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ABSTRACT

IZA DP No. 13080 MARCH 2020

Isolating the “Tech” from EdTech: 
Experimental Evidence on Computer 
Assisted Learning in China1

EdTech which includes online education, computer assisted learning (CAL), and remote 

instruction was expanding rapidly even before the current full-scale substitution for 

in-person learning at all levels of education around the world because of the coronavirus 

pandemic. Studies of CAL interventions have consistently found large positive effects, 

bolstering arguments for the widespread use of EdTech. However CAL programs, often 

held after school, provide not only computer-based instruction, but often additional 

non-technology based inputs such as more time on learning and instructional support by 

facilitators. In this paper, we develop a theoretical model to carefully explore the possible 

channels by which CAL programs might affect academic outcomes among schoolchildren. 

We isolate and test the technology-based effects of CAL and additional parameters from 

the theoretical model, by designing a novel multi-treatment field experiment with more 

than four thousand schoolchildren in rural China. Although we find evidence of positive 

overall CAL program effects on academic outcomes, when we isolate the technology-based 

effect of CAL (over and above traditional pencil-and-paper learning) we generally find small 

to null effects. Our empirical results suggest that, at times, the “Tech” in EdTech may have 

relatively small effects on academic outcomes, which has important implications for the 

continued, rapid expansion of technologies such as CAL throughout the world.
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1   Introduction 
Computer assisted learning (CAL), online courses, massive open online courses (MOOCs), and 

other forms of educational technology (EdTech) are revolutionizing the way in which students are 

educated. Billions of dollars are spent each year in the United States on software for K-12 students, 

and the global EdTech industry was projected to grow to more than $250 billion by 2020 and $340 

billion by 2025  (Escueta et al. 2017). With the large-scale, comprehensive movement of 

schoolchildren and college students in China, Europe, the United States and most other countries 

around the world to online platforms in response to the coronavirus outbreak (COVID-19), actual 

expenditures on EdTech will be substantially higher.  Although EdTech is rapidly being deployed 

throughout the developed and developing world, the relatively limited evidence on whether and 

how it affects academic outcomes is mixed (Bulman and Fairlie 2016). 

Bolstering arguments for the continuing expansion of EdTech in developing countries, 

however, recent evaluations of supplemental learning CAL programs across a wide range of 

software types have consistently found large positive effects on academic outcomes (Lai et al. 

2013; 2015; Mo et al. 2014; Muralidharan et al. 2019; Bohmer, Burns, and Crowley 2014).2 In 

these studies, the effects are identified through randomized experiments in which the treatment 

group that receives supplemental CAL (and in some cases additional inputs) is compared to a 

control group that receives no inputs. Although often attributed to the EdTech component, the 

estimated effects of the supplemental use of CAL, however, include other non-technology based 

 
2 Earlier studies of computer-based programs find large positive effects (Banerjee et al. 2007; Linden 2008), but the 
evidence is not always clear (Rouse and Krueger 2004; Rockoff 2015). For the less common use of computer-assisted 
learning as a direct substitute for regular teacher instruction in the classroom the evidence tends to show null effects 
(Dynarski et al. 2007, Campuzano et al. 2009; Linden 2008; Barrow et al. 2009; Carillo et al. 2011) but this might 
depend on how computers are used (Falck, Mang, and Woessmann 2018). Finally, the less structured provision of 
computers and laptops for home and/or school use among schoolchildren tends to show null effects (e.g. Malamud 
and Pop-Eleches 2011; Fairlie and Robinson 2013; Beuermann et al. 2015; Cristia et al. 2017; Malamud et al. 2019; 
Hull 2019). For recent reviews, see Glewwe et al. (2013), Bulman and Fairlie (2016), and Escueta et al. (2017). 
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inputs in educational production. These inputs include more time learning academic material, 

additional instructional support by facilitators, more attention to students, and potential crowd out 

effects on homework time. Thus, a fundamental question for making decisions over investments 

of educational resources is whether the “Tech” in EdTech is driving the supplemental educational 

program effects or whether another input is driving the effects. This represents a more general 

problem in evaluating and interpreting the impacts of any supplemental education intervention 

program (e.g. after-school tutoring and community technology centers) because those programs 

also consist of additional inputs such as more learning time. 

In this paper, we first create a theoretical model to carefully explore the possible channels 

by which supplemental CAL might affect academic outcomes among schoolchildren. We then 

estimate several key parameters from the theoretical model including the technology-based effect 

of CAL. To generate exogenous variation in CAL and other inputs, we design and conduct a 

randomized controlled trial (RCT) involving more than four thousand 4th to 6th grade students 

across 352 math classes in 130 schools in rural China. Of the 185 million schoolchildren in China 

roughly 75 percent live in rural areas (Chen et al. 2015; UNESCO 2020). The RCT includes three 

treatment arms: i) supplemental CAL, ii) traditional supplemental learning (i.e. solving problems 

using pencil and paper workbooks), and iii) a pure control that receives no supplemental learning. 

The traditional supplemental learning sessions were designed to have identical content and 

duration as the supplemental CAL sessions so that they could be used to isolate the technology 

effects of CAL from the overall program effects. To further isolate effects, the RCT was also 

designed so that the CAL treatment does not provide any additional inputs and is not part of a 

larger program.3 

 
3 A recent study (Johnson et al. 2018) evaluates a pilot program that involves training teaching assistants to deliver a 
structured package of literacy materials to groups of 3-4 young children in England. They cross-randomize the TA 
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The theoretical model demonstrates that there are multiple channels by which a 

supplemental CAL program can effect educational outcomes, but does not provide a prediction on 

whether the isolated technology component of the program improves or worsens educational 

outcomes.  Estimates from the field experiment indicate that, for the average student in rural China, 

the supplemental CAL program increases students’ math grades However, when we isolate the 

technology-based effects of CAL we find point estimates that are small and statistically 

indistinguishable from zero. The differential between the estimated overall CAL program effect 

and the estimated CAL technology specific effect is also statistically significant. We find no 

evidence of positive effects of the CAL Program for math test scores, however, suggesting the 

program improves non-cognitive more than cognitive skills.  

Given well-documented gender differences in computer use and achievement (Eble and Hu 

2019; Xu and Li 2018; Algan and Fortin 2018; Hannum and Park 2007), we examine effects for 

boys and girls separately. Focusing on boys, we find that the CAL program increases math grades 

by 3.4 percentile points and math test scores by 0.10σ. Isolating the technology-effects from CAL, 

however, we find point estimates for the CAL technology effect that are notably smaller and 

statistically indistinguishable from zero. For girls, we do not find positive estimates of the CAL 

program effect or the isolated CAL technology effect.  

Turning to other measures, we find no evidence of time substitution effects from the CAL 

and workbook sessions: neither type of session crowds out homework time in math. On the other 

hand, the CAL program and isolated CAL technology effect increase how much students like their 

math class. 

 
teaching with ICT or paper equivalent sessions and find positive effects for both (slightly larger for non-ICT). 
However, the emphasis on the teaching assistant intervention, small group assignment, and implementation of this 
program in the classroom make it difficult to isolate the technology-based effects of the ICT session. 
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In addition to contributing to the literature on whether and how CAL programs work, the 

findings from our experiment provide novel evidence on whether the isolated technology 

component of CAL improves academic outcomes. To our knowledge, only one previous study 

addresses this question.4 Muralidharan et al. (2019) find large positive effects of after-school 

Mindspark Center programs in India which include both extensive software use and instructional 

support. To rule out the effects of the instructional support and extra learning time inputs of the 

program they compare their impact estimates to those from of an after-school private tutoring 

program that did not include a technology component but was conducted in the same location and 

student age group, and for more time (Berry and Mukherjee 2016). The comparison program has 

no impacts on student outcomes suggesting that additional instructional time and tutoring were not 

the key drivers of the Mindspark impacts (Muralidharan et al. 2019). Building on the use of this 

comparison, our experiment provides the first estimate in the literature directly identifying the 

technology-based effects of CAL on educational outcomes. It is the first experiment to use a second 

comparison group to remove additional inputs such as more time learning, instructional support 

from teachers and aides in the sessions, more attention to students, and crowd out of homework 

time. Isolating the technology-based effects is fundamental to understanding how CAL works, and 

whether the “Tech” in EdTech positively affects educational outcomes. 

Our paper also contributes to the broader literature on the effects of computer technology 

in education and the labor market by providing a new “Pencil Test.” The seminal paper by DiNardo 

and Pischke (1997) found that workers who use pencils at work experience a wage premium that 

 
4 The general finding of null effects when CAL substitutes for regular teacher instruction in the classroom provides 
some indirect evidence on the question (Dynarski et al. 2007, Campuzano et al. 2009; Linden 2008; Barrow et al. 
2009; Carillo et al. 2011). However, the implementation of these programs within the classroom and the substitution 
for several factors (not just learning time) such as teacher lecture time, in-class discussions and small group work 
make it difficult to isolate the technology-related effects of CAL. 
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is similar to computer users. "Pencil skills" are not scarce, however, and cannot have a large return 

in the labor market, raising the concern that the large estimated returns to computer skills in 

previous studies were due to unobserved worker and job characteristics. Several recent studies 

evaluating CAL programs rule out concerns about unobserved heterogeneity among students, 

parents and schools by using RCTs, but ignore a related threat to interpretation. In a similar vein, 

comparing CAL to pencil and paper workbook estimates provides evidence that the large positive 

estimates of the effects of CAL programs commonly found in previous studies might be at least 

partly due to other inputs such as more time devoted to learning material, which could have also 

been achieved with a pencil and workbook. Taken together, the findings have particular relevance 

to the questions of whether technology has a distinct advantage in improving student outcomes, 

and what advantages and disadvantages it has over traditional “pencil and paper” forms of learning. 

The remainder of the paper is organized as follows. In Section 2, we create a theoretical 

model to illustrate the channels by which CAL might affect academic outcomes among 

schoolchildren relative to more traditional, “pencil and paper” forms of learning. Section 3 

describes the design and implementation of the experiment. Section 4 presents our main results 

and reports estimates of the structural parameters of the theoretical model. Section 5 concludes. 

 

2   Theoretical Model of Investment in EdTech 

A theoretical model illustrates the channels by which CAL might affect academic outcomes among 

schoolchildren. The broad question of interest is whether parents, students and schools are 

choosing optimal levels of technology inputs for education given constraints on financial resources, 

information, and in-school and after-school time allocated to learning. Can academic achievement 

be improved by investing in additional technology use? The answer to this question necessarily 
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involves a trade-off between inputs. Investment in technology likely offsets investment in 

traditional resources. During after-school hours, the question of whether time spent using 

computer-based learning offsets traditional learning is especially salient because of the flexibility 

of this time. 

To illustrate these points, we start by adding computer resources such as CAL to a standard 

model of education production.5 In the context of after-school education production by students, 

the binding constraints in such a model are the amount of after-school time available for learning 

and the budget for parental or school resources for after-school learning. The focus of the model 

is on how CAL investment affects various math time inputs, but we also discuss the theoretical 

implications of how CAL programs, more generally, might provide additional instructional support 

by teachers or aides and more attention to students during sessions. We consider a value-added 

model of education and focus on academic performance in math.6 

𝐴𝐴𝑖𝑖 = 𝑓𝑓�𝑋𝑋𝑖𝑖, 𝑆𝑆𝑖𝑖,𝑇𝑇𝑖𝑖𝐶𝐶 ,𝑇𝑇𝑖𝑖𝑀𝑀� 𝑠𝑠. 𝑡𝑡. 

𝑇𝑇𝑖𝑖𝑀𝑀 = 𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑖𝑖𝐶𝐶 

𝑇𝑇𝑖𝑖𝑀𝑀 + 𝑇𝑇𝑖𝑖𝑂𝑂𝑂𝑂ℎ ≤ 𝑇𝑇 

𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇 + 𝑃𝑃𝐶𝐶𝑇𝑇𝑖𝑖𝐶𝐶 ≤ 𝐵𝐵𝑖𝑖, 

(2.1) 

A measure of academic performance in math, 𝐴𝐴𝑖𝑖 , is assumed to depend on the 

characteristics of a student and his or her family (including prior academic performance), 𝑋𝑋𝑖𝑖 , 

school and teacher characteristics, 𝑆𝑆𝑖𝑖, total time allocated to learning math, 𝑇𝑇𝑖𝑖𝑀𝑀, and time allocated 

to learning math on the computer, 𝑇𝑇𝑖𝑖𝐶𝐶 . Time allocated to learning math on the computer is 

essentially entered twice to allow for a direct technology effect and a separate time learning math 

 
5 See Hanushek (1979, 1986); Rivkin, Hanushek, and Kain (2005); Figlio (1999) for examples. 
6 See Hanushek (1979) for an early discussion of value-added models in the economics of education literature. 
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effect. Total time allocated to learning math consists of traditional learning, 𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇, and CAL, 𝑇𝑇𝑖𝑖𝐶𝐶. 

The amount of time spent on learning math is constrained by total available after-school learning 

time 𝑇𝑇  which includes time spent after-school on all other activities, 𝑇𝑇𝑖𝑖𝑂𝑂𝑂𝑂ℎ . Investments in 

traditional and CAL are subject to costs (𝑃𝑃𝑇𝑇𝑇𝑇 and 𝑃𝑃𝐶𝐶) and per student budget 𝐵𝐵𝑖𝑖 for after-school 

learning expenditures on math.  

If students, parents and schools do not make optimal choices of CAL, possibly due to not 

having access to technology, or other resource and information constraints, then an exogenous 

reallocation toward CAL could be positive. On the other hand, if students, parents, and schools 

already optimally allocate time then an exogenous reallocation toward CAL and away from other 

more productive forms of learning will result in a negative or zero effect on math performance.7 

From Equation (2.1) the total marginal effect of CAL on academic achievement is: 

𝑑𝑑𝐴𝐴
𝑑𝑑𝑇𝑇𝐶𝐶

=
𝛿𝛿𝐴𝐴
𝛿𝛿𝑇𝑇𝐶𝐶

+
𝛿𝛿𝐴𝐴
𝛿𝛿𝑇𝑇𝑀𝑀

𝛿𝛿𝑇𝑇𝑀𝑀

𝛿𝛿𝑇𝑇𝐶𝐶
 

(2.2) 

The total effect is comprised of a direct effect of increasing CAL time on math and an indirect 

effect through increasing total time spent learning math. 

CAL might have a direct or “technology” effect on academic achievement independent of 

more time on math (i.e. 𝛿𝛿𝛿𝛿
𝛿𝛿𝑇𝑇𝐶𝐶

≠ 0). CAL is video-based, and often game-based, and thus might be 

more engaging than traditional learning. The game-based features of educational software might 

increase learning interest as well as learning performance (Ebner and Holzinger, 2007; Burguillo, 

2010). CAL might also provide faster feedback on problems compared to the feedback associated 

with traditional modes of learning (Van der Kleij et al., 2015). On the other hand, the game-based 

nature of CAL might reduce interest in completing traditional homework or learning in class and 

 
7 Parents and students might limit time on computers for after-school learning because of concerns over distraction, 
safety, and other issues. 
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hence decrease achievement. In addition, solving math problems on a computer instead of writing 

them down on paper with a pencil could commit them less to memory (Vincent, 2016). The net 

technology effect of these potentially offsetting mechanisms is theoretically ambiguous. 

 Using the total time on math constraint in (2.1) we can rewrite the total marginal effect of 

CAL on math achievement. 

𝑑𝑑𝐴𝐴
𝑑𝑑𝑇𝑇𝐶𝐶

=
𝛿𝛿𝐴𝐴
𝛿𝛿𝑇𝑇𝐶𝐶

+
𝛿𝛿𝐴𝐴
𝛿𝛿𝑇𝑇𝑀𝑀

�1 +  
𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇

𝛿𝛿𝑇𝑇𝐶𝐶
� 

(2.3) 

Here we can view the indirect effect (the second term in equation 2.3) as having two parts. The 

first part is the effect of a one-to-one increase in math time by increasing CAL time. As discussed 

in detail below, this part of the effect of introducing educational technology is important and often 

overlooked in the previous literature. Introducing CAL in a subject implicitly increases time spent 

learning that subject. The second part of the indirect effect of CAL captures the possibility of 

crowd out (or crowd in) of traditional learning in math. CAL might displace some of the time a 

student normally devotes to traditional forms of learning such as homework or independent 

studying because of the overall time constraint (i.e. 𝛿𝛿𝑇𝑇
𝑇𝑇𝑇𝑇

𝛿𝛿𝑇𝑇𝐶𝐶
< 0). Crowd out of homework time might 

result because of the time constraint and/or the student viewing traditional learning as less fun or 

engaging compared to learning math on the computer (which is often game-based). Working in 

the opposite direction, however, there could be crowd in where CAL might increase a student’s 

interest and confidence in math and ultimately increase independent time studying math. 

 To make the theoretical model more tractable we approximate with a linear education 

production function. We modify (2.1) and (2.3) as: 

𝐴𝐴𝑖𝑖 = 𝛽𝛽X𝑖𝑖 + 𝛾𝛾𝑆𝑆𝑖𝑖 + 𝜃𝜃𝑇𝑇𝑖𝑖𝐶𝐶 + 𝜆𝜆𝑇𝑇𝑖𝑖𝑀𝑀 (2.1′) 

𝑑𝑑𝛿𝛿
𝑑𝑑𝑇𝑇𝐶𝐶

= 𝜃𝜃 + 𝜆𝜆(1 + 𝜂𝜂). (2.3′) 
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Arguably, the parameter of most interest is the direct or technology-based effect of CAL 

on academic performance, 𝜃𝜃. It captures how CAL affects achievement stripped of any mechanical 

effects through increased hours learning math or any crowd out or crowd in effects on traditional 

forms of learning math. Policymakers, however, might not be as concerned about removing crowd 

out or crowd in effects, but want to know the net reduced form effect that captures the relative 

returns to different investments in math learning. In this case, the budget constraint and relative 

prices would also play an important role. The crowd out or crowd in parameter, is also of interest 

because it provides a sense of the behavioral response to different technology investment policies. 

For example, a better understanding of whether investing in CAL, that makes traditional forms of 

learning less interesting (crowd out) or builds confidence (crowd in), is useful. 

The total effect of implementing a CAL program, captured by (2.3’), captures everything: 

time learning math on the computer, total time learning math, and potential crowd out effects on 

homework. Although the focus here has been on time effects, as discussed in more detail below, 

implementing a CAL program often includes additional inputs such as providing learning new 

material outside the standard curriculum, additional instructional support by teachers or aides 

running the sessions, and more attention to schoolchildren in sessions.  

 

2.2   Interpreting Estimates from Previous CAL Program Evaluations 

As noted above, several previous studies estimate the effects of supplemental CAL on academic 

outcomes and find large positive effects. For example, Lai et al. (2013; 2015) and Mo et al. (2014) 

find large positive effects of supplemental CAL programs for Chinese schoolchildren (0.12 to 

0.18σ in math) from 40 minutes of instruction, 2 times a week. Muralidharan et al. (2019) find 

large positive intent-to-treat effects of after-school Mindspark Center programs in India which 
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include software use and instructional support (0.37σ in math and 0.23σ in Hindi) from 90 minutes 

per session, six sessions a week. Bohmer, Burns, and Crowley (2014) find large positive effects 

from an after-school program providing CAL and student coaches in South Africa (0.25σ in math) 

for 90 minutes, biweekly. These studies essentially estimate (2.3’) without identifying the 

technology parameter, 𝜃𝜃 . Because (2.3’) includes the total effects from an increase in 𝑇𝑇𝑀𝑀  in 

addition to an increase in 𝑇𝑇𝐶𝐶, it favors finding positive effects on academic outcomes. Outside of 

the theoretical model, many of the CAL programs evaluated in the previous literature include 

additional educational inputs such as coaches and tutoring sessions which further complicate the 

interpretation of CAL effects on academic outcomes. 

Muralidharan et al. (2019) recognize this concern and note that the impact estimates from 

the after-school Mindspark program intervention include a combination of the computer program, 

group-based instruction, and extra instructional time. Although their experiment is not designed to 

distinguish between these different channels of impact, they address the concern by comparing 

their CAL program estimates to estimates from a contemporaneous experimental study of the 

impacts of an after-school tutoring program in the same location and with similarly-aged students 

(Berry and Mukherjee, 2016). Although the tutoring program was longer (3 hours per session, six 

days per week instead of 1.5 hours per session, six days per week) no impacts on academic 

outcomes were found. Muralidharan et al. (2019) note that the null impacts from this program 

suggest that the additional instructional time or group-based tutoring on their own may have had 

limited impacts without the CAL program provided at the Mindspark Centers. 

The markedly different findings from evaluations of the two programs is important. We 

build on these results by directly estimating the technology parameter, 𝜃𝜃 , in (2.3’) using our 
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experiment. Specifically, we make use of two treatment arms and a control group to isolate the 

effects of the different inputs. 

 

3   Estimation, Experimental Design, and Data 

Estimating the parameters from the theoretical model is complicated for two primary reasons. First, 

academic performance and CAL use is likely to be correlated with unobservables leading to biased 

estimates, especially if there is positive selection bias. Second, the multicollinearity of total math 

time and CAL time makes it difficult to identify the separate effects of math time and CAL time 

on academic performance. To address both concerns we designed and implemented a field 

experiment in which students are randomly assigned to either a control group, a treatment group 

that receives supplemental CAL sessions, or a treatment group that receives supplemental 

traditional workbook sessions. As discussed in more detail below, the supplemental traditional 

workbook sessions were designed to provide similar content, time learning math, and other 

characteristics as the CAL sessions. Production of math achievement in the control, CAL treatment, 

and workbook treatment groups can be represented, respectively, by: 

𝐴𝐴𝑖𝑖0 = 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝛾𝛾𝑆𝑆𝑖𝑖 + 𝜆𝜆𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇_0 (3.1) 

𝐴𝐴𝑖𝑖𝐶𝐶𝛿𝛿𝐶𝐶 = 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝛾𝛾𝑆𝑆𝑖𝑖 + 𝜃𝜃 +  𝜆𝜆�𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇_0 + 1 + 𝜂𝜂𝐶𝐶� (3.2) 

𝐴𝐴𝑖𝑖𝑊𝑊𝑊𝑊 = 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝛾𝛾𝑆𝑆𝑖𝑖 + 𝜆𝜆�𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇_0 + 1 + 𝜂𝜂𝑊𝑊𝑊𝑊�, (3.3) 

where 𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇_0 is the base or control level of traditional homework time, and 𝜂𝜂𝐶𝐶  and 𝜂𝜂𝑊𝑊𝑊𝑊 are the 

potential crowd out (or crowd in) responses of math homework time to CAL and workbook 

sessions, respectively. To normalize time units and simplify the notation, the CAL treatment sets 
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𝑇𝑇𝑖𝑖𝐶𝐶 = 1 and the extra time allocated to learning math to 1. The workbook treatment, which is of 

the same duration of time, also sets the extra time allocated to learning math to 1. 

The parameters of these three equations can be recovered by using adjusted means and the 

following two equations: 

𝜃𝜃 = �̅�𝐴𝐶𝐶𝛿𝛿𝐶𝐶 − �̅�𝐴𝑊𝑊𝑊𝑊 − 𝜆𝜆(𝜂𝜂𝐶𝐶 − 𝜂𝜂𝑊𝑊𝑊𝑊) (3.4) 

𝜆𝜆 =
�̅�𝐴𝑊𝑊𝑊𝑊 − �̅�𝐴0

1 + 𝜂𝜂𝑊𝑊𝑊𝑊  
(3.5) 

𝜂𝜂𝐶𝐶 − 𝜂𝜂𝑊𝑊𝑊𝑊can be estimated from the difference in total hours learning math between the CAL 

treatment group and the workbook treatment group, 𝜂𝜂𝐶𝐶can be estimated from the difference in total 

hours learning math between the CAL treatment group and the control group, and 𝜂𝜂𝑊𝑊𝑊𝑊 can be 

estimated from the difference in total hours learning math between the workbook treatment group 

and the control group. If these hours substitution effects are small then we are essentially 

identifying 𝜃𝜃 from the CAL-workbook difference, and 𝜆𝜆 from the workbook-control difference. 

The RCT, in expectation, holds constant student, teacher, and school characteristics and the base 

or control level of traditional learning time on math, 𝑇𝑇𝑖𝑖
𝑇𝑇𝑇𝑇_0. 

We estimate the parameters of the theoretical model represented in Equations (2.11), (2.12) 

and (2.13) using the following regression equation:  

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1(−𝐷𝐷1𝑖𝑖) +  𝛼𝛼2(−𝐷𝐷2𝑖𝑖) + Xij𝛽𝛽 + Sij𝛾𝛾 + 𝜏𝜏𝑐𝑐 +  𝜀𝜀𝑖𝑖𝑖𝑖 (3.6) 

where 𝑌𝑌𝑖𝑖𝑖𝑖 is the academic outcome of interest measured at endline for student i in school j; 𝐷𝐷1𝑖𝑖 is 

a dummy variable indicating the treatment assignment for the control condition of class j, 𝐷𝐷2𝑖𝑖 is a 

dummy variable indicating the class treatment assignment for the workbook condition of class 

j;  Xij  is a vector of baseline student control variables, Sij  is a vector of baseline teacher and 

classroom control variables, and 𝜏𝜏𝑐𝑐 is a set of county-grade (strata) fixed effects. Both the control 
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and workbook dummy variables are entered with negative signs to capture relative differences 

with the CAL treatment (which is the left-out condition in the equation). In this case 𝛼𝛼1captures 

the CAL-control difference, which is the overall program effect or the “CAL program” effect, and 

𝛼𝛼2 captures the CAL-workbook difference, which is the isolated technology-based effect of CAL 

or the “CAL technology” effect. In all specifications, Xij  includes the baseline value of the 

dependent variable (when available). We also estimate treatment effects with an expanded set of 

baseline controls including student age, gender, whether each parent finished junior high school 

or not, teacher gender, teacher experience, whether the teacher attended college, number of 

boarding students in the class, and total class size. In all regressions, we adjust standard errors for 

clustering at the class level. 

 

3.2   Experimental Design 

We designed the field experiment to generate exogenous variation in both supplemental CAL as 

well as supplemental traditional learning with the purpose of estimating the parameters from the 

theoretical model. The field experiment involves more than four thousand 4th to 6th grade students 

across 352 school-grades (with one math class per school-grade) in 130 schools in rural China. 

The RCT includes three treatment arms: a supplemental CAL arm, a supplemental traditional 

learning (pencil and paper workbook) arm, and a pure control arm. The supplemental learning 

offered by the first two treatment arms is identical in terms of content and duration.  

The experiment was conducted among rural primary schools in Northwest China (Shaanxi 

Province). Specifically, 130 schools from 9 impoverished counties were sampled to participate in 

the experiment. In each school, we randomly sampled one fourth, fifth, and sixth grade class that 

had at least 4 boarding students. All students in the sampled classes were surveyed, but the 
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experimental sample includes only boarding students. Altogether, we sampled and surveyed 4,024 

boarding students and their 352 math class teachers.8 We focused on boarding students because 

there was no time at which to provide after-school CAL and workbook sessions to non-boarding 

students. Boarding students represent 37 percent of students in our schools. There are 32 million 

primary and junior high boarding students in China representing 32 percent of all students 

(Ministry of Education 2017).  

The experiment took place in four stages. First, in October 2017 (near the start of the school 

year), we conducted a baseline survey of students, teachers and principals. Second, after we 

collected the baseline data, we randomized the 352 classes into the three different treatment 

conditions. Third, we began conducting the interventions with boarding students in the treated 

classes in the first half of November 2017. Fourth, in June 2018 (at the end of the school year), we 

returned to the same classes to conduct a follow up (or endline) survey. 

 

3.3   Baseline Survey 

The baseline survey collected information on students, teachers, and school principals. The student 

survey collected information about student and household characteristics (age, gender, father 

completed junior high school (yes/no), mother completed junior high school (yes/no), the degree 

to which they liked math class). Students also took a 35 minute standardized exam in math. The 

teacher survey collected information on teacher gender, experience, and college attendance. 

Finally, we collected data on the number of boarding students in the class and class size.  

 

3.4   Randomization 

 
8 We find that boarding and non-boarding students are similar across numerous characteristics. 
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We designated each of 27 county-grades (9 counties and 3 grades) in our sample as strata or blocks. 

We then randomly allocated classes within these strata to one of three different treatment 

conditions (T1 = Supplemental CAL, T2 = Supplemental Workbook, or C = Control). There were 

116 classes in 88 schools for supplemental CAL (T1), 118 classes in 86 schools for supplemental 

workbook (T2), and 118 classes in 85 schools for the control group.  

To ensure adequate sample sizes, power calculations were conducted before the beginning 

of the trial (Spybrook et al., 2009).9 We expected to lose a small amount of statistical power due 

to student attrition. Based on our experience, we assumed an attrition rate of 5%. The actual 

attrition rate from baseline to endline was only 2.4%. 

 

3.5   Program (Treatment) Administration 

The CAL and workbook programs were implemented by a university-based NGO in western China 

that specializes in after-school programs. Program sessions were held once a week from October 

2017 to June 2018. Sessions were held for 40-minutes on Sunday afternoon each week. In the 

weekly sessions students were asked to complete math exercises taken from the (same) chapter of 

the standardized math textbook that students were supposed to cover (according to the national 

curriculum) in class each week. The programs had facilitators who were trained by our research 

team to organize and supervise the supplemental learning time. The facilitators were instructed to 

not provide instruction to the students, but rather to make sure that students stayed on task in terms 

of doing supplemental exercises particular to the week. Facilitators were only allowed to assist 

students with scheduling, computer hardware issues, software operations, and handing out and 

 
9 We conservatively used the following parameters to estimate the sample size for the study: (a) intraclass correlation 
coefficient (adjusted for strata fixed effects): 0.10; (b) average number of boarding students per class: 11; (c) R-
squared of 0.40 (controlling e.g. for baseline math achievement). With alpha = 0.05 and beta = 0.8, we estimated that 
we would need 115 classes per treatment arm for a minimum detectable effect size (MDES) of 0.14 SDs. 
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collecting workbooks. They were instructed to not answer questions regarding the material. 

According to our observations, there was little instruction-based communication during the CAL 

sessions. The facilitators were, for the most part, not the regular math teachers for the students. 

The CAL and workbook programs were designed to be as similar as possible. For example, 

the two programs were implemented by the same NGO, they were held on the same days of the 

week, for the same amount of time, and number of times during the school year. They also had the 

same curricular content each week, and same facilitator training and instructions. At endline we 

found roughly similar attendance rates for CAL and workbook sessions for the two treatment 

groups. 

The software is used in schools in China nationwide. Similar to most CAL software for 

this age group, the software relied on vivid images and was gamified (see Appendix Figure 1). If 

students answered an exercise correctly, they received virtual coins with which they could buy 

virtual gear and outfits. When students did a problem incorrectly they would receive feedback that 

it was incorrect and solutions if they got stuck. Instead of using computers, students assigned to 

workbook sessions completed pencil-and-paper math exercises. As with any standard workbook, 

students could check solutions for the odd-numbered exercises at the back of the workbook. 

The supplemental CAL and workbook content was aligned with the standardized, 

government-mandated curricula for each grade. Unlike less developed countries, students in rural 

China are much more likely to be on-grade level in terms of achievement outcomes (Li et al. 2018). 

Students and teachers are rarely absent from class, and students are taught a standardized 

curriculum at a regular pace.  

The CAL program that we evaluate in this study demonstrated positive effects on a range 

of educational outcomes in previous studies in China (Lai et al. 2013; 2015; Mo et al. 2014, 2015). 
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Students receiving supplemental CAL increased math and language test scores, the degree to 

which they liked school, self-efficacy, and interest in learning (Lai et al. 2015; Bai et al. 2018). 

Although it is difficult to compare estimates across studies, effect sizes for supplemental CAL in 

China are similar to the effects sizes for supplemental CAL in India once the lower levels of time 

commitment are factored in.10 The large positive effects in India may also be due to the CAL 

program’s adaptive component, which is critical for when students are below grade level and have 

widely differing levels of preparation (Muralidharan et al. 2019). In countries where student 

preparation is stronger, more regimented and more homogenous, such as China, regular CAL 

appears to work well for supplemental learning (Mo et al., 2014; 2015). Additionally, in another 

setting with more homogenous student preparation, Van Klaveren et al. (2017) who conduct an 

RCT in Dutch secondary schools do not find significant differences between adaptive vs. non-

adaptive software and even find negative relative effects for higher ability students (0.08σ). 

Software differs along many dimensions, however, and thus some caution is needed in generalizing 

the results to different applications, but the software we evaluate here has been shown to work and 

is widely used in China. 

 

3.6   Endline Survey and Primary Outcomes 

We conducted the endline survey with the students, teachers, and principals. As in the baseline, 

students took a 35 minute standardized math exam.11 In the analyses, we convert endline math 

 
10 The CAL program effect sizes ranged from 0.1 to 0.2σ for sessions of from 40 minutes of instruction, 2 times a 
week in rural China and the CAL program effect sizes were 0.37σ from 90 minutes per session (for two subjects), six 
sessions a week in India. The after-school program includes 45 minutes of software use and 45 minutes of instructional 
support on two subjects each of six days per week. As noted above, Muralidharan et al. (2018) cite evidence in Berry 
and Mukherjee (2016) showing no effects of a private tutoring program in India (run by Pratham) with similar aged 
children and time frame suggesting that the effects are primarily driven by CAL. 
11 Like the baseline test, the endline math test was grade-appropriate, tailored to the national and provincial-level 
mathematics curricula. Although grade-appropriate tests may present a problem in some developing countries (since 
student learning is, on average, below grade level), this was not the case in our sample schools. Our baseline and 
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exam scores into z-scores by subtracting the mean endline math score of the control sample and 

dividing by the standard deviation of the control sample. We also asked math teachers to provide 

each student’s math grades (as distinct from math test/exam/achievement scores). Separate from 

test scores, grades capture other cognitive and non-cognitive dimensions of human capital and are 

predictive of later life outcomes (Borghans et al. 2016). 12 Furthermore in the context of China, 

grades are operationalized as the teacher’s independent evaluation of a student’s within-class 

ranking in overall ability and are a less lumpy measure than letter grades provided in the United 

States. For the analyses, we convert math grade ranks into percentiles based on class size. The 

correlation between math test scores and math grades is 0.529. Although randomization was at the 

class level, boarding students represent only a fraction of the students in the class thus providing 

variation in ranks. We also asked students about the degree to which they liked math class, time 

on math homework, as well as time on language homework. 

 

3.7   Balance Check 

Appendix Table 1 presents tests for balance on baseline observables across the treatment arms. 

The table presents the results from a total of 36 tests comparing average variable values across the 

treatment and control arms. These tests were conducted by regressing each baseline variable on a 

 
endline math tests, which had anchor items, allowed us to produce vertically scaled scores. The scaled scores show 
that the sample students, on average, made substantive achievement gains within each grade. 
The tests were constructed by trained psychometricians in multiple steps. Mathematics test items tests were first 
selected from standardized mathematics curricula for each grade (4, 5, and 6). The content validity of these test items 
was checked by multiple experts. The psychometric properties of the test were then validated using data from extensive 
pilot testing. The tests had good psychometric properties (Cronbach alphas of approximately 0.8, unidimensionality, 
and a lack of differential item functioning by gender). An analysis of the pilot, baseline and endline test results also 
indicated that the tests did not suffer from floor or ceiling effects. 
12  In conversations with teachers we found that grades in math courses were determined by homework, class 
performance, understanding of material, exams, and final exam. 
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treatment group indicator and controlling for strata. For tests of student-level variables, standard 

errors were adjusted for clustering at the class level. 

Out of the 36 tests, only one was statistically different from zero at the 10% level and one 

at the 5% level. The results from Table A1 therefore indicate that balance was achieved across the 

three arms, especially as a small number of significant differences is to be expected (by random 

chance). Our key baseline covariates (baseline math test scores and grades) were not statistically 

different between any of the three treatment arms (even at the 10% level).  

 

4   Results 

Estimates of Equation (3.6) are reported in Table 1. For the full sample, we find a positive and 

statistically significant effect of the overall CAL program on the student’s math grade although no 

statistical evidence of a positive effect of the overall CAL program on math test scores. The 

coefficient estimate on math grade indicates that the CAL program increased a student’s ranking 

in the class by 1.8 percentiles. After excluding very small classes, which create a high level of 

variance because movements in grade-class rankings are amplified, we find that the CAL program 

increased a student’s ranking in the class by 1.9 percentiles.13 Turning to isolating the technology 

effect of CAL we find no effect on test scores and no effect on math grades. For math grades, even 

in face of the positive CAL program estimate, we do not find a technology-based effect of CAL 

that is statistically distinguishable from zero. Furthermore, the CAL technology estimate is 

statistically different from the CAL program estimate (1.53 to 1.70 percentile points). 

 
13 The total sample size is only 2 percent smaller than the total sample size. The median class size in the sample is 
36.  
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The next step towards recovering the technology parameter, θ, from the theoretical model 

defined in Equations (3.4) and (3.5) is to estimate whether homework time is affected by the two 

treatments. As noted above, an additional complication regarding the interpretation of the overall 

CAL program effect estimates is that they include the potential crowd out (or crowd in) of 

homework time on the subject. Table 2 reports estimates of CAL and workbook treatment effects 

for time spent on math homework (i.e. not during school and not during the CAL or workbook 

sessions as part of the experiment). From Equation (3.4), 𝜂𝜂𝐶𝐶can be estimated from CAL treatment 

– control, and 𝜂𝜂𝑊𝑊𝑊𝑊 can be estimated from workbook treatment - control. All of the point estimates 

on homework time are small and statistically insignificant. We do not find evidence that students’ 

homework time is altered by either the CAL or workbook treatments. This is reasonable given that 

teachers continued to require regular homework, and the CAL and workbook sessions were run 

independently of the classroom.14 Given these findings we can interpret the CAL technology 

effects estimates presented in Table 1 as estimates of the theoretical parameter, θ, in Equations 

(2.1’) and (2.3’). 

Taken together, the results suggest that even though the “EdTech” program may positively 

influence student learning outcomes for the average student, part of the effect is due to additional 

inputs such as time on instruction that supplemental workbook sessions (the “Ed” without the 

“Tech”) also offer. In fact, our estimates for performance in math class suggest that the entire effect 

is due to additional inputs and that the isolated technology-based CAL effect is zero. 

Boys and girls use computers differently with much higher levels of video game use among 

boys (Kaiser Family Foundation 2010; U.S. Department of Education 2011; Fairlie 2017; Algan 

 
14 We also find that the CAL or workbook sessions do not crowd out time on other subjects (in our case, the main 
other subject students took in primary school – language). 
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and Fortin 2018).15 Additionally, boys and girls differ substantially in academic performance in 

schools in China (Eble and Hu 2019; Xu and Li 2018; Hannum and Park 2007). Thus, we estimate 

impacts of CAL, which is video game based, separately for boys and girls. Tables 3 and 4 report 

estimates of Equation (3.6) for boys and girls, respectively. The patterns for CAL program and 

isolated technology effects are more apparent for boys. The CAL program has positive and 

significant effects on both boys’ test scores (0.10σ) and performance in math class (3.4 percentile 

points). On the other hand, we find no evidence of positive CAL technology effects for boys. For 

both test scores and grades, the point estimates are smaller and statistically indistinguishable from 

zero. The estimates for math grades are also precise enough to show a statistically significant 

difference between the CAL program and CAL technology estimates essentially at the 10 percent 

level (p-value = 0.103). The results for boys provide additional evidence that the isolated CAL 

technology effect might be small and that part of the positive CAL program estimate is due to 

additional program inputs such as more time learning math. Estimates reported in Table 5 for 

impacts on homework time show null effects similar to the results for the total sample. Thus, we 

do not find evidence of substitutability for homework time for boys implying that the CAL 

technology estimate can be interpreted as the theoretical parameter, θ. 

We find no evidence of significant effects of either the CAL program or CAL technology 

effects on the learning outcomes of girls. Table 4 reports estimates of Equation (3.6) for girls. The 

CAL program and CAL technology point estimates are small in magnitude, inconsistent in sign, 

and not statistically significant. The estimated effects for CAL might differ by gender because 

boys and girls engage differently with technology (U.S. Department of Education 2011; Kaiser 

Family Foundation 2010; Fairlie 2017; Algan and Fortin 2018). Additional analyses do not reveal 

 
15 International PISA data indicate that 47 percent of boys compared with 16 percent girls play a computer game 
every day (Algan and Fortin 2018). 



23 
 

any clear explanations for why our results differ, however. One possibility is there might have 

been a small amount of substitutability away from homework time for girls. Estimates reported in 

Table 5 for impacts on homework time show some evidence of negative effects for girls. 

A common argument for how CAL, or EdTech more generally, works is that it increases 

engagement in subject material. If students enjoy learning math through CAL that enjoyment could 

spill over to their math classes. Table 6 reports estimates of Equation (4.1) for whether students 

report liking their math class.16  

The results differ for liking math class. For all students, both the CAL program effect and 

the CAL technology effect are positive and statistically significant. The CAL technology effect is 

roughly 2.7 percentile points. Another key finding here is that the CAL program and CAL 

technology effects sizes are essentially the same. Spending more time on math is not the underlying 

cause of why the CAL program treatment has a positive effect on liking math and instead the vivid 

images, gamification and other technology-based attributes of CAL might have increased overall 

enjoyment of math. For boys, the CAL program effect is positive and statistically significant, but 

the CAL technology effect is statistically insignificant. The difference in point estimates, however, 

is small. For girls, the CAL technology effect is positive and statistically significant, but the CAL 

program effect is not significant. The CAL program versus technology difference is larger than for 

boys, but also not statistically significant. Overall, we find some evidence that the technology 

component of CAL has a positive spillover effect on students liking their math class. This is 

consistent with the argument that the use of technology can increase interest in subject material. 

This increased interest may or may not translate into higher academic performance over the long-

run. 

 
16 The endline survey question was worded carefully to refer to the student’s math class and not to the CAL or 
workbook sessions. 
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4.2   Distributional Effects 

The results from the treatment regressions provide some evidence of CAL program effects and 

smaller or null CAL technology effects at the mean. Turning the focus to other parts of the 

distribution, we first estimate models in which we create dependent variables indicating that the 

student is above the median of the test score or grade distribution (Appendix Table 2). For test 

scores (above the median), we find little evidence of significant effects for either the CAL program 

or CAL technology. For grades (above the median), we find a positive and statistically significant 

coefficient on the CAL program effect (0.036, se=0.018), but a small and statistically insignificant 

coefficient on the CAL technology effect (0.009, se=0.018). These results are consistent with the 

main regression results. 

We also estimate quantile treatment effects regressions to test for differential treatment 

effects across the post-treatment outcome distribution. Appendix Figures 2 and 3 display estimates 

and 95 percent confidence intervals for each percentile for the CAL Program and CAL technology 

effects for math test scores and math grades, respectively. For test scores we find some evidence 

of positive CAL technology effects at the bottom of the distribution. For most of the distribution 

we find null estimates of CAL program and CAL technology effects. For math grades, the patterns 

are consistent with the findings for mean treatment effects – larger positive CAL program effects 

throughout the distribution, but essentially zero CAL technology effects throughout the 

distribution. Although the quantile treatment estimates are not precisely measured they do not 

change the conclusion from the mean impacts reported in Table 1. Mean impact estimates do not 

appear to be hiding differential effects at different parts of the distribution. We thus focus on mean 

impacts.   
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4.3   Heterogeneity on Initial Math Ability 

We estimate CAL program and CAL technology effects by baseline math ability terciles. 

Appendix Table 3 reports estimates of (4.1) separately by tercile defined by baseline math test 

scores. Teachers do not assign class ranks at the beginning of the school year. For the bottom and 

top terciles we find similar results as for the results for all students. We find positive CAL program 

effects on endline math class rank, and CAL technology point estimates that are notably smaller 

and are not statistically distinguishable from zero. We find no discernable effects on endline math 

test scores. For the middle tercile we do not find statistically significant coefficients for either test 

scores or grades. The main findings thus hold for both the lowest ability and highest ability students. 

 

4.4   Robustness Checks 

We conduct several robustness checks of our main results. First, we examine whether the lack of 

evidence of a CAL technology effect is due to students not having any experience working on 

computers in school. In contrast, we find that all of the schools in our sample have computer time 

at school, and self-reported use by schoolchildren indicates that 87 percent have used computers 

in school at baseline. Nevertheless, we estimate the test score and grade regressions with only 

students who self-report using a computer at school as a check. We find similar results to those 

reported in Table 1 (results not shown for the sake of brevity). The null finding for the CAL 

technology effect is not due to schoolchildren not being familiar with using computers at school. 

Second, we examine whether the estimates for grade are sensitive to having a high 

percentage of boarding students in the classroom. In classes with a high percentage of boarding 

students and treatment being assigned at the class level, there could be an attenuated treatment 
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effect. To address this issue, we estimate the grade regression (reported in columns 3 and 4 of 

Table 1) excluding classes with 90 percent boarding students, 80 percent boarding students and 70 

percent boarding students. We find that the CAL program coefficients remain positive and roughly 

similar in magnitude although they lose some statistical power (Appendix Tables 4-6). The CAL 

technology coefficients remain small (often negative) and not close to statistical significance. The 

robustness of results is consistent with boarding students representing a small share of students in 

the classroom.  

 

5   Conclusions 

Although EdTech is rapidly expanding around the world and accelerating in response to recent 

global health developments, relatively little is known about the advantages and disadvantages of 

using technology in education. Is EdTech, as proponents argue, revolutionizing the way in which 

students learn? Our theoretical model illustrates that the answer to this question is not 

straightforward because there are several possible inputs to educational production that are often 

entangled with the technology provided in CAL programs, making it difficult to isolate effects. To 

estimate the technology effect of CAL and other key parameters from the theoretical model, we 

design a field experiment in rural China that includes a novel “pencil and paper” workbook 

treatment in addition to a regular CAL program treatment and a control group. Estimates from the 

experiment indicate that, for the average student in rural China, the overall CAL program improves 

math grades whereas the isolated technology component of CAL has no discernable effect on math 

grades. The difference between the two estimated effects is statistically significant. We do not find 

evidence of a CAL program or CAL technology effect for math test scores, which may be due to 

the program having greater effects on non-cognitive than cognitive skills. 
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Given gender differences in computer use, we examined effects for boys and girls 

separately. For boys, we find that the CAL program increases math grades by 3.5 percentile points 

and math test scores by 0.10σ. But, when we isolate the CAL technology effect, the point estimates 

become noticeably smaller and statistically indistinguishable from zero. We also find no evidence 

of substitution effects of the CAL and workbook sessions on homework time in math. For girls we 

do not find positive effects of the CAL program or CAL technology component. On the other hand, 

we find evidence suggesting that the both the CAL program and CAL technology affect how much 

students report that they like their math class, which might or might not have longer-term effects. 

Our study provides a second generation “pencil test” (DiNardo and Pischke 1997). If 

similarly timed, content and structured “pencil and paper” workbook sessions show roughly 

similar effects on academic performance as the CAL program then it raises concerns that another 

factor common to both is driving the results. In particular, the “pencil and paper” workbook 

sessions, by construction, provide more time learning subject material, which might be the key 

educational input that increases academic performance and not the new computer technology in 

CAL programs. The technology-based effect of CAL might be relatively small and might not be 

the primary driver of the estimated large positive effects of CAL programs found in many previous 

studies. 

 Another argument for the rapid adoption of EdTech around the world is that it has low 

marginal costs. Once developed, copying software or providing it online is nearly costless to 

provide access to the additional student. In our experiment, however, we find that the marginal 

costs of pencil and paper workbooks are also low, and in fact, are lower. The costs of photocopying 

workbooks are inexpensive. Furthermore, workbooks do not require the high fixed costs and 

maintenance costs of computers, Internet connections, and extra space to house computers. Back-
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of-the-envelope calculations indicate that the workbook program has roughly 22 percent lower 

costs (see Appendix B). 

More research is clearly needed on the effectiveness of EdTech and what underlies these 

effects. In settings where students are substantially behind grade level or there is substantial 

heterogeneity, the technology effects of adaptive CAL might be larger because technology can 

personalize education. This is consistent with the large positive effects of an after-school program 

in India that includes adaptive computer instruction (Muralidharan et al., 2019).17 In educational 

systems in which students are generally at grade level and there is less heterogeneity, however, 

experimental evidence shows that adaptive CAL does not have an advantage over non-adaptive 

CAL and might even be less effective for high-ability students (Van Klaveren et al. 2017). 

Moreover, in comparison with the widely-used software we evaluate, adaptive software is much 

more costly to develop and maintain. There may be no one-size adaptive algorithm, making it 

difficult to generalize the benefits of adaptive software even across contexts where teaching at the 

right level is important.18 More research is needed on the tradeoffs between adaptive vs non-

adaptive software. 

Another area of promise is that we find evidence of a positive effect of CAL technology 

on student interest in math whereas no effect on math interest from extra time learning math. More 

research is needed on whether the technology in EdTech can spark an interest in math among 

young children and generate longer-term interest and success in math. More research is also needed 

on separating the effects of various inputs in educational production, especially the mechanical 

effects extra time learning, in supplemental educational programs. The results of this study raise 

 
17 As compared to the null effects of a similar after-school program in India without adaptive computer instruction 
found in Berry and Mukherjee (2016). 
18 Other components of EdTech could also be evaluated. For example, CAL might be improved with a component 
that regularly informs teachers and parents of student progress (Bergman 2020). 
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concerns about the attribution of the effectiveness of key inputs in these programs and have broader 

implications for evaluations of any supplemental educational program. 

Finally, more research is needed on whether and to what degree EdTech can substitute for 

traditional learning. This is especially pertinent today in light of the full-scale, comprehensive, 

global movement to EdTech at all levels of education in response to the coronavirus pandemic. 

How much human capital accumulation will be lost or will CAL, online classes, remote learning, 

and other forms of EdTech be able to substitute adequately for traditional teaching and learning 

methods? These are important questions as we move forward with education in which limited 

person-to-person contact is essential for health reasons. 
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Table 1: CAL Program and Technology Effects on Math Test Scores and Grades 
  (1) (2) (3) (4) (5) (6) 

 Math Test Score Grade (Rank) Grade Rank,  
Class N >= 10 

              

CAL Program 0.033 0.032 1.743* 1.758* 1.866** 1.876** 
 (0.039) (0.039) (0.919) (0.922) (0.925) (0.929) 

CAL Technology 0.059 0.061 0.212 0.155 0.234 0.178 
 (0.044) (0.044) (0.996) (0.999) (1.013) (1.017) 

Difference (Program - Tech) -0.026 -0.029 1.531* 1.603* 1.632* 1.697* 
 (0.046) (0.046) (0.877) (0.876) (0.895) (0.894) 

Additional Controls No Yes No Yes No Yes 

N 3,928 3,928 3,829 3,829 3,750 3,750 

R-squared 0.432 0.436 0.300 0.308 0.299 0.308 
Notes: 

1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 
the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 

2) All columns control for baseline counterpart of dependent variable (baseline math score or baseline class 
rank in math). 

3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 
student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 2: CAL Program and Workbook Treatment Effects on Time on Math Outside of 
School (Homework Hours) 
  (1) (2) 

 All Students 
      
CAL Treatment – Control (𝜂𝜂𝐶𝐶) -0.149 -0.154 

 (0.199) (0.199) 
Workbook Treatment – Control (𝜂𝜂𝑊𝑊𝑊𝑊) 0.128 0.123 

 (0.201) (0.201) 
Additional Controls No Yes 
N 3,930 3,930 
R-squared 0.099 0.099 

Notes: 
1) CAL treatment – Control and Workbook treatment – Control are reported for crowd out (in) estimates of 

the two treatments (see Equations 3.2 and 3.3). 
2) Math homework time (hours last week): control group mean = 3.36, SD = 2.70. 
3) All columns control for baseline math score. 
4) Even-numbered columns also control for the following baseline covariates: student age (years), gender, 

father graduated junior high, mother graduated junior high, teacher experience (years), teacher gender, 
teacher attended college, number of boarding students in the class, class size.  

5) Cluster (class-level)-robust standard errors in parentheses. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 3: CAL Program and Technology Effects on Math Test Scores and Grades– Boys 
Only 

  (1) (2) (3) (4) (5) (6) 

 Math Test Score Grade (Rank) Grade, Class N >= 10 

              
CAL Program 0.099** 0.099** 3.414*** 3.430*** 3.488*** 3.506*** 

 (0.049) (0.049) (1.280) (1.277) (1.291) (1.288) 
CAL Technology 0.075 0.074 1.540 1.530 1.482 1.455 

 (0.054) (0.054) (1.456) (1.449) (1.480) (1.472) 
Difference (Program - Tech) 0.025 0.025 1.874 1.900 2.006 2.051 

 (0.060) (0.060) (1.218) (1.223) (1.249) (1.253) 
Additional Controls No Yes No Yes No Yes 

N 2,142 2,142 2,095 2,095 2,053 2,053 
R-squared 0.442 0.445 0.307 0.311 0.307 0.312 

Notes: 
1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 

the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 
2) All columns control for baseline counterpart of dependent variable (baseline math score or baseline class 

rank in math). 
3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 

student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4: CAL Program and Technology Effects on Math Test Scores and Grades – Girls 
Only 

  (1) (2) (3) (4) (5) (6) 

 Math Test Score Grade (Rank) Grade, Class N >= 10 

              
CAL Program -0.044 -0.045 -0.526 -0.590 -0.345 -0.434 

 (0.046) (0.046) (1.371) (1.371) (1.374) (1.373) 
CAL Technology 0.039 0.041 -1.451 -1.350 -1.365 -1.268 

 (0.054) (0.054) (1.519) (1.526) (1.540) (1.549) 

Difference (Program - Tech) -0.084 -0.086 0.925 0.759 1.019 0.834 

 (0.052) (0.052) (1.375) (1.396) (1.394) (1.416) 

Additional Controls No Yes No Yes No Yes 

N 1,785 1,785 1,733 1,733 1,696 1,696 

R-squared 0.432 0.437 0.302 0.308 0.299 0.305 
Notes: 

1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 
the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 

2) All columns control for baseline counterpart of dependent variable (baseline math score or baseline class 
rank in math). 

3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 
student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5: CAL and Workbook Treatment Effects on Math Outside of School (Homework 
Hours) – Boys and Girls 

  (1) (2) (3) (4) 
 Boys Girls 

          
CAL Treatment – Control (𝜂𝜂𝐶𝐶) 0.065 0.065 -0.387* -0.393** 

 (0.241) (0.242) (0.198) (0.197) 
Workbook Treat. – Control (𝜂𝜂𝑊𝑊𝑊𝑊) 0.305 0.298 -0.068 -0.085 

 (0.239) (0.240) (0.207) (0.206) 
Additional Controls No Yes No Yes 
N 2,145 2,145 1,784 1,784 
R-squared 0.096 0.098 0.121 0.125 

Notes: 
1) CAL treatment – Control and Workbook treatment – Control are reported for crowd out (in) estimates of 

the two treatments (see Equations 3.2 and 3.3). 
2) Math homework time (hours last week): control group mean = 3.36, SD = 2.70. 
3) All columns control for baseline math score. 
4) Even-numbered columns also control for the following baseline covariates: student age (years), gender, 

father graduated junior high, mother graduated junior high, teacher experience (years), teacher gender, 
teacher attended college, number of boarding students in the class, class size.  

5) Cluster (class-level)-robust standard errors in parentheses. 
6) *** p<0.01, ** p<0.05, * p<0.1. 
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Table 6: CAL Program and Technology Effects on Liking Math Class (Scale 1-100) 
  (1) (2) (3) (4) (5) (6) 

 All Students Boys Girls 
CAL Program 2.580* 2.595* 3.648** 3.675** 1.405 1.476 

 (1.336) (1.327) (1.644) (1.639) (1.557) (1.540) 
CAL Technology 2.675** 2.714** 2.467 2.551 2.813* 2.855* 

 
(1.357) (1.359) (1.624) (1.628) (1.672) (1.679) 

Difference (Program - Tech) -0.094 -0.119 1.181 1.124 -1.408 -1.379 

 (1.491) (1.485) (1.780) (1.776) (1.844) (1.824) 

Additional Controls No Yes No Yes No Yes 

N 3,931 3,931 2,145 2,145 1,785 1,785 

R-squared 0.170 0.172 0.163 0.165 0.195 0.201 
Notes: 

1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 
the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 

2) All columns control for baseline liking math class (scale 1 to 100), control group mean = 87.2. 
3) Even-numbered columns also control for the following baseline covariates: student age (years), gender, 

father graduated junior high, mother graduated junior high, teacher experience (years), teacher gender, 
teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Figure 2A: Quantile CAL Program Estimates for Test Score
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Appendix Figure 2B: Quantile CAL Technology Estimates for Test Score
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Appendix Figure 3A: Quantile CAL Program Estimates for Grade Rank
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Appendix Table 1: Summary Statistics and Balance Check     

Baseline Characteristics 
Control  CAL  Workbook  P-value   P-value   P-value 
（1）   （2）   （3）   (4)=(2)-(1)   (5)=(3)-(1)   (6)=(2)-(3) 

Panel A. Student Characteristics 
(1) Standardized math score -0.026  -0.036  -0.032  [0.669]  [0.881]  [0.776] 

  (0.987)  (1.062)  (1.017)       
(2) Within class rank (using math score) 53.906  53.799  55.008  [0.860]  [0.130]  [0.191] 

  (29.498)  (30.539)  (29.453)       
(3) Female (0/1) 0.458   0.459   0.435   [0.762]  [0.264]  [0.163]   (0.498)  (0.499)  (0.496)       
(4) Age (years) 11.095   11.017   11.048   [0.874]  [0.738]  [0.612]   (1.069)  (1.115)  (1.109)       
(5) Father education 9 years or less (0/1) 0.441   0.400   0.424   [0.081]  [0.554]  [0.237]   (0.497)  (0.490)  (0.494)       
(6) Mother education 9 years or less (0/1) 0.390   0.356   0.365   [0.180]  [0.447]  [0.474]   (0.488)  (0.479)  (0.482)       
(7) Liking math -0.052  0.006   -0.117   [0.419]  [0.399]  [0.124]   (1.050)  (1.015)  (1.087)        

N 1390  1345  1289       
Panel B. Teacher and Class Characteristics 

(1) Female (0/1) 0.445   0.391   0.460    [0.334]   [0.909]   [0.417] 
  (0.497)  (0.488)  (0.499)       

(2) Experience (years) 16.239   13.425   15.424   [0.148]  [0.843]  [0.121]   (11.886)  (11.050)  (11.384)       
(3) College degree (0/1) 0.560   0.569   0.574   [0.667]  [0.371]  [0.670]   (0.497)  (0.496)  (0.495)       
(4) # boarding students 15.447   14.517   16.290   [0.162]  [0.949]  [0.270]   (6.776)  (6.632)  (79.547)       
(5) # of total students 35.426   32.717   35.322   [0.019]  [0.223]  [0.313]   (13.965)  (14.217)  (15.339)       
(6) N 118   116   118             

Notes: means and SDs (in parentheses) in columns 1-3. P-values in Columns (4-6) are calculated using the estimated coefficient and standard error on an indicator for the 
treatment group in a regression of each baseline characteristic on the treatment indicator and controlling for randomization strata with robust standard errors accounting 
for clustering within classes. Joint tests of all student/teacher baseline covariates simultaneously shows no significant difference between T1 and C (p-value: 0.860/0.124), 
T2 and C (p-value: 0.790/0.862) or T1 and T2 (p-value = 0.184/0.840).  



Appendix Table 2: CAL Program and Technology Effects on Whether Math Test 
Scores/Grades are Above the Median 

  (1) (2) (3) (4) (5) (6) 

 
Math Test Score Above 

Median (Y/N) 
Grade (Rank) Above 

Median (Y/N) 

Grade (Rank) Above 
Median (Y/N) for Class 

N >= 10 
              
CAL Program 0.016 0.015 0.036** 0.036** 0.038** 0.038** 

 (0.020) (0.020) (0.018) (0.018) (0.018) (0.018) 
CAL Technology 0.034 0.035* 0.010 0.009 0.012 0.011 

 (0.021) (0.021) (0.018) (0.018) (0.019) (0.019) 
Difference (Program - Tech) -0.018 -0.020 0.026 0.027 0.026 0.027 

 (0.022) (0.022) (0.017) (0.017) (0.017) (0.018) 
Additional Controls No Yes No Yes No Yes 
N 3,928 3,928 3,829 3,829 3,722 3,722 
R-squared 0.247 0.253 0.165 0.173 0.165 0.175 

Notes: 
1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 

the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 
2) All columns control for baseline counterpart of dependent variable (baseline math score or baseline class 

rank in math above median (y/n)). 
3) Columns 2 and 4 also control for the following baseline covariates: liking math (1 to 100), student age 

(years), gender, father graduated junior high, mother graduated junior high, teacher experience (years), 
teacher gender, teacher attended college, number boarding students in the class, class size. 

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1.



Appendix Table 3: CAL Program and Technology Effects on Math Test Scores and Grades – By Baseline Achievement 
Terciles 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

 lowest 1/3 achievers middle 1/3 achievers top 1/3 achievers 

 Math score Math grade (rank) Math score Math grade (rank) Math score Math grade (rank) 

                          
CAL Program 0.059 0.058 4.012** 3.842** 0.006 -0.002 -1.805 -1.681 0.019 0.021 3.168** 3.090** 

 (0.068) (0.068) (1.822) (1.802) (0.056) (0.057) (1.582) (1.609) (0.043) (0.043) (1.556) (1.568) 
CAL Technology 0.049 0.058 1.873 1.691 0.067 0.064 -2.879 -2.945 0.037 0.040 1.060 1.040 

 (0.070) (0.070) (1.937) (1.951) (0.064) (0.064) (1.930) (1.928) (0.050) (0.049) (1.543) (1.547) 

Program - Tech -0.026 -0.029 1.531* 1.603* -0.061 -0.066 1.074 1.265 -0.017 -0.019 2.108 2.050 

 (0.046) (0.046) (0.877) (0.876) (0.068) (0.068) (1.736) (1.735) (0.051) (0.050) (1.570) (1.560) 

Add. Controls NO YES NO YES NO YES NO YES NO YES NO YES 

N 1,316 1,316 1,294 1,294 1,310 1,310 1,280 1,280 1,302 1,302 1,255 1,255 

R-squared 0.192 0.199 0.164 0.182 0.118 0.125 0.121 0.129 0.154 0.170 0.089 0.109 
Notes: 

1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is the isolated technology-based effect of CAL 
(i.e. CAL treatment relative to workbook session treatment). 

2) All columns control for baseline counterpart of dependent variable (baseline math score or baseline class rank in math). 
3) Even-numbered columns also control for the following baseline covariates: student age (years), gender, father graduated junior high, mother graduated 

junior high, teacher experience (years), teacher gender, teacher attended college, number of boarding students in the class, class size.  
4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1. 

  



Appendix Table 4: CAL Program and Technology Effects on Math Grades, Excluding 
Classes with Certain Percentages of Boarding Students 

  (1) (2) (3) (4) (5) (6) 

 Boarding Students > 90% Students > 80% Students > 70% 

              
CAL Program 1.306 1.318 1.562 1.616 1.356 1.387 

 (0.912) (0.912) (0.993) (0.996) (1.029) (1.029) 
CAL Technology -0.085 -0.081 -0.174 -0.146 -0.617 -0.560 

 
(1.060) (1.061) (1.110) (1.108) (1.224) (1.225) 

Difference (Program - Tech) 1.392 1.399 1.737* 1.762* 1.973* 1.947* 

 (0.928) (0.927) (0.968) (0.971) (1.073) (1.077) 

Additional Controls No Yes No Yes No Yes 

N 3,928 3,928 3,829 3,829 3,750 3,750 

R-squared 0.432 0.436 0.300 0.308 0.299 0.308 
Notes: 

1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 
the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 

2) All columns control for baseline counterpart of dependent variable (baseline class rank in math test score). 
3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 

student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1.  
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Appendix Table 5: CAL Program and Technology Effects on Math Grades, Excluding 
Classes with Certain Percentages of Boarding Students – Boys Only 

  (1) (2) (3) (4) (5) (6) 
 Boarding Students > 90% Students > 80% Students > 70% 

              
CAL Program 2.836** 2.836** 3.042** 3.089** 2.332 2.426* 

 (1.289) (1.285) (1.385) (1.382) (1.428) (1.425) 
CAL Technology 1.072 1.020 0.749 0.692 -0.123 -0.068 

 (1.533) (1.525) (1.591) (1.577) (1.657) (1.647) 
Difference (Program - Tech) 1.765 1.816 2.294* 2.397* 2.454* 2.494* 

 (1.309) (1.313) (1.360) (1.365) (1.425) (1.438) 
Additional Controls No Yes No Yes No Yes 
N 1,940 1,940 1,814 1,814 1,684 1,684 
R-squared 0.302 0.306 0.299 0.303 0.307 0.310 

Notes: 
1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 

the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 
2) All columns control for baseline counterpart of dependent variable (baseline class rank in math test score). 
3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 

student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1.  
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Appendix Table 6: CAL Program and Technology Effects on Math Grades, Excluding 
Classes with Certain Percentages of Boarding Students – Girls Only 

  (1) (2) (3) (4) (5) (6) 
 Boarding Students > 90% Students > 80% Students > 70% 

              
CAL Program -0.715 -0.734 -0.383 -0.443 -0.051 -0.168 

 (1.405) (1.396) (1.550) (1.544) (1.597) (1.589) 
CAL Technology -1.394 -1.176 -1.281 -1.061 -1.289 -1.068 

 (1.615) (1.619) (1.681) (1.680) (1.775) (1.787) 
Difference (Program - Tech) 1.392 1.399 1.737* 1.762* 1.973* 1.947* 

 (0.928) (0.927) (0.968) (0.971) (1.073) (1.077) 
Additional Controls No Yes No Yes No Yes 
N 1,630 1,630 1,500 1,500 1,398 1,398 
R-squared 0.295 0.303 0.289 0.297 0.287 0.294 

Notes: 
1) CAL program is the overall program effect (i.e. CAL treatment relative to control), and CAL technology is 

the isolated technology-based effect of CAL (i.e. CAL treatment relative to workbook session treatment). 
2) All columns control for baseline counterpart of dependent variable (baseline class rank in math test score). 
3) Even-numbered columns also control for the following baseline covariates: liking math (scale 1 to 100), 

student age (years), gender, father graduated junior high, mother graduated junior high, teacher experience 
(years), teacher gender, teacher attended college, number of boarding students in the class, class size.  

4) Cluster (class-level)-robust standard errors in parentheses. 
5) *** p<0.01, ** p<0.05, * p<0.1.  
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Appendix B: Cost Comparison 

The main costs of the CAL program and workbook treatment sessions are for training 
facilitators, paying facilitators to run the sessions, developing the software or workbook, 
duplicating the software or workbook, and computer and Internet costs for the software. We 
assume that both the CAL software and workbooks have a limited shelf life. We use the 
ingredient approach to measure costs (Levin and Belfield 2015; Levin, et al. 2017). 
 
CAL Program Costs 
Facilitator training: The cost to train facilitators includes communication costs (3 training 
sessions ∗ 10 RMB/training session = 30 RMB), training materials (20 RMB), and trainer 
remuneration (30 RMB). The teacher training subtotal is 80 RMB/teacher, which is equivalent to 
6.67 RMB/student (assuming that the number of participants is 12). 
 
Facilitator stipends: Class subsidies are given to program teachers for implementing the CAL 
sessions; this costs 850 RMB/teacher (for 17 weekly sessions at 50 RMB per session). This 
comes out to 850 / 12 = 78.33 RMB/student. 
 
Software development: The cost to design and develop the software is a one-time expenditure. 
Assuming that the software will last for 5 years, its per-student unit cost is 200,000 RMB / 5 
years / 88 classes / (12 students/class) = 37.88 RMB/student.  
Reproduction costs: 0 
Computer and Internet costs: 0 (conservatively assuming that these already exist for regular 
classes and no extra wear and tear costs from CAL sessions) 
 
Total cost: Based on the above, the total cost for the supplemental CAL intervention is: 
6.67+78.33+37.88=122.80 RMB per student (roughly $18 USD). 
 
 
Workbook Sessions Costs 
Facilitator training:  The cost to train facilitators includes communication costs (3 training 
sessions ∗ 10 RMB/training session = 30 RMB), training materials (20 RMB), and trainer 
remuneration (30 RMB). The teacher training subtotal is 80 RMB/teacher, which is equivalent to 
6.67 RMB/student (assuming that the number of participants is 12). 
 
Facilitator stipends: Class subsidies are given to program teachers for implementing the 
workbook sessions, and cost 1 classes/week ∗ 17 weeks ∗ 50 RMB/class = 850 RMB/teacher. 
This comes out to 850 / 12 = 78.33 RMB/student (roughly $18 USD). 
 
Workbook development: The cost to design and develop the workbook is a one-time expenditure. 
Assuming that the workbook content will last for 5 years, its per-student unit cost is 5,300 RMB 
/ 5 years / 88 classes / (12 students/class) = 1 RMB/student. 
Reproduction costs: The cost to photocopy and ship the workbook per student is 11 RMB. 
 
Total cost: Based on the above, the total cost for the supplemental workbook intervention is: 
6.67+78.33+1+11=97 RMB per student (roughly $14 USD). 




