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Does economic development have an unavoidable ecological cost? We examine the 

ecological impacts of one of India’s signature place-based economic policies involving 

massive tax benefits for new industrial and infrastructure development following the 

creation of the new state of Uttarakhand. The policy, which had an explicit pro-environment 

mandate, resulted in no meaningful change in local forest cover. Our results suggest that 

even in settings with low levels of enforcement, place-based economic policies with pro-

environment mandates can achieve sizeable economic expansion without major ecological 

costs.
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1 Introduction

The central challenge of sustainable development is bridging the gap between rich and

poor regions without lasting damage to the environment that could in turn under-

mine the goal of poverty alleviation (United Nations, 2015). Indeed, there has been

a long-standing debate in both the conservation and economics literature on the ef-

fects of economic development and policies that encourage such development on the

environment (Arrow et al., 1995; Grossman and Krueger, 1995; Stern, Common and

Barbier, 1996; Andreoni and Levinson, 2001; Foster and Rosenzweig, 2003; Dasgupta,

2007; Alix-Garcia et al., 2013; Asher, Garg and Novosad, 2020). Increasingly, govern-

ments around the world are using place-based policies – policies that target tax breaks

or infrastructure development to an underdeveloped region – as a means to close the

rising gaps between regions within their borders (Felkner and Townsend, 2011; Busso,

Gregory and Kline, 2013; Kline and Moretti, 2014; Shenoy, 2018). Yet even as these poli-

cies become ubiquitous, relatively little is known about their environmental impacts,

particularly in developing countries (Greenstone and Jack, 2015).

We focus on a principal concern about such targeted development, the risk that

forests will be cleared in the wake of infrastructure investments (Asher, Garg and Novosad,

2020) and rising incomes (Alix-Garcia et al., 2013). In the context of place-based eco-

nomic policies, such land-use change is particularly relevant since these policies often

target remote and previously underdeveloped regions with native vegetation. Further-

more, forest cover loss is an urgent concern, generating global greenhouse emissions

(IPCC, 2014; Jayachandran et al., 2017) and local health externalities (Bauch et al., 2015;

Garg, 2019; Masuda et al., 2019). The most recent report by the Intergovernmental Panel

on Climate Change (IPCC) suggests that restoring and protecting forests could yield

almost a sixth of the emissions mitigation required to prevent runaway climate change

by 2030 (IPCC, 2019).

We exploit a spatial discontinuity in the introduction of one of the world’s most gen-

erous place-based policies. In 2002, the Government of India provided tax breaks and

infrastructure investments worth nearly $34 billion to the recently formed state of Ut-

tarakhand. The policy had an important additional feature, an explicit pro-environment

mandate that excluded certain environmentally detrimental industries from receiving

any subsidies or tax-exemptions while favoring industries generally considered envi-
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ronmentally friendly.1 Our setting is particularly important because Uttarakhand con-

tains one of the only large contiguous tracts of forest in Northern India, with over 63%

of the area in the state under forest cover. The region has also historically identified

with the environmental conservation movement as the birthplace of the Chipko Move-

ment that encouraged local residents to hug trees in order to dissuade logging efforts.

The introduction of large scale regional investment in infrastructure and production

subsidies can have ambiguous effects on forest cover. Timber demand can increase

either because rising incomes induce demand for land-intensive goods (Alix-Garcia

et al., 2013) or highways and other infrastructure expand the scope for wood-using

industry (Asher, Garg and Novosad, 2020). At the same time, increased industrial ac-

tivity could be associated with exits from agriculture and affect demands on forested

land from the agricultural sector (Assunção et al., 2017; Abman and Carney, 2019). Yet,

other interventions such as alternative energy sources, even while ex-ante promising,

have failed to reduce forest loss except when accompanied by complimentary policies

(Meeks, Sims and Thompson, 2019). Overall, the effect of directed, geographically con-

centrated economic growth on forest cover is ambiguous.

Using a difference-in-discontinuities design, we find that the introduction of these

subsidies had a small, statistically insignificant effect on forest cover, even 10 years after

the introduction of the policy. By contrast, the same policy increased economic activity

by at least 70% and as much as 300% (Shenoy, 2018). We find no evidence to suggest

that the null effects are driven by spillovers across the border or within-borders. Ten

years after the introduction of the policy, we show that the absolute increase in employ-

ment in wood-using firms is modest relative to the overall expansion in employment.

Together, our results demonstrate that at least in terms of forest cover, place-based

economic policies with pro-environment riders can achieve large economic expansion

with relatively minimal environmental costs.

While a broad literature has documented the relationship between economic de-

velopment and environmental quality – often characterized as the “Environmental

Kuznets Curve” – to the best of our knowledge, none have considered the ecological

effects of place-based economic policies.2 Unlike other development policies, place-
1In the Appendix, we provide both the “positive” or encouraged environmentally friendly list and

the “negative” or environmentally unfriendly list of industries.
2Other papers have considered cash transfers (Alix-Garcia et al., 2013; Wilebore et al., 2019), rural
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based economic policies target an underdeveloped region rather than a segment of

the population (e.g. the rural poor). One aim of these policies is to concentrate de-

velopment in a region to generate a new center of agglomeration. These agglomera-

tions could damage the environment by fostering industries that clear land and con-

sume timber, or they could preserve it by concentrating people and economic activity

within a few cities while leaving forests to regenerate. And by targeting firms rather

than individuals, a place-based policy has the potential to shift production away from

environmentally-intensive industries. The environmental damage done in developing

countries by rapid industrialization continues to be a major source of controversy and

therefore it is crucial to understand whether a carefully designed place-based policy

can achieve major economic development without causing major ecological harm.

The rest of the paper is organized in the following sections. In Section 2, we provide

background on the policy and describe our data sources. In Section 3 we outline the

research design and in Section 4 we discuss the corresponding results. In Section 5 we

offer concluding remarks.

2 Background and Data

2.1 The Policy

In 2002, the federal government initiated of a series of separate initiatives targeting the

state of Uttarakhand (Shenoy, 2018). These included spending for new infrastructure,

better access to existing infrastructure, and business tax exemptions. Though some of

these funds were available ever since the state was formed in late 2000, it was only in

2002 that it began concentrating the funds in a handful of industrial estates along the

border between Uttarakhand and the state of Uttar Pradesh to the south. These estates

play a key role in the raft of tax exemptions that were specifically designed to spur

growth without harming the environment.

credit (Assunção et al., 2019), agriculture (Assunção et al., 2017; Abman and Carney, 2019) and trade
(Antweiler, Copeland and Taylor, 2001; Copeland and Taylor, 2004). There is also an extensive litera-
ture documenting the relationship between economic development and the environment. For a non-
exhaustive list, see: Den Butter and Verbruggen (1994); Arrow et al. (1995); Grossman and Krueger
(1995); Stern, Common and Barbier (1996); Andreoni and Levinson (2001); Dasgupta et al. (2002); Foster
and Rosenzweig (2003); Stern (2004). For a through review on drivers of deforestation, see Busch and
Ferretti-Gallon (2017).
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These exemptions, titled the “Special Package Scheme for Himachal Pradesh and

Uttarakhand,” were first announced in March of 2002 with an effective date of 2003.

The most generous include a complete exemption from federal income taxes for the

first 5 years of production (and a 30 percent reduction for the next 5 years); a complete

exemption from excise taxes for 10 years; and a 15 percent investment subsidy for new

or expanded factories. For comparison, in 2003 the two exemptions bought relief from

a statutory corporate tax rate of 36.75 percent and an excise tax of 16 percent.3

Firms can only exploit the investment subsidy and excise tax exemption if they build

and produce within Uttarakhand, giving firms an incentive to move factories rather

than just their nominal headquarters. Figure A.1, which shows the change in the num-

ber of factories, makes it clear that firms were responding in part to the tax incentives.

Only factories registered by 2010 could claim the excise tax exemption. After the dead-

line the rate of new registrations drops sharply, suggesting that firms pushed forward

their investment to exploit the policy.

The tax exemptions were designed to attract certain industries at the expense of oth-

ers. The government published a “positive” list of industries that it considered “envi-

ronmentally friendly” (Government of India, 2003). These include floriculture, honey,

and goods related to tourism (especially “eco-tourism”). Unlike most firms, which got

tax exemptions at establishments within approved industrial estates, firms in the pos-

itive industries were eligible throughout the state. There was likewise a “negative”

list of industries denied any tax benefits regardless of their location. The negative list

includes coal and oil-based power plants, wood pulp, and most paper products. The

complete positive and negative lists are provided in the Appendix.

The explicit environmental focus of the policy is in part a consequence of Uttarak-

hand’s history. The movement that ultimately led to its creation had its roots in environ-

mentalist protests triggered by timber concessions many decades ago (Tillin, 2013). The

policy was a calibrated attempt by the central government to win political support in

the new state by promoting economic development without alienating the still-potent

environmentalist movement.

The firms ultimately attracted to the industrial estates produce goods across all in-

dustries. Aside from information technology firms specifically courted by the IT Park
3As explained in Shenoy (2018), the effective rate is somewhat lower but still far from trivial.
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at Dehradun’s estate, nearly all registrants at the estates are in manufacturing. They

produce everything from processed food to processed metals, Ayurvedic medicine to

automobile parts, plastics to pharmaceuticals. Though paper products are supposedly

excluded from the tax subsidies, there are still a non-trivial number of firms that pro-

duce boxes and packaging (possibly to supply the other firms). Given their presence

it is not a foregone conclusion that the program caused little deforestation. That is an

empirical question to which we devote the rest of the paper.

2.2 Data

Forest Cover: Detailed and reliable administrative records on forest cover and defor-

estation rarely exist, especially in developing countries. Instead, we obtain high res-

olution time series estimates of forest cover using a standardized publicly-available

satellite-based dataset. Vegetation Continuous Fields (VCF) is available at 250m reso-

lution and provides annual tree cover from 2000–2014 in the form of the percentage of

each pixel under forest cover (Townshend et al., 2011).4 For our primary specification,

we define forest cover as the average percentage of forest cover in a pixel. Our results

are robust to using the inverse hyperbolic sine transformation.

Firm Level Data: We obtain data on firms and employment from the the 1998 and 2013

Economic Census.5 These data were merged to the Socioeconomic High-resolution

Rural-Urban Geographic Dataset on India (SHRUG) and collapsed to a SHRUG loca-

tion, which is the lowest identifiable census unit, either village or town (Asher et al.,

2019). Our regressions thus give the impact on employment in the average census lo-

cation.

Borders: We measure the discontinuous change in outcomes at the state boundaries by
4Some previous studies have used Global Forest Cover (GFC) dataset that describes baseline forest

cover in the year 2000, and a binary indicator for the year of deforestation for each 30mX30m pixel. As
noted in Asher, Garg and Novosad (2020), GFC is less useful for the study of forest cover in India because
GFC does not capture forest gains in areas with positive baseline forest cover or partial forest loss. While
GFC is an excellent source for other contexts such as Brazil and Indonesia, it is less suitable in the Indian
context which saw overall increases in forest cover during our study period. For more information on
the comparability of different forest cover datasets in India, see Asher, Garg and Novosad (2020).

5While there was an economic census conducted in 2005, employment figures for logging firms were
combined with those engaged in afforestation practices and hence are unsuitable for the analysis in this
paper.
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linking the forest cover and firm-level data to shapefiles of administrative boundaries

created by ML Infomap. These data give the border between Uttar Pradesh (control

state) and Uttarakhand (treated state) as well as sub-districts, which we use as clusters

in calculating standard errors.

3 Research Design

3.1 Forest Cover

Our design closely matches that of Shenoy (2018), which is based on the assumption

that there are parallel trends at the border. Shenoy (2018) shows that although there are

clear differential trends between Uttarakhand (the treated state) and Uttar Pradesh (the

control state), these differences become statistically and economically insignificant at

the border. We measure the impact of the policy on deforestation and other outcomes

using three specifications that compare the difference in the discontinuity at the border

across years, making this a difference-in-discontinuities approach.

The first specification uses a spatial polynomial in latitude and longitude to control

for bias. Like Dell (2010) our control function is a third-order polynomial in the latitude

and longitude of each observation. This control function absorbs all smooth variation

in the outcome. The effect is measured by the coefficient on an indicator for being in

the targeted state, which captures the discontinuous change at the border. Let i index

each cell, let t be the year of observation, and let P 3 be a third-order polynomial in the

latitude and longitude of the centroid of each cell. We estimate

[Tree Cover]i,t = [Fixed Effect]i +
2014∑

t=2001

κt[Y ear Dummy]t

+

2014∑
t=2001

[Y ear Dummy]t × P 3
t ([Lat]i, [Lon]i)

+

2014∑
t=2001

βSt [Y ear Dummy]t × [Targeted]i + [Error]i,t

(1)

where [Targeted] is an indicator for whether the cell is inside the targeted region. There

is no direct term for the polynomialP 3(·) or the dummy [Targeted] because they are ab-

sorbed into the fixed-effect. The coefficients {βS
t }measure the effect at the new border,
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relative to its effect in 2000, in each year before and after the policy.

The second approach uses the distance to the new border as a univariate running

variable. LetLt([Distance]i, [Targeted]i) = ω1,t[Distance]i+ω2,t[Distance]i×[Targeted]i.

Following Imbens and Lemieux (2008) we estimate a local linear regression of the form

[Tree Cover]i,t = [Fixed Effect]i +

2014∑
t=2001

κt[Y ear Dummy]t

+

2014∑
t=2001

[Y ear Dummy]t × Lt([Distance]i, [Targeted]i)

+

2014∑
t=2001

βDt [Y ear Dummy]t × [Targeted]i + [Error]i,t

(2)

Similar to the first specification, the coefficients {βD
t } measure the effect at the new

border.

The third specification is the simplest: a comparison of means very close to the

border. Using only observations within 4 kilometers of the border we estimate

[Tree Cover]i,t = [Fixed Effect]i +
2014∑

t=2001

κt[Y ear Dummy]t

+
2014∑

t=2001

βCt [Y ear Dummy]t × [Targeted]i + [Error]i,t

(3)

to yield estimates {βC
t }.

We also estimate average program impacts by pooling pre- and post-program years
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in all three specifications:

[Tree Cover]i,t = [Fixed Effect]i +
2014∑

t=2001

κt[Y ear Dummy]t

+ [Post]t × P 3
t ([Lat]i, [Lon]i) + βS [Post]t × [Targeted]i + [Error]i,t

(4)

[Tree Cover]i,t = [Fixed Effect]i +
2014∑

t=2001

κt[Y ear Dummy]t

+ [Post]t × Lt([Distance]i, [Targeted]i)

+ βD[Post]t × [Targeted]i + [Error]i,t

(5)

[Tree Cover]i,t = [Fixed Effect]i +
2014∑

t=2001

κt[Y ear Dummy]t

+ βC [Post]t × [Targeted]i + [Error]i,t

(6)

All specifications cluster standard errors by sub-district to account for arbitrary cor-

relation in the error term across time and space. Shenoy (2018) shows using in Monte

Carlo simulations that clustering by subdistrict yields hypothesis tests of the proper

size. Since the number of clusters in the third specification is small, we show in Ap-

pendix Table A.2 that bootstrapped standard errors yield similar results to asymptotic

errors. We use a bandwidth of 30 kilometers to estimate the first two specifications,

and a bandwidth of 4 kilometers for the third.

3.2 Employment and Firm Growth

Since the 2005 Economic Census did not separate logging and tree-felling from other

forestry industries (e.g. forest conservation), we must rely on only the 1998 and 2013

rounds. Since there are only two periods (pre and post), the specifications of Section 3.1

are not identified. We instead take the location-level change from 1998 to 2013 and run

a local linear regression with a triangular kernel. Since the difference-in-discontinuities

is now essentially a standard regression discontinuity design (but taking a difference

as the outcome), we can follow the method of Calonico, Cattaneo and Titiunik (2014).

We estimate

∆[Outcome]i = π0 +π1[Distance]i +π2[Distance]i× [Targeted]i +ω[Targeted]i +[Error]i (7)

again clustering by sub-district.
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4 Results

We report two principal findings in this paper. First, across a number of specifications

and robustness checks we find that the policy had a small and statistically insignificant

effect on forest cover. The effect is especially small relative to the expansion of economic

activity. Second, we find a precisely estimated impact on employment in logging and

wood-using firms that, though positive, is small relative to the overall expansion of

employment. Finally, we discuss potential threats to our research design, most notably

the risk that forest loss is displaced from treatment to control areas.

Effect on Forest Cover: Figure 1 compares raw average night time luminosity (left

panel) to average forest cover (right panel) within 10 kilometers on either side of the

discontinuity. While average night time luminosity between treatment and control ar-

eas diverges substantially within a few years of the introduction of the policy (2002),

average forest cover in treatment areas tracks closely with average forest cover in con-

trol areas showing no divergence in trends.

Figure 2 shows the discontinuity at the border in average forest cover in the years

2000 (left panel) and 2014 (right panel). Even 12 years after the introduction of the

policy, and four years after the end of the policy, there is no discernible difference in

forest cover at the border.

Figure 3 shows the year-by-year estimates corresponding to each of the Equations

1—3. In all three figures, each estimate provides the discontinuous change in tree cover

at the boundary relative to the discontinuity in the year 2000. The red line indicates the

year 2000 when the policy came into effect. Across all three specifications, we observe

a small negative effect of the policy on forest cover.

We formally estimate the effect of the policy on tree cover and report the aggregate

results of our difference-in-discontinuities design in Table 1. In Column (1) we employ

a spatial polynomial estimator, in Column (2) we use a distance to border approach and

in Column (3) we calculate a simple difference of means. Across all three specifications,

we find that the shift in the estimate at the border before and after the implementation

of policy was small and statistically insignificant at conventional levels. These null ef-

fects are unlikely to be the result of a lack of statistical power; indeed our results on

employment reported subsequently show that our design has statistical power to pick
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up even small changes in forest cover/employment if they exist. Using our preferred

specification in Column (1) we find a mean reduction of 0.49 percentage points or 2.98%

of forest cover. Based on a 95% confidence interval, we can reject forest loss in excess of

1.37 percentage points or 8.3%. We are able to reject similar increases using alternative

specifications (Columns 2 - 3). Our results are robust to using an inverse hyperbolic

sine transformation of the dependent variable (Appendix Figure A.4, Appendix Table

A.1).

Effect on Employment: Table 2 shows the effects of the policy on employment in all

firms and specifically the subset of firms in the logging industry and more generally in

industries where the primary input is raw lumber. We find there is a marked increase

in overall employment. In Column (1) we show that employment increased by 104.36

persons in each census location and the effect is significant at the 1% level. Compared

to a baseline treatment group mean of 64 employed persons per census location, this

translates to a 130% increase in overall employment. By contrast, we see a precise but

modest increase in employment in logging firms. The average census location saw an

increase of 0.56 workers in this category (Column 2, Table 2). There was virtually no

employment in this sector on either side of the discontinuity before the implementation

of the policy. Logging firms represent 0.54% of total change in employment as a result

of policy. When considering wood-using firms (Column 3, Table 2), we find that the

policy increased employment in this category by nearly 7 workers per census location,

or 6.56% of overall increase in employment.

Does displacement explain the null-result? One reason for our null-estimate could

be that the effect of the policy led to increased forest loss in not only the treatment area

but also the control area.6 While it is not possible to test for displacement explicitly,

in Appendix Figure A.2 we present maps of forest cover in 2000 and 2014 around the

border. As is visually evident, there is no systematic change in the control region (south

of the border) after the implementation of the policy. At endline in 2013, employment
6There is also the possibility of displacement from the border to locations in the treated state further

away from the border. However, the policy was uniformly applied throughout the state so there is no
reason to suspect that forest cover loss was displaced from one part of the state to another. Moreover, rea-
sonable alterations in the bandwidth of our discontinuity design do not overturn our result suggesting
that there is no reason to suspect spillovers to neighboring regions away from the border.
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in logging is 0.07% of total employment near the border of the control region—not

much of an increase from 0% in 1998. Moreover, we show in Figure 1 that forest cover

in the treatment area closely tracks forest cover in the control areas, before, during and

after the policy is in effect suggesting that displacement is unlikely to be the source of

our null-finding.

5 Discussion and Conclusion

The rising concern of increasing, geographically-concentrated economic divisions within

national borders has spurred the growth of place-based economic policies. These poli-

cies provide incentives for industrial development and infrastructure through subsi-

dies and tax-breaks and typically target remote areas that are more likely to have native

vegetation. While concern has been expressed over the short- and long-run ecological

ramifications of such rapid development, the policy we study showed no such ramifi-

cations. Exploiting a spatial discontinuity in the policy, even ten years after its intro-

duction and four years after its end we find no effect on forest cover. By contrast, the

expansion of economic activity was massive. Finally, we find no evidence for spillovers

across the border from the treatment to the control region.

One possible reason for this win-win result is that the policy had an explicit en-

vironmental rider that excluded tax-breaks to certain environmentally detrimental in-

dustries such as pulp, paper and mining while explicitly promoting others such as

food, pharmaceuticals and non-timber forest-based products. In effect, the policy in-

creased the relative costs of setting up environmentally detrimental industries.

An important caveat for our findings is that we focus on one measure of environ-

mental quality - forest cover. Economic development can also affect air and water qual-

ity; however, the lack of detailed data during the relevant time period in our study re-

gion precludes us from estimating these effects. Future research should address other

such potential external costs of policy-driven, geographically-concentrated economic

development.
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Figure 1: Comparison of Nighttime Luminosity and Deforestation Within 10KM of
Border

We plot the mean of each outcome for cells that lie within 10 kilometers of the border.
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Figure 2: Regression Discontinuity at the Border in 2000 and 2014

We plot average tree cover against distance to the boundary (positive values are in the
targeted state). Each dot shows average tree cover within a bin, where the bins are
chosen by the variance evenly-spaced method estimated using code from Calonico,
Cattaneo and Titiunik (2014).
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Figure 3: Difference-in-Discontinuities Estimate of Effect of PBP on Deforesation

We plot the estimates {β̂S
t }, {β̂D

t }, and {β̂C
t } from estimating Equations 1—3. Each

estimate gives discontinuous change in tree cover at the boundary relative to the dis-
continuity in the year 2000. The red dashed line shows the first year of the policy.
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Tables

Table 1: Difference-in-Discontinuities Estimate of Place-Based Policies on Tree Cover

Spatial Polynomial Distance to Border Comparison of Means
Post-PBP -0.49 -0.31 -0.38

(0.45) (0.54) (0.53)
Cell-Years 4320 4320 1350
Cells 288 288 90
Sub-districts 38 38 26
Mean at Baseline 16.4 16.4 16.4

Estimates of β̂S, β̂D, β̂C from Equations 4—6. The outcome is the average tree cover
within each cell. Standard errors are clustered by sub-district.
Significance levels denoted at conventional levels *** p<0.01, ** p<0.05, * p<0.1
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Table 2: Regression Discontinuity Estimate of PBP on Em-
ployment and Firms

All Logging Wood-Using
RD Estimate 104.36∗∗∗ 0.56∗∗ 6.85∗∗∗

(37.44) (0.24) (2.33)
Observations 25747 25747 25747
Sub-districts 67 67 54
Optimal BW 37.6 38.7 29.4
Control Mean, 1998 64.0 0.0 1.2
Treated Mean, 1998 80.0 0.0 3.2

We estimate Equation 7 for employment and the number
of firms within each of the given industries (“all” is all em-
ployment measured in the Economic Census). The unit of
observation is a census location (either a town or a village).
Standard errors are clustered by sub-district.
Significance levels denoted at conventional levels ***
p<0.01, ** p<0.05, * p<0.1
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Online Appendix
Additional Figures
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Figure A.1: Registration of Firms Before and After Subsidy Deadline

Replicated from Shenoy (2018). Based on aggregate data from the Annual Survey of
Industries and the Economic Census.
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2000 2014

Figure A.2: Deforestation at the Border in 2000 and 2014

Each figure shows the raw tree cover in the area around the border between the targeted
and control states (red line). The targeted state lies to the north of the boundary. Darker
colors represent thicker tree cover.
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Figure A.3: Difference-in-Discontinuities Estimate of PBP on Night Lights (Replicated
from Shenoy (2018))

Each dot represents the average of light intensity within a 5 kilometer bin. The speci-
fication is comparable to Equation 2. The p-value gives the significance of the border
effect in the cross-sectional regression. P-values are computed from standard errors
clustered by subdistrict.
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Figure A.4: Difference-in-Discontinuities Estimate of Effect of PBP on Deforesa-
tion(IHS)

This figure is comparable to Figure 3, but applies the inverse hyperbolic sine transfor-
mation to the measure of forest cover.
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Additional Tables

Table A.1: Difference-in-Discontinuities Estimate of Place-Based Policies on Defor-
estation (IHS)

Spatial Polynomial Distance to Border Comparison of Means
Post-PBP -0.05 -0.05 -0.06

(0.05) (0.05) (0.06)
Cell-Years 4320 4320 1350
Cells 288 288 90
Sub-districts 38 38 26

Outcome is the inverse hyperbolic sine of the average tree cover. The specifications
are comparable to Table 1. All standard errors are clustered by sub-district.
Significance levels denoted at conventional levels *** p<0.01, ** p<0.05, * p<0.1
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Table A.2: Difference-in-Discontinuities Estimate of Deforestation, Bootstrapped Stan-
dard Errors

Spatial Polynomial Distance to Border Comparison of Means
Post-PBP -0.49 -0.31 -0.38

(0.45) (0.57) (0.50)
Cell-Years 4320 4320 1350
Cells 288 288 90
Sub-districts 38 38 26
Mean at Baseline 16.4 16.4 16.4

Similar to Table 1, but Columns 2 and 3 use bootstrapped standard errors. We cannot
estimate bootstrapped errors for (1) because there are too many parameters. Signifi-
cance levels denoted at conventional levels *** p<0.01, ** p<0.05, * p<0.1
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Policy Details
Positive “Thrust” Industries

• Floriculture

• Medicinal herbs and aromatic herbs etc. - processing

• Honey

• Horticulture and Agro based industries such as

– Sauces, Ketchup, etc.
– Fruit Juices & fruit pulp
– Jams, Jellies, vegetable juices, puree, pickles etc.
– Preserved fruits and vegetables
– Processing of fresh fruits and vegetables including packaging
– Processing, preservation, packaging of mushrooms.

• Food Processing Industry excluding those included in the negative list

• Sugar and its by products

• Silk and silk products

• Wool and wool products

• Woven fabrics (Excisable garments)

• Sports goods and articles and equipment for general physical exercise and equipment for
adventure sports/activities, tourism (to be separately specified)

• Paper & paper products excluding those in negative list (as per excise classification)

• Pharma products

• Information & Communication Technology Industry

• Computer hardware Call centres

• Bottling of mineral water

• Eco-tourism

• Hotels, resorts, spa, entertainment/amusement parks and ropeways

• Industrial gases (based on atmospheric fraction)

• Handicrafts

• Non-timber forest-based product industries
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Negative List

• Tobacco and tobacco products including cigarettes and pan masala

• Thermal Power Plant(coal/oil based)

• Coal washeries/dry coal processing

• Inorganic Chemicals excluding medicinal grade oxygen, medicinal grade hydrogen per-
oxide, compressed air

• Organic chemicals excluding Provitamins/vitamins, Hormones , Glycosides, sugars

• Tanning and dyeing extracts, tanins and their derivatives, dyes, colours, paints and var-
nishes; putty, fillers and other mastics; inks

• Marble and mineral substances not classified elsewhere

• Flour mills/rice mill

• Foundries using coal

• Minerals fuels, mineral oils and products of their distillation;

• Bituminous substances : mineral waxes

• Synthetic rubber products

• Cement clinkers and asbestos, raw including fibre.

• Explosive (including industrial explosives, detonators & fuses, fireworks, matches, pro-
pellant powders etc.)

• Mineral or chemical fertilisers

• Insecticides, fungicides, herbicides & pesticides (basic manufacture and formulation)

• Fibre glass & articles thereof

• Manufacture of pulp - wood pulp, mechanical or chemical (including dissolving pulp)

• Branded aerated water/soft drinks (non-fruit based)

• Paper

– Writing or printing paper, etc.
– Paper or paperboard, etc.
– Maplitho paper, etc.
– Newsprint, in rolls or sheets
– Craft paper, etc.
– Sanitary towels, etc.
– Cigarette paper
– Grease-proof paper
– Toilet or facial tissue, etc.
– Paper & paper board, laminated internally with bitumen, tar or asphalt
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– Carbon or similar copying paper
– Products consisting of sheets of paper or paperboard, impregnated, coated or cov-

ered with plastics, etc.
– Paper and paperboard, coated impregnated or covered with wax, etc.

• Plastics and articles thereof
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