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ABSTRACT
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Did California’s Shelter-In-Place Order 
Work? Early Coronavirus-Related Public 
Health Effects*

On March 19, 2020, California Governor Gavin Newsom issued Executive Order N-33-20 

2020, which required all residents of the state of California to shelter in place for all but 

essential activities such as grocery shopping, retrieving prescriptions from a pharmacy, or 

caring for relatives. This shelter-in-place order (SIPO), the first such statewide order issued in 

the United States, was designed to reduce COVID-19 cases and mortality. While the White 

House Task Force on the Coronavirus has credited the State of California for taking early 

action to prevent a statewide COVID-19 outbreak, no study has examined the impact of 

California’s SIPO. Using daily state-level coronavirus data and a synthetic control research 

design, we find that California’s statewide SIPO reduced COVID-19 cases by 152,443 to 

230,113 and COVID-19 deaths by 1,940 to 4,951 during the first three weeks following 

its enactment. Conservative back of the envelope calculations suggest that there were 

approximately 2 to 4 job losses per coronavirus case averted and 108 to 275 jobs losses per 

life saved during this short-run post-treatment period.
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1. Motivation 
 
 

"I simply do not know if our aggressive actions early on ... have had the intended 

effect … I certainly am hoping and praying that that is the case. We still need the 

data to confirm that.”  

- Grant Colfax, San Francisco Director of Public Health, March 31, 2020 

 
 

The 2020 coronavirus outbreak is one of the most serious public health challenges in 

United States history.  The U.S. has seen more reported COVID-19 cases over a three-month 

period than reported polio cases between 1910 and 2010 combined (Ochmann and Roser 2020). 

The transmission of COVID-19 is presently believed to occur largely through exposure to 

respiratory droplets, usually emitted during coughing, sneezing, or nose-blowing (Centers for 

Disease Control and Prevention 2020a), but may also occur through natural respiratory expulsion 

(Fineberg 2020).  The primary strategies suggested by governments worldwide to reduce the 

spread of COVID-19 have been frequent handwashing, mask-wearing in public, and social 

distancing (Australian Government Department of Health 2020; Public Health England 2020; 

Public Health Agency of Canada 2020; White House 2020).   

In contrast to many countries throughout the world, many of the authorities used to 

combat public health threats in the United States rest not with the Federal government, but 

largely with state and local officials.  The primary state and local policy strategy to prevent the 

spread of coronavirus is the enactment of shelter-in-place orders (SIPOs), sometimes called “stay 

at home” orders.  The State of California was at the forefront of issuing comprehensive SIPOs as 

the COVID-19 crisis unfolded nationwide.  On March 17 and 18, 2020, 12 California counties 
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and the City of Berkeley adopted SIPOs.1  And on the evening of March 19, Governor Gavin 

Newsom announced the nation’s first statewide SIPO, earning immediate attention in the 

national news media.  California Executive Order N-33-20 2020 stated: 

 

“To protect public health, I as State Public Health Officer and Director of the California 

Department of Public Health order all individuals living in the State of California to stay 

home or at their place of residence except as needed to maintain continuity of operations 

of the federal critical infrastructure sectors…” (California Executive Order N-33-20 

2020). 

 

This statewide executive order required all California residents to remain in their homes 

for all but essential activities such as purchasing food or medicine, caring for others, exercise, or 

traveling for employment deemed essential. While grocery stores, pharmacies, restaurants 

providing takeout or delivery service, and other essential businesses were permitted to remain 

open, most other non-essential businesses were ordered closed.2  In addition, residents were 

advised to continue to maintain a six-foot distance with non-household members with whom 

they come in contact and public gatherings of non-household members were strongly 

discouraged.   

Violations of the SIPO were subject to a $1,000 fine and up to 6 months of imprisonment 

(Allday 2020), though enforcement most often occurred through social pressure and warnings for 

 
1 On March 16, Los Angeles Mayor Eric Garcetti implemented a non-essential business closure order. The seven 
counties that adopted a SIPO on March 17 were: Alameda, Contra Costa, Mendocino, San Francisco, San Mateo, 
Santa Clara, and Santa Cruz. The five counties that adopted a SIPO on March 18 were:  Monterey, San Benito, 
Solano, Sonoma, and Ventura. 
2 California’s statewide SIPO was soon followed by the closing of many public parks or beaches (KCRA Staff 
2020), driven in part by public outrage over the surge in beach parties and picnics immediately following the 
executive order (Kopetman 2020).    
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first offenses.  State SIPOs appear to have had increased social distancing (Abouk and Heydari 

2020; Fry 2020), with non-essential travel falling 40 to 60 percent following California’s SIPO 

(COVID-19 Community Mobility Report).  

 In issuing the SIPO, Governor Newsom implored residents of California “to meet this 

moment and flatten the curve together” (Newsom 2020).  Thus, an important policy rationale 

was not simply to curb the pandemic’s growth in California, but also to delay its peak, allowing 

the state additional time to obtain the necessary ventilators, hospital beds, and medical staff in 

place to meet the surge in demand for services among those who test positive (Baker and Fink 

2020; Greenstone and Nigam 2020; Ranney et al. 2020; Tsai et al. 2020; Hicks and Marsh 2020).   

The White House Coronavirus Task Force singled out two states, including California, 

for their early adoption of mandatory social distancing policies: 

 

“[Dr. Deborah] Birx said the experiences of California and Washington give her 

hope that other states can keep the coronavirus under control through social 

distancing. That’s because they moved quickly to contain the early clusters of 

coronavirus by closing schools, urging people to work from home, banning large 

gatherings and taking other measures now familiar to most Americans.” (The 

Associated Press, March 31, 2020) 

 

Following the adoption of California’s SIPO, 41 additional states and the District of 

Columbia enacted similar statewide SIPOs by April 9, 2020.  And by early April, over 90 

countries worldwide, representing half of the world’s population, requested or ordered their 

citizens to stay at home (Sandford 2020).   
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There are a number of important reasons to single out California’s SIPO in studying its 

effects on COVID-19 infection and mortality.  First, California was the first state to implement a 

statewide order, an important policy feature designed to prevent within-state spillovers of 

infectious disease across neighboring counties, cities, and townships with heterogeneous local 

orders.  Second, California ranks 12 out of 51 states (including the District of Columbia) in 

population per square mile (World Population Review) and 2 out of 51 in percent living in 

urbanized areas and urban clusters (Iowa Community Indicators Program).3 The spread of 

coronavirus is exacerbated by increased population density, which generates greater 

opportunities for transmission among frequently interacting individuals (Centers for Disease 

Control and Prevention 2020b).  This makes California a location with a high potential for rapid 

spread of the disease. 

Third, California implemented its SIPO at a unique time: early in the cycle of an 

outbreak, when the rate of growth in observed coronavirus case rates was quite low relative to 

other states that ultimately implemented SIPOs.  The average daily growth in confirmed 

coronavirus cases in the four days prior to SIPO enactment was 19.1 percent in California.  No 

other SIPO-implementing state in the upper 25th percentile of the state population density or 

urbanicity distribution had an average daily coronavirus growth rate lower than California during 

this period.  As a comparison, New York, which had the highest per-capita case rate in the nation 

throughout much of the outbreak, had an average daily coronavirus case growth rate of 39.5 

percent in the four days prior to its enactment of a SIPO.  In this context, California may provide 

a cleaner natural experiment in relation to later adopters, while also informing the efficacy of the 

decision to enact a SIPO early in the outbreak cycle. Finally, at this early stage of assessing the 

 
3 In 2019, the population density in California was 253.7 persons per square mile; 95.0 percent of residents lived in 
an urbanized area or urban cluster. 
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short-run public health effects of SIPOs, California has more days of post-treatment data than 

any other state, critical for analyzing the public health benefits of an epidemic with potentially 

exponential short-run contagion and lagged mortality effects. 

While there is speculation by the White House Coronavirus Task Force that SIPOs have 

been effective at “bending the case curve,” there is little rigorous empirical analysis of this 

question.  This study is the first to examine early public health effects of a statewide SIPO. 

Using 29 days of state-level data on confirmed COVID-19 cases and COVID-19-related 

deaths, this study provides evidence on the public health effects of California’s SIPO during the 

crucial early weeks of the policy.  Estimates from our preferred synthetic control models show 

that California’s SIPO led to a 17.5 to 26.4 per 100,000 reduction in COVID-19 cases per day 

and a 0.223 to 0.569 reduction in COVID-19-related deaths per day during the first three weeks 

following its enactment.  These findings are robust to the selection of observables (i.e. pre-

treatment COVID-19 rates, population density, urbanicity, and other COVID-related policies) to 

generate the weights to construct our counterfactual.  We find that the number of cases averted 

and lives saved were much larger in the second and third weeks following the SIPO’s adoption, 

consistent with growing public health benefits over the period during which the outbreak was 

exponentially growing.  Back of the envelope calculations suggest that there were approximately 

2 to 4 job losses per coronavirus case averted and 108 to 275 jobs losses per life saved during 

this short-run post-SIPO window in California. 

 
2. Background on Coronavirus 

In December 2019, an outbreak of a new zoonotic coronavirus, SARS-CoV-2, which 

causes the disease COVID-19, was detected in Wuhan, Hubei Province, China (World Health 

Organization 2020a).  The symptoms of COVID-19 resemble that of influenza, including fever, 
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cough, and shortness of breath (Centers for Disease Control and Prevention 2020c).  However, 

severe respiratory symptoms generate a mortality rate that may be an order of magnitude greater 

than that of the common flu (World Health Organization 2020b, House Oversight and Reform 

Committee 2020).  Deaths from COVID-19-related illness are heavily concentrated among the 

elderly and those with underlying health conditions such as respiratory ailments, heart disease, 

diabetes, or high blood pressure (Wu and McGoogan 2020; Verity et al. 2020; CDC Covid-19 

Response Team 2020).   

The substantial epidemiological risk from this new coronavirus is exacerbated by (i) a 

high degree of contagion (Thackeray 2020; Cascella et al. 2020), (ii) the possibility that 

transmission may occur among those who are asymptomatic (Centers for Disease Control and 

Prevention 2020a; Mandavilli 2020, Whitehead 2020, Li et al. 2020), and (iii) lack of adequate 

testing (Cohen 2020, Shear et al. 2020, Rabin et al. 2020, Desiderio and Levine 2020).  In the 

main, transmission of COVID-19 occurs via respiratory droplets, usually emitted during 

coughing, sneezing, or nose-blowing (Centers for Disease Control and Prevention 2020a, World 

Health Organization 2020c & 2020d).  There is also some evidence that the disease may be 

easily transmitted through normal breathing function in common air space (Fineberg 2020).  The 

incubation period for COVID-19 is 2 to 14 days, during which time transmission may also be 

possible (Centers for Disease Control and Prevention 2020b, Li et al. 2020).   

U.S. pharmaceutical companies, in partnership with the public sector, have begun clinical 

trials for a COVID-19 vaccine (White House 2020, Food and Drug Administration 2020).  

However, a longer-run medical solution such as a vaccine is unlikely to solve short-run capacity 

constraints faced by hospitals, which have faced a sharp increase in demand for medical services 

among coronavirus patients (Secon 2020, Seewer 2020, Kaste 2020, Marquez and Moghe 2020).  
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Fears over shortages of ventilators (Baker and Fink 2020, Ranney et al. 2020), intensive care unit 

beds (Tsai et al. 2020, Hicks and Marsh 2020), and protective personal equipment (James 2020, 

Petras and Loehrke 2020, Ranney et al. 2020, World Health Organization 2020e) have instead 

led policymakers to seek strategies to “flatten the curve” of infections, reducing the peak number 

of infections and spreading its incidence over time (Meredith 2020).  The World Health 

Organization (WHO) recommended that individuals frequently wash hands, avoid shaking hands 

with others, self-isolate when presenting flu-like symptoms, and avoid all unnecessary contact 

with non-household members through the practice of social distancing (World Health 

Organization 2020b).  The adoption of shelter-in-place orders is the dominant policy strategy to 

induce such distancing.   

SIPOs can affect COVID-19 cases and deaths through a number of channels.  As public 

health officials and epidemiologists expect, reducing exposure of uninfected individuals to those 

who are infected via social distancing should reduce the transmission rate of the virus.  However, 

there are other indirect channels through which SIPOs could impact reported cases and deaths.  

SIPOs may affect testing and coronavirus-related mortality because infected individuals who are 

unaware of their infection choose to stay at home rather than seek out testing or other medical 

care.  This may be because of fears of contagion at medical facilities or because of a desire to 

adhere to a “civic duty” to shelter in place.  In addition, as SIPOs may necessitate an increase 

public resources spent on patrol and enforcement, they may reduce resources available for public 

health services.  On the other hand, as SIPOs are expected to reduce the demand for “non-

essential” medical procedures such as well care visits or elective surgery, they may free up 

resources for those most at risk for coronavirus-related mortality. 
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3. Data and Methodology 

3.1 Data 

In order to examine the “first stage” compliance with the California SIPO, we utilize 

publicly available data from SafeGraph Inc.4  For each state (and county) on each day SafeGraph 

provides a shelter-in-place index, based on the percent of individuals staying at home during the 

day.   The metric is calculated from spatial data generated using anonymous cell phone pings.  

First, each cell phone is assigned a “home” (or 153m by 153m square) based on a common 

nighttime location over a baseline period.  SafeGraph then calculates the percent staying at 

home, i.e.  the fraction of cell phones in a geographic unit (state, county, etc.) that do not leave 

the “home” for any given day.5  The shelter-in-place index is the percentage point change in the 

number of cell phones staying at home relative to the baseline of February 6, 2020 through 

February 12, 2020.6  

To examine the public health effects of the statewide order, we utilize a panel of state-

specific daily counts of COVID-19 cases and deaths from March 12, 2020 through April 9, 2020.  

These data are collected by the Centers for Disease Control and Prevention (CDC) and made 

public by the Kaiser Family Foundation.7  Over this period, there were a total of 462,242 

confirmed COVID-19 cases in the United States, 4.3 percent (20,008) of which were in 

California, and 16,648 coronavirus-related deaths, 3.3 percent (544) of which were in California.  

Figure 1 shows state-specific trends in cumulative coronavirus rates per 100,000 

population in each state.  Daily cases can be calculated as the slope of this cumulative case 

 
4 Data and detailed descriptions of variable construction are available at: 
https://www.safegraph.com/dashboard/covid19-shelter-in-place 
5 SafeGraph makes adjustments for small geographic units which are not relevant for a state-level analysis. 
6 So a value of 25 is for the shelter in place index could represent an increase from of 12% of phones staying at 
home at baseline to 37% of phones staying at home (37-12=25). 
7 See data available here: https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html 
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distribution.  Over the period under study, the average coronavirus case rate in California was 

16.5 per 100,000 population, and its growth rate from March 12 to April 9 ranked 6th lowest 

among the 50 states and the District of Columbia.  In addition, California had the lowest case 

growth rate among the top 25th percentile of most highly urbanized states.  California also had 

the lowest case rate among the top 25th percentile of most highly densely populated states. 

Figure 2 shows the trends in cumulative coronavirus-related death rates per 100,000 

population. Between March 12 and April 9, the COVID-19 death rate in the United States grew 

by 5.07 deaths per 100,000 population, while it grew by about one-fourth as much (1.34 per 

100,000 population) in California. New York, New Jersey, Washington, Louisiana, and 

Massachusetts had among the highest rates of coronavirus-related deaths at the end of the sample 

period.  In terms of the death rate, the growth in the COVID-19 death rate in California ranked 

lowest among the top 25th percentile of most highly urbanized states. 

Figure 3 shows trends in coronavirus case rates for each county in the state of California 

during the sample period.  As noted above, prior to the statewide SIPO on March 19, 12 counties 

and the City of Los Angeles adopted SIPOs.  Early adopting counties are shaded black and all 

other counties are shaded gray.  We find that the growth rate in coronavirus cases from March 12 

through April 9 in early adopting California counties was about 11 percent.  This compares to an 

average growth rate of 15 percent in the remaining counties in the state who were bound by the 

statewide order.8 

 

3.2 Synthetic Control Design 

 
8 Appendix Figure 1 shows trends in coronavirus mortality rates for each county in California during the sample 
period.  Due to many low population counties with zero deaths for much of the sample period it is difficult to draw 
reliable inference with regards to county level SIPOs and mortality. 
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We use the synthetic control method introduced by Abadie et al. (2010) to infer the 

causal impact of SIPOs on the number of confirmed coronavirus cases and number of COVID-

19-related deaths per 100,000 population in California. This method uses data on pre-treatment 

COVID-19 case (or mortality) rates and observable characteristics of states that may influence 

the spread of the virus (i.e. population density, urbanicity, emergency decrees for major disaster 

area, travel restrictions, and the number of tests conducted).9  The synthetic control approach 

generates a counterfactual designed to capture how coronavirus cases would have evolved in 

California in the absence of its SIPO.   

Our chief outcomes of interest, !"#$	&"'$!" and ($"'ℎ	&"'$!", measure the cumulative 

number of confirmed coronavirus cases and number of coronavirus-related deaths per 100,000 

population in state i at day t.  We estimate the unobserved counterfactual (“synthetic California”) 

as a weighted linear combination of states included in a donor pool.  The weights are chosen so 

as to generate a synthetic state that is as similar as possible to California on key observables.  

Given the importance of the selection (i) of states to be included in the donor pool, and (ii) 

observable characteristics on which to closely match California to its synthetic counterpart, it is 

incumbent on researchers to offer a theoretical defense of these choices and to explore the 

sensitivity of estimated policy impacts to these choices (Ferman 2019).   

 
9 Population density is measured as the ratio of state population to land area in square miles and is available from 
U.S. Census (see: https://www.census.gov/geographies.html).  Urbanicity is measured as percentage of total 
population living in urban areas and is available from Iowa Community Indicators Program (see: 
https://www.icip.iastate.edu/tables/population/urban-pct-states). Emergency major disaster declarations are 
measured as a state with disaster that exceeds the response capabilities of the state and local governments, and long-
term recovery assistance is needed and are available from the Federal Emergency Management Agency (see: 
https://www.fema.gov/disasters).  Travel restrictions are measured as states that restrict residents from traveling to 
other states and/or states that restrict residents of other states from entering the state. COVID-19 tests are measured 
as the natural log of total coronavirus tests reported by each state.  These data are available from COVID Tracking 
Project (see: https://covidtracking.com). 
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Our primary donor pool is comprised of a total of 42 states: 8 states that had never 

enacted a SIPO during our sample period, and 34 states that adopted a SIPO at least 5 days after 

California did so.  We select this five-day period because it is the median incubation period of 

COVID-19 (Lauer et al. 2020), and thus gives the case data from California sufficient time to 

reflect underlying changes in the transmission rate before any of the donor states implement their 

own SIPOs. Coupled with information on the date at which each state implemented a SIPO 

(Appendix Table 1), our decision rule eliminates the following states from our donor pool: 

Illinois (March 21), New Jersey (March 21), New York (March 22), Connecticut (March 23), 

Louisiana (March 23), Ohio (March 23), Oregon (March 23), and Washington (March 23). 

Moreover, as shown in Figures 1 and 2, several of these states (New Jersey, New York, and 

Washington) appeared to be on very different pre-treatment case and mortality trends than the 

majority of states, including California.  To test the sensitivity of our results to the inclusion of 

these 42 states in the donor pool, we re-estimate our synthetic control models without 

eliminating pre-March 24 SIPO-adopters from the donor pool.  Our main findings are largely 

unchanged (see column 1 of Appendix Table 2). 

One limitation to our preferred donor pool is that by including later-adopting SIPO states 

as potential donors, the synthetic control is contaminated on some post-treatment days.  Thus, to 

the extent that later enacted SIPOs have taken effect, our estimated treatment effects will be 

biased towards zero and lower-bound estimates.  As one approach to address this concern, we 

select an alternate donor pool that includes states that had never adopted a SIPO or had adopted a 

SIPO but had 4 or fewer days of post-treatment data, meaning that likely at least half of all 

individuals infected post-SIPO had not yet reached the median incubation period (Lauer et al. 

2020).  However, this restriction to the donor pool has its own limitation: only 9 states had not 
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adopted SIPOs by April 9 (Arkansas, Iowa, Kentucky, Massachusetts, Nebraska, North Dakota, 

South Dakota, Utah, and, Wyoming), and just 2 were late adopters that fit this selection criteria 

(Missouri and South Carolina).10  Many of these non-adopting and late-adopting states do not 

share urbanicity, population density, or other policy-related characteristics of California making 

them potentially bad donors to the synthetic control group.  

Thus, selecting the eligible donor states for the analyses to follow has an inherent 

tradeoff.  We can select from a broader set of donor states that allow for a better synthetic control 

match to California on observables, but partially contaminates our control group with treated 

days biasing the estimated policy effect towards zero, or, we can select from a more limited set 

of donor states that is uncontaminated by treatment but that may be poorly matched to California 

on observables leading to a synthetic control group that is potentially a poor counterfactual for 

California.  We will present results under both choices.  The former approach yields policy 

effects that suggest California’s SIPO was effective at slowing the spread of COVID-19 (and is 

presented in Tables 1 and 3); the latter approach also yields policy effects that suggest 

California’s SIPO was effective (and is presented in columns 2 and 3 of Appendix Table 2), with 

results that are larger in magnitude (consistent with the prior approach being a lower bound 

estimate) but also less precise.  It is our opinion that a better synthetic control match that yields a 

downward biased estimate is more reliable than an estimate from a potentially poorly matched 

control group, a point to which we will return below. 

With regard to our choice of observables used to select our synthetic control from among 

the donor states, we take several approaches.  First, an important objective of this research design 

is to generate common pre-treatment trends in coronavirus cases (or deaths).  Our primary 

 
10 Among these states, Massachusetts had issued a “stay at home advisory.” 
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strategy to achieve this objective is to generate a synthetic control that closely approximates 

coronavirus case (and mortality) rates in California in each of seven (7) pre-treatment days 

(March 12 through March 18).  We also experimented with requiring pretreatment matches up to 

two weeks (14 days) prior California’s SIPO and our results are unchanged.  We estimate the 

unobserved counterfactual COVID-19 case rate for California on pre-treatment day ' by 

∑ +# ∗# !"#$	&"'$#", where +#  is the weight assigned to donor state -.  The analogous 

counterfactual death rate is  ∑ +# ∗# ($"'ℎ	&"'$#". The estimated weights +#  are chosen to 

minimize the absolute difference between !"#$	&"'$!$%&," and ∑ +# ∗# !"#$	&"'$#" and for all 

pre-treatment days, as well as the absolute difference between	($"'ℎ	&"'$!$%&," and 

∑ +# ∗# ($"'ℎ	&"'$#".  Then, the per-day treatment effect αt is estimated as ." = 0!$%&," −

∑ +# ∗ 0#"#  for t ∈ r [March 19, April 9] and 0 = [!"#$	&"'$, ($"'ℎ	&"'$]. The average treatment 

effect is then the average over the post-treatment window. 

Choosing a counterfactual based only on pre-treatment outcomes has a number of 

advantages. Given a long enough pre-treatment window, matching on covariates and matching 

on outcomes will produce similar results. Choosing not to match on covariates can eliminate 

concerns of ‘p-hacking’ and reduce bias of our estimate (Botosaru and Ferman, 2017). 

However, a limitation of matching all pre-treatment days to construct synthetic California 

is that there may be other observables that may legitimately and strongly influence the path of an 

outbreak such as population density, urbanicity, weather, state travel restrictions, or a declaration 

of major disaster. As shown by Kaul et.al (2018), matching on all periods of pre-treatment 

outcomes, renders all covariates irrelevant in the prediction of the outcome. 

Thus, we take alternate approaches to generating a synthetic control that allow for these 

relevant observables to influence estimation of synthetic weights.  First, we generate weights by 
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matching on coronavirus case (or death) rates on three pre-treatment days (March 13, March 15, 

and March 18) as well as state population density and a state urbanicity index.  These latter 

factors play an important role in the spread of infectious disease across communities due to 

increased crowding (Florida 2020).  New York City, the most densely populated city in the U.S., 

for example, experienced one of the most dramatic increases in coronavirus outbreaks and has 

more coronavirus cases per capita than the nation of Italy (Rosenthal 2020).   

Second, we generate synthetic weights using March 13, March 15, and March 18 

coronavirus case (or death) rates and several state policies designed to affect the outbreak: 

whether an emergency major disaster declaration was in effect for the state and whether the state 

had imposed travel restrictions (i.e. guidelines for residents and/or visitors to quarantine 

themselves for two weeks following arrival from other states).   

Third, we consider the role of state COVID-19 testing rates.  One reason why we might 

see changes in cases is because testing resources have changed. As of March 13, only 15,000 

tests had been conducted in the U.S.  To address the low testing rate in the U.S., the Food and 

Drug Administration approved a new COVID-19 test from the pharmaceutical company Roche 

(Arnold 2020). In the following days, states including Delaware, New York, Massachusetts and 

Texas, began implementing drive-up testing sites, which made access to testing more available 

(Yancey-Bragg 2020). Despite these improvements in accessibility, many testing delays 

persisted due to laboratory capacity constraints (Brown and Court 2020).  Coronavirus-related 

deaths are less likely to be affected by this selection into testing.  Nevertheless, we take two 

approaches to explore the issue of testing capacity.  For our first approach, we explore if 

California’s SIPO affected testing rates, using synthetic control methods described and the 

number of tests as the outcome variable.  For our second approach, we return to our main 
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analysis of case (and death) rates and generate a synthetic California using March 13, 15 and 18 

pre-treatment case (and death) rates as well as the average rate of testing per 100,000 population.   

To conduct hypothesis tests, we take two approaches.  First, we conduct placebo tests 

following the method suggested by Abadie et al. (2010). We apply the same synthetic control 

method described above for each donor state.  For donor state j, we reclassify the state as a 

treatment state, and select a donor pool based on all donor states except j, and add California to 

the donor pool.  We then use the same matching criteria stated above to generate a synthetic 

control 567'ℎ#" for each donor state j as if treatment were assigned March 19.  

We compare the pre-treatment and post-treatment mean squared prediction error (MSPE) 

for each state, calculating the MSPE ratio as follows: 

859:	;"'<=# =
∑ (*!"+,-."/!")#$
"%&/()

∑ (*!"+,-."/!")#&/(*
"%&/(#

            (1) 

The MSPE measures a relative goodness of fit for each state’s synthetic control based on 

estimated coronavirus cases (or deaths).  A high MSPE ratio can be interpreted as poor post-

treatment fit relative to pre-treatment fit. The ranking of the treated states relative to the placebo 

states then provides a permutation-based p-value. The p-value relies directly on the number of 

states in the donor pool. With 42 states in the donor pool, California’s MSPE ratio must rank at 

least 2nd to receive a p-value below .05 and at least 4th to receive a p-value below .1.  A p-value 

of less than .01 is not attainable given the number of donor states.11 

The p-value generated for the “standard” synthetic control model generates information 

on post-treatment fit based on the entire post-treatment period following the March 19 California 

 
11 The null hypothesis utilizing these p-values is that there is no effect in each period, not that the average policy 
effect is zero.  It is possible to have a policy effect with an average of zero in the post-treatment period, but a large 
MSPE if the effect of the policy changes sign in the post-period.  For this reason, it is important to make judgements 
based on both the MSPE and the general pattern of results. 
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order.  However, there are some important reasons why we might want to calculate MSPE over 

particular post-treatment windows.  For example, differences in the California “gap” (the 

difference between California’s coronavirus rate and synthetic California’s coronavirus rate) is 

expected to be much smaller during the incubation period (median of 5.1 days, 97.5th percentile 

of 11.5 days) following the SIPO relative to the post-incubation period when symptoms would 

have been present and infectious disease transmission more efficient.  Moreover, given that the 

effects of social distancing may have important multiplier effects over time (Florida 2020), we 

could expect the “gap” to increase exponentially following treatment.  For these reasons, we 

provide a range of permutation p-values based on several post-treatment windows: (i) the entire 

post-treatment period, (ii) the post-SIPO period after the median incubation length (March 24 

and later), and (iii) the post-SIPO period after which 97.5 percent of those infected on the SIPO 

implementation date are expected to experience symptoms (March 30 and later). 

Second, we conduct statistical inference by estimating wild bootstrap cluster standard 

errors (Cameron et al. 2008; Cameron and Miller 2015) using difference-in-differences 

regressions.  We draw data from California and donor states that received positive synthetic 

weights in the construction of synthetic California and estimate a difference-in-differences model 

of the following form: 

 

ln (Case Rateit) = β0 + β1SIPOit + β2Xit + γs + τt + μit          (2) 

 

where SIPOit is an indicator for the day that California adopts a shelter-in-place order, Xit is a set 

of state-level, day-varying controls that include indicators for whether the state has enacted a 

statewide non-essential business closure order (that falls short of a shelter-in-place order), 
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whether the state enacted a targeted shelter-in-place order that covers only older individuals over 

age 65 or those with underlying health conditions, whether the state had enacted travel-related 

restrictions, whether a major disaster declaration had been issued for the state, average 

temperature, and whether measurable precipitation fell on that day.  In addition, we control for 

state fixed effects (γs) and day fixed effects (τt), identifying our treatment effect (β1) via within-

state variation in the enactment of a SIPO. We also estimate equation (2) where we replace Case 

Rateit with Death Rateit, but given low counts of deaths during the earlier days of our analysis 

period, we experiment with count data models such as Poisson and negative binomial models. 

We first estimate equation (2) using an unweighted regression, giving equal weight to 

California and each positively synthetically-weighted donor state.  In another set of models, we 

use the synthetic weights (between 0 and 1) generated from the synthetic control model to weight 

each state and then assign California a weight of 1.  In all cases, to conduct statistical inference, 

we generate standard errors via wild cluster bootstrapping given the small number of clusters 

(states), which includes a single treatment state (Cameron et al. 2008; Cameron and Miller 

2015).   

 

4. Results 

Our main findings on the effects of California’s statewide SIPO can be found in Figures 4 

through 14 and Tables 1 through 4.  Discussion of county-specific COVID-19 SIPOs are 

discussed in Section 4.4 and in Tables 5 and 6. 

 

4.1 “Stay at home” Behavior and California Statewide SIPO 
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 Figure 4 presents trends in the shelter-in-place index for both California and its synthetic 

control.  The index reflects the percent of the population in a given state that stays at home all 

day relative to a baseline, derived from anonymized cell phone geotagging (SafeGraph, Inc.).  

We assign weights to the synthetic control based on close matches in the shelter-in-place index 

for each of the 7 days prior to CA’s statewide SIPO.12  Trends in social distancing are expectedly 

positive over the entire analysis period as awareness of COVID-19 was proliferating and the 

benefits of social distancing were emphasized through public health advisories and guidelines.  

The synthetically-generated counterfactual tracks California nearly identically prior to the SIPO, 

with trends markedly diverging only after California issued its statewide order on March 19. 

Estimates of the average daily treatment effect indicate that the percent of individuals remaining 

at home throughout the day increased by 2.4 percent in California relative to its synthetic control, 

over the entire post-SIPO period.  The effect is larger over the initial post-treatment window up 

to March 28, indicating an average 3.3 percent increase per day in individuals sheltering at home 

in California relative to the control, and suggestive of a rapid run-up in social distancing. 

Focusing on this window wherein CA experienced the largest gains in social distancing, the 

effect is statistically significant with a one-sided permutation-based p-value of 0.023.  As more 

donor states issued their own shelter-in-place orders, notably by the end of March, and gains for 

California decelerated, trends narrowed somewhat between California and its synthetic control. 

These analyses underscore two points.  First, they provide some supporting evidence that 

individuals in California complied the shelter in place order, and that the SIPO effectively and 

rapidly reduced social mobility in California, an effect which was sustained over the analysis 

 
12 As the baseline for the index is the same for all states (week ending February 12, 2020), and the pre-SIPO trends 
are nearly identical, the treatment effect can be interpreted as the increase in the percent of households in CA who 
are staying at home relative to its counterfactual in the post-SIPO period.   
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period.  Second, as pressure for social distancing intensified, the health effects that we estimate 

below capture the direct effect of California’s SIPO on contagion by forcing certain forms of 

economic activity to stop as well as the compounding effects of the SIPO accelerating social 

distancing behavior during the early period of the coronavirus outbreak cycle. 

 

4.2 COVID-19 Confirmed Cases and California Statewide SIPO 

Figure 5a shows trends in California’s confirmed COVID-19 cumulative cases from 

March 12, 2020 through April 9, 2020.  Case rates rose fairly linearly over the period from 

March 12 through March 25 from .6 to 8 per 100,000 population before beginning more 

exponential growth, reaching 50.8 per 100,000 on April 9, 2020.   

Our first synthetic control assigns weights based on close matches in pre-SIPO case rates 

on each of the 7 pre-treatment days.  We find that a total of 10 states contributed approximately 

two-thirds of the weight for the estimated counterfactual.  These include Colorado, the District of 

Columbia, Hawaii, Maine, Massachusetts, Michigan, Minnesota, New Mexico, Rhode Island and 

South Dakota (Figure 5b).13  This estimated synthetic control serves as our counterfactual for 

coronavirus case trends that would have unfolded in California in the absence of the SIPO enact. 

Figure 5a shows that COVID-19 case rate trends in California and synthetic California are nearly 

identical in the pre-March 19 period.  During the first three (3) days following treatment, which 

capture the first half of the coronavirus incubation period, coronavirus case rates remain quite 

similar in California and the synthetic control state.  However, beginning on March 23 and 

accelerating after March 25, the rate of growth in California’s coronavirus cases was 

substantially lower in California relative to the synthetic control.  By the final day of case data in 

 
13 The highest synthetic weights were assigned to Colorado (10%), the District of Columbia (3%), Maine (10%), 
Massachusetts (15%), and South Dakota (19%).   
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our analysis (April 9), we find that there were 52.8 fewer coronavirus cases per 100,000 

population, which translates to 20,866 fewer total cases on that day.  This pattern of findings 

suggests that the public health benefits of the SIPO grew substantially over the three-week period 

of analysis.  These public health benefits also capture any potential compounding effects due to 

California responding early during the initial phase of its outbreak cycle.14     

In column (1) of Table 1, we show estimates of the average daily treatment effect for the 

full post-SIPO period from March 19 through April 9 (Panel I), for the post-treatment period 

beginning March 23, which accounts for the median coronavirus incubation period (Panel II), 

and for the post-SIPO period beginning March 30, the 97th percentile of the coronavirus 

incubation period (Panel III).  For the full period, we estimate that the enactment of the SIPO is 

associated with a 17.5 decline in average coronavirus cases per 100,000 population per day, or 

6,929 cases per day.  This suggests approximately 152,443 COVID-19 cases averted over the 

three-week period.15 

The daily decline in coronavirus cases is not constant over the post-treatment window.  

The estimated public health benefits accelerate in the days following enactment, consistent with 

an exponential growth in contagion that was averted from the SIPO’s enactment.  Following 

March 22, the enactment of the SIPO led to a 21.2 decline in average coronavirus cases per 

100,000 population per day, or approximately 8,401 cases per day.  In the post-March 30 period, 

 
14 If we employ the synthetic weights from Model 1 (Table 1) to compute a weighted average date of SIPO 
enactment among the states in the control group and assign never adopters a pseudo-treatment date that is one day 
after the end of the analysis period, then, using this measure, California issued its SIPO on average 13 days prior to 
synthetic California. 
15 To take a more conservative approach, we also consider an alternate strategy where we force coronavirus cases 
during the period from March 19 through March 23 to be comparable to the donor states.  This imposes a null effect 
of the SIPO on cases due to lagged effect from exposure to symptoms during the incubation period.  This exercise 
yields similar results as our main model. 
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the average daily case reduction that we attribute to California’s SIPO is 30.6 per 100,000 

population or 12,091 individuals.   

To conduct statistical inference of the above estimates, we turn to permutation-based p-

value calculations.  In Figure 5c, we show results from our placebo tests, which give rise to the 

rank-based p-values we generate.  In each case, the permutation-based p-value was .047 across 

both the standard ranking generated by pre-post MSPE ratio and the one-tailed pre-post MSPE 

ratio test. Together, this evidence is consistent with the hypothesis that the public health benefits 

of California’s SIPO grew exponentially in the short-run.  

An important concern in synthetic control analysis is how robust findings are to the 

choice of observable controls and donor states.  Figure 6a shows results from a synthetic control 

approach where we only assure pre-treatment matches on COVID-19 cases on three days (March 

13, March 15, and March 18), but also augment our matching strategy by assuring similarity on 

the share of the state population residing in urban areas.  According to the 2010 Census, 95.0 

percent of the population lived in urbanized areas or urban clusters.  In Appendix Table 3, we 

compare urbanicity rates in California (column 1) with all other states (column 2), and synthetic 

California (column 3).  We find that urbanicity rates are most similar to California with the 

synthetic counterfactual. 

Despite generating a very different set of positively weighted donor states from the 

approach undertaken in Figure 5a, the estimated treatment effect is quite similar, as is the pre-

treatment match.16  There is a tight pre-treatment fit, with an exponential divergence following 

the post-SIPO initial virus incubation period.  In column (2) of Table 1, we show that over the 

 
16 In Appendix Table 4, we show synthetic control estimates where we limit the donor states to the continental 
United States, thus eliminating Alaska and Hawaii as potential donors.  The pattern of results is qualitatively similar 
to that shown in Table 2. 
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full post-treatment period, the California SIPO led to a 20.8 per 100,000 population decline in 

average daily coronavirus cases. Again, the effect sizes were larger in later days of the post-

treatment period (Panels II and III), consistent with exponential growth in public health benefits 

to those in California. Permutation-based p-values from placebo tests (Figure 6c) ranged 

from .070 to .093. 

Given that urbanicity rates may not fully capture the degree of crowding, in Figures 7a 

through 7c, we show results from a synthetic control model where we match not only on 

urbanicity, but also population density, increasing the likelihood that we more heavily weight 

those donor states with higher risk of coronavirus contagion.17  Our findings, shown in Figures 

7a-7c and in column (3) of Table 1, are quite similar to those in column (2) of Table 1. 

To ensure that coronavirus testing is not biasing estimates of the effect of California’s 

SIPO on confirmed cases, we next select weights for donor states by also matching on the 

average rate of testing over the sample period.18  The results in Appendix Figures 2a through 2c 

provide some support for the hypothesis that testing for the coronavirus may have increased 

following the SIPO, suggesting that estimated case reductions may be biased toward zero.  After 

controlling for average coronavirus testing rates, we find that the California SIPO led to an 

average daily reduction of 26.4 COVID-19 cases per 100,000 population, corresponding to a 

total of 230,113 coronavirus cases averted over the full three-week post-treatment period. 

Finally, we explore whether our estimated treatment effect is sensitive to the addition of 

COVID-19-related policy controls, including major disaster declarations and state travel 

restrictions (see Appendix Table 3).  The pattern of results shown in Figures 9a through 9c are 

quite similar to those shown in the previous figures.  We find that the California SIPO led to a 

 
17 Appendix Table 3 shows the quality of the synthetic control on these observables. 
18 Appendix Table 3 shows means of testing rates for California and its synthetic control. 
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25.4 case per 100,000 population reduction in COVID-19 cases per day, resulting in 221,262 

coronavirus cases averted over the three-week post-treatment period.  

It is important to recall that these estimates are based on a synthetic control from a set of 

donor states that are partially treated in the latter part of the post-period, and as such are a lower 

bound for the true effect of the policy.19  In columns (2) and (3) of Appendix Table 2, we 

examine the sensitivity of estimated policy impacts to the use of never-adopting or very late-

adopting (after April 2) states as controls. We find that California’s statewide SIPO reduced 

average daily case rates by between 24.0 and 27.1 cases per 100,000 relative to synthetic 

California.  These results are larger in magnitude, but also less precise than the estimates when 

we allow partially treated states in the control group. 

Appendix Figure 7 presents the corresponding trends in cumulative cases for California 

and synthetic California.  While these results are validating, we note here the qualification that 

the set of donor states that receive positive weights among non-adopters include Massachusetts 

(36 percent), North Dakota (25 percent), Utah (24 percent), Arkansas (12 percent), and 

Wyoming (2 percent).  These states are somewhat different from California on dimensions of 

population density and urbanicity.  Appendix Table 5 shows many of these observable 

differences when we try to construct a synthetic control from them.  Given the important role of 

social interactions in the spread of the coronavirus, this makes it possible that the synthetic 

California generated from a much narrow set of never (or later) adopting donor states were on a 

 
19 In Appendix Figures 5 and 6, we trim the post-treatment window in order to limit the effects of later SIPOs 
enacted by states within the synthetic control.  Specifically, Appendix Figure 5 trims the post-treatment period to 
March 28, which is 5 days (median incubation period) after the first treatment date for any donor state, ensuring that 
the trend in cases exhibited by synthetic CA is not due to a SIPO enacted within the control group.  Appendix Figure 
6 slightly extends the post-treatment period to April 3, ensuring that the window ends before the median incubation 
period plus lag to ARD (13 days).  Both figures show consistent evidence that the statewide SIPO in CA flattened its 
outbreak trajectory and reduced the average daily COVID-19 cases. 
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different longer-run coronavirus contagion trend, and thus may serve as a poor counterfactual for 

California.20 

Table 2 presents difference-in-differences estimates of the effect of California’s SIPO on 

the natural log of confirmed COVID-19 cases.  In each case, the sample is comprised of 

California and each donor state that received a positive weight in the synthetic control exercise 

described by each column, which follows the set of tests from Table 2.  Panel I shows estimates 

from unweighted regressions, while Panel II uses synthetic weights (which sum to 1) for the 

donor states and a weight of 1.0 for California.  All models include the full set of controls 

described below equation (2) above.  Standard errors are generated via wild cluster (state) 

bootstrap. 

Our findings provide consistent evidence that the California SIPO had substantial 

negative effects on coronavirus cases.  Unweighted estimates in Panel I show that the enactment 

of California’s SIPO was associated with 37.0 to 42.2 fewer cases per 100,000 population per 

day (52 to 56 percent decline), or about 14,649 to 16,679 fewer total confirmed cases on April 9, 

somewhat comparable to the synthetic control estimates.  When we weight using synthetic 

weights and control for the full set of controls, the effect sizes range from 33.8 to 42.5 percent 

declines.21    

In Panel III of Table 2, we focus on regressions weighted by synthetic weights and 

decompose the average treatment effect based on the approximate interquartile range of the 

incubation window following enactment of the SIPO. Consistent with the synthetic control 

 
20 This may also help explain why the estimated effects for deaths in Panel II are weak and do not attain statistical 
significance at conventional levels.  The longer lag from infection to incubation to ARDS limits the quality of the 
synthetic control match when drawing from the smaller pool of never or late adopters. 
21 Given that the outcome is the log of the caseload, the percent decline for model 1 is [e-0.413- 1]*100 = 33.8%. 
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estimates, we find that the effectiveness of the SIPO grows larger following the virus’s 

incubation period and the period from time until first symptom until respiratory failure. 

Together, the findings in Tables 1 and 2 provide compelling evidence that California’s 

first-in-the-nation SIPO generated important public health benefits in preventing the spread of 

the coronavirus during the first three weeks of enactment.22  Next, we explore whether these case 

declines generated improvements in mortality rates. 

 

4.3 COVID-19 Deaths and California Statewide SIPO 

 In Figures 10a through 10c, we show estimates of the effect of California’s SIPO on 

coronavirus-related mortality.  Figure 10a shows the exponential rise in cumulative COVID-19-

related deaths in California, from 0.01 per 100,000 population (4 deaths) on March 12 to 1.38 per 

100,000 population (544 deaths) on April 9.  When we generate a synthetic control using all pre-

treatment days to generate matches on COVID-related mortality rates, we find strong evidence of 

a pre-March 19 common trend for California and synthetic California.  On March 25, 6 days 

following enactment of the SIPO, we find that the rate of increase in mortality begins falling in 

California as compared to the estimated counterfactual, with a gap that widens exponentially 

over time, getting particularly large nearly two weeks after the policy’s adoption on March 31, 

2020.   

This longer lagged effect on mortality relative to cases is to be expected given the 

incubation period from exposure to symptoms and time from first symptoms to acute respiratory 

distress syndrome (ARDS), the latter of which may take up to 8 days (Wang et al. 2020).  

 
22 In Appendix Figures 3a through 3c, we show synthetic control results when we use daily case rates rather than 
cumulative case rates.  This isolates a different local average treatment effect; that is, the effect of a SIPO on the rate 
of change in the change in cumulative coronavirus cases.  The results continue to provide evidence that California’s 
SIPO reduced coronavirus-related mortality. 
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Moreover, a more conservative synthetic control approach, shown in Appendix Figures 8a 

through 8c, which requires pre-treatment mortality rate matches for every period through the sum 

of the median incubation length (5.1 days) and the median symptoms-until-near-death (8.0 days), 

shows a sharp relative decline in coronavirus-related mortality rates in California.23  Finally, we 

note that there are channels through which mortality may be affected by SIPOs that are not 

directly affected by exposure to contagious infected patients.  SIPOs may affect the likelihood 

that previously infected patients seek medical care due to beliefs about contagion at medical 

facilities.  SIPOs may also impact the availability of resources for medical care, including 

testing, as public resources are used to enforce SIPOs. 

Our estimates in column (1) of Table 3 show that California’s SIPO led to an average 

decline in the coronavirus death rate of approximately 0.56 per 100,000 per day.  Over the full 

three-week post-treatment window, this corresponds to a total of 4,830 fewer deaths.  Combined 

with the estimated case effect shown in column (1) of Table 3, our estimated mortality effect 

implies a coronavirus-related mortality rate of 3.2 percent, somewhat high, but within the range 

of mortality estimates suggested by the WHO and CDC of 1 to 4 percent (World Health 

Organization 2020f; Wilson et al. 2020).  Of course, there are a number of caveats to this back-

of-the-envelope assessment to judge the credibility of our estimates.  First, deaths occur with a 

lag with respect to confirmed cases.  Second, during the earlier stages of the outbreak, there is 

evidence that state medical resource constraints permitted testing of only those with more severe 

symptoms and a higher probability of succumbing to their illness (Baker and Fink 2020). Third, 

 
23 Since death rates during the early phase of the outbreak were low for all states, and 0 for a few states during the 
first few days, we present alternate synthetic control estimates for deaths by (1) matching on COVID-19 deaths 
through the incubation and ARDS period (Appendix Figure 8), as well as matching on COVID-19 cases on all pre-
treatment days (see Appendix Figure 9).  Estimated effects are not sensitive to either approach and continue to 
indicate marked reduction in deaths in CA relative to the control group. 
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this implied mortality rate is based on the margin of cases averted due to the SIPO, which may 

be different than the average infected case.24 

While our estimated mortality decline is substantial in magnitude, permutation-based p-

values are insufficiently small to conclude definitively that there is a death decline due to 

California’s SIPO.  As expected, the size of the death reduction induced by the state SIPO grows 

much larger when the incubation period and time from symptoms until possible death are 

excluded from the analysis.  We estimate effect sizes that range from –0.674 to (Table 3, column 

1, Panel II) to –1.005 (Table 3, column 1, Panel III) per 100,000 population per day, or about 267 

to 398 fewer deaths per day. 

The remaining columns of Table 3 show the estimated effect of California’s SIPO when 

using the same observables to generate the weights for synthetic California described in columns 

(2) through (5) of Table 1.25  Figures 11 through 14 show the corresponding synthetic control 

graphs.  Across specifications, we find evidence that the California SIPO is negatively related to 

the coronavirus mortality rate, though the magnitude of the effect is somewhat smaller after 

controlling for observables related to public policies in testing.  However, the estimated 

treatment effect grows later in the treatment window and is largest following March 30, when we 

expect lagged effects on mortality due to reaching the sum of the median incubation period and 

median time until ARDS.  Somewhat smaller mortality declines are observed in specifications 

that also match on average testing rates.  In these models (columns 4 and 5), we find that 

California’s SIPO is associated with a total of 1,941 to 3,367 fewer COVID-19 deaths over the 

three-week post-treatment period.  

 
24 In other words, the implied mortality rate is based on (∆ Death Rate / ∆ Case Rate) and may be different than the 
average mortality rate (Total Death Rate / Total Case Rate). 
25 These estimates imply a marginal coronavirus-related mortality rate of 0.7% to 2.7%. 
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Finally, in Table 4, we present differences-in-differences estimates of the effect of 

California’s SIPO on COVID-19-related mortality. All models are weighted using the synthetic 

weights generated in the four main models we have considered.  Panel I shows our findings on 

the average treatment effect in the post-treatment period, while Panel II decomposes the 

treatment effect into the early period when death effects should be relatively small (time from 

incubation until ARDS) and the latter period accounting for this lag.  We find evidence that the 

mortality declines from the implementation of the SIPO are generally larger in the period 

following March 30, as expected.  However, uniformly, estimates are fairly imprecise, in part 

owed to low COVID-19 mortality rates in the state.  During this period, we find the SIPOs 

reduce COVID-related mortality by between 18 to 29 percent per day. 

Given low counts of deaths, in Panels III and IV of Table 4, we present estimates from 

Poisson models.  We find much stronger evidence of negative impacts of California’s SIPO on 

mortality.  In the post-incubation-until-ARDS period (Panel IV), we find consistent evidence that 

the SIPO was associated with a 21 to 58 percent decline in deaths.26 

Taken together, the results from Tables 3 and 4 provide strong evidence that California’s 

SIPO generated substantial public health benefits via reduced coronavirus-related mortality. 

 

4.4 California County-Level Analysis 

Prior to the adoption of California’s statewide SIPO, 12 counties and the cities of Los 

Angeles and Berkeley adopted local SIPOs.  Appendix Table 6 lists these jurisdictions and their 

dates of enactment. If early SIPO adoption in the midst of an exponential expanding epidemic, 

 
26 Given the possibility of overdispersion in deaths, we also estimated these count models via negative binomial 
regression.  While computationally more intensive, we find estimated SIPO effects that are qualitatively similar.  For 
example, in column (1) of Panel III, we find that that the SIPO was associated with a 51 percent decline in deaths.  
This compares to an identical decline using a negative binomial model. 
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particularly in high population density localities, can generate large public health benefits, these 

early adopting jurisdictions may have seen earlier and more pronounced declines in COVID-19 

cases.   

In Table 5, we provide descriptive evidence that this may be the case.  In columns (1) and 

(2), we provide evidence on pre-treatment county-level coronavirus case and death rates.  We 

find that coronavirus rates were much higher in early adopting SIPO counties (ESIPOs).  

However, we see that growth in coronavirus cases was substantially lower in ESIPO counties as 

compared to those who were bound by the statewide policy.  Between March 5 and April 9, the 

coronavirus case rate increases by over 29 times in ESIPO counties, but well over 181 times in 

those who adopted SIPOs later.  Due to many low population counties with zero deaths for much 

of the sample period it is difficult to draw reliable inference with regards to county-level SIPOs 

and mortality. 

Synthetic control estimates in Table 6 on selected ESIPO counties, which match on pre-

treatment coronavirus case rates in ESIPO and non-ESIPO counties do not, in the main, suggest 

a significant divergence in trends in these outcomes, either in the earlier period following 

enactment or over time.  Only for the county of Santa Cruz is there some evidence that cases fell 

more than in its synthetic counterfactual, generated from other California counties.  However, we 

note an important caveat with our county-specific findings.  Appendix Figure 10 shows that 

many California counties did not have particularly strong pre-treatment matches on coronavirus 

cases. Many ESIPO counties were already trending upward in coronavirus cases prior to the 

adoption of an ESIPO relative to other counties.  Furthermore, the cross-county analyses are 

challenged by the close proximity of the SIPOs among the early adopting counties with the 

statewide order, with all of these orders occurring within a span less than the median incubation 
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period of the coronavirus, making it difficult to identify potentially small differences in the post-

treatment trends.  Thus, we are hesitant to draw any strong conclusions about the effectiveness of 

CA’s early adopters using within-state comparison counties as donors.27 

 

5. Conclusions 

On March 19, 2020, California Governor Gavin Newsom implemented the nation’s most 

radical response to a worldwide coronavirus outbreak: implementing a statewide shelter-in-place 

order that required citizens to remain inside their dwellings for all but activities deemed 

“essential,” such as grocery shopping, pharmaceutical pick-up, caring for sick relatives and 

friends, or employment deemed essential.  This policy was designed to slow the spread of the 

coronavirus by enforcing social distancing through legal force and social pressure. The high level 

of urbanicity in California, combined with policy adoption during a period of slow coronavirus 

cases, make this state a unique case study of early precautionary policies in a high-risk 

environment. 

            This study is the first to rigorously examine the short-run impact of California’s SIPO on 

the rate of confirmed COVID-19 infections and COVID-19-related mortality.  Using a synthetic 

control approach, we estimate that in the three weeks following the order, the state SIPO reduced 

the number of COVID-19 cases by between 152,443 to 230,113 and prevented 1,941 to 4,951 

COVID-19-related deaths, implying a mortality rate of about one to three percent at the margin 

of averted cases.  We note that these benefits represent the effects of having a SIPO in place as 

well as the effects of doing so early in the outbreak cycle.  Notably, the synthetic control issued a 

 
27 This pattern of findings did not change when we attempted to generate synthetic county controls based on within-
California county-specific matches on urbanicity and population density. 
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SIPO later in the outbreak cycle, about 13 days on average following California.  Hence, the 

treatment effects for CA also capture the potential benefits of an early response.  

These findings are robust to the choice of observables with which we weight potential 

donor states.  Moreover, lagged case and mortality effects are consistent with the median 

incubation period of COVID-19 as well as estimates of time from first symptoms until acute 

respiratory distress syndrome.  We find little evidence that changes in testing for coronavirus 

leads to substantial bias in our estimates.  Finally, turning to county-level data, we find little 

evidence that counties that adopted SIPOs prior to California’s statewide SIPO law saw earlier 

and more pronounced declines in coronavirus cases than their later adopting California 

counterparts, though this may be due to the relatively short span of time (4 days) between when 

the early adopters enacted the shelter-in-place order and the statewide order.   

            The statewide results we present show substantial short-run public health benefits of 

California’s SIPO.  But we also note that there were substantial economic costs of this 

intervention.  In addition to substantial utility losses caused by social distancing from non-

household members (Hamermesh 2020), the SIPO was accompanied by substantial job loss.  

Unemployment insurance claims in California rose by 2.17 million in the three weeks during 

which we studied mortality reductions (U.S. Department of Labor 2020).  If all of these job 

losses were due to the California SIPO policy, this would suggest that during the three weeks 

following the enactment of California’s SIPO, there were approximately 9 to 14 jobs lost per 

coronavirus case averted and 438 to 1,119 jobs lost per life saved.  However, if we net out the 

average increase in the weekly jobless claim rate of our preferred “synthetic California” for 

COVID-19 cases (column 1 of Table 1) as a proxy for how weekly job loss would have evolved 
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in California, estimates of job loss are about 70 percent smaller, with 2 to 4 jobs lost per 

coronavirus case averted and 108 to 275 jobs lost per life saved.28,29 

Some of the aforementioned job losses may be short-term to the extent that they are due 

to a temporary decrease in aggregate demand and consumer spending which may rebound once 

the SIPO is lifted and the risk of infection weakened.  Further, government spending packages 

such as the Coronavirus Aid, Relief, and Economic Security (CARES) Act, which is designed to 

infuse firms with public funds to remain open until SIPOs were lifted may blunt the total job loss 

impact (although the long run impact of the bill, which cost over $2 trillion, on future public and 

private finances is difficult to predict).  Finally, we note that the vast majority of deaths averted 

from coronavirus are among the elderly and those with underlying health conditions (Wu and 

McGoogan 2020; Verity et al. 2020; CDC Covid-19 Response Team 2020).  Thus, the SIPO 

represents a substantial intergenerational redistribution of resources toward the older and 

infirmed.   

There are several dimensions in which future work will be important.  First, in the 

absence of a vaccine or effective treatment for COVID-19 in the short term, the chief public 

health rationale for temporary shutdown orders is to reduce serious COVID-19-related illnesses 

and deaths due to short-run medical capacity constraints (Greenstone and Nigam 2020).  If some 

of the deaths or illnesses are postponed to the future when the SIPO is lifted, the intervention’s 

net health benefits will be smaller.  Second, California was uniquely positioned to reap important 

 
28 We note, however, that the dynamics of job loss following SIPOs may be quite different from coronavirus cases.  
For example, if job losses following the implementation of a SIPO occurs sooner than coronavirus cases or deaths 
are averted, synthetic California is likely to be more contaminated from donor states than coronavirus cases averted 
(due to the lack of an incubation or time from symptoms-until-ARDS lag).  If this is the case, then the jobs per case 
averted (or life saved) reported above will be understated. 
29 Appendix Figure 11 shows a synthetic control estimate using weekly jobless claims data from the U.S. 
Department of Labor.  The outcome represents the rate of weekly jobless claims relative to covered jobs in the state.  
We generate synthetic California using the same weights used for our coronavirus case synthetic control using 
pretreatment COVID-19 case matches. 
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short-run health benefits from its SIPO given the state’s high urbanicity rate and the enactment 

of the SIPO during a period of very low COVID-19 case growth.  Other jurisdictions with less 

crowding, less medical preparedness, or higher rates of pre-SIPO COVID-19 case growth may 

have very different experiences. 
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Figure 1: COVID-19 Cases Per 100,000 by State, March 12-April 9, 2020 

 

 

Figure 2: COVID-19 Deaths Per 100,000 by State, March 12-April 9, 2020 
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Figure 3: COVID-19 Cases Per 100,000 by California County, March 12-April 9, 2020 

 

 
 
 

Figure 4: Synthetic Control Estimates for Shelter in Place Index 
[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

 
 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of the pre-
SIPO shelter-in-place index. Synthetic California is comprised of DC (.666) and MA (.333). P-values are computed 
using permutation test. Two-sided p-value is .95 and one-sided p-value is .53.  However, the p-value generated 
from a one-sided test of an examination of the March 19 through 28 is .02. 
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Figure 5: Synthetic Control Estimates for Cases Per 100,000 
[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 cases per 100,000. The donor states shaded in Figure 5b are those that received a weight of at least .015 
in the estimation of the synthetic control counterfactual for California. Darker shaded states received more weight. 
Synthetic California is comprised of SD (.185), MA (.154), CO (.098), ME (.097), DC (.032), MI (.019), RI (.018), 
MN (.016) and NM (.016).  In addition, 29 states each contributed a weight between .010 and .015. 
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Figure 6: Synthetic Control Estimates for Cases Per 100,000 
[Matching Variables: COVID-19 Cases on 3 Pre-Treatment Days & Urbanicity] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
 

(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 cases per 100,000 and urbanicity measure. The donor states shaded in Figure 6b are those that received 
a weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded 
states received more weight. Synthetic California is comprised of MA (.176), NE (.068), CO (.066), DC (.059), SD 
(.024), RI (.023), NM (.02), GA (.019), IA (.018), MI (.018), UT (.018), VT (.018), VA (.018), AR (.017), HI 
(.017), KY (.017), MN (.017), MT (.017), NV (.017), NH (.017), PA (.017), SC (.017). AL (.016), DE (.016), FL 
(.016), IN (.016), KS (.016), MD (.016), NC (.016), TN (.016), TX (.016), and WI (.016). In addition, 10 states 
each contributed a weight between .010 and .015. 
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Figure 7: Synthetic Control Estimates for Cases Per 100,000 
[Matching Variables: COVID-19 Cases on 3 Pre-Treatment Days, Urbanicity, & Population Density] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 cases per 100,000, urbanicity and population density measure. The donor states shaded in Figure 7b are 
those that received a weight of at least .015 in the estimation of the synthetic control counterfactual for California. 
Darker shaded states received more weight. Synthetic California is comprised of HI (.526), MA (.266), NV (.090), 
RI (.08), and DC (.036).   
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Figure 8: Synthetic Control Estimates for Cases Per 100,000 
[Matching Variables: COVID-19 Cases on 3 Pre-Treatment Days & Testing Rate] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
 

(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 cases per 100,000, and testing per 100,000. The donor states shaded in Figure 8b are those that received 
a weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded 
states received more weight. Synthetic California is comprised of MA (.269), GA (.119), DC (.031), NE (.031), 
WY (.028), NV (.023), IA (.021), HI (.020), TN (.019), TX (.017), FL (.016), IN (.016), MI (.016), and PA (.016). 
In addition, 25 states each contributed a weight between .010 and .015. 
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Figure 9: Synthetic Control Estimates for Cases Per 100,000 
[Matching Variables: COVID-19 Cases on 3 Pre-Treatment Days, Urbanicity,  

Testing Rate, Travel Restriction, & Disaster Emergency] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 cases per 100,000, urbanicity, testing per 100,000, travel restriction, and disaster emergency. The donor 
states shaded in Figure 9b are those that received a weight of at least .015 in the estimation of the synthetic control 
counterfactual for California. Darker shaded states received more weight. Synthetic California is comprised of HI 
(.361), MA (.262), FL (.224), DC (.065), RI (.063), and AZ (.024).   
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Figure 10: Synthetic Control Estimates for Deaths Per 100,000 
[Matching Variables: COVID-19 Deaths on All Pre-Treatment Days] 

(a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 deaths per 100,000. The donor states shaded in Figure 10b are those that received a weight of at 
least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states received 
more weight. Synthetic California is comprised of NV (.303), IN (.291), CO (.208), GA (.152), and SD (.046).  
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Figure 11: Synthetic Control Estimates for Deaths Per 100,000 
[Matching Variables: COVID-19 Deaths on 3 Pre-Treatment Days & Urbanicity] 

(a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 deaths per 100,000, and urbanicity. The donor states shaded in Figure 11b are those that received a 
weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states 
received more weight. Synthetic California is comprised of NV (0.617) and CO (0.382).   
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Figure 12: Synthetic Control Estimates for Deaths Per 100,000 
[Matching Variables: COVID-19 Deaths on 3 Pre-Treatment Days, Pop Density, & Urbanicity] 

(a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 deaths per 100,000, urbanicity, and population density. The donor states shaded in Figure 12b are those 
that received a weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker 
shaded states received more weight. Synthetic California is comprised of NV (0.601) and CO (0.379).  In addition, 
1 state contributed a weight between .010 and .015. 
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Figure 13: Synthetic Control Estimates for Deaths Per 100,000 
[Matching Variables: COVID-19 Deaths on 3 Pre-Treatment Days & Testing Rate] 

 (a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 deaths per 100,000 and testing per 100,000. The donor states shaded in Figure 13b are those that 
received a weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker 
shaded states received more weight. Synthetic California is comprised of IN (.275), NV (.272), VA (.214), SD 
(.101) and KS (.022).  In addition, 1 state contributed a weight between less than .015. 
 



 

52 
 

Figure 14: Synthetic Control Estimates for Deaths Per 100,000 
[Matching Variables: COVID-19 Deaths on 3 Pre-Treatment Days, Urbanicity,  

Testing Rate, Travel Restriction, & Disaster Emergency] 

(a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on three days of pre-SIPO 
COVID-19 deaths per 100,000, urbanicity, testing per 100,000, travel restriction, and disaster emergency. The 
donor states shaded in Figure 14b are those that received a weight of at least .015 in the estimation of the synthetic 
control counterfactual for California. Darker shaded states received more weight. Synthetic California is comprised 
of NV (.362), FL (.358), and CO (.280).   
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Table 1: Synthetic Control Estimates of Effect of SIPO on COVID-19 Cases per 100,000 Population 
 (1) (2) (3) (4) (5) 

  
Panel I: Post-Treatment Window -- March 19 to April 9 

SIPO -17.517** -20.801* -22.586* -26.442** -25.425** 
P-Value [0.047] [0.093] [0.116] [0.093] [0.047] 
One Sided P-Value [0.047] [0.070] [0.070] [0.047] [0.047] 

  
Panel II: Post-Treatment Window -- March 23 to April 9 

SIPO -21.238** -25.201* -27.354* -32.090** -30.811** 
P-Value [0.047] [0.116] [0.116] [0.093] [0.047] 
One Sided P-Value [0.047] [0.093] [0.070] [0.047] [0.047] 

  
Panel III: Post-Treatment Window -- March 30 to April 9 

SIPO -30.567** -36.296* -39.381* -46.389* -44.568** 
P-Value [0.047] [0.140] [0.163] [0.140] [0.047] 
One Sided P-Value [0.047] [0.093] [0.093] [0.093] [0.047] 

Observable used to construct the weights 
Pre-SIPO covid-19 Days 7 3 3 3 3 
Urbanicity No Yes Yes No Yes 
Population Density No No Yes No No 
Testing Rates No No No Yes Yes 
Travel Restriction No No No No Yes 
Disaster Emergency  No No No No Yes 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The number of donor states are 42. The matching was based of the pre-SIPO 
covid-19 cases per 100,000 and variables listed under each column. The permutation-based p-values are included in brackets below each 
point estimate.  
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Table 2: Difference-in-Differences Estimates of the Effect of California’s SIPO on Log (COVID-19 Cases) 

 (1) (2) (3) (4) (5) 

 
 

Panel I: Unweighted Estimates 
SIPO -0.815*** -0.830*** -0.729*** -0.803*** -0.762** 

 (0.136) (0.122) (0.260) (0.128) (0.257) 
N 1183 1471 406 1384 435 

 
 

Panel II: Using Synthetic Weights 
SIPO -0.413 -0.489** -0.503* -0.553** -0.548 

 [-1.189, 0.348] [-0.967, -0.118] [-1.21, 0.012] [-1.063, -0.166] [-1.413, 0.11] 
N 1042 1067 150 1067 175 

  
Panel III: Using Synthetic Weights 

March 19-22  -0.211 -0.309 -0.415 -0.334 -0.411 
  [-1.069, 0.800] [-0.756, 0.162] [-1.098, 0.398] [-0.855, 0.311] [-1.303, 0.436] 
March 23-29 -0.593** -0.636*** -0.639*** -0.69*** -0.653*** 
  [-1.205, -0.138] [-1.016, -0.342] [-1.19, -0.165] [-1.092, -0.397] [-1.413, -0.184] 
 March 30+ -0.543* -0.589** -0.649*** -0.719*** -0.738** 
 [-1.282, 0.172] [-1.148, -0.019] [-1.234, -0.227] [-1.203, -0.266] [-1.521, -0.261] 
 N 1042 1067 150 1067 175 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level  
 
Notes: Regressions include California and each donor state that included positive weights greater than 0.005.  All estimates include: an indicator for a 
non-essential business closure order or a targeted SIPO in a given state-day, indicator for whether a state has issued a travel ban, indicator for whether a 
state declared a disaster emergency, an indicator for precipitation, average temperature, average precipitation, state and day fixed effects. Standard errors, 
clustered at the state-level, are reported in parenthesis. Confidence intervals, created using standard errors generated from wild cluster bootstrapping, are 
reported in brackets.  
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Table 3: Synthetic Control Estimates of Effect of SIPO on COVID-19 Deaths per 100,000 Population 

 (1) (2) (3) (4) (5) 

  
Panel I: Post-Treatment Window -- March 19 to April 9 

SIPO -0.555 -0.559* -0.569 -0.223 -0.387 

P-Value [0.905] [0.762] [0.810] [0.881] [0.881] 
One Sided P-Value [0.238] [0.095] [0.357] [0.357] [0.333] 

  
Panel II: Post-Treatment Window -- March 23 to April 9 

SIPO -0.674 -0.681* -0.694 -0.275 -0.473 
P-Value [0.905] [0.762] [0.810] [0.905] [0.905] 
One Sided P-Value [0.238] [0.095] [0.357] [0.357] [0.333] 

  
Panel III: Post-Treatment Window -- March 30 to April 9 

SIPO -1.005 -1.010* -1.029 -0.430 -0.715 
P-Value [0.905] [0.762] [0.833] [0.929] [0.905] 
One Sided P-Value [0.238] [0.095] [0.357] [0.357] [0.333] 

Observable used to construct the weights 

Pre-SIPO covid-19 Days 7 3 3 3 3 
Urbanicity No Yes Yes No Yes 
Population Density No No Yes No No 
Testing Rate No No No Yes Yes 
Travel Restriction No No No No Yes 
Disaster Emergency  No No No No Yes 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The number of donor states are 42. The matching was based of the pre-SIPO 
covid-19 deaths per 100,000 and variables listed under each column. The permutation-based p-values are included in brackets below each 
point estimate.  
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Table 4:  Difference-in-Differences Estimates of the Effect of California’s SIPO on COVID-Related Deaths 

 (1) (2) (3) (4) (5) 

 
 

Panel I:     Difference-in-Difference Estimates on Log (Death Rate): Post-Treatment -- March 19 to April 9 
SIPO -0.113 -0.093*** -0.097*** 0.766 -0.059 

 [-0.666, 2.454] [-0.125, -0.073] [-1.028, 0.537] [-0.257, 2.147] [-0.295, 0.349] 
N 142 71 88 233 96 

  
Panel II:  Difference-in-Difference Estimates on Log (Death Rate): Lagged Effect, Post-Incubation and ARDS 

March 19-29  -0.054 0.066 0.060 0.739 0.085 
  [-0.622, 1.979] [-0.03, 0.109] [-0.663, -0.619] [-0.272, 1.924] [-0.063, 0.383] 
March 30+ -0.192 -0.335*** -0.334*** 0.865 -0.306 
 [-0.779, 3.349] [-1.577, -0.27] [-1.524, -0.276] [-0.554, 3.413] [-0.396, 0.135] 
N 142 71 88 233 96 

 
 

Panel III: Poisson Estimates on Count of COVID-19 Deaths:  Post-Treatment -- March 19 to April 9a 
SIPO -0.708* -0.082 -0.086 -0.410 -0.132*** 

 (0.325) (0.127) (0.118) (0.230) (0.094) 

N 150 75 100 300 100 

 
 

Panel IV: Poisson Estimates on Count of COVID-19 Deaths:  Lagged Effect, Post-Incubation and ARDSa 
March 19-29  -0.665* -0.069 -0.073 -0.176 -0.105 

  (0.326) (0.145) (0.135) (0.149) (0.088) 

March 30+ -0.873** -0.234*** -0.237*** -0.340** -0.231*** 

 (0.363) (0.193) (0.180) (0.265) (0.139) 

N 150 75 100 300 100 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level  
Notes: Regressions include California and each donor state that included positive weights greater than 0.005.  All estimates include: an indicator for a non-
essential business closure order or a targeted SIPO in a given state-day, indicator for whether a state has issued a travel ban, indicator for whether a state declared 
a disaster emergency, indicator for any precipitation, average temperature, average precipitation, state and day fixed effects. Confidence intervals, created using 
standard errors generated from wild cluster bootstrapping, are reported in brackets.  aPoisson estimates use state population as exposure variable. 



 

57 
 

 

Table 5: Means of COVID-19 Cases per 100,000 Population, by Whether County had Local SIPOs  
Prior to Statewide Order on March 17 (Early Shelter-in-place Order or ESIPO) 

 
 Early County  

SIPO Adopters 
 Counties Bound by  

Statewide SIPO 
 (1)  (3) 
March 12 (5 days pre-ESIPO) 1.819  0.277 
March 15 (2 days pre-ESIPO) 2.977  0.670 
March 22 (5 days post-ESIPO) 9.213  3.295 
March 27 (10 days post-ESIPO) 19.489  10.273 
April 9 (23 days post-ESIPO) 52.850  50.150 
Notes: Means are weighted using county population. 
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Table 6: Synthetic Control Methods for Local California Policy for Selected Counties on Cases per 100,000 

 (1) (2) (3) (4) (5) (6) 
 Alamedaa Contra Costa Marin Monterey San Benito San Francisco 
SIPO 0.434 0.319 1.895 -0.45 0.969 2.37 
P-Value [0.957] [1.000] [0.957] [0.681] [1.000] [0.957] 
One Sided P-Value [0.301] [0.258] [0.301] [0.191] [0.319] [0.301] 

 
      

 (7) (8) (9) (10) (11) (12) 
 San Mateo Santa Clara Santa Cruz Solano Sonoma Ventura 
SIPO 2.672 2.343 -0.112* -0.314 -0.435 0.241 
P-Value [0.957] [1.000] [0.064] [1.000] [0.681] [0.681] 
One Sided P-Value [0.301] [0.258] [0.065] [0.319] [0.191] [0.191] 

Observable used to construct the weights   
Pre-SIPO covid-19 Days 7 7 7 7 7 7 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The matching was based of the pre-SIPO covid-19 cases per 100,000. The permutation-based p-values are 
included in brackets below each point estimate. 
a Berkeley City is part of Alameda County. 
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Appendix Figure 1: Deaths Per 100,000 by California County 

 

 
  



 

60 
 

Appendix Figure 2: Synthetic Control Estimates for Testing Per 100,000 
[Matching Variables: COVID-19 Testing on All Pre-Treatment Days] 

(a) Synthetic California v. Actual California Tests Per 100,000 

 
(b) Donor States for Synthetic California Tests 

 
(c) Placebo Tests for Tests Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 testing per 100,000. The donor states shaded in Figure Appendix Figure 2b are those that received a 
weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states 
received more weight. Synthetic California is comprised of MS (.681), NE (.198), ME (.068), and MN (.053).   
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Appendix Figure 3: Synthetic Control Estimates for Daily Case Rate  
[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

(a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
 

(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
daily COVID-19 cases per 100,000. The donor states shaded in Appendix Figure 3b are those that received a 
weight of at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states 
received more weight. Synthetic California is comprised of CO (.189), KS (.132), MI (.096), WY (.071), ME 
(.058), DE (.050), AR (.039), MA (.032), AK (.022), SD (.019), and TN (.019). In addition, 12 states each 
contributed a weight between .010 and .015. 



 

62 
 

Appendix Figure 4: Synthetic Control Estimates for Cases Per 100,000  
Forced Match Through Incubation Period 

[Matching Variables: COVID-19 Cases on 3 Pre-Treatment & 2 Post-Treatment Days & Urbanicity] 

 (a) Synthetic California v. Actual California Cases Per 100,000 

 
(b) Donor States for Synthetic California Cases 

 
(c) Placebo Tests for Cases Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 testing per 100,000. The donor states shaded in Appendix Figure 4b are those that received a weight of 
at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states received 
more weight. Synthetic California is comprised of WY (.210), NE (.198), SD (.119), MA (.087), RI (.046), and CO 
(.025). In addition, 9 states contributed a weight between .010 and .015. 
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Appendix Figure 5:  Synthetic Control Estimates for Cases Per 100,000  
Limited Post Treatment Window Between March 12 and March 28 

[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 cases per 100,000. March 28 is the 5th day (median incubation period) after the first treatment date for 
donor state. The donor states shaded in Figure 4b are those that received a weight of at least .015 in the estimation 
of the synthetic control counterfactual for California. Darker shaded states received more weight. Synthetic 
California is comprised of SD (.185), MA (.154), CO (.098), ME (.097), DC (.032), MI (.019), RI (.018), MN 
(.016) and NM (.016).  In addition, 29 states each contributed a weight between .010 and .015. 

  



 

64 
 

Appendix Figure 6:  Synthetic Control Estimates for Cases Per 100,000  
Limited Post-Treatment Window Between March 12 and April 3 

[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 cases per 100,000. April 4 is the 12th day (median incubation period) after the first treatment date for 
donor state. The donor states shaded in Figure 4b are those that received a weight of at least .015 in the estimation 
of the synthetic control counterfactual for California. Darker shaded states received more weight. Synthetic 
California is comprised of SD (.185), MA (.154), CO (.098), ME (.097), DC (.032), MI (.019), RI (.018), MN 
(.016) and NM (.016).  In addition, 29 states each contributed a weight between .010 and .015. 
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Appendix Figure 7:  Synthetic Control Estimates for Cases Per 100,000  
Using Only Later Adopters (March 28 or Later) or Non-Adopters as Donor States  

[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven 
days of pre-SIPO COVID-19 cases per 100,000. The donor states are restricted to states that 
never adopted a SIPO or states that have 13 or fewer days of post-treatment data. 
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Appendix Figure 8: Synthetic Control Estimates for Deaths Per 100,000   
Forced Match on Deaths Through Incubation and First Symptoms Until ARDS 

[Matching Variables: COVID-19 Cases on 3 Pre-Treatment & 3 Post-Treatment Days & Urbanicity] 

 (a) Synthetic California v. Actual California Deaths Per 100,000 

 
(b) Donor States for Synthetic California Deaths 

 
(c) Placebo Tests for Deaths Per 100,000 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 testing per 100,000. The donor states shaded in Appendix Figure 8b are those that received a weight of 
at least .015 in the estimation of the synthetic control counterfactual for California. Darker shaded states received 
more weight. Synthetic California is comprised of FL (.479), KY (.263), HI (.084), NV (.049), SD (.048), VT 
(.039), and GA (.036). No state contributed a weight between .010 and .015. 
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Appendix Figure 9: Synthetic Control Estimates for Deaths Per 100,000 
 [Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

 

 
Notes: Estimate is generated using synthetic control methods. The matching was based on seven days of pre-SIPO 
COVID-19 cases per 100,000. The weights generated from synthetic control method for cases per 100,000 are used. 
The donor states shaded in Figure 9b are those that received a weight of at least .015 in the estimation of the 
synthetic control counterfactual for California. Darker shaded states received more weight. Synthetic California is 
comprised of SD (.185), MA (.154), CO (.098), ME (.097), DC (.032), MI (.019), RI (.018), MN and NM (.016). In 
addition, 33 states each contributed a weight between .010 and .015 
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Appendix Figure 10: Synthetic Control Method for County SIPO 
[Matching Variables: COVID-19 Cases on All Pre-Treatment Days] 

(a) Alameda County 

 
(b) Contra Costa County 

 
 

(c) Marin County 
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Appendix Figure 10 Continued 
(d) Monterey County 

 
 

(e) San Benito County 

 
(f) San Francisco  
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Appendix Figure 10 Continued 
(g) San Mateo 

 
(h) Santa Clara 

 
(i) Santa Cruz 
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Appendix Figure 10 Continued 
(j) Solano 

 
(k) Sonoma 

 
(l) Ventura 

 
Notes: Estimate is generated using synthetic control methods. The matching was based 
on seven days of pre-SIPO COVID-19 cases per 100,000. 
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Appendix Figure 11: Synthetic Control Estimates for UI Jobless Claims Rate  
[Matching Variables: UI Jobless Claims in Pretreatment Period] 

 
 

Notes: Estimate is generated using synthetic control methods. The matching was based 
on seven days of pre-SIPO UI jobless claims rate. 
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Appendix Table 1: SIPO Effective Dates, March 19-April 9 
State Date  State Date 

Alabama April 4  Mississippi April 3 
Alaska March 28  Missouri April 6 
Arizona March 31  Montana March 28 

California March 19  Nevada April 1 
Colorado March 26  New Hampshire March 28 

Connecticut March 23  New Jersey March 21 
Delaware March 24  New Mexico March 24 

District of Columbia April 1  New York March 22 
Florida April 3  North Carolina March 30 
Georgia April 3  Ohio March 23 
Hawaii March 25  Oregon March 23 
Idaho March 25  Pennsylvania April 1 

Illinois March 21  Rhode Island March 28 
Indiana March 24  South Carolina April 7 
Iowa March 30  Tennessee April 1 

Kansas March 30  Texas April 2 
Louisiana March 23  Vermont March 25 

Maine April 2  Virginia March 30 
Maryland March 30  Washington March 23 
Michigan March 24  West Virginia March 24 
Minnesota March 28  Wisconsin March 25 

   Wyoming March 27 
Source:  Mervosh et al. (2020) and the authors’ own searches of state executive orders. 
Notes: While Massachusetts did not issue a full SIPO on March 24, it issued an advisory from the governor 
to shelter-in-place from this date.  
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Appendix Table 2:  Synthetic Control Estimates of the Relationship between California SIPO and  
COVID-19 Cases and Deaths, Using All States, Never Adopters, or Never or Late Adopters 

 

 

Donors: 
 

All 
50 States 

Donors: 
 

Never  
Adopters 

Donors: 
 

Never or Late  
Adopters 

 (1) (2) (3) 

 
 

Panel I: Cases per 100,000 
SIPO -17.412** -27.081 -24.012* 
P-Value [0.039] [0.200] [0.143] 
One Sided P-Value [0.039] [0.200] [0.071] 
  

Panel II: Deaths per 100,000 
SIPO -1.367* -0.002 -0.165 
P-Value [0.160] [1.000] [0.929] 
One Sided P-Value [0.060] [0.200] [0.214] 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The matching was based of the pre-SIPO covid-19 cases per 
100,000.  Note that in column (2), synthetic California is comprised of MA (.36), ND (.25), UT (.24), AR (.12), and WY 
(.02). In column (3), synthetic California is comprised of VA (.43), MA (.33), ME (.13), NV (.06), AL (.03). 
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Appendix Table 3: Covariate Match for Synthetic Controls 

 
 CA Rest of US Synthetic CA 

 (1) (2) (3) 

 
 

Panel I: Urbanicity Match (Case) 
Urbanicity 95.00 73.69 77.09 

 

 
Panel II: Urbanicity and Population Density Match 

(Case)  
Urbanicity 95.00 73.69 92.31 

Density 253.93 427.61 846.29 

 
 

Panel III: Testing Match (Case) 
Testing Rate 133.94 212.13 225.04 

 
 

Panel IV: Policy Match (Case) 
Travel Ban 0.00 0.14 0.39 

Disaster 0.62 0.27 0.34 
    
 Panel V: Urbanicity Match (Death) 

Urbanicity 95.00 73.69 91.17 

 

 
Panel VI: Urbanicity and Population Density Match 

(Death) 
Urbanicity 95.00 73.69 91.26 

Density 253.93 427.61 251.42 

 
 

Panel VII: Policy Match (Death) 
Testing Rate 133.94 212.13 159.68 

 
 

Panel VIII: Policy Match (Death) 
Travel Ban 0.00 0.14 0.25 

Disaster 0.62 0.27 0.33 
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Appendix Table 4: Estimated Average Cases/ per 100,000 in the Post-SIPO Period: Excluding HI & AL 

 (1) (2) (3) (4) (5) 

  
Panel I: Cases per 100,000 

SIPO -17.349** -21.125* -8.661 -26.574** -11.187* 
P-Value [0.049] [0.098] [0.220] [0.098] [0.244] 
One Sided P-Value [0.049] [0.073] [0.122] [0.049] [0.098] 

  
Panel II: Deaths per 100,000 

SIPO -0.555 -0.253 -0.569 -0.231 -0.477 
P-Value [0.900] [0.750] [0.800] [0.875] [0.875] 
One Sided P-Value [0.250] [0.100] [0.350] [0.325] [0.350] 

Observable used to construct the weights 
Pre-SIPO covid-19 Days 7 3 3 3 3 
Urbanicity No Yes Yes No Yes 
Population Density No No Yes No No 
Testing Rates No No No Yes Yes 
Travel Restriction No No No No Yes 
Disaster Emergency  No No No No Yes 
* Significant at the 10% level, ** Significant at the 5% level, *** Significant at the 1% level 
Notes: Estimate is generated using synthetic control methods. The number of donor states are 42. The matching was based of the pre-SIPO 
covid-19 cases per 100,000 and variables listed under each column.  
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Appendix Table 5: Covariate Match Between California and Never Adopters  

 (1) (2) (3) 

 
CA Never Adopters 

Synthetic CA  
Generated from Never 

Adopters 
Urbanicity 95.000 73.690 58.193 
Testing Per 100,000 Pop 133.937 212.132 122.660 
Density 253.931 427.690 100.800 
Travel Ban 0.000 0.143 0.270 
Disaster 0.615 0.268 0.347 
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Appendix Table 6: Local CA SIPO Effective Dates 

Location Date 
Alameda County March 17 

Berkeley City March 17 
Contra Costa County March 17 

Marin County March 17 
Monterey County March 18 

San Benito County March 18 
San Francisco County March 17 

San Mateo County March 17 
Santa Clara County March 17 
Santa Cruz County March 17 

Solano County March 18 
Sonoma County March 18 
Ventura County March 18 

Sources: Compiled by the authors using the National Association of Counties and the authors own searches 
of county public health department websites. 

 
 


