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ABSTRACT

IZA DP No. 13206 MAY 2020

Investigating the Genetic Architecture  
of Non-Cognitive Skills Using  
GWAS-By-Subtraction*

Educational attainment (EA) is influenced by characteristics other than cognitive ability, but 

little is known about the genetic architecture of these “non-cognitive” contributions to EA. 

Here, we use Genomic Structural Equation Modelling and prior genome-wide association 

studies (GWASs) of EA (N = 1,131,881) and cognitive test performance (N = 257,841) 

to estimate SNP associations with EA variation that is independent of cognitive ability. 

We identified 157 genome-wide significant loci and a polygenic architecture accounting 

for 57% of genetic variance in EA. Non-cognitive genetics were as strongly related 

to socioeconomic success and longevity as genetic variants associated with cognitive 

performance. Noncognitive genetics were further related to openness to experience and 

other personality traits, less risky behavior, and increased risk for psychiatric disorders. 

Non-cognitive genetics were enriched in the same brain tissues and cell types as cognitive 

performance, but showed different associations with gray-matter brain volumes. By 

conducting a GWAS of a phenotype that was not directly measured, we offer a first view 

of genetic architecture of non-cognitive skills influencing educational success.

JEL Classification: J24, I24, E24, I14

Keywords: genetics, noncognitive skills, education
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University of Zurich
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* Supplementary Notes, Figures, and Tables can be found at this link https://www.dropbox.com/s/kbpzithnqr9w8ji/

NonCog_GWAS_supplment_20200330.zip?dl=0. 
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Success in school – and in life – depends on skills beyond cognitive ability1–4. 

Randomized trials of early-life education interventions find substantial benefits to 

educational outcomes, employment, and adult health, even though the interventions have no 

lasting effects on children’s cognitive functions5,6. These results have captured the attention 

of educators and policy makers, motivating growing interest in so-called “non-cognitive 

skills"7–9. Among non-cognitive skills suspected to be important for educational success are 

motivation, curiosity, persistence, and self-control1,10–13. However, questions have been 

raised about the substance of these skills and the magnitudes of their impacts on life 

outcomes14.  

Twin studies find evidence that non-cognitive skills are heritable3,15–18. Genetic 

analysis could help clarify the contribution of these skills to educational attainment and 

elucidate their connections with other traits. But, a challenge to genetic research is a lack of 

consistent and reliable measurements of non-cognitive skills in existing genetic datasets19.  

To overcome this challenge, we designed a GWAS of a latent trait, i.e. a trait not 

measured in any of the genotyped subjects20. We borrowed the strategy used in the original 

analysis of non-cognitive skills within the discipline of economics21,22: We first isolated 

genetic variation in educational attainment that was not explained by cognitive skills. We 

then performed GWAS on this residual “non-cognitive” genetic variation in educational 

attainment. We conducted this analysis using Genomic Structural Equation Modeling 

(Genomic-SEM)23 applied to published GWAS summary statistics for educational attainment 

and cognitive performance24. Our analysis used these summary statistics to “subtract” genetic 

influence on cognitive performance from the association of each single-nucleotide 

polymorphism (SNP) with educational attainment. The remaining associations of each SNP 

with educational attainment formed a new GWAS of a non-cognitive skills phenotype that 

was never directly measured. We call this novel statistical approach GWAS-by-subtraction.  
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We used results from the GWAS-by-subtraction of non-cognitive skills to conduct 

two sets of analysis. First, we conducted hypothesis-driven analyses using the phenotypic 

annotation approach25. We used genetic correlation and polygenic score analysis to test the 

hypothesis that non-cognitive skills influence educational and economic attainments and 

longevity and to investigate traits and behaviors that constitute non-cognitive skills. Second, 

we conducted hypothesis-free bioinformatic annotation analysis to explore the tissues, cell-

types, and brain structures that might distinguish the biology of non-cognitive skills from the 

biology mediating cognitive influences on educational attainment.  

 

Results 

GWAS-by-Subtraction Identifies Genetic Associations with Non-Cognitive Variance in 

Educational Attainment 

The term “non-cognitive skills” was originally coined by economists studying 

individuals who were equivalent in cognitive ability, but who differed in educational 

attainment.22 Our analysis of non-cognitive skills was designed to mirror this original 

approach: We focused on genetic variation in educational outcomes not explained by genetic 

variation in cognitive ability. Specifically, we applied Genomic Structural Equation 

Modeling (Genomic-SEM)23 to summary statistics from GWASs of educational attainment24 

and cognitive performance24.  Both phenotypes were regressed on a latent factor representing 

genetic variance in cognitive performance (hereafter “Cog”). Educational attainment was 

further regressed on a second latent factor representing the residual genetic variance in 

educational attainment left over after regressing-out variance related to cognitive 

performance (hereafter “NonCog”). By construction, NonCog genetic variance was 

independent of Cog genetic variance (rg=0). In other words, the NonCog factor represents 

genetic variation in educational attainment that is not accounted for by the Cog factor. These 
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two latent factors were then regressed on individual SNPs, yielding a GWAS of the latent 

constructs NonCog and Cog. The model is illustrated in Figure 1. 

The NonCog latent factor accounted for 57% of total genetic variance in educational 

attainment. Using the LD Score regression method26, we estimated SNP-heritability for 

NonCog to be h2
NonCog=.0637 (SE=.0021). After Bonferroni correction, GWAS of NonCog 

identified 157 independent genome-wide significant lead SNPs (independent SNPs defined as 

outside a 250Kb window, or within a 250Kb window and r2 < 0.1). The results from the 

NonCog GWAS are graphed as a Manhattan plot in Figure 2. Results from Cog GWAS 

parallel the original GWAS of cognitive performance reported by Lee et al. (2018)24 and are 

reported in Supplementary Note 1 (Manhattan plot in Supplementary Figure 1). More 

information on the GWAS is reported in Supplementary Table 1, 2 and 3. 

 

Phenotypic Annotation Analysis Elucidates Behavioral, Psychological and Psychiatric 

Correlates of Non-Cognitive Skills Genetics 

Our phenotypic annotation analyses proceeded in two steps. First, we conducted 

polygenic score (PGS) and genetic correlation (rG) analysis to test if our GWAS-by-

subtraction succeeded in identifying genetic influences that were important to educational 

attainment and also distinct from genetic influences on cognitive ability. Second, we 

conducted PGS and rG analyses to explore how NonCog related to a network of phenotypes 

that psychological and economic research has suggested might form the basis of non-

cognitive influences on educational attainment.  

NonCog genetics are distinct from cognitive performance and are important to 

educational attainment, socioeconomic attainments, and longevity. To establish if the 

Genomic-SEM GWAS-by-subtraction succeeded in isolating genetic variance in education 

that was independent of cognitive function, we compared genetic associations of NonCog and 
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Cog with educational attainment and cognitive test performance. Results for analysis of 

education and cognitive test phenotypes are graphed in Figure 3. 

We conducted PGS analysis of educational attainment in the Netherlands Twin 

Register27 (NTR), National Longitudinal Study of Adolescent to Adult Health28 (AddHealth), 

Dunedin Longitudinal Study29, E-Risk30, and Wisconsin Longitudinal Study31 (WLS) cohorts 

(meta-analysis N=24,056; cohorts descriptions in Supplementary Tables 4 & 5 and 

Supplementary Note 2). PGS effect-sizes were the same for NonCog and Cog (NonCog 

𝛽=.24 (SE=.03), Cog 𝛽=.24 (SE=.02), pdiff=.702, total; all PGS results are reported in 

Supplementary Tables 6 and 7). We conducted complementary genetic correlation analysis 

using Genomic SEM and GWAS summary statistics from a hold-out-sample GWAS of 

educational attainment (Supplementary Note 3). In this analysis, the genetic correlation of 

NonCog with educational attainment was stronger than the genetic correlation of Cog with 

educational attainment (NonCog rg =.71 (SE=.02), Cog rg=.57 (SE=.02), pdiff < .0001; all 

genetic correlation results are reported in Supplementary Tables 8 & 9).  

We conducted PGS analysis of cognitive test performance in the NTR, Texas Twin 

Project32, Dunedin, E-Risk, and WLS cohorts (combined N=11,351). Effect-sizes for NonCog 

PGS associations with IQ were smaller by half as compared to Cog PGS associations 

(NonCog 𝛽=.17 (SE=.02), Cog 𝛽=.29 (SE=.03); pdiff<.0001). Additional PGS analysis of IQ 

subscales are reported in Supplementary Figure 2. We conducted complementary genetic 

correlation analysis using results from a published GWAS of childhood IQ33. Parallel to the 

PGS analysis, the NonCog genetic correlation with childhood IQ was smaller by more than 

half as compared to the Cog genetic correlation with childhood IQ (NonCog rg=0.31 

(SE=.06), Cog rg=0.75 (SE=.08), pdiff_fdr<.0001). Of the total genetic correlation between 

childhood IQ and educational attainment, 31% of the variance was explained by NonCog and 

69% by Cog.  
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We next examined downstream economic and health outcomes associated with 

greater educational attainment.34,35 In PGS analysis in the AddHealth and Dunedin cohorts 

(N=6,358), NonCog and Cog PGSs showed similar associations with occupational attainment 

(NonCog 𝛽=.21 (SE=.01), Cog 𝛽=.21 (SE=.01), pdiff=.902). In genetic correlation analysis, 

NonCog showed a similar relationship to income36 as Cog (NonCog rg=.62, (SE=.04), Cog 

rg=.62 (SE=.04), pdiff_fdr=.947) and a stronger relationship with neighborhood deprivation36 

(NonCog rg=-.51 (SE=.05), Cog rg=-.32 (SE=.04), pdiff_fdr=.001), a measure related to where a 

person can afford to live. In Genomic-SEM analysis, NonCog explained 53% of the genetic 

correlation between educational attainment and income and 65% of the genetic correlation 

between educational attainment and neighborhood deprivation (Supplementary Table 10).  

We conducted genetic correlation analysis of longevity based on GWAS of parental 

lifespan37. NonCog is more genetically associated with longevity than Cog (NonCog rg=.37 

(SE=.03); Cog rg=.27 (SE=.03); pdiff_fdr=.024). In Genomic-SEM analysis, NonCog explained 

61% of the genetic correlation between educational attainment and longevity. 

In sum, NonCog and Cog genetics showed similar relationships with educational 

attainment and its long-term outcomes, despite NonCog genetic having a much weaker 

relationship to measured cognitive test performance than Cog genetics. These findings 

broadly support the hypothesis that non-cognitive skills distinct from cognitive abilities are 

an important contributor to success across the life course.  

We next conducted a series of genetic correlation analyses to explore the network of 

phenotypes to which NonCog was genetically correlated. To develop understanding of the 

substance of noncognitive skills, we tested where in that network of phenotypes genetic 

correlations with NonCog diverged from genetic correlations with Cog. Our analysis was 

organized around four themes: decision making preferences, health-risk and fertility 

behaviors, personality traits, and psychiatric disorders. Results of genetic correlation analyses 
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are graphed in Figure 4, and additionally in Supplementary Figure 3. Results are reported 

in Supplementary Table 9.  

NonCog genetics were associated with decision-making preferences. In 

economics, non-cognitive influences on achievement and health are often studied in relation 

to decision-making preferences38–41. NonCog was genetically correlated with higher levels of 

comfort with risk-taking42 (risk tolerance rg=.10 (SE=.03)) and willingness to forego 

immediate gratification in favor of a larger reward at a later time43 (delay discounting rg=-.52 

(SE=.08)). In contrast, Cog was genetically correlated with generally more cautious decision-

making characterized by lower levels of risk tolerance (rg=-.35 (SE=.07), pdiff_fdr<.0001) and 

moderate delay discounting (rg=-.10 (SE=.02), pdiff_fdr=.082).  

NonCog genetics were associated with less risky health behavior and delayed 

fertility. An alternative approach to studying non-cognitive skills in economics and other 

social sciences is to infer individual differences in non-cognitive skills from patterns of risk 

behavior. In genetic correlation analysis of obesity44, substance use42,45–48, and sexual 

behaviors and early fertility42,49,50, NonCog was consistently genetically correlated with less 

risk taking (rg range .2-.5), with the exception that the rg with alcohol use was not different 

from zero and rg with cannabis use was positive. Genetic correlations for Cog were generally 

in the same direction but of smaller magnitude. 

NonCog genetics were associated with a broad spectrum of personality 

characteristics linked with social and professional competency. In psychology, non-

cognitive influences on achievement are conceptualized as personality traits, i.e. patterns of 

stable individual differences in emotion and behavior. The model of personality that has 

received the most attention in genetics is a five-factor model referred to as the Big-5. Genetic 

correlation analysis of the Big-5 personality traits51–53 revealed NonCog genetics were most 

strongly associated with Openness to Experience (being curious and eager to learn; rg=.30 
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(SE=.04)) and were further associated with a pattern of personality characteristic of changes 

that occur as people mature in adulthood54. Specifically, NonCog showed a positive rg with 

Conscientiousness (being industrious and orderly; rg=.13 (SE=.03)), Extraversion (being 

enthusiastic and assertive; rg=.14 (SE=.03)), and Agreeableness (being polite and 

compassionate; rg=.14 (SE=.05)), and negative rg with Neuroticism (being emotionally 

volatile; rg=-.15 (SE=.04)). Genetic correlations of Cog with Openness to Experience and 

Neuroticism were similar to those for NonCog (pdiff_fdr-Openness=.040, pdiff_fdr-Neuroticism=.470). In 

contrast, genetic correlations of Cog with Conscientiousness, Extraversion, and 

Agreeableness were in the opposite direction (rg=-.25 to -.12, pdiff_fdr<.0005). PGS analyses of 

personality traits were also performed and reported in Supplementary Table 7, 

Supplementary Figure 4 and Supplementary Note 4.  

NonCog genetics were associated with higher risk for multiple psychiatric 

disorders. In clinical psychology and psychiatry, research is focused on mental disorders. 

Mental disorders are generally associated with phenotypic impairments in academic 

achievement and social role functioning,55,56 but positive genetic correlations with 

educational attainment and creativity have been reported for some disorders57,58. We 

therefore tested NonCog rg with psychiatric disorders based on published case-control 

GWAS59–65. NonCog was associated with higher risk for multiple clinically-defined disorders 

including anorexia nervosa (rg=.26 (SE=.04)), obsessive-compulsive disorder (rg=.31 

(SE=.06)), bipolar disorder (rg=.27 (SE=.03)), and schizophrenia (rg=.26 (SE=.02)). Genetic 

correlations between Cog and psychiatric disorders were either much smaller in magnitude 

(anorexia nervosa rg=.08 (SE=.03), pdiff_fdr<.001; obsessive-compulsive disorder rg=.05 

(SE=.05), pdiff_fdr=.002) or in the opposite direction (bipolar disorder rg=-.07 (SE=.03), 

pdiff_fdr<.001; schizophrenia rg=-.22 (SE=.02), pdiff_fdr<.001). Both NonCog and Cog showed 



 

 11 

negative genetic correlations with attention-deficit/hyperactivity disorder (NonCog rg=-.37 

(SE=.03), Cog rg=-.37 (SE=.04), pdiff_fdr=.947).  

In sum NonCog genetics were associated with phenotypes from economics and psychology 

thought to mediate non-cognitive influences on educational success. These associations 

contrasted with associations for Cog genetics, supporting distinct pathways of influence on 

achievement in school and later in life. Opposing patterns of association were also observed 

for psychiatric disorders, suggesting that the unexpected positive genetic correlation between 

educational attainment and mental health problems uncovered in previous studies58,66,67 arises 

from non-cognitive genetic influences on educational attainment.  

 

Biological Annotation Analyses Reveal Shared and Specific Neurobiological Correlates  

The goal of biological annotation is to elucidate molecular mechanisms mediating 

genetic influences on the phenotype of interest. Our biological annotation analysis proceeded 

in two steps. First, we conducted enrichment analyses to test whether genes specifically 

expressed in certain tissues, or cell types are enriched in terms of the proportion of total 

heritability they explain, and if the enriched tissues and cell-types differed between NonCog 

and Cog. Second, we conducted genetic correlation analysis to explore which brain structures 

NonCog and Cog genetics related to and if there were specific structures showing differential 

genetic correlation with NonCog and Cog. 

NonCog and Cog genetics were enriched in similar tissues and cells. We tested 

whether common variants in genes specifically expressed in 53 GTEx tissues68 or in 152 

tissues captured in a previous aggregation of RNA-seq studies69,70 were enriched in their 

effects on Cog or NonCog. Genes predominantly expressed in the brain rather than peripheral 

tissues were enriched in both NonCog and Cog (Supplementary Table 11).  
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To examine expression patterns at a more granular level of analysis, we used 

MAGMA71 and stratified LD score regression72 to test enrichment of common variants in 265 

nervous system cell-type-specific gene-sets73. In MAGMA analysis, common variants in 95 

of 265 gene-sets were enriched for association with NonCog. The enriched cell-types were 

predominantly neurons (97%), with enrichment most pronounced for telencephalon-

projecting neurons, di- and mesencephalon neurons, and to a lesser extent, telencephalon 

interneurons (Supplementary Figure 5 and Table 13). Enrichment for Cog was similar to 

NonCog (correlation between Z-statistics Pearson’s r=.85) and there were no differences in 

cell-type-specific enrichment, suggesting that the same types of brain cells mediate genetic 

influences on NonCog and Cog (Supplementary Figure 6). Stratified LDSC results were 

similar to results from MAGMA (Supplementary Note 5, Supplementary Figure 7, 

Supplementary Table 14).  

The absence of difference in cell-type specific enrichment is a somewhat surprising 

result given that NonCog and Cog are constructed to be genetically uncorrelated. We 

therefore used the TWAS/Fusion tool74 to conduct gene-level analysis. This analysis used 

summary statistics from eQTL studies and our GWAS to test association of expression levels 

for 5378 transcripts of brain-expressed genes with the latent traits NonCog and Cog. This 

analysis revealed a mixture of concordant and discordant gene effects on NonCog and Cog, 

consistent with the genetic correlation of zero (Supplementary Note 6, Supplementary 

Figure 8, and Supplementary Table 15). 

NonCog and Cog genetics show diverging associations with total and regional 

brain volumes. EA has previously been found to be genetically correlated with greater total 

brain volume75,76. We therefore used a GWAS of regional brain volume to compare the rg of 

NonCog and Cog with total brain volume and with 100 regional brain volumes (99 gray 

matter volumes and white matter volume) controlling for total brain volume (Supplementary 
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Table 16)77. For total brain volume, genetic correlation was stronger for Cog as compared to 

NonCog (Cog rg=.22 (SE=.04), NonCog rg=.07 (SE=.03), pdiff=.005). Total gray matter 

volume, controlling for total brain volume, was not associated with either NonCog or Cog 

(NonCog: rg=.07 (SE=.04); Cog: rg=.06 (SE=.04)). For total white matter volume, conditional 

on total brain volume, genetic correlation was weakly negative for NonCog as compared to 

Cog (NonCog rg= -.12 (SE=.04), Cog (rg=-.01 (SE=.04), pdiff=.04). 

NonCog was not associated with any of the regional gray-matter volumes after FDR 

correction. In contrast, Cog was significantly associated with regional gray-matter volumes 

for the bilateral fusiform, insula and posterior cingulate (rg range .11-.17), as well as left 

superior temporal (rg=.11 (SE=.04)), left pericalcarine (rg=-.16 (SE=.05)) and right superior 

parietal volumes (rg=-.22 (SE=.06)) (Figure 5).  

Finally, we tested genetic correlation of NonCog and Cog with white matter tract 

integrity as measured using diffusion tensor imaging (DTI)78. Analyses included 5 DTI 

parameters in each of 22 white matter tracts (Supplementary Table 17). NonCog was 

positively associated with the mode of anisotropy parameter (which denotes a more tubular, 

as opposed to planar, water diffusion) in the corticospinal tract, retrolenticular limb of the 

internal capsule, and splenium of the corpus callosum (Figure 5). But all correlations were 

small (.10<rg <.14), and we detected no genetic correlations that differed between NonCog 

and Cog (Supplementary Note 7). 

 

Discussion 

GWAS of non-cognitive influences on educational attainment (EA) identified 157 

independent loci and polygenic architecture accounting for more than half the genetic 

variance in EA. In genetic correlation and PGS analysis, these non-cognitive (NonCog) 

genetics showed similar magnitude of associations with EA, economic attainment and 
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longevity to genetics associated with cognitive influences on EA (Cog). As expected, 

NonCog genetics had much weaker associations with cognition phenotypes as compared to 

Cog genetics. These results contribute new GWAS evidence in support of the hypothesis that 

heritable non-cognitive skills influence educational attainment and downstream life-course 

economic and health outcomes.    

Phenotypic and biological annotation analyses shed light on the substance of heritable 

non-cognitive skills influencing education. Economists hypothesize that preferences that 

guide decision-making in the face of risk and delayed rewards represent non-cognitive 

influences on educational attainment. Consistent with this hypothesis, NonCog genetics were 

associated with higher risk tolerance and lower time discounting. These decision-making 

preferences are associated with financial wealth, whereas opposite preferences are 

hypothesized to contribute to a feedback loop perpetuating poverty79. Consistent with results 

from analysis of decision-making preferences, NonCog genetics were also associated with 

healthier behavior and later fertility.  

Psychologists hypothesize that the Big Five personality characteristics of 

conscientiousness and openness are the two “pillars of educational success”2,3,80. Our results 

provide some support for this hypothesis, with the strongest genetic correlation evident for 

openness. But they also show that non-cognitive skills encompass the full range of 

personality traits, including agreeableness, extraversion, and the absence of neuroticism. This 

pattern mirrors the pattern of personality change that occurs as young people mature into 

adulthood54. Thus, non-cognitive skills share genetic etiology with what might be termed as 

“mature personality”. The absolute magnitudes of genetic correlations between NonCog and 

individual personality traits are modest. This result suggests that the personality traits 

described by psychologists capture some, but not all genetic influence on non-cognitive 

skills.  
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Although the general pattern of findings in our phenotypic annotation analysis 

indicated non-cognitive skills were genetically related to socially desirable characteristics and 

behaviors, there was an important exception. Genetic correlation analysis of psychiatric 

disorder GWAS revealed positive associations of NonCog genetics with schizophrenia, 

bipolar disorder, anorexia nervosa, and obsessive-compulsive disorder. Previously, these 

psychiatric disorders have been shown to have a positive rg with EA, a result that has been 

characterized as paradoxical given the impairments in educational and occupational 

functioning typical of serious mental illness. Our results clarify that these associations are 

driven by non-cognitive factors associated with success in education. These results align with 

the theory that clinically-defined psychiatric disorders represent extreme manifestations of 

dimensional psychological traits, which might be associated with adaptive functioning within 

the normal range81–83. 

Finally, biological annotation analyses suggested that genetic variants contributing to 

educational attainment not mediated through cognitive abilities are enriched in genes 

expressed in the brain as compared to other tissues in the body. Subsequent enrichment 

analysis overwhelmingly identified genetic variants in genes specifically expressed in 

neurons as compared to other cell types in the brain. Thus, even though NonCog and Cog 

were genetically uncorrelated, variants in the same neuron-specific gene-sets were enriched 

for both traits. We found some evidence of differences between NonCog and Cog in 

associations with brain structure: NonCog was less strongly associated with gray matter 

volumes as compared to Cog. Moderate sample sizes in neuroimaging GWAS mean these 

results must be treated as preliminary, requiring replication with data from larger-scale 

GWAS of white-matter and gray-matter phenotypes. Overall, the limited differentiation of 

NonCog and Cog in biological annotation analyses focused at the levels of tissue and cell 

type highlights the need for tools to examine differences in the behaviors of genes within 
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cells and, in the interim, the added value of phenotypic annotation analyses focused at the 

level of psychology and behavior. 

We acknowledge limitations. Genomic-SEM analysis to isolate non-cognitive genetic 

influences on educational attainment relies on a statistical model of a complex developmental 

process. Cognitive and non-cognitive skills develop in interaction with one another. For 

example, the dynamic mutualism hypothesis84 proposes that non-cognitive characteristics 

shape investments of time and effort, leading to differences in the pace of cognitive 

development85,86. In Genomic-SEM analysis, the NonCog factor is, by construction, 

uncorrelated with adult cognition. Thus, the statistical model is an imperfect representation of 

etiology. Nevertheless, statistical separation of NonCog from Cog, although artificial, allows 

us to test if heritable traits other than cognitive ability influence educational attainment and to 

explore what those traits may be. Our finding that NonCog genetics account for roughly half 

of all genetic variance in EA should motivate future longitudinal studies to collect repeated 

measures of cognitive and non-cognitive skills in order to study their reciprocal relationship 

across development87,88.  

Our use of Genomic-SEM to perform GWAS-by-subtraction relied on published 

GWASs of adult cognitive performance and of educational attainment. Biases and limitations 

in these GWASs will also affect our results. For example, a large portion of data in the 

cognitive performance GWAS came from UK Biobank, which administered only a limited 

battery of cognitive tests. This limited battery could fail to capture genetic influences on 

some cognitive functions, resulting in incomplete separation of cognitive from non-cognitive 

genetics within the Genomic-SEM analysis. Genomic-SEM analysis of NonCog genetics 

using data from GWAS with more comprehensive cognitive testing is needed.  

In the case of GWAS of educational attainment, the included samples were drawn 

mainly from Western Europe and the U.S., and participants completed their education in the 
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late 20th and early 21st centuries. The phenotype of educational attainment reflects an 

interaction between an individual and the social system in which they are educated. 

Differences across social systems, including education policy, culture, and historical context, 

may result in different heritable traits having influence on educational attainment89. As a 

result, the GWAS results for educational attainment and the Genomic-SEM results for non-

cognitive skills based on these results may not generalize beyond the times and places when 

and where GWAS samples were collected. Follow-up analysis in cohorts drawn from other 

contexts are needed to clarify how findings for NonCog genetics generalize. 

Generalization of the NonCog factor is also limited by the homogeneity of ancestry in 

the educational attainment and cognitive performance GWASs. Analysis included only 

participants of European descent. Although this restricted sample is necessary given the lack 

of methods for integrating genome-scale genetic data across populations with different 

ancestries90,91, it raises a potential threat to external validity. Analysis of (Non)Cog in non-

European populations should be a priority following either the conduct of GWAS in other 

ancestries or the refinement of methods to better integrate data across samples drawn from 

different ancestries. 

Within the bounds of these limitations, results also illustrate how Genomic-SEM can 

be used to conduct GWAS of phenotypes not directly measured in large-scale databases, an 

application that might have broad utility beyond the genetics of educational attainment. Our 

analysis provides a first view of the genetic architecture of non-cognitive skills influencing 

educational success. These skills are central to theories of human capital formation within the 

social and behavioral sciences and are increasingly the targets of social policy interventions. 

Our results establish that non-cognitive skills are central to the heritability of educational 

attainment and illuminate connections between genetic influences on these skills and social 

and behavioral science phenotypes.   
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Methods 

Meta-analysis of educational attainment GWAS 

We reproduced the Social Science Genetic Association Consortium (SSGAC) 2018 

GWAS of educational attainment24 by meta-analyzing published summary statistics for 

N=766,345 (www.thessgac.org/data) with summary statistics obtained from 23andMe, Inc. 

(N=365,538). We included SNPs with sample-size > 500,000 and MAF > 0.005 in the 1000 

Genomes reference set (10,101,243 SNPs). We did not apply genomic control, as standard 

errors of publicly available and 23andMe summary statistics were already corrected24. Meta-

analysis was performed using METAL92.  

 

GWAS-by-subtraction 

The objective of our GWAS-by-subtraction analysis was to estimate, for each SNP, 

the association with educational attainment that was independent of that SNP’s association 

with cognition (hereafter, the NonCog SNP effect). We used Genomic-SEM23 to analyze 

GWAS summary statistics for the educational attainment and cognitive performance 

phenotypes in the SSGAC’s 2018 GWAS (Lee et al. 201824). The model regressed the 

educational-attainment and cognitive-performance summary statistics on two latent variables, 

Cog and NonCog (Figure 1). Cog and NonCog were then regressed on each SNP in the 

genome. This analysis allowed for two paths of association with educational attainment for 

each SNP. One path was fully mediated by Cog. The other path was independent of Cog and 

measured the non-cognitive SNP effect, NonCog. To identify independent lead hits with p 

<5e-8 (the customary p-value threshold to approximate an alpha value of 0.05 in GWAS), we 

pruned the results using a radius of 250 kb and an LD threshold of r2 <0.1 (Supplementary 

Tables 1 to 3). 
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Genetic correlations  

We use Genomic-SEM to compute genetic correlations of Cog and NonCog with 

other education-linked traits for which well-powered GWAS data were available (SNP-h2 z-

score >2; Supplementary Table 8) and to test if genetic correlations with these traits 

differed between Cog and NonCog. Specifically, models tested the null hypothesis that trait 

genetic correlations with Cog and NonCog could be constrained to be equal using a chi-

squared test with FDR adjustment to correct for multiple testing. The FDR adjustment was 

conducted across all genetic correlation analyses reported in the article excluding the 

analyses of brain volumes described below. Finally, we used Genomic-SEM analysis of 

genetic correlations to estimate the percentage of the genetic covariance between educational 

attainment and the target traits that was explained by Cog and NonCog using the model 

illustrated in Supplementary Figure 9. 

 

Polygenic score analysis  

Polygenic score analyses were conducted in data drawn from six population-based 

cohorts from the Netherlands, the U.K., the U.S., and New Zealand: (1) the Netherlands Twin 

Register (NTR)27,93, (2) E-Risk30, (3) the Texas Twin Project32, (4) the National Longitudinal 

Study of Adolescent to Adult Health (AddHealth)28,94, dbGaP accession phs001367.v1.p1; (5) 

Wisconsin Longitudinal Study on Aging (WLS)31, dbGaP accession phs001157.v1.p1; and 

(6) the Dunedin Multidisciplinary Health and Development Study29. Supplementary Tables 

4 and 5 describe cohort-specific metrics, Supplementary Note 2 gives a short description of 

the cohorts’ populations and recruitment. Polygenic scores were computed based on weights 

derived using the LD-pred95 software with an infinitesimal prior and the 1000 Genomes 

phase 3 sample as a reference for the LD structure. LD-pred weights were computed in a 
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shared pipeline to ensure comparability between cohorts. Each outcome (e.g., IQ score) was 

regressed on the Cog and NonCog polygenic scores and a set of control variables (sex, 10 

principal components derived from the genetic data and, for cohorts in which these quantities 

varied, genotyping chip and age). In cohorts containing related individuals, non-

independence of observations from relatives were accounted for using mixed linear models 

(MLM), generalized estimation equations (GEE), or by clustering of standard errors at the 

family level. We used a random effects meta-analysis to aggregate the results across the 

cohorts. This analysis allows a cohort-specific random intercept. Individual cohort results are 

in Supplementary Table 6 and meta-analytic estimates in Supplementary Table 7.  

 

Biological annotation 

Enrichment of tissue-specific gene expression. We used gene-sets defined in 

Finucane et al. 201896 to test for the enrichment of genes specifically expressed in one of 53 

GTEx tissues68, or 152 tissues captured by the Franke et al. aggregation of RNA-seq 

studies69,70. This analysis seeks to confirm the role of brain tissues in mediating Cog and 

NonCog influences on educational attainment. The exact analysis pipeline used is available 

online (https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses). 

Enrichment of cell-type specific expression. We leveraged single cell RNA 

sequencing (scRNA-seq) data of cells sampled from the mouse nervous system73 to identify 

cell-type specific RNA expression. Zeisel et al.73 sequenced cells obtained from 19 regions in 

the contiguous anatomical regions in the peripheral sensory, enteric, and sympathetic nervous 

system. After initial QC, Zeisel et al. retained 492,949 cells, which were sampled down to 

160,796 high quality cells. These cells were further grouped into clusters representing 265 

broad cell-types. We analyzed the dataset published by Zeisel et al. containing mean 

transcript counts for all genes with count >1 for each of the 265 clusters (Supplementary 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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Table 11). We restricted analysis to genes with expression levels above the 25th percentile. 

For each gene in each cell-type, we computed the cell-type specific proportion of reads for 

the gene (normalizing the expression within cell-type). We then computed the proportion of 

proportions over the 265 cell-types (computing the specificity of the gene to a specific cell-

type). We ranked the 12,119 genes retained in terms of specificity to each cell-type and then 

retained the 10% of genes most specific to a cell-type as the “cell-type specific” gene-set. We 

then tested whether any of the 265 cell-type specific gene-sets were enriched in the Cog or 

NonCog GWAS. This analysis sought to identify specific cell-types and specific regions in 

the brain involved in the etiology of Cog and NonCog. We further computed the difference in 

enrichment for Cog and NonCog to test if any cell types were specific to either trait. For these 

analyses, we leveraged two widely used enrichment analysis tools: MAGMA71 and stratified 

LD score regression72 with the European reference panel from 1000 Genomes Project Phase 3 

as SNP location and LD structure reference, Gencode release 19 as gene location reference 

and the human-mouse homology reference from MGI 

(http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt). 

MAGMA. We used MAGMA (v1.07b71), a program for gene-set analysis based on 

GWAS summary statistics. We computed gene-level association statistics using a window of 

10kb around the gene for both Cog and NonCog. We then used MAGMA to run a 

competitive gene-set analysis, using the gene p-values and gene correlation matrix (reflecting 

LD structure) produced in the gene-level analysis. The competitive gene-set analysis tests 

whether the genes within the cell-type-specific gene-set described above are more strongly 

associated with Cog/NonCog than other genes.  

Stratified LDscore regression. We used LD-score regression to compute LD scores 

for the SNPs in each of our “cell-type specific” gene-sets. Parallel to MAGMA analysis, we 

added a 10kb window around each gene. We ran partitioned LD-score regression to compute 
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the contribution of each gene-set to the heritability of Cog and NonCog. To guard against 

inflation, we use LD score best practices, and include the LD score baseline model 

(baselineL2.v2.2) in the analysis. We judged the statistical significance of the enrichment 

based on the p-value associated with the tau coefficient.  

Difference in enrichment between Cog and NonCog. To compute differences in 

enrichment we compute a standardized difference between the per-annotation enrichment for 

Cog and NonCog as: 

 

𝑍𝑑𝑖𝑓𝑓 =  
𝑒𝐶𝑜𝑔 −  𝑒𝑁𝑜𝑛𝐶𝑜𝑔

𝑠𝑞𝑟𝑡( 𝑠𝑒𝐶𝑜𝑔
2 + 𝑠𝑒𝑁𝑜𝑛𝐶𝑜𝑔

2 − 2 ∗ 𝐶𝑇𝐼 ∗ 𝑠𝑒𝐶𝑜𝑔 ∗  𝑠𝑒𝑁𝑜𝑛𝐶𝑜𝑔)
 

 

Where 𝑒𝐶𝑜𝑔 is the enrichment of a particular gene-set for Cog, 𝑒𝑁𝑜𝑛𝐶𝑜𝑔 is the enrichment for 

the same gene-set for NonCog, 𝑠𝑒𝐶𝑜𝑔 is the standard error of the enrichment for Cog, 

𝑠𝑒𝑁𝑜𝑛𝐶𝑜𝑔 is the standard error of the enrichment for NonCog, and CTI is the LD score cross-

trait intercept, a metric of dependence between the GWASs of Cog and NonCog. 

Enrichment of gene expression in the brain. We performed a transcriptome-wide 

association study (TWAS) using Gusev et al.74 (FUSION: 

http://gusevlab.org/projects/fusion/). We used pre-computed brain-gene-expression weights 

available on the FUSION website, generated from 452 human individuals as part of the 

CommonMind Consortium. We then superimposed the bivariate distribution of the results of 

the TWAS for Cog and NonCog over the bivariate distribution expected given the sample 

overlap between EA and CP (the GWAS on which our GWAS of Cog and NonCog are based, 

see Supplementary Note 6).  

 

Brain modalities 



 

 23 

Brain volumes. We conducted genetic correlation analysis of brain volumes using 

GWAS results published by Zhao et al.77. Zhao et al. performed GWAS of total brain volume 

and 100 regional brain volumes, including 99 gray matter volumes and total white matter 

volume (Supplementary Table 16). Analyses included covariate adjustment for sex, age, 

their square interaction and 20 principle components. Analyses of regional brain volumes 

additionally included covariate adjustment for total brain volume. GWAS summary statistics 

for these 101 brain volumes were obtained from https://med.sites.unc.edu/bigs2/data/gwas-

summary-statistics/. Summary statistics were filtered and pre-processed using Genomic 

SEM’s “munge” function, retaining all HapMap3 SNPs with allele frequency >.01 outside 

the MHC region. We used Genomic-SEM to compute the genetic correlations between Cog, 

NonCog and brain volumes. Analyses of regional volumes controlled for total brain volume. 

For each volume, we tested if correlations differed between Cog and NonCog. Specifically, 

we used a chi-squared test to evaluate the null hypothesis that the two genetic correlations 

were equal. We used FDR adjustment to correct for multiple testing. The FDR adjustment is 

applied to the results for all gray matter volumes for Cog and NonCog separately.  

White matter structures. We conducted genetic-correlation analysis of white-matter 

structures using GWAS results published by Zhao et al.78. Zhao et al. performed GWAS of 

diffusion tensor imaging (DTI) measures of the integrity of white-matter tracts. DTI 

parameters were derived for fractional anisotropy (FA), mean diffusivity (MD), axial 

diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO). Each of these 

parameters were measured for 22 white matter tracts of interests (Supplementary Table 17) 

resulting in 110 GWAS. GWAS summary statistics for these 110 GWAS were obtained from 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/. Summary statistics were 

filtered and processed using Genomic SEM’s “munge” function; retaining all HapMap3 

SNPs with allele frequency >.01 outside the MHC region. For each white matter structure, we 

https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/)
https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/)
https://med.sites.unc.edu/bigs2/data/gwas-summary-statistics/
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tested if genetic correlations differed between Cog and NonCog. Specifically, we used a chi-

squared test to evaluate the null hypothesis that the two genetic correlations were equal.  We 

used FDR adjustment to correct for multiple testing. As these different diffusion parameters 

are statistically and logically interdependent, having been derived from the same tensor, FDR 

adjustment was applied to the results for each type of white matter diffusion parameter 

separately. FDR correction was applied separately for Cog and NonCog. 

 

Additional Resource 

A FAQ on why, how and what we studied is available here: 

https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-

using-gwas-by-subtraction-b8743773ce44  

 

Code availability   

Code used to run the analyses is available at: https://github.com/PerlineDemange/non-

cognitive  

A tutorial on how to perform GWAS-by-subtraction: http://rpubs.com/MichelNivard/565885 

All additional software used to perform these analyses are available online. 

 

Data Availability  

GWAS summary data for NonCog & Cog (excluding 23andMe) are available at: 

https://www.dropbox.com/s/cvzcedsfhbznv36/GWAS_sumstats_Cog_NonCog_Demange_et

_al.zip?dl=0.  

For 23AndMe dataset access, see https://research.23andme.com/dataset-access/. 

Part of the National Longitudinal Study of Adolescent to Adult Health (Add Health) data is 

publicly available and can be downloaded at the following link: 

https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-using-gwas-by-subtraction-b8743773ce44
https://medium.com/@kph3k/investigating-the-genetic-architecture-of-non-cognitive-skills-using-gwas-by-subtraction-b8743773ce44
https://github.com/PerlineDemange/non-cognitive
https://github.com/PerlineDemange/non-cognitive
http://rpubs.com/MichelNivard/565885
https://www.dropbox.com/s/cvzcedsfhbznv36/GWAS_sumstats_Cog_NonCog_Demange_et_al.zip?dl=0
https://www.dropbox.com/s/cvzcedsfhbznv36/GWAS_sumstats_Cog_NonCog_Demange_et_al.zip?dl=0
https://research.23andme.com/dataset-access/
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https://data.cpc.unc.edu/projects/2/view#public_li. For restricted access data, details of the 

data sharing agreement and data access requirements can be found at the following link: 

https://data.cpc.unc.edu/projects/2/view  

The Dunedin study datasets reported in the current article are not publicly available due to lack 

of informed consent and ethical approval, but are available on request by qualified scientists. 

Requests require a concept paper describing the purpose of data access, ethical approval at the 

applicant’s university, and provision for secure data access. We offer secure access on the 

Duke, Otago and King's College campuses. All data analysis scripts and results files are 

available for review. https://moffittcaspi.trinity.duke.edu/research-topics/dunedin  

The E-Risk Longitudinal Twin Study datasets reported in the current article are not publicly 

available due to lack of informed consent and ethical approval, but are available on request by 

qualified scientists. Requests require a concept paper describing the purpose of data access, 

ethical approval at the applicant’s university, and provision for secure data access. We offer 

secure access on the Duke and King's College campuses. All data analysis scripts and results 

files are available for review. https://moffittcaspi.trinity.duke.edu/research-topics/erisk 

Netherlands Twin Register data may be accessed, upon approval of the data access committee, 

email: ntr.datamanagement.fgb@vu.nl.  

Researchers will be able to obtain Texas Twins data through managed access. Requests for 

managed access should be sent to Dr. Elliot Tucker-Drob (tuckerdrob@uexas.edu) and Dr. 

Paige Harden (harden@utexas.edu), joint principal investigators of the Texas Twin Project. 

Wisconsin Longitudinal study data can be requested following this form: 

https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf  

  

https://data.cpc.unc.edu/projects/2/view#public_li
https://data.cpc.unc.edu/projects/2/view
https://moffittcaspi.trinity.duke.edu/research-topics/dunedin
https://moffittcaspi.trinity.duke.edu/research-topics/erisk
mailto:ntr.datamanagement.fgb@vu.nl
mailto:tuckerdrob@uexas.edu
mailto:harden@utexas.edu
https://www.ssc.wisc.edu/wlsresearch/data/Request_Genetic_Data_28_June_2017.pdf
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Figure 1. GWAS-by-subtraction Genomic-SEM model  

Cholesky model as fitted in Genomic SEM, with path estimates for a single SNP included as illustration. SNP, Cognitive 

performance (CP) and Educational attainment (EA) are observed variables based on GWAS summary statistics. The 

genetic covariance between CP and EA is estimated based on GWAS summary statistics for CP and EA. The model is 

fitted to a 3x3 observed variance-covariance matrix (i.e. SNP, CP, EA). Cog and Non-Cog are latent (unobserved) 

variables. The covariances between CP and EA and between Cog and NonCog are fixed to 0. The variance of the SNP 

is fixed to the value of 2pq (p = reference allele frequency, q = alternative allele frequency, based on 1000 Genomes 

phase 3). The variances of CP and EA are fixed to 0, so that all variance is explained by the latent factors. The variances 

of the latent factors are fixed to 1. The observed variables CP and EA were regressed on the latent variables resulting in 

the estimates for the path loadings: λCog-CP=.4465; λCog-EA=.2237; λNonCog-EA=.2565. The latent variables were 

then regressed on each SNP that met QC criteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 2. Manhattan plot of SNP associations with NonCog  
Plot of the -log10(p-value) associated with the Wald test of βNonCog for all SNPs, ordered by chromosome and base 

position. Purple triangles indicate genome-wide significant (p < 5e10-8) and independent (within a 250Kb window and 

r2 < .1) associations. 

 

 

   



Figure 3. Polygenic prediction and genetic correlations with IQ and educational achievement 

a. Genetic correlations of NonCog and Cog with Educational Attainment, Highest Math Class Taken, Self-

reported Math Ability and Childhood IQ. Correlations with NonCog are in orange; with Cog in blue; with EA 

in gray. Genetic correlations were estimated using Genomic SEM. Error bars represent 95% CIs. The difference 

test is based on a chi-squared test associated with a comparison between a model constraining these two 

correlations to be identical, versus a model where the correlations are freely estimated. For analysis of genetic 

correlations with educational attainment, we re-ran the Genomic-SEM model to compute NonCog and Cog 

using summary statistics that omitted the 23andMe sample from the educational attainment GWAS. We then 

used the 23andMe sample to run the GWAS of educational attainment. Thus, there is no sample overlap in this 

analysis.  

b. Effect-size distributions from meta-analysis of NonCog and Cog polygenic score associations with cognitive 

test performance and educational attainment. Outcomes were regressed simultaneously on NonCog and Cog 

polygenic scores. Effect-sizes entered into the meta-analysis were standardized regression coefficients 

interpretable as Pearson r. Samples and measures are detailed in Supplementary Tables 4-5. Traits were 

measured in different samples: Educational Attainment was measured in the AddHealth, Dunedin, E-Risk, NTR 

and WLS samples (N=24,056); Reading Achievement and Mathematics Achievement were measured in the 

AddHealth, NTR, and Texas-Twin samples (N=9,274 for reading achievement; N=10,747 for mathematics 

achievement); Cognitive test performance (IQ) was measured in the Dunedin, E-Risk, NTR, Texas Twins and 

WLS samples (N=11,351).  

 

 

 

 

  



Figure 4. Estimates of genetic correlations with NonCog, Cog and Educational Attainment  

Genetic correlations of NonCog, Cog, and EA with selected phenotypes. NonCog genetic correlations are plotted in 

orange. Cog genetic correlations are plotted in blue. EA genetic correlations are plotted in gray. Genetic correlations 

were estimated in Genomic SEM. Error bars represent 95% CIs. Red stars indicate a statistically significant (FDR 

corrected p-value < 0.05) difference in the magnitude of the correlation with NonCog versus Cog. The FDR correction 

was applied based on all genetic correlations tested (including in Supplementary Figure 2). The difference test is based 

on a chi-squared test associated with a comparison between a model constraining these two correlations to be identical, 

versus a model where the correlations are freely estimated. Source GWAS are listed in Supplementary Table 8.  

 



Figure 5. Genetic correlations with regional gray matter volumes and white matter tracts   
a. Cortical patterning of FDR-corrected significant genetic correlations with regional gray matter volumes for Cog 

versus NonCog, after correction for total brain volume. Regions of interest are plotted according to the Desikan-Killiany-

Tourville atlas, shown on a single manually-edited surface (Klein & Tourville, 2012; http://mindboggle.info). Cog 

showed significant associations with gray matter volume for the bilateral fusiform, insula and posterior cingulate, the 

left superior temporal and left pericalcarine and right superior parietal volumes. NonCog was not associated with any of 

the regional brain volumes.  

b. White matter tract patterning of FDR-corrected significant genetic correlations with regional mode of anisotropy 

(MO) for Cog versus NonCog. White matter tract probability maps are plotted according to the Johns Hopkins University 

DTI atlas (https://neurovault.org/).  Cog was not associated with regional MO. NonCog showed significant associations 

with MO in the corticospinal tract, the retrolenticular limb of the internal capsule and the splenium of the corpus 

callosum.  

 

 

 

 

 

 

 

 
 




