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“loss aversion-sensitive dominance” defines a weak partial ordering of the distributions of 
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individual preferences with non-decreasing and loss-averse attitudes towards changes 

in outcomes. We also develop new statistical methods to test loss aversion-sensitive 

dominance in practice, using nonparametric plug-in estimates. We establish the limiting 

distributions of uniform test statistics by showing that they are directionally differentiable. 

This implies that inference can be conducted by a special resampling procedure. Since 

point-identification of the distribution of policy-induced gains and losses may require very 
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procedures to a partially-identified case. Finally, we illustrate our methods with an empirical 

application to welfare comparison of two income support programs.
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We suffer more, ... when we fall from a better to a worse situation, than we ever enjoy when we rise
from a worse to a better.

Adam Smith, The Theory of Moral Sentiments

1 Introduction

The welfare ranking of policy interventions has classically (Atkinson, 1970) been conducted
under the Rawlsian principle of the “veil of ignorance”: all policies that produce the same
marginal outcome distributions are deemed equivalent for the purpose of welfare analysis.
From this perspective, individual gains and losses should be irrelevant (Roemer, 1998; Sen,
2000). However, policies often generate heterogeneous effects, potentially giving rise to gains
and losses, which can be consequential for several reasons.

More modern approaches to ranking policy interventions greatly emphasize how different
individuals are affected by a policy (Heckman and Smith, 1998; Carneiro, Hansen, and Heck-
man, 2001). A powerful motivation for this lies in the dynamics of political economy. Public
support for a policy, and for the authorities that implement it, depend on the balance of gains
and losses experienced by different individuals in the electorate. In addition, and in line with
the political economy arguments adduced in Carneiro, Hansen, and Heckman (2001), there
is mounting empirical evidence corroborating that the electorate exhibits loss aversion — an
empirical regularity that has been identified in a wide variety of other contexts (Kahneman
and Tversky, 1979; Samuelson and Zeckhauser, 1988; Tversky and Kahneman, 1991; Rabin
and Thaler, 2001; Rick, 2011). This aversion to losses among constituents, in turn, drives
the actions of policy makers, as documented in contexts as diverse as government support
to the steel industry in US trade policy, and the repeal of the Affordable Care Act (Freund
and Özden, 2008; Alesina and Passarelli, 2019). In this paper we develop new testable crite-
ria and econometric methods to rank distributions of individual policy effects from a welfare
standpoint when individuals exhibit loss aversion. This extends the toolkit available for the
evaluating the impact of policy interventions.

Our first contribution is to propose criteria for ranking policies when agents are averse to
losses by using the standard welfare function approach (Atkinson, 1970), namely, that policies
may be evaluated based on a welfare ranking. We use a ranking based on social value func-
tions, which aggregate individual gains and losses evaluated by a cardinal and interpersonally
comparable value function, similarly to standard utilitarian welfare ranking. As is well-known,
the latter is equivalent to first-order stochastic dominance (FOSD) over distributions of policy
outcomes. In a similar spirit, as the first main contribution, we show that the social value
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function ranking with non-decreasing and loss-averse value functions (Tversky and Kahneman,
1991) is equivalent to a new concept we call loss aversion-sensitive dominance (LASD) over
distributions of policy-induced gains and losses. Recall that FOSD requires that the cumula-
tive distribution function of the dominated distribution lies everywhere above the cumulative
distribution of the dominant distribution. In contrast, under LASD it must lie sufficiently
above the dominant distribution such that potential losses cannot be compensated by poten-
tial gains. This is a consequence of loss-aversion. Except for the special case of a status quo
policy (i.e. a policy of no change) where FOSD and LASD coincide, generally, as we show,
LASD can be used to compare policies that are indistinguishable for FOSD.1

The LASD criterion relies on gains and losses, which under certain identification conditions
could be considered treatment effects. It is well known that the point identification of the
distribution of treatment effects may require implausible theoretical restrictions such as rank
invariance of potential outcomes (Heckman, Smith, and Clements, 1997). We extend our LASD
criteria to a partially-identified setting and establish a sufficient condition to rank alternative
policies under partial identification of the distributions of their effects. We use Makarov
bounds (Makarov, 1982; Rüschendorf, 1982; Frank, Nelsen, and Schweizer, 1987) to bound the
distribution of treatment effects when the joint pre- and post-policy outcome distribution is
unknown. This provides a testable criterion that can be used in practice, since the marginal
distribution functions from samples observed under various treatments can usually be identified
and Makarov bounds only rely on marginal information for their identification.

The second contribution of this paper is to develop statistical inference procedures to
practically test the loss averse-sensitive dominance condition using sample data. We develop
statistical tests for both point-identified and partially-identified distributions of outcomes. The
test procedures are designed to assess, uniformly over the two outcome distributions, whether
one treatment dominates another in terms of the LASD criterion. Specifically, we suggest
Kolmogorov-Smirnov and Cramér-von Mises test statistics that are applied to nonparametric
plug-in estimates of the LASD criterion mentioned above. Inference for these statistics uses
specially tailored resampling procedures. We show that our procedures control the size of
tests uniformly over probability distributions that satisfy the null hypothesis. Our tests are
related to the literature on uniform inference for stochastic dominance represented by, e.g.,
Linton, Song, and Whang (2010); Linton, Maasoumi, and Whang (2005); Barrett and Donald

1The literature on stochastic dominance is vast and spans economics and mathematics - we refer the reader
to, e.g., Shaked and Shanthikumar (1994) and Levy (2016) for a review. When dominance curves cross, higher
order or inverse stochastic dominance criteria have been proposed. The former involves conditions on higher
(typically third and fourth) order derivatives of utility function (e.g. Fishburn (1980), Chew (1983) to which
Eeckhoudt and Schlesinger (2006) provided interesting interpretation, whereas the latter is related to the
rank-dependent theory originally proposed by Weymark (1981) and Yaari (1987, 1988), where social welfare
functions are weighted averages of ordered outcomes with weights decreasing with the rank of the outcome (see
Aaberge, Havnes, and Mogstad (2018) for a recent refinement of this theory).
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(2003) and references cited therein. We contribute to this literature by developing tests for loss
averse-sensitive dominance, which are more complex than the standard stochastic dominance.
Hence, our tests widen the variety of comparisons available to empirical researchers to other
criteria that encode important qualitative features of agent preferences.

Our econometric approach extends existing stochastic dominance testing procedures. Ver-
ifying LASD with sample data presents technical challenges for both the point- and partially-
identified cases because the criterion that implies LASD of one distribution over another is
more complex than the standard FOSD criterion. The function used to map distribution
functions to a testable criterion in the point-identified case is nonlinear and ill-behaved. The
criterion function has complex pointwise distributions at each point in its support, but a
dominance test inherently requires the uniform comparison over distributions, which demands
regularity (in the form of differentiability) of the map between the space of distribution func-
tions and the space of criterion functions. However, as such a map the LASD criterion is
not smooth. Despite these complications, we show that supremum- or L2-norm statistics ap-
plied to this function are just regular enough that, with some care, resampling can be used to
conduct inference. We rely on recent results from Fang and Santos (2019), who built on the
work of Dümbgen (1993), to propose an inference procedure that combines standard resam-
pling with an estimate of the way that test statistics depend on underlying data distributions.
We contribute to the literature on directionally differentiable test statistics with a new test
for LASD. Recent contributions to this literature include, among others, Cattaneo, Jansson,
and Nagasawa (2017); Hong and Li (2018); Chetverikov, Santos, and Shaikh (2018); Cho and
White (2018); Christensen and Connault (2019); Fang and Santos (2019) and Masten and
Poirier (2020). When distributions are only partially identified by bounds, the situation is
more challenging, but the problem has a similar solution. This allows us to conduct conser-
vative inference in the partially identified case. Our contribution to this literature is novel
because of our focus on uniform tests for dominance in both the point- and partially-identified
cases.

Finally, this paper also relates to the strand of literature that develops methods to estimate
the optimal treatment assignment policy that maximizes a social welfare function. Recent
developments can be found in Manski (2004), Dehejia (2005), Hirano and Porter (2009), Stoye
(2009), Bhattacharya and Dupas (2012), Tetenov (2012), Kitagawa and Tetenov (2018, 2019),
among others. These papers focus on the decision-theoretic properties and procedures that
map empirical data into treatment choices. In this context, our paper is most closely related to
Kasy (2016), which focuses on welfare rankings of policies rather than optimal policy choice.

We empirically illustrate the use of our proposed criteria and tests with a welfare compari-
son of two well-known income support programs using data from Bitler, Gelbach, and Hoynes
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(2006). We show that, in the case of a policy with gainers and losers, the use of our loss
aversion-sensitive evaluation criteria may lead to a ranking of policy interventions that differs
from that obtained when their outcomes are compared using stochastic dominance.

The rest of the paper is organized as follows. Section 2 presents some basic definitions and
notation and defines loss aversion-sensitive dominance. Section 3 develops testable criteria for
loss aversion-sensitive dominance. Section 4 proposes statistical inference methods for LASD
using sample observations. An empirical application appears in Section 5. Finally, Section
6 concludes. One appendix includes auxiliary results and definitions, and a second appendix
collects proof of the results in the text.

2 Loss aversion-sensitive dominance

In this section, we propose a novel dominance relation for ordering policies under the assump-
tion that social decision makers consider the distribution of individual gains and losses under
different policy scenarios. We call this criterion Loss Aversion-Sensitive Dominance (LASD).

Suppose a random variable X describes individual gains and losses, and X has cumulative
distribution function F , and let F be the set of cumulative distribution functions with bounded
support X . We maintain the assumption throughout that F ∈ F . The bounded support
assumption is made to avoid technical conditions on tails of distribution functions.

A decision maker has preferences over X that are represented via a continuous social value
function (SVF).

Definition 2.1 (Social Value Function). Suppose random variable X has CDF F ∈ F and
let W : F → R denote the following social value function

W (F ) =

ˆ
X
v(x)dF (x), (1)

where v : X → R is called a value function.2

The social value function defined above is standard in the literature. W (F ) is the expected
evaluation of the distribution of X by a decision maker who uses value function v(·). The value
function v(·) in (1) need not be any agent’s actual value function, but simply the utility function
that the social planner uses to convert outcomes into an interpersonally-comparable measure
of well-being (Gajdos and Weymark, 2012). We depart from the standard assumptions on

2Formally speaking we have Wv(F ) but we suppress the subscript v for expositional brevity.
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the value function in this paper because it is tailored to the evaluation of gains and losses
induced by policies. In particular, we assume that v exhibits the following features: (i) agents
assign negative value to losses and positive value to gains, (ii) the value function is monotone
(increasing), and our key property – (iii) there is asymmetry in gains and losses, namely, losses
hurt an agent more than gains of equivalent magnitude make her happy. These properties are
formally listed in the next definition.

Definition 2.2 (Properties of the value function). The value function v : X → R satisfies:

1. Disutility of losses and utility of gains: v(x) ≤ 0 for all x < 0, v(0) = 0 and v(x) ≥ 0 for
all x > 0.

2. Non-decreasing: v′(x) ≥ 0 for all x.

3. Loss-averse: v′(−x) ≥ v′(x) for all x > 0.

The properties in Definition 2.2 are typically assumed in Prospect Theory together with
the additional requirement of S-shapedness of value function, which we do not consider (see,
e.g., p. 279 of Kahneman and Tversky (1979)). Assumptions 1 and 2 are standard concavity
and monotone increasing conditions. Assumption 3 expresses the idea that “losses loom larger
than corresponding gains” and is a widely accepted definition of loss aversion (Tversky and
Kahneman, 1992, p.303). It is a stronger condition than the one considered by Kahneman and
Tversky (1979).

The following form of W (F ) will be useful in subsequent definitions and results.

Proposition 2.3. Suppose that F ∈ F and v is once differentiable. Then

W (F ) = −
ˆ 0

−∞
v′(x)F (x)dx+

ˆ ∞
0

v′(x)(1− F (x))dx. (2)

Assume that the decision maker’s social value function W depends on v which satisfies
Definition 2.2, and she wishes to compare random variables XA and XB which represent gains
and losses under two policies labeled A and B. We use the labels FA and FB for the distribution
functions of XA and XB. The decision maker prefers XA over XB if she evaluates FA as better
than FB using her SVF — specifically, XA is preferred to XB if and only if W (FA) ≥W (FB),
where W is defined in Definition 2.1. This idea is formalized below.

Definition 2.4 (Loss Aversion-Sensitive Dominance). Let XA and XB have distribution func-
tions respectively labeled FA, FB ∈ F . IfW (FA) ≥W (FB) for all value functions v that satisfy
Definition 2.2, we say that FA dominates FB in terms of Loss Aversion-Sensitive Dominance,
or LASD for short, and we write FA �LASD FB.
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In the next section we relate this abstract notion to a more concrete condition that depends
on the cumulative distribution functions of the outcome distributions, FA and FB.

3 Testable criteria for loss aversion-sensitive dominance

In this section we formulate conditions for evaluating distributions of gains and losses. We
propose criteria that indicate whether one distribution of gains and losses dominates another
in the sense described in Definition 2.4.

For making comparisons between policies A andB, an econometrician can generally observe
three relevant distributions. First, suppose that the control or current distribution of agents’
outcomes is represented by the random variable Z0 which has marginal distribution function
G0. Two other random variables, ZA and ZB, describe outcomes under policies A and B.
Assume their marginal distribution functions are GA and GB respectively. However, a decision
maker who is sensitive to loss considers differences induced by these prospective policies. The
gains and losses due to policies A and B are defined by the random variables XA = ZA − Z0

and XB = ZB − Z0. The decision maker’s goal is to compare policies A and B using the
distribution functions FA and FB, the distribution functions of XA and XB.

The problem with comparing the variables XA and XB is well-known in the treatment
effects literature: FA and FB depend on the joint distribution of (Z0, ZA, ZB), which may
not be observable without restrictions imposed by an economic model. In subsection 3.1 we
abstract from specific identification conditions and discusses LASD under the assumption that
FA and FB are identified. In subsection 3.2 we work with a partially identified case where
only the marginal distribution functions G0, GA and GB are observable and no restrictions
are made to identify FA and FB.

3.1 The case of point-identified distributions

The LASD concept in Definition 2.4 requires that one distribution is preferred to another
over an entire class of social value functions and is difficult to test directly. The following
result relates the LASD concept to a criterion which depends only on marginal distribution
functions and orders FA and FB according to the class of SVFs allowed in Definition 2.2. In
this section we assume that FA, FB ∈ F are point identified. This may result from a variety
of econometric restrictions that deliver identification and are the subject a large literature.

Theorem 3.1. Suppose that FA, FB ∈ F . The following are equivalent:
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1. FA �LASD FB.

2. For all x ≥ 0, FA and FB satisfy

FB(−x)− FA(−x) ≥ max{0, FA(x)− FB(x)}. (3)

3. For all x ≥ 0, FA and FB simultaneously satisfy

FA(−x)− FB(−x) ≤ 0 (4)

and
(1− FA(x))− FA(−x) ≥ (1− FB(x))− FB(−x). (5)

Theorem 3.1 provides two different conditions that can be used to verify whether one
distribution of gains and losses dominates the other in the LASD sense.3 These criteria
compare the outcome distributions by examining how the distribution functions (FA, FB)

assign probabilities to gains and losses of all possible magnitudes. The particular way that
they make a comparison is related to the relative importance of gains and losses. Consider
condition (3). ForXB to be dominated, its distribution function must lie above the distribution
of XA for losses. XB can be dominated by XA even when gains under A are dominated by
those under B — that is, when FA(x) − FB(x) ≥ 0 for some x ≥ 0 — as long as this lack
of dominance in gains is compensated by sufficient dominance of XA over XB in the losses
region. This is a consequence of the asymmetric treatment of gains and losses. On the other
hand, consider conditions (4) and (5). Condition (4) is a FOSD condition applied to losses.
This is a consequence of loss aversion; note that in the extreme case where only losses matter,
we would have (4). Condition (5) is a tail condition on the distributions. It requires that when
balancing the probabilities of gains and losses of absolute magnitudes at least as large as x,
XA provides gains to a higher proportion of agents than does XB. Inequality (3) combines
the two inequalities represented by (4) and (5) into a single equation.

It is interesting to note that LASD has one property in common with FOSD, namely, a
higher mean is a necessary condition for both types of dominance.

Corollary 3.2. If FA �LASD FB then E [XA] ≥ E [XB].

Note that FOSD cannot rank two distributions that have the same mean — that is, if
FA �FOSD FB and E [XA] = E [XB], then FA = FB. This is not the case for LASD in (3),

3LASD is a partial order. Over losses, (4) is a partial order because FOSD is a partial order. For the
tail condition (5) checking transitivity we have (1− FA(x))−FA(−x) ≥ (1− FB(x))−FB(−x), (1− FB(x))−
FB(−x) ≥ (1− FC(x))−FC(−x), and (1− FA(x))−FA(−x) ≥ (1− FC(x))−FC(−x). If FA(−x)−FB(−x) = 0
then FA(−x) = FB(−x) and using it in (5) gives anti-symmetry.
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as the next example demonstrates. Therefore, for example, when comparing two distributions
with the same average effect, equation (3) may still be used to differentiate between them.

Example 3.3. Consider the family of uniform distributions on [−1−y,−y]∪ [y, y+1] indexed
by y > 0 and denote the corresponding member distribution functions Fy. The family of such
distributions have mean zero and Fy �LASD Fy′ whenever y < y′. Indeed, note that

W (Fy) =
1

2

(ˆ −y
−1−y

v(z)dz +

ˆ 1+y

y
v(z)dz

)

and thus for any v which is loss-averse (see Definition 2.2) we have

d
dy
W (Fy) =

1

2
(v(−1− y)− v(−y) + v(1 + y)− v(y))

= −
ˆ −y
−1−y

v′(z)dz +

ˆ 1+y

y
v′(z)dz

=

ˆ 1+y

y

(
v′(z)− v′(−z)

)
dz ≤ 0.

It is important to note that LASD is a concept that is specialized to the comparison
of distributions that represent gains and losses. Standard FOSD is typically applied to the
distribution of outcomes in levels without regard to whether the outcomes resulted from gains
or losses of agents relative to a pre-policy state — in our notation, GA and GB are typically
compared with FOSD, instead of FA and FB. FOSD applied to post-policy levels may or may
not coincide with LASD applied to changes. This means that even when a strong condition
such as FOSD holds for final outcomes, if one took into account how agents value gains and
losses it may turn out that the dominant distribution is no longer a preferred outcome. One
could apply the FOSD rule to compare distributions of income changes, which implies LASD
applied to changes, because FOSD applies to a broader class of value functions. However, this
type of comparison would ignore agents’ loss aversion, the important qualitative feature that
LASD accounts for. The following example shows that the analysis of outcomes in levels using
FOSD need not correspond to any LASD ordering of outcomes in changes.

Example 3.4. Let Z0 represent outcomes before policies A or B. Suppose Z0 is distributed
uniformly over {0, 1, 2, 3}. Policy A assigns post-policy outcomes depending on the realized
Z0 according to the schedule

ZA =





3 if {Z0 = 0}
2 if {Z0 = 1}
0 if {Z0 = 2}
1 if {Z0 = 3}.
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Therefore the distribution of XA = ZA − Z0 is P{XA = −2} = 1/2, P{XA = 1} = P{XA =

3} = 1/4. Meanwhile, policy B maintains the status quo: XB = ZB−Z0 = 0 with probability
1.

It is straightforward to check that ZA ∼ ZB thus they dominate each other according to
FOSD. However, there is no loss aversion-sensitive dominance between XA and XB. Indeed,
we can find two value functions that fulfill the conditions of Definition 2.4 but order XA and
XB differently. For example, take v1(x) = x3. Then 3 =

´
v1(x)dFA(x) >

´
v1(x)dFB(x) = 0.

Next let v2(x) = sgn(x)|x|1/3. Then −0.02 ≈
´
v2(x)dFA(x) <

´
v2(x)dFB(x) ≈ 0.

In the previous example, policy B left pre-treatment outcomes unchanged, or in other
words, maintained a status quo condition — we had XB = ZB − Z0 ≡ 0. Suppose generally
that XB has a distribution that is degenerate at 0. Then FB(x) = 0 for all x < 0 and
FB(x) = 1 for all x ≥ 0. We define this as a status quo policy distribution, labelled FSQ.
When comparison is between a distribution FA and FSQ, LASD and standard FOSD are
equivalent.

Corollary 3.5. Suppose that FA ∈ F and FB = FSQ. Then FA �LASD FSQ ⇐⇒ FA �FOSD
FSQ.

Remark 3.6. Although in this paper we focus on the distribution of gains and losses, Kőszegi
and Rabin (2006) have developed an interesting preference relation in which individuals derive
utility from income and also from gains and losses. In particular, their utility function is
additively separable in both gains and losses x and income levels z i.e. ṽ(x, z) = vG(x)+vI(z),
where x ∈ R and z ∈ [0,∞). Using Kőszegi and Rabin (2006) preferences, policy A dominates
policy B if, in our notation, (4) and (5) are satisfied by XA and XB along with the additional
condition that ZA dominates ZB according to FOSD. A proof of this result is given in Appendix
B.

3.2 The case of partially-identified distributions

In many situations of interest the cumulative distribution functions of gains and losses, FA
and FB, are not point identified without a model of the relationship between XA and XB.
Without information on the dependence between potential outcomes, we can still make some
more circumscribed statements with regard to dominance based on bounds for the distribution
functions.

A number of authors have considered functions that bound the distribution functions FA
and FB. Taking XA as an example, the Makarov bounds (Makarov, 1982; Rüschendorf, 1982;
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Frank, Nelsen, and Schweizer, 1987) are two functions L and U that satisfy L(x) ≤ FA(x) ≤
U(x) for all x ∈ R, depend only on the marginal distribution functions G0 and GA and
are pointwise sharp — for any fixed x there exist some Z∗0 and Z∗A such that the resulting
X∗A = Z∗A−Z∗0 has a distribution function at x that is equal one of L(x) or U(x). Williamson
and Downs (1990) provide convenient definitions for these bound functions. For any two
distribution functions G1, G2, define the maps

L(x,G1, G2) = sup
u∈R

(G2(u)−G1(u− x))

U(x,G1, G2) = inf
u∈R

(1 +G2(u)−G1(u− x)) .

For convenience define the policy-specific bound functions for Fk, k ∈ {A,B} and all x ∈ R,
which depend on the marginal CDFs G0 and Gk, by

Lk(x) = L(x,G0, Gk) (6)

Uk(x) = U(x,G0, Gk). (7)

Using these definitions we obtain a sufficient and a necessary condition for LASD when only
bounds of the treatment effects distribution are observable. The next theorem formalizes the
result.

Theorem 3.7. Suppose that G0, GA, GB ∈ F and define the bounding functions using for-
mulas (6) and (7) for k ∈ {A,B}.

1. If for all x ≥ 0,
LB(−x)− UA(−x) ≥ max{0, UA(x)− LB(x)} (8)

then (3) holds.

2. If (3) holds then for all x ≥ 0,

UB(−x)− LA(−x) ≥ LA(x)− UB(x). (9)

Theorem 3.7 is and extension of Theorem 3.1 from the point-identified to the partially-
identified case. Both Theorems 3.1 and 3.7 will play important parts in the inference proce-
dures discussed in the next Section.

When the comparison is with the status quo distribution, the partially identified conditions
simplify. Corollary 3.8 below is an extension of Corollary 3.5 to the partially identified case.

Corollary 3.8. Suppose that FB = FSQ and that G0, GA ∈ F . Define the bound functions
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UA and LA using formulas (6) and (7). Then UA(−x) = 0 for all x ≥ 0 ⇒ FA �LASD FSQ

and FA �LASD FSQ ⇒ LA(−x) = 0 for all x ≥ 0.

4 Inferring loss aversion-sensitive dominance

In this section we propose statistical inference methods for the loss aversion-sensitive domi-
nance (LASD) criteria discussed in previous sections. We consider the null and alternative
hypotheses

H0 : FA �LASD FB

H1 : FA 6�LASD FB.
(10)

Under the null hypothesis (10) policy A dominates B in the LASD sense, similar to much of the
literature on stochastic dominance — see, for example, Linton, Maasoumi, and Whang (2005);
Linton, Song, and Whang (2010). We use the dominance criteria discussed in Theorems 3.1
and 3.7 to design nonparametric tests for H0. Because the LASD hypothesis is translated
into functional inequalities, which we discuss below, tests must be conducted uniformly over
all x ≥ 0. This uniformity in x and features of the LASD conditions present a challenge for
inference.

We consider tests for this null hypothesis given sample data observed under two differ-
ent identification assumptions. We start with the case where the econometrician can directly
observe samples {XAi}nAi=1 and {XBi}nBi=1 which represent agents’ gains and losses. In other
words, we assume that a model has been imposed on the data so that the distribution func-
tions of XA and XB are point-identified and their distribution functions can be estimated
using the empirical distribution functions from two samples. Next we extend these results
to the partially-identified case where no assumption about the joint distribution of potential
outcomes under either treatment is assumed. In this case, the econometrician observes three
samples, {Z0i}n0

i=1, {ZAi}nAi=1 and {ZBi}nBi=1, of outcomes under a control or pre-policy state,
and outcomes under policies A and B, and tests are based on plug-in estimates for bounds for
XA = ZA − Z0 and XB = ZB − Z0.

We consider distribution functions as members of the space of bounded functions on the
support X ⊆ R, denoted `∞(X ), equipped with the supremum norm, defined for f : Rk → R`

by ‖f‖∞ = maxj{supx∈Rk |fj(x)|}. For real numbers x let (x)+ = max{0, x}. Given a
sequence of bounded functions {fn}n and limiting random element f we write fn ; f to
denote weak convergence in (`∞, ‖ · ‖∞) in the sense of Hoffman-Jørgensen (van der Vaart and
Wellner, 1996).
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4.1 Inferring dominance from point identified treatment distributions

In this subsection we suppose that the pair of marginal distribution functions F = (FA, FB)

is identified.

4.1.1 Test statistics

To implement a test of the hypotheses (10) we employ the results of Theorem 3.1 to construct
maps of F into criterion functions that are used to detect deviations from the hypothesis H0.
Specifically, recalling that (x)+ = max{0, x}, for the point-identified case we examine maps
T1 : (`∞(R))2 → `∞(R+) and T2 : (`∞(R))2 → (`∞(R+))2, defined for each x ≥ 0 by

T1(F )(x) = (FA(x)− FB(x))+ + FA(−x)− FB(−x) (11)

and

T2(F )(x) =

[
FA(−x)− FB(−x)

FA(x)− FB(x) + FA(−x)− FB(−x)

]
. (12)

Functions T1(F ) and T2(F ) are designed so that large positive values will indicate a violation
of the null. Taking T1 as an example, Theorem 3.1 states that W (FA) ≥W (FB) if and only if
FB(−x)− FA(−x) ≥ (FA(x)− FB(x))+ for all x ≥ 0, so tests can be constructed by looking
for x where T1(F )(x) becomes significantly positive. We will refer to Tj as maps from pairs of
distribution functions to another function space, and also refer to them as functions.

The hypotheses (10) can be rewritten in two equivalent forms, depending on whether one
uses T1 or T2 to transform distribution functions: letting X ⊆ R+ be an evaluation set, we
have

H
(1)
0 : T1(F )(x) ≤ 0, for all x ∈ X ,

H
(1)
1 : T1(F )(x) > 0, for some x ∈ X

(13)

and
H

(2)
0 : T2(F )(x) ≤ 02, for all x ∈ X ,

H
(2)
1 : T2(F )(x) 6≤ 02, for some x ∈ X .

(14)

In the second set of hypotheses 02 is a two-dimensional vector of zeros and inequalities are
taken coordinate-wise.

The next step in testing the hypotheses (13) and (14) is to estimate T1(F ) and T2(F ). Let
Fn = (FAn,FBn) denote the pair of marginal empirical distribution functions, that is, Fkn(x) =
1
nk

∑nk
i=1 1{Xki ≤ x} for k ∈ {A,B}. These are well-behaved estimators of the components of
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F . Letting n = nA +nB, standard empirical process theory shows that
√
n(Fn−F ) converges

weakly to a Gaussian process under weak assumptions (van der Vaart, 1998, Example 19.6).
In order to conduct inference for loss aversion-sensitive dominance, we use plug-in estimators
Tj(Fn) for j ∈ {1, 2}. See Remark A.7 in Appendix A for details on the computation of these
functions.

In order to detect when Tj(Fn) is significantly positive, we consider statistics based on
a one-sided supremum norm or a one-sided L2 norm over X . Kolmogorov-Smirnov (i.e.,
supremum norm) type statistics are

V1n =
√
n sup
x∈X

(T1(Fn)(x))+ (15)

V2n =
√
nmax

{
sup
x∈X

(T21(Fn)(x))+, sup
x∈X

(T22(Fn)(x))+
}
. (16)

Meanwhile Cramér-von Mises (or L2 norm) test statistics are defined by

W1n =
√
n

(ˆ
X

(
(T1(Fn)(x))+

)2 dx
)1/2

, (17)

W2n =
√
n

(ˆ
X

(
(T21(Fn)(x))+

)2
+
(
(T22(Fn)(x))+

)2 dx
)1/2

. (18)

In the sequel, we assume that all functions used in L2 statistics are square-integrable.

4.1.2 Limiting distributions

We wish to establish the limiting distributions of Vjn and Wjn, for j ∈ {1, 2}, under the null
hypothesis H0 : FA �LASD FB. This means that we are concerned with the behavior of the
empirical criterion function processes

√
n(Tj(Fn)− Tj(F )), which are random functions.

Two challenges arise when considering these criterion function processes. First, the form
of the null hypothesis as a functional inequality to be tested uniformly over X is a source of
irregularity. The assumption that the distribution P satisfies the null hypothesis FA �LASD
FB implies that the asymptotic distributions of Wj and Vj depend on features of P . This
is referred to as non-uniformity in P in (Linton, Song, and Whang, 2010; Andrews and Shi,
2013), and requires attention when resampling.

Second, due to the pointwise maximum function in its definition, T1 is too irregular as
a map from the data to the space of bounded functions to establish a limiting distribution
for the empirical process

√
n(T1(Fn) − T1(F )) using conventional statistical techniques. In

13



contrast, T2 is a linear map of F , which implies that
√
n(T2(Fn)− T2(F )) has a well-behaved

limiting distribution in (`∞(R+))2.

Despite the above challenges, we show that Vjn andWjn (for j ∈ {1, 2}) have well-behaved
asymptotic distributions, and furthermore, that the limiting random variables satisfy V1 ∼ V2
and W1 ∼W2. This is an important result because it is the foundation for applying bootstrap
techniques for inference. Before stating the formal assumptions and asymptotic properties of
the tests, we discuss the two difficulties mentioned above in more detail.

The limiting distributions of Vjn and Wjn statistics depend on features of the joint prob-
ability distribution of (XA, XB), which we denote by P . Let P0 be the set of distributions P
such that FA �LASD FB. These are distributions with marginal distribution functions F such
that Tj(F )(x) ≤ 0 for all x ≥ 0. To discuss the relationship between these sets of distributions
and test statistics, we relabel the two coordinates of the T2 function as

m1(x) = FA(−x)− FB(−x) (19)

and
m2(x) = FA(−x)− FB(−x) + FA(x)− FB(x). (20)

When P ∈ P0, both m1(x) ≤ 0 and m2(x) ≤ 0 for all x ≥ 0.

More detail is required about the behavior of the two coordinate functions to determine
the limiting distributions of Vjn and Wjn statistics. For L2-norm statistics W1n and W2n, we
define the following relevant subdomains of X , which collect the arguments where m1 or m2

are equal to zero:

X 1
0 (P ) = {x ∈ X : m1(x) = 0} (21)

X 2
0 (P ) = {x ∈ X : m2(x) = 0}. (22)

Denote X0(P ) ⊆ X as the set of x where T1(F )(x) = 0 or at least one coordinate of T2(F )

equals 0 for probability distribution P . As will be seen below, X0(P ) is the same for both the
T1 and T2 functions. Following Linton, Song, and Whang (2010), we call X0(P ) the contact
set for the distribution P . Given the above definitions, under the null hypothesis we can write

X0(P ) = X 1
0 (P ) ∪ X 2

0 (P ).

On the other hand, the supremum-norm statistics V1n and V2n need a different family of sets,
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namely the sets of ε-maximizers of m1 and m2. For any ε ≥ 0 and k ∈ {1, 2}, let

Mk(ε) =

{
x ∈ X : mk(x) ≥ sup

x∈X
mk(x)− ε

}
. (23)

An important subset of P0 are those P for which test statistics have nontrivial limiting
distributions under the null hypothesis — that is, not degenerate at 0, which occurs when
there is some x such that Tj(F )(x) = 0 (note that there are no x such that Tj(F )(x) > 0 when
P ∈ P0). Define P00 ⊂ P0 to be the set of all P such that X0(P ) 6= ∅. If P ∈ P0\P00 then
X0(P ) = ∅ and because the distribution satisfies the null hypothesis, FA strictly dominates
FB everywhere and the criterion functions Tj are strictly negative over X . When P ∈ P0\P00,
test statistics have asymptotic distributions that are degenerate at zero because test statistics
will detect that policy A is strictly better that B over all of X . When P ∈ P00, Tj(F ) is zero
over X0(P ) and test statistics have a nontrivial asymptotic distribution over X0(P ). Thus,
when FA �LASD FB, the asymptotic behavior of test statistics depends on whether P ∈ P00
or P ∈ P0\P00. Note that when P ∈ P00, we have limε↘0Mk(ε) = X k0 (P ) for whichever
coordinate function actually achieves the maximal value zero.

Hadamard differentiability is an analytic tool used to establish the asymptotic distribution
of nonlinear maps of the empirical process. Definition A.1 in Appendix A provides a precise
statement of the concept. When a map is Hadamard differentiable — for example T2, which is
linear as a map from (`∞(R))2 to (`∞(R+))2 and is thus trivially differentiable — the functional
delta method can be applied to describe its asymptotic behavior as a transformed empirical
process, and a chain rule makes the analysis of compositions of several Hadamard-differentiable
maps tractable. Also, the Hadamard differentiability of a map implies resampling is consistent
when this map is applied to the resampled empirical process (van der Vaart, 1998, Theorem
23.9) — so, for example, the distribution of resampled criterion processes

√
n(T2(F∗n)−T2(Fn))

is a consistent estimate of the asymptotic distribution of
√
n(T2(Fn) − T2(F )) in the space

`∞(R+). On the other hand, consider the T1 map. The pointwise Hadamard directional
derivative of T1(f)(x) at a given x ≥ 0 in direction h(x) = (hA(x), hB(x)) is

T ′1f (h)(x) =





hA(x)− hB(x) + hA(−x)− hB(−x), fA(x) > fB(x)

(hA(x)− hB(x))+ + hA(−x)− hB(−x), fA(x) = fB(x)

hA(−x)− hB(−x), fA(x) < fB(x)

. (24)

This map, thought of as a map between function spaces, (`∞(R))2 and `∞(R+), is not dif-
ferentiable because the pointwise maximum map is only differentiable at each point x, but
not in the codomain `∞(R+). Despite the lack of differentiability of the map F 7→ T1(F ), we
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show in Lemma A.3 in Appendix A that F 7→ V1 and F 7→ W1 are Hadamard directionally
differentiable, which implies these maps are just regular enough that existing statistical meth-
ods can be applied to their analysis. Later in this section we apply the resampling technique
recently developed in Fang and Santos (2019) along with this directional differentiability to
test hypotheses using V1n or W1n.

Having discussed the difficulties in the relationship between distributions and test statistics,
we turn to assumptions on the observations. In order to conduct inference using either T1(Fn)

or T2(Fn) we make the following assumptions.

A1 The observations {XAi}nAi=1 and {XBi}nBi=1 are iid samples and independent of each other
and are continuously distributed with marginal distribution functions FA and FB re-
spectively.

A2 Let the sample sizes nA and nB increase in such a way that nk/(nA + nB) → λk as
nA, nB →∞, where 0 < λk < 1 for k ∈ {A,B}. Define n = nA + nB.

Under these assumptions we establish the asymptotic properties of the test statistics under
the null and fixed alternatives. Under the above assumptions, there is a Gaussian process GF
such that

√
n(Fn − F ) ; GF . We denote each coordinate process GFA and GFB , and for

convenience define two transformed processes: for each x ≥ 0 let

G1(x) = GFA(−x)− GFB (−x) (25)

G2(x) = GFA(x)− GFB (x)− GFA(−x) + GFB (−x). (26)

These will be used in the theorem below.

Theorem 4.1. Make assumptions A1-A2. Define the limiting Gaussian processes G1 and G2
as above. Then:

1. Suppose that P ∈ P00. As n→∞, V1n ; V1 and W1n ;W1, where

V1 ∼ max

{
0, sup
x∈X 1

0 (P )

G1(x) · 1
{

sup
x∈X

m1(x) = 0

}
, sup
x∈X 2

0 (P )

G2(x) · 1
{

sup
x∈X

m2(x) = 0

}}

and

W1 ∼
(ˆ
X 1

0 (P )

(
(G1(x))+

)2 dx+

ˆ
X 2

0 (P )

(
(G2(x))+

)2 dx
)1/2

.

2. Suppose that P ∈ P00. As n → ∞, V2n ; V2 and W2n ; W2, where V2 ∼ V1 and
W2 ∼W1.
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3. Suppose that P ∈ P0\P00 for j = 1 or 2. As n→∞, P {Vjn > ε} → 0 and P {Wjn > ε} →
0 for all ε > 0.

4. Suppose that P 6∈ P0. As n→∞, P {Vjn > c} → 1 and P {Wjn > c} → 1 for all c ≥ 0

for j = 1 or 2.

Theorem 4.1 derives the asymptotic properties of the proposed test statistics. Parts 1 and 2
establish the weak limits of Vjn andWjn for j ∈ {1, 2} when the null hypothesis is true. Recall
that when P ∈ P00, limε↘0Mk(ε) = X k0 (P ), which is whyMk(ε) terms are absent in the first
part of the theorem. Remarkably, the test statistics using T1 and T2 criterion processes have
the same asymptotic behavior despite the different appearances of the underlying processes
and the irregularity of T1. Part 3 shows that the statistics are asymptotically degenerate at
zero when the contact set is empty, that is, when P lies on the interior of the null region. Part
4 shows that the test statistics diverge when data comes from any distribution that does not
satisfy the null hypothesis.

The limiting distributions described in Part 1 of Theorem 4.1 are not standard because the
distributions of the test statistics depend on features of P through the X0(P ) terms in each
expression. Therefore, to make practical inference feasible, we suggest the use of resampling
techniques below.

4.1.3 Resampling procedures for inference

The proposed test statistics have complex limiting distributions. In this subsection, we present
resampling procedures to estimate the limiting distributions of both Vjn andWjn for j ∈ {1, 2}
under the assumption that P ∈ P00. Naive use of bootstrap data generating processes in the
place of the original empirical process suffers from distortions due to discontinuities in the
directional derivatives of the maps that define the distributions of the test statistics. In finite
samples the plug-in estimate will not find, for example, the region where FA(x)− FB(x) = 0,
where the derivatives exhibit discontinuous behavior. Our procedure involves making estimates
of the derivatives involved in the limiting distribution and a standard exchangeable bootstrap
routine, as proposed in Fang and Santos (2019).4

In order to estimate contact sets, define a sequence of constants {an} such that an ↘ 0

and
√
nan →∞ and let m̂1n(x) = FAn(−x)− FBn(−x) and m̂2n(x) = FAn(−x)− FBn(−x) +

4Given a set of weights {Wi}ni=1 that sum to one and are independent of {Xi}ni=1, the exchangeable bootstrap
measure is a randomly-weighted measure that puts mass Wi at observed sample point Xi for each i. This
encompasses, for example, the standard bootstrap, m-of-n bootstrap and wild bootstrap.
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FAn(x)− FBn(x). Then for Wj statistics define the estimated contact sets by

X̂ 1
0 = {x ∈ X : |m̂1n(x)| ≤ an} (27)

X̂ 2
0 = {x ∈ X : |m̂2n(x)| ≤ an}. (28)

When both sets are empty, replace both estimates by X . Meanwhile, for Vj statistics define
estimated ε-maximizer sets. For any sequence of constants {bn} such that bn ↘ 0 and

√
nbn →

∞, let

M̂1(bn) = {x ∈ X : m̂1n(x) ≥ max m̂1n(x)− bn}, (29)

M̂2(bn) = {x ∈ X : m̂2n(x) ≥ max m̂2n(x)− bn}. (30)

Using these estimates, the distributions of V1 and W1 can be estimated from sample data
(recall that Part 2 of Theorem 4.1 asserts that these are the same distributions as those of
V2 and W2). The formulas in part 3 of the steps below are obtained by inserting estimated
contact sets and resampled empirical processes in the place of population-level quantities into
the functions shown in Part 1 of Theorem 4.1.

Resampling routine to estimate the distributions of Vjn and Wjn for j = 1, 2:

1. If using a Cramér-von Mises statistic, given a sequence of constants {an}, estimate the
contact sets X̂ 1

0 and X̂ 2
0 . If using a Kolmogorov-Smirnov statistic, given a sequence of

constants {bn}, estimate the bn-maximizer sets of m̂1n and m̂2n.

Next repeat the following two steps for r = 1, . . . , R:

2. Construct the resampled processes

F∗r1n(x) =
√
n
(
F∗An(−x)− F∗Bn(−x)− FAn(−x) + FBn(−x)

)

F∗r2n(x) =
√
n
(
F∗An(−x)− F∗Bn(−x)− FAn(−x) + FBn(−x)

+ F∗An(x)− F∗Bn(x)− FAn(x) + FBn(x)
)

using an exchangeable bootstrap.

3. Calculate the resampled test statistic. Letting k̂ = argmaxk{supx≥0 m̂kn(x)} and {cn} ↘
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0 satisfy
√
ncn →∞, calculate

V ∗rn =





(
max

x∈M̂k̂(bn)
F∗
rk̂n

(x)
)+

|max m̂1n −max m̂2n| > cn

max
{

0,maxx∈M̂1(bn)
F∗r1n(x),maxx∈M̂2(bn)

F∗r2n(x)
}
|max m̂1n −max m̂2n| ≤ cn

(31)
or

W ∗rn =

(ˆ
X̂ 1

0

(
(F∗r1n(x))+

)2 dx+

ˆ
X̂ 2

0

(
(F∗r2n(x))+

)2 dx
)1/2

. (32)

Finally,

4. Let q̂V ∗(1 − α) and q̂W ∗(1 − α) be the (1 − α)th sample quantile from the bootstrap
distributions of {V ∗rn}Rr=1 or {W ∗rn}Rr=1, respectively, where α ∈ (0, 1) is the nominal size
of the tests. Reject the null hypothesis (13) or (14) if Vjn and Wjn defined in (15)-(18)
are, respectively, larger than q̂V ∗(1− α) or q̂W ∗(1− α).

The resampled statistics are calculated by imposing the null hypothesis and assuming that
the region X j0 (P ) is the only part of the domain that provides a nondegenerate contribution
to the asymptotic distribution of the statistic under the null. The two cases of each part
in the maximum arise from trying to impose the null behavior on the resampled supremum
norm statistics, even when it appears the null is violated based on the value of the sample
statistic. A simple alternative way to conduct inference would be to assume the least-favorable
null hypothesis that FA ≡ FB, and to resample using all of X . However, this may result in
tests with lower power (Linton, Song, and Whang, 2010) — power loss arises in situations
where X0(P ) ⊂ X (strictly), so that the Tj process is only nondegenerate on a subset, while
bootstrapped processes that assume X0(P ) = X would look over all of X and result in a
stochastically larger bootstrap distribution than the true distribution.

The next result shows that our tests based on the resampling schemes described above
have accurate size under the null hypothesis. In order to metrize weak convergence we use
test functions from the set BL1, which denotes Lipschitz functions R→ R that have constant
1 and are bounded by 1.

Theorem 4.2. Make assumptions A1-A2 and suppose that P ∈ P00. Let q̂V ∗j (1 − α) and
q̂W ∗j (1−α) be the (1−α)th sample quantile from the bootstrap distributions as described in the
routines above. Then for j = 1, 2, the bootstrap is consistent:

sup
f∈BL1

|E [f(V ∗n )|X]− E [f(V1)]| = oP (1)
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and
sup
f∈BL1

|E [f(W ∗n)|X]− E [f(W1)]| = oP (1),

where V1 and W1 are defined in Theorem 4.1.

The result in above theorem is stated in terms of the limiting variables V1 and W1 and
bootstrap analogs. V1 and W1, using the functional delta method, are Hadamard directional
derivatives of a chain of maps from the marginal distribution functions F to the real line, and
the derivatives are most compactly expressed as the definitions in Theorem 4.1.

The bootstrap variables combine conventional resampling with finite-sample estimates of
the maps defined in Part 1 of Theorem 4.1, which is a resampling approach proposed in
Fang and Santos (2019). Their result is actually more general — it states that with a more
flexible estimator V ∗n , we would obtain bootstrap consistency for P in the null and alternative
regions. Because our focus is on testing FA �LASD FB, however, our resampling scheme,
and Theorem 4.2, are done under the imposition of the null hypothesis. The resampling
consistency result in Theorem 4.2 implies that our bootstrap tests have asymptotically correct
size uniformly over probability distributions in the null region, in the same sense as was stressed
in Linton, Song, and Whang (2010). A formal statement of this uniformity over P0 is given
in Theorem A.5 in Appendix A. Along with Part 4 of Theorem 4.1 Theorem A.5 additionally
implies that our tests are consistent, that is, that their power to detect violations from the
null represented by fixed alternative distributions tends to one. This is because the resampling
scheme produces asymptotically bounded critical values, while the test statistics diverge under
the alternative.

4.2 Inferring dominance from partially-identified treatment distributions

In this section we extend dominance tests to the case that distribution functions FA and
FB are only partially identified by their Makarov bounds. Suppose that Z0, ZA and ZB

are random variables with marginal distribution functions G = (G0, GA, GB), but the joint
probability distribution P of the vector (Z0, ZA, ZB) is unknown, so that FA and FB are not
point identified because they are the unknown distribution functions of XA = ZA − Z0 and
XB = ZB − Z0. Nevertheless, we wish to test the hypotheses in (10), which depend on FA

and FB.
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4.2.1 Test statistics

Recall equations (8) and (9) from Section 3. Restated in terms of the null hypothesis FA �LASD
FB, condition (8) is sufficient to imply the null hypothesis is true, while (9) represents a
necessary condition for dominance. Denote by Psuf the set of distributions that satisfy (8)
and let Pnec collect all distributions that satisfy (9). Then still using the label P0 for the set
of distributions such that XA dominates XB, we have the (strict) inclusions Psuf ⊂ P0 ⊂
Pnec. Given this relation, without any further identification conditions, we look for significant
violations of the necessary condition, since P /∈ Pnec implies P /∈ P0. This generally results in
conservative tests because distributions P ∈ Pnec\P0 will also not be rejected, but it avoids
overrejection, which would be the result when using the sufficient condition.

To test the null (10) we employ the inequality specified in equation (9) from Theorem 3.7.
For each x ∈ X let

T3(G)(x) = LA(−x) + LA(x)− UB(−x)− UB(x), (33)

where LA and UB are defined in (6) and (7). To see the explicit dependence of T3 on G,
rewrite (33), using the identity inf f = − sup(−f) in the definition of UB as

T3(G)(x) = sup
u∈R

(GA(u)−G0(u+ x)) + sup
u∈R

(GA(u)−G0(u− x))

− 2 + sup
u∈R

(G0(u+ x)−GB(u)) + sup
u∈R

(G0(u− x)−GB(u)). (34)

As before, T3 has been written in such a way that a violation of the null hypothesis FA �LASD
FB is indicated by observing some x such that T3(G)(x) > 0.

The above map shares a similar feature with the T1 map in the previous section — the
marginal (in u) optimization maps are directionally differentiable at each point x ≥ 0, but
f(u, x) 7→ supu f(u, x) is not Hadamard differentiable as a map from `∞(R×X ) to `∞(X ). One
solution to this problem is to examine the distribution of test functionals applied to the process,
which are Hadamard directionally differentiable (shown in Lemma A.4 in Appendix A).

Given observed samples {Zki} for k ∈ {0, A,B}, define the marginal empirical distribution
functions Gn = (G0n,GAn,GBn), where Gkn(z) = 1

nk

∑
i 1{Zki ≤ z} for k ∈ {0, A,B}, and let

LAn and UBn be the plug-in estimates of the bounds: for each x ∈ X , let

LAn(x) = L(x,G0n,GAn)

UBn(x) = U(x,G0n,GBn),
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where the maps L and U were introduced in equations (6) and (7). To estimate T3 in (33)
we use the plug-in estimate T3(Gn). As in the previous section, we consider the following
Kolmogorov-Smirnov and Cramér-von Mises type test statistics:

V3n =
√
n sup
x∈X

(T3(Gn)(x))+ (35)

W3n =
√
n

(ˆ
X

(
(T3(Gn)(x))+

)2 dx
)1/2

. (36)

The next subsections establish limiting distributions for V3n andW3n and suggest a resampling
procedure to estimate the distributions.

4.2.2 Limiting distributions

Once again, it is necessary to define the region where the test statistics have nontrivial distri-
butions. Define the contact set for the T3 criterion function by

X nec0 (P ) = {x ∈ X : LA(−x) + LA(x)− UB(−x)− UB(x) = 0} .

We say that distribution P ∈ Pnec00 when X nec0 (P ) 6= ∅. As mentioned at the beginning of
the section, Pnec00 is not the set of P such that FA �LASD FB, rather those that satisfy this
necessary condition, or in other words, P0 ⊂ Pnec. There is no obvious connection between P0
and Pnec00 — the P in Pnec00 are simply those that lead to nontrivial asymptotic behavior of the T3
statistic, as will be shown in Theorem 4.3. Next, we define a few functions that are analogous to
the m1 and m2 used in the point-identified case, and which come from separating equation 34
into four sub-functions. Let m1(u, x) = GA(u) − G0(u + x), m2(u, x) = GA(u) − G0(u − x),
m3(u, x) = GB(u)−G0(u+ x) and m4(u, x) = GB(u)−G0(u− x). These functions are used
to define, for k = 1, . . . 4, for any x ∈ X and ε ≥ 0, the set-valued maps

Mk(x, ε) =

{
u ∈ R : mk(u, x) ≥ sup

u∈R
mk(u, x)− ε

}
. (37)

Also for the supremum norm statistic another relevant set of ε-maximizers exists: for any
ε ≥ 0, let

Mnec(ε) =

{
(u, x) ∈ R×X :

4∑

k=1

mk(u, x) ≥ sup
u,x

4∑

k=1

mk(u, x)− ε
}
. (38)

Under the null hypothesis that the supremum is zero, limε↘0Mnec(ε) = X nec0 , as seen in the
expression for V3 in the next theorem.
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Now we turn to regularity assumptions on the observed data. The only difference between
these assumptions and assumptions A1-A2 is that we must now make assumptions for three
samples instead of two.

B1 The observations {Z0i}n0
i=1, {ZAi}nAi=1 and {ZBi}nBi=1 are iid samples and independent of

each other and are continuously distributed with marginal distribution functions G0, GA
and GB respectively.

B2 The sample sizes n0, nA and nB increase in such a way that nk/(n0 + nA + nB) → λk

as n0, nA, nB →∞, for k ∈ {0, A,B}, where 0 < λk < 1. Let n = n0 + nA + nB.

Before stating the next theorem, it is convenient to make some definitions. Under as-
sumptions B1-B2, standard results in empirical process theory show that there is a Gaussian
process GG such that

√
n(Gn−G) ; GG (van der Vaart, 1998, Example 19.6). For each (u, x),

denote the transformed empirical processes and their (Gaussian) limits

√
n(GAn(u)−G0n(u+ x)−GA(u) +G0(u+ x)) = G1n(u, x) ; G1(u, x)
√
n(GAn(u)−G0n(u− x)−GA(u) +G0(u− x)) = G2n(u, x) ; G2(u, x)
√
n(G0n(u+ x)−GBn(u)−G0(u+ x) +GB(u)) = G3n(u, x) ; G3(u, x)
√
n(G0n(u− x)−GBn(u)−G0(u− x) +GB(u)) = G4n(u, x) ; G4(u, x)

(39)

Given the above and definitions, the asymptotic behavior of V3n and W3n can be estab-
lished.

Theorem 4.3. Under assumptions B1-B2:

1. Suppose that P ∈ Pnec00 . As n → ∞, V3n ; V3 and W3n ; W3, where, given the
definitions (39) and (37),

V3 =

(
sup

x∈Xnec0 (P )

4∑

k=1

lim
ε↘0

sup
u∈Mk(x,ε)

Gk(u, x)

)+

and

W3 =



ˆ
Xnec0 (P )



(

4∑

k=1

lim
ε↘0

sup
u∈Mk(x,ε)

Gk(u, x)

)+



2

dx




1/2

.

2. Suppose that P ∈ Pnec\Pnec00 . Then as n → ∞, P {V3 > ε} → 0 and P {W3 > ε} → 0

for all ε > 0.
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3. Suppose that P /∈ Pnec. Then as n → ∞, P {V3 > c} → 1 and P {W3 > c} → 1 for all
c ≥ 0.

The results of this theorem parallel those in Theorem 4.1. The distributions of these test
statistics are complex. Therefore a consistent resampling procedure for inference is discussed
in the next subsection. The conservatism of these tests is reflected in the second part above.
There may be P /∈ P0 such that P ∈ Pnec\Pnec00 , meaning the test will not detect that this
distribution violates the hypothesis that FA �LASD FB.

4.2.3 Resampling procedures for inference under partial identification

Now we turn to the issue of conducting practical inference using estimated bound functions and
the necessary condition for LASD. As before, resampling can be implemented by estimating
the derivatives of either V3 or W3. These estimates represent the major difference from the
resampling scheme developed in the point identified setting.

The estimates required for tests based on V3n and W3n are similar to those used in the
point-identified case. Define a grid of values5 X ⊂ R and let X+ be the sub-grid of nonnegative
points such that X+ ⊂ X . For a sequence an such that an ↘ 0 and

√
nan → ∞, define the

estimate of the contact set

X̂ nec0 =
{
x ∈ X+ : |LAn(−x) + LAn(x)− UBn(−x)− UBn(x)| ≤ an

}
. (40)

When this estimated set is empty, set X̂ nec0 = X+. The inner maximization step that occurs in
the definition of the test statistics requires an estimate of the ε-maximizers of each sub-process,
that is, estimates of (37) for k = 1, . . . 4. For these sets we also use the same sort of estimator:
for {bn} such that bn ↘ 0 and

√
nbn →∞, for each x ∈ X+ let

M̂k(x) =

{
u ∈ X : m̂kn(u, x) ≥ max

u∈X
m̂kn(u, x)− bn

}
(41)

where the m̂kn are plug-in estimators of mk. Finally, for a sequence dn such that dn ↘ 0 and
√
ndn →∞, define the estimator

M̂nec =

{
(u, x) ∈ X× X+ :

4∑

k=1

m̂kn(u, x) ≥ max
(u,x)∈X×X+

4∑

k=1

m̂kn(u, x)− dn
}
. (42)

Putting these estimates together, we find the derivative estimates described in the resampling
5Otherwise these functions would need to be evaluated over a prohibitive number of points in the support.
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scheme below.

Resampling routine to estimate the distributions of V3n and W3n

1. If using a Cramér-von Mises statistic, given a sequence of constants {an}, estimate the
contact set X̂ nec0 . If using a Kolmogorov-Smirnov statistic, given sequences of constants
{bn} and {dn}, estimate M̂k(·) for k = 1, . . . 4 and M̂nec.

Next repeat the following two steps for r = 1, . . . , R:

3. Construct the resampled processes G∗kn =
√
n(G∗kn − Gkn) using an exchangeable boot-

strap.

4. Calculate the resampled test statistic

V ∗r3n =

(
max

x∈M̂nec

4∑

k=1

max
u∈M̂k(x)

G∗kn(u, x)

)+

or

W ∗r3n =



ˆ
X̂nec0



(

4∑

k=1

max
u∈M̂k(x)

G∗kn(u, x)

)+



2

dx




1/2

.

Finally,

6. Let q̂V ∗3 (1 − α) and q̂W ∗3 (1 − α) be the (1 − α)th sample quantile from the bootstrap
distributions of {V ∗r3n}Rr=1 or {W ∗r3n}Rr=1, respectively, where α ∈ (0, 1) is the nominal
size of the tests. We reject the null hypothesis (13) if V3n andW3n defined in (35) or (36)
are, respectively, larger than q̂V ∗3 (1− α) or q̂W ∗3 (1− α).

The following theorem guarantees that the resampling scheme is consistent.

Theorem 4.4. Make assumptions B1-B2 and suppose that P ∈ Pnec00 . Let q̂V ∗3 (1 − α) and
q̂W ∗3 (1−α) be the (1−α)th sample quantile from the bootstrap distributions as described in the
routines above. Then the bootstrap is consistent:

sup
f∈BL1

|E [f(V ∗3n)|X]− E [f(V3)]| = oP (1)

and
sup
f∈BL1

|E [f(W ∗3n)|X]− E [f(W3)]| = oP (1).
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Like in the point-identified setting, we define a resampling scheme and state Theorem A.6
under the imposition of the hypothesis that P ∈ Pnec00 . The testing procedure based on the
T3 criterion function controls size uniformly over Pnec, a superset of P0. The uniform size of
the resampling inference scheme over Pnec is stated formally in Theorem A.6 in Appendix A.
However, using only a necessary condition for inference comes at a cost, which is the possibility
of trivial power against some alternative P /∈ P0. For any P ∈ Pnec\P0, the probability of
rejecting the null is also less than or equal to α. More generally, results about size and power
against various alternatives that can be specified for point identified distributions are not
available for the partially identified case. On the other hand, it is remarkable that the test
controls size uniformly over the set P0, which is a set of treatment outcome distributions that
cannot be observed directly.

An Online Supplemental Appendix provides Monte Carlo numerical evidence of the finite
sample properties of both point- and partially-identified methods. The simulations show that
tests have empirical size close to the nominal, and high power against selected alternatives.

5 Empirical application

In this section we illustrate the use of our proposed methods in a policy evaluation context. We
contrast our results with a classical stochastic dominance approach. We use household-level
data from an experimental evaluation of two federal assistance programs, named Aid to Fami-
lies with Dependent Children (AFDC) and Jobs First (JF), to analyze the distributional effects
of the policies. Bitler, Gelbach, and Hoynes (2006) use these data to document substantial
heterogeneity in the impacts of this policy change on recipients’ total incomes. The authors
focus on this policy because of the availability of experimental data, which provides a clear
source of identification.6 Amongst its main findings, the article shows that this heterogeneity
generated income gains and losses in different, sizable groups of recipients.

AFDC was one of the largest federal assistance programs in the United States between 1935
and 1996. It consisted of a means-tested income support scheme for low-income families with
dependent children, administered at the state level and funded at the federal level. Following
criticism that this program discouraged female labor market participation and perpetuated
welfare dependency, AFDC was discontinued in 1996 and replaced, in each state, by more

6Bitler, Gelbach, and Hoynes (2006) conduct a test comparing features of households before random assign-
ment and find that they do not differ significantly in terms of observable characteristics. We check additionally
that the income distributions were the same before the experiment split households among the two policies.
We use a conventional two-sided Cramér-von Mises test for the equality of distributions. The statistic was
approximately 0.78 and its p-value was 0.55, implying that before the experiment, the distributions are indis-
tinguishable.
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restrictive programs, which generally included strict time limits for the receipt of benefits. In
the state of Connecticut, the replacement for AFDC was entitled Jobs First and evaluated
experimentally by the Manpower Demonstration and Research Corporation (MDRC). Some
participants in the study remained under the AFDC rules, while a randomly selected subgroup
was changed to JF rules, essentially implying that these households received more generous
transfers but with a stricter time limit on these transfers.

We provide a decision rule, in the form of the LASD partial order, to a hypothetical social
decision maker who would like to choose between these programs while taking into account
the attitude of a risk-averse household considering enrollment in one of these two programs.
Bitler, Gelbach, and Hoynes (2006) focus on quantile treatment effects (QTEs). If QTEs were
to be used as a measure of the impact on any individual household in a welfare comparison,
it would require the assumption of rank invariance across potential outcome distributions,
which would be quite strong. Note that Bitler, Gelbach, and Hoynes (2006) do not make this
assumption (see p. 999 for a discussion).

We consider the continue-in-AFDC and move-to-JF samples as sample observations from
two policies (equivalent to policies A and B in the previous sections). There are quarterly
measures for income, earnings and transfers, but we concentrate only on measures of change
in total income, comparing quarterly income before and after the households were randomly
assigned to one of the groups. Because assignment is random, we assume that the distribution
functions of gains and losses under each policy, FJF and FAFDC , are point-identified by the
differences in incomes before and after random assignment.

5.1 LASD using data on changes

To make welfare decisions in terms of gains and losses, we require data in terms of changes,
which we construct using several definitions. First, measurements were taken before random
assignment (RA) into one of the two programs, and we call these measurements pre-RA
observations. All periods after random assignment are labeled post-RA observations. Next,
the Jobs First program stopped supporting individuals at what we call the Time Limit (TL),
although quarterly income was observed for these households after the time limit. We call pre-
TL observations those that were made after random assignment but before the time limit, while
post-TL observations are those made after the JF time limit. We summarize the pre/post-
RA and pre/post-TL observations in one of two ways — either by averaging income over
all quarters in the relevant time span, or by using the final quarter within the time span.
Therefore there are four ways of defining income changes based on all the combinations of
time limits and measurement summaries.
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Changes in household income due to the AFDC and JF policies were defined using one of
two methods. First, the natural log of of the average earnings in all post-RA quarters minus
the natural log of the average pre-RA quarterly earnings is called the average-RA change.
Second, the natural log of the last quarter of post-RA income minus the natural log of the
last quarter of pre-RA income is called the last-quarter-RA change. Other changes are defined
using data around the Jobs First time limit. The natural log of average post-TL quarterly
earnings minus the natural log of average pre-TL quarterly earnings is called the average-TL
change. The natural log of the last quarter of post-TL income minus the natural log of the
last quarter of pre-TL income is called the last-quarter-TL change.

We conducted formal tests of the hypothesis (10) using W2n statistics (Cramér-von Mises
statistics applied to the empirical T2 process).7 The results of these tests are presented
in left hand side of Table 1. First, we consider the results when changes are defined as
across the random assignment. The tests indicate that we cannot reject the hypothesis that
FAFDC �LASD FJF unless we measure outcomes using average-RA changes. In that case
AFDC does not appear to dominate the JF policy. We also conducted tests of the hypothesis
FJF �LASD FAFDC . We cannot reject this null hypothesis using either measure. Because in
one of these cases both distributions dominate each other, we double-checked using two-sided
tests of distributional equality, that is, for the null that FAFDC ≡ FJF . Using average income
measures the distributions appear to be different, but using last quarter measures, we cannot
reject the null that the distributions are indistinguishable. These tests offer some evidence
that income changes across random assignment are indistinguishable or better under the JF
policy than under the AFDC policy.

Now we consider the case when changes are defined as across the time limit (either using
averages or last quarters). In this case, we do not reject the hypothesis that FAFDC �LASD
FJF , and we reject the hypothesis that FJF �LASD FAFDC . This is an indication that the
continued support from the AFDC policy effectively supports household incomes across the
JF time limit better than the JF policy does — to be expected, since the JF policy provides
no more support to any households after the time limit, allowing for a higher probability of
losses in household income.

Figure 1 displays the CDFs of gains and losses under the AFDC and JF policies, then the
way that the two T2 coordinate processes compare them — when looking at the coordinates
in equation (12), FA corresponds to FAFDC here, so large positive values correspond to a
rejection of the hypothesis FAFDC �LASD FJF . This figure uses only average-RA change
observations. It can be seen in the second and third panels that the presumable reason that

7Results for the other test statistics are qualitatively the same. They are collected in an Online Supplemental
Appendix.
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LASD in changes FOSD in levels
FAFDC � FJF FJF � FAFDC equality GAFDC � GJF GJF � GAFDC equality

avg-RA 3.4335 0.1790 2.8028 0.2240

p-value 0.0500 0.9055 0.0070 0.8609

lastQ-RA 0.8000 2.1583 2.1269

p-value 0.6273 0.3637 0.6413

avg-TL 0.0858 9.1380 1.2789 2.1285 2.4831

p-value 0.9150 0.0000 0.3387 0.1446 0.2081

lastQ-TL 0.8238 5.8269

p-value 0.5963 0.0175

Table 1: This table presents a number of tests that can be used to infer whether the Jobs First
(JF) program would be preferred to the Aid to Families with Dependent Children (AFDC) or the
opposite. Column titles paraphrase the null hypotheses in the tests. The first three columns use
changes in income and the last three columns measure income in levels without regard to pre-
policy income. Comparisons made before and after assignment or time limit were measured using
the average of all months or using the last quarter. 1999 bootstrap repetitions used in each test.

the AFDC policy does not dominate the JF policy using LASD is because the probability of
small losses is higher in the AFDC program and the relation between small gains and small
losses is preferable in JF.
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Figure 1: The CDFs of changes in post-RA income and the way that they are turned into
T2(F ) coordinate processes. The second and third panels correspond to plug-in estimates of
the coordinate functions of equation (12). The large positive values in the second panel drive
the rejection of the hypothesis FAFDC � FJF seen in Table 1.
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5.2 Tests in levels: first order stochastic dominance

We also conducted an analysis of these data using standard FOSD inference methods. Tests
were used to infer dominance of the AFDC or JF policies using post-randomization levels,
that is, without regard to pre-randomization state. Income in levels is defined in two ways.
Post-RA average income is defined as the natural log of the average income in all post-RA
quarters. Post-TL average income is defined as the natural log of the average income in only
the post-TL quarters. We conduct tests of the null hypothesis that GAFDC �FOSD GJF or
GJF �FOSD GAFDC , where the notation G is meant as a reminder that these are marginal
final income distributions that do not consider a household’s pre-policy income. The results
of these tests are presented in right hand side of Table 1.

Using all post-RA quarters, we can reject the hypothesis that GAFDC �FOSD GJF , but
cannot reject the hypothesis that GJF �FOSD GAFDC . Therefore it seems clear that the
JF policy dominates the AFDC using final outcome distributions, that is, without regard to
the effect that the policies have on any particular household’s path from pre- to post-policy
income.

When analyzing only the post-TL average income, we cannot reject the hypothesis that
GAFDC �FOSD GJF or GJF �FOSD GAFDC , although there is weak evidence that the second
relation might be violated. We checked a two-sided test for distributional equality, and could
not reject that the distributions were indistinguishable. Therefore marginal post-TL income
distributions seem indistinguishable while data in changes reveals that households would prefer
the AFDC program. The inferences made using data in levels and FOSD can therefore be
quite different from those using LASD with data on changes.

The significantly positive part that drives the rejection of the hypothesis GAFDC �FOSD
GJF is represented by the spike in the right panel of Figure 2, which is due to the fact that
the red AFDC CDF lies significantly above the black JF CDF in the left plot near log income
level x = 8.

6 Conclusion

Public policies often result in gains for some individuals and losses for others. Evidence shows
that the way individuals value such gains and losses is a key determinant of public support
for these policies. This in turn, can determine which policies decision makers pursue. Since
loss aversion is a well established regularity, how can the welfare associated with alternative
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Figure 2: The CDFs of levels of post-RA income and the way that they are used to test first-
order stochastic dominance. The large positive values in the second panel drive the rejection
of the hypothesis GAFDC � GJF seen in Table 1.

policies be ranked when individuals are loss-averse?

We address this question by defining a social preference relation for distributions of gains
and losses caused by a policy: loss aversion-sensitive dominance (LASD). We show that these
social preferences are equivalent to criteria that depend solely on distribution functions. The
assumption of loss aversion can lead to a welfare ranking of policies that is different from the
one that would be brought about if classic utility theory and First-Order Stochastic Domi-
nance were used. We then propose testable conditions for LASD. Because our data come as
differences between underlying random variables, we propose a point-identified version of these
conditions and also a partially identified analog.

In order to make LASD comparisons using observed data, we propose statistical infer-
ence methods to formally test LASD relations in both the point-identified and the partially
identified cases. We show that resampling techniques, tailored to specific features of the cri-
terion functions, can be used to conduct inference. Finally, we illustrate our LASD criterion
and inference methods with a simple empirical application that uses data from a well known
evaluation of a large income support policy in the US. This shows that the ranking of policy
options depends crucially on whether changes or levels are used and whether or not one takes
individual loss aversion into account.
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Appendix

A Results on differentiability, uniform size control and compu-
tation

This section includes a definition and short discussion of the Hadamard directional differentia-
bility concept and contains important intermediate results on Hadamard derivatives used to
establish the main results in the text. Next we present some results on the control of size over
the null region using the proposed resampling methods. Finally, there is one remark regarding
the computation of T1 and T2 processes (T3 processes should probably be computed on a grid
for the sake of computation time). Proof of the results discussed in this appendix are collected
in Appendix B.4.

The Hadamard derivative is a standard tool used to analyze the asymptotic behavior of
nonlinear maps in empirical process theory (van der Vaart, 1998, Section 20.2). We provide a
definition here for completeness, along with its directional counterpart.

Definition A.1 (Hadamard differentiability). Let D and E be Banach spaces and consider a
map φ : Dφ ⊆ D→ E.

1. φ is Hadamard differentiable at f ∈ Dφ tangentially to a set D0 ⊆ D if there is a
continuous linear map φ′ : D0 → E such that

lim
n→∞

∥∥∥∥
φ(f + tnhn)− φ(f)

tn
− φ′(h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ⊂ R such that hn → h ∈ D0 and tn → 0 as n→∞
and f + tnhn ∈ Dφ for all n.

2. φ is Hadamard directionally differentiable at f ∈ Dφ tangentially to a set D0 ⊆ D if there
is a continuous map φ′f : D0 → E such that

lim
n→∞

∥∥∥∥
φ(f + tnhn)− φ(f)

tn
− φ′f (h)

∥∥∥∥
E

= 0

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that hn → h ∈ D0 and tn ↘ 0 as n→∞
and f + tnhn ∈ Dφ for all n.

In both cases of the above definition, φ′f is continuous, with the addition of linearity in the
fully-differentiable case (Shapiro, 1990, Proposition 3.1). They also differ in the sequences of
admissible {tn}, which allows the second definition to encode directions.
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Because the pair of marginal distribution functions always occur as the difference FA−FB,
the next few definitions and lemmas are stated for a single function f . For later results, maps
will be applied with the function f = FA−FB. The following maps will be used repeatedly in
this section and the proofs for analyzing more complex directionally differentiable maps. Let
φ : R→ R be

φ(x) = (x)+ = max{0, x}, (43)

and similarly, define ψ : R2 → R by

ψ(x, y) = max{x, y}. (44)

For some domain X ⊆ Rj let σ : `∞(X )→ R be

σ(f) = sup
x∈X

f(x). (45)

These are all Hadamard directionally differentiable maps. It can be verified that for all a ∈ R,

φ′x(a) =





a x > 0

max{0, a} x = 0

0 x < 0

, (46)

while for pairs (a, b) ∈ R2,

ψ′x,y(a, b) =





a x > y

max{a, b} x = y

b x < y

.

For any ε ≥ 0, let Mf (ε) = {x ∈ X : f(x) ≥ σ(f) − ε} be the set of ε-maximizers of f .
Cárcamo, Cuevas, and Rodríguez (2019) show that for all directions h ∈ `∞(X )

σ′f (h) = lim
ε↘0

sup
x∈Mf (ε)

h(x) (47)

and they also give conditions under which the limiting operation can be discarded and the
supremum of h can be taken over the set of maximizers of f .

The next lemma shows shows that a weighted Lp norm (for p > 1) applied to the positive
part of a function is directionally differentiable. Cramér-von Mises statistics are found by
setting p = 2. The directional differentiability of the Lp norm with p = 1 was shown in Lemma
S.4.5 of Fang and Santos (2019). Note that this lemma must be shown for the Lp norm applied
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to the positive-part map, jointly applied to a function f . This is because f 7→ (f)+ is not
differentiable as a map of functions to functions. Nevertheless, the dominated convergence
theorem allows one to use pointwise convergence with integrability to find the result.

Lemma A.2. Suppose f : X ⊆ Rj → Rk is a bounded and p-integrable function. Let w : X →
Rk+ be such that

´
wi(x)dx < ∞ for i = 1, . . . k. Let 1 < p < ∞ and define the one-sided Lp

norm of f by

λ(f) =

(
k∑

i=1

ˆ
X

(
(fi(x))+

)p
wi(x)dx

)1/p

. (48)

For i = 1, . . . k, define the subdomains X i− = {x ∈ X : fi(x) < 0}, X i0 = {x ∈ X : fi(x) = 0}
and X i+ = {x ∈ X : fi(x) > 0} and the index collections I0 = {i ∈ 1, . . . k : µ(X i0) > 0}
and I+ = {i ∈ 1, . . . k : µ(X i+) > 0}, where µ is Lebesgue measure. Then λ is Hadamard
directionally differentiable and its derivative for any bounded, p-integrable h : X → Rk is

λ′f (h) =





0 I+ = I0 = ∅
(∑

i∈I0
´
X i0

((hi(x))+)
p
wi(x)dx

)1/p
I+ = ∅, I0 6= ∅

1
λ(f)p−1

∑
i∈I+

´
X i+

fp−1i (x)hi(x)wi(x)dx I+ 6= ∅

. (49)

The above definitions make it easy, if rather abstract, to state the differentiability of the
maps from distribution to test statistics that are applied to conduct uniform inference using
the T1 process.

Lemma A.3. Let f ∈ `∞(X ) and let

ν(f) = sup
x∈X

(
(f(x))+ + f(−x)

)+ (50)

and, assuming f is square integrable,

ω(f) =

(ˆ
X
{((f(x))+ + f(−x))+}2dx

)1/2

. (51)

Then ν and ω are Hadamard directionally differentiable, and, letting f1(x) = f(−x) and
f2(x) = f(x) + f(−x), their derivatives for any direction h ∈ `∞(X ) are

ν ′f (h) =
(
φ′ψ(σ(f1),σ(f2)) ◦ ψ

′
σ(f1),σ(f2)

)
(σ′f1(h), σ′f2(h)) (52)

and, assuming in addition that f, h are square integrable,

ω′f (h) =
(
λ′ψ(f1,f2) ◦ ψ

′
f1,f2

)
(h, h), (53)

34



where we take the order p = 2 and the weight function w ≡ 1 in λ′f defined in (49).

Next we turn to results for the partially identified case. Lemma A.4 provides the theoret-
ical tool needed for the analysis of Kolmogorov-Smirnov-type statistics when using Makarov
bounds. First define the abstract map θ : (`∞(U × X ))2 → R by

θ(f, g) = sup
x∈X

(
sup
u∈U

f(u, x) + sup
u∈U

g(u, x)

)
. (54)

For defining the directional derivative of this map at some f and g, we need to consider ε-
maximizers for any ε ≥ 0 of these functions in u for each fixed x, which for any f ∈ `∞(U ×X )

is the set-valued map

Mf (x, ε) =

{
u ∈ U : f(u, x) ≥ sup

u∈U
f(u, x)− ε

}
. (55)

We reserve one special label for the collection of ε-maximizers of the outer maximization
problem that defines θ: for any ε ≥ 0 let

Mθ(ε) = {(u, x) ∈ U × X : f(u, x) + g(u, x) ≥ θ(f, g)− ε} . (56)

Lemma A.4 ahead discusses derivatives of θ, a functional that imposes two levels of max-
imization with an intermediate addition step, and shows that this operator is directionally
differentiable. It is similar to the case of maximizing a bounded bivariate function, and its
proof follows that of Theorem 2.1 of Cárcamo, Cuevas, and Rodríguez (2019), which dealt
with directional differentiability of the supremum functional applied to a bounded function.
The statement is for the sum of only two functions as arguments but it is straightforward to
extend to any finite number of functions, as in Theorem 4.3.

Lemma A.4. Let U ⊆ Rm and X ⊆ Rn. Suppose that f, g ∈ `∞(U ×X ), and let θ be the map
defined in (54). Then θ is Hadamard directionally differentiable and its derivative at (f, g) for
any directions (h, k) ∈ (`∞(U × X ))2 is

θ′f,g(h, k) = lim
ε↘0

sup
x∈Mθ(ε)

(
sup

u∈Mf (x,ε)
h(u, x) + sup

u∈Mg(x,ε)
k(u, x)

)
. (57)

The behavior of bootstrap tests under the null and alternatives is most easily examined
using distributions local to P . We consider sequences of distributions Pn local to the null
distribution P such that for a mean-zero, square-integrable function η, Pn have distribution
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functions Fn (where P has CDF F ) that satisfy

lim
n→∞

ˆ (√
n
(√

dFn −
√
dF
)
− 1

2
η
√
dF
)2

→ 0. (58)

The behavior of the underlying empirical process under local alternatives satisfies Assumption
5 of Fang and Santos (2019) in a straightforward way (Wellner, 1992, Theorem 1).

Theorem A.5. Make assumptions A1-A2 and suppose that FA �LASD FB. Suppose that X
is convex. Let q̂V ∗j (1− α) and q̂W ∗j (1− α) be the (1− α)th sample quantile from the bootstrap
distributions as described in the routines above. Then for j = 1, 2,

1. When P ∈ P0 and {Pn} satisfy (58) and Tj(Fn)(x) ≤ 0 for all x ≥ 0,

lim sup
n→∞

Pn

{
Vjn > q̂V ∗j (1− α)

}
≤ α

and
lim sup
n→∞

Pn

{
Wjn > q̂W ∗j (1− α)

}
≤ α.

2. When P ∈ P00 and {Pn} satisfy (58) and Tj(Fn)(x) ≤ 0 for all x ≥ 0, and the distribu-
tion of V or W is increasing at its (1− α)th quantile,

lim
n→∞

Pn

{
Vjn > q̂V ∗j (1− α)

}
= α

and
lim
n→∞

Pn

{
Wjn > q̂W ∗j (1− α)

}
= α.

Now we consider using the resampling routine outlined above to test the null hypothesis
that FA �LASD FB when the distributions are only partially identified. It is no longer possible
to guarantee exact rejection probabilities because the test is based on a superset of P0, but
we can still show that the test does not overreject.

Theorem A.6. Make assumptions B1-B2. Also assume that X is a convex set. Let q̂V ∗3 (1−α)

and q̂W ∗3 (1− α) be the (1− α)th sample quantile from the bootstrap distributions of {V ∗r3n}Rr=1

or {W ∗r3n}Rr=1 as described in the routine above. When the sequence of alternative distributions
Pn satisfy (58) and T3(Fn)(x) ≤ 0 for all x ≥ 0,

lim sup
n→∞

Pn
{
V3n > q̂V ∗3 (1− α)

}
≤ α

and
lim sup
n→∞

Pn
{
W3n > q̂W ∗3 (1− α)

}
≤ α.
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Remark A.7 (A note on computing point-identified criterion functions). Standard empirical
distribution functions are used to estimate the marginal distributions FA and FB. However,
the definitions of the T1 and T2 criterion functions contain Fk(−x) terms, making the plug-
in Tj(Fn) left-continuous at some sample observations. Therefore some care must be taken
when evaluating them because there may be regions that are relevant for evaluation (i.e., the
location of the supremum) that are not attained by any sample observations. This could
be dealt with approximately by evaluating the functions on a grid. Instead, we evaluate the
function approximately at all the points where it changes its value. For example, let Xn denote
the pooled sample (of size (nA+nB)) of XA and XB observations. Then we evaluate Tj at the
points X̃n = 0∪X+

n ∪{Xn− ε}−, where X+
n and X−n refer to the positive- and negative-valued

elements of the pooled sample Xn and ε is a very small amount added to each element of Xn,
for example, the square root of the machine’s double-precision accuracy. When evaluating the
L2 integrals from an observed sample, the domain can be set to [0, x̃max], where x̃max is the
largest point in the evaluation set X̃n, because the integrand is identically zero above that
point.

B Proof of results

B.1 Results in Section 2

Proof of Proposition 2.3. Equation (1) implies that

W (F ) =

ˆ
R−

v(x)dF (x) +

ˆ
R+

v(x)dF (x). (59)

For the first part of (59) note that

ˆ
R−

v(x)dF (x) = lim
R→−∞

ˆ 0

R
v(x)dF (x)

= lim
R→−∞

[
v(x)F (x)|0R −

ˆ 0

R
v′(x)F (x)dx

]

= −
ˆ 0

−∞
v′(x)F (x)dx,

using the normalization v(0) = 0 noted in Definition 2.2, the assumed bounded support of F
and integration by parts.
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Similarly,
ˆ
R+

v(x)dF (x) = −
ˆ
R+

v(x)d(1− F )(x)

= − lim
R→∞

ˆ R

0
v(x)d(1− F )(x)

= − lim
R→∞

[
v(x)(1− F (x))|R0 −

ˆ R

0
v′(x)(1− F (x))dx

]

=

ˆ ∞
0

v′(x)(1− F (x))dx.

Putting these two parts together yields (2).

B.2 Proofs of results in Section 3

Proof of Theorem 3.1. Notice that (3) is equivalent to both (4) and (5); in this proof we use
the latter two conditions. Using Proposition 2.3 we rewriteW (FA) ≥W (FB) as the equivalent
condition

−
ˆ 0

−∞
v′(z)FA(z)dz+

ˆ ∞
0

v′(z)(1−FA(z))dz ≥ −
ˆ 0

−∞
v′(z)FB(z)dz+

ˆ ∞
0

v′(z)(1−FB(z))dz.

Rearranging terms we find this is equivalent to

ˆ 0

−∞
v′(z)FB(z)dz −

ˆ 0

−∞
v′(z)FA(z)dz ≥

ˆ ∞
0

v′(z)(1− FB(z))dz −
ˆ ∞
0

v′(z)(1− FA(z))dz

or simply ˆ 0

−∞
v′(z)(FB(z)− FA(z))dz ≥

ˆ ∞
0

v′(z)(FA(z)− FB(z))dz.

This is in turn equivalent to
ˆ ∞
0

v′(−z)(FB(−z)− FA(−z))dz ≥
ˆ ∞
0

v′(z)(FA(z)− FB(z)))dz

or
−
ˆ ∞
0

v′(−z)(FA(−z)− FB(−z))dz ≥
ˆ ∞
0

v′(z)(FA(z)− FB(z)))dz.

Adding v′(z)(FA(−z)− FB(−z)) to both sides we find this is equivalent to

ˆ ∞
0

(v′(z)−v′(−z))(FA(−z)−FB(−z))dz ≥
ˆ ∞
0

v′(z)(FA(z)−FB(z)+FA(−z)−FB(−z))dz.
(60)
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Utilizing the assumptions of loss aversion and non-decreasingness given in Definition 2.2, (4)
and (5) are sufficient for (60) to hold for any v. Condition (5) is due to the fact that

FA(x)− FB(x) + FA(−x)− FB(−x) ≤ 0 ∀x ≥ 0

is equivalent to the condition

1− FA(x)− FA(−x) ≥ 1− FB(x)− FB(−x) ∀x ≥ 0.

We now show that conditions (4) and (5) are also necessary by means of a contradiction to
(60). To this end, assume that there exists some x such that FA(−x)−FB(−x) > 0. From the
fact that the distribution function is right continuous, it follows that there is a neighbourhood
(a, b), b > a ≥ 0, such that for all x ∈ (a, b), FA(−x) − FB(−x) > 0. Consider the value
function

v(x) =





a− b x ≤ −b
0 x ≥ −a
x+ a x ∈ (−b,−a).

Note that this v satisfies conditions 1-3 of Definition 2.2. Further, for x ∈ (a, b), v′(−x) = 1 >

v′(x) = 0. Therefore

ˆ ∞
0

(v′(z)− v′(−z))(FA(−z)− FB(−z))dz < 0,

while ˆ ∞
0

v′(z)(FA(z)− FB(z) + FA(−z)− FB(−z))dz = 0,

because v′(x) = 0 for x ≥ 0. This contradicts (60).

The second condition can be proven similarly. Assume that there exists a neighbourhood
(a, b), 0 ≤ a < b such that for all x ∈ (a, b), (1− FA(x))− FA(−x) < (1− FB(x))− FB(−x).
Take v non-decreasing and such that v′(x) = v′(−x), for example

v(x) = sgn(x)×





0 |x| ∈ [0, a]

(|x| − a) |x| ∈ (a, b)

b− a |x| ∈ [b,∞).
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Using this v we find
ˆ ∞
0

(v′(z)− v′(−z))(FA(−z)− FB(−z))dz = 0

while ˆ ∞
0

v′(z)(FA(z)− FB(z) + FA(−z)− FB(−z))dz > 0,

which is a contradiction.

Proof of Corollary 3.2. Use v(x) = x, which belongs to the class of functions used in the first
part of Theorem 3.1 and in Definition 2.4.

Proof of Corollary 3.5. We first notice that FA �FOSD FSQ is equivalent to the event

{FA is supported on R+} . (61)

Property (61) easily implies that FA �LASD FSQ, which follows by Property 1 of Definition 2.2.
On the other hand one checks that

v(x) :=




x x ≤ 0

0 x > 0

fulfills Definition 2.2. Thus FA �LASD FSQ implies (61).

Proof of Remark 3.6. The social value function in this case is the following

ˆ
R×[0,∞)

v(x) + v(y)dF (x, y) =

ˆ ∞
0

ˆ 0

−∞
(v(x) + v(y))f(x, y)dxdy

+

ˆ ∞
0

ˆ ∞
0

(v(x) + v(y))f(x, y)dxdy.

Let us define f̃Y (x, y) =
´ x
−∞ f(z, y)dz and let FX , F Y denote marginals of, respectively, X,Y .

Integrating by parts on the negative domain of x we get

ˆ ∞
0

[
(v(x) + v(y))f̃Y (x, y)|0−∞ −

ˆ 0

−∞
v′(x)f̃Y (x, y)dx

]
dy
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Knowing that v(x) = 0 for x = 0 and that f̃Y (x, y) = 0 for x = −∞ we get

[ˆ ∞
0

v(y)f̃Y (0, y)dy
]
−
ˆ 0

−∞

[ˆ ∞
0

v′(x)f̃Y (x, y)dy
]
dx

Performing integration by parts again and noticing that v′(x) is independent of integration
area in the second expression, we obtain

[
v(y)F (0, y)|∞0 −

ˆ ∞
0

v′(y)F (0, y)dy
]
−
ˆ 0

−∞

[
v′(x)

(
F (x, y)|∞0

)]
dx

[
v(∞)FX(0)−

ˆ ∞
0

v′(y)F (0, y)dy
]
−
ˆ 0

−∞
v′(x)FX(x)dx.

In the end, we obtain
[
2v(∞)− v(∞)FX(0)− v(∞)F Y (0)

]
−
[´∞

0 v′(y)F Y (y)− v′(y)F (0, y)dy
]
−´∞

0

[
v′(x)(FX(x)− F (x, 0))

]
dx.

We will now turn to the positive domain of x, thus

ˆ ∞
0

[
(v(x) + v(y))f̃Y (x, y)|∞0 −

ˆ ∞
0

v′(x)f̃Y (x, y)dx
]
dy

and
[ˆ ∞

0
(v(∞) + v(y))fY (y)− v(y)f̃Y (0, y)dy

]
−
ˆ ∞
0

[ˆ ∞
0

v′(x)f̃Y (x, y)dy
]
dx.

Finally,[
(v(∞) + v(y))F Y (y)− v(y)F (0, y)

]
|∞0 −

[´∞
0 v′(y)F Y (y)− v′(y)F (0, y)dy

]
−
´∞
0

[
v′(x)

(
F (x, y)|∞0

)]
dx.

Putting together the negative and the positive side, we obtain
[
v(∞)FX(0)−

´∞
0 v′(y)F (0, y)dy

]
−´ 0

−∞ v
′(x)FX(x)dx+

[
2v(∞)− v(∞)FX(0)− v(∞)F Y (0)

]
−
[´∞

0 v′(y)F Y (y)− v′(y)F (0, y)dy
]
−´∞

0

[
v′(x)(FX(x)− F (x, 0))

]
dx.After simplifying this expression becomes−

´ 0
−∞ v

′(x)FX(x)dx+[
2v(∞)− v(∞)F Y (0)

]
−
[´∞

0 v′(y)F Y (y)dy
]
−
´∞
0

[
v′(x)(FX(x)− F (x, 0))

]
dx.

Using the fact that y ∈ [0,∞] we get

2v(∞)−
ˆ 0

−∞
v′(x)FX(x)dx−

ˆ ∞
0

v′(y)F Y (y)dy −
ˆ ∞
0

v′(x)FX(x)dx

and

2v(0) + 2

ˆ ∞
0

v′(x)dx−
ˆ 0

−∞
v′(x)FX(x)dx−

ˆ ∞
0

v′(y)F Y (y)dy −
ˆ ∞
0

v′(x)FX(x)dx.
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Knowing that v(0) = 0 we have

−
ˆ 0

−∞
v′(x)FX(x)dx+

ˆ ∞
0

v′(y)(1− F Y (y))dy +

ˆ ∞
0

v′(x)(1− FX(x))dx.

The only change in comparison to Theorem 3.1 is the addition of the term
´∞
0 v′(y)(1 −

F Y (y))dy, which looks quite natural knowing that not only gains and losses but also incomes
are considered. Applying the first part of the proof of Theorem 3.1 the comparison between
distributions FA and FB comes down to the following inequality

ˆ ∞
0

(v′(x)− v′(−x))(FXA (−x)− FXB (−x))dx+

ˆ ∞
0

(v′(y)
(
F YB (y)− F YA (y)

)
dy

≥
ˆ ∞
0

v′(x)(FXA (x)− FXB (x) + FXA (−x)− FXB (−x))dx.

In comparison to (60) this inequality includes additionally the comparison of A,B for
incomes y. Since v′(y) ≥ 0 (i.e. utility is increasing with income), assuming (4), (5) and
additionally that F YB (y)− F YA (y) ≥ 0 for all y, that is, A dominates B for incomes according
to FOSD, is enough to ensure that A is better than B.

Proof of Theorem 3.7. Given the bounds inequality, we have

LB(−x)− UA(−x) ≤ FB(−x)− FA(−x) ≤ UB(−x)− LA(−x)

and
LA(x)− UB(x) ≤ FA(x)− FB(x) ≤ UA(x)− LB(x),

from which it is clear that (8) is a sufficient condition. As a necessary condition we have (9),
as otherwise we would have

FB(−x)− FA(−x) ≤ UB(−x)− LA(−x) ≤ LA(x)− UB(x) ≤ FA(x)− FB(x).

Proof of Corollary 3.8. Recall Corollary 3.5 implied that when FB is a status quo distribution,
the FOSD and LASD relations are equivalent. Then FA �FOSD FSQ implies that FA(−x) =

0 for all x ≥ 0 because FSQ(−x) = 0 for all x ≥ 0. Therefore a sufficient condition for
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FA �LASD FSQ is that UA(−x) = 0 for all x ≥ 0. Similarly, if FA �LASD FSQ, equivalent
to FA �FOSD FSQ, then it must be the case that FA(−x) = 0 for all x ≥ 0, implying that
LA(−x) = 0 as well.

B.3 Results in Section 4

Proof of Theorem 4.1. For Part 1 note that if P ∈ P00 then by definition, X k0 (P ) 6= ∅ for
some k ∈ {1, 2} and for all x ∈ X k0 (P ), mk(x) = 0. Then the supremum is achieved and
limε↘0Mk(ε) = X k0 (P ) for at least one coordinate, so that suprema are taken over at least
one of X 1

0 (P ) and X 2
0 (P ) and whichever coordinate satisfies this condition will contribute to the

asymptotic distribution. Note that for all x ∈ X0(P ),
√
nT1(Fn)(x) =

√
n(T1(Fn)−T1(F ))(x).

Lemma A.3 and the null hypothesis, which implies X k0 (P ) 6= ∅ for k ∈ {1, 2}, imply the result
for V1 and W1.

To show Part 2, note that T2 is a linear map of F , and assuming that X k0 (P ) 6= ∅ for k ∈
{1, 2}, we have that its weak limit (for whichever set is nonempty) is supx∈Xk0 (P )(T2k(GF )(x))+

by Lemma A.3. Breaking X0(P ) into its two subsets and assuming the null hypothesis is true
results in the same behavior as the supremum norm statistic from the first part (using the
definition of the supremum norm in two coordinates as the maximum of the two suprema).
The same reasoning holds for the L2 statistic in Part 2.

Part 3 follows from the behavior of the test statistics over {x ∈ X : m1(x) < 0,m2(x) < 0}
described in Lemma A.3. To show Part 4 for V1n suppose that for some x∗, T1(F )(x∗) = ξ > 0.
Then supx∈X

√
nT1(Fn)(x) ≥ √n(T1(Fn)(x∗)− T1(F )(x∗)) +

√
nξ. Then

lim inf
n→∞

P

{
sup
x≥0

√
nT1(Fn)(x) > c

}

≥ lim
n→∞

P
{√

n(T1(Fn)(x∗)− T1(F )(x∗)) > c−√nξ
}
→ 1,

where the last convergence follows from the delta method applied to
√
n(Fn(x∗) − F (x∗)),

which converges in distribution to a tight random variable. The proof for the other statistics
is analogous.

Proof of Theorem 4.2. This theorem is an application of Theorem 3.2 of Fang and Santos
(2019). Define the statistics V1 and W1 as maps from F to the real line using ν and ω defined
in equations (50) and (51) in Lemma A.3, and let their estimators be defined as in part 3 of
the resampling scheme. Their Assumptions 1-3 are satisfied either by the definitions of ν and
ω and Lemma A.3, the standard convergence result

√
n(Fn − F ) ; GF (van der Vaart and
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Wellner, 1996, Theorem 2.8.4) and the choice of bootstrap weights. We need to show that
their Assumption 4 is also satisfied. Write either function as ‖h+1 ‖+ ‖h+1 ∨ h+2 ‖+ ‖h+2 ‖ using
the desired norm. Both norms satisfy a reverse triangle inequality, and using the fact that
|(x)+ − (y)+| ≤ |x − y|, the difference for two functions g and h is bounded by ‖g1 − h1‖ +

‖g1 ∨ g2 − h1 ∨ h2‖+ ‖g2 − h2‖. The first difference is bounded by 2‖g − h‖, and the second
and the third are bounded by 4‖g − h‖. Rewriting equations (31) and (32) as functionals of
differential directions h, define

ν̂ ′n(h) =





(
max

x∈M̂k̂(bn)
hk̂(x)

)+
|max m̂1n −max m̂2n| > cn

max
{

0,maxx∈M̂1(bn)
h1(x),maxx∈M̂2(bn)

h2(x)
}
|max m̂1n −max m̂2n| ≤ cn

and

ω̂′n(h) =

(ˆ
X̂ 1

0

(
(h1(x))+

)2 dx+

ˆ
X̂ 2

0

(
(h2(x))+

)2 dx
)1/2

. (62)

Because both ν and ω are Lipschitz, Lemma S.3.6 of Fang and Santos (2019) implies
we need only check that |ν̂ ′n(h) − ν ′F (h)| = oP (1) and |ω̂′n(h) − ω′F (h)| = oP (1) for each
fixed h. This follows from the consistency of the contact set and ε-argmax estimators.
The consistency of these estimators follow from the uniform law of large numbers for the
ε-maximizing sets, and the tightness of the limit GF for the contact sets, which implies that
limn P {

√
n‖Fn − F‖∞ ≤

√
nan} = 1.

Proof of Theorem 4.3. Consider V3 first. Note that V3n can be rewritten as

V3n =
√
n sup(T3(Gn))+ =

√
nmax{0, supT3(Gn)}.

Lemma A.4, extended to the four parts of the T3 process, and the condition that X nec0 (P ) 6= ∅,
implies each of the four inner results. The derivative of the positive-part map discussed in (46),
with the hypothesis that P ∈ Pnec00 , which implies limε↘0Mnec(ε) = X nec0 , and the chain rule
imply the outer part of the derivative and Theorem 2.1 of Fang and Santos (2019) implies the
result. ForW3n andW3, the finite-sample integrand converges pointwise for each x ∈ X to the
limit. By assumption there are no x such that the integrand is positive, which leaves the x in
X nec0 (P ) as the nontrivial part of the integral. Because the limit is assumed square-integrable,
dominated convergence, Lemma A.2 and Theorem 2.1 of Fang and Santos (2019) imply the
result.

For Part 2, note that by hypothesis X nec0 (P ) = ∅ and there are no x that result in
T3(G)(x) > 0. Therefore Theorem 2.1 of Fang and Santos (2019), along with the chain rule,
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Lemmas A.4 and A.2 and the positive-part map, imply the result. The proof of Part 3 is the
same as the analogous part of the proof of Theorem 4.1.

Proof of Theorem 4.4. For both statistics, Assumptions 1-3 of Fang and Santos (2019) are
trivially satisfied (van der Vaart and Wellner, 1996, Theorem 2.8.4) or satisfied by construction
in the case of the bootstrap weights. Below we check that their Assumption 4 is also satisfied
for both statistics, so that the statement of the theorem follows from their Theorem 3.2.

Consider V3n first, and write the supremum statistic as a function of underlying processes
abstractly labeled g: the limiting variable relies (through the delta method) on a map of the
form V3 = V3(g) = (φ′θ(g) ◦θ′g)(h), where g ∈ (`∞(R×X ))4, φ′x is defined in (46) and θ′g in (57)
(extended to four functions as the arguments of the map). V3n uses the sample estimates of
these functions. Under the null hypothesis θ(g) = 0, so that we may estimate φ̂′n(x) = (x)+,
which is Lipschitz because |(x)+ − (y)+| ≤ |x − y|. Writing the formula for the estimate of
the derivative of θ for just two functions f and g (since the estimator for four functions can
be extended immediately from this case), we have, given sequences {bn} and {dn},

θ̂′(h, k) = max
x∈M̂θ

(
max

u∈M̂f (x)
h(u, x) + max

u∈M̂g(x)
k(u, x)

)
.

This map is Lipschitz in (h, k): given any (f, g) pair, paraphrasing the sets over which maxima
are taken and their arguments, we have

∣∣∣θ̂′(h1, k1)− θ̂′(h2, k2)
∣∣∣ =

∣∣∣∣∣max
M̂θ

(
max
M̂f

h1 + max
M̂g

k1

)
−max

B̂

(
max
M̂f

h1 + max
M̂g

k1

)∣∣∣∣∣

≤ max
M̂θ

∣∣∣∣∣max
M̂f

h1 + max
M̂g

k1 −max
M̂f

h2 −max
M̂g

k2

∣∣∣∣∣

≤ max
M̂θ

max
M̂f

|h1 − h2|+ max
M̂θ

max
M̂g

|k1 − k2|

≤ 2 max {‖h1 − h2‖∞, ‖k1 − k2‖∞}
= 2‖(h1, k1)− (h2, k2)‖∞.

Because all the maps in the chain that defines V3n are Lipschitz, V3n is itself Lipschitz, and
therefore Lemma S.3.6 of Fang and Santos (2019) implies that their Assumption 4 holds if
‖(φ̂′θ(g) ◦ θ̂′g)(h)− (φ′θ(g) ◦ θ′g)(h)‖ = oP (1) (where the arguments g and h are again elements of
(`∞(R×X ))4). This follows from the consistency of the ε-maximizer estimates.

Next considerW3n. For this part simplify the inner part to the sum of two functions, f and
g, since the result is a simple generalization. Write W3n = W3n(h, k) = (λ̂′µ(f,g) ◦ µ̂′f,g)(h, k),
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where the marginal (in u) maximization map µ is defined for each x ≥ 0, by µ(f, g)(x) =

supU f(u, x)+supU g(u, x) and for each x ≥ 0, µ̂′f,g(h, k)(x) = maxu∈M̂f (x)
h(u, x)+maxu∈M̂g(x)

k(u, x)

(define M̂f (x) and M̂g(x) as in (41)). First,

∥∥µ̂′(h1, k1)− µ̂′(h2, k2)
∥∥
∞ = sup

X

∣∣∣∣∣ max
M̂f (x)

h1 + max
M̂g(x)

k1 − max
M̂f (x)

h2 − max
M̂g(x)

k2

∣∣∣∣∣

≤ ‖h1 − h2‖∞ + ‖k1 − k2‖∞
≤ 2‖(h1, k1)− (h2, k2)‖∞.

Second, for square integrable f and h consider the estimate, assuming P ∈ Pnec,

λ̂′(h) = λ(h|X̂0
)

where f |A denotes the restriction of the function f to the set A. On X̂0 the subadditivity of
the norm trivially implies that λ̂′ is Lipschitz there. This implies that λ̂′ is a Lipschitz map,
and in turn that λ̂′µ(f,g) ◦ µ̂′f,g is Lipschitz.

Finally, µ̂′f,g(h, k)(x) converges for each x the pointwise limit

µ′f,g(h, k)(x) = lim
ε↘0

(
sup

u∈M̂f (x,ε)

h(u, x) + max
u∈M̂g(x,ε)

k(u, x)

)
.

The set estimators X̂0 and X̂+ are consistent estimators for X0 and X+ using the same argu-
ment as above for the supremum norm. Then for square integrable h and k, the dominated
convergence theorem implies that for any given f, g,

∣∣∣(λ̂′µ(f,g) ◦ µ̂′f,g)(h, k)− (λ′µ(f,g) ◦ µ′f,g)(h, k)
∣∣∣ = oP (1),

and Lemma S.3.6 of Fang and Santos (2019) implies the result.

B.4 Results in Appendix A

Proof of Lemma A.2. Let {tn} be a sequence of positive numbers such that tn ↘ 0 as n→∞,
and let {hn} ∈ (`∞(X ))k be a sequence of bounded, p-integrable functions such that hn →
h ∈ (`∞(X ))k as n→∞.

Suppose that for all i and all x ∈ X , fi(x) < 0, or in other words, I+ = I0 = ∅. For any
point x there exists some N such that for all n > N , (fi + tnhni)

+ = 0 because tn ↘ 0 and hi
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is bounded. Then dominated convergence implies that the p-th power of the Lp norm satisfies

lim
n→∞

1

tn

(
k∑

i=1

ˆ
X i−

(
(fi(x) + tnhni(x))+

)p
wi(x)dx−

k∑

i=1

ˆ
X i−

(
(fi(x))+

)p
wi(x)dx

)
= 0.

This is also the result for λ(f) in this case, which is the difference of these terms each raised
to the power 1/p.

Next suppose I0 6= ∅ and I+ = ∅, that is, for some i, {X i0} has positive measure but the
measure of x that make any coordinate of f positive is zero. Then calculate the differences
directly:

lim
n→∞

1

tn

{(
k∑

i=1

ˆ
X i0

(
(fi(x) + tnhni(x))+

)p
wi(x)dx

)1/p

−
(

k∑

i=1

ˆ
X i0

(
(fi(x))+

)p
wi(x)dx

)1/p}

= lim
n→∞

1

tn

(
tpn

k∑

i=1

ˆ
X i0

(
(hni(x))+

)p
wi(x)dx

)1/p

=
k∑

i=1

ˆ
X i0

(
(hi(x))+

)p
wi(x)dx

using dominated convergence and the p-integrability of h. If the subregions {x : fi(x) < 0}
have positive measure, they contribute 0 to the limit.

Now suppose that I+ is not empty, that is, there is at least one i such that X i+ has positive
measure. Then for each x ∈ X+

i there exists an N such that for n > N , fi(x) + tnhni(x) > 0

for all i. Then for n > N , for this x,

(fi(x) + tnhni(x))p − fpi (x) =

p∑

j=0

(
p

j

)
f ji (x)(tnhni(x))p−j − fpi (x)

= fpi (x) + ptnf
p−1
i (x)hni(x) +O(t2n)− fpi (x)

= ptnf
p−1
i (x)hni(x) +O(t2n).

This implies that for n large enough, the inner integral, using the calculations from the previous
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parts to account for the sets where fi is zero or negative, satisfies

lim
n→∞

1

tn

{
k∑

i=1

ˆ
X

(fi(x) + tnhni(x))pwi(x)dx−
k∑

i=1

ˆ
X
fpi (x)wi(x)dx

}

= lim
n→∞

1

tn

{
ptn

k∑

i=1

ˆ
X i+

fp−1i (x)hni(x)wi(x)dx+O(t2n) +O(tpn) + 0

}

= p

k∑

i=1

ˆ
X i+

fp−1i (x)hi(x)wi(x)dx.

Using the expansion (x+ tht)
1/p = x1/p + 1

px
(1−p)/ptht + o(|tht|) as t→ 0, it can be seen that

the Hadamard derivative of x 7→ x1/p is 1
px

(1−p)/ph. Therefore the chain rule and integrability
of f and h implies that the derivative is

1

λ(f)p−1

k∑

i=1

ˆ
X i+

fp−1i (x)hi(x)wi(x)dx.

Proof of Lemma A.3. For ν write

ν(f) = sup
x∈X

(
(f(x))+ + f(−x)

)+

= sup
x∈X

max
{

0, (f(x))+ + f(−x)
}

= sup
x∈X

max {0,max {f(−x), f(x) + f(−x)}}

and using the definitions of f1 and f2 made in the statement of the lemma and changing the
order in which the maxima are computed

= max

{
0,max

{
sup
x∈X

f1(x), sup
x∈X

f2(x)

}}

= (φ ◦ ψ)(σ(f1), σ(f2)).

Then using the chain rule (Shapiro, 1990) the derivative is that given in the statement of the
lemma. For ω, assume f and h are square integrable and write

ω(f) = λ((f(x))+ + f(−x))

= λ(max{f(−x), f(x) + f(−x)})
= (λ ◦ ψ)(f1, f2).
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Taking a derivative and using the chain rule implies the second expression in the statement of
the lemma.

Proof of Theorem A.5. This is an application of Corollary 3.2 in Fang and Santos (2019), and
we only sketch the most important details of the proof. After applying the null hypothesis, the
derivatives ν ′F and ω′F shown in (52) and (53) are both convex. For example, in the expression
for ν ′F ,

(
sup
X 1

0 (P )

(αh1A + (1− α)h1B)

)+

≤ α
(

sup
X 1

0 (P )

h1A

)+

+ (1− α)

(
sup
X 1

0 (P )

h1B

)+

and similar calculations hold for the other two terms. In the case of ω′F , for example,

ˆ
X 1

0 (P )

(
(αh1 + (1− α)h2)

+)2 ≤ α
ˆ
X 1

0 (P )

(
(h1)

+)2 + (1− α)

ˆ
X 1

0 (P )

(
(h2)

+)2 ,

where the inequality relies on the nonnegativity of the innermost term and convexity of x 7→
x2 for x ≥ 0. Then Theorem 3.3 of Fang and Santos (2019) applies. The second part of
the theorem is a special case of the first, when the part of the relationship that leads to
nondegenerate behavior is not empty.

Proof of Lemma A.4. First, let sn = t−1n and define the finite differences

∆n = sup
X

(
sup
U

(snf + h)(u, x) + sup
U

(sng + k)(u, x)

)
− snθ(f, g) (63)

so that for any sn ↗ ∞, we need to show that ∆n → θ′f,g(h, k) defined in the statement of
the theorem.

Fix an ε > 0. Then for any x /∈Mθ(ε), note that

sup
U

(snf + h)(u, x) + sup
U

(sng + k)(u, x)− snθ(f, g) ≤ suph+ sup k − snε. (64)

Similarly, if u /∈ Mf (x, ε) for any x (the case for u that do not nearly-optimize g(·, x) is
symmetric), then also

(snf + h)(u, x) + sup
U

(sng + k)(u, x)− snθ(f, g) ≤ suph+ sup k − snε (65)
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for that x. Therefore for any ε > 0,

lim sup
n

∆n

= lim sup
n

(
sup
Mθ(ε)

(
sup
Mf (x,ε)

(snf + h)(u, x) + sup
Mg(x,ε)

(sng + k)(u, x)

)
− snθ(f, g)

)

≤ lim sup
n

(
sn sup
Mθ(ε)

(
sup
Mf (x,ε)

f(u, x) + sup
Mg(x,ε)

g(u, x)

)
− snθ(f, g)

+ sup
Mθ(ε)

(
sup
Mf (x,ε)

h(u, x) + sup
Mg(x,ε)

k(u, x)

))

= sup
Mθ(ε)

(
sup
Mf (x,ε)

h(u, x) + sup
Mg(x,ε)

k(u, x)

)
, (66)

so that this inequality holds as ε↘ 0.

Next, for any ε > 0 define

t̄(ε) = sup
Mθ(ε)

(
sup
Mf (x,ε)

h(u, x) + sup
Mg(x,ε)

k(u, x)

)
. (67)

Because this function is nondecreasing in ε, it has a limit as ε ↘ 0, so that for any m ∈ N
there exists an xm ∈Mθ(1/m) and (ufm, u

g
m) satisfying the inequality

h(ufm, xm) + k(ugm, xm) ≥ t̄(1/m)− 1/m.

Therefore

t̄(1/m) ≤ h(ufm, xm) + k(ugm, xm) + 1/m

= snf(ufm, xm) + h(ufm, xm) + sng(ugm, xm) + k(ugm, xm)

+ 1/m− sn(f(ufm, xm) + g(ugm, xm))

≤ sup
X

(
sup
U

(snf + h)(u, x) + sup
U

(sng + k)(u, x)

)
− snθ(f, g) + (sn + 1)/m, (68)

which implies that

lim
ε↘0

sup
Mθ(ε)

(
sup
Mf (x,ε)

h(u, x) + sup
Mg(x,ε)

k(u, x)

)
= lim

m→∞
t̄(1/m) ≤ ∆n. (69)
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Proof of Theorem A.6. Start by considering V3. As in the proof of Theorem 4.2, we simplify
the analysis by writing this statistic as a composition of maps that act on just two functional
arguments, (φ′θ(f,g) ◦ θ′f,g)(h, k), where the positive-part map φ′x is defined in (46) and θ′f,g is,
for any h, k ∈ `∞(U × X )),

θ′f,g(h, k) = lim
ε↘0

sup
x∈Mθ(ε)

(
lim
ε↘0

sup
u∈Mf (x,ε)

h(u, x) + lim
ε↘0

sup
u∈Mg(x,ε)

k(u, x)

)
,

whereMf (x, ε) andMθ(ε) are defined in (55) and (56).

It can be verified that for a fixed value of θ(f, g), φ̂′θ(f,g)(x) is convex and nondecreasing.
Next consider θ′f,g. For any ε > 0, consider the map applied to the convex combination of
vector-valued functions α(h1, k1) + (1− α)(h2, k2):

sup
Mθ(ε)

(
sup
Mf (x,ε)

(αh1(u, x) + (1− α)k1(u, x)) + sup
Mg(x,ε)

(αh2(u, x) + (1− α)k2(u, x))

)

≤ sup
Mθ(ε)

(
α

(
sup
Mf (x,ε)

h1(u, x) + sup
Mg(x,ε)

k1(u, x)

)
+ (1− α)

(
sup
Mf (x,ε)

h2(u, x) + sup
Mg(x,ε)

k2(u, x)

))

≤ α sup
Mθ(ε)

(
sup
Mf (x,ε)

h1(u, x) + sup
Mg(x,ε)

k1(u, x)

)
+(1−α) sup

Mθ(ε)

(
sup
Mf (x,ε)

h2(u, x) + sup
Mg(x,ε)

k2(u, x)

)
.

Therefore, letting ε↘ 0, it can be seen that θ′f,g is convex. Because V3 is the composition of
a non-decreasing, convex function with a convex function, V3 is also a convex map of (h, k) to
R (Boyd and Vandenberghe, 2004, eq. 3.11). As mentioned in the text, P0 ⊆ Pnec. Therefore
Corollary 3.2 of Fang and Santos (2019) implies

lim sup
n→∞

Pn
{
V3n > qV ∗3 (1− α)

}
≤ α.

Turn next to W3. Similarly, write this statistic as a map of pairs of bounded functions to
the real line as W3n = (λ′µ(f,g) ◦ µ′f,g)(h, k), where for each x ∈ X ,

µ(f, g)(x) = sup
U
f(u, x) + sup

U
g(u, x)

and
µ′f,g(h, k)(x) = lim

ε↘0
max

u∈Mf (x,ε)
h(u, x) + lim

ε↘0
max

u∈Mg(x,ε)
k(u, x),

and for any functions f, h ∈ `∞(X ), λ′f (h) is defined in (49). We show the convexity of this
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composition directly. Paraphrase µ(x) = µ(f, g)(x), and for fixed ε > 0,

µ′1(x) = sup
u∈Mf (x,ε)

h1(u, x) + sup
u∈Mg(x,ε)

k1(u, x)

µ′2(x) = sup
u∈Mf (x,ε)

h2(u, x) + sup
u∈Mg(x,ε)

k2(u, x)

µ̄′(x) = sup
u∈Mf (x,ε)

(αh1 + (1− α)k1)(u, x) + sup
u∈Mg(x,ε)

(αh2 + (1− α)k2)(u, x).

Finally, let X0 denote the region where µ(x) = 0. Then Lemma A.2 shows that λ′µ(µ̄′) =

λ(µ̄′|X0), where µ̄′|X0 denotes the restriction of the function µ̄′ to the set X0. Consider the
first term on the right hand side. Inside the integral, it can be seen that

0 ≤
(
µ̄′(x)

)+

=

(
sup

u∈Mf (x,ε)
(αh1 + (1− α)h2)(u, x) + sup

u∈Mg(x,ε)
(αk1 + (1− α)k2)(u, x)

)+

≤
(
α

(
sup

u∈Mf (x,ε)
h1(u, x) + sup

u∈Mg(x,ε)
k1(u, x)

)

+ (1− α)

(
sup

u∈Mf (x,ε)
h2(u, x) + sup

u∈Mg(x,ε)
k2(u, x)

))+

=
(
αµ′1(x) + (1− α)µ′2(x)

)+

≤ α
(
µ′1(x)

)+
+ (1− α)

(
µ′2(x)

)+
.

Because the integrand is nonnegative, subadditivity of the L2 norm implies

λ(µ̄′|X0) ≤ αλ(µ′1|X0) + (1− α)λ(µ′2|X0).

This inequality holds as ε↘ 0 by the assumed square-integrability of the arguments. Therefore
Corollary 3.2 of Fang and Santos (2019) implies

lim sup
n→∞

Pn
{
W3n > qW ∗3 (1− α)

}
≤ α.
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This supplement appendix contains numerical Monte Carlo simulations studying the em-
pirical size and power of the statistical methods proposed in the main text and additional
results for the empirical application in Section 5 of the main text.

1 Monte Carlo simulations

In this section, we compare the finite sample performances tests proposed in the text for
testing the LASD null hypothesis. We describe the results of simulation experiments used
to investigate the size and power properties of the tests described in the main text. There
are three simulation settings: a normal location model and a triangular model under point
identification, and a normal location model under partial identification.

1.1 Normal model, identified case

In this experiment there are two independent, Gaussian random variables that represent point-
identified outcomes. The scale of both distributions is set to unity, the location of distribution
A is set to zero and the location of distribution B is allowed to vary. Letting µB denote the
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location of distribution B, tests should not reject the null H0 : FA �LASD FB when µB ≤ 0

and should reject the null when µB > 0. This is a case where P00 is a singleton, which is when
µB = 0.

We select constant sequences in the following way. Let n = nA + nB. The estimated
contact sets X̂ k0 = {x ∈ X : |m̂kn(x)| ≤ an} worked well using an = 4 log(log(n))/

√
n. For

estimated ε-maximizer sets M̂k = {x ∈ X : m̂kn(x) > sup m̂kn(x) − bn} we used bn =√
log(log(n))/n. For deciding on which coordinate appeared significantly larger than the

other, or whether both coordinates reached approximately the same supremum, that is, when
estimating |max m̂1n(x)−max m̂2n(x)| ≤ cn, we used the same constant sequence as bn, that
is, cn =

√
log(log(n))/n. These sequences were used after preliminary simulations with the

normal model, and were used in the other two simulations as well (with n = n0 + nA + nB in
the partially-identified setting).

The size and power of the tests is good in this example, as can be seen in Figure 1. The
mean of distribution B ran from −2/√n to 4/

√
n so the alternatives are local to the boundary

of the null region. Sample sizes were identical for both samples and set equal to 100, 500
or 1,000. When resampling, the number of bootstrap repetitions was set equal to 499 (for
samples of size 100), 999 (for samples of size 500) or 1,999 (for samples of size 1,000). Figure 1
plots empirical rejection probabilities from 1,000 simulation runs.

From Figure 1 it can be seen that the empirical rejection probabilities are relatively close
to the nominal 5% rejection probability at the boundary of the null region when µB = 0. The
behavior of supremum norm tests was identical so only V1n test results are shown. The W1n

and W2n results are close and the differences are due to numerical integration that occurs over
one or two dimensions depending on the statistic.

1.2 Triangular model, identified case

In this experiment we use two independent triangular random variables, where we let θ =

(α, β, γ) denote the lower endpoint of the support, the mode of the distribution and the upper
endpoint of the support. Distribution A uses θA = (−1, 0, 1), while the shape of distribution B
is allowed to vary. For a parameter ε ∈ [−1/2, 1/2] we let θB = (−1−ε/√n,−ε/√n, 1+ε/√n),
so that all the distributions are local to the boundary of the null region represented by ε = 0.
Two distributions are depicted in Figure 2, in which ε = 1/4. This implies that FA �LASD FB.
From the right panel of the plot it can be seen that these distributions satisfy an LASD
ordering, but they would not be ordered by FOSD.
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Figure 1: Empirical rejection probabilities of the LASD tests in the point identified normal
location model experiment. The tests are of nominal 5% size, should have exactly 5% rejection
probability when µB = 0 and should reject when µB > 0. V1n and V2n tests have identical
behavior so only V1n results are shown. Samples of sizes 100, 500 and 1000 correspond respec-
tively to 499, 999 and 1999 bootstrap repetitions. Distributions are local to the boundary of
the null region, which is where µB = 0. 1000 simulation repetitions.

Figure 3 shows the empirical rejection results from the triangular model experiment. We
allow ε, which controls the shape of distribution B, to vary between −1/2 and 1/2. The tests
in this experiment should reject the null when ε < 0, should equal the nominal size at ε = 0

and should not reject when ε > 0. Because of the restricted supports of the distributions and
the relatively small region for ε, the horizontal axis for the power curves shown in Figure 3 is
the value of the alternative parameters in absolute scale and not local alternatives. Therefore
the power curves show a noticeable change over different values of the sample sizes used.

1.3 Normal model, partially identified case

In this experiment we use three independent normal random variables (Z0, ZA, ZB) with scales
set to unity and location parameters µ = (0, 0, µB), where µB is allowed to vary. We denote
this triple of marginal normal CDFs by G(µB). Rounding to one decimal place, the null
H0 : FA �LASD FB should be rejected when µB > 2.8. We let µB vary locally around this
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Figure 2: Triangular model densities and distribution functions. In this example distribution
FA �LASD FB (in terms of the description in the text, ε = 1/4 for distribution B). Heuris-
tically, the higher gains under policy B are outweighed by the probability of larger losses so
that distribution A dominates distribution B in the LASD sense, but FA 6�FOSD FB.

approximate boundary point. Figure 4 depicts the T3(G(µB)) function for µB = 2.7, 2.8 or
2.9. Tests are designed to detect the positive deviation in the right-most panel of the figure,
when T3(G)(x) > 0 for some x ≥ 0.

Figure 5 shows empirical rejection probabilities for tests with three independent normal
distributions. The tests are not conducted under any assumptions about the independence
of the samples. The rejection probabilities are different than those in the point-identified
experiments — more evidence is needed to detect deviations from the null region than in the
identified case, because the bound UB combines observations from the control and sample B.
Although more information is necessary, it is important to note that these alternatives (like
in the other experiments) are local to the boundary of the Pnec0 set.

As can be seen in Figure 5, the tests in the partially identified case do not reject the null
with as high a probability as in the point identified case, which is a direct result of the lack
of knowledge about inter-sample correlations that dictates the form of the T3 function defined
in the main text. Also, it appears as though these deviations from the null are not very well
detected by the Cramér-von Mises tests in relation to the Kolmogorov-Smirnov tests. However,
it is important to note that in this example, alternatives are local alternatives, and represent
smaller and smaller deviations from the null region as sample sizes increase.
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Figure 3: Empirical rejection probabilities of the LASD tests in the point identified triangu-
lar model experiment. The tests are of nominal 5% size, should have exactly 5% rejection
probability when ε = 0 and should reject when ε < 0. Samples of sizes 100, 500 and 1000
correspond respectively to 499, 999 and 1999 bootstrap repetitions. Distributions are around
the boundary of the null region, which is where ε = 0, but plotted on an absolute, not local,
scale. 1000 simulation repetitions.

2 Application

In this section we present the additional test results for the empirical application discussed
in Section 5 of the main paper. Table 1 includes results of V1n statistics, the second Table 2
contains V2n statistics, Table 3 the third containsW1n statistics and finally Table 4 reproduces
the table of W2n results used in the main text. The tables reveal that all the tests have very
similar qualitative conclusions. Some of the entries are exactly the same across tables and
are indeed repetitions of the same tests, but the tables are shown in entirety to facilitate
comparison.

Finally, we note that the example could be used to conduct tests under partial identifica-
tion, as if we had no knowledge of the longitudinal structure of the data. However, tests using
V3n or W3n statistics were all identically zero and had p-values equal to 1, and the table of
corresponding results is omitted.
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LASD in changes FOSD in levels
FAFDC � FJF FJF � FAFDC equality GAFDC � GJF GJF � GAFDC equality

avg-RA 4.3714 0.3283 4.1198 0.7006

p-value 0.0180 0.8954 0.0005 0.7599

lastQ-RA 1.5022 1.3864 1.7449

p-value 0.3757 0.4012 0.3832

avg-TL 0.1150 12.9315 2.5374 1.5446 2.5374

p-value 0.8914 0.0000 0.0390 0.2896 0.0655

lastQ-TL 0.7333 7.7585

p-value 0.4682 0.0005

Table 1: Table of sup-norm tests. LASD tests use the T1 process.

LASD in changes FOSD in levels
FAFDC � FJF FJF � FAFDC equality GAFDC � GJF GJF � GAFDC equality

avg-RA 4.3714 0.3283 4.1198 0.7006

p-value 0.0180 0.8954 0.0005 0.7599

lastQ-RA 1.5022 1.3864 1.7449

p-value 0.3757 0.4012 0.3832

avg-TL 0.1150 12.9315 2.5374 1.5446 2.5374

p-value 0.8914 0.0000 0.0390 0.2896 0.0655

lastQ-TL 0.7333 7.7585

p-value 0.4682 0.0005

Table 2: Table of sup-norm tests. LASD tests use the T2 process.

LASD in changes FOSD in levels
FAFDC � FJF FJF � FAFDC equality GAFDC � GJF GJF � GAFDC equality

avg-RA 3.4014 0.1789 2.8028 0.2240

p-value 0.0510 0.9060 0.0070 0.8609

lastQ-RA 0.7836 1.7883 2.1269

p-value 0.6333 0.4237 0.6413

avg-TL 0.0709 7.7449 1.2789 2.1285 2.4831

p-value 0.9290 0.0000 0.3387 0.1446 0.2081

lastQ-TL 0.6751 5.1723

p-value 0.6453 0.0315

Table 3: Table of L2-norm tests. LASD tests use the T1 process.
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Figure 4: The T3(G(µB)) function for different values of the location of the marginal distri-
bution function GB. Tests should reject the null hypothesis when T3(G)(x) > 0 for some x as
in the right panel.

LASD in changes FOSD in levels
FAFDC � FJF FJF � FAFDC equality GAFDC � GJF GJF � GAFDC equality

avg-RA 3.4335 0.1790 2.8028 0.2240

p-value 0.0500 0.9055 0.0070 0.8609

lastQ-RA 0.8000 2.1583 2.1269

p-value 0.6273 0.3637 0.6413

avg-TL 0.0858 9.1380 1.2789 2.1285 2.4831

p-value 0.9150 0.0000 0.3387 0.1446 0.2081

lastQ-TL 0.8238 5.8269

p-value 0.5963 0.0175

Table 4: Table of L2-norm tests. LASD tests use the T2 process.
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Figure 5: Empirical rejection probabilities of the LASD tests in the partially identified normal
location model experiment. The control and policy A distributions have means set to zero,
while the location of policy B is allowed to vary. The tests are of nominal 5% size, should have
exactly 5% rejection probability when (µB−2.8)

√
n = 0 and should reject when (µB−2.8)

√
n >

0 (alternatives are local to the boundary of the set Pnec0 described in the text). Samples of
sizes 100, 500 and 1000 correspond respectively to 499, 999 and 1999 bootstrap repetitions.
1000 simulation repetitions.
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