

DISCUSSION PAPER SERIES

IZA DP No. 13058

Life Satisfaction, Subjective Wealth, and Adaptation to Vulnerability in the Russian Federation during 2002-2017

Hai-Anh H. Dang Kseniya Abanokova Michael M. Lokshin

MARCH 2020

DISCUSSION PAPER SERIES

IZA DP No. 13058

Life Satisfaction, Subjective Wealth, and Adaptation to Vulnerability in the Russian Federation during 2002-2017

Hai-Anh H. Dang

World Bank, IZA, Indiana University and Vietnam's Academy of Social Sciences

Kseniya Abanokova

Higher School of Economics, National Research University

Michael M. Lokshin

World Bank

MARCH 2020

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA DP No. 13058 MARCH 2020

ABSTRACT

Life Satisfaction, Subjective Wealth, and Adaptation to Vulnerability in the Russian Federation during 2002-2017*

We offer the first study on vulnerability adaptation to subjective well-being, using rich panel data over the past two decades for Russia. We found no adaption to vulnerability for life satisfaction and subjective wealth, with longer vulnerability spells being associated with more negative subjective welfare. Similar results hold for other outcomes including satisfaction with own economic conditions, work contract, job, pay, and career. Some evidence indicates that despite little differences between urban and rural areas with life satisfaction, rural areas exhibit a stronger lack of adaptation for subjective wealth, particularly for longer durations of vulnerability. Higher education levels generally exhibit a stronger lack of adaptation. The lack of adaptation to vulnerability is, however, similar at different education levels for subjective wealth. We also find a U-shaped relationship between age and durations of vulnerability and disability to have the most negative impacts on life satisfaction and subjective wealth.

JEL Classification: D6, I3, O1

Keywords: vulnerability, adaptation, satisfaction, subjective wealth,

gender, panel data, Russia

Corresponding author:

Hai-Anh H. Dang Data Analytics & Tools Unit Development Data Group World Bank 1818 H St. N.W. Washington, D.C. 20433 USA

E-mail: hdang@worldbank.org

^{*} We would like to thank Vladimir Gimpelson, Lilia Ovcharova, and participants at the special IARIW-WB conference (Washington, DC) and seminars at the Institute for Social Policy (HSE, Moscow) for useful feedback on earlier versions. We would also like to thank the UK Department of International Development for funding assistance through its Knowledge for Change (KCP) program. We also acknowledge support from the NRU-HSE Basic Research Program.

I. Introduction

The central hypothesis in the literature on adaption is that individual well-being is determined not only by the current conditions but also by expectations about the future changes in these conditions (Easterlin 1995, 2001). These expectations, in turn, are formed by that individual's past experiences and by the circumstances of the reference groups. Understanding the process of adaptation to low levels of income, either through habituation or social comparisons, is of interest to policy practitioners as it affects the perceptions of subjective welfare in relation to the objective economic conditions. If people adapt to poverty and deprived economic conditions, in general, the subjective measures become unreliable measures of economic wellbeing.

Recent studies suggest that poor individuals do not adapt to poverty (Clark et al., 2016; Dang, Lokshin, and Abanokova, 2019). That is, although individuals may have lived in poverty for some time, they do not lower their subjective welfare expectations in response to their undesirable (objective) economic status. This finding is relevant for policy interventions since poor individuals who are unsatisfied with their economic status would likely have stronger incentives to change their situation and take advantage of opportunities to escape poverty. Consequently, poverty alleviation programs such as education subsidies or job training are useful if they can help provide poor individuals with the means to move out of poverty.

Yet, as rising global living standards help shrink the poor population everywhere (Jolliffe et al., 2015; Ravallion, 2019), increasingly more attention is shifting from the poor to vulnerable groups of the population. For example, the United Nations have called for more rights to economic resources and access to basic services both for the poor and the vulnerable in the Sustainable Development Goals (SDGs). These vulnerable individuals are currently subject to a considerable

-

¹ Clark (2018) offers a recent review of adaptation to other outcomes, and he observes that people may adapt to certain life events (including marriage, children, divorce and widowhood), but not others (including unemployment).

risk of falling into poverty; put differently, they form the population group that could become poor in the future.² Policy programs that help to prevent the potential economic slide for this population group may be even more effective since such programs provide protective measures in the short term as well as sustainable solutions against poverty in the longer term. But to our knowledge, no study currently exists on adaptation to vulnerability (to poverty).³

We offer in this paper the first study on adaptation to vulnerability. We measure adaptation with an individual's satisfaction with her life. In particular, we investigate several research questions. Do individuals adapt to vulnerability? If yes, does the process of adaptation vary by different characteristics of an individual such as age, education achievement, and area of residence (i.e., urban and rural areas)? Do results change for alternative subjective welfare definitions such as subjective wealth? Do results change for different definitions of vulnerability, or different measures of income?⁴ Are there other domains of one's life, such as own economic conditions, work contract, job, pay, and career that also affect the adaptation to poverty? Finally, will results differ by the varying lengths of time that an individual has to endure vulnerability?

We investigate these questions with panel data for the past two decades from Russia. Russia offers a particularly interesting case study for a variety of reasons. The country underwent a radical transformation from a centrally planned to a market-oriented economy in the early 1990s. Despite this upheaval with some initial falters, Russia has earned its place among the group of upper-middle-income countries and has achieved remarkable pro-poor growth and reduced inequality

² See https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals. See also Calvo (2018), Ceriani (2018), and Gallardo (2018) for recent reviews of different vulnerability concepts.

³ Only one study exists that looks at the related relationship between vulnerability and happiness (Caria and Falco, 2018).

⁴ This question asks respondents to imagine where they currently stand on a nine-step ladder where the poorest stand on the first (lowest) step and the richest stand on the ninth (highest) step.

since then (Dang et al., 2019). But no studies on Russia have thoroughly analyzed the welfare of the vulnerable population groups during this fascinating growth process. We aim to fill this gap with this detailed and policy-relevant analysis of adaptation to vulnerability.

Furthermore, related studies of mobility and vulnerability are typically constrained by short panel data sets. In the case of Russia, we overcome this limitation by exploiting multiple rounds of the Russia Longitudinal Monitoring Surveys that span over the last two decades from 2002 to 2017. Hardly any other transitional countries can offer the type of long-running, nationally representative panel household survey data that Russia does.⁵ Finally, our findings are relevant to other transitional economies that are faced with similar challenges.⁶

We find no adaptation for subjective welfare outcomes including life satisfaction and subjective wealth. Our findings are robust to different model specifications, vulnerability index values, vulnerability definitions, definitions of income, and various other assumptions. We also find some evidence that there is not much difference between these areas for life satisfaction. Rural areas, however, offer stronger evidence of no adaptation for subjective wealth, particularly for longer durations of vulnerability. Higher education levels exhibit a stronger lack of adaptation, except for longer durations of vulnerability. Yet, the levels of no adaptation to vulnerability are rather similar at different education levels for subjective wealth. We also find a U-shaped relationship between age and duration of vulnerability, which is consistent with the established

⁵ For example, the China Health and Nutrition Survey (CHNS) collects panel data and was implemented as early as 1989, but does not offer nationally representative data. A more recent panel survey, the China Family Panel Study (CFPS) provides more coverage but was started only in 2010. Alternatively, in the absence of actual panel data, statistical techniques have recently been developed that allow the construction of synthetic panels from repeated cross sections (Dang and Lanjouw, 2017).

⁶ Notably, several centrally planned economies that have been undergoing a similar transition process to a market economy, such as China, Cuba, the Lao People's Democratic Republic, the Democratic People's Republic of Korea, and Vietnam, may particularly benefit from Russia's experience. Economies with heavy government subsidies such as the República Bolivariana de Venezuela may likely share certain features with Russia's previous central economic model.

finding of a similar relationship between age and subjective well-being. But this U-shaped relationship does not exist for longer durations of vulnerability or with subjective wealth. Interestingly, we find no adaption for other subjective well-being outcomes including own subjective wealth, satisfaction with economic conditions, work contract, job, pay, and career.

This paper consists of six sections. We discuss the analytical framework in the next section, which includes our definition of vulnerability and the empirical estimation equation. We subsequently discuss the data in Section III, before offering the main estimation results in Section IV. We offer further analysis of other outcomes in Section V and finally conclude in Section VI.

II. Analytical Framework

II.1. Empirical Strategy

To investigate the relationship between the subjective well-being and vulnerability to poverty, we employ the following linear model with individual fixed effects

$$y_{it} = \beta' V_{it} + \gamma' X_{it} + \eta_i + \tau_t + \varepsilon_{it}$$
 (1)

where y_{it} represents individual i's subjective well-being outcomes in year t. V is a set of dummy variables that indicate how long an individual has lived in vulnerability to poverty. Our coefficients of interest are β , which indicate no adaptation if they are statistically significant and do not decline in size as the duration in vulnerability grows. Furthermore, to measure the general correlation between vulnerability and subjective well-being, we also offer estimates where V_{it} includes two dummy variables: one variable indicates whether an individual suffers from vulnerability (i.e., vulnerability incidence) and the other indicates how far the income of this individual falls below the vulnerability line (i.e., the degree of vulnerability intensity or vulnerability gap). Since in this paper we focus on the non-poor population groups that include the vulnerable, we exclude the poor

from our analysis (see our discussion in the next section). But we also offer estimates where the poor are included in the estimation sample as robustness checks.

 X_{it} includes the control variables, such as employment, age groups, education achievement, marital status, number of children, and regional dummy variables; η_i and τ_t are respectively the individual fixed effects and year dummy variables. Equation (1) is the standard model used in the literature on happiness and adaptation to poverty (e.g., Ferrer-i-Carbonell and Frijters, 2004; Clark *et al.*, 2016).

Since our estimation sample includes individuals who are 16 years old or older, some of them are still attending school, which results in the education variables being time-varying variables. We also estimate our model after dropping the education variables for robustness checks. Life satisfaction is measured on a scale from 1 to 5, and subjective wealth from 1 to 9, with higher scores indicating more satisfaction or more subjective wealth. Satisfaction with one's economic conditions, work contract, job, pay, and career is also measured on a scale from 1 to 5.

II.2. Vulnerability Lines

We follow a recently developed method in setting the welfare line (threshold) that define the vulnerable population group (Dang and Lanjouw, 2017). In particular, this approach employs the existing (national or international) poverty line to define the category of the poor. It then further disaggregates the non-poor group into two subcategories: the vulnerable, who are defined as those currently non-poor but facing a significant risk of falling into poverty, and the remaining group of people who belong to the middle class and higher-income groups. Since individuals can have varying levels of vulnerability to poverty depending on their income, we can define their vulnerability level with a vulnerability index \mathcal{P} . Specifically, this vulnerability index \mathcal{P} is formally defined as the percentage of the non-poor population in the first period that falls into

poverty in the second period. We can then derive the vulnerability line from the specified vulnerability index \mathcal{P} .

The process of obtaining the vulnerability line V_I consists of two steps. The first step is to identify a range of values for the vulnerability index and then select an appropriate value for the index, which could be done based on different criteria such as the government's available budget for social protection or (ideal or desirable) social welfare objectives. Given the specified vulnerability index \mathcal{P} obtained in the first step, the second step is to empirically solve for the vulnerability line in the first period, V_I , from this equation

$$\mathcal{P} = P(y_2 \le z_2 | z_1 < y_1 \le V_1) \tag{2}$$

Put differently, V_I indicates that the vulnerability line is the highest income level among the currently non-poor who have a specified probability of falling into poverty in the next period. We can then deflate the vulnerability line V_I in the first period to obtain the vulnerability lines in other periods using the appropriate deflators.⁸ As discussed earlier, Equation (2) suggests that we can

.

 $^{^7}$ A simple example can help illustrate the use of \mathcal{P} in reaching a desired social protection target, given the available budget. Assume that the total population consists of 1,000 households, where the poverty rate is 15 percent (i.e., 150 households are poor). Also assume that in this population, another 300 vulnerable households are currently non-poor, but have a high risk of falling into poverty, and these households can be made secure with a monthly transfer of \$20 per household. Thus, the vulnerability index in this simple scenario is 35 percent (i.e., dividing 300 households that can be aided and that would have fallen into poverty without the government's support over the total of 850 non-poor households). If the government has enough budget to prevent all these 300 non-poor households from falling into poverty, it can reduce the vulnerability index to zero. On the other hand, if the government only has enough resources to prevent half of these vulnerable households from sliding into poverty, it can reduce the vulnerability index to 17.6 percent (i.e., dividing the remaining 150 vulnerable households over the total of 850 non-poor households). A zero-vulnerability index is certainly better than the 17.6-percent vulnerability index, and indicates no household is vulnerable to falling into poverty. However, the former would require a larger social transfer budget of \$6,000 (=300*\$20), compared with the smaller budget of \$3,000 for the latter.

⁸ This vulnerability approach is different from previous ones in the literature in several respects. First, it provides a new and explicit framework to estimate the vulnerability line, which is associated with a vulnerability index that can be derived in various and more flexible ways. Second, the target population consists of the currently non-poor households rather than all households. Finally, this approach employs simpler non-parametric estimation methods to estimate vulnerability as a function of consumption alone, and can work with either actual panel data or synthetic panel data that can be constructed from cross sections. This approach has been applied in various country settings including Sub-Saharan Africa, Middle East and North Africa, and India (see Dang, Jolliffe, and Carletto (2019) for a

focus on the non-poor population in period 1 and can exclude the poor in this period from our analysis.

In our analysis, we set the vulnerability index at a value of 0.25, which corresponds to a vulnerability line that is twice the national poverty line in 2002. There are a couple reasons why we use this vulnerability index (line). First, several countries such as Brazil, India, Pakistan, and Vietnam (Dang and Lanjouw, 2017) have followed a similar approach and set the vulnerability line as a multiple of the national poverty line. This approach is pragmatic since it is straightforward for policymakers to justify their choice to the public that the vulnerability line should provide a higher-income line compared to the poverty line, but the two lines are still closely connected.9 Second, the vulnerability line that corresponds to this vulnerability index is 3381 rubles per month in 2002 prices, which we keep fixed in real terms for the subsequent years in our estimation sample (Appendix 1, Table 1.1). That is, we use deflators with this vulnerability line to obtain lines for the subsequent years up to 2017; for example, the vulnerability line for 2017 is equivalent to 8139 rubles per month in 2011 prices. But we will also show robustness checks using other values of the vulnerability index. Finally, since we will further disaggregate the time that an individual lives in vulnerability into varying lengths, we will need to ensure that we have sufficient numbers of observations for each of these time windows.

III. Data Description

The Russian Longitudinal Monitoring Survey (RLMS) was initially created with funding from various sources including the G-7 countries, USAID, and the World Bank. The survey is currently

recent review). See also Dang and Lanjouw (2017) for a more detailed comparison of this approach with other approaches.

⁹ A recent study for Russia (Tikhonova, 2018) defines the vulnerable population group as those that are between 0.5 and 0.75 times the median income.

managed by the Carolina Population Center, University of North Carolina, and Russia's National Research University Higher School of Economics. The ongoing panel survey started in 1994 and has been implemented every year since then, except for a break in 1997 and 1999. The RLMS collects nationally representative data on various topics, including household demographics, income and consumption, occupation characteristics, and others. The sample size is between 4,000 and 6,000 households, capturing between 8,000 and 17,000 individuals each year, which have been replenished several times due to panel attrition over time. Hardly any middle-income countries can offer such long-running and nationally representative panel data as the RLMS.

The main outcome variable that we analyze in this paper is the total household income per capita, which is based on a survey question asking about the total monetary income that a household received during the past 30 days. By definition, it includes other types of incomes such as capital income and labor income. However, the share of the capital income in the total incomes is small, accounting for less than 3 percent in all years. On the other hand, labor income has the biggest share and can comprise more than 60 percent for some years. We also examine several other definitions of income for robustness checks. We deflate all the income variables with the annual regional consumer price deflators indexed to 100 in December 2011.

¹⁰ We focus on household income rather than household consumption since changes to consumption items in the survey questionnaires could render the latter variable incomparable over time. For example, 14 percent of total household consumption was comprised of items that were found in 2015 only. Furthermore, comparing household consumption between 1994 and 2015, 12 percent of total household consumption in 1994 is accounted for by consumption items that are more disaggregated than 2015; the corresponding figure for 2015 compared with 1994 is 11 percent.

¹¹ We did not include the value of imputed housing rent in household income for different reasons. The RLMS data enables us to look at household expenditure on rent. However, relatively few households have to pay market-based rents on their homes, the share of such tenants in was less than 10% between1994-2015. A significant share of the households rent from the government and pay "social rent" instead, which is controlled and below the private market price (Hamilton et al, 2008). Furthermore, the RLMS does not ask home owners to estimate the rental value of their house.

We focus on the period starting from 2002 rather than 2001 since income growth per capita for this year is 7.1 percent using RLMS data. This is far closer to the average income growth rate of 6 percent for the period 2002-17, compared to the unusually high growth rate of 27 percent for 2001 (see Appendix 1, Table 1.2). In addition, the range of the vulnerability index for 2002-03 is also more comparable to those for other years during the period 2002-17 (Appendix 1, Table 1.1). ¹²

Table 1 offers the summary statistics of the estimation sample for the period 2002-17, which indicate that respondents have an average life satisfaction score of 3.3 and an average subjective wealth score of 4.0. The vulnerability incidence hovers around 27 percent. The majority of the respondents (83 percent) completed secondary education or higher, and the majority of them (64 percent) are employed. More than half (58 percent) of the sample are women, and around three-fourths (74 percent) of the sample live in urban areas (i.e., larger towns or cities).

IV. Estimation Results

IV.1. Adaptation to Vulnerability

We provide estimation results in Table 2, which show that both vulnerability incidence and intensity are statistically significant and are negatively correlated with life satisfaction and subjective wealth. Controlling for other factors, a vulnerable person would be 0.067 points less satisfied (column 1) and 0.157 points feeling less wealthy (column 4) than a non-vulnerable person. For comparison, completing more than secondary education is negatively and statistically significantly associated with life satisfaction and has a somewhat similar magnitude of association; but this relationship generally fails to hold for subjective wealth.

¹² Furthermore, Dang et al. (2019) show that after a long period of declining and recovering incomes related to the post-Soviet period and the crisis period of 1998, Russia was able to achieve the pre-crisis income level of 1994 in 2001. The country's steady income growth subsequently started since 2002.

Table 2 also suggests that a vulnerable person with an income half of the vulnerability line (i.e., with the vulnerability gap variable equal to 0.5) would be 0.218 points (=0.067+ 0.302*0.5) less satisfied than the same person when not vulnerable (Table 2, first column). Interestingly, these impacts hold for both men and women. Similar results apply for subjective wealth, where the same vulnerable person with an income half of the poverty line is 0.255 points feeling less wealthy than her non-vulnerable peer (Table 2, fourth column).¹³

These results are similar to those for adaptation for poverty provided in Dang et al. (2019). But do they change when we include in the estimation sample the poor individuals? Estimation results, shown in Appendix 1, Table 1.3, suggest that results remain qualitatively similar. In fact, the dummy variable that indicates whether an individual lives below the poverty line is not statistically significant, indicating that the inclusion of the poor group does not add to our analysis.

Table 2 provides estimates for a contemporaneous relationship only and does not tell whether the duration of stay in vulnerability is negatively correlated with subjective welfare. We further examine this relationship in Table 3. Following a similar approach by Clark *et al.* (2016), we restrict the estimation sample to those we can observe when they first entered vulnerability while in the panel (such that we know how long they have been vulnerable). For the currently vulnerable, we dissect their vulnerability status into four variables: whether they entered vulnerability within the past year, one to two years ago, and so on, up to three or more years ago. Vulnerability adaptation implies that individuals' subjective wellbeing has a weaker relationship with their vulnerability status over time. Yet, estimates (column 1) suggest no vulnerability adaptation, with

¹³ Multicolinearity among some variables can be an issue with the regressions in Table 2 if, say, the vulnerable are more likely to be less educated and therefore have a higher risk of poverty. To address this concern, we implement variance inflation factors (VIF) tests for all the control variables. The VIF tests (available upon request) range from 1.10-1.11 (for the dummy variable indicating urban/rural locations) to 2.93 (for the variable vulnerability gap). These test values are far less than the rule-of-thumb value of 10 for harmful collinearity given by Kennedy (2008).

the estimated coefficients on the vulnerability duration variables ranging from -0.1 to -0.4. Formal statistical tests, however, show that the estimated coefficients on vulnerability duration of less than one year is larger in magnitude than (and statistically significantly different from) those on vulnerability durations of greater than one year (Appendix 1, Table 1.4). Estimates are generally qualitatively similar for subjective wealth, with the estimated coefficient on vulnerability duration of less than one year being not statistically different from those on longer vulnerability duration (column 4).

While there is not much difference between men and women for adaptation in terms of life satisfaction (Table 3, columns 2 and 3), a gender gap exists for adaptation in terms of subjective wealth. Specifically, men appear to adapt better, with the estimated coefficients on vulnerability durations of more than one year being statistically insignificant from zero (Table 3, column 5). But women do not show any sign of adaptation for either life satisfaction or subjective wealth (Table 3, columns 3 and 6).

Would the estimates in Table 3 change if we take into account major life events such as unemployment, retirement, loss of a partner, bad health, disability, and changes in household size? We plot in Figure 1 the differences in life satisfaction and subjective wealth for individuals that are affected by any of these events against those that are not. This figure indicates that the former has somewhat lower subjective wealth, but counterintuitively, has lower life satisfaction at longer durations of stay in vulnerability. This may be caused by the pooling of different major events that could have opposite impacts on subjective wellbeing. We thus provide a further breakdown for each of these events in Figures 1.1 and 1.2 in Appendix 1, which suggest that disability has the most negative impacts on life satisfaction and subjective wealth.

IV.2. Robustness Checks

We implement a battery of robustness checks in this subsection, which indicate that estimation results are robust to different model specifications, vulnerability index values, vulnerability definitions, income definitions, and various other checks.

First, as an alternative model specification, we add log income per capita as a control variable instead of the vulnerability gap. While the latter variable focuses on how far below the vulnerability line the vulnerable are, the former variable takes into account the whole income distribution. Estimate results, shown in Table 4, are rather similar.

Second, instead of fixing the vulnerability index at 0.25 (or 25 percent), Figure 2 examines whether the estimated coefficients on the dummy variable indicating individuals living under below the vulnerability line varies for different vulnerability indexes. The range of the vulnerability index is 22 percent to 30 percent. Estimation results suggest that longer vulnerability durations are more negatively correlated with subjective wealth than with life satisfaction.

Third, Tables 5 and 6 similarly investigate whether the estimation results on vulnerability adaptation shown in Table 4 change for different values of the vulnerability indexes. Estimates remain very similar. For example, the estimated coefficient on the dummy variable indicating whether individuals live in vulnerability for less than one year is -0.07 for the vulnerability index of 22 percent and -0.10 for the vulnerability index of 27 percent. These figures are close to the corresponding figure of -0.097 for the vulnerability index of 25 percent.¹⁴

Fourth, instead of obtaining the vulnerability index (line) based on the period 2002-03, we switch to obtaining these parameters using the period 2001-02. The range of the vulnerability index

¹⁴ We only show in Tables 5 and 6 the estimates for a range of the vulnerability index of [22, 27], rather than the full range of [22, 30], to ensure there is a sufficient number of observations for each vulnerability duration spell.

is larger for the latter period (i.e., [29, 42]), given the unusual economic growth discussed earlier. We then rerun the estimates for adaptation for vulnerability (shown in Table 4); estimation results, provided in Appendix 1, Tables 1.4 and 1.5, remain qualitatively similar.

Fifth, as discussed earlier, the education achievement variables can be time-varying for some individuals that were still going to school at the time of the survey. For robustness checks, we drop these education variables and rerun the estimates in Table 3. Estimation results, shown in Appendix 1, Table 1.7, are qualitatively similar.

Sixth, Figure 1.3 in Appendix 1 shows estimation results where we use two other definitions of income that adjust for equivalence scales. The first definition is the OECD scale, and the second is based on Scharwe's (2003) adjustment and our own adjustment (Abanokova et al., 2019) using subjective scales. Estimates are generally qualitatively similar for both of these alternative definitions of income.

Seventh, to address concerns about potential bias due to panel attrition, we add to the regressions additional variables that indicate whether an individual participates in the next survey wave or the number of survey waves an individual participates in. This represents a simple but effective way to control for selectivity bias that does not require complicated modeling of the selection process (Verbeek and Nijman, 1992). Estimation results, shown respectively in Appendix 1, Table 1.8 and Table 1.9, remain similar.

Finally, we employ another approach developed by Chaudhuri et al. (2002) and Chaudhuri (2003) to define vulnerability. However, it should be noted that this approach only offers estimates of the vulnerability index, but not the vulnerability line (which is implicitly assumed to take on a certain value). As such, this approach can provide a check on the contemporaneous relationship between vulnerability and subjective well-being rather than the full sets of results on adaptation to

vulnerability. We provide a brief overview of this approach and estimates in Appendix 2. Estimation results, however, are qualitatively similar in terms of the contemporaneous relationship between vulnerability and subjective well-being.

IV.3. Heterogeneity Analysis

We examine in this subsection whether estimation results vary for different characteristics of the population such as areas of residence, education achievement, age as well as different time periods.

Disaggregating estimates by urban and rural areas, Table 7 shows that there is not much difference between these areas for life satisfaction. However, rural areas offer stronger evidence of no adaptation for subjective wealth, particularly for longer durations of vulnerability.

Figure 3 shows that the lack of adaptation to vulnerability regarding life satisfaction is stronger for higher education levels, except for longer durations of vulnerability of 3 years or more. On the other hand, the level of no adaptation to vulnerability is rather similar at different education levels for subjective wealth.

Figure 4 considers the age profile of adaptation to vulnerability. Interestingly, there appears to be a U-shaped relationship between age and durations of vulnerability, which is consistent with the established finding of a similar relationship between age and subjective well-being (Clark, 2018). This U-shaped relationship, however, disappears for longer durations of vulnerability of 3 years or more with life satisfaction. It does not exist with subjective wealth either.

Further breaking down the period of analysis into three shorter time periods of 2002-07, 2007-12, and 2012-17, Table 8 shows a negative contemporaneous relationship between vulnerability and subjective welfare in all these periods. This is similar to that for the overall period 2002-17 show in Table 2. A vulnerable person with an income half of the vulnerability line would be 0.195

points, 0.185 points, 0.250 points less satisfied than the same person when not vulnerable respectively for the periods 2002-07, 2007-12, and 2012-17 (Table 8, first three columns). For subjective wealth, the corresponding figures are 0.228 points, 0.330 points, and 0.308 points feeling less wealthy than her non-vulnerable peer (Table 8, columns 4 to 6).

Plotting the estimates for adaptation for these shorter periods (which is similar to that of the whole population shown in Table 3), Figure 1.4 in Appendix 1 suggests qualitatively similar results for the two periods 2002-07 and 2012-17 with life satisfaction. The estimates with adaptation with life satisfaction for the period 2007-12 is, however, not statistically significant; neither are the estimates with adaptation with subjective wealth for all three periods. One possible reason is that the estimation sample sizes are smaller for these periods. ¹⁵

V. Further Extension

We turn next to examining the question of whether the lack of adaptation to vulnerability may apply to other subjective welfare outcomes such as satisfaction with one's overall economic conditions, work contract, job, pay, and career. If there is a similar lack of adaptation with these outcomes, our estimation results with life satisfaction and subjective wealth discussed above would be further corroborated.

Indeed, Table 9 shows that there is a negative contemporaneous relationship between vulnerability and these outcomes, which provides additional supportive evidence for our estimation results. We graphically show in Figure 5 estimates on vulnerability adaption, which point to no adaptation for these outcomes, except for one's work contract and career.

¹⁵ Since there are insufficient number of observations in the group of vulnerability duration of "3 years or more", we have to aggregate this group with the group of vulnerability duration of "1 to 2 years" for Figure 1.4 in Appendix 1.

15

VI. Conclusion

We offer the first study on adaptation to vulnerability using panel data from Russia, a middle-income transition country. We find that there is no adaptation for subjective welfare outcomes including life satisfaction and subjective wealth. Furthermore, our findings are robust to different model specifications, vulnerability index values, vulnerability definitions, income definitions, and various other checks.

We also find some evidence that there is not much difference between these areas for life satisfaction. Rural areas, however, offer stronger evidence of no adaptation for subjective wealth, particularly for longer durations of vulnerability. The lack of adaptation to vulnerability regarding life satisfaction is stronger for higher education levels, except for longer durations of vulnerability. On the other hand, the level of no adaptation to vulnerability is rather similar at different education levels for subjective wealth.

We also find a U-shaped relationship between age and durations of vulnerability, which is consistent with the established finding of a similar relationship between age and subjective well-being. But this U-shaped relationship does not exist for longer durations of vulnerability or with subjective wealth.

Finally, our findings are further supported by similar results with other subjective well-being outcomes including own subjective wealth, satisfaction with economic conditions, work contract, job, pay, and career.

References

- Abanokova, K., Dang, H.-A., and Lokshin, M. (2019). "The Important Role of Equivalence Scales: Household Size, Composition, and Poverty Dynamics in Russia". *Paper presented at the IARIW-HSE Conference "Experiences and Future Challenges in Measuring Income and Wealth in CIS Countries and Eastern Europe*". Moscow, Russia.
- Calvo, C. (2018). "Vulnerability to poverty: theoretical approaches". In *Handbook of Research on Economic and Social Well-Being*. Edward Elgar Publishing.
- Caria, S. A. and Falco, P. (2018). "Does the risk of poverty reduce happiness?". *Economic Development and Cultural Change*, 67(1), 1-28.
- Ceriani, L. (2018). "Vulnerability to poverty: empirical findings." In *Handbook of Research on Economic and Social Well-Being*. Edward Elgar Publishing.
- Chaudhuri, S. (2003). "Assessing vulnerability to poverty: concepts, empirical methods and illustrative examples." *mimeo*, Columbia University, New York
- Chaudhuri, S., Jalan, J. and Suryahadi, A. (2002). "Assessing Household Vulnerability to Poverty: A Methodology and Estimates for Indonesia." *Discussion Paper 0102-52*, Columbia University, Department of Economics, New York
- Christiaensen, L. J., and Subbarao, K. (2005). "Towards an understanding of household vulnerability in rural Kenya." *Journal of African Economies*, 14(4), 520-558.
- Clark, A. E. (2018). "Four Decades of the Economics of Happiness: Where Next?" *Review of Income and Wealth*, 64(2), 245-269.
- Clark, A.E., D'Ambrosio, C. and S. Ghislandi. (2016). "Adaptation to poverty in long-run panel data". *Review of Economics and Statistics*, 98(3): 591-600.
- Dang, H.-A. and Lanjouw, P. F. (2017). "Welfare Dynamics Measurement: Two Definitions of a Vulnerability Line and Their Empirical Application". *Review of Income and Wealth*, 63(4), 633-660.
- Dang, H.-A., Jolliffe, D., & Carletto, C. (2019). "Data gaps, data incomparability, and data imputation: A review of poverty measurement methods for data-scarce environments". *Journal of Economic Surveys*, 33: 757-797.
- Dang, H.-A., Lokshin, M., and Abanokova, K. (2019). "Did the Poor Adapt to Their Circumstances? Evidence from Long-run Russian Panel Data". *Economics Bulletin*, 39(4), 2258-2274.
- Dang, H. A., Lokshin, M., Abanokova, K., and Bussolo, M. (2019). "Welfare and Inequality Dynamics in the Russian Federation during 1994-2015". *European Journal of Development Research*. doi: https://doi.org/10.1057/s41287-019-00241-3

- Easterlin, R. (1995). "Will Raising the Incomes of All Increase the Happiness of All?" *Journal of Economic Behavior and Organization*, 27: 35-47.
- ---. (2001). "Income and Happiness: Towards a Unified Theory". *Economic Journal*, 111: 465-484.
- Ferrer-i-Carbonell, A. and Frijters, P. (2004). "How important is methodology for the estimates of the determinants of happiness?" *Economic Journal*, 114(497), 641-659.
- Gallardo, M. (2018). "Identifying vulnerability to poverty: A critical survey". *Journal of Economic Surveys*, 32(4), 1074-1105.
- Hamilton, E., Banerjee, S. G., and Lomaia, M. (2008). "Exploring housing subsidies to households in Russia." *Journal of International Development*, 20(3), 257-279.
- Jolliffe, D., Lanjouw, P., Chen, S., Kraay, A., Meyer, C., Negre, M., Prydz, E., Vakis, R., and Wethli, K. (2015). *A Measured Approach to Ending Poverty and Boosting Shared Prosperity: Concepts, Data, and the Twin Goals*. Washington DC: The World Bank.
- Kennedy, P. (2008). A Guide to Econometrics, 6th edition, Blackwell Publishing: Massachusetts, USA.
- Ravallion, M. (2019). "On Measuring Global Poverty." *NBER Working Papers* 26211, National Bureau of Economic Research, Inc.
- Schwarze, J. (2003). "Using panel data on income satisfaction to estimate equivalence scale elasticity". *Review of Income and Wealth*, 49(3), 359-372.
- Tikhonova, N. E. (2018). "Income Stratification in Russia in Comparison to Other Countries". *Sociological Research*, 57(5-6), 286-307.
- Verbeek, M. and Nijman T. (1992). "Testing for selectivity bias in panel data models." *International Economic Review*, 33(3), 681-703.

Table 1. Descriptive Statistics, RLMS 2002-2017

Variables	Life sat	isfaction	Subjective wealth		
variables	Mean	Std_dev	Mean	Std_dev	
Dependent variable	3.253	1.066	4.049	1.413	
Below vulnerability line	0.271	0.445	0.270	0.444	
Vulnerability gap	0.052	0.108	0.052	0.108	
Individual characteristics					
Employed	0.642	0.479	0.645	0.479	
Unemployed/out of labour force	0.358	0.479	0.355	0.479	
Age 16–20	0.069	0.253	0.068	0.251	
Age 21–30	0.193	0.394	0.193	0.395	
Age 31–40	0.177	0.382	0.178	0.382	
Age 41–50	0.161	0.368	0.162	0.368	
Age 51–60	0.166	0.372	0.167	0.373	
Age 61–70	0.118	0.322	0.118	0.323	
Age 71–80	0.085	0.278	0.084	0.278	
Age 80+	0.038	0.190	0.037	0.188	
Female	0.578	0.494	0.579	0.494	
Education					
Incomplete secondary	0.174	0.379	0.171	0.376	
Complete secondary	0.297	0.457	0.297	0.457	
Secondary+vocational	0.263	0.440	0.264	0.441	
University and higher	0.265	0.441	0.267	0.442	
Single	0.164	0.371	0.163	0.369	
Married	0.629	0.483	0.631	0.483	
Divorced/widowed/separated	0.205	0.404	0.205	0.404	
Number of children	0.480	0.730	0.481	0.731	
Regional characteristics					
Moscow/Saint-Petersburg	0.129	0.335	0.129	0.336	
City	0.342	0.474	0.344	0.475	
Town	0.272	0.445	0.273	0.445	
Small town	0.057	0.232	0.056	0.230	
Rural	0.200	0.400	0.197	0.398	
Number of observations	153	922	152	190	
Number of individuals	33	550	33	355	

Note: Means and standard deviations are obtained with pooled unweighted data. The summary statistics under "Life satisfaction" and "Subjective wealth" are for each for these estimation samples respectively.

Table 2. Life satisfaction/subjective wealth and vulnerability, fixed-effects regressions, RLMS 2002-2017

	L	ife satisfactio	n	Su	bjective wea	lth
Variables	Whole sample	Men	Women	Whole sample	Men	Women
Dalary vyslaamahility lina	-0.067***	-0.061***	-0.070***	-0.157***	-0.138***	-0.169***
Below vulnerability line	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)
Vulnerability gap	-0.302***	-0.285***	-0.318***	-0.195***	-0.240***	-0.164**
	(0.05)	(0.06)	(0.05)	(0.07)	(0.09)	(0.07)
Individual Characteristics Unemployed/out of labour force	-0.192***	-0.277***	-0.141***	-0.200***	-0.287***	-0.148***
	(0.01)	(0.02)	(0.01)	(0.01)	(0.02)	(0.01)
Age 16–20	0.249***	0.232***	0.250***	0.328***	0.252***	0.396***
	(0.03)	(0.04)	(0.04)	(0.04)	(0.06)	(0.05)
Age 21–30	0.027	-0.027	0.056**	0.117***	0.033	0.181***
	(0.02)	(0.03)	(0.03)	(0.03)	(0.04)	(0.03)
Age 31–40	-0.015	-0.044**	0.003	0.052***	0.004	0.085***
	(0.01)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
Age 51–60	0.062***	0.027	0.087***	-0.033**	-0.057**	-0.018
	(0.01)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
Age 61–70	0.133***	0.142***	0.133***	0.005	0.039	-0.010
	(0.02)	(0.03)	(0.02)	(0.02)	(0.04)	(0.03)
Age 71–80	0.116***	0.126***	0.110***	0.011	0.037	0.001
	(0.02)	(0.04)	(0.03) 0.117***	(0.03)	(0.05)	(0.03)
Age 80+	0.139***	0.168***		0.245***	0.248***	0.243***
T	(0.03)	(0.05)	(0.03)	(0.04)	(0.07)	(0.04)
Education	0.022**	0.020*	0.026*	0.000	0.022	0.006
Complete secondary	-0.032**	-0.030*	-0.036*	-0.009	-0.023	0.006
C 1	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)
Secondary+vocational	-0.067***	-0.072***	-0.063***	-0.068***	-0.066**	-0.066**
TTo:	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.03)
University and higher	-0.073***	-0.077**	-0.078***	-0.035	-0.008	-0.046
Cinala	(0.02) -0.165***	(0.03) -0.146***	(0.03) -0.187***	(0.03) -0.052**	(0.04)	(0.04) -0.067**
Single	(0.02)				-0.030	
Divorced/widowed/separated	-0.260***	(0.02) -0.338***	(0.02) -0.239***	(0.02) -0.178***	(0.03) -0.144***	(0.03) -0.189***
Divorced/widowed/separated	(0.01)	(0.03)	(0.02)	(0.02)	(0.03)	(0.02)
Number of children	0.01)	0.012	0.015*	0.026**	0.020	0.030**
Number of children	(0.01)	(0.012)	(0.013)	(0.01)	(0.020)	(0.01)
Constant	3.335***		3.314***	4.069***	4.168***	3.989***
Constant	(0.09)	(0.07)	(0.09)	(0.07)	(0.16)	(0.10)
Mean of dependent variable	3.25	3.32	3.20	4.05	4.13	3.99
(Standard deviation)	(1.07)	(1.05)	(1.07)	(1.41)	(1.42)	(1.41)
R2	0.017	0.018	0.018	0.019	0.021	0.019
Number of observations	153,922	64,931	88,991	152,190	64,089	88,101
Number of individuals	33,550	14,875	18,675	33,355	14,792	18,563
The district of the control of the	22,230	1 1,073	10,073	33,333	1 1,172	10,505

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. Regional and time dummy variables are included but not showed. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). The vulnerability index is defined as P (Y1<Z1|Z0<Y0<V0) = 0.25 in 2002, which is then adjusted for inflation using annual (December to December) CPI for each of 32 regions. Estimation results are based on real total household income per capita. Estimation sample is restricted to individuals 16 years old or older.

Table 3. Adaptation to vulnerability, fixed-effects regressions, RLMS 2002-2017

Variables		Life satisfaction			Subjective wealth	1
variables	All	Men	Women	All	Men	Women
I ass then 1 ween in vulnerability	-0.097***	-0.062*	-0.120***	-0.162***	-0.136***	-0.172***
Less than 1 year in vulnerability	(0.02)	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)
1.2 years in yelmanahility	-0.196***	-0.062* -0.120*** -0.162*** -0.136*** -0.172***				
1-2 years in vulnerability	(0.04)	(0.06)		(0.08)	(0.07)	
2.2 years in vulnerability	-0.221***	-0.263***	-0.180**	-0.164*	-0.034	-0.232**
2-3 years in vulnerability	(0.06)	(0.09)	(0.08)	(0.09)	(0.12)	(0.09)
Over 2 years in vulnershility	-0.428***	-0.315**	-0.482***	-0.310**	-0.182	-0.364**
Over 3 years in vulnerability	(0.10)	(0.14)	(0.12)	(0.13)	(0.17)	(0.14)
Mean of dependent variable	3.23	3.30	3.18	4.04	4.10	4.00
(Standard deviation)	(1.06)	(1.06)	(1.06)	(1.39)	(1.40)	(1.38)
R2	0.027	0.045	0.027	0.038	0.047	0.040
Number of observations	10,047	4,329	5,718	9,918	4,278	5,640
Number of individuals	3,035	1,332	1,703	3,024	1,330	1,694

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis.

Table 4. Life satisfaction/subjective wealth and vulnerability, fixed-effects regressions, RLMS 2002-2017

	I	ife satisfactio	n	Subjective wealth				
Variables	Whole sample	Men	Women	Whole sample	Men	Women		
D.1. 1	-0.040***	-0.041***	-0.038***	-0.060***	-0.060***	-0.060***		
Below vulnerability line	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)		
T C	0.157***	0.135***	0.172***	0.266***	0.241***	0.282***		
Log of income per capita	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)		
Mean of dependent variable	3.25	3.32	3.20	4.05	4.13	3.99		
(Standard deviation)	(1.07)	(1.05)	(1.07)	(1.41)	(1.42)	(1.41)		
R2	0.019	0.020	0.021	0.024	0.025	0.024		
Number of observations	153,922	64,931	88,991	152,190	64,089	88,101		
Number of individuals	33,550	14,875	18,675	33,355	14,792	18,563		

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All the regressions include all control variables in Table 2. Regional and time dummy variables are included but not showed. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). The vulnerability index is defined as P (Y1<Z1|Z0<Y0<V0) = 0.25 in 2002, which is then adjusted for inflation using annual (December to December) CPI for each of 32 regions. Estimation results are based on real total household income per capita. Estimation sample is restricted to individuals 16 years old or older.

Table 5. Adaptation of life satisfaction to vulnerability, fixed-effects regressions, RLMS 2002-2017

		7	ulnerability	y indexes (%	o)	
	22	23	24	25	26	27
Less than 1 year in	-0.070***	-0.106***	-0.123***	-0.097***	-0.102***	-0.100***
vulnerability	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
1-2 years in vulnerability	-0.132***	-0.187***	-0.227***	-0.196***	-0.194***	-0.189***
1-2 years in vullerability	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)	(0.04)
2-3 years in vulnerability	-0.179***	-0.104*	-0.203***	-0.221***	-0.132*	-0.103
2-3 years in vulnerability	(0.05)	(0.05)	(0.05)	(0.06)	(0.07)	(0.07)
Over 3 years in	-0.211***	-0.134*	-0.268***	-0.428***	-0.371***	-0.260**
vulnerability	(0.07)	(0.07)	(0.08)	(0.10)	(0.11)	(0.11)
<i>R2</i>	0.022	0.031	0.031	0.027	0.028	0.029
Number of observations	8,508	10,748	10,688	10,047	9,809	9,279
Number of individuals	2,352	3,071	3,092	3,035	3,008	2,872

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis. The range of vulnerability indexes is selected to ensure that the number of observations in each duration category is at least 100.

 $\begin{tabular}{ll} Table 6. Adaptation of subjective wealth to vulnerability, fixed-effects regressions, RLMS 2002-2017 \end{tabular}$

		7	ulnerability	y indexes (%	o)	
	22	23	24	25	26	27
Less than 1 year in	-0.127***	-0.147***	-0.139***	-0.162***	-0.133***	-0.128***
vulnerability	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
1-2 years in vulnerability	-0.159***	-0.209***	-0.211***	-0.192***	-0.102	-0.125*
1-2 years in vullerability	(0.06)	(0.05)	(0.05)	(0.06)	(0.06)	(0.07)
2-3 years in vulnerability	-0.233***	-0.147**	-0.159**	-0.164*	0.021	-0.054
2-3 years in vulnerability	(0.08)	(0.07)	(0.07)	(0.09)	(0.09)	(0.10)
Over 3 years in	-0.260***	-0.050	-0.128	-0.310**	-0.196	-0.220
vulnerability	(0.10)	(0.09)	(0.10)	(0.13)	(0.13)	(0.14)
<i>R2</i>	0.031	0.035	0.037	0.038	0.037	0.034
Number of observations	8,450	10,680	10,588	9,918	9,691	9,163
Number of individuals	2,351	3,069	3,087	3,024	2,998	2,863

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis. The range of vulnerability indexes is selected to ensure that the number of observations in each duration category is at least 100.

 $\begin{tabular}{ll} Table 7. Adaptation to vulnerability by urban/rural areas, fixed-effects regressions, RLMS 2002-2017 \end{tabular}$

Variables	L	ife satisfactio	n	Su	bjective wea	lth
Variables	All	Urban	Rural	All	Urban	Rural
Less than 1 year in	-0.097***	-0.101***	-0.100**	-0.162***	-0.146***	-0.179***
vulnerability	(0.02)	(0.03)	(0.04)	(0.03)	(0.04)	(0.06)
1-2 years in	-0.196***	-0.209***	-0.174**	-0.192***	-0.137**	-0.315***
vulnerability	(0.04)	(0.05)	(0.08)	(0.06)	(0.07)	(0.12)
2-3 years in	-0.221***	-0.232***	-0.221*	-0.164*	-0.019	-0.485***
vulnerability	(0.06)	(0.08)	(0.12)	(0.09)	(0.10)	(0.16)
Over 3 years in	-0.428***	-0.356***	-0.594***	-0.310**	-0.167	-0.538**
vulnerability	(0.10)	(0.12)	(0.20)	(0.13)	(0.16)	(0.23)
Mean of dependent variable	3.23	3.23	3.24	4.04	4.01	4.11
(Standard deviation)	(1.06)	(1.05)	(1.09)	(1.39)	(1.38)	(1.41)
R2	0.027	0.027	0.045	0.038	0.046	0.048
Number of observations	10,047	7,166	2,881	9,918	7,119	2,799
Number of individuals	3,035	2,150	885	3,024	2,147	877

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis. "Urban" category includes Moscow, Saint Petersburg, big cities (oblastnoy center), semi-urban areas (towns). "Rural" category includes semi-rural (small towns) and rural areas.

Table 8. Life satisfaction/subjective wealth and vulnerability, fixed-effects regressions, RLMS 2002-2017

Variables		Life satisfaction	n	Subjective wealth					
Variables	2002-2007	2007-2012	2012-2017	2002-2007	2007-2012	2012-2017			
Dalam mala anabilita lina	-0.044**	-0.054***	-0.078***	-0.091***	-0.079***	-0.152***			
Below vulnerability line	(0.02)	(0.02)	(0.02)			(0.02)			
M-1,1, 11(-0.302***	-0.261***	-0.343***	-0.273***	-0.502***	-0.312**			
Vulnerability gap	(0.07)	(0.09)	(0.10)	(0.09)	(0.12)	(0.14)			
R2	0.012	0.012	0.014	0.009	0.008	0.029			
Number of observations	35,861	64,955	75,239	35,592	64,200	74,291			
Number of individuals	13,810	23,714	22,945	13,753	23,531	22,794			

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All the regressions include the same control variables as in Table 2. Regional and time dummy variables are included but not showed. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). The vulnerability index is defined as P (Y1<Z1|Z0<Y0<V0) = 0.25 in 2002, which is then adjusted for inflation using annual (December to December) CPI for each of 32 regions. Estimation results are based on real total household income per capita. Estimation sample is restricted to individuals 16 years old or older.

Table 9. Satisfaction with other dimensions of life and vulnerability, fixed-effects regression, RLMS 2002-2017

	Satisfaction with									
Variables	Economic conditions	Job	Work contract	Pay	Career					
Dalass system anability line	-0.067***	-0.158***	-0.040***	-0.024*	-0.136***					
Below vulnerability line	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)					
Vylnarahility can	-0.302***	-0.403***	-0.255***	-0.275***	-0.349***					
Vulnerability gap	(0.05)	(0.05)	(0.06)	(0.06)	(0.07)					
Mean of dependent variable	2.50	3.61	3.54	2.84	3.15					
(Standard deviation)	(1.13)	(0.97)	(1.02)	(1.19)	(1.18)					
R2	0.017	0.026	0.021	0.026	0.027					
Number of observations	153,922	153,689	93,033	92,875	92,667					
Number of individuals	33,550	33,530	22,813	22,798	22,790					

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Data on satisfaction with economic conditions and satisfaction with job, work contract, pay and career are available respectively from 2000 and 2002 for employed individuals.

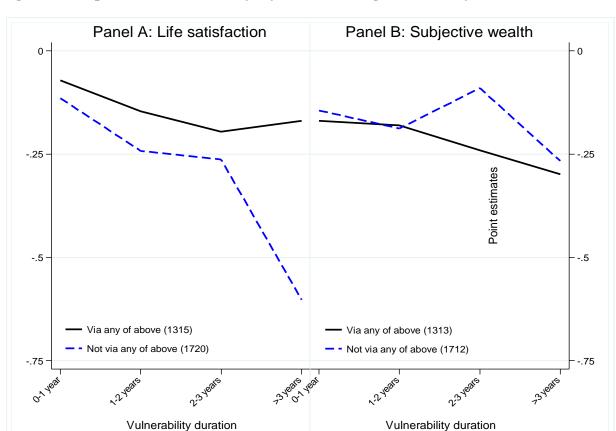
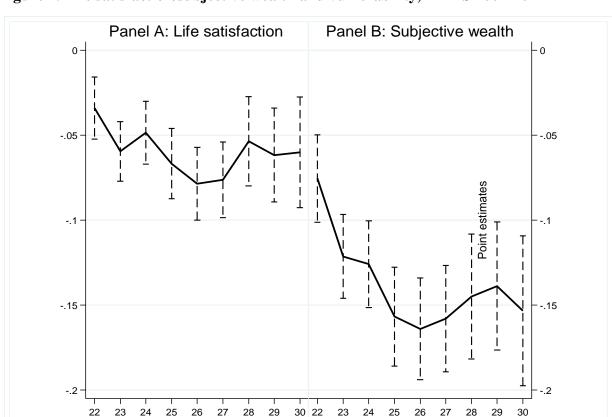
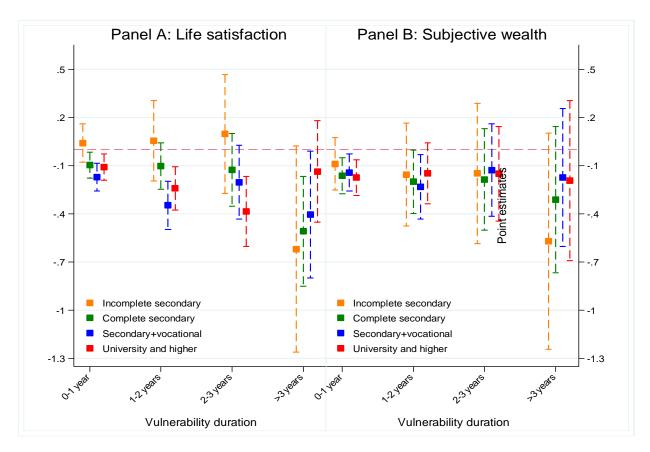


Figure 1. Adaptation to vulnerability, by events causing vulnerability, RLMS 2002-2017

Note: The numbers in parentheses refer to the number of individuals (i.e. vulnerability entries). Vulnerability events include major life events such as unemployment, retirement, loss of a partner, bad health, disability, and changes in household size




Figure 2. Life satisfaction/subjective wealth and vulnerability, RLMS 2002-2017

Note: Regressions include all the control variables in Table 2. The dashed line represents the 95% confidence intervals.

Vulnerability indexes (%)

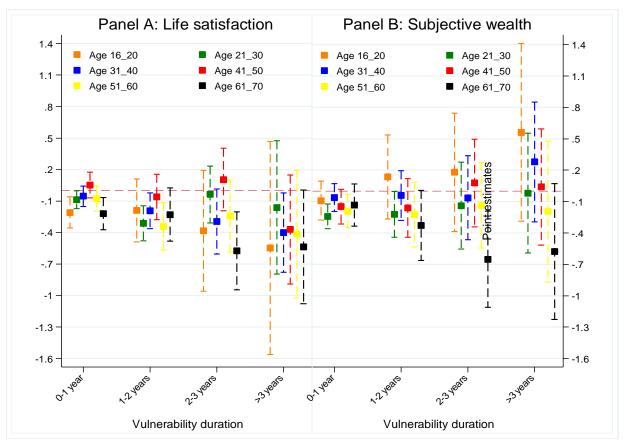
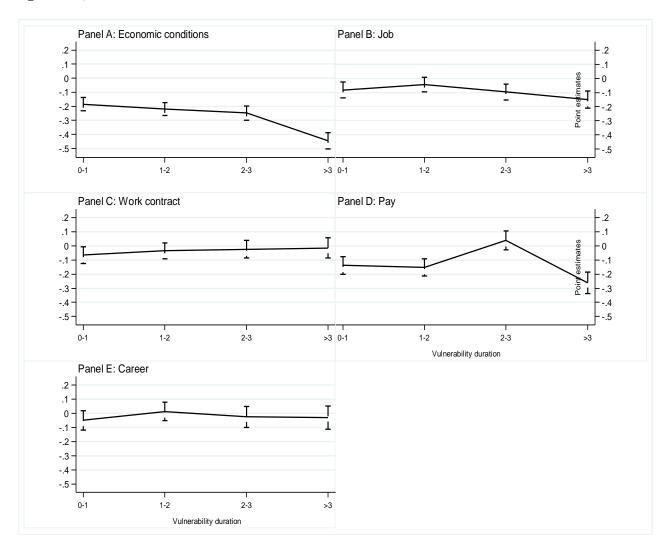

Vulnerability indexes (%)

Figure 3. Educational profiles of vulnerable individuals, fixed-effects regression, RLMS 2002-2017


Note: Vulnerability spells are constructed on an annual basis. The dashed line represents the 95% confidence intervals.

Figure~4.~Age~profiles~of~vulnerable~individuals, fixed-effects~regression, RLMS~2002-2017

Note: Vulnerability spells are constructed on an annual basis. The dashed line represents the 95% confidence intervals.

Figure 5. Satisfaction with other dimensions of life and vulnerability duration, fixed-effects regression, RLMS 2002-2017

Appendix 1. Additional Tables and Figures

Table 1.1a. Vulnerability Lines for Russia, 2001-2017

2001	-2002	2002	-2003	2003	2004	2004	-2005	2005-	-2006	2006	-2007	2007-	-2008	2008	-2009
vindex	vline														
42	5048														
41	5111														
40	5194														
39	5526														
38	5609														
37	5734														
36	5962					36	5714							36	6546
35	6170					35	5326							35	6661
34	6845					34	6057							34	6921
33	7271					33	6240							33	7008
32	7417					32	6377							32	7123
31	8289					31	6491							31	7325
30	9671	30	6181			30	6880							30	7498
29	10761	29	6594	29	6401	29	7246							29	7555
		28	6746	28	6560	28	7611							28	7671
		27	7595	27	7400	27	7703							27	7757
		26	7845	26	7605	26	8000							26	7930
		25	8139	25	8808	25	8388			25	6752			25	8161
		24	9663	24	9432	24	8846			24	6889			24	8334
		23	11447	23	11918	23	9268			23	7243	23	7087	23	8449
		22	14559	22	21577	22	11874			22	7406	22	7169	22	8911
						21	13691			21	7896	21	7388	21	9401
						20	18411	20	8978	20	8114	20	7743	20	9747
								19	9842	19	8495	19	7935	19	10295
								18	10430	18	9475	18	8400	18	11304
								17	11739	17	9775	17	8783	17	12371
								16	14252	15	13192	16	9494	16	14275
								15	17642	14	15329	15	10507	15	16409
										13	19046	14	11109	14	18802
												13	13872	13	28939
												12	16677		
												11	23216		

Note: Vulnerability lines are expressed in December prices of the 2011 year by using the annual (December to December) national CPI.

Table 1.1b. Vulnerability Lines for Russia, 2001-2017

2009	2009-2010		2011	2011	-2012	2012	-2013	2013	-2014	2014	2015	2015	-2016	2016	-2017
vindex	vline	vindex	vline	vindex	vline	vindex	vline	vindex	vline	vindex	vline	vindex	vline	vindex	vline
										39	7933				
										38	8156				
										37	8251				
										36	8315				
										35	8442				
										34	8570				
										33	8793				
										32	9048				
										31	9239				
										30	9334				
						29	7269			29	9494				
						28	7453	28	7501	28	9685				
						27	7880	27	7727	27	9908				
						26	7972	26	7920	26	10163				
						25	8063	25	7984	25	10577	25	7446		
		24	7936			24	8247	24	8145	24	11055	24	7786		
23	6899	23	8268	23	6847	23	8430	23	8467	23	11532	23	7718		
22	6958	22	8479	22	6910	22	8522	22	8789	22	11883	22	8024	22	8302
21	7167	21	8570	21	7261	21	8796	21	8821	21	12552	21	8160	21	8335
20	7286	20	8932	20	7770	20	8980	20	9015	20	12998	20	8364	20	8629
19	7523	19	9173	19	7961	19	9255	19	9401	19	13826	19	8432	19	8792
18	8416	18	9354	18	8152	18	9407	18	9723	18	14463	18	9112	18	9021
17	8802	17	9626	17	8280	17	9621	17	10109	17	15594	17	9555	17	9348
16	9129	16	10078	16	8598	16	10018	16	10399	16	16789	16	10031	16	9740
15	9724	15	10742	15	8917	15	10507	15	11139	15	18573	15	10643	15	10100
14	10259	14	11557	14	9140	14	11118	14	11526	14	24116	14	11221	14	10427
13	11151	13	13005	13	9617	13	11912	13	12363	13	45094	13	11833	13	11080
12	12787	12	14937	12	10031	12	12920	12	13490			12	12887	12	12028
11	14898	11	18195	11	10604	11	14233	11	14745			11	14009	11	13303
10	18883	10	26599	10	11687	10	16890	10	17289			10	15777	10	14480
				9	12897	9	23488	9	22021			9	19415	9	17323
				8	14999	-		-				_		8	31410
				7	21304										
				-											

Note: Vulnerability lines are expressed in December prices of the 2011 year by using the annual (December to December) national CPI.

Table 1.2. Annual growth rate of income per capita, Rosstat vs. RLMS, 2001-2017

	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Annual growth rate of per				1			1										
capita incomes (Rosstat), %	13.2	12.0	16.9	10.8	14.0	15.2	10.4	4.6	4.5	3.2	3.3	4.9	4.9	-3.8	-2.8	-4.5	-0.2
Annual growth rate of per																	
capita incomes (RLMS), %	26.8	7.1	13.1	3.6	20.3	15.8	5.6	18.3	-3.9	4.9	5.3	8.0	2.7	-3.9	-6.6	1.3	4.1

Sources: Rosstat (money incomes of population https://eng.gks.ru/living), RLMS.

Table 1.3. Life satisfaction/subjective wealth and vulnerability, fixed-effects regressions, RLMS 2002-2017

	I	ife satisfactio	n	Su	ıbjective weal	lth
Variables	Whole sample	Men	Women	Whole sample	Men	Women
Polovy vydporobility line	-0.052***	-0.044***	-0.057***	-0.140***	-0.128***	-0.149***
Below vulnerability line	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)
Below poverty line	0.001	-0.002	0.006	-0.001	0.008	-0.006
Below poverty fine	(0.01)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)
Vulnerability gap	-0.408***	-0.385***	-0.421***	-0.353***	-0.379***	-0.328***
vumeraomity gap	(0.03)	(0.04)	(0.03)	(0.04)	(0.05)	(0.04)
Individual Characteristics Unemployed/out of labour force	-0.199***	-0.287***	-0.143***	-0.186***	-0.275***	-0.129***
10100	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)
Age 16–20	0.284***	0.298***	0.248***	0.313***	0.257***	0.351***
2	(0.02)	(0.04)	(0.03)	(0.03)	(0.05)	(0.04)
Age 21–30	0.017	-0.025	0.032	0.118***	0.035	0.172***
8.	(0.02)	(0.03)	(0.02)	(0.02)	(0.03)	(0.03)
Age 31–40	-0.023*	-0.049***	-0.008	0.051***	0.002	0.085***
	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Age 51–60	0.061***	0.043**	0.078***	-0.020	-0.038*	-0.007
C	(0.01)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)
Age 61–70	0.132***	0.179***	0.115***	0.028	0.077**	0.008
_	(0.02)	(0.03)	(0.02)	(0.02)	(0.03)	(0.02)
Age 71–80	0.123***	0.150***	0.107***	0.054**	0.113**	0.030
_	(0.02)	(0.04)	(0.02)	(0.03)	(0.04)	(0.03)
Age 80+	0.138***	0.187***	0.103***	0.290***	0.281***	0.285***
_	(0.03)	(0.05)	(0.03)	(0.03)	(0.06)	(0.04)
Education						
Complete secondary	-0.044***	-0.046***	-0.045***	-0.006	-0.010	-0.003
	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)
Secondary+vocational	-0.075***	-0.075***	-0.074***	-0.039**	-0.044*	-0.035
	(0.01)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
University and higher	-0.095***	-0.097***	-0.103***	0.003	0.020	-0.007
	(0.02)	(0.03)	(0.02)	(0.02)	(0.04)	(0.03)
Single	-0.167***	-0.145***	-0.184***	-0.026	0.001	-0.042*
	(0.01)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
Divorced/widowed/separated	-0.262***	-0.315***	-0.249***	-0.179***	-0.162***	-0.186***
	(0.01)	(0.02)	(0.01)	(0.01)	(0.03)	(0.02)
Number of children	0.023***		0.018***	0.028***	0.023**	0.031***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Constant	3.388***	3.435***	3.317***	4.117***	3.907***	3.818***
	(0.07)	(0.09)	(0.05)	(0.10)	(0.14)	(0.08)
R2	0.028	0.029	0.031	0.022	0.024	0.022
Number of observations	206,345	86,959	119,386	203,580	85,620	117,960
Number of individuals	37,843 * p < 0.1 Pobus	16,881	20,962	37,640	16,779	20,861

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. Regional and time dummy variables are included but not showed. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). The vulnerability index is defined as P (Y1<Z1|Z0<Y0<V0) = 0.25 in 2002, which is then adjusted for inflation using annual (December to December) CPI for each of 32 regions. Estimation results are based on real total household income per capita. Estimation sample is restricted to individuals 16 years old or older.

Table 1.4. Test for equality of coefficients from Table 3, RLMS 2002-2017

E statistics		e satisfa	ction	Subjective wealth			
F-statistics	All	Men	Women	All	Men	Women	
Loss than 1 year (1.2 years) in yulnarability	8.04	3.81	4.47	0.37	0.60	2.17	
Less than 1 year $-$ (1-2 years) in vulnerability	(0.00)	(0.05)	(0.03)	(0.55)	(0.44)	(0.14)	
Loss than 1 year (2.2 years) in yulnershility	4.58	6.06	0.70	0.00	0.94	0.51	
Less than 1 year – (2-3 years) in vulnerability	(0.03)	(0.01)	(0.04)	(0.98)	(0.33)	(0.48)	
Loss than 1 year (Over 2 years) in yellnershility	11.07	3.49	10.53	1.54	0.08	2.17	
Less than 1 year – (Over 3 years) in vulnerability	(0.00)	(0.06)	(0.00)	(0.21)	(0.78)	(0.14)	

Note: P-values are in parentheses. Vulnerability spells are constructed on an annual basis.

Table 1.5. Adaptation of life satisfaction to vulnerability, fixed-effects regressions, RLMS 2001-2017

		Vulnerabilit	y indexes (%)	
	29	30	31	32
I ass then 1 year in youlnesshility	-0.090***	-0.101***	-0.094***	-0.102***
Less than 1 year in vulnerability	(0.02)	(0.02)	(0.02)	(0.02)
1.2 waama in wulnamahility	-0.178***	-0.179***	-0.170***	-0.186***
1-2 years in vulnerability	(0.04)	(0.04)	(0.04)	(0.04)
2.2 woord in vulnorshility	-0.093*	-0.161***	-0.196***	-0.168**
2-3 years in vulnerability	(0.05)	(0.06)	(0.06)	(0.08)
Over 2 years in vulnerability	-0.062	-0.186**	-0.331***	-0.183*
Over 3 years in vulnerability	(0.07)	(0.08)	(0.11)	(0.11)
R2	0.033	0.030	0.025	0.030
Number of observations	10,658	10,574	10,081	8,575
Number of individuals	3,078	3,099	3,088	2,688

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis. The range of vulnerability indexes is selected to ensure that the number of observations in each duration category is at least 100.

Table 1.6. Adaptation of subjective wealth to vulnerability, fixed-effects regressions, RLMS 2001-2017

		Vulnerabilit	y indexes (%)	
	29	30	31	32
Loss than 1 year in yndrauchility	-0.165***	-0.132***	-0.157***	-0.105***
Less than 1 year in vulnerability	(0.03)	(0.03)	(0.03)	(0.04)
1.2 voore in volumenhility	-0.184***	-0.145***	-0.183***	-0.137**
1-2 years in vulnerability	(0.05)	(0.05)	(0.06)	(0.07)
2.2 viagra in vivilnorability	-0.207***	-0.044	-0.121	-0.050
2-3 years in vulnerability	(0.07)	(0.08)	(0.09)	(0.10)
Over 2 veces in volumentility	-0.108	-0.060	-0.244*	-0.172
Over 3 years in vulnerability	(0.10)	(0.11)	(0.13)	(0.15)
R2	0.035	0.038	0.033	0.035
Number of observations	10,584	10,494	9,962	8,474
Number of individuals	3,075	3,097	3,081	2,679

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis. The range of vulnerability indexes is selected to ensure that the number of observations in each duration category is at least 100.

Table 1.7. Adaptation to vulnerability (without educational characteristics), fixed-effects regressions, RLMS 2002-2017

Y		Life satisfaction			Subjective wealth	
Variables	All	Men	Women	All	Men	Women
Less than 1 year in	-0.096***	-0.058*	-0.120***	-0.160***	-0.133***	-0.174***
vulnerability	(0.02)	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)
1 2 inlm-makilita	-0.197***	-0.162***	-0.210***	-0.191***	-0.082	-0.262***
1-2 years in vulnerability	(0.04)	(0.06)	(0.05)	(0.06)	(0.08)	(0.07)
2.2	-0.222***	-0.268***	-0.180**	-0.164*	-0.034	-0.240**
2-3 years in vulnerability	(0.06)	(0.09)	(0.08)	(0.09)	(0.12)	(0.09)
Over 3 years in	-0.428***	-0.310**	-0.481***	-0.309**	-0.181	-0.371***
vulnerability	(0.10)	(0.14)	(0.12)	(0.13)	(0.18)	(0.14)
R2	0.026	0.042	0.027	0.038	0.045	0.039
Number of observations	10,047	4,329	5,718	9,918	4,278	5,640
Number of individuals	3,035	1,332	1,703	3,024	1,330	1,694

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2 except educational characteristics. Vulnerability spells are constructed on an annual basis.

Table 1.8. Adaptation to vulnerability, controlling for whether individuals participate in the next survey round, fixed-effects regressions, RLMS 2002-2017

Vowiahlas		Life satisfaction			Subjective wealth	
Variables —	All	Men	Women	All	Men	Women
Less than 1 year in	-0.109***	-0.070**	-0.138***	-0.173***	-0.135***	-0.192***
vulnerability	(0.02)	(0.04)	(0.03)	(0.04)	(0.05)	(0.04)
1-2 years in	-0.213***	-0.172***	-0.235***	-0.207***	-0.084	-0.284***
vulnerability	(0.04)	(0.06)	(0.05)	(0.06)	(0.08)	(0.07)
2-3 years in	-0.242***	-0.279***	-0.211***	-0.183**	-0.031	-0.266***
ulnerability	(0.07)	(0.09)	(0.08)	(0.09)	(0.13)	(0.10)
Over 3 years in	-0.451***	-0.331**	-0.517***	-0.331**	-0.179	-0.402***
ulnerability	(0.11)	(0.15)	(0.12)	(0.13)	(0.18)	(0.15)
Dunanant in mant mana	-0.042	-0.029	-0.063	-0.039	0.006	-0.070
Present in next wave	(0.03)	(0.05)	(0.04)	(0.04)	(0.06)	(0.05)
R2	0.027	0.045	0.028	0.038	0.047	0.040
Number of	10.047	4.220	<i>5.</i> 710	0.010	4 270	F (10
bservations	10,047	4,329	5,718	9,918	4,278	5,640
Number of individuals	3,035	1,332	1,703	3,024	1,330	1,694

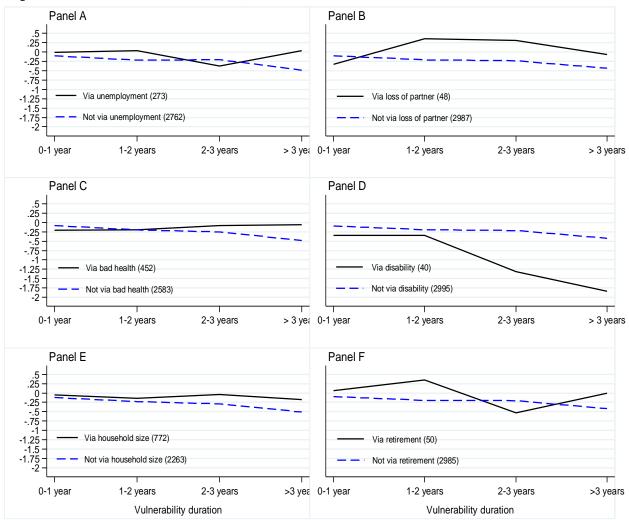

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2. Vulnerability spells are constructed on an annual basis.

Table 1.9. Adaptation to vulnerability, controlling for the number of survey rounds that individuals participate in, fixed-effects regressions, RLMS 2002-2017

X/		Life satisfaction			Subjective wealth	
Variables —	All	Men	Women	All	Men	Women
Less than 1 year in	-0.097***	-0.062*	-0.120***	-0.162***	-0.136***	-0.172***
vulnerability	(0.02)	(0.03)	(0.03)	(0.03)	(0.04)	(0.04)
1-2 years in	-0.196***	-0.160***	-0.209***	-0.192***	-0.086	-0.256***
vulnerability	(0.04)	(0.06)	(0.05)	(0.06)	(0.08)	(0.07)
2-3 years in	-0.221***	-0.263***	-0.180**	-0.164*	-0.034	-0.232**
vulnerability	(0.06)	(0.09)	(0.08)	(0.09)	(0.12)	(0.09)
Over 3 years in	-0.428***	-0.315**	-0.482***	-0.310**	-0.182	-0.364**
vulnerability	(0.10)	(0.14)	(0.12)	(0.13)	(0.17)	(0.14)
Number of waves	-0.004	-0.030*	0.013	-0.020	-0.053**	0.000
individual presents	(0.01)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)
R2	0.027	0.045	0.027	0.038	0.047	0.040
Number of observations	10,047	4,329	5,718	9,918	4,278	5,640
Number of individuals	3,035	1,332	1,703	3,024	1,330	1,694

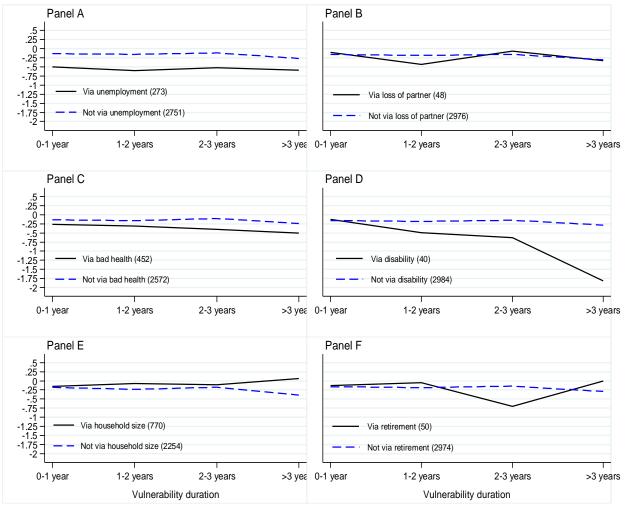

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors clustered at household-year level are in parentheses. All regressions include all control variables in Table 2 except educational characteristics. Vulnerability spells are constructed on an annual basis.

Figure 1.1 Adaptation to vulnerability, by events causing vulnerability, RLMS (2002-2017) (dependent variable-life satisfaction)

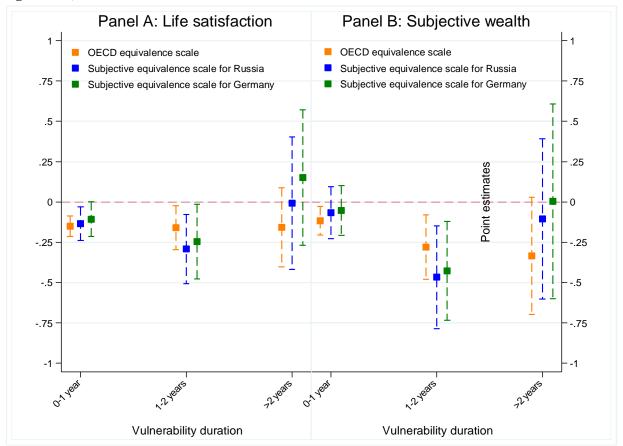

Note: The numbers in parentheses refer to the number of individuals (i.e. vulnerability entries). Information on respondent's disability status is available since 2003.

Figure 1.2 Adaptation to vulnerability, by events causing vulnerability, RLMS (2002-2017) (dependent variable-subjective wealth)

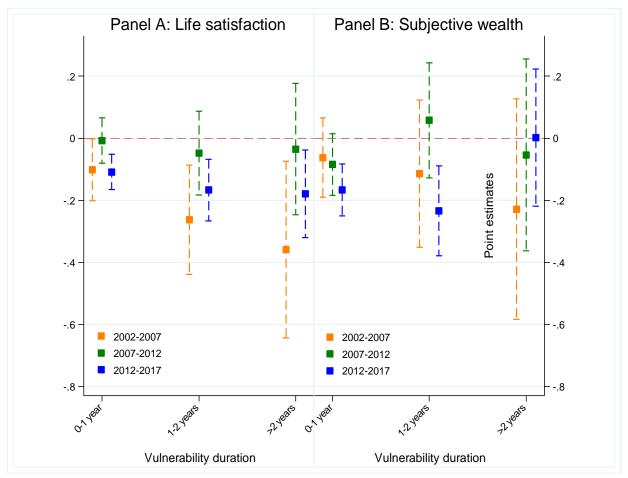

Note: The numbers in parentheses refer to the number of individuals (i.e. vulnerability entries). Information on respondent's disability status is available since 2003.

Figure 1.3. Adaptation to vulnerability by different income definitions, fixed-effects regression, RLMS 2002-2017

Note: Vulnerability spells are constructed on an annual basis. The dashed line represents the 95% confidence intervals. "OECD equivalence scale" assigns a value of 1 to the first household member, of 0.7 to each additional adult and of 0.5 to each child. "Subjective equivalence scale for Russia" and "Sucjective equivalence scale for Germany" are computed as a scale elasticity using formula e = a - bk where a is a adult scale parameter equals 0.407 for Russia and 0.351 for Germany, b is a child scale parameter equals 0.048 for Russia and 0.037 for Germany and k is a number of children (Schwarze (2003) for detailed description of method).

Figure 1.4. Adaptation to vulnerability by different time periods, fixed-effects regression, RLMS 2002-2017

Note: Vulnerability spells are constructed on an annual basis. The dashed line represents the 95% confidence intervals.

Appendix 2. Using an Alternative Definition of Vulnerability

We employ an alternative common approach to identifying vulnerability as expected poverty developed by Chaudhuri et al. (2002) and Chaudhuri (2003). We define individual's income vulnerability at time t as the probability that the individual's income y will fall below a certain threshold z in the next period

$$V_{it} = \Pr(y_{it+1} < Z) \tag{2.1}$$

 $V_{it} = \Pr(y_{it+1} < Z)$ (2.1) The probability distribution of an individual's future income can be specified as a function of individual (household) characteristics and the risks to the individual's income

$$\ln(y_{it}) = X_{it-1}\beta + S_{it}\gamma + \theta_i + \mu_t + \varepsilon_{it}$$
(2.2)

In Equation (2.2), X_{it-1} are the set of observable characteristics at time t-1, S_{it} are the observable idiosyncratic shocks experienced by individual between t-1 and t, θ_i is the unobservable individual fixed effect, and μ_t captures the time effects and covariate shocks that are common across individuals. Following Christiaensen and Subbarao (2005), we include information on idiosyncratic shocks to better account for variations in income.¹⁶

Using the estimates $\hat{\beta}$ and $\hat{\theta}$ from Equation (2.2), we can define individual's expected future income, conditional on its previous observed time-varying and unobserved time-invariant characteristics

$$E[\ln(y_{it})] = X_{it-1}\hat{\beta} + \hat{\theta}_i + \hat{\mu}_t \tag{2.3}$$

The variance of ε_{it} from the following equation is considered as a measure of individual's income variability that depends on individual (and household) characteristics

$$Var(\ln(y_{it})|X_{it-1}, S_{it}) = \hat{\varepsilon}_{it} = X_{it-1}\varphi + S_{it}\gamma + \tau_i + \omega_{it}$$
(2.4)

The next step is to use the estimated mean from Equation (2.3) and the etimated variance from Equation (2.4) to estimate vulnerability to poverty, assuming log-normal probability distribution of income

$$V_{it} = \Pr(y_{it+1} < Z) = \Phi\left[\frac{Z - \hat{y}_{it}}{\sqrt{\overline{var}_{it}}}\right]$$
 (2.5)

In Equation (2.5), \hat{y}_{it} denotes the predicted value of (log) income from Equation (2.3) and \sqrt{Var}_{it} the square root of predicted variance from Equation (2.4). Our estimates of vulnerability are obtained as the probability of falling below the poverty line in t+1, given individual's characteristics in *t-1*.

exogeneity.

¹⁶ From Equation (2.2), estimation of the parameters requires at least a two-period panel. Estimation of the parameters is also complicated by the presence of unobserved individual heterogeneity. To address potential biases in coefficients arising from unobserved heterogeneity, an individual fixed effects model could be applied which would require at least a three-period panel. An advantage of the fixed effect model is that we do not have to assume that θ i is correlated with a set of time-varying covariates but, at the same time, fixed effect model requires time-varying characteristics to be strictly exogenous. We assume that using lagged levels of individual and household characteristics can ensure strict

Table 2.1. Life satisfaction/subjective wealth and vulnerability, poverty line is set as Official Poverty Line,

RLMS 2004-2017, fixed effect regressions

		Life satisfaction			Subjective wealth	
	All	Male	Female	All	Male	Female
V-1	-0.276***	-0.130	-0.338***	-0.175*	-0.462***	-0.077
Vulnerability index	(0.07)	(0.12)	(0.08)	(0.09)	(0.16)	(0.11)
If:	0.167***	0.182***	0.158***	0.261***	0.308***	0.234***
Log of income	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.03)
F : 0 2	-0.023	0.017	-0.038	-0.068**	-0.069	-0.064*
Earning Quart=2	(0.02)	(0.04)	(0.03)	(0.03)	(0.05)	(0.03)
F	-0.008	0.028	-0.023	-0.040	-0.038	-0.041
Earning Quart=3	(0.03)	(0.05)	(0.03)	(0.04)	(0.06)	(0.05)
	0.017	0.089	-0.047	0.059	0.040	0.068
Earning Quart=4	(0.04)	(0.06)	(0.05)	(0.05)	(0.08)	(0.06)
	-0.111***	-0.137***	-0.082*	-0.154***	-0.168***	-0.138**
Informal employment	(0.03)	(0.04)	(0.05)	(0.04)	(0.05)	(0.07)
	0.101	-0.008	0.206*	0.626***	0.576***	0.677***
Age 16–20	(0.08)	(0.11)	(0.11)	(0.11)	(0.16)	(0.14)
	0.000	-0.062	0.055	0.396***	0.316***	0.449***
Age 21–30	(0.04)	(0.06)	(0.05)	(0.05)	(0.08)	(0.07)
	-0.070***	-0.071*	-0.070**	0.203***	0.151***	0.229***
Age 31–40	(0.03)	(0.04)	(0.03)	(0.03)	(0.06)	(0.04)
	0.137***	0.066*	0.186***	-0.065**	-0.144***	-0.011
Age 51–60	(0.02)	(0.04)	(0.03)	(0.03)	(0.05)	(0.04)
	0.383***	0.229***	0.483***	-0.007	0.026	-0.008
Age 61–70						
_	(0.04) 0.345***	(0.07)	(0.05) 0.414***	(0.06)	(0.09)	(0.08)
Age 71–80		0.262		0.002	0.104	-0.020
	(0.11)	(0.19)	(0.12)	(0.14)	(0.19)	(0.19)
Age 80+	0.104	0.549***	-0.386	0.343	1.193***	-0.463
_	(0.28)	(0.15)	(0.43)	(0.38)	(0.19)	(0.34)
Education	0.002	0.055	0.070	0.002	0.050	0.000
Complete secondary	-0.003	-0.057	0.079	-0.002	-0.059	0.089
1	(0.03)	(0.04)	(0.05)	(0.04)	(0.05)	(0.07)
Secondary+vocational	-0.016	-0.044	0.037	-0.039	-0.080	0.030
Secondary : vocationar	(0.04)	(0.06)	(0.07)	(0.06)	(0.08)	(0.09)
University and higher	0.016	-0.009	0.071	-0.048	-0.026	-0.007
Chrystey and ingher	(0.05)	(0.08)	(0.08)	(0.07)	(0.11)	(0.11)
Single	-0.163***	-0.113*	-0.194***	0.094*	0.110	0.091
Single	(0.04)	(0.07)	(0.05)	(0.05)	(0.08)	(0.07)
Divorced/widowed/sep arated	-0.272***	-0.253***	-0.281***	-0.155***	-0.164*	0.148***
aracu	(0.04)	(0.07)	(0.04)	(0.04)	(0.09)	(0.05)
cons	1.801***	1.685***	1.825***	1.630***	1.235***	1.806***
_cons	(0.17)	(0.29)	(0.21)	(0.23)	(0.38)	(0.29)
R2	0.017	0.016	0.019	0.015	0.020	0.014
Number of observations	40,410	17,682	22,728	40,137	17,510	22,627
Number of individuals	9,108	4,186	4,922	9,095	4,178	4,917

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses. Estimation results are based on real individual labor income. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). Estimation sample is restricted to employed individuals 16 years old or older. Absolute poverty line is set as Official Poverty Line

Table 2.2. Life satisfaction/subjective wealth and vulnerability, RLMS 2004-2017, fixed effect regressions

		Life satisfaction			Subjective wealth	
	All	Male	Female	All	Male	Female
		Poverty Line =	official poverty line			
Malmanahilitas in dan	-0.276***	-0.130	-0.338***	-0.175*	-0.462***	-0.077
Vulnerability index	(0.07)	(0.12)	(0.08)	(0.09)	(0.16)	(0.11)
Logofingono	0.167***	0.182***	0.158***	0.261***	0.308***	0.234***
Log of income	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.03)
		Poverty Line = o	fficial poverty line*1.	.5		
Walanahilita indan	-0.123**	-0.169*	-0.108	-0.082	-0.190	-0.038
Vulnerability index	(0.06)	(0.10)	(0.07)	(0.07)	(0.12)	(0.09)
T £:	0.173***	0.178***	0.169***	0.265***	0.316***	0.236***
Log of income	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.03)
		Poverty Line =	official poverty line*2	2		
V-1	-0.127***	-0.051	-0.185***	-0.107	-0.130	-0.086
Vulnerability index	(0.05)	(0.08)	(0.06)	(0.07)	(0.10)	(0.09)
T £:	0.173***	0.184***	0.165***	0.263***	0.317***	0.233***
Log of income	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.03)
Number of observations	40,410	17,682	22,728	40,137	17,510	22,627
Number of individuals	9,108	4,186	4,922	9,095	4,178	4,917

Note: *** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses. Estimation results are based on real individual labor income. Incomes are expressed in December prices of the 2011 year by using the annual (December to December) CPI for each of 32 regions (oblasts). Estimation sample is restricted to employed individuals 16 years old or older.