3 in Chapter 7.

74



Chapter 4

Inelastic-scattering theory

We saw in Chapter 2 that, in the adiabatic approximation, spin waves are the ex-
cited states of a spin system described the Heisenberg Hamiltonian. The energies of
these excitations define the system’s intrinsic spin-excitation spectrum. When ex-
perimentally probing the spin waves of a material, one should have in mind that the
observed data results not only from the intrinsic spin-wave properties but also from
the nature and properties of the probe. In this chapter, we connect the adiabatic
spin-wave spectrum of a noncollinear magnet to the inelastic-scattering spectrum
of probing particles, such as electrons and neutrons. We derive an expression for
the particle’s inelastic-scattering rate, which is a quantity that can be measured ex-
perimentally. The theoretical framework is described in the first section, where we
calculate the transition rate using the time-dependent perturbation theory. In the
second section, we apply this theory for noncollinear magnets utilizing the spin-wave
eigenvalues and eigenfunctions obtained as described in Chapter 2. This chapter is
also based on Ref. [26] written by the author of this dissertation.

4.1 Scattering theory

Scattering experiments have been essential to physics, e.g., they have led us to the
discovery of the atoms and their constituents. These experiments can be performed
using the scattering of light and other projectiles, such as neutrons and electrons,
determining crystal, electronic and magnetic properties of materials, and in par-
ticular, their excitations [80–83]. Probing spin waves with light is restricted to the
very-short-wavevector regime, such as in Brillouin-light-scattering spectroscopy [84].
Electrons and neutrons, however, are suitable to probe spin waves throughout large
areas of the reciprocal space. Spin waves of large wavevectors are dominated by
magnetic exchange mechanisms, which are this thesis’s subject of interest. While
neutrons are employed to study bulk materials, electrons are the candidate of choice
for surface and thin films because of their large scattering cross-section and small
penetration length [17, 18].

4.1.1 General framework

A complete theory of particle diffraction from a magnetic material is highly involved,
in particular for electrons whose electric charge yields a strong interaction with the
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sample [85, 86]. As our interest is in the inelastic signal of magnetic origin, we
simplify the problem by treating the material as composed of localized spins in
the ground state, which interact locally with the particle’s spin-1

2
via an exchange

coupling. For disregarding the electric-charge effects, for example, we can treat
neutrons and electrons on an equal footing. Nevertheless, in the rest of this chapter,
we use electrons as our prototypical particle.

We split the Hamiltonian of the problem into the following parts:

He =
p2

2me

,

Hm =− 1

2

∑
mn

∑
αβ

SαmJ
αβ
mnS

β
n −

∑
n

∑
α

Bα
nS

α
n ,

Hem =
∑
n

∑
α

Un δ(r−Rn)σαSαn .

(4.1)

The electron beam is described by the free-electron Hamiltonian He, with p the
linear momentum operator and me the electron mass. The magnetic lattice is de-
scribed by the generalized Heisenberg Hamiltonian Hm, as introduced in Eq. (2.61),
with Sαn being the α-component of the atomic spin operator for site n, Jαβmn the ele-
ments of the tensor describing the pairwise interactions between sites m and n, and
Bα
n the α-component of the magnetic field acting on site n. The coupling between

the atomic spins and the spin of the probing electrons is described by Hem, with Un
the interaction strength, r the position operator for the electrons, Rn the position
vector for site n, and σα the Pauli matrix for the α-component of the electron spin.

Next, we assume that the probing electrons and the magnetic sample are decou-
pled for times t < 0. Then, we can specify the initial state of the electron beam as
consisting of a plane-wave with well-defined energy Ei, wavevector ki, and spin si:

〈r|kisi〉 = eiki·r |si〉 , Ei =
k2
i

2m
, |si〉〈si| =

1

2
(σ0 + ni · σ) . (4.2)

Henceforth ~ = 1. The spinor |si〉 defines the spin polarization of the electron to be
along the direction ni. The eigenstates of the spin Hamiltonian are assumed to be
known:

Hm |λ〉 = Eλ |λ〉 , E0 ≤ Eλ . (4.3)

Before the interaction with the electron beam, the magnetic sample is in its ground
state |0〉, with energy E0. The state of the combined system at t = 0 is then the
tensor product of the two initial states:

|i〉 ≡ |kisi0〉 = |kisi〉 ⊗ |0〉 . (4.4)

This state evolves in time under the action of the complete Hamiltonian H = He +
Hm +Hem, according to the Schrödinger equation,

i
d

dt
|Ψ(t)〉 = H |Ψ(t)〉 . (4.5)

By isolating the interaction term, the total Hamiltonian can be split as H = H0 +
Hem, with H0 = He + Hm. We can then introduce the time evolution operator,
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which connects the system’s state at a later time t to the initial state |i〉 = |Ψ(0)〉,
in the following form:

|Ψ(t)〉 = e−iH0t U(t) |i〉 , (4.6)

where

U(t) = 1− i

∫ t

0

dt1 Hem(t1) U(t1) , and Hem(t) = eiH0tHem e
−iH0t . (4.7)

This integral equation follows directly from the Schrödinger equation. Note that U(t)
appears on both sides of the integral equation. Replacing it into itself iteratively,
we find

U(t) =1− i

∫ t

0

dt1 Hem(t1) + (−i)2

∫ t

0

dt1

∫ t1

0

dt2 Hem(t1) Hem(t2) + . . .

=1 + U1(t) + U2(t) + . . .

(4.8)

This expansion corresponds to performing time-dependent perturbation theory in
Hem.

4.1.2 Transition probability

The probability of finding the system at a later time in some final state |f〉 = |kfsfλ〉,
up to second order in Hem, is given by

P (i→f, t) =
∣∣〈f |Ψ(t)〉

∣∣2
= 〈i| U †(t)|f〉〈f | U(t)|i〉
≈ P0(i→f, t) + P1(i→f, t) + P2(i→f, t) ,

(4.9)

where Pn(i→ f, t) is the transition-probability contribution of n-th order:

P0(i→f, t) =
∣∣〈f |i〉∣∣2 ,

P1(i→f, t) = 〈i|f〉〈f | U1(t)|i〉+ 〈i| U †1(t)|f〉〈f |i〉 ,

P2(i→f, t) = 〈i| U †1(t)|f〉〈f | U1(t)|i〉+ 〈i|f〉〈f | U2(t)|i〉+ 〈i| U †2(t)|f〉〈f |i〉 .

(4.10)

The above probabilities must satisfy conservation of probability law∑
f

P (i→f, t) = 1 . (4.11)

For example, if
∑

f P0(i → f, t) = 1 then
∑

f Pn(i → f, t) = 0 for n > 0. The
transition amplitudes in Eq. (4.10) are

〈f | U1(t)|i〉 = −i

∫ t

0

dt1 〈f |eiH0t1Hem e
−iH0t1|i〉 =

1− eiEfit

Efi
〈f |Hem|i〉 , (4.12)

〈f | U2(t)|i〉 = −
∑
v

∫ t

0

dt1

∫ t1

0

dt2 〈f |eiH0t1Hem|v〉〈v|e−iH0(t1−t2)Hem e
−iH0t2|i〉

=
∑
v

(
eiEfit − 1

EfiEvi
− eiEfvt − 1

Efv Evi

)
〈f |Hem|v〉〈v|Hem|i〉 , (4.13)

where Eab = Ea − Eb. A complete set of (virtual) states was introduced for the
second-order amplitude.
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4.1.3 Scattering rate

A scattering experiment measures the flux of particles per energy and per solid angle
that is coming out of the sample. This outgoing flux normalized by the incoming
flux is called the differential scattering cross section, which is proportional to the
scattering rate given by the time derivative of the transition probability:

dσ

dω dΩ
∝ Γ(i→f, t) =

dP (i→f, t)

dt
, (4.14)

where ω represents the energy transfered by the probing electron, see Chapter 13:
Inelastic Scattering from Phonons of Ref. [87]. Let us now analyze the scattering
rate attributed to each contribution of the transition probability given by Eq. (4.9).
The transition probability of zeroth-order is only nonvanishing if the final state has
a finite overlap with the initial state. As |f〉 = |kfsfλ〉, this requires kf = ki and
λ = 0. Therefore, it corresponds to an elastic scattering: Efi = 0. The spinors give,
see Eq. (4.2),

P0(i→f, t) = |〈sf |si〉|2 =
1

4
Tr (σ0 + ni · σ) (σ0 + nf · σ) =

1

2
(1 + ni · nf ) . (4.15)

This means that measuring the spin component of the outgoing electron with a spin
detector which is not aligned with the polarization of the incident electron beam
then leads to a cosine dependence on the angle between them. Nevertheless, this
transition-probability contribution is time-independent yielding to a zero transition
rate.

The first-order contribution to the transition probability is

P1(i→f, t) =
1− eiEfit

Efi
〈i|f〉〈f |Hem|i〉+

1− e−iEfit

Efi
〈i|Hem|f〉〈f |i〉 , (4.16)

and it also corresponds to an elastic process because, again, 〈f |i〉 must be finite, so
Efi → 0. The respective scattering rate is given by

Γ1(i→f, t) =
dP1

dt
(i→f, t)

= −i
(
〈si|sf〉〈kisf0|Hem|kisi0〉 − 〈kisi0|Hem|kisf0〉〈sf |si〉

)
=
∑
n

Un 〈0|Sn|0〉 · (ni × nf ) .

(4.17)

Its detection requires a crossed setup: the polarization of the outgoing electron
must be measured along a direction perpendicular to the polarization of the incident
beam, yielding information about the component of the magnetization of the sample
perpendicular to those two axes.

The second-order contribution is the most interesting one, as it describes inelas-
tic scattering, therefore, giving us access to the excited states (spin waves) of the
system. As seen in Eq. (4.10), it has two contributions. The first contribution to
the transition probability is

P2,1(i→f, t) = 〈i| U †1(t)|f〉〈f | U1(t)|i〉 = 2
1− cos(Efit)

(Efi)2
|〈f |Hem|i〉|2 , (4.18)
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with the scattering rate

Γ2,1(i→f, t) =2
sin(Efit)

Efi
|〈f |Hem|i〉|2 =

t→∞
2π δ(Efi) |〈f |Hem|i〉|2 . (4.19)

This is the familiar Fermi’s Golden Rule. The delta function imposes energy con-
servation:

0 = Efi =

(
Eλ +

k2
f

2m

)
−
(
E0 +

k2
i

2m

)
= Eλ − E0 − ω , (4.20)

with ω =
(

k2
f

2m
− k2

i

2m

)
= Eλ − E0 the energy transferred from the electron beam

to the magnetic sample. Likewise, we can define q = ki − kf as the momentum
transferred to the magnetic sample.

The second part in the second-order contribution to the transition probability is
given by

P2,2(i→f, t) =
∑
v

(
eiEfit − 1

EfiEvi
− eiEfvt − 1

Efv Evi

)
〈i|f〉〈f |Hem|v〉〈v|Hem|i〉

+
∑
v

(
e−iEfit − 1

EfiEvi
− e−iEfvt − 1

Efv Evi

)
〈i|Hem|v〉〈v|Hem|f〉〈f |i〉 . (4.21)

Due to the presence of the overlap 〈f |i〉, it contributes only to ω = 0 and q = 0. As
we are interested in inelastic scattering, we will not analyze this term further.

4.1.4 Inelastic scattering rate

From the analysis in the previous section, we can define the inelastic scattering rate
as expected from Fermi’s Golden Rule:

Γif (q, ω) = 2π
∑
λ 6=0

δ(Eλ − E0 − ω) |〈kfsfλ|Hem|kisi0〉|2 , (4.22)

with ω and q the energy and momentum transferred from the electron beam to the
magnetic sample.

We assume that the ground state of the magnetic sample is commensurate with
the atomic lattice. Then we can separate the position vector of every magnetic atom
as Rnν = Rn+Rν , letting Rn label the origin of the n-th magnetic unit cell, and Rν

the basis vector inside the magnetic unit cell. The coupling Hamiltonian is assumed
to have the translational symmetry of the magnetic unit cell, so

Hem =
∑
nν

Uν δ(r−Rnν)σ · Snν . (4.23)

If the magnetic atoms are chemically distinct, their coupling strength might be
atom-dependent, hence Uν . The matrix elements are then

〈kfsfλ|Hem|kisi0〉 =
∑
β

〈sf |σβ|si〉
∑
ν

Uν e
iq·Rν 〈λ|

∑
n

eiq·RnSβnν |0〉 (4.24)

=
√
Nl

∑
β

〈sf |σβ|si〉
∑
ν

Uν e
iq·Rν 〈λ|Sβν (q)|0〉 , (4.25)
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〈kisi0|Hem|kfsfλ〉 =
∑
α

〈si|σα|sf〉
∑
µ

Uµ e
−iq·Rµ 〈0|

∑
n

e−iq·RmSαmν |λ〉 (4.26)

=
√
Nl

∑
α

〈si|σα|sf〉
∑
µ

Uµ e
−iq·Rµ 〈0|Sαµ (−q)|λ〉 . (4.27)

Nl is the number of unit cells under Born-von Karman periodic boundary conditions.

Spin-spin correlation tensor

Putting together the last results, the inelastic scattering rate of Eq. (4.22) can be
expressed as

Γif (q, ω) = 2π NlNb

∑
αβ

〈si|σα|sf〉〈sf |σβ|si〉
1

Nb

∑
µν

UµUν e
iq·RµνN αβ

µν (q, ω) ,

(4.28)
with Rµν = Rν−Rµ, and Nb is the number of basis atoms in each unit cell, so NlNb

is the total number of magnetic atoms. And the spin-spin correlation tensor was
defined as

N αβ
µν (q, ω) =

∑
λ 6=0

δ(Eλ − E0 − ω) 〈0|Sαµ (−q)|λ〉〈λ|Sβν (q)|0〉 , (4.29)

which has the periodicity of the magnetic lattice, with α, β = x, y, z the components
of the spin operators, and describes the intrinsic spin excitations of the magnetic
sample.

The scattering rate combines the information about the intrinsic spin excita-
tions, contained in N αβ

µν (q, ω), with the information about the spin polarization of
the incoming and detected electrons (Pauli matrices) and the wave nature of the
electrons, leading to interference between different contributions (the Fourier phase
factor).

Polarization tensor

We can find an explicit expression for the dependence of the scattering rate on the
electron spin polarization:

Pαβif = 〈si|σα|sf〉〈sf |σβ|si〉

=
1

4
Tr
(
σ0 + ni · σ

)
σα
(
σ0 + nf · σ

)
σβ

=
1

2

((
1−

∑
γ

nγi n
γ
f

)
δαβ + nαi n

β
f + nβi n

α
f + i

∑
γ

εαβγ
(
nγi − n

γ
f

))
,

(4.30)

Here δαβ is the usual Kronecker delta, and εαβγ the Levi-Civita symbol. To illustrate,
consider the spin polarization of the incoming electrons to be +z or −z, and the spin
polarization of the outgoing electrons also to be measured along +z or −z. We have,
therefore, four possible spin channels. To each channel, we associate a polarization
tensor Pαβ that selects the spin components of the magnetic sample that can be
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measured:

P++ x y z

x 0 0 0

y 0 0 0

z 0 0 1

,

P−− x y z

x 0 0 0

y 0 0 0

z 0 0 1

,

P+− x y z

x 1 +i 0

y −i 1 0

z 0 0 0

,

P−+ x y z

x 1 −i 0

y +i 1 0

z 0 0 0

.

(4.31)
We see that P++ and P−− are the same, and connect with N zz

µν (q, ω). P+− connects
with N−+

µν (q, ω), and P−+ connects with N+−
µν (q, ω).

For a ferromagnetic sample with a ground state of total spin along +z, only
N+−
µν (q, ω) is finite. P−+ means that the spin polarization of the incoming electron

beam is −z, antiparallel to the total spin of the sample. As the outgoing electron
is detected with +z spin polarization, the ferromagnetic sample lost ~ of angular
momentum, corresponding to the lowering of the spin associated with the creation
of a spin wave. If N−+

µν (q, ω) were finite, then the sample would gain ~ of angular
momentum. More intriguingly, a finite N zz

µν (q, ω) describes spin excitations with no
net exchange of angular momentum between the electron beam and the magnetic
sample. More on that will be discussed in Chapter 6.

4.2 Spin-spin correlation tensor for noncollinear

magnets

We saw in Chapter 2 that the spin-wave spectrum (dispersion) of noncollinear mag-
nets can be rather dense (see Fig. 2.5). This is especially due to the large unit cell
associated with the magnetic structure. To understand what out of the intrinsic
spectrum can be actually excited and detected via inelastic electron scattering, we
need to calculate the scattering rate, given by Eq. (4.28).

Let us start by defining an excited state |λ〉 = |k, r〉 of wavevector k and mode
index r as created by the action of a new boson operator on the ground state |0̃〉:

b†r(k) |0̃〉 = |k, r〉 , br(k) |0̃〉 = 0 and 〈kr|0̃〉 = 0 , (4.32)

such that |k, r〉 is an eigenstate of the Hamiltonian:

H2 |k, r〉 = εr(k) |k, r〉 . (4.33)

H2 is the linearized Hamiltonian given by Eq. (2.126). The relation between the new
and the old boson operators is given by the Bogoliubov transformation in Eq. 2.147,
which can be rewritten as:

aαµ(k) =
∑
β,r

Rαβ
µr (k)bβr (k) , (4.34)

where α, β = ± to represents the creation or annihilation operators (a+ = a† and
a− = a). µ and ν are site indexes within a unit cell. For more details, see Sec. 2.4.2.

To calculate the scattering rate, we need to evaluate the spin-spin correlation
tensor:

N αβ
µν (q, ω) =

∑
kr

δ (E0 + ω − Er(k)) 〈0̃|Sαµ (−q)|kr〉 〈kr|Sβν (q)|0̃〉 , (4.35)
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where

Sβν (q) =
1√
Nl

∑
n

eiq·RnSβnν . (4.36)

We can rewrite the spin operator as:

Sβnν =Oβ+
ν S ′

+
nν +Oβ−

ν S ′
−
nν +Oβz

ν S
′z
nν

=Oβ+
ν

√
2Sνanν +Oβ−

ν

√
2Sνa

†
nν +Oβz

ν (Snν − a†nνanν) ,
(4.37)

where S ′α is the spin operator in the local reference frame related to the global
representation via the rotation matrix Oαβ

ν . We obtain that the left matrix element
in Eq. (4.35) reads

〈0̃|Sαµ (−q)|k, r〉 =
1√
Nl

∑
n

e−iq·Rn×(
Oα+
µ

√
2Sµ 〈0̃|anµ|k, r〉+Oα−

µ

√
2Sµ 〈0̃|a†nµ|k, r〉+Oαz

µ 〈0̃|a†nµanµ|k, r〉
)

.

(4.38)

Using Eqs. (4.32), (4.34), and the boson commutation relations, the right-hand-side
terms of the previous equation are then given by

〈0̃|anµ|k, r〉 =
1√
Nl

eik·RnR−−µr ,

〈0̃|a†nµ|k, r〉 =
1√
Nl

eik·RnR+−
µr ,

〈0̃|a†nµanµ|k, r〉 =0 .

(4.39)

Then, Eq. (4.38) becomes:

〈0̃|Sαµ (q)|k, r〉 =
√

2Sµδ(−q + k)
(
Oα+
µ R−−µr (k) +Oα−

µ R+−
µr (k)

)
, (4.40)

where we used that

δ(q) =
1

Nl

∑
n

eiq·Rn , (4.41)

as demonstrated in Apx. 4.A. In a similar way, we obtain the right matrix element
of Eq. (4.35):

〈k, r|Sβν (q)|0̃〉 =
√

2Sνδ(q− k)
(
Oβ+
ν R−+

νr (k) +Oβ−
ν R++

νr (k)
)

. (4.42)

Plugging Eqs. (4.40) and (4.42) back into Eq. (4.35), we finally obtain an expres-
sion for the spin-spin correlation tensor in terms of the eigenstates and eigenenergies
of the noncollinear spin Hamiltonian:

N αβ
µν (q, ω) = 2

√
SµSν

∑
r

δ
(
E0 + ω − Er(q)

)
×[

Oα+
µ (R++

µr (q))∗ +Oα−
µ (R−+

µr (q))∗
] [
Oβ+
ν R−+

νr (q) +Oβ−
ν R++

νr (q)
]

.

(4.43)

Also, we need to be able to represent the rotation matrix from the xyz represen-
tation into the +− z. This is given by the transformation

O+ = M′OM′−1 , (4.44)

where

M′ =

1 i 0
1 −i 0
0 0 1

 . (4.45)
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4.3 Summary

In this chapter, we derived in second-order perturbation theory the inelastic-scat-
tering rate for spin-1

2
particle, such as electrons and neutrons, from spin waves in

noncollinear magnets. We saw that this rate involves the spin-spin correlation tensor
and the polarization tensor. The spin-spin correlation tensor was calculated within
the spin-wave adiabatic approximation, which was described in Chapter 2, and it
contains information about the intrinsic spin-excitations of the system. Meanwhile,
the polarization tensor controls the connection between the spins of the incoming
and outgoing particles with the different elements of the spin-spin correlation tensor.
In Chapter 6, we will apply the present theory for the three different magnetic phases
of a model system, whose intrinsic spin-wave spectra were calculated in Chapter 2:
a ferromagnetic, a spin spiral, and a skyrmion-lattice phase. There, we will also
discuss a proposal for an experimental setup designed to give access to different
components of the spin-spin correlation tensor in magnetic thin films.
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Appendix

4.A Summation of exponentials over lattice points

Consider the following lattice summation that appears very often in condensed mat-
ter physics of crystal:

N∑
l=1

eiqRl , (4.46)

where Rl = al, and a is the lattice constant. We want to evaluate this sum.
Now, let us consider the following geometric progression:

SN =
N∑
l=1

a1p
(l−1) =a1

(
1 + p+ p2 + ...+ p(n−1)

)
, therefore

pSN =a1(p+ p2 + . . .+ pN) .

(4.47)

In the above equation, subtracting the first line from the second, we obtain

SN − pSN =a1 − a1p
N

SN(1− p) =a1(1− pN)

SN =a1
1− pN

1− p
.

(4.48)

Our original sum can be written in terms of this geometric progression:

N∑
l=1

eiqRl =
N∑
l=1

eiqaeiqa(l−1) =
N∑
l=1

eiqa(eiqa)(l−1) , (4.49)

then a1 = eiqa and p = eiqa, therefore, Eq. (4.48) gives:

N∑
l=1

eiqRl = eiqa1− eiqaN

1− eiqa
. (4.50)

Let us consider Born-von Karman boundary condition, which imposes that a
given multiple of the wavelength associated with q, λ = 2π/q, has to be of the size
of the box, L = aN , where N is the total number of unit cells and a the lattice
constant. This restricts q in the following way:

nλ =L = aN

n
2π

q
=aN

q =
2π

a

n

N
,

(4.51)
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where n = 0, 1, . . . ,+∞. With such a restriction, the summation through equation
(4.50) has a very predictable outcome:

N∑
l=1

eiqRl = eiqa1− ei 2π
a
n
N
aN

1− eiqa
= eiqa1− ei2πn

1− eiqa
= 0 , (4.52)

provided that eiqa 6= 1. When eiqa = 1, that is, q = 2πn/a (for n = −∞, . . . ,−1, 0, 1, . . . ,+∞),
we can evaluate from the original version of the sum:

N∑
l=1

eiqRl =
N∑
l=1

ei2πnla/a =
N∑
l=1

ei2πnl =
N∑
l=1

1 = N . (4.53)

Therefore, our solution reads:

N−1∑
l=0

eiqRl = N
n=+∞∑
n=−+∞

δq,2πn/a . (4.54)

Another interesting fact is that the imaginary part of the lattice sum, a sum of
sine functions, is always zero:

∑
l

eiqRl =
∑
l

cos(qRi) + i
∑
l

sin(qRl) =
∑
l

cos(qRl) = N
n=+∞∑
n=−+∞

δq,2πn/a .

(4.55)
This fact is illustrated in Fig. 4.A.1, where unitarian circles in the complex plane
were drawn for N = 3, 4, 5, and 6, as examples. The sum over l is restricted to the
points indicated by the arrows. Each point has a counterpart whose sine has the
additive opposite value. The exception is for qRl = 2πn, which has no counterpart
but whose sine is also zero.

Figure 4.A.1: Unitarian circle in the complex plane. The circles were split into intervals
of 2π/N for N = 3, 4, 5, and 6. The sum of the sine of the point angles gives always zero.

In the continuous limit of a three-dimension space, the sum yields:∑
R

eiq·R = (2π)3N

V

∑
K

δ(q−K) , (4.56)

where K are the reciprocal space vectors. See appendix A.4 of Ref. [87] for more
details.

86



Chapter 5

Surface-reconstructed Co ultrathin
films on W(110)

In this chapter, we study collinear ferromagnets as an introduction to the prob-
lem of computing the spin-wave spectrum and connecting it to the experimental
data by parameterizing a spin Hamiltonian from ab initio calculations. For that,
we investigate surface-reconstructed ultrathin films of cobalt deposited on tungsten
(110) surface, where for the first time more than one spin-wave mode was resolved
by electron-energy-loss spectroscopy (EELS) [24]. The surface reconstruction of
these Co/W(110) films makes the problem rather nontrivial, for it requires first-
principles calculations with large supercells. Furthermore, the consequent reduction
of the Brillouin zone demands the unfolding of the spin-wave spectrum if one is
to compare the theoretical results with the experimental data. We show that this
unfolding can be achieved within the scattering theory developed in Chapter 4 by
properly choosing the phase for the scattering response of the different layers. We
also analyze the strength and oscillation of the intralayer and interlayer magnetic
interactions and investigate the resulting spin-wave dispersions as a function of the
thickness of the Co films. In particular, we highlight and explain the strong im-
pact of the electronic-state hybridization at the Co–W interface on the magnetic
exchange interactions and the spin-wave dispersions. We compare our results to
the recent measurements based on EELS of Ref. [24]. Good overall agreement with
experimental data can be obtained by considering the possible overestimation of the
intra-atomic exchange splitting, stemming from the local-spin-density approxima-
tion, and adopting an appropriate correction. This chapter is also based on Ref. [88]
by the author of the present thesis.

5.1 Introduction

Until very recently, only one spin-wave mode of multiple-layer magnetic films was
experimentally observed with EELS [18]. This was in stark contrast with the the-
oretical expectation of one mode per layer of a uniform ferromagnetic thin film,
based on a simple Heisenberg model. A more sophisticated theoretical description,
taking into account the spin-wave suppression due to Landau damping (decay into
Stoner excitations), also predicted that more modes should be observed [89]. This
has been recently borne out experimentally, due to a large improvement in the en-
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ergy resolution of the EELS spectrometers (now ∼ 2 meV), making it possible for
the first time to resolve up to three spin-wave modes [24, 25, 90]. Faced with such
a wealth of experimental results, it becomes essential to perform detailed theoreti-
cal investigations, in order to ascertain the quality of the current methods and our
understanding of the underlying physics.

Therefore, in this chapter, we study theoretically the spin-wave properties of
thin films of cobalt deposited on tungsten (110), following the work of Michel et
al. [24], which revisits the initial investigation of Vollmer et al. [18]. These systems
are peculiar since a realistic simulation of its electronic properties requires us to con-
sider the surface reconstruction of Co thin films, leading to dramatic computational
costs because of the large supercells with several inequivalent atoms. We study
the electronic and magnetic properties of these films using density functional the-
ory within the Green-function Korringa-Kohn-Rostoker (KKR) method described in
Chapter 3. The magnetic exchange interactions are obtained using the infinitesimal-
rotation method also discussed in Chapter 3. We computed spin-wave dispersions
in the adiabatic approximation as introduced in Chapter 2, which has limitations
stemming from the neglect of the interaction between the collective spin-wave modes
and the continuum of Stoner excitations. The latter leads to Landau damping [91,
92], which can heavily damp the spin-wave modes, and it may also renormalize the
spin-wave energies. However, it has been argued theoretically and demonstrated by
explicit calculations [89, 93, 94] that the Heisenberg model description is reason-
able for low spin-wave energies and not too large wavevectors, which is precisely the
range relevant to (SP)EELS and the one in which we are interested.

Although it is responsible for the magnetocrystalline anisotropy (MCA) and
the Dzyaloshinskii-Moriya interaction (DMI), in this chapter, we left out spin-orbit
coupling from the calculations. The MCA determines the ferromagnetic easy axis
and leads to the zero wavevector gap in the spin-wave dispersion, while the DMI
favors the formation of noncollinear magnetic structures. In Ref. [24], the MCA gap
is unresolvable and no DMI-induced asymmetries in the spin-wave dispersions were
measured, which must be due to the strong ferromagnetic exchange interactions.
In view of the considerable complexity of the problem already without relativistic
effects, we chose to leave this aspect for an investigation in Chapter 8, where we
study even thinner films of Co/W(110), such as the single monolayer Co film for
which the impact of the DMI cannot be disregarded.

The chapter is organized as follows. First, we explain the unfolding scheme of the
spin-wave spectrum in inhomogeneous ferromagnets in Sec. 5.2, which is necessary
to connect the theoretical results with the experimental data. Then, the ground-
state properties obtained from first-principles calculations are analyzed in Sec. 5.3,
including the magnetic exchange interactions. The latter is then used in Sec. 5.4 to
compute the adiabatic spin-wave dispersions. Finally, our conclusions are gathered
in Sec. 5.5.

5.2 Spin waves in an inhomogeneous ferromagnet

Co thin films deposited on W(110) are inhomogeneous ferromagnets. Besides the
vertical inhomogeneity due to the layered structure, there is also lateral inhomo-
geneity, due to a surface reconstruction. Thus, the intrinsic spin-wave spectrum
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is complex and, therefore, not necessarily simply related to the experimental mea-
surements. One must consider how the experimental apparatus interacts with the
magnetic system. As we explained in the introduction, newly developed high energy
resolution EELS is one of the motivations for this chapter. A complete description of
an EELS experiment requires a detailed multiple scattering analysis of the probing
electrons, taking into account all inelastic effects. Here, we restrict ourselves to the
description provided in Chapter 4 aiming at a simplified connection between theory
and experiment.

Let us consider the spins of the Co atoms as classical vectors of constant length
Siµ = (Miµ/2)Ŝiµ, where Ŝiµ are unit vectors in the direction of the atom’s magnetic
moments that have magnitude Miµ. Thus, the classical Heisenberg Hamiltonian for
an inhomogeneous ferromagnet, containing only the magnetic exchange interaction,
can be written as

H = −1

2

∑
iµ

∑
jν

Jiµ,jν Siµ · Sjν . (5.1)

Here i, j label unit cells forming a Bravais lattice, while µ, ν run over the Nb basis
atoms. The position of a particular magnetic moment is given by Riµ = Ri + Rµ.
The magnetic exchange interactions are symmetric, Jjν,iµ = Jiµ,jν , and depend only
on the distance between unit cells, Jiµ,jν = Jµν(Rij) with Rij = Rj −Ri.

The adiabatic spin-wave eigenvalues and eigenvectors, considering an atom basis
with more than one atom, are given by the following eigenvalue equation:

∓ωS±µ (q) = S±µ (q)
∑
ν

SνJµν(0)− Sµ
∑
ν

S±ν (q)Jµν(q) , (5.2)

where Jµν(q) =
∑

j e
ik·RijJiµ,jν , S

±
µ = Sxµ ± iSyµ, and Sµ = Mµ/2. We leave the

derivation of the above equation for the Apx. 5.A. As discussed in Sec. 4.1.4, for
ferromagnets whose spins point along +z, only the N+−(q, ω) component of the
spin-spin correlation tensor is nonvanishing, which is given by:

N+−
µν (q, ω) = 2

√
SµSν

Nb∑
r

δ
(
ω − ωr(q)

)
S−rµ(q)S−rν(q) , (5.3)

where r label each of the Nb spin-wave modes. The above quantity is in the heart of
the unfolding scheme we will discuss next. The practical use of Eq. (5.3) requires a
numerical representation of the delta function, for which we employ the Lorentzian
function δ(ω) ' (η/π)/(ω2 + η2), introducing the broadening parameter η.

5.2.1 Unfolding of the spin-wave spectrum

As discussed in Chapter 4, the differential scattering cross section in Eq. (4.14)
between an initial probe state (with energy Ei, momentum ki and spin si) and final
probe states (with Ef , kf and sf ), which are collected in a solid angle window dΩ,
is proportional to the scattering rate:

dσ

dω dΩ
∝ Γif (q, ω) , (5.4)
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with the energy and momentum transfer defined as

Ei − Ef = ω , ki − kf = q + G , (5.5)

where ω > 0 corresponds to energy absorption and vice-versa. Momentum is con-
served up to a reciprocal lattice vector G, except for nonperiodic directions (for films
only in-plane momentum is fixed by Bragg scattering). It is the spectrum defined
by the scattering rate that can be compared to the experimental data.

For inelastic scattering involving spin waves (relatively low energy compared to
that of the probing electron beam), the scattering rate is proportional to the spin-
spin correlation tensor given by Eq. (4.29). Furthermore, with the application to
layered systems in mind, we can split the basis index into two, Rµ → Rlµ = Rl+bµ,
with Rl the origin for layer l, and bµ the location of a basis atom with respect to
the origin of layer l. Thus, we obtain that the scattering rate is proportional to

Γif (q, ω) ∝
∑
l′l

Al′l
∑
µν

eiq·bµνN+−
l′µ,lν(q, ω) . (5.6)

with the vector bµν = bν − bµ. In the above equation, we explicitly separated
the sum over layers. In a scattering experiment, due to the wave nature of the
probing beam, the response of every atom arrives at the detector with different
phases. The resulting interference is destructive for most modes arising from atoms
which are crystallographically nearly equivalent (for example in the same layer); the
waves that interfere constructively lead to the experimentally detected signal. Such
phase differences are encoded in the Fourier factor of Eq. (5.6), and they define the
unfolding of the computed spin-wave bands.

The factor Al′l describes the phase of the different-layer responses, and it has
assumed many forms in the literature. Taroni et al. [95] consider Al′l = eiq·Rl′l ,
with Rl′l = Rl −Rl′ , and they show that this choice leads to the suppression of the
optical spin-wave modes in Γif (q, ω). With this particular choice, the probed system
is excited uniformly which leads to the acoustic mode only. Using arguments from
scattering theory, Rajeswari et al. [96] proposed Al′l = e−(zl′+zl)/λd eiq·Rl′l , where
zl is the distance between layer l and the surface of the film, and λd is the finite
penetration depth of the electron beam. This explains the experimental detection
of optical modes in the EELS experiment.

Here, we are solely interested in the spin-wave dispersion, rather than their
spectral line shapes and intensities, as they cannot be accessed within the spin-wave
adiabatic approximation since no electron-hole excitations or any other source of
damping is included. Therefore, we introduce Al′l = δl′l, which gives equal weight
to the contributions of each layer to the intensity of a given spin-wave mode, and
it yields the layer-resolved density of spin-wave excitations. This is an appropriate
choice to trace out the dispersion of each spin-wave branch throughout the entire
Brillouin zone without a parameter-dependent intensity function. We emphasize
that none of the choices mentioned above for Al′l affects the spin-waves energy dis-
persion, but only the intensities of the bands. The unfolding procedure is illustrated
in Fig. 5.2.1 for the trivial case of a trilayer with uniform nearest-neighbor magnetic
interaction, described in two ways: with a basis of one atom per layer and with a
basis of ten atoms per layer. The spin-wave dispersions computed from Eq. (5.2)
then comprise 3 and 30 branches, respectively, as can be seen in the figure. Applying
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Figure 5.2.1: Illustrating the unfolding scheme. The spin-wave dispersion of a uniform
trilayer is calculated using Eq. (5.2) with 1 atom per layer (red dashed lines) or 10 atoms
per layer (blue solid lines). We considered nearest-neighbour intralayer and interlayer
magnetic interactions J = 9 meV, a moment of 1µB for all atoms, and the lattice constant
aCo = 2.51 Å. The unfolding (green-yellow color map) is obtained via Eq. (5.6), with our
choice of Al′l = δl′l.

Eq. (5.6) to the case of the 30 bands shows that we recover the dispersion of the
case with 3 bands, due to the indistinguishability of the 10 atoms in each layer. The
uniform intensity of the bands throughout the Brillouin zone is a direct consequence
of our choice of Al′l.

5.3 Ground state properties

The atomic structure for Co/W(110) discussed in the next section was validated
with Quantum Espresso [97], using the Projector Augmented Wave method with a
kinetic energy cutoff of 50 Ry, in the Γ-point approximation. The magnetic moments
and the magnetic exchange interactions are obtained with the Green-function KKR
method in the Local Spin Density Approximation (LSDA), and the atomic sphere
approximation (ASA) with full charge density (angular momentum cutoff `max = 3),
which were introduced in Chapter 3. We consider a slab geometry with open bound-
ary conditions along the stacking direction, including two vacuum regions, each 6 Å
thick. The energy integration is performed in the upper complex energy plane, [72]
with 30 points in a rectangular path and 5 Matsubara frequencies, for a tempera-
ture T = 500 K. The two-dimensional (2D) Brillouin zone integration was performed
with a mesh of 30×30 and 5×20 k-points, for free-standing and supported films, re-
spectively. The magnetic exchange interactions are obtained from the infinitesimal
rotations of the magnetic moments as expressed in the Liechtenstein-Katsnelson-
Antropov-Gubanov (LKAG) formula [21]. For these calculations, the number of
Matsubara frequencies was increased to 10, with T = 100 K, and the k-mesh was
refined to 100×100 and 20×80, for free-standing and supported films, respectively.
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Figure 5.3.1: (a) Top view of a Co ML on W(110), in the 4×1 reconstruction. The dark
blue spheres represent Co atoms, while the gray ones are W atoms. The crystallographic
directions for bulk W are also indicated. Five Co atoms are covering four W atoms in the
[001] direction. (b) 2ML Co on W(110) in hcp stacking. The Co layer at the interface is
shown with dark blue spheres, while light blue spheres depicting the second Co layer.

5.3.1 Atomic structure

We consider two kinds of systems: free-standing Co films comprising 3–8 monolayers
(ML), with the bulk Co hcp structure, and Co films deposited on the W(110) surface
with the same coverage range, but following a reconstructed hcp structure found
experimentally [98–102]. The free-standing Co films are used to identify which
characteristics of the spin-wave dispersion arise from the reduced dimensionality
and which can be attributed to the W(110) substrate.

hcp cobalt grows pseudomorphically on W(110), up to a coverage of 0.7 ML.
Beyond that, a reconstruction of the cobalt structure takes place due to the large
lattice mismatch (aCo = 2.51 Å, aW = 3.16 Å). The mismatch between the W(110)
and the Co(0001) lattices is of 26% in the W[001] direction and 3% in the [110], and
it is relieved by a 4×1 reconstruction, where five Co atoms cover four W atoms in the
W[001] direction. This corresponds to a stretching of the bulk Co(0001) lattice by
1% along the W[001] and 3% along the W[110]. The resulting supercell contains 10
atoms in each Co layer and 8 in each W layer. Possible in-plane modulations of the
Co atomic positions and vertical relaxations have been considered in Ref. [100] and
in our calculations. They were found to have only a minor impact on the magnetic
exchange interactions, so we adopted a simplified structural model. Every Co atom
in a given layer is at the same height, and sits on a slightly distorted hexagonal
lattice, as shown in Fig. 5.3.1 (a); Fig. 5.3.1 (b) illustrates the hcp stacking of 2
ML Co on W(110). The vertical interlayer distance was fixed at the bulk values
similarly to the free standing Co films, dCo–Co = 2.03 Å and dW–W = 2.23 Å, while at
the interface dCo–W = 2.13 Å. The W(110) substrate is modeled using six W layers.
In total, we have between 132 atoms (3Co ML) and 182 atoms (8Co ML) in our
computational unit cell.
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Figure 5.3.2: Layer-resolved spin magnetic moments for free-standing and supported
Co films. For the supported films with n layers, Co layer 1 is the surface layer and Co n
is at the W(110) interface. The magnetic moments for the supported films are averaged
over the ten Co atoms in each layer, with the error bar indicating the spread.

5.3.2 Magnetic moments and electronic structure

We begin the investigation of the impact of the interface with W(110) on the
magnetic properties of Co thin films by analyzing some ground-state properties.
Fig. 5.3.2 compares the layer-resolved spin magnetic moments of free-standing Co
films with the layer-averaged values for Co/W(110) films. The magnetic moments
for the supported Co films are very close to those of free-standing films of the same
thickness, except for the Co layer at the interface with W(110). There the magnetic
moments are 30% smaller, and there is some variability among the ten Co atoms
comprising that layer, as indicated by the error bar in Fig. 5.3.2. The interfacial
W(110) layer acquires an average spin magnetic moment of 0.076µB, which is an-
tiparallel to the Co magnetic moments and insensitive to the thickness of the Co
film.

The explanation for the strong reduction of the magnetic moment of Co at the
interface is found in the hybridization of the Co d-states with the W d-states, as
seen in the layer-resolved density of states (LDOS), Fig. 5.3.3. Contrasting with
the LDOS for bulk-like layers, there is an increase of spectral weight near the Fermi
energy, which is responsible for the reduction of the spin magnetic moment of the
Co interface layer. A comparison with the electronic structure of free-standing films
of the same thickness reveals that the LDOS for the other Co layers is only weakly
disturbed by the presence of the W(110) interface; this also explains why the spin
magnetic moments are very similar for both kinds of systems, except for the interface
layer.
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Figure 5.3.3: LDOS for the 8Co/W(110) slab. The energy zero marks the Fermi energy.
Positive values correspond to the majority spin LDOS and negative ones to the minority
spin LDOS. (a) Comparison of the average LDOS for the Co layers at the interface and
in the middle of the Co film (bulk-like). (b) Comparison of the average LDOS for the
W layers at the interface and in the middle of the W film (bulk-like). The smearing of
bulk-like peaks and transfer of spectral weight to near the Fermi energy signal the strong
Co–W hybridization at the interface. These changes lead to reduced magnetic moments
for the Co layer at the interface, and also impact the magnetic exchange interactions.

5.3.3 Magnetic exchange interactions

First, we consider the nearest-neighbor interaction, see Fig. 5.3.4, where both the
intralayer and the interlayer couplings are shown. Significant changes are only ap-
parent for the Co layer at the W(110) interface, for which we find reduced intralayer
and interlayer couplings, comparing with the free-standing films.

The magnetic exchange interactions are fairly long-ranged, and they reflect the
symmetry of the electronic states that give rise to them. Fig. 5.3.5 shows some
representative cases: the intralayer magnetic exchange interaction between the first
Co atom in a given layer and all the others in the same layer, up to a cutoff of 30 Å.
In this figure, the value of J is multiplied by d2 (d being the distance between atoms)
to compensate for the decay with distance. The sign changes, which oscillates with
the distance, lead to the alternation between ferromagnetic and antiferromagnetic
interactions.

For thicker films, the Co layers away from the W(110) interface reproduce the
behavior of the freestanding Co films. The presence of the interface modifies the
long-range behavior of the magnetic interactions for the two Co layers next to it (see
the panels on the right-hand side of Fig. 5.3.5). This is in contrast with the change
in the spin magnetic moments and nearest-neighbor magnetic exchange interactions,
which are only significantly impacted by the Co layer in contact with W(110). The
symmetry of the pattern for slowly decaying interactions is also modified next to the
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Figure 5.3.4: Nearest-neighbour magnetic exchange parameter J among Co atoms, for
free-standing and supported Co films of different thickness. For Co/W(110), the interface
layers are on the right-hand side. The intralayer parameter for layer n is labeled by the
same integer, while the coupling between layers n and n+ 1 is labeled by n+ 1/2. For the
supported films, the average J is shown, with the spread given as an error bar. Due to
the Co–W hybridization, the coupling strength decreases for the Co layer at the interface.

interface, being reduced from hexagonal to twofold for the Co layer at the W(110)
interface.

5.3.4 Focusing origin

In Fig. 5.3.5), the anisotropic spatial dependence of the Jij’s and their slower decay
along the six nearest-neighbor directions arises from the hexagonal shape of the Co
d-bands in the Brillouin zone, near the Fermi energy, which we aim to demonstrate
next. First, we consider the shape of the layer-resolved Fermi surface contours for
the free-standing Co 8ML slab. The results are shown in Fig. 5.3.6 for the first four
layers (the other four are equivalent due to the mirror symmetry of the free-standing
film), together with the respective intralayer maps of the magnetic interactions. The
Fermi surface of the majority-spin channel features circular contours in the center of
the Brillouin zone and hexagon-like ones away from the center. These hexagon-like
bands have flat regions, which enhances the group velocity of the occupied electronic
states, mediating an enhanced magnetic interaction for pairs of atoms aligned with
their group velocity.

To corroborate our interpretation, we make use of a simple tight-binding model
with a single orbital per atom forming a 1ML hexagonal lattice. The Hamiltonian
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Figure 5.3.5: Maps of the intralayer magnetic exchange interactions in real space, for
3-8ML Co on W(110). Each map shows the magnetic exchange interaction, Jij , between
the first Co atom in a given layer, i, and all other Co atoms in the same layer, j, up to a
cutoff radius of 30 Å. The Jij are multiplied by d2, where d is the distance between the i
and j atoms. The panels on the right-hand side correspond to those of Co layers in the
vicinity of W.

reads
H = t

∑
〈ij〉σ

a†iσajσ + U
∑
i

(ni↑ − ni↓) , (5.7)

where t is the hopping parameter that connects nearest-neighbour atoms, and U cre-
ates the spin splitting of the two bands. The operator aiσ (a†iσ) annihilates (creates)
an electron with spin σ on site i, and niσ = a†iσaiσ is the number operator. Using
the translational symmetry of the system, the Hamiltonian can be transformed into

H =
∑
kσ

Hkσ =
∑
kσ

(tk + Uσ) a†kσakσ (5.8)

where Uσ = +U,−U for σ =↑, ↓, respectively. And

tk = t
∑
〈i,j〉

eik·Rij and ak =
1√
N

∑
j

eik·Rjaj . (5.9)

From this model one can easily calculate the magnetic exchange coupling via the
LKAG formula [21] that provides the connection between the electronic structure
and the magnetic exchange interactions, as discussed in Chapter 3:

Jij =
U2

π

∫ EF

Im Tr[Gij↑(E)Gij↓(E)] dE , (5.10)
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Figure 5.3.6: Panel (a) shows the intralayer Jij maps for the first layers of a 8ML
Co free-standing slab. Panels (b) and (c) present the correspondent layer-resolved Fermi
surface contours for the majority and minority spin channels, respectively. The Jij are
multiplied by d2, where d is the distance between the i and j atoms.

where the real space Green-function is given as

Gijσ(E) =
1

ΩBZ

∫
e−ik·RijGkσ(E) dk , (5.11)

and

Gkσ(E) =
1

E − E0 −Hkσ + iη
, (5.12)

where E0 corresponds to the center of mass of the band and η → 0.

The DOS of this model is shown in Fig. 5.3.7. Fig. 5.3.8 displays the Fermi
surface contours for Fermi energies marked in Fig. 5.3.7. In the left column (panels
(a), (c) and (e)), the Fermi energy is set near the bottom of the two bands, where
the energy band dispersion is almost isotropic, see panels (c) and (e). In the right
column (panels (b), (d) and (f)), the Fermi energy is chosen to match the Van Hove
singularity of the majority spin band, arising from the hexagonal shape of the energy
dispersion. The real-space map of the magnetic exchange interactions for both cases
is shown in panels (a) and (b). Panel (a) shows a very isotropic map, mainly
marked by the periodic radial oscillation associated with Fridel oscillation. Panel
(b) shows the impact of the hexagonal shape of the energy bands near the Fermi
energy, featuring a sixfold-symmetric focusing pattern. We thus have illustrated our
proposition that the anisotropy of the magnetic exchange interactions in real space
is a direct consequence of the anisotropy of the electronic energy bands in reciprocal
space that mediate the interactions (see similar effects obtained with adatoms in
Refs. [103–106]).
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Figure 5.3.7: Total density of states of the two-band model given in Eq. (5.7). The
dashed lines mark a Fermi energy near the bottom of the two bands (left), and another at
the Van Hove singularity (right). The correspondent Fermi surface is almost isotropic in
the first case, and very anisotropic in the other; see Fig. 5.3.8. t = −1, U = 1, E0 = −4,
and η = 0.1 a.u.

5.4 Spin-wave dispersions

Having characterized the ground-state magnetic properties of the Co films, we can
finally understand the properties of the spin-wave dispersions.

5.4.1 Free-standing versus supported films

The spin-wave dispersions for the free-standing and supported Co thin films are cal-
culated within the adiabatic approach described in Sec. 5.2, initially for a thickness
of 8ML, as shown in Fig. 5.4.1. The blue lines are the results for the free-standing
film, while the gray lines stand for the supported film. The large number of spin-
wave bands in the supported film is due to the lateral inhomogeneity arising from
the surface reconstruction, and a priori it is unclear how a comparison with the
free-standing case can be made. This is answered by the unfolding procedure sum-
marized in Eq. (5.6), the result being shown as the background color map. One can
then focus on the unfolded dispersion of the supported film when comparing to the
free-standing calculation.

There are two main points of interest when comparing the free-standing and
supported calculations. First, we consider the spin-wave energies at q‖ = 0. For ex-
ample, the second spin-wave branch (first optical mode) for the 3ML free-standing
film is slightly higher in energy than for the 3ML W-supported film, while for the
4 and 5ML thicknesses the ordering is reversed. However, these energy differences
decrease for thicker slabs (which is also true for other modes). These energy gaps
between the different modes at q‖ = 0 are mainly determined by the interlayer ex-
change coupling, which is modified only near the Co/W interface. For thicker films,
the contribution from the interface becomes less important, and both free-standing
and supported films should become similar. Also, the higher-energy modes are more
strongly affected by the substrate. Returning to the 8Co/W film of Fig. 5.4.1, we
observe that the first four modes are very close to the corresponding free-standing
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Figure 5.3.8: Jij maps for two different Fermi energies (a) EF = −8 a.u. and (b)
EF = −3 a.u. Panels (c) and (e) are the majority and minority Fermi surface contours for
EF = −3 a.u., respectively, and panels (d) and (f) are the majority and minority Fermi
surface contours for EF = −8 a.u. The Jij are multiplied by d2, where d is the distance
between the i and j atoms. t = −1, U = 1, E0 = −4, and η = 0.1 a.u.

ones in the small-q region, while the higher modes still differ.
The second point of interest is the stiffness of the spin-wave branches, which

indicates how strongly the spin-wave energy increases with the wavevector. We find
that, for all modes and all thicknesses, the stiffness is larger for the free-standing
films than for the supported ones. Therefore, the substrate softens the spin-waves.
This is more pronounced for the first mode (also known as the acoustic mode),
where the result of the two calculations spread apart for wavevectors larger than

about 0.3 Å
−1

to 0.4 Å
−1

, as can be seen in Fig. 5.4.1.
In the small wavevector regime, the spin-wave dispersions are quadratic,

En(q‖) ≈ En(0) +Dnq
2
‖ , (5.13)

where Dn is the stiffness constant of the n-th mode. A full comparison between
the stiffnesses of different modes in different thicknesses for both free-standing and
supported films is shown in Fig. 5.4.2. In addition, Fig. 5.4.2 also shows the experi-
mental stiffnesses extracted from the dispersion published in Ref. [24]. We defer the
comparison between theory and experiment to the next section, where the experi-
mental data is also plotted in Fig. 5.4.4. The quadratic fit to Eq. (5.13) was applied
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Figure 5.4.1: Spin-wave dispersion for the free-standing and W-supported 8ML Co film
(blue and gray lines, respectively). The color map corresponds to the unfolded dispersion
for the supported films, Eq. (5.6), with a Lorentzian broadening of width 4 meV. The
intensity of the color map is in arbitrary units.

to the dispersion curves in the range q‖ ∈ [0.0, 0.3] Å
−1

. As pointed out before, one
can observe that systematically the free-standing films have higher stiffness, with
the differences to the supported films being larger for higher modes and thinner
films.

To unravel the impact of the substrate on the spin-wave dispersions, we discuss
a simplified magnetic interaction model, using only nearest-neighbor couplings. We
have learned in Sec. 5.3 that the tungsten substrate mainly decreases the following:
(a) the intralayer coupling of the Co interface layer (Fig. 5.3.4); (b) the interlayer
coupling between the Co interface layer and the adjacent Co layer (Fig. 5.3.4);
and (c) the magnetic moment of the Co interface layer (Fig. 5.3.2). To establish
the qualitative impact of each of these factors on the spin-wave dispersions, we
parametrized a nearest-neighbor model for an 8ML film with the data of Figs. 5.3.2
and 5.3.4, which pertain to the free-standing case. The resulting dispersions are
shown with black-dashed lines in all panels of Fig. 5.4.3, and they will serve as a
reference.

In Fig. 5.4.3 (a), we decreased by 60% the intralayer exchange coupling of the
last Co layer (ratio taken from Fig. 5.3.4). Comparing with the reference model
(black-dashed), the main differences are the strong reduction of the acoustic mode
stiffness and the lowering of its energy throughout the Brillouin zone. Fig. 5.4.3 (b)
shows the impact of decreasing by 50% only the interlayer coupling between the last
Co layer and the adjacent one. Almost all spin-wave branches are modified, and
their energy lowered, but the overall bandwidth is mostly preserved. The acoustic
mode is lowered only next to the border of the Brillouin zone (the crossing point of
the higher branches). Fig. 5.4.3 (c) reveals that reducing only the magnetic moment
of the last Co layer by 30% (Fig. 5.3.2) leads to a very small deviation from the
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Figure 5.4.2: Stiffness constants obtained from fitting the spin-wave branches of
Fig. 5.4.4 to Eq. (5.13). Blue refers to the free-standing calculations while green stands for
the supported case. Red indicates the stiffness of the experimental data[24]. For all fits,

only points with q‖ < 0.3 Å
−1

were considered. Circles correspond to the first (acoustic)
mode, squares to the second mode, and triangles to the third one. The inset presents the
same data as above with free-standing and supported results rescaled down by 30%, as
will be discussed in Sec. 5.4.2. The supported films capture the experimental trends better
than the free-standing ones.

reference model, except for the highest branch, which gets pushed higher in energy.
Lastly, Fig. 5.4.3 (d) shows the result of combining all three modifications. Most of
the characteristics of the full calculations of Fig. 5.4.1 are present: changes in En(0),
the reduction of the stiffness of the modes, and the lowering of the acoustic mode.

5.4.2 Theoretical vs experimental dispersion

We saw that the theoretical stiffnesses are systematically higher than the experi-
mental ones [24]. Fig. 5.4.2 shows that the stiffnesses of the acoustic mode range

from 450 to 600 meV Å
2

for both free-standing and supported calculations, while

the experimental ones range from 200 to 300 meV Å
2
. One possible reason for the

discrepancy is the sensitivity of the fit to the available experimental data. On the
one hand, the number of experimental data points in this range is rather small,
and the spin-wave energies cannot be experimentally determined for q‖ → 0 due to
limitations of the EELS technique [24]. On the other hand, including experimental
data at higher q‖ also increases the uncertainty in the fitting procedure, due to the
difficulty in extracting the spin-wave energies from broad experimental peaks [24].

It is also known that DFT in the LSDA overestimates the exchange splitting of
metallic ferromagnets, such as Co and Ni, and consequently their magnetic moments
and magnetic exchange coupling. In the work of Müller et al. [107], it is reported that
LSDA calculation for bulk fcc cobalt leads to an exchange splitting 30% higher at
Γ′25 (even 55% at Γ12) with respect to the experimental value. The same work points
to a way for an improved description of the electronic structure, based on many-
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Figure 5.4.3: Dispersion curves for a nearest-neighbor Heisenberg model of an 8ML Co
film, based on the parameters given in Figs. 5.3.2 and 5.3.4 for the free-standing films. The
black-dashed lines in all panels represent the result obtained with unmodified parameters,
while the solid lines show the dispersion upon the following changes: (a) The intralayer
coupling of the last Co layer is reduced by 60%. (b) The interlayer coupling between the
interface Co layer and its adjacent layer is reduced by 50%. (c) The magnetic moment of
the interface Co layer is reduced by 30%. (d) The effect of combining all the changes in
the parameters.

body perturbation theory. However, such methods are already computationally very
demanding for bulk systems containing just a few atoms in the unit cell, which makes
them unfeasible for the structurally complex thin films we considered.

Reference [107] also pointed out that an alternative is to rescale the exchange
splitting self-consistently in the LSDA calculation, Bxc → αBxc, which then renor-
malizes the magnetic parameters of the Heisenberg model computed from first-
principles. Unfortunately, the magnitude of the rescaling is unknown a priori. The
magnetic interactions are affected in a nonlinear way by α, as we verified in our
calculations. We note that an empirical reduction of J(q) by 15% was already ex-
plored in Ref. [108], to bring theoretical and experimental results for fcc Co/Cu(001)
into an agreement. For free-standing hcp cobalt films, we observed that reducing
the exchange splitting up to 20% (α = 0.8) has an overall effect of rescaling the
exchange interactions, but by a different factor, J(q) → β J(q). For an 8ML free-
standing Co film, a reduction of the magnetic interactions by 30% (β = 0.7) is
approximately obtained from a rescaling of the exchange splitting in the 10-20%
range (α ∈ [0.8, 0.9]).

Figure 5.4.4 shows the theoretical results with the 30% reduction of J , together
with the experimental data of Ref. [24]. We obtain very good agreement with
the experimental results, in particular for the supported films. A single rescaling
parameter is enough to describe well both the energies of the standing modes (q‖ = 0)
and the stiffnesses, for all film thicknesses and modes (only small deviations remain
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Figure 5.4.4: Comparison of calculated (lines) and experimentally measured spin-wave
dispersions (squares, from Ref. [24]) for several thicknesses. The thin lines are the spin-
wave branches obtained for the free-standing films, while the thick green-yellow lines (ac-
tually a color map) correspond to the unfolded dispersion for the W-supported films,
Eq. (5.6). In the unfolding scheme, a Lorentzian broadening of width 4 meV was consid-
ered. The magnetic exchange coupling has been uniformly rescaled down by 30%.
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for the third mode of 7 and 8ML films). The inset in Fig. 5.4.2, comparing the
experimental stiffnesses with the rescaled theoretical ones, highlights that our results
for the supported films capture much better the trends in the experimental data.
Such a simultaneous match can not be achieved with the free-standing films, even by
changing β arbitrarily. For example, if we adjust β to obtain good agreement for the
optical mode energies at q‖ = 0 of the 4-5ML films, then the computed dispersions
become much stiffer than the experimental ones; the optical mode energies at q‖ = 0
for 6-8ML films that were already matching well would then go off. As explained in
the previous sections, the Co-W hybridization at the interface endows the supported
film dispersions with the right features, q‖ = 0 energies and stiffnesses, reproducing
the characteristics of the experimental data. For reference, a direct comparison of
the theoretical results without rescaling with the experimental measurements can
be found in Appendix 5.B.

5.5 Conclusions

The agreement between theoretical calculations and experimental measurements,
shown in Fig. 5.4.4, required a rescaling of the magnetic interactions strength, at-
tributed to the expected overestimation of the spin splitting in the first-principles
calculations. We have explored other possibilities for the discrepancy between theory
and experiment. One might wonder if the failure lies with the adiabatic approach
for the calculation of the spin-wave excitations. Ref. [94] performed calculations for
a Fe ML on W(110), comparing the results of the adiabatic approach to those in-
cluding the coupling to the Stoner continuum, and found no substantial differences.
However, this can be system-dependent. Recently, another possible explanation was
put forward: finite-temperature softening of the spin-wave dispersion, as seen by
calculating the dynamical structure factor for Fe overlayers on Ir(001) [109]. The
idea is that temperature leads to a finite canting angle of the neighboring magnetic
moments, which can reduce the strength of the magnetic exchange interactions [110].
However, the temperature can only play a role if the Curie temperature is close to
the experimental temperature, which does not seem to be the case for Co/W(110),
judging from the strength of the magnetic interactions. In short, the blame seems
to lay on the LSDA approximation, and a computationally efficient first-principles
correction to the spin splitting remains to be found.

We demonstrate in this chapter that the interface matters in determining the
dispersion of the spin-waves of the entire magnetic thin film. Our first-principles
calculations provided an extensive theoretical characterization of the impact of the
tungsten substrate on the spin-waves of the cobalt ultrathin films. We found that
only the Co layer directly at the interface with W is strongly affected, leading to
a reduced spin moment, and weakened intralayer and interlayer magnetic exchange
interactions. The qualitative differences between the spin-wave dispersions of free-
standing and W-supported films are well explained by a simple nearest-neighbor
Heisenberg model, which takes into account the changes in the magnetic properties
of the Co layer at the interface. Taking into account the likely overestimated spin
splitting of Co in the first-principles calculations, we found that good agreement
with available EELS measurements could be reached for a realistic reduction of the
strength of the magnetic exchange interactions.
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Having validated our method with the rather complex material treated in this
chapter, we are in a position of computing inelastic-scattering spectrum for non-
collinear magnets, which we will do in the next chapter.
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Appendix

5.A Spin-wave eigenvalues and eigenvectors of in-

homogeneous ferromagnets

In this section, we want to write down the spin equation of motion that determines
the spin waves in inhomogeneous ferromagnets with more than one atom in the
unit cell. Only the magnetic exchange interaction is considered, as described by the
Hamiltonian in Eq. (5.1). A given spin in the system rests at position Riµ = Ri+Rµ,
where Ri points to the origin of unit cell i and Rµ points, within the unit cell, the
position of the basis atom µ. Thus, the effective field that applies a torque in Siµ,
and given by Eq. (2.80), is generalized to

Beff
iµ =

∑
jν

Jiµ,jνSjν . (5.14)

The equation of motion in Eq. (2.80) then becomes:

dSiµ
dt

=−
∑
jν

[
Jiµ,jν

(
SyiµSν − SµS

y
jν

)]
x̂

−
∑
jν

[
Jiµ,jν

(
SµS

x
jν − SxiµSν

)]
ŷ ,

(5.15)

where we considered the spin motion to consist of small precession around the z–axis
implying in Sxiµ, S

y
iµ � 1, and Sziµ ≈ Sµ. To decouple the equation of motion for each

of the components of the spin, we introduce the circular components of the spins as
given by Eq. (2.84), such that we obtain:

i
dS+

iµ + S−iµ
dt

=
∑
jν

[
Jij
(
Sν(−S+

iµ + S−iµ) + Sµ(S+
jν − S−jν)

)]
i
dS+

iµ − S−iµ
dt

=
∑
jν

[
Jij
(
Sν(−S+

iµ − S−iµ) + Sµ(S+
jν + S−jν)

)]
.

(5.16)

From these two equations, we can get other two by summing or subtracting them,
obtaining decoupled equations for the spin circular components:

−i
dS+

i

dt
=S

∑
jν

[
Jiµ,jν

(
SνS

+
iµ − SµS+

jν

)]
i
dS−i
dt

=S
∑
jν

[
Jiµ,jν

(
SνS

−
iµ − SµS−jν

)]
.

(5.17)
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We can exploit the system’s translational symmetry via the lattice Fourier transform:

S±kµ =
1√
N

∑
i

e−ik·RiS±iµ , S±iµ =
1√
N

∑
k

eik·RiS±kµ . (5.18)

Then, by left multiplying Eq. (5.17) by 1√
N

∑
i e
−ik·Ri , one gets

−i
dS+

µ (k, t)

dt
=S+

µ (k, t)
∑
ν

Jµν(0)Sν − Sµ
∑
ν

Jµν(k)S+
ν (k, t)

i
dS−µ (k, t)

dt
=S−µ (k, t)

∑
ν

Jµν(0)Sν − Sµ
∑
ν

Jµν(k)S−ν (k, t) ,

(5.19)

where the Fourier transformed exchange interaction matrix was defined as

Jµν(k) =
∑
i

eik·RijJiµ,jν . (5.20)

Finally, by taking the temporal dependence in the form S±µ (k, t) = S±µ (k)e−iω±k t,
where S±µ (k) is now only a time-independent complex amplitude, we obtain

∓ω±S±µ (k) =
∑
ν

S±µ (k)Jµν(0)Sν −
∑
ν

SµJµν(k)S±ν (k) . (5.21)

After a few manipulations:

∓ω±S±µ (k) =
∑
ν

Sν
∑
ξ

δξµJξν(0)S±ξ (k)− Sµ
∑
ν

Jµν(k)S±ν (k)

∓ω±S±µ (k) =
∑
ξ

Sξ
∑
ν

δνµJνξ(0)S±ν (k)− Sµ
∑
ν

Jµν(k)S±ν (k)

∓ω±S±µ (k) =
∑
ν

(∑
ξ

SξδνµJνξ(0)− SµJµν(k)

)
S±ν (k) ,

(5.22)

we can rewrite Eq. (5.21) as

∓ω±r S±rµ(k) =
∑
ν

J̃µνS
±
rµ(k) , (5.23)

whose the eigenvalues ∓ω±r associated with the spin-wave mode r is obtained by
diagonalizing the matrix

J̃µν =δνµ
∑
ξ

SξJνξ(0)− SµJµν(k) . (5.24)

In general, this matrix is not hermitian, therefore, an appropriated diagonalization
is to be performed following the steps discussed in Sec 2.4.2.
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Figure 5.B.1: Comparison of calculated (lines) and experimentally measured spin-
wave dispersions (squares, from Ref. [24]) for several thicknesses. The thin lines are
the spin-wave branches obtained for the free-standing films, while the thick green-yellow
lines (actually a color map) correspond to the unfolded dispersion for the W-supported
films, Eq. (5.6). In the unfolding scheme, a Lorentzian broadening of width 4 meV was
considered.

5.B Direct theory-experiment comparsion

In Fig. 5.4.4 we have shown that a comparison between the theoretical results with
the exchange coupling reduced by 30% and the experimental data of Ref. [24], led to
very good agreement, especially for the calculation of cobalt deposited on tungsten.
Here, we also present a direct comparison using unscaled parameters obtained by
first-principles; see Fig. 5.B.1. The spin-wave stiffnesses and q‖ = 0 energies are
overestimated in the theoretical results, which led us to explore possible explanations
for this disagreement, as described in the main text.
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Chapter 6

Spin-resolved electron-energy-loss
spectroscopy (SREELS)

After having studied ferromagnetic systems in the previous chapter, we now turn
our focus onto noncollinear magnetic textures. We are interested in how inelastic
electron scattering, being suitable for investigations of surfaces and thin films, can
detect the collective spin-excitation spectra of noncollinear magnets, and what kind
of information we can acquire through it. We take as an example a hexagonal lat-
tice of spins in three of its magnetic phases: a spin spiral, a topologically-nontrivial
skyrmion lattice, and the ferromagnetic phase serving as a reference. To reveal the
particularities of spin waves in such noncollinear samples, we propose the usage
of spin-resolved electron-energy-loss spectroscopy augmented with a spin analyzer,
which would allow to experimentally access different elements of the spin-spin corre-
lation tensor introduced in Chapter 4. With the spin analyzer detecting the polariza-
tion of the scattered electrons, four spin-dependent scattering channels are defined,
permitting to filter and select specific spin-wave modes. Then, we demonstrate that
counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip scat-
tering processes can generate spin waves in noncollinear substrates. The obtained
dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic
nature of the material. This chapter is also based on Ref. [26] written by the author
of this dissertation.

6.1 Introduction and motivation

Recently and as mentioned in Chapter 1, exquisite magnetic states related to chiral
interactions in noncentrosymmetric systems have been discovered and intensively
investigated. They are noncollinear magnetic structures such as skyrmions and
antiskyrmions, magnetic bobbers and spin spirals, which are at the heart of many
proposals for future information nanotechnology [7–10, 111]. These states arise from
the delicate balance of internal and external interactions, such as the magnetic ex-
change, Dzyaloshinskii-Moriya and magnetic fields, which can trigger topologically
nontrivial properties [12, 112–114]. Most important for applications is the formation
of these complex spin textures in ultrathin films, given that they can be tailored by
the structure and composition of heterogeneous multilayers [15, 114, 115]. Concur-
rently, spin waves have been explored for their potential application in spintronic
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and magnonic devices [4, 5, 116–118]. However, the behavior of spin waves in these
noncollinear systems is only now beginning to be understood [13, 119–127].

Do spin waves inherent special properties due to the topology of the magnetic
structure that may lead to revolutionary applications? To start answering this ques-
tion, we need to understand the manifestation of spin waves in these novel magnetic
phases: how they may be excited, controlled and detected. Noncollinear magnetic
structures intrinsically feature many spin-wave bands (or modes) due to the break-
ing of translational and rotational symmetries, as we showed in Chapter 2. However,
only a few of them can be excited or detected by a given experimental setup. Thus, a
discussion of spin-wave excitations must go together with the exciting/probing tech-
nique. On the one hand, inelastic neutron-scattering and microwave resonance have
been used to investigate collective spin-excitations in bulk chiral helimagnets and
two-dimensional skyrmion lattice [120, 121, 123, 126]. While the first lacks surface
sensitivity, the second is restricted to excitations near the Γ–point, as mentioned in
Chapter 4. On the other hand, inelastic electron scattering has been applied with
great success to study spin waves in ultrathin films [17, 18, 24, 25, 88, 128–132], due
to the large scattering cross section of the electrons. However, to the best of our
knowledge, it has only been employed for ferromagnets. The same is true from the
theoretical side [85, 133].

Currently, inelastic electron scattering to study spin waves is performed in two se-
tups, the electron-energy-loss spectroscopy (EELS) and the spin-polarized electron-
energy-loss spectroscopy (SPEELS). While the first allows for great energy reso-
lution, the second is necessary to fully characterize spin waves in ferromagnets,
including their angular momenta [18, 24, 25]. To investigate these spin excitations
in noncollinear magnets, we need to go beyond.

6.2 Experimental proposal

We propose an experimental setup based on SPEELS [17, 18], but adding a spin-
filter to the scattered electrons, which we will call spin-resolved electron-energy-loss
spectroscopy (SREELS), see Fig. 6.2.1. It consists of preparing a spin-polarized
monochromatic electron beam, which then scatters from the first few layers of the
sample surface. Scattered electrons may exchange energy, angular and linear mo-
mentum due to the creation or annihilation of spin waves. By the conservation
laws of these quantities, measuring their exchanges informs upon spin-wave states
of the magnetic system. An incoming beam with up or down spin polarization gen-
erates outgoing electrons in a quantum superposition of up and down states, due to
atomic spin moments not aligned with the beam polarization axis. Then, by filter-
ing the spin of the outgoing electrons, two non-spin-flip scattering channels, up-up
and down-down, and two spin-flip ones, up-down and down-up, are defined. The
meaning of these channels will be discussed later with specific examples.

We consider an incoming (outgoing) beam with energy Ei (Ef), wavevector ki

(kf), and spin projection si (sf), which interacts with a sample held at zero temper-
ature, i.e., in its ground state. These variables define the energy absorbed by the
sample ω = Ei−Ef , and the linear and angular momentum transferred, q = ki−kf

and m = si − sf , respectively. There are thus three distinct angular momentum
scattering channels, m = 0,±1, according to the four possible combinations of si
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Figure 6.2.1: Schematic picture of spin-resolved electron-energy-loss spectroscopy
(SREELS). A monochromatic spin-polarized (SP) electron beam is aimed at the surface of
a noncollinear magnetic sample. The magnetic noncollinearity leads to a mixed spin state
of the outgoing electrons. These are then collected for spectroscopical analysis, having
both their energy and spin characterized.

and sf .
As discussed in Chapter 4, we assume that the electrons couple with the atomic

spins via a local exchange interaction σ · Sµ, where µ labels the basis atom in the
unit cell, σ is the Pauli vector describing the electron spin, and Sµ is the vector
operator describing the atomic spin. Starting from the Schrödinger equation for the
coupled system of electron beam and magnetic sample, time-dependent perturbation
theory leads to Fermi’s Golden Rule for the transition rate between initial and final
electron states, as given by Eq. (4.28), reads:

Γif (q, ω) ∝
∑
αβ

σαsisfσ
β
sf si

∑
µν

eiq·RµνN αβ
µν (q, ω) . (6.1)

Here α, β = +,−, z, σ± = (σx ± iσy)/2, and σαsisf = 〈si|σα|sf〉 with z being the
spin quantization axis of the beam polarization. The wave nature of the electron
beam leads to the Fourier factor connecting the basis atoms in the unit cell (Rµν =
Rν −Rµ), and is responsible for the unfolding of the spin-wave modes, as discussed
in Chapter 5. The information about the spin excitations of the sample is contained
in the spin-spin correlation tensor, given by Eq. (4.43):

N αβ
µν (q, ω) = 2

√
SµSν

∑
r

δ
(
E0 + ω − Er(q)

)
×[

Oα+
µ (R++

µr (q))∗ +Oα−
µ (R−+

µr (q))∗
] [
Oβ+
ν R−+

νr (q) +Oβ−
ν R++

νr (q)
]

,

(6.2)
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where Oµ is the rotation matrix that maps the local reference frame of the µ–th spin
into the global frame. Rr(q) and Er(q) represent the eigenvector and eigenvalue
associated with the r–th spin-wave mode as obtained via the Bogoliubov trans-
formation in Sec. 2.4.2. It is the possibility of accessing different elements of the
N αβ
µν (q, ω) tensor in distinct SREELS spin channels that provides unique information

about the spin-excitations of complex noncollinear magnets, as will be demonstrated
in the following.

6.3 SREELS of different magnetic phases

We illustrate the significance of the general result discussed above with a hexagonal
monolayer model as depicted in Fig. 6.3.1 (a), which is described by the following
Hamiltonian:

H =− 1

2

∑
〈i,j〉

(
J Si · Sj +D n̂ij · (Si × Sj)

)
−B

∑
i

Szi −K
∑
i

(Szi )2 , (6.3)

which was previously discussed in Sec. 2.1.6. The sums run over all lattice sites
i and over all nearest-neighbor pairs 〈i, j〉 with its lattice constant taken as the
unit of length (a = 1). J is a positive constant for an isotropic magnetic exchange
interaction favoring, therefore, a ferromagnetic alignment between spins. D is the
coupling parameter of the Dzyaloshinskii-Moriya interaction, which favors canting of
the spins. Its direction is n̂ij = ẑ×R̂ij, orthogonal to both the bond direction and the
normal to the monolayer plane, as shown in Fig. 6.3.1 (a). Such DMI configuration
favors the formation of cycloidal spin spirals. B is the external magnetic field and
K is the uniaxial anisotropy. The atomic spin is set to S = 1 and J is taken as the
unit of energy, defining the remaining model parameters as D = J , B = 0.36 J and
K = 0.25 J . We then construct N αβ

µν (q, ω) by calculating the spin waves states of
this model within the adiabatic approach, as explained in Sec. 2.4. We now apply
our formalism to three different magnetic states.

6.3.1 Ferromagnet

With D = 0, the ground state of the spin model is ferromagnetic and its total spin
is maximal, see Fig. 6.3.1 (b). With the polarization of the beam parallel to the
spin of the sample, we find only one active inelastic scattering channel, the down-up,
shown in Fig. 6.3.1 (d). The spectrum was calculated through the reciprocal space
path depicted in Fig. 6.3.1 (c), where we observe a single and continuous spin-wave
branch. This spectrum corresponds to the creation of collective excitations with
angular momenta of −1. That is, spin waves in ferromagnetic systems have spin
angular momenta opposite to the spins of the ground state. And that is why we find
no signal from spin waves in any of the other SREELS spin channels, as discussed
in Sec. 4.1.4. This is the picture familiar from (SP)EELS experiments [17, 18, 23].
In Fig. 6.3.1 (d), we observe the energy minimum at the Γ–point, where the energy
gap is caused by the external magnetic field and the magnetic anisotropy.

For the ferromagnetic state, we only need one magnetic site per unit cell. Had we
chosen an atom basis with more atoms, such as the one we used for Fig. 2.5 (a), we
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(a) (b) (c)

(d)

Figure 6.3.1: (a) The hexagonal lattice spin model. We consider only nearest-neighbor
interactions. The red arrows represent the DMI vectors that can lead to spin spirals and
skyrmion lattices. (b) In the absence of the DMI, the ground state is a ferromagnetic
phase. (c) The reciprocal-space path through which we calculated the SREELS spectra.
(d) SREELS down-up scattering channel for the ferromagnetic phase, the only one nonva-
nishing for this spin configuration when the polarization of the probing electrons is parallel
to the spins of the magnetic system.

would have gotten many spin-wave modes. Calculating the inelastic scattering spec-
trum does the work of unfolding the spin-wave dispersion as discussed in Chapter 5,
which recovers the picture of one atom per unit cell.

6.3.2 Spin spiral

Keeping now only J and D in the spin model, the ground state becomes a spin-
spiral. We considered a cycloidal spin spiral of wavevector Q = Q ŷ. Its energy is
minimized by Q = α/d, where α = arctan(

√
3D/2J) and d = a

√
3/2 is the distance

between rows of parallel spins, as was demonstrated in Sec. 2.2.2. For convenience,
we set D = 2J/

√
3 leading to a spin-spiral wavelength λ = 8d, as in Fig. 6.3.2 (a).

This magnetic state has zero net magnetization.

Figure 6.3.2 (c-d) shows the spin-resolved inelastic electron scattering spectra
calculated from Eq. (6.1) on the path of Fig. 6.3.2 (b). We considered the electron
beam polarization along z — up and down are defined with respect to this axis. The
spin-conserving channels (m = 0) always present the same response, because they
measure scattering processes that have zero net angular momentum and, therefore,
are insensitive to the spin of the probing electrons. Here, the spin-flip channels are
equivalent because of the symmetry of the magnetic structure with respect to z.
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Figure 6.3.2: Spin-waves for a spin-spiral structure, beam polarization along z. (a)
Spin-spiral ground state and crystallographic axes. The red and blue arrows correspond
to the two considered spin polarizations of the electron beam. (b) Path in reciprocal space
being considered for the calculations of the SREELS spectra. These are shown in (c)
for the spin-conserving channels, and in (d) for the spin-flip channels. The arrow pairs
indicate the initial and final electron spin polarization for each channel. (e-g) Sketch of the
low-frequency motion of the net atomic spin for the three spin-wave modes with minima
in −Q, +Q and Γ, respectively.
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Figure 6.3.3: SREELS spectra for spin-waves in a spin-spiral as in Fig. 6.3.2. Here, the
beam polarization is along x, which is aligned with the precession axis of the spin-waves.
Thus, each scattering channel probes a single spin-wave mode.

Three modes are clearly observed in the spin-flip channels, Fig. 6.3.2 (d), as sharp
and well-defined dispersing features through the M–Γ–M path. They have energy
minima in −Q, Γ and +Q, which we will use to label them. These modes are the
three universal helimagnon modes [120], in contrast to the single Goldstone mode
in ferromagnets, such as the one shown in Fig. 6.3.1 (d). For low frequency, the
−Q and +Q are excitations that yield a net atomic spin rotating counter-clockwise
and clockwise, respectively, in the z − y plane, see Fig. 6.3.2 (e-f). For the Γ–
mode, however, the total atomic spin does not rotate but oscillates linearly along
with the x–axis, as in Fig. 6.3.2 (g). Note the highly anisotropic dispersion-relation
around the Γ–point. It is linear or quadratic for spin-waves propagating parallel
or transversal to Q, respectively, as seen in Fig. 6.3.2 (d), paths M–Γ–M and K–
Γ–D [119, 134]. Furthermore, Fig. 6.3.2 (c-d, path D-E) shows the formation of
one-dimensional spin-waves, as indicated by the dispersionless bands [120, 135].

The dynamics of the spin-wave modes depicted in Fig. 6.3.2 (e-g) indicates the
x–axis as the natural quantization axis. It defines left and right spin projections.
An incident electron with up or down polarization corresponds to a superposition of
left and right spinors with respect to the x–axis. The −Q (+Q) mode can be excited
by an electron with left (right) polarization, which then undergoes a spin-flip and
goes out with right (left) polarization. Therefore, −Q and +Q are seen by the spin
detector as a superposition of the up and down polarizations, and this makes them be
detected in all channels. Due to quantum interference, the Γ–mode disappears from
the non-spin-flip channels, and it is intensified in the spin-flip ones, see Fig. 6.3.2 (c-
d). Now, if we rotate the polarization of the electron beam to be aligned with the
x–axis, each mode will appear in a distinct scattering channel, as demonstrated
in Fig. 6.3.3. Also, overall the intensities are higher now with the polarization
axis along the spin-wave precession axis. In practice, controlling the polarization
direction of the beam and of the spin detector, which indeed are independent, allows
SREELS to select or render undetected certain spin-wave modes.

6.3.3 Skyrmion lattice

An increasing external magnetic field is responsible for deforming the spin-spiral
phase into a conical state, then into the skyrmion lattice [123]. We concentrate
on the skyrmion lattice shown in Fig. 6.3.4 (a), which was obtained via numerical
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energy minimization using an atomistic-spin-dynamics simulation. The polarization
of the electron beam is again along z. Fig. 6.3.4 (c-e) shows the SREELS spectra on
the path displayed in Fig. 6.3.4 (b). Fig. 6.3.4 (c) demonstrates that the spin-wave
spectrum of a skyrmion lattice inherits the two-mode structure found for the spin
spiral (see Fig. 6.3.2 (c), although both branches are now much broader. Contrary
to the usual spin-wave broadening due to coupling to phonons or electrons [89, 136,
137], here it originates in the noncollinearity of the magnetization. Note that the
down-up spectrum in Fig. 6.3.4 (d) has overall a higher intensity than the up-down
one in Fig. 6.3.4 (e), due to the upward total atomic spin of the system. Still
in Fig. 6.3.4 (d), around Γ we observe that the gapless feature has a quadratic
dispersion, while the one with a minimum at ω/J ∼ 3 disperses linearly.

Fig. 6.3.4 (f-h) depicts the time evolution of the spin-wave modes responsible
for the high-intensity spots at the Γ–point in the various channels. The color maps
represent the z–component of the local atomic spins, and the arrows illustrate the
total atomic spin. The hotspot in the non-spin-flip channels, Fig. 6.3.4 (c), is due
to a breathing mode, where the skyrmion core shrinks and enlarges periodically.
It has zero net angular momentum, as seen by the dynamics of the total atomic
spin in Fig. 6.3.4 (f). Two rotational modes identified in the down-up channel
near ω/J ∼ 3 and at zero are clockwise, and the dynamics of their total atomic
spin indicates that they possess downward angular moments, Fig. 6.3.4 (g). A
counter-clockwise rotational mode is responsible for the faint hotspot in the up-
down channel, Fig. 6.3.4 (h), therefore, with upward angular momentum. This
explains their appearance in their respective scattering channels.

6.4 Conclusions and discussion

In this chapter, we showed that inelastic electron scattering can reveal various spin-
wave phenomena in noncollinear magnets throughout the reciprocal space. We
demonstrated that it can measure anisotropies in the dispersion relation, such as
the linear and quadratic behavior along different propagation directions, and the
localization of spin waves along certain directions that yields to desired spin-wave
channeling for spintronics [119, 120, 134, 135]. Furthermore, we showed that ma-
nipulating the polarization of the electron beam allows us to select and filter the
spin-wave modes, which in practice permits us to improve the energy resolution of
the dispersion curves by detecting a particular spin-wave mode without the inter-
ference of nearby modes.

The realization of the SREELS may be applied to fingerprint magnetic phases
from their unique signatures on the spin-wave spectra. It could, for example, help to
distinguish between a skyrmion tube and a magnetic bobber lattice in thin films [10].
These two phases may have similar magnetic profiles at the very surface, but they
differ deeper inside the film, which impacts on their spin-wave properties.

Recent developments have allowed full spin characterization of flying electrons
by surface skew-scattering [138]. This could be used as a spin-filter in SREELS,
but it might also require a high-intensity electron beam, to compensate for the low
efficiency of the spin detection. A more efficient and intuitive way could be a Stern-
Gerlach apparatus for electrons. However, the feasibility of such an experiment
has been discussed since the earliest years of quantum mechanics. The difficulties
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Figure 6.3.4: Spin-waves in a skyrmion lattice. (a) Shows the ground state spin structure
of the system. The colors represent the z-component of the spins. (b) Depicts the path on
which all four SREELS spectra were calculated, (c-e). (f–h) snapshots of the z–component
of the local atomic spins over time (as color maps), depicting the spin-wave motion at the
hotspots (indicated by the green arrows) of the spectra. Same color scale as in (a). (f)
corresponds to a breathing mode that is measured in the non-spin-flip channels. (g) and
(h) are clockwise and counter-clockwise rotational modes observed in the down-up and
up-down channels, respectively.
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are associated with the Lorentz forces acting on the electrons and fundamental
quantum limitations, blurring the magnetic effects on the classical trajectory of the
electrons [139–141]. Nevertheless, further theoretical developments have shown that
quantum effects are essential but they do not overwhelm the spin-related effects
on the electron’s trajectory, leaving open the possibility of creating an electron-
polarizing beam splitter [142–144]. Therefore, we hope that our work will encourage
investigations on such a spin-splitter by providing an important application.

Despite the enrichment that the spin analysis brings to the discussion, spin
waves in noncollinear systems can be measured with the existing (SP)EELS setups.
Their spectra would consist of combinations of the different scattering channels that
we have described for SREELS. However, one loses the ability to understand and
determine the nontrivial angular momenta of spin waves in noncollinear magnets.
Furthermore, as discussed in Chapter 4, the theoretical framework developed for
SREELS could also be extended to other experimental techniques, such as spin-
polarized inelastic neutron scattering.

In this chapter, we have discussed the fundamental properties of spin waves in
noncollinear using a simple model system. For the next chapters, we continue this
investigation and apply our theoretical approach for realistic materials, for which the
Hamiltonian parameters are obtained from first-principles calculations. In particu-
lar, in the next chapter, we investigate systems whose magnetic exchange interaction
is dominantly antiferromagnetic.
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Chapter 7

Antiferromagnetic noncollinear
spin textures

Up to here, we studied the behavior of spin waves in ferromagnets, as in the case
of reconstructed thin films of Co/W(110), and in two noticeable noncollinear spin
textures, namely a spin spiral and a skyrmion lattice. These systems shared a
common feature, their predominant ferromagnetic exchange coupling. Therefore,
the canting induced by the Dzyaloshinskii-Moriya interaction (DMI) could be seen
locally as a small deviation from the ferromagnetic state.

Antiferromagnetic materials are internally magnetic, but with spins antialigned
to their neighbors causing the net magnetization to be zero. This makes the mag-
netism in these materials “invisible”, but at the same time extremely valuable for
spintronics [145, 146]. For example, high-density random access memories that are
more stable against magnetic field perturbations have been proposed based on an-
tiferromagnetic materials [147]. Therefore, in this chapter, we explore the main
characteristics of collective spin excitations in noncollinear magnetic samples with
strong antiferromagnetic predominance.

The chapter is divided into four parts: The first part addresses in a model ba-
sis unidimensional spin spirals arising in antiferromagnets due to the DMI, and the
breaking of reciprocal symmetry of the spin-wave dispersion when the system is sub-
ject to an external magnetic field. Then, the second section deals with the physics
of spin waves in antiferromagnetic bidimensional systems, including skyrmionic spin
structures. The third part is an ab initio study of a monolayer of manganese de-
posited on β–tungsten (Mn/β–W), which is a promising antiferromagnetic system
for spintronics. And finally, the fourth part concerns the ab initio investigation
of bulk Mn5Si3. Here, we compared our results to experimental inelastic-neutron-
scattering data shining some light onto an open question related to the nature of
the excitations responsible for the inelastic spectrum of this material [29].

7.1 Antiferromagnetism in a spin chain

To set the stage, let us start by studying an antiferromagnetic unidimensional spin
chain. We consider a spin chain with only negative nearest-neighbor magnetic ex-
change coupling J . An easy-axis magnetocrystalline anisotropy K along z is also
introduced to set a preferred alignment direction. The system is then described by
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the generalized Heisenberg Hamiltonian described in Section 2.1.6 that reads

H = −1

2

∑
〈ij〉

JSi · Sj −
1

2

∑
〈ij〉

Dn̂ij ·
(
Si × Sj

)
−K

∑
i

(
Szi
)2 −B

∑
i

Szi , (7.1)

which also includes the Dzyaloshinskii-Moriya interaction of strength D and direc-
tion n̂ij, and an external uniform magnetic field B along z. The brackets indicate a
sum over the nearest-neighbor pairs.

Throughout this chapter, we calculate the inelastic-scattering spectra of the var-
ious spin systems. They are calculated as explained in Chapters 4 and 6 based
on the description of spin waves in noncollinear magnets given in Chapter 2. For
simplicity, each inelastic-scattering spectrum shown in this chapter is composed of
the sum of all the spin scattering channels. The ground-state or metastable spin
configurations were obtained through atomistic-spin-dynamics simulations based on
the Landau–Lifshitz–Gilbert equation of motion, as discussed in Sec. 2.2.3 and im-
plemented in the Spirit code [47].

7.1.1 The effect of the DMI and the magnetic field in the
spin waves of collinear antiferromagnets

When B and D are zero, i.e., considering only the magnetic exchange interaction
(MEI) and the magnetocrystalline anisotropy, the ground state of the system corre-
sponds to a collinear alignment of the spins parallel to the anisotropy easy-axis z.
The nearest-neighbor spins are antialigned to each other, as shown in Fig. 7.1.1 (a).
The inelastic-scattering spectrum shows a single branch even though one could ex-
pect two because of the two sublattices (one for up and the other for down spins),
which increases the number of internal degrees of freedom, see Fig. 7.1.1 (b). This
system has two rotational spin-wave modes with opposite sense of precession, la-
beled +Q and −Q, which are degenerate. They have energy minima at Γ and at the
Brillouin zone border X, but the scattering intensity vanishes towards the former
one. The energy gap is due to the magnetic anisotropy.

If the Dzyaloshinskii-Moriya vector is collinear with the magnetic moments, the
energy degeneracy of the spin-wave branches is broken, and they shift in opposite
directions in the reciprocal space, see Fig. 7.1.2 (a). This happens because the
relative canting between spins when precessing for a given wavevector k other than
X can be energetically favored by the DMI. This phenomenon is similar in nature to
the Rashba effect, where electrons acquire a finite group velocity at zero wavevector
due to the spin-orbit coupling [32]. Because of that, we call it a spin-wave Rashba
effect. The shift is proportional to the DMI strength [31]. Yet, +Q and −Q are
reciprocally symmetric with respect to the X–point. This means that spin waves
propagate just as easy in both spin-chain directions, but with opposite chirality.
Finally, turning on the external magnetic field, we observe a break of the reciprocity,
causing the −Q mode to have higher energies, while the +Q goes lower, as observed
in Fig. 7.1.2 (b). The magnetic field favors now a particular rotational sense, the
one corresponding to the Larmor precession.
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Figure 7.1.1: Antiferromagnetic spin chain. a) The ground state, where the spins align
antiparallel among neighbors. b) Spin-wave scattering spectrum (sum of all scattering
channels) for an antiferromagnetic spin chain depicted in (a). The single dispersion branch
centered at X is due to two oppositely rotating modes, a clockwise and a counter-clockwise.
Model parameters: J = −1, D = 0, K = 0.05, B = 0 a.u. For details on the calculation
of the inelastic-electron-scattering spectrum, see Chapters 4 and 6.

(a) (b)

B = 0 B 6= 0

Figure 7.1.2: Spin-wave scattering spectrum of an antiferromagnetic spin chain. (a)
The Dzyaloshinskii-Moriya vectors pointing along z shifts to the left and the right the
dispersion curves of the −Q and +Q modes, respectively. For zero external magnetic
field, the spectrum is symmetric. (b) When a magnetic field is applied, the spectrum
becomes nonreciprocal. Despite the DMI, the system has the same collinear ground state
shown in Fig. 7.1.1 (a), stabilized by the magnetic anisotropy. Model parameters: J = −1,
D = 0.2, K = 0.05, B = 0.2 a.u.

7.1.2 Antiferromagnetic spin spiral

If we further increase the magnetic field along z, it becomes very stressful for the
system to keep half of the spins oppositely aligned to the external magnetic field.
Flipping these antialigned spins would be extremely unfavorable to the exchange
energy. Meanwhile, the magnetic anisotropy favors the alignment of the spins along
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z. When the external magnetic field is large enough, the system undergoes a spin-
flop transition, where a spin spiral is established with the spins mostly lying in
the plane perpendicular to the field, but with a small component along the field, see
Fig. 7.1.3 (a). Thus, the system gains Zeeman energy due to the small magnetization
along the field, and Dzyaloshinskii-Moriya energy from the noncollinearity of the
spin spiral. The transition happens when these two contributions overcome the lost
anisotropy energy. The pitch of the antiferromagnetic spin spiral is also proportional
to the arctangent of the ratio between theD and J , just as for ferromagnetic systems,
as we show in Apx. 7.A.

(a)

(b)
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Figure 7.1.3: Antiferromagnetic spin spiral. a) The ground state generated by a spin-
flop transition induced by a high external magnetic field along z. The spins lie in the
plane perpendicular to the applied field forming an antiferromagnetic spin spiral. A small
component of each spin still points along z what makes it a conical spin spiral. b) Spin-
wave scattering spectrum of the antiferromagnetic spin spiral as depicted in (a). The
spectrum is symmetric and formed by the brightest mode centered at X enclosed by
the other two features centered at ±q, where q is the wavevector of the spiral. Model
parameters: J = −1, D = 0.2, K = 0.05, B = 0.8 a.u.

The reciprocal symmetry is restored to the spectrum, even though there is an
even stronger applied field. The signal is formed by a central feature enclosed by two
side ones of lower intensity. In Ref. [148], Gitgeatpong et al. investigated the bulk
antiferromagnet α–Cu2V2O7 via inelastic neutron scattering. The spin-wave physics
of this compound is analogous to the model just described. They have measured
for the first time the nonreciprocity of spin waves in antiferromagnets by applying
an external magnetic field as shown in Fig. 7.1.4 (a), which resembles Fig. 7.1.3 (a).
Our results presented in this section thoroughly agree with their findings.

A spin spiral hosts three universal spin-wave modes (see Chapter 6), instead of
two for antiferromagnets. Two of them have dispersion curves with minima in the
wavevector of the spiral ±q and are oppositely rotational modes. The third mode is
symmetric around the zone center (Γ or X), and it has no angular momentum but
corresponds to a longitudinal precession of the net magnetization perpendicularly
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(a) (b)

Figure 7.1.4: Inelastic-neutron-scattering measurement on bulk α–Cu2V2O7. (a) Non-
reciprocal scattering spectrum due to an external magnetic field, +6 T. The system is
collinear antiferromagnetic. (b) For a high field, +10 T, the system undergoes a spin-
flop transition into a spin spiral. The spectrum becomes symmetric. The arrows denote
the magnetic Bragg peaks. Reprinted figure with permission from Gitgeatpong, G. et al.,
Phys. Rev. Lett. 119, 047201 (2017) (https://doi.org/10.1103/PhysRevLett.119.047201),
Ref. [148]. Copyright (2020) by the American Physical Society.

to the spiral rotation plane, see Chapter 6. Such a mode is responsible for the
high-intensity branch in the scattering spectrum, as predicted in Fig. 7.1.3 (b),
and observed in Fig. 7.1.4 (b). Furthermore, our theoretical calculation enlightens
the existence of two weaker features of the scattering spectrum, see Fig. 7.1.3 (b).
These two modes have energy minima at the Bragg peaks, which correspond to the
wavevector of the spin spiral ±q. Therefore, the shifts of the minima out of the
high-symmetry point are only related to the DMI indirectly through q. Although
these two feeble branches appear in the experimental data, the lack of resolution
and theoretical support led the authors of Ref. [148] to leave them unremarked.

We will come back to study the nonreciprocity of spin waves in noncollinear
systems in Chapter 9, which is entirely dedicated to this subject. There, we present
a general theory of when asymmetric spectra are expected and how to detect them.

7.2 Two-dimensional antiferromagnets

In the previous section, we have considered a one-dimensional antiferromagnetic
spin chain, which allowed us to study the spin-wave Rashba effect due to the
Dzyaloshinskii-Moriya interaction as well as the reciprocal-symmetry breaking in
response to an applied magnetic field. Now, we place our focus on the properties of
spin waves in two-dimensional antiferromagnetic systems, which have the minimal
dimension to host antiferromagnetic skyrmionic structures as discussed, for example,
in Refs. [14, 149]. First, we consider the formation of spin spirals, and subsequently
the occurrence of antiferromagnetic skyrmions and antiskyrmions.
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7.2.1 Antiferromagnetic spin spirals and Rashba spin lock-
ing

When the exchange couplings between atoms are predominantly antiferromagnetic,
the formation of collinear phases of antiparallel spins takes place. The most common
ones are the c(2 × 2) and p(2 × 1), where the first contains four atoms in the unit
cell and the second only two, if we want to preserve the square Bravais lattice, as
shown in Figs. 7.2.1 (a) and (b). In the c(2×2) phase, a spin moment is antialigned
to all its nearest neighbors. Meanwhile, in the p(2 × 1), spins are antiparallel to
their nearest neighbors along a given direction but align along the perpendicular
direction.

(a) (b)

(c) (d)
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Figure 7.2.1: Predominantly antiferromagnetic two-dimentional structures. (a) The
c(2 × 2) and (b) the p(2 × 1) collinear antiferromagnetic phases, containing four and
two atoms in the unit cell, respectively. The first phase results from Model I, where
antiferromagnetic nearest-neighbor-only couplings are considered. The second derives from
Model II, which has an anisotropic exchange coupling, being ferromagnetic along the y–
direction and antiferromagnetic along x. An easy-axis along z was considered. (c) and
(d) show spin spirals formed due to Dzyaloshinskii-Moriya couplings in Models I and II,
respectively. The total energy of the configuration in (a) and (b) is E = −4.050J , and in
(c) and (d) E = −4.052J . Model parameters: |J | = 1, D = 0.2, K = 0.05 and B = 0 a.u.

Here, we consider two related models with only nearest-neighbor couplings of
spins in a square lattice. In Model I, all nearest-neighbor exchange couplings are
antiferromagnetic (J < 0), which has the c(2 × 2) phase as the ground state, see
Fig. 7.2.1 (a). In an isotropic medium, beyond nearest-neighbor coupling is required
to stabilize the p(2×1) phase [150]. Therefore, to stick to our nearest-neighbor-only
choice, Model II is based on an anisotropic exchange coupling, such that it is positive
along the y and negative along the x directions. Its ground state, the p(2×1) phase,
is shown in Fig. 7.2.1 (b). For these ground states, the low-energy spin excitations
have wavevectors around the P and X points for the c(2 × 2) and p(2 × 1) phases,
respectively. The P–point (π, π) corresponds to a precession where a given spin
is dephased by π with respect to all its nearest-neighbors. For the c(2 × 2) phase,
this means that nearest-neighbor spins are kept perfectly antiparallel throughout
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the whole precession revolution. Such an excitation, therefore, costs no energy and
corresponds to the Goldstone mode. Similarly, the X wavevector (π, 0) guarantees a
precession phase of π between spins along horizontal lines, and no phase shift along
the vertical ones, minimizing the excitation energy for the p(2× 1) phase.

Since we want to study whether chiral skyrmions are supported by these antifer-
romagnetic systems, we need to consider the effects of the Dzyaloshinskii-Moriya
interactions. Thus, we enhance our two models equally with in-plane isotropic
nearest-neighbor Dzyaloshinskii-Moriya vectors, which circulate counterclockwise
perpendicularly to the bonds. As Model II is anisotropic, the DMI vectors can
be anisotropic as well. However, let us assume that the anisotropy is small and that
it does not change the direction of the DMI vector with respect to Model I. Thus,
we will be able to assert the effect of the anisotropy solely present in the magnetic
exchange interactions. Furthermore, we consider an easy-axis magnetic anisotropy
favoring the magnetization orientation along z. The DMI favors a noncollinear align-
ment among the atoms, while the anisotropy defines a preferred direction for the
spin to point along. The competition between all these interactions determines the
characteristics of the possible noncollinear states, such as spin spirals and skyrmions.

Figures 7.2.1 (c) and (d) show the ground states from the enhanced Model I
and II, respectively, which we shall call c(2 × 2) and p(2 × 1)-spirals. They were
obtained by considering a 10x1 supercell, which includes 20 atoms for Model I and
10 for Model II. Notice that in the phases c(2×2), p(2×1) and p(2×1)-spiral, there
are always certain directions where the spins are aligned ferromagnetically. Only
the c(2 × 2)-spiral does not present such a feature. Instead, we observe along its
diagonals a smooth spin rotation forming a helical spin spiral. The wavevector of
both spin spirals is q = (2π/20a)x̂.

Next, we focus on the spin-wave spectra of the antiferromagnetic spin spirals. In
Fig. 7.2.2 (a), we show the total spectrum, which is the sum of all spin-scattering
channels, for Model I with the c(2× 2)-spiral. Two different reciprocal-space paths
around the P-point were considered, along and perpendicular to the spiral wavevec-
tor q. Similarly, Fig. 7.2.2 (b) displays the total spectrum around the X-point for
Model II in the p(2 × 1)-spiral. Overall, the spin-wave dispersion curves of these
two systems are similar to each other, featuring three helimagnon modes along q
(left-hand-side of the panels). Two of them are counter-rotating modes that have
vanishing energy for k → P(orX) ± q. The other is a longitudinal mode whose
energy gap at P (or X) is caused by the magnetic anisotropy. These modes can be
separately measured in different SREELS channels by setting the beam polarization
along y. The energy scale of the spin waves of the p(2× 1)-spiral along q is roughly
half of that for the c(2× 2)-spiral.

On the paths perpendicular to q of Fig. 7.2.2 (a) and (b) (right-hand-side panels),
we initially observe two modes, whose energy minima are shifted from the central
point. Interestingly, the minima positions are no longer related to the pitch of the
spin spiral, but solely to the strength of the Dzyaloshinskii-Moriya interaction in a
linear manner. We demonstrate this in Fig. 7.2.3 (a) and (b), where we increased
the DMI strength by δD = 0.1/|J | without relaxing the spin structure. The minima
location changed from P ± 0.024 to P ± 0.036. Furthermore, the larger splitting
induced by the enhanced DMI reveals a third mode that was indistinguishable before,
see also Fig. 7.2.2 (a) and (b) (right-hand-side panels). Once more, these modes
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Figure 7.2.2: Spin-wave spectra for 2D antiferromagnetic spin spirals. (a) and (b)
show the dispersion curves for the c(2× 2) and p(2× 1)-spirals, respectively. Paths in the
direction of q are shown in the left-hand side and perpendicular to it on the right-hand
side. The inset in (b) depicts the high symmetry points of the crystal Brillouin zone.
Both the c(2× 2) and p(2× 1)-spirals feature the three universal helimagnon bands, seen
on the left-hand side. Comparing the two left-hand-side panels, the energy scale for the
c(2× 2)-spiral is twice as high as for the p(2× 1)-spiral.

can be isolated in different scattering channels, however, the polarization should
be chosen along x, i.e., parallel to q, instead of along y like in the previous case.
All these observations uncover a locking between the linear and angular momenta
of the spin waves, which is another characteristic of the Rashba effect discussed in
Sec. 7.1.1. Finally, Fig. 7.2.3 (c) demonstrates that the two DMI-shifted modes are
susceptible to external magnetic fields. An applied field along the q–direction breaks
the reciprocal symmetry around the band center, increasing the energy of one mode
while decreasing the energy of the other one.

7.2.2 Antiferromagnetic skyrmions

Skyrmions and antiskyrmions are particle-like excitations of the magnetic structure
of some materials. An antiskyrmion is the antiparticle of a skyrmion with oppo-
site topological charge [7, 11, 111]. The great interest in these objects is related
to their nontrivial topological character and the unique characteristics which may
suit spintronics applications. A skyrmion differs from an antiskyrmion by only a
reflection operation, which ends up inverting the sign of the topological charge. In
practice, the search for antiskyrmions has focused on finding magnetic materials
with highly anisotropic Dzyaloshinskii-Moriya interactions, as will be discussed in
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(a) (b) (c)

Figure 7.2.3: Spin-wave spectra for the Model I on the c(2×2)-spiral, whose parameters
were modified as follows. We increased the DMI from (a) D = 0.2 to (b) D = 0.3 without
relaxing the spin structure. In (a) the energy minima are located at P ± 0.24, while for
(b) they are at P± 0.36. The scaling on D is linear. Due to the further splitting, a third
mode can be distinguished, which is centered at P. (c) An external magnetic field along
q, B = 0.2, is applied for the case in (b). The spectra become nonreciprocal because one
of the shifted modes gets lifted, while the other is lowered in energy.

Chapter 8: Prediction of the existence of in-plane magnetic skyrmions in Co/W(110).
If a material has DMI with different chirality along perpendicular directions, an an-
tiskyrmion might be energetically more favorable than a skyrmion. In this section,
we are going to demonstrate that even with an isotropic DMI, i.e., with the same
chirality and strength along all directions, an antiskyrmion can be obtained if we
consider an antiferromagnetic background.

In the previous section, we considered two model Hamiltonians whose ground
state was a c(2× 2) and p(2× 1) antiferromagnetic spin spirals. These noncollinear
ground states are only slightly energetically more favorable than their collinear coun-
terparts, see caption of Fig. 7.2.1. However, the collinear spin configurations are not
stable states. Meanwhile, spin-dynamics simulations showed that skyrmionic states
can be obtained as metastable configurations of Models I and II, see Fig. 7.2.4. On
the one hand, Model I, whose atoms have an antiferromagnetic exchange coupling
with all their nearest neighbors, gives rise to an antiferromagnetic skyrmion, as can
be seen in Fig. 7.2.4 (a). On the other hand, Model II stabilizes an antiferromagnetic
antiskyrmion, see Fig. 7.2.4 (b). Here, it is important to notice that Model I and II
share the same set of isotropic DMI. Their only difference lies in the set of exchange
interactions, where for Model II the exchange parameter J changes sign for different
directions. This shows that an antiskyrmion is more natural to occur in a p(2× 1)
antiferromagnet.

We carry on by investigating the spin-wave inelastic-electron-scattering spectra
related to these skyrmionic phases. Thus, Fig. 7.2.5 (a) shows the spectra for the
antiferromagnetic skyrmion, which is related to the c(2×2) antiferromagnetic phase.
Meanwhile, Fig. 7.2.5 (b) corresponds to the antiferromagnetic antiskyrmions, whose
background is a p(2 × 1) antiferromagnet. Overall, both spectra are much broader
in comparison to the spin spirals in the same antiferromagnetic backgrounds, almost
forming an energy continuum. Yet, it is possible to observe some dispersion lines
throughout most of the reciprocal path. For the small energy range, we can observe
that the dispersion curves are mostly linear, which is in contrast to the quadratic
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Figure 7.2.4: Skyrmion-like structures in an antiferromagnetic background. (a) Antifer-
romagnetic skyrmion that is formed when the exchange interaction with all nearest neigh-
bors is negative, Model I. The skyrmion lies in a c(2 × 2) antiferromagnetic background.
(b) Antiferromagnetic antiskyrmion, which results from anisotropy exchange interactions.
J is negative along-x and positive along-y, Model II. The antiskyrmion lies in a p(2× 1)
antiferromagnetic background. Model parameters: |J | = 1, D = 0.2, K = 0.05 and B = 0
a.u. The total energy of both spin configuration is E = −4.041052J .

behavior of the skyrmions in a ferromagnetic background, as seen in Chapter 6.

7.3 First-principles investigation of Mn/β–W

In this section, we apply the insights gained from studying simple model systems
to a realistic anisotropic antiferromagnet, namely a Mn monolayer supported on
β–tungsten. Tungsten crystals are found in two forms: the more common α–phase,
with a body-centered cubic structure, and the β–phase, which is metastable with
an A15 cubic structure. The β–tungsten can be realized in films of thickness below
a critical point, after which the system undergoes a transition to the α–phase. The
current critical thickness reaches approximately 20 nm [151]. Nonequilibrium syn-
thesis and impurities also play an important role in its stabilization. While most
samples of β–tungsten are grown with sputter techniques, leading to polycrystalline
phases, M. Costa et al. motivated the experimental community to produce single-
crystals by further demonstrating the prominence of this material for application
in spintronics [151]. Their calculations indicated that a single layer of manganese
(Mn) can be grown in a square lattice on the β–W(100), with giant in-plane magnetic
anisotropies of about 12 meV. Also, they predicted that the easy-axis could be made
out-of-plane by depositing an extra layer of β–tungsten on top of the manganese.

Motivated by these findings, in this section, we explore the magnetic proper-
ties of this antiferromagnetic system with a focus on the magnetic exchange and
Dzyaloshinskii-Moriya interactions, the ground state, and the spin-wave excitations.
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(a)

(b)

qq qqX
PM

Γ

Figure 7.2.5: Total inelastic-electron-scattering spectra of spin waves in antiferromag-
netic skyrmionic lattices. (a) shows the inelastic scattering spectra for the antiferromag-
netic skyrmion in the c(2 × 2) background. (a) displays the spectra for the antiferro-
magnetic antiskyrmion in the p(2 × 1) background. In contrast to the spin spirals, the
spectra for the skyrmion lattices are much more broaden. The inset in (b) depicts the
high symmetry points of the crystal Brillouin zone.

7.3.1 The crystal structure

The bulk of β–tungsten can be constructed by an ABCB stacking of three distinct
layers. Two of them, layers A and C, have a honeycomb-like structure that divides
the space into a square lattice of irregular hexagons, see Fig. 7.3.1. Filling the space
left, there are pairs of inverted triangles, which form a diamond shape. Layer C is
rotated by 90◦ with respect to A. The layer B is a square lattice whose atoms are
situated in the hexagon hollows of the other layers. This layer is always sandwiched
by a pair of A and C layers. These juxtaposed layers form an A15 cubic crystal
structure, whose unit cell contains 8 atoms.

It was shown in Ref. [151] that the most stable β–W(001) surface is the honeycomb-
like one, upon which a square-lattice of Mn atoms can be grown, see Fig. 7.3.1. We
consider, therefore, such a monolayer of Mn deposited on 13 monolayers thin film of
β–tungsten, where the relaxed interlayer distances are taken as reported in Ref. [151],
which goes up to 33% of the bulk value dbulk = 1.27 Å. Fig. 7.3.1 (a) shows the Mn
monolayer and the first three layers of β–tungsten. In Fig. 7.3.1 (b), we can see that
the Mn atoms lay in the hollow of the W irregular hexagons.
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Figure 7.3.1: Manganese monolayer deposited on β–tungsten (001). (a) The β–phase
of tungsten is composed by an ABCB stacking of three different layers. The layer A has
a honeycomb-like structure, which divides the space into irregular hexagons and pairs of
inverted triangles. Meanwhile, layer B is a square lattice whose atoms lay in the hollow
position of the irregular hexagons of A and C. Finally, layer C has the same structure of
A but rotated by 90◦. The overlayer of manganese follows the tungsten B stacking at a
distance of 1.37 Å from the β–W surface. (b) A top view of the Mn monolayer deposited
on β–W(001). The manganese atoms are situated in the hollows of the tungsten irregular
hexagons with a spin magnetic moment of M = 3.5µB.

7.3.2 Magnetic exchange and Dzyaloshinskii-Moriya inter-
actions

With the atomic structure described in the previous section, we performed calcula-
tions based on density functional theory (DFT) to compute the ground-state mag-
netic properties using the full-potential relativistic Green-function Korringa-Kohn-
Rostoker (KKR) method introduced in Chapter 3. The magnetic exchange and
Dzyaloshinskii-Moriya interactions were obtained using the infinitesimal-rotations
method also discussed in Chapter 3.

Figure 7.3.2 depicts the Mn/β–W magnetic interactions. In Fig. 7.3.2 (a), we
plot the magnetic exchange interaction, where the strength is indicated by the sat-
uration and the color represents the sign, blue and red for ferromagnetic and an-
tiferromagnetic coupling, respectively. The atoms interact most strongly with the
nearest-neighbors on the left and right, via a ferromagnetic coupling. Interestingly,
the nearest-neighbor interactions along-y and all four second-nearest-neighbor inter-
actions are antiferromagnetic. Thus, this set of interactions favors a horizontal fer-
romagnetic and a vertical antiferromagnetic alignments. The Dzyaloshinskii-Moriya
interactions are very anisotropic for this system, as can be seen in Fig. 7.3.2 (b).
The DMI vectors are mostly stronger for the nearest neighbors along the y–direction
and they point in-plane perpendicularly to the bonds between the two sites. The
nearest-neighbor couplings along x are approximately 20 times smaller than along
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Figure 7.3.2: Mn/β–W magnetic interaction maps. (a) Exchange interactions between
the central site, marked by the × sign, and its neighbors. The blue and red colors represent
ferromagnetic and antiferromagnetic coupling, respectively. The saturation indicates the
interaction strength. The brightest blue and red correspond to 7.25 meV and -0.90 meV,
respectively. (b) Dzyaloshinskii-Moriya vectors, representing the asymmetric exchange
interactions between the central atom and its neighbors, which are located where the
vectors lay. The intensity of the coupling is represented by the arrow size. The largest
arrows correspond to 2.84 meV, which are the couplings to the sites at (0,±1)a, and the
second largest to 0.74meV, for (±1,±1)a.

y and of opposite handedness. Such a set of Dzyaloshinskii-Moriya vectors favors
the formation of spin spirals where the spin moment rotates from site-to-site in the
z − y plane.

7.3.3 Magnetic ground state and spin-wave dispersion

With the magnetic exchange and Dzyaloshinskii-Moriya interactions discussed in the
previous sections, we performed atomistic-spin-dynamics simulations to determine
the ground-state magnetic structure of the Mn/β–W. Initially, we considered a 100×
100 supercell with periodic boundary conditions and starting from a random spin
configuration, see Fig. 7.3.3 (a). From the outcome of this simulation, we could
estimate the antiferromagnetic spin-spiral period of 32 atomic distances. Next, we
repeated the spin-dynamics simulations considering a supercell of 32 × 32, whose
relaxed magnetic structure is shown in Fig. 7.3.3 (b). Therefore, the Mn/β–W
ground state consists of an inhomogeneous spin spiral, where the spins lie mostly
in the plane with an antiferromagnetic alignment along y, with fast spin rotation in
the y − z plane.

With knowledge of the ground-state spin configuration and the magnetic interac-
tions, we have everything required to study the spin waves of this material. The total
spin-wave spectrum is shown in Fig. 7.3.4, which was computed on a reciprocal space
path parallel to the spiral wavevector. The spectrum is marked by a fairly large gap
of ∼ 5 meV, which is due to the very high magnetocrystalline anisotropy. Below the
gap, we observe two minima at ±q with vanishing energy of the rotational modes,
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Figure 7.3.3: The ground-state magnetic structure of the Mn monolayer on β–tungsten.
(a) A 100× 100 super cell with periodic periodic boundary conditions was considered for
a spin-relaxation dynamics starting from a random configuration. From this simulation,
an antiferromagnetic spin-spiral pitch of 32 atomics distances could be estimated. (b)
A 32 × 32 supercell was considered to obtain the ground-state spin configuration of the
Mn/β–W. We used an easy-axis anisotropy along y with K = 1.5 meV.

where q = 2π/32a, where the lattice constant is a = 5.06 Å. Meanwhile, above the
gap, the brightest feature is composed of the longitudinal mode centered in M, and
the second brightest branch is due to the rotational modes.

Figure 7.3.4: Total spin-wave scattering spectrum for the Mn/β–W. The figure shows
the dispersion curves of the rotational and longitudinal helimagnon modes on a reciprocal
path along q. The gap of about 5 meV in the spectrum is due to the magnetocrystalline
anisotropy. Below the gap, the minima at ±q of the rotational modes can be observed.
Above, the central and brightest feature is composed of the longitudinal and rotational
modes.

We could not find stable antiferromagnetic skyrmions/antiskyrmions in Mn/β–
W. However, the occupancy of an antiferromagnetic spin spiral as the ground state
allows for a comparison with the simple models upon which we did our initial studies
in this chapter.

134



7.4. FIRST-PRINCIPLES STUDY OF Mn5Si3

7.4 First-principles study of Mn5Si3

In this section, we study the properties of spin waves in the bulk Mn5Si3. It is
an antiferromagnetic compound attracting much attention, particularly due to its
inverse magnetocaloric effect and large anomalous Hall effect [28, 29]. At high
temperature, Mn5Si3 crystallizes in the hexagonal space group P63/mcm and it
features a paramagnetic phase [29, 152]. Lowering the temperature, at TN1 ≈ 100 K,
it transits into a collinear antiferromagnetic phase (AFM2), and at TN2 ≈ 66 K, into
an noncollinear antiferromagnetic phase (AFM1).

Inelastic neutron scattering suggested that the low temperature noncollinear
AFM1 phase is characterized by a well-defined spin-wave spectrum. Also, there were
indications that the higher temperature collinear AFM2 phase has a coexistence of
spin waves and diffuse spin fluctuations [29]. To test this hypothesis, new measure-
ments focused on the response of the inelastic spectrum as a function of an external
field applied perpendicularly to the anisotropy easy-axis in the AFM2 phase [153].
The expectation is that the field would yield to the suppression of the diffuse spin
fluctuations. Therefore, to help in understanding the experimental data, we calcu-
lated the response of the spin-wave energies as a function of the external magnetic
field. We performed ab initio calculations to determine the magnetic ground-state
properties, and to parametrize a spin Hamiltonian for this material. With the ab
initio parameters, and with a single free parameter to rescale the magnetic interac-
tions, we obtained a good agreement with the experimental observations.

7.4.1 Ground-state magnetic properties

(a) (b) (c)

x

y

z

Figure 7.4.1: Different self-consistent magnetic phases. (a) FM: Ferromagnetic phases
obtained by spin polarizing the system with a magnetic field during the first self-consist
interaction of the Kohn-Sham cycle. The magnetic moments are of 2.6 and 1.1µB. (b)
AFM: The antiferromagnetic phase obtained self-consistently after reversing the magnetic
moment orientation of some sites of the ferromagnetic phase. The magnetic moments are
of 2.4µB. The AFM phase is energetically more favorable than the FM one. (c) Indication
of the first few exchange interaction pairs. Atoms connected by the red triangle in (b) are
in the same plane, and atoms linked by the blue triangle are in another plane. From this
top view, the two triangles together form a hexagon.
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Magnetocrystalline anisotropy (meV/per. mag. atom)
Ex − Ey 0.12
Ez − Ey 0.09
Ex − Ez 0.03

ky 0.10

Table 7.4.1: Magnetocrystalline anisotropy. We calculated the anisotropy by total
energy difference when aligning the magnetic moment in different directions. The lowest
energy is that for the moments aligned along y, and there is only a small difference between
the alignment along x and z. Therefore, we can model the anisotropy as a uniaxial
anisotropy with easy-axis along y.

The magnetic and electronic properties of Mn5Si3 was obtained from density
functional theory within the relativistic full-potential KKR method, as described in
Chapter 3. Initially, we spin-polarized the system by applying an external magnetic
field in the first iteration of the self-consistently solving of the Kohn-Sham equation.
After convergence, we obtained a stable ferromagnetic phase shown in Fig. 7.4.1(a).
From this phase, we started another self-consistent cycle after reversing some of the
magnetic moments of the previous ferromagnetic phase. The resulting stable phase
is shown in Fig. 7.4.1(b), which is an antiferromagnetic phase consistent with the
Mn5Si3-AFM2 phase. Our calculations show that the antiferromagnetic phase is
energetically more favorable by

EFM − EAFM = 292 meV/unit cell . (7.2)

The magnetic moments in the FM phase are 2.6 and 1.1µB. For the AFM phase,
it is of 2.4µB. The experimental values for the magnetic moment range from 3 to
1.7µB when the temperature changes from 12 to 80 K [152].

For the antiferromagnetic phase, we calculated the total energy difference when
aligning the magnetic moments along three perpendicular directions. The results
are summarized in Tab. 7.4.1. The lowest energy obtained for the magnetic mo-
ments along y. The energy difference between the alignment along x and z is small,
0.03 meV, so we could model the anisotropy landscape as a uniaxial anisotropy with
easy-axis along y with the parameter ky = 0.10 meV, which corresponds to the
average of the first two lines of Tab. 7.4.1.

The magnetic exchange interaction and the magnetocrystalline anisotropy were
mapped into the following Hamiltonian:

H = −
∑
ij

JijSi · Sj − ky
∑
i

(Syi )2 , (7.3)

where S is a unit vector along the local magnetic moment. The results for the
first few interaction pairs indicated in Fig. 7.4.1 (c) are as follows: J1 = −9.51,
J2 = −1.30, J3 = 5.45, J4 = −2.03 meV. This shows that the AFM2 phase is
favored by all those pair interactions. Within this set of interactions, there is no
frustration. Most of the interactions have an antiferromagnetic character. Only J3

that links magnetic moments of different layers within the same Mn hexagon (shown
in Fig. 7.4.1 (b)) is ferromagnetic. The highest value is of J1 that couples magnetic
moments in the same plane within a hexagon.
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(a)

(b)

Figure 7.4.2: (a) Spin-wave dispersion around q = (1, 2, 0) reciprocal-space point
(marked by the white dot on the red path) for an external field of 10 T. The complete
path is shown in red in the reciprocal-space schematics. (b) Zoom-in into the low energy
region. An energy gap of about 3 meV is observed. Direct DFT parameter: J1 = −9.51,
J2 = −1.30, J3 = 5.45, J4 = −2.03, ky = 0.10 meV, m = 2.4µB .

7.4.2 Spin-wave dispersion

When an external magnetic field perpendicular to the easy-axis is applied, the mag-
netic moments in the AFM2 phase acquire a transversal component leaving the
magnetic structure noncollinear. Thus, we used the method described in Chapters 2
and 4 to calculate the spin-wave dispersion in the adiabatic approximation and its
inelastic scattering spectra for noncollinear magnets. Using the DFT parameters
discussed in the previous section, we obtained the dispersion shown in Fig. 7.4.2(a),
which was calculated around the q = (1, 2, 0) reciprocal-space point for an external
magnetic field of 10 T along z. Fig. 7.4.2(b) shows a zoom-in into the low energy
region, where we can observe an energy gap of about 3 meV (the lowest energy).
We can also resolve a spin-wave mode splitting, which goes to zero in the absence
of the external field.

The experimental inelastic neutron scattering data suggest an energy gap of
about 0.36 meV [153]. To compare the results between the DFT calculations and the
experimental data, we rescaled down the MEI and magnetic-anisotropy parameters
by a factor of ten. Now, we traced down the energy of the two spin-wave modes
when varying the strength of the external field, as shown in Fig. 7.4.3. The crosses
represent the DFT results, and the circles the experimental data [153]. Within the
rescaled parameter, the theoretical calculations seem to reproduce well the energy
center of the experimental inelastic spectra. The theoretical results also suggest that
the lowest-energy mode does not vary with the external field, while the second one
has a nonlinear dispersion relation with the field.
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Figure 7.4.3: Spin-wave dispersion at q = (1, 2, 0) as a function of the external magnetic
field (crosses) in comparison to the energy center of the experimental inelastic-neutron-
scattering data (open circles) [153]. The magnetic exchange and magnetic anisotropy
parameters were rescaled by a factor of 10 to reproduce the experimental energy gap.

7.4.3 Analytical study

To understand the basic physics underlying the experimental and ab initio results,
we resort to a simple unidimensional model system, namely an antiferromagnetic
spin chain. We consider a uniform nearest-neighbors-only interactions and an ex-
ternal magnetic field perpendicular to the uniaxial anisotropy axis. Let us consider
that the spin chain is along the x-axis, the uniaxial anisotropy along z and J < 0,
such to obtain the antiferromagnetic ground state as shown in Fig. 7.4.4 (a), where
the spin moments align parallel and antiparallel to z. By applying the magnetic
field parallel to y, the magnetic moments tilt by an angle θ from their equilibrium
position into the z − y plane, see Fig. 7.4.4 (b). The Hamiltonian is then given by

H = −1

2
J
∑
ij

Si · Sj − h
∑
i

Syi − k
∑
i

(Szi )2 . (7.4)

Please note that in this section, we use h for the magnetic field parameter instead
of the usual B.

Ground-state spin configuration

We can determine the ground-state spin configuration for a given field of strength
h by minimizing the hamiltonian of Eq. (7.4) with respect to θ treating the spin
moments as classical vectors. Following Fig. 7.4.4 (b), we have that Sy = S sin θ
and Sz↑↓ = ±S cos θ. Therefore, the dot product in Eq. (7.4), considering only n.n.
exchange coupling, reads: Szi S

z
j = −S2 cos θ. We are then left with:

H =NS2J cos 2θ − hNS sin θ − kNS2 cos2 θ . (7.5)

To minimize the total energy in respect to θ, let us derive the above equation:

dH
dθ

=NS
[
S(k − 2J) sin 2θ − h cos θ

]
. (7.6)
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(a) (b)

Figure 7.4.4: Unidimensional spin chain. (a) With J < 0, we obtain an antiferromag-
netic spin alignment. (b) When an external magnetic field is applied h, the spin moments
tilt away from the equilibrium by an angle θ.

The energy extrema of the Hamiltonian, given by dH
dθ

= 0, are then given by:

sin θ =
h

2S(k − 2J)
. (7.7)

The above equation provides the tilt caused by the action of the external magnetic
field over the magnetic moments. Furthermore, we can derive that the spins should
first fully align with the field (θ = π/2) when its strength is h = 2S(k − 2J).

Spin waves

Following Sec. 2.4, the spin-wave energies is given by the eigenvalues of the dynamical
matrix

D(q) =


(
−kS sin2 θ − h+ −kS sin2 θ

kS sin2 θ kS sin2 θ + h+

)
(1 + e−iqa)JS

(
− sin2 θ − cos2 θ
cos2 θ sin2 θ

)
(1 + eiqa)JS

(
− sin2 θ − cos2 θ
cos2 θ sin2 θ

) (
−kS sin2 θ − h+ −kS sin2 θ

kS sin2 θ kS sin2 θ + h+

)
 ,

(7.8)

where h+ = 2S(J − k). An analytical diagonalization led us to find the two positive
eigenvalues as:

a0(h) =2S
√
−2Jk sin4 θ + (4Jk − k2) sin2 θ − k(2J − k)

a1(h) =2S
√

2Jk sin4 θ + (4J2 − 2Jk − k2) sin2 θ − k(2J − k) ,
(7.9)

which are a function of the external field h via sin θ = h
2S(k−2J)

. See detailed deriva-
tions in Apx. 7.B.

Using Eq. (7.9), we constructed Fig. 7.4.5 for J = −10 meV and k = 0.3 meV.
We can observe that the energy of the lowest mode seems constant only at low
fields. In fact, it goes to zero when the spins first fully align with an ever-increasing
external field. For even higher fields, the energy of the lowest mode rises again.
The second mode, which is degenerate with the first at zero-field, has energy that
has a nonlinear variation with low external fields, but for higher fields, it disperses
linearly.
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Figure 7.4.5: Spin-gap as a function of the external field h.

The asymptotic behavior of the lowest spin-wave mode when k � J is given by:

a0(h) '2S
√

2 |J | k (7.10)

where M = 2S is the magnetic moment. This result makes it explicit the indepen-
dence of the lowest mode on the external field. It also corresponds to the energy for
zero field, ∆ = a0(0) = a1(0) = M

√
2 |J | k, and thus to the energy gap. Therefore,

a correct determination of the energy gap from DFT requires a precise determina-
tion of the three magnetic properties involved: the magnetic moment, the magnetic
exchange and magnetic anisotropy. At 80 K, the magnetic moment of Mn5Si3 was
experimentally determined to be about 1.7µB [152], while our DFT results obtained
2.4µB. Obviously, this discrepancy alone cannot account for the difference in ∆ be-
tween the DFT and experimental results, which should then come from the magnetic
exchange or anisotropy, which appear together as a product in Eq. (7.10). In par-
ticular, the precise determination of the magnetocrystalline anisotropy from DFT is
very problematic, for it relies on very small differences of very large numbers.

7.5 Conclusions

In this chapter, we studied magnetic materials whose magnetic exchange interaction
is predominately antiferromagnetic. We saw that the DMI in regular antiferro-
magnetic lattices can induce a degeneracy breaking of the spin-wave modes similar
to the electronic Rashba splitting. The resulting spin-wave spectrum can then be
made nonreciprocal by an external magnetic field. We will discuss the spin-wave
nonreciprocity phenomenon more in detail in Chapter 9.

When strong enough, the DMI can induce the formation of noncollinear struc-
tures, such as antiferromagnetic spin spirals and skyrmion lattices. We computed
the inelastic scattering spectra for two model lattices, one with isotropic and another
with anisotropic MEI, which share the same set of isotropic DMI. The spin-wave
spectra for the antiferromagnetic spin spirals are similar to those for ferromagnetic
spin spirals studied in Chapter 6, but they are centered at high-symmetry points
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at the edges of the BZ. Confinement effects allowed us to stabilize antiferromag-
netic skyrmions in the isotropic model and antiferromagnetic antiskyrmions with
the anisotropic model. Remarkably, the antiskyrmions were obtained without the
need for anisotropic DMI.

With parameters obtained from first-principles calculations, we studied Mn/β–W
and Mn5Si3. Due to the tungsten substrate, Mn/β–W features large and anisotropic
DMI. Its ground state was found to be an antiferromagnetic spin spiral, whose spin-
wave spectrum presents a large gap of about 5 meV due to the magnetic anisotropy.
We were unable to stabilize skyrmion lattices in this material.

For Mn5Si3, we computed the spin-wave energies as a function of an applied
magnetic field in its AFM2 phase, which is collinear and antiferromagnetic. We saw
that the magnetic field splits the spin-wave branch in two: one that disperses with
the field, and another that does not seem to. Our ab initio results agree with the
experimental results up to a free scaling factor for the product between the magnetic
anisotropy and the magnetic exchange parameters. This means, that the inelastic
signals observed in the experimental data can be associated with spin waves only.
However, our studies do not rule out the role of diffuse spin fluctuations in this
system.

In the next chapter, we investigate ultrathin films of Co/W(110) and how they
may host skyrmions in spite of having in-plane magnetizations.
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Appendix

7.A Spin spiral in an antiferromagnetic square

lattice

Consider a square lattice of localized magnetic moments described by the classical
Hamiltonian:

H = −1

2

∑
ij

[JijSi · Sj + Dij · (Si × Sj)] . (7.11)

We want to determine the spiral pitch that minimizes the free energy. For simplicity,
we consider a spin spiral with the spins S rotating while lying in the xy-plane. We
then obtain

H =− 1

2

∑
ij

[
JijSiSj cos θij +Dz

ijSiSj sin θij
]

=− 1

2
S2
∑
i

[2J(1 + cos θ) + 2Dz sin θ]

=− S2N [J(1 + cos(aQ)) +Dz sin(aQ)]

(7.12)

where a is the lattice constant and Q = |Q| is the wavevector of the spiral, which
points along any of the two main axes of the square lattice. We have to make a
critical point analysis to determine the minimum energies as a function of Q. The
first and second derivative of the Hamiltonian give:

dH
dQ

= S2Na [J sin(aQ)−Dz cos(aQ)] and (7.13)

d2H
dQ2

= S2Na2 [J cos(aQ) +Dz sin(aQ)] , (7.14)

which are the same equations as for the hexagonal lattice, discussed in Chapter 2.
Therefore, the solution is

Q =
α

a
, λ = a

2π

α
, α = arctan

Dz

J
. (7.15)

For J = 1 and D = 1, λ = 8a. For D = 0.1, for instance, λ ∼ 63a.
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A similar development goes for the antiferromagnetic spin spiral, where J < 0
and the n.n. spins are antiparallel, which yields:

H =− 1

2
S2
∑
i

[
J
(
2 + cos(π + θ) + cos(π − θ)

)
+Dz

(
sin(π + θ)− sin(π − θ)

)]
=− S2N [J(1− cos(aQ))−Dz sin(aQ)] ,

(7.16)

resulting in

dH
dQ

= S2Na [|J | sin(aQ)−Dz cos(aQ)] and (7.17)

d2H
dQ2

= S2Na2 [|J | cos(aQ) +Dz sin(aQ)] . (7.18)

Therefore, we have the same solution, but interchanging J for |J |.

7.B Analytical spin-wave dispersion: 1-D antifer-

romagnetic spin chain under a perpendicular

magnetic field

We consider a 1-D spin chain along the x-direction. A uniaxial mag. anisotropy is
set along z, and nearest-neighbor-only J < 0 makes the moments align antiferromag-
netically along z. The hamiltonian is given by Eq. (7.4). An external magnetic field
points along +y causing a tilt of the spin moments by an angle θ from the z–axis,
which determines the ground-state spin configuration and is given by Eq. (7.7).

7.B.1 Spin-wave energies

Knowing the classical ground-state spin configuration, we can calculate the spin-
wave spectrum of the system, as explained in Sec. 2.4. All the spins lie in the
z − y plane making an angle of θ from the z–axis. Thus, the rotation matrices that
take the spins from the global reference frame into the local one, as in Eq. 2.119,
correspond to rotations along the −x–axis, R−x, and they are given by:

Oi = R−x(θi) =

1 0 0
0 cos θi sin θi
0 − sin θi cos θi

 . (7.19)

The part of the interaction matrices quadratic in the creation and annihilation op-
erators is given by Eq. 2.127:

Hil,jl′ =A2×2
il,jl′ −

(
B̃z
il + J̃zzl0

)
Iδil,jl′

=
S

2


mi1,j1 ni1,j1 mi1,j2 ni1,j2
ni1,j1 mi1,j1 ni1,j2 mi1,j2

mi2,j1 ni2,j1 mi2,j2 ni2,j2
ni2,j1 mi2,j1 ni2,j2 mi2,j2


−
( (

h sin θi1,+J̃
zz
l=1(0)

)
δi1,j1I 0

0
(
h sin θi2 + J̃zzl=2(0)

)
δi2,j2I

)
,

(7.20)
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where mij = Jij +p+
ij, and nij = Jij−p+

ij, with p+
ij = Jij cos θij + 2kδij sin θ2

i . Indexes
1 and 2 correspond to the two atoms in the unit cell. As we are considering only
nearest-neighbour interactions, J<il,jl′> = J < 0, and Sil = S, we have that J̃zzl0 ,
given by Eq. 2.127, reads

J̃zzl=1(0) =2S(−J cos(2θ) + k cos2 θ) = 2JS + 2S(k − 2J) cos2 θ ,

J̃zzl=2(0) =4(−J cos(2θ) + k cos2(θ)) = 2JS + 2S(k − 2J) cos2 θ .
(7.21)

The dynamical matrix is obtained from Eq. 7.20 as described by Eq. 2.132:

Dll′(q) =
∑
i

eiq·(ri−rj)
(
D++
il,jl′ D+−

il,jl′

D−+
il,jl′ D−−il,jl′

)
=

(
D++
ll′ (q) D+−

ll′ (q)
D−+
ll′ (q) D−−ll′ (q)

)
. (7.22)

Performing the Fourier transformation by summing over the unit cells, we obtain:

D11(q) =

(
−Ã++

01,01 −Ã+−
01,01

Ã−+
01,01 Ã−−01,01

)
+eiqa

(
−Ã++

01,11 −Ã+−
01,11

Ã−+
01,11 Ã−−01,11

)
+e−iqa

(
−Ã++

01,−11 −Ã+−
01,−11

Ã−+
01,−11 Ã−−01,−11

)
.

(7.23)

We need to calculate each of the elements of the matrices:

A++
01,01 =m01,01 = A−−01,01 = J01,01 + a+

01,01 = J01,01 + J01,01c01,01 + 2kδ01,01s
2
01 = 2k sin2(θ)

A+−
01,01 =n01,01 = A−+

01,01 = J01,01 − a+
01,01 = J01,01 − J01,01c01,01 + 2kδ01,01s

2
01 = 2k sin2(θ)

Ã++
01,01 =Ã−−01,01 = kS sin2(θ) + [−h sin θ − (2JS + 2S(k − 2J) cos2 θ)] = kS sin2(θ) + h+

Ã+−
01,01 =Ã−+

01,01 = kS sin2(θ)

A++
01,11 =m01,11 = A−−01,11 = J01,11 + a+

01,11 = 0

A+−
01,11 =n01,11 = A−+

01,11 = J01,11 − a+
01,11 = 0

Ã++
01,01 =Ã−−01,01 = Ã+−

01,01 = Ã−+
01,01 = 0

A++
01,−11 =m01,−11 = A−−01,−11 = J01,−11 + a+

01,−11 = 0

A+−
01,−11 =n01,−11 = A−+

01,−11 = J01,−11 − a+
01,−11 = 0

Ã++
01,01 =Ã−−01,01 = Ã+−

01,01 = Ã−+
01,01 = 0 ,

(7.24)

where h+ = −h sin θ − 2JS − 2S(k − 2J) cos2 θ. We then have that

D11(q) =

(
−kS sin2(θ)− h+ −kS sin2(θ)

kS sin2(θ) kS sin2(θ) + h+

)
. (7.25)

Similarly for D22:

A++
02,02 =m02,02 = A−−02,02 = 2k sin2(θ)

A+−
02,02 =n02,02 = A−+

02,02 = 2k sin2(θ)

Ã++
01,01 =Ã−−01,01 = kS sin2(θ) + [h sin θ − (2JS + 2S(k − 2J) cos2 θ)] = kS sin2(θ) + h+

Ã+−
01,01 =Ã−+

01,01 = kS sin2(θ) ,

(7.26)
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and because we are considering only n.n., the coupling between different cells be-
tween the same basis atom is zero, Ãαβil,j 6=il = 0, then:

D22(q) =

(
−kS sin2(θ)− h+ −kS sin2(θ)

kS sin2(θ) kS sin2(θ) + h+

)
. (7.27)

Now, the off-diagonal matrices. For D21(q), the matrix elements are:

A++
01,02 =m01,02 = A−−01,02 = J − J cos(2θ) = 2J sin2(θ)

A+−
01,02 =n01,02 = A−+

01,02 = J + J cos(2θ) = 2J cos2(θ)

Ã++
01,02 =Ã−−01,02 = JS sin2(θ)

Ã+−
01,02 =Ã−+

01,02 = JS cos2(θ) ,

(7.28)

A++
01,−12 =m01,−12 = A−−01,−12 = J01,−12 + a+

01,−12 = 2J sin2(θ)

A+−
01,−12 =n01,−12 = A−+

01,−12 = J01,−12 − a+
01,−12 = 2J cos2(θ)

Ã++
01,−12 =Ã−−01,−12 = JS sin2(θ)

Ã+−
01,−12 =Ã−+

01,−12 = JS cos2(θ) .

(7.29)

For D21(q):

A++
02,01 =m02,01 = A−−02,01 = J02,01 + a+

02,01 = 2J sin2(θ)

A+−
02,01 =n02,01 = A−+

02,01 = J02,01 − a+
02,01 = 2J cos2(θ)

Ã++
02,01 =Ã−−02,01 = JS sin2(θ)

Ã+−
02,01 =Ã−+

02,01 = JS cos2(θ) ,

(7.30)

A++
02,11 =m02,11 = A−−02,11 = J02,11 + a+

02,11 = 2J sin2(θ)

A+−
02,11 =n02,11 = A−+

02,11 = J02,11 − a+
02,11 = 2J cos2(θ)

Ã++
02,11 =Ã−−02,11 = JS sin2(θ)

Ã+−
02,11 =Ã−+

02,11 = JS cos2(θ) .

(7.31)

Putting together all these results, we have the total dynamical matrix shown in
Eq. (7.8).

7.B.2 Analytical solution

An analytical diagonalization of Eq. (7.8) at q = 0 gives:

a0 =
1

S(k − 2J)2

√
−Jk

2
h4 + h2S2(k − 2J)2(4Jk − k2)− 4kS4(2J − k)5 ,

a1 =
1

S(k − 2J)2

√
Jk

2
h4 + h2S2(k − 2J)2(4J2 − 2Jk − k2)− 4kS4(2J − k)5 ,

(7.32)

or yet

a0 =2|S|
√
−2Jk sin4 θ + (4Jk − k2) sin2 θ − k(2J − k) ,

a1 =2|S|
√

2Jk sin4 θ + (4J2 − 2Jk − k2) sin2 θ − k(2J − k) .
(7.33)

Let us next understand the asymptotic behaviors of the above expressions.
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For k � J:

a0 =2|S|
√
−2Jk ,

a1 =2|S|

√(
h

2S

)2

− 2Jk .
(7.34)

In the absence of anisotropy:

a0(k = 0) =0

a1(k = 0) =|h|
. (7.35)

In the absence of field:

a0(h = 0) = a1(h = 0) =2|S|
√
k(k − 2J) , (7.36)

whose limits are: k � J ,

a0(h = 0) = a1(h = 0) =2|S||k| , (7.37)

and for k � J ,

a0(h = 0) = a1(h = 0) =2|S|
√

2|J |k . (7.38)

The magnetization saturates when h = 2S(k − 2J) because then sin θ = 1 →
θ = π/2 :

a0 =0

a1 =2|S|
√

2J(2J − k)
(7.39)

that is, when the field is strong enough to fully polarize the magnetization, the spin
gap closes: a0 = 0. For even higher fields, it comes to open again.
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Chapter 8

Prediction of the existence of
in-plane magnetic skyrmions in
Co/W(110)

Anisotropic magnetic films are media whose spin-wave properties depend on their
direction of propagation. These anisotropies occur in systems with low symme-
tries. The resulting anisotropic Dzyaloshinskii-Moriya interactions (DMI), for ex-
ample, can lead to the stabilization of antiskyrmions [111]. Experimentally, such
anisotropic DMI was found for Co-films deposited on W(110) and covered with a
gold cap [154]. Motivated by these findings, we investigated from first principles the
magnetic properties of films containing up to three layers of reconstructed Co on the
W(110) surface, which are thinner than those films studied in Chapter 5 and where
the DMI might play an important role. Furthermore, we considered a monolayer
of pseudomorphic Co/W(110) to simulate the case of below-one-monolayer films,
which do not experience the reconstruction. The anisotropy, magnitude, and signs
of the interactions are analyzed in detail with a focus on the DMI. We determined
the ground state and the stability of different noncollinear spin structures, such
as skyrmions and spin spirals, using micromagnetic analytics and atomistic-spin-
dynamics simulations. We find that the reconstructed single monolayer film has
an in-plane easy axis that can host in-plane skyrmions, i.e., skyrmions that live in
the in-plane background magnetization. This is the most important result of the
current chapter since such in-plane skyrmions have the advantage of shrinking down
in size because of the dipole-dipole interaction in contrast to the usual out-of-plane
skyrmions. Furthermore, we demonstrate that these skyrmions are stabilized by the
DMI and that their antiparticles, the antiskyrmions, are also stable and energeti-
cally degenerate, as guaranteed by the mirror symmetry of the system. Finally, we
unveil the spin-wave properties of the in-plane skyrmions in these films.

8.1 Introduction

The first experimental observations of skyrmions in magnetic materials paved the
way to an intense effort of the scientific community aiming at the understanding
and control of these topologically nontrivial objects [7, 11, 155–158]. Besides be-
ing of fundamental interest in the physics of condensed matter, they can lead to
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technological development in low-power and ultra-high-density information storage
applications, for example. As a quasiparticle, the skyrmion comes accompanied
by an antiquasiparticle that is named antiskyrmion: it has the same polarity as the
skyrmion, that is, they have the same core orientation, see Fig. 8.1.1 (a) and (b), but
they have opposite vorticities and consequently opposite topological charges [159], as
shown in Fig. 8.1.1 (c) and (d). Furthermore, together, they are of practical interest
as they can respond differently under the influence of various external fields [160–
162]. Skyrmions are more likely to occur in systems with isotropic Dzyaloshinskii-
Moriya interaction. Meanwhile, symmetry analysis showed that only thin films with
the C2v space-group symmetries or lower allow the antiskyrmion to be more stable
than its counterpart [111]. Even more restricting can be the conditions under which
skyrmions and antiskyrmions coexist.

Furthermore, most research has been focused on magnetic films with an out-
of-plane magnetocrystalline anisotropy easy-axis, because an out-of-plane magneti-
zation is the usual background where skyrmions and antiskyrmions live. However,
skyrmions living in an in-plane magnetized system described by phenomenological
models and stabilized by the frustration of the magnetic exchange interaction (MEI)
had also been reported [163, 164]. They were named bimerons for being thought as
pairs of coupled merons, which are vortex-like structures whose spins map onto a
hemisphere, of equal topological charge ±1

2
. We argue in this chapter that they are

nothing else than in-plane skyrmions. These in-plane skyrmions might be of partic-
ular importance for technological applications because they can be smaller than the
usual out-of-plane skyrmions thanks to the dipole-dipole interaction, which shrinks
the former and enlarge the latter. Recently and interestingly, using a simple model
Hamiltonian, Göbel et al. [165] showed that the DMI can also stabilize in-plane
skyrmions.

In this chapter, we study ultrathin films, from one to three atomic monolayers
(ML), of reconstructed cobalt on tungsten (110), that belong to the Cs space group.
This symmetry group, as discussed later on, is essential for the stabilization of the
in-plane skyrmions. For comparison, we also consider a single layer of pseudomor-
phic Co/W(110) of C2v symmetry. We calculated their magnetic properties using
density functional theory within the relativistic Korringa-Kohn-Rostoker (KKR)
method, and the magnetic exchange tensor was obtained with the infinitesimal-
rotation approach, as described in Chapter 3. We calculated the spiralization ten-
sor, which demonstrates a high anisotropy of the DMI interaction as was observed
experimentally for Au/Co/W in Ref. [154]. Using the ab initio magnetic properties,
we determined, using analytical micromagnetic models and atomistic-spin-dynamics
simulations, the ground-state spin configurations and the stability of in-plane and
out-of-plane skyrmions and antiskyrmions, and other noncollinear spin textures.

We found that only the single monolayer cobalt films, reconstructed and pseu-
domorphic, can stabilize noncollinear spin structures and that they have in-plane
anisotropy easy-axis. We demonstrate that these films can stabilize skyrmions,
making Co/W(110) the first material system predicted to host in-plane skyrmions
stabilized by DMI. Furthermore, we show that, as this system’s mirror symmetry is
preserved by the in-plane magnetization, the antiskyrmion also occurs and is degen-
erate to the skyrmion, for they are mirror images of each other. Finally, we explore
the properties of the spin-wave excitations and their spin-resolved inelastic electron
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Figure 8.1.1: Skyrmion and antiskyrmion. (a) and (b) depict a skyrmion and an
antiskyrmion, respectively, mapped onto spheres. The background magnetization (in red)
defines the polarization axis, which is indicated by the long black arrow. The core of
both skyrmion and antiskyrmion are antiparallel to the background magnetization and
shown in blue. Therefore, they have the same polarization axis. (c) and (d) show the
winding of the spins along a circumference around the skyrmion and antiskyrmion cores,
respectively. When we move counterclockwise on these paths, the skyrmion spins wind
also counterclockwise but the antiskyrmion spins wind clockwise. Therefore, they have
opposite vorticity.

scattering spectra.
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8.2 Atomic structure and space group

We discussed the atomic structure of Co/W(110) in Chapter 5, which we summarize
now. Experimentally, thin films of cobalt can be grown on tungsten via vapor depo-
sition. However, hexagonal close packed Co(0001) and bcc W(110) surfaces have a
mismatch of (aW−aCo)/aCo = 26% along the W[001] and (

√
2aW−

√
3aCo)/

√
3aCo =

3% in the [11̄0] directions, where the lattice constants are aCo = 2.51 Å and aW =
3.16 Å. This causes a reconstruction of the pseudomorphically-growing cobalt film
already at very low layer coverage, ∼ 0.72 MLs, depending on the temperature and
annealing conditions, which can be described by a 4× 1 tungsten unit cell contain-
ing 8 W atoms in each tungsten layer and 10 Co atoms in each cobalt layer [88,
99, 101, 154, 166, 167]. Despite the reconstruction, Co forms a smooth surface and
a sharp interface due to its immiscibility to tungsten. For the sake of comparison,
and for representing the case of small Co islands on W(110), we also consider a
pseudomorphic (unreconstructed) Co on W(110).

The hcp-Co(0001) surface belongs to the C3v space group, and in fact, a free-
standing hcp Co monolayer has even higher symmetries belonging to the D6h group.
In contrast, the W(110) surface belongs to the C2v, and together, the reconstructed
Co/W(110) has the symmetry of the Cs, that is, it is only invariant under reflec-
tion by a single mirror plane, which is perpendicular to the W[001] direction. The
cobalt reconstruction breaks all rotational symmetries of the film, which will have a
profound impact on the magnetic properties of these systems.

We consider cobalt films of 1 to 3 MLs, and we simulate the substrate with
a 6 MLs W(110) slab. Further details of the considered crystal structure of the
cobalt films on tungsten were discussed in Chapter 5, where we studied the magnetic
properties of 3-8 monolayers (ML) films. Here, we focus on even thinner films
considering the effects induced by the spin-orbit coupling.

Next, we discuss the magnetic properties of these films, which were obtained from
ab initio simulations based on density-functional theory, within the relativistic KKR
method in the local-spin-density approximation (LSDA), discussed in Chapter 3.
Using the infinitesimal-rotations method, we mapped the first-principles calculations
onto the following Hamiltonian as introduced in Sec. 2.1.6:

H = −
∑
ij

JijSi · Sj −
∑
ij

Dij · Si × Sj −K
∑
i

(K̂ · Si)2 . (8.1)

The first term corresponds to the exchange energy due to the magnetic exchange
interaction Jij between sites i and j. The second is the contribution due to the
Dzyaloshinskii-Moriya interaction given by the vector Dij, and the third is due to

the uniaxial magnetocrystalline anisotropy with axis along K̂ with strengthK. Here,
we take |S| = 1, such that Jij and Dij are multiplied by the magnetic moment of
sites i and j, e.g., Jij →MiJijMj. Throughout this chapter, the Cartesian reference
frame will have the x and y axes laying in the film plane along W[001] and W[11̄0],
respectively, and the z axis is out-of-plane.
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(a)

(b)

(c)

Figure 8.3.1: Magnetic moments of ultrathin films of cobalt on tungsten (110). (a)–(c)
Films of 1 to 3 MLs of reconstructed cobalt, respectively. The gray and blue atoms depict
tungsten and cobalt, respectively. Meanwhile, the red arrows represent the magnetic
moment of individual atoms. The biggest arrow in the figures corresponds to 1.78µB, see
Tab. 8.3.1 for the layer-averaged values. Notably, the interface-layer magnetic moments
are reduced in comparison to the overlayers because of the hybridization with the tungsten
substrate. The depicted displacements between layers are arbitrary.

8.3 Magnetic interactions

8.3.1 Magnetic moments

The atomic magnetic moment of materials is determined by the electronic struc-
ture, which is strongly affected by the crystalline structure. For a given element,
its magnitude changes from an isolated atom to an atom lying in a crystal. Further
variations are observed between the bulk, surface and interface atoms. For 1–3 MLs
films of Co/W(110), we observe a layer-dependent variation of the magnetic mo-
ment, see Fig. 8.3.1, which also depend on the thickness of the films. The highest
magnetic moment is 1.78µB, which corresponds to the experimental bulk-hcp cobalt
value [168], and the in-plane-averaged magnetic moments are given in Tab. 8.3.1. In
the pseudomorphic cobalt 1 ML (rectangular lattice), the cobalt atoms are farther
apart from each other in comparison with the Co atoms in the reconstructed 1 ML
film (hexagonal lattice). This causes the magnetic moments of the pseudomorphic
1 ML film to be higher than in the reconstructed film of the same thickness.

magnetic moments (µB)

layer
pseudomorphic cobalt reconstructed cobalt

1 ML 1 ML 2 MLs 3 MLs
1 (interface) 1.51 1.05 (0.09) 1.33 (0.02) 1.17 (0.04)

2 1.76 (0.01) 1.67 (0.02)
3 1.71 (0.01)

Table 8.3.1: Layer-dependent magnetic moments of ultrathin cobalt films on tungsten
(110). We consider films of 1 ML for pseudomorphic and 1–3 MLs for reconstructed cobalt.
The values for reconstructed cobalt correspond to the average value within the unit cell,
which contains 10 atoms per layer, with the standard deviation shown in parentheses.

Furthermore, a modulation is observed within the Co layers, originated from
the spatial heterogeneity at the interface, and therefore mostly noticeable there,
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Figure 8.3.2: Cobalt stacking on tungsten (110) and magnetization modulation. (a)
The interface layer of reconstructed Co (blue atoms) stacked on the W(110) (gray atoms).
The black frame indicates the supercell with its 10 Co atoms numerated, whose magnetic
moments, in order, are: 0.96, 0.95, 0.97, 1.07, 1.18, 1.23, 1.18, 1.07, 0.97, 0.95µB. (b) Side
view of 1 ML Co film together with its magnetic moments. Relatively strong modulation
of the magnetization along the [001] direction is observed. A comparison between (a) and
(b) reveals that Co atoms with higher magnet moments mostly atop of W, while smaller
magnetic occurs to atoms seated on the hollow to the W lattice.

Fig. 8.3.1 (a). Within the unit cell, different Co atoms have distinct neighborhoods:
some lie almost atop of a W atom, and others in a hollow position between three
W, see the top view of the interface of reconstructed Co (blue atoms) stacked on
W(110) (gray atoms) in Fig. 8.3.2 (a). Those Co atoms seated in the hollows of the
tungsten lattice are in close contact with more atoms of the substrate than the Co
atop. This yields a higher hybridization of the electronic states of the hollow Co
atoms. As a consequence, their magnetic moments reduce, as observed on the edges
of the unit cell, see Fig. 8.3.2 (b).

8.3.2 Magnetocrystalline anisotropy

As discussed along this thesis, the relativistic spin-orbit coupling can cause differ-
ences in energy for different orientations of the material magnetization with respect
to the lattice. Invoking once more the magnetic force theorem, we calculated these
anisotropy energies Eαβ = Eα−Eβ from the difference of the total band energies per
cobalt atoms when the magnetization is set along the α and β–direction, as given by
Eq. 3.79. The self-consistent electronic structures of cobalt films were obtained with
the magnetization along the z–axis, i.e., out-of-plane. Starting from the obtained
converged potential, the total band energy for the other directions were obtained
with one-shot calculations after rotating the magnetization to the corresponding
direction.
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magnetic anisotropy (meV / per atom)
pseudomorphic cobalt reconstructed cobalt

1 ML 1 ML 2 MLs 3 MLs
Kx = Ez − Ex 0.14 0.23 -0.29 0.05
Ky = Ez − Ey 0.23 0.13 0.06 0.23

Table 8.3.2: Magnetocrystalline anisotropies. Eα is the total band energy per cobalt
atom for when the magnetization is set along the α–direction. We consider Co films
of 1 pseudomorphic monolayer and 1–3 reconstructed monolayers. Kα is the anisotropy
constant along the α–direction, which corresponds to an easy-axis when it is positive, and
a hard-axis for negative values. In most cases, it is energetically more favorable for the
magnetization to be along one of the in-plane axes than out-of-plane. The only exception
is the 2 MLs reconstructed system, where the out-of-plane z–axis is more favorable than
the x axis, however, the strongest easy-axis is still in-plane along y.

These DFT energy differences were then mapped onto a biaxial anisotropy model
given by,

HK = −
∑
i

(
Kx(Sxi )2 +Ky(Syi )2

)
. (8.2)

This energy is composed of two terms, one for each anisotropy axis. For example, a
positive value ofKx corresponds to an easy-axis along the x–axis, i.e., this anisotropy
energetically favors an alignment of the magnetic moments along the x–axis. For
negative values, a hard-axis along the x–direction is established, and the magnetic
moments would lie in the plane perpendicular to this axis. Naturally, the same is
true for the other axis, and they might compete or work together. From this model,
we obtain that

Kx =Ez − Ex

Ky =Ez − Ey ,
(8.3)

which, therefore, quantify the energy difference between the magnetization align-
ment along one of the in-plane axes and the out-of-plane direction.

The results are summarized in Tab. 8.3.2. We observe that for all cases, the
magnetization has a strong tendency to lie in-plane with z as a hard-axis. This is
the case because most Kα in Tab. 8.3.2 are positive. Only for the 2 MLs system, K
is negative, indicating that it is more favorable for the magnetization to point along
z than along x by −0.29 meV. But when the alignment along z is compared to the
alignment along y, we see that the latter is more favorable by 0.06 meV. It also
worth to notice that the small values of Kα, as is the case of Ky = 0.06 meV for the
2 MLs and Kx = 0.05 meV for 3 MLs, indicate that the system is close to a uniaxial
behavior. Therefore, the reconstructed 2 and 3 MLs systems can be modeled by a
uniaxial anisotropy along x and y with an averaged values of Kx = −0.32 meV and
Ky = 0.20 meV, respectively. Both 1 ML systems, the pseudomorphic and recon-
structed cobalt films, are better described by the biaxial anisotropy model. However,
the reconstructed film has its strongest easy-axis along x, while the pseudomorphic
system has it along y.
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Figure 8.3.3: Dzyaloshinskii-Moriya vectors for the 2 MLs reconstructed cobalt film.
(a) and (c) show the intralayer interactions of the film surface and interface, respectively.
(b) displays the interlayer DMI interactions between the two cobalt layers. Each cluster
of vectors represent the interactions of one atom in the unit cell (the gray sphere) and
its neighbors. The centers of the vectors are located on the position of the neighbors.
The color code paints in blue and red out-of-plane vectors, and green the in-plane ones.
The biggest arrow corresponds to a DMI strength of 0.63 meV. The interface with the
substrate makes every cluster different from the others. Out-of-plane components are
mostly observed on the nearest-neighbor couplings at the surface.

8.3.3 Dzyaloshinskii-Moriya interaction

Let us start by analyzing the reconstructed 2Co/W(110) film. The DMI vectors
are shown in Fig. 8.3.3, where each cluster corresponds to the interactions of a
given Co atom of the film. Figures 8.3.3 (a) and 8.3.3 (c) display the intralayer
interactions within the surface layer (Co layer 2) and the interface layer (Co layer
1), respectively; and Fig. 8.3.3 (b) corresponds to the coupling between atoms of
different layers (interlayer coupling). Each vector represents the interaction between
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Figure 8.3.4: Averaged Dzyaloshinskii-Moriya vectors for the pseudomorphic and re-
constructed films of Co/W(110). We averaged out the 10 atoms per layer in the unit
cell. (a) and (b) show a top and side view of the same interactions. Each vector rep-
resents the DMI between the central atom (in gray) and the neighbors (not depicted).
The size of the arrows depicts the DMI strength and is on the same scale for all charts,
except for the pseudomorphic film, which was scaled down by a factor 10. The color code
paints in blue and red out-of-plane vectors, and green the in-plane ones. The interactions
are highly anisotropic in strength and chirality for all cases. The biggest shown arrow
of the reconstructed films has a length corresponding to 0.84 meV, and 3.75 meV for the
pseudomorphic film.
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the central atom (depicted in gray) and one neighbor — the center of the arrow is
located on the position of that neighbor. The size of the arrows scale with the
magnitude of the DMI vectors. The color scale marks vectors pointing out-of-plane
in opposite directions in blue and red, and in-plane vectors are shown in green.
As expected, each interaction cluster that corresponds to a particular atom of the
unit cell is distinct from the others. This means that the substrate neighboring is
fundamental in determining the DMI for a given Co atom. Furthermore, we notice
that the nearest-neighbor DMI vectors of the surface are mostly out-of-plane, while
the rest of the interactions have their major components in-plane.

With such a complex set of DMI vectors, it is hard to have an impression of
which kind of magnetic structure it will lead to. As a first approach to simplify
these data, and also to allow us to systematically compare the DMI of films of
various thicknesses, we can average the interaction clusters within each layer of the
unit cell. In this way, we are left with one interaction cluster for every layer, instead
of ten. Most importantly, this procedure preserves the Cs space group of the original
systems. The outcome is shown in Figs. 8.3.4 (a) and 8.3.4 (b), which depict the
top and side views of the averaged DMI for the pseudomorphic and reconstructed
cobalt films, respectively. The DMI for the pseudomorphic film is scaled down by a
factor 10 to be plotted in comparison to the reconstructed cases.

In Fig. 8.3.4 (a), for the reconstructed and pseudomorphic 1 ML, we can observe
an anisotropic DMI, which is stronger for the right and left neighbors than for the
others. Therefore, these sets of DMI favor the formation of spin spiral or distorted
skyrmions. The strongest averaged DMI interaction for each reconstructed Co film
has a magnitude of 0.84 meV, 0.33 meV and 0.44 meV, for 1 to 3 MLs, respectively;
and it is of 3.75 meV for the 1 ML pseudomorphic film. Without the averaging, these
values are: 1.48 meV, 0.63 meV and 0.76 meV, for 1 to 3 MLs, respectively. Focusing
on the interface layer of all films, we further notice that most vectors swirl around
the origin. Most vectors have the same swirling sense around the central gray atom
(or chirality) for the 1 ML and 3 MLs Co films, which can favor the formation of
skyrmions; while for 2 MLs Co film, we observe two sets with opposite chirality that
could favor antiskyrmions occurrence.

8.3.4 Magnetic exchange interaction

In Fig. 8.3.5, we represent the exchange interaction for our four systems, the 1 ML
pseudomorphic and the 1-3 MLs reconstructed cobalt films on tungsten. We follow
the same procedure described for the DMI and average the contributions from the
10 Co atoms in each layer. The blue represents a ferromagnetic coupling, while
red presents the antiferromagnetic one. The strength of the interaction is given by
the saturation, the darker the color, the stronger is the interaction. The strongest
blue of Fig. 8.3.5 corresponds to 19.9 meV (occurring for the reconstructed 3 MLs)
and the strongest red to −5.9 meV (occurring for the pseudomorphic 1 ML). All
the nearest-neighbor couplings are ferromagnetic, which soften at the interface with
the tungsten substrate. Shells of antiferromagnetic coupling can be seen for farther-
away neighbors. Overall, the magnetic exchange interactions decay with the distance
between the sites. Next, we want to study the decay of both the magnetic exchange
and the Dzyaloshinskii-Moriya interactions for longer distances.
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Figure 8.3.5: Averaged magnetic exchange interactions for the pseudomorphic and
reconstructed films of Co/W(110). We averaged out the 10 atoms per layer in the unit
cell. Each sphere represents a neighbor of the central atom (not shown) whose color
corresponds to the exchange coupling between them. The color code paints in blue the
ferromagnetic coupling, and in red the antiferromagnetic one. The highest blue saturation
corresponds to 19.87 meV, and the highest red to −5.91 meV. The nearest neighbors
couple ferromagnetically, whose intensity is weakened on the interface. The MEI decay
and oscillate, even changing sign, for farther away neighbors.

8.3.5 MEI and DMI spatial decay

Figure 8.3.6 shows the log-log plot of the absolute value of the magnetic exchange
and Dzyaloshinskii-Moriya interactions |Jij| and |Dij| for all atoms in each system.
The red continuous lines are reference decay functions. Once again, the in-plane-
averaged interactions were considered. We can see that the MEI decays at least as
r−3, and the DMI decays at least as r−2. No significant differences were observed
for the decay of the different atoms in the system of multiple layers.

8.4 Micromagnetic analytics

8.4.1 Stiffness and spiralization tensors

In order to study the spin-wave spectra for our four films of cobalt deposited on
tungsten, we need first to obtain their ground-state spin configuration. Here we have
to perform real-space summations of the interactions ensuring the convergence of the
properties of interest. Large wavevector spin-wave energies, which depend mostly
on the short-range interactions, converge faster than the spin-wave energies near
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(a) 1ML - Co (b) 2ML - Co (c) 3ML - Co

Figure 8.3.6: Spatial decay of the magnetic exchange and the Dzyaloshinskii-Moriya
interactions. The result for reconstructed Co films of different thicknesses, from 1 to 3
ML, are shown (a-c). The upper panels correspond to the MEI, while the lower panels to
the DMI. The figures are in the log-log scale. The MEI decays faster than the r−3 curve,
which is shown in red. Meanwhile, the DMI only decays faster than the r−2 curve.

the center of the Brillouin zone. Similarly, the ground-state spin configuration can
require a sum over large real space distances for a proper and realistic description.

The stiffness tensor is the magnetic property that measures how “hard” is a
material’s magnetization with respect to the temperature, for example. Meanwhile,
the spiralization tensor informs on the magnetization susceptibility to the formation
of spin spirals. They can help us to understand the convergence of the real space
sums besides being valuable to determine the ground-state spin configurations. We
discuss next how to derive these two tensors.

We start by trying to determine whether a spin spiral is the ground state, or at
least to check how its energy compares to that of the ferromagnetic state. We are
restricting our search among spin spirals of the type

Si = cosφi sin θn
1 + sinφi sin θn

2 + cos θn3 , (8.4)

where n3 is a unity vector defining the axis around which the spins rotate, and that
it forms an orthonormal basis set for the three dimension space together with n1

and n2. θ is the cone angle between the spins and n3, φi = q ·Ri, where q is the
spiral wavevector, and Ri the position vector of the i-th spin. For simplicity, the
modulus of Si was chosen to be 1.

In general, the spin-spiral energy, obtained by replacing the spins in the Hamilto-
nian of Eq. (8.1) by those of the spiral in Eq. (8.4), is a function of all the quantities
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that define the spiral: nα, θ and q:

ε =
H
N

=− 1

2N

∑
ij

Jij
[
cos (q ·Rij) sin2 θ + cos2 θ

]
− 1

2N

∑
ij

{
sin2 θD3

ij sin(q ·Rij) + sin 2θ
[
sin(q ·Ri)D

1
ij − cos(q ·Ri)D

2
ij

]}
−K

[
1

2
sin2 θ

(
(K1)2(δ2q,{0,Q} + 1) + (K2)2(1− δ2q,{0,Q})

)
+ sin 2θ

(
K1K3δq,0

)
+ (K3)2 cos2 θ

]
,

(8.5)

where Dα
ij = Dij · nα and Kα = K̂ · nα, see Apx. 8.A.2. Here, we included a factor

of 1/2 in front of the MEI and DMI terms in Eq. (8.1). The term in the first line
of the above equation comes from the magnetic exchange interaction; the one in
the second line from the Dzyaloshinskii-Moriya interaction; and the last two lines
correspond to the contribution of the magnetic anisotropy. The latter is a constant
for most spin-spiral wavevectors, but with a singularity for q = 0 and q = Q/2,
which correspond to a ferromagnetic and an antiferromagnetic phase, respectively,
and Q is a reciprocal-lattice primitive vector.

To simplify the expression of the spin-spiral energy, we can perform its Taylor
expansion around q = 0 to the second order in the wavevector, see Apx. 8.A.3. The
coefficients of the first and second-order terms are given by the gradient and Hessian
of the spiral energy, respectively. The first order term is known as the spiralization
tensor

Dαµ = −
∑
j

Dα
0jR

µ
0j , (8.6)

where α = x, y, z indicate three orthonormal directions for the spiral axis n3. And
the second order one is the so-called exchange stiffness tensor

Aµν =
∑
j

J0jR
µ
0jR

ν
0j , (8.7)

where µ and ν label the Cartesian components of the position vector R [169]. The
index 0 labels a reference atom, which can be arbitrary once we are assuming trans-
lational invariance. These results we obtained by considering the summation over a
Bravais lattice and taking θ = π/2, i.e., considering only flat spirals. A full deriva-
tion of these expression are shown in the Apx. 8.A. The stiffness and spiralization
tensors have a fundamental importance in the dynamical properties of large scale
systems, for they parametrize various micromagnetic models.

From the in-plane average magnetic exchange and Dzyaloshinskii-Moriya inter-
actions, we calculated the stiffness and spiralization-tensor elements for different
layers as a function of the radius, see Figs. 8.4.1 and 8.4.2. These quantities were
obtained by direct real-space summation of Eqs. 8.6 and 8.7. The averaged recon-
structed systems have the symmetries of the Cs space group with a mirror plane
perpendicular to the x–axis, and thus the only nonvanishing elements of the stiffness

161



CHAPTER 8. PREDICTION OF THE EXISTENCE OF IN-PLANE
MAGNETIC SKYRMIONS IN Co/W(110)

layer 1

layer 2

layer 1

layer 3

layer 2

layer 1

interface

1 ML -
pseudomorphic Co

1 ML - Co

2 MLs - Co

3 MLs - Co

Figure 8.4.1: Stiffness-tensor elements per layer as a function of the cut-off radius
calculated via Eq. (8.7). Only Axx and Ayy are nonvanishing due to the symmetries of the
system. For some systems and layers, we can observe an anisotropy of the stiffness along
x and y, as is the clear case of the first layer of 2ML–Co, and layer 2 of 3ML–Co. Overall,
a cut-off radius of at least 12aW is required to issue convergence of these quantities.

tensor are Axx and Ayy, and Dxy, Dyx, and Dzx for the spiralization tensor. Mean-
while, the pseudomorphic-cobalt monolayer has the C2v symmetries, which imposes
that Dzx vanishes as well for this system.

In Fig. 8.4.1, we show the stiffness-tensor elements as a function of the cut-
off radius, i.e., for every point of the curves, all pair interactions between atoms
apart by a distance smaller or equal to the cut-off radius were considered. For a
given layer, both intra and interlayer interactions are considered. We can observe
that the stiffness-tensor elements are smallest for the reconstructed 1 ML film. This
effect is due to the strong hybridization between the electronic states of cobalt and
tungsten, which also leads to rather small magnetic moments and hence reduced
spin stiffness [170]. In contrast, the stiffness is the largest for the surface layers. We
also observe an anisotropy between the x and y–directions for the exchange stiffness.
Finally, we can assert that a cut-off radius of at least r = 12aW is required for the
convergence of these quantities. The exception is the pseudomorphic film, which did
not converge within the range of interactions available.
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Figure 8.4.2: Spiralization-tensor elements per layer as a function of the cut-off radius
calculated via Eq. (8.6). For the reconstructed films, only Dxy, Dyx, and Dxz are non-
vanishing due to the system’s symmetries. For the pseudomorphic film, Dxz does also
vanish. The spiralization-tensor is very anisotropic, where Dxy is in general different of
Dyx. Even the sign of the spiralization-tensor elements can change from layer to layer and
among different film thicknesses.

In Fig. 8.4.2, we show the spiralization-tensor elements as a function of the cut-off
radius of the interaction cluster. Overall, these tensor elements are stronger for the
monolayer systems, both pseudomorphic and reconstructed cobalt films, because the
small coordination number of the Co atoms in these films reinforces the magnetic
interaction between them. We can also observe a sign change of some elements
from one layer to the next, for the thicker films, which is the case of Dyx in the
reconstructed 2 MLs, and for different systems: note that in the reconstructed 1 and
2 MLs films that the sign of Dzx at the layer 1 changes.

The results shown in Figs. 8.4.1 and 8.4.2 are summarized in Tabs. 8.4.1 and 8.4.2,
respectively, where we collect the values for the tensor elements at last the radius.
In Figs. 8.4.1 and 8.4.2, the values for the pseudomorphic film are not converged.
Therefore, we used a method that consists in damping the magnetic interactions
with an exponentially decaying function, and then extrapolate the result as the
damping goes to zero, which we explain in detail in Apx. 8.B. The obtained results
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1MLpseud 1ML 2ML 3ML

layer 3
Axx 54.29
Ayy 52.93

layer 2
Axx 58.67 41.17
Ayy 60.36 45.53

layer 1
Axx 30.22 (28.14) 8.25 21.87 17.36
Ayy 28.86 (29.00) 6.65 26.55 19.94

average
Axx 30.22 (28.14) 8.25 40.27 37.61
Ayy 28.86 (29.00) 6.65 43.45 39.47

Table 8.4.1: Stiffness-tensor elements per layer obtained from the averaged interaction
set given in meV.a2

W . These values were obtained by direct real-space summation of the
interactions except for the values in parenthesis, which were obtained with the extrapola-
tion method discussed in Apx. 8.B. We considered the interactions in a cluster of radius
20aW and 10aW for the reconstructed and pseudomorphic films, respectively. These values
correspond to the last data point of each chart in Fig. 8.4.1. The values in parenthesis for
the pseudomorphic film correspond to the last data point of Fig. 8.B.4 (a). The last row
corresponds to the averaging between all the layers.

are shown in Fig. 8.B.4 and given in parenthesis in Tabs. 8.4.1 and 8.4.2. One notices
the strong anisotropy between Axx and Ayy and between Dxy and Dyx. As we saw,
the nearest-neighbor interactions are ferromagnetic with magnitude increasing with
the thickness of the Co films. Therefore, for a system with more than one layer,
as a first approximation, we can suppose that the spin moments in different layers
rigidly rotate together in the ground state and that these systems can be modeled
by an effective monolayer with the interaction tensors averaged between layers. The
tensor elements for such an average is shown in the last row of Tabs. 8.4.1 and 8.4.2.

8.4.2 Comparison with the experimental data

In Ref. [154], L. Camosi et al. reported on an experimental study of Au/Co/W(110).
They used Brillouin light scattering spectroscopy to measure spin-wave energies and
thus to determine the DMI anisotropy of this system at room temperature. They
found the DMI to be 2-3 times larger along the bcc[1̄10] than along the bcc[001].
Their film is composed of a 8 nm thick tungsten substrate, upon which a 6.5 nm-thick
cobalt film is deposited that should correspond to about 3 MLs of Co. Finally, a
2 nm thick fcc Au(111) cap layer is grown on top of the stack to favor an out-of-plane
anisotropy.

By using a vibrating sample magnetometer, they inferred the spontaneous volu-
metric magnetization Mexp. = 1.15× 106A/m. We calculated the magnetization for
the reconstructed 3 MLs system as the averaged magnetic moment in the unit cell
M = 1.52µB (see Tab. 8.3.1) divided by its volume V = dAcell, where d = 0.644aW

is the interlayer distance in our simulations and Acell = 4aW ×
√

2aW/10 is the area
of the supercell per atom. Thus, we obtained that Mtheory = 1.22× 106A/m, which
is in good agreement with the experimental result.

As shown in Sec. 8.3.2, similarly to all the other systems, the reconstructed 3 MLs
systems has a preferred axis in-plane along the y–direction. For Au/Co/W(110) of
the experimental study of Ref. [154], however, the preferred axis is out-of-plane, due
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1MLpseud 1ML 2ML 3ML

layer 3
Dxy 0.28
Dyx -0.24
Dzx 0.06

layer 2
Dxy 0.84 -0.37
Dyx -0.82 0.48
Dzx -0.06 -0.14

layer 1
Dxy 2.38 (1.38) -1.31 -0.05 -0.37
Dyx 6.13 (5.78) 1.05 0.84 1.15
Dzx -0.45 0.52 0.14

average
Dxy 2.38 (1.38) -1.31 0.39 -0.15
Dyx 6.13 (5.78) 1.05 0.01 0.46
Dzx -0.45 0.23 0.02

Table 8.4.2: Spiralization-tensor elements per layer obtained from the averaged inter-
action set given in meV.aW . These values were obtained by direct real-space summation
of the interactions except for the values in parenthesis, which were obtained with the
extrapolation method discussed in Apx. 8.B. We considered the interactions in a cluster
of radius 20aW and 10aW for the reconstructed and pseudomorphic films, respectively.
These values correspond to the last data point of each chart in Fig. 8.4.2. The values in
parenthesis for the pseudomorphic film correspond to the last data point of Fig. 8.B.4 (b).
The last row corresponds to the averaging between all the layers.

to the Au cap layer.

Finally, Ref. [154] reports on the interfacial spiralization tensor, where they found
Dx = 0.12(2) pJ/m and Dy = 0.29(3) pJ/m, which correspond to the bcc[001] and
bcc[1̄10] directions, respectively. Our ab initio calculations result in Dx = 0.39 pJ/m
and Dy = 1.23 pJ/m for the reconstructed 3 MLs system. Here, Dx = 3Dxy/Acell and
Dy = 3Dyx/Acell, where 3 is the number of layers. For Dαβ, we used the averaged
values of Tab. 8.4.2, which is given per layer. The theoretical results overestimate the
values of the DMI-tensor elements, nevertheless, the theoretical spiralization-tensor
element along the bcc[1̄10] is 3 times larger than along the bcc[001], in agreement
with the experimentally-observed anisotropy [154]. One of the causes for the quan-
titative mismatch may be related to the Au capping layer in the experiment and
related to the temperature: While the ab initio calculations correspond to 0 K, the
experiment was performed at room temperature.

8.4.3 Ground-state spin configurations from the micromag-
netic model

Within the Taylor expansion of the energy, discussed in Apx. 8.A.3, it is straight-
forward to calculate the energy minimum as a function of the wavevector by search-
ing for the zeros of its first derivative. For each direction of the spin-spiral axis
α = x, y, z, the wavevector that minimizes the energy is given by:

qαµ =−
∑
ν

DανAνµ , (8.8)
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where A is the inverse of the stiffness tensor. The corresponding energy is given by

εαtotal(q
α) =εαExc + εαK , (8.9)

where the exchange contribution due to MEI and DMI is given by

εαExc = −1

2

∑
µν

DανAνµDαµ , (8.10)

and the anisotropy contribution, for nonvanishing wavevectors, is given by

εαK = −1

2

∑
β

Kβ , (8.11)

with β running over all anisotropy axes that are perpendicular to the spiral axis α.
A detailed derivation of these results is given in Apx. 8.A.5.

Considering that the symmetries of the cobalt films (Cs and C2v) impose that
many elements of the stiffness and spiralization tensor vanish, such as Axy, Ayx,
Dxx, Dyy and Dxx, the cycloidal spin spirals that minimize the energy are given
next. For α = x (spiral axis along x):

qx =
(
0 ,−DxyAyy

)
, εxExc = −1

2

(Dxy)2

Ayy
, εK = −K

y

2
; (8.12)

For α = y (spiral axis along-y):

qy =
(
−DyxAxx , 0

)
, εyExc = −1

2

(Dyx)2

Axx
, εK = −K

x

2
; (8.13)

For α = z (spiral axis along-z):

qz =
(
−DzxAxx , 0

)
, εzExc = −1

2

(Dzx)2

Axx
, εzK = −1

2
[Kx +Ky] . (8.14)

We note, however, that the anisotropy energy is discontinuous at q = 0, which
corresponds to a ferromagnetic state, and it is given by εFM = εK(q = 0) =
−max(Kα). When εFM is smaller than εαtotal, the ferromagnetic state is preferred.
Taking the layer-averaged stiffness and spiralization tensors of Tabs. 8.4.1 and 8.4.2
into the above equations, we obtain that for reconstructed 1ML cobalt film, the
spin-spiral energies are εtotal ∼ −0.19 meV per atom for the spin-spiral axes along
the three directions x, y and z, see Tab. 8.4.3. They have an energy difference from
the ferromagnetic phase of only ∼ −0.04 meV , and their wavevectors vary in di-
rection and magnitude, qx = (0, 0.20, 0), qy = (−0.13, 0, 0) and qz = (0.05, 0, 0),
which correspond to wavelengths of 32, 49, 114 aW , respectively. For the 2 and 3
ML reconstructed cobalt films, the absolute values of the spiral energies are always
smaller than ε = 0.01 meV per atom, which means that they have ferromagnetic
ground states and that the occurrence of spin spirals and noncollinear spin textures
is improbable.

For all the reconstructed films, the ferromagnetic state has the smallest energy,
and therefore it is the micromagnetic ground state. For the pseudomorphic 1ML
film, we used the values in parenthesis in Tabs. 8.4.1 and 8.4.2, which were obtained
with the extrapolation method discussed in Apx. 8.B. We found that a spiral with
axis along y propagating along x with a wavelength of 31aW has lower energy than
the ferromagnetic state, see Tab. 8.4.3.
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α-axis qα λ (aW ) εαExc εαK εαtotal εFM FM-axis

1ML pseud
x ( 0 , -q) 131.90 -0.03 -0.12 -0.15

-0.23 x
y (-q , 0) 30.59 -0.59 -0.07 -0.66

1ML
x ( 0 , q) 31.81 -0.13 -0.07 -0.19

-0.23 yy (-q , 0) 49.24 -0.07 -0.12 -0.18
z ( q , 0) 114.53 -0.01 -0.18 -0.19

Table 8.4.3: Cycloidal spin spiral energies. Spin spirals with rotation axes along three
orthogonal directions α = x, y, z were considered. The wavevector that minimizes the
energy of each spiral is q, and the correspondent wavelength is λ. The MEI and DMI
contributions to the total energy are given by εExc, while the anisotropy contribution is
given by εK , adding up to the total energy εtotal. The energy of the ferromagnetic state
with magnetization along the strongest easy-axis (FM-axis) is given by εFM.

8.5 Atomistic-spin-dynamics simulations

While the micromagnetic model can give us a basic and analytical understanding
of the magnetic properties of a material, it has also some limitations related to
the underlying approximations. To study rapidly-varying spin structures, such as
skyrmions with diameters of a few nanometers, an atomistic description is more
appropriate. Therefore, we performed atomistic-spin-dynamics simulations, which
trace the time evolution of the spins by solving the LLG equation, as implemented
in the Spirit-Code [47], to study and determine the stable spin configurations of
the investigated films. In agreement with our analytics based on the micromagnetic
model, through our simulations for the 2-3MLs systems, we only found ferromagnetic
spin configurations to be the ground state, and no noncollinear spin configuration
was found stable in these systems. Therefore, in the following, we will discuss the
results for the 1 monolayer systems, both, the reconstructed and the pseudomorphic.
For the reconstructed case, we will consider two models: one with the set of in-
plane-averaged interactions, which effectively reduces the model to a single atom in
the unit cell; and another with the supercell set of interactions, which contain 10
inequivalent cobalt atoms in the cell.

8.5.1 Reconstructed 1ML: in-plane-averaged interactions

For the in-plane averaged interactions, we saw that the micromagnetic analysis
predicts a ferromagnetic ground-state for all 1-3ML reconstructed systems. However,
it was also seen that for the 1ML reconstructed film, two cycloidal spirals, one with
axis along x̂ and other along ŷ, have energies rather close to the ferromagnetic state
with a difference of ∼ 0.04 meV per atom, and of wavelength of ∼ 32aW and 49aW,
respectively. We want next to verify these results using atomistic-spin-dynamics
simulations.

In the averaged case, we have a simple unit cell with a single atom of a hexagonal
lattice. A spin spiral, however, can be best represented in a rectangular unit cell.
Therefore, for the following simulations, we used a Bravais lattice given by a1 = aCox̂
and a2 =

√
3aCoŷ, where the lattice constant of cobalt is aCo = 4

5
aW. The simulation

boxes consist of the area expanded by ma1 and na2, which we will represent by m×n.
We first considered an 85× 50 simulation box, which is a rectangle of dimension
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21.49 × 17.88 nm2, with periodic boundary conditions. The ferromagnetic state
with magnetization along x was found to be the ground state. Nevertheless, many
metastable states were observed as well. Starting from a random spin configuration,
we often obtain states that consist of a spin spiral plus skyrmions mixture (SP+SKs),
see an example in Fig. 8.5.1 (a). The colors represent the z component for the
spins: blue for spins points along −z, red along +z, and green for the spins lying
in-plane. The SP+SKs state presents skyrmions of different polarities. We can
observe skyrmions of predominantly blue cores, therefore with spins pointing along
−z, when they are closer to the spin-spiral stripes that point along +z, and the
entire thing reverses for skyrmions with cores predominantly red. A 2×2 expansion
of Fig. 8.5.1 (a) is shown in Fig. 8.5.1 (g).

Inspired by Fig. 8.5.1 (a), we initialized a simulation with a spiral of a wavelength
of about the simulation box size. After the relaxation, we obtained Fig. 8.5.1 (b),
which represents a very stretched spin spiral (SP) 1, indicating that the wavelength
is smaller than the dimension of the box. The obtained spiral is not exactly cycloidal
or conical like, since the spins in the blue and red regions have components along
−y and +y, respectively. This is equivalent to superimpose two cycloidal spirals,
one with rotational axis along y, and another with axis along z. By starting from
the ground state with a circular domain of reversed magnetization, we obtained a
skyrmion (SK) shown in Fig. 8.5.1 (c). This skyrmion can also be mapped onto
a sphere, covering it completely, and therefore, it has a topological charge of +1.
We calculated the topological charge using the scheme described in the Apx. 8.C.
The occurrence of such a skyrmion is rather peculiar since it lives in an in-plane
ferromagnetic background, and for this reason, we will call it an in-plane skyrmion.
While most skyrmion research in thin films focuses on systems with out-of-plane
magnetic anisotropy, we show that this is not any longer a requirement. We will
further study the properties of the in-plane skyrmions in the Sec. 8.6.

Next, we implanted the skyrmion of Fig. 8.5.1 (c) in the left green area of
Fig. 8.5.1 (b), which is similar to the skyrmion’s original background. After the
relaxation, we obtain Fig. 8.5.1 (d), where the skyrmion has slid left to touch with
the red stripe of the spin spiral (SP+SK). Interestingly, the skyrmion has no longer
a complete in-plane surrounding, yet it preserves its topological charge. We also
injected an out-of-plane skyrmion with a red core into the blue spin-spiral stripe.
The skyrmion slid left as well and changed its shape resulting in a skyrmion very
similar to the previous but with opposite polarity, see Fig. 8.5.1 (e) (SP+SK’). Sim-
ilarly, we injected two out-of-plane skyrmions in the blue spiral region. This time,
the skyrmions not only slid to the left but also got closer together, see (SK+2SK)
in Fig. 8.5.1 (f).

In-plane skyrmion stability

Among all different metastable states that we discussed so far, the spin spiral in
Fig. 8.5.1 (b) is closest in energy to the ground state with an energy difference of
∆SP = 25.42 meV. For the in-plane skyrmion isolated in the ferromagnetic ground
state, we have ∆SK = 127.13 meV. The phase where then combines a single skyrmion

1In fact, the spin spiral in Fig. 8.5.1 (b) is so stretched that it could also be seen as domain
walls.
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(a) (b) (c)SP+SKs SP SK

(d) (e) (f)SP+SK SP+SK’ SP+2SK

21.49 nm
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Figure 8.5.1: Spin spiral with axis along y with embedded skyrmions for averaged
interactions. Simulation box 85×50 (8500 spins) with periodic boundary conditions. Red
and blue represent the spins along +z and −z, respectively, and green the in-plane spins.
Each metastable configuration can be obtained from different initial spin configuration:
(a) Spiral embedding multiple skyrmions (SP+SKs), from a random spin configuration.
The skyrmions have different polarities, which match the surrounding regions of the spiral.
(b) Spin spiral (SP), from a spiral initial configuration. (c) Single skyrmion (SK), from
a circular reversed domain in a ferromagnetic background. (d) Single skyrmion into a
spiral (SP+SK), from skyrmion of (c) injected in the middle green region of (b). (e)
Single skyrmion into a spiral (SP+SK’), from an out-of-plane skyrmion injected in the
middle of the blue region of (b). (f) Double skyrmion into a spiral (SP+2SK), from two
out-of-plane skyrmions injected, in the middle of the blue region of (b). (d) SP+SK: Spin
spiral embedding skyrmions of different polarities. (g) Shows the SP+SKs state (a) in a
2×2 expansion of the simulation box. With respect to the FM state, the total energy (per
supercell) of the spin configurations from (a) to (f) are ∆ESP+SKs = 604.25, ∆ESP = 25.42,
∆ESK = 127.13, ∆ESP+SK = 172.53, ∆ESP+SK’ = 172.53, ∆ESP+2SK = 305.93 meV.
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(a)

A B C

(b)

SK A B C FM

Figure 8.5.2: Minimum energy path calculations using the GNEB method for the tran-
sition from an in-plane-skyrmion state, Fig. 8.5.1 (b), to the ferromagnetic ground state
along x. Simulation box 85×50 (8500 spins) with periodic boundary conditions. The hor-
izontal axis stands for the reaction coordinate that labels intermediate spin configuration
between the skyrmion and the ferromagnetic phases, some of which are represented in (b).
The vertical axis in (a) accounts for the energy difference of a given spin configuration and
the skyrmion phase. The blue curve shows the magnetic exchange interaction contribution
to the total energy, shown in black. The green and red correspond to the Dzyaloshinskii-
Moriya interaction and anisotropy contributions, respectively. The total energy difference
between the skyrmion state and the ferromagnetic state is of 127.13 meV. The DMI con-
tribution, the only positive one, is responsible for the energy barrier of 27.41 meV, and
therefore, it is the mechanism that stabilizes the in-plane skyrmion.

and a spin spiral, however, has higher energy than the sum of these two structures
in separation, ∆SP+SK = 172.53 meV.

We can assert about the stability of the in-plane skyrmion of Fig. 8.5.1 (c) by
calculating the energy required to transit from the SK phase to the ferromagnetic
ground state. We obtained this energy barrier using the geodesic nudged elastic
band (GNEB) method [47, 171], where we compute the energies of different stages
of a continuous transformation between two stable states. The result is shown
in Fig. 8.5.2 (a), where we plot the difference between the energy of each stage,
some of which are shown in Fig. 8.5.2 (b), and the skyrmion phase. The total
energy is shown in black displaying an energy barrier of 27.41 meV. We can also
evaluate the different contributions to the energy: in green, we have the curve for
the Dzyaloshinskii-Moriya interaction; in blue for the magnetic exchange interaction;

170



8.5. ATOMISTIC-SPIN-DYNAMICS SIMULATIONS
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Figure 8.5.3: Skyrmions with different magnetization background. The same in-plane
skyrmion is shown in (a) and (b), where the colors represent the spin projection along
n = (0, 0, 1) and n = (1, 0, 0), respectively. In (b) we can see the skyrmion as a single entity
rather than the combination of two. Similarly, (c) and (d) brings two representation of the
SP+SK phase, with coloring the spin projection along n = (0, 0, 1) and n = (1,−1,−1),
respectively.

and in red for the magnetocrystalline anisotropy contribution. Among these three
curves, only the DMI contribution is positive, and therefore, it alone is responsible
for the raising of the total energy that forms the energy barrier for the transition
between the skyrmion phase into the ferromagnetic phase. In contrast to most
studies in the literature, where in-plane skyrmions result from the MEI frustration,
here, their stability is ensured by the DMI.

Skyrmion outskirts

As the reconstructed 1ML of Co/W(110) has an in-plane anisotropy axis, the out-of-
plane skyrmions, in the absence of an external magnetic field, are not stable. We also
saw that in-plane skyrmions can also be stable living in an in-plane magnetization.
It is most interesting, however, that in the presence of a spin spiral, the skyrmions
generates an outermost shell, its outskirt, that is not completely in-plane nor out-
of-plane.

In fact, if we change the color-coding of Fig. 8.5.1 (c) by coloring the projec-
tion of the spin along x instead of z, see Fig. 8.5.3 (a) and (b), we obtain a more
typical skyrmion picture: a circular core (even though distorted) made up of spins
mostly point antiparallel to the background magnetization, here depicted in blue,
surrounded by shells, each of different color, made of spins that rotate and ultimately
align with the background, shown in red. For the SP+SK state, Fig. 8.5.1 (e),
a similar picture can be obtained by coloring the spin projections roughly along
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n = (1,−1,−1), see Fig. 8.5.3 (c) and (d). Therefore, these skyrmions attached to
the spin spiral has a very peculiar direction for their core and outskirt, which are not
in-plane nor out-of-plane. Our interpretation is further corroborated by the fact that
the SP+SK state has a net magnetization that points along (0.97,−0.17,−0.19), and
therefore, in the same octant as n. The net magnetization has a much higher x–
component because this skyrmion enlarges the in-plane region of the spin spiral that
points along +x. Meanwhile, the pure spin spiral state, Fig. 8.5.1 (b), has zero net
magnetization. Thus, we can say that n defines the skyrmion polarization axis,
once in such a spin spiral environment, the magnetization cannot do the job. The
polarization axis of the skyrmion in the SP+SK’ state, Fig. 8.5.1 (d), is roughly
n = (1, 1, 1), having the x and y–components reversed with respect to the polar-
ization axis of the skyrmion in the SP+SK state. As we will see in the Sec. 8.6,
this is a consequence of these two entities being related to each other via the mirror
symmetry of the system, which is perpendicular to x–axis.

Spin spirals

The spin spiral of Fig. 8.5.1 (b), as mentioned before, is highly distorted with re-
spect to a uniform rotating spiral. Periodic boundary conditions can impose severe
constraints on the spin spiral formation: only wavelength commensurable with the
simulation box dimensions can fit in. To avoid this problem, and thus, better de-
termine the natural wavelength of the spin spiral, we considered a new 170 × 12
simulation box with open boundary condition along x, which has a rectangular
shape appropriate to study spirals with an axis along y and propagation direction
along x.

Initially, we considered a cycloidal spin spiral of very short wavelength as the
initial spin configuration. That spiral relaxes into another of a larger wavelength,
see Fig. 8.5.4 (a). The wavelength is of about λ = 62aCo = 15.67 nm, which matches
the wavelength for the most energetically favorable energy for a spiral with the axis
along y predicted by the micromagnetic model, 49.24aW = 61.55aCo, see Tab. 8.4.3.
A closer look at this picture reveals that, differently from the initial state, in the
relaxed structure, some spins acquire a y–component. In fact, the final state can
be seen as composed by two spirals of different axes, one with axis along y and a
second with axis along z, or yet, a single spiral with rotation axis somewhere in the
y− z–plane. By calculating the cross product between two adjacent spins displaced
along x of the spin spiral, we determined its effective rotation axis to be roughly
parallel to (0,

√
5/3,−2/3), which corresponds to a 42◦ deviation from the y-axis.

Starting the simulations from a random spin configuration, we also obtained a
spin spiral of similar wavelength as before, however, many times, the spiral embeds
skyrmionic structures, as in Fig. 8.5.4 (b). The size of this skyrmion is that of the
transversal dimension of the box, meaning that the skyrmion is in close contact
with its periodic image along y. We also considered to start from a ferromag-
netic configuration, which is fully spin-polarized with magnetization along x, shown
in Fig. 8.5.4 (c). The relaxation of this configuration preserves the ferromagnetic
alignment in the bulk of the simulation box, however, the spins slightly twist at
both right and left edges, where no periodic boundary conditions are applied, see
Fig. 8.5.4 (d). In this manner, the system gains energy from the Dzyaloshinskii-
Moriya interactions, which results in a total energy smaller than that of the fully
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Figure 8.5.4: Spin spiral with axis along y. Simulation box 170× 12 (4080 spins) with
periodic boundary condition only along y. The different states are obtained from different
initial spin configurations. (a) SP: Spin spiral of longer wavelength after initializing the
spin configuration with a spiral of much shorter wavelength. (b) SP+SK: Spin spiral
embedding a skyrmion: from a random initial spin configuration. The resulting wavelength
is incommensurate with the lateral size of the simulation box. (c) FM: Fully spin-polarized
state, not relaxed. (d) FM-relax: Fully polarized state after the relaxation, which has the
lowest total energy. With respect to the FM-relax state, the total energy of the various
spin configurations are: ∆ESP = 31.14, ∆ESP+SK = 144.05, ∆EFM = 23.17 meV.

spin-polarized state.

To compare the energy of the spin spiral shown in Fig. 8.5.4 (a) with the micro-
magnetic analytics, we considered a simulation box commensurate with the spiral
wavelength, 62 × 12, this time with complete in-plane periodic boundary condi-
tions. The energy of a perfect cycloidal spiral with axis along y and wavelength
λ = 62aCo was calculated to be 0.05 meV per atom above the ferromagnetic ground
state, which is in close agreement with the results obtained from the micromag-
netic model, 0.04 meV per atom, which also considers a perfect spin spiral. The
relaxed spin spiral, which is equivalent to that of Fig. 8.5.4 (a), has an energy of
only 0.01 meV per atom above the ground state.

In Sec. 8.4.3, using the micromagnetic model, we predicted that cycloidal spin
spirals with axes along y, as studied above, but also along x and z can have energies
close to the ferromagnetic ground state, see Tab. 8.4.3. Thus, to investigate spirals
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Figure 8.5.5: Spin spiral with axis along y. Simulation box 20 × 100 (4000 spins)
with periodic boundary condition only along x. The different states are obtained from
different initial spin configurations. (a) FM: Fully spin-polarized state obtained from a
spin spiral with axis along x of very short wavelength. (b) SKs: Skyrmions embedded
on a ferromagnetic surrounding, whose energy with respect to the FM state is ∆ESKs =
434.10 meV. This state was obtained from a random initial spin configuration.

with rotational axes along x and propagation direction y, we considered a 20× 100
simulation box with open boundary conditions along the y–axis. Again, we started
by considering a spin spiral of very short wavelength as the initial spin configu-
ration, which resulted in a ferromagnetic state after the convergence, as shown in
Fig. 8.5.5 (a). We obtained no stable spin spiral with an axis along x. Next, we con-
sidered a random spin configuration as the initial state, and again skyrmions could
be stabilized, this time, however, in a ferromagnetic background, see Fig. 8.5.5 (b).
Finally, we also did not manage to stabilize any spin spiral with axis along z prop-
agating along the x–axis.
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Figure 8.5.6: Metastable states for the supercell interaction set. (a) Spin spiral with
axis along y propagating along x obtained from a similar spin-spiral initial configuration of
much short wavelength. 34× 12 (4080 spins) simulation box with open periodic boundary
condition along x. (b) SK-lat: Skyrmion lattice and (c) SP+SK: skyrmion embedded
into a spin spiral. 8 × 12 (960 spins) simulation box with complete periodic boundary
conditions, whose dimension along x is equivalent to the wavelength of the spin spiral
in (a). (d) SP: Spin spiral equivalent to that of (a). (e) FM: Ferromagnetic state with
magnetization along x. With respect to the FM state, the total energy of the various spin
configurations are: ∆ESK-lat = 160.25, ∆ESP+SK = 108.73, ∆ESP = −33.09 meV.

8.5.2 Reconstructed 1ML: supercell interactions

The Bravais lattice for the supercell reconstructed-cobalt films is given by a1 =
4aWx̂ = 5aCox̂ and a2 =

√
2aWŷ '

√
3aCoŷ, where aCo = 4

5
aW. First, we considered

a 34 × 12 simulation box with open periodic boundary condition along x, which is
suitable to study spin spirals propagating along x. We started one spin dynamics
simulation from a cycloidal spin spiral of very short wavelength with axis along y.
After convergence, we obtain a spin spiral of wavelength 41aCo = 10.37 nm, much
longer than the initial wavelength, see Fig. 8.5.6 (a). Yet, this predicted wavelength
is shorter than that obtained from the averaged set of interactions, 62aCo.

Having determined the optimal wavelength, we considered an 8× 12 box, which
is commensurate along x with that wavelength, see Fig. 8.5.6 (b-e). The states in
Fig. 8.5.6 (b) and (c) correspond to a skyrmion lattice and a spin spiral embedding
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Figure 8.5.7: Skyrmions embedded into spin spiral at zero external magnetic field.
14× 40 (5600 spins) simulation box with complete periodic boundary conditions in-plane.
State obtained from a random initial spin configuration, which is similar to states obtained
for the averaged set of interactions.

a skyrmion, respectively, and they were obtained from random initial spin config-
urations. Meanwhile, the states in Fig. 8.5.6 (d) and (e) were induced, and the
geometry of this simulation box allows us to compare their energies. We find that
the energy of the pure spin-spiral state is now lower than that of the ferromagnetic
state by 33.09 meV. Thus, within the phase space that we covered, the spin spiral in
Fig. 8.5.6 (d) corresponds to the ground state. Its averaged rotation axis is deflected
off the y axis by 28◦ in the direction of z, pointing roughly along (0,

√
3/2,−1/2).

We also considered a 4× 100 simulation box with open periodic boundary con-
dition along y. Similarly to the results for the averaged set of interactions, no spin
spiral was found stable. We mostly obtained the ferromagnetic state with magneti-
zation long x, with the occasional occurrence of domain walls or skyrmions stabilized
by the geometry confinement effects. For larger simulation boxes, the spin-dynamics
simulations mostly lead to states that consist of spin spirals embedding skyrmions,
such as the one shown in Fig. 8.5.7, which resemble those states obtained for the
averaged set of interactions, see Fig. 8.5.1.

As the ground state is a spin spiral, skyrmions living in a ferromagnetic back-
ground is not a stable configuration. Thus, we applied an external magnetic field
along the strongest anisotropy easy-axis, that is, parallel to x. At around 1 T, the
spin spiral stops being the ground state, and the ferromagnetic state becomes the
most energetically favorable. We obtained stable skyrmions in that ferromagnetic
background for fields between 1 and 3 T. Figure 8.5.8 (a) and (b) correspond to 1
and 2 T, respectively, in a 12× 35 simulation box. The skyrmion size reduces with
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Figure 8.5.8: In-plane skyrmions stabilized by an in-plane external magnetic field.
Simulation box 12×35 (4200 spins) with periodic boundary conditions in-plane. Magnetic
field of (a) 1 T and (b) 2 T along x was considered. The skyrmion size is reduced for
higher fields, and they are stable up to 3 T. (c) Minimum energy path calculations using
the GNEB method for the transition between an in-plane-skyrmion state in (a) and the
ferromagnetic state along x. The horizontal axis stands for the reaction coordinate that
labels intermediate spin configuration between the skyrmion and the ferromagnetic phases.
The vertical axis accounts for the energy difference of a given spin configuration and the
skyrmion phase. The blue, green, orange and red correspond respectively to the MEI,
DMI, Zeeman and anisotropy contributions for the total energy, which is shown in black.
The total energy difference between the skyrmion state and the ferromagnetic state is of
95.65 meV, and the energy barrier for a continuous transformation between these states if
of 20.78 meV that comes from the DMI.

an increasing magnetic field. In these figures, we have switched the green color used
for in-plane spins to the white color because the neutrality of this color allows for a
better contrast with red and blue. Thus, we can better visualize the local variation
of the spin configuration throughout the supercell, which occurs in the ferromag-
netic background. We changed the color map painting the spins with respect to
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Figure 8.5.9: Noncollinear spin textures of the pseudomorphic 1ML Co/W(110). (a)
Spin spiral with axis along y with propagating along x. It corresponds to the ground state.
Simulation box 170×12 (4080 spins) with open periodic boundary conditions along x. With
an external magnetic field of (a) 9 T along x and (b) 12 T along z, we could stabilize an
in-plane and an out-of-plane skyrmionic structures. In particular, the texture in (c) can be
trivially identified as an antiskyrmion. Simulation box 60× 40 (4800 spins) with complete
periodic boundary conditions in-plane. In comparison with the ferromagnetic states, with
the magnetization along the external field, the energies of the in-plane skyrmion and the
out-of-plane antiskyrmion are 355.43 and 255.3 meV, respectively.

their out-of-plane components with red and blue passing by white for the in-plane
components.

The skyrmions states in Fig. 8.5.8 (a) and (b), for 1 and 2 T, were higher in
energy than the ferromagnetic state with magnetization along the corresponding
field. For the skyrmion subjected to a field of 1 T, we calculated the energy barrier
needed to be overcome for a continuous transformation between the skyrmion and
the ferromagnetic states, see Fig. 8.5.8 (c), which was found to be 20.78 meV, while
their energy difference is 95.65 meV.

8.5.3 Pseudomorphic 1ML

The Bravais lattice of the pseudomorphic film matches the one of the W(110) sub-
strate, therefore, it is expanded by a1 = aWx̂ and a2 =

√
2aWŷ. Once again, we

started by checking the possible stabilization of spin spirals by considering long
rectangular simulation boxes with open periodic boundary condition along the box
longer axis. In a 170×12 simulation box, we obtained a cycloidal spin spiral with axis
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along y propagating along x with wavelength of 36aW = 11.38 nm, see Fig. 8.5.9 (a),
which compares well with the outcomes of the micromagnetic model, 31aW. Taking
a 20 × 100 box, we obtained a cycloidal spin spiral with axis along x propagating
along y with wavelength of 82aW = 25.92 nm, which is roughly two thirds of that
determined by the micromagnetic model in Sec. 8.4.3, 132aW.

Next, we considered a simulation box commensurate with the wavelength of the
y-axis spin spiral, 70 × 40, with complete periodic boundary conditions. We per-
formed various simulations starting from random spin configurations, which always
resulted in a spin spiral corresponding to that of Fig. 8.5.9 (a). Compared with
the ferromagnetic state with magnetization along y, that is, along the strongest
anisotropy easy-axis, this spin spiral has an energy of ∆E = −0.44 meV per atom,
which is in very good agreement with the micromagnetic model, ∆E = −0.43 meV
per atom (Tab.8.4.3). Thus, we conclude that the obtained spin spiral is the ground
state of the 1ML Co film pseudomorphically grown on W(110).

Now, we applied an external magnetic field, both in-plane along x and out-of-
plane along z. For a field of 12 T out-of-plane, we managed to stabilize an out-of-
plane antiskyrmion, Fig. 8.5.9 (b), and for a field of 9 T in-plane, we obtained an
in-plane skyrmion, Fig. 8.5.9 (c). The field range of stability of these skyrmions is
rather small. The stability of an antiskyrmion could have been anticipated from the
micromagnetic model, for the signs of the spiralization-tensor elements, Dxy and
Dyx, were the same [111] for the pseudomorphic film, see Sec. 8.4.1 and Tab. 8.4.2.
In the pseudomorphic film, the magnetic interactions are not as soft as for the
reconstructed case, and it is characterized by higher symmetries than the latter,
which reduces the complexity of the DMI interactions, for example. This leads to a
less rich collection of noncollinear structures in comparison with the reconstructed
Co monolayer.

8.6 In-plane skyrmion model

If we rotate each spin of the out-of-plane skyrmion in Fig. 8.1.1 (a) by 90◦ around an
in-plane axis, e.g., around the y–axis, we obtain the in-plane skyrmion of Fig. 8.6.1 (a).
It also maps onto a sphere and its polarization axis lies in-plane parallel to the back-
ground magnetization. A similar procedure can be performed to the out-of-plane
antiskyrmion of Fig. 8.1.1 (b), which can be transformed into the in-plane anti-
skyrmion of Fig. 8.6.1 (b). A crucial difference between an out-of-plane skyrmion
and an in-plane skyrmion concerns the determination of the vorticity. Consider the
spins of a circular path around the in-plane skyrmion core, such as the ones high-
lighted in Fig. 8.6.1 (c). When we walk through this path, the spins wind a full
2π revolution in the plane normal to the polarization axis. Note that this plane
is also perpendicular to the x − y plane where the in-plane skyrmion lives. The
winding sense is opposite between the in-plane skyrmion and in-plane antiskyrmion,
see Fig. 8.6.1 (c) and (d). However, the winding number sign, being positive or
negative, depends on the convention one chooses to circulate along the path around
the core since there is no out-of-plane net magnetization to fix it.

Currently, we can find only a handful of works studying in-plane skyrmions [164,
172]. Furthermore, these studies focus on the stabilization of these entities through
magnetic exchange frustration. In a phenomenological model-based study, Göbel
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Figure 8.6.1: In-plane skyrmion and antiskyrmion. (a) and (b) depict an in-plane
skyrmion and an in-plane antiskyrmion, respectively, mapped onto spheres. The back-
ground magnetization (in red) defines the polarization axis, which is indicated by the long
black arrow. The core of both skyrmion and antiskyrmion are antiparallel to the back-
ground magnetization and shown in blue. (c) and (d) show the winding of the spins along
a circumference around the skyrmion and antiskyrmion cores as mapped into the plane
normal to the polarization axis.

et al. in Ref. [165] discussed for the first time the possibility of Dzyaloshinskii-
Moriya interaction stabilizing in-plane skyrmions via an out-of-plane DMI com-
ponent. As demonstrated in the previous section, we predicted the existence of
in-plane skyrmions as metastable states of a reconstructed Co/W(110) monolayer,
which are stabilized by the Dzyaloshinskii-Moriya interaction. In their work, Göbel
et al. call an in-plane skyrmion a bimeron, because it can be seen as a pair of cou-
pled merons. However, in their model, a meron cannot exist by itself. From most
properties point-of-view, we cannot distinguish an in-plane skyrmion from a regular
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Figure 8.6.2: (a) In-plane skyrmion of Models I and II. Both models have nearest-
neighbor ferromagnetic MEI, but Model I have DMI vectors with components along x,
y and z. Model II has DMI only along y and z. The shown skyrmion was obtained
with B = 1.7 T and B = 1.5 T along x̂ for Models I and II, respectively. (b) The color
maps represent the different components of the spins. (c) The energy landscape of the
in-plane skyrmion. The contributions of DMI and MEI are shown separately, and the
total map includes DMI, MEI, and Zeeman contributions. Parameters: Jij = 1 meV,
|Dij | = 0.2 meV.

out-of-plane skyrmion, and therefore, we will keep naming it skyrmion.

Aiming to better understand the process of stabilization, in this section, we focus
on two models including only the nearest-neighbor interactions, both with the same
isotropic ferromagnetic MEI but with different DMI. In Model I, the DMI vectors
mimic those of the Co/W(110) containing components along all three orthonormal
directions x, y, and z. Model II differs from Model I by not featuring the DMI
components along x, see the insert in Fig. 8.6.2 (a). For the two models, all the
DMI vectors have the same length, and their moduli are 20% of the MEI strength.
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In the absence of external magnetic fields, both models have spin spirals as their
ground state. Applying a strong enough magnetic field along x, we can spin polarize
the system (all spins align with the field). For fields not too strong, however, in-
plane skyrmions can be observed as metastable states, see Fig. 8.6.2 (a), where we
used atomistic-spin-dynamics simulations to perform spin relaxation. The red and
blue colors represent the projection of the spins along the z–direction. The in-plane
skyrmion core can be identified as the region where the spins are anti-aligned to the
background magnetization, in the case of Fig. 8.6.2 (a), where the spins point along
−x. Surrounding the core, there are two vortex-like structures, whose local spins go
out-of-plane. When we move from the outside towards this skyrmion core, the spins
rotate with rotational axis in-plane or out-of-plane, depending on the direction you
choose to walk on. This allows the in-plane skyrmion to efficiently gain energy from
the out-of-plane components of the DMI too. This is in contrast to the usual Néel
or Bloch-type skyrmions, whose cross-sections correspond to spirals with in-plane
rotational axes only.

The structural aspects of the skyrmion depend, naturally, on the DMI structure.
In the absence of Dx, the two vortices are equivalent and have similar size, as seen for
Model II in Fig. 8.6.2 (b), where the spin projections along the different orthonormal
directions are depicted by color maps. Blue and red represent negative and positive
values, respectively. Adding the Dx contained in Model I, one of the vortices is
favored and therefore expands, while the other shrinks. Besides that, the shape of
the vortices are also altered, see Model I in Fig. 8.6.2 (b). The Dx component of
all pairs in Model I have the same chirality, meaning that they swirl with the same
sense, which shows that each vortex is individually chiral.

Figure 8.6.2 (c) presents the energy landscape of the correspondent skyrmion
in Model I and II, having as reference the energy landscape of their spin-polarized
states. It shows the DMI and MEI energy contributions separately, but also their
sum that together with the Zeeman contribution compose the total energy. In the
blue regions, the energy contribution is negative, which means they are energetically
favorable with respect to the ferromagnetic state. Regions in red correspond to an
increase of energy, and therefore, they are energetically unfavorable. Overall, the
total energy landscape is more red-like, which indicates that the spin-polarized state
is lower in energy. Nevertheless, the DMI manages to create an energy barrier high
enough to stabilize these in-plane skyrmions. Furthermore, we can notice that the
energy landscape is asymmetric with respect to the x–direction for Model I, even
though a mirror plane perpendicular to the x–axis is a symmetry operator of both
models.

Please notice that the mirror operation preserves the orientation of the back-
ground magnetization. In fact, the mirror images of these skyrmions, obtained by
making x→ −x and (Sy, Sz)→ (−Sy,−Sz), are stable as well, and they are degen-
erate in energy to their original partners. Furthermore, the skyrmion and its mirror
image have opposite topological charge, and they tend to annihilate each other.
Also, when moving along a circular contour around the skyrmion core, with a fixed
rotational sense, the spins along the path have projections onto the plane transversal
to the background magnetization that rotate with one sense for the skyrmion and
the opposite sense for its image, indicating that they have opposite vorticity. Be-
cause of that, we name one skyrmion and the second antiskyrmion, having in mind
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Figure 8.6.3: (a) In-plane skyrmion and antiskyrmion, two degenerated metastable
states of Model I with external magnetic field along x, whose topological charge are ±1.
The system has a mirror plane perpendicular to the x–axis, such that each of these quasi-
particles is the mirror image of each other. (b) The color maps represent the different
components of the spins. (c) Applying the field out-of-plane instead, the mirror image
of the skyrmion is another skyrmion with reserved core living in a reversed background
magnetization, nevertheless with opposite topological charge. Parameters: Jij = 1 meV,
|Dij | = 0.2 meV, B = 1.7 T.

that the choice on where to start labeling is a matter of convention. Figure 8.6.3 (a)
shows an in-plane skyrmion and in-plane antiskyrmion for Model I, both featur-
ing an asymmetric energy landscape (shown later), but with the same total energy.
We can understand this phenomenon in analogy to the hydrogen atom, where a
spherically symmetric potential can give rise to the p–orbitals, which individually
do not have the same symmetries of the potential. In Fig. 8.6.3 (b), we can see
the spin-component distributions for the skyrmions, and how they look like in the
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Figure 8.6.4: Energy landscape of each DMI component in the in-plane skyrmion
of Fig. 8.6.2 (a). (a-c) energy contribution due to the x, y, and z DMI components,
respectively. (d) the sum of the contributions of all the DMI components. The blue color
indicates regions of the in-plane where the local spin texture is favored by the DMI, and
the red color marks regions which are unfavorable.

mirror.

Next, we applied the external magnetic field out-of-plane instead. In conse-
quence, we could obtain a regular out-of-plane skyrmion. Its mirror image, which
has opposite topological charge, is no more than a skyrmion with a reversed core
in a reversed background magnetization, see Fig. 8.6.3 (c). Despite having opposite
topological charge, the out-of-plane skyrmion and its image have the same vortic-
ity. An antiskyrmion, which has opposite topological charge, opposite vorticity, and
that lives in the same background magnetization as the skyrmion, is not stable for
this model. The same will occur if the field is put along y, for the magnetization
would lie in the mirror plane. This reveals the peculiarity of having a system with
an easy axis perpendicular to the system’s mirror plane: there, a skyrmion and
an antiskyrmion living in the same background magnetization can co-exist and are
degenerate in energy.

By relaxing a random spin configuration with the atomistic-spin-dynamics sim-
ulation for Model I in a large simulation box with respect to the skyrmion size,
we found that many skyrmions and antiskyrmions can be nucleated. They often
attract each other until they come close enough and their mutual annihilation hap-
pens. As the random seeding of skyrmion and antiskyrmion is often and by chance
uneven, we end up with a finite but small population of one type of quasiparticles,
either skyrmions or antiskyrmions. Nevertheless, the probability of ending up with a
given amount of skyrmions or antiskyrmions is the same. However, we can favor the
seeding of one or the other by applying and controlling the direction of an external
magnetic field perpendicular to the film.

The last question we set ourselves to answer here is, which components of the
DMI are stabilizing the in-plane skyrmion and how? To answer this question,
we plotted the energy landscape induced by the in-plane skyrmion of Model I,
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Fig. 8.6.2 (a), under the action of each component of the DMI individually. Fig-
ure 8.6.4 (a) shows the energy landscape due to Dx, which is responsible to favor
one of the in-plane-skyrmion vortices, which breaks the symmetry along x. We can
see that the in-plane skyrmion lowers the energy via Dx over a large area on the left-
hand side, which is shown in blue. Meanwhile, it has a smaller pocket in red, which
is energetically unfavorable. Had the Dx changed its chirality, the right-hand-side
pocket would be enlarged becoming now energetically favorable, and therefore blue.

Figure 8.6.4 (b) and (c) depict the energy landscape for Dy and Dz, respectively,
which are very similar in shape indicating that these two components are equiva-
lent. Interestingly, these two energy landscapes are not symmetric under a mirror
operation perpendicular to y. The contribution of Dy and Dz combined, however,
is invariant under such a symmetry operation, which explains the preservation of
that symmetry in the total energy landscape, see Fig. 8.6.4 (d). The absence of red
regions for the total energy landscape shows that the spin structure manages to gain
energy from all three components of the DMI, guaranteeing the stabilization of the
in-plane skyrmion.

8.6.1 Spin waves in an in-plane skyrmion lattice

Now, we want to construct a lattice of in-plane skyrmions. Let us consider again the
interactions of Model I, with J = 1 meV and |D| = 0.5 meV. This high ration helps
us to keep the size of the in-plane skyrmion small, which yields a small unit cell. By
applying an in-plane external field of 8 T along x, we obtain the metastable in-plane
skyrmion lattice shown in Fig. 8.6.5 (a), which has a total magnetization parallel to
(0.64, 0.14, 0.18). The DMI vectors are depicted in Fig. 8.6.5 (b) together with the
path in the reciprocal space where we calculated the spin-resolved electron-energy-
loss spectroscopy (SREELS) of the in-plane-skyrmion lattice. We chose to align the
polarization axis of the probing electrons along the magnetic field. Figures 8.6.5 (c-e)
display the various SREELS scattering channels.

The non-spin-flip channels are shown in Fig. 8.6.5 (c), and the spin-flip channels
are shown in Fig. 8.6.5 (e). The strongest inelastic signal appears in the left-right
scattering channel because the incoming probing electrons have spins almost antipar-
allel to the total magnetization, which increases the chances of angular momentum
exchange with the magnetic material to create spin waves. In all scattering channels,
we observe an asymmetry of the spectra around the center of the Brillouin zone (Γ–
point). For instance, note that the spectrum energy minima on the M–Γ–M path of
Figs. 8.6.5 (e) and (d) are not centered in the Γ–point. This phenomenon is called
nonreciprocity of spin waves, that is, spin waves of the same wavelength propagating
in opposite directions acquire different properties, such as group velocity and energy.
It occurs because the DMI vectors have components parallel to the total magneti-
zation. We will discuss this subject in great detail in Chapter 9: Nonreciprocity of
spin waves due to the Dzyaloshinskii-Moriya interaction.

8.7 Conclusions

In this chapter, we investigated from first-principles the magnetic properties of ul-
trathin films of cobalt deposited on tungsten (110) surface. We studied films with
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Figure 8.6.5: Spin-wave spectra for a lattice of in-plane skyrmions. (a) the in-plane-
skyrmion lattice for Model I with J = 1 meV, |D| = 0.5 meV, magnetic moment of 1µB,
and an in-plane magnetic field of 8 T along the x–axis. (b) DMI vectors of the model
and Brillouin zone path where the inelastic electron scattering spectra were calculated.
(c-e) different SREELS scattering channels. The polarization of the probing electrons is
set along the magnetic field, as indicated by the inserted arrows. (c) represents the two
degenerate non-spin-flip scattering channels. (d) the spin-flip left-right scattering channel,
which has the strongest inelastic signal. (e) the spin-flip right-left scattering channel,
which has the weakest signal.
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1 up to 3 MLs of reconstructed cobalt films, as well as 1 ML of pseudomorphic film.
In particular, for the reconstructed 1 ML film, we observed a significant modulation
of the magnetic properties within the supercell: the magnetic moment, as well as
the MEI and DMI, would vary from site to site. The 1 ML Co films, both recon-
structed and pseudomorphic, have a biaxial in-plane magnetocrystalline anisotropy.
In contrast, the anisotropies of reconstructed 2 and 3 MLs films can be modeled as
uniaxial. The only out-of-plane easy-axis found was for the reconstructed 2 MLs
film.

We showed that these systems have anisotropic magnetic exchange and Dzyalo-
shinskii-Moriya interactions. For example, we found that the spiralization-tensor
element along bcc[1̄10] is 3 times larger than that along bcc[001], which stresses the
anisotropy of the DMI. This result is in agreement with measurements reported in
Ref. [154] on Au-capped Co films.

We investigated the ground state and possible metastable spin textures of the
reconstructed cobalt films using two approaches: first averaging the interactions
and magnetic moments within each cobalt plane, which results in a simple single
atom per layer in the unit cell; and second, using the full supercell interactions
obtained directly from the DFT calculations. With the first approach, we could
determine parameters for a micromagnetic model, with which we could derive an
analytical study of the stability of spin spirals. The results of this study were shown
to be in good agreement with the results obtained with the atomistic-spin-dynamics
simulations.

With further atomistic-spin-dynamics calculations, we determined that 2 and
3 MLs have a ferromagnetic ground state, and we could not observe any stable
noncollinear magnetic structures in these systems. For the reconstructed 1 ML,
within the in-plane averaging approach, we predicted for the first time using ab initio
methods the existence of in-plane skyrmions stabilized by the DMI. Furthermore,
for this system, we observed and studied the occurrence of skyrmions in a spin-spiral
background, where we demonstrated that their polarization axis (direction of the
skyrmion core and outskirts) can point along nontrivial directions.

Using the supercell interactions, we confirmed the stability and features of skyr-
mions living in a spin spiral. This time, however, stable skyrmions embedded in a
ferromagnetic background could only be achieved under the action of an external
magnetic field. That is because contrary to the in-plane averaged scheme, the ground
state was found to be a spin spiral with a wavelength of 10 nm propagating along
the bcc[001] direction.

The averaging approach, which provides a simple model for micromagnetic anal-
ysis, allowed us to predict the existence of in-plane skyrmions since it preserves the
symmetry of the reconstructed structure. With such models, not all detailed prop-
erties can be correctly described. For instance, the wavelength of the metastable
spin spirals is slightly offset, which influences the prediction of the skyrmion size, as
well as the external-magnetic-field range for the in-plane skyrmion stability.

In contrast to the assessments in Ref. [154], reconstructed Co/W(110) cannot be
regarded as belonging to the C2v space group. For example, the in-plane skyrmions
predicted to occur in 1 MLCo/W(110) could only be stabilized because of the out-
of-plane component of the DMI, which only survived due to very few symmetries of
the reconstructed cobalt films.
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While the strong hybridization of reconstructed cobalt leads to a strong softening
of the magnetic interactions at the interface, the same is not true for pseudomorphic
cobalt. As a result, the pseudomorphic 1 ML film features much larger stiffness and
spiralization-tensor elements than those associated with the reconstructed 1 ML film.
With a rather high ratio the elements of the spiralization and the stiffness tensor,
this system has a spin spiral ground state with a wavelength of 26 nm propagating
along bcc[001]. With an applied field of 10 T, we obtained an in-plane skyrmion and
an out-of-plane antiskyrmion.

Finally, we studied a nearest-neighbor model inspired by the in-plane-averaged
interaction scheme. Within this model, we investigated how the stabilization due
to the DMI of an in-plane skyrmion is possible. We demonstrated that for systems
with the magnetization in-plane and perpendicular to the mirror plane of the system,
in-plane skyrmion and antiskyrmion can coexist and are degenerate because one is
the mirror image of the other. Within this model, we also stabilized an in-plane-
skyrmion lattice for which we computed the SREELS spectra. We observed that
the spin-wave spectra of this spin texture feature a strong asymmetry around the
center of the Brillouin zone.

Thus, in this chapter, we demonstrated that skyrmions can also occur in in-
plane anisotropy films, which will expand the range of systems where skyrmions
can be studied, possibly facilitating their application for technological devices. This
new class of skyrmionic systems also has the advantage of hosting skyrmions and
antiskyrmions simultaneously, which is another important feature for possible appli-
cations. Finally, we expect that in-plane skyrmions can be made very smaller than
the regular out-of-plane skyrmions. That is because the dipole-dipole interaction
acts effectively as an in-plane magnetocrystalline anisotropy, which helps to reduce
the in-plane-skyrmion size but enlarges the out-of-plane skyrmions.
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Appendix

8.A Stiffness-constant and spiralization-tensor def-

initions

8.A.1 Spin spiral

Let us suppose that we have the magnetic properties of a given system. That
is, we have the spin moment of each site and the magnetic interactions, both the
exchange and the Dzyaloshinskii-Moriya, from each pair of atoms. We want to
determine whether a spin spiral can be an energetically more favorable state than
a ferromagnetic phase. However, there can be many types of spin spirals, with
different orientations, wavevectors, etc. Thus, we restrict our search among spirals
given by the following equation:

Si = cosφi sin θn
1 + sinφi sin θn

2 + cos θn3 , (8.15)

where n3 is a unity vector defining the axis around which the spins rotate, and that
forms an orthonormal basis set for the three dimension space together with n1 and
n2. θ is the conical angle between the spins and n3, and φi = q ·Ri, where q is the
spiral wavevector, and Ri the position vector of the i-th spin.

8.A.2 Spin-spiral energy

Regarding the hamiltonian of Eq. (8.1) (with a factor of 1/2 in front of the MEI and
DMI terms), the classical energy (per atom) of such spin spiral can be decomposed
in three terms. The exchange one:

εJ(q) =− 1

2N

∑
ij

JijSi · Sj

=− 1

2N

∑
ij

Jij
[
(cosφi cosφj + sinφi sinφj) sin2 θ + cos2 θ

]
=− 1

2N

∑
ij

Jij
[
cosφij sin2 θ + cos2 θ

]
=− 1

2N

∑
ij

Jij
[
cos (q ·Rij) sin2 θ + cos2 θ

]
.

(8.16)
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The Dzyaloshinskii-Moriya term:

εD(q) =− 1

2N

∑
ij

Dij · Si × Sj

=− 1

2N

∑
ij

{
sin2 θD3

ij sin(φij)

+ cos θ sin θ
[
D1
ij(sinφi − sinφj) +D2

ij(cosφj − cosφi)
]}

=− 1

2N

∑
ij

{
sin2 θD3

ij sin(φij)

+ cos θ sin θ
[
(sinφiD

1
ij − sinφiD

1
ji) + (cosφiD

2
ji − cosφiD

2
ij)
]}

=− 1

2N

∑
ij

{
sin2 θD3

ij sin(φij)

+ cos θ sin θ
[
(sinφiD

1
ij + sinφiD

1
ij)− (cosφiD

2
ij + cosφiD

2
ij)
]}

=− 1

2N

∑
ij

{
sin2 θD3

ij sin(q ·Rij)

+ sin 2θ
[
sin(q ·Ri)D

1
ij − cos(q ·Ri)D

2
ij

]}
,

(8.17)

where we swap some of the indices in the third line. In the fourth line, we used the
symmetry properties of the Dzyaloshinskii-Moriya interaction that imposes Dij =
−Dji.

And the magneto-crystalline anisotropy contribution:

εK(q) =− K

N

∑
i

(K̂ · Si)2

=− K

N

∑
i

(K1 cosφi sin θ +K2 sinφi sin θ +K3 cos θ)2

=− K

N

∑
i

[
sin2 θ

(
(K1)2 cos2 φi +K1K2 sin 2φi + (K2)2 sin2 φi

)
+ sin 2θ

(
K1K3 cosφi +K2K3 sinφi

)
+ (K3)2 cos2 θ

]
=− K

N

∑
i

[
sin2 θ

(
(K1)2 cos(2φi) + 1

2
+K1K2 sin 2φi + (K2)2 1− cos(2φi)

2

)
+ sin 2θ

(
K1K3 cosφi +K2K3 sinφi

)
+ (K3)2 cos2 θ

]
=−K

[
1

2
sin2 θ

(
(K1)2(δ2q,{0,Q} + 1) + (K2)2(1− δ2q,{0,Q})

)
+ sin 2θ

(
K1K3δq,0

)
+ (K3)2 cos2 θ

]
,

(8.18)

where we used the summation properties discussed in the Apx. 4.A and considered
that q is restricted to the first Brillouin zone. The unit vector that represent the
magnetic anisotropy axis decomposes as K̂ = K1n1+K2n2+K3n3 with

∑α(Kα)2 =
1. Thus, we can see that the anisotropy energy is a constant for every wavevector
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different of zero:

εK(q 6= 0) =−K
{

1

2
sin2 θ

[
(K1)2 + (K2)2

]
+ (K3)2 cos2 θ

}
, (8.19)

and it contains a singularity for the ferromagnetic state:

εK(q = 0) =−K
[
sin2 θ(K1)2 + sin 2θK1K3 + (K3)2 cos2 θ

]
. (8.20)

The component K2 does not appear in this last result because for q = 0 in the
definition of the spin spiral, Eq. (8.15), the circular components of the spins point
along n1 only.

8.A.3 Taylor expansion of the spin-spiral energy

For a system with slowly varying magnetization, the regime of long-wavelength is
the most important. Let us then consider a Taylor expansion of the spin-spiral
energy ε = εJ + εD around q = 0, without including the magnetocrystalline term
because its behavior at q = 0 is singular (it is discontinuous there):

ε(q) =ε0 +DT · q +
1

2!
qTAq +O(q3) . (8.21)

ε0 = ε(q = 0) corresponds to the energy of a ferromagnetic state. D is given by the
gradient of the energy function:

D = ∇ε|q=0 =


∂ε
∂qx
∂ε
∂qy
∂ε
∂qz


∣∣∣∣∣∣∣
q=0

, (8.22)

and A is the energy Hessian :

A = H
(
ε
)∣∣

q=0
=

(
∂2ε
∂q2x

∂2ε
∂qx∂y

∂2ε
∂qy∂qx

∂2ε
∂q2y

)∣∣∣∣∣
q=0

. (8.23)

Let us evaluate the gradient and Hessian of the spiral energy. For the exchange
term, we obtain:

∇εJ =
1

2N
sin2 θ

∑
ij

JijRij sin (q ·Rij) , (8.24)

and

Hµν(εJ) =
1

2N
sin2 θ

∑
ij

JijR
µ
ijR

ν
ij cos (q ·Rij) , (8.25)

where µ, ν = x, y, z index the Cartesian components of the position vectors. For the
Dzyaloshinskii-Moriya contribution:

∇εD =− 1

2N

∑
ij

{
sin2 θD3

ijRij cos(q ·Rij)

+ sin 2θRi

[
cos(q ·Ri)D

1
ij + sin(q ·Ri)D

2
ij

]}
,

(8.26)
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and

Hµν(εD) =
1

2N

∑
ij

{
sin2 θD3

ijR
µ
ijR

ν
ij sin(q ·Rij)

+ sin 2θRµ
i R

ν
i

[
sin(q ·Ri)D

1
ij − cos(q ·Ri)D

2
ij

]}
.

(8.27)

8.A.4 Stiffness and spiralization tensors

Evaluating the gradient and Hessian of ε at q = 0, we obtain the constant of the
Taylor expansion:

∇ε|0 = − 1

2N

∑
ij

{
sin2 θD3

ijRij + sin 2θRiD
1
ij

}
, (8.28)

and

Hµν(ε)|0 =
1

2N

∑
ij

{
sin2 θJijR

µ
ijR

ν
ij − sin 2θRµ

i R
ν
iD

2
ij

}
. (8.29)

If the summation is over a Bravais lattice, the translational symmetry ensures that
for each bond interaction Dij between spins resting in Ri and Rj, there is another
interaction Di,−j between sites in Ri and −Rj, such that Dij = −Di,−j. This result
guarantees that

∑
j D

µ
ij = 0, so we are left with

Dµ = − 1

2N
sin2 θ

∑
ij

D3
ijR

µ
ij . (8.30)

Note that D is a function of the spiral orientation via D3
ij = Dij · n3. Therefore,

a straightforward generalization is obtained by computing D for three orthogonal
directions of n3, α = x, y, z, which leads to the known definition of the so-called
spiralization tensor [169]:

Dαµ = −
∑
j

Dα
0jR

µ
0j , (8.31)

which describes the susceptibility for the magnetic structure to become a spin spiral.
Each line of this tensor stores a vector that defines the spin-spiral rotational axis.
We also made θ = π/2, which yields a flat spiral in Eq. (8.15). In the same manner,
we obtain A, known as the stiffness tensor:

Aµν =
∑
j

J0jR
µ
0jR

ν
0j , (8.32)

which is related to the “hardness” of the ferromagnetism of the material. It is worth
noticing that the stiffness tensor is a symmetric matrix. The stiffness and spiral-
ization tensors are quantities used in the micromagnetic simulations of magnetic
material, which are very useful for large scale simulation where the atomistic ones
become impractical.
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8.A.5 The ground state

Once Taylor-expansion coefficients of the spin-spiral energy in Eq. (8.21) are known,
we can easily determine whether a spin spiral is energetically more favorable than
the ferromagnetic state, and if so, for which wavevector. For that, we need to analyze
the spin-spiral energy in contrast with the ferromagnetic phase, where there is the
singular contribution of the magnetocrystalline anisotropy.

Let us rewrite the Taylor expansion of the energy, Eq. (8.21), in the element
notation:

εα(q) = ε0 +
∑
µ

Dαµqµ +
1

2

∑
µν

qµAµνqν , (8.33)

where we have three energies for α = x, y, z, one for each Cartesian alignment of the
spin-spiral rotational axis. At the energy minimum, we have that its derivative in
respect to the wavevector is zero:

∂εα

∂qξ
=
∑
µ

Dαµδξµ +
1

2

∑
µν

δξµAµνqν +
1

2

∑
µν

qµAµνδξν = 0

∂εα

∂qξ
=Dαξ +

1

2

∑
ν

Aξνqν +
1

2

∑
µ

qµAµξ = 0

∂εα

∂qξ
=Dαξ +

∑
µ

qµAµξ = 0

Dαξ =−
∑
µ

qµAµξ ,

(8.34)

where ξ is also an index for the Cartesian components of q, and we used the fact
that A is a symmetric matrix. Therefore, the wavevector qα that minimizes the
energy for a spiral with axis along α, is given by:

qαµ =−
∑
ν

DανAνµ , (8.35)

where the matrix A is the inverse of A.
Now we can calculate the energy for this spin spiral by replacing the wavevector

of Eq. (8.35) into the energy Taylor expansion:

εα =ε0 −
∑
µν

DαµAνµDαν +
1

2

∑
νξκ

Dαξ

(∑
µ

AξµAµν
)
AκνDακ

εα =ε0 −
∑
µν

DαµAνµDαν +
1

2

∑
νξκ

DαξδξνA
κν
Dακ

εα =ε0 −
∑
µν

DαµAνµDαν +
1

2

∑
µν

DαµAνµDαν

εα =ε0 −
1

2

∑
µν

DανAνµDαµ

(8.36)

The spin-spiral ground state is given by qα of smaller energy.
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8.B The exponential enveloping and extrapola-

tion method for the exchange tensor

8.B.1 Exchange interaction model

We want to perform a controlled study on how to calculate the exchange stiffness,
given by Eq. (8.32), through the method based on an extrapolation method when
applying an exponential envelop to the exchange interaction, which was introduced
in Ref. [173]. To do so, let us consider an exchange interaction model given by the
formula:

Jij = cos

(
2π
rij − a
λ

)
r−αij . (8.37)

It consists of a periodic function multiplied by a power-law decaying function of
damping coefficient α. The period of the cosine function is given by wavelength λ,
and its phase was chosen such that it gives 1 for rij = a, that is, at the nearest
neighbor distance given by the lattice constant a.

8.B.2 Exchange stiffness convergence

Let us consider a one-dimensional system and calculate the exchange stiffness A,
which involves a summation over an infinite lattice, as a function of the cut-off radius
for several values for α and λ = 4a, see green-square points in Fig. 8.B.1. The blue
dashed lines represent the decay of the exchange interaction model represented by
the black dots. For α = 2.0, Fig. 8.B.1 (a), the stiffness does not converge at all,
for each term of the summation in Eq. (8.32) does not decay but solely oscillates
changing sign. For α = 2.5 and α = 3.0, we observe signs of a slow convergence
of A, see Fig. 8.B.1 (b) and (c). And finally, for α = 4.0, the exchange-interaction
decay is fast enough to ensure a rapid convergence of the stiffness constant.

8.B.3 Exponential enveloping and extrapolation

We could see in Fig. 8.B.1 that, only for very fast decaying exchange a converged
stiffness can be calculated for a small cut-off radius for the exchange interaction
cluster. However, for transition metals, this is not the case. Instead of computing the
stiffness constant by summing over a very large cluster, one can envelop the exchange
interaction with an exponentially decaying function of different exponential factors,
which ensures convergence of A even for small cut-off radius, then extrapolate to
small damping.

In practice, we update our definition of exchange interaction by multiplying it
with an exponential function:

Jij = cos

(
2π
rij − a
λ

)
r−αij e−β(rij−a). (8.38)

We then need to calculate the stiffness constant for several values of β that are large
enough for the summation to be converged at the end of the available cluster.

Let us pick the case α = 3, for the exponential coefficient β of about 0.36,
the overall decay is already so fast that A converges within a radius of 20a, see
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A A

A A

A A

A A

(a) (b)

(c) (d)

Figure 8.B.1: Convergence of the exchange-stiffness constant as a function of the cut-off
radius. Panels (a)–(d) corresponds to different power-law decay of the exchange interac-
tion: α = 2.0, 2.5, 3.0, 4.0. The green square points connected by the green lines are the
exchange stiffness summed up until the given radius rij . The blue dashed lines correspond
to the power-law decaying function of the exchange interaction, which is given by the black
dots. Only for α = 4.0, panel (d), we observe a convergence of A within a cluster of radius
20a. Parameters: a = 1, λ = 4a.

Fig. 8.B.2 (a). Naturally, the same is true for higher values of β. We plot in
Fig. 8.B.2 (b) the converged stiffness constants obtained for several values of β.
Using a quadratic least-square extrapolation method, we made a quadratic fit to
this curve and extrapolated for β = 0, which gives us A = 0.80 that is the value we
would obtain by summing up A over a cluster of cut-off radius of 200a, within this
precision.

8.B.4 Choosing the exponential factor range

Naturally, there is a lot of freedom in applying the above-discussed method. For
example, it is not obvious which range of β one should take to generate the extrap-
olation. Hereby, we propose an approach based on the cut-off radius. It consists of
choosing a minimum exponential factor βmin such that the exponential function at
the cut-off radius is a small fraction ε of its values at the nearest-neighbor distance,
exp(−βmin(rcut − a)) = ε, thus we obtain:

βmin =
ln ε

a− rcut
. (8.39)
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A

A

A

(a) (b)

Figure 8.B.2: Rapidly stiffness-constant convergence and extrapolation. (a) Stiffness
constant summed up until the given radius rij , the green square points. The dashed
blue and red correspond to the power-law and exponential decay, respectively, of the
exchange interaction given by the black dots. (b) Converged stiffness constant for several
exponential factors β represented by the green squares. The blue straight line corresponds
to the quadratic fit extrapolated until β = 0. To obtain the converged stiffness constant
for smaller β, it would require larger exchange-interaction clusters. Nevertheless, we can
extrapolate the calculated constant to estimate the β = 0. Parameters: a = 1, λ = 4a.

Analogously, the maximum β can be estimated by imposing the same decay at half
of the cut-off radius:

βmax =
ln ε

a− rcut/2
. (8.40)

These conditions ensure that the extrapolation procedure is carried out into the
range where the actual exchange data available can meaningfully contribute. For
example, for β too high, the exponential decay is so fast, that most of the exchange
interaction data do not contribute to the calculated stiffness constant. Make it too
small, and the stiffness does not converge for the cluster of available data. For
Fig. 8.B.2, we took ε = 0.001 and once the maximum cut-off was rcut = 20a, we
obtain βmin = 0.36 and βmax = 0.77, with a = 1.

8.B.5 Minimum cut-off radius

The next question that arises is, how small can be the cut-off radius still allowing us
to make a decent estimate of the stiffness constant? It would be natural for one to
suppose that the answer to this question must be related to how fast the exchange
interactions decay, therefore, it is related to α. To test this hypothesis, we used the
extrapolation method to estimate the stiffness constant as a function of the cut-off
radius for different power-law coefficients α, see Fig. 8.B.3. The last points of all
curves correspond to a radius cut-off long enough to ensure the exact numerical
solutions. Estimating A with a cut-off too small can lead to large discrepancies,
which are larger for smaller α. We can see that within our model, a cut-off of 15
can be good for the case with α = 4.0, but not so much for α = 2.5. Nevertheless,
it seems that one gets a reasonable estimate of A with a cut-off of 20, and beyond,
for any α considered.
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A

Figure 8.B.3: Stiffness constant estimate as a function of the cut-off radius for different
power-law coefficients α. The estimates were obtained via the extrapolation methods
discussed in the text. The last point of all curves corresponds to the exact numerical
solution. A cut-off radius equal or bigger to 20 seems to yield a good estimate of A. For
a smaller radius, we can observe discrepancies from the exact solution, which are bigger
the smaller α is. Parameters: a = 1, λ = 4a.

(a) (b)

Figure 8.B.4: Estimate of the stiffness and spiralization-tensor elements as a func-
tion of the cut-off radius, using the extrapolation method, for the pseudomorphic 1ML
Co/W(110). (a) shows the convergence of the stiffness-tensor elements and (b) represents
the spiralization-tensor elements. These values converge much quicker than those obtained
through direct summation shown in Figs. 8.4.1 and 8.4.2.

8.B.6 Pseudomorphic 1ML Co/W(110)

As seen in Sec. 8.4.1, the available interactions cluster of radius 10aW for the pseu-
domorphic 1ML Co/W(110) was not enough to ensure convergence of the stiffness
and spiralization-tensor elements, see Figs. 8.4.1 and 8.4.2. Therefore, we applied
the extrapolation method discussed in the previous sections to obtain the results
shown in Fig. 8.B.4. The values quickly converge as function of the cut-off radius
and represent a better estimate than those in Figs. 8.4.1 and 8.4.2.
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8.C Skyrmion topological charge

We determine the skyrmion topological charge by computing its winding number.
The winding number in a discrete lattice can be defined as [7, 174, 175]

ν =
∑
〈i,j,k〉

Ω (Si,Sj,Sk) , (8.41)

which is the summation of the solid angles delimited by every set of three neigh-
bouring spins. For small Ω, this solid angle can be approximated by

tan

[
Ω (a,b, c)

2

]
=

a · (b× c)

|a| |b| |c|+ (a · b) |c|+ (a · c) |b|+ (b · c) |a|
. (8.42)

The vectors a, b and c should always be ordered with the same clockwise sense.
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Chapter 9

Nonreciprocity of spin waves due
to the Dzyaloshinskii-Moriya
interaction

Can spin-wave measurements help to distinguish the occurrence of skyrmions from
antiskyrmions in magnetic systems? The stabilization of one or the other is related
to the details and symmetries of the Dzyaloshinskii-Moriya interaction (DMI) [111],
which in turn can be determined by measuring its effect on the spin-wave proper-
ties [33, 176]. For example, in ferromagnets, the Dzyaloshinskii-Moriya interaction
induces a chiral asymmetry on the spin-wave energies of opposite wavevector [31, 32],
effectively shifting the minimum of the spin-wave dispersion curve out of the Bril-
louin zone center. We then say that the spin-wave spectrum is nonreciprocal [145,
148, 177–183]. In other words, this makes spin waves propagating in opposite di-
rections to acquire different group velocity, energy, lifetime, etc. This phenomenon
allows us to determine the DMI strength and its sign! However, it is not clear how
these DMI-induced asymmetries manifest in systems more complex than ferromag-
nets, such as noncollinear magnetic structures and antiferromagnets.

In this chapter, we provide a complete picture of when and how the Dzyaloshin-
skii-Moriya interaction induces nonreciprocal spin waves in complex spin structures,
and how they shall manifest in spin-resolved inelastic-electron-scattering experi-
ments. We demonstrate an important connection between angular momentum and
chiral handedness of a spin-wave mode, which allows us to predict the occurrence of
a nonreciprocal spin-wave scattering spectrum. We show that only when a magnetic
system has finite net magnetization, that is, when the sum of all magnetic moments
is nonzero can it present a total nonreciprocal spin-wave spectrum. However, even
zero-net-magnetization systems, such as collinear antiferromagnets and cycloidal
spin spirals, can have modes that are individually nonreciprocal, while the total
spectrum remains reciprocal. Furthermore, we demonstrate that excitation spectra
obtained with inelastic electron scattering, such as spin-resolved/polarized electron-
energy-loss spectroscopy (SREELS or SPEELS), can present asymmetric scattering
rates due to the DMI when measured at opposite wavevector, which allows us to
determine the DMI chirality that helps us then to answer our initial question.
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9.1 Introduction

In the publication “More is different” from 1972, P. W. Anderson discusses the
importance of symmetry breaking in nature [184]. Since then, we observe an ever-
growing interest in the symmetries and symmetry-breaking of condensed-matter
systems. An example is the Dzyaloshinskii-Moriya interaction itself, which has origin
in the spin-orbit coupling combined with a breaking of inversion symmetry.

Some static and dynamical physical properties of magnetic materials can acquire
the chirality of the Dzyaloshinskii-Moriya interaction, which is given by its vectorial
direction. In a single atomic layer of manganese deposited on tungsten, for example,
spin spirals of a unique rotational sense were observed using spin-polarized scanning
tunneling microscopy, which was explained in terms of the DMI [185, 186]. It is also
the chirality and symmetries of the DMI that determine whether a skyrmion or an
antiskyrmion can be stabilized [111]. In conclusion, knowing the DMI is essential to
understand many of the properties of some magnetic systems. However, one can not
directly measure it, instead, we measure some DMI-dependent properties, which in
turn allow us to obtain the DMI structure of a particular system. Therefore, it is
crucial to discover better ways to experimentally access these interactions.

Udvardi and Szunyogh [31] and Costa et al. [32] showed that the spin-wave
dispersion of ferromagnets acquires a chiral asymmetry under certain conditions
due to the presence of Dzyaloshinskii-Moriya interaction. They realized that when
the DMI vectors have a component along the sample’s magnetization, the spin-
wave dispersion becomes nonreciprocal with its energy minimum shifted out of the
Γ–point, see Fig. 9.1.1. This means that the energies of counterpropagating spin
waves with the same wavelength are no longer degenerate. In particular, if the
magnetization lies in a mirror plane of the system, this nonreciprocity does not
manifest on the spin-wave dispersion along the magnetization direction, because,
following Moriya’s rule, the DMI has to vanish in that case. These seminal papers
have demonstrated a route to probe the DMI: From the measured asymmetry on the
dispersion one can deduce the strength and chirality of the DMI by fitting the result
to a Heisenberg model Hamiltonian. The chirality can be measured because it is
related to the direction of the spin-wave dispersion shift. That has been successfully
realized experimentally by Zakeri et al. in Ref. [33] when studying thin films of
Fe/W(110). Similarly, nonreciprocity was observed in antiferromagnets, but only
when subjected to an external magnetic field [148].

Spin waves in ferromagnets are characterized by having a well-defined angular
momentum, which is antiparallel to the magnetization, effectively decreasing the
total magnetization of the system, as discussed in Chapter 2. As we will demon-
strate, the angular momentum of a spin wave in ferromagnets is associated with
its handedness, a spatial chirality that defines the sign of the phase difference of
precessing adjacent spin moments due to that spin wave. The handedness, for ex-
ample, defines the direction where the dispersion shifts in response to a given set of
Dzyaloshinskii-Moriya interactions. However, systems with strong DMI often gener-
ate noncollinear ground states [185, 186]. As we showed in Chapter 6, noncollinear
magnetic structures in general host spin waves of different angular momenta, such
as counter-rotating spin-wave modes of a spin spiral, and other modes can even have
no angular momentum at all, which is the case of the longitudinal spin-wave modes
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(a) Magnetization

(b)

DMI vectors

(c)

k

ω

Γ δk q−q

Figure 9.1.1: The shift of the spin-wave dispersion due to the DMI in ferromagnets. (a)
In our convention, the magnetization direction of a ferromagnetic is given by the direction
of the spins. (b) The Dzyaloshinskii-Moriya-interaction vectors lying in the plane. (c)
The DMI components along the magnetization direction, shown in red in (c), induce an
asymmetry of the spin-wave dispersion curve, which shifts sideways. Spin waves with
opposite wavevectors, q and −q, are no longer degenerate, such as in the absence of the
DMI (indicated by the gray dotted line). Measuring the localization of the new energy
minimum δk provides the chirality (spatial orientation) and magnitude of the DMI.

of a spin spiral. The same is true also for collinear magnets of zero total magnetiza-
tion, such as antiferromagnets, which host two counter-rotational spin-wave modes
whose degeneracy is broken by the DMI, see Chapter 7.

In the following, we show that even for these complex spin structures, the angular
momentum can still be associated with the spin-wave handedness, which allows us to
predict the effect of the DMI on the properties of a given spin-wave mode. Further-
more, we demonstrate that only systems of finite total magnetization can feature a
nonreciprocal total spin-wave spectrum, e.g., when considering the spin-wave ener-
gies of all modes. Moreover, this nonreciprocity is observed on the reciprocal-space
directions where the Fourier-transformed-DMI vector has a finite projection on the
magnetization.

We demonstrate that in zero-net-magnetization systems, individual modes can
be nonreciprocal, and these nonreciprocal modes usually come in pairs, each with
opposite angular momentum. In such a pair, each mode has an opposite handedness
leading to their dispersion shifting in opposite directions, all while keeping the total
spin-wave spectrum reciprocal.

We also demonstrate that spin-resolved/polarized inelastic-electron/neutron-scat-
tering experiments, such as spin-resolved/polarized energy-loss-spectroscopy (SREELS
or SPEELS), can be used to reveal the DMI-induced nonreciprocity of individual
spin-wave modes. The nonreciprocity in practice leads to an asymmetric scattering
rate for opposite wavevectors, which only appears when the probing beam polariza-
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Figure 9.2.1: Model systems. The models consist of a square-lattice monolayer with
nearest-neighbor interactions only. The exchange interaction is the same for both models,
but (a) Model I has DMI vectors perpendicular to the bonds and swirling counterclockwise,
while (b) Model II has DMI vectors diverging from the sites being parallel to the bonds.
Model I has a cycloidal spin spiral as its ground state, while Model II realizes a helical
spiral. c) Brillouin zone with its high-symmetry points and our choice of the frame of
reference: The M–Γ–M path is along the ŷ and the X–Γ–X along the x̂.

tion, angular momentum, and Fourier-transformed-DMI vector align. Furthermore,
we show that the angular momenta of the spin-wave modes are strongly related to
the DMI, that is, they are given not only by the spin configuration, but they are also
directly influenced by the DMI itself. Thus, SREELS and SPEELS measurements
allow us to determine the chirality of the Dzyaloshinskii-Moriya interaction, which
in turn helps to distinguish skyrmions from antiskyrmions in a lattice, for example.

9.2 Theoretical framework and model systems

The discussions throughout this chapter combine analytical and numerical results.
We employ the generalized Heisenberg model introduced in Chapter 2, whose Hamil-
tonian reads

H = −1

2

∑
ij

(JijSi · Sj + Dij · Si × Sj)−
∑
i

B · Si , (9.1)

where Jij is the magnetic exchange interaction parameter, and Dij is the Dzyaloshi-
skii-Moriya interaction vector between sites i and j. A uniform external magnetic
field is given by B.

Also, we often calculate the SREELS spectra following the procedure discussed
in Chapter 4 and 6, which are based on time-dependent perturbation theory in the
adiabatic description for spin waves in noncollinear magnets.

We resort to two simple model systems, in order to demonstrate and exemplify
our results and conclusions. Both models consist of a monolayer of a square-lattice
crystal with only nearest-neighbor interactions and a lattice constant a. They share
the same set of magnetic exchange interactions, but each features a different set of
DMI vectors: Model I has the DMI vectors perpendicular to the bond connecting the
corresponding sites, lying in the plane of the film and circulating counterclockwise,
see Fig. 9.2.1 (a); Model II has the DMI vectors parallel to the bonds, also lying
in-plane and having a given site i acting as a source of the Dij vectors, see Fig. 9.2.1
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Figure 9.2.2: Spin configuration stabilized by the two models, which assume the MEI
and DMI to be limited to the nearest neighbors and J = D = 1. (a) A cycloidal spin
spiral being the ground state of Model I. (b) The helical spin spiral stabilized by Model II.
Both spin spiral have the same wavevector Q = (2π/8)ŷ. (c) Skyrmion lattice obtained
by adding an out-of-plane magnetic field to Model I.

(b). Figure 9.2.1 (c) shows the square-lattice Brillouin zone marking some of its
high-symmetry points. For the simulation presented throughout the chapter, we
took the parameters to be: J = 1, D = 1.

We extract the ground-state spin configuration for Model I and II using numerical
spin-dynamics simulations by solving the Landau–Lifshitz–Gilbert equation with the
Spirit code [47], see Sec. 2.2.3. Using a unit cell of 8 × 8 atoms, one obtains for
Model I a cycloidal spin spiral, see Fig. 9.2.2 (a), and a helical spin spiral for Model
II, Fig. 9.2.2 (b). In these figures, the wavevector Q = (2π/8)ŷ of the spin spirals is
along ŷ, however, the spin spirals with wavevector along x̂ are also possible, which
are degenerate to the ones we are showing. By adding an external magnetic field
normal to the film in Model I, we can as well stabilize a skyrmion lattice as shown in
Fig. 9.2.2 (c). In this case, the square arrangement of skyrmions is imposed by the
choice of the unit cell. The direction of the net magnetization of any spin texture
will be denoted by n0.

9.3 Results

Our understanding of how the Dzyaloshinskii-Moriya interaction affects the spin-
wave dynamics and energetics in collinear and noncollinear magnetic systems can
be summarized in five items:
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(i) Nonreciprocal spin-wave spectrum only occurs, in the absence of an external
magnetic field, for systems of finite magnetization and when n0 · D(k) 6= 0,
i.e., if the projection of the Fourier-transformed DMI on the magnetization
direction is finite.

(ii) The angular momentum of a spin-wave mode can be regarded as the handed-
ness attribute, which defines the direction towards which the dispersion of the
given mode shifts out of the Γ–point due to the DMI.

(iii) Systems of zero net magnetization can host spin-wave modes individually non-
reciprocal induced by the DMI, while the total spin-wave spectrum remains
reciprocal. An external magnetic field can induce nonreciprocity.

(iv) Polarized inelastic-scattering experiments can be used to unveil the DMI-
induced nonreciprocity, and thus allowing to measure the DMI orientation.
A nonreciprocal spectrum only occurs for spin-flip scattering processes due to
spin-wave modes whose angular momentum aligns with the polarization of the
probing particles and D(k).

(v) All spin textures that are favored by the DMI have nonreciprocal spin-wave
modes with angular momentum aligned to the component of D(k) that con-
tributes to the DMI energy gain.

We the following, we discuss and demonstrate these five items.

9.3.(i) Nonreciprocal spin-wave spectrum

Nonreciprocal (energetically asymmetric) spin-wave spectrum only occurs, in the
absence of an external magnetic field, for systems of finite magnetization. Such a
spectrum manifests in the reciprocal-space directions along which a component of
D(k) aligns with the net magnetization.

The first statement is related to the breaking of time-reversal symmetry. If a
system is invariant under time reversal operator Θ, then ΘH(k)Θ−1 = H(−k), and
the reciprocity of the system is guaranteed. In fact, if the net magnetization is zero,
but via some other means the time-reversal is broken, the spin-wave dispersion could
be nonreciprocal too. Systems of zero net magnetization, such as antiferromagnets
and cycloidal spin spirals, are not invariant under time reversal, nor under partial
translation Tλ/2 (λ is the wavelength of the spin spiral), individually. However, they
are invariant under a combined operation of time reversal plus partial translation
S = ΘTλ/2, which leads to SkH(k)S−1

k = H(−k) [187]. If the system has a finite
net magnetization, it is not possible to find such a combined operation that leaves
the Hamiltonian invariant.

We can prove the second statement, following Ref. [31], considering a static
snapshot of a spin wave in a ferromagnet, given by

Si = cosφi sin θn
1 + c sinφi sin θn

2 + cos θn0 , (9.2)

where n0 is a unitarian vector along the magnetization, which forms an orthonormal
basis together with n1 and n2, see Fig. 9.3.1. θ corresponds to a small deviation
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Figure 9.3.1: Time snapshot of the spin wave of a ferromagnet for a given wavevector k
as given by Eq. (9.2). (a) For c = +1, the spin wave has a right-handed chirality. (b) For
c = −1, it has a left-handed chirality. The magnetization direction is given by n0. During
the precession due to the spin wave, all spins deviate from n0 by a fixed angle θ. The
phase of precession of the i–th spin is given by φi = k ·Ri, where Ri is the spin position,
and it is used to color code the spins.

from the magnetization direction n0, while φi = k ·Ri corresponds to a transversal
rotation of the spin moments with rotational sense (chirality) given by c = ±1.
Placing this expression into Eq.(9.1), we obtain that the only chirality-dependent
term is given by

E(k, c) ∝ c n0 ·D(k) , (9.3)

where D(k) is the lattice Fourier transform of the Dzyaloshinskii-Moriya vectors.
For details on how to obtain the above equation, see Appendix 9.A.1.

For Model I, where the ferromagnetic state can be stabilized by an external
magnetic field, the chiral asymmetry will only manifest when the magnetization
is in-plane. The Fourier transformation of the DMI interaction gives D(k) =

2D

(
− sin(aky)
sin(akx)

)
, and therefore, the asymmetry occurs most strongly for spin waves

propagating perpendicularly to the magnetization, and mostly vanishes when par-

allel to it, see Fig. 9.3.2 (a). For Model II, however, D(k) = 2D

(
sin(akx)
sin(aky)

)
and

the asymmetry is stronger mostly for wavevectors parallel to the magnetization, see
Fig. 9.3.2 (b).

9.3.(ii) Spin-wave angular momentum and spin-wave hand-
edness

Now we need to establish an important relation between spin-wave chirality, hand-
edness and angular momentum. In the previous section, our ansatz of spin waves
considers two possible spin-wave chiralities. In the following, we demonstrate that
only one of them is a solution to the coupled equation of motions that govern the
dynamics. Besides that, we define a spin-wave handedness, which is a chiral in-
variant for the spin waves whose sign is related to the direction of the spin-wave
dispersion shift in the reciprocal space. And finally, we show that there is a one-to-
one relation between the spin-wave handedness and the angular momentum. That
relation is fundamental in providing an easy and comprehensive way to predict chiral
asymmetry in spin-wave dynamics induced by DMI.

Thus far, we know that the spin-wave dispersion curve of a ferromagnet can
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Figure 9.3.2: Chirality dependent spin-wave energy landscape throughout the Brillouin
zone, obtained from Eq. (9.3). The (a) row corresponds to the energy landscape for Model
I and row (b) for Model II. Each column corresponds to a different in-plane magnetization
direction, which is represented by the black arrows.

be shifted out of the Γ–point due to the influence of the Dzyaloshinskii-Moriya
interactions. This shift was measured in the electron scattering experiments of
Zakeri et al. [33], and it occurs towards a very well-defined direction for a fixed
direction of the magnetization (given that the DMI is a constant of the material).
From this fact, we can infer that spin waves in a ferromagnet have a given handedness
that defines how the spin-wave energies respond to the DMI, for example, setting the
direction of the dispersion shift. Can a ferromagnet of fixed magnetization host spin
waves of opposite handedness, such that their dispersion curves would shift to the
opposite directions? A hint comes from the fact that spin waves in a ferromagnetic
system always possess angular momenta along the same direction (antiparallel to
the magnetization).

With the previous question in mind, we will review the motion of the spin mo-
ments of a ferromagnet when hosting a spin wave. We consider classical spin mo-
ments represented by vectors and the phenomenological Landau-Lifshitz equation,
Eq. (2.80), which describes the time evolution of every spin moment:

dSi(t)

dt
= −γSi(t)×Beff

i (t) . (9.4)

The effective field is given by

Beff
i (t) = −∂H

∂Si
=
∑
j

(JijSj + Sj ×Dij) , (9.5)

where we considered the Hamiltonian of Eq. (9.1). We have one equation of motion
for each magnetic atom of our material, and these equations are coupled because
the effective field in each site depends on the dynamics of the neighboring site to
which they couple to via the magnetic interactions.
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To solve this problem, one can start by assuming that the precession is of small
amplitude around its equilibrium direction that corresponds to the magnetization
for ferromagnets. We have solved this problem in great detail in Apx. 9.A.1 in linear
approximation. Taking the magnetization direction along ẑ, the time evolution of
the spin at site i reads

Si(k, t) =
1√
N

(
cos(−k ·Ri + ωkt)x̂ + sin(−k ·Ri + ωkt)ŷ

)
+ Sẑ , (9.6)

which corresponds to a spin wave of wavevector k and frequency ωk. Considering
that our system has Dz(k) = 0, we have that ωk ≥ 0 and thus every spin has a
counterclockwise precession around the magnetization. In the ferromagnetic ground
state, all the spins are aligned, and so the total angular momentum of the system is
maximal along ẑ (the magnetization direction). With a spin wave, as the spins are
precessing, the total angular momentum is reduced, which means that the spin-wave
angular momentum is antiparallel to ẑ.

The DMI favors certain cantings between spin moments. Let us then define
a spin-wave chirality based on the canting between adjacent spins as the sign of
the cross product between their projections onto the magnetization direction, and
integrated over a full revolution of the precessional motion:

c12(k) = sgn

(∫ τ

0

ẑ ·
[
S1(k, t)× S2(k, t)

]
dt

)
= −sgn (sin(ak · r̂12)) , (9.7)

where a is the lattice constant and r̂12 is a unitarian vector along the vector that
connects site 1 and 2 1, and τ = 2π/ωk is the precession period. This equation
tells us that the chirality changes periodically as a function of k, and it is zero for
k · r̂12 = nπ/a or k ⊥ r12. Let us take two wavevectors close to the Γ–point, one
parallel and another antiparallel to r̂12, snapshots of the correspondent spin waves
are shown in Figs. 9.3.3 (a) and (b), respectively. As the DMI favors one of the
two chiralities, one of the spin-wave energies is lowered while the other is raised,
effectively shifting the energy minimum of the spin-wave dispersion curve out of the
Γ–point in the direction of k that provides the favorable chirality.

Next, let us define a more general chirality invariant that does not vary with the
wavevector, which we will call the spin-wave handedness:

C12 =
c12(k)

sgn(k · r̂12)
. (9.8)

For the spin-wave solution given by Eq. (9.6), we get C12 = −1. The direction
towards which the spin-wave dispersion shifts couples to the spin-wave handedness.
If the handedness were to be +1, instead, the shift would have been in the opposite
direction. That is the case if the spin wave were to be given by

Si(k, t) =
1√
N

(
cos(k ·Ri − ωkt)x̂ + sin(k ·Ri − ωkt)ŷ

)
− Sẑ , (9.9)

which corresponds to a clockwise rotation and an angular momentum parallel to ẑ.
Then, we would have C12 = +1. That is, a change of handedness comes together

1Naturally, this definition depends on the choice of the spin pair. It is important to choose a
pair such that Dz(k) does not vanish for k ‖ r̂12.
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Figure 9.3.3: Spin wave chirality. In our ansatz, Sz is a constant of motion, therefore
we represent here only the transversal components, Sx and Sy, which change over time.
The open circles indicate the precession sense which is fixed by the equation of motion.
The precession phase is given by k ·Ri. With a spin wave, the system has two inequivalent
configurations: (a) one if the wavevector is parallel to r̂12 yielding a left-handed spin wave
c12 = −1 (the tilt direction is given by left-hand thumb rule); (b) another if the wavevector
is antiparallel to r̂12, which results in a right-handed spin wave c12 = +1 (the tilt direction
is given by right-hand thumb rule).

with an inversion of the angular momentum, and the dispersion shift due to DMI will
occur in the opposite direction of that for spin waves with handedness C12 = −1. By
the way, this second solution corresponds in fact to the spin waves for a ferromagnet
with the magnetization along −ẑ. This momentum-handedness coupling is imposed
by the equation of motion that accepts only wave-like solutions.

As we will demonstrate in the following, this linking between angular momentum
and handedness also holds for noncollinear magnetic systems, where the spatial
chirality can be rather difficult to track. Nevertheless, often these systems have
excitations of very well-defined angular momentum, which will then allow us to infer
their handedness and thus their response to the DMI. This result is very powerful in
allowing us to predict the effect of the DMI on the spin-wave energy and vice-versa,
as we demonstrate next.

9.3.(iii) External magnetic field and zero-net-magnetization
systems

Previously, we saw that only systems with finite net magnetization can produce a
nonreciprocal spin-wave spectrum due to DMI. Something analogous to that also
happens for systems of zero net magnetization: The Dzyaloshinskii-Moriya interac-
tion can induce chiral asymmetries in those systems too. However, it can now only
break chirality degeneracy between rotational spin-wave modes, i.e., with angular
momenta, but leaving the total spectrum reciprocally symmetric in the absence of
an external magnetic field.

Let us then consider an antiferromagnet, and that the D(k) aligns with the
axis of the magnetic moments of the systems. We can regard the antiferromagnet
as a superposition of two ferromagnetic sublattices of opposite magnetization. In
ferromagnets, flipping the entire magnetization makes the DMI-induced asymmetry
to reverse in the reciprocal space [33]. Thus, the spin wave hosted by each of
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the antiferromagnet sublattices is shifted in opposite directions, which effectively
leaves the total spectrum of the system reciprocally symmetric. The system becomes
nonreciprocal once again under the action of an external magnetic field parallel
to the alignment axis of the magnetic moments, see Chapter 7 [Antiferromagnets]
and Ref. [148, 180]. And here we have the first means through which one can reveal
the asymmetry induced by DMI in systems of zero net magnetization.

9.3.(iv) Role of spin-polarized/resolved inelastic scattering

Now we know that DMI can induce hidden chiral asymmetry in the spin-wave spec-
trum in a system of zero net magnetization and that an external magnetic field
can be used to reveal that. We proceed by demonstrating that in the absence of
an external magnetic field, we still can identify these asymmetries utilizing spin-
polarized/resolved scattering experiments.

Often, zero-magnetization systems, such as spin spirals and antiferromagnets,
host spin waves that come in pairs, where the counter-partner has opposite angular
momentum, and therefore, opposite handedness, e.g., two rotational modes of oppo-
site angular momentum. In the absence of DMI, these modes are degenerated and
reciprocally symmetric, which would be the case of the two modes in an antiferro-
magnet. But, as we have seen in the previous subsection, this degeneracy can be
lifted by the DMI, leaving each mode nonreciprocal while the total spectrum remains
reciprocal. As we have also seen, an external magnetic field couples differently to
each mode, energetically favoring one and disfavoring the other, which generates an
overall nonreciprocal spectrum.

An alternative way to couple with the angular momentum of the spin waves is
by means of a spin-resolved scattering experiment, as demonstrated in Chapter 6
(SREELS). In the example of an antiferromagnet, this would allow us to measure
each mode separately by aligning the polarization of the probing particles to the
precession axis of one of the spin-wave modes, and measuring only the spin-flip
channel. Similarly, the same perfect mode selection can be achieved for spin-spiral
systems, see Chapter 6. This makes of spin-polarized/resolved inelastic scattering a
second means through which one can reveal the DMI-induced nonreciprocity on the
spin-wave spectrum.

Next, we conjecture the conditions that rule the occurrence or not of nonrecip-
rocal spin-wave spectrum in inelastic-scattering experiments:

a) Nonreciprocal spectrum only occurs for spin-wave modes of finite an-
gular momentum:

This is a generalization of the requirement that a system needs a finite magnetization
to feature a total nonreciprocal spin-wave spectrum induced by DMI in item (i).
However, this general rule allows us to apply it also for zero-net-magnetization
systems. As we have seen, angular momentum translates into the chiral handedness
of the spin wave. Without angular momentum, a spin wave is nonchiral and cannot
manifest nonreciprocity due to DMI.

b) Only spin-flip channels may present a nonreciprocal spectrum:
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Figure 9.3.4: Spin-resolved inelastic-scattering spectra for the spin spiral generated by
Model I. (a) Shows the two spin-flip channels for polarization along x̂, as indicated by the
horizontal arrows. Nonreciprocity occurs in the reciprocal space where a component of
D(k), polarization and angular momentum align with each other. For Model I on path M–
Γ–M, D(k) and the angular momentum of the spin-wave modes with minima at k = ±Q
are parallel to x̂. (b) Shows the case for the polarization along ŷ, indicated by the vertical
arrows. Thus, nonreciprocity is only seen in the X–Γ–X, when D(k) ‖ ŷ that couples to
the angular momentum of those spin waves.

This is a direct consequence of item (iv - a). If only modes of finite angular mo-
menta can be nonreciprocal, and usually these modes are paired to modes of opposite
angular momenta, only a spin-flip channel has the capability of measuring one dis-
regarding the other.

c) Only the component D(k) parallel to the spin-wave angular momentum
can influence its nonreciprocal spectrum.

d) Only a scattering experiment with the polarization of the probing
particles aligned along the spin-wave angular momentum can reveal
the nonreciprocity of this mode.

Next, we demonstrate and exemplify items c) and d). Let us demonstrate that by
calculating the spin-resolved spectrum for the spin spirals that results from Models I
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Figure 9.3.5: Spin-resolved inelastic-scattering spectra for the spin spiral generated by
Model II. (a) Shows the two spin-flip channels for polarization along x̂, as indicated by
the horizontal arrows. Nonreciprocity occurs in the reciprocal space where a component
of D(k), polarization and angular momentum align with each other. For Model II on
path X–Γ–X, D(k) and the angular momentum of some spin-wave modes are parallel to
x̂. (b) Shows the case for the polarization along ŷ, indicated by the vertical arrows. Thus,
nonreciprocity is only seen in the M–Γ–M, when D(k) ‖ ŷ that couples to the angular
momentum of the spin-wave modes whose energy minima are at k = ±Q

and II, see Sec. 9.2, with Q ‖ ŷ, shown respectively in Figs. 9.3.4 and 9.3.5. Model I
stabilizes a cycloidal spiral whose spins lay in the y–z plane, see Fig. 9.2.2 (a), while
Model II leads to a helical spiral with spins lying in the x–z plane, see Fig. 9.2.2 (b).

Figure 9.3.4 (a) shows the spin-flip channels for polarization along x̂ (represented
by horizontal arrows), which present a nonreciprocal spectrum in the M–Γ–M path,
i.e., in a reciprocal-space direction perpendicular to the polarization. For Model I,
D(k) = −2D sin(aky)x̂ on this path, and therefore, it is parallel to the polarization
and to the angular momentum of the spin-wave modes whose energy minima are
at k = ±Q. For Fig. 9.3.4 (b), the polarization is set along ŷ (represented by
vertical arrows), and nonreciprocity is only seen for the X–Γ–X path, again because
on this path D(k) = 2D sin(akx)ŷ is parallel to the polarization and the angular
momentum of some spin-wave modes. Naturally, a polarization along z will not
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(a)

(b)

Figure 9.3.6: Spin-resolved inelastic-scattering spectra for a skyrmion lattice generated
by Model I added with an out-of-plane external magnetic field. Panel (a) represents the
left-right spin-flip channel, and (b) shows the right-left one, as indicated by the horizontal
arrows. The polarization is along x̂. The spectra resemble a continuum of excitations
rather than well-defined dispersing lines. Nevertheless, the nonreciprocities are visible,
and their occurrence conditions match those for the spin spiral established for the same
DMI model in the absence of the external field, see also Fig. 9.3.4 (a).

feature any nonreciprocity, because the DMI model has no component along that
direction.

For Model II, the Fourier transformed DMI vector on path M–Γ–M is D(k) =
2D sin(aky)ŷ, and along X–Γ–X it is D(k) = 2D sin(akx)x̂. Thus, in contrast to
Model I, we will observe the nonreciprocity on the reciprocal-space direction parallel
to the polarization, see Fig. 9.3.5 (a) and (b), where the polarization is along x̂ and
ŷ, respectively. In both Models, the spin-spiral wavevector points along the same
direction, but the direction where the nonreciprocity occurs changes from one model
to the other, which shows that the direction of the spiral wavevector has no role on
the nonreciprocity.

For more complex systems with lower symmetries, such as skyrmion lattices, the
spectrum of each spin wave mode is not well-defined throughout the reciprocal space
in inelastic-scattering experiments. The spectra are closer to a continuum of excita-
tions instead of the well-separated branches seen for the spin-spiral configurations,
see Fig. 9.3.6, whereupon adding an out-of-plane external magnetic field to Model I
could stabilize a skyrmion lattice in an 8× 8 atoms unit cell, see also Fig. 9.2.2 (c).
Naturally, it is also hard to identify the direction of the angular momentum of the
underlying spin wave corresponding to each high-intensity region of the spectrum.
Nevertheless, the nonreciprocity is still present and measurable. In Fig. 9.3.6, we
observe a nonreciprocity on the same path, M–Γ–M, as seen for the spin spiral es-
tablished in the absence of the external magnetic field, see Fig. 9.3.4 (a), for the
same polarization along x̂. Even though the two systems look rather different from
each other, the reciprocity on their spectra occurs under the same condition because
they share the same DMI structure.

As we have demonstrated, only spin-flip channels can present a nonreciprocal
spectrum. However, not always a spin-resolved inelastic-scattering experiment is
available, as is currently the case of electron scattering setup to study spin waves.
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Figure 9.3.7: Constant-wavevector inelastic-scattering spectra for a skyrmion lattice
generated by Model I added with an out-of-plane external magnetic field. The spectra
were calculated for two opposite wavevector k = ±2πkŷ. The polarization is along x̂.
(a) shows the spin-resolved setup, where only one spin-flip channel is taken (left-right
scattering channel). (b) presents the spin-polarized setup, which results from adding a
spin-flip and a non-spin-flip (left-right + left-left scattering channels). In both cases, we
can observe that the inelastic signal at −k is higher than at k, therefore, it is nonreciprocal.
The multiple peaks correspond to the various spin-wave modes of the skyrmion lattice, in
contrast to the expected single peak for a ferromagnetic phase and the three modes of a
spin spiral.

A more easily accessible experiment is the spin-polarized setups, where a source of
spin-polarized projectiles is used to scatter from the magnetic material and the spin
of the scattered projectile is disregarded. The resulting spectrum is equivalent to the
addition of a spin-flip and a non-spin-slip channel, e.g., down-up plus down-down.
While the latter cannot be nonreciprocal, the first can and so is their sum.

Figure 9.3.7 represents constant wave-vector spectra, which are the typical mea-
surements done in inelastic electron and neutron scattering experiments. The wavevec-
tor of the spin excitations are fixed by controlling the ratio between the incident and
scattering angles, and the intensity corresponds to the number of probing particles
that have transferred a given amount of energy to the excitations in an interval
of time. We calculated the spectra for wavevectors opposite to each other in the
reciprocal space, k = ±2πkŷ, and the polarization was set along the x̂ direction,
which aligns with D(k). Figure 9.3.7 (a) shows the results for a spin-resolved setup
(which corresponds to a vertical line of the spectrum shown in Fig. 9.3.6 (a)), while
Fig. 9.3.7 (b) presents the spin-polarized spectrum. In the low-energy region, we
clearly observe for both setups, spin-resolved or spin-polarized, a difference in the
scattering intensity. For higher energies, some peaks vanish and others appear when
comparing the spectra for the two opposite wavevectors.

It is the DMI directional sense that determines which scattering intensity will
be bigger, at +k or −k. Upon reversing the DMI, the spectra would be swapped in
Fig. 9.3.7. This implies that such an experiment measures the DMI sense.

Let us take Model I with an out-of-plane magnetic field which stabilized a
skyrmion lattice, and now reverse the chirality of the DMI along one direction only,
making Dx → −Dx. This modified model then stabilizes an antiskyrmion lattice.
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-Q +Q

Figure 9.3.8: Spin-resolved inelastic-scattering spectra for the spin spiral generated by
Model I with Dy = 0. Note that the spiral itself is stabilized by Dx. The polarization is
set along ŷ, as indicated by the vertical arrows. The two spin-flip channels are degenerate
and reciprocal because D(k) has no component along the polarization to induce angular
momentum of the spin-wave modes along that direction. Restoring the Dy of the original
Model I, a nonreciprocity occurs on the X–Γ–X while the ground-state spin configuration
is not affected, proving that the DMI can directly induce the nonreciprocity of spin waves.

Because the skyrmion and antiskyrmion systems translate into the other only by a
mirror reflection operation, their total spin-wave spectra, which are reciprocal, do
not differ. However, as we have shown, the scattering rate can depend directly on
the DMI orientation, and we should be able in this case to identify it.

9.3.(v) Dzyaloshinskii-Moriya interaction and spin-wave an-
gular momentum

We saw that the nonreciprocity is seen when the probing-beam polarization, the
D(k), and the spin wave’s angular momentum align. It is easy to see that the
polarization couples to the angular momentum, however, how does the angular mo-
mentum couple to the DMI? Is the angular momentum, which is the property that
allows the nonreciprocal inelastic measurement, given by the spin structure or by
the Dzyaloshinskii-Moriya interactions? The answer is that both, spin configuration
and the DMI set the angular momentum of the spin waves.

Let us consider Model I with Dy set to zero. The same cycloidal spin spiral with
Q ‖ ŷ is still the ground state. Previously, we have seen on Fig. 9.3.4 (b) that spin-
resolved inelastic-scattering spectra for polarization along ŷ featured nonreciprocity
in the X–Γ–X path because there D(k) was parallel to ŷ. Now, once D(k) = 0 on
that same path, the spectrum becomes reciprocal, see Fig. 9.3.8. This proves that
the nonreciprocity is not only induced by the spin structure but also directly by the
DMI. Similarly, one observes that a spin spiral stabilized by exchange interaction
frustration, without involving DMI, can also feature nonreciprocity as if the DMI
that could favor that structure were there.

We have seen that the DMI only influences the dispersion and the inelastic
spectra of spin-wave modes whose angular momenta have a finite projection on D(k).
An antiferromagnet hosts two counter-rotating spin-wave modes that precess in the
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plane perpendicular to the axis of the magnetic moments. That is why we discussed
in item (iii) an example where D(k) is parallel to this axis, which guarantees that
the DMI would maximally influence the spin-wave modes. However, for a general
noncollinear magnetic structure, the angular momenta of the spin waves are not
obvious, and thus, only knowing the DMI structure will not be enough to predict
the occurrence of the asymmetries. Our observations have shown, however, that spin
structures that are energetically favored by a given component of D(k) will host spin
waves whose angular momenta are along this same DMI component, i.e., they will
also induce nonreciprocity to the system. We can exemplify this by taking the
Models I and II again, and the spin spirals that each one favors as the ground state.
For Model I, the cycloidal spiral with spins lying in the y − z plane is stabilized by
Dx, and so the angular momenta of the +Q and −Q modes are along x̂. Meanwhile,
the helical spiral of Model II is stabilized by Dy, and its ±Q modes have angular
momenta along ŷ.

9.4 Conclusions

In this chapter, we contributed to the problem of mapping the Dzyaloshinskii-Moriya
interaction in systems of complex magnetic structures. We did that by studying
the effect of the DMI on the dynamics of spin waves. We made an important
connection between the angular momentum and the chiral handedness of a spin-
wave mode. Effectively, this allows us to predict when a given spin-wave mode
energy and scattering rate is affected by the DMI.

We saw that the DMI can induce nonreciprocity in the spin waves. We concluded
that only systems of finite magnetization can have a total spin-wave spectrum that is
nonreciprocal. Nevertheless, nonreciprocity can also occur for individual spin-wave
modes in systems with zero-net-magnetization and noncollinear spin textures, while
the total spectrum remains reciprocal.

We showed that an external magnetic field and spin-resolved energy loss spec-
troscopy (SREELS) proposed in Chapter 6, can help to reveal the nonreciprocity of
individual modes. We saw that only spin-flip scattering spectrum can present nonre-
ciprocity, and that a nonreciprocal spectrum is expected when a component of D(k)
is parallel to the angular momentum and the polarization of the probing electrons.
As we can control the polarization of the probe beam, and the spin-resolved mea-
surements can also determine the angular momentum of the spin waves, ultimately
we can determine the DMI chirality even for zero-net-magnetization systems. This
achievement is in contrast to previous expectations found on the literature [188],
where other authors resorted to controlling the phase and amplitude of the probing
beam to be able to determine the DMI chirality.

For the case of a skyrmion lattice, despite having a finite net magnetization out-
of-plane, no component of the DMI projects along that net magnetization (which
is in-plane), guaranteeing that the total spin-wave spectrum is reciprocal. Never-
theless, the scattering rate still can have nonreciprocity induced by the DMI. This
allowed us to detect a change in the chirality of the DMI along different directions,
which permits us, for instance, to infer the existence of antiskyrmions instead of
skyrmions [111].

Finally, we learned that the Dzyaloshinskii-Moriya interaction can influence the
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angular momentum of the spin waves directly and indirectly. In general, the DMI
favors the formation of spin structures that naturally hosts spin waves whose pre-
cession axis aligns with the DMI. That is, the spin-wave angular momenta tend to
be along D(k) that favored the spin configuration in the first place. However, even
those components of D(k) that do not contribute to the energy of the ground state
can directly influence the dynamics of spin waves, in particular of their angular
momentum and thus their scattering rate.
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Appendix

9.A On the chiral asymmetry of spin waves

9.A.1 Spin-wave chirality in ferromagnets

The only contribution in the Hamiltonian that can be sensitive to the chirality of a
spin wave (see Sec. 9.3.(i)) is that of the Dzyaloshinskii-Moriya interaction. It goes
with the cross product of two spin moments at different sites. If we consider the
ansatz for a spin-wave snapshot given by Eq. (9.2), we get:

Si × Sj =
[
(S2

i S
0
j − S0

i S
2
j )n

1 + (S0
i S

1
j − S1

i S
0
j )n

2 + (S1
i S

2
j − S2

i S
1
j )n

0
]

=
[
(c sinφi sin θ cos θ − cos θc sinφj sin θ)n1

+ (cos θ cosφj sin θ − cosφi sin θ cos θ)n2

+ (cosφi sin θc sinφj sin θ − c sinφi sin θ cosφj sin θ)n0
]

=
[
c sin θ cos θ(sinφi − sinφj)n

1

+ cos θ sin θ(cosφj − cosφi)n
2

+ c sin2 θ(sinφj cosφi − cosφj sinφi)n
0
]

=
[
c sin θ cos θ(sinφi − sinφj)n

1

+ cos θ sin θ(cosφj − cosφi)n
2

+ c sin2 θ sin(φj − φi)n0
]

=
[
c sin θ cos θ(sinφi − sinφj)n

1

+ cos θ sin θ(cosφj − cosφi)n
2

+ c sin2 θ sin(k · (Rj −Ri))n
0
]

,

(9.10)

and therefore, two terms depend on the chirality constance c. However, evaluating
the sum over all lattice points required by the hamiltonian Eq. (9.1), the first term
venishes: ∑

ij

D1
ij(sinφi − sinφj) = 0∑

ij

(sinφiD
1
ij − sinφiD

1
ji) = 0∑

ij

(sinφiD
1
ij + sinφiD

1
ij) = 0∑

ij

2D1
ij sinφi = 0 ,

(9.11)
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because D1
ij = −D1

ji.

Thus, the only term that depends on the spin-wave chirality in the energy, ob-
tained by substituting the spin-wave equation of Eq. (9.2) into the Hamiltonian in
Eq. (9.1), has the form

E(k, c) =− 1

2
c sin2 θ

∑
ij

sin(k · (Rj −Ri)Dij · n0

=− 1

2
c sin2 θNn0 ·D(k) ,

(9.12)

where

D(k) =
∑
j

sin(k ·Rij)Dij . (9.13)

We can notice that only the D(k) component along the magnetization contributes to
the chirality. This result matches the conclusion of L. Udvardi and L. Szunyogh [31].

9.A.2 Spin waves in a classical approach

In this section, we solve the equation of motion for every spin in a ferromagnet
to understand the dynamics of its spin waves and the corresponding local spin
precession.

Effective field

Considering the magnetic moments of a ferromagnet as classical vectors, their dy-
namics are governed by the phenomenological equation of motion given by Eq. (9.4).
Solving this equation simultaneously for all sites provides spin-wave solutions. First,
we need to determine the effective field, given by Eq. (9.5), which for the Hamilto-
nian of Eq. (9.1) that includes the exchange interaction and Dzyaloshinskii-Moriya,
we get

Beff
i =− ∂H

∂Si

=
1

2

∂

∂Si

∑
kj

(JkjSk · Sj + Dkj · (Sk × Sj))

=
1

2

∂

∂Si

[∑
j

(JijSi · Sj + Si · (Sj ×Dij)) +
∑
k

(JkiSk · Si + Si · (Dki × Sk))

+
∑

k 6=i,j 6=i

(JkjSk · Sj + Dkj · Sk × Sj)

]

=
1

2

∑
j

(JijSj + Sj ×Dij) +
1

2

∑
j

(JjiSj + Dji × Sj)

=
∑
j

(JijSj + Sj ×Dij) .

(9.14)
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In calculating the derivative of the Hamiltonian, we did not have to take care of
terms with k = j = i because Jij and Dij are zero. Also, we made use of the cyclic
permutation of the scalar triple product: a · (b× c) = c · (a× b) = b · (c× a); and
we swapped the interaction parameters index respecting their symmetries: Jij = Jji
and Dij = −Dji.

Equation of motion

Thus, the equation of motion in Eq. (9.4) reads

dSi
dt

=−
∑
j

(JijSi × Sj + Si × (Sj ×Dij))

=−
∑
j

(JijSi × Sj + Sj(Si ·Dij)−Dij(Si · Sj))

=−
∑
j

[
Jij
(
Syi S

z
j − Szi S

y
j

)
+ Sxj (Si ·Dij)−Dx

ij(Si · Sj)
]
x̂

−
∑
j
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Jij
(
Szi S

x
j − Sxi Szj

)
+ Syj (Si ·Dij)−Dy

ij(Si · Sj)
]
ŷ

−
∑
j

[
Jij
(
Syi S

x
j − Sxi S

y
j

)
+ Szj (Si ·Dij)−Dz

ij(Si · Sj)
]
ẑ .

(9.15)

Let us take the magnetization to be along the z direction and that the motion of
each spin is of a small amplitude around the equilibrium direction. This implies
that we consider that Sxi , S

y
i � 1, and in first order approximation we disregard all

products between them and take Szi ∼ S. Thus, the above equation becomes

dSi
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=− S
∑
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∑
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∑
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∑
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x
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− S
∑
j

[
Jij
(
Sxj − Sxi

)
+Dz

ijS
y
j

]
ŷ ,

(9.16)

because
∑

j D
x,y
ij = 0 when the summation is over a Bravais lattice due the anti-

symmetry of the DMI. We can see that, within the linear approximation, only the
component of DMI along the magnetization matters.

This is a vectorial equation, which represents two equations: one for the x and
one for the y components of the spin moment. Here note that the dynamics of one
of the components depends on that of the other, therefore, we have a set of two
coupled equations. Then, let us consider the following transformation:

S+
i = Sxi + iSyi and S−i = Sxi − iSyi

Sxi =
1

2

(
S+
i + S−i

)
and Syi =

1

2i

(
S+
i − S−i

)
,

(9.17)
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which define the circular components of the spin moments. Applying that to
Eq. (9.16), we find

i
dS+

i + S−i
dt

=S
∑
j

[
Jij
(
−S+

i + S−i + S+
j − S−j

)
− iDz

ij(S
+
j + S−j )

]
i
dS+

i − S−i
dt

=S
∑
j

[
Jij
(
−S+

i − S−i + S+
j + S−j

)
− iDz

ij(S
+
j − S−j )

]
.

(9.18)

Combining these two equations, we get

−i
dS+

i

dt
=S

∑
j

[
Jij
(
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i − S+

j
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+ iDz

ijS
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i
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∑
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[
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)
− iDz

ijS
−
j

]
,

(9.19)

which can be simplified by introducing the following definition

J±ij = Jij ± iDz
ij , (9.20)

that allow us to write

−i
dS+

i

dt
=S

∑
j

[
JijS

+
i − J−ijS+

j

]
i
dS−i
dt

=S
∑
j

[
JijS

−
i − J+

ijS
−
j

]
,

(9.21)

defining two decoupled equations of motion.

Fourier transformation

The dynamics of a given site depends on what is happening to all sites connected to
it via the exchange interaction. However, if the system has translational symmetry,
we can Fourier transform these equations defining

S±k =
1√
N

∑
i

e−ik·RiS±i , S±i =
1√
N

∑
k

eik·RiS±k . (9.22)

Then, by left multiplying Eq. (9.21) with 1√
N

∑
i e
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=
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∑
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=

S√
N

(∑
i

e−ik·RiS−i (t)
∑
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∑
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∑
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ij

)
,

(9.23)
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where we multiplied the second term of the r.h.s by 1 in the form of e−ik·Rjeik·Rj .
We then obtain

−i
dS+

k (t)

dt
=S

(
J0 − J−k

)
S+
k (t)

i
dS−k (t)

dt
=S

(
J0 − J+

k

)
S−k (t) ,

(9.24)

where the Fourier transformed interactions is defined as

J±k =
∑
i

eik·RijJ±ij , (9.25)

which assumes a translational symmetry, such that J±ij only depends on the difference
Rij = Rj−Ri. Note as well, that J±0 =

∑
i(Jij± iDz

ij) =
∑

i Jij = J0, again because
of the DMI antisymmetry. Next follows some useful properties of the interactions
in the reciprocal space:

J±−k =
∑
i

e−ik·RijJ±ij =
∑
i

eik·RjiJ∓ji = J∓k , (9.26)

and

J±k =
∑
i

(
cos(k ·Rij) + i sin(k ·Rij)

)
(Jij ± iDz

ij)

=
∑
i

(
cos(k ·Rij)Jij ∓ sin(k ·Rij)D

z
ij

)
=
∑
i

Aij
(

cos(k ·Rij) cos θij ∓ sin(k ·Rij) sin θij
)

=
∑
i

Aij cos (k ·Rij ± θij) ,

(9.27)

where θij = arctan(Dz
ij/Jij) and Aij =

√
(Dz

ij)
2 + (Jij)2. The last equation shows

that J±k is purely real and, that it can be expanded in terms of cosine functions
whose phase is given by the magnetic exchange and DMI ratio. This derives from
the fact that the sum of a Bravais lattice of an antisymmetric function vanishes,∑

i sin(k ·Rij)Jij =
∑

i cos(k ·Rij)D
z
ij = 0.

Eigenvalues: the frequencies

The differential equations in (9.24) have solutions of the type

S±k (t) = S±k e
−iω±k t , (9.28)

which plugging into Eqs. (9.24) results in

−ω+
k S

+
k =S

(
J0 − J−k

)
S+
k

ω−k S
−
k =S

(
J0 − J+

k

)
S−k ,

(9.29)

and therefore, the eigenvalues of these equations that correspond to the solution
frequencies are given by

ω±k = ∓S
(
J0 − J∓k

)
. (9.30)
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Figure 9.A.1: Spin-wave dispersion for a ferromagnet with DMI. The red and blue curves
correspond to the values ω− and ω+, respectively. The negative part of ω− indicates an
instability of the ferromagnetic spin configuration: with the DMI, the ground state passes
to be a spin spiral. The blue curve is obtained from the red one by reversing the space
and time, which take k → −k and ω+ → −ω−.

For a one-dimensional ferromagnet with nearest-neighbour-only MEI and DMI, J =
Dz = 1, we plotted the above equation in Fig. 9.A.1.

Using Eq. (9.26), we can notice that

ω±−k = −(±S
(
J0 − J±k

)
) = −ω∓k , (9.31)

that is, the frequency of each solution is related to the other by an inversion of space
and a sign change of the frequency, which can be translated into an inversion of time
in Eq. (9.28), see Fig. 9.A.1. Due to J±0 = J0, we have that ω±k → 0 when k→ 0.

In the absence of DMI, and if Jij > 0, we have that ω±k = ω±−k = ±ωk, which
imply that the frequencies are reciprocally symmetric and additive inverse of each
other. Furthermore, ωk is always real and positive, as we expect for a ferromagnetic
system:

ωk = S
∑
i

[1− cos(k ·Rij)] Jij > 0 . (9.32)

For nonzero Dz
ij, the phases of the cosines change, which can results in the frequency

switching sign for k at some parts of the reciprocal space. This indicates an insta-
bility that arises from the DMI favoring a spin-spiral ground state rather than a
collinear ferromagnetic alignment.

Local spin dynamics

Now, it is time to transform back, from the circular components to the Cartesian
ones in order to understand the precession of individual spins. For a given wavevector
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k, we have that

S+
i (k, t) =

1√
N
eik·RiS+

k (t) =
S+
k√
N

(
cos(k ·Ri − ω+

k t) + i sin(k ·Ri − ω+
k t)
)

S−i (k, t) =
1√
N
eik·RiS−k (t) =

S−k√
N

(
cos(k ·Ri − ω−k t) + i sin(k ·Ri − ω−k t)

)
.

(9.33)

Comparing these equations with their definitions at Eq. (9.17) in terms of the Carte-
sian components, S+

i = Sxi + iSyi and S−i = Sxi − iSyi , we get a solution for each
equation:

(
Sxi , S

y
i

)
(k) =

S+
k√
N

(
cos(k ·Ri − ω+

k t) , sin(k ·Ri − ω+
k t)
)

(
Sxi , S

y
i

)
(k) =

S−k√
N

(
cos(−k ·Ri + ω−k t) , sin(−k ·Ri + ω−k t)

) (9.34)

We can show that these two equations are equivalent by substituting one of the
amplitude by its dual:

(
S±k
)∗

= S∓−k, see Eq. (9.37), and using the relation derived
in Eq. (9.31). Doing so in the second solution of Eq. (9.34), we get

(
Sxi , S

y
i

)
(−k) =

(S+
k )∗√
N

(
cos(k ·Ri − ω+

k t) , sin(k ·Ri − ω+
k t)
)

, (9.35)

which is, considering S+
k real, equivalent to the first solution in Eq. (9.34) but with

opposite wavevector. These solutions represent counterclockwise circular preces-
sions, and they are related to each other by an inversion of time and space!

9.A.3 Circular components duality

The following reviews the duality between the circular components of the spin mo-
ments and how they evolve through the transformation considered previously, such
as the Fourier transformation.

From the definition of the circular components in Eq. (9.17), we have that(
S±i
)∗

= S∓i , (9.36)

that is, one is the complex conjugate of the other. Given the Fourier transformation
definitions by Eq. (9.22), the complex conjugate duality of the Fourier counterparts
is given by (

S±k
)∗

= S∓−k . (9.37)

Given the definition of the time evolution, Eq. (9.28), we have that(
S±k (t)

)∗
= S∓−k(−t) . (9.38)
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Chapter 10

Conclusions and perspectives

Throughout this thesis, we studied the fundamental properties of the collective spin
excitations of noncollinear magnets. We described these spin waves in the adia-
batic approximation for systems of localized magnetic moments whose dynamics are
governed by a generalized quantum Heisenberg Hamiltonian, which we discussed in
Chapter 2. We took into account relativistic effects due to the spin-orbit coupling,
such as the magnetocrystalline anisotropy and the Dzyaloshinskii-Moriya interac-
tion, the latter being responsible for the magnetic noncollinearity of the investigated
systems.

To provide a material-specific description, we performed first-principles calcula-
tions based on the density functional theory within the Green-function Korringa-
Kohn-Rostoker method, which we introduced in Chapter 3. These simulations were
performed using a full-potential relativistic method within the local spin density
approximation (LSDA). Besides providing the electronic and magnetic properties
of the ground state, the calculations also allowed us to parametrize the generalized
Heisenberg Hamiltonian by means of the infinitesimal-rotation method.

We demonstrated how spin waves of noncollinear magnets can be probed using
the inelastic scattering of neutrons or electrons. While neutrons are employed to
study bulk systems, electrons are more suitable for surface and thin films, due to
their high cross-section and low penetration length. Thus, we developed an inelastic-
scattering theory in Chapter 4, where we derived the spin-spin correlation tensor
for spin waves in noncollinear magnets. Together with the first-principles calcula-
tions, this allowed us to make predictions directly compatible with the experimental
measurements of spin waves.

Our first case study was cobalt deposited on the tungsten (110) surface, which
we investigated in Chapter 5. We studied Co films with 3 up to 8 monolayers (MLs),
which feature a ferromagnetic order. Recent electron-energy-loss spectroscopy with
the highest energy resolution in the literature observed for the first time up to three
spin-wave modes in these films. Therefore, we chose these Co films as test systems
for our methodology. Because of the large mismatch between Co and W lattice
constants, a reconstruction of the cobalt films occurs already for films as thin as 1
monolayer thick. The resulting supercell yields a reduction of the Brillouin zones
of these materials. Thus, to compare our theoretical results with the experimental
data, we employed an unfolding scheme, which comes naturally from the inelastic
scattering theory of Chapter 6. We obtained overall good agreement with the ex-
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perimental data for the spin-wave dispersions for films of various thicknesses. To
achieve that, we rescaled the exchange splitting self-consistently to correct for its
overestimation by the DFT in the LSDA approximation.

Upon the inelastic scattering theory developed in Chapter 4, we proposed in
Chapter 6 a new experimental protocol to probe spin waves in noncollinear magnetic
thin films. It consists of spin-polarized electron-energy-loss spectroscopy (SPEELS)
augmented with a spin filter, resulting in spin-resolved electron-energy-loss spec-
troscopy (SREELS). Then, we computed the SREELS spectra for a spin spiral and
a skyrmion lattice. From that, we could draw our first understanding of the nature
of spin waves in noncollinear spin textures. For instance, these systems can host
spin waves with different angular momenta, which is in contrast to the physics of
ferromagnets. A spin spiral has two rotational modes with opposite angular mo-
menta that point parallel to the spiralization axis of the spin texture, and another
with no angular moment associated with a longitudinal precession of the net mag-
netization. Furthermore, we learned that during the scattering of electrons, even
non-spin-flip processes can create spin waves in noncollinear magnets and that we
can select a mode to be measured by controlling the polarization of the electron
beam and properly choosing the scattering spin channel. While for ferromagnets
SPEELS is sufficient to fully characterize the properties of spin waves, spin-resolved
spectroscopy through SREELS becomes mandatory to achieve the same result.

Next, we explored noncollinear spin textures of antiferromagnetic materials in
Chapter 7. We saw that the DMI induces a splitting of the two otherwise degenerate
bands of a collinear antiferromagnet. This splitting occurs such that the energy
minimum of each band is shifted in opposite directions of the reciprocal space. This
phenomenon is known as the spin-wave Rashba effect. When the Rashba spin-wave
modes are subject to an external field, the dispersion of one is raised in energy
and the other is lowered, causing an asymmetry in the spin-wave spectrum. We also
studied the formation of spin spirals and skyrmion lattices in two-dimension systems.
In particular, we saw that in antiferromagnets, an anisotropic magnetic exchange
interaction can also produce antiskyrmions, without the need of an anisotropic DMI.
Beyond model systems, we chose two antiferromagnetic materials, Mn/β-W and
Mn5Si3 to investigate. The first has a remarkably high magnetocrystalline anisotropy
and a strongly anisotropic DMI. The ground state is an antiferromagnetic spin
spiral whose spin-wave spectrum presents an energy gap. The second is a system
of experimental interest where inelastic-neutron-scattering data suggested that in
its collinear antiferromagnetic phase, Mn5Si3 has a regime of coexistence of spin
waves and diffusive spin fluctuations. Even though we could not rule out the role of
the spin fluctuations, we showed that the spin-wave dispersion as a function of the
applied field matches the behavior of the experimental inelastic-neutron-scattering
data.

In Chapter 8, our investigation of ultrathin films of Co/W(110) led us to the
prediction of the first material to host in-plane skyrmions. We studied films with 1
to 3 reconstructed Co monolayers and 1 pseudomorphic Co monolayer using a com-
bination of analytical micromagnetic models and spin-dynamics simulations. We
concluded that all three reconstructed Co films have ferromagnetic ground states.
However, we showed that the 1ML Co film can host meta-stable in-plane skyrmions.
The in-plane magnetization of this system preserves the crystal mirror symmetry
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because it is perpendicular to the mirror plane. This guarantees the coexistence
of the in-plane antiskyrmions, because such a mirror-symmetry operation maps a
skyrmion into antiskyrmion, and in this case without switching the magnetization
background. The ability to simultaneously host skyrmions and antiskyrmions is very
important for spintronics, once these quasiparticles respond differently to the ap-
plied fields. Furthermore, in-plane skyrmions are expected to be in general smaller
than the out-of-plane skyrmions because the dipole-dipole interaction acts to reduce
the size of the earlier and to enlarge the latter. The ground state for the pseudo-
morphic Co ML film was found to be a spin spiral. Under the action of external
magnetic fields, we could stabilize both an in-plane skyrmion and an out-of-plane
antiskyrmion.

Finally, in Chapter 9, we investigated the breaking of reciprocal symmetry (non-
reciprocity) of the spin-wave properties due to the Dzyaloshinskii-Moriya interaction.
Here we have to differentiate between the intrinsic spin-wave spectrum, which is com-
posed of the energies of all spin-wave modes for all wavevectors, and the inelastic-
scattering spectrum, which results in the interaction of the probing electrons with
the spin waves of the system often not exciting all possible modes. We showed that
only a system with finite magnetization can have a nonreciprocal intrinsic spin-wave
spectrum and that this happens when the DMI has a finite component along the
magnetization. In ferromagnets, the magnetization direction imposed the chirality
and handedness of the spin waves, which are the attributes that determine how the
energies of the spin waves will respond to the DMI. We generalized this concept for
noncollinear magnets, where we demonstrated that the angular momentum of the
spin-wave modes can be regarded as their handedness attributes. In a system with
zero magnetization, such as antiferromagnets and cycloidal spin spirals, individual
modes can be nonreciprocal, while the total intrinsic spectrum remains symmetric
in the reciprocal space (in the absence of an external magnetic field). However,
even for these zero-magnetization systems, the inelastic-scattering spectrum can be
nonreciprocal. This happens in the spin-flip channel of the inelastic-scattering mea-
surements when the polarization of the probing particle aligns with the spin-wave
angular momentum and the DMI. This mechanism gives us the possibility to de-
termine the DMI chirality from inelastic-scattering experiments in noncollinear spin
textures.

Future perspectives

Despite the extensive work we carried on, there is much left to be done. Within
the adiabatic approximation, there are many different interactions to be considered,
and thus, expanding the range of possible materials to be described. For instance,
to describe the spin waves of very long wavelengths, such as the ones probed by
Brillouin light scattering, it is needed to consider the dipole-dipole interaction [189].
Another example is the topological three-spin chiral interactions driven by emergent
orbital magnetism [190].

Inevitably, accounting for these new magnetic interactions will lead to the discov-
ery of novel spin textures. Even with the old set of interactions that we considered
in this thesis, there are other spin textures that we left unexplored. Examples
are: Reduced-dimensionality spin textures, such as the one-dimensional periodic
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arrangement of skyrmions; Interfaces between phases of different topological char-
acters, such as between a skyrmion lattice and a ferromagnetic phase, where edge
states topologically protected against backscattering are expected to occur [13, 14];
3D localized spin textures, such as hopfions and magnetic bobbers[8, 10, 191].

The adiabatic approximation for spin waves used in this work is a very powerful
tool to understand the fundamental properties of spin waves, and it is computa-
tionally very efficient. However, to describe the lifetime of the spin waves and
other properties, one has to go beyond. This requires considering the coupling of
the spin-wave bath with the other particles and quasiparticles, such as phonons,
electrons, and even magnons themselves [192–194]. Some of these can be treated
utilizing linear response theory, for example, by calculating the magnetic suscep-
tibility including the appropriate self-energies [195]. Other theoretical frameworks
such as time-dependent density functional theory in combination with many-body
perturbation theory are suitable as well [196, 197].

Our discovery of in-plane skyrmions in Co/W(110) opens new paths for the
search of host materials that can be used in spintronics and other research fields.
High-throughput methods should now be used to prospect material systems with
in-plane magnetic anisotropy. Another important aspect is to better understand in
this context the importance of the ultra-low symmetry systems.

We demonstrated the power of controlling and detecting the spin polarization
of the probing particles in the studies of spin waves. A natural extension of our
inelastic scattering theory is to consider the effect of more complex polarizations.
By manipulating and combining the beam phase and polarization, it is possible to
build a probing beam with circular polarization that carries spin angular momentum,
but also more involving polarization that carries orbital angular momentum [198].
These different polarizations are expected to couple to different spin-wave modes
making possible to explore other parts of the intrinsic spin-wave spectrum which
were not observed before.

Our studies were conducted for zero temperature. However, many interesting
problems are intrinsically temperature dependent, such as the softening of the mag-
netic interactions which directly affects the spin-wave spectra [109]. Accounting
for the temperature effects can be done, for example, by considering longitudi-
nal spin-fluctuations to be added to the Heisenberg Hamiltonian [199, 200]. The
finite-temperature statistics should also be considered in our theory of inelastic elec-
tron/neutron scattering.
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5.2.1 Illustrating the unfolding scheme. The spin-wave dispersion of a uni-
form trilayer is calculated using Eq. (5.2) with 1 atom per layer (red
dashed lines) or 10 atoms per layer (blue solid lines). We consid-
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5.3.1 (a) Top view of a Co ML on W(110), in the 4 × 1 reconstruction.
The dark blue spheres represent Co atoms, while the gray ones are W
atoms. The crystallographic directions for bulk W are also indicated.
Five Co atoms are covering four W atoms in the [001] direction. (b)
2ML Co on W(110) in hcp stacking. The Co layer at the interface is
shown with dark blue spheres, while light blue spheres depicting the
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5.3.2 Layer-resolved spin magnetic moments for free-standing and sup-
ported Co films. For the supported films with n layers, Co layer
1 is the surface layer and Co n is at the W(110) interface. The mag-
netic moments for the supported films are averaged over the ten Co
atoms in each layer, with the error bar indicating the spread. . . . . 93

5.3.3 LDOS for the 8Co/W(110) slab. The energy zero marks the Fermi
energy. Positive values correspond to the majority spin LDOS and
negative ones to the minority spin LDOS. (a) Comparison of the
average LDOS for the Co layers at the interface and in the middle
of the Co film (bulk-like). (b) Comparison of the average LDOS for
the W layers at the interface and in the middle of the W film (bulk-
like). The smearing of bulk-like peaks and transfer of spectral weight
to near the Fermi energy signal the strong Co–W hybridization at
the interface. These changes lead to reduced magnetic moments for
the Co layer at the interface, and also impact the magnetic exchange
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.4 Nearest-neighbour magnetic exchange parameter J among Co atoms,
for free-standing and supported Co films of different thickness. For
Co/W(110), the interface layers are on the right-hand side. The in-
tralayer parameter for layer n is labeled by the same integer, while
the coupling between layers n and n + 1 is labeled by n + 1/2. For
the supported films, the average J is shown, with the spread given as
an error bar. Due to the Co–W hybridization, the coupling strength
decreases for the Co layer at the interface. . . . . . . . . . . . . . . . 95

5.3.5 Maps of the intralayer magnetic exchange interactions in real space,
for 3-8ML Co on W(110). Each map shows the magnetic exchange
interaction, Jij, between the first Co atom in a given layer, i, and all
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The Jij are multiplied by d2, where d is the distance between the i
and j atoms. The panels on the right-hand side correspond to those
of Co layers in the vicinity of W. . . . . . . . . . . . . . . . . . . . . 96

5.3.6 Panel (a) shows the intralayer Jij maps for the first layers of a 8ML
Co free-standing slab. Panels (b) and (c) present the correspondent
layer-resolved Fermi surface contours for the majority and minority
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the distance between the i and j atoms. . . . . . . . . . . . . . . . . 97
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5.3.7 Total density of states of the two-band model given in Eq. (5.7).
The dashed lines mark a Fermi energy near the bottom of the two
bands (left), and another at the Van Hove singularity (right). The
correspondent Fermi surface is almost isotropic in the first case, and
very anisotropic in the other; see Fig. 5.3.8. t = −1, U = 1, E0 = −4,
and η = 0.1 a.u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.8 Jij maps for two different Fermi energies (a) EF = −8 a.u. and (b)
EF = −3 a.u. Panels (c) and (e) are the majority and minority
Fermi surface contours for EF = −3 a.u., respectively, and panels
(d) and (f) are the majority and minority Fermi surface contours for
EF = −8 a.u. The Jij are multiplied by d2, where d is the distance
between the i and j atoms. t = −1, U = 1, E0 = −4, and η = 0.1 a.u. 99

5.4.1 Spin-wave dispersion for the free-standing and W-supported 8ML Co
film (blue and gray lines, respectively). The color map corresponds
to the unfolded dispersion for the supported films, Eq. (5.6), with
a Lorentzian broadening of width 4 meV. The intensity of the color
map is in arbitrary units. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Stiffness constants obtained from fitting the spin-wave branches of
Fig. 5.4.4 to Eq. (5.13). Blue refers to the free-standing calcula-
tions while green stands for the supported case. Red indicates the
stiffness of the experimental data[24]. For all fits, only points with

q‖ < 0.3 Å
−1

were considered. Circles correspond to the first (acous-
tic) mode, squares to the second mode, and triangles to the third
one. The inset presents the same data as above with free-standing
and supported results rescaled down by 30%, as will be discussed
in Sec. 5.4.2. The supported films capture the experimental trends
better than the free-standing ones. . . . . . . . . . . . . . . . . . . . 101

5.4.3 Dispersion curves for a nearest-neighbor Heisenberg model of an 8ML
Co film, based on the parameters given in Figs. 5.3.2 and 5.3.4 for the
free-standing films. The black-dashed lines in all panels represent the
result obtained with unmodified parameters, while the solid lines show
the dispersion upon the following changes: (a) The intralayer coupling
of the last Co layer is reduced by 60%. (b) The interlayer coupling
between the interface Co layer and its adjacent layer is reduced by
50%. (c) The magnetic moment of the interface Co layer is reduced
by 30%. (d) The effect of combining all the changes in the parameters.102

5.4.4 Comparison of calculated (lines) and experimentally measured spin-
wave dispersions (squares, from Ref. [24]) for several thicknesses. The
thin lines are the spin-wave branches obtained for the free-standing
films, while the thick green-yellow lines (actually a color map) corre-
spond to the unfolded dispersion for the W-supported films, Eq. (5.6).
In the unfolding scheme, a Lorentzian broadening of width 4 meV
was considered. The magnetic exchange coupling has been uniformly
rescaled down by 30%. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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5.B.1Comparison of calculated (lines) and experimentally measured spin-
wave dispersions (squares, from Ref. [24]) for several thicknesses. The
thin lines are the spin-wave branches obtained for the free-standing
films, while the thick green-yellow lines (actually a color map) corre-
spond to the unfolded dispersion for the W-supported films, Eq. (5.6).
In the unfolding scheme, a Lorentzian broadening of width 4 meV was
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Schematic picture of spin-resolved electron-energy-loss spectroscopy
(SREELS). A monochromatic spin-polarized (SP) electron beam is
aimed at the surface of a noncollinear magnetic sample. The magnetic
noncollinearity leads to a mixed spin state of the outgoing electrons.
These are then collected for spectroscopical analysis, having both
their energy and spin characterized. . . . . . . . . . . . . . . . . . . 113

6.3.1 (a) The hexagonal lattice spin model. We consider only nearest-
neighbor interactions. The red arrows represent the DMI vectors
that can lead to spin spirals and skyrmion lattices. (b) In the ab-
sence of the DMI, the ground state is a ferromagnetic phase. (c) The
reciprocal-space path through which we calculated the SREELS spec-
tra. (d) SREELS down-up scattering channel for the ferromagnetic
phase, the only one nonvanishing for this spin configuration when the
polarization of the probing electrons is parallel to the spins of the
magnetic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.2 Spin-waves for a spin-spiral structure, beam polarization along z. (a)
Spin-spiral ground state and crystallographic axes. The red and blue
arrows correspond to the two considered spin polarizations of the
electron beam. (b) Path in reciprocal space being considered for the
calculations of the SREELS spectra. These are shown in (c) for the
spin-conserving channels, and in (d) for the spin-flip channels. The
arrow pairs indicate the initial and final electron spin polarization for
each channel. (e-g) Sketch of the low-frequency motion of the net
atomic spin for the three spin-wave modes with minima in −Q, +Q
and Γ, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.3 SREELS spectra for spin-waves in a spin-spiral as in Fig. 6.3.2. Here,
the beam polarization is along x, which is aligned with the precession
axis of the spin-waves. Thus, each scattering channel probes a single
spin-wave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.4 Spin-waves in a skyrmion lattice. (a) Shows the ground state spin
structure of the system. The colors represent the z-component of
the spins. (b) Depicts the path on which all four SREELS spectra
were calculated, (c-e). (f–h) snapshots of the z–component of the
local atomic spins over time (as color maps), depicting the spin-wave
motion at the hotspots (indicated by the green arrows) of the spectra.
Same color scale as in (a). (f) corresponds to a breathing mode that
is measured in the non-spin-flip channels. (g) and (h) are clockwise
and counter-clockwise rotational modes observed in the down-up and
up-down channels, respectively. . . . . . . . . . . . . . . . . . . . . . 119
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7.1.1 Antiferromagnetic spin chain. a) The ground state, where the spins
align antiparallel among neighbors. b) Spin-wave scattering spectrum
(sum of all scattering channels) for an antiferromagnetic spin chain
depicted in (a). The single dispersion branch centered at X is due to
two oppositely rotating modes, a clockwise and a counter-clockwise.
Model parameters: J = −1, D = 0, K = 0.05, B = 0 a.u. For details
on the calculation of the inelastic-electron-scattering spectrum, see
Chapters 4 and 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.2 Spin-wave scattering spectrum of an antiferromagnetic spin chain. (a)
The Dzyaloshinskii-Moriya vectors pointing along z shifts to the left
and the right the dispersion curves of the −Q and +Q modes, respec-
tively. For zero external magnetic field, the spectrum is symmetric.
(b) When a magnetic field is applied, the spectrum becomes nonre-
ciprocal. Despite the DMI, the system has the same collinear ground
state shown in Fig. 7.1.1 (a), stabilized by the magnetic anisotropy.
Model parameters: J = −1, D = 0.2, K = 0.05, B = 0.2 a.u. . . . . 123

7.1.3 Antiferromagnetic spin spiral. a) The ground state generated by a
spin-flop transition induced by a high external magnetic field along z.
The spins lie in the plane perpendicular to the applied field forming
an antiferromagnetic spin spiral. A small component of each spin
still points along z what makes it a conical spin spiral. b) Spin-wave
scattering spectrum of the antiferromagnetic spin spiral as depicted
in (a). The spectrum is symmetric and formed by the brightest mode
centered at X enclosed by the other two features centered at ±q,
where q is the wavevector of the spiral. Model parameters: J = −1,
D = 0.2, K = 0.05, B = 0.8 a.u. . . . . . . . . . . . . . . . . . . . . 124

7.1.4 Inelastic-neutron-scattering measurement on bulk α–Cu2V2O7. (a)
Nonreciprocal scattering spectrum due to an external magnetic field,
+6 T. The system is collinear antiferromagnetic. (b) For a high field,
+10 T, the system undergoes a spin-flop transition into a spin spiral.
The spectrum becomes symmetric. The arrows denote the magnetic
Bragg peaks. Reprinted figure with permission from Gitgeatpong, G.
et al., Phys. Rev. Lett. 119, 047201 (2017) (https://doi.org/10.1103/PhysRevLett.119.047201),
Ref. [148]. Copyright (2020) by the American Physical Society. . . . 125

7.2.1 Predominantly antiferromagnetic two-dimentional structures. (a) The
c(2 × 2) and (b) the p(2 × 1) collinear antiferromagnetic phases,
containing four and two atoms in the unit cell, respectively. The
first phase results from Model I, where antiferromagnetic nearest-
neighbor-only couplings are considered. The second derives from
Model II, which has an anisotropic exchange coupling, being ferro-
magnetic along the y–direction and antiferromagnetic along x. An
easy-axis along z was considered. (c) and (d) show spin spirals
formed due to Dzyaloshinskii-Moriya couplings in Models I and II,
respectively. The total energy of the configuration in (a) and (b) is
E = −4.050J , and in (c) and (d) E = −4.052J . Model parameters:
|J | = 1, D = 0.2, K = 0.05 and B = 0 a.u. . . . . . . . . . . . . . . 126
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7.2.2 Spin-wave spectra for 2D antiferromagnetic spin spirals. (a) and (b)
show the dispersion curves for the c(2×2) and p(2×1)-spirals, respec-
tively. Paths in the direction of q are shown in the left-hand side and
perpendicular to it on the right-hand side. The inset in (b) depicts
the high symmetry points of the crystal Brillouin zone. Both the
c(2 × 2) and p(2 × 1)-spirals feature the three universal helimagnon
bands, seen on the left-hand side. Comparing the two left-hand-side
panels, the energy scale for the c(2× 2)-spiral is twice as high as for
the p(2× 1)-spiral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.3 Spin-wave spectra for the Model I on the c(2 × 2)-spiral, whose pa-
rameters were modified as follows. We increased the DMI from (a)
D = 0.2 to (b) D = 0.3 without relaxing the spin structure. In (a)
the energy minima are located at P± 0.24, while for (b) they are at
P ± 0.36. The scaling on D is linear. Due to the further splitting, a
third mode can be distinguished, which is centered at P. (c) An ex-
ternal magnetic field along q, B = 0.2, is applied for the case in (b).
The spectra become nonreciprocal because one of the shifted modes
gets lifted, while the other is lowered in energy. . . . . . . . . . . . . 129

7.2.4 Skyrmion-like structures in an antiferromagnetic background. (a) An-
tiferromagnetic skyrmion that is formed when the exchange interac-
tion with all nearest neighbors is negative, Model I. The skyrmion lies
in a c(2×2) antiferromagnetic background. (b) Antiferromagnetic an-
tiskyrmion, which results from anisotropy exchange interactions. J
is negative along-x and positive along-y, Model II. The antiskyrmion
lies in a p(2 × 1) antiferromagnetic background. Model parameters:
|J | = 1, D = 0.2, K = 0.05 and B = 0 a.u. The total energy of both
spin configuration is E = −4.041052J . . . . . . . . . . . . . . . . . . 130

7.2.5 Total inelastic-electron-scattering spectra of spin waves in antiferro-
magnetic skyrmionic lattices. (a) shows the inelastic scattering spec-
tra for the antiferromagnetic skyrmion in the c(2 × 2) background.
(a) displays the spectra for the antiferromagnetic antiskyrmion in the
p(2 × 1) background. In contrast to the spin spirals, the spectra for
the skyrmion lattices are much more broaden. The inset in (b) depicts
the high symmetry points of the crystal Brillouin zone. . . . . . . . . 131

7.3.1 Manganese monolayer deposited on β–tungsten (001). (a) The β–
phase of tungsten is composed by an ABCB stacking of three different
layers. The layer A has a honeycomb-like structure, which divides the
space into irregular hexagons and pairs of inverted triangles. Mean-
while, layer B is a square lattice whose atoms lay in the hollow po-
sition of the irregular hexagons of A and C. Finally, layer C has the
same structure of A but rotated by 90◦. The overlayer of manganese
follows the tungsten B stacking at a distance of 1.37 Å from the β–W
surface. (b) A top view of the Mn monolayer deposited on β–W(001).
The manganese atoms are situated in the hollows of the tungsten ir-
regular hexagons with a spin magnetic moment of M = 3.5µB. . . . 132
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7.3.2 Mn/β–W magnetic interaction maps. (a) Exchange interactions be-
tween the central site, marked by the × sign, and its neighbors.
The blue and red colors represent ferromagnetic and antiferromag-
netic coupling, respectively. The saturation indicates the interaction
strength. The brightest blue and red correspond to 7.25 meV and -
0.90 meV, respectively. (b) Dzyaloshinskii-Moriya vectors, represent-
ing the asymmetric exchange interactions between the central atom
and its neighbors, which are located where the vectors lay. The in-
tensity of the coupling is represented by the arrow size. The largest
arrows correspond to 2.84 meV, which are the couplings to the sites
at (0,±1)a, and the second largest to 0.74meV, for (±1,±1)a. . . . . 133

7.3.3 The ground-state magnetic structure of the Mn monolayer on β–
tungsten. (a) A 100 × 100 super cell with periodic periodic bound-
ary conditions was considered for a spin-relaxation dynamics starting
from a random configuration. From this simulation, an antiferromag-
netic spin-spiral pitch of 32 atomics distances could be estimated. (b)
A 32 × 32 supercell was considered to obtain the ground-state spin
configuration of the Mn/β–W. We used an easy-axis anisotropy along
y with K = 1.5 meV. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.4 Total spin-wave scattering spectrum for the Mn/β–W. The figure
shows the dispersion curves of the rotational and longitudinal heli-
magnon modes on a reciprocal path along q. The gap of about 5 meV
in the spectrum is due to the magnetocrystalline anisotropy. Below
the gap, the minima at ±q of the rotational modes can be observed.
Above, the central and brightest feature is composed of the longitu-
dinal and rotational modes. . . . . . . . . . . . . . . . . . . . . . . . 134

7.4.1 Different self-consistent magnetic phases. (a) FM: Ferromagnetic
phases obtained by spin polarizing the system with a magnetic field
during the first self-consist interaction of the Kohn-Sham cycle. The
magnetic moments are of 2.6 and 1.1µB. (b) AFM: The antiferro-
magnetic phase obtained self-consistently after reversing the mag-
netic moment orientation of some sites of the ferromagnetic phase.
The magnetic moments are of 2.4µB. The AFM phase is energeti-
cally more favorable than the FM one. (c) Indication of the first few
exchange interaction pairs. Atoms connected by the red triangle in
(b) are in the same plane, and atoms linked by the blue triangle are
in another plane. From this top view, the two triangles together form
a hexagon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.4.2 (a) Spin-wave dispersion around q = (1, 2, 0) reciprocal-space point
(marked by the white dot on the red path) for an external field of 10 T.
The complete path is shown in red in the reciprocal-space schematics.
(b) Zoom-in into the low energy region. An energy gap of about
3 meV is observed. Direct DFT parameter: J1 = −9.51, J2 = −1.30,
J3 = 5.45, J4 = −2.03, ky = 0.10 meV, m = 2.4µB . . . . . . . . . . . 137

251



LIST OF FIGURES

7.4.3 Spin-wave dispersion at q = (1, 2, 0) as a function of the external
magnetic field (crosses) in comparison to the energy center of the ex-
perimental inelastic-neutron-scattering data (open circles) [153]. The
magnetic exchange and magnetic anisotropy parameters were rescaled
by a factor of 10 to reproduce the experimental energy gap. . . . . . 138

7.4.4 Unidimensional spin chain. (a) With J < 0, we obtain an antifer-
romagnetic spin alignment. (b) When an external magnetic field is
applied h, the spin moments tilt away from the equilibrium by an
angle θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.4.5 Spin-gap as a function of the external field h. . . . . . . . . . . . . . 140

8.1.1 Skyrmion and antiskyrmion. (a) and (b) depict a skyrmion and an
antiskyrmion, respectively, mapped onto spheres. The background
magnetization (in red) defines the polarization axis, which is indicated
by the long black arrow. The core of both skyrmion and antiskyrmion
are antiparallel to the background magnetization and shown in blue.
Therefore, they have the same polarization axis. (c) and (d) show the
winding of the spins along a circumference around the skyrmion and
antiskyrmion cores, respectively. When we move counterclockwise on
these paths, the skyrmion spins wind also counterclockwise but the
antiskyrmion spins wind clockwise. Therefore, they have opposite
vorticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.3.1 Magnetic moments of ultrathin films of cobalt on tungsten (110).
(a)–(c) Films of 1 to 3 MLs of reconstructed cobalt, respectively. The
gray and blue atoms depict tungsten and cobalt, respectively. Mean-
while, the red arrows represent the magnetic moment of individual
atoms. The biggest arrow in the figures corresponds to 1.78µB, see
Tab. 8.3.1 for the layer-averaged values. Notably, the interface-layer
magnetic moments are reduced in comparison to the overlayers be-
cause of the hybridization with the tungsten substrate. The depicted
displacements between layers are arbitrary. . . . . . . . . . . . . . . 153

8.3.2 Cobalt stacking on tungsten (110) and magnetization modulation. (a)
The interface layer of reconstructed Co (blue atoms) stacked on the
W(110) (gray atoms). The black frame indicates the supercell with
its 10 Co atoms numerated, whose magnetic moments, in order, are:
0.96, 0.95, 0.97, 1.07, 1.18, 1.23, 1.18, 1.07, 0.97, 0.95µB. (b) Side
view of 1 ML Co film together with its magnetic moments. Relatively
strong modulation of the magnetization along the [001] direction is
observed. A comparison between (a) and (b) reveals that Co atoms
with higher magnet moments mostly atop of W, while smaller mag-
netic occurs to atoms seated on the hollow to the W lattice. . . . . . 154
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8.3.3 Dzyaloshinskii-Moriya vectors for the 2 MLs reconstructed cobalt film.
(a) and (c) show the intralayer interactions of the film surface and
interface, respectively. (b) displays the interlayer DMI interactions
between the two cobalt layers. Each cluster of vectors represent the
interactions of one atom in the unit cell (the gray sphere) and its
neighbors. The centers of the vectors are located on the position of the
neighbors. The color code paints in blue and red out-of-plane vectors,
and green the in-plane ones. The biggest arrow corresponds to a DMI
strength of 0.63 meV. The interface with the substrate makes every
cluster different from the others. Out-of-plane components are mostly
observed on the nearest-neighbor couplings at the surface. . . . . . . 156

8.3.4 Averaged Dzyaloshinskii-Moriya vectors for the pseudomorphic and
reconstructed films of Co/W(110). We averaged out the 10 atoms
per layer in the unit cell. (a) and (b) show a top and side view of
the same interactions. Each vector represents the DMI between the
central atom (in gray) and the neighbors (not depicted). The size of
the arrows depicts the DMI strength and is on the same scale for all
charts, except for the pseudomorphic film, which was scaled down by
a factor 10. The color code paints in blue and red out-of-plane vectors,
and green the in-plane ones. The interactions are highly anisotropic
in strength and chirality for all cases. The biggest shown arrow of
the reconstructed films has a length corresponding to 0.84 meV, and
3.75 meV for the pseudomorphic film. . . . . . . . . . . . . . . . . . 157

8.3.5 Averaged magnetic exchange interactions for the pseudomorphic and
reconstructed films of Co/W(110). We averaged out the 10 atoms
per layer in the unit cell. Each sphere represents a neighbor of the
central atom (not shown) whose color corresponds to the exchange
coupling between them. The color code paints in blue the ferromag-
netic coupling, and in red the antiferromagnetic one. The highest
blue saturation corresponds to 19.87 meV, and the highest red to
−5.91 meV. The nearest neighbors couple ferromagnetically, whose
intensity is weakened on the interface. The MEI decay and oscillate,
even changing sign, for farther away neighbors. . . . . . . . . . . . . 159

8.3.6 Spatial decay of the magnetic exchange and the Dzyaloshinskii-Moriya
interactions. The result for reconstructed Co films of different thick-
nesses, from 1 to 3 ML, are shown (a-c). The upper panels correspond
to the MEI, while the lower panels to the DMI. The figures are in the
log-log scale. The MEI decays faster than the r−3 curve, which is
shown in red. Meanwhile, the DMI only decays faster than the r−2

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4.1 Stiffness-tensor elements per layer as a function of the cut-off radius
calculated via Eq. (8.7). Only Axx and Ayy are nonvanishing due to
the symmetries of the system. For some systems and layers, we can
observe an anisotropy of the stiffness along x and y, as is the clear
case of the first layer of 2ML–Co, and layer 2 of 3ML–Co. Overall,
a cut-off radius of at least 12aW is required to issue convergence of
these quantities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
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8.4.2 Spiralization-tensor elements per layer as a function of the cut-off
radius calculated via Eq. (8.6). For the reconstructed films, only
Dxy, Dyx, and Dxz are nonvanishing due to the system’s symmetries.
For the pseudomorphic film, Dxz does also vanish. The spiralization-
tensor is very anisotropic, where Dxy is in general different of Dyx.
Even the sign of the spiralization-tensor elements can change from
layer to layer and among different film thicknesses. . . . . . . . . . . 163

8.5.1 Spin spiral with axis along y with embedded skyrmions for aver-
aged interactions. Simulation box 85× 50 (8500 spins) with periodic
boundary conditions. Red and blue represent the spins along +z and
−z, respectively, and green the in-plane spins. Each metastable con-
figuration can be obtained from different initial spin configuration:
(a) Spiral embedding multiple skyrmions (SP+SKs), from a random
spin configuration. The skyrmions have different polarities, which
match the surrounding regions of the spiral. (b) Spin spiral (SP),
from a spiral initial configuration. (c) Single skyrmion (SK), from
a circular reversed domain in a ferromagnetic background. (d) Sin-
gle skyrmion into a spiral (SP+SK), from skyrmion of (c) injected
in the middle green region of (b). (e) Single skyrmion into a spi-
ral (SP+SK’), from an out-of-plane skyrmion injected in the mid-
dle of the blue region of (b). (f) Double skyrmion into a spiral
(SP+2SK), from two out-of-plane skyrmions injected, in the mid-
dle of the blue region of (b). (d) SP+SK: Spin spiral embedding
skyrmions of different polarities. (g) Shows the SP+SKs state (a) in
a 2 × 2 expansion of the simulation box. With respect to the FM
state, the total energy (per supercell) of the spin configurations from
(a) to (f) are ∆ESP+SKs = 604.25, ∆ESP = 25.42, ∆ESK = 127.13,
∆ESP+SK = 172.53, ∆ESP+SK’ = 172.53, ∆ESP+2SK = 305.93 meV. . . 169

8.5.2 Minimum energy path calculations using the GNEB method for the
transition from an in-plane-skyrmion state, Fig. 8.5.1 (b), to the ferro-
magnetic ground state along x. Simulation box 85× 50 (8500 spins)
with periodic boundary conditions. The horizontal axis stands for
the reaction coordinate that labels intermediate spin configuration
between the skyrmion and the ferromagnetic phases, some of which
are represented in (b). The vertical axis in (a) accounts for the energy
difference of a given spin configuration and the skyrmion phase. The
blue curve shows the magnetic exchange interaction contribution to
the total energy, shown in black. The green and red correspond to
the Dzyaloshinskii-Moriya interaction and anisotropy contributions,
respectively. The total energy difference between the skyrmion state
and the ferromagnetic state is of 127.13 meV. The DMI contribu-
tion, the only positive one, is responsible for the energy barrier of
27.41 meV, and therefore, it is the mechanism that stabilizes the in-
plane skyrmion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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8.5.3 Skyrmions with different magnetization background. The same in-
plane skyrmion is shown in (a) and (b), where the colors represent
the spin projection along n = (0, 0, 1) and n = (1, 0, 0), respectively.
In (b) we can see the skyrmion as a single entity rather than the
combination of two. Similarly, (c) and (d) brings two representation of
the SP+SK phase, with coloring the spin projection along n = (0, 0, 1)
and n = (1,−1,−1), respectively. . . . . . . . . . . . . . . . . . . . . 171

8.5.4 Spin spiral with axis along y. Simulation box 170 × 12 (4080 spins)
with periodic boundary condition only along y. The different states
are obtained from different initial spin configurations. (a) SP: Spin
spiral of longer wavelength after initializing the spin configuration
with a spiral of much shorter wavelength. (b) SP+SK: Spin spiral
embedding a skyrmion: from a random initial spin configuration.
The resulting wavelength is incommensurate with the lateral size of
the simulation box. (c) FM: Fully spin-polarized state, not relaxed.
(d) FM-relax: Fully polarized state after the relaxation, which has
the lowest total energy. With respect to the FM-relax state, the
total energy of the various spin configurations are: ∆ESP = 31.14,
∆ESP+SK = 144.05, ∆EFM = 23.17 meV. . . . . . . . . . . . . . . . . 173

8.5.5 Spin spiral with axis along y. Simulation box 20 × 100 (4000 spins)
with periodic boundary condition only along x. The different states
are obtained from different initial spin configurations. (a) FM: Fully
spin-polarized state obtained from a spin spiral with axis along x of
very short wavelength. (b) SKs: Skyrmions embedded on a ferro-
magnetic surrounding, whose energy with respect to the FM state is
∆ESKs = 434.10 meV. This state was obtained from a random initial
spin configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.5.6 Metastable states for the supercell interaction set. (a) Spin spiral with
axis along y propagating along x obtained from a similar spin-spiral
initial configuration of much short wavelength. 34 × 12 (4080 spins)
simulation box with open periodic boundary condition along x. (b)
SK-lat: Skyrmion lattice and (c) SP+SK: skyrmion embedded into a
spin spiral. 8× 12 (960 spins) simulation box with complete periodic
boundary conditions, whose dimension along x is equivalent to the
wavelength of the spin spiral in (a). (d) SP: Spin spiral equivalent to
that of (a). (e) FM: Ferromagnetic state with magnetization along
x. With respect to the FM state, the total energy of the various spin
configurations are: ∆ESK-lat = 160.25, ∆ESP+SK = 108.73, ∆ESP =
−33.09 meV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.5.7 Skyrmions embedded into spin spiral at zero external magnetic field.
14×40 (5600 spins) simulation box with complete periodic boundary
conditions in-plane. State obtained from a random initial spin con-
figuration, which is similar to states obtained for the averaged set of
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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8.5.8 In-plane skyrmions stabilized by an in-plane external magnetic field.
Simulation box 12 × 35 (4200 spins) with periodic boundary condi-
tions in-plane. Magnetic field of (a) 1 T and (b) 2 T along x was
considered. The skyrmion size is reduced for higher fields, and they
are stable up to 3 T. (c) Minimum energy path calculations using
the GNEB method for the transition between an in-plane-skyrmion
state in (a) and the ferromagnetic state along x. The horizontal axis
stands for the reaction coordinate that labels intermediate spin con-
figuration between the skyrmion and the ferromagnetic phases. The
vertical axis accounts for the energy difference of a given spin con-
figuration and the skyrmion phase. The blue, green, orange and red
correspond respectively to the MEI, DMI, Zeeman and anisotropy
contributions for the total energy, which is shown in black. The total
energy difference between the skyrmion state and the ferromagnetic
state is of 95.65 meV, and the energy barrier for a continuous trans-
formation between these states if of 20.78 meV that comes from the
DMI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.5.9 Noncollinear spin textures of the pseudomorphic 1ML Co/W(110).
(a) Spin spiral with axis along y with propagating along x. It corre-
sponds to the ground state. Simulation box 170×12 (4080 spins) with
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indicated by the vertical arrows. Thus, nonreciprocity is only seen in
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Blügel, and S. Lounis, “First-principles prediction of in-plane skyrmions”

[5] F. J. dos Santos, N. Biniskos, M. dos Santos Dias, K. Schmalzl, S. Blügel,
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Clara Maria Dick Peixoto, you guys have taught me so much and for that, I will be
always grateful. Finally, I would like to thank my fiancée Dr. Estefani Marchiori
Pereira. My dearest, you have always been there for me, even on my worst days
— thank you! You are my number one adventure partner because you are always
ready for the next call. I love you very much.

270



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 198 
Shortcut to the carbon-efficient microbial production of chemical building 
blocks from lignocellulose-derived D-xylose 
C. Brüsseler (2019), X, 62 pp 
ISBN: 978-3-95806-409-6 
 
Band / Volume 199 
Regulation and assembly of the cytochrome bc1-aa3 supercomplex  
in Corynebacterium glutamicum 
C.-F. Davoudi (2019), 135 pp 
ISBN: 978-3-95806-416-4 
 
Band / Volume 200 
Variability and compensation in Alzheimer's disease across different 
neuronal network scales 
C. Bachmann (2019), xvi, 165 pp 
ISBN: 978-3-95806-420-1 
 
Band / Volume 201 
Crystal structures and vibrational properties of chalcogenides:  
the role of temperature and pressure 
M. G. Herrmann (2019), xi, 156 pp 
ISBN: 978-3-95806-421-8 
 
Band / Volume 202 
Current-induced magnetization switching in a model epitaxial Fe/Au 
bilayer 
P. Gospodarič (2019), vi, 120, XXXVIII pp 
ISBN: 978-3-95806-423-2 
 
Band / Volume 203 
Network architecture and heme-responsive gene regulation of the two-
component systems HrrSA and ChrSA 
M. Keppel (2019), IV, 169 pp 
ISBN: 978-3-95806-427-0 
 
Band / Volume 204 
Spin-orbitronics at the nanoscale: From analytical models to real 
materials 
J. Bouaziz (2019), 228 pp 
ISBN: 978-3-95806-429-4 
 
Band / Volume 205 
Advanced methods for atomic scale spin simulations and application  
to localized magnetic states  
G. P. Müller (2019), xx, 194 pp 
ISBN: 978-3-95806-432-4 



Schriften des Forschungszentrums Jülich 
Reihe Schlüsseltechnologien / Key Technologies 

 
Band / Volume 206 
Different growth modes of molecular adsorbate systems and 2D materials 
investigated by low-energy electron microscopy  
J. E. Felter (2019), vi, 114, XXXIV pp 
ISBN: 978-3-95806-434-8 
 
Band / Volume 207 
NADPH-related studies performed with  
a SoxR-based biosensor in Escherichia coli   
A. Spielmann (2019), IV, 73 pp 
ISBN: 978-3-95806-438-6 
 
Band / Volume 208 
Chemisorption aromatischer Moleküle auf Übergangsmetalloberflächen: 
Bildung molekularer Hybridmagnete   
S. Schleicher (2019), 109 pp 
ISBN: 978-3-95806-442-3 
 
Band / Volume 209  
Regulatory interactions between Corynebacterium glutamicum  
and its prophages 
M. Hünnefeld (2019), IV, 209 pp 
ISBN: 978-3-95806-445-4 
 
Band / Volume 210 
Quantum Technology 
Lecture Notes of the 51st IFF Spring School 2020 
23 March – 03 April 2020, Jülich, Germany 
ed. by H. Bluhm, T. Calarco, D. DiVincenzo (2020), ca. 700 pp 
ISBN: 978-3-95806-449-2 
 
Band / Volume 211 
Interaction of physical fields with nanostructured materials   
(2020), 255 pp 
ISBN: 978-3-95806-450-8 
 
Band / Volume 212 
First-principles study of collective spin excitations in noncollinear 
magnets   
F.J. dos Santos (2020), 270 pp 
ISBN: 978-3-95806-459-1 
 
 

Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





Schlüsseltechnologien / Key Technologies
Band / Volume 212
ISBN 978-3-95806-459-1

Schlüsseltechnologien / Key Technologies
Band / Volume 212
ISBN 978-3-95806-459-1

First-principles study of collective spin excitations  
in noncollinear magnets
Flaviano José dos Santos

212

Sc
hl

üs
se

lte
ch

no
lo

gi
en

  
Ke

y 
Te

ch
no

lo
gi

es
Fi

rs
t-

pr
in

ci
pl

es
 s

tu
dy

 o
f c

ol
le

ct
iv

e 
sp

in
 e

xc
ita

tio
ns

  
in

 n
on

co
lli

ne
ar

 m
ag

ne
ts

  
Fl

av
ia

no
 J

os
é 

do
s 

Sa
nt

os


	Abstract
	Zusammenfassung
	Conventions and abbreviations
	Introduction
	Theory of spin waves
	Introduction to magnetism
	Magnetic moment and magnetization
	Orbital angular momentum
	Spin angular momentum

	Magnetic moment origin
	Isolated atom
	Localized magnetism
	Itinerant magnetism - Hubbard model

	Zeeman energy
	Magnetic exchange interaction
	Symmetric and antisymmetric eigenfunctions
	Pauli's exclusion principle
	Effective spin hamiltonian
	Origin of the exchange coupling

	Spin-orbit coupling: MCA and DMI
	Magnetocrystalline anisotropy
	Dzyaloshinskii-Moriya interaction

	Generalized Heisenberg Hamiltonian

	Classical ground-state spin configurations
	Ferromagnetic and antiferromagnetic ground states
	Cycloidal spin spirals - Analytical solution
	Skyrmion lattice - Atomistic spin dynamics simulation

	Introduction to spin waves
	Quantum theory of spin waves
	Spin circular components
	Holstein-Primakoff transformation
	Magnons: the spin-wave quanta
	Spin-wave spectrum


	Spin waves in noncollinear magnets
	Local reference frame and Holstein-Primakoff transformation
	Diagonalization and Bogoliubov transformation
	Spin-wave dispersion of: a ferromagnet, a spin-spiral and a skyrmion lattice
	Spin-wave dynamics


	Angular momentum of spin waves in noncollinear magnets
	Summary

	First-principles parametrization of the Heisenberg Hamiltonian
	Introduction
	Schrödinger equation and wavefunction
	Born-Oppenheimer approximation

	Density functional theory - DFT
	Hohenberg and Kohn theorem
	Kohn and Sham equation
	Local density approximation - LDA

	Korringa-Kohn-Rostoker method - KKR
	Green-function basics
	Atomic sphere approximation - ASA
	Single-site problem
	Spherical potential of finite range

	Structural problem
	Structural Green function with spherical potential
	Energy integration

	Full potential
	Spin-orbit coupling
	KKR self-consistent cycle

	Parametrization of the Heisenberg model
	Infinitesimal-rotations method for the MEI and DMI
	Energy difference between states with local spin flips
	Infinitesimal-rotations method
	Relativistic effects
	Magnetocrystalline anisotropy - MCA


	Conclusions

	Inelastic-scattering theory
	Scattering theory
	General framework
	Transition probability
	Scattering rate
	Inelastic scattering rate
	Spin-spin correlation tensor
	Polarization tensor


	Spin-spin correlation tensor for noncollinear magnets
	Summary

	Appendices
	Summation of exponentials over lattice points

	Surface-reconstructed Co ultrathin films on W(110)
	Introduction
	Spin waves in an inhomogeneous ferromagnet
	Unfolding of the spin-wave spectrum

	Ground state properties
	Atomic structure
	Magnetic moments and electronic structure
	Magnetic exchange interactions
	Focusing origin

	Spin-wave dispersions
	Free-standing versus supported films
	Theoretical vs experimental dispersion

	Conclusions

	Appendices
	Spin-wave eigenvalues and eigenvectors of inhomogeneous ferromagnets
	Direct theory-experiment comparsion

	Spin-resolved electron-energy-loss spectroscopy (SREELS)
	Introduction and motivation
	Experimental proposal
	SREELS of different magnetic phases
	Ferromagnet
	Spin spiral
	Skyrmion lattice

	Conclusions and discussion

	Antiferromagnetic noncollinear spin textures
	Antiferromagnetism in a spin chain
	The effect of the DMI and the magnetic field in the spin waves of collinear antiferromagnets
	Antiferromagnetic spin spiral

	Two-dimensional antiferromagnets
	Antiferromagnetic spin spirals and Rashba spin locking
	Antiferromagnetic skyrmions

	First-principles investigation of Mn/beta-W
	The crystal structure
	Magnetic exchange and Dzyaloshinskii-Moriya interactions
	Magnetic ground state and spin-wave dispersion

	First-principles study of Mn5Si3 
	Ground-state magnetic properties
	Spin-wave dispersion
	Analytical study
	Ground-state spin configuration
	Spin waves


	Conclusions

	Appendices
	Spin spiral in an antiferromagnetic square lattice
	Analytical spin-wave dispersion: 1-D antiferromagnetic spin chain under a perpendicular magnetic field
	Spin-wave energies
	Analytical solution
	For k<<J:
	In the absence of anisotropy:
	In the absence of field:



	Prediction of the existence of in-plane magnetic skyrmions in Co/W(110) 
	Introduction
	Atomic structure and space group
	Magnetic interactions
	Magnetic moments
	Magnetocrystalline anisotropy
	Dzyaloshinskii-Moriya interaction
	Magnetic exchange interaction
	MEI and DMI spatial decay

	Micromagnetic analytics
	Stiffness and spiralization tensors
	Comparison with the experimental data
	Ground-state spin configurations from the micromagnetic model

	Atomistic-spin-dynamics simulations
	Reconstructed 1ML: in-plane-averaged interactions
	In-plane skyrmion stability
	Skyrmion outskirts
	Spin spirals

	Reconstructed 1ML: supercell interactions
	Pseudomorphic 1ML

	In-plane skyrmion model
	Spin waves in an in-plane skyrmion lattice

	Conclusions

	Appendices
	Stiffness-constant and spiralization-tensor definitions
	Spin spiral
	Spin-spiral energy
	Taylor expansion of the spin-spiral energy
	Stiffness and spiralization tensors
	The ground state

	The exponential enveloping and extrapolation method for the exchange tensor
	Exchange interaction model
	Exchange stiffness convergence
	Exponential enveloping and extrapolation
	Choosing the exponential factor range
	Minimum cut-off radius
	Pseudomorphic 1ML Co/W(110) 

	Skyrmion topological charge

	Nonreciprocity of spin waves due to the Dzyaloshinskii-Moriya interaction
	Introduction
	Theoretical framework and model systems
	Results
	Nonreciprocal spin-wave spectrum
	Spin-wave angular momentum and spin-wave handedness
	External magnetic field and zero-net-magnetization systems
	Role of spin-polarized/resolved inelastic scattering
	Dzyaloshinskii-Moriya interaction and spin-wave angular momentum

	Conclusions

	Appendices
	On the chiral asymmetry of spin waves
	Spin-wave chirality in ferromagnets
	Spin waves in a classical approach
	Effective field
	Equation of motion
	Fourier transformation
	Eigenvalues: the frequencies
	Local spin dynamics

	Circular components duality


	Conclusions and perspectives
	Bibliography
	List of Figures
	List of Tables
	Curriculum vitae
	Acknowledgments
	Leere Seite
	Leere Seite



