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ABSTRACT
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Confidence in Public Institutions and the 
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Lebanon*

This paper uses the 2013 World Value Survey, as well as the 2016 and 2018 waves of the 

Arab Barometer, to analyze the dynamics of trust in public institutions in Lebanon. It finds 

strong evidence that confidence in most public institutions has decreased between 2013 

and 2016. The evidence of this decrease is robust to the numerical scale assigned to the 

different ordinal categories of trust and to assumptions on the missing values generating 

process. This finding highlights the importance for policymakers in developing countries to 

survey the perceptions and political attitude of their constituents in order to improve the 

performance of public institutions.
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1 Introduction

We are currently witnessing a worldwide decrease in election turnout coupled with an

increase in distrust in governments and elites. Three recent well-known manifestations

of this phenomenon are: American Trump supporters (2016), the Gilets Jaunes movement

that began in France (2018), and the democratic forces in Hong Kong (2019). In these three

instances, the increasing distrust was conveyed through voting outcomes. However, what

happens if a political system does not offer the space for the expression of such a distrust? It

is in such a context that the 2011 Arab Spring started in the Middle East and North Africa

region. It began with multiple social protests against authoritarian governments and a

desire for democratization and justice in Tunisia, Egypt, Libya, Syria, Yemen, Sudan, and

Algeria.1 In 2019, Lebanon was similarly struck by an unprecedented massive uprising

across all its regions and political allegiances.

Lebanon was described by The Economist as “almost a caricature of poor governance”.2

Although elections are held and the Lebanese constitution guarantees power transfer after

an election, the sectarian political structure, consociationalism3, limits the democratic ex-

pression of the electorate.4 In addition, by requiring consensual decisions, consociationalism

leads to paralysis in policy making. It is in these circumstances that on October 17, 2019,

the Lebanese government proposed to impose a six dollars monthly tax on WhatsApp that

led to a historic uprising in the entire country. This uprising turned into multiple social

protests demanding social justice, the replacement of the corrupted political elite, and the

1For more information on the Arab Spring, the reader can refer to Campante & Chor (2012) and Ace-
moglu, Hassan & Tahoun (2018).

2The Economist, October 24th, 2019.
3For more details see Weiss (2009), Fakhoury (2019), and Geha (2019).
4It is worth noting that according to an opinion poll conducted by the Lebanese Center for Policy

Studies, 35% of surveyed individuals from the low income group report having received a bribe for their
vote. Significant proportion of votes in other income groups have also been bought (see Lebanon Public
Opinion Survey, Lebanese Center for Policy Studies 2018). Coupled with a voter turnout of 49.7%, it is
reasonable to assume that election results do not reflect the preferences of the population. For election
turnout statistics, the reader may refer to UNDP (2018), 2018 Lebanese Parliamentary Elections: Results
& Figures.
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end to the sectarian political system that shaped the last three decades of the post 1975-

1990 civil war era. Caught by surprise, many politicians have argued that this uprising does

not reflect a real desire for change since, very recently (in May 2018), a general election was

held and the Lebanese voted the same political class back into power.5 Considering the

conflicting perceptions between the political elite and protesters, and given that the voter

turnout was very low, it is essential to explore whether the electoral outcome genuinely

reflects the population’s views.

Motivated by the worldwide decrease in election turnout and the associated distrust in

governments and elites, we exploit the unprecedented circumstances in Lebanon where the

lack of space to express distrust is significant. Our objective is to assess whether the desire

for a complete overhaul of the political elite observed in 2019 is substantiated by facts or

just a constructed artefact. In doing so, we use the 2013 World Value Survey as well as

the 2016 and 2018 waves of the Arab Barometer and focus on change in the “qualitative

average” trust (or confidence)6 in Lebanese public institutions between 2013 and 2016 and

between 2016 and 2018. Given that trust is an ordinal variable, any increasing numerical

scale can be assigned to the ordered categories. Thus, using these ordinal variables raises

empirical challenges as ranking distributions based on computed averages may lead to ar-

bitrary results. Consequently, policymakers may have valid reasons to dismiss any analysis

based on the “average” level of trust since these results are contingent on an arbitrary

choice of numerical scale applied to ordinal data. To overcome these challenges, we adopt

the approach of Alison and Foster (2004) (hereinafter AF) for such comparisons, but adapt

it for comparisons using bounds based on Horowitz and Manski (1995).

This paper has three contributions. First, it provides evidence on the change in salience

5See Baalbaki (2018).
6Although there is a subtle difference between the words “trust” and “confidence” in English, both words

are translated to “thiqa” in the Arabic questionnaire of both surveys. For our purpose, we use the words
“trust” and “confidence” interchangeably.
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of trust in political institutions in a context where political elites are dismissive of the

narratives of the popular uprising. Thus, it points to the instrumental role of analyzing in-

formation on people’s perceptions (e.g., trust, confidence and satisfaction) of public policy

in developing countries where such information is discounted and, in some cases, outright

rejected. Second, to the best of our knowledge, we are the first to exploit ordinal informa-

tion from trust variables to carry out comparisons of “average” trust in authorities while

maintaining minimal assumptions on the numerical scale, using AF’s framework. The third

contribution is a statistical test for first-order stochastic dominance to assess the change

in the “average” level of trust for survey data with missingness problems. To that end,

we adapt the statistical procedure of Davidson and Duclos (2013) to the context of survey

sampling with missing data. The proposed test is robust to the nature of the missingness-

generating process. To obtain this robustness property, the comparisons use the worst-case

upper and lower bounds of the cumulative distribution functions (e.g. Tamer, 2010, Section

3.1 and Manski, 2003).

Empirical evidence shows that the trajectory of the perceptions conveyed in the surveys

is consistent with the messages expressed in the streets in 2019. Had policy makers paid

attention to the available surveys, they would have been able to extract information on how

their citizens perceive the existing public institutions and, thus, avert the uprisings three

years in advance. The policy recommendation is quite straightforward. Conducting and

analyzing surveys on perceptions and political attitudes of the population is essential in less

democratic developing countries; accounting for the evidence they provide is instrumental

for stability.

The remainder of this paper is organized as follows. Section 2 establishes the measure-

ment and statistical inference framework. Section 3 reports the results of our empirical

analysis of the recent evolution of trust in public institutions in Lebanon and Section 4
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concludes.

2 Measurement and statistical inference approach

Our methodological approach is motivated by our desire to present the facts while maintain-

ing minimal assumptions since the “credibility of inference decreases with the strength of

the assumptions maintained” (Manski, 2003). To this end, we adopt a dominance approach

that allows for orderings of trust over time that are robust to any change in the numerical

scale. We also develop a statistical test that is robust to the nature of the missing values

generating process.

2.1 Measurement issues and dominance framework

We aim to perform a simple comparison of the “average” level of confidence between 2013

and 2016 and between 2016 and 2018 to assess whether people’s confidence in authority

has been decreasing prior to October 2019 uprising. Given that we have information on

different dimensions of confidence in authority (i.e., courts, government, parliament, polit-

ical party, and police force), this task should be in principle quite simple. Unfortunately,

the implementation of this comparison is more complex as the information available on

confidence in authority is ordinal and thus provides qualitative information on confidence

levels. More specifically, there are four categories of responses regarding people’s trust in

authority: “not at all”, “not very much”, “a lot”, and “a great deal” to which a numerical

scale ν(·) is applied such that the variable takes values from 1 to 4. Any other monotonically

non-decreasing numerical scale ν(·) can assign different numerical values to the categories

and still represent the same ordering conveyed by the qualitative information.

Let xi be a confidence variable for N individuals, we want to compare a simple average

level of confidence

C =
1

N

N∑
i=1

ν(xi), (1)
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where ν(·) is a numerical scale applied to the different confidence categories. To illus-

trate the potential issue in computing the “average” level of confidence, consider the two

hypothetical distributions of probabilities over the four categories of confidence: A :=

(0.2, 0.4, 0.2, 0.2) and B := (0.3, 0.2, 0.2, 0.3). For each of these distributions, the ordinal

content of the confidence variable can be cardinalized using two different numerical scales:

ν1(·) = (1, 2, 3, 4) , ν2(·) = (1, 8, 9, 10). If one computes the value of the “average” con-

fidence for these two non-decreasing scales, the results indicate that, for numerical scale

ν1(·), there is a higher “average” confidence in distribution B (=2.5) than in distribution

A (=2.4). However, if one uses the numerical scale ν2(·), the results are reversed; “aver-

age” confidence in distribution B(=6.7) is lower than in distribution A (=7.2). This simple

example illustrates how the “average” confidence may arbitrarily rank distributions when

applied to an ordinal confidence indicator.

Despite this disappointing result, it is possible that in some situations, a ranking remains

consistent for any choice of numerical scale. AF show that it is possible to characterize

robust rankings of distributions of ordinal variables with respect to their “average” using

first-order stochastic dominance. To understand the intuition behind their result, note that

simple algebraic manipulation of equation (1) for K categories yields

I = ν(K)−
K−1∑
x=1

∆ν(x)F (x), (2)

where ∆ν(x) = ν(x + 1) − ν(x) and F (x) = Pr[X ≤ x] is the cumulative distribution

function (CDF) of X. Since we consider all non-decreasing numerical scales, we know that

∆ν(x) ≥ 0 for all x ∈ {1, ..,K − 1}. For two distributions FA and FB, AF use these

inequalities to show that CA ≥ CB for all numerical scales ν(·) such that ∆ν(x) ≥ 0 for all

x ∈ {1, ...,K − 1} if and only if

FA(x) ≤ FB(x), ∀x ∈ {1, ..,K − 1}. (3)
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This result is simple yet powerful. It implies that even if we have purely ordinal data, we

can, in some circumstances identify a situation for which the ranking of two distributions

in terms of “average” would remain consistent for any non-decreasing numerical scale one

could impose on the categories.

2.2 Statistical inference

Using survey samples on confidence levels of the Lebanese population, one can thus compare

the “average” level of trust over time by assessing the stochastic dominance condition in

(3) using a statistical test for first-order stochastic dominance. Let X18, X16 and X13 be

three independent discrete random variables representing the individuals’ confidence level

in 2018, 2016, and 2013, respectively. These random variables have K = 4 categories with

common support S = {1, 2, 3, 4}, and CDFs F18, F16 and F13, respectively. For ease of

exposition, let S◦ = S − {4} = {1, 2, 3}. The testing problem is

H0 : max
x∈S

(F13(x)− F16(x)) ≥ 0 or max
x∈S

(F16(x)− F18(x)) ≥ 0 Vs. (4)

H1 : F13(x) < F16(x) < F18(x) ∀x ∈ S◦ (5)

We formulate the null and alternative hypotheses as in (4) and (5), respectively, since

we would like to use the data to provide strong evidence that confidence in Lebanon’s

institutions has decreased between 2013 and 2016 and between 2016 and 2018 (i.e., the

alternative hypothesis).7 The null hypothesis states that X13 does not strictly dominate

X16 or, X16 does not strictly dominate X18 both stochastically, at first-order. We exclude

the support point {4} in H1 since F13(4) = F16(4) = F18(4) = 1. The alternative hypothesis

is the negation of the null, and states that there is a chain of strict stochastic dominance:

X13 dominating X16 and X16 dominating X18, stochastically, at first-order.

However, as in any survey dataset, non-response presents challenges for inference. For

7Other notable testing procedures that posit a null of non-dominance include Berger (1988) and Alvarez-
Esteban et al. (2017).
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each data point,

the practitioner observes

{
XY if DY = 1,

missing value code if DY = 0,

where DY = 1[XY individual responds to the survey item] is the response indicator of an

individual in the reference population of year Y ∈ {13, 16, 18}. Consequently, the pop-

ulation CDFs are not necessarily point-identified unless we are prepared to make strong

unverifiable assumptions about the missingness-generating process. We circumvent the im-

position of such assumptions by using the worst-case bounds on these CDFs put forward by

Horowitz and Manski (1995), as they are robust to the nature of the missingness-generating

process. While these CDF bounds can be wide in practice, they may be useful for compar-

ing CDFs. Our approach to testing H0 compares the worst-case lower bound of F16 and

F18 with the worst-case upper bound of F13 and F16 respectively. To obtain these bounds,

the missing values for the confidence variables are replaced respectively with the highest or

lowest confidence possible. Allocating the highest value of confidence to the missing values,

shifts the CDF downwards to the lowest possible point given the current distribution of the

observed responses. Allocating the lowest value of confidence to the missing values, shifts

the CDF upwards to the highest possible point given the current distribution of the ob-

served responses. These bounds are CDFs and depend only on observed values. Following

Horowitz and Manski (1995), we can define the upper and lower worst-case bounds of FY

by F Y and F Y , respectively:

F Y (x) = Prob [DY = 1] Prob [XY ≤ x | DY = 1] + Prob [DY = 0] ∀x ∈ S,

F Y (x) =

{
Prob [DY = 1] Prob [XY ≤ x | DY = 1] ∀x ∈ S◦

1 for x = 4
.

To understand why F̄Y (x) is an upper bound (i.e., F̄Y (x) ≥ FY (x) for each x ∈ S), one can
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use the Law of Total Probability to derive the following representation of FY (x):

FY (x) = Prob [DY = 1] Prob [XY ≤ x | DY = 1] + Prob [XY ≤ x | DY = 0] Prob [DY = 0]

≤ Prob [DY = 1] Prob [XY ≤ x | DY = 1] + Prob [DY = 0] = F Y (x).

Similarly, to see why F Y (x) ≤ FY (x), for x ∈ S◦:

FY (x) = Prob [DY = 1] Prob [XY ≤ x | DY = 1] + Prob [XY ≤ x | DY = 0] Prob [DY = 0]

≥ Prob [DY = 1] Prob [XY ≤ x |= DY = 1] = F Y (x),

and F Y (4) = FY (4) = 1.

Instead of the testing problem (4) and (5), we consider the following testing problem:

H1
0 : max

x∈S

(
F 13(x)− F 16(x)

)
≥ 0 or max

x∈S

(
F 16(x)− F 18(x)

)
≥ 0 Vs. (6)

H1
1 : F 13(x) < F 16(x) < F 16(x) < F 18(x) ∀x ∈ S◦. (7)

Rejecting H1
0 in (6) for H1

1 in (7), implies rejection of H0 in (4) for H1 in (5), since

F 13(x) ≥ F13(x), F 16(x) ≤ F16(x) ≤ F 16(x), and F 18(x) ≤ F18(x),∀x ∈ S.8

We treat the null hypothesis (6) as the union of two sub-hypotheses

H1,1
0 : max

x∈S

(
F 13(x)− F 16(x)

)
≥ 0 (8)

H1,2
0 : max

x∈S

(
F 16(x)− F 18(x)

)
≥ 0, (9)

and develop an intersection-union testing procedure. For each sub-hypothesis, we extend

the testing procedure of Davidson and Duclos (2013) for testing H1,1
0 and H1,2

0 to ac-

count for survey sampling. To that end, we use the method of pseudo-empirical likeli-

hood put forward by Chen and Sitter (1999).9 We have three independent survey-samples:

{XY,i, DY,i,WY,i}nY
i=1 for Y ∈ {13, 16, 18}, where the WY,i are the survey weights which have

8Because F 13(x) ≥ F13(x) and F 16(x) ≤ F16(x), F 13(x)− F 16(x) < 0 implies F13(x)− F16(x) < 0, and
F 16 ≥ F16(x) and F 18(x) ≤ F18(x), F 16(x)− F 18(x) < 0 implies F16(x)− F18(x) < 0.

9The details of the testing procedure are described in the appendix.
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no missing values and nY is the number of observations in year Y . The surveys are such

that
∑

iWY,i = nY for each Y ∈ {13, 16, 18}.

To obtain a sample from the upper bound CDF F Y using the sample {XY,i}nY
i=1, replace

each missing value in it with the smallest value in S, (i.e. 1):

XY,i =

{
XY,i if DY,i = 1,

1 if DY,i = 0,
∀i = 1, . . . , nY .

Similarly, modifying the sample {XY,i}nY
i=1 by replacing each missing value in it with the

with the largest value in S, (i.e. 4):

XY,i =

{
XY,i if DY,i = 1,

4 if DY,i = 0,
∀i = 1, . . . , nY ,

yields a sample from the lower bound CDF F Y .

The intersection-union testing procedure for H1
0 compares the minimum of the two

pseudo-empirical log-likelihood-ratio statistics for each sub-hypothesis to an appropriate

critical value. Similar to Davidson and Duclos (2013), Theorem 1 in the Appendix estab-

lishes that a conservative fixed-asymptotic critical value drawn from χ2
1 distribution yields

a valid test. That is

Reject H1
0 ⇐⇒ ELRn > c(α), (10)

where c(α) is the 1−α quantile from the χ2
1 distribution, and ELRn is the minimum of the

two pseudo-empirical log-likelihood-ratio statistics as detailed in the Appendix.10 Hence, a

rejection of H1
0 based on the decision rule (10) using a small significance level constitutes

very strong evidence in favor of H1
1 , and thus, presents very strong evidence in favor of H1

defined in (5).

10ELRn is defined in (21) of the Appendix.
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3 Data and Results

3.1 Data

To compare the patterns in the “average” confidence in authority we use data from the

World Value Survey (2013)11 and the Arab Barometer Surveys (2016 and 2018). Both

surveys are nationally representative and report the level of confidence in Courts, Gov-

ernment, Parliament, Political Parties and Police Force. The datasets’ sample sizes are

n13 = n16 = 1, 200 and n18 = 2, 400. However, the question on trust in political parties was

only asked on a subsample of size 1,215 in 2018. The non-response frequency for trust in the

Government is quite large (18%), while the rest are all less than 10%. While it is tempting

to consider particular assumptions/models to explain these non-response frequencies, they

are unverifiable in practice and may yield biased inferences. Using the worst-case bounds,

as we propose, permits the entire spectrum of models for these frequencies in inference.

This approach is especially useful when this frequency is large (e.g., trust in Government)

as there can be a diversity of explanations for it including fear of retaliation from public

authorities.

3.2 Results

Results in the first row of Table 1 are the realized values of the empirical likelihood-ratio

statistics and the conclusion of the hypothesis tests of H1
0 . Unfortunately, there is no

evidence at the 5% level to reject non-dominance defined by H1
0 . As the realized values

of the test statistic are all equal to zero, it follows that this conclusion also holds for any

significance level. Therefore, we cannot establish the desired chain that shows a steady

decrease in confidence over time. This finding is mainly driven by the comparisons between

F16(x) and F18(x). For example, the right panel of Figure 1 displays the upper bound

distribution F 16(x) and the lower bound distribution F 18(x) for trust in the government.

11Earlier versions of the Arab Barometer do not include these questions on trust.
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From the figure, it is clear that the null hypothesis H1,2
0 holds in the sample, implying that

ELRn = 0. We obtain similar results for trust in the other public institutions, indicating

that we cannot robustly rank the trust levels in any public institutions between 2016 and

2018.

Let us now consider the left panel of Figure 1 displaying the upper bounds distribution

F 13(x) and the lower bound distribution F 16(x) for trust in the government. This figure

indicates that F 13(x) < F 16(x) ∀x ∈ S◦ holds in the sample. This implies that F13(x) <

F16(x) ∀x ∈ S◦ holds in the sample. We perform the pseudo-empirical likelihood ratio

test. The realized values of the test are displayed in the second row of Table 1 together

with the conclusion of the hypothesis testing of H1,1
0 . For trust in courts, governments,

parliament and political parties, we reject the null hypothesis in favour of the alternative

F 13(x) < F 16(x) ∀x ∈ S◦. It is also worth noting that for these variables, H1,1
0 is also

rejected at the 1% level.12 However, H1,1
0 cannot be rejected for trust in the police.

These results provide very strong evidence that trust levels in the Lebanese courts,

government, parliament and political parties have dropped between 2013 and 2016, as the

dominance orderings are statistically significant at the 1% level for these variables. Given

that the asymptotic version of the test employs a conservative critical value, these findings

are quite powerful. Thus, our conclusions are robust to any assumptions an analyst could

make on the numerical scale applied to the trust level categories, and to any assumption

made on the missingness-generating process. Consequently, an analyst cannot obtain a

different result using any set of reasonable assumptions.

4 Conclusion

This paper presents evidence on erosion of trust in public institutions in Lebanon occurring

prior to October 2019. In particular that there was a decrease in confidence in Lebanese

12The critical value in this case is approximately 6.63.
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courts, government, parliament and political parties. This decrease is statistically signifi-

cant despite the limited sample size, and minimal assumptions on (i) the numerical scale

of the different ordinal categories of trust and (ii) missingness-generating process. The in-

formation conveyed by the perceptions reported in the surveys was mirrored on the streets

in October 2019. If a policymaker would have looked into such information as they were

made available, it would have allowed them to recognize the changing level of trust in public

institutions and maybe forsee the uprisings three years in advance. The policy recommen-

dation is quite straightforward. It is essential for policymakers in developing countries to

closely monitor their constituents’ perceptions and political attitudes and take them into

account in policy making.

Future research should focus on the discrepancy between the generalized discontent

expressed in the surveys and on the streets, and electoral outcomes. Also, it would be

interesting to explore the causes of discontent and lack of trust. In this regard, there

are many potential avenues to explore. One could study the complete mismatch between

youth’s education and employment opportunities as well as the mismanagement of public

services. Examples of this mismanagement can easily be found in Lebanon: the incapacity

of the government to offer a reliable supply of electricity (see Fakih and Marrouch, 2015)

or the garbage crisis in 2015.13

13The Economist, August 29th, 2015.

12



References

[1] Acemoglu, D., Hassan, T. A., and Tahoun, A. (2018), The power of the street: Evi-

dence from Egypt’s Arab Spring, The Review of Financial Studies, 3, 1-42.

[2] Allison, R.A. and J.E. Foster (2004), Measuring health inequality using qualitative

data, Journal of Health Economics, 23, 505-524.

[3] Alvarez-Esteban, P. C., E. del Barrio, J. A. Cuesta-Albertos, and C. Matran (2017),

Models for the assessment of treatment improvement: The ideal and the feasible.

Statististical Science, 32, 469-485.

[4] Baalbaki, N. (2018), Are the Lebanese Happy? Corruption and Re-

silience in the Light of the Parliamentary Elections. Retrieved from

https://lb.boell.org/en/2018/03/27/are-lebanese-happy-corruption-and-resilience-

light-parliamentary-elections

[5] Berger, R. L. (1988). A nonparametric, intersection-union test for stochastic order, in

S.S. Gupta and J.O. Berger (Eds.), Statistical decision theory and related topics, IV,

Vol. 2, Springer, 253-264.

[6] Campante, F. R., and D. Chor (2012), Why was the Arab world poised for revolu-

tion? Schooling, economic opportunities, and the Arab Spring, Journal of Economic

Perspectives, 26, 167-188.

[7] Chen, J., and R.R. Sitter (1999), A pseudo empirical likelihood approach to the effec-

tive use of auxiliary information in complex surveys, Statistica Sinica, 9, 385-406.

[8] Davidson, R. and J.-Y. Duclos (2013), Testing for Restricted Stochastic Dominance

Econometric Reviews, 32, 84-125.

13



[9] Fakhoury, T. (2019), Power-sharing after the Arab Spring? Insights from Lebanon’s

Political Transition, Nationalism and Ethnic Politics, 25, 9-26.

[10] Fakih, A. and W. Marrouch (2015), The electricity consumption, employment and

growth nexus: evidence from Lebanon, OPEC Energy Review, 39, 298-321.

[11] Geha, C. (2019), Sharing Power and Faking Governance? Lebanese State and Non-

State Institutions during the War in Syria, The International Spectator, 54, 125-140.

[12] Horowitz, J. L. and C. F. Manski (1995), Identification and robustness with contami-

nated and corrupted data, Econometrica 63, 281-302.

[13] Manski, C.F. (2003), Partial Identification of Probability Distributions, Springer, New

York.

[14] Owen, A. (2001), Empirical Likelihood, Monographs on Statistics and Applied Proba-

bility, Volume 92, Chapman & Hall/CRC.

[15] Rossi, F. M. (2009), Youth political participation: is this the end of generational

cleavage?, International Sociology, 24, 467-497.

[16] Tamer, E. (2010), Partial Identification in Econometrics, Annual Review of Economics,

2, 167-195.

[17] Weiss, M. (2009), The historiography of sectarianism in Lebanon, History Compass, 7,

141-154.

14



A Test Statistic and Asymptotic Distribution

A.1 Testing Procedure

The testing procedure follows Davidson and Duclos (2013) by focusing on the frontier of the

null hypothesis of nondominance, H1
0 in (6). In that direction, only one x1 ∈ S◦ such that

F 13(x1) = F 16(x1) for H
1,1
0 and only one x2 ∈ S◦ such that F 16(x2) = F 18(x2) is required.

Thus, to maximize the pseudo-empirical-likelihood function (PELF) under the constraint of

the null, we begin by computing the maximum across each sub-hypothesis where, for given

x1, x2 ∈ S◦ we impose the conditions that F 13(x1) = F 16(x1) and F 16(x2) = F 18(x2). We

then choose for the constrained maximum those values of x1 an x2 which give the greatest

value of the constrained PELF in each sub-hypothesis. For given x1 and x2, the constraints

we wish to impose for sub-hypotheses H1,1
0 or H1,2

0 can be written as

∑
i

∑
j

p16j p13i W13,iW16,jh(X13,i, X16,j , x1) = 0 and (11)

∑
i

∑
j

p18j p16i W16,iW18,jh(X16,i, X18,j , x2) = 0, (12)

respectively, where h(Z1, Z2, z) = 1 [Z1 ≤ z]−[Z2 ≤ z] and {pY1 , . . . , pYnY
} for Y ∈ {13, 16, 18}

are probability masses on the samples. The maximisation problem corresponding to H1,1
0

is

max
pY1 ,...,pYnY

:Y ∈{13,16}

∑
Y ∈{13,16}

∑
i

WY,i log p
Y
i subject to

pYi > 0 ∀(i, Y ),
∑
i

pYi WY,i = 1 for Y = 13, 16, and (13)∑
i

∑
j

p16j p13i W13,iW16,jh(X13,i, X16,j , x1) = 0.
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Furthermore, the maximisation problem corresponding to H1,2
0 is

max
pY1 ,...,pYnY

:Y ∈{16,18}

∑
Y ∈{16,18}

∑
i

WY,i log p
Y
i subject to

pYi > 0 ∀(i, Y ),
∑
i

pYi WY,i = 1 for Y = 16, 18, and (14)∑
i

∑
j

p18j p16i W16,iW18,jh(X16,i, X18,j , x2) = 0.

Denote the maximal values of the above optimisation problems (13) and (14) by LR,1(x1)

and LR,2(x2), respectively.

The unconstrained estimators of F 13, F 16, F 16 and F 18 are

F̂ 13(x) = n−1
13

∑
i

W13,i1
[
X13,i ≤ x

]
(15)

F̂ 16(x) = n−1
16

∑
i

W16,i1
[
X16,i ≤ x

]
(16)

F̂ 16(x) = n−1
16

∑
i

W16,i1
[
X16,i ≤ x

]
and (17)

F̂ 18(x) = n−1
18

∑
i

W18,i1
[
X18,i ≤ x

]
, (18)

respectively. The pseudo-empirical likelihood-ratio test statistics, ELRn, for the sub-

hypotheses H1,1
0 and H1,2

0 are defined as

ELR(13,16)
n =

{
minx1∈S◦ 2(LUR,1 − LR,1(x1)) if F̂ 13(x) < F̂ 16(x) ∀x ∈ S◦,

0 otherwise,
(19)

and

ELR(16,18)
n =

{
minx2∈S◦ 2(LUR,2 − LR,2(x2)) if F̂ 16(x) < F̂ 18(x) ∀x ∈ S◦,

0 otherwise,
(20)

respectively, where

LUR,1 =
∑

Y ∈{13,16}

∑
i

WY,i log(1/nY ), and LUR,2 =
∑

Y ∈{16,18}

∑
i

WY,i log(1/nY ),

are the unconstrained maximum values of the PELF function under the different sub-

hypotheses H1,1
0 and H1,2

0 , respectively.
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The pseudo-empirical likelihood-ratio statistic we employ for testing H1
0 is defined as

ELRn = min
{
ELR(13,16)

n , ELR(16,18)
n

}
. (21)

The formulation of ELRn as in (21) implements the testing procedure if we observe the

sample satisfies

F̂ 13(x) < F̂ 16(x) and F̂ 16(x) < F̂ 18(x) ∀x ∈ S − {4};

that is, dominance in the sample, holds, for each sub-hypothesis. Otherwise, ELRn = 0

and we do not reject the null hypothesis. This formulation of the test statistic follows the

prescription described in Section 6 of Davidson and Duclos (2013).

For a given x ∈ S◦ such that F 13(x) − F 16(x) = 0 or F 16(x) − F 18(x) = 0, the next

section develops conditions on the survey’s design that yield

2(LUR,1 − LR,1(x))
d−→ χ2

1, or (22)

2(LUR,2 − LR,2(x))
d−→ χ2

1, (23)

in design, as min{n13, n16, n18} → +∞. These are conditions that are common to many

survey designs. Since ELRn ≤ 2(LUR,1 − LR,1(x)) for a x ∈ S◦, we can test H1
0 using a

conservative fixed-asymptotic critical value drawn from χ2
1 distribution. That is

Reject H1
0 ⇐⇒ ELRn > c(α), (24)

where c(α) is the 1 − α quantile from the χ2
1 distribution. Hence, a rejection of H1

0 based

on the decision rule (24) using a small significance level constitutes very strong evidence in

favor of H1
1 , and hence, is very strong evidence in favor of H1 defined in (4).

A.2 Asymptotic Null Distribution

This section develops the proof of the asymptotic distribution in (22), for brevity. The

formal result is stated below as Theorem 1. It is without loss of generality as similar con-

ditions would apply, with appropriate modifications, for establishing (23). The conditions
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of Theorem 1 are standard in many survey designs. The proof follows the derivations and

arguments from Section 11.4 of Owen (2001), but with appropriate modifications, because

we have two independent survey samples while that section’s setup has two independent

random samples.

Next, we state the conditions used in the proof of Theorem 1.

Condition 1 For each x ∈ S◦, the estimators of F 13(x) and F 16(x), given by F̂ 13(x) and

F̂ 16(x),respectively, are design-consistent.

This condition implies that

F̂ 13(x1)− F̂ 16(x1) =
∑
i

∑
j

W13,i

n13

W16,j

n16
h(X13,i, X16,i, x1) (25)

is a design-consistent estimator of F 13(x1)− F 16(x1).

Condition 2 For each x ∈ S◦, VAR
(
F̂ 13(x)− F̂ 16(x)

)
> 0. Additionally, define Hij =

W13,iW16,jh(X13,i, X16,j , x) for each i and j. Let

D =
1

n2
13n

2
16

∑
i

∑
j

Hij

∑
ℓ

Hiℓ +
1

n2
13n

2
16

∑
i

∑
j

Hij

∑
ℓ

Hℓj and

K =
1

n13

∑
i

W13,iH̄
2
i• +

1

n16

∑
j

W16,jH̄
2
•j ,

for each i and j, where H̄i• =
1

n16

∑
j W16,jh(X13,i, X16,j , x) and H̄•j =

1
n13

∑
iW13,ih(X13,i, X16,j , x).

Then for each x ∈ S◦, VAR
(
F̂ 13(x)− F̂ 16(x)

)
(4D−1 − 3KD−2)

P−→ 1 in design, as

min{n13, n16} → +∞.

Condition 3 For each x ∈ S◦,

F̂ 13(x)− F̂ 16(x)−
(
F 13(x)− F 16(x)

)√
VAR

(
F̂ 13(x)− F̂ 16(x)

) d−→ N(0, 1)

in design, as min{n13, n16} → +∞, where the variance computation is with respect to the

design.
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Next, we establish the asymptotic distribution theory in (22).

Theorem 1 Suppose that x ∈ S◦ has F 13(x) − F 16(x) = 0, and that Conditions 1 - 3,

hold. Then 2(LUR,1 − LR,1(x))
d−→ χ2

1 in design, as min{n13, n16} → +∞.

Using Lagrange multipliers for deriving the solutions to the PELF problem (13), we find

p13i =

n13 + λ
∑
j

p16j W16,jh(X13,i, X16,j , x)

−1

, i = 1, . . . , n13, (26)

p16j =

[
n16 + λ

∑
i

p13j W13,ih(X16,j , X16,j , x)

]−1

, j = 1, . . . , n16, (27)

where λ is defined by
∑

i

∑
j p

16
j p13i W13,iW16,jh(X13,i, X16,j , x) = 0.

We simplify our notation by matching it to that in Section 11.4 of Owen (2001) and

follow his derivations. Introduce the terms

H̄i• =
1

n16

∑
j

W16,jh(X13,i, X16,j , x), H̃i• =
∑
j

p16j W16,jh(X13,i, X16,j , x) (28)

H̄•j =
1

n13

∑
i

W13,ih(X13,i, X16,j , x), H̃•j =
∑
i

p13i W13,jh(X13,i, X16,j , x), (29)

Hij = W13,iW16,jh(X13,i, X16,j , x), and H̄•• = F̂ 13(x)− F̂ 16(x). Then,

p13i =
1

n13

1−(λH̃i•
n13

)
+

(
λH̃i•
n13

)2

−

(
λH̃i•
n13

)3

+ · · ·

 ∀i

p16j =
1

n16

1−(λH̃•j
n16

)
+

(
λH̃•j
n16

)2

−

(
λH̃•j
n16

)3

+ · · ·

 ∀j.

Substituting these values into
∑

i

∑
j p

16
j p13i Hij = 0, we obtain

0 = H̄•• − λ

[∑
i

∑
j HijH̃i•

n2
13n16

+

∑
i

∑
j HijH̃•j

n2
16n13

]
(30)

+ λ2

[∑
i

∑
j HijH̃

2
i•

n3
13n16

+

∑
i

∑
j HijH̃

2
•j

n3
16n13

+

∑
i

∑
j HijH̃i•H̃•j

n2
13n

2
16

]
+ · · · (31)

Under Condition 1 and F 13(x) − F 16(x) = 0, this equality is equivalent to a convergent

power series in λ, with the modulus of the coefficients of λℓ bounded by ℓ. Moreover, the
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limit of this series converges to zero in probability under the design. Hence, asymptotically,

we can ignore higher-order terms in λ to find λ
a
= D−1H̄••, where

D =
1

n2
13n

2
16

∑
i

∑
j

Hij

∑
ℓ

Hiℓ +
1

n2
13n

2
16

∑
i

∑
j

Hij

∑
ℓ

Hℓj . (32)

In finding this D, the term

H̃i• = H̄i• −
λ

n2
16

∑
j

HijH̃•j (33)

has been replaced by H̄i• and H̃•j has been replaced by H̄•j , with the differences being

absorbed into the coefficient of λ2.

Now keeping up to order λ2 in the profile PELF and using a standard expansion of the

logarithm function log(1 + x) for |x| < 1, we find

2(LUR,1 − LR,1(x)) = 2
∑
i

W13,i log

(
1 +

λH̃i•
n13

)
+ 2

∑
j

W16,i log

(
1 +

λH̃•j
n16

)

a
= 2

∑
i

W13,i

λH̃i•
n13

− 1

2

(
λH̃i•
n13

)2
+ 2

∑
j

W16,i

λH̃•j
n16

− 1

2

(
λH̃•j
n16

)2
 .

Replacing H̃’s by corresponding H̄’s and keeping terms to order λ2, we get

2(LUR,1 − LR,1(x))
a
= 2

∑
i

W13,iλH̄i•
n13

− 2λ2

n16

∑
j

W16,jH̄
2
•j −

∑
i

W13,i

(
λH̄i•
n13

)2

+ 2
∑
j

W16,jλH̄•j
n16

− 2λ2

n13

∑
i

W13,iH̄
2
i• −

∑
j

W16,j

(
λH̄•j
n16

)2

= 4λH̄•• − 3λ2

 1

n13

∑
i

W13,iH̄
2
i• +

1

n16

∑
j

W16,jH̄
2
•j


a
= H̄2

•• (4D
−1 − 3KD−2),

=

(
H̄••√

VAR(H̄••)

)2

VAR(H̄••)(4D
−1 − 3KD−2)

where

K =
1

n13

∑
i

W13,iH̄
2
i• +

1

n16

∑
j

W16,jH̄
2
•j .
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To complete the argument, Conditions 2 and 3 imply

VAR(H̄••)(4D
−1 − 3KD−2)

P−→ 1,(
H̄••√

VAR(H̄••)

)2
d−→ χ2

1

in design, as min{n13, n16} → +∞, respectively.

21



Table 1: Realised values of ELRn and decision based on 5% significance level

Courts Government Parliament Political Party Police Force

0 0 0 0 0
H1

0 Do not Reject H1
0 Do not Reject H1

0 Do not Reject H1
0 Do not Reject H1

0 Do not Reject H1
0

66.7 21.66 10.37 17.22 0

H1,1
0 Reject H1,1

0 Reject H1,1
0 Reject H1,1

0 Reject H1,1
0 Do not Reject H1,1
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Figure 1: Trust in the government for the period 2013-2016 and 2016-2018
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