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data model. We investigate the robustness of Bayesian panel data models to possible 

misspecication of the prior distribution. The proposed robust Bayesian approach departs 

from the standard Bayesian framework in two ways. First, we consider the ε-contamination 

class of prior distributions for the model parameters as well as for the individual effects. 

Second, both the base elicited priors and the ε-contamination priors use Zellner (1986)’s 

g-priors for the variance-covariance matrices. We propose a general “toolbox” for a wide 

range of specifications which includes the dynamic panel model with random effects, 

with cross-correlated effects à la Chamberlain, for the Hausman-Taylor world and for 

dynamic panel data models with homogeneous/heterogeneous slopes and cross-sectional 

dependence. Using a Monte Carlo simulation study, we compare the nite sample properties 

of our proposed estimator to those of standard classical estimators. The paper contributes 

to the dynamic panel data literature by proposing a general robust Bayesian framework 

which encompasses the conventional frequentist specications and their associated 

estimation methods as special cases.
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1. Introduction

The dynamic panel data model allows for feedback from lagged endogenous values and have been
used in many empirical studies. The most popular estimation method is the generalized method
of moments (GMM) with many variants, the best known being the Arellano-Bond difference GMM
(Arellano and Bond (1991)) and the Blundell-Bond system GMM (Blundell and Bond (1998)) (see
the surveys by Harris et al. (2008) and Bun and Sarafidis (2015) to mention a few). Despite its op-
timal asymptotic properties, Bun and Sarafidis (2015) and Moon et al. (2015), among others, argue
that the finite sample behavior of the GMM estimator can be poor due to weakness and/or abun-
dance of moment conditions and dependence on crucial nuisance parameters. Several alternative
inference methods derived from inconsistent least squares (LS) or likelihood based procedures have
been proposed. These include modifications of the profile likelihood (Lancaster (2002), Dhaene
and Jochmans (2011, 2016)) or estimation methods based on the likelihood function of the first
differences (Hsiao et al. (2002), Binder et al. (2005), Hayakawa and Pesaran (2015)).

While GMM estimation is very attractive because of its flexibility, other promising methods
remain underrepresented in empirical work. Examples are bias-correction procedures for the fixed-
effects dynamic panel estimator proposed by Kiviet (1995), Bun (2003), Bun and Kiviet (2003),
Everaert and Pozzi (2007), and Everaert (2013) among others. Estimation of dynamic panel data
models with heterogeneous slopes and/or cross-sectional dependence has also been investigated by
Chudik and Pesaran (2015a,b), using the common correlated effects (CCE) approach of Pesaran
(2006), and by Moon and Weidner (2015, 2017), who studied linear models with interactive fixed
effects.

Quasi-maximum likelihood (QML) methods have been also proposed to circumvent this bias by
modeling the unconditional likelihood function instead of conditioning on the initial observations.
While this requires additional assumptions on the marginal distribution of the initial observations,
the QML estimators are an attractive alternative to other estimation approaches in terms of ef-
ficiency and finite-sample performance if all the assumptions are satisfied. QML estimators can
be characterized as limited-information maximum likelihood estimators that are special cases of a
structural equation modeling or full information maximum-likelihood approach with many cross-
equation restrictions1. For dynamic models with random effects, we must be explicit about the
non-zero correlation between the individual-specific effects and the initial conditions (see Anderson
and Hsiao (1982), Bhargava and Sargan (1983), Alvarez and Arellano (2003), Hsiao and Pesaran
(2008), Moral-Benito (2012, 2013), Kripfganz (2016), Bun et al. (2017), Moral-Benito et al. (2019)).2

The widely used difference GMM estimator suffers from finite sample bias when the number
of cross-section observations is small. Moreover, some have expressed concern in recent years that
many instrumental variables of the type considered in panel GMM estimators such as Arellano
and Bond (1991) may be invalid, weak or both (see for instance Bazzi and Clemens (2013) and
Kraay (2015)). Based on the same identifying assumption, some alternatives have been proposed
in the literature (e.g. Ahn and Schmidt (1995), Hansen et al. (1996), Hsiao et al. (2002), Moral-

1For the dynamic fixed-effects model, see for instance Hsiao et al. (2002).
2In a Gaussian dynamic linear mixed model: yit = ρyit−1 + X′itβ + W ′itbi + uit, i = 1, ..., N , t = 2, ..., T, as

in our case (see eq.(8) in section (2)), maximum likelihood analysis is subject to an initial condition problem if the
permanent subject effects bi and the initial observations are correlated. In case of such correlation, possible options
are a joint random prior (e.g., bivariate normal) involving bi and the first disturbance ui1 (Dorsett (1999)), or a prior
for bi that is conditional on yi1, such as bi | yi1 ∼ N(ϕyi1, σ

2
1) (see Hirano (2002), Wooldridge (2005)) and Congdon

(2010)).
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Benito (2013), to mention a few). Maximum likelihood estimators, asymptotically equivalent to
the Arellano and Bond (1991) estimator, have recently been proposed and are strongly preferred in
terms of finite sample performance (Moral-Benito et al. (2019)).

Bayesian analysis for dynamic panel data models have also been proposed (see for instance
Hsiao et al. (1999), Lancaster (2002), Hsiao and Pesaran (2008), Koop et al. (2008), Juárez and
Steel (2010), Tsai (2016), Liu et al. (2017), Liu et al. (2018), Bretó et al. (2019), Pacifico (2019)).
Some consider that the process which generates the initial observation yi0 of the dependent variable
for each individual i has started a long time ago (e.g., Juárez and Steel (2010). Others derive the
estimators under the assumption that yi0 are fixed constants (e.g., Hsiao et al. (1999), Hsiao and
Pesaran (2008)). Yet others consider that the initial value is generated from the finite past using
state space forms (e.g., Liu et al. (2017)), or use the Prais-Winsten transformation for the initial
period. A simplifying approach, more feasible for large T , is to condition on the first observation
in a model involving a first-order lag in y, so that yi1 is nonstochastic (Hjellvik and Tjstheim
(1999), Bauwens et al. (2005)). Geweke and Keane (2000) and Lancaster (2002) consider Bayesian
approaches to the dynamic linear panel model in which the model for period 1 is not necessarily
linked to those for subsequent periods in a way consistent with stationarity (see also Congdon
(2010)).

This brief overview seems to confirm the strong comeback of ML methods and associated
Bayesian approaches for dynamic panel data models. MCMC holds some advantages over ML
or QML estimation. Su and Yang (2015) and Yu et al. (2008) have discussed issues involved in
maximizing a concentrated version of the likelihood function that could involve trivariate opti-
mization over the parameters and subject to stationarity restrictions. This type of constrained
optimization may lead to local optima and may produce misleading inference. In our earlier paper
(Baltagi et al., 2018), which considered a static panel data model, we argued that the Bayesian
approach rests upon hypothesized prior distributions (and possibly on their hyperparameters). The
choice of specific distributions is often made out of convenience. Yet, it is well-known that the es-
timators can be sensitive to misspecification of the latter. Fortunately, this difficulty can be partly
circumvented by use of the robust Bayesian approach which relies upon a class of prior distributions
and selects an appropriate one in a data dependent fashion. This paper extends our earlier paper
to the popular dynamic panel data model and studies the robustness of Bayesian panel data mod-
els to possible misspecification of the prior distribution in the spirit of the works of Good (1965),
Dempster (1977), Rubin (1977), Hill (1980), Berger (1985), Berger and Berliner (1984) and Berger
and Berliner (1986). In particular, it is concerned with the posterior robustness which is different
from the robustness à la White (1980). The objective of our paper is to propose a robust Bayesian
approach for dynamic panel data models which departs from the standard Bayesian one in two ways.
First, we consider the ε-contamination class of prior distributions for the model parameters (and
for the individual effects). Second, both the base elicited priors and the ε-contamination priors use
Zellner (1986)’s g-priors rather than the standard Wishart distributions for the variance-covariance
matrices. We propose a general “toolbox” for a wide range of specifications such as the dynamic
panel model with random effects, or with cross-correlated effects à la Mundlak or à la Chamberlain,
for the Hausman-Taylor world or for dynamic panel data models with homogeneous/heterogeneous
slopes and cross-sectional dependence. The paper contributes to the dynamic panel data literature
by proposing a general robust Bayesian framework which encompasses all the above-mentioned
conventional frequentist specifications and their associated estimation methods as special cases.

Section 2 gives the general framework of a robust linear dynamic panel data model using
ε-contamination and derives the Type-II maximum likelihood posterior mean and the variance-
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covariance matrix of the coefficients in a two-stage hierarchy model. Section 3 investigates the
finite sample performance of our robust Bayesian estimator through extensive Monte Carlo ex-
periments. The simulation results underscore the relatively good performance of the two-stage
hierarchy estimator as compared to the standard frequentist estimation methods. Section 4 gives
our conclusion.

2. A robust linear dynamic panel data model

2.1. The static framework

Baltagi et al. (2018) considered the following Gaussian static linear mixed model:

yit = X ′itβ +W ′itbi + uit , i = 1, ..., N , t = 1, ..., T, (1)

where X ′it is a (1×Kx) vector of explanatory variables including the intercept, and β is a (Kx × 1)
vector of parameters. t is the faster index (primal pooling). Furthermore, let W ′it denote a (1×K2)
vector of covariates and bi a (K2 × 1) vector of parameters. The subscript i of bi indicates that the
model allows for heterogeneity on the W variables. The distribution of uit is parametrized in terms
of its precision τ rather than its variance σ2

u (= 1/τ).
Following the seminal papers of Lindley and Smith (1972) and Smith (1973), various authors

including Chib and Carlin (1999), Koop (2003), Chib (2008), Greenberg (2008), Zheng et al. (2008),
and Rendon (2013) have proposed a very general three-stage hierarchy framework

First stage : y = Xβ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1INT

Second stage : β ∼ N (β0,Λβ) and b ∼ N (b0,Λb) (2)

Third stage : Λ−1
b ∼Wish (νb, Rb) and τ ∼ G(·),

where y = (y1,1, ..., y1,T , ..., yN,1, ..., yN,T )
′

is (NT × 1). X is (NT ×Kx), W is (NT ×K2), u is
(NT )× 1) and INT is a (NT ×NT ) identity matrix. The parameters depend upon hyperparameters
which themselves follow random distributions. The second stage (also called fixed effects model in
the Bayesian literature) updates the distribution of the parameters. The third stage (also called
random effects model in the Bayesian literature) updates the distribution of the hyperparameters.
The random effects model simply updates the distribution of the hyperparameters. The precision
τ is assumed to follow a Gamma distribution and Λ−1

b is assumed to follow a Wishart distribution
with νb degrees of freedom and a hyperparameter matrix Rb which is generally chosen close to an
identity matrix. In that case, the hyperparameters only concern the variance-covariance matrix
of the b coefficients and the precision τ . As is well-known, Bayesian methods are sensitive to
misspecification of the distributions of the priors. Conventional proper priors in the normal linear
model have been based on the conjugate Normal-Gamma family because they allow closed form
calculations of all marginal likelihoods. Likewise, rather than specifying a Wishart distribution
for the variance-covariance matrices as is customary, Zellner’s g-prior (Λβ = (τgX ′X)

−1
for β

or Λb = (τhW ′W )
−1

for b) has been widely adopted because of its computational efficiency in
evaluating marginal likelihoods and because of its simple interpretation arising from the design
matrix of observables in the sample. Since the calculation of marginal likelihoods using a mixture of
g-priors involves only a one-dimensional integral, this approach provides an attractive computational
solution that made the original g-priors popular while insuring robustness to misspecification of g
(see Zellner (1986) and Fernández et al. (2001)).
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To guard against mispecifying the distributions of the priors, Baltagi et al. (2018) considered
the ε-contamination class of prior distributions for (β, b, τ):

Γ = {π (β, b, τ |g0, h0) = (1− ε)π0 (β, b, τ |g0, h0) + εq (β, b, τ |g0, h0)} , (3)

where π0 (·) is the base elicited prior, q (·) is the contamination belonging to some suitable class Q
of prior distributions, and 0 ≤ ε ≤ 1 reflects the amount of error in π0 (·) . τ is assumed to have
a vague prior, p (τ) ∝ τ−1, 0 < τ < ∞, and π0 (β, b, τ |g0, h0) is the base prior assumed to be a
specific g-prior with  β ∼ N

(
β0ιKx , (τg0ΛX)

−1
)

with ΛX = X ′X

b ∼ N
(
b0ιK2

, (τh0ΛW )
−1
)

with ΛW = W ′W,
(4)

where ιKx is a (Kx × 1) vector of ones. Here, β0, b0, g0 and h0 are known scalar hyperparameters
of the base prior π0 (β, b, τ |g0, h0). The probability density function (henceforth pdf) of the base
prior π0 (.) is given by:

π0 (β, b, τ |g0, h0) = p (β|b, τ, β0, b0, g0, h0)× p (b|τ, b0, h0)× p (τ) . (5)

The possible class of contamination Q is defined as:

Q =

{
q (β, b, τ |g0, h0) = p (β|b, τ, βq, bq, gq, hq)× p (b|τ, bq, hq)× p (τ)

with 0 < gq ≤ g0, 0 < hq ≤ h0

}
, (6)

with  β ∼ N
(
βqιKx , (τgqΛX)

−1
)

b ∼ N
(
bqιK2

, (τhqΛW )
−1
)
,

(7)

where βq, bq, gq and hq are unknown. The restrictions gq ≤ g0 and hq ≤ h0 imply that the base
prior is the best possible so that the precision of the base prior is greater than any prior belonging
to the contamination class. The ε-contamination class of prior distributions for (β, b, τ) is then
conditional on known g0 and h0.

Following Baltagi et al. (2018) for the static panel model, we use a two-step strategy because it
simplifies the derivation of the predictive densities (or marginal likelihoods).3 This will be extended
to the dynamic panel model introduced in the next section.

2.2. The dynamic framework

This paper considers the Gaussian dynamic linear mixed model:

yit = ρyit−1 +X ′itβ +W ′itbi + uit = Z ′itθ +W ′itbi + uit , i = 1, ..., N , t = 2, ..., T, (8)

3One could also use a one-step estimation of the ML-II posterior distribution. But in the one-step approach, the
pdf of y and the pdf of the base prior π0 (β, b, τ |g0, h0) need to be combined to get the predictive density. It thus
leads to a complex expression whose integration with respect to (β, b, τ) may be involved.
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where Z ′it = [yit−1, X
′
it]
′

and θ′ = [ρ, β′]
′

is a (1×K1) vector with K1 = Kx + 1. The likelihood is
conditional on the first period observations y1. In that case, the first period is assumed exogenous
and known. In the spirit of eq(2), we have the following:

First stage : y = ρy−1 +Xβ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1IN(T−1)

Second stage : β ∼ N (β0,Λβ) and b ∼ N (b0,Λb) (9)

with p (τ) ∝ τ−1 , Λβ = (τgX ′X)
−1

and Λb = (τhW ′W )
−1
.

where y = (y1,2, ..., y1,T , ..., yN,2, ..., yN,T )
′
and y−1 = (y1,1, ..., y1,T−1, ..., yN,1, ..., yN,T−1)

′
are (N(T − 1)× 1).

X is (N(T − 1)×Kx), W is (N(T − 1)×K2), u is (N(T − 1)× 1) and IN(T−1) is a (N(T − 1)×N(T − 1))
identity matrix.

There is an extensive literature on autoregressive processes using Bayesian methods. The sta-
tionarity assumption implies that the autoregressive time dependence parameter space for ρ is a
compact subset of (−1, 1). For the pros and cons of imposing a stationarity hypothesis in a Bayesian
setup see Phillips (1991). Ghosh and Heo (2003) proposed a comparative study using some selected
noninformative (objective) priors for the AR(1) model. Ibazizen and Fellag (2003), assumed a non-
informative prior for the autoregressive parameter without considering the stationarity assumption
for the AR(1) model. However, most papers consider a noninformative (objective) prior for the
Bayesian analysis of an AR(1) model without considering the stationarity assumption. See for ex-
ample DeJong and Whiteman (1991), Schotman and van Dijk (1991), and Sims and Uhlig (1991).
For the dynamic random coefficients panel data model, Hsiao and Pesaran (2008) do not impose any
constraint on the coefficients of the lag dependent variable, ρi. But, following Liu and Tiao (1980),
they suggest that one way to impose the stability condition on individual units would be to assume
that ρi follows a rescaled Beta distribution on (0, 1). In the time series framework, and for an
AR(1) model, Karakani et al. (2016) have performed a posterior sensitivity analysis based on Gibbs
sampling with four different priors: natural conjugate prior, Jeffreys’ prior, truncated normal prior
and g-prior. Their respective performances are compared in terms of the highest posterior density
region criterion. They show that the truncated normal distribution outperforms very slightly the
g-prior and more strongly the other priors especially when the time dimension is small. On the
other hand, for a larger time span, there is no significant difference between the truncated normal
distribution and the g-prior.

Nevertheless, introducing a truncated normal distribution for ρ poses very complex integration
problems due to the presence of the normal cdf function as integrand in the marginal likelihoods
with ε-contamination class of prior distributions. To avoid these problems, ρ is assumed to be
U (−1, 1). In that case, its mean (0) and its variance (1/3) are exactly defined and we do not need
to introduce an ε-contamination class of prior distributions for ρ at the second stage of the hierarchy.
This was initially our first goal (see appendix A.1 in the supplementary material). Unfortunately,
the results using Monte Carlo simulations showed biased estimates of ρ, β and residual variances
(see Appendix A.2 in the supplementary material). Consequently, we assume a Zellner g-prior, for
θ
(
= [ρ, β′]

′)
which encompasses the coefficient of the lagged dependent variable yi,t−1 and those of

the explanatory variables X ′it. In other words, the two-stage hierarchy becomes.

First stage : y = Z ′itθ +Wb+ u, u ∼ N(0,Σ),Σ = τ−1IN(T−1)

Second stage : θ ∼ N (θ0,Λθ) and b ∼ N (b0,Λb) (10)

with p (τ) ∝ τ−1 , Λθ = (τgZ ′Z)
−1

and Λb = (τhW ′W )
−1
.
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Thus, we do not impose stationarity constraints like many authors and we respect the philosophy
of ε-contamination class using data-driven priors.

2.3. The robust dynamic linear model in the two-stage hierarchy

Using a two-step approach, we can integrate first with respect to (θ, τ) given b and then, con-
ditional on θ, we integrate with respect to (b, τ) .

1. Let y∗ = (y−Wb). Derive the conditional ML-II posterior distribution of θ given the specific
effects b.

2. Let ỹ = (y−Zθ). Derive the conditional ML-II posterior distribution of b given the coefficients
θ.

Thus, the marginal likelihoods (or predictive densities) corresponding to the base priors are:

m (y∗|π0, b, g0) =

∞∫
0

∫
RK1

π0 (θ, τ |g0)× p (y∗|Z, b, τ) dθ dτ

and

m (ỹ|π0, θ, h0) =

∞∫
0

∫
RK2

π0 (b, τ |h0)× p (ỹ|W, θ, τ) db dτ,

with

π0 (θ, τ |g0) =
(τg0

2π

)K1
2

τ−1 |ΛZ |1/2 exp
(
−τg0

2
(θ − θ0ιK1

)′ΛZ(θ − θ0ιK1
))
)
,

π0 (b, τ |h0) =

(
τh0

2π

)K2
2

τ−1 |ΛW |1/2 exp

(
−τh0

2
(b− b0ιK2

)′ΛW (b− b0ιK2
)

)
.

Solving these equations is considerably easier than solving the equivalent expression in the one-step
approach.

2.3.1. The first step of the robust Bayesian estimator

Let y∗ = y −Wb. Combining the pdf of y∗ and the pdf of the base prior, we get the predictive
density corresponding to the base prior4:

m (y∗|π0, b, g0) =

∞∫
0

∫
RK1

π0 (θ, τ |g0)× p (y∗|Z, b, τ) dθ dτ (11)

= H̃

(
g0

g0 + 1

)K1/2
(

1 +

(
g0

g0 + 1

)(
R2
θ0

1−R2
θ0

))−NT2

with H̃ =
Γ(NT2 )

π(NT2 )v(b)(
NT
2 )

, R2
θ0

=
(θ̂(b)−θ0ιK1

)′ΛZ(θ̂(b)−θ0ιK1
)

(θ̂(b)−θ0ιK1
)′ΛZ(θ̂(b)−θ0ιK1

)+v(b)
, θ̂ (b) = Λ−1

Z Z ′y∗ and v (b) =

(y∗ − Zθ̂ (b))′(y∗ − Zθ̂ (b)), and where Γ (·) is the Gamma function.

4Derivation can be found in the supplementary appendix of Baltagi et al. (2018).
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Likewise, we can obtain the predictive density corresponding to the contaminated prior for the
distribution q (θ, τ |g0, h0) ∈ Q from the class Q of possible contamination distributions:

m (y∗|q, b, g0) = H̃

(
gq

gq + 1

)K1
2

(
1 +

(
gq

gq + 1

)(
R2
θq

1−R2
θq

))−NT2
, (12)

where

R2
θq =

(θ̂ (b)− θqιK1
)′ΛZ(θ̂ (b)− θqιK1

)

(θ̂ (b)− θqιK1
)′ΛZ(θ̂ (b)− θqιK1

) + v (b)
.

As the ε-contamination of the prior distributions for (θ, τ) is defined by π (θ, τ |g0) = (1− ε)π0 (θ, τ |g0)+
εq (θ, τ |g0), the corresponding predictive density is given by:

m (y∗|π, b, g0) = (1− ε)m (y∗|π0, b, g0) + εm (y∗|q, b, g0)

and
sup
π∈Γ

m (y∗|π, b, g0) = (1− ε)m (y∗|π0, b, g0) + ε sup
q∈Q

m (y∗|q, b, g0) .

The maximization of m (y∗|π, b, g0) requires the maximization of m (y∗|q, b, g0) with respect to θq
and gq. The first-order conditions lead to

θ̂q =
(
ι′K1

ΛZιK1

)−1
ι′K1

ΛZ θ̂ (b) (13)

and

ĝq = min (g0, g
∗) , (14)

with g∗ = max

( (NT −K1)

K1

(θ̂ (b)− θ̂qιK1
)′ΛZ(θ̂ (b)− θ̂qιK1

)

v (b)
− 1

)−1

, 0


= max

( (NT −K1)

K1

(
R2
θ̂q

1−R2
θ̂q

)
− 1

)−1

, 0

 .
Denote supq∈Qm (y∗|q, b, g0) = m (y∗|q̂, b, g0). Then

m (y∗|q̂, b, g0) = H̃

(
ĝq

ĝq + 1

)K1
2

(
1 +

(
ĝq

ĝq + 1

)( R2
θ̂q

1−R2
θ̂q

))−NT2
.

Let π∗0 (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior π0 (θ, τ |g0). Also, let
q∗ (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior q (θ, τ |g0). The ML-II posterior
density of θ is thus given by:

π̂∗ (θ|g0) =

∞∫
0

π̂∗ (θ, τ |g0) dτ

= λ̂θ,g0

∞∫
0

π∗0 (θ, τ |g0) dτ +
(

1− λ̂θ,g0
) ∞∫

0

q∗ (θ, τ |g0) dτ

= λ̂θ,g0π
∗
0 (θ|g0) +

(
1− λ̂θ,g0

)
q̂∗ (θ|g0) (15)
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with

λ̂θ,g0 =

1 +
ε

1− ε

 ĝq
ĝq+1
g0
g0+1

K1/2
1 +

(
g0
g0+1

)(
R2
θ0

1−R2
θ0

)
1 +

(
ĝq
ĝq+1

)( R2

θ̂q

1−R2

θ̂q

)


NT
2

−1

.

Note that λ̂θ,g0 depends upon the ratio of the R2
θ0

and R2
θq

, but primarily on the sample size NT .

Indeed, λ̂θ,g0 tends to 0 when R2
θ0
> R2

θq
and tends to 1 when R2

θ0
< R2

θq
, irrespective of the model

fit (i.e, the absolute values of R2
θ0

or R2
θq

). Only the relative values of R2
θq

and R2
θ0

matter.

It can be shown that π∗0 (θ|g0) is the pdf (see the supplementary appendix of Baltagi et al. (2018))

of a multivariate t-distribution with mean vector θ∗(b|g0), variance-covariance matrix

(
ξ0,θM

−1
0,θ

NT−2

)
and degrees of freedom (NT ) with

M0,θ =
(g0 + 1)

v (b)
ΛZ and ξ0,θ = 1 +

(
g0

g0 + 1

)(
R2
θ0

1−R2
θ0

)
. (16)

θ∗(b|g0) is the Bayes estimate of θ for the prior distribution π0 (θ, τ) :

θ∗ (b|g0) =
θ̂ (b) + g0θ0ιK1

g0 + 1
. (17)

Likewise q̂∗ (θ) is the pdf of a multivariate t-distribution with mean vector θ̂EB (b|g0), variance-

covariance matrix

(
ξq,θM

−1
q,θ

NT−2

)
and degrees of freedom (NT ) with

ξq,θ = 1 +

(
ĝq

ĝq + 1

)( R2
θ̂q

1−R2
θ̂q

)
and Mq,θ =

(
(ĝq + 1)

v (b)

)
ΛZ , (18)

where θ̂EB (b|g0) is the empirical Bayes estimator of θ for the contaminated prior distribution q (θ, τ)
given by:

θ̂EB (b|g0) =
θ̂ (b) + ĝq θ̂qιK1

ĝq + 1
. (19)

The mean of the ML-II posterior density of θ is then:

θ̂ML−II = E [π̂∗ (θ|g0)] (20)

= λ̂θ,g0E [π∗0 (θ|g0)] +
(

1− λ̂θ,g0
)
E [q̂∗ (θ|g0)]

= λ̂θ,g0θ∗(b|g0) +
(

1− λ̂θ,g0
)
θ̂EB (b|g0) .

The ML-II posterior density of θ, given b and g0 is a shrinkage estimator. It is a weighted average of
the Bayes estimator θ∗(b|g0) under base prior g0 and the data-dependent empirical Bayes estimator

θ̂EB (b|g0). If the base prior is consistent with the data, the weight λ̂θ,g0 → 1 and the ML-II
posterior density of θ gives more weight to the posterior π∗0 (θ|g0) derived from the elicited prior.
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In this case θ̂ML−II is close to the Bayes estimator θ∗(b|g0). Conversely, if the base prior is not

consistent with the data, the weight λ̂θ,g0 → 0 and the ML-II posterior density of θ is then close

to the posterior q̂∗ (θ|g0) and to the empirical Bayes estimator θ̂EB (b|g0). The ability of the ε-
contamination model to extract more information from the data is what makes it superior to the
classical Bayes estimator based on a single base prior.5

2.3.2. The second step of the robust Bayesian estimator

Let ỹ = y−Zθ. Moving along the lines of the first step, the ML-II posterior density of b is given
by:

π̂∗ (b|h0) = λ̂b,h0
π∗0 (b|h0) +

(
1− λ̂b,h0

)
q̂∗ (b|h0)

with

λ̂b,h0 =

1 +
ε

1− ε

 ĥ

ĥ+1
h0

h0+1

K2/2
1 +

(
h0

h0+1

)(
R2
b0

1−R2
b0

)
1 +

(
ĥ

ĥ+1

)( R2

b̂q

1−R2

b̂q

)


NT
2

−1

,

where

R2
b0 =

(̂b (θ)− b0ιK2)′ΛW (̂b (θ)− b0ιK2)

(̂b (θ)− b0ιK2
)′ΛW (̂b (θ)− b0ιK2

) + v (θ)
,

R2
b̂q

=
(̂b (θ)− b̂qιK2

)′ΛW (̂b (θ)− b̂qιK2
)

(̂b (θ)− b̂qιK2
)′ΛW (̂b (θ)− b̂qιK2

) + v (θ)
,

with b̂ (θ) = Λ−1
W W ′ỹ and v (θ) = (ỹ −Wb̂ (θ))′(ỹ −Wb̂ (θ)),

b̂q =
(
ι′K2

ΛW ιK2

)−1
ι′K2

ΛW b̂ (θ)

and

ĥq = min (h0, h
∗)

with h∗ = max

( (NT −K2)

K2

(̂b (θ)− b̂qιK2)′ΛW (̂b (θ)− b̂qιK2)

v (θ)
− 1

)−1

, 0


= max

( (NT −K2)

K2

(
R2
b̂q

1−R2
b̂q

)
− 1

)−1

, 0

 .
π∗0 (b|h0) is the pdf of a multivariate t-distribution with mean vector b∗(θ|h0), variance-covariance

matrix

(
ξ0,bM

−1
0,b

NT−2

)
and degrees of freedom (NT ) with

M0,b =
(h0 + 1)

v (θ)
ΛW and ξ0,b = 1 +

(
h0

h0 + 1

)
(̂b (θ)− b0ιK2

)′ΛW (̂b (θ)− b0ιK2
)

v (θ)
.

5Following Berger (1985), Baltagi et al. (2018) derived the analytical ML-II posterior variance-covariance matrix
of θ (see the supplementary appendix of Baltagi et al. (2018)).
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b∗(θ|h0) is the Bayes estimate of b for the prior distribution π0 (b, τ |h0) :

b∗(θ|h0) =
b̂ (θ) + h0b0ιK2

h0 + 1
.

q∗ (b|h0) is the pdf of a multivariate t-distribution with mean vector b̂EB (θ|h0), variance-covariance

matrix

(
ξ1,bM

−1
1,b

NT−2

)
and degrees of freedom (NT ) with

ξ1,b = 1 +

(
ĥq

ĥq + 1

)
(̂b (θ)− b̂qιK2

)′ΛW (̂b (θ)− b̂qιK2
)

v (θ)
and M1,b =

(
ĥ+ 1

v (θ)

)
ΛW

b̂EB (θ|h0) is the empirical Bayes estimator of b for the contaminated prior distribution q (b, τ |h0) :

b̂EB (θ|h0) =
θ̂(b) + ĥq b̂qιK2

ĥq + 1
.

The mean of the ML-II posterior density of b is hence given by:

b̂ML−II = λ̂bb∗(θ|h0) +
(

1− λ̂θ
)
b̂EB (θ|h0) . (21)

The ML-II posterior variance-covariance matrix of b can be derived in a similar fashion6 to that of
θ̂ML−II .

2.4. Estimating the ML-II posterior variance-covariance matrix

Many have raised concerns about the unbiasedness of the posterior variance-covariance matrices
of θ̂ML−II and b̂ML−II . Indeed, they will both be biased towards zero as λ̂θ,g0 and λ̂b,h0

→ 0
and converge to the empirical variance which is known to underestimate the true variance (see e.g.
Berger and Berliner (1986); Gilks et al. (1997); Robert (2007)). Consequently, the assessment of

the performance of either θ̂ML−II or b̂ML−II using standard quadratic loss functions can not be
conducted using the analytical expressions. What is needed is an unbiased estimator of the true
ML-II variances. Baltagi et al. (2018) proposed two different strategies to approximate these, each
with different desirable properties: MCMC with multivariate t-distributions or block resampling
bootstrap. Simulations show that one needs as few as 20 bootstrap samples to achieve acceptable
results7. Here, we will use the same individual block resampling bootstrap method. Following
Bellman et al. (1989); Andersson and Karlsson (2001), and Kapetanios (2008), individual block
resampling consists of drawing an (N×T ) matrix Y BR whose rows are obtained by resampling those
of an (N × T ) matrix Y with replacement. Conditionally on Y , the rows of Y BR are independent
and identically distributed. The following algorithm is used to approximate the variance matrices:

1. Loop over BR samples

6See the supplementary appendix of Baltagi et al. (2018).
7Increasing the number of bootstrap samples does not change the results but increases the computation time

considerably.
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2. In the first step, compute the mean of the ML-II posterior density of θ using our initial
shrinkage procedure

θ̂ML−II,br = E [π̂∗ (θ|g0)]

= λ̂θ,g0θ∗(b|g0) +
(

1− λ̂θ,g0
)
θ̂EB (b|g0) .

3. In the second step, compute the mean of the ML-II posterior density of b:

b̂ML−II,br = λ̂bb∗(θ|h0) +
(

1− λ̂θ
)
b̂EB (θ|h0)

4. Once the BR bootstraps are completed, use the (K1 × BR) matrix of coefficients θ(BR) and
the (N ×BR) matrix of coefficients b(BR) to compute:

θ̂ML−II = E
[
θ(BR)

]
, σ̂θML−II =

√
diag

(
V ar

[
θ(BR)

])
b̂ML−II = E

[
b(BR)

]
, σ̂bML−II =

√
diag

(
V ar

[
b(BR)

])
3. Monte Carlo simulation study

In what follows, we compare the finite sample properties of our proposed estimator with those
of standard classical estimators.

3.1. The DGP of the Monte Carlo simulation study

For the random effects (RE), the Chamberlain (1982)-type fixed effects (FE) world and the
Hausman and Taylor (1981) (HT) worlds, we use the same DGP as that of Baltagi et al. (2018)
extended to the dynamic case. For the dynamic homogeneous/heterogeneous panel data model with
common trends or with common correlated effects, we will follow Chudik and Pesaran (2015a,b).

yit = ρyi,t−1 + x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + V1,iη1 + V2,iη2 + µi + uit, (22)

for i = 1, ..., N , t = 2, ..., T, with

x1,1,it = 0.7x1,1,it−1 + δi + ζit

x1,2,it = 0.7x1,2,it−1 + θi + ςit

uit ∼ N
(
0, τ−1

)
, (δi, θi, ζit, ςit) ∼ U(−2, 2)

and ρ = 0.75, β1,1 = β1,2 = β2 = 1.

1. For a random effects (RE) world, we assume that:

η1 = η2 = 0

x2,it = 0.7x2,it−1 + κi + ϑit , (κi, ϑit) ∼ U(−2, 2)

µi ∼ N
(
0, σ2

µ

)
, σ2

µ = 4τ−1.

Furthermore, x1,1,it, x1,2,it and x2,it are assumed to be exogenous in that they are not corre-
lated with µi and uit.
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2. For a Chamberlain-type fixed effects (FE) world, we assume that:

η1 = η2 = 0;

x2,it = δ2,i + ω2,it , δ2,i ∼ N(mδ2 , σ
2
δ2), ω2,it ∼ N(mω2 , σ

2
ω2

);

mδ2 = mω2 = 1, σ2
δ2 = 8, σ2

ω2
= 2;

µi = x2,i1π1 + x2,i2π2 + ...+ x2,iTπT + νi, νi ∼ N(0, σ2
ν);

σ2
ν = 1, πt = (0.8)T−t for t = 1, ..., T.

x1,1,it and x1,2,it are assumed to be exogenous but x2,it is correlated with the µi and we
assume an exponential growth for the correlation coefficient πt.

3. For a Hausman-Taylor (HT) world, we assume that:

η1 = η2 = 1;

x2,it = 0.7x2,it−1 + µi + ϑit , ϑit ∼ U(−2, 2);

V1,i = 1, ∀i;
V2,i = µi + δi + θi + ξi, ξi ∼ U(−2, 2);

µi ∼ N
(
0, σ2

µ

)
and σ2

µ = 4τ−1.

x1,1,it and x1,2,it and V1,i are assumed to be exogenous while x2,it and V2,i are endogenous
because they are correlated with the µi but not with the uit.

4. For the homogeneous panel data world with common trends, we follow Chudik and Pesaran
(2015a,b) and assume that

yit = ρyi,t−1 + xitβ1 + xi,t−1β2 + f ′tγi + uit, for i = 1, ..., N , t = 2, ..., T, (23)

with

xit = αxiyi,t−1 + f ′tγxi + ωxit

ωxit = %xiωxit−1
+ ζxit

γil = γl + ηi,γl , for l = 1, ...,m

γxil = γxl + ηi,γxl , for l = 1, ...,m

where

ζxit ∼ N(0, σ2
ωxi

) , σ2
ωxi

= β1

√
1− [E(%xi)]

2
, %xi ∼ N(0, 0.9), for i = 1, ..., N

ηi,γl ∼ N(0, σ2
γl

) , ηi,γxl ∼ N(0, σ2
γxl

), for l = 1, ...,m , σ2
γl

= σ2
γxl

= 0.22

γl =
√
l × cγ , γxl =

√
l × cx,l cγ = (1/m)− σ2

γl

cx,l =
2

m(m+ 1)
−

2σ2
γxl

(m+ 1)
, ρ = 0.75, β1 = β2 = 1 and uit ∼ N

(
0, τ−1

)
.

ft and γi are (m × 1) vectors. We consider m = 2 deterministic known common trends:
one linear trend ft,1 = t/T and one polynomial trend: ft,2 = t/T + 1.4(t/T )2 − 3(t/T )3 for
t = 1, ..., T . The feedback coefficients follow a uniform distribution αxi ∼ U(0, 0.15) and are
non-zero for all i (αxi 6= 0). They lead to weakly exogenous regressors xit.
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5. For the homogeneous panel data world with correlated common effects, we follow Chudik
and Pesaran (2015a,b), and assume that the m common trends, ft (23), are replaced with
unobserved common factors:

ftl = ρflft−1,l + ξftl, ξftl ∼ N(0, 1− ρ2
fl), l = 1, ...,m

We assume that the common factors are independent stationary AR(1) processes with ρfl =
0.6 for l = 1, ...,m.

6. For the heterogeneous panel data world with correlated common effects, we follow Chudik and
Pesaran (2015a,b) and assume that ρ (resp. β1) in the model (23) is replaced by individual
coefficients ρi ∼ U(0.6, 0.9) (resp. β1i ∼ U(0.5, 1)) for i = 1, ..., N and we keep the m
unobserved common factors as defined previously.

For each set-up, we vary the size of the sample and the length of the panel. We choose several
(N,T ) pairs with N = 100, 200 and T = 10, 30 for cases 1 to 3 and N = (50, 100) and T = (30, 50)
for cases 4 to 6. The autoregressive coefficient is set as ρ = 0.75. We set the initial values of yit,
x1,1,it, x1,2,it and x2,it, xit to zero. We next generate all the x1,1,it, x1,2,it, x1,2,it, xit, yit, uit, ζit,
ςit, ω2,it, . . . over T + T0 time periods and we drop the first T0(= 50) observations to reduce the
dependence on the initial values. The robust Bayesian estimators for the two-stage hierarchy are
estimated with ε = 0.5, though we investigate the robustness of our results to various values of ε.8

We must set the hyperparameters values θ0, b0, g0, h0, τ for the initial distributions of θ ∼
N
(
θ0ιK1

, (τg0ΛZ)
−1
)

and b ∼ N
(
b0ιK2

, (τh0ΛW )
−1
)

where θ = [ρ, β1,1, β1,2, β2]
′

for the first

three cases and θ = [ρ, β1, β2]
′

for the last three cases. While we can choose arbitrary values for
θ0, b0 and τ , the literature generally recommends using the unit information prior (UIP) to set
the g-priors.9 In the normal regression case, and following Kass and Wasserman (1995), the UIP
corresponds to g0 = h0 = 1/NT , leading to Bayes factors that behave like the Bayesian Information
Criterion (BIC).

For the 2S robust estimators, we use BR = 20 samples in the block resampling bootstrap. For
each experiment, we run R = 1, 000 replications and we compute the means, standard errors and
root mean squared errors (RMSEs) of the coefficients and the residual variances.

3.1.1. The random effects world

Rewrite the general dynamic model (8) as follows:

y =Zθ +Wb+ u = Zθ + Zµµ+ u

with Z ′it = [yit−1, X
′
it] , θ′ = [ρ, β′]

′
and X ′it = [x1,1,it, x1,2,it, x2,it] ,

where u ∼ N(0,Σ), Σ = τ−1IN(T−1), Zµ = IN ⊗ ιT−1 is (N(T − 1)×N), ⊗ is the Kronecker
product, ιT−1 is a (T − 1× 1) vector of ones and µ(≡ b) is a (N × 1) vector of idiosyncratic
parameters. When W ≡ Zµ, the random effects, µ ∼ N

(
0, σ2

µIN
)
, are associated with the error

term ν = Zµµ + u with Var (ν) = σ2
µ (IN ⊗ JT−1) + σ2

uIN(T−1), where JT−1 = ιT−1ι
′
T−1. This

8ε = 0.5 is an arbitrary value. This implicitly assumes that the amount of error in the base elicited prior is 50%.
In other words, ε = 0.5 means that we elicit the π0 prior but feel we could be as much as 50% off (in terms of implied
probability sets).

9We chose: θ0 = 0, b0 = 0 and τ = 1.
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model is usually estimated using GMM (see Arellano and Bond (1991); Blundell and Bond (1998),
amongst others). It could also be estimated using the quasi-maximum likelihood (QML) estimator
(see Bhargava and Sargan (1983), Kripfganz (2016), Bun et al. (2017), Moral-Benito et al. (2019)).
Thus we compare our Bayesian two stage estimator with the Arellano-Bond GMM and the QML
estimators.10

Table 1 reports the results of fitting the Bayesian two stage model with block resampling boot-
strap (2S bootstrap)11 along with those from the GMM and QMLE, each in a separate panel
respectively for (N = 100, T = 10) and (N = 200, T = 30). The true parameter values appear in
the first row of the Table. The last column reports the computation time in seconds.12 Note that
the computation time increases significantly as we move from a small sample to a larger one (the
QMLE being the fastest).

The first noteworthy feature of the Table is that all the estimators yield parameter estimates,
standard errors13 and RMSEs that are very close. For the coefficient of the lagged dependent
variable, ρ, the RMSE is the lowest for the 2S bootstrap when N = 100 and T = 10, but this RMSE
is the lowest for the QMLE when N = 200 and T = 30, although the differences are small. GMM
yields higher RMSEs for all coefficients. For the β coefficients, results are mixed in terms of RMSE
for N = 100 and T = 10, but QMLE is the best for N = 200 and T = 30 with still small differences.
The 2S bootstrap has better RMSEs than the frequentist estimators (GMM and QMLE) for the
residual disturbances (σ2

u) and the random effects (σ2
µ). Table 1 confirms that the base prior is not

consistent with the data since λ̂θ,g0 is close to zero. The ML-II posterior density of θ is close to the

posterior q̂∗ (θ|g0) and to the empirical Bayes estimator θ̂EB (b|g0). In contrast, λ̂µ is close to 0.5 so

the Bayes estimator b∗(θ|h0) under the base prior h0 and the empirical Bayes estimator b̂EB (θ|h0)
each contribute similarly to the random effects bi(≡ µi).

Table B.2 in the supplementary material gives the results when the coefficient ρ of the lagged
dependent variable is increased from 0.75 to 0.98 (close to the unit root) for N = 100 and T = 10.
The GMM estimator performs the worst as compared to the two other estimators. Even with a
coefficient ρ very close to the unit root, the 95% Highest Posterior Density Interval (HPDI) of
the Bayesian estimator confirm the stationarity of the AR(1) process. It does not therefore seem
necessary to impose a stationarity constraint on the prior distribution of ρ. QMLE has the lowest
RMSE (although the differences are small) except for σ2

u and σ2
µ where 2S bootstrap is the best as

reported in Table 1.

10We use our own R codes for our Bayesian estimator, the R package “plm” for the Arellano-Bond GMM estimator
and the “xtdpdqml” Stata package. We use the same DGP set under R and Stata environments to compare the
three methods. We thank Jean-Michel Etienne for his help and support with the full-blown programming language
Mata of Stata.

11Recall that we use only BR = 20 individual block bootstrap samples. Fortunately, the results are very robust to
the value of BR. For instance, increasing BR from 20 to 200 in the random effects world increases the computation
time tenfold but yields practically the same results.

12The simulations were conducted using R version 3.3.2 on a MacBook Pro, 2.8 GHz core i7 with 16Go 1600 MGz
DDR3 ram.

13Strictly speaking, we should mention “posterior means” and “posterior standard errors” whenever we refer to
Bayesian estimates and “coefficients” and “standard errors” when discussing frequentist ones. For the sake of brevity,
we will use “coefficients” and “standard errors” in both cases.
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3.1.2. The Chamberlain-type fixed effects world

For the Chamberlain (1982)-type specification, the individual effects are given by µ = XΠ +
$, where X is a (N × (T − 1)Kx) matrix with Xi = (X ′i2, ..., X

′
iT ) and Π = (π′2, ..., π

′
T )′ is a

((T − 1)Kx × 1) vector. Here πt is a (Kx × 1) vector of parameters to be estimated. The model
can be rewritten as: y = Zθ + ZµXΠ + Zµ$ + u. We concatenate [Z,ZµX] into a single matrix of
observables Z∗ and let Wb ≡ Zµ$.

For the Chamberlain world, we compare the QML estimator to our Bayesian estimator. These
are based on the transformed model: yit = ρyi,t−1 +x1,1,itβ1,1 +x1,2,itβ1,2 +x2,itβ2 +

∑T
t=2 x2,itπt+

$i +uit or y = Z∗θ∗+Wb+u = Z∗θ∗+Zµ$+u where Z∗ =
[
y−1, x1,1, x1,2, x2, x2

]
, W = Zµ and

b = $.
Table 2 once again shows that the results of the 2S bootstrap are very close to those of the

QML estimator. 2S bootstrap has the lowest RMSE for N = 100 and T = 10 except for σ2
µ.

QMLE has the lowest RMSEs for all the parameters when N = 200 and T = 30. Table B.3 in the
supplementary appendix gives the estimates of the πt coefficients. The RMSEs are lower for QMLE
than 2S bootstrap, although again the differences are very small. Table B.4 in the supplementary
material report the results for N = 200 and T = 30.

3.1.3. The Hausman-Taylor world

The static Hausman-Taylor model (henceforth HT, see Hausman and Taylor (1981)) posits that
y = Xβ+V η+Zµµ+u, where V is a vector of time-invariant variables, and that subsets of X (e.g.,
X ′2,i) and V (e.g., V ′2i) may be correlated with the individual effects µ, but leaves the correlations
unspecified. Hausman and Taylor (1981) proposed a two-step IV estimator.

For our dynamic general model (8) and for equation (22): y = Zθ + Wb + u = ρy−1 + Xβ +
V η + Zµµ+ u, we assume that (X ′2,i, V

′
2i and µi) are jointly normally distributed: µi(

X ′2,i
V ′2i

)  ∼ N
 0(

EX′2
EV ′2

)  ,

(
Σ11 Σ12

Σ21 Σ22

) ,

where X ′2,i is the individual mean of X ′2,it. The conditional distribution of µi | X ′2,i, V ′2i is given by:

µi | X ′2,i, V
′
2i ∼ N

(
Σ12Σ−1

22 .

(
X ′2,i − EX′2
V ′2i − EV ′2

)
,Σ11 − Σ12Σ−1

22 Σ21

)
.

Since we do not know the elements of the variance-covariance matrix Σjs, we can write:

µi =
(
X ′2,i − EX′2

)
θX +

(
V ′2i − EV ′2

)
θV +$i,

where $i ∼ N
(
0,Σ11 − Σ12Σ−1

22 Σ21

)
is uncorrelated with uit, and where θX and θV are vectors of

parameters to be estimated. In order to identify the coefficient vector of V ′2i and to avoid possible
collinearity problems, we assume that the individual effects are given by:

µi =
(
X ′2,i − EX′2

)
θX + f

[(
X ′2,i − EX′2

)
�
(
V ′2i − EV ′2

)]
θV +$i, (24)

where � is the Hadamard product and f
[(
X ′2,i − EX′2

)
�
(
V ′2i − EV ′2

)]
can be a nonlinear function

of
(
X ′2,i − EX′2

)
�
(
V ′2i − EV ′2

)
. The first term on the right-hand side of equation (24) corresponds
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to the Mundlak (1978) transformation while the middle term captures the correlation between V ′2i
and µi. The individual effects, µ, are a function of PX and (f [PX � V ]), i.e., a function of
the column-by-column Hadamard product of PX and V where P = (IN ⊗ JT−1)/(T − 1)) is the
between transformation. We can once again concatenate [y−1, X, PX, f [PX � V ]] into a single
matrix of observables Z∗ and let Wb ≡ Zµ$.

For our model (22), yit = ρyi,t−1 + x1,1,itβ1,1 + x1,2,itβ1,2 + x2,itβ2 + V1,iη1 + V2,iη2 + µi + uit
or y = ρy−1 +X1β1+ x2β2 + V1η1 + V2η2 + Zµµ+ u. Then, we assume that

µi = (x2,i − Ex2
) θX + f [(x2,i − Ex2

)� (V2i − EV2
)] θV +$i. (25)

We propose adopting the following strategy: If the correlation between µi and V2i is quite large
(> 0.2), use f [.] = (x2,i − Ex2

)
2 � (V2i − EV2

)
s

with s = 1. If the correlation is weak, set
s = 2. In real-world applications, we do not know the correlation between µi and V2i a pri-

ori. We can use a proxy of µi defined by the OLS estimation of µ: µ̂ =
(
Z ′µZµ

)−1
Z ′µŷ where

ŷ are the fitted values of the pooling regression y = ρy−1 + X1β1+ x2β2 + V1η1 + V2η2 + ζ.
Then, we compute the correlation between µ̂ and V2. In our simulation study, it turns out the
correlations between µ and V2 are large: 0.65. Hence, we choose s = 1. In this specification,
Z = [y−1, x1,1, x1,2, x2, V1, V2, Px2, f [Px2 � V2]], W = Zµ and b = $.

Our 2S bootstrap estimation method is compared with the two-stage quasi-maximum likelihood
sequential approach proposed by Kripfganz and Schwarz (2019). In the first stage, they estimate
the coefficients of the time-varying regressors without relying on coefficient estimates for the time-
invariant regressors using the quasi-maximum likelihood (QML) estimator of Hsiao et al. (2002)
with the “xtdpdqml” Stata command. Subsequently, they regress the first-stage residuals on the
time-invariant regressors. They achieve identification by using instrumental variables in the spirit
of Hausman and Taylor (1981), and they adjust the second-stage standard errors to account for
the first-stage estimation error.14 They have proposed a new “xtseqreg” Stata command which
implements the standard error correction for two-stage dynamic linear panel data models.15

Table 3 compares results of the 2S bootstrap estimator to those of the two-stage QML sequential
approach. Once again, the estimates are very close to one another. The RMSE is smaller for the
two-stage QML than for the 2S bootstrap for all the parameters for N = 200 and T = 10. On the
other hand, the 2S bootstrap has a lower RMSE for η2 (for N = 100 and T = 10) and (N = 100
and T = 30). This is true despite the fact that the 2S bootstrap estimator yields a slightly upward
biased estimate of η2, the coefficient associated with the time-invariant variable Z2,i which is itself
correlated with µi. This bias decreases as T increases (from 16% for T = 10 to 4.7% for T = 30).
Interestingly, the standard errors of that same coefficient η2 are smaller when using the Bayesian
estimator as compared to the two-stage QMLE, and especially when T is larger. Even with a slight
bias, the 95% confidence intervals of the Bayesian estimator are narrower and entirely nested within
those obtained with the two-stage QML sequential approach. We also reached the same conclusion

14For the following specification: yit = ρyi,t−1 + x′itβ + V ′i η + µi + uit, the first stage model is yit = ρyi,t−1 +
x′itβ + κ+ eit, where eit = κi − κ+ uit, κi = V ′i η+ µi, κ = E[κi] and is estimated in first differences. In the second

stage, Kripfganz and Schwarz (2019) estimate the coefficients η based on the level relationship: yit− ρ̂yi,t−1−x′itβ̂ =

V ′i η + ϑit where ϑit = µi + uit + (ρ̂− ρ)yi,t−1 − x′it(β̂ − β) and compute proper standard errors with an analytical
correction term.

15Following Kripfganz and Schwarz (2019), we use successively these two Stata commands (“xtdpdqml” and
“xtseqreg”). Unfortunately, these Stata commands do not give the residual variance of specific effects σ2

µ but only

σ2
u.
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in a static model (see Baltagi et al. (2018)). Finally, note that the 2S bootstrap estimator yields
slightly biased estimates of σ2

µ but this bias decreases rapidly as the time span is increased (from
17.5% for T = 10 to 2.5% for T = 30).

3.1.4. The dynamic homogeneous panel data world with common trends

The dynamic homogeneous panel data world with common trends is defined as:

yit = ρyi,t−1 + xitβ1 + xi,t−1β2 + f ′tγi + uit

Since the m common trends, ft, are known, we can rewrite the general dynamic model (8) as follows:

y =Zθ +Wb+ u = Zθ + FΓ + u

with Z ′it = [yit−1, X
′
it] , θ′ = [ρ, β′]

′
and X ′it = [xi,t, xi,t−1] ,

where u ∼ N(0,Σ), Σ = τ−1IN . The (N(T − 1) × Nm) matrix F of the m common trends is
a blockdiagonal matrix where each (T − 1 × m) sub block f is replicated N times and Γ is the
(Nm× 1) individual varying coefficients vector:

F = IN ⊗ f with f =

 f21 . . . f2m

. . . . . . . . .
fT1 . . . fTm

 and Γ = vec


γ11 γ21 . . . γN1

γ12 γ22 . . . γN2

. . . . . . . . . . . .
γ1m γ2m . . . γNm


This model is usually estimated using the common correlated effects pooled estimator (CCEP)
(see Pesaran (2006) and Chudik and Pesaran (2015a,b)). It can also be estimated using the quasi-
maximum likelihood (QML) estimator. We compare our 2S bootstrap estimator with the CCEP
estimator.16 We chose samples in which the time span is large T = 30 or T = 50 with small
(N = 50) or medium (N = 100) number of individuals (in the spirit of Chudik and Pesaran (2015a)
who vary N and T between 40 and 200 in their simulations).

Table 4 shows that the results of the 2S bootstrap estimator are close to those of the CCEP
estimator. The results on RMSEs are mixed. 2S bootstrap gives a lower RMSE for ρ than CCEP
for N = 100 and T = 30, i.e. 0.002 compared to 0.007, but this difference is reduced for N = 50
and T = 50, i.e. 0.0058 compared to 0.0066. CCEP gives a lower RMSE for β1. For β2, it depends
on the sample sizes. Finally, 2S bootstrap gives a lower RMSE for σ2

u. The computation time is a bit
longer with our estimator given the bootstrap procedure. However, all estimators yield essentially
the same parameter estimates, no matter what sample size.

3.1.5. The dynamic homogeneous panel data world with correlated common effects

Again, this model is usually estimated using the common correlated effects pooled estimator
(CCEP) (see Pesaran (2006); Chudik and Pesaran (2015a,b)) or with the principal components
estimators using quasi-maximum likelihood (QML) estimator (see Bai (2009) or Song (2013)).
Since the m common correlated effects, ft, are unknown, we need to rewrite the general dynamic

16We use our own R codes for our Bayesian estimator and the “xtdcce2” Stata package for the CCEP estimator.
We use the same DGP set under R and Stata environments to compare the two methods.
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model (8) as follows:

y =Zθ +Wb+ u = Zθ + FΓ + u

with Z ′it = [yit−1, X
′
it] , θ′ = [ρ, β′]

′
and X ′it = [xi,t, xi,t−1] ,

where the (N(T − 1)×Nm) matrix F of the m unobserved factors is still a blockdiagonal matrix
where each ((T −1)×m) sub block f is replicated N times but f should be approximated by known
variables. Similar to the Hausman-Taylor case (see eq(24)), we can approximate the ((T − 1)×m)
f matrix with a ((T − 1)×K1) f∗ matrix of the within time transformation17 of Zit:

f∗ =

 f∗2
. . .
f∗T

 where f∗t =
[(
y−1,t − y−1

)
,
(
xt − x

)
,
(
x−1,t − x−1

)]
with xt = (1/N)

N∑
i=1

xit, x = (1/NT )

N∑
i=1

T∑
t=2

xit,

or as Chudik and Pesaran (2015a) by the time means of the dependent and explanatory variables:
f∗t =

[
yt, y−1,t, xt, x−1,t

]
.18 We follow the method of Chudik and Pesaran (2015a,b) by introducing

the time means of the dependent and explanatory variables instead of introducing only the within
time transformation of the explanatory variables Z ′it. Then, the product FΓ is approximated with
the product F ∗Γ∗ where the factor loadings Γ∗ is a (NK1×1) vector and F ∗ is a (N(T −1)×NK1)
matrix of the time means of Y and Z.

Table 5 shows that the results of the 2S bootstrap are very close to those of the dynamic CCEP
estimator. However, the RMSE is smaller for CCEP than 2S bootstrap, but not by much for most
parameters.

3.1.6. The dynamic heterogeneous panel data world with correlated common effects

The dynamic heterogeneous panel data world with common factors is defined as:

yit = ρiyi,t−1 + xitβ1i + xi,t−1β2i + f ′tγi + uit = Z ′itθi + f ′tγi + uit

where Z ′it = [yit−1, X
′
it] , θ′i = [ρi, β

′
i]
′

and X ′it = [xi,t, xi,t−1]. This model is usually estimated
using the common correlated effects mean group estimator (CCEMG) (see Pesaran (2006) and
Chudik and Pesaran (2015a,b)). It could also be estimated using the quasi-maximum likelihood

(QML) estimator. So we compare the mean coefficients θ̂ = (1/N)
∑N
i=1 θ̂i of our 2S bootstrap

estimator with the CCEMG estimator.19

While the bottom panel of Table 6 gives insights on the distribution of ρi and β1i for different
sample sizes, the top panel of Table 6 gives the estimated values of the mean coefficients ρ, β1, the
estimated values of β2 and σ2

u, their standard deviations and their RMSE’s. Table 6 shows that

17i.e., the demeaned time means.
18The dynamic CCEP estimator is defined as: yit = ρyi,t−1 + xitβ1 + xi,t−1β2 +

∑pT
j=0 f

∗
t−jγi,j + uit where

pT = T 1/3 (see Chudik and Pesaran (2015b) pp. 26). Then, pT ≈ 3 when T = 30 or T = 50. In the simulations, we
use pT = 0.

19We use our own R codes for our Bayesian estimator and the “xtdcce2” Stata package for the CCEMG estimator.
We use the same DGP set under R and Stata environments to compare the two methods.
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the results of the 2S bootstrap estimator are close to those of the CCEMG estimator. The RMSEs
results are mixed. 2S bootstrap gives a smaller RMSE for ρ than CCEMG, but CCEMG gives a
smaller RMSE for β1 and σ2

u. The results for β2 depend on the sample size. For β1 the bias is
(7.64% for N = 100, T = 30), (resp. 16.47% for N = 50, T = 50) for the 2S bootstrap estimator
as compared to those of the CCEMG estimator (4.37%, resp.(10.21%)). For the residuals’ variance
σ2
u, the bias increases with the time dimension for both estimators. However, all the estimators

yield roughly the same parameter estimates. Computation time is a bit longer with our estimator
given the bootstrap procedure.

3.1.7. Sensitivity to ε-contamination values

Tables B.5 and B.6 (in the supplementary material) investigate the sensitivity of the 2S bootstrap
estimator for the random effects world and for the heterogeneous panel data world with correlated
common effects20 with respect to ε, the contamination part of the prior distributions, which varies
between 0 and 90%. As shown in Table B.5 for the random effects world when N = 100 and
T = 10, all the parameter estimates are insensitive to ε. The only noteworthy change concerns the
estimated value of λµ(≡ λb,h0

). It more or less corresponds to (1− ε). This particular relation may

occur whenever ĥ/
(
ĥ+ 1

)
= h0/ (h0 + 1) and R2

b0
/
(
1−R2

b0

)
= R2

b̂q
/
(

1−R2
b̂q

)
(see the definition

of λ̂b,h0
in section 2.3.2). The observed stability of the coefficients estimates stems from the fact that

the base prior is not consistent with the data as the weight λ̂θ → 0. The ML-II posterior mean of
θ is thus close to the posterior q̂∗ (θ | g0) and to the empirical Bayes estimator θ̂EB (µ | g0). Hence,
the numerical value of the ε-contamination, for ε 6= 0, does not seem to play an important role in
our simulated worlds. Table B.5 also reports the results when ε is very close to zero (ε = 10−17) and
we get similar results. Lastly, we have also checked the extreme case when ε = 0. The restricted
ML-II estimator (ε = 0) constrains the model to rely exclusively on a base elicited prior which
is implicitly assumed error-free. This is a strong assumption. This time, results are not strictly
similar to those of ε 6= 0 but they are close to the true values except for σ2

µ which has a fairly large
upward bias (11.4%) as well as a large RMSE.21

Table B.6 shows similar results. All the parameter estimates are insensitive to ε (ε 6= 0) for the
heterogeneous panel data world with correlated common effects when N = 100 and T = 30. The
only changes concern the estimated values of λθ,g0 and λµ(≡ λb,h0

). While λ̂µ(≡ λ̂b,h0
) changes

inversely to ε, λ̂θ,g0 has the shape of an inverted J as ε increases. As for the random effects world,
when ε = 0, the results are not strictly similar to those of ε 6= 0 but they are close to the true values
except for σ2

µ which has also a fairly large upward bias (14.5%) as well as large standard error and
RMSE. Whatever the world tested, results are insensitive to the exact value of ε 6= 0. This stems
from the fact that the 2S bootstrap estimator is data driven and implicitly adjusts the weights to
the different values of ε-contamination. This may by why, even though the choice of ε = 0.5 is
somewhat arbitrary, the adjustment compensates for it not being optimal (see Berger (1985)).

20This exercise could be conducted for the other worlds as Chamberlain-type fixed effects or Hausman-Taylor world
but we report the results for only two worlds for the sake of brevity.

21From a theoretical point of view, and under the null, H0 : ε = 0, it follows that the weights λ̂θ,g0 = 1 and

λ̂b,h0
= 1 so that the restricted ML-II estimator of θ is given by θ̂restrict = θ∗(b | g0). Under H1 : ε 6= 0 the

unrestricted estimator is θ̂unrestrict

(
≡ θ̂ML−II

)
= λ̂θ,g0θ∗(b | g0) +

(
1− λ̂θ,g0

)
θEB (b | g0) . The restricted ML-II

estimator θ∗ (b | g0) is the Bayes estimator under the base prior g0.
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3.1.8. Departure from normality

Tables B.7 and B.8 (in the supplementary material) investigate the robustness of the estimators
to a non-normal framework for the random effects world and for the heterogeneous panel data
world with correlated common effects. The remainder disturbances, uit, are now assumed to follow
a right-skewed t-distribution with mean = 0, degrees of freedom ν = 3, and skewing parameter
γ = 2 (see Fernández and Steel (1998), Baltagi et al. (2018)).22 Our 2S bootstrap estimator behaves
pretty much like the GMM and the QMLE for the random effects world when N = 100 and T = 10
(see Table B.7). There is, however, a slight downward bias for the ρ coefficient (−4.7%) and a slight
upward bias for β11 and β2 (7%). But these biases are small. Compared to the GMM estimator, our
2S bootstrap estimator provides better estimates of σ2

u and σ2
µ but it is the QML estimator that gives

the estimates closest to the true values. Another interesting result concerns the standard errors
and RMSEs of all the estimators. The presence of a right-skewed t-distribution greatly increases
these values especially for σ2

u.
Table B.8 investigates the robustness of the CCEMG and 2S bootstrap estimators to the right-

skewed t-distribution for the heterogeneous panel data world with correlated common effects when
N = 100 and T = 30. There are slight downward biases for the ρ mean coefficient, with that of
CCEMG being larger than that of 2S bootstrap (−16% vs −7.6%) as well as slight upward bias for
σ2
u, that of CCEMG being larger than that of 2S bootstrap (5.6% vs 0.5%). However, for the β1

mean coefficient, it is the 2S bootstrap estimator which has a slightly larger bias (17.2% vs 7.5%).
Finally, it can be noted that the RMSE of σ2

u is larger for the CCEMG estimator than for the 2S
bootstrap estimator.

4. Conclusion

To our knowledge, our paper is the first to analyze the dynamic linear panel data model using
an ε-contamination approach within a two-stage hierarchical approach. The main benefit of this
approach is its ability to extract more information from the data than the classical Bayes estimator
with a single base prior. In addition, we show that our approach encompasses a variety of classical
or frequentist specifications. We estimate the Type-II maximum likelihood (ML-II) posterior distri-
bution of the slope coefficients and the individual effects using a two-step procedure. The posterior
distribution is a convex combination of the conditional posterior densities derived from the elicited
prior and the ε-contaminated prior. Thus if the base prior is consistent with the data, more weight
is given to the conditional posterior density derived from the former. Otherwise, more weight is
given to the latter.

The finite sample performance of the two-stage hierarchical models is investigated using ex-
tensive Monte Carlo experiments. The experimental design includes a random effects world, a
Chamberlain type fixed effects world, a Hausman–Taylor-type world and worlds with homoge-
neous/heterogeneous slopes and cross-sectional dependence. The simulation results underscore the
relatively good performance of the two-stage hierarchy estimator, irrespective of the data generat-
ing process considered. The biases and the RMSEs are close and sometimes smaller than those of

22The Skewed t distribution with ν degrees of freedom and skewing parameter γ has the following density:

pdf(x) =
2

γ + 1
γ

f(z) where z = γx if x < 0 or z = x/γ if x ≥ 0

where f(.) is the density of the t distribution with ν degrees of freedom.
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the conventional (classical) estimators. We also investigate the sensitivity of the estimators to the
contamination part of the prior distribution. It turns out that parameter estimates are relatively
stable. Finally, we investigate the robustness of the estimators when the remainder disturbances
are assumed to follow a right-skewed t-distribution. Compared to classical estimators, our robust
estimators globally behave well in terms of precision and bias.

The robust Bayesian approach we propose is arguably a useful all-in-one panel data estimator.
Because it embeds a variety of estimators, it can be used straightforwardly to estimate dynamic
panel data models under many alternative stochastic specifications. Unlike classical estimators,
there is no need to have a custom estimator for each possible DGP. Furthermore, it allows one to
circumvent the difficulties faced by analysts who are oftentimes constrained to use those estimators
that are readily available in standard software suites.

We reckon that our estimator contributes only marginally to those already available in the
literature. Our main contribution is to propose an estimator that allows the analysts to focus
on the stochastic specification of their model rather than finding the software best suited to their
needs. This is because our estimator is easily amenable to many specifications in addition to those
already presented in this paper. These include models with individual and time random effects in
unknown common factors, spatial structures (autoregressive spatial), etc. We leave these for future
work.
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May 4, 2020

∗Corresponding author.
Email addresses: bbaltagi@maxwell.syr.edu (Badi H. Baltagi), georges.bresson@u-paris2.fr (Georges

Bresson), anoopchaturv@gmail.com (Anoop Chaturvedi), Guy.Lacroix@ecn.ulaval.ca (Guy Lacroix)



Contents

A Uniform distribution, derivation of the mean and variance of the ML-II posterior
density of ρ and some Monte Carlo results 2
A.1 Uniform distribution and derivation of the mean and variance of the ML-II posterior

density of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A.2 Some Monte Carlo results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B Some extra Monte Carlo simulation results 10

1



A. Uniform distribution, derivation of the mean and variance of the ML-II posterior
density of ρ and some Monte Carlo results

A.1. Uniform distribution and derivation of the mean and variance of the ML-II posterior density
of ρ

Following Singh and Chaturvedi (2012) (see also Shrivastava et al. (2019)), and for deriving the
posterior density of ρ, given (β, b), we write:

y◦ = (y −Xβ −Wb) = ρy−1 + u

the probability density function (pdf) of y◦, given the observables and the parameters, is:

p (y◦|y−1, ρ, τ) =
( τ

2π

)N(T−1)
2

exp
(
−τ

2
(y◦ − ρy−1)′(y◦ − ρy−1)

)
Let ρ̂(β, b) =

(
y′−1y−1

)−1
y′−1y

◦ = (Λy)
−1
y′−1y

◦, then following the derivation of (eq.16) in the
technical appendix (pp 6-7) of Baltagi et al. (2018), we can write:

(y◦ − ρy−1)′(y◦ − ρy−1) = ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

with
ϕ (β, b) = (y◦ − ρ̂(β, b)y−1)′(y◦ − ρ̂(β, b)y−1)

and
ρ̂ (β, b) =

(
y′−1y−1

)−1
y′−1y

◦ = Λ−1
y y′−1y

◦

then

p (y◦|y−1, ρ, τ) =
( τ

2π

)N(T−1)
2

exp
(
−τ

2

{
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

})
As the precision τ is assumed to have a vague prior p (τ) ∝ τ−1 and as |ρ| < 1 is assumed to be
U (−1, 1), the conditional posterior density of ρ, given (β, b) is defined by:

π∗ (ρ|β, b) =

∞∫
0

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dτ

∞∫
0

1∫
−1

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dρdτ

(A.1)

where

p (ρ) =
1

2
and p (τ) =

1

τ

2



So, the numerator of π∗ (ρ|β, b) can be written as:

∞∫
0

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dτ =

∞∫
0

(
1

2

)(
1

τ

)( τ
2π

)N(T−1)
2

× exp
(
−τ

2

{
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

})
dτ

=

(
1

2

)(
1

2π

)N(T−1)
2

×
∞∫

0

 (τ)
N(T−1)

2 −1

× exp
(
− τ2

{
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

})  dτ
As
∞∫
0

τx−1 exp
[
− τ2 r

]
dτ = (2/r)xΓ(x), then

∞∫
0

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dτ =
Γ(N(T−1)

2 )

2 (π)
N(T−1)

2

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

The denominator of the conditional posterior density of ρ is

∞∫
0

1∫
−1

p(ρ)p (τ) p (y◦|y−1, ρ, τ) dρdτ =
Γ(N(T−1)

2 )

2 (π)
N(T−1)

2

1∫
−1

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

dρ

then, the conditional posterior density of ρ, given (β, b) is defined by:

π∗ (ρ|β, b) =

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

1∫
−1

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

dρ

(A.2)
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Let us derive the denominator of the previous expression

A =

1∫
−1

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

dρ

= [ϕ (β, b)]
−N(T−1)

2

1∫
−1

[
1 +

Λy {ρ− ρ̂(β, b)}2

ϕ (β, b)

]−N(T−1)
2

dρ

= [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

√
Λy

ϕ(β,b)
(1−ρ̂(β,b))∫

−
√

Λy
ϕ(β,b)

(1+ρ̂(β,b))

(
1 + t2

)−N(T−1)
2

dt

= [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

[ 0∫
−
√

Λy
ϕ(β,b)

(1+ρ̂(β,b))

(
1 + t2

)−N(T−1)
2

dt+

√
Λy

ϕ(β,b)
(1−ρ̂(β,b))∫

0

(
1 + t2

)−N(T−1)
2

dt

]

= [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

[ √
Λy

ϕ(β,b)
(1+ρ̂(β,b))∫

0

(
1 + t2

)−N(T−1)
2

dt+

√
Λy

ϕ(β,b)
(1−ρ̂(β,b))∫

0

(
1 + t2

)−N(T−1)
2

dt

]

= [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

[
I1 + I2

]

Now taking the transformation η = t2

1+t2 , then(
1 + t2

)
=

(
1− η

)−1

and dt =
1

2
η−

1
2

(
1− η

)−3/2

dη

4



and we obtain I1 as1

I1 =

√
Λy

ϕ(β,b)
(1+ρ̂(β,b))∫

0

(
1 + t2

)−N(T−1)
2

dt =
1

2

ζ1∫
0

η−
1
2 (1− η)

N(T−1)−3
2 dη where ζ1 =

Λy
ϕ(β,b) (1 + ρ̂(β, b))

2[
1 +

Λy
ϕ(β,b) (1 + ρ̂(β, b))

2

]

=
1

2
ζ

1
2
1

1∫
0

z−
1
2 (1− ζ1z)

N(T−1)−3
2 dz =

1

2
ζ

1
2
1

Γ (1/2)

Γ (3/2)
×2 F1

(
−N (T − 1)− 3

2
;

1

2
;

3

2
; ζ1

)

= ζ
1
2
1 ×2 F1

(
−N (T − 1)− 3

2
;

1

2
;

3

2
; ζ1

)
as Γ (1/2) /Γ (3/2) = 2 (A.3)

Using the Pfaff’s transformation:

2F1 (a1; a2; a3; z) = (1− z)−a2 ×2 F1

(
a3 − a1; a2; a3;

z

z − 1

)
we obtain

2F1

(
−N (T − 1)− 3

2
;

1

2
;

3

2
; ζ1

)
= (1− ζ1)

− 1
2 ×2 F1

(
N (T − 1)

2
;

1

2
;

3

2
;

ζ1
ζ1 − 1

)
Notice that

ζ1
ζ1 − 1

= − Λy
ϕ (β, b)

(1 + ρ̂(β, b))
2

Hence

I1 = ζ
1
2
1 (1− ζ1)

− 1
2 ×2 F1

(
N (T − 1)

2
;

1

2
;

3

2
;

ζ1
ζ1 − 1

)
= −

√
Λy

ϕ (β, b)
(1 + ρ̂(β, b))×2 F1

(
N (T − 1)

2
;

1

2
;

3

2
;− Λy

ϕ (β, b)
(1 + ρ̂(β, b))

2

)
(A.4)

Similarly we obtain

I2 =

√
Λy

ϕ(β,b)
(1−ρ̂(β,b))∫

0

(
1 + t2

)−N(T−1)
2

dt =
1

2

ζ2∫
0

η−
1
2 (1− η)

N(T−1)−3
2 dη where ζ2 =

Λy
ϕ(β,b) (1− ρ̂(β, b))

2[
1 +

Λy
ϕ(β,b) (1− ρ̂(β, b))

2

]
= ζ

1
2
2 ×2 F1

(
−N (T − 1)− 3

2
;

1

2
;

3

2
; ζ2

)
= ζ

1
2
2 (1− ζ2)

− 1
2 ×2 F1

(
N (T − 1)

2
;

1

2
;

3

2
;

ζ2
ζ2 − 1

)

1The Euler integral formula is given by:

1∫
0

(t)a2−1 (1− t)a3−a2−1 (1− zt)−a1 dt =
Γ (a2) Γ (a3 − a2)

Γ (a3)
×2 F1 (a1; a2; a3; z)

where 2F1 (a1; a2; a3; z) is the Gaussian hypergeometric function with 2F1 (a1; a2; a3; z)).
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And as

ζ2
ζ2 − 1

= − Λy
ϕ (β, b)

(1− ρ̂(β, b))
2

=
Λy

ϕ (β, b)
(ρ̂(β, b)− 1)

2

Hence

I2 =

√
Λy

ϕ (β, b)
(ρ̂(β, b)− 1)×2 F1

(
N (T − 1)

2
;

1

2
;

3

2
;

Λy
ϕ (β, b)

(ρ̂(β, b)− 1)
2

)
(A.5)

Then, the denominator of the conditional posterior density of ρ, given (β, b), is

A = [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

[
I1 + I2

]

= [ϕ (β, b)]
−N(T−1)

2

√
ϕ (β, b)

Λy

 (ρ̂(β, b)− 1)×2 F1

(
N(T−1)

2 ; 1
2 ; 3

2 ;
Λy

ϕ(β,b) (ρ̂(β, b)− 1)
2
)

− (1 + ρ̂(β, b))×2 F1

(
N(T−1)

2 ; 1
2 ; 3

2 ;− Λy
ϕ(β,b) (1 + ρ̂(β, b))

2
) (A.6)

and the conditional posterior density of ρ, given (β, b), is

π∗ (ρ|β, b) =
1

A

[
ϕ (β, b) + Λy {ρ− ρ̂(β, b)}2

]−N(T−1)
2

=
ϕ (β, b)

−N(T−1)
2

(AB)
B

[
1 +

Σ−1

N(T − 1)− 2
{ρ− ρ̂(β, b)}2

]−N(T−1)
2

(A.7)

where2

Σ−1 =
Λy [N(T − 1)− 2]

ϕ (β, b)

and B =
Γ
(
N(T−1)

2

)
Γ
(
N(T−1)

2 − 1
)√ Λy

ϕ (β, b)
=

N(T − 1)

2π [N(T − 1)− 2]

√
Λy

ϕ (β, b)
(A.8)

Then, the expression

B

[
1 +

Σ−1

N(T − 1)− 2
{ρ− ρ̂(β, b)}2

]−N(T−1)
2

is the pdf of a t-distribution tν (ρ̂(β, b),Σ) with Σ = ϕ(β,b)
Λy [N(T−1)−2] and ν = N(T − 1) − 2 de-

grees of freedom. As π∗ (ρ|β, b) is a linear combination of a t-distribution (e.g., C−1tν with

2A random variable X ∈ Rp has a multivariate Student distribution with location parameters µ, shape matrix Σ
and ν degrees of freedom, X ∼ tν (µ,Σ) if its pdf is given by

Γ
(
ν+p
2

)
Γ
(
ν
2

)
(νπ)

p
2 | Σ |

1
2

[
1 +

1

ν
(x− µ)′ Σ−1 (x− µ)

]− ν+p
2

6



C = A.B.ϕ (β, b)
N(T−1)

2 ), we can use the results of Welch (1947) and Fairweather (1972) (see
also Witkovskỳ (2004))3.
As the mean (resp. the variance) of a tνS (ρ̂(β, b),Σ) distribution is ρ̂(β, b), for νS > 1 (resp. νS

νS−2Σ,
for νS > 2), then the mean of the posterior density of ρ is:

ρ̂ = Dρ̂(β, b)

and the variance of the posterior density of ρ is

V ar [ρ̂] = D2.
νS

νS − 2
Σ

with

νS = 4 + C2 (N (T − 1)− 6)

and D =

√
νS − 2

νS

N (T − 1)− 2

N (T − 1)− 4

If ρ is assumed to be U (−1, 1), then we get a three-step approach. For the dynamic specification:
y = ρy−1 + Xβ + Wb + u, we can integrate first with respect to (β, τ) given b and ρ, and then,
conditional on β and ρ, we can next integrate with respect to (b, τ) and last, we can integrate with
respect to ρ given (β, b).

1. Let y∗ = (y− ρy−1−Wb). Derive the conditional ML-II posterior distribution of β given the
specific effects b and ρ as in the section 2.3.1 of the main text.

2. Let ỹ = (y − ρy−1 −Xβ). Derive the conditional ML-II posterior distribution of b given the
coefficients β and ρ as in the section 2.3.2 of the main text.

3. Let y◦ = (y −Xβ −Wb). Derive the conditional ML-II posterior distribution of ρ given the
coefficients β and b as in the previous section A.1.

As the mean and variance of ρ are exactly defined, we do not need to introduce an ε-contamination
class of prior distributions for ρ at the second stage of the hierarchy. This was initially our first goal.
Unfortunately, the results obtained on a Monte Carlo simulation study (see section A.2) provide

3If S =
∑k
j=1 λjtνj is a weighted linear combination of independent Student’s t random variables with νj

(j = 1, ..., k) degrees of freedom, then S is approximated by the distribution of the D multiple of single Student’s t
random variables with νS degrees of freedom, say D.tνS where νS and D > 0 are to be determinated by equating
the second and the fourth moments of D.tνS to those of S. In particular, if νj > 4, ∀j, then:

νS = 4 +
1∑k

j=1

λ2
j

νj−4

, D =

√√√√νS − 2

νS

1∑k
j=1

νj−2

νj

In our case, k = 1, λ1 = ( 1
C

) with C = A.B.ϕ (β, b)
N(T−1)

2 and ν1 = N(T − 1)− 2. So

νS = 4 + C2 (ν1 − 4) = 4 + C2 (N (T − 1)− 6)

and D =

√
νS − 2

νS

ν1

ν1 − 2
=

√
νS − 2

νS

N (T − 1)− 2

N (T − 1)− 4

7



biased estimates of ρ, β and residual variances. That is why we assume a Zellner g-prior, for the
θ
(
= [ρ, β′]

′)
vector encompassing the coefficient of the lagged dependent variable yi,t−1 and those of

the explanatory variables X ′it. Thus, we do not impose stationarity constraints like many authors
and we respect the philosophy of ε-contamination class using data-driven priors.

A.2. Some Monte Carlo results

We run a Monte Carlo simulation study for the dynamic random effects world comparing dif-
ferent robust Bayesian estimators. As previously in the main text, we run the two stage approach
with individual block resampling bootstrap assuming a Zellner g-prior, for the θ

(
= [ρ, β′]

′)
vector

encompassing the coefficient of the lagged dependent variable yi,t−1 and those of the explanatory
variables X ′it. We introduce a two stage three step approach when ρ ∼ U(−1, 1). When the initial
value of ρ is drawn for a uniform distribution U(−1, 1), results are strongly biased as shown on
Table A.1. Even if we initialize ρ with its OLS estimator on the pooled model, the results, if they
improve, are further biased.
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B. Some extra Monte Carlo simulation results

1. Dynamic random effects world with ρ = 0.98.

2. Chamberlain-type Fixed Effects World with ρ = 0.75.

3. Sensitivity to ε-contamination values

4. Departure from normality
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