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the Transmission of Coronavirus Disease 
2019 (COVID-19) in China*

This paper models the local and cross-city transmissions of the novel coronavirus in 

China between January 19 and February 29 in 2020. We examine the role of various 

socioeconomic mediating factors, including public health measures that encourage 

social distancing in local communities. Weather characteristics two weeks ago are used 

as instrumental variables for causal inference. Stringent quarantine, city lockdown, and 

local public health measures imposed since late January significantly decreased the virus 

transmission rate. The virus spread was contained by the middle of February. Population 

outflow from the outbreak source region posed a higher risk to the destination regions 

than other factors including geographic proximity and similarity in economic conditions. 

We quantify the effects of different public health measures in reducing the number of 

infections through counterfactual analyses. Over 1.4 million infections and 56,000 deaths 
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1 Introduction

Since the first pneumonia case of unknown cause was found close to a seafood market in Wuhan,

the capital city of Hubei Province of China, on December 8, 2019, several clusters of patients with

such pneumonia were reported through late December 2019. It was later identified to be caused

by a new coronavirus (severe acute respiratory syndrome coronavirus 2, or SARS-CoV-2) (Zhu

et al., 2020) and the disease is named as Coronavirus Disease 2019 (COVID-19) by the World

Health Organization (WHO)1. While the seafood market was closed on January 1, 2020, massive

outflow of travelers during the Chinese Spring Festival travel rush (Chunyun) since January 112

has rapidly spread COVID-19 throughout China and to other countries. The first confirmed case

outside Wuhan in China was reported on January 19 (Shenzhen) (Li et al., 2020). Similar to SARS-

CoV and MERS-CoV, the COVID-19 can be transmitted from person to person. By April 5, over

1.2 million confirmed cases have been reported in at least 200 countries or territories3.

Two fundamental strategies have been taken globally, with one focusing on mitigating but not

necessarily stopping the virus spread and the other relying on more stringent measures to suppress

and reverse the growth trajectories. While most western countries started with an implementation

of the former strategy, more and more of them (including most European countries and the U.S.)

are shifting towards more stringent suppressing strategy, and some other countries such as China,

Singapore and South Korea have adopted the latter strategy from the beginning. In particular,

China has rolled out one of the most stringent public health measures that involve city lockdown

and mandatory quarantine to ban or restrict traffic since January 23, centralized treatment and

isolation strategy that came into effect since February 2, and social distance encouraging strategies

since January 28.

This paper estimates how the number of daily newly confirmed COVID-19 cases in a city is

influenced by the number of new COVID-19 cases in the same city, nearby cities, and Wuhan in

the preceding first and second weeks, respectively, using data on confirmed COVID-19 case counts

in China from January 19 to February 29. By comparing the estimates before and after February

2, we examine whether the comprehensive set of policies at the national scale delays the spread

of COVID-19. Besides, we estimate the impacts of social distancing measures in reducing the

transmission rate utilizing the closed management of communities and family outdoor restrictions

policies that were gradually rolled out across different cities.

As COVID-19 evolves into a global pandemic and the mitigating strategy is faced with growing

pressure to flatten the curve of virus transmissions, more and more nations consider implementing

some stringent suppressing measures. Therefore, examining the influencing factors of the transmis-

sion of COVID-19, and effectiveness of the large-scale mandatory quarantine and social distancing

measures in China not only adds to our understanding of the containment of COVID-19 but also

1COVID-19 is also known as novel coronavirus pneumonia or 2019-nCoV acute respiratory disease.
2In 2020, the Lunar New Year is on January 25.
3Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE)

at Johns Hopkins University, https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#

/bda7594740fd40299423467b48e9ecf6.
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provides insights into future prevention work against similar infectious diseases.

In a linear equation of the current number of new cases on the number of new cases in the past,

the unobserved determinants of new infections may be serially correlated for two reasons. First, the

number of infected people usually increases first before reaching a peak and then drops for infectious

diseases. Second, the unobservables imply persistent factors such as clusters that generate large

numbers of infections, people’s living habits and government policies. Serial correlations in errors

give rise to correlations between the lagged numbers of cases and the error term, rendering the

ordinary least square (OLS) estimator biased. Combining insights in Adda (2016), the existing

knowledge of the incubation period of COVID-19 (World Health Organization, 2020b), and the

weather conditions that affect the transmission rates of COVID-19 (Lowen and Steel, 2014, Wang

et al., 2020b), we construct instrumental variables for the number of new COVID-19 cases in the

preceding two weeks. Weather characteristics in the previous third and fourth weeks do not directly

affect today’s number of new COVID-19 cases after controlling for the number of new COVID-19

cases and weather conditions in the preceding first and second weeks. Therefore, our estimated

impacts have causal interpretations and reflect the transmission rates in the population.

Meanwhile, we estimate the mediating effects of socioeconomic factors on the transmission of

COVID-19 in China, which include population flow out of Wuhan, the distance between cities,

GDP per capita, number of doctors, and contemporaneous weather characteristics. We examine

whether population flows from the origin of the COVID-19 outbreak, which is a major city and

an important transportation hub in central China, can explain the spread of the virus as data

on real time travel intensity between cities have recently become available for research. Further,

realizing the urgency of forestalling widespread community transmissions in areas having not seen

many infections, which is possible under people’s return travels and work resumption after the

Spring Festival, many Chinese cities had implemented public health measures that encourage social

distancing in local communities since late January. We also examine the impacts of these measures

on curtailing the virus spread.

We find that transmission rates are lower in February than in January, and cities outside Hubei

province have lower transmission rates. Preventing the transmission rates in non-Hubei cities from

increasing to the level observed in late January in Hubei results in the largest reduction in the

number of infections occurred. Apart from the policies implemented nationwide, the additional

social distancing policies imposed in some cities since late January further helps reduce the number

of infections. By mid February, the spread of the virus had been contained in China. While many

socioeconomic factors moderate the spread of the virus, the actual population flow from the source

poses a higher risk to the destination than other factors such as geographic proximity and similarity

in economic conditions.

Our analysis contributes to the existing literature in three aspects. First, our analysis is con-

nected to the economics and epidemiological literature on the influencing factors of and ways of

preventing the spread of infectious diseases. Existing studies find that reductions in population flow

(Zhan et al., 2020, Zhang et al., 2020, Fang et al., 2020) and interpersonal contact from holiday
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school closings (Adda, 2016), reactive school closures (Litvinova et al., 2019), public transportation

strikes (Godzinski and Suarez Castillo, 2019), strategic targeting of travelers from high-incidence

locations (Milusheva, 2017), and paid sick leave to keep contagious workers at home (Barmby and

Larguem, 2009, Pichler and Ziebarth, 2017) can mitigate the prevalence of disease transmissions.

In addition, studies show viruses spread faster during economic booms (Adda, 2016), increases

in employment are associated with increased incidence of influenza (Markowitz et al., 2019), and

growth in trade can significantly increase the spread of influenza (Adda, 2016) and HIV (Oster,

2012). Vaccination (Maurer, 2009, White, 2019) and sunlight exposure (Slusky and Zeckhauser,

2018) are also found effective in reducing the spread of influenza.

Second, our paper adds to the epidemiological studies on the basic reproduction number (R0)

of COVID-19, i.e. average number of cases directly generated by one case in a population where

all individuals are susceptible to infection. Given the short time period since the beginning of the

COVID-19 outbreak, research is urgently needed to assess the dynamics of transmissions and its

implications on how the COVID-19 outbreak will evolve (Wu and McGoogan, 2020, Wu et al.,

2020b). Liu et al. (2020) identify 12 studies that estimated the basic reproductive number in the

wide range of 1.4 ∼ 6.5 (with a mean of 3.28 and a median of 2.79) for Wuhan, Hubei, China, or

overseas during 1-28 January 20204. Our (R0) estimate relies on spatially disaggregated data in an

extended period (until 29 February 2020) to mitigate potential biases, and the instrumental variable

approach we use isolates the causal effect of virus transmissions and imposes fewer restrictions on

the relationship between the unobserved determinants of new cases and the number of cases in

the past. Simultaneously considering a more comprehensive set of factors in the model that may

influence virus spread, we find that one case generates 2.992 more cases within two weeks (1.876

if cities in Hubei province are excluded) in the sub-sample from January 19 to February 1. In the

sub-sample from February 2 to February 29, the transmission rates are reduced to 1.243 and 0.614,

respectively. Our estimate of R0 for the period in late January 2020 (that overlaps with existing

studies) well falls in the range of the estimated R0 in the emerging COVID-19 literature (Liu et al.,

2020).

Third, our study contributes to the assessments of public health measures aiming at reducing

virus transmissions and mortality. Through a set of policy simulations, we report initial evidence

on the number of avoided infections by the end of February 2020 for cities outside Hubei province.

Specifically, the stringent health policies at the national and provincial levels reduced the transmis-

sion rate and resulted in 1,408,479 (95% CI, 815, 585 ∼ 2, 001, 373) fewer infections and potentially

56,339 fewer deaths5. In contrast, the effects of Wuhan lockdown and local Non-pharmaceutical

4For instance, using data on the first 425 COVID-19 patients by January 22, Li et al. (2020) estimate a basic
reproduction number of 2.2. Based on time-series data on the number of COVID-19 cases in mainland China from
January 10 to January 24, Zhao et al. (2020) estimate that the mean reproduction number ranges from 2.24 to 3.58.

5We assume a case fatality rate of 4%, the same as China’s current average level. Of course, the eventual case
fatality rate can be different from the current value, and it depends on many key factors, such as preparedness of
health care systems and demographic structure of the population outside Hubei province in comparison to China as
a whole. Also importantly, among patients who have died from COVID-19, the time from symptom onset to outcome
ranges between 2-8 weeks (World Health Organization, 2020b), which is partially beyond the time window of this
analysis. Therefore, we defer more rigorous estimates about avoided fatality to future studies.

4



Interventions (NPIs) are considerably smaller. As a result of Wuhan lockdown, closed manage-

ment of communities, and family outdoor restrictions, 31,071 (95% CI, 8, 296 ∼ 53, 845), 3,803

(95% CI, 1, 142 ∼ 6, 465), and 2,703 (95% CI, 654 ∼ 4, 751) fewer cases were avoided, respectively.

These three policies may respectively avoid 1,243 deaths, 152 deaths, and 108 deaths. Making

some additional assumptions, such as on the value of statistical life and lost productive time, these

estimates may provide the basis for more rigorous cost-benefit analysis regarding relevant public

health measures.

This paper is organized as follows. Section 2 introduces the empirical model. Section 3 discusses

our data and the construction of key variables. Section 4 presents the results. Section 5 documents

the public health measures implemented in China, whose impacts are quantified in a series of

counterfactual exercises. Section 6 concludes. The appendix contains additional details on the

instrumental variables, data quality and the computation of counterfactuals.

2 Empirical Model

Our analysis sample includes 304 prefecture-level cities in China. We exclude Wuhan, the capital

city of Hubei province, from our analysis for two reasons. First, the epidemic patterns in Wuhan

are significantly different from those in other cities. Some confirmed cases in Wuhan contracted the

virus through direct exposure to Huanan Seafood Wholesale Market, which is the most probable

origin of the virus6. In other cities, infections arise from human to human transmissions. Second,

COVID-19 cases were still pneumonia of previously unknown virus infections in people’s perception

until early January so that Wuhan’s health care system became overwhelmed as the number of new

confirmed cases increased exponentially since mid-January. This may have caused severe delay and

measurement errors in the number of cases reported in Wuhan, and to a lesser extent, in other

cities in Hubei province. To alleviate this concern, we also conduct analyses excluding all cities in

Hubei province from our sample.

To model the spread of the virus, we consider within city spread and between city transmissions

simultaneously (Adda, 2016). Our starting point is

yct =

14∑
s=1

αwithin,syc,t−s +

14∑
s=1

αbetween,s

∑
r 6=c

d−1cr yr,t−s +
14∑
s=1

ρszt−s + xctβ + εct,

where c is a city other than Wuhan, and yct is the number of new confirmed cases of COVID-19 in

city c on date t. Regarding between city transmissions, dcr is the log of the distance between cities

c and r, and
∑

r 6=c d
−1
cr yrt is the inverse distance weighted sum of new infections in other cities.

Considering that COVID-19 epidemic originated from one city (Wuhan) and that most of the early

cases outside Wuhan can be traced to previous contacts with persons in Wuhan, we also include the

number of new confirmed cases in Wuhan (zt) to model how the virus spreads to other cities from

6Li et al. (2020) document the exposure history of the first 425 cases. It is suspected that the initial cases were
linked to the Huanan Seafood Wholesale Market in Wuhan.
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its source. We may include lagged yct, yrt, zt up to 14 days based on the estimates of the durations

of the infectious period and the incubation period in the literature7. xct includes contemporaneous

weather controls, city, and day fixed effects8. εct is the error term. Standard errors are clustered

by province.

To make it easier to interpret the coefficients, we assume that the transmission dynamics

(αwithin,s, αbetween,s, ρs) are the same within s = 1, · · · , 7 and s = 8, · · · , 14, respectively, but

can be different across weeks. Specifically, we take averages of lagged yct, yrt, zt by week, as

ȳτct = 1
7

∑7
s=1 yct−7(τ−1)−s, ȳ

τ
rt = 1

7

∑7
s=1 yrt−7(τ−1)−s and z̄τt = 1

7

∑7
s=1 zt−7(τ−1)−s, in which τ

denotes the preceding first or second week. Our main model is

yct =
2∑

τ=1

αwithin,τ ȳ
τ
ct +

2∑
τ=1

αbetween,τ

∑
r 6=c

d−1cr ȳ
τ
rt +

2∑
τ=1

ρτ z̄
τ
t + xctβ + εct. Model A (1)

We also consider more parsimonious model specifications, such as the model that only considers

within city transmissions,

yct =
2∑

τ=1

αwithin,τ ȳ
τ
ct + xctβ + εct, (2)

and the model where the time lagged variables are averages over the preceding 2 weeks,

yct = αwithin
1

14

14∑
s=1

yc,t−s + αbetween
1

14

14∑
s=1

∑
r 6=c

d−1cr yr,t−s + ρ
1

14

14∑
s=1

zt−s + xctβ + εct. Model B

There are several reasons that ȳτct, ȳ
τ
rt and z̄τt may be correlated with the error term εct. The

unobserved determinants of new infections such as local residents’ and government’s preparedness

are likely correlated over time, which causes correlations between the error term and the lagged

dependent variables. As noted by World Health Organization (2020b), most cases that were locally

generated outside Hubei occurred in households or clusters. The fact that big clusters give rise to a

large number of cases within a short period of time may still be compatible with a general low rate

of community transmissions, especially when measures such as social distancing are implemented.

Therefore, the coefficients are estimated by two-stage least squares in order to obtain consistent

estimates on the transmission rates in the population.

In equation (2), the instrumental variables include averages of daily maximum temperature,

total precipitation, average wind speed and the interaction between precipitation and wind speed,

for city c in the preceding third and fourth weeks. Detailed discussion of the selection of weather

7The COVID-19 epidemic is still ongoing at the time of writing and the estimates are revised from time to time
in the literature as new data become available. The current estimates include the following. The incubation period
is estimated to be between 2 and 10 days (World Health Organization, 2020a), 5.2 days (Li et al. (2020)), or 3 days
(median, Guan et al. (2020)). The average infectious period is estimated to be 1.4 days (Wu et al., 2020a).

8On February 12, cities in Hubei province include clinically diagnosed cases in the confirmed cases, in addition to
cases that are confirmed by nucleic acid tests, which results in a sharp increase in the number of confirmed cases for
cities in Hubei on February 12. The common effect on other cities is controlled for by the day fixed effect.
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Figure 1: Timeline of Key Variables

characteristics as instruments is in Section 3.2. The timeline of key variables are displayed in

Figure 1. The primary assumption on the instrumental variables is that weather conditions before

two weeks do not affect the likelihood that a person susceptible to the virus contracts the disease,

conditional on weather conditions and the number of infectious people within the two week window.

On the other hand, they affect the number of other persons who have become infectious within

the two-week window, because they may have contracted the virus earlier than two weeks. These

weather variables are exogenous to the error term and affect the spread of the virus, which have

been used by Adda (2016) to instrument flu infections9.

Another objective of this paper is to quantify the effect of various socioeconomic factors in

mediating the transmission rates of the virus, which may identify potential behavioral and socioe-

conomic risk factors for infections. For within city transmissions, we consider the effects of local

public health measures (see Section 5 for details) and the mediating effects of population density,

level of economic development, number of doctors, and environmental factors such as temperature,

wind and precipitation. For between city transmissions, apart from proximity measures based on

geographic distance, we also consider similarity in population density and the level of economic

development. To measure the spread of the virus from Wuhan, we also include the number of

people traveling from Wuhan. The full empirical model is as follows,

yct =

2∑
τ=1

Kwithin∑
k=1

αkwithin,τ h̄
kτ
ct ȳ

τ
ct +

2∑
τ=1

Kbetween∑
k=1

∑
r 6=c

αkbetween,τm̄
kτ
crtȳ

τ
rt +

2∑
τ=1

KWuhan∑
k=1

ρkτm̄
kτ
c,Wuhan,tz̄

τ
t

9Flu viruses are easier to survive in cold weather. Adverse weather conditions also limit outdoor activities which
can decrease the chance of contracting the virus. For details, see Adda (2016) and Section 3.2.
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+ xctβ + εct, (3)

where h̄kτct includes dummies for local public health measures and the mediating factors for local

transmissions. m̄kτ
crt and m̄kτ

c,Wuhan,t are the mediating factors for between city transmissions and

imported cases from Wuhan.

3 Data

3.1 Variables

January 19, 2020 is the first day that COVID-19 cases were reported outside of Wuhan, so we

collect the daily number of new cases of COVID-19 for 305 cities from January 19 to February 29.

All these data are reported by 32 provincial-level Health Commissions in China10. Figure 2 shows

the time patterns of daily confirmed new cases in Wuhan, in Hubei province outside Wuhan, and

in non-Hubei provinces of mainland China. Because Hubei province started to include clinically

diagnosed cases into new confirmed cases on February 12, we notice a spike in the number of new

cases in Wuhan and other cities in Hubei province on this day (Figure 2). The common effects of

such changes in case definitions on other cities can be absorbed by time fixed effects. As robustness

checks, we reestimate Model A and B without the cities in Hubei province. In addition, since

the number of clinically diagnosed cases at the city level was reported for the days of February

12, 13 and 14, we recalculated the daily number of new cases for the three days by removing the

clinically diagnosed cases from our data and re-estimate Models A and B. Our main findings still

hold (Appendix B).

Regarding the explanatory variables, we calculate the number of new cases of COVID-19 in

the preceding first and second weeks for each city on each day. To estimate the impacts of new

COVID-19 cases in other cities, we first calculate the geographic distance between a city and all

other cities using the latitudes and longitudes of the centroids of each city, and then calculate the

weighted sum of the number of COVID-19 new cases in all other cities using the inverse of log

distance between a city and each of the other cities as the weight.

Since the COVID-19 outbreak started from Wuhan, we also calculate the weighted number of

COVID-19 new cases in Wuhan using the inverse of log distance as the weight. Furthermore, to

explore the mediating impact of population flow from Wuhan, we collect the daily population flow

index from Baidu that proxies for the total intensity of migration from Wuhan to other cities11.

Figure 3 plots the Baidu index of population flow out of Wuhan and compares its values this year

with those in 2019. We then interact the flow index with the share that a destination city takes

(Figure 4) to construct a measure on the population flow from Wuhan to a destination city. Other

mediating variables include population density, GDP per capita, and the number of doctors at the

city level, which we collect from the most recent China city statistical yearbook. Table 1 presents

10Hong Kong and Macao are excluded from our analysis due to the lack of some socioeconomic variables.
11Baidu Migration, qianxi.baidu.com.
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Figure 2: Number of Daily New Confirmed Cases of COVID-19 in Mainland China

the summary statistics of these variables. On average, GDP per capita and population density

are larger in cities outside Hubei province than those in Hubei. Compared with cities in Hubei

province, cities outside Hubei have more doctors.

We rely on meteorological data to construct instrumental variables for the endogenous variables.

The National Oceanic and Atmospheric Administration (NOAA) provides average, maximum and

minimum temperatures, air pressure, average and maximum wind speeds, precipitation, snowfall

amount, and dew point for 362 weather stations at the daily level in China. To merge the mete-

orological variables with the number of new cases of COVID-19, we first calculate daily weather

variables for each city on each day from 2019 December to 2020 February from station-level weather

records following the inverse-distance weighting method. Specifically, for each city, we draw a circle

of 100 km from the city’s centroid and calculate the weighted average daily weather variables using

stations within the 100 km circle12. We use the inverse of the distance between the city’s centroid

and each station as the weight. Second, we match the daily weather variables to the number of

new cases of COVID-19 based on city name and date.

3.2 Selection of Instrumental Variables

The transmission rate of COVID-19 may be affected by many environmental factors. Human-

to-human transmission of COVID-19 is mostly through droplets and contacts (National Health

12The 100km circle is consistent with the existing literature. Most studies on the socioeconomic impacts of climate
change have found that estimation results are insensitive to the choice of the cutoff distance (Zhang et al., 2017).
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Figure 3: Baidu Index of Population Flow from Wuhan

Figure 4: Destination Shares in Population Flow from Wuhan
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Table 1: Summary Statistics
Variable N Mean Std dev. Min. Median Max.

Non Hubei cities
City characteristics

GDP per capita, 10,000RMB 288 5.225 3.025 1.141 4.327 21.549
Population density, per km2 288 428.881 374.138 9.049 327.115 3444.092
# of doctors, 10,000 288 1.086 1.138 0.030 0.805 10.938

Time varying variables, Jan 19 - Feb 1
Daily # of new confirmed cases 4032 1.303 3.608 0.000 0.000 60.000
Weekly average max. temperature, ◦C 4032 8.520 8.525 -18.468 7.932 29.833
Weekly average precipitation, mm 4032 0.238 0.558 0.000 0.033 5.570
Weekly average wind speed, m/s 4032 2.209 0.842 0.816 2.014 6.386

Time varying variables, Feb 1 - Feb 29
Daily # of new confirmed cases 8064 0.927 3.461 0.000 0.000 201.000
Weekly average max. temperature, ◦C 8064 11.909 7.983 -18.032 12.814 28.791
Weekly average precipitation, mm 8064 0.193 0.491 0.000 0.027 5.432
Weekly average wind speed, m/s 8064 2.461 0.913 0.654 2.352 7.129

Cities in Hubei province, excluding Wuhan
City characteristics

GDP per capita, 10,000RMB 16 4.932 1.990 2.389 4.306 8.998
Population density, per km2 16 416.501 220.834 24.409 438.820 846.263
# of doctors, 10,000 16 0.698 0.436 0.017 0.702 1.393

Time varying variables, Jan 19 - Feb 1
Daily # of new confirmed cases 224 22.165 35.555 0.000 7.000 276.000
Weekly average max. temperature, ◦C 224 8.709 1.602 1.278 8.905 10.889
Weekly average precipitation, mm 224 0.261 0.313 0.000 0.160 1.633
Weekly average wind speed, m/s 224 1.970 0.600 0.893 1.975 3.439

Time varying variables, Feb 1 - Feb 29
Daily # of new confirmed cases 448 28.871 51.793 0.000 8.000 424.000
Weekly average max. temperature, ◦C 448 14.569 2.985 1.452 14.448 23.413
Weekly average precipitation, mm 448 0.201 0.233 0.000 0.133 1.535
Weekly average wind speed, m/s 448 2.063 0.648 0.705 2.070 4.174

Variables of the city characteristics are obtained from City Statistical Yearbooks. Time varying variables are observed

daily for each city. Weekly average weather variables are averages over the preceding week.
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Commission of the PRC, 2020). Weather conditions such as rainfall, wind speed, and temperature

may shape infections via their influences on social activities and virus transmissions. For instance,

increased precipitation results in higher humidity, which may weaken virus transmissions (Lowen

and Steel, 2014). The virus may survive longer with lower temperature (Wang et al., 2020b,

Puhani, 2020). Greater wind speed and therefore ventilated air may decrease virus transmissions.

In addition, increased rainfall and lower temperature may also reduce social activities. Newly

confirmed COVID-19 cases typically arise from contracting the virus within two weeks in the

past (e.g., World Health Organization, 2020b). The extent of human-to-human transmission is

determined by the number of people who have already contracted the virus and the environmental

conditions within the next two weeks. Conditional on the number of people who are infectious

and environmental conditions in the previous first and second weeks, it is plausible that weather

conditions further in the past, i.e., in the previous third and fourth weeks, should not directly affect

the number of current new cases. Based on the existing literature, we select weather characteristics

as the instrumental variables, which include daily maximum temperature, precipitation, wind speed

and the interaction between precipitation and wind speed.

We then regress the endogenous variables on the instrumental variables, contemporaneous

weather controls, city, date, and city by week fixed effects. Table 2 shows that F-tests on the

coefficients of the instrumental variables all reject joint insignificance, which confirms that overall

the selected instrumental variables are not weak. The coefficients of the first stage regressions are

reported in Table A.1 in the appendix.

We also need additional weather variables to instrument the adoption of public health measures

at the city level. Since there is no theoretical guidance from the existing literature, we implement the

Cluster-Lasso method of (Belloni et al., 2016, Ahrens et al., 2019) to select weather characteristics

that have good predictive power. Details are displayed in Appendix A.

4 Results

Our sample starts from January 19, when the first COVID-19 case was reported outside Wuhan.

The sample spans six weeks in total and ends on February 29. We divide the whole sample into

two sub-samples (January 19 to February 1, and February 2 to February 29) and estimate the

model using the whole sample and two sub-samples, respectively. In the first two weeks, COVID-

19 infections quickly spread throughout China with every province reporting at least one confirmed

case, and the number of cases also increased at an increasing speed (Figure 2). It is also during

these two weeks that the Chinese government took actions swiftly to curtail the virus transmission.

On January 20, COVID-19 was classified as a Class B statutory infectious disease and treated as a

Class A statutory infectious disease. The city of Wuhan was placed under lockdown on January 23;

roads were closed and residents were not allowed to leave the city. Many other cities also imposed

public policies ranging from canceling public events, stopping public transportation, to limiting

how often residents could leave home. By comparing the dynamics of virus transmissions in these
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Table 2: First Stage Results
Jan 19 - Feb 29 Jan 19 - Feb 1 Feb 2 - Feb 29

Own city
Average # new cases, 1 week lag F stat 11.41 4.02 17.28

p value 0.0000 0.0000 0.0000
Average # new cases, 2 week lag F stat 8.46 5.66 10.25

p value 0.0000 0.0000 0.0000
Average # new cases, previous 14 days F stat 18.37 7.72 21.69

p value 0.0000 0.0000 0.0000

Other cities, inverse distance weighted
Average # new cases, 1 week lag F stat 19.10 36.29 17.58

p value 0.0000 0.0000 0.0000
Average # new cases, 2 week lag F stat 36.32 19.94 37.31

p value 0.0000 0.0000 0.0000
Average # new cases, previous 14 days F stat 47.08 33.45 46.22

p value 0.0000 0.0000 0.0000

This table reports the F-tests on the joint significance of the coefficients on the instrumental variables (IV) that

are excluded from the estimation equations. Our IV include weekly averages of daily maximum temperature, pre-

cipitation, wind speed, and the interaction between precipitation and wind speed, during the preceding third and

fourth weeks, and the averages of these variables in other cities weighted by the inverse of log distance. For each F

statistic, the variable in the corresponding row is the dependent variable, and the time window in the corresponding

column indicates the time span of the sample. Each regression also includes one and two week lags of these weather

variables, weekly averages of new infections in the preceding first and second weeks in Wuhan which are interacted

with the inverse log distance or the population flow, and city, date and city by week fixed effects. Coefficients on the

instrumental variables for the full sample are reported in Table A.1 in the appendix.

13



two sub-samples, we can infer the effectiveness of these public health measures.

In this section, we will mostly rely on model A to interpret the results, which estimates the

effects of the average number of new cases in the preceding first and second week, respectively, and

therefore enables us to examine the transmission dynamics at different time lags. As a robustness

check, we also consider a simpler lag structure to describe the transmission dynamics. In model B,

we estimate the effects of the average number of new cases in the past 14 days instead of using two

separate lag variables.

4.1 Within City Transmission

Table 3 reports the estimation results of the OLS and IV regressions of Eq.(2), in which only within

city transmission is considered. After controlling for time-invariant city fixed effects and time effects

that are common to all cities, on average, one new infection leads to 1.142 more cases in the next

week, but 0.824 fewer cases one week later. The negative effect can be attributed to the fact that

both local authorities and residents would have taken more protective measures in response to a

higher perceived risk of contracting the virus given more time. Information disclosure on newly

confirmed cases at the daily level by official media and information dissemination on social media

throughout China may have promoted more timely actions by the public, resulting in slower virus

transmissions. We then compare the transmission rates in different time windows. In the first

sub-sample, one new infection leads to 2.135 more cases within a week, implying a fast growth in

the number of cases. However, in the second sub-sample, the effect decreases to 1.077, suggesting

that public health measures imposed in late January were effective in limiting a further spread of

the virus. Similar patterns are also observed in model B.

Many cases were also reported in other cities in Hubei province apart from Wuhan, where six of

them reported over 1000 cumulative cases by February 1513. Their overstretched health care system

exacerbates the concern over delayed reporting of confirmed cases in these cities. To mitigate the

effect of such potential measurement errors on our estimates, we re-estimate Eq.(2) excluding all

cities in Hubei province. The bottom panel of Table 3 reports these estimates. Comparing the IV

estimates in column (4) and (6) between the upper and lower panels, we find that the transmission

rates are lower in cities outside Hubei. In the January 19 - February 1 sub-sample, one new case

leads to 1.483 more cases in the following week, and this is reduced to 0.903 in the February 2 -

February 29 sub-sample. We also find a similar pattern when comparing the estimates from model

B.

4.2 Between City Transmission

People may contract the virus from interaction with the infected people who live in the same city

or other cities. In Eq.(1), we consider the effects of the number of new infections in other cities

and in the epicenter of the epidemic (Wuhan), respectively, using inverse log distance as weights.

13These cities are Xiaogan, Huanggang, Jingzhou, Suizhou, Ezhou, and Xiangyang.
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Table 3: Within City Transmission of COVID-19
Jan 19 - Feb 29 Jan 19 - Feb 1 Feb 2 - Feb 29
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

All Cities Excluding Wuhan
Model A: lagged variables are averages over the preceding first and second week separately
Average # of new cases 0.873*** 1.142*** 1.692*** 2.135*** 0.768*** 1.077***
1 week lag (0.00949) (0.0345) (0.0312) (0.0549) (0.0120) (0.0203)
Average # of new cases -0.415*** -0.824*** 0.860 -6.050*** -0.408*** -0.796***
2 week lag (0.00993) (0.0432) (2.131) (2.314) (0.00695) (0.0546)
Model B: lagged variables are averages over the preceding 2 weeks
Average # of new case 0.474*** 0.720*** 3.310*** 3.860*** 0.494*** 1.284***
previous 14 days (0.0327) (0.143) (0.223) (0.114) (0.00859) (0.107)

Observations 12,768 12,768 4,256 4,256 8,512 8,512
Number of cities 304 304 304 304 304 304
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

All Cities Excluding Cities in Hubei Province
Model A: lagged variables are averages over the preceding first and second week separately
Average # of new cases 0.725*** 1.113*** 1.050*** 1.483*** 0.620*** 0.903***
1 week lag (0.141) (0.0802) (0.0828) (0.205) (0.166) (0.0349)
Average # of new cases -0.394*** -0.572*** 0.108 -3.664 -0.228*** -0.341***
2 week lag (0.0628) (0.107) (0.675) (2.481) (0.0456) (0.121)
Model B: lagged variables are averages over the preceding 2 weeks
Average # of new cases 0.357*** 0.631*** 1.899*** 2.376*** 0.493*** 0.745***
previous 14 days (0.0479) (0.208) (0.250) (0.346) (0.122) (0.147)

Observations 12,096 12,096 4,032 4,032 8,064 8,064
Number of cities 288 288 288 288 288 288
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new cases. The endogenous explanatory variables include the average

numbers of new confirmed cases in the own city in the preceding first and second weeks (model A); and the average

number in the preceding 14 days (model B). Weekly averages of daily maximum temperature, precipitation, wind

speed, the interaction between precipitation and wind speed, and the inverse log distance weighted sum of each of

these variables in other cities, during the preceding third and fourth weeks, are used as instrumental variables in the

IV regressions. Weather controls include contemporaneous weather variables in the preceding first and second weeks.

Standard errors in parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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Figure 5: Rolling Window Analysis of Within and Between City Transmission of COVID-19

This figure shows the estimated coefficients and 95% CIs from the instrumental variable regressions. The

specification is the same as the IV regression models in Table 4. Each estimation sample contains 14 days with the

starting date indicated on the horizontal axis.

In addition, geographic proximity may not fully describe the level of social interactions between

residents in Wuhan and other cities since the lockdown in Wuhan on January 23 significantly

reduced the population flow from Wuhan to other cities. To alleviate this concern, we also use a

measure of the size of population flow from Wuhan to a destination city, which is constructed by

multiplying the daily migration index on the population flow out of Wuhan (Figure 3) with the

share of the flow that a destination city receives provided by Baidu (Figure 4). For days before

January 25, we use the average destination shares between January 10 and January 24. For days

on or after January 24, we use the average destination shares between January 25 and February

2314.

Table 4 reports the estimates from IV regressions of Eq.(1), and Table 5 reports the results

14The shares of top 100 destinations are available. The starting and ending dates of the average shares released by
Baidu do not precisely match the period of the analysis sample.
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Table 4: Within and Between City Transmission of COVID-19
Jan 19 - Feb 29 Jan 19 - Feb 1 Feb 2 - Feb 29
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Model A: lagged variables are averages over the preceding first and second week separately
Average # of new cases, 1 week lag

Own city 0.862*** 1.387*** 0.939*** 2.456*** 0.786*** 1.127***
(0.0123) (0.122) (0.102) (0.638) (0.0196) (0.0686)

Other cities 0.00266 -0.0248 0.0889 0.0412 -0.00316 -0.0212
wt. = inv. dist. (0.00172) (0.0208) (0.0714) (0.0787) (0.00227) (0.0137)
Wuhan -0.0141 0.0303 -0.879 -0.957 -0.00788 0.0236
wt. = inv. dist. (0.0115) (0.0318) (0.745) (0.955) (0.00782) (0.0200)
Wuhan 3.74e-05 0.00151*** 0.00462*** 0.00471*** -0.00211*** -0.00238**
wt. = pop. flow (0.000163) (0.000391) (0.000326) (0.000696) (4.01e-05) (0.00113)

Average # of new cases, 2 week lag
Own city -0.425*** -0.795*** 2.558 -1.633 -0.205*** -0.171

(0.0318) (0.0643) (2.350) (2.951) (0.0491) (0.224)
Other cities -0.00451** -0.00766 -0.361 -0.0404 -0.00912** -0.0230
wt. = inv. dist. (0.00213) (0.00814) (0.371) (0.496) (0.00426) (0.0194)
Wuhan -0.0410* 0.0438 3.053 3.031 -0.0603 -0.00725
wt. = inv. dist. (0.0240) (0.0286) (2.834) (3.559) (0.0384) (0.0137)
Wuhan 0.00261*** 0.00333*** 0.00711*** -0.00632 0.00167** 0.00368***
wt. = pop. flow (0.000290) (0.000165) (0.00213) (0.00741) (0.000626) (0.000576)

Model B: lagged variables are averages over the preceding 2 weeks
Own city 0.425*** 1.195*** 1.564*** 2.992*** 0.615*** 1.243***

(0.0771) (0.160) (0.174) (0.892) (0.0544) (0.115)
Other cities -0.00901 -0.0958** 0.0414 0.0704 -0.0286*** -0.0821***
wt. = inv. dist. (0.00641) (0.0428) (0.0305) (0.0523) (0.0101) (0.0246)
Wuhan -0.198* -0.0687** -0.309 -0.608 -0.234* -0.144
wt. = inv. dist. (0.104) (0.0268) (0.251) (0.460) (0.121) (0.0994)
Wuhan 0.00770*** 0.00487*** 0.00779*** 0.00316 0.00829*** 0.00772***
wt. = pop. flow (0.000121) (0.000706) (0.000518) (0.00276) (0.000367) (0.000517)

Observations 12,768 12,768 4,256 4,256 8,512 8,512
Number of cities 304 304 304 304 304 304
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new cases. The endogenous explanatory variables include the

average numbers of new confirmed cases in the own city and nearby cities in the preceding first and second weeks

(model A); and averages in the preceding 14 days (model B). Weekly averages of daily maximum temperature,

precipitation, wind speed, the interaction between precipitation and wind speed, and the inverse log distance

weighted sum of these variables in other cities, during the preceding third and fourth weeks are used as instrumental

variables in the IV regressions. Weather controls include contemporaneous weather variables in the preceding first

and second weeks. Standard errors in parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Within and Between City Transmission of COVID-19, Excluding Cities in Hubei Province
Jan 19 - Feb 29 Jan 19 - Feb 1 Feb 2 - Feb 29
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Model A: lagged variables are averages over the preceding first and second week separately
Average # of new cases, 1 week lag

Own city 0.656*** 1.117*** 0.792*** 1.194*** 0.567*** 0.899***
(0.153) (0.112) (0.0862) (0.302) (0.172) (0.0924)

Other cities 0.00114 -0.00213 -0.0160 -0.0734 0.000221 -0.00526**
wt. = inv. dist. (0.000741) (0.00367) (0.0212) (0.0803) (0.000626) (0.00244)
Wuhan -0.000482 0.00420 0.104 0.233 5.89e-05 0.00769**
wt. = inv. dist. (0.00173) (0.00649) (0.128) (0.156) (0.00194) (0.00379)
Wuhan 0.00668*** 0.00616*** 0.00641*** 0.00375 -0.000251 0.00390
wt. = pop. flow (0.00159) (0.00194) (0.00202) (0.00256) (0.00245) (0.00393)

Average # of new cases, 2 week lag
Own city -0.350*** -0.580*** 0.230 -1.541 -0.157** -0.250**

(0.0667) (0.109) (0.572) (1.448) (0.0636) (0.119)
Other cities -0.000869 0.00139 0.172 0.584 -0.00266* -0.00399
wt. = inv. dist. (0.00102) (0.00311) (0.122) (0.595) (0.00154) (0.00276)
Wuhan -0.00461 0.000894 -0.447 -0.970 -0.00456 0.00478*
wt. = inv. dist. (0.00304) (0.00592) (0.829) (0.808) (0.00368) (0.00280)
Wuhan 0.00803*** 0.00203 0.00973*** 0.00734 0.00759*** 0.00466***
wt. = pop. flow (0.00201) (0.00192) (0.00317) (0.00680) (0.00177) (0.00140)

Model B: lagged variables are averages over the preceding 2 weeks
Own city 0.242*** 0.654*** 1.407*** 1.876*** 0.406*** 0.614***

(0.0535) (0.195) (0.215) (0.376) (0.118) (0.129)
Other cities 0.000309 -0.00315 0.00608 0.0194 -0.00224 -0.00568
wt. = inv. dist. (0.00142) (0.00745) (0.0188) (0.0300) (0.00204) (0.00529)
Wuhan -0.0133** -0.0167 -0.0146 -0.0362 -0.0138** -0.00847
wt. = inv. dist. (0.00535) (0.0140) (0.0902) (0.0741) (0.00563) (0.00787)
Wuhan 0.0153*** 0.0133*** 0.00826*** 0.00404 0.0132*** 0.0123***
wt. = pop. flow (0.00273) (0.00273) (0.00241) (0.00423) (0.00222) (0.00205)

Observations 12,096 12,096 4,032 4,032 8,064 8,064
Number of cities 288 288 288 288 288 288
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new cases. The endogenous explanatory variables include the

average numbers of new confirmed cases in the own city and nearby cities in the preceding first and second weeks

(model A); and averages in the preceding 14 days (model B). Weekly averages of daily maximum temperature,

precipitation, wind speed, the interaction between precipitation and wind speed, and the inverse log distance

weighted sum of these variables in other cities, during the preceding third and fourth weeks are used as instrumental

variables in the IV regressions. Weather controls include contemporaneous weather variables in the preceding first

and second weeks. Standard errors in parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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from the same regressions excluding Hubei province. Column (4) of Table 4 indicates that in the

first sub-sample, one new case leads to 2.456 more cases within one week, and the effect is not

statistically significant between one and two weeks. Column (6) suggests that in the second sub-

sample, one new case leads to 1.127 more cases within one week, and the effect is not statistically

significant between one and two weeks. The comparison of the coefficients on own city between

different sub-samples indicates that the responses of the government and the public have effectively

decreased the risk of additional infections. Comparing Table 4 with Table 3, we find that although

the number of new cases in the preceding second week turns insignificant and smaller in magnitude,

coefficients on the number of new cases in the preceding first week are not sensitive to the inclusion

of terms on between-city transmissions.

As a robustness test, Table 5 reports the estimation results from excluding the cities in Hubei

province. Column (4) of Table 5 indicates that in the first sub-sample, one new case leads to 1.194

more cases within a week, while in the second subsample, one new case only leads to 0.899 more

cases within a week. Besides, in the second subsample, one new case results in 0.250 fewer new

infections between one and two weeks, which is larger in magnitude and more significant than the

estimate (−0.171) when cities in Hubei province are included for estimation (column (6) of Table4).

The time varying patterns in local transmissions are evident using the rolling window analysis

(Figure 5). The upper left panel displays the estimated coefficients on local transmissions for various

14-day sub-samples with the starting date labelled on the horizontal axis. After a slight increase

in the local transmission rates, one case generally leads to fewer and fewer additional cases a few

days after January 19. Besides, the transmission rate displays a slight increase beginning around

February 4, which corresponds to the return travels and work resumption after Chinese Spring

Festival, but eventually decreases at around February 12. Such decrease may be partly attributed

to the social distancing strategies at the city level, so we examine the impacts of relevant policies in

Section 5. Moreover, the transmission rates in cities outside Hubei province have been kept at low

levels throughout the whole sample period (columns (4) and (6) of Table 5). These results suggest

that the policies adopted at the national and provincial levels soon after January 19 prevented

cities outside Hubei from becoming new hotspots of infections. Overall, the spread of the virus has

been effectively contained by mid February, particularly for cities outside Hubei province.

In the epidemiology literature, the estimates on the basic reproduction number of COVID-19

is approximately within the wide range 1.4 ∼ 6.5 (Liu et al., 2020). Its value depends on the

estimation method used, underlying assumptions of modeling, time period covered, geographic

regions (with varying preparedness of health care systems), and factors considered in the models

that affect disease transmissions (such as the behavior of the susceptible and infected population).

Intuitively, it can be interpreted as measuring the expected number of new cases that are generated

by one existing case. It is of interest to note that our estimates are within this range. Based on the

results from model B in Table 4 and 5, one case leads to 2.992 more cases in the same city in the

next 14 days (1.876 if cities in Hubei province are excluded). In the second subsample (February 2

- February 29), these numbers are reduced to 1.243 and 0.614, respectively, suggesting that factors
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such as public health measures and people’s behavior may play an important role in containing the

transmission of COVID-19.

While our basic reproduction number estimate (R0) is within the range of estimates in the

literature and is close to its median, five features may distinguish our estimates from some of

the existing epidemiological estimates. First, our instrumental variable approach helps isolate the

causal effect of virus transmissions from other confounded factors; second, our estimate is based

on an extended time period of the COVID-19 pandemic (until the end of February 2020) that

may mitigate potential biases in the literature that relies on a shorter sampling period within 1-28

January 2020; third, our modeling makes minimum assumptions of virus transmissions, such as

imposing fewer restrictions on the relationship between the unobserved determinants of new cases

and the number of cases in the past; fourth, our model simultaneously considers comprehensive

factors that may affect virus transmissions, including multiple policy instruments (such as closed

management of communities and shelter-at-home order), population flow, within and between city

transmissions, economic and demographic conditions, weather patterns, and preparedness of health

care system. Fifth, our study uses spatially disaggregated data that cover China (except its Hubei

province), while some other studies examine Wuhan city, Hubei province, China as a whole, or

overseas.

Regarding the between-city transmission from Wuhan, we observe that the population flow

better explains the contagion effect than geographic proximity (Table 4). In the first subsample,

one new case in Wuhan leads to more cases in other cities receiving more population flows from

Wuhan within one week. Interestingly, in the second subsample, population flow from Wuhan

significantly decreases the transmission rate within one week, suggesting that people have been

taking more cautious measures from high COVID-19 risk areas; however, more arrivals from Wuhan

in the preceding second week can still be a risk. A back of the envelope calculation indicates that

one new case in Wuhan leads to 0.064 (0.050) more cases in the destination city per 10,000 travelers

from Wuhan within one (two) week between January 19 and February 1 (February 2 and February

29)15. Note that while the effect is statistically significant, it should be interpreted in context.

It was estimated that 15, 000, 000 people would travel out of Wuhan during the Lunar New Year

holiday16. If all had gone to one city, this would have directly generated about 171 cases within two

weeks. The risk of infection is likely very low for most travelers except for few who have previous

contacts with sources of infection, and person-specific history of past contacts may be an essential

predictor for infection risk, in addition to the total number of population flows17.

A city may also be affected by infections in nearby cities apart from spillovers from Wuhan. We

15It is estimated that 14,925,000 people traveled out of Wuhan in 2019 during the Lunar New Year holiday (http:
//www.whtv.com.cn/p/17571.html). The sum of Baidu’s migration index for population flow out of Wuhan during
the 40 days around the 2019 Lunar New Year is 203.3, which means one index unit represents 0.000013621 travelers.
The destination share is in percentage. With one more case in Wuhan, the effect on a city receiving 10,000 travelers
from Wuhan is 0.00471 × 0.000013621 × 100 × 10000 = 0.064.

16http://www.whtv.com.cn/p/17571.html
17From mid February, individual specific health codes such as Alipay Health Code and WeChat Health Code are

being used in many cities to aid quarantine efforts.
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find that the coefficients that represent the infectious effects from nearby cities are generally small

and not statistically significant (Table 4), implying that few cities outside Wuhan are themselves

exporting infections. This is consistent with the findings in World Health Organization (2020b)

that other than cases that are imported from Hubei, additional human-to-human transmissions are

limited for cities outside Hubei. Restricting to cities outside Hubei province, the results are similar

(Table 5), except that the transmission from Wuhan is not significant in the first half sample.

4.3 Social and Economic Mediating Factors

We also investigate the mediating impacts of some socioeconomic and environmental characteristics

on the transmission rates (Eq.(3)). To ease the comparison between different moderators, We

consider the mediating impacts on the influence of the average number of new cases in the past two

weeks. Regarding own city transmissions, we examine the mediating effects of population density,

GDP per capita, number of doctors, and average temperature, wind speed, precipitation, and a

dummy variable of adverse weather conditions. Regarding between-city transmissions, we consider

the mediating effects of distance, difference in population density and difference in GDP per capita

since cities that are similar in density or economic development level may be more closely linked.

We also include a measure of population flows from Wuhan. Table 6 reports the estimation results

of the IV regressions. To ease the comparison across various moderators, for the mediating variables

of within city transmissions that are significant at 10%, we compute the changes in the variables

so that the effect of new confirmed infections in the past 14 days on current new confirmed cases

is reduced by 1 (column (2) and (4)).

Table 6: Social and Economic Factors Mediating the Transmission of COVID-19

(1) (2) (3) (4)

Jan 19 - Feb 1 Feb 2 - Feb 29

IV Coeff. IV Coeff.

Average # of new cases, previous 14 days

Own city -0.251 0.672***

(0.977) (0.219)

× population density 0.000164 -0.000202** +495 per km2

(0.000171) (8.91e-05)

× per capita GDP 0.150*** −66, 667 RMB 0.0102

(0.0422) (0.0196)

× # of doctors -0.108* +92, 593 0.0179

(0.0622) (0.0236)

× temperature 0.0849* −11.78◦C -0.00945

(0.0438) (0.0126)

× wind speed -0.109 0.128

(0.131) (0.114)

Continued on next page
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Table 6 – continued from previous page (1) (2) (3) (4)

× precipitation 0.965* −1.04 mm 0.433* −2.31 mm

(0.555) (0.229)

× adverse weather 0.0846 -0.614*** +163%

(0.801) (0.208)

Other cities 0.0356 -0.00429

wt. = inv. distance (0.0375) (0.00343)

Other cities 0.00222 0.000192

wt. = inv. density ratio (0.00147) (0.000891)

Other cities 0.00232 0.00107

wt. = inv. per capita GDP ratio (0.00497) (0.00165)

Wuhan -0.165 -0.00377

wt. = inv. distance (0.150) (0.00981)

Wuhan -0.00336 -0.000849

wt. = inv. density ratio (0.00435) (0.00111)

Wuhan -0.440 -0.0696

wt. = inv. per capita GDP ratio (0.318) (0.0699)

Wuhan 0.00729*** 0.0125***

wt. = population flow (0.00202) (0.00187)

Observations 4,032 8,064

Number of cities 288 288

Weather controls YES YES

City FE YES YES

Date FE YES YES

The dependent variable is the number of daily new confirmed cases. The sample excludes cities in Hubei province.

Columns (2) and (4) report the changes in the mediating variables that are needed to reduce the impact of new

confirmed cases in the preceding two weeks by 1, using estimates with significance levels of at least 0.1 in column

(1) and (3), respectively. The endogenous variables include the average numbers of new cases in the own city and

nearby cities in the preceding 14 days, and their interactions with the mediating variables. Weekly averages of daily

maximum temperature, precipitation, wind speed, the interaction between precipitation and wind speed, and the

inverse log distance weighted sum of these variables in neighboring cities, during the preceding third and fourth

weeks are used as instrumental variables in the IV regressions. Additional instrumental variables are constructed by

interacting them with the mediating variables. Weather controls include these variables in the preceding first and

second weeks. Standard errors in parentheses are clustered by provinces.

*** p<0.01, ** p<0.05, * p<0.1.

In the early phrase of the epidemic (January 19 to February 1), cities with more medical

resources, which are measured by the number of doctors, have lower transmission rates. One

standard deviation increase in the number of doctors reduces the transmission rate by 0.12. Cities

with higher GDP per capita have higher transmission rates, which can be ascribed to the increased

social interactions as economic activities increase18. In the second sub-sample, these effects become

insignificant probably because public health measures and intercity resource sharing take effects.

18Disease prevalence can also affect economic development. One channel is the fertility decision which leads to
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In fact, cities with higher population density have lower transmission rates in the second sub-

sample. Regarding the environmental factors, we notice different significant mediating variables

across the first and second sub-samples. The transmission rates are lower with adverse weather

conditions, lower temperature, or less rain. Further research is needed to identify clear mechanisms.

In addition, population flow from Wuhan still poses a risk of new infections for other cities even

after we account for the above mediating effects on own city transmission. This effect is robust

to the inclusion of the proximity measures based on economic similarity and geographic proximity

between Wuhan and other cities. Nevertheless, we do not find much evidence on between-city

transmissions among cities other than Wuhan.

5 Policy Response to the COVID-19 Outbreak in China

As the 2002-2004 SARS outbreak has shown, non-pharmaceutical interventions (NPIs), or pub-

lic health measures may decrease or effectively stop the transmission of COVID-19 even without

vaccines. Although the effectiveness of a single intervention strategy can be limited, multiple inter-

ventions together may generate substantial impacts on containing the spread of the virus. Figure

6 depicts the timeline for a series of policies enacted at the national, provincial, and city levels in

China since January 19. After the official confirmation of human-to-human transmission by the

Chinese authorities on January 20, China has adopted a variety of NPIs to contain the COVID-19

outbreak. At the national level, COVID-19 was classified as a statutory Class B infectious disease

on January 20, and prevention and control measures for Class A infectious diseases have been taken.

Government agencies across the country were mobilized. The Joint Prevention and Control Mech-

anism of the State Council was established on January 20, and the Central Leadership Group for

Epidemic Response was established on January 25. On January 23, National Healthcare Security

Administration announced that expenses related to COVID-19 treatments would be covered by the

medical insurance and the government if necessary, in order that all COVID-19 cases could be hos-

pitalized19. At the provincial level, 30 provinces declared Level I responses to major public health

emergencies from January 23 to 25, and all provinces had declared Level I responses by January

2920. Level I responses in China are designed for the highest state of emergencies. Measures taken

include enhanced isolation and contact tracing of cases, suspension of public transport, cancelling

public events, closing schools and entertainment venues, establishment of health checkpoints, etc.

changes in the demographic structure (e.g., Durevall and Lindskog, 2011, Chin and Wilson, 2018). Fogli and Veldkamp
(forthcoming) show that because a dense network spreads diseases faster and higher income is positively correlated
with more closely connected social network, infectious diseases can reduce long run economic growth by limiting the
size of social networks.

19There was insufficient hospital capacity in Hubei (and Wuhan in particular) in late January. Most patients in
Wuhan were hospitalized and isolated around mid February with the completion of new hospitals, makeshift health
facilities, and increased testing capacity. See Section 5.1 for details.

20We should note that the summary of China’s policy responses here is not a comprehensive list. Other entities have
also made efforts to help curtail the spread of COVID-19. For example, on January 27, the State Grid Corporation
of China declared that it would continue supplying electricity to resident users even if payment was not received on
time. School and universities were closed already because of Lunar New Year holidays.
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Figure 6: Timeline of China’s Public Health Policies in Curtailing the Spread of COVID-19

(Tian et al., 2020). These policies together represent population-wide social distancing and case

isolation (Ferguson et al., 2020).

5.1 Policy Response to COVID-19 in Hubei Province

Early detection of COVID-19 importation and prevention of onward transmission are crucial to all

areas at risk of importation from areas with active transmissions (Gilbert et al., 2020). To contain

the virus at the epicenter, Wuhan was placed under lockdown with traffic ban for all residents

starting on January 23. The lockdown is not expected to be lifted till April 8. Local buses,

subways, and ferries ceased operation. Ride-hailing services were prohibited, and only a limited

number of taxis were allowed on road by January 24. Residents are not permitted to leave the city.

Departure flights and trains were canceled at the city airport and train stations. Checkpoints were

set up at highway entrances to prevent cars from leaving the city. Since January 22, it became

mandatory to wear masks at work or in public places.
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In addition, all cities in Hubei province implemented the lockdown policy, and most Hubei

cities had also adopted measures commensurate with Class A infectious diseases by January 2821.

Residents in those areas were strongly encouraged to stay at home and not to attend any activity

involving public gathering.

Health facilities in Wuhan had been extremely overstretched with shortage in medical sup-

plies and high rates of nosocomial infections until February 2 when 1) two new hospitals, i.e.

Huoshenshan and Leishenshan, were built to treat patients of COVID-19 with severe symptoms;

2) 14 makeshift health facilities were converted to isolate patients with mild symptoms and to

quarantine people suspected of contracting COVID-19, patients with fever symptoms, and close

contacts of confirmed patients. This centralized treatment and isolation strategy since February 2

has substantially reduced transmission and incident cases.

However, stringent public health measures within Hubei province enforced after the massive

lockdown may have little to do with virus transmissions out of Hubei province due to the complete

travel ban since January 23.

5.2 Reducing Intercity Population Flows

Quarantine measures have been implemented in other provinces that aim at restricting population

mobility across cities and reducing the risk of importing infections22. Seven cities in Zhejiang,

Henan, Heilongjiang, and Fujian provinces had adopted the partial shutdown strategy by February

4 (Fang et al., 2020)23. In Wenzhou, most public transportation was shut down, and traffic leaving

the city was banned temporarily. On January 21, Ministry of Transport of China launched Level 2

responses to emergencies in order to cooperate with the National Health Commission in preventing

the virus spread. On January 23, Ministry of Transport of China, Civil Aviation Administration

of China, and the China State Railway Group Company, Ltd. (CSRGC) declared to waive the

change fees for flight, train, bus and ferry tickets that were bought before January 24. Later the

CSRGC extended the fee waiver policy to train tickets that were bought before February 6. By

February 2, all railway stations in China had started to monitor body temperature of travellers

when they enter and exit the station. Across the whole country, Transportation Departments

set up 14000 health checkpoints at bus and ferry terminals, at service centers and toll gates on

highways, monitoring the body temperature of passengers and controlling the inflow of population

(World Health Organization, 2020b). Recent visitors to high COVID-19 risk areas are required to

self-quarantine for 14 days at home or in designated facilities. On February 2, China’s Exit and

Entry Administration temporarily suspended the approval and issuance of the travel permits to

Hong Kong and Macau.

On January 23, Wuhan Municipal Administration of Culture and Tourism ordered all tour

21According to Law of the People’s Republic of China on Prevention and Treatment of Infectious Diseases, Class
A infectious diseases only include plague and cholera.

22For a list of quarantine measures, see 2020 Hubei lockdowns, https://en.wikipedia.org/w/index.php?title=
2020_Hubei_lockdowns&oldid=946423465, last visited April 2, 2020.

23Wenzhou, Zhengzhou, Hangzhou, Zhumadian, Ningbo, Harbin, Fuzhou
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groups to cancel travels to Wuhan. On January 27, Ministry of Education of China postponed

start of the spring semester in 2020, and on February 7, it further announced that students were

not allowed to return to school campus without approvals from school.

5.3 Encouraging Social Distancing in Local Communities

Recent studies suggest that there is a large proportion of asymptomatic or mild-symptomatic cases,

who can also spread the virus (Dong et al., 2020, Mizumoto et al., 2020, Nishiura et al., 2020, Wang

et al., 2020a). Thus, maintaining social distance is of crucial importance in order to curtail the

local transmission of the virus.

The period from January 24 to 31, 2020 is the traditional Chinese Spring Festival holiday, when

families are supposed to get together so that inter-city travel is usually much less. People were

frequently reminded by official media (via TV news and phone messages) and social media to stay

at home and avoid gathering activities. On January 26, China State Council extended this holiday

to February 2 to delay people’s return travel and curtail the virus spread. Nevertheless, economic

activities are still supposed to resume after the spring festival, bringing people back to workplaces,

which may increase the risk of virus spread.

To help local residents keep social distance and decrease the risk of virus transmissions, many

cities started to implement the “closed management of communities” and “family outdoor restric-

tions” policies since late January (Table 7), encouraging residents to restrict nonessential travels.

From January 28 to February 20, more than 250 prefecture-level cities in China implemented “closed

management of communities”, which typically includes 1) keeping only one entrance for each com-

munity, 2) allowing only community residents to enter and exit the community, 3) checking body

temperature for each entrant, 4) testing and quarantining cases that exhibit fever immediately, 5)

tracing and quarantining close contacts of suspicious cases. Meanwhile, residents who had symp-

toms of fever or dry cough were required to report to the community, and were quarantined and

treated in special medical facilities. Further, local governments of 127 cities also imposed more

stringent “family outdoor restrictions” – residents are confined or strongly encouraged to stay at

home with limited exceptions, e.g., only one person in each family may go out for shopping for

necessities once every two days24. Exit permits were usually distributed to each family in advance

and recollected when residents reenter the community. Contacts of those patients were also traced

and quarantined. Table 7 summarizes the number of cities that had imposed “closed management

of communities” or “family outdoor restrictions” by different dates in February.

In order to help inform evidence-based COVID-19 control measures, we examine the effect of

these local quarantine measures in reducing the virus transmission rates. Dummy variables for the

24This restriction varies from one to five days across cities. In most cities, such restrictions are once every two
days. “Closed management of communities” and “family outdoor restrictions” were mostly announced in city-level
government documents. There are some cities in which only part of their counties declared to implement “closed
management of communities” or “family outdoor restriction” policy. However, other counties in the same city may
have quickly learned from them. Thus, as long as one county in a city has implemented “closed management of
communities” or “family outdoor restrictions”, we treat the whole city as having the policy in place.
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Table 7: Number of Cities with Local Quarantine Measures by Different Dates
Date Closed management of communities Family outdoor restrictions

2020-02-01 10 1
2020-02-02 20 6
2020-02-03 33 16
2020-02-04 63 38
2020-02-05 111 63
2020-02-06 155 88
2020-02-07 179 92
2020-02-08 187 98
2020-02-09 196 102
2020-02-10 215 104
2020-02-11 227 105
2020-02-12 234 108
2020-02-13 234 109
2020-02-14 235 111
2020-02-15 237 111
2020-02-16 237 122
2020-02-17 237 122
2020-02-18 238 122
2020-02-19 238 122
2020-02-20† 241 123

†: No new cities adopt these measures after February 20.

presence of closed management of communities or family outdoor restrictions are created, and they

are interacted with the number of infections in the preceding two weeks.

5.4 Assessment of the Effects of Non-Pharmaceutical Interventions

Several factors may contribute to the containment of the epidemic. The transmission dynamics may

change during the course of this epidemic because of improved medical treatments, more effective

case isolation and contact tracing, increased public awareness, etc. Therefore, we have split the

sample into two sub-samples, and the estimated coefficients can be different across the sub-samples

(Section 4). NPIs such as closed management of communities, city lockdowns, restrictions on pop-

ulation flow out of areas with high infection risks may also directly affect the transmission rates.

While many public health measures are implemented nationwide, spatial variations exist in the

adoption of two types of measures: closed management of communities (denoted by closed man-

agement) and family outdoor restrictions (denoted by stay at home), which allows us to quantify

the effect of these NPIs on the transmission dynamics.

Because most of these local NPIs are adopted in February and our earlier results indicate

that the transmission of COVID-19 declines during late January, we restrict the analysis sample

to February 2 – February 29. We also exclude cities in Hubei province, which modified the case

definition related to clinically diagnosed cases on February 12 and changed the case definition related
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to reduced backlogs from increased capacity of molecular diagnostic tests on February 20. These

modifications coincide with the adoption of local NPIs and can significantly affect the observed

dynamics of confirmed cases. The adoption of closed management or stay at home is likely affected

by the severity of the epidemic and correlated with the unobservables. Additional weather controls

that have a good predictive power for these NPIs are selected as the instrumental variables based

on the method of Belloni et al. (2016). Details are displayed in Appendix A. The estimation results

of OLS and IV regressions are reported in Table 8.

We find that closed management and stay at home significantly decrease the transmission rates.

As a result of closed management of communities, one infection will generate 0.244 (95% CI,

−0.366 ∼ −0.123) fewer new infections in the first week. The effect in the second week is also

negative though not statistically significant. Family outdoor restrictions (stay at home) are more

restrictive than closing communities to visitors, and reduce additional infections from one infection

by 0.278 (95% CI, −0.435 ∼ −0.121) in the first week. The effect in the second week is not

statistically significant. To interpret the magnitude of the effect, it is noted that the reproduction

number of SARS-CoV-2 is estimated to be around 1.4 ∼ 6.5 as of January 28, 2020 (Liu et al.,

2020).

Many cities implement both policies. However, it is not conclusive to ascertain the effect

of further imposing family outdoor restrictions in cities that have adopted closed management

of communities. When both policies are included in the model, the OLS coefficients (column (5))

indicate that closed management reduces the transmission rate by 0.547 (95% CI, −0.824 ∼ −0.270)

in the first week, and by 0.259 (95% CI, −0.485 ∼ −0.032) in the second week, while the additional

benefit from stay at home is marginally significant in the second week (-0.124, 95% CI, −0.272 ∼
0.023). The IV estimates indicate that closed management reduces the transmission rate in the

first week by 0.193 (95% CI, −0.411 ∼ 0.025), while the effect in the second week and the effects

of stay at home are not statistically significant. Additional research that examines the decision

process of health authorities or documents the local differences in the actual implementation of the

policies may offer insights into the relative merits of the policies.

We further assess the effects of NPIs by conducting a series of counterfactual exercises. After

estimating Eq.(3) by 2SLS, we obtain the residuals. Then the changes in yct are predicted for

counterfactual changes in the transmission dynamics (i.e., coefficients αkwithin,τ ) and the impositions

of NPIs (i.e., h̄kτct , and the lockdown of Wuhan m̄kτ
c,Wuhan,t). In scenario A, no cities adopted

family outdoor restrictions (stay at home). Similarly, in scenario B, no cities implemented closed

management of communities. We use the estimates in column (2) and (4) of Table 8 to conduct

the counterfactual analyses for scenario A and B, respectively. In scenario C, we assume that the

index of population flows out of Wuhan after the Wuhan lockdown (January 23) took the value

that was observed in 2019 for the same lunar calendar date (Figure 3), which would be plausible

had there been no lockdown around Wuhan. It is also likely that in the absence of lockdown but

with the epidemic, more people would leave Wuhan compared with last year (Fang et al., 2020),

and the effect would then be larger. In scenario D, we assume that the within city transmission
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Table 8: Effects of Local Non-Pharmaceutical Interventions
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Average # of new cases, 1 week lag
Own city 0.642*** 0.780*** 0.684*** 0.805*** 0.654*** 0.805***

(0.0644) (0.0432) (0.0496) (0.0324) (0.0566) (0.0439)
× closed management -0.593*** -0.244*** -0.547*** -0.193*

(0.162) (0.0619) (0.135) (0.111)
× stay at home -0.597*** -0.278*** -0.0688 -0.110

(0.186) (0.0800) (0.121) (0.143)
Other cities 0.00121 -0.00159 0.00167 -0.00108 0.00129 -0.00142
wt. = inv. dist. (0.000852) (0.00167) (0.00114) (0.00160) (0.000946) (0.00183)
Wuhan 0.00184 0.00382 0.00325* 0.00443 0.00211 0.00418
wt. = inv. dist. (0.00178) (0.00302) (0.00179) (0.00314) (0.00170) (0.00305)
Wuhan 0.00298 0.00110 -0.00187 -0.000887 0.00224 -3.26e-07
wt. = pop. flow (0.00264) (0.00252) (0.00304) (0.00239) (0.00254) (0.00260)

Average # of new cases, 2 week lag
Own city 0.0345 -0.0701 -0.0103 -0.0818 0.0396 -0.0533

(0.0841) (0.0550) (0.0921) (0.0523) (0.0804) (0.0678)
× closed management -0.367*** -0.103 -0.259** 0.0344

(0.0941) (0.136) (0.111) (0.222)
× stay at home -0.294*** -0.102 -0.124* -0.162

(0.0839) (0.136) (0.0720) (0.212)
Other cities -0.00224 -0.00412** -0.00190 -0.00381** -0.00218 -0.00397**
wt. = inv. dist. (0.00135) (0.00195) (0.00118) (0.00177) (0.00129) (0.00192)
Wuhan -0.00512 0.00197 -0.00445 0.00231 -0.00483 0.00227
wt. = inv. dist. (0.00353) (0.00367) (0.00328) (0.00348) (0.00340) (0.00376)
Wuhan 0.00585*** 0.00554*** 0.00534*** 0.00523*** 0.00564*** 0.00516***
wt. = pop. flow (0.00110) (0.000929) (0.00112) (0.00104) (0.00109) (0.00116)

Observations 8,064 8,064 8,064 8,064 8,064 8,064
Number of cities 288 288 288 288 288 288
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The sample is from February 2 to February 29, excluding cities in Hubei province. The dependent variable

is the number of daily new confirmed cases. The instrumental variables include weekly averages of daily maximum

temperature, wind speed, precipitation, and the interaction between wind speed and precipitation, in the preceding

third and fourth weeks, and the inverse log distance weighted averages of these variables in other cities. Additional

instrumental variables are constructed by interacting these excluded instruments with variables that predict the

adoption of closed management of communities or family outdoor restrictions (Table A.2). The weather controls

include weather characteristics in the preceding first and second weeks. Standard errors in parentheses are clustered

by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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dynamics were the same as those observed between January 19 and February 1, i.e., the coefficient

of one week lag own city infections was 2.456 and the coefficient of two week lag own city infections

was −1.633 (column 4 of Table 4), which may happen if the transmission rates in cities outside

Hubei increased in the same way as those observed for cities in Hubei. Appendix C contains the

technical details on the computation of counterfactuals.

In Figure 7, we report the differences between the predicted number of daily new cases in the

counterfactual scenarios and the actual data, for cities outside Hubei province. We also report the

predicted cumulative effect in each scenario at the bottom of the corresponding panel in Figure

7. Had the transmission rates in cities outside Hubei province increased to the level observed in

late January, by February 29, there would be 1,408,479 (95% CI, 815, 585 ∼ 2, 001, 373) more cases

(scenario D). Assuming a fatality rate of 4%, there would be 56,339 more deaths. The magnitude

of the effect from Wuhan lockdown and local NPIs is considerably smaller. As a result of Wuhan

lockdown, 31,071 (95% CI, 8, 296 ∼ 53, 845) fewer cases would be reported for cities outside Hubei

by February 29 (scenario C). Closed management of communities and family outdoor restrictions

would reduce the number of cases by 3,803 (95% CI, 1, 142 ∼ 6, 465; or 15.78 per city with the

policy) and 2,703 (95% CI, 654 ∼ 4, 751; or 21.98 per city with the policy), respectively. These

estimates, combined with additional assumptions on the value of statistical life, lost time from

work, etc., may contribute to cost-benefit analyses of relevant public health measures.

Our counterfactual simulations indicate that suppressing local virus transmissions so that trans-

mission rates are kept well below those observed in Hubei in late January is crucial in forestalling

large numbers of infections for cities outside Hubei. Our retrospective analysis of the data from

China complements the simulation study of Ferguson et al. (2020). Our estimates indicate that

suppressing local transmission rates at low levels might have avoided one million or more infections

in China. Chinazzi et al. (2020) also find that reducing local transmission rates is necessary for

effective containment of COVID-19. The public health policies announced by the national and

provincial authorities in the last two weeks in January may have played a determinant role (Tian

et al., 2020) in keeping local transmission rates in cities outside Hubei at low levels throughout

January and February. Among the measures implemented following provincial Level I responses,

Shen et al. (2020) highlight the importance of contact tracing and isolation of close contacts before

onset of symptoms in preventing a resurgence of infections once the COVID-19 suppression mea-

sures are relaxed. We also find that travel restrictions on high risk areas (the lockdown in Wuhan),

and to a lesser extent, closed management of communities and family outdoor restrictions, further

reduce the number of cases. It should be noted that these factors may overlap in the real world. In

the absence of the lockdown in Wuhan, the health care systems in cities outside Hubei could face

much more pressure, and local transmissions may have been much higher. In China, the arrival

of the COVID-19 epidemic coincided with the Lunar New Year for many cities. Had the outbreak

started at a different time, the effects and costs of these policies would likely be different.
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Figure 7: Counterfactual Policy Simulations

This figure displays the daily differences between the total predicted number and the actual number of daily

new COVID-19 cases for each of the four counterfactual scenarios for cities outside Hubei province in mainland

China. The spike on February 12 in scenario C is due to a sharp increase in daily case counts in Wuhan resulting

from changes in case definitions in Hubei province, see Appendix B for details
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6 Conclusion

This paper examines the transmission dynamics of the coronavirus disease 2019 in China, consid-

ering both within- and between-city transmissions. Our sample is from January 19 to February 29

and covers key episodes such as the initial spread of the virus across China, the peak of infections

in terms of domestic case counts, and the gradual containment of the virus in China. Changes in

weather conditions induce exogenous variations in past infection rates, which allows us to identify

the causal impact of past infections on new cases. The estimates suggest that the infectious effect

of the existing cases is mostly observed within one week and people’s responses can break the chain

of infections. Comparing estimates in two sub-samples, we observe that the spread of COVID-19

has been effectively contained by mid February, especially for cities outside Hubei province. Data

on real-time population flows between cities have become available in recent years. We show that

this new source of data is valuable in explaining between-city transmissions of COVID-19, even

after controlling for traditional measures of geographic and economic proximity.

By April 5 of 2020, COVID-19 infections have been reported in more than 200 countries or

territories and more than 64,700 people have died. Behind the grim statistics, more and more

national and local governments are implementing countermeasures. Cross border travel restrictions

are imposed in order to reduce the risk of case importation. In areas with risks of community

transmissions, public health measures such as social distancing, mandatory quarantine, and city

lockdown are implemented. In a series of counterfactual simulations, we find that based on the

experience in China, preventing sustained community transmissions from taking hold in the first

place has the largest impact, followed by restricting population flows from areas with high risks

of infections. Local public health measures such as closed management of communities and family

outdoor restrictions can further reduce the number of infections.

A key limitation of the paper is that we are not able to disentangle the effects from each of

the stringent measures taken, as within this six-week sampling period China enforced such a large

number of densely timed policies to contain the virus spreading, often simultaneously in many

cities. A second limitation is that shortly after the starting date of the official data release for

confirmed infected cases throughout China, i.e. January 19, 2020, many stringent measures were

implemented, which prevents researchers to compare the post treatment sub-sample with a pre

treatment sub-sample during which no strict policies were enforced. Key knowledge gaps remain

in the understanding of the epidemiological characteristics of COVID-19, such as individual risk

factors for contracting the virus and infections from asymptotic cases. Data on the demographics

and exposure history for those who have shown symptoms as well as those who have not will help

facilitate these research.
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The appendix consists of three sections. Section A provides details on the first stage of the

IV regressions and the selection of the instrumental variables for the local public health policies.

Section B shows that our main findings are not sensitive to the adjustment in COVID-19 case

definitions in Hubei province in February. Section C contains details on the computation of the

counterfactuals.

A First Stage Regressions

Weather conditions affect disease transmissions either directly if the virus can more easily survive

and spread in certain environment, or indirectly by changing human behavior. Table A.1 reports

results of the first stage of the IV regressions (Table 4) using the full sample. In columns (1) and

(2), the dependent variables are the numbers of newly confirmed COVID-19 cases in the own city in

the preceding first and second weeks, respectively. In columns (3) and (4), the dependent variables

are the sum of inverse log distance weighted numbers of newly confirmed COVID-19 cases in other

cities in the preceding first and second weeks, respectively. These are the endogenous variables

in the IV regressions. The weather variables in the preceding first and second weeks are included

in the control variables. The weather variables in the preceding third and fourth weeks are the

excluded instruments, and their coefficients are reported in the table. Because the variables are

averages in seven day moving windows, the error term may be serially correlated, and we include

City by week fixed effects. Also included in the control variables are the average numbers of new

cases in Wuhan in the preceding first and second weeks, interacted with the inverse log distance or

the population flow.

Because the spread of the virus depends on both the number of infectious people and the weather

conditions, the coefficients in the first stage regressions do not have structural interpretations. Wald

tests on the joint significance of the excluded instruments are conducted and their F statistics are

reported. The excluded instruments have good predictive power.
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Table A.1: First Stage Regressions

Dependent variable Average # of new cases

Own city Other cities

1 wk. lag 2 wk. lag 1 wk. lag 2 wk. lag

(1) (2) (3) (4)

Own city

Maximum temperature, 3 week lag 0.200*** -0.0431 0.564 -2.022***

(0.0579) (0.0503) (0.424) (0.417)

Precipitation, 3 week lag -0.685 -0.865* 4.516 -1.998

(0.552) (0.480) (4.045) (3.982)

Wind speed, 3 week lag 0.508** 0.299 -0.827 3.247*

(0.256) (0.223) (1.878) (1.849)

Precipitation × wind speed, 3 week lag -0.412** 0.122 -1.129 -2.091

(0.199) (0.173) (1.460) (1.437)

Maximum temperature, 4 week lag 0.162*** 0.125** 1.379*** 1.181***

(0.0560) (0.0487) (0.410) (0.404)

Precipitation, 4 week lag 0.0250 -0.503 2.667 8.952***

(0.440) (0.383) (3.224) (3.174)

Wind speed, 4 week lag 0.179 0.214 -1.839 1.658

(0.199) (0.173) (1.458) (1.435)

Precipitation × wind speed, 4 week lag -0.354** -0.0270 1.107 -2.159**

(0.145) (0.126) (1.059) (1.043)

Other cities, weight = inverse distance

Maximum temperature, 3 week lag -0.0809*** -0.00633 0.0520 1.152***

(0.0203) (0.0176) (0.149) (0.146)

Precipitation, 3 week lag 4.366*** -2.370*** 17.99*** -72.68***

(0.639) (0.556) (4.684) (4.611)

Wind speed, 3 week lag 0.326*** -0.222** -1.456 -11.02***

(0.126) (0.110) (0.926) (0.912)

Precipitation × wind speed, 3 week lag -1.780*** 0.724*** -6.750*** 27.73***

(0.227) (0.197) (1.663) (1.637)

Maximum temperature, 4 week lag -0.0929*** -0.0346* -0.518*** 0.0407

(0.0220) (0.0191) (0.161) (0.159)

Precipitation, 4 week lag 3.357*** -0.578 46.57*** -25.31***

(0.504) (0.438) (3.691) (3.633)

Wind speed, 4 week lag 0.499*** 0.214** 4.660*** -4.639***

Continued on next page
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Table A.1 – continued from previous page (1) (2) (3) (4)

(0.107) (0.0934) (0.787) (0.774)

Precipitation × wind speed, 4 week lag -1.358*** -0.0416 -17.26*** 8.967***

(0.178) (0.155) (1.303) (1.282)

F statistic 11.41 8.46 19.10 36.32

p-value 0.0000 0.0000 0.0000 0.0000

Observations 12,768 12,768 12,768 12,768

Number of cities 304 304 304 304

# cases in Wuhan YES YES YES YES

Contemporaneous weather controls YES YES YES YES

City FE YES YES YES YES

Date FE YES YES YES YES

City by Week FE YES YES YES YES

This table shows the results of the first stage IV regressions. The weather variables are weekly averages

of daily weather readings. Coefficients of the weather variables which are used as excluded instrumental

variables are reported. *** p<0.01, ** p<0.05, * p<0.1.

The implementation of local public health measures is likely correlated with the extent of the

virus spread, so weather conditions that affect virus transmissions may also affect the likelihood that

the policy is adopted. The influence of weather conditions on policy adoption may be complicated,

so we use the Cluster-Lasso method of Belloni et al. (2016) to select the weather variables that have

good predictive power on the adoption of closed management of communities or family outdoor

restrictions. Let dct be the dummy variable of the adoption of the local public health measure,

i.e., dct = 1 if the policy is in place in city c at day t. qct is a vector of candidate weather

variables, including weekly averages of daily mean temperature, maximum temperature, minimum

temperature, dew point, station level pressure, sea level pressure, visibility, wind speed, maximum

wind speed, snow depth, precipitation, dummy for adverse weather conditions, squared terms

of these variables, and interactions among them. First, city and day fixed effects are removed.

d̈ct = dct− 1
n

∑
c dct−

1
T

∑
t dct + 1

nT

∑
ct dct and q̈ct is defined similarly. The Cluster-Lasso method

solves the following minimization problem:

1

nT

∑
ct

(
d̈ct − q̈′ctb

)2
+

λ

nT

∑
k

φk|bk|.

λ and φ are penalty parameters. A larger penalty value forces more coefficients to zero. The penalty

parameters are picked using the theoretical result of Belloni et al. (2016). The estimation uses the

Stata package by Ahrens et al. (2019). Table A.2 lists the selected weather variables, which are
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Table A.2: Variables Selected
Dependent variable: closed management of communities

Dew point 1 week lag
Diurnal temperature range 1 week lag
Dew point 2 week lag
Sea level pressure 2 week lag
Dew point 3 week lag
Visibility 4 week lag
Precipitation 4 week lag

Dependent variable: family outdoor restrictions

Station pressure 1 week lag
Dummy for adverse weather conditions such as fog, rain, drizzle, etc. 1 week lag
Maximum temperature 2 week lag
Sea level pressure 2 week lag
Average temperature 3 week lag
Minimum temperature 3 week lag
Visibility 3 week lag

This table shows the weather variables selected by lassopack (Ahrens et al., 2019), which implements the Cluster-Lasso

method of Belloni et al. (2016). City and date fixed effects are included. Candidate variables include weekly averages

of daily mean temperature, maximum temperature, minimum temperature, dew point, station level pressure, sea

level pressure, visibility, wind speed, maximum wind speed, snow depth, precipitation, dummy for adverse weather

conditions, squared terms of these variables, and interactions among them.

used as the instruments in Table 8.
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B Exclude Clinically Diagnosed Cases in Hubei

COVID-19 case definitions were changed in Hubei province on February 12 and February 20.

Starting on February 12, COVID-19 cases could also be confirmed based on clinical diagnosis in

Hubei province, in addition to molecular diagnostic tests. This resulted in a sharp increase in

the number of daily new cases reported in Hubei, and in particular Wuhan (Figure 2). The use of

clinical diagnosis in confirming cases ended on February 20. The numbers of cases that are confirmed

based on clinical diagnosis for February 12, 13 and 14 are reported by the Health Commission of

Hubei Province, and are displayed in Table B.1. As a robustness check, we re-estimate the model

after removing these cases from the daily case counts (Figure B.1). Our main findings still hold

(Table B.2). The transmission rates are significantly lower in February compared with January.

Population flow from the epidemic source increases the infections in destinations, and this effect is

slightly delayed in February.
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Table B.1: Number of Cumulative Clinically Diagnosed Cases in Hubei
City Feb 12 Feb 13 Feb 14

Ezhou 155 168 189
Enshi 19 21 27
Huanggang 221 306 306
Huangshi 12 26 42
Jingmen 202 155† 150†

Jingzhou 287 269† 257†

Qianjiang 0 9 19
Shiyan 3 4 3†

Suizhou 0 6 4†

Tianmen 26 67 65†

Wuhan 12364 14031 14953
Xiantao 2 2 2
Xianning 6 189 286
Xiangyang 0 0 4
Xiaogan 35 80 148
Yichang 0 51 67

†: The reductions in cumulative case counts are due to revised diagnosis from further tests.

Figure B.1: Number of Daily New Confirmed Cases of COVID-19 in Mainland China, Revised Case
Counts in Hubei Province
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Table B.2: Within and Between City Transmission of COVID-19, Revised Case Counts in Hubei
Province

Jan 19 - Feb 29 Jan 19 - Feb 1 Feb 2 - Feb 29
(1) (2) (3) (4) (5) (6)

OLS IV OLS IV OLS IV

Model A: lagged variables are averages over the preceding first and second week separately
Average # of new cases, 1 week lag

Own city 0.747*** 0.840*** 0.939*** 2.456*** 0.790*** 1.199***
(0.0182) (0.0431) (0.102) (0.638) (0.0211) (0.0904)

Other cities 0.00631** 0.0124 0.0889 0.0412 -0.00333 -0.0328
wt. = inv. dist. (0.00289) (0.00897) (0.0714) (0.0787) (0.00601) (0.0230)
Wuhan 0.0331*** 0.0277 -0.879 -0.957 0.0543* 0.0840
wt. = inv. dist. (0.0116) (0.0284) (0.745) (0.955) (0.0271) (0.0684)
Wuhan 0.00365*** 0.00408*** 0.00462*** 0.00471*** -0.000882 -0.00880***
wt. = pop. flow (0.000282) (0.000287) (0.000326) (0.000696) (0.000797) (0.00252)

Average # of new cases, 2 week lag
Own city -0.519*** -0.673*** 2.558 -1.633 -0.286*** -0.141

(0.0138) (0.0532) (2.350) (2.951) (0.0361) (0.0899)
Other cities -0.00466 -0.0208 -0.361 -0.0404 -0.00291 -0.0235**
wt. = inv. dist. (0.00350) (0.0143) (0.371) (0.496) (0.00566) (0.0113)
Wuhan -0.0914* 0.0308 3.053 3.031 -0.154 0.0110
wt. = inv. dist. (0.0465) (0.0438) (2.834) (3.559) (0.0965) (0.0244)
Wuhan 0.00827*** 0.00807*** 0.00711*** -0.00632 0.0119*** 0.0112***
wt. = pop. flow (0.000264) (0.000185) (0.00213) (0.00741) (0.000523) (0.000627)

Model B: lagged variables are averages over the preceding 2 weeks
Own city 0.235*** 0.983*** 1.564*** 2.992*** 0.391*** 0.725***

(0.0355) (0.158) (0.174) (0.892) (0.0114) (0.101)
Other cities 0.00812 -0.0925* 0.0414 0.0704 0.0181 -0.00494
wt. = inv. dist. (0.00899) (0.0480) (0.0305) (0.0523) (0.0172) (0.0228)
Wuhan -0.172* -0.114** -0.309 -0.608 -0.262 -0.299*
wt. = inv. dist. (0.101) (0.0472) (0.251) (0.460) (0.161) (0.169)
Wuhan 0.0133*** 0.0107*** 0.00779*** 0.00316 0.0152*** 0.0143***
wt. = pop. flow (0.000226) (0.000509) (0.000518) (0.00276) (0.000155) (0.000447)

Observations 12,768 12,768 4,256 4,256 8,512 8,512
Number of cities 304 304 304 304 304 304
Weather controls YES YES YES YES YES YES
City FE YES YES YES YES YES YES
Date FE YES YES YES YES YES YES

The dependent variable is the number of daily new cases. The endogenous explanatory variables include the

average numbers of new confirmed cases in the own city and nearby cities in the preceding first and second weeks

(model A); and averages in the preceding 14 days (model B). Weekly averages of daily maximum temperature,

precipitation, wind speed, the interaction between precipitation and wind speed, and the inverse log distance

weighted sum of these variables in other cities, during the preceding third and fourth weeks are used as instrumental

variables in the IV regressions. Weather controls include contemporaneous weather variables in the preceding first

and second weeks. Standard errors in parentheses are clustered by provinces. *** p<0.01, ** p<0.05, * p<0.1.
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C Computation of Counterfactuals

Our main model is

yct =
2∑

τ=1

Kwithin∑
k=1

αkwithin,τ h̄
kτ
ct ȳ

τ
ct +

2∑
τ=1

Kbetween∑
k=1

∑
r 6=c

αkbetween,τm̄
kτ
crtȳ

τ
rt +

2∑
τ=1

KWuhan∑
k=1

ρkτm̄
kτ
c,Wuhan,tz̄

τ
t

+ xctβ + εct. (C.1)

It is convenient to write it in vector form,

Ynt =

14∑
s=1

(Hnt,s(αwithin) +Mnt,s(αbetween))Yn,t−s +

2∑
τ=1

Zτntρτ +Xntβ + εnt, (C.2)

where Ynt =
(
y1t · · · ynt

)′
and εnt are n × 1 vectors. Assuming that Yns = 0 if s ≤ 0, because

our sample starts on January 19, and no laboratory confirmed case was reported before January

19 in cities outside Wuhan. Xnt =
(
x′1t · · ·x′nt

)′
is an n × k matrix of the control variables.

Hnt,s(αwithin) is an n × n diagonal matrix corresponding to the s-day time lag, with parameters

αwithin = {αkwithin,τ}k=1,··· ,Kwithin,τ=1,2. For example, for s = 1, · · · , 7, the i-th diagonal element

of Hnt,s(αwithin) is 1
7

∑Kwithin
k=1 αkwithin,1h̄

k1
ct,i, and for s = 8, · · · , 14, the i-th diagonal element of

Hnt,s(αwithin) is 1
7

∑Kwithin
k=1 αkwithin,2h̄

k2
ct,i. Mnt,s(αbetween) is constructed similarly. For example, for

s = 1, · · · , 7 and i 6= j, the ij-th element of Mnt,s(αbetween) is 1
7

∑Kbetween
k=1 αkbetween,1m̄

k1
ijt. Z

τ
nt is an

n×KWuhan matrix corresponding to the transmission from Wuhan. For example, the ik-th element

of Z1
nt is m̄k1

i,Wuhan,tz̄
1
t .

We first estimate the parameters in Eq.(C.1) by 2SLS and obtain the residuals ε̂n1, · · · , ε̂nT .

Let ·̂ denote the estimated value of parameters and ·̃ denote the counterfactual changes. The

counterfactual value of Ynt is computed recursively,

Ỹn1 =
2∑

τ=1

Z̃τn1ρ̂τ +Xn1β̂ + ε̂n1,

Ỹn2 =
1∑
s=1

(
H̃n2,s(α̂within) + M̃n2,s(α̂between)

)
Ỹn,2−s +

2∑
τ=1

Z̃τn2ρ̂τ +Xn2β̂ + ε̂n2,

Ỹn3 =
2∑
s=1

(
H̃n3,s(α̂within) + M̃n3,s(α̂between)

)
Ỹn,3−s +

2∑
τ=1

Z̃τn3ρ̂τ +Xn3β̂ + ε̂n3,

...

The counterfactual change for date t is ∆Ynt = Ỹnt−Ynt. The standard error of ∆Ynt is obtained

from 1000 bootstrap iterations. In each bootstrap iteration, cities are sampled with replacement

and the model is estimated to obtain the parameters. The counterfactual predictions are obtained

using the above equations with the estimated parameters and the counterfactual scenario (e.g., no
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cities adopted lockdown, etc.).
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