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ABSTRACT

IZA DP No. 13163 APRIL 2020

Do Female Role Models Reduce the 
Gender Gap in Science? Evidence from 
French High Schools*

This paper, based on a large-scale field experiment, tests whether a one-hour exposure to 
external female role models with a background in science affects students’ perceptions and 
choice of field of study. Using a random assignment of classroom interventions carried out by 
56 female scientists among 20,000 high school students in the Paris Region, we provide the first 
evidence of the positive impact of external female role models on student enrollment in STEM 
fields. We show that the interventions increased the share of Grade 12 girls enrolling in selective 
(male-dominated) STEM programs in higher education, from 11 to 14.5 percent. These effects 
are driven by high-achieving girls in mathematics. We find limited effects on boys’ educational 
choices in Grade 12, and no effect for students in Grade 10. Evidence from survey data shows 
that the program raised students’ interest in science-related careers and slightly improved their 
math self-concept. It sharply reduced the prevalence of stereotypes associated with jobs in 
science and gender differences in abilities, but it made the underrepresentation of women in 
science more salient. Using machine learning methods, we leverage the diversity of role model 
profiles to document substantial heterogeneity in the effectiveness of role models and shed light 
on the channels through which they can influence female students’ choice of study. Results 
suggest that emphasis on the gender theme is less important to the effectiveness of this type 
of intervention than  the ability of role models to convey a positive and more inclusive image 

of STEM careers.
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Introduction

Women’s increasing participation in science and engineering in the U.S. has leveled off in the

past decade (National Science Foundation, 2017). This trend, which is common to almost all

OECD countries, is a source of concern for two main reasons. First, it exacerbates gender

inequality in the labor market, as Science, Technology, Engineering, and Mathematics (STEM)

occupations offer higher average salaries (Brown and Corcoran, 1997; Black et al., 2008; Blau

and Kahn, 2017) and show a smaller gender wage gap (Beede et al., 2011). Second, in a context

of heightened concern over a shortage of STEM workers in the advanced economies (Carnevale

et al., 2011; Xue and Larson, 2015), this trend is likely to represent a worsening loss of talent

that could reduce aggregate productivity (Weinberger, 1999; Hoogendoorn et al., 2013).

The underrepresentation of women in these traditionally male-dominated fields can also

constitute a self-fulfilling prophecy for subsequent generations, as girls have little opportunity

to interact with women working in these fields and who could inspire them. Exposing female

students to successful or admirable women scientists could help to break this vicious circle.

These “role models” potentially extend female students’ possibility set, raise their aspirations,

alleviate stereotype threat, and provide relevant information.

A large body of work has established that female science teachers and professors can serve

as role models and that they help improve female students’ academic achievement (Dee, 2007;

Hoffmann and Oreopoulos, 2009; Eble and Hu, 2017; Lim and Meer, 2017), increase their

probability of enrolling in STEM majors (Bettinger and Long, 2005; Carrell et al., 2010; Lim

and Meer, 2019), and influence their occupational choices (Kofoed and McGovney, 2019).1

However, these effects are not easy to interpret, in that they could be driven by gender

differences in teaching practices and behavior in class rather than by female teachers acting as

role models. The positive influence of female instructors on female students might derive from

greater encouragement received over an entire academic year (Lavy and Sand, 2018; Terrier,

forthcoming) or from implicit biases, which have been shown to be more pronounced among

male than among female teachers (Carlana, 2019). The policy implications of the studies on

teacher-student gender interactions are also unclear, since the scarcity of female instructors in

STEM fields restricts the scope for increasing the exposure of girls to this group, at least in the

short run.
1Seminal papers on the impact of teacher-student gender interactions include Canes and Rosen (1995),

Rothstein (1995), and Neumark and Gardecki (1998). More recent studies have investigated the impact of
teachers’ characteristics on students’ future careers in developing countries (Paredes, 2014; Muralidharan and
Sheth, 2016) and the effects of other types of gender interaction, e.g., between students and advisors (Canaan
and Mouganie, 2019) or between children and doctors (Riise et al., 2019).
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Our paper overcomes these limitations by providing direct empirical evidence on the impact

of non-teaching role models on student outcomes. We use a large-scale randomized experiment

to test whether a one-hour exposure to external female scientists acting as role models can

change high school girls’ perceptions of science careers, and ultimately steer them towards

STEM studies. We leverage rich administrative and survey data on nearly 20,000 high school

students and 56 female scientists to investigate the mechanisms underlying the effect of role

models on students’ choice of field of study, both in high school and at college entry.

The program we evaluate is called “For Girls and Science” (Pour les Filles et la Science)

and was launched in 2014 by the L’Oréal Foundation—the corporate foundation of the world’s

leading cosmetics manufacturer—to encourage girls to explore STEM career paths. It consists of

one-hour in-class interventions by women with two very distinct profiles: half are young scientists

(either Ph.D. candidates or postdoctoral researchers) who were awarded the L’Oréal-UNESCO

“For Women in Science” Fellowship; the others are young professionals privately employed as

scientists in the Research and Innovation division of the L’Oréal group. In the main part of the

intervention, the role models share their experience and career path with the students. They

also provide consistent information on science-related careers in general and more specifically

on the underrepresentation of women, using two short videos and a set of customizable slides.

The evaluation was conducted during the 2015/16 academic year in 98 of the 489 public and

private high schools located in the Paris region. It involved 19,451 students from 416 classes in

Grade 10 and 185 classes in Grade 12 (science track). Half of the classes were randomly assigned

to be visited by one of the 56 role model participants. Important, irreversible educational choices

are made by students at the end of both Grade 10 and Grade 12, allowing us to study the effect

of the program on STEM enrollment outcomes in the following year, i.e., 2016/17.

The first contribution of our paper is to provide credible evidence of the impact of external

female role models on STEM enrollment decisions in high school and at entry in higher education.

In our empirical setting, we show that the role models’ interventions led to a significant increase

in the share of girls enrolling in STEM fields, but only in the educational tracks where they

are strongly underrepresented. In Grade 10, the classroom visits had no detectable impact

on boys’ and girls’ probability of enrolling in the science track in Grade 11, where girls are

only slightly underrepresented (47 percent of students). By contrast, the program induced a

significant 2.4-percentage-point increase in STEM undergraduate enrollment among girls in

Grade 12, or an increase of 8 percent over the baseline rate of 29 percent, while the effect for boys

was negligible. This positive impact on female STEM enrollment is driven by female students

shifting to selective STEM programs, which lead to the most prestigious graduate schools, and
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male-dominated STEM programs (math, physics, computer science, and engineering). The

probability of enrolling in such programs after high school increased by 20 to 30 percent among

female students, which corresponds to one girl in every two Grade 12 classes switching to either

type of program at college entry. These effects, which are robust to a wide range of specification

tests, can be expected to improve the future earnings of the target group, as selective and

male-dominated STEM programs feature not only a low share of female students (around

30 percent) but also substantial wage premia relative to non-STEM and female-dominated

STEM programs, in the order of 10 to 25 percent at entry level.

Our paper’s second main contribution is to explore the channels through which role models

affect students’ choice of study. Specifically, we analyze a wide range of potential mediators,

from perceptions of science-related jobs and gender role in science to academic performance,

self-concept, and career aspirations. To analyze these outcomes, we conducted a post-treatment

student survey consisting of an eight-page questionnaire administered in class one to six months

after the classroom interventions. We also collected administrative data on high school graduation

exams (Baccalauréat) at the end of Grade 12.

Our results show that the program had no significant effect on students’ self-reported taste

for science subjects or their academic performance, and only slightly increased their math self-

concept. By contrast, the role model interventions significantly improved students’ perceptions

of science-related jobs at both grade levels, with no indication of declining effects over a period of

up to six months. For girls in Grade 12, the program also helped mitigate some of the masculine

stereotypes typically associated with STEM occupations (such as being hard to reconcile with

family life) and heightened the perception that these jobs pay better. Consistently, we find

that unlike those of boys, girls’ aspirations for science-related careers increased significantly in

Grade 12.

One of the most interesting—and least expected—findings concerns the effects on students’

perceptions of gender roles in science. The classroom interventions not only were effective in

debiasing students’ beliefs about gender differences in math aptitude, they also raised awareness

of the underrepresentation of women in science. The combination of these two effects triggered

an unintended ex-post rationalization by students of the gender imbalance in scientific fields

and occupations, making them more likely to think that women dislike science and that they

face discrimination in science-related jobs. Explicitly addressing the gender gap in science thus

appears to have generated more ambiguous perceptions among students than the program’s

gender-neutral messages about jobs and careers.

Towards a better understanding of the mechanisms underlying the effects of role models on
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student behavior, we implement the generic approach recently developed by Chernozhukov et

al. (2018) to analyze patterns of heterogeneity using machine learning methods. The results

indicate a high degree of heterogeneity in treatment effects according to student performance

and role model background. We find that the significant impact on female STEM enrollment

after Grade 12 is driven by high-achieving girls in math. Highlighting the importance of the role

model component of the program, we show, further, that the young professionals employed by

the sponsoring firm had a significantly greater effect on girls’ probability of enrolling in selective

STEM programs than the young researchers. While the two groups were equally effective

in debunking the stereotype on gender differences in math aptitude, there is clear evidence

that those with a professional background were better able to improve girls’ perceptions of

science-related jobs and raise their aspirations for such careers. Conversely, they were less likely

to reinforce students’ belief that women are underrepresented in science.

Showing the critical role played by the person who bears the message, these comparisons

demonstrate that role model interventions are not reducible to the provision of standard

information content and that female role models are not interchangeable. They also suggest

that the gender debiasing component of the classroom interventions, which emphasized men

and women’s equal predisposition for science, cannot explain, alone, the program’s effect on

girls’ STEM enrollment outcomes.

To confirm these insights, we carry out a more systematic investigation of mechanisms,

exploiting the rich variation in treatment effects across students’ observable characteristics and

the profiles of the 56 role models. Building on Chernozhukov et al. (2018), we develop a new

method to estimate the correlations between the individual-level treatment effects on STEM

enrollment outcomes and the treatment effects on potential mediators. The results show that

the role models who had the greatest effect on female enrollment in selective STEM programs

are those who most improved girls’ perceptions of science-related careers without reinforcing

the perception that women are underrepresented in science. By contrast, we find that the role

models’ ability to steer girls towards selective STEM programs is essentially uncorrelated with

their effects on students’ perceptions of gender differences in aptitude for science.

Overall, our study offers strong evidence that short-term exposure to non-teaching female

role models with a background in science can significantly increase female participation in

the most selective and male-dominated STEM fields of study at college entry—these fields

being important contributors to the gender pay gap. Our exploration of mechanisms provides

consistent evidence that the emphasis on gender issues is less important to the effectiveness of

such interventions than the ability of role models to project a positive and inclusive image of
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science-related careers, thus embodying an attractive, attainable path to them.

Related literature. Our paper relates to three strands of the literature. First, it adds to

the extensive body of research on the origins of the gender gap in STEM. Gender differences in

aptitude are unlikely to explain this gap (Hyde, 2005; Spelke, 2005) and some scholars argue

that direct discrimination is no longer a major determinant (Ceci et al., 2014). Increasingly,

attention has focused on understanding gender differences in the educational choices made by

equally able students. Parents, schools, and teachers are often said to convey stereotypes and

social norms that influence these choices and so, in the long run, contribute to maintaining

strong gender segregation across school majors.2 Our paper shows that a brief exposure to

external (non-teaching) female scientists can counteract these influences, significantly changing

high school girls’ perceptions of science careers and affecting their choice of field of study. These

interventions are particularly policy-relevant, as they can easily be scaled up.

Second, the paper contributes to a thin but growing literature on the effect of non-teaching

role models on educational outcomes. While most of the economics literature on role model

effects has focused on the influence of gender on teacher-student interactions, a handful of studies

in psychology and economics have analyzed the effects of non-teaching role model interventions

using lab experiments (Lockwood and Kunda, 1997; Dasgupta and Asgari, 2004; Cheryan et al.,

2011; Betz and Sekaquaptewa, 2012; O’Brien et al., 2016) or in the field (Nguyen, 2008; Beaman

et al., 2012; Burgess, 2016; Del Carpio and Guadalupe, 2018; Ashraf et al., forthcoming; Riise et

al., 2019; Porter and Serra, forthcoming). For instance, Beaman et al. (2012) find that exposure

to women in leadership positions in India has a positive impact on girls’ educational attainment

and on parents’ career aspirations for daughters (but not sons). More closely related to our

paper is the study by Porter and Serra (forthcoming), which documents a positive impact of

two female role models who were carefully selected among the economics alumni of Southern

Methodist University in the U.S. on the likelihood of female students majoring in economics.

Our study is the first to focus on the ability of light-touch role model interventions on a large

scale to steer female students towards STEM career paths. In contrast to previous studies,

which typically involve only a small number of female role models, the combination of a rich

survey of students’ perceptions and a large number of role model participants allows analyzing

the mechanisms in greater depth.

Finally, our study contributes to the rapidly expanding literature on the use of machine
2These social pressures and gender stereotypes do not necessarily translate into explicit discrimination (Ceci

and Williams, 2011; Breda and Ly, 2015; Breda and Hillion, 2016) but rather seem to be mostly internalized
and thereby influence academic self-perception (Correll, 2001; Ehrlinger and Dunning, 2003) and behavior in
competitive environments (Gneezy et al., 2003; Niederle and Vesterlund, 2007, 2010; Buser et al., 2014), fostering
an environment conducive to self-censorship (Babcock and Laschever, 2012; Leibbrandt and List, 2015).
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learning to analyze heterogeneity in individual treatment effects (Athey and Imbens, 2016,

2017; Mullainathan and Spiess, 2017; Wager and Athey, 2018). To the best of our knowledge,

this paper is among the first to implement the generic approach proposed by Chernozhukov

et al. (2018) to conduct inference on key features of heterogeneous effects. We also devise

an empirical strategy to estimate the correlations between student-level treatment effects on

different outcomes conditional on observable exogenous characteristics. This constitutes a

methodological contribution that may be used to investigate channels of influence in randomized

controlled trials.

Organization. The remainder of the paper is organized as follows. Section 1 provides

some institutional background on the French educational system and the gender gap in STEM

fields. Section 2 describes the program and the experimental design. Section 3 presents the data

and empirical strategy. Section 4 analyzes the effects of role model interventions on student

perceptions, self-concept, and educational outcomes. Section 5 extends the analysis to the

persistence of effects, the role of the timing of interventions, and potential spillovers. Section 6

discusses potential mechanisms, and Section 7 concludes.

1 Institutional Background

1.1 Structure of the French Education System

In France, education is compulsory from the age of 6 to the age of 16, with the academic

year running from September to June. The school system consists of five years of elementary

education (Grades 1 to 5) and eight years of secondary education, divided into four years of

middle school (collège, Grades 6 to 9) and three of high school (lycée, Grades 10 to 12). Students

complete high school with the Baccalauréat national exam, which they must pass for admission

to higher education.

High school tracks. The tracking of students occurs at two critical stages (see Figure 1). At

the end of middle school, about two-thirds of students are admitted to general and technological

upper secondary education (Seconde générale et technologique) and the remaining third are

tracked into vocational schools (Seconde professionnelle). After the first year of high school

(Grade 10), the general and technological track is further split: approximately 80 percent of the

students are directed to the general Baccalauréat program for the last two years of high school

(Grades 11 and 12) and 20 percent are directed towards a technological Baccalauréat.

In the Spring term of Grade 10, the students who have been allowed to pursue the general
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track are required to choose among three sub-tracks in Grade 11: Science (Première S),

Humanities (Première L), and Social sciences (Première ES). This is an important choice, given

that the curriculum and high school examinations are specific to each Baccalauréat track and

thus directly impact on students’ educational opportunities and career prospects.3 It is almost

impossible, for instance, for a student to be admitted to engineering or medical undergraduate

programs without a Baccalauréat in science. Students directed to the technological track after

Grade 10 are also required to choose among eight possible STEM and non-STEM sub-tracks,

which will affect their choice of field of study in higher education.4

College entry. In the Spring term of Grade 12, students in their final year of high school apply

for admission to higher education programs through a centralized online admission platform. The

programs to which students can apply fall into two broad categories, each accounting for about

half of first-year undergraduate enrollment: (i) non-selective undergraduate university programs

(Licence), which are open to all students who hold the Baccalauréat; and (ii) selective programs.

Both types of program offer specializations in STEM and non-STEM fields. Non-selective

programs cannot select students based on their academic record,5 while selective programs

can admit students based on their academic achievement. Among selective programs, the

most prestigious are the two-year Classes préparatoires aux Grandes Écoles (CPGE), which

prepare students to take the national entry exams to elite graduate schools (Grandes Écoles).

These programs are specialized either in science, economics and business or in humanities.

Within the science CPGE programs, the main fields of specialization are mathematics and

physics (MPSI), physics and chemistry (PCSI), and biology/geoscience (BCPST). The other

selective undergraduate programs (Section de technicien supérieur or STS) are mostly targeted to

students holding a vocational or technological Baccalauréat and prepare for technical/vocational

bachelor’s degrees.
3STEM-specific tracking in upper secondary education is not unique to France. In many countries, high

school students undertaking general academically oriented programs are channelled through discipline-based
tracks (Marginson et al., 2013).

4The technological track in high school includes two STEM sub-tracks (STI2D: Sciences et technologies de
l’industrie et du développement durable; and STL: Sciences et technologies de laboratoire) and six non-STEM sub-
tracks (S2TMD: Sciences et techniques du théâtre, de la musique et de la danse; ST2S: Sciences et technologies
de la santé et du social; STAV: Sciences et technologies de l’agronomie et du vivant; STD2A: Sciences et
technologies du design et des arts appliqués; STHR: Sciences et technologies de l’hôtellerie et de la restauration;
and STMG: Sciences et technologies du management et de la gestion).

5When the number of applications to a non-selective program exceeds the number of seats available, students
from the university’s academic region (académie) are given priority over other students and, within the group of
local applicants, students who have ranked the program at a higher position in their rank-ordered list are given
priority; remaining ties are broken at random.
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1.2 Female Underrepresentation in STEM

In France, the share of female students in STEM-oriented studies starts to decline after Grade 10

and drops sharply at entry into higher education (see Figure A1 in the Appendix). While

54 percent of the students in the general and technological track in Grade 10 are girls, the share

falls to 47 percent in the general science track (Grades 11 and 12) and further to 30 percent

in the first year of higher education.6 Female underrepresentation in STEM fields of study is

more pronounced in the selective undergraduate programs (shares of 18 percent in STS and

30 percent in CPGE) than in the non-selective programs (35 percent). These proportions, which

are computed from administrative data for 2016/17, are almost identical to those of a decade

earlier. Within STEM fields of study, female students tend to specialize in earth and life sciences

rather than mathematics, physics, or computer science (see Appendix Figure A2).

The underrepresentation of women in STEM fields accounts for a good part of the gender

pay gap among college graduates in France. Using a variety of administrative and survey

data sources, we show in Appendix B that across all majors, male graduates who obtained a

master’s degree in 2015 or 2016 earn a median gross annual starting salary of 32,122 euros,

compared to 28,411 euros for female graduates. This amounts to an overall gap of 3,711 euros

per year, or 11.6 percent of men’s pay. Using standard decomposition methods, we find that the

underrepresentation of female students in STEM accounts for approximately 25 percent of this

gap. Almost half of the gender pay gap within STEM can be ascribed to the fact that female

graduates are less likely than males to be enrolled in the selective and male-dominated fields,

which lead to the best-paying degrees. These figures strongly suggest that in the French context,

increasing the share of female students in STEM—especially in selective and male-dominated

programs—would narrow the gender pay gap substantially.

2 Program and Experimental Design

2.1 The Program

The program “For Girls and Science” (FGiS) is an awareness campaign launched in 2014 by

the L’Oréal Foundation to encourage girls to explore STEM career paths. It consists in one-

hour one-off classroom interventions by female role models with a background in science. It

originated in France and was later extended to other countries, including Canada, Italy and
6At the high school level, the gender imbalance in STEM is more severe in the technological than in the

general science track; the female share is as low as 17 percent in the two STEM-oriented technological sub-tracks
(STI2D and STL).
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New Zealand. The interventions, which take place in the presence of all students in the class,

including boys, are carried out by female role models of two distinct types: (i) Ph.D. candidates

or post-doctoral researchers who have been awarded a fellowship by the L’Oréal Foundation

(the L’Oréal-UNESCO “For Women in Science” Fellowship) and who participate in the program

as part of their contract;7 and (ii) young professionals employed as scientists in the Research

and Innovation division of the L’Oréal group who volunteer for the program.

Structure and content of the interventions. The classroom interventions last one hour

and are divided into four main sequences. The presentation begins with a set of customizable

slides that highlight two facts: (1) the labor market is marked by high demand for STEM

skills, and there is a shortage of graduates in the relevant fields of study; and (2) women are

underrepresented in STEM careers. These two messages are illustrated with examples of career

prospects in humanities versus science, emphasizing differences in employment rates, average

earnings, and the prevalence of gender segregation in high-wage occupations. The slides further

stress the contribution of female underrepresentation in STEM to the gender pay gap.

The second sequence kicks off with two three-minute videos designed to illustrate and

deconstruct stereotypes about science-related careers and gender roles in science.8 The first

video, entitled “Science, Beliefs or Reality?,” uses interviews with high school students to debunk

myths about careers in science (e.g., jobs in science are more challenging, they necessarily

require long studies), stereotypes about scientists (e.g., they are introverted, lonely), and gender

differences in science aptitude (e.g., women are naturally less talented in math). The second

video, entitled “Are we all Equal in Science?,” describes the common gender stereotypes about

aptitude for science while providing information on brain plasticity and on how interactions and

the social environment shape men’s and women’s abilities and tastes. This sequence aims at

stimulating class discussion based on students’ reactions to the videos.

The third sequence centers on the female role model’s own experience as a woman with

a background in science and consists of an interactive question-and-answer session with the

students. Topics addressed during this discussion include the role model’s typical day at work,

her everyday interactions with co-workers, how much she earns, and work-family balance.

Consistent with the program’s emphasis on the “role model” dimension, this sequence was

intended to be the longest and most important part of the intervention. In order to convey

this objective to the role models, a full-day training was organized to help them share their
7In 2015/16, the individual L’Oréal-UNESCO “For Women in Science” fellowships amounted to 15,000 euros

for Ph.D. candidates and to 20,000 euros for postdoctoral researchers.
8Screenshots of the two videos shown during the classroom interventions are displayed in Appendix Figure C3.
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experience with the students. The training also included a workshop on the underrepresentation

of women in science and a practice session aimed at enhancing oral communication skills.

The intervention concludes with an overview of the diversity of STEM studies and careers,

illustrated by concrete examples such as jobs in graphic design, environmental engineering, and

computer science.

2.2 Experimental Design

Selection of schools and classes. The evaluation was conducted in the three education

districts (académies) of the Paris region (Paris, Créteil, and Versailles) during the 2015/16

academic year, the program’s second year of existence. Créteil and Versailles are the two

largest education districts in France and the three districts combined include 318,000 high

school students in the general and technological track, or 20 percent of all French high school

enrollment.

Figure 2 provides a detailed timeline of the evaluation. In the spring of 2015, the French

Ministry for Education agreed to support a randomized evaluation of the program and designated

one representative for each district as intermediary between the schools and the evaluation

team. In June, official letters informed high school principals that they were likely to be

contacted to take part in the evaluation. All public and private high schools with at least four

classes in Grade 10 and two in Grade 12 (science track) were contacted by our team between

September and December 2015, accounting for 349 of the 489 high schools operating in the three

districts. Of these schools, 98 agreed to take part in the experiment, representing 28 percent of

Grade 10 enrollment and 29 percent of Grade 12 (science track) enrollment in the three districts

combined.9 The overall sample, which consists of 19,451 students (13,700 in Grade 10 and 5,751

in Grade 12), closely resembles the relevant student population in the Paris region, both in

social composition and in average academic performance (see Appendix Table F3).

Randomization. In the fall of the 2015/16 school year, the principals were invited to select at

least six classes—four or more in Grade 10 and two or more in Grade 12 (science track)—and to

indicate a preferred time slot and day for the interventions.10 In each school, half of the classes

selected by the principal (up to the nearest integer) were randomly assigned to the treatment

group (302 classes in total) and the other half to the control group (299 classes). Table 1

indicates that the random assignment successfully balanced the characteristics of students in
9The location of the participating schools is shown in Appendix Figure C4.

10In the vast majority of schools, principals selected exactly four Grade 10 and two Grade 12 classes.
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the treatment and control groups.11

Role models. The experiment involved 56 female role models, of whom 35 were L’Oréal

employees and 21 were Ph.D. candidates or post-doctoral researchers. Table 2 provides summary

statistics on their characteristics. The researchers tend to be younger (30 vs. 36 years of age

on average) and are less often of foreign nationality (10 vs. 17 percent). Although both types

have very high levels of educational attainment, 39 percent having graduated from a Grande

École, the researchers are more likely than the professionals to to hold (or prepare for) a Ph.D.

(100 vs. 38 percent) and to hold a degree in math, physics and engineering (38 vs. 14 percent).

They are also less likely to have children (19 vs. 58 percent) and to have been involved in

the program in the previous year (19 vs. 29 percent). Although we could not collect direct

information on earnings, for reasons of confidentiality, we estimate the annual gross wages of the

young professionals to be between 45,000 and 65,000 euros, compared to 22,000–50,000 euros

for the researchers.12 On average, each role model carried out five classroom interventions in

two different high schools.

Classroom interventions. The classroom visits took place between November 17, 2015, and

March 3, 2016.13 The role models were asked to select two or three schools in which to carry

out an average of three classroom visits per school—in most cases, two in Grade 10 and one in

Grade 12. They were not assigned to the schools randomly but registered for the visits and

time slots using an online system on a first-come, first-served basis.14

11Additional balancing checks by gender are presented in Appendix Tables F5 and F6.
12The typical range of annual gross salaries for the professionals is estimated based on information we obtained

from the Human Resources Department of the L’Oréal Group, which indicates that 80 percent of the 30 to 39
year-old female executives employed by L’Oréal earn an annual gross wage between 45,000 and 65,000 euros. For
researchers, the range of annual gross wages can be estimated to be between 22,000 euros, which corresponds to
the basic gross annual salary for Ph.D. contracts at French public higher education institutions, and 50,000 euros,
which corresponds to the high end of the range of annual salaries earned by postdocs in France.

1317 percent of the visits in November, 26 percent in December, 39 percent in January, 17 percent in February,
and 1 percent in March.

14Randomly assigning the role models to the schools was not a feasible option, since most were participating
on a voluntary basis and during regular working hours. The non-random assignment does not represent a threat
to identification, however, as the random assignment of classes to the treatment and control groups was stratified
by school. Since participating schools were added to the schedule only gradually, multiple registration sessions
were organized to match role model participants with the schools. All role models were contacted four times to
complete the schedule, on October 21, November 24, December 7, 2015, and on February 3, 2016, thus limiting
their ability to select the schools they would visit.
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3 Data and Empirical Strategy

3.1 Data

To evaluate the program’s effects on student perceptions and educational choices, we combine

three main data sources: (i) a post-intervention survey of role models; (ii) a post-intervention

survey of students; and (iii) student-level administrative data. Translated versions of the two

surveys are provided in Appendix D.

Role model survey. After each visit to a school, which typically involved three consecutive

classroom interventions, the role models were invited to complete an online survey. Besides

collecting general feedback, this survey served to monitor compliance with random assignment,

asking them to identify each of the classes they visited. Summary statistics are reported in

Appendix Table F4. The interventions almost always (89 percent) took place in the presence of

the teacher and sometimes (35 percent) of another adult. The role models reported organizational

problems for only 16 percent of the visits (e.g. the intervention started late, the slides could not

be shown). When asked about their overall perception of each of their classroom interventions,

93 percent said they went “well” (37 percent) or “very well” (56 percent). Students were

generally perceived to be responsive to the key messages.

Student survey. We conducted a paper-and-pencil student survey in all participating classes

one to six months after the classroom visits, between January and May 2016. Each questionnaire

was assigned a unique identifier so that it could be linked with student-level administrative data.

The survey was designed to collect a rich set of information on students’ tastes, personality

traits, choices and stereotypes, and was administered in exam conditions under the supervision

of a teacher. It was presented as a general survey on students’ attitudes about science and

science-related careers so as to minimize the risk that students would associate it with the FGiS

program. It was eight pages long and took about half an hour to complete.

The survey items investigated the effects of classroom interventions on students’ percep-

tions and self-concept along five dimensions: (i) general perceptions of science-related careers;

(ii) perceptions of gender roles in science; (iii) taste for science subjects; (iv) math self-concept;

and (v) science-related career aspirations. When conceptually related, the survey items were

combined to construct a synthetic index for each dimension using standardized z-score scales.

Section 4 describes the specific items that we used for each dimension of interest.15

15To mitigate potential order bias, the order of several of the response items (e.g., math/French, man/woman)
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On the last page of the questionnaire, the students in the treatment group were asked

whether they had discussed the classroom intervention with their classmates, with schoolmates

from other classes, or with friends outside of school, as a way of assessing possible spillover

effects. Students in the control group received a slightly different version of this final section,

asking whether they had heard of classroom visits by male or female scientists in other classes,

with no explicit mention of the FGiS program.

As shown in Appendix Table F8, the survey response rates were high both in Grade 10

(88 percent of students) and in Grade 12 (91 percent). They were slightly higher among Grade 10

students in the treatment than in the control group (by 2.6 percentage points). Despite this

small difference in response rates, Table F9 in the Appendix shows that the characteristics of

survey respondents in Grade 10 are generally balanced between the treatment and control groups.

The opposite is found in Grade 12: the survey response rates are similar in the two groups,

but the respondents’ characteristics exhibit some small but statistically significant differences.

In Section 4, we show that our survey-based results are robust to controlling for these small

imbalances.

Administrative data. We linked the student survey data to a rich set of individual-level

administrative data covering the universe of high school students enrolled in the high schools of

the Paris region over the period 2012/13 to 2016/17. These data provide detailed information

on students’ socio-demographic characteristics and enrollment status every year, allowing us to

identify the high school track taken by Grade 10 students entering Grade 11.

The college enrollment outcomes of students in Grade 12 were obtained by matching the

survey and administrative data for high school students with administrative microdata covering

almost all students enrolled in selective and non-selective higher education programs in 2016/17.16

These data are complemented with comprehensive individual examination results from the

Diplôme National du Brevet (DNB), which is taken at the end of middle school, and from the

national Baccalauréat exam (for Grade 12 students). Specifically, we use students’ grades on

the final exams in French and math (converted into national percentile ranks), as these tests are

graded externally and anonymously. Further details about the data sources and the classification

of higher education programs can be found in Appendix E.

was set randomly.
16Programs not covered by these administrative data are those leading to paramedical and social care

qualifications. Available estimates suggest that among Grade 12 students who obtained a Baccalauréat in Science
in 2008, under 6 percent were enrolled in such programs the following year (Lemaire, 2018).
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3.2 Empirical Strategy

Compliance with random assignment was not perfect: about 5 percent of the classes assigned to

the treatment group were not visited by a role model while 1 percent of the classes in the control

group were mistakenly visited (see Appendix Table F7).17 To deal with this marginal two-way

non-compliance, we follow the standard practice of using treatment assignment as an instrument

for treatment receipt, which allows us to estimate the program’s local average treatment effect

(LATE) instead of the average treatment effect (ATE). Specifically, we estimate the following

model using two-stage least squares (2SLS):

Yics = α + βDcs + θs + εics, (1)

Dics = γ + δTcs + λs + ηics, (2)

where Yics denotes the outcome of student i in class c and high school s, Dcs is a dummy variable

indicating whether the student’s class received a visit, and Tcs is a dummy for assignment to

the treatment group. School fixed effects, θs and λs, are included to account for the fact that

the randomization was stratified by school and grade level.

The model described by Equations (1) and (2) is estimated separately by grade level and

gender, and standard errors are clustered at the unit of randomization level (class). The

results for the individual components of synthetic indexes are accompanied by adjusted p-values

(q-values) in addition to the standard p-values, to account for multiple hypothesis testing.18

4 Effects of Classroom Interventions

We analyze the impact of the program on three main sets of student outcomes: (i) general

perceptions of science-related careers and of gender roles in science; (ii) preferences and self-

concept; and (iii) enrollment outcomes and academic performance.

The first set of outcomes captures students’ representations of science-related studies and

careers, as well as their beliefs regarding the underrepresentation of women in science and its

possible causes. The program targeted these perceptions directly, in that the interventions were
17We are confident that non-compliance was mostly due to organizational and logistical issues and was not an

endogenous response to randomization. The role models who ended up carrying out interventions in classes
assigned to the control group or in classes that had not been selected to participate in the evaluation generally
reported that their interventions had been poorly organized at the school level, with the person in charge often
not being aware of the purpose of the visit. In some cases, classroom interventions were scheduled during another
specialty course involving multiple classes, meaning that only some of the students in the treatment group were
effectively treated.

18We use the False Discovery Rate (FDR) control, which designates the expected proportion of all rejections
that are type-I errors. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006)
and described in Anderson (2008).
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designed to convey non-stereotyped information about science-related careers and the place of

women in science. We then investigate whether the program affected students’ self-perceptions,

changing their attitudes to the science subjects in their curriculum, their self-confidence in

math, and their science-related career aspirations. Finally, we analyze whether the role models’

interventions induced behavioral responses on the part of students, by examining their effects

on enrollment decisions and academic performance.

4.1 Perceptions of STEM Careers and Gender Roles in Science

Students’ post-intervention survey responses show that the classroom interventions were effective

in challenging stereotyped views of science-related careers and gender roles.

Perceptions of science-related careers. Students were asked to agree with or disagree

with five statements on science-related careers relating to pay, the length of studies leading

to these careers, work-life balance, and the two commonplaces that science-related jobs are

monotonous and solitary. We build a composite index of “positive perceptions of science-related

careers” by re-coding the Likert scales so that higher values correspond to less stereotypical or

negative perceptions, before taking the average of each student’s responses to the five questions.

To facilitate interpretation, we normalize the index to have a mean of zero and a standard

deviation of 1 in the control group. For closer investigation of the various aspects that might

be captured by the overall index, we further construct binary variables taking value 1 if the

student agrees strongly or somewhat with each statement, and zero if he/she disagrees strongly

or somewhat.19

The results are reported in Table 3. Students’ baseline perceptions indicate relatively

widespread negative stereotypes about careers in science (see columns 1 and 4), with little

difference between boys and girls. About 30 percent of Grade 10 students in the control group

consider that jobs in science are monotonous or solitary and that they are hard to reconcile with

a fulfilling family life. More than 80 percent say that these jobs necessarily require long years of

study, and over a third disagree with the statement that they pay more. Grade 12 students

in the science track have slightly more positive perceptions, but the differences appear limited

when balanced against the fact that these students have already self-selected into the science

track.

As shown in Table 3, the role model interventions significantly improved girls’ and boys’
19Similar groupings are performed when using responses that are measured on a four-point Likert scale (usually

concerning perceptions or self-confidence) so that the outcome variables can be directly interpreted as proportions.
We have checked that the results are not qualitatively affected by such grouping.
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perceptions of science-related careers as measured by the composite index, in both Grade 10

and Grade 12. The effects range from 15 percent of a standard deviation for boys to around

30 percent for girls, with significantly greater effects for female students in both grades.20 A

significant impact of the program is observed for almost all the components of the index. The

largest effects are found for the statements “science-related jobs require long years of study” and

“science-related jobs are rather solitary,” which embody two stereotypes that were specifically

debunked in the slides and videos. Although the effects are not strikingly different between

genders and grade levels, they do tend to be somewhat greater for girls in Grade 12. In particular,

the program appears to have closed the gender gap in Grade 12 students’ awareness of the

earnings premium attached to science-related jobs, and to have reinforced girls’ perception that

such careers are compatible with a fulfilling family life.

Perceptions of gender roles in science. Female underrepresentation in STEM can be

broadly attributed to three possible causes: gender differences in abilities, discrimination (on

the demand side), and differences in preferences and career choices (on the supply side). The

survey questions were designed to capture students’ views on these dimensions.

Table 4 reveals the striking fact that more than a third of Grade 10 students and a quarter

of Grade 12 students in the control group are not aware that women are underrepresented in

science-related careers. These proportions are surprisingly similar by gender and by grade: one

might well have expected girls in the science track in Grade 12 to be better informed of the

gender imbalance in STEM. For boys and girls in both grades, we find that the interventions

increased awareness of female underrepresentation in STEM by 12 to 17 percentage points. This

is, perhaps predictably, one of the outcomes most strongly affected by the program.

The classroom interventions were also effective in debiasing students’ beliefs about gender

differences in math aptitude. To capture this dimension, we asked students whether they

agreed with the statements that “men are more gifted than women in mathematics” and that

“men and women are born with different brains.” We used these two questions to construct a

composite index to gauge whether students believe that men and women have equal aptitude

for mathematics. The results show significant rises in this index for both genders in both grades,

with treatment effects ranging between 9.5 percent and 14.8 percent of a standard deviation.21

Interestingly, the program had more ambiguous, partially unintended effects regarding the

other two explanations. First, when asked about gender differences in preferences, the share
20Intention to treat (ITT) estimates, which are not reported in the main text, are very close to the LATE

estimates due to almost perfect compliance with treatment assignment. They can be found for all main outcomes
in Appendix Table I21.

21The detailed results for the two components of this index are reported in Appendix Table G11.
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of students saying that women like science less than men is relatively low in the control group

(16 percent of girls and 20 percent of boys in Grade 10; 7 percent of girls and 15 percent of boys

in Grade 12), but it increases substantially due to the program for both genders, by 4 to 10

percentage points. Second, the baseline shares of boys and girls who declare that women are

discriminated against in science-related jobs are much larger (around 60 percent); these too

increase for both genders as a result of the program, by 7 to 15 percentage points.

How to interpret these contrasting effects on students’ perceptions of gender roles in science?

One of the key messages conveyed by the program materials is that women are severely

underrepresented in science-related careers despite having the same aptitudes as men.22 The

program slides and videos documented the underrepresentation of women in STEM and rejected

differences in aptitude as a cause, while remaining agnostic on other possible factors. Since

the role models had a good deal of freedom and extra time for their interventions, they might

have conveyed other messages or shared personal experiences regarding gender discrimination in

science careers, which could explain why their interventions reinforced the belief that women

are discriminated against. It is most unlikely, by contrast, that female scientists invited to act

as role models would have pushed the idea that women like science less than men. A more

plausible interpretation is that the program’s unintended effect on students’ perceptions of

gender differences arose as an effort to rationalize why there are so few women in science-related

careers, making students more likely to agree with the simplistic view that “women like science

less than men” and to subscribe to the idea that women face discrimination in science careers.

4.2 Stated Preferences and Self-Concept

We now turn to the effects of the program on students’ stated preferences and self-perception.

Specifically, we investigate whether the interventions affected boys’ and girls’ taste for science

subjects, their self-concept in math, and their science-related career aspirations. Table 5 reports

the estimated treatment effect along these three dimensions, based on the composite indices

constructed from the questionnaire answers. Treatment effects for each of the index questions

are reported separately in Appendix G.

Taste for science subjects. The program had no sizeable impact on students’ enjoyment

of science subjects at school (reported on a 0 to 10 Likert scale), i.e., math, physics-chemistry,

and earth and life sciences, or on their self-reported taste for science in general (see Appendix
22The second video shown in class (“Are we all Equal in Science?”) was designed to convince students that

women and men have similar brains and are equally capable of succeeding in math and science.
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Table G12). That is, the effects are statistically insignificant for both genders in Grade 10 and

Grade 12 when measured using the composite index combining students’ responses to the four

questionnaire items (see Table 5). These findings are not particularly surprising, given that

the interventions did not expose students to science-related content and were not specifically

designed to promote interest in science.

Math self-concept. To measure the impact of the program on students’ self-concept in

mathematics, we use a composite index that combines students’ responses to four questions:

(i) their self-assessed performance in math; (ii) whether they feel lost when trying to solve a math

problem; (iii) whether they often worry that they will struggle in math class; and (iv) whether

they consider that they can do well in science subjects if they make enough effort.

Consistent with the literature, our sample exhibits large gender differences in self-concept in

mathematics. In the control group, the value of the index is 43 percent of a standard deviation

lower for girls than for boys in Grade 10, and 37 percent lower in Grade 12. Large gender

differences are found for most of the items used in the construction of this index, in particular

those related to math anxiety (see Appendix Table G13).

Despite being a light-touch intervention, the program did have some positive effect on

students’ self-concept in math (see Table 5). Although these effects are only found to be

statistically significant for boys in Grade 12 when using the composite index, the program

consistently reduced the probability of students reporting worry that they will struggle in math

class.23 Point estimates tend to be higher for boys than for girls in both grades, implying that

the classroom interventions had no effect on the substantial gender gap in this area.

Science-related career aspirations. The choice of a science-related career path does not

depend solely on students’ taste for the science subjects taught at school. It also depends on their

perceptions of the relevant jobs and the amenities they may provide, such as earnings, work/life

balance, and the work environment, all of which were embodied by the role models. As the

program is found to have improved students’ perceptions of science-related careers significantly,

one might expect students in the treatment group to be more likely to consider these careers for

themselves, even if their enjoyment of science subjects was unaffected.

To measure the effects on students’ aspirations for science-related careers, we use a composite

index combining the responses to four questions: (i) whether the students find that some jobs
23For each group of students, the correction of p-values for testing across multiple outcomes (see Appendix

Table G13) cannot rule out the possibility that the effects on math anxiety are due to chance alone. However,
finding a significant effect for the same variable across all four groups of students, which is not accounted for by
the multiple testing correction, is suggestive of a genuine effect.
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in science are interesting; (ii) whether they could see themselves working in a science-related

job later in life; (iii) whether they report being interested in at least one of six STEM jobs out

of a list of ten STEM and non-STEM occupations;24 and (iv) whether they consider salary level

as an important factor in their career choice.

Female students in Grade 12 are the only group of students for which we find significant

effects on these science-related career aspirations, the value of the composite index being

11 percent of a standard deviation higher in the treatment than in the control group (see the

last row of Table 5). The more detailed results reported in Appendix Table G14 show that the

interventions had significant positive effects on three of the four corresponding survey items

for girls in Grade 12. In particular, girls in the treatment group are more likely to report that

earnings are an important factor in their career choice, which is consistent with the program

raising their awareness of the wage premium for STEM jobs.

4.3 Educational Choices and Academic Performance

Access to rich administrative data on students’ educational outcomes enables us to extend the

analysis beyond student perceptions to document the program’s impact on educational outcomes

as well.

High school track after Grade 10. Panel A of Table 6 shows that the program had no

significant impact on Grade 10 students’ choice of track in the academic year following the

intervention, i.e., 2016/17. For both genders, the treatment effect estimates are close to zero,

whether we consider enrollment in any STEM track or enrollment in the general and technological

STEM tracks separately.25 Consequently, the program did not alter the 21-percentage-point

gender gap in the likelihood of pursuing STEM studies after Grade 10.26

These results are consistent with the previous finding that the interventions had no discernible

impact on Grade 10 students’ aspirations for science-related careers. More generally, several

mechanisms can be put forward to interpret the lack of effects on the enrollment status of

Grade 10 girls in the following year. First, the program did not seem well suited to increase
24The STEM occupations in the list were: chemist, computer scientist, engineer, industrial designer, renewable

energy technician, and researcher in biology. The non-STEM occupations were lawyer, pharmacist, physician,
and psychologist.

25The more detailed results presented in Appendix Table G15 show that the distribution of students across
non-STEM tracks (Humanities and Social sciences) did not change significantly either.

26We find similar results when considering the study intentions that Grade 10 students self-reported in the
post-treatment survey, suggesting that the lack of effects on enrollment outcomes is due to students’ choices
being unaffected rather than to schools being less likely to admit treated students in the science-oriented tracks.
Results are available upon request.
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the share of girls enrolling in the STEM technological tracks in Grade 10, where the female

share is particularly low (17 percent, see Appendix Figure A1). As discussed below, the positive

effects that we find on the STEM enrollment decisions of girls in Grade 12 are concentrated

among the high achievers in math. In grade 10, such students are unlikely to be directed to

the technological track, explaining the lack of effects along this margin. Turning to the general

science track, female underrepresentation is only moderate in Grade 11 (47 percent of students

are girls, see Appendix Figure A1) and this track is the most common (usually the default

choice) for high-performing students, including girls. Indeed, unlike the other high school tracks,

it gives access to almost all fields of study in higher education. Female students who turn away

from the science track in high school are therefore unlikely to consider a STEM career as a

viable option, making their choices less easily reversible.27

Field of study after Grade 12. A central finding of the study is that the role model

interventions had significant effects on the educational choices of girls in Grade 12, but not on

those of their male classmates.

Panel B of Table 6 shows that for girls in Grade 12, the program increased the probability

of enrolling in a STEM undergraduate program in 2016/17 by 2.4 percentage points (significant

at the 10 percent level), which corresponds to an 8.3 percent increase from the baseline of

28.9 percent. The effect for boys is negligible and not statistically significant, implying that the

gender gap in STEM enrollment narrowed from a baseline of 18.1 to 16.0 percentage points, i.e.,

an 11.6 percent reduction.28

As emphasized in Section 1.2, female underrepresenation in selective and male-dominated

STEM fields account for approximately half of the STEM-related gender pay gap in France.

Importantly, our results show that the program’s positive impact on STEM enrollment is driven

by a significantly larger fraction of girls in Grade 12 enrolling in both types of programs. The

classroom interventions led to a highly significant 3.5 percentage-point increase in the fraction

of girls enrolling in selective STEM programs, which represents a 32 percent increase from the

baseline of 11.0 percent. The corresponding estimates for boys suggest that the classroom visits

may have slightly increased male enrollment in these programs as well (by 2.0 percentage points

from a baseline of 23.2 percent), but the effect is not statistically significant. Moreover, we
27Consistent with this interpretation, the survey data indicate that among Grade 10 students in the control

group, only 22 percent of girls who did not enroll in the Grade 11 science track the following year declare that
they could see themselves working in a science-related job, compared to 87 percent among those who did. In
Grade 12, the gap is much less pronounced: the proportions are 64 percent among girls who did not enroll in a
STEM undergraduate program the following year and 90 percent among those who did.

28With the caveat that we lack the statistical power to detect a significant reduction in the gender gap in
STEM enrollment.
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show in Section 4.4 that the magnitude of this effect for boys is substantially lessened when

we control for students’ baseline characteristics, suggesting that it probably depends on small

residual imbalances in the male sample.29

Turning to the effects on enrollment in male-dominated STEM programs (mathematics,

physics, computer science, and engineering), we find that the proportion of girls enrolling

increased by a statistically significant 3.8 percentage points from a baseline of 16.6 percent (i.e.,

a 23 percent increase), compared to a non-significant 1.7-point increase for boys from a baseline

of 37.9 percent. These results are particularly striking given that selective and male-dominated

STEM programs are not only the most prestigious tracks but also those where the gender gap in

enrollment is greatest. A simple back-of-the-envelope computation suggests that if our estimates

could be extrapolated to the population of science-track Grade 12 students without considering

general equilibrium effects, the female share would increase from 30 to 32 percent in STEM

programs altogether, from 30 to 34 percent in selective STEM programs, and from 26 to 29

percent in male-dominated STEM programs.

Our estimates indicate that, on average, the role model interventions induced one girl in

every two Grade 12 science-track classes to switch to a selective or a male-dominated STEM

program at entry into higher education.30 The more detailed results presented in Appendix

Table G16 indicate that these effects are driven by female students shifting from non-STEM and

female-dominated STEM programs. A significant decline in female enrollment is found for non-

selective undergraduate programs in earth and life sciences (−2.2 percentage points), while small

and non-significant reductions in the range of 0.4 to 0.8 point are found for selective programs

in humanities and for non-selective programs in medicine, law and economics, humanities and

psychology, and sports.

Taken together, the results for Grade 10 and Grade 12 students show that the program was

only effective in steering girls towards the STEM tracks in which they are heavily underrepre-

sented, even though two-thirds of the role models come from female-dominated STEM fields

(earth and life sciences) and that the program was designed to promote all types of STEM

careers, including those where women now outnumber men. These findings suggest that in the

current setting, the role models affect only the most stereotyped choices.
29The balancing tests performed separately by grade level and gender do not point to unusually large imbalances

between the treatment and control groups in any of the subsamples (see Appendix Tables F5 and F6). However,
we do find that the predicted probability of being enrolled in a selective STEM program is marginally yet
significantly higher (by 0.9 percentage point) in the treatment group than in the control group for boys in
Grade 12.

30This computation is based on an average of 15 girls per class and an estimated 3.5 (respectively 3.8)
percentage-point increase in the probability of enrolling in a selective (respectively male-dominated) STEM
program.
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Academic performance. The effects of the program on academic performance can be

documented for students in Grade 12 based on the Baccalauréat exams, taken a few months

after the classroom interventions (see Appendix Table G17). The treatment effect estimates on

students’ performance on the math test and on the probability of obtaining the Baccalauréat

are close to zero and statistically insignificant for both genders. Although the role models could,

in principle, have strengthened students’ motivation to be admitted to the most selective STEM

programs, resulting in their dedicating more time to studying mathematics and other science

subjects, we find no evidence of any such effect. We can therefore rule out that the program’s

impact on the enrollment outcomes of girls in Grade 12 was driven by increased effort and

accordingly better academic performance.

4.4 Robustness Checks

We conducted a number of robustness checks for our main findings (see Appendices H and I).

First, we investigated whether our treatment effect estimates for the survey-based outcomes

might not be contaminated by the small imbalances in the response rates and observable

characteristics of the treatment and control groups (see Section 3). We show that the estimated

effects on students’ perceptions are barely affected when controlling for students’ observable

characteristics (Appendix Table H18) and when weighting observations by the inverse of their

predicted probability of answering the survey given their observable characteristics (Appendix

Table H19).

Second, controlling for students’ observable characteristics hardly affects the estimated effects

on enrollment outcomes (see Appendix Table H20). If anything, the small positive (but not

significant) effect on selective STEM enrollment for boys in Grade 12 becomes negligible.

Third, we checked whether our results are robust to using non-parametric randomization

rather than model-based cluster-robust inference tests. The tests are performed by comparing

our ITT estimates with the distribution of “placebo” ITT estimates obtained by randomly

re-assigning treatment 2,000 times among participating classes within each school and grade

level. The results yield empirical p-values that are generally close to the model-based p-values

(see Appendix Table I21). Although they tend to be slightly more conservative, they confirm the

program’s statistically significant effects on female enrollment in selective and male-dominated

STEM programs among Grade 12 students.
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5 Persistence, Timing of Visits, Spillovers

This section extends the analysis to the persistence of effects on student perceptions, the timing

of the interventions, and potential spillover effects on enrollment outcomes.

Persistence. The effects of the program on students’ perceptions could be short-lived. We

explore this issue by comparing the magnitude of treatment effects for different intervals between

the intervention and the post-treatment survey: 1-2 months, 3-4 months and 5-6 months (see

Appendix Table J22). The limited sample for each interval—especially those after 5-6 months—

and the possibility that the quality of the interventions may have changed over time are two

limitations that call for caution in drawing firm conclusions about the persistence of effects.

With these caveats in mind, the results suggest that the treatment effects did not vanish quickly,

insofar as they remain statistically significant for most outcomes beyond the first two months.

The effects were, therefore, sufficiently persistent to affect students’ choice of study.

Timing of visits. Earlier interventions seem to have had greater effects on the college choices

of Grade 12 students, which could be made up to the end of May (see Appendix Figure J6). We

find that classroom visits that took place in November increased female enrollment in selective

or male-dominated STEM programs by 7 to 9 percentage points, compared with 3 to 6 points

for visits in December-January and non-significant effects for visits in February-March.31 These

findings provide suggestive evidence that interventions made when many students are still

undecided about their field of study and career plans may be more effective than those on the

eve of irreversible choices.

Spillovers. An important issue is whether the program could have influenced the educational

choices of students in the control group. These students may have heard about the visits

directly, through their schoolmates in treatment group classes, or indirectly, through regular

social interactions. If the direction of such effects is the same for students in the treatment and

control groups, ignoring spillovers would cause us to underestimate the treatment effects.

The survey evidence suggests that the scope for spillover effects was limited, which is

consistent with the notion that in the French school system most peer interactions take place

within the class (Avvisati et al., 2014). In the treatment group, 58 percent of Grade 10 students
31The difference between the effects of visits before and after February 1 is statistically significant at the

5 percent level for girls and is robust to controlling for possible improvement or decline in the quality of role
models’ interventions over time, through the inclusion of fixed effects for the chronological order of the role
models’ classroom visits, i.e., first, second, etc.
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and 63 percent of Grade 12 students report having talked about the classroom intervention

with their classmates, but they are only 24 percent and 27 percent to report having talked with

schoolmates from other classes, respectively (see Appendix Table K23).32 In the control group,

only 14 percent of students in Grade 10 report having heard of the classroom visits, mostly

in a vague manner (12 percent). In Grade 12, students in the control group are more likely

(34 percent) to report being at least vaguely aware of the visits, but under 5 percent of boys

and girls have a precise recollection. Overall, these summary statistics suggest that spillover

effects were quite limited.

We complement this survey evidence by investigating more formally whether the interventions

affected the higher education choices of Grade 12 students whose classes were not assigned to

the treatment group—either classes not selected by principals for the program or participating

classes randomly assigned to the control group. Our empirical strategy, described in detail in

Appendix K, builds on the following intuition: for schools that participated in the evaluation,

the random assignment of treatment to participating classes makes it possible to estimate

the average outcome that would have resulted if all students had only been exposed to the

spillover effects of classroom interventions without being directly exposed to a role model. This

unobserved “spillover-only” counterfactual can be estimated at the school level by computing an

appropriately weighted average of the outcome of students in the non-participating classes and

in the participating classes that were assigned to the control group.33 The spillover effects of role

model interventions are then estimated by comparing the “spillover-only” counterfactual to a

“no-treatment” counterfactual. This second counterfactual is constructed using non-participating

schools, which we observe in the administrative data, that have similar observable characteristics

as the participating ones over the period 2012–2015. Having verified that trends in student

enrollment outcomes were parallel between the two groups of schools in the pre-treatment period,

we implement a difference-in-differences estimator to identify the program’s spillover effects on

students’ STEM enrollment outcomes at college entry.

The results based on this difference-in-differences approach show no evidence of significant

spillover effects of classroom visits on non-treated Grade 12 students (see Table K24 in the

Appendix). Together with the survey evidence, they suggest that spillovers between treatment

and control classes were at most limited.
32Interestingly, these proportions are higher for girls than for boys in the treatment group: 66 (70) percent of

girls in Grade 10 (Grade 12) report having discussed the program with their classmates, 28 (33) percent with
schoolmates from other classes, and 25 (27) percent with other students outside the school, compared with 50
(56) percent, 20 (21) percent, and 16 (13) percent for boys, respectively.

33This second group is given a greater weight to make it representative of both treated and non-treated
participating classes, which, by virtue of randomization, have similar characteristics.
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6 How Do Role Models Affect Student Behavior?

This section inquires into why light-touch classroom interventions by female role models with a

background in science can affect girls’ choice of study at university. Our insights are derived from

comparison of groups of students who were exposed to different role models or who responded

differently to a given role model. Two main conclusions emerge. First, there is considerable

heterogeneity in the role models’ ability to steer girls toward STEM studies, which highlights

the importance of the individual who bears the message. Second, the role models who had

the strongest impact on girls’ choices were more effective in projecting a positive image of

science-related careers and in stimulating students’ aspirations for them, while putting less

emphasis on the underrepresentation of women in science. These results suggest that some

levers are more important than others in triggering a behavioral response. This offers useful

indications for designing effective role model interventions.

The inquiry proceeds in four steps. First, we show that the treatment effects on STEM

enrollment outcomes vary widely according to the two most obvious dimensions of heterogeneity

in the current setting, namely students’ academic performance and role models’ background

(professionals employed by L’Oréal vs. young researchers).

Using the approach developed by Chernozhukov et al. (2018), we then provide a more

systematic analysis of the heterogeneity of treatment effects using machine learning techniques.

The results confirm that the two dimensions hypothesized are also detected by an agnostic

algorithm alongside other sources of heterogeneity.

Third, we shift attention from students’ choice of study (the final or behavioral outcome)

to their perceptions, self-concept, and interest for science (the possible channels of influence).

Machine learning methods are also applied to detect the heterogeneity in treatment effects on

these potential mediators. We identify the characteristics of the students and role models for

whom we observe particularly large (or small) treatment effects both on the final outcome and

on the possible channels. While this does not allow causal claims, it does offer useful insights

into plausible channels through which role models affect female students’ choice of study.

In the fourth step, we propose a method to generalize the results obtained in the third

step so as not to depend on comparison of specific observable characteristics. We build on

the approach proposed by Chernozhukov et al. (2018) to estimate the correlations between

individual-level treatment effects on different outcomes conditional on exogenous observable

characteristics. We seek to determine whether the students who were particularly receptive or

unreceptive to some of the program’s messages are also those whose choice of study was most
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or least affected by the interventions. We find that the treatment effect on female enrollment

in selective STEM programs is greater when the interventions resulted in larger improvements

in girls’ perceptions of science-related careers, and smaller when they raised the awareness of

the underrepresentation of women in science. To the best of our knowledge, this approach

constitutes an original methodological contribution that can serve to investigate channels of

influence in other contexts.

6.1 Heterogeneous Treatment Effects on STEM Enrollment

We start by investigating how the treatment effects on STEM enrollment vary with the two

most obvious dimensions of heterogeneity, i.e., math performance and role model background.

Our analysis focuses on Grade 12 students, as we find no evidence of significant effects on STEM

enrollment for Grade 10 students.34

High vs. low achievers in math. Applicants’ performance in mathematics is the single

most important admission criterion of selective undergraduate STEM programs. Using Grade 12

students’ national percentile rank on the the Baccalauréat math test to proxy for academic

performance, we find that the program’s positive impact on selective STEM enrollment is driven

by female students in the top quintile (see Figure 3 and Panel A of Appendix Table L27).35

For these students, the probability of enrolling in a selective STEM program after high school

increases by 16.3 percentage points, which corresponds to a 57 percent increase from the baseline

of 28.5 percent. While the program also appears to have induced some male students in the top

quintile to enroll in selective STEM programs, the effect is smaller (9.6 percentage points, or a

20 percent increase over the baseline of 49.2 percent) and only marginally significant. Especially

striking is the fact that among the 20 percent top achievers in math, the gender gap in the

probability of enrolling in a selective STEM program is the largest (21 percentage points) and

the treatment reduces it by 6.7 percentage points, which corresponds to a 32 percent reduction

from the baseline.36
34For the sake of completeness, the results of the heterogeneity analysis by level of performance in math and

role model background for Grade 10 students can be found in Panel A of Appendix Tables L25 and L26.
35As discussed in Section 4.3, we find no significant impact of the program on students’ performance on the

math test of the Baccalauréat exam, which mitigates concerns about potential endogenous selection bias when
conditioning on this variable. An alternative is to proxy Grade 12 students’ math performance using their score
on the DNB exam, taken at the end of Grade 9. In this case the results are qualitatively similar but less precise,
presumably because DNB scores are a relatively noisy predictor of math performance in Grade 12.

36The differences in treatment effects between high and low achievers in math are qualitatively similar for
enrollment in male-dominated STEM programs or all types of STEM programs (see Panel A of Appendix
Table L27).
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Role model background: researchers vs. professionals. It is unclear, a priori, how the

different types of role models differ in their effect on students’ attitudes and behavior. As

shown in Table 2, role models with a research background are, on average, younger than the

professionals employed by the sponsoring firm, which may foster a stronger sense of identification

by the students. But because they work in highly specialized fields and in very competitive

environments, it is not clear how attainable students might think their achievements are. On

the other hand, the professionals tend to have higher pay and more experience, and come less

often from a purely academic background. They also hold permanent positions, unlike Ph.D.

candidates and postdocs.

Even though the role models were not randomly assigned to schools, we find no evidence

of systematic differences in the observable characteristics of the students exposed to the two

types (see Appendix Table F10), so we are confident that the heterogeneous treatment effects

according to role model background are not confounded by differences in the characteristics of

the classes they visited.

We find clear evidence that the two groups of role models had contrasting effects on STEM

enrollment outcomes for girls in Grade 12. The left panel of Figure 4 shows that the professionals

increased female students’ probability of enrolling in a selective STEM program by a significant

5.3 percentage points, whereas researchers had no detectable effect.37 The contrast is qualitatively

similar, although less pronounced, when we consider enrollment in male-dominated STEM

programs (right panel of Figure 4) or across all STEM programs (Appendix Table L27, Panel B).

While the estimates also point to larger effects for boys who were exposed to role models with a

professional background, they are not statistically significant at conventional levels.

6.2 Machine Learning to Uncover Sources of Heterogeneity

Investigating treatment effect heterogeneity by splitting the sample into subgroups inevitably

entails the risk of data mining. To address this concern, we carry out a systematic exploration

of treatment effect heterogeneity using machine learning (ML) methods (see Athey and Imbens,

2017, for a review). Specifically, we adopt the approach recently developed by Chernozhukov et

al. (2018), as it appears well-suited to our objectives. A brief description is given below; a more

detailed discussion can be found in Appendix M.38

37The difference between the treatment effects of the two groups of role models on Grade 12 girls’ probability
of enrolling in a selective STEM program is significant at the 5 percent level.

38So far, we are aware of only one other application of this method in ongoing work by Crépon, Duflo, Pariente,
Seban, and Veillon. There are, however, several recent studies that use alternative machine learning methods to
analyze treatment effect heterogeneity. See Bertrand et al. (2017) for a recent example based on the method
developed by Wager and Athey (2018).
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General description of Chernozhukov et al. (2018)’s approach. Let Y (1) and Y (0)

denote the potential outcomes of a student when her class is and is not visited by a role model,

respectively. Let Z be a vector of covariates that characterize the student and the role model

who visited the class. The conditional average treatment effect (CATE), denoted by s0(Z), is

defined as:

s0(Z) ≡ E[Y (1)− Y (0)|Z].

Because it is hard to obtain uniformly valid inference on the CATE without making strong

assumptions, the approach in Chernozhukov et al. (2018) consists in conducting inference on

specific features of the CATE, such as the expectation of s0(Z) in groups defined using a given

ML predictor S(Z). The first feature examined is the Best Linear Predictor (BLP) of s0(Z)

given S(Z). The authors show that the BLP can be identified from the following weighted linear

projection:

Y = α0 + αB(Z) + β1(T − p(Z)) + β2(T − p(Z))(S(Z)− E[S(Z)]) + ε, E[w(Z)εX], (3)

where T is a dummy for treatment assignment; B(Z) is an ML predictor of Y (0) obtained

from the training sample; p(Z) is the probability of being treated conditional on the covari-

ates Z;39 w(Z) = {p(Z)(1− p(Z))}−1 is the weight; and X denotes the vector of all regressors

(X ≡ [1, B(Z), T − p(Z), (T − p(Z))(S(Z)− E[S(Z)])]). This projection identifies the parame-

ters β1 = E[s0(Z)] and β2 = Cov(s0(Z), S(Z))/Var(S(Z)), which can both be estimated using

the empirical analog of Equation (3) (see Appendix M for details). We refer to β1 and β2 in

the tables as the average treatment effect (ATE) and heterogeneity loading (HET) parameters,

respectively. The key parameter of interest, β2, is informative about the correlation between the

true and the predicted CATE. It is equal to 1 if the prediction is perfect and to 0 if there is no

treatment effect heterogeneity or if S(Z) has no predictive power.

The main purpose of estimating β2 is to check if the trained ML methods are able to detect

heterogeneity in the treatment effect. If so, the ML predictor of the CATE can be used to

identify groups of individuals with the smallest and largest treatment effects. Heterogeneity

groups are constructed by sorting students in the estimation sample based on the value of S(Zi),

the predicted value of each student’s treatment effect given his/her observable characteristics Zi.

We consider the bottom and top quintiles of S(Zi) and report ITT estimates for both groups of

students—a feature of the CATE called Sorted Group Average Treatment Effects (GATEs) in

Chernozhukov et al. (2018). We then compare the distribution of observable characteristics in
39In our setting, this probability is one half for most Grade 12 students.
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the two groups—a feature called Classification Analysis (CLAN).

Inference. To avoid overfitting, we estimate the features of the CATE given an ML predictor

S(Z) on an estimation sample that is distinct from the training sample used to obtain S(Z).

We follow Chernozhukov et al. (2018) in iterating this data-splitting process and reporting the

medians of estimates and p-values over several splits. The nominal levels of p-values are further

adjusted to guarantee uniform validity, which leads to fairly conservative inference.40

Practical Implementation. We consider five alternative ML methods to estimate the predic-

tor S(Z): Elastic Net, Random Forest, Boosted Trees, Neural Network with feature extraction,

and a simple linear model.41 To train these methods, we use as covariates Z three indicators for

the education districts of Paris, Créteil, and Versailles, four indicators for students’ socioeco-

nomic background (high, medium-high, medium-low, and low), their age, their overall percentile

rank in the Baccalauréat exam, their percentile ranks in the French and math tests of the exam,

and a vector of 56 role model fixed effects.42 We limit ourselves to only a few exogenous student

characteristics because our main objective is to document treatment effect heterogeneity across

the 56 role models. For each outcome, the best ML method for either the BLP or the GATEs

targeting of the CATE is selected using the performance measures proposed by Chernozhukov

et al. (2018).43

Results. Using this procedure on the sample of girls in Grade 12, we find that the Elastic Net

outperforms the other ML methods in predicting heterogeneous treatment effects on selective

STEM enrollment, while for enrollment in male-dominated STEM, a linear model performs best

(see Appendix Table M31).44

We use the corresponding ML predictors to estimate the parameters of the best linear
40While we report these adjusted p-values in all tables, we show in Appendix M that they are conservative in

the sense that they are upper bounds for the true (unknown) p-values. We also provide a theoretical example in
which these upper bounds are reached, implying that they cannot be improved upon. We argue, however, that
this theoretical example is unlikely to be met in practical applications.

41These methods are implemented in R using the caret package written by Kuhn (2008), while the general
approach of Chernozhukov et al. (2018) is implemented by adapting the codes made available online by the
authors (https://github.com/demirermert/MLInference, accessed on May 4, 2018).

42Each student in the control group is assigned to the role model who visited his or her school, so the role
model fixed effects are defined for students in both the treatment and control groups.

43The best ML method for the BLP targeting of the CATE is the one that maximizes the correlation between
the ML predictor S(Z) and the CATE s0(Z) in the estimation sample. The best method for the GATEs targeting
of the CATE is the one that maximizes the sum of squares of the estimated GATEs across the heterogeneity
groups. See Appendix M for more details on these performance measures.

44Since our main objective is to better understand the mechanisms underlying the significant effects on STEM
enrollment outcomes for girls in Grade 12, we focus our main text analysis on this group of students. For the
sake of completeness, the machine learning results for boys in Grade 12 are reported in Appendix Table M33.
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predictor of the CATE from the weighted linear projection described in Equation (3). The

results are shown in Panel A of Table 7. The estimated ATEs of the program on Grade 12 girls’

enrollment in selective or male-dominated STEM are very close to those reported in Table 6 by

virtue of the randomization of the sample splits. Turning to heterogeneity, the coefficients on

the HET parameter indicate that the ML predictors are strongly and significantly correlated

with the CATE on enrollment in selective STEM but not in male-dominated STEM.

Estimates of the sorted group average treatment effects (GATEs) for the top and bottom

quintiles of the predicted treatment effects S(Z) are reported in Panel B. They confirm the

considerable heterogeneity of treatment effects on selective STEM enrollment among Grade 12

girls, GATEs ranging from a small negative effect in the bottom quintile to a large and

significant 13.9 percentage point effect in the top quintile. The lesser heterogeneity in the

effects on enrollment in male-dominated STEM is also confirmed, with no statistically significant

difference between the top and bottom quintiles of treatment effects.

Panel C describes the characteristics of the 20 percent most and least affected students. The

main takeaway is that the ML agnostic approach strongly confirms that the treatment effects on

selective STEM enrollment are greater for high-achieving girls in math and for those who were

exposed to a professional rather than a researcher role model. Between the 20 percent most

and least affected female students, the average gap in math performance rank is as much as

63 percentile ranks; the difference in the probability that the class was visited by a professional

is 14.8 percentage points. The results are qualitatively similar for enrollment in male-dominated

STEM, but the differences between groups are smaller, which is consistent with the previous

finding of less heterogeneous treatment effects for this outcome.

The results in Panel C disclose heterogeneous effects along other dimensions. The 20 percent

of girls with the largest treatment effects on selective STEM enrollment perform significantly

better in French and are from higher socioeconomic backgrounds, compared with the least

affected 20 percent. They are also less likely to have been exposed to role models who have

children or who graduated in a male-dominated STEM field, and more likely to have been

exposed to role models who participated in the program the year before. However, the fact

that these characteristics are correlated both with students’ math performance and with the

role model being either a professional or a researcher makes it difficult to determine their

specific contribution to treatment effect heterogeneity. As suggestive evidence, we performed a

“horse race” by regressing enrollment in selective or male-dominated STEM on the interactions

between the treatment group indicator and each of the characteristics listed in Panel C. The

results, which are shown in Appendix Table L28, are consistent with the conclusion that math
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performance and role models’ professional background are the two main observable dimensions

of heterogeneity in the treatment effects on selective STEM enrollment.45

6.3 Heterogeneous Treatment Effects on Potential Mediators

To help identify the mechanisms behind the heterogeneity of effects on selective STEM enrollment

among Grade 12 girls, we start by comparing the characteristics of those with the largest and

smallest treatment effects for each of the potential channels of influence studied in Section 4,

namely general perceptions of science-related careers and gender roles in science, taste for science

subjects, math self-concept, and science-related career aspirations.46

The results are reported in Table 8. For each potential channel, we compare the characteristics

of students in the top and bottom quintiles of predicted treatment effects. We focus on the

two main sources of heterogeneity in the effects on enrollment in selective STEM, i.e., student

performance in math and exposure to a role model with a professional background.47 For the

sake of completeness, Appendix Table L30 gives the results obtained via a more traditional

heterogeneity analysis, i.e., comparing the LATEs for different subgroups of female students

based on math performance and on the background of the role model.48 The conclusions are

broadly consistent with those deriving from the ML procedure.

The first key finding is that professionals and researchers were equally effective in debunking

stereotypes on gender differences in math aptitude, while they reinforced students’ perceptions

that “women like science less than men” and that “women face discrimination in science-related

jobs” to a comparable extent. These results suggest that the “gender debiasing” component

of the classroom interventions, which emphasized men’s and women’s equal predisposition for

science, cannot explain, alone, why the program increased girls’ enrollment in selective STEM;

otherwise the two groups of role models would be expected to have similar effects for this

outcome, which is not what we find.
45The results in Appendix Table L28 indicate that the effect of the program on selective STEM enrollment

remains significantly greater for high-achieving girls in math when we interact the treatment group indicator
with other student and role model characteristics. By contrast, differences in treatment effects by academic
performance in French or by socioeconomic background are no longer significant for girls. Moreover, consistent
with the finding that the observable characteristics of students are reasonably balanced between the schools
visited by the professionals and the researchers (see Appendix Table F10), the regression results confirm that
the stronger effects of professionals on selective STEM enrollment are robust to fully interacting the treatment
group indicator with the characteristics of students and role models.

46Each outcome is summarized using the relevant composite index, except for students’ perceptions of gender
roles in science, which are measured along multiple dimensions.

47For each of the outcomes listed in Table 8, Appendix Table M31 reports the performance of the different
ML methods in predicting treatment effect heterogeneity based on the BLP (Panel A) or the GATEs targeting
of the CATE (Panel B). The heterogeneity loading parameter of the BLP and the GATEs associated with the
best ML method are reported separately for each outcome in Appendix Table M32.

48The corresponding results for students in Grade 10 can be found in Appendix Table L29.
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By contrast, Table 8 reveals that the professionals were better than the researchers at

improving female students’ perceptions of science-related jobs and stimulating their aspirations

for such careers, while emphasizing less the underrepresentation of women. The heterogeneity

analysis indicates that the girls whose perceptions of science-related careers improved the most

due to the program had more often a professional as role model: compared to girls in the bottom

quintile of treatment effects for this outcome, those in the top quintile are 19.2 percentage points

more likely to have been visited by a professional, the difference being statistically significant

at the 1 percent level. Professionals are similarly overrepresented among the role models who

had the greatest effects on girls’ taste for science subjects (22.7 percentage-point gap between

the top and bottom quintile of treatment effects), and even more so among those who raised

science-related career aspirations the most (38.9 percentage-point gap). The opposite holds

for heterogeneous treatment effects on the importance of female underrepresentation in STEM:

compared to the 20 percent of girls least affected for this outcome, the 20 percent most affected

are 11.2 percentage points more likely to have been visited by a researcher.

Together, these results provide a first description of the role models who were the most

effective in changing female students’ stereotyped behaviors. In addition to conveying positive

information on career paths, these role models succeeded in sparking genuine interest in science

and science-related jobs without overemphasizing the consequences of gender stereotyping. These

features are in line with the main mechanisms usually considered necessary for role models to

work: generating a sense of fit while moderating the effects of stereotype threat.

The analysis of treatment effect heterogeneity by student math performance tends to

confirm that the messages conveyed by professionals were more effective at influencing female

students’ choice of studies. Indeed, the students who were particularly receptive to these

messages are also those for whom we find the strongest impact on STEM enrollment, i.e.,

high achievers in mathematics. Average math performance is significantly higher among the

students whose perceptions of science-related careers and taste for science subjects improved

the most. Conversely, we find fewer high achievers among the girls whose awareness of female

underrepresentation in STEM and perception of gender discrimination increased the most.

While these comparisons on the basis of role model background and student math performance

cannot be given a causal interpretation, they are consistent with the notion that gender-neutral

messages about careers in science are more effective than gender-related messages to steer

girls towards STEM studies. The next section provides additional evidence supporting this

interpretation.
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6.4 Correlation between Treatment Effects

So far, our discussion of the channels of influence has sought to identify the main dimensions of

treatment effect heterogeneity on STEM enrollment outcomes and investigated how the impact

on student perceptions varies along these dimensions. We will now develop a more general

approach to estimate the correlation between the treatment effects on different outcomes. That

is, given their observable characteristics, are the students with the largest treatment effects for

a potential channel of influence Y A the same ones who exhibit the largest treatment effects on

enrollment outcome Y B?

A new feature of the CATE. Because treatment effects for a given student are never

observed, the correlation between individual-level treatment effects on outcomes Y A and Y B

cannot be estimated without making strong assumptions.49 Instead, our approach takes

advantage of the predicted heterogeneity in treatment effects by student and role model

characteristics to recover the correlation ρA,B|Z = Corr(sA0 (Z), sB0 (Z)) between the true CATEs

on the two outcomes Y A and Y B, which we denote by sA0 (Z) and sB0 (Z), respectively. As

discussed in Appendix M, we believe that this is an interesting alternative to other methods,

such as causal mediation analysis, that are commonly used in the medical and social sciences

literature to identify the factors that may be part of the causal pathway between an intervention

and an outcome. Our proposed method does not depend on strong identifying assumptions and

can be used in any experimental setting provided that there are enough observed exogenous

covariates—a condition that is met in an increasing number of empirical studies.

To estimate the correlation between sA0 (Z) and sB0 (Z), we first define a new feature of the

CATE as a simple adaptation of Chernozhukov et al. (2018)’s method. Instead of estimating

the Best Linear Predictor of sA0 (Z) based on the ML predictor SA(Z), we estimate the BLP

of sA0 (Z) based on SB(Z), i.e., the ML predictor of the heterogeneity in treatment effects on

outcome Y B. The heterogeneity loading parameter of the BLP we are interested in is

β
A|B
2 = Cov(sA0 (Z), SB(Z))/Var(SB(Z)). (4)

This parameter is identified and can be estimated using a variant of Equation (3) (see details in

Appendix M). By switching the roles of YA and YB in Equation (4), one can similarly estimate
49In Appendix M, we also argue that, due to sampling error, estimating separate treatment effects for each

role model before computing the correlation between the estimated role-model-specific treatment effects for
outcomes Y A and Y B in the same sample would likely result in a biased estimate of the true correlation between
treatment effects.

34



the heterogeneity loading parameter from the BLP of sB0 (Z) based on SA(Z), i.e.,

β
B|A
2 = Cov(sB0 (Z), SA(Z))/Var(SA(Z)).

Writing SA(Z) = sA0 (Z) + ηA and SB(Z) = sB0 (Z) + ηB and assuming that the prediction errors

ηA and ηB are independent of both predicted functions sA0 (Z) and sB0 (Z) in the estimation

sample, we show that βA|B2 and βB|A2 have the same sign, which is indicative of whether the

treatment effects on Y A are positively or negatively correlated with the treatment effects on Y B.

In Appendix M, we show that under these assumptions, the correlation between the true

CATEs on Y A and Y B, ρA,B|Z , can be estimated using the following formula:50

ρA,B|Z = Sign(βA|B2 )

√
β
A|B
2 β

B|A
2√

β
B|B
2

√
β
A|A
2

, (5)

where βA|A2 and βB|B2 are the heterogeneity loading parameters in the BLPs of sA0 (Z) and sB0 (Z)

on their respective predictors SA(Z) and SB(Z).

Practical implementation. As in the previous section, we split the data into a training

and an estimation sample. We obtain predictors SA(Z) and SB(Z) of sA0 (Z) and sB0 (Z) in the

training sample and use them to estimate the four parameters βA|A2 , βB|B2 , βA|B2 and βB|A2 in

the estimation sample. We then plug these parameter estimates in Equation (5) to obtain an

estimate ρ̂A,B|Z of the correlation between the CATEs on outcomes Y A and Y B. We use a

bootstrap procedure, also performed in the estimation sample, to obtain a 95 percent confidence

interval for ρ̂A,B|Z .51 As in the previous section, we follow the procedure of Chernozhukov et al.

(2018) so that our final estimates of ρA,B|Z and its confidence interval are computed as medians

of estimates obtained from several estimation samples, the nominal level of confidence intervals

being adjusted to guarantee uniform validity.52

50While it is not possible to prove that the out-of-sample prediction error of a ML predictor is independent from
the predicted outcome for any predictor, this assumption seems reasonable when using efficient ML algorithms
such as those considered in this paper. As suggestive evidence, we have checked in Monte Carlo simulations that
this assumption holds for a large set of simulated functions of Z, which are generated manually and predicted
on subsamples of our data. We further checked that the correlation ρA,B|Z is successfully recovered for various
data-generating processes using the formula in Equation (5).

51We report confidence intervals rather than p-values because the former are highly skewed, implying that the
p-values obtained from bootstrap under normality assumptions are misleading.

52In theory, βA|A
2 and βB|B

2 should both be positive while βA|B
2 and βB|A

2 should have the sign of ρA,B|Z in
each iteration of the data-splitting process. However, this is not always the case in practice due to estimation
error, in particular when the predictors SA(Z) and SB(Z) are very noisy. When one of the conditions above is
not satisfied in a given estimation sample, we do not estimate ρA,B|Z and discard the corresponding iteration of
the data-splitting procedure. Reassuringly, the sensitivity analysis provided in in Appendix Table M35 shows
that our results are barely affected when we exclude data splits that yield a poor ML prediction of the CATEs
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Results. The results for girls in Grade 12 are reported in Table 9, where the covariates that

we use to predict treatment effect heterogeneity are the same as in Table 7. They suggest that

some channels were more important than others in steering female students towards STEM

studies. The treatment effects on girls’ enrollment in selective STEM exhibit a strong positive

and significant correlation with the improvement in their perceptions of science-related careers

(ρ̂ = 0.96) and with the improvement in their taste for science subjects (ρ̂ = 0.71). We also find

evidence that girls who became more aware of the underrepresentation of women in science

careers were less likely to change their choice towards a selective STEM program (ρ̂ = −0.68).

While not statistically significant at the 5 percent level, the remaining correlations give some

indication on the role of other candidate channels.53 They confirm in particular that debiasing

girls’ attitudes towards gender differences in aptitude for math is not associated with increased

enrollment in selective STEM programs (ρ̂ = 0.19 with a 95 percent confidence interval of

[−1.24, 2.05]) and that, if anything, reinforcing the belief that women are discriminated in science

careers tends to deter girls from enrolling in selective STEM programs (ρ̂ = −0.34 [−2.22, 0.56]).

By contrast, raising girls’ aspirations for careers in science is associated with an increased

probability that they enroll in such programs (ρ̂ = 0.36 [−0.51, 2.01]).

Overall, the results based on correlations between treatment effects are in line with and

extend those obtained in the previous section. They suggest that the most effective role models

were those who managed to convey a positive image of science careers without overemphasizing

women’s underrepresentation and its possible causes.

7 Conclusion and Discussion

Based on a large-scale randomized field experiment involving 56 female role models and nearly

20,000 high school students in Grade 10 and Grade 12, this paper shows that a one-hour in-class

exposure to a female scientist can significantly increase female participation in STEM fields of

study at college enrollment. Remarkably, the positive enrollment effects are observed only in

the tracks with the most severe gender imbalance, which are the most prestigious and selective,

and those that are most math-intensive. These effects can be expected to improve the future

earnings of the target population, since the selective and male-dominated STEM programs offer

high wage premia relative to other programs.

on outcomes Y A or Y B .
53We report in Table 9 the lower and upper bounds for the lower and upper limits of the actual 95 percent

confidence interval associated with each estimated correlation. Recall that the (unknown) true confidence intervals
are likely to be smaller than suggested by the bounds reported in Table 9 (see discussion in Appendix M).
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In our empirical setting, the role model interventions had no discernable effects on students’

taste for science or their academic performance, and only slightly improved their math self-

concept, thus ruling out these factors as primary causes of the observed effects on STEM

enrollment. By contrast, the classroom visits significantly challenged students’ stereotyped

views of science careers and gender differences in aptitude for science. These effects, however,

are observed for both genders in both grades, suggesting that by themselves they cannot explain

why the role model interventions only affected the educational choices of girls in Grade 12.

Our results offer substantial evidence that female students’ behavioral response to the role

model interventions was mediated by their ability to identify with the female scientists to whom

they were exposed. On the verge of important decisions about their future education and

career pathways, girls in Grade 12 appear to have been more receptive than the other groups of

students to the attractive and de-masculinized image of science-related careers embodied by the

role models. Consistently with this, we find that their improved perceptions of science careers

translated into stronger aspirations for such careers. This process of identification was less likely

to occur among Grade 10 girls, who are further away from career choices, and for boys in both

grade levels, who may have found it more difficult to identify with women scientists. To confirm

this latter hypothesis and, more generally, to improve our understanding of role model effects,

an interesting avenue for future research would be to compare the impact of male and female

role models in a similar context.54

Another important insight from the study is that by heightening awareness of the underrep-

resentation of women in STEM, while at the same time emphasizing men’s and women’s equal

aptitude for science, the interventions may have unintentionally reinforced students’ beliefs that

women dislike science and face discrimination in STEM careers. That is, there is suggestive

evidence that excessive stress on gender can be counter-productive and that gender-neutral

messages might be more effective in steering girls towards STEM fields. In our setting, the role

models who most reinforced the perception that women are underrepresented and discriminated

against in science had the least effect on selective STEM enrollment for female students in

Grade 12, whereas those who most improved girls’ perceptions of science careers had the greatest

impact. These conclusions echo those reached by Banerjee et al. (2013) in a very different

context: using a large-scale randomized experiment to test whether citizens can learn from

others’ experiences about the quality of female leaders in India, the authors show that the vote

share for the incumbent was more sensitive to past performance in places where a gender-neutral
54This aspect could not be investigated in this study, as the program was already under way, with only female

role models.
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campaign was run than where the “gender” theme was broached. These findings suggest that

role model interventions need to be carefully designed to limit the potential discouragement

effect of overemphasis on gender imbalances.

More generally, our heterogeneity analysis warns against the temptation to view role models

as a one-size-fits-all remedy against female underrepresentation in STEM fields. Like Carrell

et al. (2010), we find that role model effects on enrollment outcomes are concentrated among

high-achieving girls in math. The effectiveness of this type of intervention in increasing female

participation in STEM among lower-performing students remains an open question. Our study

also highlights the importance of role models’ profile in generating a sense of fit among students,

as the effects on educational choices varied markedly across the participating female scientists.

These results point to the need for further research on how the matching between role models

and students can be optimized to make this particular type of intervention more effective.
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Figure 1 – Tracks in Secondary and Post-Secondary Education in France
Notes: The figure describes the structure of upper secondary and post-secondary education in France. The role model interventions
took place in Grade 10 and Grade 12 (science track). Science-oriented high school tracks and STEM undergraduate programs are
highlighted in grey.
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Figure 2 – Program Evaluation Timeline
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(a) Enrollment in selective STEM
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(b) Enrollment in male-dominated STEM
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Figure 3 – Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Quintile of Baccalauréat Performance in Math
Notes: The figure shows the fraction of Grade 12 (science track) students enrolled in selective (Panel a) and in male-dominated
(Panel b) STEM undergraduate programs in the year following high school graduation, separately for girls and boys. The filled bars
indicate the baseline enrollment rates among students in the control group, both overall and separately by quintile of Baccalauréat
performance in math. The solid circles show the estimated treatment effects (added to the control group means), with 95 percent
confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated from a regression of the
outcome of interest on interactions between a classroom visit indicator and the quintiles of math performance, using treatment
assignment (interacted with the quintiles of math performance) as an instrument for treatment receipt. The regression controls for
school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted for clustering
at the unit of randomization (class). The detailed results are provided in Appendix Table L27, Panel A.
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(b) Enrollment in male-dominated STEM
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Figure 4 – Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Role Model Background
Notes: The figure shows the fraction of Grade 12 (science track) students enrolled in selective (Panel a) and in male-dominated
(Panel b) STEM undergraduate programs after graduating from high school, separately for girls and boys. The filled bars indicate
the baseline enrollment rates among students in the control group, both overall and separately by type of female role model who
visited the classroom (researcher or professional). The solid dots show the estimated treatment effects (added to the control group
means), with 95 percent confidence intervals denoted by vertical capped bars. The local average treatment effects are estimated
from a regression of the outcome of interest on interactions between a classroom visit indicator and two indicators for role model
type, using treatment assignment (interacted with role model type) as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted for clustering
at the unit of randomization (class). The detailed results are provided in Appendix Table L27, Panel B.
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Table 1 – Treatment-Control Balance

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.525 0.511 −0.010 0.309
Age (years) 15.73 15.71 −0.01 0.180
Non-French 0.057 0.057 0.002 0.652
High SES 0.399 0.412 0.008 0.321
Medium-high SES 0.133 0.128 −0.007 0.168
Medium-low SES 0.239 0.225 −0.012 0.064
Low SES 0.229 0.235 0.012 0.085
Number of siblings 1.492 1.486 0.003 0.904
Class size 32.79 32.95 0.07 0.476
At least one science elective course 0.529 0.540 0.005 0.820
At least one standard elective course 0.542 0.519 −0.031 0.138
DNB percentile rank in math 63.09 62.90 −0.35 0.533
DNB percentile rank in French 61.11 61.40 0.12 0.829

Test of joint significance F -stat: 0.798 (p-value: 0.653)

Predicted track in Grade 11
Grade 11: Science track 0.369 0.370 −0.001 0.912
Grade 11: Science - general track 0.307 0.308 0.000 0.962
Grade 11: Science - technological track 0.061 0.061 0.000 0.865

N 6,801 6,899 13,700

Panel B. Grade 12 (science track)

Student characteristics
Female 0.499 0.484 −0.014 0.292
Age (years) 17.14 17.11 −0.04 0.000
Non-French 0.053 0.048 −0.006 0.275
High SES 0.453 0.474 0.029 0.009
Medium-high SES 0.136 0.135 −0.001 0.829
Medium-low SES 0.216 0.201 −0.015 0.023
Low SES 0.195 0.190 −0.012 0.140
Number of siblings 1.510 1.487 −0.032 0.127
Class size 31.75 32.19 0.39 0.196
DNB percentile rank in math 74.17 73.95 0.20 0.699
DNB percentile rank in French 69.31 69.90 0.89 0.122

Test of joint significance F -stat: 0.983 (p-value: 0.459)

Predicted undergraduate major
Major: STEM 0.382 0.384 0.003 0.352
Major: selective STEM 0.175 0.178 0.006 0.081
Major: male-dominated STEM 0.273 0.276 0.004 0.279

N 2,853 2,898 5,751
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students in
Grade 10 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students in the control and treatment
groups, respectively. Column 3 reports the coefficient from the regression of each variable on the treatment group indicator, with
the p-value reported in column 4. The regression controls for school fixed effects to account for the fact that randomization was
stratified by school, and standard errors are adjusted for clustering at the unit of randomization (class). The F -statistic is from a
test of the joint significance of the coefficients in a regression of the treatment group indicator on all student characteristics. High
school tracks (Panel A) and undergraduate majors (Panel B) are predicted for each student using the coefficients from a linear
regression of the corresponding binary variable (e.g., enrollment in a STEM major) on all student characteristics listed in the table.
This model is fitted separately by grade level on the sample of students in the control group.
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Table 2 – Female Role Models: Summary Statistics

All role
models

Researchers
(Ph.D./
Postdoc)

Professionals
(employed by

sponsoring firm)
(1) (2) (3)

Age (N=51) 33.3 30.0 35.6
(5.7) (3.1) (6.0)

Non-French 0.14 0.10 0.17

holds/prepares for a Ph.D. (N=55) 0.62 1.00 0.38

Graduated from a Grande École 0.39 0.33 0.43

Field: Math, Physics, Engineering 0.23 0.38 0.14

Field: Earth and Life Sciences 0.64 0.62 0.66

Field: Other 0.13 0.00 0.20

Has children (N=52) 0.42 0.19 0.58

Participated in the program the year before 0.25 0.19 0.29

Number of high schools visited 1.8 2.1 1.6
(0.8) (0.9) (0.7)

Number of classroom interventions 5.2 5.9 4.7
(2.3) (2.3) (2.1)

N 56 21 35
Notes: The summary statistics are computed based on information obtained from the L’Oréal Foundation and from the post-
intervention survey administered online to collect feedback about the classroom visits. Standard deviations are shown in parentheses
below the mean values. Where data are missing for some role models, the number of non-missing values N is indicated in parentheses.
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Table 3 – Perceptions of Science-Related Careers

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Positive perceptions of science-related −0.020 0.245*** 0.000 0.023 0.167*** 0.000
careers (index) (0.028) (0.029)

Science-related jobs require long years of study 0.839 −0.087*** 0.000 0.849 −0.074*** 0.000
(0.010) [0.001] (0.010) [0.001]

Science-related jobs are monotonous 0.290 −0.032*** 0.006 0.318 −0.006 0.633
(0.012) [0.011] (0.013) [0.634]

Science-related jobs are solitary 0.325 −0.061*** 0.000 0.303 −0.062*** 0.000
(0.012) [0.001] (0.011) [0.001]

Science-related jobs pay higher wages 0.637 0.008 0.535 0.668 0.015 0.237
(0.014) [0.536] (0.013) [0.297]

Hard to maintain work-life balance 0.297 −0.026** 0.026 0.283 −0.029** 0.014
(0.012) [0.033] (0.012) [0.023]

N 6,475 5,751

Panel B. Grade 12 (science track)

Positive perceptions of science-related −0.003 0.312*** 0.000 0.003 0.155*** 0.000
careers (index) (0.034) (0.033)

Science-related jobs require long years of study 0.666 −0.110*** 0.000 0.719 −0.091*** 0.000
(0.015) [0.001] (0.014) [0.001]

Science-related jobs are monotonous 0.169 −0.019 0.141 0.233 −0.026 0.114
(0.013) [0.141] (0.016) [0.143]

Science-related jobs are solitary 0.228 −0.088*** 0.000 0.206 −0.047*** 0.000
(0.012) [0.001] (0.013) [0.001]

Science-related jobs pay higher wages 0.531 0.059*** 0.001 0.576 0.027* 0.093
(0.018) [0.002] (0.016) [0.143]

Hard to maintain work-life balance 0.225 −0.049*** 0.001 0.167 −0.012 0.260
(0.015) [0.002] (0.011) [0.260]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of classroom interventions on students’ perceptions of science-related
careers, separately by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local average treatment
effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using
treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to account for the
fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of
randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets,
the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of outcomes, using the
False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al.
(2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4 – Perceptions of Gender Roles in Science

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

More men in science-related jobs 0.628 0.156*** 0.000 0.629 0.168*** 0.000
(0.013) [0.001] (0.014) [0.001]

Equal gender aptitude for math (index) 0.115 0.109*** 0.000 −0.134 0.148*** 0.000
(0.025) [0.001] (0.030) [0.001]

Women like science less than men 0.157 0.059*** 0.000 0.198 0.103*** 0.000
(0.011) [0.001] (0.013) [0.001]

W face discrimination in science-related jobs 0.603 0.127*** 0.000 0.527 0.153*** 0.000
(0.013) [0.001] (0.014) [0.001]

N 6,475 5,751

Panel B. Grade 12 (science track)

More men in science-related jobs 0.712 0.125*** 0.000 0.717 0.149*** 0.000
(0.016) [0.001] (0.015) [0.001]

Equal gender aptitude for math (index) 0.158 0.095*** 0.001 −0.161 0.132*** 0.001
(0.028) [0.001] (0.040) [0.002]

Women like science less than men 0.074 0.044*** 0.000 0.146 0.073*** 0.000
(0.009) [0.001] (0.015) [0.001]

W face discrimination in science-related jobs 0.624 0.095*** 0.000 0.600 0.072*** 0.000
(0.020) [0.001] (0.018) [0.001]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of classroom interventions on students’ perceptions of gender roles in
science, separately by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire.
Each row corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left.
Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local average treatment
effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using
treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to account for the
fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of
randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets,
the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of outcomes, using the
False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al.
(2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5 – Stated Preferences and Self-Concept

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value Control
group
mean

Treatment
effect

(LATE)

p-value

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Taste for science subjects (index) −0.169 −0.038 0.294 0.197 −0.019 0.533
(0.036) (0.031)

Math self-concept (index) −0.198 −0.008 0.806 0.231 0.039 0.217
(0.031) (0.032)

Science-related career aspirations (index) −0.103 0.012 0.695 0.120 0.007 0.801
(0.030) (0.029)

N 6,475 5,751

Panel B. Grade 12

Taste for science subjects (index) −0.002 0.016 0.632 0.002 0.000 0.998
(0.034) (0.039)

Math self-concept (index) −0.184 0.050 0.202 0.187 0.072** 0.041
(0.039) (0.035)

Science-related career aspirations (index) −0.045 0.113*** 0.002 0.046 0.050 0.131
(0.037) (0.033)

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of classroom interventions on students’ taste for science subjects, math
self-concept, and science-related career aspirations, separately by grade level and gender. The sample is restricted to students
who completed the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 6 – Enrollment Status the Following Year

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

All STEM tracks
Grade 11 : Science track 0.371 −0.008 0.586 0.578 −0.006 0.676

(0.014) (0.015)

General vs. technological STEM track
Grade 11: Science - general track 0.343 −0.002 0.888 0.436 0.004 0.773

(0.014) [0.889] (0.014) [0.774]

Grade 11: Science - technological track 0.027 −0.006 0.112 0.141 −0.010 0.235
(0.004) [0.224] (0.009) [0.470]

N 7,241 6,459

Panel B. Grade 12 (science track)

All undergraduate STEM majors
Major: STEM 0.289 0.024* 0.080 0.470 0.003 0.886

(0.014) (0.020)

Selective vs. non-selective STEM
Major: selective STEM 0.110 0.035*** 0.002 0.232 0.020 0.200

(0.011) [0.004] (0.016) [0.283]

Major: non-selective STEM 0.178 −0.011 0.322 0.239 −0.017 0.212
(0.011) [0.322] (0.014) [0.283]

Male- vs. female-dominated STEM
Major: male-dominated STEM 0.166 0.038*** 0.002 0.379 0.017 0.387
(math, physics, computer science) (0.012) [0.004] (0.019) [0.388]

Major: female-dominated STEM 0.123 −0.015 0.158 0.091 −0.014 0.119
(earth and life sciences) (0.010) [0.211] (0.009) [0.283]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of classroom interventions on students’ enrollment outcomes in the
academic year following the classroom interventions, i.e. 2016/17, separately by grade level and gender. The enrollment outcomes
are measured using student-level administrative data. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to
the same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7 – Heterogeneous Treatment Effects on Selective and Male-Dominated STEM Enrollment
for Girls in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best linear predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

Undergraduate major: selective STEM 0.038 0.762 Elastic Net
p-value [0.027] [0.031]
Undergraduate major: male-dominated STEM 0.036 0.088 Linear model
p-value [0.064] [0.731]

Panel B. Sorted group average treatment effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

Undergraduate major: selective STEM −0.004 0.139 0.149 Elastic Net
p-value [1.000] [0.014] [0.026]
Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net
p-value [1.000] [0.464] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most−least (upper bound)

Enrollment in selective STEM major
Student characteristics
Baccalauréat percentile rank in math 17.62 81.39 62.85 0.000
Baccalauréat percentile rank in French 41.45 73.44 32.74 0.000
High SES 0.344 0.637 0.302 0.000
Role model characteristics
Professional 0.494 0.638 0.148 0.001
Participated in the program the year before 0.141 0.233 0.093 0.015
Non-French 0.133 0.183 0.051 0.228
Has children 0.503 0.417 −0.095 0.064
Age 33.09 32.97 −0.11 1.000
Holds/prepares for a Ph.D. 0.692 0.606 −0.080 0.111
Field: math, physics, engineering 0.316 0.226 −0.099 0.021
Field: earth and life sciences 0.618 0.602 −0.004 1.000

Enrollment in male-dominated major
Student characteristics
Baccalauréat percentile rank in math 19.88 79.02 59.45 0.000
Baccalauréat percentile rank in French 41.22 72.10 31.10 0.000
High SES 0.335 0.628 0.296 0.000
Role model characteristics
Professional 0.530 0.606 0.078 0.170
Participated in the program the year before 0.142 0.240 0.091 0.021
Non-French 0.153 0.164 0.004 1.000
Has children 0.539 0.418 −0.126 0.010
Age 33.15 32.95 −0.17 1.000
Holds/prepares for a Ph.D. 0.705 0.601 −0.103 0.043
Field: math, physics, engineering 0.298 0.237 −0.065 0.186
Field: earth and life sciences 0.657 0.585 −0.075 0.170
Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrollment outcomes of girls in
Grade 12, using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect
(CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear
Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators for the
educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high, medium-high,
medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and
math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the parameter estimates
and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method (see Appendix
Table M31, Panel A). The coefficients β1 and β2 correspond to the average treatment effect (ATE) and heterogeneity loading
(HET) parameters in the BLP, respectively. Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e., the
average treatment effects among students in the top and bottom quintiles of the heterogeneous effects induced by the ML proxy
predictor S(Z), using the best ML method (see Appendix Table M31, Panel B). Panel C performs a Classification Analysis (CLAN)
by comparing the average characteristics of the 20 percent most and least affected students defined in terms of the ML proxy
predictor. The parameter estimates and p-values are computed as medians over 100 splits, with nominal levels adjusted to account
for the splitting uncertainty. This adjustment implies that the reported p-values should be interpreted as upper bounds for the
actual p-values. Further details on the methods are provided in Appendix M.
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Table 8 – Heterogeneous Treatment Effects on Student Perceptions: Average Characteristics of
the Most and Least Affected Girls in Grade 12

20% least 20% most Difference p-value
affected affected most−least (upper bound)

(1) (2) (3) (4)

Positive perceptions of science-related careers (index)
Mean Baccalauréat percentile rank in math 26.62 73.29 46.85 0.000
Class visited by professional 0.483 0.675 0.192 0.000

More men in science-related jobs
Mean Baccalauréat percentile rank in math 74.87 25.00 −51.03 0.000
Class visited by professional 0.614 0.511 −0.112 0.031

Equal gender aptitude for math (index)
Mean Baccalauréat percentile rank in math 42.77 50.58 7.89 0.003
Class visited by professional 0.622 0.563 −0.058 0.403

Women like science less than men
Mean Baccalauréat percentile rank in math 44.47 50.57 5.07 0.090
Class visited by professional 0.592 0.540 −0.035 0.908

Women face discrimination in science-related jobs
Mean Baccalauréat percentile rank in math 52.15 42.79 −8.81 0.001
Class visited by professional 0.568 0.570 0.011 1.000

Taste for science subjects (index)
Mean Baccalauréat percentile rank in math 41.36 54.71 13.63 0.000
Class visited by professional 0.436 0.678 0.227 0.000

Math self-concept (index)
Mean Baccalauréat percentile rank in math 52.22 42.10 −10.65 0.000
Class visited by professional 0.512 0.582 0.071 0.240

Science-related career aspirations (index)
Mean Baccalauréat percentile rank in math 44.70 47.78 2.36 0.712
Class visited by professional 0.375 0.762 0.389 0.000

Notes: This table reports the average characteristics of Grade 12 girls in the top and bottom quintile of predicted treatment
effects on student perceptions, using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional
average treatment effect (CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net,
Random Forest, Linear Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of
three indicators for the educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background
(high, medium-high, medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks
in the French and math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, the table compares the
average characteristics of the students in the top and bottom quintile of treatment effects, as predicted by the best ML proxy
predictor based on the Group average treatment effects (GATEs) targeting of the CATE (see Appendix Table M31, Panel B). The
characteristics reported in this table are the students’ average percentile rank in math (in the Baccalauréat exams) and the share
exposed to a role model with a professional rather a research background. The parameter estimates and p-values are computed as
medians over 100 splits, with nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the
reported p-values should be interpreted as upper bounds for the actual p-values. This adjustment implies that the reported p-values
should be interpreted as upper bounds for the actual p-values. The average treatment effects among the 20 percent most and least
affected students can be found in Panel B of Appendix Table M32. Further details on the methods are provided in Appendix M.
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Table 9 – Correlation between Conditional Average Treatment Effects (CATEs) for Girls in
Grade 12

Bivariate correlation with the CATE on
enrollment in a selective STEM program

Estimate 95% confidence
(ρ̂A,B|Z) interval

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.96 [ 0.21, 5.30]

More men in science-related jobs −0.68 [−3.23, −0.01]

Equal gender aptitude for math (index) 0.19 [−1.24, 2.05]

Women like science less than men 0.21 [−1.43, 3.23]

Women face discrimination in science-related jobs −0.34 [−2.22, 0.56]

Taste for science subjects (index) 0.71 [ 0.04, 3.96]

Math self-concept (index) −0.07 [−1.84, 1.40]

Science-related career aspirations (index) 0.36 [−0.51, 2.01]

Notes: This table reports, for girls in Grade 12, estimates of the bivariate correlation ρA,B|Z between the Conditional Average
Treatment Effect (CATE) on enrollment in a selective STEM program, denoted by sB

0 (Z), and the CATE on each of the potential
mediators listed in the table, denoted by sA

0 (Z). The proxy predictor of the CATE on selective STEM enrollment, denoted by SB(Z),
is estimated using the Elastic Net method, as it has the best performance based on the Best Linear Predictor (BLP) targeting of
the CATE for this outcome. The proxy predictor of the CATE on the potential mediator Y A, denoted by SA(Z), is estimated
using the ML method that has the best performance based on the BLP targeting of the CATE on the corresponding outcome (see
Appendix Table M31, Panel A). An indication of the quality of these predictions is provided by the heterogeneity loading (HET)
parameter of the BLP (see Appendix Table M32, Panel A). For each random split of the data, the correlation coefficient ρA,B|Z is

estimated as ρ̂A,B|Z = Sign(β̂A|B
2 )

√
β̂

A|B
2 β̂

B|A
2 /

√
β̂

A|A
2

√
β̂

B|B
2 , where β̂k|l

2 is the estimated heterogeneity loading parameter of
the BLP of sk

0(Z) based on Sl(Z) (with k, l ∈ {A,B}), using the methods in Chernozhukov et al. (2018). The covariates Z that are
used to predict the CATEs consist of three indicators for the educational districts of Paris, Créteil, and Versailles, four indicators
for students’ socioeconomic background (high, medium-high, medium-low, and low), their age, their overall percentile rank in the
Baccalauréat exam, their percentile ranks in the French and math tests of the exam, and a vector of 56 role model fixed effects. For
each pair of outcomes, columns 1 and 2 report the estimated correlation between the CATEs and its 95 percent confidence interval,
respectively. Estimates and confidence intervals are computed as medians over the first 100 random data splits for which ρ̂A,B|Z
can be computed. For each data split, the confidence intervals are obtained using a clustered bootstrap procedure. The nominal
level of the median of confidence intervals is adjusted to account for the splitting uncertainty, using the method of Chernozhukov
et al. (2018). This adjustment implies that the reported confidence intervals should be interpreted as lower and upper bounds for
the true lower and upper limits of the confidence intervals. Further details on the methods are provided in Appendix M.
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A Female Representation in STEM Studies in France
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Figure A1 – Female Underrepresentation in STEM Fields of Study in France
Notes: The figure shows the share of female students in the first year of high school (Grade 10), in the STEM-oriented high school
tracks in Grade 11 and Grade 12, and in the STEM fields of first-year undergraduate programs which are either selective (CPGE
and STS) or non-selective (University). After completing Grade 10, high school students are directed either to the general track
(leading to the general Baccalauréat) or to the technological track (leading to the general Baccalauréat). In the general track, the
Science (S) sub-track specializes in STEM fields. In the technological track, the two STEM-oriented sub-tracks are STL and STI2D.
Sources: Authors’ calculations from the SCOLARITE (MENJ-DEPP) and SISE (MESRI-SIES) datasets for 2006/07 (Panel b) and
2016/17 (Panel a).
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(a) STEM fields of study
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Figure A2 – First-Year Undergraduate Students: Total Enrollment and Share of Female
Students in STEM and non-STEM Fields of Study, Academic Year 2016/17
Sources: Authors’ calculations from the SCOLARITE and SISE datasets (MENJ-DEPP and MESRI-SIES) for 2016/17.
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B Gender Pay Gap Among College Graduates in France
This appendix provides descriptive evidence on the entry-level gender pay gap among French
college graduates holding a master’s degree and analyzes the contribution of gender segregation
in college majors to this gap. The objective of this analysis is to better understand whether the
effects of the role model interventions on female students’ choice of studies can be expected to
reduce the gender pay gap. Section B.1 describes the data sources, while Section B.2 discusses
the empirical results.

B.1 Data
Unfortunately, we cannot rely exclusively on administrative data to provide empirical evidence
on the gender pay gap by field of study in France, as it is currently not possible to link
administrative data on students enrolled in higher education with administrative data on wages
and income tax returns. Instead, our analysis of the gender pay gap among college graduates is
based on the combination of aggregate statistics on student enrollment by college major and
gender with survey information on the starting wages of recent cohorts of college graduates.

Data sources. In France, gender segregation and gender pay gaps by college major can
be analyzed for the population of college graduates who obtained their master’s degree (or
equivalent) in 2015 or 2016. For this purpose, we combine several administrative and survey
data sources.

SISE Résultats 2015. this individual-level administrative dataset covers all students enrolled
in public universities during the academic year 2015/16 and provides detailed information on
each student’s degree program and field of study.

Enquête Professionnelle des Diplômés de Master 2015 (EPDM). This survey was conducted
in December 2017 by the Ministry of Higher Education to collect information on the transition
of master’s graduates to the labor market. The survey was targeted at students who obtained
their master’s degree in 2015 and who entered the labor market within one year after graduation,
with an overall response rate of 70 percent. As part of this survey, master’s graduates were
asked to report their annual earnings 18 months after graduation. Our analyses are based on
the survey’s public use files, which provide aggregate statistics by gender and college major.A.1

Enquête sur l’Insertion des Diplômés des Grandes Écoles 2018 (EIDGE). This survey was
conducted in 2018 by the Conférence des Grandes Écoles (CGE), a not-for-profit association
representing French elite graduate schools. The Grandes Écoles, which award a diploma
equivalent to a master’s degree, recruit their students through highly competitive national exams
taking place at the end of two-year undergraduate selective STEM and non-STEM preparatory
courses (Classes Préparatoires aux Grandes Écoles or CPGE). The survey was targeted at
students who graduated between 2015 and 2017 from one of the 184 Grandes Écoles that are
members of the CGE, with an overall response rate of 48 percent. Our analyses are based on the
aggregate statistics published by the CGE separately by gender and by type of Grande École
(i.e., engineering schools, business schools, and other schools).A.2 We only consider students who
graduated from a Grande École in 2016, since annual earnings 24 months after graduation are
only available for this cohort.

Grouping of college majors. The above data sources can be combined to compute the
number of female and male master’s students who graduated from university in 2015 or from a

A.1https://data.enseignementsup-recherche.gouv.fr/explore/dataset/fr-esr-insertion_
professionnelle-master_donnees_nationales/information/ (accessed on August 2, 2019).

A.2https://www.cge.asso.fr/themencode-pdf-viewer/?file=https://www.cge.asso.fr/wp-content/
uploads/2018/06/2018-06-19-Rapport-2018.pdf (accessed on August 2, 2019).
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Grande École in 2016, separately by college major.
The Ministry of Higher Education’s official classification comprises 54 college majors. For

the purpose of our analysis, we group these college majors into the following broad categories:

• Non-STEM majors (35 in total): this category includes master’s degree programs in law,
economics, management, humanities, psychology, social sciences, medicine, pharmacy,
sports studies as well as degrees from non-STEM Grande Écoles (e.g., business schools,
schools of journalism, schools of architecture).

• STEM majors (19 in total): this category includes master’s degree programs in STEM
fields as well as degrees from engineering schools (Grande Écoles d’ingénieurs).

• Among STEM majors, we distinguish between engineering schools (all of which are selective
and are classified as a single major) and non-selective STEM master’s degrees at university
(18 in total).

• Among non-selective STEM majors, we further distinguish between male-dominated
majors (16 in total) and female-dominated majors (2 in total: chemistry and earth and
life sciences), based on whether the share of female students among master’s graduates in
the corresponding field of study is below or above 50 percent. This distinction does not
apply to selective STEM majors, since almost all engineering schools are male-dominated.

Earnings information. The EPDM and EIDGE surveys provide information on graduates’
average median gross salary (salaire brut annuel médian) separately by gender and college major.
Starting wages are measured 18 months after graduation for master’s graduates and 24 months
after graduation for Grandes Écoles graduates. Note that since we do not have access to the
individual-level survey data, median earnings by broad categories of college majors can only
be approximated as the average of the median earnings in each of the majors that form these
broad categories.

B.2 College Majors and the Gender Pay Gap
Combining the above data sources, we provide descriptive evidence on the median starting
wages of female and male graduates across the broad categories of college majors. We then
analyze the contribution of gender segregation in college majors to the overall entry-level gender
pay gap.

Gender composition of STEM and non-STEM majors. The first three columns of
Table B1 show the distribution of master’s-level graduates across the broad categories of college
majors that we defined above, along with the share of female graduates in each category.
The summary statistics indicate that while female students represent 52 percent of master’s
level graduates, they are strongly underrepresented in STEM majors (34 percent). Female
underrepresentation is more pronounced in selective (male-dominated) STEM majors (female
share: 30 percent) than in non-selective STEM majors (female share: 40 percent). Among
non-selective STEM majors, female students represent only 29 percent of graduates in male-
dominated fields such as mathematics, physics, or computer science, compared to 60 percent of
graduates in female-dominated fields such as chemistry and earth and life sciences.

Starting wages of STEM and non-STEM graduates. The comparison of starting wages
by broad college major category confirms that female graduates tend to be overrepresented
in lower-paying majors (see columns 3–5 of Table B1). Female graduates holding a STEM
degree have a median starting wage of 29,984 euros, which is 7.4 percent higher than the median
starting wage of female graduates holding a non-STEM degree (27,913 euros). Strikingly, the
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wage premium for female graduates in STEM appears to be almost entirely driven by selective
(male-dominated) STEM degrees (16.4 percent). By contrast, the wage premium attached
to non-selective STEM degrees is close to zero (−0.5 percent). The low apparent return to
non-selective STEM degrees masks substantially different returns between male-dominated and
female-dominated majors: while the wage premium attached to male-dominated non-selective
STEM majors is of 4.2 percent for female graduates compared to non-STEM majors, a wage
penalty of 4.7 percent is attached to female-dominated non-selective STEM majors.

Female underrepresentation in STEM: contribution to the gender pay gap. The
last three columns of Table B1 indicate that across all categories of programs, male graduates
earn a median annual starting wage of 32,122 euros, compared to 28,411 euros for female
graduates. This amounts to an overall gender pay gap of 3,711 euros per year, or 11.6 percent
of male pay.

Although the overrepresentation of female graduates in lower-paying non-STEM and female-
dominated STEM majors is a likely contributor to the overall gender pay gap, it is clearly not
the sole cause, as gender differences in median earnings are observed within each broad category
of college majors. Interestingly, however, the gender wage gap is lower in each category of STEM
majors than in non-STEM majors. This finding is consistent with similar evidence for the U.S.
(Beede et al., 2011).

To shed light on the contribution of gender segregation in fields of study to the overall
entry-level gender pay gap, we adopt a method similar to that used by McDonald and Thornton
(2007) in estimating what the overall female-male starting wage gap would be if female graduates
had the same distribution of college majors as male graduates.

Since our interest is in measuring the specific contribution of the different dimensions of
female underrepresentation in STEM majors (STEM vs. non-STEM, selective vs. non-selective
STEM, male-dominated vs. female-dominated non-selective STEM), we construct counterfactual
wage gaps by considering increasingly disaggregated groups of majors.

We start by estimating the counterfactual wage gap if female graduates had the same
distribution of STEM vs. non-STEM majors as male graduates, while keeping fixed females’
marginal distribution of majors within each of these two broad categories. Put differently,
we apply female median earnings in STEM vs. non-STEM degrees to the male distribution
of graduates in both categories of majors to recalculate the overall gender pay gap. This
counterfactual wage gap, which we denote by ∆̃w, is constructed as follows:

∆̃w = 1− (w̄fsNm
s + w̄fnsN

m
ns)

(w̄ms Nm
s + w̄mnsN

m
ns)

,

where w̄gk and N g
k denote the median earnings and the number of graduates of gender g (m:

males; f : females) in college major category k (s: STEM; ns: non-STEM), respectively. The
contribution of female underrepresentation in STEM programs to the gender pay gap is then
measured as ∆w− ∆̃w, where ∆w denotes the observed overall pay gap between male and female
graduates.

To measure the contribution of gender segregation between selective and non-selective
STEM majors, we construct a second counterfactual wage gap in a similar manner, except
that college majors are now grouped into three categories: non-STEM, selective STEM, and
non-selective STEM. To measure the contribution of gender segregation between male-dominated
and female-dominated STEM majors, we repeat this exercise after grouping college majors
into four categories: non-STEM, selective STEM, non-selective male-dominated STEM, and
non-selective female-dominated STEM. The contribution of gender segregation between majors
within both male- and female-dominated non-selective STEM is measured by ungrouping all
STEM majors. Finally, we ungroup all non-STEM majors to evaluate the contribution of gender
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segregation between non-STEM majors. The corresponding counterfactual measures what the
overall gender gap would be if women had the same distribution as men across all 54 STEM
and non-STEM college majors.

Results. The results of this decomposition exercise are shown in Table B2 along with the
observed gender pay gap. The contributions of gender segregation between the different categories
of college majors to the gender pay gap are reported in column 1 and are expressed as percentages
of the total in column 2. We find that the gender imbalances across all college majors “explain”
40 percent of the gender pay gap among college graduates. Two-thirds of this explained part
(26.5 percent of the total wage gap) can be attributed to the unequal representation of female
and male graduates in STEM vs. non-STEM majors, on the one hand, and between the different
majors within STEM, on the other hand. The remain third of the explained part of the
gap (13.4 percent of the total) is due to gender segregation between non-STEM majors, the
lowest-paying majors (humanities) being typically more female-dominated (77 percent) than the
highest-paying ones (law and economics, in which the female share is 59 percent).

The 26.5 percent STEM-related gender pay gap can be decomposed as follows. Increasing
the share of female graduates holding a STEM degree to that of males without changing females’
marginal distribution of STEM majors is associated with a 14.0 percent reduction in the gender
pay gap. In line with the evidence from Table B1, further reassigning female graduates from
non-selective STEM majors to (male-dominated) selective STEM majors in order to match
the relative shares of selective and non-selective STEM majors among male graduates would
reduce the gender gap by an additional 6.5 percent from the baseline. Finally, reassigning female
graduates from non-selective female-dominated STEM majors to non-selective male-dominated
STEM majors would trigger an extra 4.3 percent reduction in the gender pay gap, while further
reassigning female students between majors within male- and female-dominated programs would
result in an extra 1.8 percent reduction from the baseline.

Altogether, these findings suggest that the underrepresentation of female students in STEM
majors accounts for approximately 25 percent of the entry-level gender pay gap among college
graduates in France. Moreover, almost half of this STEM-related gender pay gap can be
attributed to the fact that within STEM majors, female graduates are relatively less likely
than males to be enrolled in those with the largest wage premium, i.e., the selective and
male-dominated STEM majors.
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Table B1 – Starting Wage Among College Graduates Holding a Master’s Degree or Equivalent, Classes of 2015/16

Graduates: classes of 2015/16 Wage 18/24 months after graduation (survey)

Female graduates Male graduates

Number of
graduates

% of
total

Female
share
(%)

Median
wage
(euros)

Relative
Median
wage

(non-STEM
majors: 100)

Median
wage
(euros)

Relative
Median
wage

(non-STEM
majors: 100)

Gender
pay gap
(%)

(1) (2) (3) (4) (5) (6) (7) (8)

All majors (54) 166,600 100.0 51.5 28,411 - 32,122 - 11.6

Non-STEM majors (35) 106,997 64.2 61.1 27,913 100.0 31,302 100.0 10.8

STEM majors (19) 59,603 35.8 34.3 29,984 107.4 32,972 105.3 9.1

of which:

Selective (male-dominated) STEM 31,463 18.9 29.7 32,500 116.4 34,800 111.2 6.6
majors (Engineering schools)

Non-Selective STEM 28,140 16.9 39.6 27,767 99.5 30,530 97.5 9.1
majors (18)

of which:

Male-dominated majors (16) 18,874 11.3 29.4 29,077 104.2 31,371 100.2 7.3

Female-dominated majors (2) 9,266 5.6 60.3 26,596 95.3 27,581 88.1 3.6
Notes: This table reports summary statistics on gender segregation and gender pay gaps for the population of college graduates who obtained their master’s degree (or equivalent) in 2015 or 2016.
The 54 college majors are grouped into two broad categories: non-STEM majors (master’s degrees in economics, management, humanities, psychology, social sciences, sports studies, medicine,
pharmacy, and non-STEM Grandes Écoles such as business schools or schools of journalism) and STEM majors (master’s degrees in STEM fields and degrees from engineering schools); STEM majors
are further broken down between selective (engineering schools) and non-selective majors (master’s degree at university); among non-selective majors, we further distinguish between male-dominated
and female-dominated majors, based on whether the share of female graduates in the corresponding field of study is below or above 50 percent. Column 1 shows the number of graduates per broad
category of college majors using the administrative dataset SISE 2015/16 (for university graduates who obtained their master’s degree in 2016) and the EIDGE survey (for students who graduated
from Grandes Écoles in 2016 ). Median gross annual wages (columns 4 and 6) are computed from aggregate statistics by gender and college major from the EPDM and EIDGE surveys. Entry-level
wages are measured 18 months after graduation for master’s graduates and 24 months after graduation for Grandes Écoles graduates. Median wages by broad categories of college majors are
approximated as the average of the median wages in each of the majors that form these broad categories.
Sources: Columns 1–3: SISE 2015/16 and Enquête sur l’Insertion des Diplômés des Grandes Écoles 2018 (EIDGE); columns 4–8: Enquête Professionnelle des Diplômés de Master 2015 (EPDM) and
EIDGE.
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Table B2 – Contribution of Gender Segregation in College Majors to the Entry-Level Gender
Wage Gap Among College Graduates, Classes of 2015/16

Gender
pay gap

(relative to
male pay)

Share
of the
gender

wage gap
(1) (2)

Total wage gap 0.116 100.0%

Contribution of gender segregation in college majors to the wage gap:

Explained by unequal gender distribution between majors 0.046 40.0%

of which:

between STEM/non-STEM majors and between majors within STEM 0.031 26.5%

of which:

between STEM and non-STEM majors 0.016 14.0%
between selective and non-selective STEM majors 0.007 6.5%
between male- and female-dominated non-selective STEM majors 0.005 4.3%
between majors within male- and female-dominated non-selective STEM 0.002 1.8%

between majors within non-STEM 0.016 13.4%

Unexplained by unequal gender distribution between majors 0.069 60.0%
Notes: This table provides a decomposition of the total entry-level wage gap between male and female college graduates who
obtained their master’s degree or equivalent in 2015 (university graduates) or in 2016 (Grandes Écoles graduates). Entry-level
wages are measured as median annual gross wages by gender and college majors, 18 months after graduation for master’s graduates,
and 24 months after graduation for Grandes Écoles graduates. To measure the contribution of the unequal gender representation
across college majors, counterfactual wage gaps are constructed using increasingly disaggregated groups of college majors. The
contribution of gender segregation between STEM and non-STEM majors is measured as the observed gender wage gap minus the
counterfactual wage gap that would be observed if female graduates had the same distribution of STEM and non-STEM majors
as male graduates, while keeping fixed females’ marginal distribution of majors within each of these two broad categories. The
contribution of gender segregation between selective and non-selective STEM majors is estimated in a similar manner, except that
the counterfactual gender wage gap is estimated by reassigning female graduates from non-selective STEM majors to selective STEM
majors to match the relative shares of selective and non-selective STEM majors among male graduates. The other components of
the gender wage gap are measured by sequentially ungrouping college majors to compute counterfactual gender wage gaps. The
contributions of gender segregation between the different categories of college majors to the gender wage gap are shown in column 1
and are expressed as percentages of the total in column 2.
Sources: See notes of Table B1.
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C Program Details

(a) First Video: “Jobs in Science: Beliefs or Reality?”

(b) Second Video: “Are we All Equal in Science?”

Figure C3 – Screenshots of the Two Videos Shown During the Role Model Interventions
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Figure C4 – Participating High Schools
Notes: The thick lines represent the boundaries of the three education districts (académies) of the Paris region (Paris, Créteil and
Versailles). The solid circles show the location of the 98 high schools that participated in the program evaluation.
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D Survey Instruments

D.1 Role Model Survey
The female role models conducting the classroom interventions were invited to complete the
following online survey after each visit to a school. Each school visit typically consisted of three
classroom interventions (two in Grade 10 and one in Grade 12 (science track)).

Q1. Please indicate your name and surname
Name: .......... Surname: ..........

Q2. Please select the high school that you visited
[Drop down menu with the list of participating schools]

Q3. On which date did your classroom interventions take place?
Day �� Month �� Year ����

Q4. Were the classes you visited those planned in the schedule?
• First intervention: � Yes � No
• Second intervention: � Yes � No
• Third intervention: � Yes � No

[The role models were asked to answer questions 5 to 20 for each classroom intervention]

Q5. Please enter the name/identifier of the class
[Free text field]

Q6. At what time did the classroom intervention start?
Starting time: ��:�� [AM/PM]

Q7. Was the teacher present?
� Yes � No

Q8. [If “Yes” to Q7] The teacher was
� A man � A woman

Q9. [If “Yes‘’ to Q7] What was the subject taught by the teacher?
� Earth and life sciences
� Mathematics
� English
� French
� Physical and sports education
� History and geography
� Physics and chemistry
� Other (Specify: ..........)
� I don’t know

Q10. [If “Yes” to Q7], did he/she seem interested?
� Yes � Rather yes � Rather no � No

Q11. Apart from the teacher, was there another adult in the classroom (e.g., educational adviser,
another teacher)?
� Yes � No

Q12. Could you display the PowerPoint presentation?
� Yes � No
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Q13. Could you show the videos?
� Yes � No

Q14. Overall, you found that the students were...
[Possible answers: Yes, very much/Yes, somewhat/Not really/Not at all/Mixed]

• interested
• engaged in the discussion
• inattentive or difficult to contain

Q15. Did you run into logistical problems (e.g., the teacher was not informed of the visit)?
� Yes (Specify: ..........) � No

Q16. Would you say that gender stereotypes (e.g., “science is not for girls”) were strong among
the students?
� Yes, very much � Rather yes � Rather no � Not at all

Q17. Was there a discipline problem that required an interruption?
� Yes � No

Q18. Overall, how did your classroom intervention go?
[Possible answers: Very well/Well/Average/Not so well/Not well at all]

Q19. Do you feel that your intervention was well suited to the students?
� Yes, very much � Rather yes � Rather no � Not at all

Q20. Based on the class’s reactions (questions, smiles, discussion with students at the end of the
intervention...), how receptive do you think the students were to the following messages?
[Possible answers: This topic was not addressed/This topic was addressed and the students
were very receptive/This topic was addressed and the students were rather receptive/This
topic was addressed but the students were not very receptive/This topic was addressed
but the students were not at all receptive]

• “Science is everywhere”
• “Jobs in science are fulfilling”
• “Jobs in science are for girls too”
• “Jobs in science pay well”
• Short videos

Q21. Do you have any comments or suggestions? (please feel free to expand)
[Free text field]
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D.2 Student Survey

Survey Preamble

You are about to answer a questionnaire on students’ attitudes towards science and science-
related careers.

This study will not influence decisions regarding your education in any way. It is conducted
independently by a team of researchers from the Paris School of Economics, a public research
institution that is affiliated with the Centre National de la Recherche Scientifique (CNRS),
with the aim of better understanding high school students’ educational and career choices. The
study’s methodology is based on the combined use of a student survey and of administrative
data collected by the statistical offices of the education districts of the Île-de-France region.

We are interested in knowing your views. We thank you in advance for answering all the
questions even if they sound similar. If none of the response categories fits your answer exactly,
please choose the one that is closest to your opinion.

Your answers will remain completely confidential. A serial number has been generated
so ensure that the researchers never have access to your name and surname. No personal
information collected through this survey will be communicated to the regional education
authority, to your school, to your teachers, or to your family. To protect the confidentiality
of your answers, please make sure that you insert your survey questionnaire into the sealed
envelope that was provided to you before you hand it to your teacher.

We thank you in advance for taking the time to answer our questions. Your participation is
very important to our understanding of students’ decision making.

General Questions

G1. What is today’s date?
Day �� Month �� Year ����

G2. You are:
� A girl � A boy

G3. What is your date of birth?
Day �� Month �� Year ����

G4. Do you have older brothers or sisters?
Older brother(s): � Yes � No
Older sister(s): � Yes � No

G5. Is your father’s occupation related to science?
� Yes � No � I don’t know

G6. Is your mother’s occupation related to science?
� Yes � No � I don’t know

G7. How often do you participate in the following activities? (check only one box per row)
[Possible answers: Once a day/Once a week/Once a month/Never]

• Play video games
• Play a team sport
• Play board games or strategy games
• Participate in sports competitions
• Watch TV shows about science (e.g., “E=M6”)
• Read comic books
• Go on Facebook
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• Go out with friends
• Spend time with your family outside meal times

Part A: Subjects Studied

A1. On a scale from 0 (“not at all”) to 10 (“very much”), how much do you enjoy the following
subjects? (check only one box per row) [10 boxes from 0 to 10]
[The order of subjects was randomized across respondents]

• Earth and life sciences
• Mathematics
• English
• French [Grade 10 students only]
• Philosophy [Grade 12 students only]
• Physical and sports education
• History and geography
• Physics and chemistry

A2. How would you assess your level in the following subjects? (check only one box per row)
“My level in this subject is...” [Very weak/Weak/Average/Good/Very Good]
[The order of subjects was randomized across respondents]

• Earth and life sciences
• Mathematics
• English
• French [Grade 10 students only]
• Philosophy [Grade 12 students only]
• Physical and sports education
• History and geography
• Physics and chemistry

A3. How would you assess your level in the following subjects, compared to the average of the
boys in your class? (check only one box per row)
“Compared to the average of the boys in my class, I would say that my level in this subject
is...” [Much worse/Somewhat worse/Equal/Somewhat better/Much better]

• French [Grade 10 students only]
• Mathematics
• Earth and life sciences [Grade 12 students only]

A4. How would you assess your level in the following subjects, compared to the average of the
girls in your class? (check only one box per row)
“Compared to the average of the girls in my class, I would say that my level in this subject
is...” [Much worse/Somewhat worse/Equal/Somewhat better/Much better]

• Mathematics
• French [Grade 10 students only]
• Earth and life sciences [Grade 12 students only]

[Note: The order of questions A3 and A4 was randomized across respondents]

A5. To what extent do you agree with the following statements?
[Possible answers: Strongly agree/Somewhat agree/Disagree/Strongly disagree]

• I feel lost when I try to solve a math problem
• I often worry that I will struggle in math class
• If I make enough effort, I can do well in science subjects
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Part B: Choice of Studies

B1. [Grade 10 students only] Which high school track would you like to pursue next year?
(multiple answers are possible)

� Grade 11 - Science (Première S)
� Grade 11 - Humanities (Première L)
� Grade 11 - Social Sciences (Première ES)
� Grade 11 - Technological track (Première Technologique)

If so, which one? � STI2D � STD2A � STMG � ST2S � STL � S2TMD � STHR � STAV
� Grade 11 - Vocational track (Première Professionnelle)
� Other (Specify: ..........)
� I don’t know

[Grade 12 students only] What studies would you like to pursue after high school? (multiple
answers are possible)
� University
� Classes Préparatoires aux Grandes Écoles (standard or integrated)
� STS (technician’s diploma)
� IUT (university institutes of technology)
� Specialized schools (paramedical and social care, architecture, journalism, public

affairs, arts, etc.)
� Other (Specify: ..........)
� I don’t know

B2. When did you finalize this choice? (check only one box)
� Before September 2015
� In September 2015
� In October 2015
� In November 2015
� In December 2015
� In January 2016
� In February 2016
� In March 2016
� I haven’t decided yet

B3. Are you still unsure about your choice of studies?
� Yes, a lot � Yes, a little � No

B4. If you are planning to pursue higher education, which field are you considering? (multiple
answers are possible)
� Earth and life sciences
� Mathematics, Physics, Computer science, Engineering
� Health
� Paramedical and social care
� Law, Economy, Management, Marketing, Communications
� Literature, History, Geography, Psychology, Sociology, Philosophy, Linguistics
� Sports studies
� Arts
� Other (Specify: ..........)
� I don’t know

B5. Are your parents pushing you to pursue scientific studies?
� Yes, a lot � Yes, a little � Not at all
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B6. List two jobs you would like to do later in life
• Job 1: [Fill in by hand]
• Job 2: [Fill in by hand]

B7. Which of the following jobs might you be interested in as a career? (check only one box
per row)
“I would like this job...” [Yes/Rather yes/Rather no /No]
[The order of the jobs was randomized across respondents]

• Engineer
• Computer scientist
• Pharmacist
• Chemist
• Psychologist
• Physician
• Researcher in biology
• Renewable energy technician
• Industrial designer
• Lawyer

B8. Below is a list of factors that might influence your choice of studies. On a scale of 0 to 10,
indicate how important each factor is to you (0: “this factor is not important at all in my
choice of studies”; 10: “this factor is essential in my choice of studies”). Check only one
box per row (0 = not important at all / 10 = essential)

• Interest in the field of study
• The opportunity to specialize quickly
• Being able to access many jobs
• The risk that other study programs might be too difficult
• The ease of finding a stable job
• Career and salary prospects
• The sense of fit
• The workload
• Being surrounded by girls
• Being surround by boys

Part C: Attitudes towards Science

C1. What is your opinion regarding the following statements?
[Possible answers: Strongly agree/Somewhat agree/Disagree/Strongly disagree ]

• I like science in general
• There are jobs in science that I find interesting
• I could see myself working in a science-related job later in life
• Science-related jobs pay higher wages
• Science-related jobs require long years of study
• Science-related jobs are monotonous
• It is difficult have a fulfilling family life when working as a scientist
• Science-related jobs are rather solitary

C2. Among the following statements, which seem true to you, and which seem false?
[Possible answers: True/Somewhat true/Somewhat false/False]

• There are more men that women in science-related jobs
• Men are more gifted than women in mathematics
• Women and men are born with different brains
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• Women don’t really like science
• Women face discrimination in science-related jobs

C3. If you think of a [female/male] scientist, what adjectives comme to mind? Chose the
adjective in each row that best fits your perception of a [female/male] scientist. (Check
only only one box per row)
[Note: the female/male descriptor was randomly assigned across respondents ]
� Interesting OR � Boring
� Repetitive OR � Creative
� Solitary OR � Sociable
� Stylish OR � Unfashionable
� Respected OR � Not very respected
� Shy OR � Extroverted
� Exemplary OR � Ordinary

Part D: Questions for Visited Classes [Treatment Group only]

D1. Did a female scientist from the L’Oreal program “For Girls in Science” visit your class?
� Yes � No

D2. Did you enjoy this intervention?
� Yes � No

D3. Would you say that this visit changed...
[Possible answers: Strongly agree/Somewhat agree/Disagree/Strongly disagree]

• your perception of science-related jobs?
• your interest in science-related jobs?
• your perception of women’s place in science-related jobs?

D4. Would you say that this visit...
[Possible answers: Strongly agree/Somewhat agree/Disagree/Strongly disagree]

• gave you new ideas for your future?
• influenced your aspirations and choices of study?
• confirmed a choice you had already made?
• made you want to pursue science-related studies?

D5. Did you talk about this visit...
• with other students in your class?

� Yes � No
• with students from other classes in your high school?

� Yes � No
• with friends outside of your school?

� Yes � No

D6. Have you been exposed to other science outreach programs?
• During this school year

� Yes � No
• In the past

� Yes � No � I don’t remember

Part D: External Environment [Control Group only]

D1. Did you talk about your choice of studies...
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• with friends or other students in your class?
� Yes, a lot � Yes, a little � No

• with friends or other students in your high school who are not in your class?
� Yes, a lot � Yes, a little � No

• with friends or students outside of your school?
� Yes, a lot � Yes, a little � No

D2. Did you participate in science outreach programs and programs about science-related jobs
via your high school (e.g., a visit from a scientist in your class, a science workshop, a visit
to a museum or a laboratory)?

• I participated in such a program during this school year
� Yes � No

• I will participate in such a program before the end of the school year
� Yes � No

• I have participated in such a program in the past
� Yes � No � I don’t remember

If so, what type of program was it (or will it be)? (check all boxes that apply)
� Science Fair (Fête de la science) workshop
� Scientist’s visit to your class
� Visit to the Cité des Sciences or to the Palais de la Découverte
� Visit to a laboratory or to a company where scientists work
� Meeting with an association that promotes science
� Other

D3. Have you ever heard of this type of awareness programs? (check all boxes that apply)
� Yes, from other students in my high school
� Yes, from friends outside of my school
� Yes, from teachers
� Yes, from other people
� No, I haven’t heard of such programs

D4. Do you know if other students in your high school received a classroom visit from a female
or male scientist this year?
� No, I did not hear about it
� Yes, I vaguely heard about it
� Yes, I definitely heard about it

The questionnaire is now complete. Please check that you have answered ALL of the questions
before handing the questionnaire to your teacher (in the sealed envelope). Thank you very much
for your participation.

A-19



E Student-Level Administrative Data
This appendix describes the administrative data that we use to complement the information
from the student survey (Section E.1) and provides details about the classification of STEM
undergraduate programs (Section E.2).

E.1 Data Sources
For the purpose of the empirical analysis, we matched the data from our post-intervention
student survey with three administrative datasets. These data were linked using an encrypted
version of the French national student identifier (Identifiant National Élève).

High school enrollment data. Students’ socio-demographic characteristics and enrollment
status are obtained from the Bases Élèves Académiques (BEA) for academic years 2012/13
to 2016/17. These comprehensive administrative registers, which were provided by the three
education districts of the Paris region (Paris, Créteil, and Versailles), cover the universe of
students enrolled in the public and private high schools operating in the three districts. It also
covers students enrolled in selective undergraduate programs, i.e., Classes préparatoires aux
Grandes Écoles (CPGE) and Sections de technicien supérieur (STS), as these programs are
located in high schools. The BEA data provide basic information on students’ demographics
(gender, date and country of birth, number of siblings), their parents’ occupation, and detailed
information on their enrollment status (school and class attended, elective courses taken).
Students’ socioeconomic status (SES) is measured using the French Ministry of Education’s
official classification, which uses the occupation of the child’s legal guardian to define four
groups of SES: high (company managers, executives, liberal professions, engineers, intellectual
occupations, arts professions), medium-high (technicians and associate professionals), medium-
low (farmers, craft and trades workers, service and sales workers), and low (manual workers and
persons without employment).

University enrollment data. To track Grade 12 (science track) students’ enrollment out-
comes in non-selective undergraduate programs (Licence), we use a separate administrative
data source, the Système d’Information sur le Suivi de l’Étudiant (SISE), which is managed by
the Statistical Office of the French Ministry of Higher Education (Sous-Direction des Systèmes
d’Information et des Études Statistiques, MESRI-SIES). This dataset, which covers the academic
years 2012/13 to 2016/17, records all students enrolled in the French higher education system
outside of CPGE and STS, except for the small fraction of students enrolled in undergraduate
programs leading to paramedical and social care qualifications.

Data on student performance. The third dataset, the Organisation des Concours et
Examens Académiques et Nationaux (OCEAN), contains students’ individual exam results for
the Diplôme national du brevet (DNB), which middle school students take at the end Grade 9,
and for the Baccalauréat, which high school students take at the end of Grade 12. Access to this
dataset, which covers the exams years 2010 to 2016, was provided by the Statistical Office of the
French Ministry of Education (Direction de l’Évaluation, de la Prospective et de la Performance,
MENJ-DEPP).

E.2 Classification of STEM Undergraduate Programs
The enrollment status of Grade 12 (science track)students in the year following the intervention,
i.e., 2016/17, is measured by combing the information from the BEA and SISE datasets. For the
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purpose of our analysis, we use two alternative classifications of STEM undergraduate programs,
based on whether they are (i) selective or non-selective, and (ii) male- or female-dominated.

Selective vs. non-selective STEM programs.

• Selective STEM : This category includes all CPGE programs with a specialization in
STEM, i.e., mathematics, physics and engineering science (MPSI), physics, chemistry and
engineering science (PCSI), biology, chemistry, physics and earth sciences (BCPST), and
physics, technology, and engineering science (PTSI). It also includes a small number of
selective programs in engineering schools that recruit their students directly after high
school graduation, as well as selective technical/vocational undergraduate programs (STS)
that specialize in STEM fields.

• Non-selective STEM : This category includes non-selective university bachelor’s degree
programs (Licence) that specialize in STEM fields: math, physics, chemistry, earth and
life sciences, and computer science. Undergraduate programs in medicine and pharmacy
are not included in this category.

Male- vs. female-dominated STEM programs.

• Male-dominated STEM : We consider as male-dominated STEM programs those in which
the share of female students is less than 50 percent. This category includes the selective
programs (CPGE and STS) and non-selective programs (University) that specialize in
mathematics, physics, chemistry, computer science, and engineering.

• Female-dominated STEM : This category includes both selective (CPGE and STS) and
non-selective programs (Licence) that specialize in earth and life sciences.

If a student is enrolled in multiple higher education programs, we only consider the most
selective among these programs, with CPGE taking precedence over STS, and STS taking
precedence over university undergraduate degree programs.
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F Summary Statistics and Balancing Tests

Table F3 – Experimental Sample: Summary Statistics

High schools
operating in
the Paris
region

Participating high schools

Classes selected
for random
assignment

Classes not selected
for random
assignment

(1) (2) (3)

Number of high schools 489 98 96
Share private 0.22 0.17 0.08

Panel A. Grade 10
Number of students 115,720 13,700 19,147
Number of classes 3,627 416 592
Female 0.525 0.529 0.525
Non-French 0.063 0.060 0.068
Age 15.14 15.13 15.14
High SES 0.403 0.381 0.361
Medium-high SES 0.118 0.128 0.127
Medium-low SES 0.239 0.241 0.248
Low SES 0.240 0.249 0.265
Number of siblings 1.44 1.49 1.50
Class size 32.22 33.25 32.48
DNB percentile rank in math 57.69 58.48 55.10
DNB percentile rank in French 57.23 57.85 55.75

Panel B. Grade 12 (science track)
Number of students 38,582 5,751 5,623
Number of classes 1,267 185 179
Female 0.459 0.492 0.417
Age 17.11 17.12 17.10
Non-French 0.045 0.051 0.037
High SES 0.527 0.464 0.535
Medium-high SES 0.115 0.136 0.126
Medium-low SES 0.198 0.209 0.180
Low SES 0.160 0.192 0.160
Number of siblings 1.43 1.50 1.44
Class size 31.43 31.97 32.08
DNB percentile rank in math 76.25 74.06 76.20
DNB percentile rank in French 70.78 69.61 69.78

Notes: This table compares the characteristics of high schools that participated in the program evaluation to the characteristics of
all general-track high schools operating in the Paris region. Among participating schools, Grade 10 and Grade 12 (science track)
classes that were selected by principals for random assignment to treatment are compared to classes that were not selected. The
summary statistics are computed from the Bases Élèves académiques of the three education districts of Paris, Créteil, and Versailles
for the academic year 2015/16. French and math scores are from the exams of the Diplôme national du brevet (DNB) that middle
school students take at the end of Grade 9.
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Table F4 – Post-Intervention Role Model Survey: Summary Statistics

Role model background

All Profes-
sionals

Resear-
chers

Difference
(3)−(2)

p-value
of diff.

(1) (2) (3) (4) (5)

A. Adults present during the intervention

Teacher was present 0.890 0.883 0.896 0.014 0.773
Teacher’s subject: sciencea 0.589 0.589 0.589 0.000 0.997
Teacher’s gender: female 0.558 0.542 0.570 0.028 0.684
Teacher showed interest 0.692 0.635 0.736 0.102 0.115
Other adult present beside teacher 0.348 0.392 0.315 −0.077 0.236

B. General atmosphere during the intervention

Students were very interested 0.423 0.425 0.422 −0.004 0.963
Students were very engaged in the discussion 0.386 0.378 0.392 0.014 0.838
Students were inattentive 0.134 0.165 0.110 −0.055 0.259
Powerpoint worked well 0.963 0.938 0.982 0.045 0.172
Videos worked well 0.888 0.891 0.886 −0.004 0.940
Logistical problems 0.160 0.185 0.140 −0.044 0.487
Talk interrupted due to discipline problems 0.068 0.079 0.060 −0.018 0.652

C. Students’ responsiveness to topics addressed during the intervention

Very responsive to “science is everywhere” 0.430 0.378 0.470 0.092 0.360
Very responsive to “jobs in science are fulfilling” 0.352 0.402 0.313 −0.088 0.333
Very responsive to “jobs in science are for girls too” 0.375 0.354 0.392 0.037 0.674
Very responsive to “jobs in science pay well” 0.387 0.263 0.476 0.213 0.042
Very responsive to the short videos 0.546 0.488 0.590 0.102 0.339

D. Overall impression of the role model

Were gender stereotypes strong among students?
Yes, very much 0.089 0.039 0.128 0.089 0.057
Rather yes 0.313 0.276 0.341 0.066 0.337
Rather no/not at all 0.598 0.685 0.530 −0.155 0.074

How did the classroom intervention go?
Very well 0.556 0.535 0.572 0.037 0.670
Well 0.369 0.386 0.355 −0.030 0.716
Average/not so well/not well at all 0.075 0.079 0.072 −0.006 0.821

Was the intervention well suited to the students?
Yes, very much 0.474 0.449 0.494 0.045 0.661
Rather yes 0.471 0.504 0.446 −0.058 0.574
Rather no/not at all 0.055 0.047 0.060 0.013 0.592

Number of role models 56 21 35
Number of interventions 290 124 166
Notes: The summary statistics are computed from the post-intervention role model survey that was administered online to collect
feedback about the classroom visits. The unit of observation is a classroom intervention. a The science subjects taught in high
school include mathematics, physics and chemistry, and earth and life sciences.
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Table F5 – Treatment-Control Balance: Female Students

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Age (years) 15.68 15.66 −0.01 0.369
Non-French 0.061 0.060 0.002 0.683
High SES 0.389 0.397 0.005 0.608
Medium-high SES 0.131 0.123 −0.008 0.242
Medium-low SES 0.241 0.229 −0.013 0.158
Low SES 0.239 0.251 0.016 0.079
Number of siblings 1.513 1.534 0.030 0.392
Class size 32.86 32.99 0.04 0.637
At least one science elective course 0.487 0.485 −0.006 0.795
At least one standard elective course 0.558 0.525 −0.041 0.070
DNB percentile rank in math 62.36 61.94 −0.43 0.522
DNB percentile rank in French 65.18 65.70 0.54 0.421

Test of joint significance F -stat: 0.659 (p-value: 0.777)

Predicted track in Grade 11
Grade 11: Science track 0.309 0.305 −0.004 0.487
Grade 11: Science - general track 0.288 0.284 −0.004 0.544
Grade 11: Science - technological track 0.021 0.021 0.000 0.644

N 3,641 3,600 7,241

Panel B. Grade 12 (science track)

Student characteristics
Age (years) 17.12 17.09 −0.04 0.036
Non-French 0.065 0.052 −0.017 0.040
High SES 0.444 0.459 0.025 0.080
Medium-high SES 0.139 0.128 −0.011 0.249
Medium-low SES 0.216 0.210 −0.010 0.376
Low SES 0.201 0.204 −0.005 0.619
Number of siblings 1.562 1.525 −0.057 0.054
Class size 31.76 32.17 0.38 0.247
DNB percentile rank in math 73.71 72.65 −0.47 0.511
DNB percentile rank in French 73.75 74.02 0.71 0.298

Test of joint significance F -stat: 0.888 (p-value: 0.537)

Predicted undergraduate major
Major: STEM 0.288 0.286 0.000 0.865
Major: selective STEM 0.112 0.110 0.001 0.746
Major: male-dominated STEM 0.164 0.163 0.001 0.693

N 1,424 1,403 2,827
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for female
students in Grade 10 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students in the control and
treatment groups, respectively. Column 3 reports the coefficient from the regression of each variable on the treatment group indicator,
with the p-value reported in column 4. The regression controls for school fixed effects to account for the fact that randomization
was stratified by school, and standard errors are adjusted for clustering at the unit of randomization (class). The F -statistic is
from a test of the joint significance of the coefficients in a regression of the treatment group indicator on all student characteristics.
High school tracks (Panel A) and undergraduate majors (Panel B) are predicted for each student using the coefficients from a linear
regression of the corresponding binary variable (e.g., enrollment in a STEM major) on all student characteristics listed in the table.
This model is fitted separately by grade level on the sample of students in the control group.
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Table F6 – Treatment-Control Balance: Male Students

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Age (years) 15.78 15.76 −0.01 0.329
Non-French 0.054 0.055 0.001 0.937
High SES 0.411 0.428 0.008 0.477
Medium-high SES 0.135 0.134 −0.008 0.317
Medium-low SES 0.236 0.220 −0.010 0.243
Low SES 0.218 0.218 0.010 0.256
Number of siblings 1.470 1.437 −0.013 0.642
Class size 32.71 32.92 0.04 0.687
At least one science elective course 0.576 0.597 0.008 0.739
At least one standard elective course 0.525 0.513 −0.023 0.319
DNB percentile rank in math 63.91 63.90 −0.35 0.610
DNB percentile rank in French 56.59 56.90 −0.12 0.845

Test of joint significance F -stat: 0.551 (p-value: 0.868)

Predicted track in Grade 11
Grade 11: Science track 0.442 0.443 −0.002 0.781
Grade 11: Science - general track 0.334 0.337 0.000 0.979
Grade 11: Science - technological track 0.108 0.106 −0.002 0.575

N 3,160 3,299 6,459

Panel B. Grade 12 (science track)

Student characteristics
Age (years) 17.17 17.12 −0.05 0.003
Non-French 0.042 0.045 0.005 0.440
High SES 0.463 0.488 0.031 0.038
Medium-high SES 0.133 0.142 0.008 0.377
Medium-low SES 0.216 0.193 −0.020 0.037
Low SES 0.188 0.177 −0.019 0.121
Number of siblings 1.458 1.452 −0.018 0.550
Class size 31.74 32.21 0.43 0.148
DNB percentile rank in math 74.63 75.18 0.78 0.211
DNB percentile rank in French 64.86 65.98 1.23 0.071

Test of joint significance F -stat: 0.585 (p-value: 0.808)

Predicted undergraduate major
Major: STEM 0.475 0.477 0.002 0.528
Major: selective STEM 0.238 0.245 0.008 0.040
Major: male-dominated STEM 0.383 0.384 0.002 0.585

N 1,429 1,495 2,924
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for male
students in Grade 10 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students in the control and
treatment groups, respectively. Column 3 reports the coefficient from the regression of each variable on the treatment group indicator,
with the p-value reported in column 4. The regression controls for school fixed effects to account for the fact that randomization
was stratified by school, and standard errors are adjusted for clustering at the unit of randomization (class). The F -statistic is
from a test of the joint significance of the coefficients in a regression of the treatment group indicator on all student characteristics.
High school tracks (Panel A) and undergraduate majors (Panel B) are predicted for each student using the coefficients from a linear
regression of the corresponding binary variable (e.g., enrollment in a STEM major) on all student characteristics listed in the table.
This model is fitted separately by grade level on the sample of students in the control group.

A-25



Table F7 – Compliance with Random Assignment

Classes assigned to

All
classes

Control
group

Treatment
group

(1) (2) (3)

Panel A. Grade 10

Number of classes visited by a role model 199 2 197
Number of classes not visited by a role model 217 205 12
Number of students 13,700 6,801 6,899
Student-level compliance with random assignment 0.97 0.99 0.94

Panel B. Grade 12 (science track)

Number of classes visited by a role model 91 2 89
Number of classes not visited by a role model 94 90 4
Number of students 5,751 2,853 2,898
Student-level compliance with random assignment 0.97 0.98 0.95
Notes: This table reports compliance with the random assignment of Grade 10 and Grade 12 (science track) classes to the treatment
and control groups. Two-way non-compliance was due to either classes in the treatment not being visited by a role model or to
classes in the control group being visited by a role model.
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Table F8 – Student Post-Treatment Survey: Response Rates

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Survey response rate 0.879 0.905 0.026 0.026
(0.012)

Number of students 6,801 6,899 13,700

Panel B. Grade 12 (science track)

Survey response rate 0.909 0.912 0.005 0.693
(0.012)

Number of students 2,853 2,898 5,751

Notes: This table reports the student survey response rate for students in the Grade 10 and Grade 12 (science track) classes that
participated in the program. The response rates are computed based on the list of all students who were recorded in the Bases
Élèves académiques as being enrolled in the participating classes during the academic year 2015/16. Columns 1 and 2 show the
response rate of students in the control and treatment groups, respectively. Column 3 reports the coefficient from the regression
of survey participation on the treatment group indicator, with p-values reported in column 4. The regression controls for school
fixed effects to account for the fact that randomization was stratified by school. Standard errors (in parentheses) are adjusted for
clustering at the unit of randomization (class).
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Table F9 – Treatment-Control Balance: Survey Respondents

Within school

Control
group

Treatment
group

Difference
T−C

p-value
of diff.

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.528 0.512 −0.014 0.160
Age (years) 15.73 15.70 −0.01 0.248
Non-French 0.056 0.056 0.003 0.528
High SES 0.402 0.417 0.005 0.496
Medium-high SES 0.134 0.130 −0.006 0.248
Medium-low SES 0.237 0.224 −0.009 0.200
Low SES 0.227 0.229 0.010 0.158
Number of siblings 1.489 1.483 −0.001 0.954
Class size 32.77 32.91 0.02 0.837
At least one science elective course 0.536 0.543 0.009 0.693
At least one standard elective course 0.539 0.519 −0.032 0.132
DNB percentile rank in math 63.65 63.42 −0.18 0.760
DNB percentile rank in French 61.53 61.80 0.08 0.893

Test of joint significance F -stat: 0.634 (p-value: 0.813)

Predicted track in Grade 11
Grade 11: Science track 0.367 0.370 0.002 0.773
Grade 11: Science - general track 0.310 0.312 0.001 0.826
Grade 11: Science - technological track 0.057 0.058 0.000 0.854

N 5,981 6,245 12,226

Panel B. Grade 12 (science track)

Student characteristics
Female 0.504 0.489 −0.014 0.319
Age (years) 17.13 17.09 −0.05 0.001
Non-French 0.053 0.046 −0.008 0.129
High SES 0.446 0.481 0.038 0.001
Medium-high SES 0.138 0.138 0.000 0.979
Medium-low SES 0.219 0.196 −0.022 0.001
Low SES 0.197 0.184 −0.016 0.086
Number of siblings 1.502 1.487 −0.021 0.355
Class size 31.69 32.12 0.30 0.314
DNB percentile rank in math 74.52 74.00 −0.09 0.874
DNB percentile rank in French 69.59 70.00 0.68 0.248

Test of joint significance F -stat: 1.218 (p-value: 0.282)

Predicted undergraduate major
Major: STEM 0.395 0.395 0.001 0.807
Major: selective STEM 0.181 0.184 0.005 0.189
Major: male-dominated STEM 0.283 0.284 0.002 0.561

N 2,594 2,642 5,236
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students
in Grade 10 (Panel A) and in Grade 12 (Panel B). The sample is restricted to students who answered the post-intervention
survey. Columns 1 and 2 show the average value for students in the control and treatment groups, respectively. Column 3 reports
the coefficient from the regression of each variable on the treatment group indicator, with the p-value reported in column 4. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school, and standard errors are
adjusted for clustering at the unit of randomization (class). The F -statistic is from a test of the joint significance of the coefficients
in a regression of the treatment group indicator on all student characteristics. High school tracks (Panel A) and undergraduate
majors (Panel B) are predicted for each student using the coefficients from a linear regression of the corresponding binary variable
(e.g., enrollment in a STEM major) on all student characteristics listed in the table. This model is fitted separately by grade level
on the sample of students in the control group.
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Table F10 – Balancing Test: High Schools Visited by Professionals and Researchers

High school visited by Difference
(2)−(1)

p-value
of diff.Researcher Professional

(1) (2) (3) (4)

Panel A. Grade 10

Student characteristics
Female 0.525 0.531 0.007 0.623
Age (years) 15.12 15.13 0.01 0.598
Non-French 0.065 0.057 −0.008 0.185
High SES 0.345 0.410 0.064 0.002
Medium-high SES 0.132 0.125 −0.007 0.322
Medium-low SES 0.250 0.235 −0.015 0.124
Low SES 0.272 0.231 −0.042 0.013
Number of siblings 1.482 1.488 0.007 0.862
Class size 33.38 33.14 −0.25 0.343
At least one science elective course 0.416 0.376 −0.040 0.250
At least one standard elective course 0.772 0.738 −0.034 0.197
DNB percentile rank in math 57.80 59.02 1.22 0.380
DNB percentile rank in French 56.77 58.71 1.93 0.120

Test of joint significance F -stat: 1.165 (p-value: 0.306)

Predicted track in Grade 11
Grade 11: Science track 0.464 0.471 0.007 0.568
Grade 11: Science - general track 0.381 0.393 0.012 0.387
Grade 11: Science - technological track 0.083 0.078 −0.005 0.156

N 6,059 7,641 13.700

Panel B. Grade 12 (science track)

Student characteristics
Female 0.474 0.505 0.032 0.114
Age (years) 17.14 17.11 −0.03 0.323
Non-French 0.057 0.046 −0.010 0.272
High SES 0.437 0.484 0.046 0.169
Medium-high SES 0.146 0.128 −0.018 0.138
Medium-low SES 0.213 0.205 −0.009 0.544
Low SES 0.203 0.184 −0.019 0.428
Number of siblings 1.454 1.532 0.079 0.100
Class size 32.67 31.44 −1.22 0.026
DNB percentile rank in math 72.96 74.90 1.94 0.213
DNB percentile rank in French 68.00 70.83 2.83 0.057

Test of joint significance F -stat: 0.414 (p-value: 0.939)

Predicted undergraduate major
Major: STEM 0.382 0.383 0.001 0.926
Major: selective STEM 0.173 0.179 0.006 0.472
Major: male-dominated STEM 0.273 0.276 0.003 0.709

N 2,492 3,259 5.751
Notes: Each row corresponds to a different linear regression with the dependent variable listed on the left, separately for students in
Grade 10 (Panel A) and in Grade 12 (Panel B). Columns 1 and 2 show the average value for students whose high school was visited
by a role model with a professional or a research background, respectively. Column 3 reports the coefficient from the regression of
each variable on the treatment group indicator, with the p-value reported in column 4. Standard errors are adjusted for clustering
at the unit of randomization (class). The F -statistic is from a test of the joint significance of the coefficients in a regression of
the treatment group indicator on all student characteristics. High school tracks and undergraduate majors are predicted for each
student using the coefficients from a linear regression of the corresponding binary variable (e.g., enrollment in a STEM major) on
all student characteristics listed in the table. This model is fitted separately by grade level on the sample of students in the control
group.
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G Effects of Role Model Interventions: Additional Re-
sults

G.1 Student Perceptions

Table G11 – Gender Differences in Aptitude for Mathematics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Equal gender aptitude for math (index) 0.115 0.109*** 0.000 −0.134 0.148*** 0.000
(0.025) (0.030)

M and W are born with different brains 0.211 −0.050*** 0.000 0.209 −0.048*** 0.000
(0.010) [0.001] (0.011) [0.001]

Men are more gifted in math than women 0.186 −0.026** 0.015 0.299 −0.048*** 0.001
(0.011) [0.016] (0.014) [0.001]

N 6,475 5,751

Panel B. Grade 12 (science track)

Equal gender aptitude for math (index) 0.158 0.095*** 0.001 −0.161 0.132*** 0.001
(0.028) (0.040)

M and W are born with different brains 0.143 −0.023** 0.026 0.180 −0.038*** 0.006
(0.010) [0.026] (0.014) [0.013]

Men are more gifted in math than women 0.163 −0.038*** 0.002 0.266 −0.028* 0.072
(0.012) [0.005] (0.015) [0.073]

N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions regarding
the aptitude of men and women for mathematics, separately by grade level and gender. The sample is restricted to students
who completed the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to
the same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G12 – Taste for Science Subjects

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Taste for science subjects (index) −0.169 −0.038 0.294 0.197 −0.019 0.533
(0.036) (0.031)

Enjoys math (z-score) −0.147 −0.002 0.961 0.186 −0.002 0.935
(0.034) [0.961] (0.031) [0.935]

Enjoys physics-chemistry (z-score) −0.170 −0.040 0.289 0.223 −0.022 0.505
(0.038) [0.578] (0.033) [0.935]

Enjoys earth and life sciences (z-score) −0.042 −0.058 0.137 0.086 −0.027 0.443
(0.039) [0.548] (0.035) [0.935]

Enjoys science in general 0.661 −0.011 0.444 0.790 0.003 0.804
(0.015) [0.593] (0.012) [0.935]

N 6,475 5,751

Panel B. Grade 12 (science track)

Taste for science subjects (index) −0.002 0.016 0.632 0.002 0.000 0.998
(0.034) (0.039)

Enjoys math (z-score) −0.097 0.067* 0.089 0.100 0.075* 0.063
(0.040) [0.357] (0.040) [0.203]

Enjoys physics-chemistry (z-score) −0.089 −0.001 0.984 0.102 −0.021 0.598
(0.044) [0.984] (0.040) [0.599]

Enjoys earth and life sciences (z-score) 0.203 −0.030 0.435 −0.215 −0.059 0.318
(0.038) [0.871] (0.059) [0.424]

Enjoys science in general 0.918 −0.001 0.887 0.930 0.013 0.101
(0.009) [0.984] (0.008) [0.203]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ taste for science subjects
taught at school, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local
average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in
square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of
outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced
in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G13 – Math Self-Concept

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Math self-concept (index) −0.198 −0.008 0.806 0.231 0.039 0.217
(0.031) (0.032)

Self-assessed math performance (z-score) −0.127 −0.016 0.634 0.168 0.021 0.502
(0.034) [0.634] (0.032) [0.642]

Lost in front of a math problem 0.553 0.010 0.478 0.344 −0.007 0.610
(0.014) [0.634] (0.013) [0.642]

Worried when thinking about math 0.617 −0.025* 0.052 0.420 −0.032** 0.028
(0.013) [0.109] (0.015) [0.111]

Can succeed in science subjects if puts in effort 0.843 0.018* 0.054 0.883 −0.004 0.642
(0.009) [0.109] (0.008) [0.642]

N 6,475 5,751

Panel B. Grade 12 (science track)

Math self-concept (index) −0.184 0.050 0.202 0.187 0.072** 0.041
(0.039) (0.035)

Self-assessed math performance (z-score) −0.126 0.039 0.304 0.123 0.079** 0.038
(0.038) [0.406] (0.038) [0.077]

Lost in front of a math problem 0.486 −0.028 0.168 0.325 −0.028* 0.072
(0.020) [0.336] (0.016) [0.096]

Worried when thinking about math 0.560 −0.037** 0.048 0.384 −0.051*** 0.002
(0.019) [0.193] (0.016) [0.007]

Can succeed in science subjects if puts in effort 0.942 −0.005 0.512 0.949 0.006 0.384
(0.007) [0.512] (0.007) [0.385]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ math self-concept, separately
by grade level and gender. The sample is restricted to students who completed the post-intervention questionnaire. Each row
corresponds to a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1
and 4 report the average value for students in the control group. Columns 2 and 5 report the local average treatment effect (LATE)
estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment
as an instrument for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization
was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class).
Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value)
adjusted for multiple hypotheses testing across variables belonging to the same family of outcomes, using the False Discovery Rate
(FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described
in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G14 – Science-Related Career Aspirations

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Science-related career aspirations (index) −0.103 0.012 0.695 0.120 0.007 0.801
(0.030) (0.029)

Some jobs in science are interesting 0.845 0.019** 0.050 0.854 0.000 1.000
(0.009) [0.200] (0.010) [1.000]

Would consider a job in science 0.466 −0.004 0.776 0.587 0.023* 0.089
(0.015) [0.776] (0.014) [0.358]

Interested in at least one STEM joba 0.642 0.005 0.696 0.849 0.013 0.181
(0.013) [0.776] (0.010) [0.363]

Wages important in career choice (z-score) −0.045 −0.012 0.682 0.038 0.007 0.792
(0.029) [0.776] (0.027) [1.000]

N 6,475 5,751

Panel B. Grade 12 (science track)

Science-related career aspirations (index) −0.045 0.113*** 0.002 0.046 0.050 0.131
(0.037) (0.033)

Some jobs in science are interesting 0.961 0.013** 0.013 0.940 0.021*** 0.005
(0.005) [0.026] (0.008) [0.022]

Would consider a job in science 0.721 0.031** 0.019 0.762 0.030** 0.029
(0.013) [0.026] (0.014) [0.058]

Interested in at least one STEM joba 0.817 0.000 0.964 0.899 −0.001 0.946
(0.011) [0.964] (0.009) [0.947]

Wages important in career choice (z-score) −0.043 0.119*** 0.002 0.037 0.049 0.111
(0.038) [0.007] (0.031) [0.149]

N 2,600 2,636
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ self-reported science-related
career aspirations, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local
average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in
square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of
outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced
in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1. a: The STEM occupations in
the list were chemist, computer scientist, engineer, industrial designer, renewable energy technician, and researcher in biology. The
non-STEM occupations were lawyer, pharmacist, physician, and psychologist.
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G.2 Educational Choices

Table G15 – Grade 10 Students: Enrollment Status the Following Year (Detailed)

Grade 10 students

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. General Track

Grade 11: Science track 0.343 −0.004 0.701 0.436 −0.001 0.899
(0.014) [0.889] (0.014) [0.928]

Grade 11: Humanities track 0.127 −0.003 0.799 0.029 0.005 0.319
(0.010) [0.889] (0.005) [0.478]

Grade 11: Social sciences track 0.264 0.010 0.395 0.171 0.012 0.239
(0.012) [0.889] (0.010) [0.478]

Panel B. Technological Track

Grade 11: STEM-oriented technological tracks 0.027 −0.006 0.112 0.141 −0.010 0.235
(STI2D, STL) (0.004) [0.672] (0.009) [0.478]

Grade 11: non-STEM technological tracks 0.179 −0.005 0.656 0.139 0.000 0.979
(0.011) [0.889] (0.009) [0.980]

Repeater or dropout 0.057 0.004 0.580 0.078 −0.010 0.208
(0.008) [0.889] (0.008) [0.478]

N 7,241 6,459
Notes: This table reports estimates of the treatment effects of the role model interventions on Grade 10 students’ enrollment
outcomes in the academic year following the classroom interventions, i.e. 2016/17, separately by gender. The enrollment outcomes
are measured using student-level administrative data. Each row corresponds to a different linear regression performed separately by
gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group.
Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of
interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls
for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown in parentheses)
are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated
treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to
the same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table G16 – Grade 12 Students: Enrollment Status the Following Year (Detailed)

Grade 12 (science track) students

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. STEM undergraduate programs

Selective programs

Math, physics, engineering, computer science 0.090 0.028*** 0.006 0.222 0.018 0.239
(0.010) [0.068] (0.016) [0.814]

Earth & life sciences 0.020 0.008 0.137 0.010 0.002 0.617
(0.005) [0.496] (0.003) [0.834]

Non-selective programs

Math, physics, computer science 0.077 0.010 0.209 0.157 −0.002 0.884
(0.008) [0.496] (0.012) [0.885]

Earth and life sciences 0.103 −0.022** 0.014 0.081 −0.015* 0.053
(0.009) [0.075] (0.008) [0.585]

Panel B. Non-STEM undergraduate programs

Selective programs

Business and economics 0.021 0.003 0.566 0.017 0.005 0.219
(0.004) [0.692] (0.004) [0.814]

Humanities 0.014 −0.004 0.225 0.003 −0.001 0.470
(0.003) [0.496] (0.001) [0.834]

Non-selective programs

Medicine and pharmacy 0.259 −0.005 0.722 0.108 0.006 0.573
(0.015) [0.795] (0.011) [0.834]

Law and economics 0.107 −0.008 0.478 0.079 0.002 0.758
(0.011) [0.658] (0.008) [0.834]

Humanities and psychology 0.080 −0.008 0.339 0.040 −0.006 0.296
(0.009) [0.623] (0.006) [0.814]

Sports studies 0.023 −0.004 0.460 0.052 −0.005 0.555
(0.006) [0.658] (0.009) [0.834]

Not enrolled in an undergraduate program 0.218 0.000 1.000 0.237 0.005 0.739
(0.015) [1.000] (0.016) [0.834]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of the role model interventions on science track Grade 12 (science track)
students’ enrollment outcomes in the academic year following the classroom interventions, i.e. 2016/17, separately by gender. The
enrollment outcomes are measured using student-level administrative data. Each row corresponds to a different linear regression
performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report the average value for
students in the control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates. They are obtained
from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for
treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was stratified by
school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6
report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for
multiple hypotheses testing across variables belonging to the same family of outcomes, using the False Discovery Rate (FDR)
control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in
Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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G.3 Academic Performance

Table G17 – Grade 12 Students: Performance in Baccalauréat Exams

Grade 12 (science track) students

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Baccalauréat percentile rank in math 46.21 0.693 0.469 47.47 1.661 0.105
(0.957) [0.626] (1.024) [0.210]

Baccalauréat percentile rank in French 54.37 −0.051 0.964 43.51 −0.331 0.680
(1.113) [0.964] (0.803) [0.680]

Baccalauréat percentile rank 53.52 −1.121 0.293 47.29 1.712* 0.100
(1.066) [0.626] (1.040) [0.210]

Obtained the Baccalauréat 0.928 −0.010 0.334 0.877 −0.005 0.623
(0.010) [0.626] (0.010) [0.680]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of the role model interventions on Grade 12 (science track) students’
performance on the Baccalauréat exams, separately by gender. The enrollment outcomes are measured using student-level admin-
istrative data. Each row corresponds to a different linear regression performed separately by gender, with the dependent variable
listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local
average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit
indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school fixed effects to
account for the fact that randomization was stratified by school. Standard errors (shown in parentheses) are adjusted for clustering
at the unit of randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in
square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of
outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced
in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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H Robustness Checks

Table H18 – Treatment Effects on Student Perceptions: Controlling for Baseline Characteristics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Positive perceptions of science-related careers (index) −0.020 0.245*** 0.000 0.023 0.162*** 0.000
(0.027) (0.027)

More men in science-related jobs 0.628 0.154*** 0.000 0.629 0.170*** 0.000
(0.013) [0.001] (0.014) [0.001]

Equal gender aptitude for math (index) 0.115 0.111*** 0.000 −0.134 0.142*** 0.000
(0.024) [0.001] (0.030) [0.001]

Women like science less than men 0.157 0.056*** 0.000 0.198 0.101*** 0.000
(0.011) [0.001] (0.013) [0.001]

W face discrimination in science-related jobs 0.603 0.126*** 0.000 0.527 0.154*** 0.000
(0.013) [0.001] (0.014) [0.001]

Taste for science subjects (index) −0.169 −0.033 0.275 0.197 −0.021 0.431
(0.031) (0.026)

Math self-concept (index) −0.198 −0.001 0.981 0.231 0.033 0.250
(0.028) (0.029)

Science-related careers aspirations (index) −0.103 0.005 0.851 0.120 0.004 0.871
(0.029) (0.027)

N 6,475 5,751

Panel B. Grade 12 (science track)

Positive perceptions of science-related careers (index) −0.003 0.296*** 0.000 0.003 0.171*** 0.000
(0.032) (0.033)

More men in science-related jobs 0.712 0.122*** 0.000 0.717 0.149*** 0.000
(0.016) [0.001] (0.015) [0.001]

Equal gender aptitude for math (index) 0.158 0.078*** 0.004 −0.161 0.124*** 0.003
(0.028) [0.005] (0.042) [0.004]

Women like science less than men 0.074 0.042*** 0.000 0.146 0.073*** 0.000
(0.009) [0.001] (0.015) [0.001]

W face discrimination in science-related jobs 0.624 0.085*** 0.000 0.600 0.074*** 0.000
(0.020) [0.001] (0.018) [0.001]

Taste for science subjects (index) −0.002 0.018 0.583 0.002 0.014 0.733
(0.033) (0.040)

Math self-concept (index) −0.184 0.051 0.139 0.187 0.068** 0.038
(0.035) (0.033)

Science-related careers aspirations (index) −0.045 0.106*** 0.004 0.046 0.068* 0.055
(0.037) (0.035)

N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions, separately by
grade level and gender, and controlling for students’ baseline characteristics. The sample is restricted to students who completed
the post-intervention questionnaire. Each row corresponds to a different linear regression performed separately by gender, with the
dependent variable listed on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5
report the local average treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a
classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression controls for school
fixed effects to account for the fact that randomization was stratified by school. The regression further controls for the student
characteristics listed in Table 1 in the main text. Standard errors (shown in parentheses) are adjusted for clustering at the unit of
randomization (class). Columns 3 and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets,
the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the same family of outcomes, using the
False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al.
(2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table H19 – Effects on Students’ Perceptions: Weighted by the Inverse Probability of Answering
the Questionnaire

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Positive perceptions of science-related careers (index) −0.020 0.245*** 0.000 0.023 0.163*** 0.000
(0.029) (0.029)

More men in science-related jobs 0.628 0.156*** 0.000 0.629 0.170*** 0.000
(0.013) [0.001] (0.014) [0.001]

Equal gender aptitude for math (index) 0.115 0.109*** 0.000 −0.134 0.139*** 0.000
(0.025) [0.001] (0.030) [0.001]

Women like science less than men 0.157 0.057*** 0.000 0.198 0.103*** 0.000
(0.011) [0.001] (0.013) [0.001]

W face discrimination in science-related jobs 0.603 0.127*** 0.000 0.527 0.154*** 0.000
(0.013) [0.001] (0.014) [0.001]

Taste for science subjects (index) −0.169 −0.037 0.307 0.197 −0.021 0.513
(0.037) (0.032)

Math self-concept (index) −0.198 −0.011 0.733 0.231 0.030 0.360
(0.031) (0.033)

Science-related career aspirations (index) −0.103 0.009 0.767 0.120 0.004 0.897
(0.030) (0.029)

N 6,475 5,751

Panel B. Grade 12 (science track)

Positive perceptions of science-related careers (index) −0.003 0.300*** 0.000 0.003 0.175*** 0.000
(0.034) (0.033)

More men in science-related jobs 0.712 0.125*** 0.000 0.717 0.148*** 0.000
(0.016) [0.001] (0.016) [0.001]

Equal gender aptitude for math (index) 0.158 0.084*** 0.003 −0.161 0.140*** 0.001
(0.028) [0.003] (0.042) [0.001]

Women like science less than men 0.074 0.041*** 0.000 0.146 0.072*** 0.000
(0.009) [0.001] (0.015) [0.001]

W face discrimination in science-related jobs 0.624 0.086*** 0.000 0.600 0.078*** 0.000
(0.020) [0.001] (0.019) [0.001]

Taste for science subjects (index) −0.002 0.015 0.671 0.002 0.013 0.757
(0.035) (0.041)

Math self-concept (index) −0.184 0.051 0.193 0.187 0.081** 0.036
(0.039) (0.038)

Science-related career aspirations (index) −0.045 0.105*** 0.003 0.046 0.059* 0.095
(0.036) (0.036)

N 2,600 2,636

Notes: This table reports estimates of the treatment effects of the role model interventions on students’ perceptions that account for
survey non-response, separately by grade level and gender. The sample is restricted to students who completed the post-intervention
questionnaire and observations are weighted by the inverse predicted probability of answering the questionnaire. Survey response
is predicted for each student from a linear regression of the survey response indicator on all student characteristics listed in Table 1
in the main text as well as school fixed effects. This model is fitted separately by grade level, gender, and treatment assignment.
Each row corresponds to a different weighted linear regression performed separately by gender, with the dependent variable listed
on the left. Columns 1 and 4 report the average value for students in the control group. Columns 2 and 5 report the local average
treatment effect (LATE) estimates. They are obtained from a regression of the outcome of interest on a classroom visit indicator,
using treatment assignment as an instrument for treatment receipt and using the inverse predicted probability of survey response
as regression weights. The regression controls for school fixed effects to account for the fact that randomization was stratified
by school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3
and 6 report the cluster-robust p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for
multiple hypotheses testing across variables belonging to the same family of outcomes, using the False Discovery Rate (FDR) control
method. Specifically, we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson
(2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table H20 – Treatment Effects on Enrollment Outcomes: Controlling for Baseline Characteris-
tics

Girls Boys

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

Control
group
mean

Treatment
effect

(LATE)

p-value
[q-value]

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

All STEM tracks
Grade 11: Science track 0.371 −0.006 0.583 0.578 −0.010 0.402

(0.011) (0.012)

General vs. technological STEM track
Grade 11: Science - general track 0.343 −0.001 0.909 0.436 0.000 0.984

(0.011) [0.909] (0.011) [0.984]

Grade 11: Science - technological track 0.027 −0.005 0.173 0.141 −0.010 0.230
(0.004) [0.347] (0.008) [0.461]

N 7,241 6,459

Panel B. Grade 12 (science track)

All undergraduate STEM majors
Major: STEM 0.289 0.020 0.139 0.470 −0.002 0.925

(0.014) (0.019)

Selective vs. non-selective STEM
Major: selective STEM 0.110 0.031*** 0.006 0.232 0.008 0.575

(0.011) [0.012] (0.015) [0.575]

Major: non-selective STEM 0.178 −0.011 0.333 0.239 −0.010 0.445
(0.012) [0.333] (0.013) [0.575]

Male- vs. female-dominated STEM
Major: male-dominated STEM 0.166 0.034*** 0.004 0.379 0.013 0.485
(math, physics, computer science) (0.012) [0.012] (0.019) [0.575]

Major: female-dominated STEM 0.123 −0.015 0.169 0.091 −0.015 0.119
(earth and life sciences) (0.011) [0.226] (0.009) [0.477]

N 2,827 2,924
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ enrollment outcomes in the
academic year following the classroom interventions, i.e., 2016/17, separately by grade level and gender, and controlling for student
baseline characteristics. The enrollment outcomes are measured using student-level administrative data. Each row corresponds to
a different linear regression performed separately by gender, with the dependent variable listed on the left. Columns 1 and 4 report
the average value for students in the control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates.
They are obtained from a regression of the outcome of interest on a classroom visit indicator, using treatment assignment as an
instrument for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was
stratified by school. The regression further controls for the student characteristics listed in Table 1 in the main text. Standard errors
(shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report the cluster-robust
p-value of the estimated treatment effect and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing
across variables belonging to the same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically,
we use the sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01,
** p < 0.05, * p < 0.1.

A-39



I Randomization Inference
This appendix evaluates the robustness of our results to computing p-values using non-parametric
randomization inference tests rather than model-based cluster-robust inference.

Method. Randomization inference, which was first proposed by Fisher (1935) and was later
developed by Rosenbaum (2002), has been used in a number of recent RCT studies in economics
and political science as an alternative to model-based inference (e.g., Bloom et al., 2006; Cohen
and Dupas, 2010; Ichino and Schündeln, 2012; Fujiwara and Wantchekon, 2013). The advantage
of this method is that it is valid for any sample size and can be used even when the number of
randomization units is small. It should be stressed, however, that randomization inference has
lower power than parametric approaches when the true effect is large because it puts not even
minimal structure on the error term (see discussion in Bloom et al., 2006).

The intuition behind this approach is relatively straightforward. In RCTs, researchers know
exactly how the randomization was performed. Randomization inference uses this knowledge
to assess whether observed outcomes in a given sample are likely to have been observed by
chance even if the treatment had no effect. This can be obtained numerically through Monte
Carlo methods, by computing the treatment effects for varying random draws of the treatment
assignment, whose data-generating process is known. This test is non-parametric since it does
not make distributional assumptions.A.3

Implementation. The ITT effect under the observed assignment to treatment is estimated
using the following reduced-form specification:

Yics = α + βTcs + θs + εics, (A.1)

where Yics denotes the observed outcome of student i in class c and high school s; Tcs denotes
the observed treatment assignment of the student’s class; and θs are school fixed effects. The
ITT estimate under the observed treatment assignment is denoted by β̂.

To conduct randomization inference, we proceed as follows. Taking into account the
fact that randomization was stratified by school and grade level, we first re-assign treatment
R =2,000 times among participating classes using the exact same stratified procedure.A.4 Let
{P r}Rr=1 denote the set of R random placebo assignments from the randomization process. We
then re-estimate the ITT effects of these placebo treatments using the following reduced-form
specification, which is estimated separately by grade level and gender:

Yics = αr + βrP
r
cs + λs + ηics, r = 1, ..., R, (A.2)

where P r
cs is a dummy variable indicating assignment to a placebo treatment group for the random

draw r. School fixed effects, λs, are included to account for the fact that the randomization is
stratified by school.

Since Pr is a randomly generated placebo, E(βr) = 0. Let F (β̂r) denote the empirical c.d.f. of
all elements of {Pr}Rr=1. We test the null hypothesis that the program had no effect on outcome Y
by checking if the ITT estimate that we obtain for the observed treatment assignment is in the
tails of the distribution of placebo treatments. We can reject H0: β̂ = 0 with a confidence level
of 1− α if β̂ ≤ F−1

(
α
2

)
or β̂ ≥ F−1

(
1− α

2

)
. Since the placebo assignments only vary across

randomization units (classes), this method accounts for correlation within units.
A.3For more details on randomization inference and permutation tests, see Rosenbaum (2010) and Imbens and

Rubin (2015).
A.4See Paz and West (2019) for the number of draws to be used.
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Following (Davison and Hinkley, 1997, chap. 4), we compute the p-values from a two-sided
randomization inference test of zero treatment effects as follows:

p = 1 +∑R
r=1 1(|β̂r| ≥ |β|)

1 +R
, (A.3)

where 1(·) denotes the indicator function.

Results. Figure I5 illustrates the method by showing the empirical p.d.f. of the placebo ITT
effects on selective and male-dominated STEM enrollment for girls in Grade 12 (science track),
which are estimated using Equation (A.2). For each outcome, the vertical bar denotes the value
of the ITT estimate for the observed assignment, which is obtained using Equation (A.1).

Table I21 presents the results of randomization inference tests of the hypotheses that the
program had no effect on student perceptions and enrollment outcomes, separately by grade level
and gender. The ITT estimates β̂ are shown in columns 1 and 4. The associated cluster-robust
model-based p-values are reported and columns 2 and 5, while the randomization inference
p-values based on Equation (A.3) are in columns 3 and 6.

The results of the randomization inference tests yield p-values that are generally close to
the cluster-robust model-based p-values. Although they tend to be slightly more conservative,
they confirm the program’s statistically significant effects on enrollment in selective and male-
dominated STEM programs for girls in Grade 12.
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(a) Enrollment in selective STEM programs
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(b) Enrollment in male-dominated STEM programs
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Figure I5 – Randomization Inference: Distribution of Placebo Treatment Effects on Enrollment
in Selective and Male-Dominated STEM Undergraduate Programs, Grade 12
Notes: The figure shows the distribution of 2,000 placebo treatment effects (ITT) on the probability of enrolling in selective STEM
(Panel a) and male-dominated STEM (Panel b) undergraduate programs for students in Grade 12 (science track), separately by
gender. In each graph, the solid vertical line denotes the value of the ITT estimates for the observed assignment. The shaded area
represents the two-sided (empirical) p-value of 0.05.
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Table I21 – Randomization Inference for Intention-to-Treat estimates

Girls Boys

ITT p-value:
model-
based

p-value:
rand.

inference

ITT p-value:
model-
based

p-value:
rand.

inference

(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Student perceptions
Positive perceptions of science-related careers (index) 0.226 0.000 0.000 0.156 0.000 0.000
More men in science-related jobs 0.145 0.000 0.000 0.157 0.000 0.000
Equal gender aptitude for math (index) 0.101 0.000 0.000 0.138 0.000 0.000
Women like science less than men 0.054 0.000 0.000 0.096 0.000 0.000
Women face discrimination in science-related careers 0.118 0.000 0.000 0.143 0.000 0.000
Taste for science subjects (index) −0.035 0.298 0.340 −0.018 0.537 0.560
Math self-concept (index) −0.007 0.808 0.820 0.037 0.221 0.280
Science-related career aspirations (index) 0.011 0.697 0.720 0.007 0.803 0.830

Enrollment outcomes
Grade 11: Science track −0.007 0.589 0.640 −0.006 0.679 0.710
Grade 11: Science - general track −0.002 0.889 0.920 0.004 0.775 0.800
Grade 11: Science - technological track −0.005 0.115 0.170 −0.010 0.240 0.300

N 7,241 6,459

Panel B. Grade 12 (science track)

Student perceptions
Positive perceptions of science-related careers (index) 0.293 0.000 0.000 0.145 0.000 0.000
More men in science-related jobs 0.118 0.000 0.000 0.140 0.000 0.000
Equal gender aptitude for math (index) 0.090 0.001 0.020 0.124 0.002 0.020
Women like science less than men 0.042 0.000 0.000 0.069 0.000 0.000
Women face discrimination in science-related careers 0.090 0.000 0.000 0.068 0.000 0.000
Taste for science subjects (index) 0.015 0.640 0.740 0.000 0.998 1.000
Math self-concept (index) 0.047 0.214 0.360 0.068 0.044 0.140
Science-related career aspirations (index) 0.106 0.003 0.020 0.047 0.141 0.270

Enrollment outcomes
Undergraduate major: STEM 0.022 0.091 0.220 0.003 0.889 0.920
Undergraduate major: selective STEM 0.033 0.002 0.030 0.019 0.208 0.360
Undergraduate major: non-selective STEM −0.010 0.328 0.480 −0.016 0.220 0.370
Undergraduate major: male-dominated STEM 0.035 0.002 0.020 0.016 0.397 0.530
Undergraduate major: female-dominated STEM −0.014 0.162 0.320 −0.013 0.128 0.270

N 2,827 2,924
Notes: This table presents the results of randomization inference tests of the hypotheses that the program had no effect on student
perceptions and enrollment outcomes. We randomly re-assigned treatment 2,000 times among participating classes within each
school and grade level, and re-estimated the ITT effects of these placebo treatments. The ITT estimates under the observed
assignment are reported in columns 1 and 4 separately by gender. The associated cluster-robust model-based p-values are shown
in columns 2 and 5. The randomization inference p-values are reported in columns 3 and 6. Following Davison and Hinkley (1997),
they are computed from a two-sided randomization inference test of zero treatment effects as p =

(
1 +
∑R

r=1 1(|β̂r| ≥ |β|)
)
/(1+R),

where {β̂r}R
r=1 is the set of R placebo ITT estimates, β̂ is the ITT estimate under the observed assignment, and 1(·) denotes the

indicator function.
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J Persistence of Effects and Timing of Visits

Table J22 – Persistence of Effects on Student Perceptions

Girls Boys
Months since intervention Months since intervention
1 to 2
months

3 to 4
months

5 to 6
months

1 to 2
months

3 to 4
months

5 to 6
months

(1) (2) (3) (4) (5) (6)
Panel A : Grade 10
Positive perceptions of science-related careers (index) 0.413*** 0.200*** 0.143* 0.192*** 0.168*** 0.049

(0.057) (0.037) (0.077) (0.053) (0.036) (0.083)
More men in science-related jobs 0.170*** 0.154*** 0.164*** 0.209*** 0.163*** 0.116***

(0.021) (0.017) (0.033) (0.022) (0.018) (0.039)
Equal gender aptitude for math (index) 0.179*** 0.101*** 0.019 0.244*** 0.122*** 0.090

(0.047) (0.032) (0.065) (0.053) (0.040) (0.069)
Women like science less than men 0.047** 0.067*** 0.041 0.131*** 0.107*** 0.017

(0.022) (0.014) (0.026) (0.020) (0.016) (0.040)
W face discrimination in science-related careers 0.158*** 0.135*** 0.081** 0.162*** 0.174*** 0.110***

(0.022) (0.017) (0.039) (0.026) (0.017) (0.036)
Taste for science subjects (index) 0.088 −0.035 −0.053 0.043 −0.008 0.043

(0.075) (0.043) (0.075) (0.058) (0.041) (0.072)
Math self-concept (index) −0.029 0.006 0.044 −0.041 0.103*** 0.088

(0.057) (0.039) (0.080) (0.063) (0.039) (0.090)
Science-related career aspirations (index) 0.088 −0.002 0.010 0.000 0.022 0.010

(0.057) (0.036) (0.062) (0.051) (0.038) (0.072)
N 1,729 3,716 831 1,677 3,318 693
Panel B : Grade 12 (science track)
Positive perceptions of science-related careers (index) 0.442*** 0.253*** 0.353*** 0.182*** 0.169*** 0.003

(0.053) (0.043) (0.118) (0.061) (0.044) (0.095)
More men in science-related jobs 0.128*** 0.107*** 0.208*** 0.114*** 0.159*** 0.208***

(0.031) (0.019) (0.060) (0.023) (0.021) (0.046)
Equal gender aptitude for math (index) 0.077 0.138*** 0.020 0.218*** 0.106** 0.044

(0.067) (0.033) (0.094) (0.081) (0.051) (0.123)
Women like science less than men 0.067*** 0.040*** 0.032* 0.042 0.077*** 0.144***

(0.021) (0.011) (0.018) (0.029) (0.019) (0.032)
W face discrimination in science-related jobs 0.104*** 0.102*** 0.087 0.083*** 0.085*** −0.011

(0.038) (0.023) (0.072) (0.027) (0.024) (0.062)
Taste for science subjects (index) −0.063 −0.028 0.258*** 0.030 0.010 −0.090

(0.071) (0.045) (0.060) (0.079) (0.049) (0.111)
Math self-concept (index) 0.043 0.001 0.169 −0.022 0.114** 0.126

(0.065) (0.053) (0.122) (0.054) (0.046) (0.149)
Science-related career aspirations (index) −0.005 0.123*** 0.231*** 0.007 0.048 0.098

(0.077) (0.045) (0.077) (0.046) (0.046) (0.118)
N 689 1,468 394 717 1,514 370
Notes: This table reports estimates of the treatment effects of the role model interventions on student perceptions, separately
by grade level, gender, and intervals of elapsed time between the classroom intervention and the student survey. The sample is
restricted to students who completed the post-intervention questionnaire. Each coefficient is obtained from a linear regression of
the outcome of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors
(shown in parentheses) are adjusted for clustering at the unit of randomization (class).
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(a) Enrollment in selective STEM
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(b) Enrollment in male-dominated STEM
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Figure J6 – Grade 12 Students: Enrollment in Selective and Male-Dominated STEM Under-
graduate Programs, by Gender and Month of Classroom Intervention
Notes: The figure shows the fraction of Grade 12 (science track) students who enrolled in selective (Panel a) and in male-dominated
(Panel b) STEM undergraduate programs after graduating for high school, separately for girls (left panel) and for boys (right panel).
The filled bars indicate the baseline enrollment rates among students in the control group, both overall and separately by month
of classroom intervention. The solid dots show the estimated treatment effects (added to the control group means) with 95 percent
confidence intervals denoted by vertical capped bars. The treatment effects are estimated from separate regressions of the outcome
of interest on a classroom visit indicator, using treatment assignment as an instrument for treatment receipt. The regression
controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors are adjusted
for clustering at the unit of randomization (class).
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K Spillover Effects
This appendix investigates whether the program could have had spillover effects for students who
were not exposed to the role model interventions in the schools participating in the evaluation.
Section K.1 provides survey evidence suggesting that the scope for spillover effects was relatively
limited. Section K.2 describes the difference-in-differences (DiD) approach that we use to
estimate the magnitude of spillovers, the results of which point to non-statistically significant
effects.

K.1 Survey Evidence
To get some sense of the scope for spillover effects in the context of our study, we included in the
last section of the survey a series of questions asking students in the treatment group whether
they had talked about the classroom interventions with their classmates, with schoolmates from
other classes, or with friends from other schools (see the survey questionnaire in Appendix D).
We also asked students in the control group whether they had heard about a science-related
awareness-raising program and, more specifically, whether they knew about other classes in the
school being visited by a female or male scientist.

Overall, the summary statistics from the survey data suggest relatively limited opportunities
for spillover effects (see Appendix Table K23). In the treatment group, 58 percent of Grade 10
students and 63 percent of science track Grade 12 students report having talked about the
classroom intervention with their classmates, but only 24 percent (27 percent) with schoolmates
from other classes, and 20 percent with students from other schools. Interestingly, these
proportions are higher for girls than for boys: in Grade 10, 66 percent of girls in the treatment
group report having discussed the program with their classmates and 28 percent with schoolmates
from other classes vs. respectively 50 percent and 20 percent among boys; in Grade 12, 70 percent
of girls in the treatment group report having discussed the program with their classmates and
33 percent with schoolmates from other classes vs. respectively 56 percent and 21 percent among
boys.

In the control group, only 14 percent of students in Grade 10 report having heard of classroom
visits in other classes, mostly in a vague manner (12 percent). In Grade 12, students in the
control group are more likely to report being at least vaguely aware of such visits (34 percent),
but less than 5 percent of boys and girls have a precise recollection. Gender differences in these
proportions are small and barely statistically significant. The fact that students in Grade 12 are
more likely to report being aware of classroom visits could be at least partly due to the fact that
the share of students assigned to the treatment group among all students from the same grade
level was typically larger in Grade 12 than in Grade 10, on average 32 percent vs. 25 percent.
Despite these differences, the overall picture that emerges from the survey is that students in
the control group had only limited awareness of the classroom interventions in other classes.

K.2 Differences-in-Differences Estimates of Spillover Effects
We complement the survey evidence by investigating more formally whether the role model
interventions could have affected the higher education choices of Grade 12 students whose classes
were not assigned to the treatment group. These students are either in the classes that were not
selected by school principals to participate in the program evaluation or in the participating
classes that were randomly assigned to the control group.

Our experimental design does not include a “super control” group composed of students
enrolled in schools randomly chosen to have zero probability of assignment to the treatment
among the classes selected by school principals. Spillover effects cannot therefore be identified
by comparing the control group classes in participating schools with such supercontrol group
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classes, as in the design pioneered by Duflo and Saez (2003).A.5 Instead, our approach builds on
the following intuition: for schools that participated in the evaluation, the random assignment
of treatment to participating classes makes it possible to estimate the average outcome that
would have been observed if all students from these schools had only been exposed to the
spillover effects of role model interventions, without being directly exposed to a female role
model. This unobserved “spillover-only” counterfactual can be estimated at the school level
using an appropriately weighted average of non-treated classes: it suffices to compute the
weighted average outcome of students in the non-participating classes and in the participating
classes that were randomly assigned to the control group, with respective weights equal to the
share of participating and of non-participating classes in the school. Average spillover effects
can then be estimated by comparing this “spillover-only” counterfactual to a “no-treatment”
counterfactual. This second counterfactual is constructed under the assumption that absent
treatment, mean outcomes in participating school would have followed the same evolution as in
non-participating schools. Having verified that this common trends assumption is satisfied in
the pre-treatment period 2012–2014, we implement a difference-in-differences estimator that
identifies the difference between the “spillover-only” and the “no-treatment” counterfactuals.
This approach, which is graphically illustrated in Figure K7, enables us to estimate the average
spillover effects of role model interventions in the participating schools.

Notations. We are interested in measuring the spillover effects of classroom visits. We denote
by Ds a binary indicator for a student’s school s being visited by a female role model and by
Dcs a binary indicator for a role model intervention taking place in the student’s class c. We
consider two time periods, represented by a binary indicator T ∈ {0, 1}, with classroom visits
taking place in period 1 only. For a given realization of the treatment assignment (ds, dcs), the
potential outcome for student i in school s, class c, and time t is denoted by Yicst(ds, dcs).

We use the binary indicator Gs to indicate whether school s participated in the experiment
and we denote the sets of participating and non-participating schools by S1 and S0, respectively.
The number of participating (non-participating) schools is denoted byM1 (M0). Only a subset of
the classes in participating schools were (non-randomly) selected by the principals to participate
in the experiment in period 1. The participation status of class c in school s is denoted by
the binary indicator Gcs. Among participating classes (Gcs = 1), the binary indicator Rcs

indicates whether the class was randomly assigned to the treatment group (Rcs = 1) or to the
control group (Rcs = 0). The experimental setting therefore implies that Ds = Gs × T and
Dcs = Rcs × T . A student’s observed outcome can then be written

Yicst = Ds ·Dcs · Yicst(1, 1) +Ds · (1−Dcs) · Yicst(1, 0) + (1−Ds) · Yicst(0, 0). (A.4)

To simplify notation, we assume that each school has the same number of students, N , and
that the number of students is the same in both periods.

Let Ys,t(0, 0) denote the average potential outcome of students in school s and year t under
no treatment. This average potential outcome corresponds to the case in which no student from
school s in year t is exposed to either the direct or spillover effects of classroom visits, i.e.,

Ys,t(0, 0) = 1
N

N∑
i=1

Yicst(0, 0). (A.5)

A.5Vazquez-Bare (2018) develops a potential-outcome-based nonparametric framework to identify spillover
effects in randomized experiments where units are clustered, without requiring a specific experimental design.
This approach, however, cannot be easily adapted to our setting since it requires that the treatment is assigned
at the individual level within clusters (schools), not at the group level (classes), in order to exploit variation in
all the possible configurations of own and neighbors’ observed treatment assignments.
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Let Ys,t(1, 0) denote the average potential outcome of students in school s and year t in the
(non-feasible) scenario in which all students in school s are only exposed to the spillover effects
of role model interventions in other classes, without themselves being visited by a female role
model. This “spillover-only” average potential outcome is defined as follows:

Ys,t(1, 0) = 1
N

N∑
i=1

Yicst(1, 0). (A.6)

Our parameter of interest is the expected average spillover effect of classroom visits for the
students in participating schools in period 1, i.e.,

∆ = E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,1(0, 0)

) . (A.7)

This parameter can be interpreted as the average effect for students in participating schools
of being only exposed to the indirect effects of classroom visits compared to the counterfactual
of no classroom visit in the school.

Identification of spillover effects. Let Ys,t denote the mean observed outcome for students
in school s and year t, i.e.,

Ys,t = 1
N

N∑
i=1

Yicst. (A.8)

For non-participating schools in periods 0 and 1 and for participating schools in period 0, this
mean observed outcome is in expectation equal to the expected average potential outcome under
no treatment. Indeed, Equations (A.4), (A.5), and (A.8) imply that

E(Ys,t) = E
(
Ys,t(0, 0)

)
if s ∈ S0 and t ∈ {0, 1} or if s ∈ S1 and t = 0 (A.9)

For each school s ∈ S1 that participated in the evaluation, we consider the following partition
of students in period 1: let C0

s , CCs , and CTs denote respectively (i) the students in the classes
that did not participate in the evaluation (Gs = 0), (ii) the students in the participating classes
that were randomly assigned to the control group (Gs = 1 and Rcs = 0), and (iii) the students
in the participating classes that were randomly assigned to the treatment group (Gs = 1 and
Rcs = 1). By definition, the number of students in each group, which we denote by N0

s , NC
s and

NT
s respectively, is such that N = N0

s +NC
s +NT

s .
For the purpose of estimating spillover effects, we construct a mean counterfactual outcome

for participating schools in period 1, which we denote by Ỹs,1. As shown in Proposition 1 below,
the expected value of Ỹs,1 coincides with the expected average potential outcome of students in
school s and period 1 if all students had only been exposed to the spillover effects of classroom
visits in other classes, without being themselves directly exposed to a female role model. This
counterfactual outcome ignores classes in the treatment group and is defined as a weighted
average of the observed outcomes of students in the non-participating classes and the control
group classes (see Figure K7):

Ỹs,1 = 1
N

∑
i∈C0

s

Yics1 +
(

1 + NT
s

NC
s

) ∑
i∈CC

s

Yics1

 , s ∈ S1. (A.10)

The intuition is as follows. The “spillover only” counterfactual measured at the school
level cannot be recovered from the non-participating classes only, since these classes were
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not randomly selected by school principals. However, having noted that the mean observed
outcome of students in the control group is an unbiased estimator of the mean (unobserved)
“spillover-only” outcome for students in the treatment group, one can reconstruct the school-level
“spillover-only” counterfactual by restricting the set of students to those in non-participating
classes and control group classes. To estimate the mean outcome that would have been observed
if all students had only been exposed to the spillover effects of classroom visits, it suffices to
reweight students in the control group so that they match the total number of students in the
participating classes (i.e., treatment and control), and then combine this reweighted sample
with the sample of students in non-participating classes to compute the average outcome.

Assumption 1. Random assignment of treatment to participating classes.

E

 1
NT
s

∑
i∈CT

s

Yics1(1, 0)
 = E

 1
NC
s

∑
i∈CC

s

Yics1(1, 0)
 , s ∈ S1.

Assumption 1 states that students in the treatment and control group classes of participating
schools have the same expected average potential outcome under the “spillover-only” treatment.
Our experimental design ensures that this assumption is satisfied.

Proposition 1. Under Assumption 1, the counterfactual Ỹs,1 is an unbiased estimator of the
expected average potential outcome of students in participating school s and period 1 under the
“spillover-only” treatment, Ys,1(1, 0):

E(Ỹs,1) = E
(
Ys,1(1, 0)

)
, s ∈ S1.

Proof. From the definition of the “spillover-only” counterfactual in Equation (A.10), we have

E(Ỹs,1) = E

 1
N

∑
i∈C0

s

Yics1 +
(

1 + NT
s

NC
s

) ∑
i∈CC

s

Yics1


= 1
N

∑
i∈C0

s

E(Yics1(1, 0)) +
∑
i∈CC

s

E(Yics1(1, 0)) + NT
s

NC
s

∑
i∈CC

s

E(Yics1(1, 0))


= 1
N

∑
i∈C0

s

E(Yics1(1, 0)) +
∑
i∈CC

s

E(Yics1(1, 0)) +
∑
i∈CT

s

E(Yics1(1, 0))


= 1
N

N∑
i=1

E(Yics1(1, 0))

= E
(
Ys,1(1, 0)

)
.

The second equality follows from Equation (A.4), the third equality follows from Assumption 1,
while the last equality follows from Equation (A.6). The key intuition for this result is that by
virtue of the random assignment of treatment to participating classes, the mean observed outcome
of students assigned to the control group is an unbiased estimator of the mean unobserved
“spillover-only” outcome of students assigned to the treatment group.

Identifying spillover effects requires comparing the “spillover-only” counterfactual with the
“no-treatment” counterfactual. To this end, we define the following difference-in-differences
estimator, which we denote by ∆̂:

∆̂ = 1
M1

∑
s∈S1

(Ỹs,1 − Ys,0)− 1
M0

∑
s∈S0

(Ys,1 − Ys,0). (A.11)
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This estimator compares the evolution of the mean outcome of students in participating schools
between period 0 and period 1 (using the “spillover-only” counterfactual for period 1) with the
corresponding evolution in non-participating schools.

Assumption 2. Common trends between participating and non-participating schools.

E

 1
M1

∑
s∈S1

(
Ys,1(0, 0)− Ys,0(0, 0)

) = E

 1
M0

∑
s∈S0

(
Ys,1(0, 0)− Ys,0(0, 0)

) .
Assumption 2 states that in the absence of role model visits to the school, average outcomes

in participating and non-participating schools would have followed parallel trends. Although this
assumption cannot be directly tested, it can be indirectly assessed by comparing the evolution
of mean outcomes in participating and non-participating schools in the pre-intervention period.

Proposition 2. Under Assumptions 1 and 2, ∆̂ is an unbiased estimator of the average spillover
effect, ∆:

E(∆̂) = ∆.

Proof. From the definition of the difference-in-differences estimator in Equation (A.11), we
have

E(∆̂) = E

 1
M1

∑
s∈S1

(
Ỹs,1 − Ys,0

)
− 1
M0

∑
s∈S0

(
Ys,1 − Ys,0

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,0(0, 0)

)− E

 1
M0

∑
s∈S0

(
Ys,1(0, 0)− Ys,0(0, 0)

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,0(0, 0)

)− E

 1
M1

∑
s∈S1

(
Ys,1(0, 0)− Ys,0(0, 0)

)
= E

 1
M1

∑
s∈S1

(
Ys,1(1, 0)− Ys,1(0, 0)

)
= ∆.

The second equality follows from Equation (A.9) and from Proposition 1, the third equality
follows from Assumption 2 (common trends between participating and non-participating schools),
while the last equality follows from Equation (A.7).

Empirical specification. In the context of our study, the spillover effects estimator (A.11)
can be conveniently implemented using a difference-in-differences regression specification. We
apply this estimator to investigate whether the classroom interventions affected the college
decisions of science track Grade 12 students whose classes were not visited by a female role
model.

In our empirical application, we consider the four cohorts of Grade 12 students that were
enrolled in the high schools of the Paris region in the year of the intervention (2015) and in the
three preceding years (2012, 2013, and 2014).

One complication is that the “For Girls in Science” program was first implemented on a
small scale in 2014, i.e., one year before the evaluation was conducted (in 2015). As a result,
some of the schools that participated in the program evaluation, as well as some of the schools
that did not participate in the evaluation, could have been visited by female role models in 2014.
Although we cannot precisely identify these schools, the contamination effect is likely to be small
since the interventions were carried out by a small number of role models and were not specifically

A-50



targeted at students enrolled in Grade 10 and Grade 12 (science track). Nonetheless, to ensure
that our difference-in-differences estimates are not biased due to these prior interventions, we use
2012 as the reference year. The baseline differences between participating and non-participating
schools are therefore measured at a point in time in which the program was not in place.

Let Ys,t denote the average outcome of Grade 12 students in school s and year t. For each
participating school s ∈ S1, we use Equation (A.10) to construct the “spillover-only” mean
counterfactual outcome in 2015, which we denote by Ỹs,t. Our dependent variable, denoted by
Y ∗s,t, is then defined as follows:

Y ∗s,t =
{
Ỹs,t if s ∈ S1 and t = 2015
Ys,t otherwise

The spillover effects of classroom visits are then estimated using the following difference-in-
differences regression model:

Y ∗s,t = α + θs + θt +
2015∑

k=2013
βk · 1{s ∈ S1 and t = k}+ εs,t, (A.12)

where θs are school fixed effects and θt are year fixed effects (using 2012 as the reference
year); 1{s ∈ S1 and t = k} is a dummy variable that take the value one if the observation
corresponds to a participating school observed in year k; and εs,t is the error term. Under the
common trend assumption, the coefficient β̂2015 identifies the average spillover effects among the
non-treated students in participating schools. The coefficients β̂2013 and β̂2014 provide an indirect
test of this assumption: if it holds, the evolution of mean outcomes between 2012 and 2014
(pre-intervention period) should be parallel between participating and non-participating schools,
and the coefficients on the pre-interventions “placebos” should not be jointly significant.A.6

Selection of non-participating schools. To ensure that non-participating schools are as
similar as possible to the participating schools, we use a nearest neighbor matching procedure
(with replacement) on the estimated propensity score. We consider all public and private high
schools operating in the Paris region that had at least two science track Grade 12 classes in
2015, as this restriction was used in our experimental design to select participating schools (see
Section 2 in the main text). We then estimate the probability that the school participated in the
experiment in 2015 given a vector of exogenous school characteristics Xst (measured every year
between 2012 and 2015) and a vector of the pre-intervention outcomes Yst (measured in 2012
and 2013) for which spillover effects are measured.A.7 We then match each participating school
with the non-participating school having the closest propensity score among the schools with
the same status (public or private) and located in the same education district (Paris, Créteil or
Versailles) as that of the participating school.

A.6Strictly speaking, the parallel trend assumption only requires the coefficient β2013 to be non-statistically
significant since, as explained above, the comparison between participating and non-participating schools in 2014
could be contaminated by the classroom interventions that were carried on a small scale that year. As shown
below, the results show that the parallel trend assumption also holds between 2013 and 2014, suggesting that
the contamination effects of these prior interventions are negligible, if any.

A.7The vector of exogenous school characteristics Xst includes the school’s education district (Paris, Créteil or
Versailles), whether it is public or private, and the following time-varying characteristics every year between 2012
and 2015: the number of students in Grade 12 (science track), the fraction of female students, and the fraction
of high-SES students. The vector of pre-intervention outcomes Yst in 2012 and 2013 includes the fraction of
science track Grade 12 students who enroll in a STEM program after graduating from high school, the fraction
who enroll in a selective STEM program, and the fraction who enroll in a male-dominated STEM program
(computed separately by year and gender). We do not control for pre-intervention outcomes in 2014 to avoid any
contamination by classroom interventions that could have been carried out that year.
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Results. We use Equation (A.12) to estimate the spillover effects of classroom visits on the
college enrollment outcomes of Grade 12 students in non-treated classes. The model is estimated
separately by gender and we consider the three main outcomes for which we document significant
direct effects of the interventions: enrollment in a STEM undergraduate program, enrollment
in a selective STEM program, and enrollment in a male-dominated STEM program. The
observations are school-by-year averages weighted by school size. Standard errors are clustered
at the school level to account for serial correlation across years.

The results are reported in Table K24. Panel A shows that the non-participating schools
selected by the nearest-neighbor matching procedure are reasonably similar to the participating
schools in terms of the average college enrollment outcomes of female and male students in the
pre-intervention period 2012-2013.

The estimates from the DiD regression are reported in Panel B. In all specifications, the
coefficients on (participating school × t=2013) and on (participating school × t=2014) are close
to zero and are neither individually nor jointly significant, which lends support to the assumption
of common trends between participating and non-participating schools. Overall, the results
provide no evidence of significant spillover effects from the classroom visits in participating
schools: for all considered outcomes, the coefficient β̂2015 on (participating school × t = 2015) is
close to zero and not statistically significant for both female and male students.

It should, however, be noted that although our estimates are relatively precise, we cannot
rule out small to moderate spillover effects. In the presence of positive spillovers, the treatment
effects reported in the main text would under-estimate the true direct effect of classroom visits,
since the “contamination” of the control group would push the difference between treatment
and control classes towards zero. Denoting by Φ the average direct effect of the classroom
interventions and by ∆ (> 0) their average indirect effect (through spillovers), the treatment-
control difference in mean outcomes, denoted by β̂, estimates Φ−∆ instead of Φ. If we estimate
the spillover effects to be at most ∆̂UB, this implies that the size of spillover effects is at most
∆̂UB/(β̂ + ∆̂UB) of the size of the direct effect. When we consider the effects on the probability
that female students enroll in a selective STEM program, the comparison of treatment and
control classes yields an estimated direct effect of β̂ = 0.035 (see Table 6, Panel B, column 2).
Based on the results in column 2 of Table K24, the upper bound of the 95 percent confidence
interval for the spillover effects is estimated to be ∆̂UB = 0.017. Hence, in the case of selective
STEM enrollment, we cannot reject spillover effects that would be at most 33 percent of the
size of the “true” direct effect β̂ + ∆̂UB, which in this case would be of 5.2 percentage points. A
similar calculation for the spillover effects on male-dominated STEM enrollment yields an upper
bound of ∆̂UB = 0.025. Since the estimated direct effect is β̂ = 0.038, we cannot reject spillover
effects of at most 40 percent of the size of the “true‘’ direct effect β̂ + ∆̂UB, which in that case
would be of 6.3 percentage points.
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Figure K7 – Spillover Effects of Role Model Interventions: Empirical Strategy
Notes: This figure illustrates the difference-in-differences strategy we implement to estimate the spillover effects of role model
interventions for students who were enrolled in participating schools but whose classes were not assigned to the treatment group.
These students are either in the classes that were not selected by school principals to participate in the program evaluation or in the
participating classes that were randomly assigned to the control group. Our approach consists in comparing the evolution of mean
student outcomes (at the school level) in participating (s ∈ S1) and non-participating schools (s ∈ S0), between the year before the
intervention (T = 0) and the year of the intervention (T = 1). For T = 1, we use a weighted average of non-treated classes in each
participating school to estimate the counterfactual “spillover-only” outcome that would have been observed if all the students from
that school had only been exposed to the spillover effects of classroom interventions, without being directly exposed to a female
role model. Average spillover effects are then estimated by comparing this “spillover-only” counterfactual to a “no-treatment”
counterfactual. Under the assumption that absent treatment, mean outcomes in participating school would have followed the same
evolution as in non-participating schools, the average spillover effects can be estimated by comparing the evolution between T = 0
and T = 1 of the mean outcome of students in participating schools (using the “spillover-only” counterfactual for period 1) with
the corresponding evolution in non-participating schools.
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Table K23 – Scope for Spillover Effects: Summary Statistics from the Student Survey

Within class

All Boys Girls Difference
(3)−(2)

p-value
of diff.

(1) (2) (3) (4) (5)

Panel A. Grade 10

Treatment Group

Discussed the classroom visit?
with classmates 0.580 0.498 0.656 0.145 0.000
with other students from the school 0.240 0.200 0.277 0.072 0.000
with other students outside the school 0.203 0.155 0.247 0.098 0.000

Exposed to other science outreach program?
this school year 0.128 0.138 0.120 −0.011 0.297
in the past 0.182 0.218 0.149 −0.059 0.000

N 6,245 2,989 3,256

Control Group

Heard of classroom visits in other classes?
Yes, definitely 0.018 0.017 0.020 0.001 0.862
Yes, vaguely 0.122 0.117 0.127 0.009 0.244
No 0.859 0.866 0.853 −0.010 0.271

Exposed to programs about science or jobs in science?
this school year 0.146 0.144 0.148 0.011 0.283
before the end of this school year 0.052 0.059 0.047 −0.014 0.019
in the past 0.322 0.309 0.333 0.025 0.066

N 5,981 2,762 3,219

Panel B. Grade 12 (science track)

Treatment Group

Discussed the classroom visit?
with classmates 0.629 0.556 0.705 0.131 0.000
with other students from the school 0.269 0.206 0.334 0.114 0.000
with other students outside the school 0.202 0.133 0.275 0.136 0.000

Exposed to other science outreach programs?
this school year 0.202 0.200 0.204 0.005 0.797
in the past 0.324 0.349 0.299 −0.053 0.025

N 2,642 1,350 1,292

Control Group

Heard of classroom visit in other classes?
Yes, definitely 0.047 0.049 0.045 −0.004 0.645
Yes, vaguely 0.292 0.275 0.308 0.037 0.048
No 0.661 0.676 0.646 −0.033 0.085

Exposed to programs about science or jobs in science?
this school year 0.287 0.291 0.284 0.011 0.515
before the end of this school year 0.096 0.104 0.088 −0.009 0.403
in the past 0.488 0.461 0.514 0.054 0.028

N 2,594 1,286 1,308

Notes: The summary statistics in this table are computed from the post-treatment student survey administered in all treated and
control classes between one and six months after the role model interventions. Columns 1, 2, and 3 report average values for all
respondents and for boys and girls, respectively, separately by grade level and treatment assignment. The within-class difference in
the responses of girls and boys, reported in column 4, is obtained from a regression of the variable of interest on a female dummy,
controlling for class fixed effects and clustering standard errors at the school level.
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Table K24 – Difference-in-Differences Estimates of the Spillover Effects of Role Model Inter-
ventions on College Enrollment Outcomes, Grade 12 Students, Years 2012–2015

Grade 12 (science track) students

Girls Boys

Underg. Selective Male-dom. Underg. Selective Male-dom.
STEM STEM STEM STEM STEM STEM
(1) (2) (3) (4) (5) (6)

Panel A. Baseline means (2012–2013)

Participating schools
Mean 0.274 0.145 0.163 0.489 0.265 0.409
Number of schools 88 88 88 87 87 87
Average number of Grade 12 students 107 107 107 108 108 108

Non-participating schools
Mean 0.265 0.141 0.157 0.473 0.257 0.395
Number of schools 62 62 62 61 61 61
Average number of Grade 12 students 99 99 99 99 99 99

Panel B. Regression estimates

Pre-trends: participating vs. non-
particip. schools (relative to 2012)

β̂2013: Particip. school × (t=2013) 0.006 −0.001 0.013 0.003 −0.023 −0.015
(0.017) (0.014) (0.014) (0.022) (0.017) (0.021)

β̂2014: Particip. school × (t=2014) 0.015 0.001 0.014 0.002 −0.020 −0.017
(0.019) (0.014) (0.014) (0.018) (0.015) (0.017)

Spillover effects: non-treated students

β̂2015: Particip. school × (t=2015) −0.011 −0.014 −0.009 0.008 −0.011 −0.018
(0.021) (0.016) (0.017) (0.022) (0.019) (0.024)

Year fixed effects (omitted: 2012) Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes

Number of observations (school×year) 601 601 601 593 593 593

Test: common trends (β̂2013=β̂2014=0)
F -stat 0.33 0.01 0.67 0.01 1.22 0.51
p-value 0.72 0.99 0.52 0.99 0.30 0.60

Notes: This table reports the estimated spillover effects of the role model interventions for students in the non-treated classes of the
schools that participated in the program evaluation in 2015, separately for male and female students in Grade 12 (science track).
The outcomes we consider are those for which we document significant direct effects of the interventions, i.e., enrollment in a STEM
undergraduate program, enrollment in a selective STEM program, and enrollment in a male-dominated STEM program. The results
are based on a difference-in-differences specification that compares the outcomes of students in participating and non-participating
schools over the period 2012 to 2015, in which the first three years correspond to the pre-intervention period. Non-participating
schools are selected among high schools in the Paris region using a nearest neighbor matching procedure (with replacement) on
the estimated propensity score. The baseline mean outcomes in participating and non-participating over the pre-intervention
period 2012-2013 are reported in Panel A. The regression estimates are reported in Panel B. In all specifications, the dependent
variable is the school-by-year average outcome of non-treated students. For non-participating schools throughout the period and
for participating schools in the pre-intervention period, this mean outcome is simply the average outcome of all students enrolled
in Grade 12 (science track) in the considered year. For participating schools in 2015 (the year of the intervention), this variable is
computed as the weighted average outcome of students in the non-participating classes and in the participating classes that were
randomly assigned to the control group, with respective weights equal to the share of participating and of non-participating classes
(i.e., treatment and control) in the school. The dependent variable is regressed on school fixed effects, year fixed effects (using 2012
as the reference year) and on three dummy variables that take the value one if the observation corresponds to a participating school
observed in 2013, 2014, and 2015, respectively. The coefficients on the first two dummy variables capture the differential pre-trends
between participating and non-participating schools whereas the coefficient on the third dummy variable measures the spillover
effects of role model interventions. All regressions are weighted by school size. Standard errors (in parentheses) are clustered at
the school level. The number of schools being used in the regressions for female and male students differs because one of the
participating schools and one of the non-participating schools are female-only. *** p < 0.01, ** p < 0.05, * p < 0.1.
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L Heterogenous Treatment Effects: Subgroup Analysis

Table L25 – Enrollment Status the Following Year, by Level of Performance in Math

Girls Boys

Treatment effect (LATE) Treatment effect (LATE)
by level of performance in math by level of performance in math

Below
median

Above
median

p-value
of diff.

[q-value]

Below
median

Above
median

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Grade 11: Science track −0.019 0.002 0.375 −0.022 0.004 0.358
(0.015) (0.019) (0.021) (0.018)

Grade 11: Science - general track −0.005 0.000 0.834 −0.009 0.013 0.393
(0.014) (0.019) [0.835] (0.016) (0.019) [0.787]

Grade 11: Science - technological track −0.014** 0.002 0.068 −0.014 −0.009 0.820
(0.007) (0.004) [0.137] (0.016) (0.011) [0.821]

N 3,584 3,484 3,221 3,075

Panel B. Grade 12 (science track)

Major: STEM 0.010 0.031 0.571 −0.041 0.016 0.163
(0.020) (0.026) (0.026) (0.029)

Major: selective STEM 0.002 0.067*** 0.018 −0.014 0.036 0.156
(0.013) (0.022) [0.037] (0.018) (0.027) [0.313]

Major: male-dominated STEM 0.024 0.046** 0.513 −0.005 0.019 0.541
(0.018) (0.023) [0.514] (0.025) (0.028) [0.541]

N 1,544 1,211 1,497 1,328
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ enrollment outcomes in
the academic year following the classroom visits, i.e., 2016/17, separately by grade level, gender, and level of academic performance
in math. The enrollment outcomes are measured using student-level administrative data. Each row corresponds to a different
linear regression performed separately by gender, with the dependent variable listed on the left. Students’ performance in math
is measured from the grades obtained on the final math exam of the Diplôme national du Brevet at the end of middle school (for
Grade 10 students) and on the final math exam of the Baccalauréat (for science track Grade 12 students). Columns 1 and 2 (for
girls) and columns 4 and 5 (for boys) report the local average treatment effect (LATE) estimates for students below and above
the median level of performance in math, respectively. They are obtained from a regression of the outcome of interest on the
interaction between a classroom visit indicator and indicators for the student being below or above the median level of performance
in math, using treatment assignment (interacted with the math performance dummies) as an instrument for treatment receipt. The
regression controls for school fixed effects to account for the fact that randomization was stratified by school. Standard errors (shown
in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6 report both the cluster-robust
model-based p-value for the difference between the treatment effects estimates for students above vs. below the median performance
in math and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across variables belonging to the
same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the sharpened two-stage
q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L26 – Enrollment Status the Following Year, by Role Model Background

Girls Boys

Treatment effect (LATE) Treatment effect (LATE)
by role model background by role model background

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Panel A. Grade 10

Grade 11: Science track 0.008 −0.020 0.295 −0.026 0.009 0.272
(0.020) (0.018) (0.024) (0.019)

Grade 11: Science - general track 0.016 −0.016 0.225 −0.001 0.008 0.763
(0.020) (0.018) [0.450] (0.022) (0.019) [0.763]

Grade 11: Science - technological track −0.008 −0.004 0.569 −0.025** 0.001 0.142
(0.005) (0.005) [0.569] (0.012) (0.012) [0.284]

N 3,180 4,061 2,879 3,580

Panel B. Grade 12 (science track)

Major: STEM 0.002 0.039** 0.185 −0.007 0.010 0.663
(0.022) (0.017) (0.032) (0.024)

Major: selective STEM 0.008 0.053*** 0.046 0.008 0.029 0.503
(0.018) (0.014) [0.093] (0.025) (0.019) [0.504]

Major: male-dominated STEM 0.025 0.046*** 0.379 −0.002 0.031 0.397
(0.019) (0.015) [0.379] (0.030) (0.025) [0.504]

N 1,180 1,647 1,312 1,612
Notes: This table reports estimates of the treatment effects of the role model interventions on students’ enrollment outcomes in
the academic year following the classroom visits, i.e., 2016/17, separately by grade level, student gender, and by background of the
female role model who visited the classroom (professional or researcher). The enrollment outcomes are measured using student-level
administrative data. Each row corresponds to a different linear regression performed separately by gender, with the dependent
variable listed on the left. Columns 1 and 2 (for girls) and columns 4 and 5 (for boys) report the local average treatment effect (LATE)
estimates for students whose class was visited by a researcher or a professional, respectively. They are obtained from a regression
of the outcome of interest on the interaction between a classroom visit indicator and indicators for the role model being either a
researcher or a professional, using treatment assignment (interacted with the role model background indicator) as an instrument
for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was stratified by
school. Standard errors (shown in parentheses) are adjusted for clustering at the unit of randomization (class). Columns 3 and 6
report both the cluster-robust model-based p-value for the difference between the treatment effects estimates for students visited
by a professional vs. a researcher and, in square brackets, the p-value (q-value) adjusted for multiple hypotheses testing across
variables belonging to the same family of outcomes, using the False Discovery Rate (FDR) control method. Specifically, we use the
sharpened two-stage q-values introduced in Benjamini et al. (2006) and described in Anderson (2008). *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table L27 – Grade 12 Students: Enrollment Status the Following Year, by Quintile of Math
Performance and by Role Model Background

Girls Boys

Control
group mean

Treatment
effect

(LATE)

Standard
error

Control
group mean

Treatment
effect

(LATE)

Standard
error

(1) (2) (3) (4) (5) (6)

Panel A. By quintile of math performance at Baccalauréat

Major: STEM 0.289 0.024 0.014 0.470 0.003 0.020
Quintile 1 0.186 −0.020 0.031 0.217 0.044 0.036
Quintile 2 0.282 0.050 0.044 0.441 −0.049 0.041
Quintile 3 0.285 −0.004 0.037 0.573 −0.110 0.052
Quintile 4 0.356 −0.016 0.038 0.570 0.005 0.043
Quintile 5 0.399 0.151 0.045 0.679 0.036 0.046

Major: selective STEM 0.110 0.035 0.011 0.232 0.020 0.016
Quintile 1 0.033 0.000 0.018 0.051 0.011 0.022
Quintile 2 0.040 0.021 0.021 0.127 −0.010 0.026
Quintile 3 0.088 −0.008 0.021 0.242 −0.011 0.046
Quintile 4 0.168 0.038 0.029 0.342 −0.019 0.041
Quintile 5 0.285 0.163 0.043 0.492 0.096 0.047

Major: male-dominated STEM 0.166 0.038 0.012 0.379 0.017 0.019
Quintile 1 0.086 0.008 0.025 0.147 0.061 0.032
Quintile 2 0.141 0.064 0.036 0.333 −0.015 0.038
Quintile 3 0.148 0.025 0.031 0.449 −0.061 0.049
Quintile 4 0.211 −0.001 0.033 0.467 0.013 0.042
Quintile 5 0.311 0.122 0.046 0.617 0.022 0.048

N 2,827 2,924

Panel B. By role model background

Major: STEM 0.289 0.024 0.014 0.470 0.003 0.020
Researcher 0.293 0.002 0.022 0.458 −0.007 0.032
Professional 0.285 0.039 0.017 0.480 0.010 0.024

Major: selective STEM 0.110 0.035 0.011 0.232 0.020 0.016
Researcher 0.100 0.008 0.018 0.227 0.008 0.025
Professional 0.118 0.053 0.014 0.236 0.029 0.019

Major: male-dominated STEM 0.166 0.038 0.012 0.379 0.017 0.019
Researcher 0.168 0.025 0.019 0.360 −0.002 0.030
Professional 0.165 0.046 0.015 0.395 0.031 0.025

N 2,827 2,924
Notes: This table complements Figures 3 and 4 in the main text. It reports estimates of the treatment effects of the role model
interventions on Grade 12 (science track) students’ enrollment outcomes in the academic year following the classroom visits, i.e.,
2016/17, separately by student gender, quintile of performance in math, and role model background (professional or researcher).
The enrollment outcomes are measured using student-level administrative data. Students’ performance in math is measured from
the grades obtained on the final math exam of the Baccalauréat. Columns 1 and 4 report the average value for students in the
control group. Columns 2 and 5 report the local average treatment effect (LATE) estimates. The estimates shown in Panel A
are obtained from a regression of the outcome of interest on interactions between a classroom visit indicator and the quintiles of
math performance, using treatment assignment (interacted with the quintiles of math performance) as an instrument for treatment
receipt. The estimates shown in Panel B are obtained from a regression of the outcome of interest on interactions between a
classroom visit indicator and two indicators for role model type, using treatment assignment (interacted with role model type) as
an instrument for treatment receipt. The regression controls for school fixed effects to account for the fact that randomization was
stratified by school. Standard errors (reported in columns 3 and 6) are adjusted for clustering at the unit of randomization (classs).
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Table L28 – Treatment Effects (ITT) on Enrollment in Selective and Male-dominated STEM
among Grade 12 Students: Heterogeneity by Student and Role Model Characteristics

Dependent variable: undergraduate program is

Selective STEM Male-dominated STEM

Girls Boys Girls Boys

(1) (2) (3) (4) (5) (6) (7) (8)

Treatment group indicator (T) 0.001 −0.053* −0.017 −0.072 0.013 0.020 −0.023 −0.096
(0.016) (0.032) (0.022) (0.046) (0.018) (0.040) (0.025) (0.063)

Interactions with student
characteristics

T*Bac rank in math (/100, demeaned) 0.148*** 0.162*** 0.034 −0.003 0.063 0.070 −0.045 −0.069
(0.050) (0.057) (0.060) (0.064) (0.056) (0.066) (0.063) (0.073)

T*Bac rank in French (/100, demeaned) −0.039 0.091 −0.061 0.012
(0.045) (0.060) (0.060) (0.068)

T*High SES (demeaned) 0.039 −0.017 0.039 0.034
(0.028) (0.032) (0.031) (0.039)

Interactions with role model
characteristics

T*Professional 0.060*** 0.096*** 0.052* 0.076** 0.036 0.086*** 0.078** 0.137***
(0.021) (0.024) (0.030) (0.035) (0.023) (0.031) (0.035) (0.048)

T*Participated in the program the year before −0.041 0.026 −0.031 0.012
(0.025) (0.040) (0.023) (0.044)

T*Age (demeaned) 0.001 0.000 0.001 0.000
(0.003) (0.003) (0.003) (0.003)

T*Non-French −0.004 0.003 −0.052*** −0.021
(0.023) (0.042) (0.018) (0.045)

T*Has children 0.005 0.014 −0.074** −0.023
(0.026) (0.034) (0.029) (0.040)

T*Has a Ph.D. degree 0.080*** 0.062 0.058* 0.059
(0.027) (0.042) (0.035) (0.057)

T*STEM Field −0.035 −0.019 −0.072*** 0.051
(0.025) (0.033) (0.025) (0.040)

Student characteristics Yes Yes Yes Yes Yes Yes Yes Yes
School fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2,532 2,532 2,576 2,576 2,532 2,532 2,576 2,576

Adjusted R-squared 0.123 0.123 0.183 0.182 0.062 0.064 0.126 0.125

Notes: Each column corresponds to a separate regression. The sample is restricted to students in Grade 12 (science track). The
enrollment outcomes are measured using student-level administrative data. The outcome variable in columns 1–4 (respectively
columns 5–9) is an indicator for being enrolled in a selective (respectively male-dominated) STEM undergraduate program in the
year following high school graduation, i.e., 2016/17. The coefficients are from a regression of the outcome variable on a treatment
group indicator, student characteristics, school fixed effects, and interactions between the treatment group indicator and different
subsets of student and role model characteristics. The student characteristics consist of an indicator for high-SES background and
percentile ranks on the Baccalauréat final exams in math and French. The role model characteristics consist of age and a set of
indicators for being a professional, having participated in the program the year before, being non-French, having children, holding
a Ph.D. degree, and having graduated from a STEM field. Since each high school was visited by at most one role model, role
model fixed effects are absorbed by the school fixed effects. Standard errors (in parentheses) are adjusted for clustering at the class
level. The models are estimated separately for girls (odd-numbered columns) and for boys (even-numbered columns). *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table L29 – Heterogeneous Treatment Effects on Student Outcomes by Level of Performance
in Math and Role Model Background: Grade 10 Students

Panel A. Treatment effects (LATE) by level of performance in math

Girls Boys

Level of performance in math Level of performance in math

Below
median

Above
median

p-value
of diff.

[q-value]

Below
median

Above
median

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Grade 11: Science track −0.019 0.002 0.375 −0.022 0.004 0.358
(0.015) (0.019) (0.021) (0.018)

Positive perceptions of science-related careers (index) 0.210*** 0.273*** 0.281 0.173*** 0.154*** 0.750
(0.043) (0.038) (0.042) (0.040)

More men in science-related jobs 0.169*** 0.144*** 0.336 0.188*** 0.153*** 0.148
(0.019) (0.017) [0.448] (0.020) (0.017) [0.224]

Equal gender aptitude for math (index) 0.048 0.168*** 0.017 0.098** 0.185*** 0.168
(0.037) (0.033) [0.035] (0.045) (0.042) [0.224]

Women like science less than men 0.062*** 0.053*** 0.688 0.108*** 0.096*** 0.645
(0.016) (0.014) [0.689] (0.019) (0.017) [0.645]

W face discrimination in science-related jobs 0.171*** 0.085*** 0.001 0.177*** 0.133*** 0.111
(0.019) (0.017) [0.004] (0.020) (0.019) [0.224]

Taste for science subjects (index) −0.072 −0.010 0.274 −0.081** 0.041 0.016
(0.046) (0.041) (0.041) (0.035)

Math self-concept (index) −0.042 0.021 0.232 −0.016 0.080** 0.058
(0.038) (0.039) (0.038) (0.038)

Science-related career aspirations (index) −0.045 0.053 0.079 −0.035 0.044 0.162
(0.041) (0.040) (0.042) (0.037)

N 3,584 3,484 3,221 3,075

Panel B. Treatment effects (LATE) by role model background

Girls Boys

Role model background Role model background

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Grade 11: Science track 0.008 −0.020 0.295 −0.026 0.009 0.272
(0.020) (0.018) (0.024) (0.019)

Positive perceptions of science-related careers (index) 0.227*** 0.258*** 0.570 0.136*** 0.192*** 0.342
(0.039) (0.040) (0.047) (0.036)

More men in science-related jobs 0.147*** 0.164*** 0.512 0.163*** 0.173*** 0.728
(0.019) (0.017) [0.990] (0.020) (0.019) [0.729]

Equal gender aptitude for math (index) 0.051 0.155*** 0.034 0.071 0.209*** 0.025
(0.035) (0.035) [0.135] (0.048) (0.038) [0.099]

Women like science less than men 0.055*** 0.062*** 0.749 0.091*** 0.112*** 0.399
(0.017) (0.014) [0.990] (0.018) (0.018) [0.532]

W face discrimination in science-related jobs 0.127*** 0.127*** 0.990 0.135*** 0.168*** 0.218
(0.020) (0.016) [0.990] (0.021) (0.017) [0.437]

Taste for science subjects (index) 0.017 −0.081* 0.174 −0.093* 0.040 0.043
(0.054) (0.048) (0.048) (0.042)

Math self-concept (index) 0.008 −0.020 0.668 0.029 0.048 0.760
(0.046) (0.043) (0.047) (0.043)

Science-related career aspirations (index) 0.017 0.007 0.858 −0.028 0.035 0.276
(0.045) (0.038) (0.043) (0.039)

N 3,180 4,061 2,879 3,580

Notes: See notes of Appendix Tables L25 and L26. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table L30 – Heterogeneous Treatment Effects on Student Outcomes by Level of Performance
in Math and Role Model Background: Grade 12 Students

Panel A. Treatment effects (LATE) by level of performance in math

Girls Boys

Level of performance in math Level of performance in math

Below
median

Above
median

p-value
of diff.

[q-value]

Below
median

Above
median

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Undergraduate major: selective STEM 0.002 0.067*** 0.018 −0.014 0.036 0.156
(0.013) (0.022) [0.037] (0.018) (0.027) [0.313]

Undergraduate major: male-dominated STEM 0.024 0.046** 0.513 −0.005 0.019 0.541
(0.018) (0.023) [0.514] (0.025) (0.028) [0.541]

Positive perceptions of science-related careers (index) 0.257*** 0.355*** 0.277 0.042 0.257*** 0.008
(0.054) (0.059) (0.054) (0.051)

More men in science-related jobs 0.153*** 0.079*** 0.050 0.155*** 0.144*** 0.722
(0.025) (0.024) [0.200] (0.024) (0.019) [0.955]

Equal gender aptitude for math (index) 0.061 0.135*** 0.274 0.063 0.211*** 0.091
(0.043) (0.046) [0.366] (0.060) (0.060) [0.366]

Women like science less than men 0.028* 0.062*** 0.172 0.073*** 0.075*** 0.954
(0.015) (0.016) [0.345] (0.023) (0.021) [0.955]

W face discrimination in science-related jobs 0.116*** 0.088*** 0.489 0.090*** 0.050* 0.368
(0.027) (0.030) [0.490] (0.030) (0.028) [0.736]

Taste for science subjects (index) −0.054 0.025 0.342 −0.034 0.016 0.553
(0.051) (0.056) (0.058) (0.052)

Math self-concept (index) 0.061 −0.070 0.084 0.078* 0.032 0.488
(0.051) (0.053) (0.046) (0.045)

Science-related career aspirations (index) 0.061 0.137** 0.353 0.008 0.060 0.514
(0.049) (0.060) (0.054) (0.050)

N 1,544 1,211 1,497 1,328

Panel B. Treatment effects (LATE) by role model background

Girls Boys

Role model background Role model background

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]

Resear-
chers

Profes-
sionals

p-value
of diff.

[q-value]
(1) (2) (3) (4) (5) (6)

Undergraduate major: selective STEM 0.008 0.053*** 0.046 0.008 0.029 0.503
(0.018) (0.014) [0.093] (0.025) (0.019) [0.504]

Undergraduate major: male-dominated STEM 0.025 0.046*** 0.379 −0.002 0.031 0.397
(0.019) (0.015) [0.379] (0.030) (0.025) [0.504]

Positive perceptions of science-related careers (index) 0.197*** 0.386*** 0.005 0.151*** 0.158*** 0.912
(0.055) (0.041) (0.045) (0.047)

More men in science-related jobs 0.150*** 0.110*** 0.213 0.158*** 0.142*** 0.608
(0.026) (0.021) [0.445] (0.023) (0.020) [0.608]

Equal gender aptitude for math (index) 0.124*** 0.077** 0.422 0.201*** 0.078 0.128
(0.047) (0.035) [0.563] (0.063) (0.051) [0.513]

Women like science less than men 0.045*** 0.044*** 0.931 0.088*** 0.062*** 0.357
(0.014) (0.012) [0.931] (0.024) (0.017) [0.608]

W face discrimination in science-related jobs 0.126*** 0.076*** 0.222 0.083*** 0.064*** 0.581
(0.034) (0.024) [0.445] (0.028) (0.022) [0.608]

Taste for science subjects (index) −0.044 0.055 0.152 −0.014 0.010 0.750
(0.054) (0.044) (0.056) (0.052)

Math self-concept (index) 0.108* 0.013 0.231 0.173*** −0.006 0.010
(0.060) (0.051) (0.055) (0.044)

Science-related career aspirations (index) −0.093 0.246*** 0.000 0.028 0.068 0.546
(0.057) (0.044) (0.052) (0.042)

N 1,180 1,647 1,312 1,612

Notes: See notes of Appendix Tables L25 and L26. *** p < 0.01, ** p < 0.05, * p < 0.1.
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M Heterogeneous Treatment Effects: Machine Learning
Methods

This appendix provides additional information on the machine learning methods we use to
(i) describe the heterogeneity in treatment effects and (ii) estimate the correlation between
treatment effects on different outcomes. Section M.1 gives an overview of the generic approach
recently developed by Chernozhukov et al. (2018) to estimate, and make inference about, key
features of heterogeneous effects in randomized experiments. Section M.2 provides further
details on how we implement this method in the context of our study. Section M.3 explains how
we extend this method to estimate the correlation between treatment effects, which we view as
a promising alternative to causal mediation analysis when exploring channels of influence in
RCTs. Finally, Section M.4 draws attention to the fact that the adjusted p-values proposed by
Chernozhukov et al. (2018) lead to conservative inference.

M.1 Description of the Method of Chernozhukov et al. (2018)
Motivation. Reporting treatment effects for various subgroups of participants opens the
possibility of overfitting due to the large number of potential sample splits. To address this
issue, one option is to specify a certain number of groups ex ante in a pre-analysis plan and
to tie one’s hands to analyze treatment effect heterogeneity only across these groups, while
correcting standard errors for multiple testing. This approach, however, has the drawback of
restricting the analysis to a small number of groups and bears the risk of missing important
sources of heterogeneity.

Machine Learning (ML) methods provide an attractive alternative to explore treatment
effect heterogeneity in a more comprehensive manner (see Athey and Imbens, 2017, for a review).
We adopt the approach developed by Chernozhukov et al. (2018) as it appears well-suited for
our objective. First, this approach makes it possible to conduct valid statistical inference on
several objects of interest, such as average treatment effects by heterogeneity groups or the
characteristics of individuals with large and small predicted treatment effects. Second, this
method can be implemented using any ML method, allowing us to test algorithms of different
degrees of sophistication, ranging from simple linear models to neural networks. Third, as
described in Section M.3, this approach can be extended to estimate the correlation between
treatment effects on different outcomes.

Concepts and estimation procedure. Consider an outcome variable denoted by Y . Let
Y (1) and Y (0) denote the potential outcomes of a student when her class is and is not visited
by a role model, respectively. Let Z be a vector of covariates that characterize the student and
the role model who visited the class. The conditional average treatment effect (CATE), denoted
by s0(Z), is defined as follows:

s0(Z) ≡ E[Y (1)− Y (0)|Z].

The approach developed by Chernozhukov et al. (2018) uses the following procedure:

1. Randomly split the data into a training sample and an estimation sample of equal size
(using stratified splitting to balance the proportions of treated and control units in each
subsample).

2. Use the training sample to predict the CATE using various ML algorithms. Obtain a ML
predictor proxy predictor S(Z).

3. Estimate and perform inference on features of the CATE on the estimation sample (see
the definition of the features below).
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4. Repeat steps 1 to 3 n times and keep track of the estimates obtained for each feature as
well as their associated p-values and 95 percent confidence intervals.

5. For each feature, compute the final estimate as the median of the n available estimates.
Compute the p-value for this final estimate as the median of the n available p-values
multiplied by two. Compute a 90 percent confidence interval for the final estimate as the
median of the n 95 percent confidence intervals.

Three features of the CATE. The CATE s0(Z) is a function for which it is difficult to
obtain uniformly valid inference without making strong assumptions. It is, however, possible to
obtain inference results on specific features of the CATE, such as the expectation of s0(Z) for
heterogeneity groups induced by the ML proxy predictor S(Z).

The Best Linear Predictor (BLP). The first feature of the CATE s0(Z) is its Best Linear
Predictor (BLP) based on the ML proxy predictor S(Z). It is formally defined as follows:

BLP[s0(Z)|S(Z)] ≡ arg min
f(Z)∈Span(1,S(Z))

E[s0(Z)− f(Z)]2.

Chernozhukov et al. (2018) show that one can identify the BLP of s0(Z) given S(Z), as well
as the projection parameters β1 = E[s0(Z)] and β2 = Cov(s0(Z), S(Z))/Var(S(Z)), using the
following weighted linear projection:

Y = α0 +αB(Z)+β1(T −p(Z))+β2(T −p(Z))(S(Z)−E[S(Z)])+ ε, E[w(Z)εX] = 0, (A.13)

where T is the treatment group indicator; B(Z) is a ML predictor of Y (0) obtained from the
training sample; p(Z) is the propensity score (i.e., the conditional probability of being assigned
to the treatment group); w(Z) ≡ {p(Z)(1− p(Z))}−1 is the weight; and X is the vector of all
regressors (X ≡ [1, B(Z), T − p(Z), (T − p(Z))(S(Z)− E[S(Z)])]).

Equation (A.13) can be estimated using weighted least squares, after replacing E[S(Z)] by
its empirical expectation with respect to the estimation sample.

The coefficient β2 is informative about the correlation between the true CATE, s0(Z) and
the predicted CATE, S(Z). It is equal to one if the prediction is perfect and to zero if S(Z)
has no predictive power or if there is no treatment effect heterogeneity, that is s0(Z) = s. The
main purpose of estimating β2 is to check if the trained ML algorithms are able to detect
heterogeneity.A.8

Sorted Group Average Treatment Effects (GATEs). The ML predictor of the CATE, S(Z), can
be used to identify groups of individuals with small and large predicted treatment effects. In our
setting, this is achieved by sorting students in the estimation sample (indexed by i) according to
S(Zi), the predicted value of their treatment effect given their observable characteristics. We con-
sider the bottom and top quintiles of S(Zi) and provide ITT estimates for both groups of students.

Classification Analysis (CLAN). The third feature consists in comparing the distribution of
observable characteristics of students with the smallest and largest predicted treatment effects.

The three above features—the BLP, the GATEs, and the CLAN—all rely on the existence
of a ML predictor S(Z). The BLP provides a means to check if S(Z) detects significant
heterogeneity in treatment effects. If it fails to do so, the GATEs and CLAN are not particularly

A.8The intuition behind the formula for β2 can be grasped by noting that Equation (A.13) is a variant of the
simpler equation Y = α0 +αB(Z) +β′

2T ·S(Z) + ε. This simpler model implies that s0(Z) = β′
2S(Z), suggesting

that β′
2 provides an estimate for how close the machine learning predictor S(Z) is to the CATE s0(Z).
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relevant for the analysis, as these features would provide a description of students for whom the
predicted treatment effect only differs from the unobserved CATE because of a poor-quality
prediction.

M.2 Implementation of the Method
This section provides details on the implementation of the method of Chernozhukov et al. (2018)
in our empirical setting.

Populations of interest. In the main text, we focus on the sample of girls in Grade 12
(science track), since this group of students is the only one for which we find significant treatment
effects on enrollment outcomes. We identify which of these female students were most affected
by the program and investigate the messages to which they were particularly responsive. Results
for boys in Grade 12 can be found in Appendix Table M33.

Sample splits and iterations. We perform n = 100 iterations of the procedure described in
the previous section, which consists in (i) splitting the sample into a training and an estimation
subsample of equal size; (ii) predicting the CATE on the training sample using ML methods;
and (iii) estimating the three features of the CATE (BLP, GATEs, and CLAN) in the estimation
sample.A.9 The sample splits are stratified by class, which is the randomization unit in our
experimental setting: half of the girls in each Grade 12 class are randomly assigned to the
training sample, while the other half are assigned to the estimation sample.

Propensity score. For each student, we estimate the probability that his or her class was
randomly assigned to the treatment group. This propensity score p(Z) is equal to one half in
most cases as the treatment was generally assigned to two Grade 10 classes out of four and to
one Grade 12 class out of two among the classes that were selected by the school principals. In
other cases, the propensity score is not exactly one half.

Machine learning methods. We consider five alternative machine learning methods to
estimate the proxy predictor S(Z): Elastic Net, Random Forest, Boosted Trees, Neural Network
with feature extraction, and a simple linear model estimated via OLS. These methods are
implemented in R using the caret package written by Kuhn (2008), while the general approach
of Chernozhukov et al. (2018) is implemented by adapting the codes made available online by
the authors.A.10

For each machine learning method, the predictor S(Z) is constructed in several steps. First,
the model is fitted separately on the treatment and control group students in the training
sample. The two fitted models are then applied to the estimation sample to obtain the predicted
outcomes Ŷi(0) and Ŷi(1) for each individual. Finally, S(Z) is obtained by taking the difference
between the two predictions.A.11

For each outcome, we estimate the BLP of the CATE based on the ML method whose
associated predictor S(Z) has the highest correlation with the CATE s0(Z) in the estimation

A.9The medians of the estimated features of the CATE change little when we repeat the entire procedure using
a different seed number to randomly split the data into the training and estimation samples, suggesting that
100 iterations are sufficient for the purpose of empirical convergence.
A.10https://github.com/demirermert/MLInference (accessed on May 4, 2018).
A.11Predicting outcomes for treatment and control individuals separately, before taking the difference as we do
here may not be the most efficient approach to predict the CATE at finite distance. In our setting, however,
alternative ML methods directly designed to detect heterogeneity in treatment effects, such as the causal forests
proposed by Wager and Athey (2018), did not improve performance. We therefore decided not to rely on these
ML methods for the main analysis.
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sample. In practice, the best ML method for the BLP targeting of the CATE is chosen in the
estimation sample by maximizing the following performance measure:

Λ ≡ |β2|2Var(S(Z)) = Corr2(s0(Z), S(Z))Var(s0(Z)).

The above equation shows that maximizing Λ is equivalent to maximizing the correlation
between the ML predictor S(Z) and the CATE s0(Z).

The best method for the GATEs targeting of the CATE, and hence also for the CLAN, is
selected based on the following performance measure:

Λ ≡ E
(

K∑
k=1

γk1(S ∈ Ik)
)2

,

where K is the number of (equal-sized) heterogeneity groups, Ik = [lk−1, lk) are non-overlapping
intervals that divide the support of S into regions [lk−1, lk) with equal or unequal masses, and
γk is the GATE for heterogeneity group k. In practice, both performance measures lead to a
similar ranking of ML methods and the methods eventually selected to produce the BLP, the
GATEs/CLAN are almost always the same.

Predictors. The covariates we use to train the ML methods for the samples of boys and girls
in Grade 12 are three indicators for the education districts of Paris, Créteil, and Versailles, four
indicators for students’ socio-economic background (high SES, medium-high SES, medium-low
SES, and low SES), their age, their overall percentile rank in the Baccalauréat exam, their
percentile ranks in the French and math tests of the exam, and a vector of 56 role model fixed
effects.A.12 Our motivation for including only a few pre-determined covariates in addition to the
role model indicators is that we are mostly interested in the treatment effect heterogeneity that
arises from the 56 role models (which can be seen as 56 treatment arms).

M.3 Correlation Between Treatment Effects on Different Outcomes

In this section, we explain how the method of Chernozhukov et al. (2018) can be extended to
estimate the correlation between the treatment effects on different outcomes. We show that a
set of four linear projections of the CATEs for two outcomes Y A and Y B on the ML predictors
of the CATEs for these outcomes can be combined to estimate the correlation between the two
CATEs under a natural assumption about prediction errors. We argue that this approach offers
a promising alternative to other methods, such as causal mediation analysis, that are commonly
used in the medical and social sciences literature to identify what factors may be part of the
causal pathway between an intervention and an outcome. Indeed, our proposed method does
not rely on strong identifying assumptions and can be used in any experimental setting, as long
as there is a sufficiently large number of observed exogenous covariates.

A new feature: projecting a CATE on the predictor of another CATE. Let Y A

and Y B denote two distinct outcomes and let sA0 (Z) and sB0 (Z) denote the true CATEs of
a treatment T on these outcomes, given a vector of exogenous covariates Z characterizing
the observational units (indexed by i). Let ρA,B|Z ≡ Corr(sA0 (Z), sB0 (Z)) denote the bivariate
A.12Each student in the control group is assigned to the role model who visited his or her high school to ensure
that the role model indicators are defined for students in both the treatment and control groups. Moreover, to
account for the fact that some Grade 12 students have missing Baccalauréat grades (less than 2 percent), we
include indicators for missing grades as controls.
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correlation between the CATEs on Y A and Y B and consider the following weighted linear
projection:

Y A = α0 + αBB(Z) + β1(T − p(Z)) + β2(T − p(Z))(SB(Z)− E[SB(Z)]) + ε, E[w(Z)εX] = 0,
(A.14)

where BB(Z) and SB(Z) are a ML predictor of outcome Y B for individuals in the control group
and a ML predictor of the CATE on Y B, respectively. Both ML predictors are trained using a
separate independent sample and are taken as given functions in Equation (A.14). The functions
p(Z) and w(Z) and the vector X have the same meaning as in Equation (A.13). Equation (A.14)
is estimated using weighted least squares, after replacing E[SB(Z)] by its empirical expectation
with respect to the estimation sample.

Adapting the BLP equation of Chernozhukov et al. (2018) (Equation 2.1 p. 8) by replacing
the ML predictor of the CATE on outcome Y A by the ML predictor of the CATE for outcome
Y B, we directly obtain that Equation (A.14) identifies

β
A|B
2 = Cov(sA0 (Z), SB(Z))/Var(SB(Z)).

The sign of βA|B2 is informative of the extent to which the CATE on Y A is positively or negatively
correlated with the CATE on Y B. To show this formally, we denote by ηB the approximation
error in SB(Z) and we write SB(Z) = sB0 (Z) + ηB. Assuming that ηB is independent of sA0 (Z),
we get that βA|B2 = Cov(sA0 (Z), sB0 (Z))/Var(SB(Z)), which implies that βA|B2 and ρA,B|Z have
the same sign.

Combining BLPs to recover the correlation between treatment effects. For any pair
of indices (k, l) ∈ {(A,A), (B,B), (A,B), (B,A)}, we can identify

β
k|l
2 = Cov(sk0(Z), Sl(Z))/Var(Sl(Z))

from the BLP of sk0(Z) on Sl(Z). Writing SA(Z) = sA0 (Z) + ηA, SB(Z) = sB0 (Z) + ηB, and
assuming that the prediction errors ηA and ηB are independent of both the predicted functions
sA0 (Z) and sB0 (Z) in the estimation sample, we can write

β
k|l
2 = Cov(sk0(Z), sl0(Z))/(Var(sl0(Z)) + Var(ηl(Z))).

Combining the formulas for the four different possible BLPs, we obtain the following expression:

ρ2
A,B|Z = β

A|B
2 β

B|A
2

β
B|B
2 β

A|A
2

,

which implies that the correlation ρA,B|Z is identified as

ρA,B|Z = Sign(βA|B2 )

√
β
A|B
2 β

B|A
2√

β
B|B
2

√
β
A|A
2

. (A.15)

Practical implementation. As explained in the main text, we use the method of Cher-
nozhukov et al. (2018) to estimate the four heterogeneity loading parameters βA|A2 , βB|B2 , βA|B2 ,
and β

B|A
2 . At each iteration of the data-splitting process, the bivariate correlation ρA,B|Z is

estimated by plugging the four parameter estimates into Equation (A.15). In theory, βA|A2 and
β
B|B
2 should both be positive while βA|B2 and βB|A2 should have the sign of ρA,B|Z in each iteration

of the data-splitting process. However, it can happen that the estimates β̂A|A2 , β̂B|B2 , β̂A|B2 , and
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β̂
B|A
2 do not satisfy these conditions due to estimation error, in particular when the predictors
SA(Z) and SB(Z) are very noisy. In such cases, we do not estimate ρA,B|Z and discard the
corresponding iteration of the data-splitting procedure. We iterate until we reach a number
of 100 iterations for which ρ̂A,B|Z can be computed, so that our final estimates are medians
computed over an identical number of iterations.A.13

The estimates based on Equation (A.15) can become very large (well above one in absolute
value) when the estimates of β̂A|A2 or β̂B|B2 are close to 0, which can occur when either or both of
the predictors SA(Z) and SB(Z) are noisy. Reassuringly, we show in Appendix Table M35 that
the correlation estimates ρ̂A,B|Z are hardly affected when we exclude data splits that yield a
poor ML prediction of the CATEs on outcomes Y A or Y B, by using only the first 100 iterations
of the data-splitting process for which the estimates of the heterogeneity loading parameters
β̂
A|A
2 and β̂B|B2 are above a minimum threshold t.
In the absence of a closed-form formula for the standard error of ρ̂A,B|Z , we estimate its

95 percent confidence interval as follows. At each iteration m of the data-splitting process, we
compute ρ̂(m)

A,B|Z (indexed by m) in the estimation sample. When ρ̂(m)
A,B|Z can be computed, we

estimate its 97.5 % confidence interval using a clustered bootstrap procedure, which accounts
for clustered nature of the treatment assignment (at the class level). This procedure consists in
creating B replications of the estimation sample m by drawing with replacement N (m)

c female
students from each Grade 12 class c, where N (m)

c is the number of female students from class c in
the estimation sample m, and computing ρA,B|Z for this bootstrap sample. For each estimation
sample m, this operation is repeated 6,000 times to estimate the 97.5 percent confidence interval
of ρ̂(m)

A,B|Z using the bootstrap percentile confidence interval method (Davison and Hinkley, 1997,
chap. 5).A.14 The 95 percent confidence interval for ρ̂A,B|Z is then computed as the median
of the 97.5 percent confidence intervals over the first 100 iterations for which ρ̂

(m)
A,B|Z could

be computed—the price of the splitting uncertainty being reflected in the discounting of the
confidence level from 1− α to 1− 2α.

Comparison with alternative strategies to correlate treatment effects. A simpler
and perhaps more intuitive approach to evaluate if the role models who had the largest effects
on enrollment outcomes also had larger effects on other outcomes would be to estimate separate
treatment effects for each role model and to compute the correlation between these role-model-
specific treatment effects for outcomes Y A and Y B. Unfortunately, this approach would likely
result in a biased estimate of the true correlation between treatment effects due to sampling
error. Indeed, although the random assignment of treatment ensures that the characteristics of
treatment and control students are balanced in the overall sample, this will not in general be true
in each of the smaller subsamples of students who were visited by a given role model. In other
words, these subsamples may not be entirely comparable to their control group counterparts in
the absence of the interventions. The role-model-specific treatment effects for outcomes Y A and
Y B are therefore likely to be contaminated by imbalances between the treatment and control
students attached to each role model. The problem stems from the fact that as long as the
outcomes Y A and Y B are correlated, baseline differences between control and treated students
in terms of these outcomes will also be correlated, and so will be the correlation between the
estimated fixed effects.A.15 To address this issue, one would need to use different samples of
A.13For each pair of outcomes (Y A, Y B), Appendix Table M34 indicates the proportion of random data splits
for which the correlation between CATEs could be computed.
A.14The 97.5 percent confidence interval of ρ̂(m)

A,B|Z is estimated using only the bootstrap samples for which
ρ̂A,B|Z can be computed.
A.15To give an example, suppose that a given role model visited classes in which students’ perceptions of
science-related careers were substantially more positive at baseline than in the school’s control group classes.
In this scenario, students in the visited classes would be expected to have a higher probability of enrolling in
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students to estimate the role model fixed effect for outcomes Y A and Y B, which is close in spirit
to the method we propose.

Although our approach is not subject to the fundamental bias described above, it has the
limitation of only exploiting variation in treatment effects arising from variation in observable
characteristics Z. If treatment effects vary more with unobserved characteristics than with Z,
ρA,B|Z will miss much of the existing heterogeneity in treatment effects. Formally, this means
that ρA,B|Z is likely to differ substantially from the true correlation between individual-level
treatment effects, ρA,B|i if the vector of covariates Z is too limited to adequately capture the
treatment effect heterogeneity. A direct identification of ρA,B|i would avoid this limitation. Our
investigations suggest, however, that identifying this parameter requires strong and potentially
unrealistic assumptions.A.16

Comparison with mediation analysis. Causal mediation analysis is extensively conducted
by applied researchers in psychology, as well as in other fields such as biomedical science, political
science, and sociology (see MacKinnon et al., 2007, for a survey). This approach is used to
identify the channels through which a treatment affects an outcome, using a variety of methods
ranging from linear structural equation models (Baron and Kenny, 1986) to less parametric
identification of causal mechanisms (Imai et al., 2010). Many authors, however, have drawn
attention to the fact that in the absence of convincing instruments (as in Frölich and Huber,
2017) or of multiple treatment arms (as in Imai et al., 2013), strong identifying assumptions
are required. These assumptions are not always explicitly stated by applied researchers (see
Heckman et al., 2013 and Keele, 2015, for counter-examples in the field of economics), although
they can often be challenged in the particular context under study.

The reason why strong assumptions are required in causal mediation analysis is relatively
straightforward. Randomization ensures that the experimenter can examine the effect of a
treatment on any variable of interest, including a final outcome and possible mediators (channels
of influence, in our terminology). What is missing is the causal effect of the mediators on
the outcome. In the absence of a clear understanding of how a mediating variable affects the
outcome, it is difficult to convincingly conclude that the treatment effect on the final outcome
can be attributed to its effect on the mediator.

Our approach differs from mediation analysis in that it does not rely on the observed mapping
between the mediators and the outcome of interest, and hence does not require the researcher
to interpret this mapping as causal. This key distinction between the two approaches can be
easily understood in the context of our study. We observe among girls in Grade 12 a positive
correlation between the belief that women are underrepresented in science-related careers and
their future enrollment in selective STEM undergraduate programs (the correlation is 0.12 in the
control group and 0.75 in the treatment group). This positive correlation could be explained by
the fact that girls considering STEM studies are better informed about the underrepresentation
of women in STEM fields. However, for causal mediation analysis to be feasible, one would need
to give a causal interpretation to this correlation and assume that increasing girls’ awareness

STEM studies than students in the control group classes, independently of the role model’s treatment effect.
Hence the role model’s larger fixed effect on both outcomes would spuriously capture the positive correlation
between baseline outcomes, which has nothing to do with the correlation between treatment effects.
A.16A first route would be to assume that the treatment is rank preserving for both outcomes Y A and Y B,
meaning that the intervention does not affect the rank of students with respect to the considered outcome variable
in the treatment and control groups. Under this assumption, one could retrieve individual-level treatment effects
for both Y A and Y B , and compute the correlation between them. In our setting, this assumption seems difficult
to justify. An alternative route would be to recover ρA,B|i from the treatment effect on the product of outcomes
Y A and Y B, in the spirit of Dupas et al. (2018). Unfortunately, this strategy can be shown to identify ρA,B|i
only under restrictive conditions (details available upon request). By contrast, our proposed approach has the
advantage of not relying on strong identifying assumptions.
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of female underrepresentation in STEM steers them towards STEM studies, which would be a
highly questionable assumption in our setting. As a matter of fact, it would lead us to conclude
that part of the effect of role models on selective STEM enrollment is mediated by the fact that
they tend to make female underrepresentation in STEM more salient, which is at odds with what
our analysis suggests. Indeed, we find that the girls for whom the program had the largest effects
on selective STEM enrollment are, rather, those whose awareness of the underrepresentation
of women in STEM increased the least. This example illustrates the difficulties in drawing
robust conclusions on causal mechanisms using standard mediation analysis. By contrast, our
approach, which limits itself to evaluating which outcomes are jointly affected by the treatment,
appears more agnostic and transparent. Although not causal, the correlations that it uncovers
can provide useful hints on the channels of influence.

M.4 Interpretation of Inference Results in Chernozhukov et al. (2018)

Using different samples for prediction and estimation is a key component of machine learning
methods to avoid over-fitting. It also makes it possible to carry out standard inference. Provided
that the sample splitting is random, data analysis on the estimation sample can be performed
using standard statistical techniques and leads to valid inference when the ML predictor is
trained on a distinct sample. The novelty introduced by Chernozhukov et al. (2018) is to
iterate the data-splitting process and to take the medians of estimates, p-values, and confidence
intervals over multiple splits. This approach limits the risk of data mining around alternative
data splits, and yields estimates that are more representative of the whole sample.A.17 This
improvement, however, comes at a cost, as the medians of the p-values over the data splits have
to be multiplied by two for the inference to be valid.

In this section, we emphasize that the p-values (and the related confidence intervals) proposed
by Chernozhukov et al. (2018) should be interpreted as upper bounds of the true p-values. We
argue that the conditions under which these bounds are reached are unlikely to be met by
practitioners using real data. In the absence of alternative approaches to conduct inference, we
systematically report in the main text the adjusted p-values advocated by Chernozhukov et
al. (2018), as they have well-defined properties. However, based on the arguments below, we
consider them as conservative.

Why should adjusted p-values be interpreted as upper bounds? The inference ap-
proach proposed in Section 4 of Chernozhukov et al. (2018) relies on the mathematical properties
of uniformly distributed random variables to quantify the uncertainty coming from both pa-
rameter estimation and data splitting. Indeed, under the null hypothesis, the p-value of a test
statistic is uniformly distributed over the interval [0, 1].A.18 This is true in particular for the
p-values of the estimates obtained on the estimation sample after each sample split. Hence, to
provide valid inference over n sample splits using the median of the p-values obtained for each
split, it is necessary to understand how this median is distributed. Chernozhukov et al. (2018)
rely on the following property of uniform variables:

Lemma 3.1 (Chernozhukov et al., 2018). Consider Mn, the (lower) median of a sequence
{Uj}nj=1 of n uniformly distributed variables, Uj ∼ U(0, 1) for each j, where the variables are
A.17To put it differently, estimates from a single random split of the data may yield misleading conclusions by
chance, which cannot happen when the final estimates are computed as medians of estimates from multiple
splits.
A.18Under the null hypothesis, the p-value has a probability α of being lower than α, implying that the null
hypothesis has a probability α to be falsely rejected at the significance level α.
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not necessarily independent. Then, for α ∈ [0, 1],

P(Mn ≤ α) ≤ 2α. (A.16)

Without entering the details of the proof of the inference result, the above lemma helps to
understand why the median of the p-values has to be multiplied by two to yield a valid p-value
for the median of the estimates. Under the null hypothesis, the median p-value can have a
probability as high as 2α to be lower than α, implying that the null hypothesis may be rejected
with probability 2α even if the median p-value is α.

Note, however, that the inequality (A.16) only provides an upper bound for the true p-value,
which is given by P(Mn ≤ α). If, for a specific sequence of uniformly distributed variables
Uj, one can obtain a tighter upper bound α′ for P(Mn ≤ α), p-values would only need to be
multiplied by α′/α instead of 2.A.19

Why are the upper bounds likely to be conservative? To get a sense of how conserva-
tive the upper bound for P(M ≤ α) given by the inequality (A.16) might be, we discuss two
polar cases in which this bound is not reached, and one example in which it is.

Polar case 1: Independent uniform variables. Assume that the variables Uj are independent from
each other. Define Bj ≡ P(Uj ≤ α). Then P(Mn ≤ α) = P(∑n

j=1Bj/n ≥ 1/2). If the sequence
{Uj}nj=1 is i.i.d., the sequence {Bj}j=1,...,n is i.i.d. as well. Applying the law of large numbers
for i.i.d. variables, we get that ∑n

j=1Bj/n
n→∞−−−→ α, which implies that P(Mn ≤ α) n→∞−−−→ 0 for

α < 1/2.
Using Hoeffding’s inequality, we can also show that

P

 n∑
j=1

Bj/n ≥ 1/2
 ≤ exp(−2n(1/2− α)2),

which implies that P(Mn ≤ α) converges to 0 at an exponential rate.

Polar case 2: Perfectly positively correlated uniform variables. Assume instead that the random
variables Uj are perfectly positively correlated so that their realizations are all equal. In that
case, P(Mn ≤ α) = P(U1 ≤ α) = α.

These two polar cases might suggest that depending on the magnitude of the positive
correlation between the uniform variables, P(Mn ≤ α) lies between 0 and α. This is, however,
not true in the general case, as shown by the following counter-example.

An example in which the upper bound is attained. We now provide an example in which the
bound defined in the inequality (A.16) is attained when n is an even number.

Consider a given α < 1/2 and denote k = n/2. Let V and V ′ be two independent uniform
variables in [0, 1], and A ⊂ {1, 2, ..., n} a random subset of {1, 2, ..., n} of cardinal k, which is
independent of V and V ′ (we assume the

(
n
k

)
subsets of cardinal k have equal probability to be

drawn).
For j ∈ {1, 2, ..., n}, define Uj as follows:

A.19We do not provide a formal proof of this claim. The interested reader can check its validity by going through
the proof of inference results in Chernozhukov et al. (2018) and by verifying that the proof holds when the final
p-value is defined as the median of the p-values associated with each sample, multiplied by the ratio between the
upper bound for P(Mn ≤ α) and α.
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Uj =
{

αV ′ if V ≤ 2α and j ∈ A,
α + (1− α)V ′ otherwise.

It is straightforward to show that the random variables Uj are uniformly distributed and that
their lower median, Mn, verifies P(Mn ≤ α) = P(V ≤ 2α) = 2α.

Similarly, when n is an odd number, it is possible to construct a sequence of n = 2k + 1
uniform random variables such that P(M2k+1 ≤ α) = 2k+1

k+1 α, and the bound converges to 2α
when n→∞.

Implications. The previous example demonstrates that one cannot improve on the bound
proposed by Chernozhukov et al. (2018). Nevertheless, it suggests that this bound is only
attained under specific mathematical constructs. In the empirical application we are interested
in, the uniform variables are the p-values associated with a test statistic that is estimated on a
series of estimation samples under the null hypothesis that the parameter is equal to 0. Such a
sequence of p-values has virtually no chance of matching the example above.

Instead, we believe that the polar cases 1 and 2 provide useful insights about the true p-value
of the test statistics we are interested in. In our application, the estimation samples on which
the statistics are estimated will usually contain common observations. The number of splits
of the initial sample is also finite, which implies that iterating the splitting many times will
eventually lead to draw estimation samples very similar to previously drawn samples. Therefore,
the p-values that are recovered after each estimation are not drawn from independent uniform
distributions and, when the number of data splits becomes large enough, each additional p-value
will be perfectly correlated with a previous one.

On the other hand, the p-values obtained on two distinct subsamples are unlikely to be
perfectly correlated. Consider, for example, the situation in which the whole sample is split into
two subsamples, S1 and S2, that are used alternatively as training and estimation samples. In
this case, it is not clear that there is any dependence between the p-values obtained from S1 and
S2 used as estimation samples after training a ML predictor on the other sample. More generally,
it seems that there is “some independence” between the p-values obtained on different sample
splits, and that this independence can help to increase the precision of the final estimate.A.20

In the polar case with a perfect positive correlation between the p-values obtained on different
subsamples, the p-value associated with the final estimate that we report (which is the median
of estimates obtained on different subsamples) is the median of the p-values. In the polar case
with no correlation between the p-values, the final p-value is even lower and converges to 0.
Based on these observations and the informal discussion above, we argue that the median of the
p-values is likely to provide a more realistic approximation of the final estimate’s true p-value
than twice this median.

A.20To put this argument into context, recall that the procedure of Chernozhukov et al. (2018) requires splitting
the initial sample into two halves. This random splitting implies that estimates obtained using the estimation
sample are less precise than those that could be obtained using the whole sample (standard errors are multiplied
by approximately

√
2). The informal arguments put forward in this section suggest that using several random

splits instead of one could help limit this loss in precision.
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Table M31 – Performance of Alternative Machine Learning Methods in Predicting Heterogeneity
in Treatment Effect on Student Outcomes for Girls in Grade 12

Machine learning method

Elastic Random Linear Boosting Neural
Net Forest Model Network
(1) (2) (3) (4) (5)

Panel A. Best ML method for the Best Linear Predictor (BLP) of the CATE s0(Z)

Enrollment outcomes

Undergraduate major: selective STEM 0.042238 0.021458 0.031045 0.021439 0.032774

Undergraduate major: male-dominated STEM 0.015215 0.009745 0.018221 0.016650 0.013714

Student perceptions

Positive perceptions of science-related careers (index) 0.059065 0.045943 0.036734 0.030315 0.042442

More men in science-related jobs 0.030392 0.015389 0.013050 0.015633 0.014397

Equal gender aptitude for math (index) 0.049497 0.083063 0.062788 0.032800 0.065229

Women like science less than men 0.010640 0.011121 0.014735 0.011117 0.012712

Women face discrimination in science-related jobs 0.026151 0.072647 0.054333 0.019557 0.055785

Taste for science subjects (index) 0.082039 0.074448 0.090276 0.050184 0.056377

Math self-concept (index) 0.058826 0.088227 0.111541 0.048768 0.066648

Science-related career aspirations (index) 0.072161 0.083165 0.125844 0.041561 0.114183

Panel B. Best ML method for the Sorted Group Average Treatment Effects (GATEs)

Enrollment outcomes

Undergraduate major: selective STEM 0.004658 0.002877 0.003493 0.003283 0.003466

Undergraduate major: male-dominated STEM 0.003017 0.002973 0.003003 0.002924 0.002867

Student perceptions

Positive perceptions of science-related careers (index) 0.106512 0.103018 0.101303 0.096945 0.103517

More men in science-related jobs 0.016919 0.016358 0.016330 0.016340 0.015974

Equal gender aptitude for math (index) 0026251 0.029338 0.027608 0.023143 0.027779

Women like science less than men 0.003346 0.002804 0.003524 0.003113 0.003240

Women face discrimination in science-related jobs 0.015339 0.018028 0.017264 0.013848 0.016518

Taste for science subjects (index) 0.018653 0.017948 0.020081 0.013736 0.016316

Math self-concept (index) 0.012094 0.016213 0.019361 0.010633 0.013115

Science-related career aspirations (index) 0.022857 0.024756 0.034733 0.019740 0.030833
Notes: This table compares the performance of alternative machine learning (ML) methods in predicting heterogeneity in the
treatment effects of the program on student outcomes for girls in Grade 12 (science track), using the approach developed by
Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect (CATE) of role model interventions, s0(Z),
is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear Model, Boosting, and Neural Network. The
covariates Z that are used to predict the CATE consist of three indicators for the educational districts of Paris, Créteil, and
Versailles, four indicators for students’ socioeconomic background (high, medium-high, medium-low, and low), their age, their
overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and math tests of the exam, and a vector of
56 role model fixed effects. For each outcome, Panel A compares the performance of the five ML methods based on the Best Linear
Predictor (BLP) targeting of the CATE, whereas Panel B compares their performance based on the Sorted Group Average Treatment
Effects (GATEs) targeting of the CATE. In Panel A, the performance measure for the ML learning methods is Λ̂ ≡ |β̂2|2V̂ar(S(Z)),
where S(Z) is the ML proxy predictor of the CATE and β̂2 is the estimated heterogeneity loading (HET) parameter in the best
linear predictor of the CATE. In Panel B, the performance measure for the ML learning methods is Λ̂ ≡ 1

K5
∑5

k=1 γ̂
2
k, where γ̂k is

the estimated GATE for the quintile k induced by the ML proxy predictor S(Z). For each outcome, the best method (highlighted
in bold) is chosen as the one maximizing the performance measure.
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Table M32 – Heterogeneous Treatment Effect on Student Outcomes for Girls in Grade 12:
Estimates Based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

(p-values in square brackets)

Undergraduate major: selective STEM 0.038 0.762 Elastic Net
[0.027] [0.031]

Undergraduate major: male-dominated STEM 0.036 0.088 Linear model
[0.064] [0.731]

Positive perceptions of science-related careers (index) 0.298 0.400 Elastic Net
[0.000] [0.555]

More men in science-related jobs 0.119 0.657 Elastic Net
[0.000] [0.593]

Equal gender aptitude for math (index) 0.117 0.324 Random Forest
[0.010] [0.108]

Women like science less than men 0.044 0.095 Linear model
[0.002] [0.566]

Women face discrimination in science-related jobs 0.105 0.496 Random Forest
[0.000] [0.012]

Taste for science subjects (index) 0.008 0.170 Linear Model
[1.000] [0.137]

Math self-concept (index) 0.029 0.257 Linear Model
[0.988] [0.010]

Science-related career aspirations (index) 0.077 0.245 Linear Model
[0.263] [0.013]

Panel B. Average predicted treatment effects among the most/least affected groups (GATEs)

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

(p-values in square brackets)

Undergraduate major: selective STEM −0.004 0.139 0.149 Elastic Net
[1.000] [0.014] [0.026]

Undergraduate major: male-dominated STEM 0.026 0.061 0.038 Elastic Net
[1.000] [0.464] [1.000]

Positive perceptions of science-related careers (index) 0.316 0.400 0.104 Elastic Net
[0.037] [0.001] [1.000]

More men in science-related jobs 0.096 0.160 0.065 Elastic Net
[0.048] [0.022] [0.766]

Equal gender aptitude for math (index) 0.019 0.246 0.210 Random Forest
[1.000] [0.037] [0.332]

Women like science less than men 0.026 0.073 0.039 Linear model
[0.758] [0.078] [0.772]

Women face discrimination in science-related jobs −0.007 0.195 0.197 Random Forest
[1.000] [0.003] [0.038]

Taste for science subjects (index) −0.112 0.138 0.251 Linear model
[0.594] [0.369] [0.196]

Math self-concept (index) −0.122 0.191 0.317 Linear model
[0.416] [0.063] [0.035]

Science-related career aspirations (index) −0.142 0.268 0.387 Linear model
[0.394] [0.047] [0.041]

Notes: This table reports heterogeneous treatment effects of the program on student outcomes for girls in Grade 12 (science track),
using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional average treatment effect (CATE)
of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net, Random Forest, Linear Model,
Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of three indicators for the educational
districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background (high, medium-high, medium-low,
and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks in the French and math tests of
the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the parameter estimates and p-values (in
square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method (see Appendix Table M31, Panel A).
The coefficients β1 and β2 correspond to the average treatment effect (ATE) and heterogeneity loading (HET) parameters in the
BLP, respectively. Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e., the average treatment effects among
students in the top and bottom quintiles of the heterogeneous effects induced by the ML proxy predictor S(Z), using the best ML
method (see Appendix Table M31, Panel B). The parameter estimates and p-values are computed as medians over 100 splits, with
nominal levels adjusted to account for the splitting uncertainty. This adjustment implies that the reported p-values should be
interpreted as upper bounds for the actual p-values.
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Table M33 – Heterogeneous Treatment Effects on Selective and Male-Dominated STEM
Enrollment for Boys in Grade 12: Estimates based on Machine Learning Methods

Panel A. Best Linear Predictor (BLP) of the CATE s0(Z) given the ML proxy S(Z)

Parameters: ATE HET Best ML
(β1) (β2) method

Undergraduate Major: selective STEM 0.005 0.211 Linear Model
p-value [1.000] [0.029]
Undergraduate Major: male-dominated STEM 0.015 0.090 Linear Model
p-value [1.000] [0.706]

Panel B. Sorted Group Average Treatment Effects (GATEs): 20% most and least affected students

Heterogeneity group: 20% least 20% most Difference Best ML
affected affected most−least method

Undergraduate Major: selective STEM −0.056 0.061 0.116 Linear Model
p-value [0.358] [0.283] [0.086]
Undergraduate Major: male-dominated STEM 0.051 0.010 −0.030 Boosting
p-value [0.771] [1.000] [1.000]

Panel C. Average characteristics of the 20% most and least affected students (CLAN)

Heterogeneity group: 20% least 20% most Difference p-value
affected affected most−least (upper bound)

Enrollment in selective STEM major
Student characteristics
Baccalauréat percentile rank in math 48.64 53.26 4.03 0.194
Baccalauréat percentile rank in French 39.95 50.94 10.45 0.000
High SES 0.495 0.494 −0.004 1.000
Role model characteristics
Professional 0.395 0.600 0.214 0.000
Participated in the program the year before 0.200 0.275 0.070 0.112
Non-French 0.141 0.188 0.051 0.208
Has children 0.413 0.492 0.080 0.140
Age 32.08 33.73 1.58 0.001
Holds/prepares for a Ph.D. 0.707 0.664 −0.070 0.206
Field: Math, Physics, Engineering 0.359 0.236 −0.133 0.001
Field: Earth and Life Sciences 0.541 0.688 0.157 0.000

Enrollment in male-dominated major
Student characteristics
Baccalauréat percentile rank in math 54.72 50.21 −4.46 0.123
Baccalauréat percentile rank in French 45.41 47.25 1.38 1.000
High SES 0.465 0.527 0.068 0.248
Role model characteristics
Professional 0.484 0.531 0.052 0.436
Participated in the program the year before 0.191 0.172 −0.019 1.000
Non-French 0.154 0.124 −0.025 0.820
Has children 0.489 0.489 0.004 1.000
Age 33.32 34.34 0.16 1.000
Holds/prepares for a Ph.D. 0.660 0.682 0.020 1.000
Field: Math, Physics, Engineering 0.295 0.277 −0.015 1.000
Field: Earth and Life Sciences 0.576 0.654 0.074 0.167
Notes: This table reports heterogeneous treatment effects of the program on the undergraduate enrollment outcomes of boys
in Grade 12 (science track), using the methods developed by Chernozhukov et al. (2018). For each outcome, the conditional
average treatment effect (CATE) of role model interventions, s0(Z), is predicted using five alternative ML methods: Elastic Net,
Random Forest, Linear Model, Boosting, and Neural Network. The covariates Z that are used to predict the CATE consist of
three indicators for the educational districts of Paris, Créteil, and Versailles, four indicators for students’ socioeconomic background
(high, medium-high, medium-low, and low), their age, their overall percentile rank in the Baccalauréat exam, their percentile ranks
in the French and math tests of the exam, and a vector of 56 role model fixed effects. For each outcome, Panel A reports the
parameter estimates and p-values (in square brackets) of the Best Linear Predictor (BLP) of the CATE using the best ML method
(see Appendix Table M31, Panel A). The coefficients β1 and β2 correspond to the average treatment effect (ATE) and heterogeneity
loading (HET) parameters in the BLP, respectively. Panel B reports the Sorted Group Average Treatment Effects (GATEs), i.e.,
the average treatment effects among students in the top and bottom quintiles of the heterogeneous effects induced by the ML
proxy predictor S(Z), using the best ML method (see Appendix Table M31, Panel B). Panel C performs a Classification Analysis
(CLAN) by comparing the average characteristics of the 20 percent most and least affected students defined in terms of the ML
proxy predictor. The parameter estimates and p-values are computed as medians over 100 splits, with nominal levels adjusted to
account for the splitting uncertainty. This adjustment implies that the reported p-values should be interpreted as upper bounds
for the actual p-values. Further details on the methods are provided in Appendix M.
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Table M34 – Proportion of Random Data Splits for which the Correlation between Conditional
Average Treatment Effects (CATEs) can be Computed, Girls in Grade 12

Proportion of data splits such that

ρ̂A,B|Z can
be computed* β̂

B|B
2 > 0 β̂

A|A
2 > 0 β̂

A|B
2 β̂

B|A
2 ≥ 0

(1) (2) (3) (4)

When outcome Y B is enrollment in a selective
STEM program and outcome Y A is:

Positive perception of science-related careers (index) 0.80 1.00 0.86 0.90

More men in science-related jobs 0.68 0.99 0.89 0.73

Equal gender aptitude for math (index) 0.35 1.00 0.98 0.36

Women like science less than men 0.34 0.99 0.84 0.40

Women face discrimination in science-related jobs 0.62 1.00 1.00 0.62

Taste for science subjects (index) 0.81 0.99 0.97 0.83

Math self-concept (index) 0.39 0.99 1.00 0.40

Science-related career aspirations (index) 0.64 0.99 1.00 0.65

Number of data splits 3,000 3,000 3,000 3,000

Notes: This table reports, for the sample of girls in Grade 12 (science track), the proportion of random data splits (out of 3,000) for
which the correlation between the Conditional Average Treatment Effects (CATEs) on outcomes Y A and Y B could be computed.
Outcome Y B is always enrollment in selective STEM while Y A is the outcome listed in the corresponding row of the table.
Conditional on the covariates Z, the CATEs on outcomes Y A and Y B are denoted by sA

0 (Z) and sB
0 (Z), respectively, whereas their

ML proxy predictors are denoted by SA(Z) and SB(Z), respectively. For each random split, the correlation coefficient ρA,B|Z is

estimated as ρ̂A,B|Z = Sign(β̂A|B
2 )

√
β̂

A|B
2 β̂

B|A
2 /

√
β̂

A|A
2

√
β̂

B|B
2 , where β̂k|l

2 is the estimated heterogeneity loading parameter of
the Best Linear Predictor (BLP) of sk

0(Z) based on Sl(Z) (with k, l ∈ {A,B}), using the methods in Chernozhukov et al. (2018).
Column 1 indicates the fraction of data splits for which ρ̂A,B|Z could be computed. The next three columns report the fraction of
sample splits for which each of the three conditions to compute ρ̂A,B|Z is met, i.e., β̂B|B

2 > 0 (column 2), β̂A|A
2 > 0 (column 3),

and β̂A|B
2 β̂

B|A
2 ≥ 0 (column 4). The proportion of random splits such that βB|B

2 > 0 varies slightly across rows because for each
pair of outcomes (Y A,Y B), the sample is restricted to observations with non-missing values for both outcomes (see Appendix M).
Table 9 in the main text reports the median and 95 percent confidence interval of ρ̂A,B|Z over the first 100 random data splits for
which ρ̂A,B|Z can be computed. Details are provided in Section 6.4 of the main text and in Appendix M.
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Table M35 – Correlation between Conditional Average Treatment Effects (CATEs) for Girls
in Grade 12: Sensitivity Analysis

Bivariate correlation with the CATE on
enrollment in a selective STEM program

(from first 100 valid iterations)

Estimate 95% confidence Proportion of
(ρ̂A,B|Z) interval valid iterations

Panel A. Data splits such that β̂A|A
2 > 0.1, β̂B|B

2 > 0.1 and β̂
A|B
2 β̂

B|A
2 ≥ 0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.96 [ 0.21, 5.39] 0.73

More men in science-related jobs −0.68 [−3.33, −0.03] 0.65

Equal gender aptitude for math (index) 0.08 [−1.90, 2.11] 0.33

Women like science less than men 0.26 [−0.64, 3.75] 0.19

Women face discrimination in science-related jobs −0.31 [−2.20, 0.61] 0.61

Taste for science subjects (index) 0.69 [ 0.07, 3.42] 0.66

Math self-concept (index) −0.06 [−1.85, 1.37] 0.38

Science-related career aspirations (index) 0.34 [−0.61, 1.95] 0.62

Panel B. Data splits such that β̂A|A
2 > 0.2, β̂B|B

2 > 0.2 and β̂
A|B
2 β̂

B|A
2 ≥ 0

Conditional average treatment effect (CATE) on:

Positive perception of science-related careers (index) 0.93 [ 0.21, 5.07] 0.64

More men in science-related jobs −0.68 [−3.26, −0.03] 0.65

Equal gender aptitude for math (index) 0.05 [−1.98, 1.90] 0.31

Women like science less than men 0.31 [−0.51, 3.44] 0.05

Women face discrimination in science-related jobs −0.30 [−2.12, 0.64] 0.58

Taste for science subjects (index) 0.59 [ 0.07, 2.61] 0.34

Math self-concept (index) 0.05 [−1.68, 1.51] 0.29

Science-related career aspirations (index) 0.31 [−0.64, 1.79] 0.46

Notes: Similarly to Table 9 in the main text, this table reports, for girls in Grade 12 (science track), the estimates of the bivariate
correlation ρA,B|Z between the Conditional Average Treatment Effect (CATE) on enrollment in a selective STEM program, denoted
by sB

0 (Z), and the CATE on each of the potential mediators listed in the table, denoted by sA
0 (Z). The difference is that estimates

provided in this table are obtained using only iterations of the data-splitting process for which the estimates of the heterogeneity
loading parameters β̂A|A

2 and β̂B|B
2 are above a certain threshold. This threshold is set at 0.1 in Panel A and at 0.2 in Panel B.

These restrictions are applied to check the sensitivity of the correlation estimates to excluding data splits that yield a poor ML
prediction of the CATEs on outcomes Y A or Y B . Column 3 indicates the proportion of data splits satisfying the restrictions
specified in each panel’s heading. The estimates and 95 percent confidence intervals reported in columns 1 and 2 are obtained using
the first 100 data splits satisfying these restrictions. Additional details are provided in the notes of Table 9 and in Appendix M.
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