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Dirty Density: Air Quality and the Density 
of American Cities*

In this paper we study the effect of urban density on the exposure of city dwellers to air 

pollution using data from the United States urban system. Exploiting geological features to 

instrument for density, we find an economically and statistically significant pollution-density 

elasticity of 0.13. We also assess the health implications of these estimates and find that 

doubling density in an average city increases annual mortality costs by $630 per capita. 

Our findings highlight the possible trade-off between reducing global greenhouse gas 

emissions, which is associated with denser cities according to prior research, and preserving 

local air quality and human health within cities.
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I. Introduction 

As of 2014, 54% of the world’s population lived in urban areas, with this figure projected to 

reach 66% by 2050 (United Nations, 2015). A large body of literature has examined the 

consequences of urbanization and provides strong evidence that the high population 

densities associated with urban living lead to welfare-enhancing agglomeration effects (see 

Combes and Gobillon 2015, and Ahlfeldt and Pietrostefani, 2019 for a survey). However, an 

increase in density is also associated with congestion forces such as crime, higher rental 

prices and possibly higher levels of air pollution.  

In this paper, we study how urban density affects the exposure of city dwellers to 

ambient air pollution. The direction of this relationship is theoretically ambiguous. If 

residents of denser cities drive less due to shorter commutes or increased road congestion, 

emissions per person may be lower. Indeed, previous research has shown that denser areas 

are associated with lower greenhouse gas emissions (see for example Glaeser and Kahn, 

2010).1 Conversely, a higher spatial concentration of polluters within a city and 

productivity-enhancing agglomeration effects resulting from increased density may both 

lead to greater overall pollution exposure. Previous work by Gaigné et al. (2012) and Borck 

(2016) studies the theoretical relationship between density and pollution formally, 

emphasizing that different mechanisms lead to ambiguous predictions. In this context, we 

estimate the relationship between density and air pollution empirically by constructing and 

 
1 Other empirical work emphasizing the relationship between greenhouse gas emissions and urban form can 

be found in Norman et al. (2006), VandeWeghe and Kennedy (2007), Fragkias et al. (2013), or Lee and Lee 

(2014). Holian and Kahn (2015) show density can also affect electoral support for low carbon policies. See 

Kahn and Walsh (2015) for a review. 



2 

 

analyzing a novel data set that combines satellite-derived measures of Particulate Matter 

(PM2.5) concentration with administrative data on population density for the contiguous 

United States. 

Studying the relationship between urban density and ambient pollution is of 

particular importance given the substantial adverse effects of air pollution on human health 

and wellbeing. The epidemiological and economic literature have documented a strong link 

between air pollution and various health outcomes such as life expectancy, infant mortality 

and emergency room visits (Dockery et al., 1993; Pope et al. 1995; Chay and Greenstone, 

2003; Schlenker and Walker, 2015). According to a recent report, the estimated annual cost 

of air pollution in terms of mortality and ill health for all OECD countries combined with 

China and India, is $3.5 trillion (OECD, 2014).2 A growing body of literature has shown that 

air pollution also affects other aspects of human life such as labor productivity, educational 

outcomes and crime (Graff Zivin and Neidell, 2012; Ebenstein et al., 2016; Bondy et al., 

2020) suggesting that the total cost of air pollution is likely to be even higher. As such, 

ambient air pollution has been a key policy issue in many countries worldwide. Given that 

more than 80 percent of people living in urban areas are exposed to air pollution levels that 

exceed the World Health Organization (WHO) guidelines, air quality is expected to remain 

high on the public health agenda.3 

 
2 Recent World Bank estimates for the global costs of air pollution climb to USD 5 trillion (World Bank (2016)). 

While the specific figures may of course be at best rough estimates, they do point to large and economically 

significant global costs of air pollution.  

3 See http://www.who.int/news-room/detail/12-05-2016-air-pollution-levels-rising-in-many-of-the-world-s-

poorest-cities. 



3 

 

Estimating the effect of urban density on air pollutant concentration is empirically 

challenging for several reasons, including the presence of unobserved correlated factors 

and reverse causality. More specifically, population densities are not randomly assigned as 

residents sort themselves into areas based on various characteristics including local 

amenities and employment opportunities. For example, many productive activities (e.g. 

manufacturing) can generate pollution; if residents sort themselves into areas close to these 

activities, a naïve OLS estimation may overstate the true effect of densities on pollution. 

Furthermore, empirical evidence demonstrates that pollution itself affects location 

decisions directly (Heblich et al. ,2016), resulting in a reverse causality problem which 

would bias our coefficients towards zero. 

We overcome these empirical challenges by using an instrumental variable (IV) 

strategy, with instruments inducing exogenous variation in density without affecting 

pollution directly. For this purpose,  we use three variables capturing geological features of 

US urban areas: earthquake risks, the presence of aquifers in and around urban areas and 

soil drainage capacity.4 We complement our main empirical approach with estimates 

obtained using a traditional long-lag instrument, which measures urban population density 

in the 1880 US Census (similar to Ciccone and Hall (1996) and subsequent work) and a 

fixed-effect  specification based on a two-period panel covering the years 2000 and 2010.  

We find a positive and statistically significant relationship between city-level 

population density and exposure to ambient air pollution. Our preferred instrumental 

 
4 Geological instruments for density were initially proposed in Rosenthal and Strange (2008) and have often 

been used in subsequent work in the agglomeration literature (see for example Combes et al. (2010)). 
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variable estimates suggest that a doubling of density – which is equivalent to changing 

population density in Houston to that of Chicago – increases PM2.5 exposure by 0.73 

(μg/m3). This effect, roughly equal to two-fifths of a standard deviation, is large given the 

substantial variation in densities between urban areas in the United States. We also 

estimate an exposure-density elasticity of 0.13, indicating that a 1% increase in density 

increases average residential PM2.5 exposure by 0.13%. To put this in perspective, according 

to a recent survey of the quantitative literature (Ahlfeldt and Pietrostefani, 2019), the 

density elasticity of wages and energy use reduction are 0.04 and 0.07, respectively. 

Estimation using our alternative instrumentation strategy based on historical population 

density yields slightly larger elasticities but confirms the qualitative findings. Moreover, 

using a fixed-effect panel specification, we find statistically similar results to our 

instrumental variable estimates despite the limited longitudinal variation in density over a 

decade in the US.  

We conduct several complementary analyses to explore the mechanism behind these 

findings. First, we use different specifications to explore the impact of scale effects 

associated with city size on the link between pollution and density. Second, we use data on 

the location of polluting industries to study whether local differences in sectoral 

composition can explain our main results. Finally, we test whether our between-city 

findings might be driven by the higher spatial concentration of emitters in denser cities. We 

find that denser locations within urban areas are indeed associated with higher pollution 

levels and no evidence in support of the other alternative channels. We conclude that our 

between-city results are likely driven by the reduced distance between sources and affected 
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households resulting from the higher spatial concentration of emitters in denser urban 

areas.   

The effect of density on local air pollution concentrations is only economically 

relevant if it translates into significant health and well-being effects on the cities’ 

inhabitants. We evaluate this by computing the pollution-induced mortality impacts of 

density following a similar analytical strategy to the one taken by the US Environmental 

Protection Agency (EPA) in their Regulatory Impact Analysis.5 Using concentration-

response functions from the literature and the EPA official figure for the Value of Statistical 

Life (VSL), combined with our main between-city IV estimates, we find that a doubling of 

population density is associated with an increase in annual mortality costs of as much as 

$630 per capita. This is a large cost that highlights the importance of incorporating air 

quality when considering the consequences of suburbanization. Finally, as previous 

research suggests that compact cities are linked with lower greenhouse gas emissions, our 

results indicate a potential trade-off in the environmental implications of dense urban 

development, with increased densities associated with lower global externalities 

(greenhouse gas emissions) but increased local externalities (local air pollution). We 

conduct back-of-the-envelope calculations to evaluate the net environmental impact of 

population density. We find that the local air pollution costs far outweigh the global 

environmental benefits of density in terms of reduced CO2 emissions.  

 

 
5 Regulatory Impact Analysis (RIA) is used by the EPA to support the development of national air pollution 

regulations as required under the 12866 and 13563 Executive Orders. 
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Our study provides several important contributions to the existing literature and 

policy-making more broadly. First, to the best of our knowledge we are the first to credibly 

estimate the causal relationship between population density and air pollution at the city 

and within-city levels. The paper closest to our work is Borck and Schrauth (2019), which 

studies the effect of district-level density on urban air pollution in Germany using data from 

monitoring stations.6 A few other previous studies have tried to estimate this relationship 

using partial correlations so they can only provide a causal interpretation of their results 

under strong assumptions.7 Second, in terms of policy implications, our results indicate that 

despite the usual claim that denser cities tend to be more environmentally friendly, air 

pollution exposure is actually higher in denser cities. We argue that there could be a trade-

off between reducing global greenhouse gas emissions and preserving the environmental 

quality within the city and highlight the need to incorporate the effect on air quality when 

estimating the impact of densification policies. Third, we use our empirical findings to 

derive a cost estimate, which can be used for future scholarly work on urban density and 

policymaking more broadly. Finally, most of the air quality literature in economics focuses 

 
6 Our paper differs from theirs in that we use satellite-level measures of air quality which enable us to deal 

with endogenous selection in the location of measuring stations and to conduct both within and between city 

analyses. We also measure density at the city, rather than the district, level. Finally, we explicitly analyze the 

costs of densification in terms of mortality and its associated monetary cost. We see our papers as 

complementary, although the comparability of results is limited by the relatively small number of measuring 

stations recording data on PM2.5 in Borck and Schrauth (2019).  

7 Sarzynski (2012) uses a cross-section of world cities to estimate the partial correlation of demographics on 

pollutant emissions. They find a negative effect of density on air pollutant emissions, in line with some of the 

results obtained in Glaeser and Kahn (2010) for US cities. Ahlfeldt and Pietrostefani (2019) review the 

literature and provide cross-sectional elasticities between density and pollution using a sample of OECD 

urban areas. Finally, Hilber and Palmer (2014) use a panel of world cities to determine that density is 

negatively associated with urban air pollution concentration, with the negative estimates arising mainly from 

developing country cities. 
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on the impact of air pollution exposure on human health and wellbeing. In contrast, our 

paper examines the determinants of air pollution by studying how the consequences of 

human actions – in this case, urban form – affect air quality.  

II. Data and Descriptives 

For our analysis, we combine information on air pollution concentrations, 

population density, demographics and geological features from several sources. We 

construct our dataset as a 0.01x 0.01 degrees grid over the conterminous United States 

territory. This grid is based on a raster of average PM2.5 concentration measurements 

obtained by combining the Aerosol Optical Depth retrieval from the NASA MODIS 

instrument adjusted using ground-level monitoring station level data as detailed in van 

Donkelaar et al. (2015). We convert the raster into a polygon grid and use this as the 

skeleton of our dataset. Because the grid cell size is defined in fixed units of coordinate 

degrees, they vary slightly in surface depending on latitude. The average cell size is 

approximately 1 square kilometer and the inter-quartile range in cell size is only 0.1 sq. 

km.8 Throughout most of our analysis, our dependent variable is PM2.5 average yearly 

concentration, measured in 2010.  

We add census population data from the US census for 2010 by spatially matching 

our grid cells with census-blocks. Imputation of population data to our grid cells is 

performed by assuming a uniform spatial distribution of populations within the census 

block, overlaying our polygon grid on census block-group shapefiles distributed by the US 

Census Bureau, and aggregating data back to our grid cells using spatial weights computed 

 
8 We incorporate heterogeneity in cell size in our computations where appropriate. 
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using surface areas. We use this information to compute the grid cell level and city level 

density measures. We additionally incorporate data on demographic characteristics 

including income and education proxies, population age, housing tenure, etc. 

To obtain our main instrumental variable estimates, we use three different 

instruments that may affect population density but not air pollution directly. We obtain 

variables measuring earthquake risks and the presence of aquifers from the United States 

Geological Survey (USGS) (also used in Turner and Duranton, 2018), and data on soil 

drainage quality from NRCS State Soil Geographic Data Base. We match our grid cells to 

the geological data using grid cell centroids to spatially impute data on aquifers, 

earthquake risks and soil drainage quality. An alternative instrument, used in our 

robustness checks, is population density data at the county level obtained from the 1880 

United States census. We impute this data on our grid cells using spatial matching based on 

the assumption of uniform population distribution within 1880 counties. Note that, while 

the assumption of uniform distribution is clearly a simplification that could lead to 

measurement error, this should not have a substantial impact on our main estimates. 

Measurement error in the instruments could affect their relevance but should not generate 

bias in the coefficients of interest unless the measurement error itself is correlated with 

pollution concentration.  

In our city-level analysis, we use the Core-Based Statistical Areas (CBSAs) as defined 

by the Office of Management and Budget. We include both Metropolitan and Micropolitan 

statistical areas in most of our city-level analysis. These areas are defined as an aggregation 

of counties based on commuting patterns around an urban core. In using these areas, we 
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attempt to approximate a working definition of a functional urban area. The definition of 

CBSAs used in this paper is based on the 2010 Census, with the associated shapefiles 

obtained from the US Census Bureau. 

We complement our dataset with gridded data on PM2.5 concentrations from ground-

level monitoring stations (obtained from EPA AirData) and industrial composition at the 

county level from the County Business Patterns (CBP) dataset. We use the ground-level 

monitoring station data to validate our satellite-derived pollution measures. The scatter 

plot in Appendix Figure A1 shows the correlation between monitoring station measures of 

PM2.5 concentration and concentration measures obtained using our satellite-derived data. 

In both cases local, measures are aggregated to the city level. The correlation is high, as 

expected, standing at roughly 80%.9 

The dataset assembly process is illustrated using the metropolitan area (MSA) of 

Minneapolis-St. Paul-Bloomington in Figure 1. Top panel A shows a satellite photograph of 

the Twin Cities, with the Mississippi crossing the urbanized area from north-west to south-

east. Panel B presents our pollution raster, with darker shades indicating higher PM2.5 

concentration levels. Points in panel B indicate the location of AirData measuring stations 

in the area, which we will use in our robustness checks. Finally, bottom panel C indicates 

the resolution of our population data, with polygons indicating census block groups. We 

spatially impute data to our grid cells and then aggregate to CBSAs to obtain our city-level 

dataset. 

 
9 Sullivan and Krupnick (2018) use the same satellite-derived source of particulate matter concentration we 

use in this paper to complete the large gaps in the coverage of the pollution monitor network in the United 

States. 
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Before turning to the core of our empirical analysis, we first provide a series of 

descriptives at our two spatial scales. Table 1 provides descriptive statistics for the main 

variables of interest across our 4,356,408 spatial cells and our aggregated dataset of 933 

cities. Panel B shows that there is substantial variation in both density and air pollution 

levels across the US. We can also see that population densities of US cities have increased 

almost fivefold since the 19th century.  Annual mean PM2.5 is lower for the satellite measure 

suggesting that ground measuring stations are located in more polluted areas. This 

endogenous location of measuring stations generates a measurement error problem that 

exists, to varying degrees, in much of the empirical literature on ambient air pollution. 

To further explore the distribution of population and pollution, we provide distance 

gradients for both population density and PM2.5 concentration in Figure 2 using data for all 

cities. The horizontal axis represents the distance to the CBSA population centroid and the 

solid line represents population density.10 We observe the usual downward sloping density 

gradient that characterizes most cities (see for example McDonald, 1989 or Bertaud and 

Malpezzi, 2003). Interestingly, we observe a similar downward-sloping pattern in the 

dashed line representing particulate-matter pollution concentration. The fact that this line 

has a gentler slope is likely to be the result of the slow spatial decay of PM2.5 

concentrations. Similar patterns can be observed in Appendix figure A2, which is obtained 

using ground-based monitor measures of pollutants. Note that average PM2.5 

 
10 The CBSA population centroid is computed by calculating the weighted average of latitude and longitude 

for grid-cells within a city, where weights are given by the fraction of total CBSA population in a grid-cell. 
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concentrations are higher when using ground-based monitoring stations because 

monitoring stations tend to be located in more polluted areas.      

 

III. Empirical Strategy 

We study whether air quality is affected by urban density, from both a within-city 

and a between-city perspective. In the first case, the question is whether denser areas inside 

a city have higher pollution levels. In the second, whether inhabitants of denser cities are 

exposed to higher levels of air pollution on average. In both cases, our analysis focuses on 

estimating a regression of pollution levels on density.  

When looking within cities the baseline estimating equation takes the form: 

(1) 𝐿𝑛(𝑃𝑀2.5𝑖) = 𝜔𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖) + 𝛾′𝑋𝑖 + 𝛼𝑐 + 𝜀𝑖  

Where 𝑖 indexes grid cells, 𝐿𝑛(𝑃𝑀2.5𝑖)  is the natural logarithm of satellite-derived PM2.5 

concentration, 𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑖) is the log of grid cell level population density, 𝛼𝑐 is a CBSA 

level fixed effect, and 𝑋𝑖 is a vector of controls. All specifications include controls for 

latitude, longitude, and yearly averages for minimum and maximum daily temperatures11. 

In some specifications, we include an additional set of controls encompassing distance to 

water bodies, average precipitation, average soil slope, a dummy taking value 1 for coastal 

cities (population-weighted centroid less than 50km of a major coastline), distance to a 

major coastline (ocean or great lakes) and the number of power stations in the city. The 

CBSA level effects ensure we only exploit within-city variation. We also cluster the 

 
11 We control for temperature as it might affect local pollution levels and population density. More 

specifically, temperature may affect pollution through variation in the usage of heating systems and/or 

various meteorological conditions (e.g. thermally induced convection) and may affect density via its affect on 

population location decisions (see Glaeser et al. 2001).  
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standard errors at the city-level to account for correlated shocks within each CBSA. In this 

exercise, our parameter of interest is 𝜔, which can be interpreted as an elasticity. For 

completeness, we will also report estimates when PM2.5 concentration is kept in levels.  

The core of our analysis focuses on obtaining between-city estimates, which are 

more relevant for city-wide planning policies and have been the focus of the limited 

literature on this topic. Our main dependent variable of interest for the between-city 

exercise is average population-weighted PM2.5 concentration at the city (CBSA) level, as 

obtained from the satellite-derived PM2.5 data described in Donkelaar et al. (2015). This is 

built by aggregating data from our spatial cells into city-level observations, combining 

satellite measures of pollution concentration with residential population counts from the 

census. Formally, city 𝑐 population-weighted particulate concentration is given by a 

weighted average of grid cell level exposures12: 

𝑃𝑀2.5𝑐
𝑒𝑥𝑝 = ∑ 𝑃𝑀2.5𝑐,𝑖

𝑁𝑐

𝑖=1

×
𝑃𝑜𝑝𝑐,𝑖

∑ 𝑃𝑜𝑝𝑐,𝑗
𝑁𝑐

𝑗=1

 

where 𝑃𝑀2.5𝑐
𝑒𝑥𝑝 is the dependent variable of interest, 𝑖 indexes grid cells within a city 𝑐, 𝑁𝑐 

is the number of cells within 𝑐, 𝑃𝑜𝑝𝑐,𝑖 is the population on grid cell 𝑖 and 𝑃𝑀2.5𝑐,𝑖 is average 

yearly PM2.5 concentration on grid cell 𝑖.13 Note that this measure of urban air pollution is 

much more precise than alternative measures based on a handful of measuring stations 

located in selected parts of urban areas. Indeed, figure 2 shows that there is a substantial 

 
12 The pollution exposure of individuals depends on a verity of factors including their geographical location across time 

and their time spent indoors/outdoors. Since we only observe the residential location, we use the above definition to 

measure exposure.   

13 Interestingly, our results are only slightly affected by taking this weighted average. Using a simple mean of 

PM2.5 concentration within our cities has only a marginal impact on estimated coefficients. 
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variation in both population density and pollution concentration within cities, highlighting 

the need for the use of an appropriate concentration measure. Our main estimating 

equation is straightforward and regresses the natural logarithm of average residential PM2.5 

exposure (𝐿𝑛(𝑃𝑀2.5𝑐
𝑒𝑥𝑝)) on the logarithm of urban population density (𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐)), 

computed by aggregating grid cell populations and areas to the CBSA level:  

(2) 𝐿𝑛(𝑃𝑀2.5𝑐
𝑒𝑥𝑝) = 𝛽𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐) + 𝛾′𝑋𝑐 + 𝛼𝑠 + 𝑣𝑐 

where 𝑋𝑐 corresponds to our vector of controls, 𝛼𝑠 is state fixed-effects and 𝛽 is our 

coefficient of interest which indicates how PM2.5 exposure increases as a result of an 

increase in urban density14. This estimate is interpreted here as an elasticity, but we also 

provide estimates with the dependent variable in levels, since these are necessary to obtain 

a monetary measure of health costs as calculated by the EPA. The combination of controls 

and state effects used in each specification is reported in our tables.  

The causal interpretation of the coefficient of interest in both cases requires variation 

in density to be exogenous to other determinants of air pollution. Urban density is shaped 

by a host of factors ranging from sectoral specialization, locational amenities, access to 

employment opportunities and, potentially, air quality itself. This is problematic because 

some of these factors could very well affect pollution directly, therefore becoming 

confounders in the regression equations above. While controlling for other determinants of 

pollution or state effects may help, there is no guarantee that all confounders have been 

accounted for.  

 
14 We do not control for total urban population in our main specification but conduct a separate analysis to 

account for the role of city size on the link between pollution concentration and density in section V. 

Controlling for population in our main specification barely affects our coefficients of interest. 
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We overcome this problem by using an instrumental variable strategy that employs 

three different instruments to induce credibly exogenous variation in density. For this 

purpose, we use geological variables from the USGS measuring earthquake risks and the 

presence of aquifers in and around urban areas, and data on soil drainage quality as 

instruments for density. We think of these instruments as modifying the cost of density in a 

given urban area, or even within the urban area itself. This is similar to the effect of 

planning restrictions shaping local densities and therefore would help identify 𝛽 as the 

policy parameter of interest in the between-city analysis.  

Before we discuss our instruments in detail, it is useful to go through the 

randomization thought experiment, focusing specifically on the between city case. Ideally 

one would want to randomize urban density across cities, for example by randomizing 

maximum height restrictions or zoning regulations. Even if this were possible – it is not – 

the result is likely to affect a multitude of different urban outcomes, through static effects 

on the city and migration within the urban system. These factors will, in turn, collectively 

influence urban air pollution. We argue that despite the reduced-form nature of this type of 

exercise (where a multitude of potential mechanisms could be in operation 

simultaneously), this is the policy parameter of interest. Densification policies by city 

governments are likely to have a large set of impacts on urban structure and, more broadly, 

across the city system. The goal of our empirical analysis is to estimate the average effect of 

density on air pollution exposure. The variation in density we use for estimation is not 

induced by planning policy decisions but rather by other density shifters relating to the 
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physical and historical environment of cities. However, we expect estimates obtained from 

these induced variations to remain relevant for planning policy. 

 

Instrumental Variables 

Our main empirical analysis uses three geological features as instruments for 

population density.15 More specifically, we use the fraction of the urban footprint with 

aquifer presence, a measure of average earthquake risks and an estimate of soil drainage 

quality. The rationale for the aquifer variable is that new dwellings in the periphery of 

urban areas need either to connect with the municipal network or to directly connect with 

an underwater source. As the cost of connecting to the municipal network is increasing in 

the distance to other connected dwellings and the fact that the option of the underwater 

source is only available if there is an aquifer where the dwelling is located, implies that 

cities with more land over aquifers can sprawl out further and contain more sparse 

development and lower densities. Importantly, it is unlikely that the presence of 

underground aquifers affects air pollution directly, hence we expect the orthogonality 

condition to be satisfied. This instrument is motivated by the work in Burchfield et al. 

(2006) which reports that aquifers in the urban fringe are associated with urban sprawl. 

The rationale for our earthquake risk instrument is the expectation that the risk of an 

earthquake might influence building regulations, construction practices and the space 

between buildings, thus also affecting urban density. We also expect this instrument to 

 
15 A similar strategy is followed in Rosenthal and Strange (2008), Combes et al (2010) and Duranton and 

Turner (2018). 
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satisfy the exogeneity condition, once we condition for distance to sea, latitude and 

longitude, and state fixed effects.  

Finally, the soil drainage quality variable is expected to affect land suitability for 

building at different densities. In fully urbanized land, a significant fraction of rainfall is 

drained through drainage networks and sewage systems (Konrad, 2003). However, at 

lower densities, soil drainage capacity is important to avoid stagnant water and, possibly, 

floods. In addition, because high drainage soils are composed of relatively large particles, 

which leave substantial empty spaces between them, it is not ideal for the laying down of 

heavy infrastructure, thus penalizing high-density development.  

As a complement to the empirical strategy above, we introduce an alternative 

instrumental variable based on historical population as recorded in the 1880 US census. 

This period took place before much of the technological revolutions in transportation that 

affect air pollution this day and would also precede current patterns of industrial location. 

Moreover, because the persistence of buildings from the late XIX century could affect urban 

density today, we expect the relevance condition to be satisfied. The use of historical 

population instruments for density was initially proposed by Ciccone and Hall (1996) and 

has often been used in the literature on agglomeration economies since (see for example 

Combes et al. (2008)).16 

Formally, our IV estimates for the between-city analysis are obtained following the 

standard two-stage least squares procedure (2SLS) as follows: 

 
16 A description of the intuition behind both the population lag and geological instruments and their 

limitations can be found in Combes and Gobillon (2015). 
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(3) 𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐) = 𝛿′𝑍𝑐 + 𝛾𝑧′𝑋𝑐 + 𝜃𝑠+𝑢𝑐  

(4) 𝐿𝑛(𝑃𝑀2.5𝑐
𝑒𝑥𝑝) = 𝛽𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐)̂ + 𝛾′𝑋𝑐 + 𝛼𝑠 +  𝑣𝑐  

where 𝑍𝑐 is our vector of instruments and 𝛿 represents a conformable vector of first-stage 

coefficients. All other variables defined as above. Throughout our analysis, we provide 

results for different specifications, including or excluding controls and state fixed effects. 

We follow the same strategy to obtain our within-city estimates, replacing grid cells as the 

unit of observation and controlling for CBSA effects. 

 

IV. Results 

a. Within-City Estimates 

We first focus on the results of our within-city analysis. Baseline estimates of 

equation 1 obtained using OLS are reported in Appendix table A1. The coefficient is 

positive and significant across specifications, indicating an elasticity of 3.6% when 

including both CBSA fixed effects and the full set of controls. This implies that doubling 

population density in a grid cell leads to a 3.6% increase in PM2.5 concentration.  

Turning to our instrumental variable results, we first provide estimates for the first-

stage coefficients in table A2 in the Appendix. The F-statistics for a joint significance test of 

the three coefficients indicates our instruments are not weak, which has two important 

implications. First, it indicates that the relevance condition is satisfied. Second, it motivates 

the empirical strategy used in the between-city analysis below. The logic behind the use of 

these instruments is based on their impact at the micro-level. For instance, when we say 

aquifers affect density by reducing the need to connect to municipal water networks and 
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allowing for sprawl, we are using a within-city rationale, even if the instrument is later 

used in a between-city analysis. The relevance of our instruments within-city is reassuring 

because it clarifies why they may be relevant across cities.  

The IV estimates for our within-city analysis are reported in Table 2. The elasticity 

estimates, reported in the first row, are substantially larger than those obtained under OLS, 

indicating a bias towards zero in our baseline estimates. This bias is consistent with reverse 

causality, with pollution levels affecting the distribution of population within cities.17 In our 

preferred specification in column 4, we find an elasticity of roughly 0.2, indicating that a 1% 

increase in population density in a grid cell increases PM2.5 concentration by 0.2%. The 

results above provide robust evidence for the relevance of our instruments, but our core 

interest and the policy-relevant investigation is in the relationship between population 

density and pollution exposure in the context of our between-city analysis which is 

presented in the next section. 

 

b. Between-City Estimates 

As a preview to our baseline results, Figure 3 provides graphical evidence on the 

cross-sectional relationship between city-level particulate concentration and population 

density where the vertical axis measures 𝑃𝑀2.5𝑐
𝑒𝑥𝑝 and the horizontal axis measures the 

logarithm of density at the city level. Clearly, there is a strong positive relationship between 

 
17 Recent evidence on population sorting within cities in response to pollution can be found in Heblich et al. 

(2016). 



19 

 

both, as indicated by the regression line overlaid on the figure.18 One potential concern 

when interpreting this figure is that denser cities may have higher levels of air pollution 

exposure, not because they are dense, but rather because they are populous. To illustrate 

that the urban scale is not driving the correlation observed in figure 3, we regress 𝑃𝑀2.5𝑐
𝑒𝑥𝑝 

on a fourth-degree polynomial of population. We then obtain the residuals of this 

regression and plot them against log density. The corresponding scatter plot is provided in 

Figure A4. We observe the relationship between 𝑃𝑀2.5𝑐
𝑒𝑥𝑝 and density is largely preserved 

after this procedure, indicating that the observed correlation is not driven mechanically by 

city size. We conduct a more detailed analysis of the role of city-scale in section V.  

Table 3 provides baseline estimates of equation 2, obtained using ordinary least 

squares. The top panel of the table provides estimates of the elasticity of pollution with 

respect to population density. The bottom panel reports coefficients of a specification in 

which the PM2.5 concentration variable is kept in levels. Different specifications, displayed 

in columns, adding fixed effects and additional controls as indicated in the table. In all 

cases, our unit of observation is the CBSA. Our preferred estimates are those for which the 

full set of controls and state fixed effects are included in the estimating equation. Focusing 

on the top panel, our baseline results indicate an elasticity of 0.073, significant at the one 

percent level. This suggests that a 1% increase in density would result in a 0.07% increase in 

average residential PM2.5 exposure. As discussed above, these estimates can be biased by 

confounders or reverse causality.  

 
18 A non-parametric depiction of this relationship using population density bins is provided in Figure A3 in the Appendix. 
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Before proceeding to the IV results, we first provide estimates of our first-stage 

regression in Appendix Table A3. These result from estimating equation 3, using our 

geological variables as instruments. We observe that across specifications our instruments 

are jointly significant, as indicated by the F-statistics reported in the table foot, which lies 

consistently around 20. Both the aquifer and soil drainage instruments have the expected 

signs, given that both aquifer presence and high-quality soil drainage predict low-density 

development. Note that the expected sign for the aquifer instrument is different for the 

between and within city analysis. In the within-city analysis, we expect the sign of the first 

stage to be positive, as residents are likely to sort into locations where aquifers are present. 

In contrast, we expect to see a negative sign in the between-city analysis, as cities with more 

land over aquifers can sprawl out further and contain more sparse development and lower 

densities. Finally, the coefficient on earthquake risk is harder to interpret. The effect of 

earthquakes on the risk of collapse may not be increasing in building heights, as different 

buildings will have different resonances and therefore be affected differently by different 

types of earthquakes. 

As an additional check on the suitability of our instruments, we modify equation 2 

and estimate the effect of our instruments on variables measuring the presence of fossil fuel 

power stations, and on the Wharton index of land use regulation (Gyourko et al. 2008). In 

the case of power plants, the concern is that geological characteristics (e.g. earthquake risks) 

could affect the location of power plants across cities and these could, in turn, affect PM2.5 

pollution directly. Estimates for these balancing tests are provided in Table A4. In columns 

1 and 2 we use, respectively, the number of oil and power plants in each city as outcome 
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variables. Columns 3 and 4 use dummies indicating the presence of at least one plant of 

each type instead. Reassuringly, the coefficients on our estimates are always insignificant at 

the 5% level, with only one coefficient being weakly significant in one specification. The 

joint significance test statistics for the instruments never reject the null of joint 

insignificance, with F-statistics between 0 and 2 in all columns. When considering land use 

regulation, the concern is that it could simultaneously be affected by air pollution and 

correlated with our instruments. The results for these balancing tests are reported in table 

A5.19 We can see that once we include state effects or the full set of controls (columns 2 to 4), 

we cannot reject the null of all instrument coefficients being jointly not significant (see F-

statistic provided in the table foot). Only the earthquake risk variable remains marginally 

significant and this is not wholly surprising, as we would expect certain building 

regulations to be more stringent in areas with high earthquake risk. Having provided 

further evidence on the validity of our instruments in the context, we now turn to our main 

results.  

Table 4 presents the results of our main IV estimation. The first row reports 

estimated elasticities, and the second reports estimates obtained with PM2.5 exposure 

measured in levels. We provide results using different specifications, with our preferred 

specification including both state dummies and a full set of controls (third column). Our 

estimated elasticity is now 13% and is statistically significant at all conventional levels. This 

indicates that a 1% increase in density will increase average residential PM2.5 exposure by 

 
19 Results provided only for the set of CBSAs that could be matched to the WLUR city definitions.  
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0.13%.20 This is slightly larger than our baseline estimate, indicating a positive bias under 

ordinary least squares. This can be rationalized by reverse causality, as air pollution may 

lead to lower equilibrium densities if households sort spatially in response to it. Estimates 

when using the PM2.5 exposure variable in levels indicate that a doubling of population 

density will increase particulate matter concentration by 0.73 μg/m3 (1.047 × ln(2)). This is a 

substantial effect as the cross-sectional standard deviation in density in our sample is 2.2 

(μg/m3).21 Overall, our results show that denser cities are, at least in terms of PM2.5 exposure, 

worse environments than more sprawled out cities.  

 

c. Robustness  

In this section, we provide a series of additional estimates to highlight the robustness 

of our between-city results to i) the sets of selected geological instruments, ii) first 

difference estimation based on a two-period panel covering the years 2000 and 2010, iii) 

using an alternative IV strategy based on a historical density instrument, and iv) using 

population-weighted densities as our main variable of interest. 

We begin with Appendix Table A6, which provides alternative estimates obtained 

by sequentially excluding one of our geological instruments for density. All reported 

estimates are pollution-density elasticities and our preferred specification continues to 

 
20  It is worth noting that this elasticity is close to the elasticity of 12.4% reported in Ahlfeldt and Pietrostefani 

(2019) using a different sample of cities. In Borck and Schrauth (2019) the estimated elasticity for PM2.5 in 

German districts is in the 0.03-0.07 range, although imprecisely estimated. The authors argue this is a 

consequence of the fact that the network of measuring stations for this pollutant in German cities is recent and 

incomplete. 

21 This is a key parameter for our mortality estimates (see section VI). 
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include state effects and the full set of controls (column 3). For the first row of estimates 

only aquifer presence and soil drainage capacity are included as instruments. In the second 

row, only earthquake risk and aquifer presence are used as instruments. Finally, in the 

third row only drainage capacity and earthquake risk are used as instruments. Estimates 

for all instrument pairs are positive and significant, as expected. Moreover, estimates in the 

first and third row of table A6 are very close to those reported in table 4.  We also conduct 

an overidentification test to evaluate whether our instruments identify the same parameter 

of interest. We cannot reject the null of exogeneity, which lends further support to the 

validity of our geological instruments.22  

Next, we turn to a complementary research strategy using a two-period panel for the 

years 2000 and 2010. The CBSA definitions used in the cross-sectional analysis above were 

created in 2008, so no appropriate boundaries are available for the 2000 census. We 

therefore need an alternative definition of the urban area, that does incorporate changes in 

the extent of urban areas over this decade. For this purpose, we use the definition of 

commuting zones (CZ) described in Fowler et al. (2016), which draws on commuting data 

from the census and the American Community Survey (ACS) to delineate these zones. We 

use this source because it provides methodological consistent delineations for 2000 and 

2010 and incorporates changes in the surface of urban areas.23 Using our CZ panel, we 

estimate the following regression equation: 

 

 
22 When estimating the model with state effects and controls the p-value of the test is 0.25. 
23 We match 2010 with 2000 commuting zones by taking the 2000 CZ with the closest population-weighted centroids. To 

ensure the match indeed captures the same city, we limit the distance between centroids to under 20km. This limits our 

sample to 460 commuting zones. 
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(5) 𝐿𝑛(𝑃𝑀2.5𝑐𝑡
𝑒𝑥𝑝) = 𝛽𝐿𝑛(𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑐𝑡) + 𝛾𝑋𝑐𝑡 + 𝜂𝑠 × 𝛿𝑡 + 𝛼𝑐 + 𝜀𝑐𝑡 

where 𝑐 is now an index for commuting zones, 𝛼𝑐 is a CZ fixed effect, and 

𝑋𝑐𝑡 includes our standard set of controls (coordinates, and average minimum and 

maximum temperatures) interacted with a time dummy. In our preferred specification, we 

also include the term 𝜂𝑠 × 𝛿𝑡 capturing state-specific trends in density and pollution 

concentration. Panel A of Table 5 reports our elasticity estimates which are positive and 

significant, taking a value of 0.1 in our preferred specification, roughly 4/5 of our IV 

estimates above. We interpret these results as providing further evidence of the positive 

link between particulate concentration and urban density, perhaps pointing at slightly 

smaller effects than those reported in table 4. That being said, we continue to put our 

emphasis on our IV estimates as it is unlikely that longitudinal changes in density are 

exogenous in equation 5.  

We also obtain estimates of the effect of density on PM2.5 concentration using the 

historical density IV instead of our geologic variables.24 Panel B1 in Table 5 reports the 2SLS 

estimates. We continue to observe positive and significant elasticities throughout. When 

using the historical instrument, however, the elasticity is larger than before, reaching 24% 

in our preferred specification. This is almost twice the size of the estimate obtained using 

our geological variables. We interpret this coefficient with care, given that we expect older 

cities to have other urban features that could be correlated with the 1880 population and 

with current air pollution such as a different urban layout, older infrastructure and older 

 
24 Because some of the current US counties were not covered in the 1880 census, the number of observations is 

restricted to 920 out of our original 933 CBSAs. 
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central heating systems. Importantly, they also tend to be associated with larger 

populations. With that caveat in mind, it is still reassuring that the qualitative findings are 

the same using this alternative instrumentation strategy. In Panel B2 we use all of four 

instruments together and our estimates continue to be positive and significant at all 

conventional levels. The elasticity estimate is now 0.2 which is still larger than our 

preferred estimates from table 4 but lower than the ones presented in Panel B1.  

 Finally, we consider an alternative definition of our density variable, by computing 

population-weighted population densities in each city. Population-weighted densities are 

used in Glaeser and Kahn (2004) and Rappaport (2008). In our case, these result from taking 

a weighted-average of the grid cell level population densities within a city, with weights 

given by the fraction of the population of each grid cell. This variable can be interpreted as 

an estimate of the average population density faced by residents in each city (Glaeser and 

Kahn, 2004). We report estimates of a modified version of equation 2 where we use the 

logarithm of this variable as our measure of density. OLS and IV estimates of the resulting 

elasticities are provided in Appendix Table A7.25 The results show positive and significant 

elasticities in all specifications, indicating that our main qualitative result does not depend 

on how we measure density. The elasticities are in this case almost five times as large as 

those using the conventional density variable, which is consistent with the main estimates 

being driven by high concentrations of polluters within cities. 

 
25 Both the aquifer and soil drainage instruments have insignificant effects on this alternative measure of 

density. This is not surprising given that these variables would affect the extensive rather than intensive 

margins of urban development – they affect where building is possible/desirable rather than the intensity of 

that development. IV estimates in Table A7 are obtained using our historical and earthquake instruments 

only. 
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V. Discussion 

We have shown above that denser cities are linked with worse air quality and in this 

section we discuss the possible underlying channels behind our reduced-form findings. We 

posit that four main channels can theoretically explain our results: (1) population scale-

effects, (2) the composition of economic activity, (3) different transportation modes, and (4) 

spatial concentration of polluters in denser areas. We explore each of these possible 

channels below.  

We begin by exploring whether our findings arise because denser cities are simply 

larger. If city-wide effects lead larger cities to have higher pollutant concentrations, then 

this could operate as a mechanism linking density to air quality. We consider two 

specifications to control flexibly for the total CBSA population when estimating the 

relationship between density and air quality. In this way, we hope to purge any density-

induced changes in the total population, as well as any remaining confounders related to 

city size. 

We start by including a fourth-degree polynomial in population in our specification 

and re-estimate the density – concentration elasticity. Results are provided in the top panel 

of Table 6. We observe that the elasticity of interest is approximately 20 percent larger after 

controlling flexibly for population, and not statistically different from the point estimate 

reported in Table 4. These results suggest nonlinear scale-effects are not driving our results. 

We explore this possible channel further by including the logarithm of the population as an 

instrumented variable in a specification using both, geological and historical instruments. 
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The resulting elasticities are reported in the bottom panel of Table 6. Again, we find that the 

coefficient of interest is larger than the one obtained when using all instruments but 

excluding the logarithm of the population (see Panel B2 of Table 5). From these exercises, 

we conclude that our results are not driven by population-scale effects.  

 As highlighted above, a second possible mechanism linking density to pollution 

concentration could exist if the sectoral composition of different cities varies with their 

density. A substantial amount of PM2.5 pollutant emissions is produced by manufacturing 

and other industrial activities. If agglomeration forces for these industries are relatively 

more pronounced than in other sectors, then this could explain the relationship between 

density and PM2.5 concentration. To explore this possibility, we test whether observed 

differences in sectoral composition can be explained by density. We conduct three different 

exercises for this purpose. First, we compute the fraction of total employment devoted to 

manufacturing in each CBSA, by aggregating data from the County Business Patterns 

dataset for 2010. We substitute this variable as the outcome variable in equation 4, and 

estimate the effect of density on this measure of industrial composition by using our 

geological IVs. Results are provided in panel A of Table 7. In columns 1 and 2, we vary the 

set of included controls. In column 3, we include the logarithm of the CBSA population as 

an instrumented variable, and add the log of 1880 population density as an instrument. In 

all three columns, we observe small and insignificant effects of population density on the 

fraction of manufacturing employment.  

 Clearly, not all manufacturing activities are the same, and it is still possible that 

changes in composition within the manufacturing sector would lead to differences in PM2.5 
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concentration across cities. To explore this possibility, we use data on industrial 

composition from CBP, combined with data on PM2.5 emission intensities by the 

International Standard Industrial Classification (ISIC) sector obtained from Shapiro and 

Walker (2018). We then compute, for every city, the variable 

𝐿𝑛(𝐶𝑜𝑚𝑝𝑃𝑀2.5𝑐) = 𝐿𝑛 (∑
𝑒𝑚𝑝𝑖𝑐

∑ 𝑒𝑚𝑝𝑖𝑐
𝑁𝐼
𝑖=1

𝑁𝐼
𝑖=1 𝐼𝑛𝑡𝑃𝑀2.5𝑖), 

where 𝐼𝑛𝑡𝑃𝑀2.5𝑖 is the intensity measure obtained from Shapiro and Walker (2018) and 

𝑒𝑚𝑝𝑖𝑐

∑ 𝑒𝑚𝑝𝑖𝑐
𝑁𝐼
𝑖=1

 is the fraction of employment from city 𝑐 dedicated to industry 𝑖. The variable will 

take relatively high values in cities that specialize in industries producing large quantities 

of PM2.5 pollutant emissions. We replace 𝐿𝑛(𝐶𝑜𝑚𝑝𝑃𝑀2.5𝑐) as the outcome in equation 4 

and estimate the effect of density on this variable. The resulting elasticities are reported in 

panel B of table 7 and are positive but small, between 2 and 7 percent, and mostly not 

significant at conventional levels.  We conclude that, while there may be a small positive 

effect of density on the local intensity of PM2.5 polluting industries, this is unlikely to 

explain our results.26 

To test the robustness of our findings for sectoral composition, we also construct an 

alternative measure of industrial-composition emission intensity based on the PM10 

intensities reported in Levinson (2009).27 Using these intensity measures we compute 

 
26 An alternative specification of our main estimating equation which includes 𝐿𝑛(𝐶𝑜𝑚𝑝𝑃𝑀2.5𝑐) as a control 

leads to essentially the same density-concentration elasticities as those reported in table 4 (available upon 

request).  

27 These are based on the World Bank’s Industrial Pollution Projection System (IPPS) which reports emission 

intensities for 4 level 1987 SIC codes. We convert these into 2-digit NAICS 2007 intensities using the crosswalk 

between 1987 SIC codes and 2002 NAICS codes, combined with the crosswalk between the 2002 and 2007 

NAICS codes. 
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𝐿𝑛(𝐶𝑜𝑚𝑝𝑃𝑀10𝑐) calculated as above, and study how this variable is affected by density. 

Results are provided in Panel C of Table 7. In this case, the elasticity of interest is 

insignificant across specifications, and negative after we control for log population. To sum 

up, the coefficients in column 6 indicate that potential differences in industrial composition 

resulting from differences in densities across cities cannot explain the reported effect of 

density on PM2.5 pollutant exposure.  

Emissions from transport, in particular from commuter flows, can also have an 

impact on local pollutant concentration. That being said, a large body of previous research 

indicates there is less driving in denser areas (see for example Duranton and Turner 2018 

and Stevens 2017). While some of the effects reported in this literature are rather small, the 

main message of these studies is that denser cities are associated with lower emissions from 

transport. As a result, it is unlikely that changes in driving can explain our findings.  

The mechanisms discussed above are unlikely to explain our results. Yet there is one 

remaining mechanism that relates to the spatial diffusion of pollution. A higher spatial 

concentration of activity will translate into higher pollutant concentrations in the air 

because polluters are close to each other, something we observe very clearly in our within-

city results.  One potential implication of our estimates is that this physical effect appears to 

dominate over other, potentially opposing, economic mechanisms. Furthermore, our results 

suggest that even if emission per capita might be lower in cities (as discussed in Glaeser 

and Kahn, 2010), the concentrations of residents in close proximity increases individual 

exposure to pollutants. As a result, dense environments will face additional health costs 

associated with pollution concentration.  
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VI. Health Implications and Costs 

In this section we assess the mortality impacts and economic costs of air pollution-

induced by density, based on our estimates.28 Our analytical strategy is very similar to the 

approach taken by the US EPA in their Regulatory Impact Analysis (US Environmental 

Protection Agency, 2012) and consists of the following two steps. First, we relate changes in 

pollution concentrations – due to changes in population density – with mortality 

Concentration-Response functions (C-R functions). Second, we estimate the associated 

economic costs by multiplying the mortality effect by the Value of Statistical Life (VSL).  

C-R functions link pollution exposure (PM2.5) to mortality incidence rate (y) and are 

most commonly estimated using a log-linear form as follow:  

𝑦 = 𝐵 × 𝑒𝛽∗𝑃𝑀2.5         ⇒        ln(𝑦) =  𝛼 + 𝛽 ∗ 𝑃𝑀2.5 

Where ln(y) is the natural logarithm of y, α = ln(B), β is the coefficient of interest which 

measures the estimated average effect of PM2.5, and B is the incidence rate of y when 

PM2.5=0.29 Defining y0 as the baseline mortality incidence rate, we can write the relationship 

between changes in PM (ΔPM) and mortality incidence rate (Δy) as: 

∆𝑦 = 𝑦0−𝑦1 = 𝐵(𝑒𝛽𝑃𝑀2.50 − 𝑒𝛽𝑃𝑀2.5𝑐) 

∆𝑦 = 𝐵 ×  𝑒𝛽𝑃𝑀2.50(1-𝑒−𝛽(𝑃𝑀2.50−𝑃𝑀2.5𝑐)) =  𝑦0(1 −
1

exp(𝛽×∆𝑃𝑀2.5)
) 

 
28 It is important to highlight that the mortality costs of density that we present here represent only a fraction 

of the total cost to human health and wellbeing. Air pollution is also adversely linked with other health and 

economic outcomes (such as hospital admission and worker productivity) which are very costly.  
29 B can also be interpreted as a vector of covariates which may affect mortality and defined as: 𝐵 =

𝐵0 × 𝑒𝛽1𝑥1+⋯+𝛽𝑛𝑥𝑛  where Bo is the incidence of y when all covariates in the model are zero, and x1, ... , xn are 

other covariates. 
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Multiplying the mortality incident rate by the relevant population yields the change in the 

incidence of mortality which is our prime objective.30 

We follow Fowlie et al. (2019) and rely upon two influential studies that estimated 

mortality Relative Risks (RR) in the US. The first paper is a follow-up examination of the 

Harvard Six Cities study by Lepeule et al. (2012) which documents a significant statistical 

association between PM2.5 and mortality.  Using a Cox proportional hazards model the 

authors found an RR of 1.14 (CI 95% [1.07,1.22]), implying that a 10-μg/m3 annual increase 

in PM2.5 is associated with a 14% increased risk of all-cause mortality. The second paper by 

Krewski et al. (2009) is a large cohort study that used a random-effects Cox model to 

estimate the C-R function among the US population. The authors found a mortality RR of 

1.06 (CI 95% [1.04,1.08]) which is smaller than in Lepeule et al. (2012) but still highly 

significant.  

Using the above C-R functions and our estimates from table 4, we analyze what 

would be the impact of doubling density in an average US county. To put this in 

perspective, this is the equivalent of changing population density in Houston to that of 

Chicago and as a result increasing annual PM2.5 concentration by 0.73 μg/m3. Our analysis 

suggests that the annual per capita mortality costs of doubling density, using the high and 

low C-R functions from Lepeule et al. (2012) and Krewski et al. (2009) in conjunction with 

the EPA VSL recommended estimate of $7.4 million ($2006), are $630 and $281, 

respectively. The former estimate is large and equivalent to between 17 and 39 percent of 

 
30 Importantly, since most epidemiological studies report the relative risk (RR) for a given ΔPM and not 𝛽, we 

convert RR into 𝛽 by using the fact that RR is simply the ratio of the two risks which yield the following 

relationship: 𝛽 = ln(𝑅𝑅) /∆𝑃𝑀 
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the estimated agglomeration effect on productivity for a worker earning the average wage 

in 2010.31  

As prior research suggests that compact cities are linked with lower greenhouse gas 

emissions, we also compare our cost estimates with expected benefits resulting from 

reduced CO2 emission in denser cities using a back-of-the-envelope calculation. For this 

purpose, we build on the carbon cost-saving calculations in Ahlfeldt and Pietrostefani 

(2019). Using the elasticity of energy consumption with respect to density, applying a 

conversion factor of 25 tons of CO2 per kilowatt-hour and a social cost of carbon of $43, we 

find that doubling density leads to a cost reduction of $52.1 per capita.32 If we restrict the 

costs of carbon to mortality effects only, then the benefits from doubling density amount to 

only $47.3, based on the upper bound estimate from Carleton et al. (2018). While these 

figures are only suggestive, it is worth noting that they are both substantially smaller than 

our estimates of the mortality costs of doubling density attributed to PM2.5. Therefore, 

comparing the environmental global benefits and local costs of density, our calculations 

indicate that the costs far outweigh the benefits.   

Finally, we estimate the annual mortality costs of doubling density for each CBSA in 

the US separately. To do that, we use the Benefits Mapping and Analysis Program 

 
31 According to Combes and Gobillon (2015), studies on the static benefits of agglomeration economies on 

productivity yield an estimate range between 0.04 and 0.05 when using an empirical strategy similar to the 

one used in our analysis. Taking the mid-point of that range – and allowing for some extrapolation – doubling 

density would result in an increase of 0.045 × 𝑙𝑛(2) for average wages. Individual average wages in the US in 

2010 were 52,384 USD, which yields an approximate figure of $1633 difference resulting from a doubling in 

population. Reported ratios result from estimating our mortality effects and dividing by this figure.  

32 To obtain this cost per capita estimate, we multiply the elasticity of 0.07 times ln(2) (doubling density), times 

the CO2 emissions per Kilowatt hour, times the social cost of carbon.  
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(BenMAP) which is typically used by the US EPA in its Regulatory Impact Analysis. The 

program is based on the same methodology explained above (including the C-R function 

from Lepeule et al. 2012) but also accounts for the variation in the age structures and 

pollution levels across cities. The results are displayed in Appendix Figure A5. As we can 

see from the map, the largest costs of increasing density in terms of pollution-induced 

mortality occur in the largest US cities. 

 

VII. Conclusions 

Air pollution is one of the typical congestion forces discouraging households from 

moving to large, polluted cities.  In this paper, we report estimates of the elasticity of air 

pollution with respect to urban density between cities. Using spatial data on PM2.5 

pollutant concentration, we estimate this elasticity to be between 0.1 and 0.25, with a 

preferred estimate of 0.13. Our instrumental variable estimates indicate that a doubling of 

density increases PM2.5 concentration in roughly half of a standard deviation. This is a large 

effect because densities vary widely between urban areas in the United States. For example, 

the Washington DC and Atlanta metro areas both have a population of roughly 4.5 million 

inhabitants, yet the density in Atlanta is half that in the federal capital. The CBSA 

corresponding to San Francisco has a density almost three times larger than Atlanta. 

Our results highlight the need to incorporate the effect on air quality when 

discussing suburbanization, densification policies and the environmental aspects of urban 

planning. Importantly, we provide estimates of pollution-induced costs of density which 
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can be used in the context of cost-benefit calculations when evaluating the desirability of 

these policies.  

With our estimates, we also highlight the important distinction between local and 

global pollutants, the nature of the externalities they generate, and the trade-offs involved 

in policies trying to address them. A usual point raised by planners, policy makers and 

economists, is that denser cities tend to be more environmentally friendly as they produce 

lower levels of carbon emissions per person. Even if this is indeed the case, it does not 

necessarily mean that denser cities provide a better environment for their inhabitants. We 

have shown that air pollution exposure is actually higher in denser cities, indicating that 

there could be a trade-off between reducing a city’s carbon footprint and preserving the 

environmental quality within the city.  

Finally, a large and growing literature has provided overwhelming evidence on the 

adverse effects of air pollution on human health and wellbeing. In contrast, this paper 

studies the determinants of air pollution itself. While the former literature is necessary to 

understand the magnitude of the problem, studies such as ours are necessary to evaluate 

suitable solutions.  
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Figures

FIGURE 1
DATASET ASSEMBLY

(A) SATELLITE VIEW OF MINNEAPOLIS & ST. PAUL

(B) SATELLITE-DERIVED PM2.5 RASTER & MONITORING-STATION LOCATIONS

(C) CENSUS BLOCK POPULATION DATA RESOLUTION

Notes: The panels illustrate the dataset assembly process with the city of Minneapolis. Top-panel A displays a
satellite image of the urban core at the MSA of Minneapolis-St. Paul. Centre-panel B displays our pollution raster
(shades of gray), ground-based monitors (points) and rivers (lines). Bottom-panel C overlays the census block
group spatial units, at which we observe population and other demographics.
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FIGURE 2
POLLUTION AND DENSITY GRADIENTS INSIDE CITIES

Notes: Horizontal axis represents to distance to the CBSA population-weighted centroid. Vertical axes correspond
to population density (left axis) and satellite-derived PM2.5 concentration (right axis). Lines obtained by estimating
5th degree polynomials over grid-level data. Blue line corresponds to population density and red line to PM2.5
concentration.

FIGURE 3
PM2.5 EXPOSURE V. DENSITY SCATTER

Notes: Vertical axis represents PM2.5 average residential exposure (in µg /m3), as obtained from the satellite-
derived measures. Horizontal axis represents the natural logarithm of population density. The points represent 933
CBSAs (metro and micropolitan areas). The black line is estimated by OLS using the underlying data.
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Tables

Table 1: Descriptive statistics

Mean Std. dev.
A. Spatial Cells
PM2.5 average (satellite data) 5.90 2.54
Population Density 63.35 334.48
Earthquake risk (3 cat.) 0.69 0.47
Aquifers (2 cat.) 0.28 0.45
Population density in 1880 8.95 66.55
Minimum dist. to water (km) 55.62 49.42
Latitude 38.5 5.11
Longitude -98.7 14.82
Gridcell Area 1.0 0.07

Observations 4,356,408

Mean Std. dev.
B. Cities
PM2.5 spatial average (satellite) 6.98 2.21
PM2.5 residential-weighted (satellite) 7.84 1.94
PM2.5 (monitoring stations)* 9.11 2.75
Population Density 55.08 78.47
Earthquake risk (3 cat.) 0.61 0.48
Aquifers (2 cat.) 0.28 0.39
Population Density in 1880 11.54 12.96
Minimum dist. to water (km) 53.40 42.43
Latitude 38.0 4.92
Longitude -91.8 13.00
Gridcell Area 1.0 0.07

Observations 933

Notes: Descriptive statistics for our within and between city samples. Panel A presents mean

and standard deviation for a set of key variables of interest. Panel B presents statistics for

these variables after aggregating at the city (CBSA) level. * only 546 cities have PM2.5

monitoring station data.

41



Table 2: Within-City – 2SLS Estimates

Log(PM2.5) – Elasticities

Log(Pop. Dens.) 0.147*** 0.083*** 0.317*** 0.213***
(0.055) (0.022) (0.047) (0.042)

Observations 4306842 4306842 4306842 4306842
PM2.5

Log(Pop. Dens.) 0.694*** 0.520*** 1.089*** 0.671***
(0.210) (0.115) (0.152) (0.126)

Add. Controls No Yes No Yes
State-FE Yes Yes No No
City-FE No No Yes Yes
F-Stat 12 25 15 10
Obs. 4325515 4325515 4325515 4325515

Notes: Estimates from grid-cell level 2SLS specifications. Dependent variable in the

first row of estimates is the natural logarithm of PM2.5 concentration. Dependent

variable in the second row of estimates is PM2.5 concentration. All specifications in-

clude latitude, longitude and average maximum and minimum temperatures as con-

trols. Columns 2 and 3 include state fixed effects. Columns 3 and 4 include CBSA

fixed effects. The specifications in columns 2 and 4 add a set of additional controls

as detailed in the text. Standard errors clustered at the city level in parenthesis.

***p< 0.01, **p < 0.05, *p < 0.1.
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Table 3: Between-City Baseline Estimates

Log(PM2.5) - Elasticities

Log(Pop. Dens.) 0.085*** 0.078*** 0.070***
(0.007) (0.007) (0.007)

Observations 933 933 933
PM2.5

Log(Pop. Dens.) 0.578*** 0.535*** 0.471***
(0.054) (0.046) (0.047)

Add. Controls No No Yes
State-FE No Yes Yes
Obs. 933 933 933

Notes: Baseline OLS Estimates. City-level regressions. For the first row of estimates, the

dependent variable is the natural logarithm of PM2.5 exposure as defined in the text. The

dependent variable for the second row of estimates is this variable in levels. All specifications

include latitude, longitude and average maximum and minimum temperatures as controls.

The specifications in columns 2 and 3 add state effects. The specifications in column 3 add

a set of additional controls as detailed in the text. Robust standard errors in parentheses.

***p< 0.01, **p < 0.05, *p < 0.1.
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Table 4: Between-City – 2SLS Estimates

Log(PM2.5) – Elasticities

Log(Pop. Dens.) 0.149*** 0.158*** 0.137***
(0.034) (0.023) (0.026)

Observations 933 933 933
PM2.5 (Exposure)

Log(Pop. Dens.) 1.239*** 1.235*** 1.062***
(0.250) (0.167) (0.186)

Add. Controls Yes Yes Yes
State-FE No Yes Yes
F-Stat 21 19 20
Obs. 933 933 933

Notes: Reports IV estimates of the effects of log density on PM2.5 exposure. The unit of

analysis is the city (CBSA). For the first row of estimates, the dependent variable is the

natural logarithm of PM2.5 exposure as defined in the text. The dependent variable for the

second row of estimates is this variable in levels. All specifications include latitude, longi-

tude and average maximum and minimum temperatures as controls. The specifications in

columns 2 and 3 add state effects. The specification in column 3 adds a set of additional

controls as detailed in the text. F-statistics for joint significance of the geological instru-

ments in the first-stage reported in the table foot. Robust standard errors in parentheses.

***p< 0.01, **p < 0.05, *p < 0.1
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Table 5: Robustness - Panel and Historical IV

Log(PM2.5) - Elasticities

A. Panel Estimates
Log(Pop. Dens.) 0.121*** 0.075** 0.105***

(0.009) (0.033) (0.034)

Comm. Zone FE No Yes Yes
Year Yes Yes Yes
State-Year FE No No Yes
Obs. 920 920 920

B1. Historical Instrument
Log(Pop. Dens.) 0.383*** 0.257*** 0.248***

(0.045) (0.032) (0.029)

F-stat (Historical) 55 39 46

B2. All Instruments
Log(Pop. Dens.) 0.312*** 0.225*** 0.217***

(0.035) (0.024) (0.023)

Controls Yes Yes Yes
State-FE No Yes Yes
F-stat (All instruments) 24 21 23
Obs. 920 920 920

Notes: Dependent variable is the natural logarithm of PM2.5 exposure as defined in the

text in all specifications. In Panel A, we report panel estimates of the density-pollution

elasticity. Sample is based on a two-period panel using the time-varying definition of com-

muting zones in Fowler et al. (2016) for 2000 and 2010. All columns include year effects.

Columns 2 and 3 include CZ effects and column 3 includes state-year interactions. In Pan-

els B1 and B2 we provide cross-sectional IV estimates of the density-pollution elasticity. In

panel B1 the density variable is instrumented using historical density from the 1880 cen-

sus. In panel B2 this variable is added to the three geological variables to instrument for

density. All specifications in panels B1 and B2 include latitude, longitude and average max-

imum and minimum temperatures as controls. The specifications in columns 2 and 3 add

state effects. The specifications in column 3 add a set of additional controls, as detailed

in the text. Robust standard errors in parentheses. ***p< 0.01, **p < 0.05, *p < 0.1

***p< 0.01, **p < 0.05, *p < 0.1.
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Table 6: Controlling Flexibly for Population

Ln(PM2.5) - Elasticity

Control for Polynomial in Population 0.257*** 0.205*** 0.167***
(0.063) (0.040) (0.041)

F-Stat 14 12 12
Obs. 933 933 933

Ln(PM2.5) - Elasticity

Instrument for Ln(Population) 0.745*** 0.440*** 0.369***
(0.130) (0.141) (0.090)

Add. Controls No No Yes
State-FE No Yes Yes
F-Stat 1 19 22 23
F-Stat 2 51 42 10
Obs. 920 920 920

Notes: 2SLS estimates obtained by modifying our main between-city specification. The depen-

dent variable is the natural logarithm of population-weighted PM2.5 concentration as defined

in the text. In the specifications reported in the top panel, we control for a 4th degree polyno-

mial in CBSA population. To obtain estimates in the bottom panel, we include the logarithm

of CBSA population as an instrumented variable and add in the log of 1880 population den-

sity as an instrument. All specifications include latitude, longitude and average maximum and

minimum temperatures as controls. The specifications in columns 2 and 3 add state effects.

The specification in column 3 adds a set of additional controls, as detailed in the text. F-

statistics from first-stage(s), reported in the table foot. Robust standard errors in parentheses.

***p< 0.01, **p < 0.05, *p < 0.1
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Table 7: Density and the Composition of Polluting Economic Activities

Fraction of Manufacturing Employment

(1) (2) (3)
A. Employment Composition
Log(Pop. Dens.) -0.014 0.002 0.031

(0.012) (0.014) (0.036)
Log(PM2.5 Intensity)

B. Composition of Polluters (PM2.5)
Log(Pop. Dens.) 0.052 0.070* 0.026

(0.032) (0.037) (0.103)
Log(PM10 Intensity)

C. Composition of Polluters (PM10)
Log(Pop. Dens.) 0.032 0.047 -0.478

(0.121) (0.145) (0.456)

Add. Controls No Yes Yes
State-FE Yes Yes Yes
IV for Log(Pop) No No Yes
Obs. 933 933 920

Notes: Panel A reports 2SLS estimates of the effect of density on the fraction of CBSA

employment working in manufacturing. Panel B reports 2SLS estimates of the effect of density

on the PM2.5 pollution intensity composition at the city level as derived from Shapiro and

Walker (2018). Panel C reports estimates of the effect of density on PM10 pollution intensity

composition as derived from Levinson (2009). All specifications include state effects. Columns

2 and 3 include the full set of controls, as detailed in the text. Column 3 adds the logarithm

of CBSA population as an additional instrumented variable and the 1880 average population

density as an additional instrument. Robust standard errors in parentheses. ***p< 0.01, **p

< 0.05, *p < 0.1
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Appendix

Figures

Figure A1: Satellite-derived vs. Ground-based PM2.5 Concentration

Notes: Horizontal axis represents population-weighted PM2.5 concentration (in µg /m3) from

satellite-derived measures. Vertical axis represents average PM2.5 concentration from ground-

based monitoring stations. Correlation between both variables is 0.8. The points represent

546 CBSAs (metro and micropolitan areas), having at least one ground-monitor within their

boundaries. The black line is estimated as a local linear regression with Epanechnikov kernel.

Figure A2: Pollution and Density Gradients Inside Cities: Monitoring Stations

Notes: Horizontal axis represents to distance to the CBSA population-weighted centroid.

Vertical axes correspond to population density (left axis) and average ground-monitor PM2.5

concentration (right axis). Lines obtained by estimating 5th degree polynomials over grid-level

data. Blue line corresponds to population density and red line to PM2.5 concentration.
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Figure A3: Non-Parametric PM2.5 Exposure v. Density

Notes: Bin scatter where bins in the population density variable are selected to have the same

number of CBSAs. Vertical axis represents average PM2.5 average residential exposure (in µg

/m3), as obtained from the satellite-derived measures. Horizontal axis represents the natural

logarithm of population density. The points represent 933 CBSAs (metro and micropolitan

areas).
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Figure A4: Population-Adjusted PM2.5 Exposure v. Density Scatter

Notes: Vertical axis represents population-adjusted PM2.5 average residential exposure (in

µg /m3), as obtained from the satellite-derived measures. Horizontal axis represents the

population-adjusted natural logarithm of population density. Population-adjustment amounts

to regressing the variable in question on a fourth degree polynomial of population, obtaining

residuals and adding the variable mean to re-centre the resulting variable at the original

average. The points represent 933 CBSAs (metro and micropolitan areas).

Figure A5: Mortality Cost Estimates by CBSA
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Tables

Table A1: Within-City Baseline Estimates

Log(PM2.5) – Elasticities

Log(Pop. Dens.) 0.052*** 0.046*** 0.046*** 0.036***
(0.003) (0.003) (0.003) (0.002)

Observations 4306842 4306842 4306842 4306842
PM2.5

Log(Pop. Dens.) 0.281*** 0.260*** 0.242*** 0.207***
(0.016) (0.015) (0.014) (0.012)

Add. Controls No Yes No Yes
State-FE Yes Yes No No
City-FE No No Yes Yes
Obs. 4325515 4325515 4325515 4325515

Notes: Grid-cell level regressions (OLS). Dependent variable is the natural logarithm of PM2.5

concentration. All specifications include latitude, longitude and average maximum and mini-

mum temperatures as controls. Columns 2 and 3 include state fixed effects. Columns 3 and

4 include CBSA fixed effects. The specifications in columns 2 and 4 add a set of additional

controls as detailed in the text. Standard errors clustered at the city level in parenthesis.

***p< 0.01, **p < 0.05, *p < 0.1.
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Table A2: Within-City First-Stage Coefficients

Log-Density

Soil Drainage -0.097*** -0.175*** -0.024 -0.072***
(0.034) (0.030) (0.022) (0.021)

Earthquake Risk 0.420*** 0.526*** 0.297** 0.341**
(0.083) (0.088) (0.133) (0.140)

Aquifer 0.310*** 0.041 0.656*** 0.341***
(0.109) (0.105) (0.109) (0.097)

Add. Controls No No No Yes
State-FE Yes Yes No No
City-FE No No Yes Yes
F-Stat 12 25 15 10
Obs. 4325515 4325515 4325515 4325515

Notes: Grid-cell level regressions (OLS). Dependent variable is the natural logarithm of PM2.5

concentration. All specifications include latitude, longitude and average maximum and mini-

mum temperatures as controls. Columns 2 and 3 include state fixed effects. Columns 3 and

4 include CBSA fixed effects. The specifications in columns 2 and 4 add a set of additional

controls as detailed in the text. Standard errors clustered at the city level in parenthesis.

***p< 0.01, **p < 0.05, *p < 0.1.

Table A3: First-Stage (Geological Instruments) - City Level

Log(Density)

Earthquake Risk 0.210*** 0.302*** 0.243***
(0.057) (0.081) (0.075)

Aquifer -0.220** -0.141 -0.229**
(0.091) (0.110) (0.104)

Soil Drainage -0.187*** -0.276*** -0.318***
(0.040) (0.050) (0.053)

Add. Controls No No Yes
State-FE No Yes Yes
F-Stat 21 19 20
Obs. 933 933 933

Notes: City-level regressions. The dependent variable in all columns is the log of pop-

ulation density at the city (CBSA) level. F-statistics for joint significance of the geo-

logical instruments reported in the table foot. All specifications include latitude, lon-

gitude and average maximum and minimum temperatures as controls. The specifica-

tions in columns 2 and 3 add state effects. The specifications in column 3 add a set

of additional controls as detailed in the text. Robust standard errors in parentheses.

***p< 0.01, **p < 0.05, *p < 0.1.
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Table A4: Balancing - Power Stations

N. Oil Plants N. Coal Plants Dummy Oil Dummy Coal

Soil Drainage -0.009 0.262 -0.008 0.029*
(0.064) (0.183) (0.017) (0.016)

Earthq. Risk 0.008 -0.040 0.002 -0.041
(0.046) (0.503) (0.026) (0.029)

Aquifer 0.034 0.304 0.033 -0.031
(0.103) (0.275) (0.039) (0.040)

Add. Controls Yes Yes Yes Yes
State-FE Yes Yes Yes Yes
F-Stat 0 2 0 2
Obs. 933 933 933 933

Notes: City-level regressions of instruments on variables measuring the presence
of oil and coal power stations. All specifications include the full set of controls
and state effects. The dependent variables are the number of stations of each
type in columns 1 and 2, and dummies taking value 1 if any station is present on
columns 3 and 4. F-statistics for joint significance of the geological instruments
included in table footer.

Table A5: Balancing - Wharton Index

LUR Index LUR Index LUR Index LUR Index

Soil Drainage -0.134** -0.053 -0.025 -0.073
(0.053) (0.058) (0.050) (0.055)

Earthquake Risk 0.223*** -0.027 0.169* 0.178*
(0.070) (0.073) (0.092) (0.093)

Aquifer 0.587*** -0.013 0.176 0.090
(0.126) (0.116) (0.118) (0.128)

Add. Controls No Yes No Yes
State-FE No No Yes Yes
F-Stat 9 0 2 2
Obs. 485 485 485 485

Notes: City-level regressions of instruments on Wharton Land Use Regulation Index (Gyourko

et al. 2008). All specifications include latitude, longitude and average maximum and minimum

temperatures as controls. Columns 2 and 5 include additional controls as outlined in the text.

Columns 3 and 4 include state effects. F-statistics for joint significance of the geological

instruments included in table footer.
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Table A6: Robustness: Instrument Pairs

Log(PM2.5)

Log(Pop. Dens.) 0.094** 0.157*** 0.129***
(0.038) (0.026) (0.025)

Log(Pop. Dens.) 0.302*** 0.199*** 0.180***
(0.048) (0.040) (0.037)

Log(Pop. Dens.) 0.100*** 0.151*** 0.123***
(0.038) (0.022) (0.023)

Add.Controls No No Yes
State-FE No Yes Yes
Obs. 933 933 933

Notes: 2SLS Estimates in each row obtained by excluding one of the geological variables

when instrumenting for density: First row excludes earthquake risk, the second excludes soil

drainage capacity, and the third aquifer presence. Dependent variable is the log of population-

weighted PM2.5 concentration. All specifications include latitude, longitude and average

maximum and minimum temperatures as controls. State effects added in columns 2 and

3. The specifications in column 3 add additional controls, as detailed in the text. Robust

standard errors in parentheses. ***p< 0.01, **p < 0.05, *p < 0.1

Table A7: Robustness: Population-Weighted Densities

OLS IV

Log(Weighted Pop. Dens.) 0.054*** 0.078*** 0.558*** 0.530***
(0.010) (0.007) (0.129) (0.091)

Add. Controls Yes Yes Yes Yes
State-FE No Yes No Yes
F-Stat 11 11
Obs. 933 933 920 920

Notes: Estimated elasticities of PM2.5 concentration and population-weighted popu-

lation density. Dependent variable is the natural logarithm of PM2.5 concentration

in all specifications. Columns 1 and 2 estimated via OLS. Columns 3 and 4 es-

timates using our historical and earthquake instruments. All specifications include

our full set of controls. The specifications in columns 2 and 4 add state effects.

F-statistics for joint significance of the geological instruments in the first-stage, re-

ported in the table foot in columns 2 and 3. Robust standard errors in parentheses.

***p< 0.01, **p < 0.05, *p < 0.1
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